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sont de remarquables scientifiques et j’ai beaucoup de chance d’avoir un aussi beau jury.
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Boyer et Yohann De Castro (on finira bien par la faire démarrer cette 4L), Frédéric de
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thèse Yann Gousseau et Jean-François Aujol m’ont apporté lorsque j’étais à leur place.
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Introduction et résumé en
français

Les problèmes inverses, qui consistent à tenter d’identifier l’état d’un système phy-
sique à partir de quelques mesures indirectes, sont omniprésents en sciences appliquées :
supprimer le flou dans les images biologiques (microscopie optique), estimer la disposi-
tion des organes ou des os à partir d’images à rayons X obtenues sous différents angles
(tomographie axiale calculée) ou à partir de leur réponse à un fort champ magnétique
(IRM, Imagerie à Résonance Magnétique), décrire la composition du sous-sol à partir de
mesures du champ gravitationnel (prospection gravimétrique). . . ne sont que quelques
exemples de problèmes inverses rencontrés quotidiennement par les scientifiques.

En termes plus mathématiques, soient V , H deux ensembles, et une application
Φ : V → H appelée opérateur d’observation (qui décrit le problème direct). Le problème
inverse associé consiste à essayer de retrouver une inconnue u ∈ V à partir de l’observa-
tion de Φ(u). Le point délicat est qu’en général Φ n’est pas injective : il y a une perte
d’information, l’observation est partielle ; ou alors Φ est très mal conditionnée. De plus
il est très courant que l’observation soit entachée de bruit, de sorte que nous n’avons
pas accès à Φ(u) mais à une version corrompue y ≈ Φ(u). Un tel problème est mal posé
et requiert une régularisation. La littérature concernant les problèmes inverses est vaste
[Tik43, Mor84, CK94, EHBN00, HKPS07, SKHK12, Ker16] et aborde de nombreuses
questions telles que l’identifiabilité de l’inconnue u (peut-on la retrouver en l’absence de
bruit ?) ou la stabilité de sa reconstruction (peut-on borner l’erreur entre la reconstruc-
tion et l’inconnue ? à quel vitesse de convergence lorsque le bruit diminue ?).

Tandis que la plupart des résultats sont formulés en termes de norme (par exemple la
norme euclidienne) ou de divergence de Bregman, le présent mémoire se concentre sur les
propriétés structurelles des solutions. Au cours des vingt dernières années, les chercheurs
ont conçu des termes de régularisation pour les méthodes variationnelles promouvant
certaines structures (parcimonie, faible rang, constance par morceaux. . .) que l’inconnue
est supposée posséder. Notre objectif est de comprendre si les (ou des) solutions obtenues
ont bien la même structure que l’inconnue, et de déterminer si cette structure est robuste
au bruit ou à la régularisation. De plus, nous montrons que l’on peut exploiter cette
structure dans des méthodes numériques pour obtenir des algorithmes efficaces.

Dans tout le présent document, nous nous concentrons sur les problèmes inverses
linéaires, c’est-à-dire que nous supposons que V et H sont des espaces vectoriels et
que Φ est linéaire. Bien que cela paraisse restrictif, ce cadre de travail couvre déjà de
nombreux exemples intéressants tels que ceux mentionnés ci-dessus. De plus, nous nous
intéressons essentiellement aux méthodes variationnelles convexes pour la résolution des
problèmes inverses. Comme nous le démontrons dans les chapitres suivants, la plupart
des réponses à nos questions résident dans l’étude des faces et des points extrémaux de
quelques ensembles convexes bien choisis.
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Résumé détaillé

Chapter 1: A representer theorem for variational problems. Une formulation
variationnelle typique pour la résolution des problèmes inverses est le programme de
minimisation

min
u∈V

R(u) + f(Φu, τ), (1)

où R : V → R∪{+∞} est une fonction convexe appelée terme de régularisation et f(·, τ)
est une fonction convexe arbitraire appelée terme de fidélité aux données. La variable
τ est un paramètre, typiquement τ = (λ, y), où λ encode le compromis entre la fidélité
aux données et la régularisation, et y est une observation. En supposant que des solu-
tions de (1) existent, nous cherchons à les représenter, à l’aide d’une somme de briques
élémentaires que nous nommons “atomes”. Ces atomes sont les points extrémaux (ou
points des rayons extrémaux) des ensembles de niveau de R, et dans les grandes lignes,
le résultat principal établit qu’il existe une solution qui est une combinaison convexe
d’au plus M tels atomes, où M est le nombre d’observations linéaires (en supposant
que H = RM avec M < +∞). Ce principe de représentation est déjà apparu dans la
littérature pour des cas particuliers de (1), notamment pour la reconstruction de mesures
de Radon ou de splines [Zuh48, FJ75]. Il a été récemment remis en lumière par M. Unser
et ses collaborateurs, qui ont souligné son intérêt pour l’étude des splines généralisées
ou les réseaux de neurones profonds [UFW17, GFU18, Uns19] (voir aussi [FW19]). Nous
donnons ici une formulation générale abstraite de ce principe qui met en évidence sa na-
ture géométrique. Nous nous appuyons sur une formulation épigraphique pour prendre
en compte l’interaction entre la régularisation et le terme de fidélité. Les limites de ce
principe sont également discutées.

Chapter 2: The faces of the total gradient variation unit ball. Nous illustrons
le principe mentionné ci-dessus avec la variation totale (du gradient),

R(BV)(u) =

∫
Rd

|Du| , (2)

où u ∈ Ld/(d−1)(Rd) est à variation bornée, et Du désigne le gradient de u au sens des
distributions, vu comme une mesure de Radon. Des expériences numériques suggèrent
que considérer uniquement les points extrémaux des ensembles de niveau deR(BV) fournit
une représentation trop pauvre et qu’il est nécessaire de comprendre finement leurs faces
de dimension finie. En conséquence de la formule de la coaire, ces faces sont déterminées
par une famille d’ensembles de périmètre fini qui a une structure (il s’agit d’un anneau
d’ensembles). Nous décrivons cette famille et nous démontrons que les faces de dimension
finie de la boule unité de la variation totale ont un nombre fini de points extrémaux,
ce sont des polytopes. nous en déduisons également une représentation en structure
d’arbre des fonctions qui rappelle l’arbre des formes [MG00, BCM03] utilisé en analyse
d’images [Mon99, DK00, LAG09]. Ce chapitre relate essentiellement des travaux non
publiés.

Chapter 3: Sensitivity analysis in inverse problems. Comprendre la stabilité des
représentations fournies dans Chapter 1 quand le paramètre τ = (λ, y) varie nécessite des
outils plus élaborés. Nous expliquons comment la théorie classique de la dualité [ET76,
Roc89] est intéressante pour cela. Les solutions du problème dual donnent accès à une
normale à l’épigraphe de R, ce qui fournit des informations sur une face (mais pas
forcément la face minimale) qui contient les solutions de (1). Nous décrivons comment la
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normale correspondante évolue lorsque τ varie. En particulier, quand λ→ 0 (c’est-à-dire
que l’on peut se permettre de régulariser un tout petit peu, par exemple quand le bruit
est petit), cette normale est déterminée par un objet que nous appelons certificat de
norme minimale.

Chapter 4: Finding the minimal-norm certificate. Comme nous le montrons dans
les chapitres suivants, le certificat de norme minimale est crucial pour identifier la face
des solutions (et donc leur représentation) à faible bruit. Il fournit aussi une condition
suffisante pour assurer l’identifiabilité du signal recherché. Nous discutons ici des moyens
de le déterminer. S’agissant de la solution d’un problème convexe sous contraintes, il n’a
en général pas d’expression analytique. Toutefois, nous montrons que si l’on est capable
de deviner la face minimale (dans l’ensemble des points admissibles du problème dual)
qui le contient, on peut alors le calculer en utilisant la pseudoinverse d’une restriction de
Φ. Au fond, cela revient à généraliser la construction de J.-J. Fuchs dans [Fuc04] pour les
problèmes régularisés par la norme ℓ1. Nous illustrons ce principe dans le cas de la norme
ℓ1 (Lasso) lorsque le support n’est pas stable, et sur des problèmes régularisés par la
variation totale des mesures (Blasso). Dans le cas de la variation totale du gradient
des fonctions, cette technique ne fonctionne plus, et nous discutons du cas plus simple
du débruitage, où des exemples de certificats de norme minimale sont donnés par les
fonctions indicatrices des ensembles calibrables (au sens de [BCN02, ACC05a]).

Chapter 5: Support stability. Nous étudions la stabilité des représentations dans
les problèmes régularisés par la norme ℓ1, la variation totale de mesures et la variation
totale du gradient des fonctions. Dans ces cas l’objet d’intérêt est le support du signal
(ou de son gradient). La convergence du support au sens de Kuratowski est obtenue
sous des hypothèses assez générales, et nous nous demandons si de plus il a la même
structure que la limite. Pour la régularisation ℓ1 cela est vrai si le certificat dual limite
est dit strict, mais nous montrons que cette condition n’est pas suffisante dans le cadre
continu (Blasso). Nous introduisons une hypothèse de non-dégénérescence (avec une
condition sur les dérivées secondes qui apparâıt également dans [CFG14, AdCG15] pour
des raisons différentes) qui assure la stabilité désirée, au sens de solutions qui ont le
même nombre de masses de Dirac, avec des amplitudes et des positions qui convergent
vers celles de la solution limite.

Chapter 6: Below the “Rayleigh limit”. Une des limitations du Blasso est son
incapacité à distinguer des impulsions de signes opposés qui sont trop proches. Cepen-
dant, nous montrons que lorsque toutes les impulsions ont le même signe, le Blasso
est capable de les distinguer, sous des hypothèses raisonnables, en dimension d = 1.
L’hypothèse principale est essentiellement une condition de non-dégénérescence spéciale
d’un objet que nous introduisons, le précertificat aux (2s − 1)-dérivées nulles, la limite
des certificats de norme minimale lorsque les points de support se concentrent. Nous
donnons des conditions suffisantes pour cette non-dégénérescence dans le cas où la fa-
mille d’autocorrélation de la réponse impulsionnelle forme un système totalement positif
étendu, une propriété qui est reliée à la propriété de T -système.

Chapter 7: Exploiting the structure of the solutions. L’intérêt du principe de
représentation n’est pas seulement théorique, il sert également dans la conception de
méthodes numériques. Nous décrivons l’algorithme Frank-Wolfe (ou gradient condition-
nel) classique dans un cadre abstrait et nous expliquons comment il construit des itérées
qui ont une structure similaire à nos solutions “décomposables”, étant une combinaison
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convexe d’un nombre fini de points extrémaux. En nous inspirant d’une idée de K. Bre-
dies and H. Pikkarainen [BP13] d’améliorer la convergence en effectuant une descente
non-convexe sur le choix des points extrémaux de la combinaison, nous déduisons deux
algorithmes de minimisation pour le Blasso. Le premier, appelé Sliding Frank-Wolfe,
travaille dans l’espace des mesures et ajoute itérativement des masses de Dirac aux
itérées, avec une descente non convexe sur les amplitudes et les positions. Si la solu-
tion recherchée a une structure parcimonieuse non-dégénérée la méthode converge après
un nombre fini d’itérations principales. Le second, appelé Fourier Frank-Wolfe, travaille
dans l’espace des matrices de moments (trigonométriques) et ajoute itérativement des
matrices de rang un aux itérées, avec une descente non convexe également. Les matrices
de moments sont grandes et difficiles à manipuler, mais en exploitant leur structure Toe-
plitz et le fait que les itérées sont de faible rang, notre algorithme bénéficie de calculs
rapides (s’appuyant notamment sur la transformée de Fourier rapide) et d’une faible
empreinte mémoire.

Les deux méthodes fournissent des algorithmes de résolution efficaces pour le Blasso
dans un cadre complètement continu. Nous montrons qu’ils sont parfaitement adaptés
aux applications en les confrontant à des jeux de données de microscopie à super-
résolution par localisation de molécule unique (SMLM).



Foreword

This thesis summarizes the research I have conducted from 2013 to early 2021, first
as a postdoctoral fellow at Paris-Dauphine University (CEREMADE), for one year and a
half, and then as a researcher at Inria in theMokaplan team. Rather than summarizing
my published papers with a bird’s eye view, I have tried to “tell the story” that seems
to emerge from most of my works.

Step by step, trying to present things in a unified way, I realized that I had to state
some results quite differently from their originally published version, and therefore had
to provide their proofs. It results in a (perhaps) unusually detailed document for a
habilitation thesis, and I apologize to the reviewers for that. A second consequence of
that choice is that some papers could not “fit” into this story, and even though they do
matter to me, I have decided not to present them. Such is the case for my papers related
to mechanics [2] and optimal transport [4, 1].

It must be said that the research presented here stems not only from my own effort,
but also from interactions and collaborations with valuable and talented colleagues. I
have tried to acknowledge their contributions at the beginning of each chapter. More
specifically, I have made my first steps towards “diriger des recherches” by co-supervising
with Gabriel Peyré the PhD theses of Quentin Denoyelle and Paul Catala. The present
document owes a lot to them.
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Introduction

Trying to identify the state of a physical system from the knowledge of a few indirect
measurements is an ubiquitous problem in applied sciences known as inverse problem:
removing the blur in biological images (optical microscopy), estimating the disposition
of organs or bones from X-radiations from different angles (computed tomography) or
from their response to a strong magnetic field (MRI), describing the composition of the
ground by measuring the gravity field on the surface (gravimetric prospection). . . are a
few examples of inverse problems that scientists routinely face.

In more mathematical terms, let V , H be two sets, and a map Φ : V → H, called
a forward operator. The inverse problem consists in trying to recover some unknown
u ∈ V from the observation of Φ(u). The issue is that Φ is in general not injective: there
is a loss of information, the observation is partial. Moreover, it is very common that
the observation is contaminated with noise, so that we do not have access to Φ(u), but
to some corrupted version y ≈ Φ(u). Solving such a problem is severely ill-posed and
requires some regularization. The literature on inverse problems is large [Tik43, Mor84,
CK94, EHBN00, HKPS07, SKHK12, Ker16], and addresses many questions such as
the identifiability of an unknown u (can one recover it if there is no noise?) or the
stability of its reconstruction (can one bound the error between the reconstruction and
the unknown? at what convergence rate when the noise decays?).

While most results are formulated in terms of norms (e.g. Euclidean) or Bregman
divergence, the present thesis focuses on structural properties. In the last two decades,
researchers have carefully designed regularizers in variational approaches so as to pro-
mote solutions with a specific structure (sparsity, low rank, piecewise constancy. . . ) that
the unknown supposedly has. Our goal is to understand if some solutions have indeed
the same structure as the unknown, and to understand whether it is stable to noise or
regularization. Moreover, we show that exploiting that structure in numerical methods
can help designing efficient solvers.

Throughout the document, we focus on linear inverse problems, i.e. we assume that
V and H are vector spaces and Φ is linear. Though that may seem restrictive, that
framework already covers many interesting examples such as those mentioned above.
Moreover, we are mainly interested in convex variational methods for the resolution of
inverse problems. As we prove in the next chapters, most answers to our questions rely
in the study of the faces and extreme points of some well chosen convex sets.

Detailed summary

Chapter 1: A representer theorem for variational problems. A typical varia-
tional formulation for the resolution of inverse problems is the minimization program

min
u∈V

R(u) + f(Φu, τ), (3)

9
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where R : V → R∪{+∞} is a convex function called a regularizer and f(·, τ) is an arbi-
trary convex function called a data fitting term. The variable τ is a parameter, typically
τ = (λ, y), where λ encodes the balance between the fidelity and regularization terms,
and y is an observation. Granted that solutions to (3) exist, we focus on representing
them, with a sum of building blocks that we call “atoms”. Those atoms are the extreme
points (or points in the extreme rays) of the level sets of R, and roughly speaking, the
main result states that there is a solution which is a convex combination of at most
M such atoms, where M is the number of linear measurements (assuming H = RM
with M < +∞). That principle has already appeared in the literature for specific in-
stances of (3), especially for the recovery of Radon measures or splines [Zuh48, FJ75].
It was recently revived by M. Unser and collaborators who pointed out its interest for
the study of generalized splines or deep neural networks [UFW17, GFU18, Uns19] (see
also [FW19]). We provide here a general abstract formulation which emphasizes the
geometric essence of that principle. We rely on an epigraphical formulation to take into
account the interactions between the regularizer and the fidelity term. The limitations
of that principle are also discussed.

Chapter 2: The faces of the total gradient variation unit ball. We illustrate
the above-mentioned principle on the total (gradient) variation of functions,

R(BV)(u) =

∫
Rd

|Du| , (4)

where u ∈ Ld/(d−1)(Rd) has bounded variation, and Du denotes the distributional gradi-
ent of u, seen as a Radon measure. Numerical experiments suggest that considering only
the extreme points of the level sets of R(BV) yields a representation which is too poor,
and that it is necessary to finely understand the finite-dimensional faces instead. As a
consequence of the coarea formula, those faces are determined by a family of sets of finite
perimeters which has some structure (it is a ring of sets). We describe those families and
we prove that the finite-dimensional faces of the total variation unit ball have a finite
number of extreme points, they are polytopes. We also deduce a tree representation of
functions which is reminiscent of the tree of shapes of images [MG00, BCM03] used in
image analysis [Mon99, DK00, LAG09]. This chapter covers mostly unpublished work.

Chapter 3: Sensitivity analysis in inverse problems. As we aim at understanding
the stability of the representation provided in Chapter 1 when the parameter τ = (λ, y)
varies, we need to use more sophisticated tools. We explain how the classical duality
theory [ET76, Roc89] is relevant for that. The solutions to the dual problem give access
to a normal to the epigraph of R, providing information on a face (but not necessarily the
minimal one) which contains the solutions to (3). We describe how the corresponding
normal evolves as τ varies. In particular, when λ → 0 (i.e., when one may regularize
only a little, for instance if the noise is small), that normal is determined by an object
that we call the minimal-norm certificate.

Chapter 4: Finding the minimal-norm certificate. As we show in subsequent
chapters, the minimal-norm certificate is crucial when trying to identify the face of
the solutions (hence their representation) at low noise. It also provides a sufficient
way to ensure identifiability of the signal to reconstruct. We discuss here how to find
it. Being the solution of a constrained convex problem, it does not have any closed-
form expression in general. However, we show that if one is able to guess its minimal
face beforehand (in the set of feasible points of the dual problem), it can be computed
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using the pseudoinverse of a restriction of Φ. In essence, this is a generalization of the
construction of J.-J. Fuchs in [Fuc04] for ℓ1-regularized problems. We illustrate that
principle in the case of ℓ1-regularized problems (Lasso) where the support is not stable,
and on problems regularized with the total variation of measures (Blasso). In the case
of the total (gradient) variation of functions, that trick does not hold, and we discuss
the simpler case of denoising, where examples of minimal norm certificates are provided
by the indicator functions of calibrable sets (in the sense of [BCN02, ACC05a]).

Chapter 5: Support stability. We examine the stability of the representation in
problems regularized by the ℓ1-norm, the total variation of measures and the total gradi-
ent variation of functions. In those cases the support of the signal (or its gradient) is the
object of interest. The convergence of the support in the sense of Kuratowski is obtained
under fairly general assumptions, and we ask if furthermore it has the same structure
as the support of the limit. In ℓ1-regularization this is true, a sufficient condition is the
tightness of the limit dual certificate, while we show that tightness is not sufficient in
the continuous setting (Blasso). We introduce a non-degeneracy assumption (with a
condition on second derivatives which also appears in [CFG14, AdCG15] for different
reasons) which ensures the desired stability providing measures with the same number of
Dirac masses, with amplitudes and locations which converge towards those of the limit
solution.

Chapter 6: Below the “Rayleigh limit”. One limitation of the Blasso is its in-
ability to resolve spikes with opposite signs which are too close. However, we show that
when the spikes all have the same sign, the Blasso is able to resolve them, under mild
assumptions, in dimension d = 1. The assumption is essentially a special non-degeneracy
condition on an object that we introduce, the (2s− 1)-vanishing dual precertificate, the
limit of the minimal-norm certificates as the points cluster. We provide sufficient condi-
tions for that non-degeneracy condition in the case where the family of autocorrelations
form an extended totally positive system, a property which is related to the T -system
property.

Chapter 7: Exploiting the structure of the solutions. The representation prin-
ciple is not only of theoretical interest, it can also be exploited in numerical methods.
We describe the classical Frank-Wolfe (or conditional gradient) algorithm in an abstract
setting and we explain how it builds iterate which have a similar structure as our “de-
composable” solutions, being a convex combination of finitely many extreme points.
Relying on an idea of K. Bredies and H. Pikkarainen [BP13], that is, to improve the
convergence by performing a non-convex descent on the choice of extreme points in the
combination, we derive two minimization algorithms for the Blasso. The first one, the
Sliding Frank-Wolfe, works in the space of measures and iteratively adds Dirac masses
to the iterate, with a non-convex descent on the amplitudes and locations. If the sought-
after solution has a sparse non-degenerate structure, the method converges after finitely
many outer iterations. The second one, the Fourier Frank-Wolfe, works in the space
of (trigonometric) moment matrices and iteratively adds rank-one matrices to the iter-
ate, with a non-convex descent as well. Moment matrices are large and cumbersome,
but taking advantage of their Toeplitz structure and the fact that the iterates have low
rank, our algorithm benefits from fast computations (with the use of the Fast Fourier
Transform) and a low memory footprint.

Both methods provide efficient solvers for the Blasso in a fully continuous setting.
We show that they are perfectly suitable for applications by testing them on single-
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molecule localization microscopy (SMLM) datasets.



Publications of the author since
the PhD

[1] Jean-David Benamou and Vincent Duval. Minimal convex extensions and finite
difference discretisation of the quadratic Monge–Kantorovich problem. European
Journal of Applied Mathematics, 30(6):1041–1078, 2019. Publisher: Cambridge
University Press.

[2] J. Bleyer, G. Carlier, V. Duval, J.-M. Mirebeau, and G. Peyré. A Γ-Convergence
Result for the Upper Bound Limit Analysis of Plates. ESAIM: Mathematical Mod-
elling and Numerical Analysis, 2016.

[3] Claire. Boyer, Antonin. Chambolle, Yohann De. Castro, Vincent. Duval, Frédéric.
de Gournay, and Pierre. Weiss. On Representer Theorems and Convex Regulariza-
tion. SIAM Journal on Optimization, 29(2):1260–1281, 2019.

[4] Guillaume Carlier, Vincent Duval, Gabriel Peyré, and Bernhard Schmitzer. Conver-
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Our study of variational methods for inverse problems begins with a basic theorem
which describes the structure of the solution set. Let V denote a real a vector space
(which models, e.g. a space of signals), and Φ : V → RM be a linear map. Typically,
Φ is called a sensing operator, as it provides M measurements on some unknown signal
u0 that we wish to recover. In most of the present dissertation, we focus on problems of
the form

inf
u∈V

R(u) + f(Φu, τ), (1.1)

where R : V → R ∪ {+∞} is a convex function called a regularizer and f(·, τ) is an
arbitrary convex function called a data fitting term. The variable τ is a parameter,
typically τ = (λ, y), where λ encodes the balance between the fidelity and regularization
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20CHAPTER 1. A REPRESENTER THEOREM FOR VARIATIONAL PROBLEMS

terms, and y is a reference observation. As in the present chapter we consider τ fixed,
we drop the dependency in τ for the rest of the chapter.

Problems of the form (1.1) have been considered in the field of inverse problems
since (at least) the work of A. N. Tikhonov [Tik43, Tik63]. The choice of R (and f) may
be guided by Bayesian arguments or by structural properties which are characteristic
of the unknown signal u0 (e.g. sparsity or low rank) and that one wishes to promote
when solving (1.1). We adopt the latter point of view, and the goal of this chapter is to
emphasize the connection between the faces of the level sets of R and the structure of
the solutions to (1.1).

While most of the early works focus on R (and f) being the square of the Eu-
clidean norm, more modern approaches employ convex regularizers having non-trivial
faces in their level sets, such as the indicator of the nonnegative orthant [DT05], the
ℓ1-norm [Tib96] or its composition with a linear operator [ROF92], or the nuclear
norm [CR09]. That change of paradigm has yielded dramatic improvement, stimu-
lating the emergence of the compressed sensing theory [Don06] and contributing to
major progress in tasks such as matrix completion [CR09] or point-source deconvolu-
tion [TBSR13, CFG14] - to name a few. The success of such regularizations in pro-
moting structured signals is interpreted in [CRPW12] as follows: when R is positively
homogeneous, R is the convex gauge of some collection of points, the extreme points of
{u ∈ V | R(u) ⩽ 1 }, and any solution u to (1.1) which lies on a low dimensional face
of that level set is a convex combination of such extreme points. The theorems of this
chapter advocate for the same philosophy, but they make the statement more precise.

Collaboration. This chapter revisits the results of [3], a joint work with Claire Boyer,
Antonin Chambolle, Yohann De Castro, Frédéric de Gournay, and Pierre Weiss. While
our original proof was built upon the argument of [Kle63], we have developed for this
manuscript an alternative approach which is closer to the original paper [Dub62] and
which involves the epigraphs of the functions. It has been published in [12]. The main
advantage of this epigraphical approach is to handle natively convex fidelity terms u 7→
f(Φu) instead of the hard constraint Φu = y. It also paves the way for the discussion
on the stability of such representations in Chapter 3.

As the writing of the present thesis took longer than expected, and since the alter-
native approach has an independent interest, we published that approach in [12], where
the most technical details of the proof have been moved to.

1.1 Representer theorems for inverse problems

We call a representer theorem a theorem which describes the (or some) solutions
to (1.1) as a convex (or linear) combination of some “atoms”.

1.1.1 Representer theorems for measures.

Although inverse problems in the space of measures have drawn a lot of attention in
recent years, that topic dates at least from the 1940’s, and it provides one of the oldest
examples of a representer theorem. Consider for instance the problem

min
m∈M(X)

|m| (X) s.t. Φm = y (1.2)

whereX ⊆ Rd,M(X) denotes the space of bounded Radon measures, |m| (X) is the total
variation of the measurem (see Section 1.4.1) and Φm is a vector of generalized moments,
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i.e. Φm =
(∫
X φi(x)dm(x)

)
1⩽i⩽M where {φi}1⩽i⩽M is a family of continuous functions

(which “vanish at infinity” if Ω is not compact). Problems of the form (1.2) have received
considerable attention since the pioneering works of A. Beurling [Beu38] and M. Krein
[Kre38], sometimes under the name L-moment problem (see the monograph [KN77]). To
the best of our knowledge, the first “representer theorem” for problems of the form (1.1)
is given for (1.2) by S. Zuhovickĭi [Zuh48] (see [Zuh62, Th. 3] for an English version).
It essentially states that

There exists a solution to (1.2) of the form
r∑
i=1

aiδxi, with r ⩽M . (1.3)

A more precise result was given by Fisher and Jerome in [FJ75]. When considering
the problem (1.2), and for a bounded domain Ω, the result reads as follows:

The extreme points of the solution set to (1.2) are of the form
r∑
i=1

aiδxi , with r ⩽M.
(1.4)

Incidentally, the Fisher-Jerome theorem considers more general problems of the form:

min
u∈V
|Lu| (X) s.t. Lu ∈M(Ω) and Φu = y, (1.5)

where V ⊆ D′(Ω) is a suitably defined Banach space of distributions, L : D′(Ω) →
D′(Ω) maps V onto M(Ω) and Φ : V → RM is a continuous linear operator. We refer
to [FJ75, UFW17] for precise assumptions. Let us mention that the initial results by
Fisher-Jerome were extended to a significantly more general setting in [UFW17].

It is important to note that the Fisher-Jerome theorem [FJ75] provides a much
finer description of the solution set than Zuhovickĭi’s result [Zuh48]. Indeed, the Krein-
Milman theorem states that, if V is endowed with the topology of a locally convex
Hausdorff vector space and C ⊂ V is compact convex, then C is the closed convex hull
of its extreme points,

cl conv (extr(C)) = C. (1.6)

In other words, the solutions described by the Fisher-Jerome theorem are sufficient to
recover the whole set of solutions. Let us mention that the Krein-Milman theorem was
extended by V. Klee [Kle57] to unbounded sets: if C is locally compact, closed, convex,
and contains no line, then

cl conv (extr(C) ∪ rext(C)) = C, (1.7)

where rext(C) denotes the union of the extreme rays of C (see Section 1.2 below).

1.1.2 “Representer theorems” for convex sets

As the Dirac masses are the extreme points of the total variation unit ball, each of
the above-mentioned “representer theorems” for inverse problems actually reflects some
phenomenon in the geometry of convex sets. In that regard, the celebrated Minkowski-
Carathéodory theorem (see for instance [HUL93, Th. III.2.3.4]) is fundamental: any
point of a compact convex set in an M -dimensional space is a convex combination of (at
most)M+1 of its extreme points. In [Kle63, Th. (3)], V. Klee removed the boundedness
assumption and obtained the following extension: any point of a closed convex set which
contains no line and which lies in an M -dimensional space is a convex combination of
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(at most) M + 1 extreme points, or M points, each an extreme point or a point in an
extreme ray.

The present chapter discusses the connection between the Fisher-Jerome theorem
and a lesser known theorem by L. Dubins [Dub62]:

The extreme points of the intersection of C with an affine space of codimension M are
convex combination of (at most)1 M + 1 extreme points of C,

provided C is linearly bounded and linearly closed (see Section 1.2). That theorem
was extended by V. Klee [Kle63] to deal with the unbounded case and to describe the
higher-dimensional faces of the intersection.

Although the connection with the Fisher-Jerome theorem is striking, Dubins’ theo-
rem actually provides one extreme point too many. In the case of (1.2), it would yield
two Dirac masses for one linear measurement. We provide in this chapter a refined
analysis of the case of variational problems, which ensures at most M extreme points.

1.1.3 Statement of the main theorem

Let R : V → R ∪ {+∞}, f : RM → R ∪ {+∞} be two convex functions, and
Φ : V → RM be linear. Possibly redefining f and reducing M , it is not restrictive to
assume that Φ is surjective. The main result of this chapter describes the faces2 of the
solution set S to the problem

min
u∈V

R(u) + f(Φu). (P)

Under some assumptions detailed below, it describes the points p ∈ S as a convex
combinations of “atoms”, i.e. extreme points (or points in extreme rays), of the level
set

{R ⩽ R(p)} def.
= {u ∈ V | R(u) ⩽ R(p) } . (1.8)

To state the theorem, we also need to introduce the level set of the fidelity term,

{f ⩽ f(Φp)} def.
=
{
w ∈ RM | f(w) ⩽ f(Φp)

}
. (1.9)

The main result of this chapter is the following theorem; its proof is sketched in Sec-
tion 1.3 below.

Theorem 1.1 ([12, Thm. 1]). Let R : V → R ∪ {+∞}, f : RM → R ∪ {+∞} be two
convex functions, and let Φ : V → RM be linear. Assume that R(p)+f(Φp) = min (P) <
+∞, and that p belongs to a face of S with dimension j < +∞.

Let k (resp. ℓ) denote the dimension of the minimal face of p in {R ⩽ R(p)} (resp.
Φp in {f ⩽ f(Φp)}). Then k + ℓ ⩽ s, where

s
def.
=


M + j − 2 if p satisfies the double obliqueness condition described in Definition 1.1,

M + j − 1 if (R(p) > inf R) or (f(Φp) > inf f),

M + j otherwise.

(1.10)
1In the rest of the chapter, we omit the mention “at most”, with the convention that some points

may be chosen identical.
2Though the reader may be familiar with them, the notions from convex analysis such as face, extreme

point, linear closure. . . are recalled in Section 1.2 below.
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ρ1

ρ2

S

e0

e1

e2

Φ−1({y})

{R ⩽ R(p)}

Figure 1.1: An illustration of Corollary 1.1, for M = 2, f(w) = χ{y}(w) and R(p) >
inf R. The solution set S = {R ⩽ R(p)} ∩ Φ−1({y}) is made of an extreme point and
an extreme ray. The extreme point is a convex combination of {e0, e1}. Depending on
their position, the points in the ray are a convex combination of {e0, e1, e2} or a pair of
points, one in ρ1 and the other in ρ2.

The double obliqueness condition relates the faces in the level sets of R and f re-
spectively, and those of the corresponding points in their epigraphs. We postpone its
description to Definition 1.1 below.

Combining Theorem 1.1 with Klee’s extension of the Minkowski-Carathéodory the-
orem, one obtains

Corollary 1.1 ([12, Cor. 1]). Under the assumptions of Theorem 1.1, if, moreover,
{R ⩽ R(p)} is linearly closed and contains no line, then p can be written as a convex
combination of (at most) k+1 extreme points of {R ⩽ R(p)}, or k points of {R ⩽ R(p)},
each an extreme point or a point in an extreme ray, with the inequality k ⩽ s− ℓ.

A variant where {R ⩽ R(p)} contains a line is discussed in Section 1.3.4.

Example of the equality constraint problem. Let us fix some y ∈ RM and set
f(w) = χ{y}(w), i.e. f(w) = 0 if w = y and +∞ otherwise. In that case ℓ = 0 and the
double obliqueness condition never holds, yielding the upper-bound k ⩽ M + j − 1 or
k ⩽M + j, depending on whether R(p) > inf R or not.

That choice encompasses the problems considered in Section 1.1.1. If R is the total
variation of measures, R(p) = inf R implies p = 0, so the conclusion of Corollary 1.1 is
trivial. For R(p) > inf R = 0 and j = 0, the theorem describes each extreme point of S
as a convex combination of M extreme points of {R ⩽ R(p)}, i.e. rescaled signed Dirac
masses. We recover the M atoms of the Fisher-Jerome theorem.

For more general regularizers, the level set {R ⩽ R(p)} might be unbounded and the
description might involve a convex combination ofM−1 points, each an extreme point or
a point in an extreme ray. Points where j = 1 are also worth examining: each point p on
an extreme ray of S is a convex combination ofM+1 extreme points of {R ⩽ R(p)}, or a
convex combination of M points of {R ⩽ R(p)}, each an extreme point or in an extreme
ray. Hence, provided the assumptions of Klee’s theorem (see (1.7)) hold, Theorem 1.1
completely characterizes the solution set. An illustration is provided in Figure 1.1.

Example of strictly convex fidelity terms f . More generally, if f is strictly convex,
then ℓ = 0 and we obtain the same conclusions as in the case of the equality constraint.
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Positive values of ℓ. Whereas the cases of the equality constraint and the strictly
convex fidelity term are the most common, one might be interested in polyhedral fidelity
terms such as the ℓ1 or the ℓ∞ norms. In that case, it is worth considering that Φp might
lie on a face with dimension ℓ > 0.

Comparison with the Dubins-Klee theorem. Our theorem is directly inspired by
the Dubins theorem (see Section 1.1.2 for its statement) and its extension to unbounded
sets by V. Klee [Kle63]. In the case of equality constraints, observing that the solution
set is S = {R ⩽ R(p)} ∩ Φ−1{y}, it is tempting to apply the Dubins-Klee theorem to
deduce Theorem 1.1. However, it only yields the more pessimistic part of the theorem
(i.e. R(p) = inf R and f(Φp) = inf f), where {R ⩽ R(p)} and Φ−1({y}) can be in
arbitrary positions. Compared to (1.3) and (1.4), it describes a solution with (at most)
M+1 “atoms” instead ofM (e.g. one measurement would be explained by a signal with
two spikes, which is too much).

As we have shown in [3], that situation is not representative of most convex optimiza-
tion problems, where R(p) > inf R. That property imposes constraints on the relative
positions of {R ⩽ R(p)} and Φ−1({y}), thus reducing the dimension of the face and the
number of atoms.

1.2 Convex sets, faces and extreme points

This section is a reminder of some basic facts and definitions about convex sets in
a real vector space. Convexity and the properties of convex sets play a crucial part in
the present dissertation. While most of them are well-known and can be found in Rock-
afellar’s monograph [Roc97], the exposition in [Roc97] focuses on a finite-dimensional
setting, which is too restrictive for our purpose. Hence, we refer here to the pa-
pers [Dub62, Kle57] and the treatise [Bou07b]. Once the appropriate definitions and
their immediate consequences have been introduced, the proof of the main theorem is
relatively straightforward.

1.2.1 Convex sets and their faces

Let V denote a (finite or infinite-dimensional) real vector space. Given two points

x and y in V , we define the closed interval (or line segment) joining x to y as [x, y]
def.
=

{ tx+ (1− t)y | 0 ⩽ t ⩽ 1 }, and the open interval joining x to y as ]x, y[
def.
= [x, y]\{x, y}.

A line (resp. an open half line) is a set of the form a+Rv (resp. { a+ tv | t > 0 }) where
a, v ∈ V and v ̸= 0. In the following, C ⊆ V denotes a convex set, i.e. for any x, y ∈ C,
the segment [x, y] lies in C.

Internal points. Let W ⊆ V be an affine space containing C. A point u ∈ C is a
called an internal point to C with respect to W if, for any line L of W which contains u,
there is an open interval in L ∩ C which contains u. In other words,

∀v ∈W, ∃ε > 0, ∀λ ∈ ]−ε, ε[ , u+ λ(v − u) ∈ C. (1.11)

WhenW = V , we simply say that u is internal to C and the set of all internal points
to C, denoted by core(C), is often called the algebraic interior (or core) of C. If V is
endowed with the structure of a topological vector space, then the topological interior
of C is contained in core(C); and if the topological interior of C is nonempty, they both
coincide.
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When W is the affine hull of C, i.e. W = Aff C, we say that u belongs to the relative
algebraic interior of C, or to its intrinsic core, which we denote by u ∈ rcore(C).
From [Kle57, Prop. 2.3], u is in the relative algebraic interior of C if and only if

∀v ∈ C \ {u}, ∃z ∈ C, u ∈ ]v, z[ . (1.12)

We say that C is internal if rcore(C) = C.

Remark 1.1. Contrary to the finite-dimensional case, the relative algebraic interior of
a nonempty convex set might be empty. For instance, let V be the space of Lebesgue
integrable functions on ]0, 1[ and C be the set functions which are nonnegative almost
everywhere. For any u ∈ C, it is possible to find v ∈ C such that for all θ > 0,
(u− θv) /∈ C.

➢ Indeed, let t0 ∈ ]0, 1[ be a Lebesgue point of u and let A
def.
= { t ∈ [0, 1] | |u(t)− u(t0)| ⩾ 1 }.

As r → 0,

1

|B(t0, r)|
|A ∩B(t0, r)| ⩽

1

|B(t0, r)|

∫
B(t0,r)

|u(t)− u(t0)|dt→ 0. (1.13)

Now, define v = 1/ |t− t0|1/3. For all θ > 0, provided r > 0 is small enough,
|t− t0| < r implies θv(t) > u(t0) + 1. By (1.13), possibly reducing r, we may also
assume that |B(t0, r) \A| ⩾ 1

2 |B(t0, r)| > 0. Hence u−θv < 0 on the set B(t0, r)\A
which has positive Lebesgue measure.

Thus, for all λ < 0, setting θ = −λ/(1−λ), we have u+λ(v−u) /∈ C, hence u /∈ rcore(C).
Since this holds for all u ∈ C, rcore(C) = ∅.

Extreme points, extreme rays and faces. A point x of the convex set C is an
extreme point of C if there is no open interval in C containing x, or equivalently if
C \ {x} is convex. An extreme ray ρ of C is a half-line contained in C such that any
open interval I which intersects ρ must satisfy I ⊆ ρ.

More generally, a subset F of C is said to be a face of C if F is convex and, for all
x ∈ F and any open interval I ⊆ C containing x, I ⊂ F . An alternative definition of an
extreme point is “a point x such that {x} is a face of C”. Similarly, extreme rays may
be defined as the half-lines which are a face of C. One may check that if F is a face of C
and F ′ is a face of F , then F ′ is a face of C. The dimension of a face, dimF , is defined
as the dimension of its affine hull Aff(F ).

Elementary faces. A canonical choice of face is given by the notion of elementary
face. Given a convex set C and x ∈ C, let us define FC (x) as the intersection of all the
faces of C which contain x. It is also a face, hence it is the minimal face of C (for the
inclusion) which contains x. We call such sets the elementary faces of C. It turns out
that FC (x) is equal to the largest internal subset of C which contains x (see [Dub62,
Th. 2.1]), hence it is the union of {x} and all the open intervals of C which contain x.
Moreover, y ∈ FC (x) if and only if FC (x) = FC (y), hence the elementary faces yield a
partition of C.

The behavior of the elementary faces when performing several operations on convex
sets is described below.
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Intersection. Since the elementary face FC (x) is the union of {x} and all the open
intervals of a convex set which contain x, one may check that if C1 and C1 are two
convex sets,

FC1∩C2 (x) = FC1 (x) ∩ FC2 (x) . (1.14)

Moreover, ifW1,2, W1, W2 respectively denote the affine hulls of those faces, they consist
in the collection of lines through x which respectively intersect C1 ∩C2, C1, C2 through
an open interval. As a consequence,

W1,2 =W1 ∩W2. (1.15)

Cartesian product. If C1, C2 are convex subsets of the vector spaces V1, V2, it is
possible to check that FC1 (x1)×FC2 (x2) is both a face of C1 ×C2 and an internal set.
As a result,

FC1×C2 ((x1, x2)) = FC1 (x1)×FC2 (x2) . (1.16)

Moreover, if W1,2, W1, W2 respectively denote the affine hulls of the above-mentioned
faces, it holds

W1,2 =W1 ×W2. (1.17)

Affine map. If ψ : V1 → V2 is an affine bijective map, it preserves the elementary
faces:

Fψ(C) (ψ(x)) = ψ (FC (x)) . (1.18)

If W1 (resp. W2) denotes the affine hull FC (x) (resp. Fψ(C) (ψ(x))),

W2 = ψ(W1). (1.19)

1.2.2 Linearly bounded and linearly closed sets

We say that C is linearly bounded if the intersection of C with any line is a bounded
set. Similarly, C is linearly closed if its intersection with any line yields a closed interval.
If V is endowed with the structure of a topological vector space and C is closed for that
topology, then, by the continuity of the vector addition and scalar multiplication, C is
linearly closed. Obviously, the converse is not true, as any dense proper vector subspace
of V is linearly closed but not closed.

If V is finite-dimensional, C is linearly closed if and only if it is closed. If, moreover,
C contains no line, its points can be described as a convex combination as explained
in Section 1.1.2.

The intersection of all the linearly closed sets which contains C is its linear closure. If
C is linearly closed and F is a face of C, the linear closure of F is also a face (see [Dub62,
Prop. 6.1]).

Example 1.1. Consider the square C = [0, 1]2 ⊆ R2. Its elementary faces are ]0, 1[2,
]0, 1[ × {0}, ]0, 1[ × {1}, {0} × ]0, 1[, {1} × ]0, 1[, {(0, 0)}, {(0, 1)},{(1, 0)} and {(1, 1)}.
Their respective linear closures are [0, 1]2, [0, 1]×{0}, [0, 1]×{1}, {0}× [0, 1], {1}× [0, 1],
{(0, 0)}, {(0, 1)},{(1, 0)} and {(1, 1)}. They are also faces of C.
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{0} × R

V × {0}

Ê = epi(R)

Ĥ = hypo(t⋆ − fΦ)

•
p,R(p)

S

Ŝ

•

p, 0

Figure 1.2: The solution set S is equivalent, up to an affine isomorphism, to the set Ŝ
(see Lemma 1.1).

1.3 An epigraphical approach to the representer theorem

Let us consider R, f , Φ as described in Section 1.1.3. Note that, possibly composing
Φ with a linear map and reducing the value of M , we may assume that Φ is surjective,
i.e. rank(Φ) = M . For brevity, we define fΦ(u)

def.
= f(Φu). Our goal is to study the

problem

min
u∈V

R(u) + fΦ(u). (P)

We consider a solution p ∈ S (we assume R(p) < +∞ and fΦ(p) < +∞).
Instead of directly studying the elementary face of p in S and in the level sets

{R ⩽ R(p)}, {fΦ ⩽ fΦ(p)}, we work with epigraphs and we consider Ŝ def.
= { (u,R(u)) | u ∈ S }

(see Fig. 1.2 for an illustration). Introducing the epigraph of R and the hypograph of
t⋆ − fΦ,

Ê def.
= epi(R)

def.
= { (u, r) ∈ V × R | R(u) ⩽ r } , (1.20)

Ĥ def.
= hypo(t⋆ − fΦ) def.

= { (u, r) ∈ V × R | t⋆ − fΦ(u) ⩾ r } , (1.21)

we note that Ê and Ĥ are convex, with Ŝ = Ê ∩ Ĥ.
➢ Indeed, if (u, r) ∈ Ê ∩ Ĥ, then R(u) ⩽ r ⩽ t⋆ − fΦ(u), hence

R(u) + fΦ(u) ⩽ r + fΦ(u) ⩽ t⋆.

Since t⋆ = inf (P), the left-hand side is bounded below by t⋆, hence u ∈ S and
r = R(u). This proves that Ê ∩ Ĥ ⊆ Ŝ. The converse inclusion is straightforward.

The cornerstone of the epigraphical approach is the observation that S and Ŝ are iso-
morphic (hence have the same facial structure, see (1.18)).

Lemma 1.1 ([12, Lem. 1]). There is an affine map L : Aff(S)→ R such that R coincides

with L on S. Moreover, the map L̂ : Aff(S) → Aff(Ŝ) defined by L̂(v)
def.
= (v, L(v)) is

bijective and L̂(S) = Ŝ.

The existence of L in Lemma 1.1 follows from the fact that R should be both convex
and concave in S. The rest of the proof of Theorem 1.1 consists in relating the dimension
of the faces in Ê and Ĥ, and then converting that relation in terms of the level sets of R
and f .
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1.3.1 A relation between the faces of the epigraphs

From the description of the elementary faces of an intersection (see (1.14)),

FÊ∩Ĥ (p,R(p)) = FÊ (p,R(p)) ∩ FĤ (p,R(p)) . (1.22)

To understand the dimension of the above-mentioned faces, we need to consider their
affine hulls. Up to a translation of the origin in V × R, we assume without loss of
generality that (p,R(p)) = (0, 0). In particular, all the affine hulls of the elementary
faces of p,R(p) are now linear hulls.

Lemma 1.2. The following relation holds.

dimFÊ (p,R(p)) + dimFhypo(t⋆−f) (Φp, f(Φp)) =M + 1 + j − codimV×R(Ê + Ĥ)

(1.23)

where Ê (resp. Ĥ) denotes the affine hull of FÊ (p,R(p)) (resp. FĤ (p,R(p))).

Proof. Let Ŝ (resp. Ê and Ĥ) be the linear hull of FÊ∩Ĥ (0, 0) (resp. FÊ (0, 0) and

FĤ (0, 0)). From (1.15), we note that Ŝ = Ê ∩ Ĥ, and by classical results in linear
algebra3,

dim Ê = dim(Ê ∩ Ĥ) + codimÊ(Ê ∩ Ĥ), (1.24)

codimÊ(Ê ∩ Ĥ) = codimÊ+Ĥ(Ĥ) = codimV×R Ĥ − codimV×R(Ê + Ĥ). (1.25)

Combining the above equalities, we get

dim Ê = codimV×R Ĥ + dim(Ŝ)− codimV×R(Ê + Ĥ). (1.26)

We note from Lemma 1.1 and (1.18) that dim(Ŝ) = dimFŜ (p,R(p)) = dimFS (p) = j.

Now, we compute codimV×R Ĥ. Let W be a linear complement to kerΦ in V . Since
rankΦ =M , the restriction Φ|W :W → RM is an isomorphism. As a result, the mapping

ψ :
V × R −→ kerΦ×W × R −→ (kerΦ)× (RM × R)
(u, r) 7−→ (k,w, r) 7−→ (k, (Φw, r))

(where (k,w) is the unique element in kerΦ×W such that u = k+w) is an isomorphism.

In particular, since ψ maps Ĥ to kerΦ× (hypo(t⋆ − f)),

ψ
(
FĤ (u, r)

)
= Fψ(Ĥ) (ψu, r)

= FkerΦ×(hypo(t⋆−f) ((k, (Φw, r)))

= kerΦ×Fhypo(t⋆−f) ((Φw, r)) .

Applying this to (u, r) = (p,R(p)) = (0, 0) and considering the linear spans, we obtain

codimV×R Ĥ =M + 1− ℓ̂, (1.27)

where ℓ̂ is the dimension of Fhypo(t⋆−f) (0, 0).

3The first equality in (1.25) is a generalization of the Grassmann formula
dim(F ∩G) + dim(F +G) = dimF + dimG. It follows from the existence of a linear isomorphism
F⧸(F ∩G) ≈

(F +G)⧸G, see for instance [Lan02, Ch. 3, Sec. 1]



1.3. AN EPIGRAPHICAL APPROACH TO THE REPRESENTER THEOREM 29

1.3.2 From the faces in the epigraphs to the faces in the level sets.

The next step is to relate the elementary faces of p in {R ⩽ R(p)} and {fΦ ⩽ fΦ(p)}
to those of (p,R(p)) in Ê and Ĥ. Intuitively (see Figure 1.2), when going from epigraphs
to level sets, the dimension is reduced if the face is “oblique”, and it does not change if
the face is “horizontal”. This is what we formalize now.

The regularizer. Since Ê ∩ (V × {0}) = {R ⩽ 0} × {0}, using (1.14) and (1.16) we
obtain

FÊ (0, 0) ∩ (V × {0}) = FÊ∩(V×{0}) (0, 0) = F{R⩽0} (0)× {0}. (1.28)

Let E
def.
= Span

(
F{R⩽0} (0)

)
⊆ V . From (1.15), we note that the linear spans Ê and E

are related through Ê ∩ (V × {0}) = E × {0}. As a result

dim Ê = dimE + codimÊ(E × {0}), (1.29)

where codimÊ(E × {0}) ∈ {0, 1}.

➢ This follows from

codimÊ(Ê ∩ (V × {0})) = codimÊ+V×{0}(V × {0}) ⩽ codimV×R(V × {0}) = 1.

(1.30)

If codimÊ(E × {0}) = 0, we say that the face FÊ (0, 0) is horizontal. Otherwise we say
that it is oblique.

The fidelity term. For similar reasons, with straightforward adaptations,

ℓ̂
def.
= dimFhypo(t⋆−f) (0, 0) = dimF{f⩽f(0)} (0) +

{
0 if Fhypo(t⋆−f) (0, 0) is horizontal,

1 if Fhypo(t⋆−f) (0, 0) is oblique.

(1.31)

The obliqueness condition. We are now in position to define the obliqueness con-
dition of Theorem 1.1.

Definition 1.1. We say that p satisfies the double obliqueness condition if both FÊ (p,R(p))
and Fhypo(t⋆−f) (Φp, f(Φp)) are oblique. In other words,

dimFÊ (p,R(p)) = dimF{R⩽R(p)} (p) + 1 (1.32)

and dimFhypo(t⋆−f) (Φp, f(Φp)) = dimF{f⩽f(Φp)} (Φp) + 1. (1.33)

1.3.3 Proof of the main theorem

The last step is to prove that codimV×R(Ê + Ĥ) is not zero. In other words,
FÊ (p,R(p)) and FĤ (p,R(p)) do not span the whole space V × R.

Lemma 1.3 ([12, Lem. 2]). The following inequality holds: codimV×R(Ê + Ĥ) ⩾ 1.

If both FÊ (p,R(p)) and FĤ (p,R(p)) are horizontal and (R(0) > inf R or fΦ(0) >

inf fΦ), then codimV×R(Ê + Ĥ) ⩾ 2.
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We omit the proof and we refer the interested reader to [12]. The idea is that in any
case, the union of both faces does not span the vertical line through (p,R(p)), otherwise
it would contradict the optimality of p. In the special case, one can find, in addition, a
horizontal line which is not spanned by the union of FÊ (p,R(p)) and FĤ (p,R(p)).

The conclusion of Theorem 1.1 follows by combining Lemma 1.2 with the above
results and examining all the possible cases to get an upper-bound on the dimension of
the faces. As for Corollary 1.1, it follows from V. Klee’s extension of Carathéodory’s
theorem (see Section 1.1.2): the closure of the k-dimensional convex set F{R⩽R(p)} (p)
can be described as a convex combination of k of its extreme points, or k − 1 points,
each an extreme point or a point in an extreme ray. Moreover those extreme points
or extreme rays must also be extremal with respect to {R ⩽ R(p)}, which yields the
claimed result.

1.3.4 The case of level sets containing lines

The reader might be intrigued by the assumption of Theorem 1.1 that {R ⩽ R(p)}
contains no line, since in several applications the regularizer R is invariant by the addition
of, e.g., constant functions or low-degree polynomials (see Section 1.4.1). In that case,
one is generally interested in the non-constant or non-polynomial part, and it is natural
to consider a quotient space in which the constant or polynomial parts are ignored.

Convex sets and their lineality space. Before extending Theorem 1.1 to this more
general case, we need to recall several properties of convex sets containing lines (see
for instance [Kle57] or [Roc97, Ch.8]). We say that a nonempty convex set C ⊆ V is
invariant in the direction v ∈ V if

C + Rv ⊆ C. (1.34)

The collection of all vectors v ∈ V such that (1.34) holds is a vector space called the
lineality space of C, denoted by lin(C).

If C is internal or linearly closed, given v ∈ V \ {0}, it is equivalent to say that
C is invariant in the direction v, or to say that C contains a line directed by v, i.e.
(x0 + Rv) ⊆ C for some x0 ∈ V . As a consequence, if C1, C2 are two nonempty convex
sets, then lin(C1) ∩ lin(C2) ⊆ lin(C1 ∩ C2), with equality if C1 and C2 are both internal
or both linearly closed.

If W is a linear complement4 to lin(C), then C = C̃ + lin(C) where C̃
def.
= C ∩W .

The corresponding decomposition is unique in the sense that any element of C can be
decomposed in a unique way as the sum of an element of C̃ and lin(C). If C is internal
(resp. linearly closed), then C̃ contains no line, and it is internal (resp. linearly closed).

The faces of C are related to those of C̃ by

FC (p) = FC̃ (p̃) + lin(C), (1.35)

where p̃ is the projection of p onto W parallel to lin(C).
It is sometimes convenient to quotient the ambient space by lin(C) when the con-

sidered properties do not really depend on the choice of W . As the canonical surjection
πlin(C) : V → V/lin(C) induces an isomorphism from W to V/lin(C), it preserves the

facial structure of C̃,

πlin(C)

(
FC̃ (p̃)

)
= Fπlin(C)(C)

(
πlin(C)(p)

)
, (1.36)

and both are equal to πlin(C) (FC (p)).

4In this dissertation, we use freely the axiom of choice, hence any subspace of V admits a complement
subspace.
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Back to the optimization problem. Let K = lin({R ⩽ R(p)}) and N def.
= kerΦ. We

note that FS (p) is invariant by K ∩N .

➢ Indeed, the face of the epigraph FÊ (p,R(p)) is internal and contains K × {R(p)},
hence it is invariant by K̂

def.
= K × {0}. On the other hand, the hypograph Ĥ

(hence FĤ (p,R(p))) is invariant by N̂
def.
= N × {0}. From (1.22) we deduce that

FÊ∩Ĥ (p,R(p)) is invariant by K̂∩ N̂ = (K∩N)×{0}. Since FS (p) is its projection
onto the horizontal hyperplane (see Lemma 1.1), it is invariant by K ∩N .

Therefore, πK∩N (FS (p)) is an internal set and FS (p) is linearly isomorphic to
(K ∩N)× πK∩N (FS (p)). Instead of considering the dimension of FS (p) to describe the
point p, the following theorem relies on the dimension of the quotient set πK∩N (FS (p)).

Theorem 1.2 ([12, Thm. 2]). Let R : V → R ∪ {+∞}, f : RM → R ∪ {+∞} be two
convex functions, and let Φ : V → RM be linear. Assume that p ∈ S, with R(p)+f(Φp) <
+∞, and that {R ⩽ R(p)} is linearly closed. Let K

def.
= lin({R ⩽ R(p)}), d def.

= dimΦ(K),

and N
def.
= kerΦ.

If dim (πK∩N (FS (p))) = j < +∞, then πK(p) belongs to a face of πK({R ⩽ R(p)})
with dimension at most k, where

k
def.
=

{
M − ℓ+ j − d− 1 if (R(p) > inf R) or (f(Φp) > inf f),

M − ℓ+ j − d otherwise.
(1.37)

and ℓ is the dimension of the minimal face of Φp in {f ⩽ f(Φp)}.
In particular, πK(p) can be written as a convex combination of (at most):

◦ k + 1 extreme points of πK({R ⩽ R(p)}),

◦ or k points of πK({R ⩽ R(p)}), each an extreme point or a point in an extreme
ray.

If, moreover, p satisfies the obliqueness condition described in Definition 1.1, the
number k can be reduced to M − ℓ+ j − d− 2.

In particular, if p1, . . . , pr ∈ {R ⩽ R(p)} are such that πK(p1), . . . , πK(pr) denote
those extreme points (or points in extreme rays),

p =

r∑
i=1

θipi + uK , where θi ⩾ 0,

r∑
i=1

θi = 1, and uK ∈ K. (1.38)

The interested reader may consult [12, Thm. 2] for the proof of Theorem 1.2. It
relies again on linear algebra arguments so as to compute the dimensions of the relevant
spaces.

Remark 1.2. In practice, if Ê is linearly closed (e.g. if R is lower semi-continuous for
some topology), then the whole solution set S is invariant by (K∩N), and πK∩N (FS (p)) =(
FπK∩N (S) (πK∩N (p))

)
. However, the solution set S may have more invariant directions

than just (K ∩N).

1.4 Examples

1.4.1 Point source reconstruction

Following the pioneering works [BP13, dCG12, CFG14], variational models in the
space of measures for point source reconstruction have recently drawn a lot of attention.
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As in (1.2), the idea is to solve

min
m∈M(X)

|m| (X) s.t. Φm = y (1.39)

whereM(X) is the space of bounded Radon measures on X, Φm =
∫
X φ(x)dm(x) where

φ ∈ Cc(X;RM ), and |·| (X) denotes the total variation of measures,

|m| (X)
def.
= sup

{∫
X
ψ(x)dm(x) | ψ ∈ Cc(X), sup

x∈X
|ψ(x)| ⩽ 1

}
. (1.40)

Since Theorem 1.1 treats strictly convex functions f equally, our discussion also concerns
formulations like the Blasso,

min
m∈M(X)

λ |m| (X) +
1

2
∥Φm− y∥22 ,

but we focus on (1.39) to fix ideas.

The total variation unit-ball. It is possible to prove (see for instance [BC19]) that

the extreme points of CM
def.
= {m ∈M(X) | |m| (X) ⩽ 1 } are precisely the measures

of the form εδx for ε ∈ {−1,+1}, x ∈ X . In fact, applying similar arguments as
in [BC19] and Chapter 2, one may even show that the k-dimensional elementary faces of
CM are in one-to-one correspondence with the collections {(εi, xi)}ki=0 where, for each
i, εi ∈ {−1,+1}, xi ∈ X and xi ̸= xj for j ̸= i. Each elementary face is then described
by the convex combinations

k∑
i=0

θiεiδxi , with
k∑
i=0

θi = 1 and ∀i ∈ {0, . . . , k}, θi > 0. (1.41)

In other words, the total variation unit ball is one of the simplest infinite-dimensional
convex sets: its k-dimensional faces are the simplices determined by k+1 extreme points
(corresponding to distinct positions). The coneM+(X) of non-negative Radon measures
has a similar structure, with straightforward adaptations.

Generalized splines. Following S.D. Fisher and J.W. Jerome [FJ75], we may consider
more elaborate models involving functions whose “derivatives” are measures. Let L be
a linear operator L : D′(X) → D′(X) and define V

def.
= L−1(M(X)). The problem

considered in [FJ75] (and later in [UFW17, FW19]) is

min
u∈V
|Lu| (X) s.t. Φu = y. (1.42)

Typical examples include L = Dm (in dimension d = 1) or (−∆)γ for γ ⩾ d. The main
difficulty with (1.42) is to define a suitable topology which ensures some compactness,
hence the existence of solutions and extreme points. We leave this delicate matter aside
and we refer to [UFW17, FW19, GFU18] for more detail.

Assuming the existence of solutions and extreme points, let us discuss the geometric
side. Let CFJ

def.
= {u ∈ V | |Lu| (X) ⩽ 1 }. We assume that L|V : V → M(X) is sur-

jective. In that case, with the notation of Section 1.3.4, the first isomorphism theorem
ensures that V⧸K ≈M(X) where K

def.
= kerL, and πK(CFJ) is mapped isomorphically

to CM. By Theorem 1.2, the extreme points of the solution set to (1.42) can be described
as

u =
M∑
i=1

θiui + uK , (1.43)
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where
∑

i θi = |Lu| (X), uK ∈ K and for all i there exists εi ∈ {−1,+1}, xi ∈ X such
that Lui = εiδxi . If a suitable pseudo-inverse L+ :M(X) → V has been defined, one
may choose ui = εiL

+δxi (see [FW19]).

For instance, if L = Dm, Ω = R, the solutions are generalized splines: for a.e. t ∈ R,

u(t) =
M∑
i=1

θiρ(t− xi) + a0 + a1t+ . . .+ am−1t
m−1, (1.44)

where ρ(t) = 1]0,+∞[(t)
tm−1

(m−1)! . See [GFU18] for more examples.

1.4.2 Semi-definite programs

Several optimization problems involve the reconstruction of positive semi-definite ma-
trices (see for instance Section 7.3). Interestingly, the positive semi-definite cone S+n (R)
has a special structure which shows that the number of points in the representation
provided by Corollary 1.1 is sometimes too pessimistic.

Consider for instance the following constrained problem

inf
Q∈S+

n (R)
f(ΦQ− y), (1.45)

where f : RM → R∪{+∞}, and assume that a solution to (1.45) exists. As the extreme
rays of the positive semi-definite cone S+n (R) are the p.s.d. matrices of rank 1 (see for
instance [Dat05, Sec. 2.9.2.7]), we may deduce from Corollary 1.1 that there is also a
solution which has rank (at most) M . However, that conclusion is not optimal, as a
theorem by Barvinok [Bar95, Th. 2.2] ensures that, provided (1.45) has a solution, there
is a solution Q with

rank(Q) ⩽
1

2

(√
8M + 1− 1

)
. (1.46)

To understand the gap with Barvinok’s result, we need to describe the faces of S+n (R)
and to see how the Minkowski-Carathéodory theorem (or its extension by Klee) is too
pessimistic in that case.

The faces of S+n (R). Let Q ∈ S+n (R) \ {0} and assume that R ∈ FS+
n (R) (Q) \ {Q}.

Since FS+
n (R) (Q) is an elementary face, it is internal: there exists S ∈ FS+

n (R) (Q), such

that Q ∈ ]R,S[ (see (1.12)). Let θ ∈ ]0, 1[ such that Q = θR+(1−θ)S. For all x ∈ kerQ,

0 = x⊤Qx = θ x⊤Rx︸ ︷︷ ︸
⩾0

+(1− θ)x⊤Sx︸ ︷︷ ︸
⩾0

, (1.47)

hence x ∈ kerR ∩ kerS. As a result, if a matrix R belongs to FS+
n (R) (Q), then kerQ ⊆

kerR. Since FS+
n (R) (Q) = FS+

n (R) (R), we may swap the roles of Q and R to obtain the
converse inclusion, hence kerQ = kerR.

Conversely, assume that R ∈ S+n (R) has the same kernel as Q. The open interval

{Q+ t(R−Q) | t ∈ R,−δ < t < 1 + δ }

lies in S+n (R) for δ > 0 sufficiently small. As it contains both Q and R, we deduce that
R ∈ FS+

n (R) (Q).

To summarize, each elementary face of S+n (R) is uniquely determined by a vector
subspace of Rn which represents the common kernel of its elements.
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Carathéodory’s theorem is not optimal for S+n (R). Fixing a basis of Rn adapted
to that subspace and its orthogonal complement, we see that a matrix Q is only de-
termined by its entries corresponding to ImQ, that is 1

2r(r + 1) coefficients, where
r = rankQ. Taking small variations around Q, we deduce that

dimFS+
n (R) (Q) =

1

2
r(r + 1). (1.48)

Inverting Eq. (1.48), we see that the rank of Q is r = 1
2

(√
8d+ 1− 1

)
, where d

def.
=

dimFS+
n (R) (Q). As a result, Q is a convex combination of 1

2

(√
8d+ 1− 1

)
points in

extreme rays, a value which is less than the value d predicted by Klee’s extension of
Carathéodory’s theorem, but coincides with Barvinok’s result.

More generally, Carathéodory’s theorem only provides an upper bound on the number
of extreme points (or points in extreme rays) needed to describe every point of a convex
set. When the convex set has infinitely many extreme points (like the Euclidean ball, for
instance), fewer extreme points might be sufficient in the convex combinations (e.g. 2, in
the case of the Euclidean ball). The minimal number of elements in convex combinations
need to describe all the points of a convex set, is called the Carathéodory number of that
set (and it is bounded by d + 1, where d is the dimension of the convex set). On the
other hand, if the convex set has a finite number of extreme points, that upper bound is
sharp (see the discussion in Section 2.3.3 in the context of the total gradient variation).

1.4.3 Interactions between the regularizer and the sensing operator

In Section 1.4.1, we have described the faces of CM andM+(X), and we have seen
that the number of atoms needed to describe the elements of each face matches the
bound given by the Carathéodory-Klee theorem. It is not difficult, at least when X is
finite, to construct sensing operators Φ such that the bounds given in Corollary 1.1 are
matched. On the other hand, we have seen in Section 1.4.2 that one needs fewer atoms
than predicted by the Carathéodory-Klee theorem to describe the faces of cone S+n (R).
That is a structural property of the convex set S+n (R) which is related to its having a
continuous family of extreme rays (as opposed to a polyhedron for instance).

Now, we discuss another case where the prediction of Theorem 1.1 is not optimal,
due to the interaction of the linear operator Φ and the level sets of the regularizer.

The truncated trigonometric moment problem. We consider the problem

min
m

χM+(T)(m) s.t.

∫
T
φk(t)dm(t) = yk (0 ⩽ k ⩽ 2fc), (1.49)

where M+(T) is the set of nonnegative measures on the torus T = R/Z, y ∈ R2fc+1,
and φ0(t) = 1, φ2j−1(t) = cos(j2πt) and φ2j(t) = sin(j2πt) for 1 ⩽ j ⩽ fc.

The Carathéodory-Toeplitz theorem [Car07, Toe11] states that there is a solution
to (1.49) if and only if the Hermitian matrix

T (c)
def.
=


c0 c1 · · · cfc

c∗1 c0
. . .

...
...

. . .
. . . c1

c∗fc · · · c∗1 c0

 , where cj
def.
= y2j−1 − iy2j , c0

def.
= y0,

is positive semi-definite. If r
def.
= rankT (c) ⩽ fc, the solution m is unique, and its support

has cardinality r. If T (c) is invertible, there are infinitely many solutions with cardinality
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fc + 1 (and more). In particular for any t0 ∈ T there is a solution which charges {t0}.
Note that similar results hold for T-systems on an interval [KN77, Ch. 4, Sec. 4].

That result contrasts with Corollary 1.1 which would predict a sum of at most 2fc+
1 Dirac masses. Here, the situation is different from the case of S+n (R), since any
measure belonging to a d-dimensional elementary face of M+(T) is a sum of exactly d
Dirac masses. As a result Carathéodory’s theorem is sharp. Therefore, we must have
dimFM+(T) (m) < 2fc + 1 and, recalling (1.23), we deduce that the lower bound on

codimV×R(Ê + Ĥ) provided by Lemma 1.3 is far too pessimistic. In other words, the
affine spaces determined by the Fourier coefficients only intersect very specific faces of
the coneM+(T).

An intuitive explanation consists in counting the “degrees of freedom” of the problem
(we do not consider the statistical notion used in [PP19], but simply the “number of
variables that should be fixed”). Informally, to fix the positions and amplitudes of k
Dirac masses, that is 2k variables, we need at least 2k equations, i.e. 2k ⩽ 2fc + 1.

With total variation regularization. Surprisingly, things are different if one re-
places the nonnegativity constraint with the total variation regularization,

min
m∈M(T)

|m| (T) s.t.

∫
T
φk(t)dm(t) = yk (0 ⩽ k ⩽ 2fc), (1.50)

(and {φk}2fck=0 is again the trigonometric system). Following an observation of L. Condat
in [Con20], we have proved in [12] that the unique solution to (1.50) when y is the Fourier
coefficient vector of two opposite close spikes is given by a Dirac comb with 2fc masses
(see Section 6.1.2 and in particular (6.5) for more detail).

As a consequence, the number of Dirac masses predicted by Theorem 1.1 is almost
optimal (2fc + 1 Dirac masses are predicted whereas 2fc actually appear). In fact, one
cannot do “better”: it is proved in [Con20] that for every y ∈ R2fc+1, there is a solution
to (1.50) which is a sum of at most 2fc Dirac masses.

Arguing informally in terms of “degrees of freedom”, we note that the above situation
is quite peculiar: the relative positions of the Dirac masses are fixed (see (6.5)), they
can only move by a global translation. As a result, the 2fc + 1 variables determine the
2fc amplitudes of the spikes and the last degree of freedom which is a global shift of the
Dirac comb.

1.5 Conclusion

1.5.1 Summary

We have proposed in this chapter a representer theorem for convex variational prob-
lems. Given some solution p, it relates the dimension of the face of p in the solution
set to the dimension of its face in the level set of the regularizer {R ⩽ R(p)}. Using a
Carathéodory-type theorem, it is then possible to describe the solution as a combination
of “atoms”. That representation principle allows to recover several known results in the
literature.

1.5.2 Discussion with respect to prior works and extensions

Topological issues. Theorem 1.1 does not assert the existence of solutions (S ≠ ∅)
nor the existence of finite-dimensional faces in S. Those are assumptions we make (but
the theorem does imply that {R ⩽ R(p)} has extreme points).
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The philosophy here (and in [3]) is to leave aside the existence issues so as to em-
phasize the geometrical nature of the result: the notions of extreme point or dimension
of a face stem from linear algebra, they are independent from any choice of topology. In
practice, one should always complement Theorem 1.1 with some argument ensuring that
S ≠ ∅ and that S has finite-dimensional faces. For that purpose, topological arguments
are useful. If V is endowed with the topology of a locally convex (Hausdorff) vector
space, the theorems [Kle57, 3.3 and 3.4] which generalize the celebrated Krein-Milman
theorem, state that S has an extreme point provided:

◦ S is nonempty, convex,

◦ S contains no line,

◦ and S is closed, locally compact.

The last two conditions hold in particular if S is compact. Moreover, as in Theorem 1.2,
the second condition can be ensured by considering a suitable quotient map, provided it
preserves the other topological properties (e.g. if lin(S) has a topological complement).
Choosing a suitable topology which provides those properties can be highly nontrivial,
see for instance [UFW17].

Representer theorems in Machine Learning. To our knowledge, the name “rep-
resenter theorem” in the general field of inverse problems was introduced by M. Unser,
J. Fageot, and J.P. Ward in [UFW17], in reference to the famous theorem in the field of
machine learning and kernel methods [SS02]. A typical example is the following5. Let
Φ : Rn → RM be a finite dimensional measurement operator and L : Rn → Rp be a
linear transform. Solving an inverse problem using Tikhonov regularization amounts to
finding the minimizers of

min
u∈Rm

1

2
∥Φu− y∥22 +

1

2
∥Lu∥22. (1.51)

Provided that kerΦ ∩ kerL = {0}, it is possible to show that, whatever the data y is,
solutions are always of the form

u⋆ =
m∑
i=1

αiψi + uK , (1.52)

where uK ∈ ker(L) and ψi = (ΦTΦ + LTL)−1(φi), where φ
T
i ∈ Rn is the i-th row of Φ.

This result characterizes structural properties of the minimizers without actually needing
to solve the problem. Like the representer theorem of this chapter, Eq. (1.52) sometimes
allows us to tackle infinite dimensional problems, simply by solving a finite dimensional
linear system. This is a critical observation that explains the practical success of kernel
methods and radial basis functions [Wen05]. Representation properties like (1.52) have
been generalized to the case of reflexive strictly convex Banach spaces by M. Unser in
[Uns21].

However, let us stress that the representer theorem (1.52) (and the one in [Uns21])
is essentially different from the one presented in this chapter, since it relies on a finer
analysis which exploits the optimality conditions. Theorem 1.2 applied to Eq. (1.51)
would not provide any information, as the optimal level set {R ⩽ R(p)} is of the form
C̃ + ker(L) with C̃ strictly convex! The theorems of this chapter rely on a sparsity
principle: they are only useful when the boundary of {R ⩽ R(p)} has flat regions.

5Here, we follow the presentation of [GFU18].
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Generalized splines and the surjectivity assumption. While discussing the Fisher-
Jerome problem (1.42), we have insisted that L|V should be surjective. Without that
assumption, the extreme points and faces of C are difficult to relate to those of CM.

More generally, when composing R with an non-surjective operator L, it is not
straightforward to deduce the extreme points of {R ◦ L ⩽ 1} from those of {R ⩽ 1}.
An elementary example is displayed in Figure 1.3 with the ℓ1-unit ball in R3. The unit
ball corresponding to ∥L·∥1 (we assume that L is injective for the sake of simplicity) is
isomorphic to the intersection of the ℓ1-unit ball with ImL. In order to predict its facial
structure, one has to study the direction of all the faces of the original ball and compute
their intersection with ImL, which is not trivial.

Figure 1.3: The ℓ1 unit ball and an ℓ1 analysis unit ball (that is, the unit ball of ∥L·∥1)
which can be obtained by intersecting the former with ImL. Predicting the extreme points
of the intersection is not straightforward.

Things are even more involved in infinite dimension. To come back to the Fisher-
Jerome problem (1.42), we discuss the case of the total gradient variation. The vector
total variation of vector measures can be defined as

∀g ∈ (M(X))d, |g| (X)
def.
= sup

{∫
X
⟨ψ(x), dg(x)⟩ | ψ ∈ Cc(X;Rd), sup

x∈X
|ψ(x)| ⩽ 1

}
.

(1.53)

It can be shown that the extreme points of its unit ball are of the form aδx where x ∈ X,
a ∈ Rd and |a|2 = 1. On the other hand, let X = Rd, if Du denotes the distributional
gradient of u and Du ∈ (M(Rd))d, the total gradient variation is defined as |Du| (Rd).
The faces and extreme points of its unit ball have a much richer structure than those
corresponding to (1.53), and we study them in Chapter 2.
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In Chapter 1, we have seen that understanding the extreme points and the faces of the
level sets of a regularizer provides insightful information on the structure of the solution
set of a variational problem. Indeed, the extreme points of the solution set belong
to low-dimensional faces of those level sets (provided one observes a finite number of
measurements). The present chapter is devoted to the study of the faces corresponding
to the total variation of the gradient, a convex regularizer which has been widely used
in image restoration since the seminal work of Rudin, Osher and Fatemi [ROF92].

Given a locally integrable function u : Rd → R, its total (gradient) variation is
defined as

R(BV)(u)
def.
= sup

{∫
Rd

udiv(φ) | φ ∈ C 1
c (Rd;Rd), sup

x∈Rd

|φ(x)|2 ⩽ 1

}
. (2.1)

39
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By the Radon-Riesz representation theorem, R(BV)(u) is finite if and only if its distribu-
tional derivative Du is a bounded (vector) Radon measure, in which case R(BV)(u) is the
(vector) total variation of the measure Du. In any case, we commonly write |Du| (Rd)
for R(BV)(u). If F ⊆ Rd is a measurable set1, its (distributional) perimeter is defined as

P (F )
def.
= R(BV)(1F ). The basic properties of functions with bounded variation and sets

of finite perimeter which are necessary for this chapter are gathered in Appendix A, but
we refer to [AFP00, Mag12] for a comprehensive treatment of the topic.

The main reason for using the (gradient2) total variation as a regularizer is that
it allows for solutions with discontinuities, a property which is crucial when modelling
images, because of the occlusion phenomenon. In fact, it is well known that the total
gradient variation tends to promote piecewise constant functions, and one informal ex-
planation is that minimizing R(BV)(u) plus some fidelity term yields solutions u with
sparse gradient. Relying on the representation theorem of Chapter 1, this chapter pro-
vides a more rigorous argument which accounts for the appearance of piecewise constant
solutions.

Collaboration. This chapter originates from an unpublished work with Claire Boyer,
Antonin Chambolle, Yohann De Castro, Frédéric de Gournay, and Pierre Weiss.

2.1 A representation using only the extreme points

2.1.1 Functional setting

If u has finite total variation, then, up to a unique additive constant, u ∈ Ld/(d−1)(Rd)
(see for instance [AFP00, Thm. 3.47]). It is thus natural to choose Ld/(d−1)(Rd) as ambi-
ent space on which R(BV) defines a convex functional, together with linear measurements
of the form

Φ : u 7−→
(∫

Rd

u(x)φi(x)dx

)
1⩽i⩽M

(2.2)

where φi ∈ Ld(Rd) for all i. As R(BV) is lower semi-continuous and coercive (for the
weak topology of Ld/(d−1)(Rd)), the problem

min
u
R(BV)(u) s.t. Φu = y (PBV)

has a solution provided there is a feasible point. The existence of extreme points (or
finite dimensional faces) of the solution set is guaranteed by its compactness (since R(BV)

is coercive).

As a result, Corollary 1.1 ensures that the extreme points of the solution
set are convex combinations of at most M extreme points of the level set{
u ∈ Ld/(d−1)(Rd) | R(BV)(u) ⩽ min (PBV)

}
.

1All the subsets of Rd considered in this chapter are Lebesgue measurable. In the following, we omit
this mention.

2The common use in Analysis is to refer to R(BV)(u) as the total variation of u, and we follow this
convention whenever the context is clear. However, as the present dissertation alternatively considers
measures and functions as signals of interest, we occasionally use the term total gradient variation to
disambiguate the fact that we use Eq. (2.1) as a regularizer and that we try to reconstruct is a function
(as opposed to a measure). That terminology is inspired from the one used by W. Fleming and R. Rishel
in [FR60].
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2.1.2 Fleming’s result

As R(BV) is positively homogeneous, it suffices to characterize the extreme points
(and the faces) of the “unit ball”

CBV
def.
=
{
u ∈ Ld/(d−1)(Rd) | R(BV)(u) ⩽ 1

}
. (2.3)

That problem was solved by Fleming in [Fle57] in the framework of generalized sur-
faces. A variant of that result in terms of functions with bounded variation is provided
in [ACMM01].

Let A ⊆ Rd be a set with finite perimeter. Following [ACMM01], we say that A is
decomposable if there exists a partition (A1, A2) of A such that P (A) = P (A1) + P (A2)
and |A1| > 0, |A2| > 0, where P (A) denotes the perimeter of A (see Appendix A). We
say that A is indecomposable3 (or M-connected) if it is not decomposable. Additionally,
we say that A is simple if it is indecomposable and its complement A∁ is indecomposable.
Informally, simple sets are the simply connected sets in the measure-theoretic sense (i.e.
they consist of one connected component and they have no holes).

Proposition 2.1 ([Fle57, ACMM01]). The extreme points of CBV are the functions
u = ±1F /P (F ), where F is a simple set, 0 < |F | < +∞ and P (F ) < +∞.

Let us mention that, while we restrict our discussion to the domain Rd, the notion of
indecomposable and simple sets was extended by K. Bredies and M. Carioni in [BC19]
to the case of a bounded domain Ω with Neumann boundary condition (actually we have
used their definition of simple set, which is equivalent to the one in [ACMM01] when
Ω = Rd). They have proved that Proposition 2.1 also holds in that case (where functions
are considered modulo an additive constant).

In view of Proposition 2.1, the representer theorem states that there is (at least) one
solution to (PBV) which is a linear combination of at most M indicator functions. This
result explains the so-called staircasing effect4 when using a finite number of measure-
ments M , i.e. the appearance of regions where the reconstructed signal is flat whereas
the image to recover has smooth gradations. In addition, it gives some insight on the
family of functions that can be exactly recovered by total gradient variation minimiza-
tion.

2.1.3 Numerical experiments

The above discussion states that some solution to (PBV) can be written as

u =

M∑
i=1

αi1Ei

where each Ei is a simple set. Depending on the intersections of the Ei’s and the values
αi, this implies that u may take up to 2M − 1 nonzero values. However, the following
numerical experiment suggests that this bound is too pessimistic.

3In [Bac13, Fuj05], that notion is called inseparable.
4At least when the number of measurements M is small. In practice, even when M is large, the

staircasing appears because a strong regularization parameter tends produce solutions on low-dimensional
faces.
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Consider an image u ∈ RN1×N2 and define the following discretization of the gradient:

(∇1u)i,j =


ui,j for i = 1, 1 ⩽ j ⩽ N2,

ui,j − ui−1,j for 2 ⩽ i ⩽ N1, 1 ⩽ j ⩽ N2,

−ui−1,j for i = N1 + 1, 1 ⩽ j ⩽ N2,

0 for 1 ⩽ i ⩽ N1 + 1, j = N2 + 1,

(2.4)

(∇2u)i,j =


ui,j for 1 ⩽ i ⩽ N1, j = 1

ui,j − ui,j−1 for 1 ⩽ i ⩽ N1, 2 ⩽ j ⩽ N2,

−ui,j−1 for i = N1 + 1, 1 ⩽ j ⩽ N2,

0 for i = N1 + 1, 1 ⩽ j ⩽ N2 + 1.

(2.5)

A discrete scheme for the total variation with Dirichlet boundary condition is given by

RBVdisc(u) = ∥∇u∥1 =
∑

1⩽i⩽N1+1
1⩽j⩽N2+1

√
((∇2u)i,j)2 + ((∇2u)i,j)2 (2.6)

The sensing operator Φ is discretized by a matrix RM×(N1N2). The resulting discretiza-
tion of (PBV) is a problem of the form minu F (Ku) + G(u) where F is the ℓ1 norm,
K = ∇, G is the indicator function of the affine space Φ−1({y}). An instance of the
Chambolle-Pock algorithm [CP11] yields

pn+1 = ProjB(p
n + σ∇ūn)

un+1 = ProjΦ−1({y})
(
un − τ(∇)∗pn+1

)
ūn+1 = 2un+1 − un

where B =
{
u ∈ RN1×N2 | ∀i, j, |ui,j |2 ⩽ 1

}
. It provides a convergent iterative method

for the minimization of our discretized problem, provided τ, σ > 0 and τσ ⩽ 1/8. The
projections onto B and Φ−1({y}) have closed form expressions.

We choose M = 3 sensing functions φi = Φi,· for 1 ⩽ i ⩽ M (see Figure 2.1),
N1 = N2 = 200, and we run the algorithm for 40.000 iterations. The result is shown in
Figure 2.2. As expected, the solution is a convex combination of 3 simple shapes, but the
function only takes 3 nonzero values (if we neglect the discretization and convergence
artifacts): the relative positions of the simple sets are not arbitrary. Precisely, we
distinguish three simple sets:

E1 = {u = 4.04}, E2 = {u = −13.4} and E3 = {u = −13.4} ∪ {u = −8.03},

with the remarkable properties that E2 ⊆ E3 and the boundaries of E1 and E3 have a
nontrivial intersection, i.e. H1((∂∗E1) ∩ (∂∗E3)) > 0.

That experiment suggests that describing the solutions of (PBV) as linear convex
combinations of the extreme points of CBV is too rough. Similarly to the positive semi-
definite cone (see Section 1.4.2), we need to understand the (low-dimensional) faces of
CBV, which have more structure than just arbitrary convex hulls of extreme points.

2.2 Structural properties of the faces of CBV

In this section and in the rest of the chapter, we consider a linearly closed face F of
CBV (for instance, the linear closure of an elementary face, see [Dub62, Thm. 6.1]), and
we try to describe its structure.
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Figure 2.1: The three sensing functions (φi)
M
i=1.
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Figure 2.2: (Left) Solution of (PBV). Three shapes appear. (Right) Histogram of the
corresponding image. Up to the discretization and convergence errors, the image takes
three nonzero values.

The following observation is elementary but quite useful to our discussion: if u ∈ F ,
and there exists θ ∈ ]0, 1[, u1, u2 ∈ CBV such that u = θu1 + (1− θ)u2, then u1 ∈ F and
u2 ∈ F . We refer to it as the closed face property5.

Another useful remark is that, if F contains 0, then F = CBV.

2.2.1 Set “algebra”

Let us focus on the elements of F which are (signed) indicators of sets, i.e. there
exists E ⊆ Rd such that u = ε1E/P (E) for some ε ∈ {+1,−1}. Let us define

E def.
= E+ ∪ E− ∪ {∅,Rd}, where (2.7)

E+ def.
=

{
E ⊂ Rd | |E| < +∞, 0 < P (E) < +∞ and

1E

P (E)
∈ F

}
, (2.8)

E− def.
=

{
E ⊂ Rd |

∣∣∣E∁
∣∣∣ < +∞, 0 < P (E∁) < +∞ and

(−1E∁)

P (E∁)
∈ F

}
. (2.9)

Proposition 2.2. The collection E is a ring of sets6.

In other words, for all A,B ∈ E, (A ∩B) ∈ E and (A ∪B) ∈ E.

As an immediate consequence, if E contains E1, . . . , En, it must also contain all the

5More generally, by induction, if we can write u =
∑n

i=1 θiui ∈ F with
∑

i θi = 1, θi > 0 and
ui ∈ CBV for all i, then {ui}ni=1 ⊆ F .

6In the sense of [MLB99]. In particular E is a distributive lattice.



44CHAPTER 2. THE FACES OF THE TOTAL GRADIENT VARIATION UNIT BALL

sets E of the form

E =
⋃

J∈{J1,...,Jℓ}

⋂
j∈J

Ej

 , J1, . . . , Jℓ ⊆ {1, . . . , n},

that is, all (finite) unions of (finite) intersections of the Ej ’s.
Proposition 2.2 follows from the next two lemmas.

Lemma 2.1. Let A,B ∈ E+. Then,

• (A ∪B) ∈ E+,

• (A ∩B) ∈ E+ provided that |A ∩B| > 0.

Moreover, the same holds when replacing E+ with E−.

Proof. Let θ
def.
= P (A)/ (P (A) + P (B)) ∈ ]0, 1[ and let u

def.
= θ 1A

P (A) + (1− θ) 1B
P (B) .

Then, u ∈ F and u = 1
P (A)+P (B)(1A + 1B) =

1
P (A)+P (B)(1A∪B + 1A∩B).

First, let us assume that |A ∩B| > 0, hence P (A ∩B) > 0. We have

u = σ
1A∪B

P (A ∪B)
+ δ

1A∩B
P (A ∩B)

with σ
def.
=

P (A ∪B)

P (A) + P (B)
, δ

def.
=

P (A ∩B)

P (A) + P (B)
,

and by submodularity of the perimeter

σ + δ ⩽ 1. (2.10)

If (2.10) is an equality, we have written u as a convex combination of elements in

CBV, and by the closed face property
{

1A∪B
P (A∪B) ,

1A∩B
P (A∩B)

}
⊆ F . If (2.10) is strict, we

write u = σ 1A∪B
P (A∪B) + δ 1A∩B

P (A∩B) + (1− σ − δ)0, and the closed face property implies that{
1A∪B
P (A∪B) ,

1A∩B
P (A∩B) , 0

}
⊆ F .

Now, if |A ∩B| = 0, we have u = σ 1A∪B
P (A∪B) with 0 < σ ⩽ 1 and we conclude similarly

that 1A∪B
P (A∪B) ∈ F (and 0 ∈ F too if σ < 1).

Lemma 2.2. Let A ∈ E+ and B ∈ E−. Then

• (A ∪B) ∈ E− provided that
∣∣Rd \ (A ∪B)

∣∣ > 0,

• (A ∩B) ∈ E+ provided that |A ∩B| > 0.

Proof. Let θ
def.
= P (A)/

(
P (A) + P

(
B∁
))
∈ ]0, 1[ and let u

def.
= θ 1A

P (A) + (1 − θ) (−1B∁ )

P (B∁)
.

Observing that u = 1
P (A)+P (B∁)

(1A∩B − 1A∁∩B∁), we argue similarly as in the proof of

Lemma 2.1 to deduce that 1A∩B
P (A∩B) ,

(−1
A∁∩B∁ )

P (A∁∩B∁)
and possibly 0 belong to F . The only

difference which is worth mentioning is that to obtain the inequality

P (A ∩B) + P (A∁ ∩B∁) ⩽ P (A) + P (B∁),

we use the submodularity of the perimeter and the fact that P (A∁ ∩ B∁) = P (A ∪ B)
and P (B∁) = P (B).

Eventually, we note from the proofs of Lemma 2.1 and Lemma 2.2 the following
property.
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Proposition 2.3 (Modularity in the proper faces). If F ⊂ CBV is a linearly closed face
of CBV which does not contain 0, then, for all A,B ∈ E,

P (A ∪B) + P (A ∩B) = P (A) + P (B). (2.11)

It is simply the equality case in (2.10).

Remark 2.1. In particular, if A, B ∈ E are such that |A ∩B| = 0, then P (A ∪ B) =
P (A) + P (B). By [ACMM01, Prop. 1], that is equivalent to Hd−1(∂∗A ∩ ∂∗B) = 0,
that is, the reduced boundaries of A and B “do not touch” (except on a Hd−1-negligible
set).

2.2.2 Decomposability

Besides the union and intersection operations, the collection E is stable by taking
the M -connected components.

Proposition 2.4. Let A,B ∈ E such that B ⊂ A. If there exist C1, C2 ⊂ Rd such
that A \ B = C1 ∪ C2 with |C1| > 0, |C2| > 0 and P (A \ B) = P (C1) + P (C2), then
(B ∪ C1) ∈ E and (B ∪ C2) ∈ E.

Proof. First, we note that the case (A = Rd and B = ∅) is impossible since Rd is
indecomposable. Hence, C1 ⊊ Rd, C2 ⊊ Rd, and [ACMM01, Prop. 3] ensures that
|C1 ∩ C2| = 0 and Hd−1(∂∗C1 ∩ ∂∗C2) = 0.

Now, let us recall [ACMM01, Prop. 1] which states that for all sets of finite perimeter
E1 and E2 with |E1 ∩ E2| = 0,

P (E1 ∪ E2) = P (E1) + P (E2)− 2Hd−1(∂∗E1 ∩ ∂∗E2). (2.12)

Applying that property twice, we get

P (A) + P (B) = 2P (B) + P (A \B)− 2Hd−1(∂∗B ∩ ∂∗(A \B))

= 2P (B) + P (A \B)− 2Hd−1 (∂∗B ∩ (∂∗(C1 ∪ C2)))

=
(
P (B) + P (C1)− 2Hd−1 (∂∗B ∩ ∂∗C1)

)
+
(
P (B) + P (C2)− 2Hd−1 (∂∗B ∩ ∂∗C2)

)
= P (Y1) + P (Y2) (2.13)

where we have defined Y1 = B ∪ C1, Y2 = B ∪ C2, and we have used the fact that
|B ∩ Ci| = 0 for i ∈ {1, 2}. Observing that A = Y1 ∪ Y2 and B = Y1 ∩ Y2, we also note
that

1A + 1B = 1Y1 + 1Y2 (2.14)

and (1A − 1) + 1B = (1Y1 − 1) + 1Y2 . (2.15)

If A ∈ E+ and B ∈ E+, we combine (2.13) and (2.14) to get

P (A)

P (A) + P (B)

1A

P (A)
+

P (B)

P (A) + P (B)

1B

P (B)
=

P (Y1)

P (Y1) + P (Y2)

1Y1
P (Y1)

+
P (Y2)

P (Y1) + P (Y2)

1Y2
P (Y2)

.

Since the left-hand side is an element of F , we deduce by the closed face property that
1Y1
P (Y1)

and
1Y2
P (Y2)

are elements of F , that is Y1, Y2 ∈ E . The case where A ∈ E− and
B ∈ E− is dealt with similarly.
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If A ∈ E− and B ∈ E+, then one (and exactly one, by the isoperimetric inequality)
of the Yi’s has infinite Lebesgue measure. Let us assume that it is Y1. By (2.13) and
(2.15),

P (A)

P (A) + P (B)

(−1A∁)

P (A∁)
+

P (B)

P (A) + P (B)

1B

P (B)
=

P (Y1)

P (Y1) + P (Y2)

(−1
Y1

∁)

P (Y1
∁)

+
P (Y2)

P (Y1) + P (Y2)

1Y2
P (Y2)

,

and we deduce again that Y1, Y2 ∈ E by the closed face property.

If B = ∅, we argue similarly, using 1A
P (A) =

P (Y1)
P (Y1)+P (Y2)

1Y1
P (Y1)

+ P (Y2)
P (Y1)+P (Y2)

1Y2
P (Y2)

or
(−1

A∁ )

P (A∁)
= P (Y1)

P (Y1)+P (Y2)

(−1
Y1

∁ )

P (Y1
∁)

+ P (Y2)
P (Y1)+P (Y2)

1Y2
P (Y2)

.

IfA = Rd, we use 1B
P (B) =

P (Y1)
P (Y1)+P (Y2)

(−1
Y1

∁ )

P (Y1
∁)

+ P (Y2)
P (Y1)+P (Y2)

1Y2
P (Y2)

or
(−1

B∁

P (B∁)
= P (Y1)

P (Y1)+P (Y2)

1Y1
P (Y1)

+

P (Y2)
P (Y1)+P (Y2)

1Y2
P (Y2)

, and this concludes the proof.

Let us examine more concretely the consequences of Proposition 2.4.

Remark 2.2 (Connected components of the increments). By iteratively decomposing
B \A = C1 ∪

(⋃
i∈I Ci

)
, we deduce that for any M -connected component C of A \B, it

holds (B ∪ C) ∈ E.
Remark 2.3 (Connected components and holes). Choosing B = ∅ in Proposition 2.4,
we see that any M -connected component of A ∈ E is also in E. Conversely, choosing
A = Rd, we see that we can “fill” any hole of B ∈ E (i.e. any M -connected component
of B∁ which has finite Lebesgue measure): if Y ⊆ Rd is a hole of B, B ∪ Y ∈ E.

2.3 The finite-dimensional faces of CBV are polytopes

As the collection E has the structure of a ring of sets (or a distributive lattice), it is
natural to study the chains of E . It turns out that they are intimately connected to the
dimension of the face F .

2.3.1 Chains in E
Let G be a collection of subsets of Rd. We say that G is a chain if for all E,E′ ∈ G,

E ⊆ E′ or E′ ⊆ E. We call its cardinal the length of G.
Please note that we identify sets which differ up to a Lebesgue negligible set, and we

write A ⊊ B to mean that |A \B| = 0 and |B \A| > 0.

Proposition 2.5. Let G ⊆ E \ {∅,Rd} be a chain. If dimF = k, then G has length at
most k + 1.

Proof. Assume that G contains (at least) m elements Ei, 1 ⩽ i ⩽ m, with

∅ ⊊ E1 ⊊ E2 ⊊ . . . ⊊ Em ⊊ Rd.

Let i0 be the number of elements of G in E+. We assume that 1 ⩽ i0 ⩽ m− 1 (otherwise
the argument is similar but simpler). In other words, Ei ∈ E+ for 1 ⩽ i ⩽ i0, and
Ei ∈ E− for i0 + 1 ⩽ i ⩽ m.

Let (u1, . . . , ui0 , ui0+1, . . . , um)
def.
=

(
1E1
P (E1)

, . . . ,
1Ei0
P (Ei0

) ,
(−1

Ei0+1
∁ )

P (Ei0+1
∁)
, . . .

(−1
Em∁ )

P (Em
∁)

)
. The

family {u1, . . . , um} is linearly independent. Indeed, if

i0∑
i=1

αi
1Ei

P (Ei)
+

m∑
i=i0+1

αi
(−1

Ei
∁)

P (Ei
∁)

= 0, (2.16)
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we integrate on E1, E2 \ E1, . . . , Ei0 \ Ei0−1, to get

i0∑
i=1

αi = 0,

i0∑
i=2

αi = 0, . . . , αi0 = 0.

Integrating on Em
∁, Em−1

∁ \ Em∁, . . .Ei0+1
∁ \ Ei0+2

∁, we also get

m∑
i=i0+1

αi = 0,

m−1∑
i=i0+1

αi = 0, . . . , αi0+1 = 0.

As a result, α1 = . . . = αm = 0 and the family has rank m. Hence, the family {u2 −
u1, . . . , um − u1} has rank m − 1 and since it is contained in the direction space of F ,
we get m− 1 ⩽ dimF = k.

Corollary 2.1. Assume that dimF = k and u ∈ F . Then, u takes a finite number of
values and the number of nonzero values of u is at most k + 1.

Proof. By Carathéodory’s theorem, we may write u =
∑k+1

i=1 θiεi
1Ai
P (Ai)

, where θi ⩾ 0,∑
θi = 1, εi ∈ {−1,+1} and Ai is a simple set. Hence u takes a finite number of

nonzero values.
Assume that u takes the values7 t1 > . . . ti0 > 0 > ti0+1 > . . . > tm, and let

Ei = {u ⩾ ti} for 1 ⩽ i ⩽ m, Ei0+1 = {u ⩾ 0} and Ei = {u ⩾ ti−1} for i0 + 2 ⩽ i ⩽ m.
This yields the level set decomposition u =

∑i0
i=1 αi1Ei +

∑m
i=i0+1 αi(−1Ei

∁) where

αi > 0 and Ei ⊊ Ei+1. By the coarea formula (see Theorem A.1),

1 ⩾ |Du| (Rd) =
i0∑
i=1

αiP (Ei) +

m∑
i=i0+1

αiP (Ei
∁).

The case 1 > |Du| (Rd) is impossible since it implies 0 ∈ F , hence F = CBV, which

contradicts dimF = k. Hence, 1 =
∑i0

i=1 αiP (Ei) +
∑m

i=i0+1 αiP (Ei
∁), and we may

write u as a convex combination,

u =

i0∑
i=1

αiP (Ei)
1Ei

P (Ei)
+

m∑
i=i0+1

αiP (Ei
∁)
(−1

Ei
∁)

P (Ei
∁)
.

The closed face property implies that
1Ei
P (Ei)

∈ F (resp.
(−1

Ei
∁ )

P (Ei
∁)
∈ F) for all 1 ⩽ i ⩽ i0

(resp. i0 + 2 ⩽ i ⩽ m).
As a result, we obtain a chain in E with length m, and Proposition 2.5 implies that

m ⩽ k + 1.

Remark 2.4. In Corollary 2.1, we have used the fact that given a function u, its non-
trivial upper level sets yield a chain in E \ {∅,Rd} with same cardinality. Conversely,
given a chain of E \ {∅,Rd}, say G1 ⊊ . . . ⊊ Gm, the function u defined by

u =

i0∑
i=1

θi
1Gi

P (Gi)
+

m∑
i=i0+1

θi
(−1

Gi
∁)

P (Gi
∁)

(2.17)

with θi > 0,
∑

i θi = 1, yields a function u ∈ CBV with level sets G1, . . . , Gm.

7The simpler case where u takes only positive or only negative values is left to the reader.
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2.3.2 Maximal chains

We say that a collection G of elements of E is a maximal chain (in E) if it is a chain
and there is no G ∈ E \ G such that G ∪ {G} is a chain. We note that, if G is a maximal
chain, then it must contain ∅ (as its smallest element) and Rd (as its greatest one).

Observe that, by Proposition 2.5, if F is any linearly closed face with dimension
k < +∞, then E has at least a maximal chain (and its length is at most k + 3).

Proposition 2.6. Let F be a linearly closed face, and assume that G is a maximal chain
of E with finite length, say G = {Gi}mi=0 with

∅ = G0 ⊂ G1 ⊂ . . . ⊂ Gm = Rd.

Then, the following properties hold.

1. For all i ∈ {1, . . . ,m}, the set (Gi \Gi−1) is indecomposable.

2. For any A ∈ E, there exists I ⊆ {1, . . . ,m} such that A =
⋃
i∈I(Gi \Gi−1).

3. Any function u ∈ F is constant on the sets (Gi \Gi−1), for all i ∈ {1, . . . ,m}.

Proof. Assume for contradiction that Gi \Gi−1 = C1 ∪ C2 with |C1| > 0, |C2| > 0 and

P (Gi \Gi−1) = P (C1)+P (C2). Let us define Gi−1/2
def.
= (Gi−1∪C1). By Proposition 2.4,

Gi−1/2 ∈ E , and we are thus able to insert it in G, yielding a longer chain,

∅ = G0 ⊂ . . . ⊂ Gi−1 ⊂ Gi−1/2 ⊂ Gi ⊂ . . . ⊂ Gm = Rd,

which contradicts the maximality of G.
For the second point, let us observe that the collection {Hi}mi=1, where Hi

def.
= Gi \

Gi−1, is a partition of Rd. Let A ∈ E , A ̸= ∅, and write A =
⋃m
i=1(Hi ∩ A) (disjoint

union). We claim that for all i ∈ {1, . . . ,m}, either |Hi ∩A| = 0 or |Hi \A| = 0. For,
if it were not the case, there would exist i ∈ {1, . . . ,m} such that 0 < |Hi ∩A| and
|Hi \A| > 0, hence the set Gi−1/2

def.
= Gi−1∪ (Hi∩A) would satisfy Gi−1 ⊊ Gi−1/2 ⊊ Gi.

Since Gi−1/2 = Gi−1 ∪ (Gi ∩A), it is an element of E , hence we would have a new chain

∅ = G0 ⊂ . . . ⊂ Gi−1 ⊂ Gi−1/2 ⊂ Gi ⊂ . . . ⊂ Gm = Rd,

which would contradict the maximality of G. As a result A =
⋃
i∈I Hi, where I ⊆

{1, . . . ,m}.
The last point is a straightforward consequence of the second one, since the sublevel

sets of u belong to E (see Corollary 2.1).

Though a (finite-dimensional) face F may have several maximal chains, it is remark-
able that they all share the same collection of increments (see Figure 2.3). In particular
they all have the same length.

Proposition 2.7. Assume that F is finite dimensional. Let G = {Gi}mi=0 and G′ =
{G′

i}m
′

i=0 be two maximal chains in E. Then m = m′ = dimF + 2 and

{Gi \Gi−1}mi=1 = {G′
i \G′

i−1}mi=1. (2.18)
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H1 H2

H4

H3

H5

H ′
1

H ′
2

H ′
3

H ′
4

H ′
5

Figure 2.3: Example of two maximal chains G and G′ corresponding to the same par-
tition (we display the increments Hi

def.
= Gi \Gi−1)

Proof. As in the proof of Proposition 2.6, let us define Hi
def.
= Gi \ Gi−1 for 1 ⩽ i ⩽ m.

The collection {Hi}1⩽i⩽m defines a partition of Rd.
By Proposition 2.6, for all j ∈ {1, . . . ,m′}, since G′

j ∈ E , there exists I(j) ⊆
{1, . . . ,m} such that G′

j =
⋃
i∈I(j)Hi. Since G′

j−1 ⊊ G′
j , we must have Card I(j) ⩾

Card I(j − 1) + 1 (with the convention that I(0) = ∅). As a result,

m ⩾ Card I(m′) ⩾ m′.

Swapping the roles of {Gi}mi=0 and {Gj}m
′

i=0, we deduce similarly thatm′ ⩾ m. Hence,
by cardinality, each G′

j \G′
j−1 is actually made of a single Hi, and there is a permutation

σ : {1, . . . ,m} → {1, . . . ,m} such that

∀j ∈ {1, . . . ,m}, G′
j \G′

j−1 = Gσ(j) \Gσ(j)−1.

Now let u ∈ F . By Proposition 2.6, u is constant on each Hi, hence

u =
m∑
i=1

αi1Hi ,

for some coefficients (αi)1⩽i⩽m ∈ Rm.
However, there is one (and exactly one, by the isoperimetric inequality) index i0 ∈

{1, . . . ,m} such that |Hi0 | = +∞. Since u is integrable, we must have αi0 = 0, so that
in fact Vect(F) ⊆ Vect({Hi}1⩽i⩽m,i ̸=i0) and dimVect(F) ⩽ m− 1. Moreover, since F is
finite-dimensional, it does not contain 0, hence Aff(F) does not contain 0 either and

dim(Aff(F)) = dim(Vect(F))− 1 ⩽ m− 2.

The converse inequality readily follows from Proposition 2.5 since the length of the chain
G \ {∅,Rd} = {Gi}m−1

i=1 is at most dimF + 1.

2.3.3 Extreme points of finite-dimensional faces

Gathering the previous results, we may now state the main theorem of this section.

Theorem 2.1. Let F be a closed k-dimensional face of CBV. Then the collection E is
finite, with at most 2k+2 elements.

In particular, F has finitely many extreme points, it is a polytope.

As a consequence of Theorem 2.1 and the previous results, we deduce that if F is
a k-dimensional face of CBV, almost every point of F (in the sense of the Lebesgue or
k-dimensional Hausdorff measure on its affine hull)
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• is a convex combination of exactly k + 1 indicators of simple sets

• and takes exactly k + 1 nonzero values.

➢ Indeed, the collection of points that can be written as a convex combination of k or
fewer extreme points is given by

S =
⋃

J⊆extr(F),
|J|=k

conv(J),

hence it is a finite union of (k − 1)-dimensional convex sets. Therefore it is Hk-
negligible.

That result tends to explain the observations of Figure 2.2, where 3 measurements
yield an element in a 2-dimensional face, hence (generically) 3 non-zero values.

2.4 The tree of shapes of a function

Whereas the use of chains in E is a way of describing the functions in F using their
upper level sets, we discuss in this section an alternative description of F , related to the
tree of shapes of images used in image processing [BCM03].

Throughout this section, F is a linearly closed face with finite dimension. As the
collection E is finite, and in view of the remarks of Section 2.2.2, we note that each
element of E has a finite number of M -connected components, as well as a finite number
of holes.

2.4.1 A decomposition of u using simple sets

Let C ∈ E be an indecomposable set, and let {Yk}k∈K denote its holes. Follow-

ing [ACMM01], we define its saturation as sat(C)
def.
= C ∪ ⋃k∈K Yk. From [ACMM01,

Prop. 9], we know that

1C = 1sat(C) −
∑
k∈K

1Yk and P (C) = P (sat(C)) +
∑
k∈K

P (Yk). (2.19)

Now, let E ∈ E , and let {Cj}j∈J denote its M -connected components. Since 1E =∑
j∈J 1Cj and P (E) =

∑
j∈J P (Cj), Eq. (2.19) with C = Cj implies

1E =
∑
j∈J

1sat(Cj) −
∑

k∈K(j)

1Yk,j

 , and P (E) =
∑
j∈J

P (sat(Cj)) + ∑
k∈K(j)

P (Yk,j)


(2.20)

where {Yk,j}k∈K(j) denotes the holes of Cj . Note that if |E| = +∞, there is exactly

one j such that |Cj | = +∞, say, for j = j0. In that case, sat(Cj0) = Rd and we may
alternatively write

(1E − 1)︸ ︷︷ ︸
=−1

E∁

= −
∑

k∈K(j0)

1Yk,j0 +
∑

j∈J\{j0}

1sat(Cj) −
∑

k∈K(j)

1Yk,j

 (2.21)
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Eventually, let u ∈ F . Using a level set decomposition as in Corollary 2.1, we may
write

u =

i0∑
i=1

βi1Ei +

m∑
i=i0+1

βi(−1Ei
∁) (2.22)

where E1 ⊊ . . . ⊊ Ei0 ⊊ . . . ⊊ Em, and |Ei| < +∞ iff i ⩽ i0, (2.23)

∀i ∈ {1, . . . ,m}, βi > 0, and
∑

1⩽i⩽m

βiP (Ei) = 1. (2.24)

Combining (2.20) and (2.21), we obtain the decomposition:

u =
∑
ℓ

γℓ1Sℓ
(2.25)

where each Sℓ is a simple set, γℓ ∈ R, and
∑

ℓ |γℓ|P (Sℓ) = 1. This looks like the mere
conclusion of Carathéodory’s theorem, but as we show below, we can now track the
relations between the Sℓ’s.

2.4.2 The tree structure of the decomposition

In the decomposition (2.25), each Sℓ is of the form sat(Cj) or Yk,j , that is, the
saturation or a hole of some level set. If Sℓ and Sℓ′ stem from two different level sets, say
E and E′ with E ⊆ E′, it is possible to compare them, using the following observations.

If C is an indecomposable set, we define the exterior of C, denoted by ext(C), as the
unique M -connected component of C∁ with infinite measure (if it exists). In particular,
the M -connected components of C∁ are exactly the holes of C and its exterior.

Connected components of nested sets. If E, E′ are sets with finite perimeter
with E ⊆ E′, then any M -connected component of E is contained in some (unique)
M -connected component of E′, see [ACMM01, Thm. 1].

Saturations of nested sets. Let C, C ′ be indecomposable sets with C ⊆ C ′. Then
sat(C) ⊆ sat(C ′), see [ACMM01, Prop. 6].

Holes of nested sets. Let C, C ′ be indecomposable sets with C ⊆ C ′. If Y is a hole
of C, then Y ⊆ sat(C) ⊆ sat(C ′). If Y ′ is a hole of C ′, then Y ′ ⊂ ext(C) or Y ′ ⊆ Y for
some hole Y of C (this is a consequence of [ACMM01, Thm. 1]).

Saturations of disjoint sets. If C, C ′ are indecomposable sets with |C ∩ C ′| = 0,
then |sat(C) ∩ sat(C ′)| = 0 or sat(C) ⊆ sat(C ′) (or conversely), see [ACMM01, Prop.
6].

Holes of disjoint sets. If C, C ′ are indecomposable sets with |C ∩ C ′| = 0, then C ′

is included in the exterior of C or in a hole of C.
The different possibilities are summarized in Table 2.1. The conclusion is that Sℓ ∩

Sℓ′ = ∅, Sℓ ⊆ Sℓ′ or Sℓ′ ⊆ Sℓ.
Theorem 2.2 (The tree of shapes of an image). Let F be a closed k-dimensional face
of CBV. Then, for all u ∈ F , there exists a family {Sℓ}ℓ∈L ⊆ E such that each Sℓ is
simple, 0 < |Sℓ| < +∞,

u =
∑
ℓ∈L

γℓ1Sℓ
, (2.26)
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and for all ℓ, ℓ′ ∈ L, the sets Sℓ and Sℓ′ are either disjoint or nested.

The collection {Rd}∪{Sℓ}ℓ∈L has a tree structure (for the inclusion relation), cardL ⩽
k + 1, and:

• If sign(γℓ) = sign(γℓ′) and Sℓ ∩ Sℓ′ = ∅, then Hd−1(∂∗Sℓ ∩ ∂∗Sℓ′) = 0.

• If sign(γℓ) = − sign(γℓ′) and Sℓ ⊆ Sℓ′, then Hd−1(∂∗Sℓ ∩ ∂∗Sℓ′) = 0.

Proof. The collection built in (2.25) is almost the one we need, except that it may
contain redundant shapes. If Sℓ1 = Sℓ2 , we must have sign(γℓ1) = sign(γℓ2), otherwise
|Du| (Rd) < ∑

ℓ |γℓ|P (Sℓ) = 1, which would imply F = CBV and would contradict
dimF = k. Therefore if Sℓ1 = . . . = Sℓn , we replace them with a single occurrence of
Sℓ1 with weight

∑n
i=1 γℓi , which preserves the property

∑
ℓ |γℓ|P (Sℓ) = 1.

Note that Sℓ ∈ E for each ℓ such that γℓ > 0, and Sℓ
∁ ∈ E for each ℓ such that γℓ < 0.

Indeed, the decomposition

u =
∑
ℓ

|γℓ|P (Sℓ)
(sign(γℓ)1Sℓ

)

P (Sℓ)
(2.27)

describes u ∈ F as a convex combination of the functions
(sign(γℓ)1Sℓ

)

P (Sℓ)
, hence

(sign(γℓ)1Sℓ
)

P (Sℓ)
∈

F .
Now, we have have a collection such that, if ℓ ̸= ℓ′, Sℓ and Sℓ′ are disjoint or nested.

This provides a tree structure, and implies that the family {sign(γℓ)
1Sℓ
P (Sℓ)

}ℓ∈L is linearly

independent. Since this collection is included in F , we deduce that card(L) ⩽ k + 1.
To conclude the proof, we note that the conclusions Hd−1(∂∗Sℓ ∩ ∂∗Sℓ′) = 0 follow

from Remark 2.1.

2.5 Examples of finite dimensional faces

To illustrate the results of the previous sections, we describe the closed 1-faces of
CBV. As CBV is bounded and any extreme point of a 1-face is an extreme point of

CBV, those must be of the form
[
εA

1A
P (A) , εB

1B
P (B)

]
where A and B are simple sets and

{εA, εB} ⊆ {−1,+1}.
Proposition 2.8. Let A,B ⊆ Rd be two distinct simple sets with 0 < |A| , |B| < +∞.

Then, the line segment
[

1A
P (A) ,

1B
P (B)

]
is a face of CBV if and only if one of the following

holds:

• B ⊆ A and A \ B is indecomposable (or similarly, exchanging the roles of A and
B)

• A ∩B = ∅, Hd−1(∂∗A ∩ ∂∗B) = 0 and Rd \ (A ∪B) is indecomposable.

Proof. Let F = [ 1A
P (A) ,

1B
P (B) ], and assume that F is a face. Then A,B ∈ E+, and, since

0 /∈ F (otherwise we would have F = C), Proposition 2.3 implies P (A∪B)+P (A∩B) =
P (A) + P (B).

First, assume that |A ∩B| = 0. Then P (A∪B) = P (A)+P (B), which is equivalent
to Hd−1(∂∗A ∩ ∂∗B) = 0. Moreover, consider the chain

∅ ⊂ A ⊂ A ∪B ⊂ Rd.

If Rd \ (A ∪ B) were decomposable, then that chain would not be maximal (since, by
Proposition 2.6, A ∪ B ⊊ A ∪ B ∪ C ⊊ Rd for any M -connected component of Rd \
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(A ∪ B)). That would contradict the fact that dimF = 1. As a result, Rd \ (A ∪ B) is
indecomposable.

Now, if |A ∩B| > 0, we have A ∩B ∈ E+ and

(A ∩B) ⊆ A ⊆ (A ∪B) (2.28)

yields a chain in E+. Since dimF = 1, this chain has at most two distinct elements,
hence, modulo a Lebesgue negligible set, A ∩ B = A (i.e. A ⊆ B) or A = A ∪ B (i.e.
B ⊆ A). Assume without loss of generality that B ⊆ A. By contradiction, if A \ B is
decomposable, the chain

∅ ⊂ B ⊂ A ⊂ Rd

is not maximal, which contradicts dimF = 1. Hence A \B is indecomposable.
For the converse implication, the proof follows the same line as the proof in [BC19]

that the (renormalized) indicators of the simple sets are the extreme points of CBV. We
only sketch it for brevity.

Let A,B satisfy one the above assumptions, let θ ∈ ]0, 1[, and define u = θ1A/P (A)+
(1 − θ)1B/P (B). Note that, in both cases, |Du|(Rd) = 1. Assume that there exist
u1, u2 ∈ CBV such that u = ρu1 + (1 − ρ)u2 for some ρ ∈]0, 1[. The goal is to prove
necessarily u1 and u2 are in [ 1A

P (A) ,
1B
P (B) ]. By defining S := ∂∗A ∪ ∂∗B, remark that

1 = |Du|(S) ⩽ ρ |Du1|(S)︸ ︷︷ ︸
⩽1

+(1− ρ) |Du2|(S)︸ ︷︷ ︸
⩽1

⩽ 1 (2.29)

where the last inequality comes from u1, u2 ∈ CBV. Therefore, |Dui|(S) = 1, and in
particular |Dui|(Rd \ S) = 0 for i = 1, 2. Thus, for any indecomposable set C such
that C̊M ⊆ Rd \ S (where C̊M denotes the measure-theoretic interior of C, i.e. its
set of Lebesgue points), we have |Du| (C̊M ) = 0, and by a result of G. Dolzmann and
S. Müller [DM95], ui is constant on C.

If A ∩ B = ∅, we apply this principle to A, B and Rd \ (A ∪ B). Indeed, their
measure-theoretic interior does not intersect S, since, denoting by Et the points of E of
Lebesgue density t,

ÅM ∩ S = A1 ∩ (∂∗A ∪ ∂∗B) ⊆ A1 ∩ (A1/2 ∪B1/2) = A1 ∩B1/2 = ∅ since |A ∩B| = 0,
(2.30)

˚︷ ︸︸ ︷
Rd \ (A ∪B)

M

∩ S ⊆ A0 ∩B0 ∩ (A1/2 ∪B1/2) = ∅. (2.31)

Hence each ui is constant on those sets. On the other hand, if B ⊆ A, we apply it to
Rd \A, A \B and A, and we obtain similarly that ui is constant on those sets.

In both cases, by integrability, ui must vanish on Rd \ (A ∪ B). Thus, there exist
α1, α2, β1, β2 such that {

u1 = α11A + β11B
u2 = α21A + β21B.

To write ui as a convex combination of 1A/P (A) and 1B/P (B), it remains to prove
that αi ⩾ 0, βi ⩾ 0 with αiP (A) + βiP (B) = 1, for i ∈ {1, 2}. To this end, we recall
from Eq. (2.29) that

|Du| (Rd) = ρ |Du1| (Rd) + (1− ρ) |Du2| (Rd), (2.32)

and we make each term explicit.



2.5. EXAMPLES OF FINITE DIMENSIONAL FACES 55

First, consider the case A ∩ B = ∅. As u = θ1A/P (A) + (1 − θ)1B/P (B) = ρu1 +
(1− ρ)u2, we observe the values in A and B to get{

θ/P (A) = ρα1 + (1− ρ)α2,
(1− θ)/P (B) = ρβ1 + (1− ρ)β2. (2.33)

By the coarea formula (see Theorem A.1), the left-hand side of (2.32) is

|Du| (Rd) = θ

P (A)
P (A) +

(1− θ)
P (B)

P (B)

= (ρα1 + (1− ρ)α2)P (A) + (ρβ1 + (1− ρ)β2)P (B)

= ρ(α1P (A) + β1P (B)) + (1− ρ)(α2P (A) + β2P (B)).

On the other hand, we have

ρ |Du1| (Rd) + (1− ρ) |Du2| (Rd) = ρ(|α1|P (A) + |βi|P (B))

+ (1− ρ)(|α2|P (A) + |β2|P (B)).

Hence, (2.32) implies that |αi|P (A)+ |βi|P (B) = αiP (A)+βiP (B), which implies that
αi = |αi|, βi = |βi| and the desired result holds.

Now, we deal with the case B ⊆ A. We note that (2.33) also holds (but the second
line is the value in B minus the value in A). Let νA and νB be the measure-theoretic
inner unit normals of A and B (respectively defined on ∂∗A and ∂∗B). As a consequence
of B ⊆ A, νA and νB must coincide in ∂∗A ∩ ∂∗B. Hence, for i = 1, 2,

Dui = αiνAHd−1⌞(∂∗A \ ∂∗B) + βiνBHd−1⌞(∂∗B \ ∂∗A) + (αi + βi)νAHd−1⌞(∂∗A ∩ ∂∗B)

and

Du =
θ

P (A)
νAHd−1⌞(∂∗A \ ∂∗B) +

(1− θ)
P (B)

νBHd−1⌞(∂∗B \ ∂∗A)

+

(
θ

P (A)
+

(1− θ)
P (B)

)
νAHd−1⌞(∂∗A ∩ ∂∗B).

As a result, the left-hand side of (2.32) is

|Du| (Rd) = θ

P (A)
Hd−1(∂∗A \ ∂∗B) +

(1− θ)
P (B)

Hd−1(∂∗B \ ∂∗A)

+

(
θ

P (A)
+

(1− θ)
P (B)

)
Hd−1(∂∗A ∩ ∂∗B)

= (ρα1 + (1− ρ)α2)Hd−1(∂∗A \ ∂∗B) + (ρβ1 + (1− ρ)β2)Hd−1(∂∗B \ ∂∗A)
+ (ρ(α1 + β1) + (1− ρ)(α2 + β2))Hd−1(∂∗A ∩ ∂∗B)

On the other hand, we have

ρ |Du1| (Rd) + (1− ρ) |Du2| (Rd) = ρ
(
|α1|Hd−1(∂∗A \ ∂∗B) + |β1|Hd−1(∂∗B \ ∂∗A)

+ |α1 + β1|Hd−1(∂∗A ∩ ∂∗B)
)

+ (1− ρ)
(
|α2|Hd−1(∂∗A \ ∂∗B) + |β2|Hd−1(∂∗B \ ∂∗A)

+ |α2 + β2|Hd−1(∂∗A ∩ ∂∗B)
)
.

Thus, provided that Hd−1(∂∗A \ ∂∗B) > 0 and Hd−1(∂∗B \ ∂∗A) > 0, Eq. (2.32) implies
that |αi| = αi, |βi| = βi, hence |αi+βi| = αi+βi. We deduce that αiP (A)+βiP (B) = 1
for i ∈ {1, 2}, and the claimed result follows.
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Therefore, to complete the proof, we need to show that Hd−1(∂∗A \ ∂∗B) > 0 and
Hd−1(∂∗B \ ∂∗A) > 0. We apply [ACMM01, Prop. 4]: since A is indecomposable and
B ⊆ A, if we had ∂∗B ⊆ ∂∗A (mod Hd−1) we would have B = A (since |B| > 0 by
hypothesis), a contradiction. Arguing similarly for A∁ ⊆ B∁ with B∁ indecomposable,
we deduce that ∂∗A ⊈ ∂∗B (mod Hd−1). The proof is complete.

A similar result holds for opposite signs, we omit the proof for the sake of brevity.

Proposition 2.9. Let A,B ⊆ Rd be two distinct simple sets with 0 < |A| , |B| < +∞.

Then, the line segment
[

1A
P (A) ,

(−1B)
P (B)

]
is a face of CBV if and only if one of the

following holds:

• B ⊆ A, Hd−1(∂∗A∩∂∗B) = 0, and A\B is indecomposable (or similarly, exchang-
ing the roles of A and B)

• A ∩B = ∅, and Rd \ (A ∪B) is indecomposable.

2.6 Conclusion

2.6.1 Summary

In this chapter, we have studied the extreme points of the faces of the total variation
unit ball. Considering only the extreme points of that ball, i.e. renormalized indicators
of simple sets, yields only a representation of the solutions to (PBV) as a sum of M
indicator functions, having at most 2M − 1 nonzero values. However, a closer inspection
of the faces of finite dimension shows that there is a strong structure in the family
of simple sets involved in each face. In particular, an extreme point of the solutions
to (PBV) can only take at most M nonzero values. Eventually, we show that the (finite-
dimensional) faces of CBV encode the tree of shape of its elements u. More precisely,
there is a representation of u as a convex combination of (renormalized) indicators of
simple sets, and that family has the same properties as the tree of shapes decomposition
of an image introduced in [MG00].

2.6.2 Discussion with respect to prior works and extensions

Case of a bounded domain. While this chapter focuses on the domain Rd for sim-
plicity, let us mention that the case of a bounded domain with Dirichlet or Neumann
boundary conditions is also interesting (and, admittedly, more relevant to image process-
ing). The Neumann case has been considered by K. Bredies and M. Carioni in [BC19],
who define a suitable notion of simple set and extend W. Fleming’s result stating that
the extreme point of the unit ball are the (signed and normalized) indicator functions
of simple sets (modulo constant functions). To our knowledge, the higher dimensional
faces have not been studied in the literature. However, it seems likely that the properties
described in the present chapter extend to that case as well.

Submodular functions and faces of the unit ball. Describing the faces of the total
variation unit ball is a particular case of understanding the unit ball of a submodular
regularization. That problem has received a lot of attention and the monographs by
S. Fujishige [Fuj05] and F. Bach [Bac13] (see also [Bac11]) provide comprehensive studies
of submodular functions defined on a finite set. For instance, the description of faces
using partitions and maximal chains in Section 2.3 are inspired from [Fuj05, Sec. 3.2].
However, please note that, as they work on a finite graph, the above-mentioned references
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usually exploit the polyhedral nature of the convex set C. In particular, the description
of the faces of C in [Bac11] is obtained by a duality argument from the description
provided in [Fuj05] of the faces of its polar set. In our continuous setting, C is not a
polyhedron, and we cannot assume that every face of C is an exposed face.

If we relied on a duality argument we would only be able to describe the exposed faces
(which would depend on the chosen duality pairing). This has some striking consequences
on the description that one may obtain. For instance, with d = 2, W. Fleming’s result
(Proposition 2.1) states that the (normalized) indicator function of a square is an extreme
point of CBV. However, it is not an exposed point for the natural choice of a dual space(
Ld/(d−1)(Rd))

)′
= L2(R2), otherwise the square would have a variational curvature8 in

L2(R2), which is known to be false (see [Mey01]).

As a result, in continuation of W. Fleming’s result, we have chosen to describe the
(not necessarily exposed) faces of CBV.

Submodular functions and contractions. In standard references on submodular
functions [Fuj05, Bac13], it is important, when describing the faces of the unit ball, to
consider the indecomposability for the contraction, that is the submodular function

PB : E 7−→ P (E ∪B)− P (B) (2.34)

defined on the measurable subsets of Rd\B. In particular, given a chain G0 ⊂ . . . ⊂ Gm,
one states that Gi+1 \Gi is indecomposable for PGi . With the total variation, we need
not consider such perimeters since both notions coincide. Indeed, it is possible to prove:

Proposition 2.10. Let A, B ⊆ Rd be two sets of finite perimeter such that B ⊂ A.
Then A \B is indecomposable (for P ) if and only if it is indecomposable for PB.

The tree of shapes of an image. A fundamental principle of Mathematical Mor-
phology is the idea that images are equivalent through contrast changes (say, v = g ◦ u
with g Lipschitz strictly increasing), hence image analysis operations should respect that
invariance [SC82]. Under suitable assumptions, it is equivalent to working on the upper
level sets (Et)t∈R of images and reconstructing it using the formula

u(x) = sup { t ∈ R | x ∈ Et } . (2.35)

However, the level set representation is redundant. Moreover, many interesting image
processing operations focus on the connected components of Et rather than Et itself. As
it is desirable to handle dark objects in the same way as one handles the clear objects (this
property is called self-duality in imaging), one has to deal with two trees of connected
components (one for the upper and one for the lower level sets), and modifying the
former impacts the latter. To overcome such limitations, P. Monasse and F. Guichard
define a shape by filling-in the holes of the connected components of upper or lower level
sets, organizing them into a single tree structure which can be efficiently computed using
a fast transform [MG00]. In [BCM03], C. Ballester et al. extend it to images having a
continuum of gray levels. The tree of shapes is a convenient tool which can be used in
image registration [Mon99], denoising [DK00], or scale analysis [LAG09] methods.

It is worth noting that the tree of shapes constructed in the present chapter slightly
differs from the one in [MG00, BCM03] insofar as we use measure theoretic notions
(M -connectedness, functions with bounded variation) as opposed to topological ones

8A locally integrable function v is a variational curvature of A ⊆ Rd if A is a solution to the problem
minE⊆Rd

∫
E
v − P (E).
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(connectedness, semi-continuous functions), see [BC01] for a comparison of the two no-
tions. However, the similarity between the two constructions is striking: the filling of
the holes as introduced by P. Monasse and F. Guichard naturally leads to the simple
sets (i.e. the extreme points of the total variation unit ball) and, in some sense, the tree
of shapes of images is encoded in the faces of the TV unit ball.

Choquet’s integral and the coarea formula. In this chapter, we have often written
a function with finite range as a convex combination of the (renormalized) indicator
functions of its level sets. More generally, if u ∈ Ld/(d−1)(Rd), we may write for a.e.
x ∈ Rd (compare with (2.35)),

u(x) =

∫ +∞

0
1{u(x)⩾t}dt+

∫ 0

−∞
(1{u(x)⩾t} − 1)dt. (2.36)

On the other hand, for |Du| (Rd) = 1, the coarea formula states that

1 =

∫ +∞

−∞
P ({u ⩾ t})dt (2.37)

so that, at least formally, we may define a probability measure by dω(t) = P ({u ⩾ t})dt
and (2.36) becomes

u =

∫ +∞

0

1{u⩾t}

P ({u ⩾ t})dω(t) +
∫ 0

−∞

(1{u⩾t} − 1)

P ({u ⩾ t}) dω(t). (2.38)

In other words, u is expressed as a weighted average of the (renormalized) indicator func-
tions of its level sets. Now, each level set {u ⩾ t} may be decomposed as in Section 2.4,
expressing u as a weighted combination of indicators of simple sets. Such expression
might be interpreted as a Choquet integral, which describes the points of a closed con-
vex set using a probability measure on the set of extreme points. Such a connection
was already pointed out in [Fle57]. It seems the right way to study the faces of infinite
dimension, but its manipulation is not trivial. We leave such investigations for future
work.
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In Chapter 1, we have described the solutions uτ of inverse problems of the form

inf
u∈V

R(u) + f(Φu, τ) (3.1)

as convex combinations of extreme points, or points in extreme rays of the level sets
{R ⩽ R(uτ )}. Our goal is now to discuss the stability of this representation as the
parameter τ varies (typically τ encodes the input data or the regularization parameter).

The main difficulty is that, when τ varies, the value R(uτ ) is very likely to change.
Hence, there is hardly any hope that uτ stays on the same face of {R ⩽ R(uτ )}, since the
convex set {R ⩽ R(uτ )} itself may change! However, one could expect that uτ , R(uτ )
stays on the same face of the epigraph of R. In that case, one could represent uτ , R(uτ )
as a convex combination using extreme points (or points in extreme rays) of that face.
It is one of the reasons why in Chapter 1 we have promoted the epigraphical approach.
Alternatively, if there is a simple way to “track” the extreme points of {R ⩽ t} as t
varies (e.g. if R is positively homogeneous), we could also rely on the extreme points of
{R ⩽ R(uτ )}, using a constant number of points.

59
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As often in the calculus of variations, the study of optimality conditions is the heart
of the matter. We explain below how they provide information on the face of the solution
FepiR (u,R(u)), and how they vary with τ .

Collaboration. Part of this chapter is related to the work [13] with Gabriel Peyré.
The influence of discussions with Jalal Fadili, Samuel Vaiter and Charles Dossal should
also be acknowledged.

3.1 General results

3.1.1 Regularized inverse problems

Throughout the present chapter, we assume we are given an observation y ∈ H,
where H is a separable Hilbert space, and we focus on energies of the form (3.1) where
f is a quadratic fidelity term or an exact penalty term. In other words, given λ > 0,
y ∈ H, we consider the problems

inf
u∈V

R(u) +
1

2λ
∥Φu− y∥2H (P(λ, y))

inf
u∈V

R(u) s.t. Φu = y. (P(0, y))

Typical instances of such energies include the Basis Pursuit or the Lasso [CDS99,
Tib96] or total-variation regularized problems [ROF92, CL97]. The choice of the fidelity
term f depends on the presence and structure of the noise. Our discussion could be
extended to more general fidelity terms f , but the current setting is quite typical and
allows for geometric interpretations.

Remark 3.1. Problems (P(λ, y)) and (P(0, y)) belong to the same family of prob-

lems (3.1) with τ = (λ, y) and f(q, τ)
def.
= g(q − y, λ), where

∀q ∈ H, g(q, λ)
def.
=


1
2λ ∥q∥

2
H if λ > 0,

0 if (λ, q) = (0, 0),

+∞ otherwise.

(3.2)

It turns out that g is a convex function of (q, λ) (see [BB00]). Besides, a monotonic-
ity argument [DM93, Prop. 5.4] shows that the problems (P(λ, y)) Γ-converge towards
(P(0, y)), provided R is lower semi-continuous and Φ is continuous (see below for the
precise topological assumptions of the chapter).

In the rest of the chapter, we denote the problem parameter by τ
def.
= (λ, y), where

λ ⩾ 0, y ∈ H, and we study the properties of the solutions uτ of (P(τ)) as τ varies. Push-
ing the study of the previous chapters further, we try to estimate the face of uτ , R(uτ )
in the epigraph of R using duality arguments.

3.1.2 Duality for face identification

As we highlight in Appendix B, the duality theory is intimately related to the de-
scription in terms of faces used in the previous chapters. Though the results described
in Appendix B are fairly standard, the geometric perspective is somewhat different from
the literature. In a nutshell,

• Finding a normal to a convex set C at some point x provides a superset of the
elementary face FC (x),
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• That superset is the sharpest when the normal is in the relative algebraic interior
of the normal cone.

• In the case of an epigraph, C = epiR, that amounts to finding a subgradient at
uτ , and again, the sharpest estimation is provided by subgradients in the relative
algebraic interior of the subdifferential.

• Solving the dual problem gives access to a subgradient of R at the primal solution.

To exploit the Fenchel-Rockafellar duality described in Appendix B.4 and state con-
vergence properties, it is necessary to specify the topologies and the dual spaces that we
use. We resort to the theory of paired spaces which we recap in Appendix B.1.1, but we
refer to [Roc89] for further detail.

Assumptions 3.1. With the notation of Appendix B.1.1 we make the following assump-
tions throughout the chapter.

• V and Υ are two linear spaces endowed with a duality pairing ⟨·, ·⟩ which is sepa-
rating.

• R : V → R∪ {+∞} is convex proper, lower semi-continuous for some (hence any)
compatible topology.

• Π and P are equal to some linear space H which can be equipped with the topology of
a separable Hilbert space, and they are paired with the corresponding scalar product,

• Φ: V → Π is linear continuous from σ(V,Υ) to σ(Π, P ) (the latter being simply
the weak topology of H).

With the perturbations considered in Appendix B.4.2, the dual problems are respec-
tively given by

sup
p∈H

(
⟨p, y⟩ − λ

2
∥p∥2H −R∗(Φ∗p)

)
(D(λ, y))

sup
p∈H

(⟨p, y⟩ −R∗(Φ∗p)) (D(0, y))

Provided strong duality holds (i.e. inf P(τ) = supD(τ), see Section 3.3), given a
pair (u, p) ∈ V × P , u is a solution to P(τ) and p is a solution to D(τ) if and only if

p =
1

λ
(y − Φu) and Φ∗p ∈ ∂R(u) (for λ > 0) , (3.3)

y = Φu and Φ∗p ∈ ∂R(u) (for λ = 0) . (3.4)

3.1.3 The positively homogeneous case

Very often in the literature [CDS99, Tib96, ROF92], the regularizer R is a positively
homogeneous function, i.e.

∀α > 0, ∀u ∈ V, R(αu) = αR(u). (3.5)

Under that assumption (together with Assumptions 3.1), the dual problem gets an in-
teresting geometric interpretation. One may check that R is the support function of the
closed convex set ∂R(0) (see [Roc89, Sec. 6]) and that

∂R(u) = { η ∈ ∂R(0) | ⟨u, η⟩ = R(u) } , (3.6)

R∗(η) = χ∂R(0)(η)
def.
=

{
0 if η ∈ ∂R(0)
+∞ otherwise.

(3.7)
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The dual problems become respectively

sup
p∈H

(
⟨p, y⟩ − λ

2
∥p∥2H

)
s.t. Φ∗p ∈ ∂R(0), (D(PH)(λ, y))

sup
p∈H

(⟨p, y⟩) s.t. Φ∗p ∈ ∂R(0). (D(PH)(0, y))

Introducing the closed convex set

K
def.
= (Φ∗)−1(∂R(0)) = { p ∈ H | ∀u ∈ V, ⟨Φu, p⟩ ⩽ R(u) } , (3.8)

we see that (D(PH)(λ, y)) is equivalent to the projection of y/λ onto K, whereas (D(PH)(0, y))
amounts to finding the face of K which is exposed by y. Alternatively, if y = Φu0 and
strong duality holds, the solution set to (D(PH)(0, y)) is (Φ∗)−1(∂R(u0)).

3.2 Examples

3.2.1 Inverse problems in the space of measures

Let (X, dX) be a locally compact separable metric space and denote byM(X) (resp.
M+(X)) the set of finite signed (resp. nonnegative) Radon measures. Let C0(X) be the
set of real-valued continuous functions on X which vanish at infinity, i.e.

∀ε > 0, ∃K ⊆ X compact, ∀x ∈ X \K, |φ(x)| ⩽ ε. (3.9)

With the notation of Appendix B.1.1, we set V =M(X), Υ = C0(X) (and Π = P =
H as already mentioned).

The assumption that Φ is continuous from σ(V,Υ) to σ(Π, P ) means that Φ:M(X)→
H is weak-* to weak continuous. It is equivalent to assuming that it has the form of a
Bochner integral [Bou07a, Sec. III.3.1]

Φm
def.
=

∫
X
φ(x)dm(x), (3.10)

where φ : X → H is weakly continuous and weakly vanishing at infinity, i.e. such that
(x 7→ ⟨q, φ(x)⟩H) ∈ C0(X) for all q ∈ H.

Remark 3.2. In general, the function φ does not vanish at infinity in the norm topology
of H. For instance, in the case of a convolution operator, φ(x) = φ̃(· − x), where

φ̃ ∈ H def.
= L2(Rd) is the impulse response, φ has constant norm.

However, by the Banach-Steinhaus theorem, since

∀q ∈ H, sup
x∈X
|⟨q, φ(x)⟩H| < +∞, (3.11)

we note that (x 7→ ∥φ(x)∥H) is bounded on X.

Typical examples include the case where φ = (φ1, . . . , φM ) is a collection of sensing
functions, such as the trigonometric system

φ(x) = (1, cos(2πx), sin(2πx), . . . , cos(2fcπx), sin(2fcπx)) (X = T) (3.12)

or an exponential system

φ(x) =
(
e−s1x, . . . , e−sMx

)
(X = [a,+∞[). (3.13)
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Alternatively, φ might be the impulse response of a convolution,

φ(x) = φ̃(· − x) (X = Rd or Td). (3.14)

for some function φ̃ ∈ H def.
= L2(X). It is standard that the mapping x 7→ φ̃(· − x) is

strongly (hence weakly) continuous from X to L2(X) and weakly vanishes at infinity.
More general operators φ̃(·, x) might be considered, with suitable integrability properties
(see Section 7.3.1 for more detail on spatially varying filters).

The generalized moment problem

The generalized moment problem consists in finding a nonnegative measure with
given prescribed moment. We let

R(GM)(m)
def.
= χM+(X)(m) =

{
0 if m ∈M+(X),

+∞ otherwise.
(3.15)

The corresponding problems are respectively

min
m∈M(X)

χM+(X)(m) +
1

2λ
∥Φm− y∥2H (P(GM)(λ, y))

min
m∈M(X)

χM+(X)(m) s.t. Φm = y (P(GM)(0, y))

The existence of a solution to P(GM)(0, y) depends on whether or not y ∈ Φ(M+(X)).
A solution to P(GM)(λ, y) exists provided Φ(M+(X)) is closed, which is guaranteed in
particular if X is compact and there exists a (strictly) positive “polynomial” (see [KN77,
Ch. I, sec 3]), i.e.

∃p ∈ H, ∀x ∈ X, ⟨φ(x), p⟩ = (Φ∗p)(x) > 0. (3.16)

SinceR = χM+(X) is positively homogeneous, the dual problem has the form (D(PH)(λ, y))
with

∂R(GM)(0) = C+
0 (X)

def.
= { η ∈ C0(X) | ∀x ∈ X, η(x) ⩾ 0 } . (3.17)

In view of (3.6), the subdifferential is characterized by

η ∈ ∂R(m) ⇐⇒ (∀x ∈ X, η(x) ⩾ 0, and ∀x ∈ supp(m), η(x) = 0) . (3.18)

Total variation minimization

One may also regularize using the total variation of measures,

R(TV)(m)
def.
= |m| (X) = sup

{∫
X
ηdm | η ∈ C0(X), ∥η∥∞ ⩽ 1

}
. (3.19)

The variational problems then read

min
m∈M(X)

|m| (X) +
1

2λ
∥Φm− y∥2H , (P(TV)(λ, y))

min
m∈M(X)

|m| (X) s.t. Φm = y. (P(TV)(0, y))

Since the total variation of measures is coercive for the weak-* topology of measures, a
solution to P(TV)(λ, y) always exists. On the other hand, a solution to P(TV)(0, y) exists
if and only if y ∈ Φ(M(X)).
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Since the total variation of measures is the support function of the closed convex set

∂R(TV)(0) = { η ∈ C0(X) | ∀x ∈ X, |η(x)| ⩽ 1 } , (3.20)

the subdifferential is characterized by

η ∈ ∂R(m) ⇐⇒ (∀x ∈ X, |η(x)| ⩽ 1, and ∀x ∈ supp(m±), η(x) = ±1) ,
(3.21)

where m = (m+ −m−) is the Hahn-Jordan decomposition of m.

Therefore, the dual problems read

sup
p∈H

(
⟨p, y⟩ − λ

2
∥p∥2H

)
s.t. ∥Φ∗p∥∞ ⩽ 1, (D(TV)(λ, y))

sup
p∈H

(⟨p, y⟩) s.t. ∥Φ∗p∥∞ ⩽ 1. (D(TV)(0, y))

Remark 3.3. In addition, it is possible to combine the total variation of measures with
the positivity constraint, R(TV+)(m) = |m| (X) + χM+(X)(m), which corresponds to

∂R(TV+)(0) = { η ∈ C0(X) | ∀x ∈ X, η(x) ⩽ 1 } . (3.22)

3.2.2 Finite-dimensional ℓ1-regularized inverse problems

Let G ⊆ X be a finite set (typically G is a grid of points). We consider the same
functional spaces as above, and we define the ℓ1-norm on G as

∀m ∈M(X), Rℓ
1(G)(m)

def.
= ∥m∥ℓ1(G)

def.
= sup

{∫
X
ηdm | η ∈ C0(X), ∀x ∈ G, |η(x)| ⩽ 1

}
.

(3.23)
The above quantity is equal to the ℓ1-norm, ∥a∥1 =

∑
x∈G |ax|, if m =

∑
x∈G axδx,

and +∞ otherwise. The corresponding problems are the celebrated Lasso and Basis
Pursuit problems [CDS99, Tib96]:

min
m∈M(X)

∥m∥ℓ1(G) +
1

2λ
∥Φm− y∥2H (P(ℓ1(G))(λ, y))

min
m∈M(X)

∥m∥ℓ1(G) s.t. Φm = y (P(ℓ1(G))(0, y))

Though it might look overly sophisticated to write an ℓ1-minimisation problem using
(3.23), that formulation is useful to embed the discrete problem into a continuous one.
While many imaging problems aim at capturing a physical signal which is defined on a
continuous domain, the common practice is to try to reconstruct the signal on a grid,
where it is possible to handle computations. Embedding the discrete problems into a
continuous one allows to study the convergence of the approximation (see Section 5.3).

3.2.3 Inverse problems involving the total gradient variation

LetX
def.
= Rd, d ⩾ 2. Since the seminal work of L. Rudin, S. Osher and E. Fatemi [ROF92],

it is common in image processing to use the total variation of the gradient as a regular-
izer,

R(BV)(u) =

∫
X
|Du| def.= sup

{∫
X
udivz | z ∈ C 1

c (X;Rd), sup
x∈X
|z(x)|2 ⩽ 1

}
, (3.24)



3.2. EXAMPLES 65

for u locally integrable in X. Typical applications of total variation regularization in-
clude: deblurring in satellite imaging [DMR00], inverse problems in microscopy [DBFZ+06,
BGM+14], magnetic resonance imaging (MRI) [BV19], or structure-texture decomposi-
tion [AABFC05, Had07], but this list is far from being exhaustive.

Using the notation of Appendix B.1.1, we set V = Ld/(d−1)(Rd), Υ = Ld(Rd). That
choice is dictated by the Poincaré-type inequality [AFP00, Thm. 3.47],

∥u∥Ld/(d−1)(Rd) ⩽ C

∫
Rd

|Du| (3.25)

which makes R(BV) coercive on V for the weak topology σ(V,Υ), hence provides existence
of minimizers in variational problems.

We consider as before Π = P = H for some separable Hilbert space H, and a linear
map Φ: Ld/(d−1)(Rd) → H which is continuous for the weak topologies. Typically, Φ
may be a convolution operator, i.e.

(Φu)(x) =

∫
Rd

u(t)φ̃(x− t)dt (3.26)

for some function φ̃ ∈ Lq(X) with q = (2d)/(d + 2). One may check1 that Φ maps
Ld/(d−1)(Rd) into H = L2(X) with the desired continuity.

Let us mention that this is only one example of functional framework. Several other
variants are possible e.g. considering bounded domains together with different boundary
conditions (see for instance [CL97, IMS17, IM20a]). In this manuscript, we mainly focus
on the case where d = 2, and the domain is X = R2. In Section 4.4, we even narrow
down the discussion to the case where Φ: L2(R2)→ L2(R2) is the identity operator.

We consider an inverse problem of the form

min
u∈Ld/(d−1)(Rd)

∫
Rd

|Du|+ 1

2λ
∥Φu− y∥2H , (P(BV)(λ, y))

and its limit problem

min
u∈Ld/(d−1)(Rd)

∫
Rd

|Du| s.t. Φu = y. (P(BV)(0, y))

Typically, y = Φf + w, where f ∈ Ld/(d−1)(Rd) is some function to recover and w ∈ H
is some noise.

To write R(BV) as a support function of some closed convex set, we need to take the
closure of the set of divergences in (3.24). It is thus the support function of

∂R(BV)(0) =
{
div z | z ∈ L∞(Rd;Rd), ∥z∥∞ ⩽ 1 and div z ∈ Ld(Rd)

}
(3.27)

where the divergence should be understood in the sense of distributions.
The optimality R(BV)(u) =

∫
u div z which characterizes div z ∈ ∂R(BV)(u) can be

interpreted informally as z being be orthogonal to the level lines of u (and pointing
outward from the lower level sets), and its saturation points contains the support of Du.
However, giving a precise meaning to z on small sets such as Hd−1-rectifiable sets is not
trivial, and we refer to [BH16, CGN15] for rigorous statements.

Still, it is useful to characterize the subdifferential using the level sets of the function
u. For t ⩾ 0, we define U (t) def.

= {u ⩾ t}, and for t < 0, we define U (t) def.
= {u ⩽ t}.

1Using the inequality ∥f ∗ g∥r ⩽ ∥f∥p ∥g∥q provided 1 ⩽ p, q ⩽ +∞ and 1/r = 1/p+1/q− 1 ⩾ 0 (see
for instance [Sch66, Sec. VI.2]).
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Proposition 3.1 ([KOX06],[6]). Let u ∈ Ld/(d−1)(Rd), R(BV)(u) < +∞, and η ∈
Ld(Rd). The following conditions are equivalent.

(i) η ∈ ∂R(BV)(u).

(ii) η ∈ ∂R(BV)(0) and the level sets of u satisfy

∀t > 0, P (U (t)) =

∫
U(t)

η, ∀t < 0, P (U (t)) = −
∫
U(t)

η. (3.28)

(iii) The level sets of u satisfy

∀t > 0, ∀G ⊂ Rd, |G| < +∞, P (G)−
∫
G
η ⩾ P (U (t))−

∫
U(t)

η, (3.29)

∀t < 0, ∀G ⊂ R2, |G| < +∞, P (G) +

∫
G
η ⩾ P (U (t)) +

∫
U(t)

η. (3.30)

where U (t) def.
=
{
x ∈ Rd | u(x) ⩾ t

}
for t > 0, and U (t) def.

=
{
x ∈ Rd | u(x) ⩽ t

}
for t < 0.

3.3 Strong duality and existence of dual solutions

Of course, considering (P(τ)) to solve an inverse problem only makes sense if one can
prove the existence of a solution. As mentioned in Section 3.2, our typical regularizers
usually have the coercivity properties which provide the existence of a solution, at least
for λ > 0. We discuss here the existence of a solution for the dual problems.

3.3.1 The case λ > 0

For λ > 0, the existence of a dual solution and strong duality hold under mild
assumptions.

Proposition 3.2. If Assumptions 3.1 hold, y ∈ H and λ > 0, then strong duality holds
between (P(λ, y)) and (D(λ, y)), i.e.

sup (D(λ, y)) = inf (P(λ, y)). (3.31)

Moreover, the above quantity is finite iff (ImΦ∗) ∩ (domR∗) ̸= ∅, in which case there is
a unique solution to D(λ, y), and it depends continuously on (λ, y) ∈ ]0,+∞[×H.
Proof. Note that inf P(λ, y) < +∞, and that supD(λ, y) > −∞ iff (ImΦ∗)∩(domR∗) ̸=
∅.

If inf P(λ, y) = −∞ there is nothing to prove since the weak duality ensures supD(λ, y) ⩽
inf P(λ, y) (see Appendix B.4.1). Otherwise, −∞ < inf P(λ, y) < +∞ and it suffices to
apply the first point of Corollary B.1 with f = 1

2 ∥· − y∥
2
H and τΠ the norm topology of

H. As it ensures the stability of P(λ, y), we obtain the strong duality and the existence
of a solution to D(λ, y) by Lemma B.1.

Now, if (ImΦ∗) ∩ (domR∗) ̸= ∅, the convex l.s.c. function g : p 7→ R∗(Φ∗p) is
proper. Solving (D(λ, y)) is equivalent to computing proxg/λ

( y
λ

)
, the proximity operator

of g/λ at y/λ, which is then well-defined and unique. The continuity follows from the
nonexpansiveness of proximity operators, the triangle inequality∥∥∥∥proxg/λ′ (y′λ′

)
− proxg/λ

(y
λ

)∥∥∥∥
H
⩽

∥∥∥∥proxg/λ′ (y′λ′
)
− proxg/λ′

(y
λ

)∥∥∥∥
H

+
∥∥∥proxg/λ′ (yλ)− proxg/λ

(y
λ

)∥∥∥
H

⩽

∥∥∥∥y′λ′ − y

λ

∥∥∥∥
H
+
∥∥∥proxg/λ′ (yλ)− proxg/λ

(y
λ

)∥∥∥
H
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and the fact that the last term vanishes as λ′ → λ (see for instance [Bré73, Prop.
II.8]).

3.3.2 The case λ = 0

On the other hand, even under mild assumptions, a solution to (D(0, y)) may fail to
exist.

Example 3.1 (No solution to (D(0, y))). Consider the Gaussian deconvolution problem
(P(TV)(0, y)) on the real line, i.e. set X = R, H = L2(X), and

(Φm)(x) =

∫
R
g(y − x)dm(y) with g(x)

def.
= e−

1
2
|x|2 . (3.32)

Since Gaussian filtering is injective onM(X), the measure m0 defined by

dm0
def.
=
(
1[0,1] − 1[−1,0]

)
dL, (3.33)

where L is the Lebesgue measure, is obviously the unique solution to (P(0, y0)) for
y0 = Φm0. However, there is no function p ∈ L2(X) which maximizes ⟨y0, p⟩ under the
constraint ∥Φ∗p∥∞ ⩽ 1, hence no solution to (D(PH)(0, y)).

➢ Indeed, using Fubini’s theorem, one may check that Φ∗p = p ∗ g where ∗ is the
convolution product, so that

⟨y0, p⟩H,H =

∫
X

(∫
X

p(x− x′)g(x′)dm0(x)

)
dx′ = ⟨m0, p ∗ g⟩M(X),C0(X) . (3.34)

It is possible to prove that ImΦ∗ is dense in C0(X), so that the supremum of (3.34)
for ∥Φ∗p∥∞ ⩽ 1 is |m0| (X). However, that supremum is not reached, since it would
imply that (Φ∗p)(x) = 1 for x ∈ ]0, 1[ and −1 for in x ∈ ]−1, 0[, which is imposssible
by continuity.

Still, the strong duality holds under the following condition.

Proposition 3.3. Suppose that Assumptions 3.1 hold and that y ∈ Φ(domR). If there
exists a point p ∈ H such that R∗ is finite and continuous at Φ∗p ∈ Υ for some topology
τΥ compatible with the pairing, then strong duality holds between (P(0, y)) and (D(0, y)),
and there is a solution to (P(0, y)).

Proof. We note that

−∞ < sup (D(0, y)) ⩽ inf (P(0, y)) < +∞

where the first inequality follows from ⟨y, p⟩ − R∗(Φ∗p) > −∞, the second one is the
weak duality and the last one follows from y ∈ Φ(domR). As a result, sup (D(0, y)) is
finite and the second point of Corollary B.1 ensures that strong duality holds and that
there is a solution to (P(0, y)).

Example 3.2 (Strong duality for inverse problems in the space of measures). In the setting
of Section 3.2.1, for R = R(TV) or R(TV+), since R∗ = χ∂R(0) we note that R∗(η) =
0 for all η in the open set { η̃ ∈ C0(X) | ∥η̃∥∞ < 1 } (for the topology of the uniform
convergence). As a result, R∗ is continuous at Φ∗0 ∈ C0(X), and by Proposition 3.3
strong duality holds provided y ∈ Φ(domR). However, as shown by Example 3.1, a
solution to the dual problem might not exist. The criterion for strong duality applies
similarly to ℓ1-regularization on a grid (Section 3.2.2), and since the dual problem is
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essentially a linear program in finite dimension, a solution exists provided its value is
finite, see also Corollary 3.1 below.

For the positivity constraint (R = R(GM)), it usually assumed that X is compact
and that there exists p ∈ H such that Φ∗p > 0 on X (see [KN77, Sec. I.3.2]). With that
assumption, R∗(η) = 0 for all η in an open neighborhood of Φ∗p (in the topology of the
uniform convergence), hence by Proposition 3.3 strong duality holds for y ∈ Φ(domR).

Example 3.3 (Strong duality for total gradient variation regularization). The same argu-
ment as above can be applied to the total gradient variation (Section 3.2.3), by observing
that ∂R(BV)(0) contains an open neighborhood of 0 = Φ∗0 in the strong Ld(Rd) topology.
That point is not obvious when looking at (3.27), but the Poincaré-type inequality (3.25)
can be interpreted as an inequality between support functions,

∀u ∈ Ld/(d−1)(Rd), σ∂R(0)(u) ⩾ σ
Bd(0,C)

(u),

where σ∂R(0) and σBd(0,C)
denote the support functions of ∂R(0) and the closed Ld(Rd)

ball with center 0 and radius C respectively. An inequality between support functions
of closed convex sets implies the inclusion of those sets, hence2 Bd(0, C) ⊆ ∂R(BV)(0) so
that R(BV)∗ vanishes in a neighborhood of 0 and strong duality holds by Proposition 3.3.

As we can see, the existence of a solution for (D(0, y)) is not granted. Nor is its
uniqueness. However, both hold generically in the following sense.

Proposition 3.4. Suppose that Assumptions 3.1 hold with dimH < +∞, and let
ω

def.
= int(Φ(domR)).

If there exists y0 ∈ ω such that inf(P(0, y0)) > −∞, then

• for every y ∈ ω, strong duality holds between (P(0, y)) and (D(0, y)), and (D(0, y))
has solutions.

• for (Lebesgue) almost every y ∈ ω, the solution to (D(0, y)) is unique.

Proof. We use the notations of Appendix B.4.3, considering the value function
φ0 : y 7→ inf P(0, y). For every y ∈ ω, there exists u ∈ domR such that y = Φu, so
that φ0(y) ⩽ R(u) < +∞. Moreover φ0(y0) > −∞, hence, by convexity, the function φ0

cannot take the value −∞ on ω. Thus, Proposition B.4 applies and yields the claimed
result.

Remark 3.4. Up to a minor adaptation, Proposition 3.4 also holds when considering
the relative interior instead of the interior, i.e. setting ω

def.
= rint(Φ(domR)). That allows

to remove the implicit assumption that the topological interior is nonempty. The minor
adaptation is that the uniqueness of the solution then holds modulo some vector space.

➢ Indeed, replacing the perturbation space H with Ĥ def.
= Vect(Φ(domR)− y0), we see

that ω − y0 is open in Ĥ, thus we may apply Proposition 3.4 to obtain the strong
duality and the existence of a solution to the “restricted” dual problem

sup
p̂∈Ĥ

(⟨p̂, y⟩ −R∗(Φ∗p̂)) . (3.35)

Moreover, the solution is unique for almost every3 y ∈ ω.
2An alternative formulation, for d = 2, is that the G-norm is controlled by the L2(R2) norm

(see [HM07]).
3For the Lebesgue measure on the affine hull of ω.



3.4. IDENTIFIABILITY, SOURCE CONDITION AND LOW NOISE REGIMES 69

Since replacing p̂ with p = p̂ + q, where q ∈ Ĥ⊥, does not change the objective, we
note that the values of (3.35) and (D(0, y)) are equal. Hence the stability property
also holds for the original dual (D(0, y)), and for almost every y ∈ rint(Φ(domR)),
the solution set is p̂+ Ĥ⊥, where p̂ is the unique solution to (3.35).

As a consequence of Remark 3.4, if R is lower-bounded and H is finite-dimensional,
the existence of a solution to (D(0, y)) is essentially guaranteed. More precisely:

Corollary 3.1. Suppose that Assumptions 3.1 hold with dimH < +∞, and R : V →
[0,+∞]. Then, for all y ∈ rint(Φ(domR)) strong duality holds between (P(0, y)) and
(D(0, y)), and (D(0, y)) has solutions.

As we have seen with Example 3.1, if dimH = +∞, the existence of a solution
to (D(0, y)) does not always hold, even if R is lower-bounded. However, the following
analog of Proposition 3.4 holds.

Proposition 3.5. Let R : V → R ∪ {+∞} be convex, proper, lower semi-continuous

and let ω
def.
= int(Φ(domR)) (where the interior is in the strong topology of H).

If there exists y0 ∈ ω such that inf(P(0, y0)) > −∞, then

• for every y ∈ ω, strong duality holds between (P(0, y)) and (D(0, y)), and (D(0, y))
has solutions.

• the set of points y ∈ ω for which the solution to (D(0, y)) is unique is a dense Gδ
subset of H (in the strong topology).

Proof. The proof follows the same lines as Proposition 3.4, but we apply Proposition B.5
instead of Proposition B.4.

Remark 3.5. The generic uniqueness results of Proposition 3.4 and Proposition 3.5
seem to be new in the context of sparse inverse problems. We have drawn inspiration
from [BCC07] which establishes the uniqueness of the solution to the Cheeger problem
for generic weights on the area and the perimeter. However, it should be noted that,
in sparse recovery, one is usually interested in analyzing data which lie in a very small
specific set, in which uniqueness in the dual problem is rather the exception than the
rule.

3.4 Identifiability, source condition and low noise regimes

For the rest of the chapter, we assume that Assumptions 3.1 and strong duality hold.

3.4.1 The source condition to ensure identifiability

First, we consider the noiseless setting. Given u0 ∈ V , we ask whether we can
recover it from the observation y0 = Φu0. In other words, is u0 the solution to (P(0, y))
for y = y0 = Φu0?

Definition 3.1 (Source condition [BO04]). We say that u0 ∈ V satisfies the source
condition if there exists p ∈ Υ such that Φ∗p ∈ ∂R(u0).

The source condition is simply the extremality relation (B.13), hence it implies that
u0 is a solution to (P(0, y)). Since any other solution v to (P(0, y)) must satisfy the
extremality relation (B.13) with the same p, we have:
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Proposition 3.6. If the source condition holds, u0 is a solution to (P(0, y)). If, more-
over, Φ is injective on Aff (∂R∗(Φ∗p)), that solution is the unique one.

Proof. The fact that u0 is a solution has already been discussed. For the second point,
we note that any other solution v ∈ V must satisfy Φ∗p ∈ ∂R(v), which is equivalent to
v ∈ ∂R∗(Φ∗p). The injectivity of Φ on Aff (∂R∗(Φ∗p)) then implies v = u0.

Remark 3.6. The injectivity of Φ on Aff (∂R∗(Φ∗p)) is equivalent to injectivity on its
direction space Span (∂R∗(Φ∗p)− u0).

Proposition 3.6 is a folklore result and the cornerstone of identifiability results in the
context of ℓ1 reconstruction (see [FR13, Th. 4.26]). For Radon measures, an emblematic
result, proved by E. Candès and C. Fernandez-Granda in [CFG14] and refined in [FG16],
ensures the identifiability of a combination of “well-separated” spikes in the case of the
ideal low-pass filter (see also [dCG12] for an earlier result on M-systems). In the theorem
below, dT denotes the canonical distance on the torus.

Theorem 3.1 ([CFG14, FG16]). Let X = T, (x, a) ∈ Xs × Rs, m0
def.
=
∑s

i=1 aiδxi ∈
M(X) and let y0

def.
= Φm0 where Φ is defined by (3.12). If mini ̸=j dT(xi, xj) ⩾ 1.26/fc

and4 fc ⩾ 103, then m0 is the unique solution to the problem

min
m∈M(X)

|m| (X) s.t. Φm = y0. (3.36)

The main ingredient in the proof of Theorem 3.1 is the construction of a “dual
certificate” for m0, i.e. an element η ∈ (ImΦ∗) ∩ ∂R(TV)(m0) as in Proposition 3.6.
More precisely, they build a trigonometric polynomial η such that ∥η∥∞ ⩽ 1, η(x) = 1
iff x ∈ supp(m0,+), and η(x) = −1 iff x ∈ supp(m0,−), see (3.21). The uniqueness
follows from the injectivity of the restriction of Φ to the space of measures with the
same support as m0: it corresponds to a Vandermonde system.

Relying on the above theorem (or its proof), several authors have extended it to
random settings, different geometries or acquisition operators (see [TBSR13, BDF16,
PKP20]). In [10] we have proposed an identifiability in the case of radial Fourier mea-
surements,

Φm = [(Fm)(kθ)]k∈Γ,θ∈Θ. (3.37)

where Fm is the Fourier transform on Rd, i.e. (Fm)(ξ) =
∫
Rd e

−2iπ⟨ξ, x⟩dm(x), Θ is a
set of directions, and Γ ⊆ Z is a set of radial frequencies.

Theorem 3.2 ([10, Thm. 1]). Let X = B(0, 1/2) ⊆ Rd, (x, a) ∈ Xs × Cs, and let
m0 =

∑s
j=1 ajδxj . Let S ⊂ Sd−1 be a set of non-zero Hd−1-measure such that

νmin
def.
= inf

θ∈S

(
min
i ̸=j

dT(⟨θ, xi⟩ , ⟨θ, xj⟩)
)
> 0.

Let Θ be a set of d+ 1 distinct elements drawn uniformly at random from S and let
fc = ⌈2/νmin⌉. Then, the following holds:

1. If Γ = {−fc, . . . , fc}, then m0 is the unique solution to

min
m∈M(X)

|m| (X) s.t. Φm = y0. (3.38)

4More precisely, in [CFG14], the condition fc ⩾ 103 is not required, but the separation constant is
larger: 1.87 instead of 1.26.
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2. If Γ consists of k indices drawn uniformly at random from {−N, . . . , N}, where

k ≳ max{log2(fc/δ), s log(s/δ) log(fc/δ)},

and {sign(aj)}fcj=1 are drawn i.i.d. from the uniform distribution on the complex
unit circle, then then with probability exceeding 1 − (d + 1)δ, m0 is the unique
solution to (3.38).

The main “trick” in the proof of Theorem 3.2 is to use Theorem 3.1 to build a one-
dimensional dual certificate in each direction θ ∈ Θ. Then by taking a convex combina-
tion of them, one obtains a dual certificate whose saturation set (i.e. {x | η(x) = ±1 })
is the intersection of all the saturation sets, i.e. supp(m0).

Remark 3.7. Constructing a dual certificate is not the only way to ensure identifiability.
For instance, in [BV19], a perfect reconstruction result is obtained by analyzing the kernel
of Φ.

Conversely, in cases where (P(0, y0)) is stable (which does not always hold in infinite
dimension), the source condition must hold for all solution of (P(0, y0)). Hence it can
be used to ensure that a signal u0 cannot be recovered using (P(0, y0)). For instance,
with total variation regularization (3.19), this implies that, at least for signed measures,
a separation condition as in Theorem 3.1 must hold (see Section 6.1).

3.4.2 Convergence for λ→ 0+ and minimal norm certificate

We have seen that the solutions to (D(λ, y)) vary continuously as (λ, y) varies in
]0,+∞[ × H. The case λ → 0+ is more subtle as there can be many solutions to
(D(0, y0)) or none. Moreover, for the convergence of the primal problem, the parameter
λ should decay sufficiently fast.

To that end, we fix C > 0 and an observation y0. We consider a domain of parameters
called low noise regime,

ΩC
def.
= { (λ, y) ∈ R×H | ∥y − y0∥H ⩽ Cλ } . (3.39)

and we deal with the non-uniqueness using the notion of Γ-convergence (see Appendix C
for a reminder of the definition and its main properties). The following proposition is a
reformulation of [HKPS07, Thm. 3.5].

Proposition 3.7 (Low noise convergence). As (λ, y) → (0, y0) in ΩC the problems
(P(λ, y)) Γ-converge towards (P(0, y0)), for any compatible topology on V .

Proof. We write τ = (λ, y), τ0 = (0, y0), and

Eτ (u) def.
= R(u) +

1

2λ
∥Φu− y∥2H , (3.40)

Eτ0(u)
def.
=

{
R(u) if Φu = y0,

+∞ otherwise.
(3.41)

Let ũ ∈ V . We prove that the Γ-limit inferior and Γ-limit superior at ũ is equal to
Eτ0(ũ).

First, we note that by lower semi-continuity of R and u 7→ ∥Φu− y0∥H , for all
r < R(ũ) and t < ∥Φũ− y0∥H, there is a neighborhood U ⊆ V of ũ such that for all
u ∈ U ,

R(u) ⩾ r, and ∥Φu− y0∥H ⩾ t. (3.42)
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As a result of the first inequality, we obtain

lim inf
τ→τ0
τ∈ΩC

(
inf
u∈U

(
R(u) +

1

2λ
∥Φu− y∥2H

))
⩾ r. (3.43)

and taking the supremum over r we deduce that Γ− lim inf τ→τ0
τ∈ΩC

Eτ (ũ) ⩾ R(ũ).

Now, if Φũ ̸= y0, we may assume in (3.42) that t > 0. Then, for all u ∈ U ,

∥Φu− y∥H ⩾ ∥Φu− y0∥H − ∥y − y0∥H
⩾ t− Cλ,

so that for λ > 0 small enough,

inf
u∈U
Eτ (u) ⩾ r +

1

2λ
(t− Cλ)2 .

Hence for τ → τ0, we get Γ− lim inf τ→τ0
τ∈ΩC

Eτ (ũ) ⩾ +∞ = Eτ0(ũ).
It remains to bound Γ − lim supτ→τ0

τ∈ΩC

Eτ (ũ) for Φũ = y0. Any neighborhood U of ũ

contains ũ, so that

inf
u∈U
Eτ (u) ⩽ Eτ (ũ) = R(ũ) +

1

2λ
∥y0 − y∥2H ⩽ R(ũ) +

C2λ

2
.

As a result,

lim sup
τ→τ0
τ∈ΩC

(
inf
u∈U
Eτ
)

⩽ lim sup
τ→τ0
τ∈ΩC

(
R(ũ) +

C2λ

2

)
= R(ũ).

Taking the supremum over U , we get Γ− lim supτ→τ0
τ∈ΩC

Eτ = R(ũ) = Eτ0 .

Remark 3.8. In fact, as noted in [HKPS07, Thm. 3.5], the conclusion holds under the
more general assumption 1

λ ∥y − y0∥
2
H → 0, but we shall need the low noise regime ΩC

for the support stability anyway.

As a consequence of Proposition 3.7, provided some equicoercivity property holds,
the solutions to (P(λ, y)) (resp. (D(λ, y))) converge, up to a subsequence, towards some
solutions of (P(0, y0)) (resp. (D(0, y0))).

As for the dual problem, in the low noise regime, a particular dual certificate governs
the structure of the solutions, which is the cornerstone of the low-noise study of [13, 15,
14].

Proposition 3.8 ([13]). Let pλ be the unique solution to (D(λ, y0)). The following
alternative holds.

• If there is no solution to (D(0, y0)), then limλ→0+ ∥pλ∥H = +∞.

• If there is a solution to (D(0, y0)), then limλ→0+ pλ = p0 (strongly in H), where p0
is the solution to (D(0, y0)) with minimal norm.

The solution p0 is of crucial importance when studying the structure of the solu-
tions of (P(λ, y)) when the regularization parameter λ is small. With a slight abuse of

terminology, we call η0
def.
= Φ∗p0 the minimal norm (dual) certificate5.

� In general, if y ̸= y0, the condition y ∈ ΩC is not sufficient to ensure pλ → p0.
5When V = H, and Φ is the identity operator, the minimal norm certificate is known as the minimal

section of ∂R(u0) in the theory of maximal monotone operators [Bré73], and that convergence is well
known.
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3.5 Conclusion

Together with Appendix B, this chapter explains how standard duality is useful for
the identification of faces in the epigraph. As we aim at dealing with spaces of measures
and weak-* topologies, we have used the setting of paired spaces. We have discussed the
cases of strong duality for our inverse problems, and the effect of varying the parameter
τ = (λ, y), in particular the convergence λ → 0+. Using the source condition from
[BO04], it is possible to derive identifiability results.

Let us mention that the theory of inverse problems is rich, and that several results
such as the convergence in the Bregman divergence [BO04, HKPS07] are beyond the
scope of this thesis.
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In this chapter, we continue the study of inverse problems initiated in Chapter 3,
with a focus on the noiseless problems. We consider

inf
u∈V

R(u) s.t. Φu = y0. (P(0, y0))

and its dual problem

sup
p∈H

(⟨p, y0⟩ −R∗(Φ∗p)) (D(0, y0))

Besides Assumptions 3.1, we assume that strong duality holds and that both problems
have solutions (see for instance Proposition 3.3 and Proposition 3.5).

In Section 3.4.2, we have highlighted a special solution to (D(0, y0)), the one with
minimal-norm, denoted by p0. The solution p0 governs the behavior of the regularized

75
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problems P(λ, y) in the presence of some small noise and small regularization, but its
computation of p0 is in general difficult. In particular, it does not vary continuously
with the observation y0.

The first three sections of the present chapter deal with strategies to bypass that
difficulty by replacing the computation of p0 with linear projection problems. In the
fourth section, we discuss the case of total gradient variation denoising, where we do not
know how to extend such an approach. We describe the cases of indicators of calibrable
sets and convex sets.

4.1 General principle

Let u ∈ V be a solution to (P(0, y0)), and assume that (D(0, y0)) has a solution. In
view of (3.4), we see that

p0 = argmin { ∥p∥H | p ∈ argmax (D(0, y0)) } = proj(Φ∗)−1(∂R(u))(0), (4.1)

so that finding the minimal-norm certificate amounts to projecting 0 on the closed convex
set (Φ∗)−1(∂R(u) in the Hilbert space H. That problem is in general nonlinear, and
difficult to solve analytically.

4.1.1 Projecting onto the span of the minimal face

A key idea is to replace the above projection with a linear projection problem.

Proposition 4.1. Let C ⊆ H be a nonempty closed convex set, and p0 = projC(0). Let

F0
def.
= FC (p0) be the minimal face of p0 in C. Then,

projC(0) = projAff F0
(0).

Proof. The affine hull of F0 is equal to Aff F0 = { tq + (1− t)p0 | t ∈ R, q ∈ F0 }. By
construction of the minimal face (see Section 1.2.1), p0 is internal to F0, so that for |t|
small enough, (tq + (1− t)p0) ∈ F0.

Since F0 ⊆ C and p0 is the minimal-norm element of C, the function t 7→ ∥tq + (1− t)p0∥2H
reaches a local minimum at t = 0, hence a global minimum by convexity. As a result,
p0 is the minimum norm element of Aff F0.

In other words, it is possible to replace (Φ∗)−1(∂R(u)) with Aff F0, the affine hull
of the minimal face of p0 in (Φ∗)−1(∂R(u)), making the projection problem easier. Of
course, the main difficulty is now to “guess” beforehand the minimal face F0 which
contains p0. That is possible in several cases.

4.1.2 The polyhedral case

Assume for instance that (Φ∗)−1(∂R(u)) is polyhedral (that is the case, e.g., if ∂R(u)
is polyhedral), defined by a finite number of inequalities,

∀i ∈ I, ⟨p, ψi⟩ ⩽ di, (4.2)

where {ψi}i∈I ⊆ H, {di}i∈I ⊆ R.
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Lemma 4.1. Let p0 ∈ (Φ∗)−1(∂R(u)) and I0
def.
= { i ∈ I | ⟨p0, ψi⟩ = di }. Then the

minimal face of p0 in (Φ∗)−1(∂R(u)) is

F0 =

{
p ∈ H | ∀i ∈ I0, ⟨p, ψi⟩ = di,

∀k ∈ I \ I0, ⟨p, ψk⟩ < dk

}
. (4.3)

Moreover, its affine hull is given by

Aff F0 =
⋂
i∈I0

{ p ∈ H | ⟨p, ψi⟩ = di } . (4.4)

The proof of Lemma 4.1 is a straightforward simplification of the proof of Lemma 4.2
below, therefore we omit it.

It is thus possible to compute p0 by projecting 0 onto Aff F0 (that is, applying to
(di)i∈I the Moore-Penrose pseudo-inverse of the map p 7→ (⟨p, ψi⟩)i∈I0 from H to R|I0|).

As finding the minimal face F0 amounts to finding the set I0 of active inequalities
in (4.2), we are led to guess that index set: either by considering the smallest possible set
of active constraints in (Φ∗)−1(∂R(u)) (e.g. by assuming that η0 = Φ∗p0 is a tight dual
certificate), or by adding some extra saturations (corresponding, e.g., to the activation
of neighboring gridpoints), see Section 4.2.

4.1.3 The semi-infinite programming case

Another case of interest is when (Φ∗)−1(∂R(u) is described by a few continuous
families of inequalities

∀z ∈ Z, ⟨p, ψ1(z)⟩ ⩽ d1(z), . . . , ⟨p, ψn(z)⟩ ⩽ dn(z), (4.5)

where, for instance, Z ⊆ Rk is a compact set with nonempty interior, and ψ1, . . . , ψn : Z →
H are weakly continuous and weakly C 2 on int(Z)1, d1, . . . , dn ∈

(
C (Z) ∩ C 2(int(Z))

)
.

For the sake of simplicity, we assume from now on that n = 1 (the extension to n ⩾ 2 is
not particularly difficult).

For each p ∈ H, we introduce the function γp : Z → R,

∀z ∈ Z, γp(z)
def.
= (⟨p, ψ(z)⟩ − d(z)) , (4.6)

so that γp ∈
(
C (Z) ∩ C 2(int(Z))

)
and

(Φ∗)−1(∂R(u) = { p ∈ H | ∀z ∈ Z, γp(z) ⩽ 0 } . (4.7)

Contrary to the polyhedral example, we need a non-degeneracy assumption to describe
the minimal face of p0. We denote by γ′p(z) the derivative of γp at z ∈ int(Z). We denote
by γ′′p (z) the Hessian of γp at z ∈ int(Z), and we write γ′′p (z) ≺ 0 to express that it is
negative definite.

Lemma 4.2. Let p0 ∈ (Φ∗)−1(∂R(u)) and I0 def.
= { z ∈ Z | γp0(z) = 0 }.

If I0 ⊆ int(Z) and, for all z ∈ I0, γ′′p0(z) ≺ 0, then the minimal face of p0 in
(Φ∗)−1(∂R(u)) is

F0 =

{
p ∈ H |

∀z ∈ I0, γp(z) = 0 and γ′′p (z) ≺ 0,

∀z ∈ Z \ I0, γp(z) < 0

}
. (4.8)

Moreover, its affine hull is given by

Aff F0 =
{
p ∈ H | ∀z ∈ I0, γp(z) = 0 and γ′p(z) = 0

}
. (4.9)

1That is, for each p ∈ H, z 7→ ⟨p, ψi(z)⟩ is C 2 on the interior of Z.
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Before proving Lemma 4.2, we make the following observation.

Remark 4.1. If F ⊆ H is an internal set and L : H → R is an affine function on H,
then either L is constant on F , or L(z) < (supF L) for every z ∈ F .

Proof. We denote by F the set in the right-hand side of (4.8). One readily checks that
F is convex and p0 ∈ F ⊆ (Φ∗)−1(∂R(u)).

Moreover, F is internal.

➢ Note that the compactness of Z and the assumption that γ′′p0
(z) ≺ 0 for all z ∈ I0

imply that I0 is finite.

Now, if p, q ∈ F , then for all t ∈ R, γtq+(1−t)p = γp + t(γp − γq) (and similarly
for their respective Hessians). Since γ′′p (z) ≺ 0 for all z ∈ I0, by continuity of
(t, z) 7→ γ′′tq+(1−t)p(z), there is some α > 0 and some neighborhood N of I0 in Z

such that for all (t, z) ∈ ]−α, α[×N , γ′′tq+(1−t)p(z) ≺ 0. In particular γtq+(1−t)p < 0

in N \ I0.
Moreover, by a compactness argument on Z \ N , for |t| small enough, we also have

max
z∈Z\N

γtq+(1−t)p(z) < 0.

To sum up, there is some α̃ > 0 such that for all t ∈ ]−α̃, α̃[, γtq+(1−t)p = 0 on I0
and γtq+(1−t)p < 0 on Z \ I0. In other words, (tq+ (1− t)p) ∈ F , and F is internal.

Additionally, F is the largest internal set which contains p0.

➢ Let F̃ ⊆ (Φ∗)−1(∂R(u)) be an internal set containing p0. Note that for each z ∈ Z,
the map p 7→ γp(z) is affine. By Remark 4.1, either it is identically equal to 0 on F̃

or it is (strictly) negative on F̃ . As a consequence, comparing with the value at p0,

∀p ∈ F̃ ,
{
γp(z) = 0 for all z ∈ I0,
γp(z) < 0 for all z ∈ Z \ I0.

Now, let z ∈ I0 and h ∈ Rk \ {0}. By observing that γ′′p0
(z)[h, h] < 0 and by

applying Remark 4.1 to p 7→ γ′′p (z)[h, h], we deduce similarly that for all p ∈ F̃ ,
γ′′p (z)[h, h] < 0. Hence γ′′p ≺ 0.

As a result, F̃ ⊆ F .

Therefore, F = F0.

Now, we denote by G the affine space in the right-hand side of (4.9). It is clear that
F0 ⊆ G, hence Aff F0 ⊆ G. Moreover, using the same compactness argument as above,
it is possible to prove that for all p ∈ G, there exists α > 0 such that for all t ∈ ]−α, α[,{

γtp+(1−t)p0(z) = 0 for all z ∈ I0
γtp+(1−t)p0(z) < 0 for all z ∈ Z \ I0.

(4.10)

In other words, F0 contains the open line segment { tp+ (1− t)p0 | −α < t < α }, hence
Aff F0 contains the whole line it spans. As a result p ∈ Aff F0 and G ⊆ Aff F0.

As in the polyhedral case, Lemma 4.2 provides a good candidate to find the minimal-
norm dual certificate by means of a pseudo-inverse, see Section 4.3.
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4.2 The case of ℓ1-synthesis recovery

Here, we consider the sparse recovery setting of Section 3.2.2, where one aims to
retrieve spikes on a fixed grid G, and we apply the general principle of Section 4.1.

The problem P(ℓ1(G))(0, y0) can be reformulated as a standard basis pursuit problem:

min
a∈RG

∥a∥1 s.c. ΦGa = y0. (4.11)

where ΦG = (φ(x))x∈G gathers the impulse responses on the grid, and the vector a ∈ RG

encodes the amplitudes of some measure m =
∑

x∈G axδx.

Fixing a ∈ RG and letting I def.
= {x ∈ G | ax ̸= 0 }, the convex set

(Φ∗)−1(∂Rℓ
1(G)(m)) =

{
p ∈ H | ∀x ∈ I, ⟨p, φ(x)⟩ = sign(ax)

∀x ∈ G \ I, |⟨p, φ(x)⟩| ⩽ 1

}
(4.12)

is polyhedral.

4.2.1 The tight case and the Fuchs precertificate

We make the ansatz that:

• a is indeed a solution to (4.11) (i.e. m is a solution to P(ℓ1(G))(0, y0)). As a result,
there is a minimal-norm certificate Φ∗p0 associated to m, and the sign vector
sI

def.
= (sign(ax))x∈I is in ImΦ∗

I , with ΦI = (φ(x))x∈I .

• the only active inequalities in (4.12) for p0 are in I (i.e. Φ∗p0 is a tight dual
certificate).

Under those assumptions, we identify the minimal face and its affine hull using Lemma 4.1.
Projecting 0 onto that affine space yields p0 = pF , the vector introduced by J.-J. Fuchs
in [Fuc04], with

pF
def.
= (Φ∗

I)
†sI . (4.13)

The symbol † denotes the Moore-Penrose pseudoinverse2.

Remark 4.2. The above ansatz implies that p0 has the minimal number of saturations
among all solutions of the dual problem. That corresponds to p0 being in the relative
algebraic interior of (Φ∗)−1(∂Rℓ

1(G)(m)).

Conversely, if we are given a and we do not know in advance that a is a solution,
Equation (4.13) provides a good candidate to build a dual “precertificate” as follows.

Proposition 4.2. Let a ∈ RG, y0
def.
= ΦGa, sI

def.
= (sign(ax))x∈I and let pF as in (4.13).

The following assertions are equivalent:

1. the vector a is a solution to (4.11) and p0 = pF .

2. sI ∈ ImΦ∗
I and (maxx∈G |⟨pF , φ(x)⟩|) ⩽ 1.

The proof of Proposition 4.2 is a straightforward verification. With Proposition 4.2,
one has a practical sufficient criterion to ensure that a is a solution to (4.11), and, as a
by-product, provides the minimal-norm certificate.

2The Moore-Penrose pseudo-inverse provides the minimum-norm solution to the least-square problem
minp∈H ∥Φ∗

Ip− sI∥22. Such a solution always exists since ImΦ∗
I is closed (remember that I is finite),

and it satisfies Φ∗
I(Φ

∗
I)

†sI = sI if and only if sI ∈ ImΦ∗
I . In the case where ΦI has full column rank,

that range condition holds, and (Φ∗
I)

† = ΦI(Φ
∗
IΦI)

−1.
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4.2.2 The non-tight case: finding the extended support

In some cases, there is not any tight dual certificate, or p0 lies on the relative boundary
of (Φ∗)−1(∂Rℓ

1(G)(m)): we have to guess the additional active inequalities. In other
words, we have to find the extended support of m,

extm
def.
= {x ∈ G | |⟨p0, φ(x)⟩| = 1 } , (4.14)

and the corresponding sign, s
def.
= (⟨p0, φ(x)⟩)x∈extm.

In [15], we have considered the sparse spike recovery on a one-dimensional interval
(say, on the torus X = T, to avoid boundary discussions) using a thin regular grid
G = { kh | 0 ⩽ k ⩽ G− 1 }, where h > 0 is a stepsize. We have proved that if the
unknown signal m satisfies the Non-degenerate Source Condition (see Definition 4.2)
and some additional condition holds inducing a natural shift (see (5.59)), it is possible
to predict the extended support of m, provided that the grid G contains the support of
m and that the stepsize h is small enough.

More precisely, the extended support is given by the sources of m and one of their
immediate neighbors,

extm =
⋃
x∈I
{x, x+ εxh} (4.15)

for some ε ∈ {−1,+1}I which has a closed-form expression, see [15, Th. 2] for more
detail. Each saturation is doubled, with the same sign,

∀x ∈ I, ⟨p0, φ(x+ εxh)⟩ = ⟨p0, φ(x)⟩ ∈ {−1,+1}. (4.16)

As a result, it is possible to compute the minimal-norm certificate in the same way
as in (4.13) and Proposition 4.2, by simply replacing I with extm.

Note that the Continuous Basis Pursuit proposed by C. Ekanadham et al. in [ETS11]
is polyhedral too, and that we have carried a similar analysis of the extended support
on thin grids in [14].

4.3 Sparse-spike recovery in the space of measures

We consider the framework of Section 3.2.1 with the Basis Pursuit for measures,

min
m∈M(X)

|m| (X) s.c. Φm = y0, (P(TV)(0, y0))

and its dual problem

sup
p∈H
⟨p, y0⟩ s.t. ∥Φ∗p∥∞ ⩽ 1. (D(TV)(0, y0))

We assume that y0 = Φm for some measure m =
∑

x∈I axδx, where I ⊆ X is a finite
set3. The solution set to the dual problem is given by

(Φ∗)−1(∂R(TV)(m)) =

{
p ∈ H | ∀x ∈ I, ⟨p, φ(x)⟩ = sign(ax)

∀x ∈ X \ I, |⟨p, φ(x)⟩| ⩽ 1

}
(4.17)

In order to apply the results of Section 4.1.3 on semi-infinite programming, we in-
troduce new assumptions.

3Throughout this dissertation, we may writem =
∑

x∈I axδx for some finite set I, orm =
∑s

i=1 aiδxi ,
with I = {x1, . . . , xs}. Depending on the context, it may be more convenient to use the former or the
latter notation. With a slight abuse of notation, we may switch from one to the other without further
notice.
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Assumptions 4.1. We require that Assumptions 3.1 hold and that

• X ⊆ Rd has nonempty interior X̊, or X = Td.

• φ ∈ C 2(X̊;H). As a consequence, φ is weakly C 2 in X̊.

Then, our problems fits4 the framework of Section 4.1.3.

We denote by φ′′(x) the Hessian of φ at x ∈ X̊, i.e. a bilinear map from Rd ×Rd to
H. With a slight abuse of notation we denote by ⟨p, φ′′(x)⟩ the Hessian of x 7→ ⟨p, φ(x)⟩
(that is, the bilinear map (a, b) 7→ ⟨p, φ′′(x)[a, b]⟩ from Rd × Rd to R). Alternatively,
setting η : x 7→ ⟨p, φ(x)⟩, we denote its Hessian by η′′(x) ∈ Sd(R). We also define the
operator ΓI : R(d+1)|I| → H, by

ΓI
def.
=
(
ΦI Φ′

I
)
where (4.18)

∀a ∈ RI , ΦIa
def.
=
∑
x∈I

axφ(x) (4.19)

∀b ∈ (Rd)I , Φ′
Ib =

∑
x∈I

φ′(x)[bx]. (4.20)

Note that under Assumptions 4.1, any function η ∈ ImΦ∗, i.e. of the form x 7→ ⟨p, φ(x)⟩,
is in C0(X) ∩ C 2(X̊).

4.3.1 Non-degenerate certificates

To describe the minimal face of p0 in Section 4.1.3, we have assumed that the non-
degeneracy of the Hessian of the constraints. In the present setting, this yields the notion
of a non-degenerate certificate.

Definition 4.1 (Non-degenerate dual certificate). Assume that Assumptions 4.1 hold
and let m =

∑
x∈I axδx with I ⊆ X̊ finite and a ∈ (R \ {0})I .

We say that η ∈ ImΦ∗ is a non-degenerate dual certificate for m if

i) for all x ∈ X \ I, |η(x)| < 1,

ii) for all x ∈ I, η(x) = sign(ax),

iii) for all x ∈ I, (sign(ax)η′′(x)) ≺ 0.

Note that the first two assumptions of Definition 4.1 imply that η ∈ ∂R(TV)(m) and
that η is a tight subgradient of R(TV) at m.

Since we are particularly interested in the non-degeneracy of the minimal-norm cer-
tificate, we refer to that case as the Non-Degenerate Source Condition.

Definition 4.2 (Non-Degenerate Source Condition). Assume that Assumptions 4.1 hold
and let m =

∑
x∈I axδx with I ⊆ X̊ finite and a ∈ (R \ {0})I .

We say that the Non-Degenerate Source Condition (NDSC) holds for m if

• there is a solution to (D(TV)(0, y0)), where y0
def.
= Φm.

• η0
def.
= Φ∗p0 is non-degenerate form, where p0 is the minimal-norm solution to (D(TV)(0, y0)).

4To be precise, we have assumed that Z is compact whereas here X is only assumed to be locally
compact. The arguments Section 4.1.3 can be adapted to the locally compact case with φ weakly
decaying at infinity, but we skipped it for the simplicity of exposition.
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4.3.2 The vanishing-derivatives precertificate

Now, we can try to compute p0 using the general principle of Section 4.1. If we make
the ansatz that

• m is a solution to (P(TV)(0, y0)),

• m satisfies the Non-Degenerate Source condition (as a result, the vector(
sI
0

)
def.
=

(
(sign(ax))x∈I

0d|I|

)
∈ R(1+d)I

is in ImΓ∗
I),

then we obtain from Lemma 4.2 that p0 is equal to the projection of 0 onto the affine
space of all p ∈ H such that, for all x ∈ I,{

⟨p, φ(x)⟩ = sign(ax),
⟨p, φ′(x)⟩ = 0.

(4.21)

As a result, pV can be computed by a pseudo-inverse,

pV
def.
= (Γ∗

I)
†
(
sI
0

)
. (4.22)

Note that if ΓI has full column rank, then (Γ∗
I)

† = ΓI(Γ
∗
IΓI)

−1.

We call the corresponding quantity ηV
def.
= Φ∗pV the vanishing-derivatives precer-

tificate. The name stems from the property that for all x ∈ I, ηV (x) = sign(ax) and
η′V (x) = 0. Like the Fuchs precertificate in the polyhedral case, it yields a convenient way
to compute the minimal-norm certificate using Equation (4.22), in the non-degenerate
case.

More precisely, without assuming that the ansatz holds, it is possible to test it a
posteriori using the following proposition, whose proof is omitted.

Proposition 4.3. Let m =
∑

x∈I axδx with I ⊆ X̊ finite, a ∈ (R \ {0})I , y0 def.
= Φm,

sI
def.
= (sign(ax))x∈I and let pV as in (4.22). The following assertions are equivalent:

1. the measurem is a solution to (P(TV)(0, y0)), there exists a solution to (D(TV)(0, y0)),
and p0 = pV .

2.
(
sI 0

)⊤ ∈ ImΓ∗
I and (maxx∈X |⟨pV , φ(x)⟩|) ⩽ 1.

In particular,the Non-Degenerate Source Condition holds for m if and only if ηV is a
non-degenerate dual certificate for m.

Remark 4.3. As in Section 4.2.2, it is possible to consider extended supports, replacing
I in (4.22) and Proposition 4.3 with

extm
def.
= {x ∈ X | |⟨p0, φ(x)⟩| = 1 } , (4.23)

or with a “good candidate” for extm. However, to the best of our knowledge, in the
continuous setting there is no practical situation when one can easily guess the extended
support.
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4.3.3 Connection with interpolation problems

It is worth noting that the vanishing-derivatives precertificate can be constructed by
simply considering the autocorrelation function and its partial derivatives.

Lemma 4.3. Let I ⊆ X̊ ⊆ Rd be finite, sI ∈ RI such that
(
sI 0

)⊤ ∈ ImΓ∗
I . Then,

• A vector p ∈ H is equal to pV if and only if p ∈ ImΓI and Γ∗
Ip =

(
sI 0

)⊤
• A function η ∈ C0(X) is equal to ηV if and only if and there exists {αxi}xi∈I ⊆ R,
{βxi}xi∈I ⊆ Rd such that

∀x ∈ X, η(x) =
∑
xi∈I

(αxiK (x, xi) + ∂2K (x, xi) [βxi ]) , (4.24)

and for all xi ∈ I, η(xi) = sxi and η
′(xi) = 0.

In (4.24) above, ∂2K (x, xi) denotes the partial derivative with respect to the second
variable, so that ∂2K (x, xi) [βxi ] = ⟨φ(x), φ′(xi)[βxi ]⟩H.

Lemma 4.3 is well-known when ΓI has full rank(see [8, 11] and [PP17], but we provide
below a proof for the general case.

Proof. Since ηV = Φ∗pV and K (x, xi) = ⟨φ(x), φ(xi)⟩H, the second point directly fol-
lows from the first one.

By definition, pV = (Γ∗
I)

† (sI 0
)⊤

. Since
(
sI 0

)⊤ ∈ ImΓ∗
I , pV is the minimal-

norm element such that Γ∗
Ip =

(
sI 0

)⊤
. By minimality of the norm, we have pV ∈

(ker Γ∗
I)

⊥ = ImΓI (see [Bré11, Cor. 2.18]).

Conversely, if Γ∗
Ip =

(
sI 0

)⊤
, then p is a solution to

min
q∈H

∥∥∥∥Γ∗
Iq −

(
sI
0

)∥∥∥∥2
H
.

The fact that p ∈ ImΓI = (ker Γ∗
I)

⊥ implies that it is the solution with minimal-norm,
hence p = pV .

As a consequence of Lemma 4.3, the problem of finding the minimal-norm precertifi-
cate amounts to solving the interpolation problem (4.24), which can be done analytically
if the family {K (·, xi) , ∂2K (·, xi)}xi∈I has some special properties, like polynomials, as
we illustrate below.

For now, let us note that taking the vanishing-derivatives precertificate commutes
with diffeomorphisms, hence it is sufficient that the family has those special properties
“up to a diffeomorphism”.

Proposition 4.4. Let h : Rd → Rd be a C 1-diffeomorphism, mapping X to X̃
def.
= h(X).

Let I ⊆ X̊ be finite, {ax}x∈I ⊆ R \ {0} and m def.
=
∑

x∈I axδx. Define its image measure

as m̃ =
∑

x∈I axδh(x), and the image observation operator by φ̃ = φ ◦ h(−1).
If ηV (resp. η̃V ) denotes the vanishing-derivatives precertificate for m (resp. m̃),

then

η̃V = ηV ◦ h(−1). (4.25)

and η̃V is a valid dual certificate for m̃ if and only if ηV is a valid dual certificate for m.
If, moreover, h is C 2, η̃V is non-degenerate if and only if ηV is non-degenerate.
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Proof. We apply Lemma 4.3. To simplify the notation, we write x̃i
def.
= h(xi) where

I def.
= {xi}|I|i=1, and we denote by K (·, ·) (resp. K̃ (·, ·)) the autocorrelation of φ (resp.

φ̃). Note that the support of m̃, h(I) = {x̃1, . . . , x̃|I|}, is in the interior of X̃.

Now, we observe that for all x̃ ∈ X̃, writing x̃ = h(x),

K
(
h(−1)(x̃), xi

)
= K̃ (x̃, x̃i) ,

∂2K
(
h(−1)(x̃), xi

)
[βxi ] = ∂2K̃ (x̃, x̃i) [h

′(βxi)],

so that ηV ◦ h(−1) has the form (4.24) corresponding to the autocorrelation K̃ (·, ·).
Moreover, since (ηV ◦ h(−1))(x̃i) = ηV (xi) = sign(axi) and (ηV ◦ h(−1))′(x̃i) =

(ηV )
′(xi) ◦ (h′(x̃i))(−1) = 0, the function ηV ◦ h(−1) satisfies the interpolation condition.

As a result, ηV ◦ h(−1) = η̃V .

The fact that η̃V is valid (i.e. ∥η̃V ∥∞ ⩽ 1) if and only if ηV is valid is immediate.
As for the non-degeneracy, we note that for all v ∈ Rd,

η̃′′V (x̃i)[v, v] = η′′V (xi)[h
′(xi)v, h

′(xi)v] + η′V (xi)
[
h′′(xi)[v, v]

]
= η′′V (xi)[h

′(xi)v, h
′(xi)v],

so that η̃V is non-degenerate if and only if ηV is.

4.3.4 Examples

The case of a single Dirac mass

The block-structure of ΓI (see (4.18)) may be exploited to compute its pseudo-
inverse. Using [BB07, Thm. 1], we note that if (ImΦI) ∩ (ImΦ′

I) = {0}, then

Γ†
I =


(
Π(ImΦ′

I)
⊥ΦI

)†(
Π(ImΦI)⊥Φ

′
I

)†
 (4.26)

where Π(ImΦI)⊥ is the orthogonal projector onto the orthogonal complement to ImΦI
(and similarly for Π(ImΦ′

I)
⊥). In the case of a single Dirac mass, m = δx0 for some

x0 ∈ X̊, that is I = {x0} and ΓI =
(
φ(x0) φ′(x0)

)
, this yields

pV = (Γ∗
I)

†
(
1
0

)
= (Γ†

I)
∗
(
1
0

)
=

Π(Imφ′(x0))⊥φ(x0)(∥∥∥Π(Imφ′(x0))⊥φ(x0)
∥∥∥
H

)2 . (4.27)

A particular (yet common) case is when x 7→ ∥φ(x)∥2H is maximal at x0. For instance,
in the case of a convolution kernel, the L2-norm is constant on X. In that case φ(x0) is
already in (Imφ′(x0))

⊥, and the vanishing-derivatives precertificate is

∀x ∈ X, ηV (x) = ⟨φ(x), pV ⟩ =
⟨φ(x), φ(x0)⟩
∥φ(x0)∥2H

. (4.28)

The Cauchy-Schwarz inequality ensures that |ηV (x)| ⩽ 1 for all x ∈ X, hence ηV = η0
(see Proposition 4.3).
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Fourier measurements

Now, we consider the domain X = T, and the ideal low pass filter (3.12), which
gathers the Fourier coefficients,

φ(x) =
(
1,
√
2 cos(2πx),

√
2 sin(2πx), . . . ,

√
2 cos(2fcπx),

√
2 sin(2fcπx)

)
. (4.29)

We endow the space of observations H = R2fc+1 with the standard Euclidean norm.
In the case of a single Dirac mass, say m = δx0 , since φ(x) has constant norm on X

the above discussion yields

ηV (x) =
⟨φ(x), φ(x0)⟩
∥φ(x0)∥2H

=
1

2fc + 1

(
1 + 2

fc∑
k=1

cos(2πk(x− x0))
)

=
1

2fc + 1
Dfc(x− x0),

where Dfc is the Dirichlet kernel. Since ηV is bounded by 1 in magnitude, we have found
the minimal-norm certificate, ηV = η0.

Alternatively, if m has exactly fc Dirac masses with the same sign, say m =
∑fc

i=1 δxi
it is also possible to give an exact expression of the vanishing-derivatives precertificate,
as in [PP17]. Since 1− ηV is a trigonometric polynomial with fc double roots, standard
results on trigonometric polynomials imply that

1− ηV (x) = C

(
fc∏
i=1

sin2(π(x− xi))
)
,

where C ∈ R. We may determine the constant C by orthogonality. Indeed, let p1
def.
=

(1, 0, . . . , 0)⊤. Since p1 satisfies (4.21), the minimality of ∥pV ∥2H yields

0 = ⟨pV , p1 − pV ⟩ .

Since Φ∗ is an isometry from R2fc+1 to L2(T), we have

0 =

∫
T
ηV (t)(1− ηV (t))dt

= C

∫
T

(
fc∏
i=1

sin2(π(t− xi))
)
dt− C2

∫
T

(
fc∏
i=1

sin2(π(t− xi))
)2

dt.

Hence, we deduce

ηV (x) = 1− C
(

fc∏
i=1

sin2(π(x− xi))
)
, (4.30)

where C =

∫
T

(∏fc
i=1 sin

2(π(t− xi))
)
dt∫

T

(∏fc
i=1 sin

2(π(t− xi))
)2

dt
. (4.31)

It is clear that 1 ⩾ ηV . However, we do not know how to prove that ηV ⩾ −1, a property
which seems to hold numerically (see Figure 4.1), regardless of the spikes locations.

In the more general case 1 < |I| < fc, it is difficult to provide an explicit formula
for ηV , and we are not aware of any such result. Moreover, although there is numerical
evidence that it is non-degenerate provided the spikes are sufficiently separated, we are
not aware of any theoretical result which supports that observation.
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−1

1 ηV

−1

1 ηV

Figure 4.1: The vanishing-derivatives precertificate with the ideal low-pass filter for
m = δ0 (left) and m =

∑12
i=1 δxi with random locations xi (right)

Fourier measurements (revisited)

The dual certificate constructed in [CFG14] to derive Theorem 3.1 is not the vanish-
ing derivative precertificate corresponding to the above setting, i.e. the ideal low-pass
filter and the Euclidean metric on H = R2fc+1. However, it is worth noting that this dual
certificate becomes the vanishing-derivatives precertificate (and hence, in some cases, the
minimal-norm certificate) if one endows R2fc+1 with a specific metric. Indeed, following
[LT20], for M ∈ N and fc = 2M , set

∥p∥2H
def.
=
∥∥∥(p(0), p(1), . . . , p(2fc))∥∥∥2

H

def.
= α0

∣∣∣p(0)∣∣∣2 + fc∑
k=1

αk

(∣∣∣p(2k−1)
∣∣∣2 + ∣∣∣p(2k)∣∣∣2)

(4.32)

where αk
def.
=

1

M2

M∑
j=k−M

(
1− |j|

M

)(
1− |k − j|

M

)
for k ∈ {0, 1, . . . , 2M}. (4.33)

Then, the autocorrelation of φ is given by the Jackson kernel

K
(
x, x′

)
=
〈
φ(x), φ(x′)

〉
H =

(
sin (πM(x− x′))
M sin (π(x− x′))

)4

, (4.34)

which is precisely the kernel used in [CFG14] to construct a dual certificate together
with interpolation conditions. From Lemma 4.3, we note that this procedure yields the
vanishing-derivatives precertificate ηV and, in essence, the main result of [CFG14] is that
ηV is a valid and non-degenerate dual certificate (hence it is equal to η0).

To summarize, the main point of using the metric (4.32) is that the proof of Theo-
rem 3.1 (in [CFG14]) ensures that the Non-Degenerate Source Condition holds, provided
the spikes are sufficiently separated. Relying on that trick, Q. Li and G. Tang have de-
veloped in [LT20] a support recovery analysis inspired from [13] with more quantitative
bounds.

Convolution operators

The deconvolution problem is a typical application of the Blasso. We set X = Rd
or Td and we consider φ(x) = φ(· − x), where φ ∈ L2(X). The autocorrelation kernel is
then translation-invariant,

K
(
x, x′

)
=

∫
X
φ(s− x)φ(s− x′)ds = K

(
x− x′, 0

)
. (4.35)
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In the case of the Gaussian filter,

φ(x) =
1√
2πσ

e−
|·−x|2

2σ2 , we have K
(
x, x′

)
=

1√
4πσ

e−
|x−x′|2

4σ2 . (4.36)

It follows that, given m =
∑

x∈I axδx, the vanishing derivative certificate is of the form

ηV (x) =
∑
xi∈I

(cxix+ dxi)e
−|x−xi|2

4σ2 . (4.37)

Solving the interpolation problem η(xi) = sign(axi) and η
′(xi) = 0 is not straightforward

(but it becomes easier when the spikes cluster at one point x0 see Section 6.2.2).

Laplace transform

If X = ]0,+∞], H = L2([0,+∞]) and the impulse response is the Laplace transform,

φ(x) =
(
s 7→ e−xs

)
(4.38)

then the autocorrelation function is given by

K
(
x, x′

)
=
〈
φ(x), φ(x′)

〉
=

∫ +∞

0
e−xse−x

′sds =
1

x+ x′
(4.39)

(see [8]). If we consider a measure m =
∑

xi∈I δxi (or any masses with the same positive
sign), Lemma 4.3 implies that

ηV (x) =
∑
xi∈I

(
αi

x+ xi
+

βi
(x+ xi)2

)
=

P (x)∏
xi∈I(x+ xi)2

, (4.40)

for some coefficients αi, βi ∈ R, i ∈ I or some polynomial P ∈ R2|I|−1[X]. From the
conditions ηV (xi) = 1, η′V (xi) = 0, we note that P is the only polynomial in R2|I|−1[X]

which satisfies P (xi) = Q(xi), P
′(xi) = Q′(xi), where Q(X)

def.
=
∏
xi∈I(X + xi)

2. Some
inspection of the problem shows that P (X) =

∏
xi∈I(X+xi)

2−∏xi∈I(X−xi)2, so that

ηV (x) = 1−
∏
xi∈I

(
x− xi
x+ xi

)2

. (4.41)

That expression clearly shows that ηV is non-degenerate on X.

4.3.5 How to ensure non-degeneracy?

Ensuring that ηV is non-degenerate can sometimes be done on a closed form ex-
pression as above, but that is rather exceptional. Alternatively, arguments involving the
properties of T-systems can sometimes be used (see [dCG12, SRR18], or [11]), but again,
that is rather exceptional (it relies on a special property of the observation operator)
and is mostly restricted to the Blasso with positivity constraints.

In general, one relies on precise (and tedious!) majorization arguments: most proofs
of identifiability for the Blasso consist in building a vanishing derivatives precertifi-
cate ηV (for some Hilbertian norm) and exploiting the decaying properties of the kernel
K (·, xi).

In particular Quentin Denoyelle has proved the following result in his PhD thesis.
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Theorem 4.1 ([Den18, Th. 2]). Let X = R, φ ∈ C 2(X;H) and assume that

1. for all x ∈ X the matrix

Dx
def.
= Γ∗

{x}Γ{x} =

(
∥φ(x)∥2H ⟨φ(x), φ′(x)⟩
⟨φ′(x), φ(x)⟩ ∥φ′(x)∥2H

)
is invertible with

∥∥D−1
x

∥∥ uniformly bounded, and ∥φ′′(x)∥H is uniformly bounded,

2. there exists a function ω : R+ → R+ with limt→+∞ ω(t) = 0 such that, for all
x1, x2 ∈ X,[

|⟨φ(x1), φ(x2)⟩|+
∣∣〈φ′(x1), φ(x2)

〉∣∣+ ∣∣〈φ′(x1), φ
′(x2)

〉∣∣
+
∣∣〈φ(x1), φ′′(x2)

〉∣∣] ⩽ ω(|x1 − x2|),

3. There exists C > 0, r > 0 such that for all x ∈ X, η′′V,x ⩽ −C in [x− r, x+ r],
where ηV,x is the vanishing-derivatives precertificate corresponding to m = δx,

4. for all open neighborhood V of 0, there exists M > 0 such that for all x ∈ X,

∀x′ ∈ X \ (x+ V ),
∣∣ηV,x(x′)∣∣ ⩽ 1−M.

Then, for I = {x1, . . . , xs} with mini ̸=j |xi − xj | large enough, and m =
∑

x∈I axδx,
ηV is non-degenerate.

That result ensures the non-degeneracy of the dual precertificate (hence it is equal
to η0) provided the spikes are sufficiently separated so that they barely interfere with
one another. The above results holds for instance with the convolution using a Gaussian
filter, or a Cauchy kernel.

Let us mention that many authors have exploited similar ideas (originally in [CFG14]),
often in a more quantitative way, but not always on the vanishing derivatives precertifi-
cate, see for instance [BDF16]. To the best of our knowledge, the most comprehensive
results are given in [PKP20].

4.4 Total (gradient) variation denoising

Now, we turn to the total gradient variation as in Section 3.2.3. The minimal-norm
certificate is less understood in that case, and it is not clear how to extend the strategy
of Section 3.4.2 to derive good candidates for η0. However, in some cases η0 can be found
by direct analysis.

As we did in [6], we focus here on the denoising case, where V = H = L2(R2) and Φ
is the identity operator. Given a function y0 = u0 ∈ L2(R2), the solutions to the dual
problem (D(BV)(0, y0)) (see Section 3.1.3) are exactly given by ∂R(BV)(u0). In view of
Proposition 3.1, η is a solution to (D(BV)(0, y0)) if and only if the level sets of u0 (that is,

U
(t)
0

def.
= {u0 ⩾ t} for t > 0, and U

(t)
0

def.
= {u0 ⩽ t} for t < 0) solve the geometric variational

problem (3.29) (resp. (3.30)), that is, −η (resp. η) is a variational curvature for u0.

4.4.1 Calibrable sets

Calibrable sets were singled out in [BCN02] as the sets which evolve with constant
boundary through the total variation flow ∂u

∂t ∈ −∂R(BV)(u), namely:

∂u

∂t
= div

(
Du

|Du|

)
, (4.42)
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in [0,∞]×R2 subject to initial data u(·, 0) = u0 ∈ L2(R2). More precisely, given u0 = 1E
for E ⊆ R2, we say that E evolves with constant boundary if u(x, t) = λ(t)1E(x) is a
solution to (4.42), with λ ⩾ 0. Such sets are characterized by the fact that hE1E ∈
∂R(BV)(1E), where hE = P (E)/ |E|.

Definition 4.3 (Calibrable sets). A set of finite perimeter E ⊆ R2 is said to be calibrable
if, writing v = 1E, there exists a vector field z ∈ L∞(R2,R2) such that ∥z∥∞ ⩽ 1 and∫

R2

(z,Dv) =

∫
R2

|Dv|,

−div z = hEv.

In that case, we say that z is a calibration for E.

We refer to [BCN02, AVCM04, ACC05a, BCN05] and the references therein for the
main properties of calibrable sets. For our purpose, we are content with their character-
ization in the plane.

Theorem 4.2 ([AVCM04, Thm. 4.40]). Let C ⊆ R2 be a bounded set of finite perimeter.
If C is calibrable, then C has a finite number of M -connected components C1, . . . , Cm
and

1. Ci is convex for any i ∈ {1, . . . ,m},

2. ∂Ci is of class C 1,1 for any i ∈ {1, . . . ,m},

3. the following inequalities hold:

∀i ∈ {1, . . . ,m}, ess sup
p∈∂Ci

κ∂Ci
(p) ⩽

P (Ci)

|Ci|
, (4.43)

where κ∂Ci
(p) refers to the curvature of Ci (which exists for H1-a.e. p ∈ ∂Ci).

4. P (Ci)
|Ci| =

P (Cj)
|Cj | for all i, j ∈ {1, . . . ,m}.

5. let I ⊆ {1, . . . ,m} (possibly I = ∅); for all E ⊆ R2 with finite perimeter such that⋃
i∈I

Ci ⊆ E ⊆
⋃
j ̸∈I

(
R2 \ Cj

)
, (4.44)

we have

P (E) ⩾
∑
i∈I

P (Ci). (4.45)

Conversely, if C ⊆ R2 is a bounded open set which is a union of a finite number
C1, . . . , Cm of connected components satisfying (1− 5), then C is calibrable.

Remark 4.4. Note that the condition (4.45) implies that the connected components
Ci are somehow “well-separated” (e.g. consider the case of two discs). In particular
Ci ∩ Cj = ∅.

Remark 4.5. As a consequence of (4) and the definition of M -connected components,
P (C)
|C| =

P (Cj)
|Cj | for all j ∈ {1, . . . ,m}.
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The minimal-norm certificate for calibrable sets. Calibrable sets evolve in a
self-similar manner through the total variation flow as well as through the Rudin-Osher-
Fatemi minimization. Since the behavior of the Rudin-Osher-Fatemi for λ → 0+ is
governed by the minimal-norm certificate (see Proposition 3.8), we have obtained in [6]
the following result using the optimality conditions.

Proposition 4.5 (Minimal norm certificates for calibrable sets [6, Prop. 6]). Let C ⊆ R2

be a bounded calibrable set and y0
def.
= u0

def.
= 1C/P (C). Then the minimal-norm certificate

is η0 = p0 = hC1C , where hC = P (C)
|C| .

Is the minimal-norm certificate tight? Once we know the minimal-norm certificate
of u0

def.
= 1C/P (C), it is natural to wonder if it is a tight certificate. In other words5, is

CBV ∩
(
∂R(BV)

)−1
(η0) the (linear closure of the) minimal face of u0 in CBV?

Since C has m connected components C1, . . . , Cm (which happen to be simple sets),
the results in Chapter 2 imply that the closure of that minimal face is

FCBV
(u0) =

{
m∑
i=1

θi
1Ci

P (Ci)
| θ1, . . . , θm ⩾ 0,

∑
i

θi = 1

}
, (4.46)

and the functions
1Ci
P (Ci)

, 1 ⩽ i ⩽ m, are the extreme points of that face.
The following new proposition clarifies the link between the above face and the

“saturation set” of η0, i.e. the collection of sets which solve (3.29) for η = η0.

Proposition 4.6 (Faces exposed by calibrable sets). Let C ⊆ R2 be a nonempty cali-
brable set, with M-connected components {Ci}1⩽i⩽m as in Theorem 4.2, and y0 = u0 =
1C/P (C) so that η0 = hC1C is its minimal-norm certificate.

Then,

∂R(BV)−1
(η0) ∩ CBV =

{∑
E∈C

θE
1E

P (E)
| ∀E ∈ C, θE ⩾ 0,

∑
E∈C

θE = 1

}
, (4.47)

where C is the (finite) collection of all the sets conv
(⋃

i∈I Ci
)
where I ⊆ {1, . . . ,m},

I ̸= ∅, is such that

P

(
conv

(⋃
i∈I

Ci

))
=
∑
i∈I

P (Ci). (4.48)

In particular, CBV ∩ ∂R(BV)−1
(η0) is finite dimensional.

Remark 4.6. The notation conv
(⋃

i∈I Ci
)
might call for some explanation, since it

depends on the Lebesgue representative. We mean the closed convex hull of the points
of density 1 of

(⋃
i∈I Ci

)
. Incidentally, our taking the closed convex hull and not the

convex hull is an arbitrary choice, since they both yield the same class of set modulo the
Lebesgue measure.

Remark 4.7. Condition (4.48) trivially holds if I is a singleton, since each Ci is convex.

As a result, the collection C contains {C1, . . . , Cm} and FCBV
(u0) ⊆

(
CBV ∩ ∂R(BV)−1

(η0)
)
.

5From the positive homogeneity of R(BV), it is equivalent to asking if{
(u,R(BV)(u)) | u ∈ L2(R2), η0 ∈ ∂R(BV)(u)

}
is equal to the (linear closure of the) minimal face

of (u,R(BV)(u)) in epiR(BV), see Appendix B.3.
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On the other hand for |I| ⩾ 2, Condition (4.48) expresses that the Ci’s are separated
“just enough” for their union to be calibrable, but not more. It is a strong geometric
condition, which, when satisfied, adds the corresponding convex hull to the collection C,
see Figure 4.2.

C3

C1

C2

C4

C5

C6

Figure 4.2: A calibrable union of convex calibrable sets (here a union of discs with
radius 1). The nontrivial collections such that (4.48) holds are {C1, C2} (the distance
between their centers is π) and {C4, C5, C6} (the distance between their centers is 4

3π).

Proof. The convex set

F
def.
= CBV ∩ ∂R(BV)−1

(η0) = argmax
u∈CBV

⟨η0, u⟩ (4.49)

is a closed subset of CBV, hence it is compact (where V = L2(R2) is endowed, as usual,
with the weak topology). As a result, by the Krein-Milman theorem, F is the closed
convex hull of its extreme points, and we only need to prove that its extreme points are
exactly the functions 1E/P (E), where E ∈ C.

From (4.49), we note that F is a face of CBV, hence its extreme points are exactly
the extreme points of CBV that belong to F. Using Proposition 2.1, we obtain

extr (F) =

 ε
1E

P (E)
| (ε, E) ∈ argmax

0<|E|<+∞
ε=±1

ε

∫
E η0

P (E)
, E simple set

 . (4.50)

Since η0 = hC1C and hC > 0, the only maximizers are given for ε = 1, hence extr(F) is
the collection of simple sets which solve the problem

max
E⊆R2

0<|E|<+∞

|E ∩ C|
P (E)

. (4.51)

Note that, C being calibrable, it follows from [AVCM04, Prop. 4.31] that C itself
is a solution6 to (4.51), hence the value of the problem is |C| /P (C) = 1/hC . Since
P (C)/ |C| = P (Ci)/ |Ci| for all i (see Remark 4.5), we deduce that each Ci is a solution
to (4.54). Therefore, the Ci’s are simple sets which are solutions to (4.51). Moreover, if
I ⊆ {1, . . . ,m} satisfies (4.48), then

P

(
conv

(⋃
i∈I

Ci

))
=
∑
i∈I

P (Ci) =
∑
i∈I

hC |Ci| = hC

∣∣∣∣∣conv
(⋃
i∈I

Ci

)∣∣∣∣∣ ,
6But C is not a simple set for m > 1.
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so that conv
(⋃

i∈I Ci
)
is a maximizer too, and it is a simple set since it is convex. We

have thus proved that {1E/P (E) | E ∈ C } ⊆ extrF.
It remains to prove the converse inclusion. Let E ⊂ R2, 0 < |E| < +∞, be a simple

set which maximizes (4.51). Observe that each Ci is either contained in E or disjoint
from E.

➢ Indeed, by submodularity of the perimeter,

P (E ∪ Ci) ⩽ P (E) + P (Ci)− P (E ∩ Ci)

= hC (|E ∩ C|+ |Ci|)− P (E ∩ Ci)

= hC (|(E ∪ Ci) ∩ C|) + (hC |E ∩ Ci| − P (E ∩ Ci)) .

Now, Ci being calibrable, it is Cheeger in itself, i.e. Ci is a solution of

min
F⊆Ci

P (F )

|F |
(see for instance [AVCM04, Prop. 4.31]). By the uniqueness of the Cheeger set of
a convex body (see [Giu78b, KLR06, AC09]), we have hC |Ci ∩ E| − P (Ci ∩E) < 0
as soon as 0 < |E ∩ Ci| < |Ci|. As a consequence, if |E ∩ Ci| > 0, we must have
|E ∩ Ci| = |Ci|, otherwise |(E ∪ Ci) ∩ C| /P (E ∪Ci) < 1/hC , which contradicts the
maximality of E.

Now, let I = { i ∈ {1, . . . ,m} | Ci ⊆ E }. Necessarily I ̸= ∅ (otherwise |E ∩ C| = 0,
which contradicts the maximality of E). The convex hull of the Ci’s, i ∈ I, is the
indecomposable set with the smallest perimeter7 which contains

⋃
i∈I Ci. In other words,

let G
def.
= conv

(⋃
i∈I Ci

)
; by [FFDD09, Thm. 1],

P (E) ⩾ P (G) (4.52)

with strict inequality if |E∆G| > 0. As a result,

|E ∩ C|
P (E)

=

∑
i∈I |Ci|
P (E)

⩽
|G ∩ C|
P (G)

(4.53)

with strict inequality if |E∆G| > 0. Since E is a maximizer of (4.51), we have E = G =
conv

(⋃
i∈I Ci

)
, with

P

(
conv

(⋃
i∈I

Ci

))
= hC

∑
i∈I
|Ci| =

∑
i∈I

P (Ci),

hence E ∈ C.

Remark 4.8. Consider I, J ⊆ {1, . . . ,m} which satisfy (4.48) and such that I ∩ J = ∅,
and let GI

def.
= conv

(⋃
i∈I Ci

)
, GJ

def.
= conv

(⋃
j∈J Cj

)
. Then GI and GJ must be disjoint.

➢ Indeed, by Proposition 2.2, we note that either GI ∩ GJ = ∅ or GI ∩ GJ is also
a maximizer of (4.51). Since GI and GJ are convex, their intersection is either
∅ (modulo the Lebesgue measure) or a simple set. As a result GI ∩ GJ is either
empty or it belongs to C. But the latter case is impossible, since we would have
GI ∩GJ = GK for some K ⊆ {1, . . . ,m}, K ̸= ∅, hence K ⊆ I ∩J , a contradiction.
As a result conv

(⋃
i∈I Ci

)
∩ conv

(⋃
i∈I Ci

)
= ∅ (up to a Lebesgue-negligible set).

7That fact is well known for connected sets with smooth boundary, as a consequence of the Crofton
formula involving the Favard length [San04, Eq. (3.17)]. Here we could exploit the regularity of the
solutions of (4.51) to reduce to that case, but [FFDD09] provides a direct result which applies to all sets
of finite perimeter.
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Remark 4.9. The results presented in this section probably do not extend to the dimen-
sion N > 2, as they rely on the fact that the closed convex hull of convex sets Ci, i ∈ I,
has the least perimeter among the connected sets which contain

⋃
i∈I Ci. That property

does not hold for N ⩾ 3 (for instance consider two parallel discs: the catenoid which
joins them has smaller area than the cylinder which is their convex hull).

To summarize the results of this section, the minimal-norm dual certificate for cal-
ibrable sets η0 = hC1C is tight provided the connected components of C are sufficiently
separated. Otherwise, η0 exposes a face larger than FCBV

(u0), but that face is still
finite-dimensional, and the additional saturations correspond to the convex hull of the
connected components that are too close to one another.

4.4.2 Convex sets

It is also possible to derive the minimal-norm certificate for the indicator of smooth
convex sets, as we did in [6]. We base our discussion on [BGT87, GM94] which build
variational curvatures for C, but in essence that construction is equivalent to the one
in [ACC05b] where a vector field governing the evolution of convex sets by the total
variation flow (4.42) is built.

Let C be a nonempty open bounded convex subset of R2. We consider the variational
problems

min
E⊆C

P (E) + s |C \ E| . (Qs)

for s > 0. It is possible to prove (see [GM94, Eq. (2.15)] or [ACC05a, Lemma 4]) that
if s < t and if Cs, Ct denote solutions to (Qs) and (Qt) respectively, then8 Cs ⊆ Ct.
Moreover, C =

⋃
s>0Cs, and the solution to (Qs) is ∅ for 0 < s < hC , where hC is the

Cheeger constant of C (see [KLR06, Par11]),

hC
def.
= min

E⊆C

P (E)

|E| . (4.54)

There is a unique solution to (4.54) (see [ACC05b, KLR06], and [AC09] for d ⩾ 2), called
the Cheeger set of C. For s = hC , the solutions to (Qs) are exactly ∅ and the Cheeger
set of C, that we denote by ChC .

Therefore, it makes sense to define the function vC by

vC(x)
def.
=

{
inf { s > 0 | x ∈ Cs } if x ∈ C,
0 otherwise.

(4.55)

Remark 4.10. The function vC is (minus) the variational curvature proposed by E. Barozzi
in [Bar94] and studied in [GM94]. In fact, in [Bar94], vC is defined symmetrically in
the complement of C: in Rd \ C, on considers the problem

min
E⊆(R2\C)

P (E) + s
∣∣(R2 \ C) \ E

∣∣ . (4.56)

and for x ∈ R2 \ C, one sets vC(x)
def.
= − inf { s > 0 | x ∈ Ds }, where Ds is a solution

to (4.56). However, taking the complement of E, (4.56) amounts to

min
Ẽ⊇C

P (Ẽ) + s
∣∣∣Ẽ \ C∣∣∣ , (4.57)

8We choose the Lebesgue representatives of points with density 1, hence this inclusion is not ambigu-
ous.
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and using the convexity of C (e.g. [FFDD09, Prop. 5]), it is possible to prove that the
solution to (4.57) is equal to C for all s > 0. In other words, x ∈ Ds for all s > 0 and
the construction in [Bar94] yields vC(x) = 0 in R2 \ C, as required in (4.55).

The function vC turns out to be the minimal-norm certificate we are looking for.

Proposition 4.7. If C ⊆ R2 is a nonempty bounded open convex set with C 1,1 boundary,
then the minimal-norm certificate for 1C/P (C) is η0 = vC .

Proof. First, we prove that vC ∈ L2(R2). Since v ∈ C 1,1, its curvature is essentially
bounded on ∂C; let Λ = ess supx∈∂C κ(x) (essential bound with respect to the H1 mea-
sure). By [ACC05a, Th. 9], for s > max(Λ, P (C)/ |C|), the unique solution to (Qs) is C.
Therefore, 0 ⩽ vC ⩽ max(Λ, P (C)/ |C|) and since vC has compact support, vC ∈ L2(R2).

Now, we prove that vC ∈ ∂R(BV)(1C/P (C)). In view of Proposition 3.1, it is neces-
sary and sufficient to prove that

∀G ⊆ R2, |G| < +∞, P (G)−
∫
G
vC ⩾ P (C)−

∫
C
vC (4.58)

(the other condition, for negative level sets, being immediate).

But Equation (4.58) expresses precisely the condition that −vC should be a varia-
tional curvature for C, which is indeed the case as proved in [GM94, Lem. 2.2].

It remains to prove that vC has minimal-norm in ∂R(BV)(1C/P (C)). But this follows
from the fact that vC is the variational curvature with minimal L2(R2) norm (see [Bar94,
Thm. 3.2]).

C

ChC

Cs

Ct

Figure 4.3: The solutions to (Qs) for hC < s < t, where C is a square with rounded
corners.

Remark 4.11. By [ACC05a, Th. 9], Cs = C if and only if s > max(Λ, P (C)/ |C|),
where Λ

def.
= ess supx∈∂C κ(x). As a result, there are two cases,

• either Λ ⩽ P (C)/ |C| (i.e. C is calibrable hence hC = P (C)/ |C|), in which case
the solution to (Qs) is C for all s > hC ,

• or Λ > P (C)/ |C| (i.e. C is not calibrable, hence P (C)/ |C| > hC), in which case,
for hC < s < Λ the solution satisfies ∅ ⊊ Cs ⊊ C. See Figure 4.3 for the example
of a square with rounded corners.

Remark 4.12. Proposition 4.7 holds in dimensions d ⩾ 2, but the case is d = 2 is special
insofar as it is possible to construct explicitly the solutions Cs. Combining various results
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in [AVCM04] and [ACC05a], we proved in [DAG09] that for s > hC , the solution to (Qs)
is given by an opening,

Cs =
⋃

B(x′,1/s)⊆C

B(x′, 1/s). (4.59)

This draws a connection between the construction in [ACC05b], where foliations with
arcs of circle are used to build a vector field (whose divergence eventually is η0) and the
construction in [Bar94].

Is the minimal-norm certificate tight? If C is nonempty, open bounded convex
and C 1,1, the next proposition shows that several other sets can be “certified” by η0.

Proposition 4.8. Let C ⊆ R2 be a nonempty bounded open convex set with C 1,1 bound-
ary, and let η0 be its minimal-norm certificate (i.e. η0 = vC). For all s > hC , let Cs be
a solution to (Qs).

Then, η0 ∈ ∂R(BV)(1Cs/P (Cs)).

Proof. For t < s, consider the variational problem

min
E⊆Cs

P (E) + t |Cs \ E| . (Q̃t)

Since the solutions to (Qt) are included in Cs (by the monotonicity property), we note
that a set E is a solution to (Qt) if and only if it is a solution to (Q̃t).

As a result, the variational curvature vCs defined according to (4.55) (replacing C
with Cs) coincides with vC on Cs. Hence by the variational curvature property (see also
[Bar94, Rem. 2.3])

P (Cs)−
∫
Cs

vC = P (Cs)−
∫
Cs

vCs = 0 (4.60)

and by Proposition 3.1, vc ∈ ∂R(BV)(1Cs/ |Cs|).

As a result, if C is not calibrable, the sets Cs for hC < s < Λ are distinct from C
(and ∅), and they yield an infinity of sets that are “certified” by η0. More precisely, in
dimension d = 2, we know from [ACC05b] that int(C \ ChC ) is foliated by the family
{ ∂Cs \ ∂C | hc < s < Λ }, and that ∂Cs is a union of arcs of circles or radius 1/s in
int(C \ ChC ) (see Figure 4.3). Furthermore, the vector field z0 which consists in the
outer unit normal to Cs on ∂Cs \ ∂C satisfies div z0 = vC .

Remark 4.13. A formal integration by parts using the vector field constructed in [ACC05b],
suggests that, not only the Cs’s are certified by η0, but so are the convex sets that are
obtained by using arcs of circles of different radii in different regions of C (see for in-
stance Figure 4.3: one could choose a yellow arc in the top left-hand corner, a blue one
in the top right-hand corner, etc.).

To summarize, if C is not calibrable, the face exposed by η0 contains infinitely many
indicators of simple sets (hence extreme points). Therefore, it is not finite-dimensional.
More complicated examples are studied numerically in Figure 5.2 in Chapter 5.
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4.5 Conclusion

4.5.1 Summary

The minimal-norm certificate is the solution to a convex constrained problem. In
general, it does not have any closed form expression. However, if one knows beforehand
the elementary face it belongs to, it is possible to replace this constrained optimization
problem with the orthogonal projection onto an affine space, in other words with the
computation of the pseudo-inverse of some linear operator.

That principle can be applied in the case of polyhedral regularization or semi-infinite
programming, for instance with the Lasso or the Blasso respectively. In the case of
total variation denoising, it is not clear how to apply that principle. We have discussed
the case of indicator function of calibrable sets. In some geometric configurations the
minimal-norm dual certificate is not tight, but it exposes a finite-dimensional face.

4.5.2 Discussion with respect to prior works and comments

Minimal sections. The notion of minimal-norm certificate is an extension of the
minimal section used in the theory of maximal monotone operators (see the mono-
graph [Bré73]). In fact, if J denotes the atomic norm [CRPW12] corresponding to
{φ(x) | x ∈ X },

J(y) = ∥y∥A = inf { t > 0 | y ∈ tconv{φ(x)}x∈X } = inf
m∈M(X)

|m| (X) s.c. Φm = y,

its subdifferential is exactly the set of solutions to (D(0, y)), see Lemma B.1. The
minimal-norm certificate is exactly the minimal section of ∂J(y).

Irrepresentability condition. In the context of sparse inverse problems, the pio-
neering work of Fuchs [Fuc04] introduces the quantity pF in a criterion for recovery, also
known as irrepresentability condition (IC) in the literature. That criterion was extended
by S. Vaiter et al. to ℓ1-analysis [VPDF13], polyhedral [VPF13] and partly smooth
regularizations [VGFP15, VPF15]. To our knowledge, the interpretation of the Fuchs
precertificate a proxy for the minimal-norm dual solution first seems to appear in [13].

It is worth noting that the irrepresentability condition, or more precisely the property
that p0 is equal to projAff F0

(0) where F0 is the relative interior of (Φ∗)−1(∂R(u)) (or
even (Φ∗)−1(∂R(u)) itself), is equivalent to the orthogonality condition which appears
in [BGM+16], namely ⟨p0, p− p0⟩ = 0 for all p ∈ (Φ∗)−1(∂R(u)). Furthermore, the
MINSUB condition, which consists in imposing that property on all u ∈ V = RN , has
interesting consequences, such as the equivalence of the variational evolution

min
u
R(u) +

1

2t
∥u− f∥2H , (4.61)

and the gradient flow

∂tu(t) = −p(t), p(t) ∈ ∂R(t), u(0) = f, (4.62)

provided R is polyhedral (see [BGM+16, BBCN21]).

Calibrable sets and Cheeger sets. The role of calibrable sets (including convex
Cheeger sets) is central in the study of the total variation flow or the Rudin-Osher-
Fatemi (ROF) model: the boundary of such sets does not move, and only the amplitude
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of the corresponding indicator function is changed (see [ACC05b, BCN02]). Their char-
acterization is given in [Giu78a, ACC05b, KLR06] in the plane and in [ACC05a] in Rd.
They are also used for image processing applications. In [BB13], the indicator func-
tions of calibrable sets are interpreted as “nonlinear eigenvectors” of R(BV). A nonlinear
spectral decomposition based on total variation flow is introduced in [Gil14], inspired
by the Fourier transform. It is refined and generalized to positively one-homogeneous
functionals in [BGM+16] (see also [BBCN21] in the infinite-dimensional setting). The
indicator functions of calibrable sets have a spectrum made of a single Dirac mass, they
are equivalent to the “pure frequencies” in the Fourier spectrum.
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In this chapter, we focus on providing recovery guarantees for the solutions of the
Blasso (P(TV)(λ, y)) or the total (gradient) variation regularized problem (P(BV)(λ, y)).
The general theory of inverse problems [BO04, HKPS07] provides many interesting re-
sults, including weak-* convergence (see [BP13]) or convergence rates in the Bregman
divergence. Relying on similar arguments, one may derive bounds formulated in terms
of local averages [AdCG15, FG13] or in terms of partial optimal transport [PKP20].

However, we wish to convey here some complementary information on the recon-
structed solutions. As its alternative name suggests, the weak-* convergence of measures
is vague, in the sense that it does not tell us anything about the structure of the measures
involved: are they made of diffuse mass which concentrates, Dirac masses which tend
to vanish or escape at infinity, or simply Dirac masses whose locations and amplitude
converge towards those of the limit measure?

In the case of total variation denoising in imaging, the situation is similar, or worse.
It is not difficult in a denoising problem to bound ∥u− f∥L2(R2) where u is the solution

and f the unknown. But it is well known in image processing that the L2 error has
severe limitations when describing the perceptual difference between two images (see
Figure 5.1), and several alternatives have been proposed such as the SSIM, which also
have their own limitations. The approach we take here is motivated by a principle
in image analysis which stems from the Gestalt theory [Wer23] and the Mathematical

99
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Morphology theory [Ser82]: the shape information should be contained in the level sets
of an image, determined in particular by their boundary.

often analytical and linear. An excellent example is the
Wiener filter for signal deconvolution and denoising
(that also requires second-order stationary assumptions
about the signal and the noise).
6)  Finally, the MSE is widely used simply because it is a con-
vention. Historically, it has been employed extensively for
optimizing and assessing a wide variety of signal processing
applications, including filter design, signal compression,
restoration, denoising, reconstruction, and classification.
Moreover, throughout the literature, competing algorithms
have most often been compared using the MSE/PSNR. It
therefore provides a convenient and extensive standard
against which the MSE/PSNR results of new algorithms may
be compared. This saves time and effort but further propa-
gates the use of the MSE.

SO WHAT’S WRONG WITH THE MSE?
It is apparent that the MSE possesses many favorable properties
for application and analysis, but the perspicacious reader might
point out that a more fundamental issue has been missing.
That is, does the MSE really measure signal fidelity? Given all
of its above-mentioned attractive features, a signal processing
practitioner might opt for the MSE if it proved to be a reason-
able signal fidelity measure. But is that the case?

Unfortunately, the converse appears true when the MSE is
used to predict human perception of image fidelity and quality
[2]–[5]. An illustrative example is shown in Figure 2, where an
original Einstein image is altered by different types of distortion:
a contrast stretch, mean luminance shift, contamination by
additive white Gaussian noise, impulsive noise distortion, JPEG
compression, blur, spatial scaling, spatial shift, and rotation. In

[FIG2] Comparison of image fidelity measures for “Einstein” image altered with different types of distortions. (a) Reference image.
(b) Mean contrast stretch. (c) Luminance shift. (d) Gaussian noise contamination. (e) Impulsive noise contamination. (f) JPEG
compression. (g) Blurring. (h) Spatial scaling (zooming out). (i) Spatial shift (to the right). (j) Spatial shift (to the left). (k) Rotation
(counter-clockwise). (l) Rotation (clockwise).

(a) (b) (c) (d) 

(e) (f) (g) (h)

(i) (j) (k) (l)

MSE=309, SSIM=0.987
CW-SSIM=1.000

MSE=306, SSIM=0.928
CW-SSIM=0.938

MSE=309, SSIM=0.580
CW-SSIM=0.633

MSE=871, SSIM=0.404
CW-SSIM=0.933

MSE=694, SSIM=0.505
CW-SSIM=0.925

MSE=590, SSIM=0.549
CW-SSIM=0.917

MSE=0, SSIM=1
CW-SSIM=1

MSE=313, SSIM=0.730
CW-SSIM=0.811

MSE=309, SSIM=0.576
CW-SSIM=0.814

MSE=308, SSIM=0.641
CW-SSIM=0.603

 MSE=873, SSIM=0.399
CW-SSIM=0.933

MSE=577, SSIM=0.551
CW-SSIM=0.916

IEEE SIGNAL PROCESSING MAGAZINE [100] JANUARY 2009

Figure 5.1: Experiments on the mean-square error by Z. Wang and A. Bovik [WB09].
The reference image is (a) and the following ones are obtained by (b) mean contrast
stretch, (c) luminance shift, (d) Gaussian noise, (e) Impulsive noise, (f) JPEG com-
pression, (g) blurring, (h) spatial scaling. The perceptual difference between those images
is not reflected by the L2 error (MSE).

As a result, given a solution u ∈ L2(R2) with finite total variation, we examine its

level lines. For t ⩾ 0, we set U (t) def.
= {u ⩾ t}, and for t < 0, we define U (t) def.

= {u ⩽ t}.
Our approach consists in examining the behavior of ∂U (t). A closely related notion is
the support of the gradient, which turns out to be (see [6, Prop. 4]),

supp(Du) =
⋃{

∂U (t) | t ∈ R \ {0}
}
=
⋃{

∂∗U (t) | t ∈ R \ {0}
}
, (5.1)

(where ∂∗U (t) denotes the reduced boundary of U (t), see Appendix A).

From a different perspective, the present chapter echoes Chapter 1: we know that
the solutions have a certain representation in terms of extreme points of the level sets
of the regularizer, but is that representation stable? What happens when the noise and
the regularization parameter change?

Collaboration. The material of the present chapter mostly stems from joint works
with Gabriel Peyré, Clarice Poon and Antonin Chambolle, namely [13, 6].

5.1 Set convergence for supports and level lines

5.1.1 Definition

Given a parameter τ in a Hausdorff topological space T , and a family (Aτ )τ∈T of
subsets of X, we define its limit superior and limit inferior for τ → τ0 ∈ T (also known
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as Kuratowski outer and inner limit, see [DM93, RW98]) as

lim sup
τ→τ0

Aτ
def.
=

{
x ∈ X | lim inf

τ→τ0
d(x,Aτ ) = 0

}
, (5.2)

lim inf
τ→τ0

Aτ
def.
=

{
x ∈ X | lim sup

τ→τ0
d(x,Aτ ) = 0

}
. (5.3)

where d(x,Aτ )
def.
= inf { d(x, y) | y ∈ Aτ }. Both sets are closed, and if they are equal, we

say that the sequence converges towards

lim
τ→τ0

Aτ
def.
= lim sup

τ→τ0
Aτ = lim inf

τ→τ0
Aτ . (5.4)

If there is some compact set K ⊆ X such that A ∈ K and Aτ ⊆ K for all τ large enough,
the Painlevé-Kuratowski convergence above is equivalent to the Hausdorff convergence:
a closed set A is equal to limτ→τ0 Aτ if and only if

lim
τ→τ0

(
sup

x∈A∩Aτ

|d(x,A)− d(x,Aτ )|
)

= 0. (5.5)

That notion of convergence is useful when studying the support or the level lines of
the solutions.

5.1.2 Convergence of the support for the Blasso

In this section, we focus on the example of total variation minimization (see Sec-
tion 3.2.1).

min
m∈M(X)

|m| (X) +
1

2λ
∥Φm− y∥2H , (P(TV)(λ, y))

min
m∈M(X)

|m| (X) s.t. Φm = y. (P(TV)(0, y))

The corresponding dual problems are

sup
p∈H

(
⟨p, y⟩ − λ

2
∥p∥2H

)
s.t. ∥Φ∗p∥∞ ⩽ 1 (D(TV )(λ, y))

sup
p∈H
⟨p, y⟩ s.t. ∥Φ∗p∥∞ ⩽ 1 (D(TV )(0, y))

For m ∈ M(X), we define m+,m− ∈ M+(X) by the Hahn-Jordan decomposition
m = m+ −m−. For η ∈ C0(X) with ∥η∥∞ ⩽ 1, we define its (positive and negative)
saturation sets as

sat+ η
def.
= {x ∈ X | η(x) = 1 } and sat- η

def.
= {x ∈ X | η(x) = −1 } . (5.6)

With this notation the extremality condition η ∈ ∂R(TV)(m) (see (3.21)) is equivalent
to suppm± ⊆ sat± η.

The following result is an adaptation of [13, Lemma 1] which relies on the extremality
conditions.
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Proposition 5.1. Let (λ⋆, y⋆) ∈ ]0,+∞[ × H and let p⋆ be the unique solution to

D(TV )(λ⋆, y⋆), and let η⋆
def.
= Φ∗p⋆. For (λ, y) ∈ ]0,+∞[ × H, denote by m any solu-

tion to (P(λ, y)). Then, there is a neighborhood U of (λ⋆, y⋆) in ]0,+∞[ × H and a
compact set K ⊆ X such that

(sat± η
⋆) ∪

 ⋃
(λ,y)∈U

supp(m±)

 ⊆ K, (5.7)

and

lim sup
(λ,y)→(y⋆,λ⋆)

(supp(m±)) ⊆ (sat± η
⋆) . (5.8)

If, moreover, the solution m⋆ to (P(λ⋆, y⋆)) is unique, then

suppm⋆
± ⊆ lim inf

(λ,y)→(y⋆,λ⋆)
(suppm±) .

Proof. We deal with the case of m+ (the case ofm− being similar). We denote by p(λ, y)
the unique solution to (D(y, λ)).

Inclusion in a compact set. For the first point, if X is compact, we may choose
K = X and there is nothing to prove. Hence, we assume that X is only locally compact.
We fix y = y⋆, and we observe that, by Proposition 3.2 and the fact that φ is bounded,
the mapping

λ 7−→ p(λ, y⋆) 7−→ Φ∗(p(λ, y⋆)) = ⟨φ(·), p(λ, y⋆)⟩H (5.9)

is continuous from ]0,+∞[ to (C0(X), ∥·∥∞). As a result, for κ ∈ ]0, λ⋆[, the set

{ηλ}λ⋆−κ⩽λ⩽λ⋆+κ, where ηλ def.
= Φ∗p(λ, y⋆), is compact in C0(X). We cover it with a

finite number of balls of radius 1/8 and centers ηλ1 , . . . , ηλN with λi ∈ [λ⋆ − κ, λ⋆ + κ]
for 1 ⩽ i ⩽ N . Since those functions vanish at infinity, there is a compact set K ⊆ X
such that

max
1⩽i⩽N

sup
x∈X\K

|ηλi(x)| ⩽
1

4
.

Now, for all y ∈ H such that ∥y⋆ − y∥H ⩽ λ⋆−κ
8max(1,∥Φ∗∥) , all λ ∈ [λ⋆ − κ, λ⋆ + κ],

∀x ∈ X \K, |(Φ∗p(λ, y))(x)| ⩽ |(Φ∗p(λ, y⋆))(x)|+ ∥Φ∗∥ ∥y − y
⋆∥H

λ

⩽ |ηλi(x)|+ ∥ηλi − ηλ∥∞ +
(λ⋆ − κ) ∥Φ∗∥

8λmax(1, ∥Φ∗∥)
⩽

1

4
+

1

8
+

1

8
=

1

2
,

where i ∈ {1, . . . , N} is such that ∥ηλ − ηλi∥∞ ⩽ 1
8 .

As a result sat±(Φ
∗p(λ, y))

def.
= {x ∈ X | (Φ∗p(λ, y))(x) = ±1 } ⊆ K. Besides, by the

optimality conditions (3.3), we have

supp(m±) ⊆ sat±(Φ
∗p(λ, y))

hence its inclusion in K.
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Outer limit inclusion. Let x ∈
(
lim sup(λ,y)→(y⋆,λ⋆) (supp(m+))

)
⊆ X. By defini-

tion, there exist sequences (xn)n∈N in X, ((yn, λn))∈N in H× R∗
+ such that

• limn→∞ xn = x,

• limn→+∞(yn, λn) = (y⋆, λ⋆),

• xn ∈ suppmn, where mn ∈M(X) is a solution to (P(λn, yn)).

Let pn be the unique solution to (D(λn, yn)). By the optimality conditions (3.3) (see
also (3.21)),

1 = (Φ∗pn)(xn) = ⟨pn, φ(xn)⟩ . (5.10)

By Proposition 3.2, pn converges (strongly in H) towards the solution p⋆ to (D(λ⋆, y⋆)),
and by weak continuity of φ, φ(xn)⇀ φ(x). As a result,

1 = lim
n→∞

⟨pn, φ(xn)⟩H = ⟨p⋆, φ(x)⟩H = (Φ∗p⋆)(x), (5.11)

hence x ∈ sat+ η
⋆.

Inner limit inclusion. Now, we assume that the solution m⋆ to (P(λ⋆, y⋆)) is unique
and we prove the second part of the statement. We note that m weak-* converges
towards m⋆ as (λ, y)→ (λ⋆, y⋆).

➢ By contradiction, if it were not the case, there would exist a neighborhoodW of m⋆,
a sequence of elements (λn, yn) converging to (λ⋆, y⋆), and a corresponding sequence
of solutions mn such that mn /∈W for all n ∈ N. But it is possible to check that

• the problems (P(λn, yn)), for n ∈ N are equicoercive, hence the sequence
(mn)n∈N has a weakly-* convergent subsequence,

• the limit point of each weakly-* converging subsequence is a solution to (P(λ⋆, y⋆)),
hence it is equal to m⋆,

(that is in essence the stability result [HKPS07, Th. 3.2], but there it is stated for
fixed λ). This contradicts mn /∈W , hence the claimed convergence.

Now, we prove that suppm⋆
+ ⊆ lim inf(y,λ)→(y⋆,λ⋆) supp(m+). That is not so trivial since

in general, m
∗
⇀ m⋆ does not imply that (m)+

∗
⇀ m⋆

+. However, let x ∈ suppm⋆
+ and

r > 0; a fundamental property of the positive part (see [Bou07a, Sec. III.5 and IV.1]) is
that

m⋆
+(BX(x, r)) = sup

{∫
X
ψdm⋆ | ψ ∈ C0(X), 0 ⩽ ψ ⩽ 1, suppψ ⊆ BX(x, r)

}
. (5.12)

Choose ψ as above such that
∫
X ψdm

⋆ ⩾ 1
2m

⋆
+(B(x, r)) > 0. By the continuity of the

map

m 7→
∫
X
ψdm (5.13)

and the fact that m
∗
⇀m⋆ as (λ, y)→ (λ⋆, y⋆), there is a neighborhood W of (λ⋆, y⋆) in

]0,+∞[×H such that for all (λ, y) ∈ W,∫
X
ψdm ⩾

∫
X
ψdm⋆ − 1

4
m⋆

+(BX(x, r)) ⩾
1

4
m⋆

+(BX(x, r)) > 0.
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Hence,
(
supp(m⋆

+)
)
∩BX(x, r) ̸= ∅. In other words, we have proved that

lim
(λ,y)→(y⋆,λ⋆)

d(x, supp(m+)) = 0, (5.14)

which is the claimed result.

Remark 5.1. Since all the sets are contained in the same compact set K, the outer
and inner limit formulations (5.8) and (5.9) are uniform [RW98, Th. 4.10], that is,
respectively

lim
(λ′,y′)→(y,λ)

(
sup

x∈supp(m′)±

dX(x, sat±(m))

)
= 0, (5.15)

lim
(λ′,y′)→(y,λ)

(
sup

x∈supp(m)±

dX(x, supp(m
′)±)

)
= 0. (5.16)

As sat+ η and sat− η are disjoint, we see that in a sufficiently small neighborhood of
(λ, y), the respective supports of (m′)+ and (m′)− are disjoint, each in a neighborhood
of sat+ η or sat− η respectively.

The above proposition has a counterpart in the low noise regime.

Proposition 5.2 ([13]). Let y0 ∈ H such that (D(0, y0)) has solutions, let p0 be its

minimal-norm solution, and let η0
def.
= Φ∗p0. For (λ, y) ∈ ]0,+∞[×H, denote by m any

solution to (P(λ, y)). Then, there are values λ0 > 0, α0 > 0 such that

(sat± η0) ∪

 ⋃
λ∈]0,λ0[

∥y−y0∥H/λ⩽α0

supp(m±)

 ⊆ K, (5.17)

and

lim sup
(λ,y)→(0,y0)

∥y−y0∥H/λ→0+

(
supp±m

)
⊆ (sat± η0) . (5.18)

If, moreover, the solution m⋆ to (P(0, y0)) is unique, then

suppm⋆
± ⊆ lim inf

(λ,y)→(0,y0)
∥y−y0∥H/λ→0+

(supp(m±)) . (5.19)

The proof follows from Proposition 3.8 and straightforward adaptations of Proposi-
tion 5.1, hence we omit it.

5.1.3 Convergence of level lines in total gradient variation regulariza-
tion

In the case of total variation regularization (R = R(BV), see Section 3.2.3), a similar
convergence of the level lines holds, but the proof requires more work. We consider the
problems (in dimension d = 2):

min
u∈L2(R2)

∫
R2

|Du|+ 1

2λ
∥Φu− y∥2H , (P(BV)(λ, y))

min
u∈L2(R2)

∫
R2

|Du| s.t. Φu = y. (P(BV)(0, y))
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The key property when studying the level lines and the support of the gradient is that
for u ∈ L2(R2) with finite total variation and η ∈ ∂R(BV)(u), see [6, Prop. 4],

Supp(Du) =
⋃{

∂∗U (t) | t ∈ R \ {0}
}

⊆ sat(η)
def.
=
⋃{

∂∗E | |E| < +∞, P (E) = ±
∫
E
η

}
,

(5.20)

where the level sets are U (t) def.
= {u ⩾ t} for t ⩾ 0, U (t) def.

= {u ⩽ t} for t < 0, and ∂∗U (t) is
their reduced boundary. Note that ∂∗U (t) is dense in the topological boundary for some
suitable choice of Lebesgue representative (see [Giu84, Ch. 3 and 4]).

In other words (see Proposition 3.1) the function (−η) (resp. η) is a variational
curvature for U (t) for t > 0 (resp. t < 0). The strategy is thus to exploit the geometric
variational problems (3.29) and (3.30), and we begin with Lemma 5.1 below which

provides uniform bounds for sets which have given variational curvatures. Let β2
def.
= 2
√
π

denote the isoperimetric constant, in the sense that β2
√
|E| ⩽ P (E) for all E ⊆ R2 with

finite perimeter and finite measure.

Lemma 5.1 ([6, Lem. 2, 3]). Let A ⊆ L2(R2) be nonempty and compact, and let
Ã ⊆

(
∂R(BV)(0)

)
∩ (A+BL2(0, ρ)), where 0 < ρ < 1

2β2. Let

E def.
=

⋃
η∈Ã,
ε=±1

{
E ⊆ R2 | |E| < +∞, ε

∫
E
η = P (E)

}
. (5.21)

Then,

0 < inf
E∈E

P (E) ⩽ sup
E∈E

P (E) < +∞, (5.22)

0 < inf
E∈E
|E| ⩽ sup

E∈E
|E| < +∞, (5.23)

and there exists N0 ∈ N such that every E ∈ E has at most N0-connected components.
Eventually, the family E is contained in a ball, i.e. there exists R > 0 such that

∀E ∈ E , E ⊆ B(0, R). (5.24)

As in the case of Radon measures, the path λ′ 7→ p(λ′, y) has compact range on sets

of the form I = [λ− κ, λ+ κ] or I = [0, λ0], hence A def.
= {Φ∗p(λ′, y) | λ′ ∈ I } is compact.

This ensures the equiintegrability of order 2 on the dual certificates1, which is crucial
for all these bounds. Moreover, the nonexpansiveness of the proximity operators allows
to control the collection Ã of certificates Φ∗p(λ′, y′) for y′ in a neighborhood of y.

Not only does this property provide bounds on the level sets E ∈ E , but it also
provides some form of regularity for the solutions to the prescribed curvature problem,
as shown in the following lemma. While it stems from [GMT93], in [6, Prop. 7] we have
simply emphasized its uniformity over a family of curvatures. It is powerful insofar as
it allows us to obtain Hausdorff convergence from the mere L1 convergence.

1Following [Bou07a, Sec. IV.5.11], we say that a family A ⊆ L2(R2) is equiintegrable of order 2 if

• for all ε > 0, there exists δ > 0 such that for all measurable E ⊆ R2 with |E| ⩽ δ, supη∈A
∫
E
|η|2 ⩽

ε,

• for all ε > 0, there exists a compact set K ⊆ R2 such that supη∈A
∫
R2\K |η|2 ⩽ ε.
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Lemma 5.2 ([6, Prop. 7],[GMT93, Lem 1.2]). If the assumptions of Lemma 5.1 hold,
then E is uniformly regular, in the sense that there exists r0 > 0 such that,

∀E ∈ E ,∀x ∈ ∂E, ∀r ∈ ]0, r0[ , min

[ |B(x, r) ∩ E|
|B(x, r)| ,

|B(x, r) \ E|
|B(x, r)|

]
⩾

1

16
. (5.25)

It is thus possible to prove the main stability result of this section, which is a variant
of [6, Thm. 2].

Proposition 5.3. Let (λ⋆, y⋆) ∈ ]0,+∞[ × H and let p⋆ be the unique solution to

(D(λ, y)), and let η⋆
def.
= Φ∗p⋆. For (λ, y) ∈ ]0,+∞[ × H, denote by u any solution

to (P(λ, y)). Then, there is a neighborhood W of (λ, y) in ]0,+∞[ × H and a radius
R > 0 such that

(sat η⋆) ∪

 ⋃
(λ,y)∈W

supp(Du)

 ⊆ B(0, R), (5.26)

and

lim sup
(λ,y)→(y⋆,λ⋆)

(supp(Du)) ⊆ (sat η⋆) . (5.27)

If, moreover, the solution u⋆ to (P(λ⋆, y⋆)) is unique, then

supp(Du⋆) ⊆ lim inf
(λ,y)→(y⋆,λ⋆)

(supp(Du)) .

and there is a sequence ((λn, yn))n∈N with (λn, yn)→ (λ, y) such that

for a.e. t ∈ R, lim
n→∞

∣∣∣U⋆(t)△U (t)
n

∣∣∣ = 0, lim
n→∞

∂U (t)
n = ∂U⋆(t). (5.28)

A similar result holds in the low noise regime,

Proposition 5.4 ([6, Thm. 2, extended]). Let y0 ∈ H such that (D(0, y0)) has solutions,
let p0 be its minimal-norm solution, and let η0

def.
= Φ∗p0. For (λ, y) ∈ ]0,+∞[×H, denote

by u any solution to (P(λ, y)). Then, there are values λ0 > 0, α0 > 0 and a radius R > 0
such that

(sat± η0) ∪

 ⋃
λ∈]0,λ0[

∥y−y0∥H/λ⩽α0

supp(Du)

 ⊆ B(0, R), (5.29)

and

lim sup
(λ,y)→(0,y0)

∥y−y0∥H/λ→0+

(supp(Du)) ⊆ (sat η0) . (5.30)

If, moreover, the solution u⋆ to (P(0, y0)) is unique, then

supp(Du⋆) ⊆ lim inf
(λ,y)→(0,y0)

∥y−y0∥H/λ→0+

(supp(Du)) .

and there is a sequence ((λn, yn))n∈N with (λn, yn)→ (0, y0) such that ∥y0 − yn∥H /λn →
0+ and

for a.e. t ∈ R, lim
n→∞

∣∣∣U⋆(t)△U (t)
n

∣∣∣ = 0, lim
n→∞

∂U (t)
n = ∂U⋆(t). (5.31)
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Figure 5.2 shows the experiments performed in [6, Sec. 10] in a denoising experiment,
at low noise and low regularization λ. The convergence of the level lines predicted in
Proposition 5.4 eventually appears, but the ratio ∥y−y⋆∥

λ needs to be quite small. In the
third row, sat(η0) is the saturation set of the minimal-norm certificate η0 (see Chapter 4).
In these examples, we see that the saturation set is “thick”, in the sense that it is the
union of the boundaries of infinitely many sets. The face exposed by η0 is therefore
infinite-dimensional (see the discussion of toy examples in Section 4.4).

Original u0 Input y′ = u0 + w sat(η0) λ′ = 0.1 λ′ = 0.15 λ′ = 0.2

Figure 5.2: Display of the solution u′ of a discretization of problem P(BV)(λ′, y′) in
the denoising case (Φ is the identity) for several values of λ′. The blue curves on top u′

of indicate the level sets of u′ (computed using bilinear interpolation on the grid). The
blue curves in the third row indicate an approximation of the boundary of the extended
support sat(η0).
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5.2 Support stability on a continuous domain

So far, we have obtained the Hausdorff (or Kuratowski) convergence of the support
or the level lines of the solutions. We want to go further and see if the support has
the same structure as the original signal. In other words, we want to understand if
the representation predicted in Chapter 1 is stable. We focus here on the sparse spikes
recovery problem ((P(TV)(λ, y)) in Section 3.2.1). We need to clarify the meaning of
support stability (or exact support recovery) in this context. Since the domain X is
continuous, one cannot expect to recover exactly the original support of the solution if
the parameter τ = (λ, y) is perturbed. But one can hope to recover a measure with the
same number of Dirac masses, which converge in locations and amplitudes to those of
the original solution.

5.2.1 A counterexample to support stability

We consider in this section the following setting

X = T, H = R3, φ(x) =

 cos(2πx)
sin(2πx)

−f(cos(2πx))

 , (5.32)

where f is a function which satisfies the following assumptions.

Assumptions 5.1. The function f : [−1, 1] → R is continuous, strictly convex, differ-
entiable, and

f ′(1) = 0, f(1) = −1, f(−1) < 0. (5.33)

Note that Assumptions 5.1 imply that f ′(c) < 0 for all c ∈ ]−1, 1[ hence f is (strictly)
decreasing and −1 ⩽ f(c) < 0 (with equality only at 1).

As a consequence, the set

C
def.
= {Φm | |m| (X) ⩽ 1 } = conv {±φ(x) | x ∈ T } (5.34)

has 0 in its interior. Figure 5.3 shows the set C for f(c) = 1
8(c− 1)2 − 1.

Theorem 5.1. Let λ ⩾ 0, and t ∈ T. Then, for

yt =

 cos(2πt)
0

−f(cos(2πt))

+
λ

f∗(f ′(cos(2πt)))

f ′(cos(2πt))0
1

 , (5.35)

where f∗ denotes the Legendre-Fenchel conjugate of f , the unique solution to (P(λ, yt))
is given by

mt =


1
2 (δt + δ−t) for t /∈ {0, 12} (mod 1),

δ0 for t = 0 (mod 1),

δ1/2 for t = 1
2 (mod 1).

(5.36)

In particular, the solution for t = 0 is a single Dirac mass, but for t arbitrarily close
to 0, the solution has two Dirac masses.
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φ(0)1
2(φ(t) + φ(−t))

C

yt

pt

Figure 5.3: The set C = conv {±φ(x) | x ∈ T }. The vectors pt are normal to C at
Φmt, which guarantees the optimality of mt for (P(λ, yt)).
Proof. Let us consider the following vector

pt
def.
=

1

f∗(f ′(cos(2πt)))

f ′(cos(2πt))0
1

 (5.37)

Setting mt as in (5.36), we see that yt = Φmt + λpt. If we prove that η
def.
= Φ∗pt ∈

∂R(TV)(mt), we obtain that 0 ∈ λ∂R(TV)(mt) +Φ∗(Φmt − yt), hence mt is a solution to
(P(λ, yt)).

With the notation of Lemma 5.3 below, we observe that, for all x ∈ T,

η(x)
def.
= ⟨pt, φ(x)⟩ =

1

f∗(f ′(cos(2πt)))

(
f ′(cos(2πt)) cos(2πx)− f(cos(2πx))

)
(5.38)

= gcos(2πt)(cos(2πx)), (5.39)

so that by Lemma 5.3 below, |⟨pt, φ(x)⟩| < 1 except for cos(2πx) = cos(2πt), in which
case ⟨pt, φ(x)⟩ = 1. In other words, Φ∗pt ∈ ∂R(TV)(mt) andmt is a solution to (P(λ, yt)).
Since Φ has full rank on the set of atoms of mt, the measure mt is the unique solution
to (P(λ, yt)).

The following lemma is useful to prove that the dual certificate is tight.

Lemma 5.3. Let f : [−1, 1]→ R such that Assumptions 5.1 hold, and let c0 ∈ ]−1, 1].
Then f∗(f ′(c0)) > 0 and the function gc0 : c 7→ (f ′(c0)c− f(c)) /f∗(f ′(c0)) satisfies

gc0(c0) = 1, |gc0(c)| < 1 for all c ∈ [−1, 1] \ {c0}.

Proof. The first claim follows from f∗(f ′(c0)) = supc∈[−1,1] (f
′(c0)c− f(c)) ⩾ −f(0) > 0.

Moreover, the strictly concave function gc0 satisfies g′c0(c0) = 0 hence its unique
maximizer is c0, with gc0(c0) = 1.

Eventually, we note that for all c ∈ [−1, 1], f∗(f ′(c0)) ⩾ f ′(c0)(−c)− f(−c). Hence

f ′(c0)c− f(c) ⩾ −f∗(f ′(c0))− f(c)− f(−c) > −f∗(f ′(c0)) (5.40)

so that gc0(c) > −1.
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The above example shows that the solution for y0, which has a single Dirac mass,
is approximated fot t ̸= 0 with a solution with two Dirac masses: it suggests that, in
general, we cannot expect support stability. A key observation here is that the dual
certificate has a vanishing second derivative, ⟨p0, φ′′(0)⟩ = 0. In the next section, we
show that preventing such cases enables support stability.

5.2.2 Non-degenerate certificates for support stability

Now, we go back to a more general setting where X and φ satisfy Assumptions 4.1.
We have seen in Section 4.3.1 the notion of non-degenerate certificate and how it

allows us to compute a minimal-norm certificate using linearization. We note now that
this notion is stable.

Notation: Given pairwise distinct positions x1, . . . , xs ∈ X̊ and nonzero values
a1, . . . , as ∈ R \ {0}, we write m(a,x)

def.
=
∑s

i=1 aiδxi .

Lemma 5.4. Let x⋆1, . . . , x
⋆
s ∈ X̊ be pairwise distinct, a1, . . . , as ∈ R \ {0}. Assume that

Φ∗p⋆ is a non-degenerate dual certificate for m(a⋆,x⋆) =
∑s

i=1 a
⋆
i δx⋆i .

Then, there exists ε > 0, a neighborhood P of p⋆ in H such that for all (xi)
s
i=1 ∈∏s

i=1BX(x
⋆
i , ε), all p ∈ P such that{

⟨p, φ(xi)⟩ = sign(a⋆i )〈
p, φ′(xi)

〉
= 0

(5.41)

the function Φ⋆p is a non-degenerate dual certificate for m(a,x) =
∑s

i=1 aiδxi for all
a ∈ (R \ {0})s such that sign(a) = sign(a⋆).

Proof. Let K ⊆ X̊ be a compact neighborhood of {x⋆1, . . . , x⋆s}. Since φ ∈ C 2(X̊;H), we
have supx∈K ∥φ′′(x)∥ < +∞, and the mapping

(H×K) −→ R× Sd(R) (5.42)

(p, x) 7−→
(
⟨p, φ(x)⟩ ,

〈
p, φ′′(x)

〉)
, (5.43)

is continuous. Hence, there is a neighborhood of {x⋆1, . . . , x⋆s} (say, of the form
⋃s
i=1BX(x

⋆
i , ε),

with ε > 0 small enough so that it is contained in K) and a neighborhood P ′ of p⋆ in
which x and p satisfy (sign(a⋆i ) ⟨p, φ(x)⟩) > 1/2 and (sign(a⋆i ) ⟨p, φ′′(x)⟩) ≺ 0.

As a result, in each ballBX(x
⋆
i , ε) and for all p ∈ P ′, the function x 7→ (sign(a⋆i ) ⟨p, φ(x)⟩)

is strictly concave; if p satisfies (5.41), then

∀x ∈ BX(x⋆i , ε), 1/2 < (sign(a⋆i ) ⟨p, φ(x)⟩) ⩽ 1,

with equality in the right-hand side only for x = x⋆i .
Additionally, since Φ∗p⋆ ∈ C0(X), there is a compact set K ′ such that |⟨p⋆, φ(x)⟩| <

1/2 for all x ∈ X \K ′. Since the set K ′′ def.
= K ′ \⋃s

i=1BX(x
⋆
i , ε) is compact,

α
def.
= inf

x∈K′′
(1− |⟨p⋆, φ(x)⟩|) > 0.

Thus, by the continuity of p 7→ Φ∗p fromH to C0(X) (see (3.11)), there is a neighborhood
P ⊆ P ′ of p⋆ such that

sup
x∈X\

⋃s
i=1BX(x⋆i ,ε)

|⟨p, φ(x)⟩| < 1.

Gathering everything, we see that Φ∗p is a non-degenerate dual certificate for all
m(a,x) such that sign(a) = sign(a⋆).
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Support stability for λ⋆ > 0. The second derivative and the non-degeneracy as-
sumption are crucial to ensure the stability of the structure of the solutions. We begin
with the case of λ⋆ > 0.

Proposition 5.5. Let (λ⋆, y⋆) ∈ ]0,+∞[×H, with y⋆ = Φm⋆ for some m⋆ =
∑s

i=1 a
⋆
i δx⋆i

with x⋆1, . . . , x
⋆
s ∈ X̊ pairwise distinct, a⋆1, . . . , a

⋆
s ∈ R \ {0}. Let p⋆ be the unique solution

to (D(λ⋆, y⋆)), and assume that η⋆
def.
= Φ∗p⋆ is non-degenerate and that Φx⋆ has full rank.

For (λ, y) ∈ ]0,+∞[×H, denote by m any solution to (P(λ, y)).
Then, for all ε > 0 small enough, there is a neighborhood U of (λ⋆, y⋆) in ]0,+∞[×H

such that for all (λ, y) ∈ U ,

• m has exactly s spikes, m =
∑s

i=1 aiδxi, with xi ∈ BX(x⋆i , ε) and |ai − a⋆i | ⩽ ε for
all i ∈ {1, . . . , s},

• p is a non-degenerate dual certificate for m.

• m is the unique solution to (P(λ, y)).

Sketch of Proof. By Proposition 3.6, we see thatm⋆ is the unique solution to (P(λ⋆, y⋆)),
hence the solutions to (P(λ, y)) must converge to m⋆ as (λ, y)→ (λ⋆, y⋆).

For ε > 0 smaller than the value given in Lemma 5.4, Proposition 5.1 implies that m
concentrates its mass in each BX(x

⋆
i , ε) (with the sign of a⋆i ). But Lemma 5.4 ensures

that the dual certificate Φ∗p saturates at exactly one point in each BX(x
⋆
i , ε), hence m

has the predicted structure.

The fact that m is the unique solution follows from Φx having full rank and Φ∗p
being nondegenerate.

Once the correct structure for m is obtained, the smoothness of the components ai,
xi can be obtained using the implicit function theorem. Recalling from (5.36) that the
dual solution should be equal to p(λ,y) =

1
λ(y − Φm) and should satisfy (5.41), we may

introduce the function E : (Rs ×Xs)× (R×H)→ R2s,

E((a, x), (λ, y)) =
(
Φ∗
x(Φxa− y) + λs0
Φ′
x
∗(Φxa− y)

)
= Γ∗

x(Φxa− y) + λ

(
s⋆

0

)
. (5.44)

By the optimality condition, for each (λ, y) in the neighborhood U , the solution m(a,x)

should satisfy E((a, x), (λ, y)) = 0.

The Jacobian of E is given by (see [13] in dimension 1, and [PP19] in dimension d)

∂E
∂(a, x)

= (Γ∗
xΓx)

(
Id 0
0 diag(a⋆)⊗ Id

)
+

(
0 diag(Φ′

x
∗(Φxa− y))

0 diag(Φ′′
x
∗(Φxa− y))

)
(5.45)

where ⊗ denotes the Kronecker product. Observing that it is invertible, one obtains the
following result, stated for λ⋆ > 0 in [PP19] and similar to the low noise result λ⋆ = 0
studied in [13] and below.

Theorem 5.2 ([PP19]). Let x⋆1, . . . , x
⋆
s ∈ X̊ be pairwise distinct, a⋆1, . . . , a

⋆
s ∈ R \ {0}

and assume that Φ∗p⋆ is non-degenerate for m(a⋆,x⋆), where p
⋆ = 1

λ(Φx⋆a
⋆−y⋆). Assume

moreover that Γx⋆ has full rank.

Then, there is a neighborhood W of (y⋆, λ⋆) in H × R in which the unique solution
to (P(TV)(λ, y)) is m(a,x), where (a, x) is the unique solution to E((a, x), (λ, y)) = 0.

Moreover, the mapping S : (y, λ) 7−→ (a, x) is C 1 on W, with S(y⋆, λ⋆) = (a⋆, x⋆).
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The low noise regime. The case λ⋆ = 0 requires a bit more care, because the support
stability does not hold in a neighborhood of (0, y⋆) but on a low noise regime of the form

Ωλ0,α0

def.
= { (λ, y) ∈ R×H | 0 < λ ⩽ λ0, ∥y − y⋆∥H ⩽ α0λ } (5.46)

for some λ0, α0 > 0. Still, the line of proof is similar to the case λ⋆ > 0, and it is possible
to prove the following.

Proposition 5.6 ([13]). Let x⋆1, . . . , x
⋆
s ∈ X̊ pairwise distinct, a⋆1, . . . , a

⋆
s ∈ R \ {0}

and define m⋆ =
∑s

i=1 a
⋆
i δx⋆i and y⋆ = Φm⋆. Assume that the non-degenerate source

condition (NDSC) holds, i.e. (D(0, y⋆)) has solutions, and its minimal-norm solution p0
yields a non-degenerate dual certificate η0

def.
= Φ∗p0 for m⋆. Assume moreover that Φx⋆

has full rank. For (λ, y) ∈ ]0,+∞[×H, denote by m any solution to (P(λ, y)).
Then, for all ε > 0, there is a low noise regime Ωα0,λ0 for some α0, λ0 > 0 such that

for all (λ, y) ∈ Ωα0,λ0,

• m has exactly s spikes, m =
∑s

i=1 aiδxi, with xi ∈ BX(x⋆i , ε) and |ai − a⋆i | ⩽ ε for
all i ∈ {1, . . . , s},

• p is a non-degenerate dual certificate for m.

• m is the unique solution to (P(λ, y)).

Again, the regularity of the positions and amplitudes can be obtained by invoking
the implicit function theorem.

Theorem 5.3 ([13]). Under the assumptions of Proposition 5.6, if Γx⋆ has full rank,
there is a neighborhood W of (y⋆, 0) in H× R, a neighborhood V of (a⋆, x⋆) in Rs ×Xs

and a C 1-mapping S : (y, λ) 7−→ (a, x) from W to V such that

• for all (a, x) ∈ V, all (y, λ) inW, E((a, x), (λ, y)) = 0 if and only if (a, x) = S(y, λ)
(in particular S(y⋆, 0) = (a⋆, x⋆)),

• there is a low noise regime Ωα0,λ0 for some α0, λ0 > 0 such that mS(y,λ) is the

unique solution to (P(TV)(λ, y)) for all (y, λ) ∈ Ωα0,λ0.

5.3 Support stability for the Lasso problem on discrete
grids

5.3.1 The existence of a tight dual certificate implies support recovery

Now, we turn to the Lasso on a finite grid (see Section 3.2.2). As it can be seen as
the Blasso with X replaced with the finite set G, all the results of Section 5.1 also hold
for (P(ℓ1(G))(λ, y)) and (P(ℓ1(G))(0, y)).

Furthermore, as the set G is finite, the inclusion holds not only in the limit, but also
locally around (λ, y) (see an illustration in Figure 5.4). We thus obtain:

Proposition 5.7. Let (λ⋆, y⋆) ∈ ]0,+∞[×H, let p⋆ be the unique solution to (D(λ, y)),
and let η⋆

def.
= Φ∗p⋆. For (λ, y) ∈ ]0,+∞[ × H, denote by m any solution to (P(λ, y)).

Then, there is a neighborhood U of (λ⋆, y⋆) in ]0,+∞[×H such that

∀(λ, y) ∈ U, (supp(m±)) ⊆ (sat± η
⋆) . (5.47)
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If, moreover, the solution m⋆ to (P(λ⋆, y⋆)) is unique, then U can be chosen so that

∀(λ, y) ∈ U, suppm⋆
± ⊆ (suppm±) .

In particular, if sat± η
⋆ = supp(m⋆

±) (i.e. η
⋆ is tight for m⋆)

∀(λ, y) ∈ U, suppm⋆
± = (suppm±) .

p

y y⋆

p⋆

φ(0)
1
2(φ(t) + φ(−t))

C

Figure 5.4: For y close enough to y⋆, the solution in the discrete problem (P(ℓ1(G))(λ, y))
the same support as for y = y⋆, contrary to the continuous case (see Section 5.2.1)

Similarly, for low regularization and low noise, we have:

Proposition 5.8 ([Fuc04],[13]). Let y0 ∈ H, let p0 be the minimal-norm solution2 to

(D(0, y0)), and let η0
def.
= Φ∗p0. For (λ, y) ∈ ]0,+∞[ × H, denote by m any solution to

(P(λ, y)). Then, there are values λ0 > 0, α0 > 0 such that

∀(λ, y) ∈ Ωα0,λ0 ,
(
supp±m

)
⊆ (sat± η0) . (5.48)

If, moreover, the solution m⋆ to (P(0, y0)) is unique, we may choose λ0 and α0 so that

∀(λ, y) ∈ Ωα0,λ0 , suppm⋆
± ⊆ (supp(m±)) . (5.49)

In particular, if sat± η0 = supp(m⋆
±) (i.e. η0 is tight for m⋆)

∀(λ, y) ∈ Ωα0,λ0 , suppm⋆
± = (supp(m±)) .

Computing explicitly these neighborhoods is possible thanks to the polyhedral nature
of the regularization, and it is the key to the low noise analysis in [Fuc04] and homotopy
methods like [OPT00]. In the next section, we examine the size of such neighborhoods
in the case of thin grids.

5.3.2 The Lasso on thin grids

We begin with the framework of Section 3.2.1 of a locally compact separable metric
space. We consider a sequence of grids (Gn)n∈N where Gn ⊆ X and we solve the problems

min
m∈M(X)

∥m∥ℓ1(Gn)
+

1

2λ
∥Φm− y∥2H , (P(ℓ1(Gn))(λ, y))

min
m∈M(X)

∥m∥ℓ1(Gn)
s.t. Φm = y. (P(ℓ1(Gn))(0, y))

2As the problem is finite-dimensional, the dual of the Lasso problem always has a solution.
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We prove below the Γ-convergence of the discretized problem towards the Blasso. To-
gether with the equicoercivity of the functionals, that property ensures that any sequence
(mn)n∈N of minimizers of (P(ℓ1(Gn))(λ, y)) has accumulation points as n→ +∞, and that
those accumulation points are minimizers of (P(TV)(λ, y)). Such a Γ-convergence was
proved in Rd in [Hei14] using a slightly different discretization, and in [15] in the one-
dimensional torus.

Remark 5.2. As M(X), equipped with the weak-* topology, does not satisfy the first
axiom of countability (the existence of a countable base of neighborhoods at each point),
we work below on a bounded subset, for instance

B
def.
=

{
m ∈M(X) | |m| (X) ⩽

1

2λ
∥y∥2H

}
, (5.50)

in which the weak-* topology is metrizable [Bré11, Thm. 3.28]. We may therefore use
the sequential definition of Γ-convergence (see [DM93] or Appendix C). Notice that B
contains all the minimizers of (P(ℓ1(Gn))(λ, y)) and (P(TV)(λ, y)), so that this restriction
does not change the solutions of the problems.

Proposition 5.9. Assume that φ ∈ C (X;H) (where H is equipped with the strong topol-
ogy), and let (Gn)n∈N be an increasing family of finite subsets of X, Gn ⊆ Gn+1 ⊆ X, such
that

⋃
n∈N Gn is dense in X. Then, (P(ℓ1(Gn))(λ, y)) Γ-converges towards (P(TV)(λ, y)),

in the sense that for all m ∈ B,

• for all sequence (mn)n∈N with suppmn ⊆ Gn such that mn
∗
⇀ m (in the weak-*

topology), mn ∈ B, and(
|m| (X) +

1

2λ
∥Φm− y∥2H

)
⩽ lim inf

n→∞

(
∥m∥ℓ1(Gn)

+
1

2λ
∥Φm− y∥2H

)
, (5.51)

• there exists a sequence (mn)n∈N with suppmn ⊆ Gn such that mn
∗
⇀ m (in the

weak-* topology), mn ∈ B, and(
|m| (X) +

1

2λ
∥Φm− y∥2H

)
⩾ lim sup

n→∞

(
∥m∥ℓ1(Gn)

+
1

2λ
∥Φm− y∥2H

)
. (5.52)

� On the other hand, the problems (P(ℓ1(Gn))(0, y)) generally do not Γ-converge
towards Equation (P(TV)(0, y)).

Proof. The “liminf inequality” follows from the lower semi-continuity of the different
terms of the energy and is identical to [15]. We focus here on the “limsup inequality”
and the construction of a recovery sequence, since we cannot rely on a canonical partition
of X.

Let n ∈ N, and Gn = {g1, . . . , gsn}, we define for 1 ⩽ j ⩽ sn the “Voronoi cells”,

V
(n)
j

def.
= {x ∈ X | ∀i < j, dX(x, gi) > dX(x, gj) and ∀i > j, dX(x, gi) ⩾ dX(x, gj)) } .

(5.53)

The collection {V (n)
j }snj=1 forms a Borel partition of X. Moreover, for any compact set

K ⊆ X,

lim
n→∞

max
1⩽j⩽sn

diam
(
V

(n)
j ∩K

)
= 0. (5.54)



5.3. SUPPORT STABILITY FOR THE LASSO PROBLEMONDISCRETE GRIDS115

➢ Indeed, assume by contradiction that there is ε > 0 and an infinite set of indices

n such that there exists xn1 , x
n
2 ∈ V (n)

j(n) ∩K with dX(xn1 , x
n
2 ) ⩾ ε. We may extract

a subsequence along which xn1 → x∗1, x
n
2 → x∗2 for some x∗1, x

∗
2 ∈ K such that

dX(x∗1, x
∗
2) ⩾ ε. For n large enough, xn1 ∈ B(x∗1, ε/4), x

n
2 ∈ B(x∗2, ε/4) and by

density of
⋃

ℓ∈N Gℓ there are some grid points g, g′ ∈ Gn such that g ∈ B(x∗1, ε/4)
and g′ ∈ B(x∗2, ε/4).

But then, if gj(n) denotes the center of the common Voronoi cell to xn1 and xn2 ,

max
(
dX(xn1 , gj(n)), dX(xn2 , gj(n))

)
⩾

1

2

(
dX(xn1 , gj(n)) + dX(xn2 , gj(n))

)
⩾

1

2
dX(xn1 , x

n
2 )

⩾ ε/2.

On the other hand

dX(xn1 , g) ⩽ dX(xn1 , x
∗
1) + dX(x∗1, g) < ε/2,

dX(xn2 , g
′) ⩽ dX(xn2 , x

∗
2) + dX(x∗2, g

′) < ε/2,

so xn1 is strictly closer to g than to gj(n), or x
n
2 is strictly closer to g′ than to gj(n).

That contradicts the fact that both xn1 and xn2 belong to the Voronoi cell of center
gj(n). As a result (5.54) holds.

Now, let m ∈ M(X), and define mn
def.
=
∑sn

i=1 ajδgj , where aj = m(V
(n)
j ). Let ε > 0

and choose a compact set K ⊆ X such that |m| (X \K) ⩽ ε. Then,

∥Φm− Φmn∥H =

∥∥∥∥∫
X
φdm−

∫
X
φdmn

∥∥∥∥
H

⩽

∥∥∥∥∥
sn∑
n=1

∫
V

(n)
j ∩K

(φ(x)− φ(gj))dm(x)

∥∥∥∥∥
H

+

∥∥∥∥∥
sn∑
n=1

∫
V

(n)
j \K

(φ(x)− φ(gj))dm(x)

∥∥∥∥∥
H

⩽
sn∑
n=1

∫
V

(n)
j ∩K

∥(φ(x)− φ(gj))∥H d |m| (x) + 2 ∥φ∥∞ |m| (X \K)

⩽ ωφ

(
max

1⩽j⩽sn
diam

(
V

(n)
j ∩K

))
|m| (X) + 2 ∥φ∥∞ ε

where ωφ denotes the modulus of continuity of φ on the compact K. As both terms can
be made arbitrarily small as n → +∞, we deduce that Φmn → Φm strongly in H. By
similar computations, replacing φ with a test function, one may prove that mn converges
to m in the weak-* topology.

Eventually, we note that |mn| (X) ⩽ |m| (X), so that

lim
n→∞

(
λ |mn| (X) +

1

2
∥Φmn − y∥2H

)
= λ |m| (X) +

1

2
∥Φm− y∥2H . (5.55)

Therefore, we have the “convergence of the minimizers” towards those of the contin-
uous problem. On the dual side, regarding the problems

min
p∈H

∥∥∥y
λ
− p
∥∥∥
H

s.t. max
x∈Gn

|⟨φ(x), p⟩H| ⩽ 1. (Dℓ1(Gn)(λ, y))

sup
p∈H
⟨y, p⟩ s.t. max

x∈Gn

|⟨φ(x), p⟩H| ⩽ 1. (Dℓ1(Gn)(0, y))
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we also have convergence of the minimizers (under some assumptions for λ = 0). The
proofs given in [13] extend immediately to our setting.

Proposition 5.10 ([13, Prop. 9 and 10]). Under the assumptions of Proposition 5.9,

1. The unique solution pλ,n to (Dℓ1(Gn)(λ, y)) converges to the solution pλ,∞ of (D(TV)(λ, y)).

2. If y = Φm for some measure m with suppm ⊆ Gn for all n large enough, and if m
satisfies the source condition, then the minimal-norm solution p0,n to (Dℓ1(Gn)(0, y))
converges (strongly in H) towards the minimal-norm solution p0,∞ to (D(TV)(0, y)).

5.3.3 Support (in)stability on thin grids

Now we focus on a simpler setting, namely the one used in Section 4.2.2. We consider
X = T and a sequence of grids (Gn)n∈N such that Gn ⊆ Gn+1 ⊆ X and that the grids are
regular

Gn def.
= { khn (mod 1) | 0 ⩽ k ⩽ Gn − 1 } , where hn

def.
= 1/Gn. (5.56)

We assume that y⋆ = Φm⋆, with m⋆ =
∑

x∈I a
⋆
xδx, with I ⊆ Gn for n large enough.

The next theorem states that, at low noise, the Lasso recovers twice the correct
number of spikes, with the same signs. This is illustrated by the experiments in Figure 5.5
(see [15] for more detail on the setup): provided ∥y − y⋆∥H /λ is small enough, each
original spike is correctly identified, but one of its immediate neighbor is also activated.

To make this statement precise, given a collection of shifts ε ∈ {−1, 1}I (to be fixed
below), we define a support J ⊆ Gn and a sign s ∈ {−1, 1}J by

J def.
= I ∪ {x+ εxhn | x ∈ I } (5.57)

∀x ∈ I, sx
def.
= sign(a⋆x), sx+εxhn

def.
= sx. (5.58)

Theorem 5.4. Assume that m⋆ satisfies the Non-Degenerate Source Condition and that
ΓI has full rank. Assume moreover that the components of the vector

ρ
def.
= (Φ′

I
∗ΠΦ′

I)
−1Φ′

I
∗Φ∗

I
† sign(aI), (5.59)

are all nonzero, where Π is the orthogonal projector onto (ImΦI)
⊥. Define εx

def.
=

sign(ax) sign(ρx) for all x ∈ I, and J and s by (5.57) and (5.58).
Then, there exists constants α0 > 0, λ0 > 0, such that for all (λ, y) such that

∥y − y⋆∥H ⩽ α0 and 0 < λ < λ0hn,

• The solution to (P(ℓ1(Gn))(λ, y)) is unique, with the form m =
∑

x∈J axδx where
sign(ax) = sx,

• The vector a is given by

aJ = a⋆J +ΦJ
†(y − y⋆)− λ(Φ∗

JΦJ )
−1s. (5.60)

Sketch of proof. The main idea of the proof is to construct the solution of the dual
problem (Dℓ1(Gn)(λ, y)) which is a projection problem. As in Chapter 4, the key is to
guess the correct face the solution belongs to, so as to linearize the problem. Since we
expect that at low noise, p(λ, y) lies on the same elementary face as p0,n we replace the
projection onto

Dn
def.
=

{
p ∈ H | max

x∈Gn

|⟨φ(x), p⟩H| ⩽ 1

}
, (5.61)
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Figure 5.5: Sparse spikes deconvolution results obtained by computing the solution aλ
of (P(ℓ1(Gn))(λ, y)). The color reflects the positions of the spikes on the 1-D grid. (a)
shows the input measure m⋆ and the observation y = y⋆+w. (b) shows how the solution
aλ (vertical axis) evolves with λ (horizontal axis). Each curve shows the evolution of
λ 7→ (aλ)i for indexes i ∈ {1, . . . , G− 1}. The color encodes the value of i. Plain curves
correspond to correct spikes locations i associated to the input measure m⋆. Dashed
curves correspond to incorrect spikes (not present in the input measure m0). (c,d) show
the results aλ obtained for two different values of λ.
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Figure 5.6: Illustration of the proof of Theorem 5.4. The solution set to the dual
problem Dℓ1(Gn)(0, y⋆) is the horizontal face, but the solution with minimal-norm p0,n
lies on the smaller face (edge) F0. For λ and ∥y − y′∥H /λ small enough, the projection
of y/λ onto Dn is PAff F0

( y
λ

)
.
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with the projection onto

Aff F0 = { p ∈ H | ∀x ∈ J , ⟨p, φ(x)⟩ = sx } . (5.62)

where sx = sign(ax) for x ∈ I and sx′ = sign(ax) for x
′ = x+ εxhn, x ∈ I (each spike is

doubled, with the same sign, see Section 4.2.2). Indeed, it is possible to prove that for
n large enough, the saturation set of p0,n is exactly J , with sign s (see [15, Appendix
D.2]).

Then, we write

y

λ
= PAff F0

(y
λ

)
+
(y
λ
− PAff F0

(y
λ

))
, (5.63)

and we check that PAff F0

( y
λ

)
∈ Dn and that

( y
λ − PAff F0

( y
λ

))
is in the normal cone

NDn

(
PAff F0

( y
λ

))
so as to conclude that we have found the solution to (Dℓ1(Gn)(λ, y)).

For the first point, we note that the projection onto an affine space yields

PAff F0

(y
λ

)
= (I − Φ∗

J
†Φ∗

J )
(y
λ

)
+Φ∗

J
†sJ (5.64)

= PKerΦ∗
J

(w
λ

)
+ p0,n (5.65)

since y
def.
= y⋆+w = (ΦIa

⋆
I + w) ∈ (w + ImΦJ ) and Φ∗

J
†sJ = p0,n. Then, one may check

that, since p0,n → p0,∞, for n large enough

∀x ∈ Gn \ J ,
∣∣∣〈PKerΦ∗

J

(w
λ

)
+ p0,n, φ(x)

〉∣∣∣ < 1 (5.66)

provided ∥w∥H /λ ⩽ C1, for some constant C1 > 0 independent of n. On the other hand,
by construction,

∀x ∈ J ,
〈
PKerΦ∗

J

(w
λ

)
+ p0,n, φ(x)

〉
= sx, (5.67)

so that PAff F0

( y
λ

)
∈ Dn.

For the second point, using (5.65) we get(y
λ
− PAff F0

(y
λ

))
= (Φ∗

J
†Φ∗

J )
(y
λ

)
− p0,n. (5.68)

Since (Φ∗
J
†Φ∗

J ) is the orthogonal projector onto ImΦI , we may write (Φ∗
J
†Φ∗

J )w =∑
x∈J wxφ(x). Moreover, since p0,n minimizes the square-norm over the constraint set

{ p ∈ H | ∀x ∈ I, ⟨p, sxφ(x)⟩ = 1, ⟨p, sxφ(x+ εxhn)⟩ ⩽ 1 } , (5.69)

we deduce that

p0,n =
∑
x∈J

pxφ(x), with sxpx ⩽ 0 for x ∈ J \ I. (5.70)

In fact, it is possible to prove that since ρ has all nonzero components, sxpx < 0 for
x ∈ J \ I and n large enough, with

min
x∈J\I

|px| ⩾
1

2hn
min
x∈I
|ρx| . (5.71)

As a result,(y
λ
− PAff F0

(y
λ

))
=

1

λ

∑
x∈I

(a⋆x + wx − λpx)φ(x) +
1

λ

∑
x∈J\I

(wx − λpx)φ(x) (5.72)
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with (wx − λpx)sx > 0 for x ∈ J \ I provided that(
max
x∈I
|wx|

)
<

(
min
x∈J\I

|px|
)

(5.73)

and (ax + wx − λpx)sx > 0 provided

min
x∈I
|ax| >

(
max
x∈I
|wx|

)
+ λ

(
max
x∈I
|px|
)
. (5.74)

It is possible to prove (see [15, Sec. 3.5]) that maxx∈I |wx| ⩽ C2
hn
∥w∥H and maxx∈I |px| ⩽

C3
hn

for some constants C2, C3 > 0 independent of n.
To summarize, we have proved that

y

λ
∈ PAff F0

(y
λ

)
+ cone { sxφ(x) | x ∈ J } (5.75)

and since the convex cone, cone { sxφ(x) | x ∈ J }, is precisely the normal coneNDn

(
PAff F0

( y
λ

))
(the constraints are qualified since they are affine), we deduce that PAff F0

( y
λ

)
is precisely

the solution to (Dℓ1(Gn)(λ, y)).
Eventually, we read the solution m in (5.72) as

m =
∑
x∈I

(a⋆x + wx − λpx) δx +
∑

x∈J\I

(wx − λpx)δx (5.76)

and we check that it satisfies the optimality condition.

5.4 Conclusion

5.4.1 Summary

In this chapter, we have studied the stability of the structure of the solutions of
variational problems. A first property which holds without any special assumption is
the convergence of the support or the level lines.

To obtain a real stability of the support, one needs to make additional assumptions:
in the case of the Blasso, the non-degeneracy of the second derivatives is a sufficient
(and, apparently, almost necessary) condition to ensure that each original spike is ap-
proximated by exactly one spike.

In the case of the (discrete) Lasso, the situation seems easier since having simply
a tight dual certificates provides the desired support stability. However, as we see, in
deterministic problems stemming from the physical world, such as the deconvolution
problem, that tightness of the minimal-norm certificate is rarely achieved. Spurious
spikes tend to appear, as we have pointed out on a one-dimensional framework.

5.4.2 Discussion with respect to prior works and comments

Discrete versus continuous support stability Compared to the case of theBlasso
(Section 5.2.2), we see that support stability is somewhat easier to obtain in the discrete
case (Section 5.3.1): it is sufficient to have a tight dual certificate (i.e. |η(x)| < 1 for
x ̸∈ suppm⋆), there is no need to consider second derivatives. However, as we have
seen in Section 5.3.3, that kind of stability result is a bit deceptive: it is a byproduct of
the polyhedral nature of the problem (see Figure 5.4). When the grid G gets thin, the
corresponding neighborhoods or low noise regimes become very small. The dictionary
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{φ(x)}x∈G becomes so coherent that the support stability domains vanish. When slightly
changing the parameters, the solutions move from one face to another.

Tracking those faces beyond the first one is tedious. On the contrary, the continuous
point of view the Blasso with a support which varies smoothly, provides fixed non-
trivial neighborhoods and low noise regimes, even with a highly coherent dictionary.

(In?)Stability on thin grids Let us mention the study in [Hei14] of the case of a
single unknown Dirac mass. The author proves that if the spike is not too far from a
gridpoint, the Lasso recovers one single Dirac mass, located at that grid point. If the
spike is in the middle region between two gridpoints, the Lasso reconstructs two spikes
at those gridpoints, as if it were interpolating the positions of the grid points. On the
contrary, our analysis (which relies on assumptions that require at least two unknown
Dirac masses!) shows that in more complex situations, even if the unknown signal lies
on the grid and there is little noise and regularization, spurious spikes appear. That
phenomenon is due to the interactions between the unknown Dirac masses. It is difficult
to quantify it, but we think that this behavior is rather the rule than the exception.

While such an instability of the support might seem disappointing, one should keep
in mind that only the neighbors are activated, which makes the situation not so bad for
source localization. On the contrary, taking that behavior into account can lead to the
justification of a sparsification procedure which takes a cluster of spikes and interpolates
their locations to form a single Dirac mass (see [Hei14, KHB21] and [FW19]), with
surprisingly good performance!

Sparsity, partly smooth functions and sparse measures reconstruction. There
is a large body of literature in the field of sparse recovery that deals with support
stability guarantees ([Fuc04, Tro06, CR13, VPDF13]. Interestingly, such results were
unified (at least in the finite-dimensional setting) in [VPF18] using the notion of partly
smooth functions introduced in[Lew02]. The regularizer R is a smooth function when
restricted to some submanifolds which encode the structure of the signal (the so-called
models), and in the orthogonal directions, it has “kinks” which provide stability to those
models in an optimization problem. In the case of the Blasso and the reconstruction
of sparse measures, it is natural to wonder if the results presented in this section fit
into that framework. Adapting the notion of partly smooth function to the infinite
dimensional setting is far from being trivial and remains an open problem, to the best of
our knowledge. However, there is a way to reduce the Blasso to the finite dimensional
setting, if H = RM , by considering the minimization problem

min
z∈RM

λ ∥z∥A +
1

2
∥y − z∥2H

where ∥z∥A denotes the atomic norm of z, i.e.

∥z∥A = inf { t > 0 | z ∈ tconv{φ(x)}x∈X } = inf
m∈M(X)

|m| (X) s.t. Φm = z.

The solutions of the dual problem (D(0, y)) are exactly the subgradients to ∥·∥A at y
(see Lemma B.1). It seems that the support stability results of Section 5.2.2 can be
obtained directly provided that the atomic norm is partly smooth with respect to the
manifolds,

Mε
def.
=

{
M∑
i

aiφ(xi) | sign(ai) = εi, xi ∈ X̊pairwise distinct

}
.
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where ε ∈ {−1, 1}s, s ∈ N. Alas, checking that the atomic norm is partly smooth locally
around a point y is as difficult as proving the results of Section 5.2.2 directly.

Duality and mirror-stratifiability. Our proofs in [13] extensively use the connec-
tions between the dual and the primal problems, in particular the fact that the saturation
set (which somehow encodes the “codimension” of the family of dual certificates) are in
duality with the support (which encodes the dimension of the family of solutions). That
kind of proof technique was later generalized by J. Fadili et al. to “mirror-stratifiable
functions” in [FMP18] which have similar properties.

Support stability for total variation denoising While our work and the works of
G. Mercier et al. [IMS17, IM20b] establish the convergence of the level lines in total
(gradient) variation regularization, the question of support stability (i.e., the solutions
having the same number of level sets, with similar topology) remains a challenging
problem. It requires the extension of the considerations on second derivatives to sets of
finite perimeter.

Low noise regimes In the case of low regularization parameters λ for regularizing
(P(0, y⋆)), one should note that there are two kind of results: on the one hand, the results
of Section 5.1 ensure the convergence of the support (or level lines), but they require to
have both λ and the ratio noise/regularization ∥y − y⋆∥H /λ arbitrarily small. On the
other hand the results like Theorem 5.3 are nonasymptotic: they state the existence of
low noise regimes, in which ∥y − y⋆∥H /λ can be fixed, and in which the structure of the
support is preserved and the support converges. The main difference is that the later
exploits the second derivatives of the dual certificates, which allow to exploit the “kinks”
(more precisely, the partly smooth nature) of the set

C
def.
= {Φm | |m| (X) ⩽ 1 } = conv {±φ(x) | x ∈ X } .

Such results are much stronger. For the total (gradient) variation however, it is not clear
how to generalize such properties.
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A striking feature of the identifiability theorem by E. Candès and C. Fernandez-
Granda for the Basis Pursuit for measures (see Theorem 3.1 or [CFG14]) is the
requirement of a minimum separation distance. This is a significant difference from sim-
ilar identifiability results, in compressed sensing theory, concerning the Basis Pursuit
for finite dimensional signals, which only involve the sparsity of the unknown. The use
of a continuous domain makes it possible to have arbitrarily close opposite spikes which
almost “cancel out” when the observation operator Φ (typically, a convolution kernel) is
applied.

As we explain in Section 6.1, the Basis Pursuit for measures and the Blasso are
not able to recover such signals. That is a strong limitation compared to, e.g., Prony’s
method [dP95], MUSIC [Sch86] or ESPRIT [Kai90], which, on the other hand, rely on
strong structural properties of the observation operator. The separation assumption
of Theorem 3.1 is in some sense necessary when dealing with signed measures. But
in the case of a positive signal, arbitrarily close spikes can be recovered, under some
non-degeneracy assumption (Definition 6.1). The main result of this chapter is Theo-
rem 6.1, which ensures that, provided the noise and the regularization parameter are
small enough, the Blasso is able to estimate the unknown measure with exact support
recovery (that is, it provides a measure with the same number of spikes, which converge
in amplitude and position to those of the unknown as the noise tends to zero). As
the required non-degeneracy assumption relies on the computation of a “precertificate”,

123
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which might not be available in closed-form expression, we discuss in Section 6.3 a way
to ensure that property a priori, using the properties of extended totally positive kernels.
That alternative approach only works for some specific kernels (e.g. Laplace, Gauss),
but it can deal with arbitrary sampling patterns, for which the dual precertificate is in
general not known.

Collaboration. The content of Section 6.2.2 follows from the collaboration with Gabriel
Peyré and our student Quentin Denoyelle, in particular [8].

6.1 Close opposite spikes are not recoverable

In this section, we assume that dim(H) < +∞. Since domR(TV) = M(X) = V ,
Corollary 3.1 ensures that strong duality holds and that a dual solution exists. In
particular, if m0 = m(a,x) =

∑s
i=1 aiδxi is a solution to (P(0, y0)), where y0 = Φm0,

there must exist a dual certificate η = Φ∗p for some p ∈ H, such that

∥η∥∞ ⩽ 1 and ∀i ∈ {1, . . . , s}, η(xi) = sign(ai). (6.1)

In the case where X is a compact convex subset of Rd and φ ∈ C 1(X;H), a straight-
forward application of the mean value theorem yields (if sign(ai) = − sign(aj))

2 = |η(xi)− η(xj)| ⩽ ∥∇η∥∞ |xi − xj | ⩽ C |xi − xj | , (6.2)

where C > 0 is the operator norm of the linear map η 7→ (∇η) from (ImΦ, ∥·∥∞)
to (C (X;H), ∥·∥∞), which is continuous since dim ImΦ < +∞. As a result, if m0 is
identifiable, any two opposite spikes must lie at distance at least 2/C.

The above argument can be extended to different cases, e.g. where X is Rd, the torus
Td, or more generally a Riemannian manifold. In some special cases (e.g. polynomial
measurements on a compact set, Fourier measurements on the torus), the constant C is
known, provided by the famous Bernstein inequality (see [Tan15] for various examples
using the atomic norm; for Fourier measurements a sharper constant has been provided
in [13] using Turán’s theorem).

However, the above argument can be refined in different directions, and we propose
below two variants.

6.1.1 The separation requirement is fundamental

First, we note that the differential structure is not an essential requirement. In
the following proposition, given m ∈ M(X), m = m+ −m− denotes its Hahn-Jordan
decomposition.

Proposition 6.1. Let X be a locally compact separable metric space and assume that
Assumptions 3.1 hold, with dimH < +∞. Then, there exists a constant C > 0 such that
for all y ∈ H and all solution m to (P(TV)(0, y)) (or (P(TV)(λ, y))),

∀(x+, x−) ∈ (suppm+)× (suppm−) , dX(x, x
′) ⩾ C > 0. (6.3)

Proof. The ball B def.
= { η ∈ ImΦ∗ | ∥η∥∞ ⩽ 1 } is bounded and closed in the finite dimen-

sional space ImΦ∗. As a result, it must be compact in (C0(X), ∥·∥∞), hence uniformly
equicontinuous.
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➢ If X is compact, the uniform equicontinuity of B follows from the standard Arzelà-
Ascoli theorem. Otherwise (i.e. X is only locally compact), let ε > 0. There exists
a finite family {ηi}i∈I ⊆ B such that for all η ∈ B, mini∈I ∥η − ηi∥∞ ⩽ ε/3.

By definition of C0(X), there exists a compact set K1 ⊆ X such that

∀i ∈ I, sup
x∈X\K1

|ηi(x)| ⩽ ε/6. (6.4)

Since X is locally compact, there exists a compact set K2 ⊆ X such that K1 ⊆
int(K2) (see e.g. [Bou07c, I. p.65 Prop. 10]). We set α = minx∈K1

dX(x,X \K2)).
As each ηi is uniformly continuous on the compact set K2, there exists α′ > 0 such
that for all x, x′ ∈ K2 such that dX(x, x′) ⩽ α′, |ηi(x)− ηi(x′)| ⩽ ε/3.

Setting α′′ def.
= min(α, α′) > 0, we see that for all x, x′ ∈ X such that dX(x, x′) ⩽ α′′

and all η ∈ B, |η(x′)− η(x)| ⩽ ε. Hence, the family is uniformly equicontinuous.

Let ω be the modulus of equicontinuity of B, i.e.

∀t ⩾ 0, ω(t)
def.
= sup

{ ∣∣η(x)− η(x′)∣∣ | η ∈ B, dX(x, x′) ⩽ t
}
.

Note that ω : R+ → R+ is nondecreasing and continuous at 0 with ω(0) = 0.
As explained above, since dimH < +∞, the primal problem is stable, hence there

exists a solution η∗ to the dual problem, and for all solution m of the primal problem,
all x+ ∈ suppm+ (resp. x− ∈ suppm−), η∗(x±) = ±1.

Then ω(dX(x+, x−)) ⩾ |η∗(x+)− η∗(x−)| = 2, hence

dX(x+, x−) ⩾ C
def.
= inf { t ⩾ 0 | ω(t) ⩾ 2 } > 0.

6.1.2 The case of the ideal low-pass filter

Alternatively, in the particular case of the ideal low-pass filter on the torus, it is possi-
ble to provide a sharper constant than the one provided by the Bernstein inequality [13]
and to describe the solutions when the input measure does not meet that separation
condition [12]. Let us consider an initial measure1 m0 = δh/2 − δ−h/2, h > 0, and an
observation given by the ideal low-pass filter (see Equation (3.12)). In that case, the
constant C involved in (6.2) is provided by the Bernstein inequality, C = 2πfc, yielding
a necessary separation distance dX(x+, x−) ⩾ 1

πfc
in [Tan15]. However, that bound is

not sharp, and a better constant, proposed in [13], is the separation dX(x+, x−) ⩾ 1
2fc

.
Furthermore, in [Con20], Laurent Condat observed numerically that for h < 1/(2fc),

the solution to (P(0, y0)) is a Dirac comb, i.e. a sum of equispaced Dirac masses. As a
consequence, the solution is given by

m =

fc−1∑
j=−fc

ajδtj , where tj
def.
=

1

4fc
+

j

2fc
, and

(6.5)

aj = (−1)j cos(πhfc)
2fc

(
cotan(π(

1

4fc
+

j

2fc
− h/2))− cotan(π(

1

4fc
+

j

2fc
+ h/2))

)
.

(6.6)

hence if differs from m0. We have proved the above observation in [12] by solving the
dual problem (D(0, y0)).

1The domain is X = T, but with a slight abuse of notation, we write h/2 instead of h/2 (mod 1).
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Proposition 6.2 ([12]). Let y = Φm0 with m0 = δh/2 − δ−h/2 and 0 < h ⩽ 1/(2fc).
Then,

1. The unique solution to (D(0, y0)) is p = (0, . . . , 0, 1), corresponding to the function
η : t 7→ sin(2πfct).

2. The unique solution to (P(0, y0)) is given by (6.5) for 0 < h < 1/(2fc), and m0

for h = 1/(2fc).

Our proof relies on typical T-systems arguments such as the counting of the roots of
a trigonometric polynomial (see [12]).

As a consequence of Proposition 6.2, the number of Dirac masses predicted by the
Representer Theorem (Theorem 1.1) is almost optimal : 2fc masses actually appear for
2fc + 1 observations, see Section 1.4.3 for a discussion.

For h > 1/(2fc) it seems that the measure m0 = δh/2 − δ−h/2 is always identifiable
(as observed by computing numerically the vanishing derivative precertificate ηV ), but
we do not have any proof of that. On the other hand, the case of two spikes is not
fully representative of the difficulty of reconstructing signed spikes, and it was proved
in [DCD18] that the optimal separation distance in Theorem 3.1 should be at least
1/fc − γ/f2c , for γ > 0 arbitrarily small, provided fc is large enough. To this end, they
construct non identifiable measures with a number of spikes which increases with fc.

6.2 Clustering spikes and the (2s−1)-vanishing derivatives
precertificate

If the spikes have the same sign, things are radically different. The Blasso does not
require any separation condition, and we show in the rest of this chapter that in some
cases, reconstruction guarantees can be provided.

We work in the one-dimensional setting X = R (or a subinterval which contains 0 in
its interior, or X = T). We consider s points which cluster around x0 = 0 ∈ X̊. More
precisely, let x⋆1, . . . , x

⋆
s ∈ X be pairwise distinct points, and let a⋆1, . . . , a

⋆
s > 0 be some

amplitudes. We define the measure m⋆
t

def.
=
∑s

i=1 a
⋆
i δtx⋆i and we consider the limit t→ 0+.

We introduce the compact set

B def.
= { (x1, . . . , xs) ∈ Xs | ∀i, |xi − xi⋆| ⩽ ∆/4 } where ∆

def.
= min

i ̸=j

∣∣x⋆i − x⋆j ∣∣ . (6.7)

The constant ∆ is the minimum separation distance between the x⋆i ’s. In this setting
it is fixed, but our main focus is on (tx⋆1, . . . , tx

⋆
s), whose minimum separation distance

is t∆. By I = (x1, . . . , xs), we denote any element of B.
We assume that we observe yt ∈ H, some noisy version of y⋆t

def.
= Φm⋆

t , and we want
to recover m⋆

t using the Blasso,

min
m∈M(X)

|m| (X) +
1

2
∥Φm− yt∥H . (P(λ, yt))

Remark 6.1. We only consider one cluster point (x0 = 0) for the sake of simplicity, but
as explained in Quentin Denoyelle’s PhD thesis [Den18], the analysis extends to several
clusters of spikes without major difficulty.
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6.2.1 An approximate factorization

The whole procedure for the study of (P(λ, yt)) as t→ 0+ is a bit similar to finding
the osculating plane of a curve (see [Kre91, Sec. 11]): it relies on a Taylor expansion
and on suitable matrix operations. Therefore we need some regularity, a bit more than
we did in Assumptions 4.1.

Assumptions 6.1. We require that Assumptions 3.1 hold and that

• X ⊆ R, with 0 ∈ X̊.

• φ ∈ C 2s(X̊;H). As a consequence, φ is weakly C 2s in X̊.

Remark 6.2. The second item of Assumptions 6.1 typically holds in the case of a
convolution, φ(x) = φ̃(· − x), where φ̃ is smooth with all its derivatives in H def.

= L2(R),
e.g. if φ̃ is the Gaussian filter.

➢ Assume that φ̃ ∈ C 1(R) and φ̃, φ̃′ ∈ L2(R). Then for all z, h ∈ R, with h ̸= 0,

1

h
[φ̃ (z − (x+ h))− φ̃(z − x)]− φ̃′(z − x) =

∫ 1

0

(φ̃′(z − x− vh)− φ̃′(z − x)) dv.
(6.8)

Taking the square and integrating over z ∈ R, we use the Jensen inequality to deduce∥∥∥∥ 1h [φ̃ (· − (x+ h))− φ̃(· − x)]− φ̃′(· − x)
∥∥∥∥2
L2(R)

⩽
∫ 1

0

∥φ̃′(· − x− vh)− φ̃′(· − x)∥2L2(R) dv.

(6.9)

By the continuity of the translation in L2(R), the right-hand side vanishes as h→ 0.
Hence φ ∈ C 1(R;H) with φ′(x) = φ̃′(· − x). The general conclusion follows by
induction.

Throughout this section, we suppose that Assumptions 6.1 hold.
We consider the operator Ψ: R2s → H, defined by

∀b ∈ R2s, Ψb
def.
=

2s−1∑
k=0

bkφ
(k)(0). (6.10)

where φ(k)(0) is the k-th derivative of φ at 0. We also consider the operator (that we
have already encountered in Section 4.3),

∀c, d ∈ Rs, ΓtI

(
c
d

)
def.
=

s∑
i=0

(
ciφ(txi) + diφ

′(txi)
)
. (6.11)

The Taylor expansion of φ around 0 yields

φ(txi) = φ(0) + φ′(0)(txi) + · · ·+ φ2s−1(0)
(txi)

2s−1

(2s− 1)!

+ (txi)
2s

∫ 1

0

(1− v)2s−1

(2s− 1)!
φ(2s)(vtxi)dv,

and similarly

φ′(txi) = φ′(0) + φ′′(0)(txi) + · · ·+ φ2s−1(0)
(txi)

2s−2

(2s− 2)!

+ (txi)
2s−1

∫ 1

0

(1− v)2s−2

(2s− 2)!
φ(2s)(vtxi)dv.

As a result, we obtain the following factorization,
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Lemma 6.1 ([8, Lem.1, Prop. 7]). The following factorization holds2

ΓtI =ΨtIHtI , where ΨtI = Ψ+O(t), (6.13)

and HtI
def.
=


1 . . . 1 0 . . . 0
tx1 . . . txs 1 . . . 1
...

...
...

...
(tx1)2s−1

(2s−1)! . . . (tx1)2s−1

(2s−1)!
(tx1)2s−2

(2s−2)! . . . (tx1)2s−2

(2s−2)!

 . (6.14)

Lemma 6.1 is obtained by carefully controlling the remainder and exploiting the
structure of HtI . The matrix (HtI)

∗ is the matrix of the evaluation of a polynomial
of degree 2s − 1 and its first derivative at the points txi, 1 ⩽ i ⩽ s. As a result, it is
invertible, and (HtI)

∗,−1 is the matrix of Hermite interpolation. The matrix HtI has a
useful factorization

HtI = diag(1, t, . . . , t2s−1)HI diag

(
1, . . . , 1,

1

t
, . . . ,

1

t

)
(6.15)

which is crucial for the control of all the quantities that are involved in the problem, as
t→ 0+.

6.2.2 The (2s− 1)-vanishing dual precertificate

As we have discussed in Section 4.3.2, in favorable cases, the minimal-norm certifi-
cate η0 (which governs the support recovery at low noise), is equal to the vanishing-
derivatives precertificate ηV , a quantity which can be computed more easily, using a
pseudo inverse. More precisely, the vanishing-derivatives precertificate for a measure
m =

∑
x∈I bxδx is defined as ηV

def.
= Φ∗pV , where pV

def.
= Γ∗

I
†(sign(b), 0s)

⊤. It is equal to
the minimal norm certificate η0 if and only if sign(b) ∈ ImΓ∗

I and ∥ηV ∥∞ ⩽ 1. In the
case where ΓI has full column rank, Γ∗

I
† = ΓI(Γ

∗
IΓI)

−1.
The following proposition describes the limit of such precertificates for non-negative

measures supported on tI, t→ 0+. We introduce3

pW,2s−1
def.
= Ψ∗†

(
1

02s−1

)
(6.16)

= argmin
{
∥p∥H | (Φ∗p)(0) = 1, (Φ∗p)′(0) = 0, . . . , (Φ∗p)(2s−1)(0) = 0

}
(6.17)

provided (1, 02s−1)
⊤ ∈ ImΨ∗. The function ηW,2s−1

def.
= Φ∗pW,2s−1 is called the (2s− 1)-

vanishing-derivatives precertificate. It is a function of the form

ηW,2s−1 =
2s−1∑
k=0

γk(∂2)
kK (·, 0) where {γk}0⩽k⩽2s−1 ⊆ R, (6.18)

and if (1, 02s−1)
⊤ ∈ ImΨ∗ it is characterized by

ηW,2s−1(0) = 1, η′W,2s−1(0) = · · · = η
(2s−1)
W,2s−1(0) = 0. (6.19)

Using Lemma 6.1, it is possible to prove the following result.

2The notation f(I, t) = O(t) used here is uniform, in the sense that

lim sup
t→0+

(
sup
I∈B

∣∣∣∣f(I, t)t

∣∣∣∣) < +∞. (6.12)

3By 02s−1, we denote the entry 0 repeated 2s− times (and similarly below, 1s is used to denote the
entry 1 repeated s times).
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Proposition 6.3 ([8, Prop. 4]). If Ψ has full column rank, then for t > 0 small enough,
ΓtI has full column rank for all I ∈ B, hence pV,tI = ΓtI(Γ

∗
tIΓtI)

−1(1s, 0s)
⊤.

Moreover, the following convergences hold uniformly for I ∈ B

lim
t→0+

pV,tI = pW,2s−1 strongly in H, (6.20)

lim
t→0+

ηV,tI = ηW,2s−1uniformly on X, (6.21)

lim
t→0+

η
(k)
V,tI = η

(k)
W,2s−1uniformly on compact subsets of X̊, 1 ⩽ k ⩽ 2s. (6.22)

Figure 6.1 illustrates the convergence of ηV,tI as t→ 0+, for s = 2. Figure 6.2 shows
ηW,2s−1 for different values of s: the larger the value of s, the flatter the function in a
neighborhood of 0.

1 1 1

t = 0.4 t = 0.2 t = 0.01

Figure 6.1: ηV,tI for several values of t, showing the convergence toward ηW,2s−1. The
operator Φ is an ideal low-pass filter with a cutoff frequency fc = 10.

1 1 1

s = 1 (ηV = ηW,2s−1) s = 2 s = 3

Figure 6.2: ηW,2s−1 for several values of s. The operator Φ is an ideal low-pass filter
with cutoff frequency fc = 10

Just like the minimal-norm certificate governs the dual solutions at low noise, the
(2s− 1) dual certificate ηW,2s−1 governs the behavior of ηV,tI for t small.

Definition 6.1 ((2s−1)-non-degeneracy). We say that ηW,2s−1 is (2s−1)-non-degenerate
if η

(2s)
W,2s−1(0) < 0 and |ηW,2s−1(x)| < 1 for all x ∈ X \ {0}.

Proposition 6.4 (Consequence of [8, Thm. 1]). Suppose that ηW,2s−1 is (2s− 1)-non-
degenerate. Then, there exist t0 > 0 such that for all t ∈ ]0, t0[, all I ∈ B, ηV,tI is
non-degenerate, i.e.

∀x ∈ X \ {tx1, . . . , txs}, |ηV,tI(x)| < 1, (6.23)

∀i ∈ {1, . . . , s}, η′′(txi) ≺ 0. (6.24)

In other words, the (2s− 1)-non-degeneracy of ηW,2s−1 ensures the Non-Degenerate
Source Condition (NDSC) for all non-negative measures m =

∑s
i=1 aiδtxi provided t > 0

is small enough. Therefore we may apply Theorem 5.3 to deduce that there is a low
noise regime in which the Blasso recovers exactly the correct number of spikes, with
amplitudes and locations which converge to the correct one as (λ, yt − y⋆t )→ (0, 0).

However, it does not tell us anything about the scaling of the low noise regime (e.g.
the size of the neighborhoods in the implicit function theorem) or the amplification of
errors as t→ 0+: it might very well shrink (resp. blow up) very rapidly. For that reason,
we state Theorem 6.1 below, which takes into account the scaling of every quantity
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involved in the Blasso and describes precisely the scaling of the low noise regime and
the errors.

Before that, let us examine a few examples of computations of ηW,2s−1.

Fourier measurements. We consider the ideal low pass filter (3.12), which gathers
the Fourier coefficients,

φ(x) =
(
1,
√
2 cos(2πx),

√
2 sin(2πx), . . . ,

√
2 cos(2fcπx),

√
2 sin(2fcπx)

)
. (6.25)

The expression of the vanishing-derivatives precertificate for a fc-sparse non-negative
measure is given in (4.30). Substituting the locations with (tx1, . . . , txfc) and letting
t→ 0+ we recover the result of [PP17]:

ηW,2s−1(x) = 1−
( ∫

T sin
2fc(πu)du∫

T sin
4fc(π(u))du

)
sin2fc(x) = 1− ((2fc)!)

2

(4fc)!
sin2fc(x) (6.26)

using the value of Wallis integrals. We see that ηW,2s−1 is (2s− 1)-non-degenerate.

Laplace transform. If X = ]0,+∞[, H = L2([0,+∞]) and the impulse response is
the Laplace transform,

φ(x) =
(
s 7→ e−xs

)
(6.27)

we have seen in (4.41) the expression of ηV . Substituting (x1, . . . , xs) with (x0 + t(x1 −
x0), . . . , x0 + t(xs − x0)) and letting t→ 0+, we get

ηW,2s−1(x) = 1−
(
x− x0
x+ x0

)2s

. (6.28)

and we see that ηW,2s−1 is (2s− 1)-non-degenerate.

Gaussian convolution. Now, we consider, the case of the Gaussian filter, with H =
L2(R),

φ(x) =
1√
2πσ

e−
(·−x)2

2σ2 , so that K
(
x, x′

)
=

1√
4πσ

e−
(x−x′)2

4σ2 . (6.29)

In the following we set σ = 1 for simplicity. For spikes which cluster at x0 = 0, it is clear

from (6.18) that ηW,2s−1 is of the form ηW,2s−1(x) = P (x)e−
x2

4 , where P is a polynomial
of degree at most 2s − 1, i.e. P ∈ R2s−1[X]. Next, we may use the following lemma
from Quentin Denoyelle’s PhD thesis, which relies on the general Leibniz formula.

Lemma 6.2 ([Den18, Lem. 6]). Let g : X → R, η : X → R be two smooth functions. If
η satisfies

η(x0) = 1, η′(x0) = . . . = η(2s−1)(x0) = 0, (6.30)

then P = η × g satisfies

P (x0) = g(x0), P
′(x0) = g′(x0), . . . , P

(2s−1)(x0) = g(2s−1)(x0). (6.31)

In particular, if P ∈ R2s−1[X], then P is the Taylor expansion of g at x0 of order 2s−1,
and η(2s)(x0) = −g(2s)(x0)/g(x0) provided g(x0) ̸= 0.
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We deduce that P is the Taylor expansion of

(
x 7→ e

x2

4

)
, so that

ηW,2s−1(x) = e−
x2

4

s−1∑
k=0

x2k

22kk!
. (6.32)

That precertificate is (2s− 1)-non-degenerate.

More generally, given an observation operator Φ, computing the (2s− 1)-vanishing-
derivatives precertificate is an entertaining mathematical puzzle, but we are only aware of
a few cases where it is possible. Those few cases can be translated to different acquisition
settings by a change of variable (as in Proposition 4.4 for ηV ).

Proposition 6.5 ([Den18]). Let X, X̃ ⊆ R be two open intervals, and h : X̃ → X be
a smooth diffeomorphism. Let x0 ∈ X, x̃0 = h−1(x0), and let η : X → R be a smooth
function. Then η satisfies

η(x0) = 1, η′(x0) = . . . = η(2s−1)(x0) = 0, (6.33)

if and only if ν
def.
= η ◦ h satisfies

ν(x0) = 1, ν ′(x0) = . . . = ν(2s−1)(x0) = 0. (6.34)

Moreover, ν2s(x̃0) = η(2s)(x0)(h
′(x0))2s.

See for instance the case the L2-normalized Laplace transform in Quentin Denoyelle’s
PhD thesis [Den18, Prop. 14]. However, for mode involved acquisition frameworks,
especially when the transform is sampled, it is more difficult. See Section 6.3 for a way
to prove the non-degeneracy a priori in some cases.

6.2.3 Support recovery for clustered spikes

The main result of this section is the following theorem, which guarantees exact
support recovery for clustered spikes with positive sign.

Theorem 6.1 ([8, Thm. 2]). Suppose that Ψ has full column rank and that ηW,2s−1 is

(2s− 1)-non-degenerate. Assume moreover that φ ∈ C 2s+1(X̊;H).
Then, there exist positive constants t0, α0, λ0, C > 0 (which only depend on φ, (a⋆i )1⩽i⩽s

and (x⋆i )1⩽i⩽s), such that for 0 < t < t0, ∥yt − y⋆t ∥H ⩽ α0λ, 0 < λ ⩽ λ0t
2s−1,

• The solution to (P(λ, yt)) is unique,

• That solution has exactly s spikes, mt =
∑s

i=1 aiδxi, where (a, x) coincides with a
C 2s function of (λ, yt − y⋆t ) in a neighborhood of (0, 0) ∈ R×H.

• The following inequality holds,

max
1⩽i⩽s

|(ai, xi)− (a⋆i , x
⋆
i )| ⩽ C

(
λ+ ∥yt − y⋆t ∥H

t2s−1

)
. (6.35)

As a result, under the (2s− 1)-non-degeneracy assumption, the Blasso successfully
estimates the unknown measure, and the amplification of errors is of order t2s−1, where
t represents the minimum separation distance between the spikes.
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6.3 Extended totally positive kernels

In the previous section, we have seen that the Blasso is able to resolve clustered
spikes, provided the (2s − 1)-vanishing derivatives dual precertificate ηW,2s−1 is (2s −
1)-non-degenerate. That can be checked on specific cases if one knows a closed form
expression for ηW,2s−1, or observed numerically.

In this section we provide a sufficient criterion, to ensure a priori the non-degeneracy
of using ideas of the theory of T-systems (also known as Tchebycheff systems) and totally
positive kernels (see [KS66, Kar68, KN77] for reference on these topics). The properties
of T-systems were used in [dCG12, SRR18] to ensure identifiability of non-negative sparse
measures using the Basis Pursuit for measures, but the specificity of our approach
is that we work with the autocorrelation kernel and we handle its derivatives, so as to
ensure the non-degeneracy (or (2s − 1)-non-degeneracy) of vanishing-derivatives dual
precertificates.

6.3.1 A characterization of the Non-degenerate Source Condition (NDSC)

We discuss here a determinantal formulation of the non-degeneracy of dual certifi-
cates. We assume that X ⊆ R is an interval.

The vanishing derivatives precertificate. For now, we consider a measure
m0 =

∑s
i=1 aiδxi with pairwise distinct locations xi and amplitudes ai of arbitrary

sign sI
def.
= (sign(ai))1⩽i⩽s. Recalling the expression of the corresponding vanishing-

derivatives precertificate (4.24)

∀x ∈ X, ηV (x) =
s∑
i=1

(αiK (x, xi) + βi∂2K (x, xi)) , (6.36)

we define

(v1, v2, . . . , v2s−1, v2s)
def.
= (K (·, x1) , ∂2K (·, x1) , . . . ,K (·, xs) , ∂2K (·, xs)) , (6.37)

so that ηV =
2s∑
n=1

γnvn, with γn ∈ R, 1 ⩽ n ⩽ 2s. (6.38)

If
(
sI 0

)⊤ ∈ ImΓ∗
I , by construction ηV is the only such function satisfying ηV (xi) = sign(ai)

and η′V (xi) = 0 for all i ∈ {1, . . . , s} (see Lemma 4.3). Let I+ = { i ∈ {1, . . . , s} | ai > 0 }.
We introduce the determinant

∀x ∈ X \ {xi}i∈I+ , D+
V (x)

def.
=

2∏
i∈I+

(x− xi)2

∣∣∣∣∣∣∣∣∣∣∣

1 v1(x) · · · v2s(x)
sign(a1) v1(x1) · · · v2s(x1)

0 v′1(x1) · · · v′2s(x1)
...

...
...

sign(as) v1(xs) · · · v2s(xs)
0 v′1(xs) · · · v′2s(xs)

∣∣∣∣∣∣∣∣∣∣∣
, (6.39)
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Subtracting the n+ 1-th column with weight γn, for all n, to the first one, we see that

D+
V (x) =

 2∏
i∈I+

(x− xi)2

 (1− ηV (x)) det(Γ∗
IΓI), (6.40)

with det(Γ∗
IΓI) =

∣∣∣∣∣∣∣∣∣∣
v1(x1) · · · v2s(x1)
v′1(x1) · · · v′2s(x1)

...
...

v1(xs) · · · v2s(xs)
v′1(xs) · · · v′2s(xs)

∣∣∣∣∣∣∣∣∣∣
. (6.41)

As a result, D+
V can be extended by continuity to X, with

∀j ∈ I+, D+
V (xj) =

 −2∏
i∈I+\{j}

(xj − xi)2

 η′′V (xj) det(Γ
∗
IΓI). (6.42)

Similarly, introducing I− = { i ∈ {1, . . . , s} | ai < 0 }, and

∀x ∈ X \ {xi}i∈I− , D−
V (x)

def.
=

2∏
i∈I−

(x− xi)2

∣∣∣∣∣∣∣∣∣∣∣

−1 v1(x) · · · v2s(x)
sign(a1) v1(x1) · · · v2s(x1)

0 v′1(x1) · · · v′2s(x1)
...

...
...

sign(as) v1(xs) · · · v2s(xs)
0 v′1(xs) · · · v′2s(xs)

∣∣∣∣∣∣∣∣∣∣∣
(6.43)

we have D−
V (x) =

 2∏
i∈I−

(x− xi)2

 (−1− ηV (x)) det(Γ∗
IΓI). (6.44)

As a result, D+
V and D−

V contain all the information relevant for the Non-Degenerate
Source Condition (see Proposition 4.3 and Definition 4.2).

Proposition 6.6 ([11, Thm. 3.2 and Sec. 3.4]). If ΓI has full rank (i.e. det(Γ∗
IΓI) > 0),

then

•
(
sI 0

)⊤ ∈ ImΓ∗
I , so that ηV solves the interpolation problem ηV (xi) = sign(ai),

η′V (xi) = 0,

• the Non-Degenerate Source Condition holds for the measure m0 =
∑s

i=1 aiδxi if
and only if

∀x ∈ X, D+
V (x) > 0 and D−

V (x) < 0. (6.45)

The (2s − 1)-vanishing-derivatives precertificate. It is possible to do the same
with the (2s− 1)-vanishing derivatives precertificate defined in Section 6.2.2. In view of
the Laplace model below, we assume that the spikes cluster at some point x0 instead of
0 as before. Introduce

(w1, w2, . . . , w2s−1, w2s)
def.
= (K (·, x0) , ∂2K (·, x0) , . . . ,K (·, x0) , ∂2K (·, x0)) ,

(6.46)

so that ηW,2s−1 =

2s∑
n=1

ρnwn, ρn ∈ R, (6.47)

with ηW,2s−1(x0) = 1, η′W,2s−1(x0) = . . . = η
(2s−1)
W,2s−1(x0) = 0. (6.48)
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Then, setting

∀x ∈ X \ {x0}, D±
W (x)

def.
=

(2s)!

(x− x0)2s

∣∣∣∣∣∣∣∣∣∣

±1 w1(x) · · · w2s(x)
1 w1(x1) · · · w2s(x1)
0 w′

1(x1) · · · w′
2s(x1)

...
...

...

0 w
(2s−1)
1 (xs) · · · w(2s−1)

2s (xs)

∣∣∣∣∣∣∣∣∣∣
. (6.49)

we have D±
W (x) =

(2s)!

(x− x0)2s
(±1− ηW,2s−1(x)) det(Ψ

∗Ψ), (6.50)

with D±
W (x0) = ∓η(2s)W,2s−1(x0) det(Ψ

∗Ψ). (6.51)

We deduce similarly:

Proposition 6.7 ([11, Thm. 3.2, extended]). If Ψ has full rank (i.e. det(Ψ∗Ψ) > 0),
then

• (1, 02s−1)
⊤ ∈ ImΨ∗, so that ηW,2s−1 solves the interpolation problem ηW,2s−1(x0) =

1, η
(k)
W,2s−1(x0) = 0 for 1 ⩽ k ⩽ 2s− 1,

• the precertificate ηW,2s−1 is (2s− 1)-non-degenerate if and only if

∀x ∈ X, D+
W (x) > 0 and D−

W (x) < 0. (6.52)

6.3.2 Extended-totally positive kernels and non-degeneracy

The main point of proposing determinantal formulations of non-degeneracy is that
they are strongly connected to the theory of extended T-systems and extended totally
positive kernels. A family of functions (u0, . . . , un) is an extended T -system if any non-
trivial combination of the ui’s has at most n roots, counting multiplicities. The canonical
example is the family of monomials (1, X, . . . ,Xn). Extended totally positive (ETP)
kernels ψ(x, s) have a similar property, but the index n is replaced with a continuous
variable s. We refer to [KS66, Kar68] for more detail on these topics. The key is that it
is possible to encode the T -system property using determinants similar to D±

V and D±
W .

In this section we focus on non-negative measures only, so that we may even add a
non-negativity constraint to the Blasso,

min
m∈M+(X)

m(X) +
1

2
∥Φm− y∥2H , (P+(λ, y))

which changes the constraint ∥η∥∞ ⩽ 1, in the dual problem, to η ⩽ 1, where η = Φ∗p.
For that problem, the non-degeneracy of ηV is equivalent to 1 − ηV being nonnegative
and having exactly 2s roots, counting multiplicities, which is equivalent to D+

V > 0.
Letting v0 = 1, we see that if (v0, . . . , v2s−1) is an extended T-system4, then D+

V > 0,
and the Non-Degenerate Source Condition holds5.

Examples of extended T-systems include

• the monomials (1, x, . . . , xn) on R.

• the functions (xα0 , . . . xαn) with α0 < . . . < αn, on ]0,+∞[.

4More precisely, if we only count roots, DV does not vanish. But the definition in [KS66] also assumes
positivity, so that the examples given below satisfy DV > 0.

5Provided that det(Γ∗
IΓI) > 0, which can be ensured by assuming that (v1, . . . , v2s−1) is a T-system

too.
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• the Cauchy system
(

1
αk+x

)
0⩽k⩽n

for α0 < . . . < αn, on ]0,+∞[,

• the Gauss system
(
e−(x−αk)

2
)
0⩽k⩽n

for α0 < . . . < αn, on R,

and there is a composition formula [KS66, Sec. 3, ex. 8], which relies on an integral
version of the Cauchy-Binet formula, and which allows us to build new T-systems from
a T-system and an ETP kernel. We omit the detail, but this integral formulation of the
Cauchy-Binet is the key ingredient that we have used in [11] (see also [SRR18]) so as to
derive the non-degeneracy results described below.

From now on, we consider an impulse response of the form

φ(x) : z 7→ ψ(x, z) (6.53)

for some kernel ψ : X × Z → R, where Z ⊆ R is an interval. We endow Z with a (non-
negative) measure PZ , and we choose H as L2(Z,P ). The typical cases that we consider
are

• the Gaussian kernel ψ(x, z) = e−(x−z)2 . For PZ = L (the Lebesgue measure on R),

Φm =

∫
X
e−(x−·)2dm(x) (6.54)

is the convolution with a Gaussian kernel, observed on R, with H = L2(R).

• the Gaussian kernel with PZ =
∑M

k=1 ckδzk . In other words, we observe the con-
volution of m with a Gaussian kernel, sampled on a finite set {zk}1⩽k⩽M ,

Φm =

(∫
X
e−(x−zk)2dm(x)

)
1⩽k⩽M

(6.55)

The norm on H is determined by ∥p∥2H =
∑s

k=1 ck |pk|2.

• the Laplace kernel ψ(x, z) = e−xz, where X = [d,+∞[ d > 0, Z = ]0,+∞[.

Φm =

∫ +∞

0
e−x·dm(x). (6.56)

and PZ is the Lebesgue measure on ]0,+∞[.

• the Laplace kernel with PZ =
∑M

k=1 ckδzk , and {zk}1⩽k⩽M ⊆ ]0,+∞[, that is,

Φm =

(∫ +∞

0
e−xzkdm(x)

)
1⩽k⩽M

. (6.57)

Without sampling, both the Gaussian filter and the Laplace transform are injective,
so we already have identifiability of the unknown original measure in a noiseless setting.
Still it is interesting to consider those cases for the study of their stability to noise. A
discrete measure PZ may model the sampling of such transforms, since in real appli-
cations we only have access to a finite number of measurements. It also encodes the
weights of the L2-norm in H, which reflects how we trust each sensor z (depending on
the physical setup or the noise model).

Being ubiquitous in signal and image processing, the Gaussian filter (sampled or not)
is a particularly important example. The Laplace transform appears in the Multi-Angle
Total Internal Reflection Fluorescence (MA-TIRF) microscopy problem that we study
in Section 7.2.3. Therefore, we focus on these two modalities.
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Proposition 6.8 (Laplace measurements [11, Cor. 4.1]). Let s ∈ N∗,
X = [d,+∞) with d ⩾ 0, Z ⊆ (0,+∞) and PZ be a positive measure such that∫
Z(1 + |z|)4se−2czdPZ(z) < +∞.

If ψ(x, z) = e−xz and card(supp(PZ)) ⩾ 2s, the following holds.

• If m0 =
∑s

i=1 aiδxi, with {xi}si=1 ⊆ X̊ pairwise distinct and ai > 0 for all i, then
m0 satisfies the non-degenerate source condition.

• If x0 ∈ X̊, then the precertificate ηW,2s−1 for the point x0 is (2s−1)-non-degenerate.

The first conclusion of Proposition 6.8 ensures that any positive measure m0 having
s spikes can be recovered exactly regardless of the minimum distance, with support
stability, provided we have at least 2s measurements. The second conclusion ensures
that, if the spikes cluster around x0, Theorem 6.1 may be applied, providing the stability
regions of order t2s−1 where t is proportional to the minimum distance between the spikes.
In fact, a more general result holds ([11, Prop. 3.3]), but we prefer to focus on the case
of Laplace observations, which is the only concrete application that we know.

The case of the Gaussian filter is not as simple. We first state the result without
sampling, which ensures the support stability of the reconstruction.

Proposition 6.9 (Fully sampled Gaussian convolution [11, Prop. 4.2]). Let PZ be the

Lebesgue measure on X = R, and ψ(x, z) def.
= e−(x−z)2. Then

• If m0 =
∑s

i=1 aiδxi, with {xi}si=1 ⊆ R pairwise distinct and ai > 0 for all i, then
m0 satisfies the Non-Degenerate Source Condition.

• If x0 ∈ R, then the precertificate ηW,2s−1 for the point x0 is (2s−1)-non-degenerate.

The proof relies on [SRR18, Lem. 2.7] which provides a T-system property for a
specific family of functions involving the Gaussian kernel and its derivative.

The result extends to sequences of measures (PZ,n)n∈N which approximate the Lebesgue
measure in the following sense:

lim
n→+∞

max
0⩽k,ℓ⩽2s

sup
x∈X

∣∣∣∣∫
R
xkzℓe−(x−z)2−(xi−z)2dPZ,n(z)−

∫
R
xkzℓe−(x−z)2−(xi−z)2dz

∣∣∣∣ = 0.

(6.58)

Proposition 6.10 (Sufficiently dense sampling [11, Prop. 4.4]). Let X ⊆ R, ψ(x, z) = e−(x−z)2,
and let (PZ,n)n∈N be a sequence of positive measures with finite total mass such that (6.58)
holds.

Then,

• If m0 =
∑s

i=1 aiδxi, with {xi}si=1 ⊆ X̊ pairwise distinct and ai > 0 for all i, then
m0 satisfies the non-degenerate source condition for n large enough.

• If x0 ∈ X̊, then the precertificate ηW,2s−1 for the point x0 is (2s−1)-non-degenerate
for n large enough.

Several extensions are discussed in [11], notably the L1 renormalization of the Laplace
or Gaussian kernels, and sampling sets which are contained in a small interval.
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6.4 Conclusion and comments

6.4.1 Summary

There is a fundamental limitation to the Blasso, which is its inability to resolve
Dirac masses with opposite signs when their locations are too close to one another.
Below that separation distance the solution can be very different from the unknown, as
illustrated in Proposition 6.2 in the case of Fourier measurements.

However, if the spikes have the same sign, provided a non-degeneracy assumption
holds, the Blasso is able to recover them, with an “exact support recovery”, at least
when the noise and the regularization parameter scale as t2s−1, where t is the minimal
distance between the spikes. That non-degeneracy assumption can be checked numeri-
cally (but one may face numerical errors), or may be checked analytically provided one
has access to the (2s− 1)-vanishing derivatives precertificate. That is typically possible
for several classical forward operators such as the Gaussian convolution or the Laplace
transform, but it is difficult to check in general, especially if a sampling operation is
involved.

Alternatively, relying on the properties of extend T-systems, it is possible to ensure
the non-degeneracy a priori, for arbitrary sampling patterns (with at least twice as many
measurements as the number of spikes), when working operators such as the Gaussian
convolution or the Laplace transform.

6.4.2 Comments

Minimal separation distance. The necessity of a minimal separation, at least in
the case of Fourier measurements, has been observed since [CFG14], which takes it as
a fundamental assumption for an identifiability theorem. Relying on such hypotheses,
several authors have proposed identifiability results, see [TBSR13, BDF16, PKP20]

Higher dimension. Dealing with clustering spikes in dimension d ⩾ 2 is considerably
more difficult than in dimension d = 1. That problem was investigated by G. Peyré
and C. Poon in [PP17]. One reason of that difficulty is that Hermite interpolation (used
for the construction of ηV and then ηW,2s−1) is not as straightforward as in dimension
d = 1 (e.g. when relating the minimal degree with the number of points involved, see for
instance [dBR90]). Moreover, the limit of the dual certificates ηV when the spikes cluster
depends on the geometric configuration of the xi’s. If they are aligned, the interpolation
problem solved by ηW,2s−1 will differ from if the points are not aligned. See [PP17] for
more detail.

Normalizing the kernels. In [SRR18] (which was the inspiration for [11]), an ex-
act reconstruction property for the sampled Gaussian convolution operator was pro-
vided: there is exact reconstruction, regardless of the separation of the spikes, provided
card(supp(PZ)) ⩾ 2s+ 1. It differs from our result Proposition 6.10 which requires the
measure to approximate the Lebesgue measure.

There is a subtle difference between the considered settings. In [SRR18], they use
a weighted total variation (with a weight which depends on the location of the spike).
That is equivalent to using the standard total variation but renormalizing the atoms in
the L1 sense, i.e. taking

ψ(x, z) =
e−(x−z)2∫

Z e
−(x−z)2dPZ(z)

. (6.59)
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In that case, minimizing the total mass is useless, since Φm already contains the infor-
mation on m(X),∫

Z
(Φm)(z)dPZ(z) =

∫
Z

∫
X
ψ(x, z)dm(x)dPZ(z) =

∫
X
1dm, (6.60)

so that all the admissible measures m have the same mass. So, in favorable cases, there
is an alternative:

• either use a variational approach as discussed in this chapter, with an unnormalized
kernel ψ(x, z) = e−(x−z)2 , in which case one needs 2s measurements,

• or use normalized atoms as in (6.59), in which case the problem is more a fea-
sibility problem (at least in the noiseless formulation), and one needs one more
measurement, that is 2s+ 1 measurements.

See [11] for a more detailed discussion.
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So far, we have studied the structure of the solutions to variational problems and
its stability. It is now time to exploit to take advantage of that structure in numerical
methods.

The Frank-Wolfe algorithm [FW56], also called the Conditional Gradient Method
(CGM) [LP66], plays a key role in this chapter. Initially introduced for quadratic pro-
gramming, it has recently gained a lot of popularity in inverse problems and machine
learning (see the reviews [Jag13, BRZ21]). Its main advantage with respect to most
first order optimization scheme (such as gradient descent or proximal splitting descent)
is that it does not rely on any underlying Hilbertian structure, and only makes use of
directional derivatives. It is thus particularly adapted to optimize, e.g. over the space
of Radon measures, as was proposed in [BP13] (see also [BSR17]).

Collaboration. This chapter follows from [9, 5] and the PhD theses of Quentin De-
noyelle and Paul Catala, co-supervised with Gabriel Peyré.
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7.1 The Frank-Wolfe algorithm

We begin with the setting of Chapter 3, that is, we consider V and Υ, two linear
spaces endowed with a duality pairing which is separating. Unless otherwise stated,
we fix some compatible topologies (see Appendix B.1.1), for instance the weak topolo-
gies σ(V,Υ) and σ(Υ, V ). Let F : V → R be a convex, proper, lower semi-continuous
function. Our goal is to solve

min
u∈C

F (u), (7.1)

where C ⊆ V is nonempty convex.

Assumptions 7.1. The key assumptions that we make in the current section are the
following:

1. C is compact or sequentially compact, i.e. every sequence in C has a convergent
subsequence.

2. F is Gateaux-differentiable at every x ∈ C, i.e. for all x ∈ C, d ∈ V ,

lim
t→0
t̸=0

F (u+ td)− F (u)
t

(7.2)

exists, depends linearly on d, and can be represented by some (necessarily unique) element
in Υ that we denote by F ′(u).

7.1.1 Description of the algorithm

The Frank-Wolfe (FW) algorithm consists in minimizing a linearization of F at each
step. This results in Algorithm 1. Note that under the above compactness assumption,
a solution to (7.1) exists; moreover, for every u ∈ C, the functional s 7→ ⟨F ′(u), s⟩ has
a minimizer on C, hence Line 3 is well defined.

Algorithm 1 Frank-Wolfe Algorithm

1: Initialize u[0] ← 0.
2: for k = 0, 1, . . . do
3: Minimize: s[k] ∋ argmins∈CF (u

[k]) +
〈
F ′(u[k]), (s− u[k])

〉
.

4: if
〈
F ′(u[k]), (s[k] − u[k])

〉
= 0 then

5: u[k] is a solution of (7.1). Stop.
6: else
7: Update: u[k+1] ∈ argminu∈[u[k],s[k]] F (u).

8: end if
9: end for

The stopping criterion. The criterion in Line 4 (see for instance [DR70, Ch. 3,
Sec.1.2]) is satisfied if and only if

∀s ∈ C,
〈
F ′(u[k]), s− u[k]

〉
⩾ 0. (7.3)

That is equivalent to −F ′(u[k]) being in the normal cone to C at u[k] (see Appendix B.2),
which is a well-known characterization of optimality in convex constrained problems (see
[ET76, Prop. II.2.1]). It is equivalent to u[k] being a solution.
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Update rules. We have only represented an exact line search on Line 7 of Algorithm 1.
Several update rules which are typical with the Frank-Wolfe algorithm are given below.

u[k+1] ∈ argminu∈[u[k],s[k]] F (u) (exact line search)

(7.4)

u[k+1] ← (1− γ[k])u[k] + γ[k]s[k] where γ[k]
def.
=

2

k + 2
(open loop rule)

(7.5)

u[k+1] ∈ argminu∈conv{s[0],...,s[k]} F (u) (fully corrective variant)

(7.6)

u[k+1] ∈
{
u ∈ C | F (u) ⩽ min

[u[k],s[k]]
F

}
(better than line-search)

(7.7)

The last update rule is quite flexible: any choice of point in C is possible provided it
is better than the exact line search. As we see in Proposition 7.1, it benefits from the
same convergence guarantees as (7.4) or (7.5). It is a key to the non-convex refinements
that we discuss in Section 7.2 and Section 7.3.

7.1.2 Convergence results

Several convergence results are known, depending on the assumptions on F or on
C. In the infinite-dimensional setting, most results [DR70, DH78] are stated in Banach
spaces, often with a Lipschitz assumption on F ′. However, as highlighted in [Jag13],
the common Lipschitz assumption on F ′ can be bypassed with an assumption on the
curvature,

κF
def.
= sup

{
2

γ2
(
F (u+ γ(s− u))− F (u)−

〈
F ′(u), γ(s− u)

〉)
| 0 < γ < 1, u, s ∈ C

}
.

(7.8)

As a result, the convergence in energy results hold in our general setting.

Proposition 7.1. Let C ⊆ V be nonempty convex and F : V → R, proper, convex,
lower semi-continuous such that Assumptions 7.1 hold, and assume that the update rule
is chosen among Eqs. (7.4) to (7.7). Then Algorithm 1 produces a sequence of iterates
such that

1. For every k ∈ N, u[k] ∈ C,

2. If κF < +∞ (see (7.8)), then(
F (u[k])−min

C
F

)
⩽

2κF
k + 2

, (7.9)

and every cluster point of (u[k])k∈N is a minimizer of F over C.

Proof. The first point follows directly from the update rules. The second point is the
convergence rate derived in [Jag13, Th. 1]. Since it essentially relies on the values of the
function and the definition of the curvature, the proof extends to our setting without
change. Eventually, if the sequence (u[k])k∈N has cluster points (for instance if C is
sequentially compact), the lower semi-continuity of F together with (7.9) imply that
they are minimizers of F .
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7.1.3 Discussion

Extreme points. If C is compact, then at Line 3, there is some minimizer s which is
an extreme point of C. That is particularly interesting, since in several cases, finding an
extreme point which minimizes a linear form can be done efficiently. For example,

• if C is a ℓp ball on Rn (1 < p < +∞), it can be done using a simple rescaling.

• if C is the set of bistochastic matrices (of size n × n), it can be done using the
Hungarian algorithm (in O(n3) operations).

• if C is a level set of a matrix Schatten norm, it can be done by computing a
Singular Value Decomposition (SVD). . .

We refer to [Jag13, BRZ21] for more detail. As a consequence, each iterate u[k] is sparse,
in the sense that it is a convex combination of at most k extreme points of C. That
property is useful for storing efficiently the variable. Even more interesting, it allows
to tackle infinite-dimensional problems, provided one knows how to encode the extreme
points. In Section 7.2, we discuss the resolution of optimization problems inM(X).

In some exceptional cases (such as the total variation unit ball), writing u[k] as the
convex combination of extreme points directly provides its minimal face.

The case of Banach spaces. In the literature [DR70, DH78], V is usually chosen
as a Banach space, see also the extension to unconstrained problems in Hilbert spaces
known as generalized conditional gradient [BLM09]. Another interesting choice, which
covers optimization in the space of Radon measures and in separable reflexive Banach
spaces, is to choose V as the topological dual of a separable Banach space Υ. Then,
as soon as C is bounded (in norm) and closed, the Banach-Alaoglu theorem ensures
that C is compact in the weak-* topology, (and since that topology is metrizable on C,
compactness is equivalent to sequential compactness).

Whether V is a dual or simply a Banach space, one may bound the curvature provided
F ′ is Lipschitz (see [Jag13, Lem. 7]),

κF ⩽ Lip(F ′) (diam(C))2 . (7.10)

Approximate linear minimization. In Line 3, the minimization may not be exact,
for instance if it is performed by an iterative process. A variant taking errors into account
is given in [Jag13], ensuring the convergence rate(

F (u[k])−min
C

F

)
⩽

2κF
k + 2

(1 + δ), (7.11)

provided s[k] approximately minimizes the linear form, i.e.〈
F ′(u[k]), (s[k] − u[k])

〉
⩽ min

s∈C

〈
F ′(u[k]), (s− u[k])

〉
+

δκF
k + 2

(7.12)

for some δ > 0 independent from k.

7.2 The Sliding Frank-Wolfe in the space of measures

The goal of this section is to numerically solve the Blasso (see Section 3.2.1),

min
m∈M(X)

|m| (X) +
1

2λ
∥Φm− y∥2H . (P(TV)(λ, y))
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That is not a constrained problem in the sense of (7.1), hence the Frank-Wolfe algorithm
is not directly applicable. In [BP13], the generalized conditional gradient algorithm
introduced in [BLM09] is extended to (P(TV)(λ, y)), using a direct study. In [9], following
an idea in [HJN15], we have related the latter algorithm to the standard Frank-Wolfe
algorithm applied to the truncated epigraph of the total variation R(TV) : m 7→ |m| (X).

7.2.1 Description of the algorithm

The idea is to reformulate (P(TV)(λ, y)) as

min
(m,t)∈C

t+
1

2λ
∥Φm− y∥2H , (7.13)

where C
def.
=

{
(m, t) ∈M(X)× R | |m| (X) ⩽ t ⩽

1

2λ
∥y∥2H

}
. (7.14)

The connection between both problems is that m ∈M(X) is a solution to (P(TV)(λ, y))
if and only if (m, t) is a solution to (7.13) for some t ∈ R, in which case t = |m| (X).

Introducing the function F : (M(X)×R)→ R, (m, t) 7→ t+ 1
2λ ∥Φm− y∥

2
H, we note

that we are back to the setting of Section 7.1. The function F is Gateaux-differentiable
with

F ′(m, t) =

(
1

λ
Φ∗(Φm− y), 1

)
(7.15)

and its curvature satisfies

κF ⩽
1

λ3

(
sup
X
∥φ∥H

)2

∥y∥4H . (7.16)

The (sequential) compactness follows from the Banach-Alaoglu theorem (see the discus-
sion on dual spaces in Section 7.1.3).

Extreme points and linear minimization. Setting M
def.
=

∥y∥2H
2λ , one may observe

that the extreme points of C are

ext(C) = {(0, 0)} ∪ {M(±δx, 1) | x ∈ X } . (7.17)

As a result, Line 3 is equivalent to picking s[k] as the best competitor among (0, 0) and
any point in

argmin(x,ε)∈X×±1

1

λ

〈
Φ∗(Φm[k] − y), εδx

〉
+ 1 = argmin(x,ε)∈X×±1

(
1− εη[k](x)

)
,

(7.18)

where η[k]
def.
= 1

λΦ
∗(y−Φm[k]). In dimension d = 1, 2 or 3, one may find ε and x simply by

evaluating η[k] on a grid in X, possibly refining the estimation using a gradient descent
or a Newton method (see Remark 7.2 below).

Stopping criterion. As explained in Section 7.1, the stopping criterion corresponds to(
−F ′(m[k], t[k])

)
being in the normal cone to C at (m[k], t[k]). Since its second component

is −1, the point (m[k], t[k]) must lie on the relative boundary of the epigraph epiR(TV)
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Algorithm 2 Sliding Frank-Wolfe (SFW) Algorithm

1: Initialize with m[0] = 0 and n = 0.
2: for k = 0, 1, . . . do

3: m[k] =
∑N [k]

i=1 a
[k]
i δx[k]i

, a
[k]
i ∈ R, x[k]i pairwise distinct, find x

[k]
∗ ∈ X s.t.:

x
[k]
∗ ∈ argmaxx∈X |η[k](x)| where η[k]

def.
=

1

λ
Φ∗(y − Φm[k]),

4: if |η[k](x[k]∗ )| ⩽ 1 then
5: m[k] is a solution of (P(TV)(λ, y)). Stop.
6: else
7: Obtain m[k+1/2] =

∑N [k]

i=1 a
[k+1/2]
i δ

x
[k]
i

+ a
[k+1/2]

N [k]+1
δ
x
[k]
∗
, s.t.:

a[k+1/2] ∈ argmin
a∈RN [k]+1

1

2
∥Φx[k+1/2]a− y∥2H + λ ∥a∥1

where x[k+1/2] = (x
[k]
1 , . . . , x

[k]

N [k] , x
[k]
∗ )

8: Find a critical point m[k+1] =
∑N [k]+1

i=1 a
[k+1]
i δ

x
[k+1]
i

by minimizing locally

(a, x) ∈ RN
[k]+1 ×XN [k]+1 7→ 1

2
∥Φxa− y∥2H + λ ∥a∥1 ,

by initializing with (a[k+1/2], x[k+1/2]).
9: Eventually remove zero amplitudes Dirac masses from m[k+1].

10: end if
11: end for

(rather than on the top face corresponding to the truncation). In other words, we must
have t[k] =

∣∣m[k]
∣∣ (X).

First, we assume that
∣∣m[k]

∣∣ (X) < M . From the relationship between subdifferentials

and the normals to their epigraphs1 (see Appendix B.3), we deduce that η[k]
def.
= 1

λΦ
∗(y−

Φm[k]) is a subgradient to R(TV) at m[k].

Now, we deal with the case
∣∣m[k]

∣∣ (X) = M . The stopping criterion ensures that

(m[k], t[k]) is a minimizer, hence

F (0, 0) ⩾ F (m[k], t[k]) ⩾M = F (0, 0). (7.19)

As a result (0, 0) is a minimizer too, and the strict convexity of p 7→ ∥p− y∥2H implies
that Φ0 = Φm[k], so that

∣∣m[k]
∣∣ (X) = |0| (X) = 0. As a result m[k] = 0 and this

corresponds to the trivial case where y = 0 and C is reduced to a point. Necessarily
η[k] = 0.

To summarize, in both cases, at convergence, the Frank-Wolfe algorithm computes a
dual certificate η[k] for m[k].

Non-convex refinement. Taking advantage of the fact that, in the update rule, one
may choose any point which is better that the linesearch (see Section 7.1), the authors
of [BP13] have proposed to refine the estimation of the locations {x}x∈I by using a local
descent (using, e.g., a gradient descent or BFGS algorithm). That idea is crucial: it

1Since C and epiR(TV) coincide in a neighborhood of (m[k], t[k]), they have the same normal cone at
that point.
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takes advantage of the continuous nature of the problem, as opposed to imposing a fixed
grid (see Section 5.3) and solving the Lasso with a proximal method. As advocated
in [BSR17], the non-convex refinement step improves the estimation of the support,
hence speeds up convergence. Moreover, its memory footprint is bounded: at the k-th
iteration, the recovery of the amplitudes is a Lasso in dimension N [k] + 1 ⩽ k + 1; in
fact, if the number of measurements M is finite, using the representer theorem, one may
bound the dimension by min(k + 1,M).

In [9], we have proposed a slight modification of [BP13, BSR17] which consists in
performing the non-convex descent on the locations and amplitudes simultaneously. The
resulting algorithm, called Sliding Frank-Wolfe is summarized in Algorithm 2. Though
the prescribed change might seem minor, it allows finite time termination of the algo-
rithm, as the next theorem shows.

Theorem 7.1 ([9, Thm. 3]). Suppose that Assumptions 4.1 hold, and let y ∈ H. Assume
that there is a unique solution m⋆ to (P(TV)(λ, y)), and that m⋆ = ma,I =

∑
x∈I axδx

with I finite (and ax ̸= 0). If the dual certificate ηλ
def.
= 1

λΦ
∗(y−Φm⋆) is nondegenerate,

i.e.

∀x ∈ X \ I, |ηλ(x)| < 1 and ∀x ∈ I,
(
sign(ax)η

′′(x)
)
≺ 0, (7.20)

then Algorithm 2 recovers m⋆ after a finite number of steps (i.e. there exists k ∈ N such
that m[k] = m⋆).

One way to ensure the non-degeneracy of ηλ a priori is to work in a low-noise regime,
assuming that y = Φm0+w wherem0 satisfies the Non-Degenerate Source condition (see
Section 5.2.2). For several standard acquisition settings, that property can be ensured
if the unknown spikes are well separated, see [PKP20]. In practice, the algorithm stops
after s iterations, where s = |I| is the number of spikes of m0. Alternatively, the non-
degeneracy of ηλ can be ensured using a T-system argument (see Section 6.3).

Remark 7.1. It is possible to extend the proposed algorithm to the Blasso with posi-
tivity constraints, see [9].

Remark 7.2 (Implementation details). The SFW algorithm relies on three different
solvers for respectively step 3, step 7 and step 8. Quentin Denoyelle’s implementation2

for [9], corresponds to the following choices.

• A Newton method, initialized by a grid search, is used to to find the maximum of
|η[k]| over the compact domain X in step 3. The size of the grid depends on the
operator Φ. For example, when Φ is the convolution by the Dirichlet kernel with
cutoff frequency fc, we choose a number of points proportional to fc.

• The LASSO problem at Line 7 is solved using the fast iterative shrinkage thresh-
olding algorithm (FISTA) [BT09].

• To solve the non-convex optimization problem at Line 8, we deploy a bounded
BFGS. It allows to enforce the positions xi to be in the domain X and to preserve
the sign of the amplitudes ai in the case of a Blasso with positivity constraints.

2https://github.com/qdenoyelle/sfw4blasso

https://github.com/qdenoyelle/sfw4blasso


146 CHAPTER 7. EXPLOITING THE STRUCTURE OF THE SOLUTIONS

7.2.2 Illustration of the finite-time convergence

Now, we illustrate the behavior of the algorithm and we show that it converges in
exactly N iterations in practice (when the noise level and the regularization parameter
are appropriate, i.e. max(λ, ∥w∥H /λ) is small enough).

We consider X = [0, 1] and a convolution operator with a sampled Gaussian kernel
for Φ

Φ : m ∈M(X) 7→
∫
[0,1]

φdm ∈ RK where φ(x) =

(
1√
2πσ2

e−
( i−1
K−1

−x)2

2σ2

)
1⩽i⩽K

.

We set σ = 0.05 andK = 100. The initial measure used ism0 = 1.3δ0.3+0.8δ0.37+1.4δ0.7
and the noise is small (y = Φm0 + w, with w = 10−4w0 where w0 = randn(K)).
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Figure 7.1: ηV for m0 = 1.3δ0.3 + 0.8δ0.37 + 1.4δ0.7.

Figure 7.1 shows ηV for this configuration. One can see that it is nondegenerate.
Hence, in a low noise regime, with the appropriate choice of λ, there is a unique measure
solution of Blasso which is composed of the same number of spikes as m0, and the
corresponding ηλ is non-degenerate. By Theorem 7.1, the Sliding Frank-Wolfe (SFW)
algorithm recovers it in a finite number of iterations.
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Figure 7.2: Values of the objective function throughout the SFW algorithm (cumulative
iterations of the BFGS). The vertical black lines separate the main outer iterations of
the algorithm.

The decrease of the objective function throughout the algorithm iterations (cumu-
lative iterations of BFGS) is presented in Figure 7.2. As indicated by the two vertical
black lines, which show the intermediate iterations, the algorithm converges in exactly
3 iterations. One can observe an important decrease of the objective function each time
a spike is added. Also, it is noteworthy that BFGS converges with very few iterations
when k = 0 and k = 1 (first two spikes added) and that the main computational load
for the non-convex step occurs for k = 2 (more iterations of BFGS).
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Figure 7.3: Main steps of the SFW algorithm.

Figure 7.3 shows m[k] and η[k] at different times of the algorithm. More precisely,
for k ∈ {0, 1, 2}, we display the initial measure m0, the recovered measure, and the
associated η. Moreover, we present them after the LASSO step (i.e. m[k+1/2] and
η[k+1/2]) as well as after the BFGS step (i.e. m[k+1] and η[k+1]) .

One remarks, as expected, that for all i, η[k+1/2](xi) = 1, η[k+1](xi) = 1 and
η[k+1]′(xi) = 0. In the first two main iterations, the spikes are almost not moved by
the BFGS. However, at the last iteration, the displacement of the positions and ampli-
tudes of the spikes is crucial to obtain η[k+1] ∈ ∂R(TV)(m[k+1]), and thus recover the
solution of Blasso in three steps.

7.2.3 Application to fluorescence microscopy

In this section we illustrate the performance of the SFW algorithm in fluorescence
microscopy, using the experiments of [9]. We refer to Quentin Denoyelle’s PhD thesis
[Den18] for more comprehensive benchmarks. The reader may also consult [7], where
we have used the Sliding Frank-Wolfe in a series of static images for the tracking of
mesoscale convective systems (big clouds in tropical areas), see Figure 7.4.
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Figure 7.4: Tracking of mesoscale convective systems in satellite images in [7].

The field of fluorescence microscopy has experienced an important revolution dur-
ing the past two decades with the emergence of super-resolution techniques. These
modalities, such as structured illumination microscopy (SIM) [Gus00], stimulated emis-
sion depletion (STED) [HW94], or single molecule localization microscopy (SMLM)
(which includes photoactivated localization microscopy (PALM) [BPS+06, HPKGM07]
and stochastic optical reconstruction microscopy (STORM) [RBZ06]) bypass the diffrac-
tion limit so as to reach unprecedented nanoscale resolution. The main principle behind
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these methods relies on a combined use of optics and numerical processing, which is
commonly called computational imaging. The resolution improvement is thus directly
related to the performance of the reconstruction algorithms employed to process the
acquired data.

SMLM techniques use photoactivable fluorescent probes to sequentially image a sub-
set of activated molecules. Then, dedicated algorithms are deployed to precisely ex-
tract the position of these molecules. While the difficulty of the localization problem
increases with the density of activated molecules per acquisitions, low density activa-
tions drastically reduce the temporal resolution of the system which makes the method
limited for live imaging. Hence, current trends in SMLM concern the development
of efficient algorithms dealing with high density data for which classical point-spread
function (PSF) fitting or centroid localization methods [HLF+10] fail. In particular, off-
the-grid sparse regularized methods have shown their efficiency for high density settings
[HSMC17, BSR17]. For a complete review and comparisons of existing methods, we
refer the reader to the two recent SMLM challenges [SKP+15, SPB+18].

Initially introduced for two-dimensional imaging, SMLM has been extended to 3D
thanks to Point Spread Function (PSF) engineering. The principle relies on the design of
PSFs which vary in the axial direction (i.e. z) in order to encode an information about
the depth of molecules. Conventional PSF models include astigmatism [HWBZ08] and
double-helix [RPPATSB+09]. An alternative to PSF engineering is to record simultane-
ously multiple focal planes, as in the biplane modality [JJGL+08]. It is noteworthy that
these two approaches can also be combined as in [HSG+15] where the authors use both
an astigmatism PSF and multi-focal acquisitions.

In this section, we study the performance of the SFW algorithm on both astigmatism
and double-helix modalities with various number of focal planes (typically from 1 to 4).
We compare these two modalities to an alternative approach where depth information is
extracted from multi-angle total internal reflection fluorescence (MA-TIRF) microscopy
acquisitions. That approach consists in illuminating the scene with different angles
so as to deduce the depth from the attenuation of the response, and it is quite new
and promising in microscopy imaging (see [BGM+14, SRG+19] for recovery methods
on a grid). In [9], we designed numerical simulations as a proof of concept to explore
the potential of off-the-grid methods with the MA-TIRF technique. One of the main
interest in combining SMLM with MA-TIRF is that classical PSFs, which are better
localized laterally than astigmatism or double-helix, can be used. This would reduce the
difficulty of lateral molecule localization for high density settings while recovering the
depth through the MA-TIRF acquisitions.

Let us describe the corresponding impulse responses. In the following, X
def.
= [0, b1]×

[0, b2]× [0, b3] is a subset of R3, and we write x = (x1, x2, x3) ∈ X. We consider a camera
containing N1 × N2 pixels and we denote the center of the ith pixel by (ci,1, ci,2). An
additional parameter, K, is related to depth estimation and encodes the number of focal
planes in astigmatism and double helix, or the number of angles in MA-TIRF. We take
into account the integration over camera pixels

Ωi
def.
= (ci,1, ci,2) +

[
− b1
2N1

,
b1
2N1

]
×
[
− b2
2N2

,
b2
2N2

]
⊂ Ω

def.
= [0, b1]× [0, b2].

Astigmatism model. This modality provides depth information using an astigmatism
deformation of the PSF with respect to the axial direction z. It is customary to model
the latter with a Gaussian function whose variances σ1 and σ2 vary with z according to
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[HSMC17, KVU13]

σ1(z)
def.
= σ0

√
1 +

(
αz − β
d

)2

and σ2(z)
def.
= σ1(−z). (7.21)

The constants involved in (7.21) can be calibrated from real data [HWBZ08, KVU13].
Then, integrating this Gaussian model over camera pixels, we have for all i ∈ {1, . . . , N1N2}
and k ∈ {1, . . . ,K}

[φ(x)]i,k
def.
=

1

2πσ1(x3 − zk)σ2(x3 − zk)

∫
Ωi

e
−
(

(x1−s1)
2

2σ2
1(x3−zk)

+
(x2−s2)

2

2σ2
2(x3−zk)

)
ds1ds2,

where (zk)
K
k=1 are the positions of the considered focal planes.

Double-helix model. Here, depth information is obtained by using a PSF formed out
of two lobes which coil around each other along z to form a double-helix shape. In this
paper, we model these lobes by two Gaussian functions with fixed variances σ1 = σ2,
and with a center whose lateral position (r1, r2) (respectively, (−r1,−r2)) varies with z
according to

r1(z)
def.
=

ω

2
cos(θ(z)) and r2(z)

def.
= −ω

2
sin(θ(z)) where θ(z) = θspeedz. (7.22)

Parameters ω > 0 and θspeed > 0 correspond to the distance between the two Gaussian
and the rotation speed of the double-helix (rad/nm), respectively. Then, integrating this
model over camera pixels, we have for all i ∈ {1, . . . , N1N2} and k ∈ {1, . . . ,K}

[φ(x)]i,k
def.
=

1

2πσ1σ2

∑
u∈{−1,1}

∫
Ωi

e
−
(

(x1+ur1(x3−zk)−s1)
2

2σ2
1

+
(x2+ur2(x3−zk)−s2)

2

2σ2
2

)
ds1ds2,

where (zk)
K
k=1 are the positions of the considered focal planes.

MA-TIRF model. With this modality, each activated set of molecules is imaged
using K ∈ N TIRF illuminations with incident angles (αk)

K
k=1. We only give a brief

account of the acquisition process, and we refer to [SSR+16, SRG+19] for the detail of
the setup. Let ni > 0 and nt > 0 be the refractive indices of the incident (i.e. glass
coverslip) and the transmitted (i.e. sample) medium, respectively. A TIRF excitation is
obtained when the incident angle α is greater than the critical angle αc = arcsin(nt/ni)
for which we have total internal reflection of the light within the incident medium. This
phenomenon produces an evanescent wave which decays in the transmitted medium as
exp(−sx3), where s = (4πni)/λℓ

(
sin2(α)− sin2(αc)

)
is the penetration depth and λℓ is

the wavelength of the incident laser beam [Axe81, Axe08]. Because the decay of this
evanescent excitation vary with the incident angle, the depth of biological structures
can be recovered with a nanometric precision from multi-angle acquisitions [BGM+14,
DSDVJ16, ZZL+18]. Combining this principle with SMLM techniques lead to a forward
model Φ defined, for all i ∈ {1, . . . , N1N2} and k ∈ {1, . . . ,K}, by

[φ(x)]i,k
def.
=

ξ(x3)e
−skx3

2πσ1σ2

∫
Ωi

e
−
(

(x1−s1)
2

2σ2
1

+
(x2−s2)

2

2σ2
2

)
ds1ds2, (7.23)

where ξ(z) =
(∑K

k=1 e
−2skz

)−1/2
is a normalization factor. This model comes from the

combination of a lateral convolution with the axial TIRF excitation. Here the PSF of the
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Figure 7.5: Noiseless acquisitions y0 for the measure m0 displayed with colored balls
and K = 4. The color of the molecules represent their depths: 0 (red) – 0.8µm (blue).

system is assumed to be a Gaussian with variances σ1 = σ2, and to be constant along x3
(because only a thin layer of few hundred nanometers is excited by the evanescent wave).
The values (sk)

K
k=1 correspond to the penetration depths associated to the incident angles

(αk)
K
k=1.

An example of the corresponding three acquisitions is displayed on Figure 7.5.

Numerical results. We simulate an acquisition experiment by designing filaments
which are piecewise linear curves. We draw random points on those curves and we shift
them by a vector which is drawn uniformly at random in a ball of radius 10 nm.

The Ntot ∈ N∗ molecules of the simulated structure are divided into n ∈ N∗ sparse set
of N ∈ N∗ molecules using a random permutation (i.e. Ntot = n×N). This models the
sequential stochastic activation of fluorophores used in SMLM. For each of the n subsets
of molecules, we define a Radon measure composed of a sum of Dirac masses—located
at the position of the molecules—with positive amplitudes

m0 =
N∑
i=1

aiδxi where ai > 0 and xi ∈ X.

The amplitudes are randomly generated within [1, 1.5]. An example of a set of activated
molecules is shown in Figure 7.6 (black crosses). Then, the data is obtained by applying
the forward model on each subset and adding noise.

For the reconstruction, we solve the Blasso for each subset of activated fluorophores,
using a value λ that maximizes the Jaccard index on a training set (see [9] for more
detail).

Figure 7.7 shows the detection rate using standard metrics [SPB+18, SKP+15]. Given
a recovered frame and a tolerance radius r > 0, we pair estimated molecules and ground
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Figure 7.6: Microtubules structure used for the simulations. The diameter of the
filaments is 20 nm. The color encodes the depth of molecules within the range 0−0.8 µm.
Black crosses represent a subset of activated molecules (i.e. a measure m0).

truth (GT) molecules when the distance between them is lower than r. Paired estimated
molecules are then referred as true positive (TP) while unpaired ones as false positive
(FP). Finally, the unpaired GT molecules are identified as false negative (FN). These
quantities being determined for each frame, we can compute the Jaccard index (Jac),
the Recall (Rec) and the Precision (Pre) metrics,

Jac =
#TP

#TP+#FP +#FN
Rec =

#TP

#TP+#FN
Pre =

#TP

#TP+#FP
. (7.24)

The visual reconstructions are displayed in Figure 7.8 and Figure 7.9, showing respec-
tively the effect of the number N of simultaneously activate molecules and the number
K of focal planes or illumination angles. These results suggest that moving from K = 1
focal plane toK = 2 focal planes greatly improve the performance of the detection (while
going further only provides marginal improvements), which corroborates the results of
[HSG+15]. To the best of our knowledge, current commercial microscopes which include
the Astigmatism or Double-Helix modalities only implement 1 focal plane.

While the benchmark tends to show the superiority of the Double-Helix acquisition
model with K ⩾ 2 focal planes, other criteria must be taken into account, such as the
manufacturing cost or the difficulty of the calibration process. It appears that when
taking those into accounts, the MA-TIRF procedure is an interesting alternative.
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Figure 7.7: Evolution of Jaccard, Recall and Precision metrics with respect to K, for
a radius of detection r = 0.02 (20nm).
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Figure 7.8: Recovered structures for K = 4.
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Figure 7.9: Recovered structures for N = 10.
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7.3 The Fourier-Frank-Wolfe algorithm in the space of Mo-
ment matrices

Now, we discuss an alternative method to solve the Blasso. A way to handle
measures numerically is to work with their moments. We assume in this section that
X = Td, so that we may characterize a measure m ∈ M(X) by its trigonometric
moments (i.e. its Fourier coefficients),

∀k ∈ Zd, ck(m)
def.
=

∫
Td

e−2iπ⟨k, x⟩dm(x). (7.25)

7.3.1 Spectral approximation

In order to write our problem in terms of the trigonometric moments, we assume that
Φ:M(Td) → H only depends on the first Fourier coefficients of m, (ck(m))k∈J−fc, fcKd ,
for some fc ∈ N. That is not so restrictive, since we may approximate any Φ with smooth
impulse response with such an operator. For φ : Td → H smooth enough, we define

Φc(m)
def.
=

∫
Td

φc(x)dm(x) where (7.26)

φc(x)
def.
=

∑
k∈J−fc, fcKd

ck(φ)e
2iπ⟨k, x⟩ and ck(φ)

def.
=

∫
Td

φ(x)e−2iπ⟨k, x⟩dx. (7.27)

Proposition 7.2 ([5]). Let y ∈ H, φ ∈ C j(Td;H) with j ⩾ ⌊d2⌋ + 1, and define Φc

by (7.26). For all fc ∈ N, Let mfc denote any minimizer of the energy Efc(m)
def.
=

λ |m| (Td)+ 1
2 ∥Φcm− y∥

2
H. Then, the sequence (mfc)fc∈N has accumulation points in the

weak-* topology and each of them is a minimizer of E(m)
def.
= λ |m| (Td) + 1

2 ∥Φm− y∥H.

Denoting by Fc :M(Td)→ C|J−fc, fcKd| the operator which mapsm to (ck(m))k∈J−fc, fcKd ,

we have the factorization Φc = HφFc, where Hφ : C(2fc+1)d → H. If H has finite dimen-
sion, Hφ is a matrix with entries (c−k(φj))1⩽j⩽dimH,k∈J−fc, fcKd .

Convolution. If Φ is a convolution operator ((3.14)), then Hφ is a diagonal matrix

Hφ = diag (ck(φ̃))k∈J−fc, fcKd . (7.28)

where φ̃ is the impulse response of the filter.

For instance, if φ̃ is the Dirichlet kernel with cutoff frequency fc, then ck(φ̃) = 1 if
∥k∥∞ ⩽ fc, and 0 otherwise. In that case, φ = φc.

Alternatively, if φ̃ is the 1-periodization of some (sufficiently decaying) function
f : Rd → R, i.e. φ̃(x) =

∑
j∈Zd f(x + j), the Poisson summation formula yields

φ̃(x) =
∑

k∈Zd f̂(k)e2i⟨k, x⟩, where f̂ is the Fourier transform of f . The function φc
is simply the corresponding truncated sum for k ∈ J−fc, fcKd.

Hφ = diag (f̂(k)))k∈J−fc, fcKd . (7.29)

An illustration of such approximated impulse responses is given in Figure 7.10 in the
case of the periodized Gaussian kernel.
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Figure 7.10: Evolution of Φcδx0, x0 ∈ T2, for different values of fc, in the Gaussian
case. Left image is a true (periodized) Gaussian convolution kernel.

Sampled convolution. In practical cases, one often only has access to convolution
measurements over some sampling grid G. In fluorescence microscopy for instance
[Gro13], the observations are accurately described as subsampled Gaussian measure-
ments. In that case, given some convolution kernel φ̃ ∈ L2(Td) (typically a Gaussian),
φ may be defined as

φ(x) = (φ̃(t− x))t∈G (7.30)

which leads to
Hφ =

(
ck(φ̃)e

2iπ⟨k, t⟩
)
t∈G,k∈J−fc, fcKd

.

Spatially varying filter. A typical example where filters are expected to be non-
stationary is in astrophysical imaging, see for instance [Ala00, SHM+02, GCM13]. These
variations are for instance very important for the observation of the early universe, due to
the impact of the lensing effect, see e.g. [CHK+13, NS17]. While it is sometimes possible
to account for these variations by deforming the observation, this is often non-trivial. In
such general cases, φ may be defined as

φ(x) = (φ̃(t, x))t∈G , (7.31)

and the lines of Hφ consist in the Fourier coefficients of x 7→ φ̃(t, x) at frequencies taken
in J−fc, fcKd.

Although the quality of the approximation proposed in this section depends on the
chosen cutoff frequency fc, and hence on the size of the approximation matrix Hφ, this
matrix does not need to be fully stored in many situations, see Section 7.3.3.

7.3.2 Atomic norm reformulation

Introduction

From now on, we fix fc ∈ N and, possibly applying the above approximation proce-
dure, we assume the spectral factorization Φ = HφFc. The problem (P(TV)(λ, y)) can
be reformulated as

min
z∈C(2fc+1)d

1

2
∥y −Hφz∥2H + λ

(
min

m∈M(Td)
|m| (Td) s.t. ck(m) = zk ∀k ∈ J−fc, fcKd

)
.

(7.32)

Given a vector z ∈ C(2fc+1)d of Fourier coefficients, we focus in this section on the second
term, namely he atomic norm [TBSR13] of z,

∥z∥A
def.
= min

{
|m| (Td) | m ∈M(Td), ∀k ∈ J−fc, fcKd, ck(m) = zk

}
. (Q0(z))

To solve (Q0(z)) using only trigonometric moments, we extend the following result
of G. Tang et al..
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Proposition 7.3 ([TBSR13]). If d = 1, then

∥z∥A = min
u∈∈C2fc+1,

τ∈R

1

2

(
1

2fc + 1
Tr(Toep(u)) + τ

)
s.t.

[
Toep(u) z
z∗ τ

]
⪰ 0. (7.33)

where Toep(u) is the Hermitian Toeplitz matrix with first row u.

The cornerstone of the proof Proposition 7.3 is the Carathéodory-Toeplitz theorem
[Car07, Toe11]: any positive semi-definite Toeplitz matrix T , of size (2fc+1)× (2fc+1),
has a Vandermonde decomposition3,

T =
r∑
j=1

bjv(xj)(v(xj))
∗ where v(xj)

def.
=


e2iπfcxj

e2iπ(fc−1)xj

...

e−2iπ(fc)xj

 (7.34)

for some bj ⩾ 0, xj ∈ T (for all 1 ⩽ j ⩽ r), and r = rank(T ). As a result, in
Proposition 7.3, Toep(u) is the moment matrix (see below) of the measure

∑r
j=1 bjδxj ,

and it is then possible to prove that there is a measure m =
∑r

j=1 ajδxj with z = Fcm
and bj = |aj |. That measure is a solution to (Q0(z)).

The problem of computing the atomic norm is thus reduced to a semi-definite pro-
gram, which can be solved e.g. using interior point methods. But when tackling higher
dimensions d ⩾ 2, two problems arise.

1. The Carathéodory-Toeplitz theorem does not hold anymore: some ”Toeplitz” pos-
itive semi-definite matrices do not have a Vandermonde decomposition.

2. Even if a formulation like (7.33) were true, it would involve matrices of size
(2fc + 1)d × (2fc + 1)d, which becomes quickly intractable using current interior
point methods.

In the rest of this section we show how to extend Proposition 7.3 and how to design
an algorithm which is able to solve such large scale semi-definite programs.

Moment matrices

For d, ℓ ∈ N∗, and m ∈ M(Td), we define the moment matrix of m as the matrix
Mℓ(m) indexed4 by J−ℓ, ℓKd such that

∀i, j ∈ J−ℓ, ℓKd, (Mℓ(m))i,j
def.
= ci−j(m) =

∫
Td

e−2iπ⟨(i−j), x⟩dm(x). (7.35)

The fundamental properties of moment matrices are the following:

• The matrix Mℓ(m) is generalized Toeplitz (also called Toeplitz-block Toeplitz, or
multi-level Toeplitz), in the sense that for every multi-indices i, j ∈ J−ℓ, ℓKd and
k ∈ Zd such that (i+ k), (j + k) ∈ J−ℓ, ℓKd,

(Mℓ(m))i+k,j+k = (Mℓ(m))i,j . (7.36)

3If r < N , that decomposition is unique.
4For now, we need not choose an order on the index set, but to fix ideas we can assume that the

indices are in the colexicographic order.
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• If the measure m is s-sparse, m =
∑s

k=1 akδxk , then rank(Mℓ(m)) ⩽ s, since

Mℓ(m) =

(∫
Td

e−2iπ⟨(i−j), x⟩dm(x)

)
i,j

=
s∑

k=1

akvℓ(xk)(vℓ(xk))
∗ (7.37)

where vℓ(x)
def.
= (e−2iπ⟨j, x⟩)j∈J−ℓ, ℓKd . (7.38)

• It the measure m is nonnegative, then Mℓ(m) is positive semi-definite, since

∀q ∈ C(2ℓ+1)d , q∗(Mℓ(m))q =

∫
Td

(∑
i

qie2iπ⟨i, x⟩

)∑
j

qje
2iπ⟨j, x⟩

 dm(x)

(7.39)

=

∫
Td

∣∣∣∣∣∣
∑
j

qje
2iπ⟨j, x⟩

∣∣∣∣∣∣
2

dm(x) ⩾ 0. (7.40)

Moreover, q ∈ kerMℓ(m) if and only if (suppm) ⊆
{
x ∈ Td |∑j qje

2iπ⟨j, x⟩ = 0
}
.

However, it is not true (contrary to the case d = 1) that every (generalized) Toeplitz
Hermitian positive semi-definite matrix is the moment matrix of a nonnegative mea-
sure. Such a question was investigated in the pioneering work of R. Curto and L. Fi-
alkow [CF96] (see also [CF00, Lau05, LM09]) who have highlighted the importance of
the flatness property.

Definition 7.1 (Flatness). Let ℓ ⩾ 1, let R be a matrix indexed by J−ℓ, ℓKd, and assume
that R is Hermitian, positive semi-definite, and generalized Toeplitz. We say that R is
flat if its submatrix R̃ corresponding to the indices in J−(ℓ−1), ℓ−1K satisfies rankR =
rank R̃.

The flatness property is sufficient to ensure that R is a moment matrix. As our setting
is not exactly the same as in [CF96] (the degrees of our polynomials are evaluated in the
ℓ∞-norm instead of the ℓ1-norm)), we have adapted the results of [CF96] using [LM09].

Proposition 7.4 ([5], adapted from [CF96]). Let R be a Hermitian, p.s.d., generalized
Toeplitz matrix. If R is flat, then there exists a unique non-negative measure m such
that R = Mℓ(m), and that measure is (rankR)-sparse.

In fact, a sufficient condition for existence (without uniqueness) is that R admits a
flat extension, i.e. a matrix indexed by J−(ℓ+1), ℓ+1Kd which extends R and which is
flat. But it is difficult to check that property in practice, and checking that R itself is
flat is one practical way to ensure that such a flat extension exists.

A hierarchy of Semi-Definite Programs

Following the principle of the hierarchies introduced by J.-B. Lasserre [Las01], we
introduce a family of problems on p.s.d. generalized Toeplitz matrices, with the hope
that some solution is a moment matrix, so that the energy coincides with the problem
on measures (Q0(z)). We denote by H+

ℓ the set of Hermitian, positive semi-definite
matrices indexed by J−ℓ, ℓKd, and by Tℓ the set of generalized Toeplitz matrices.

Given ℓ ⩾ fc we introduce the following problems.

min
R∈H+

ℓ ,

z̃∈C(2ℓ+1)d , τ∈R

1

2

(
1

(2ℓ+ 1)d
Tr(R) + τ

)
s.t.


(a)

[
R z̃
z̃∗ τ

]
⪰ 0

(b) z̃k = zk, ∀k ∈ Ωc
(c) R ∈ Tℓ

. (Q(ℓ)
0 (z))
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The following result ensures that those problems approximate (Q0(z)) better and better.

Proposition 7.5 ([5, Prop. 2]). Let z ∈ C(2fc+1)d. For any ℓ ⩾ fc,

min (Q(ℓ)
0 (z)) ⩽ min(Q(ℓ+1)

0 (z)) ⩽ min (Q0(z)). (7.41)

Moreover, limℓ→+∞min (Q(ℓ)
0 (z)) = min (Q0(z)).

It may happen that the equality holds not only in the limit but also for finite ℓ.

In that case, the connection between (Q(ℓ)
0 (z)) and (Q0(z)) is clarified by the following

Proposition.

Proposition 7.6 ([5, Prop. 3]). Let ℓ ⩾ fc. Then, min (Q(ℓ)
0 (z)) = min (Q0(z)) if and

only if there exist (R, z, τ) solution to (Q(ℓ)
0 (z)) and m solution to (Q0(z)) such that

τ = |m| (Td) and Ri,j =

∫
Td

e−2iπ⟨i−j, x⟩d |m| (x) (7.42)

for all i, j ∈ J−ℓ, ℓKd. In particular, if m is a discrete measure with cardinal s, then
rankR ⩽ s.

In fact, as shown in Paul Catala’s PhD thesis, the connection between R, z̃ and m
hold as soon as R is a moment matrix.

Proposition 7.7 ([Cat20, Prop. 8]). Let R =

(
R z̃
z̃∗ τ

)
be a solution to to (Q(ℓ)

0 (z)).

If R is the moment matrix of a sparse measure m̃ =
∑s

j=1 bjδxj (m̃ ⩾ 0), then z̃ is
the vector of Fourier coefficients of some measure m solution to (Q0(z)) with |m| = m̃.

Moreover, min (Q(ℓ)
0 (z)) = min (Q0(z)).

7.3.3 The Fourier-Frank-Wolfe Algorithm

Although we have focused on the constrained problem (Q0(z)), let us note that the
above discussion allows to reformulate (7.32) as

min
R∈H+

ℓ ,

z̃∈Cℓ,
τ∈R

1

2

(
Tr(R)

(2ℓ+ 1)d
+ τ

)
+

1

2λ
∥y −Hφz∥2H s.t.


(a)

[
R z̃
z̃∗ τ

]
⪰ 0

(b) zk = z̃k ∀k ∈ J−fc, fcKd
(c) R ∈ Tℓ

,

(Q(ℓ)
λ (y))

The same convergence properties for the hierarchies of relaxations hold.

Our goal is to use Algorithm 1 (or a variant) to solve (Q(ℓ)
λ (y)). However, the

constraint set is the intersection of the positive semi-definite cone and the vector space
of generalized Toeplitz matrices. It is not clear how to minimize linear forms on such
a convex set. Therefore, we relax the Toeplitz constraint and we consider the following
problem.

min
τ,z,R

1

2

(
1

(2ℓ+ 1)d
Tr(R) + τ

)
+

1

2λ
∥y −Hφz∥2H +

1

2ρ
∥R− PTℓ(R)∥2

s.t.


[
R z̃
z̃∗ τ

]
⪰ 0

z̃k = zk, ∀k ∈ J−fc, fcKd

(Q(ℓ)
λ,ρ(y))
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where PTℓ is the projector on the set Tℓ and the parameter ρ controls the penalization
of the Toeplitz constraint. Such a penalization produces good approximation of the

solutions of (Q(ℓ)
λ (y)) (see the theoretical and numerical study in [5]).

To work on a compact domain, we truncate it using a constraint set of the form

K
def.
=

{
R =

(
R z̃
z̃∗ τ

)
| R ⪰ 0,

1

(2ℓ+ 1)d
Tr(R) + τ ⩽

1

2λ
∥y∥2H

}
. (7.43)

Up to rescalings, minimizing a linear form on K, say R 7→ Tr(RM) for some matrix M ,
can be done by applying the power iterations method.

In our setting, let

f(R) def.
= C0

(
1

2

(
Tr(R)

(2fc + 1)d
+ τ

)
+

1

2λ
∥y −Az∥2H +

1

2ρ
∥R− PTℓ(R)∥2

)
, (7.44)

where C0
def.
= 2λ/ ∥y∥2H. The matrix M that we have to iterate is

∇f(R) = C0

 1
2(2fc+1)d

I + 1
ρ(R− PTℓ(R))

1
2λH

∗
φ(Hφz − y)

1
2λ(H

∗
φ(Hφz − y))∗ 1

2

 , (7.45)

Although the matrix R is very large, several key observations make this approach
tractable:

Memory-efficient storage. If the algorithm starts fromR(0) = 0, at the k-th iteration
the iterate R(k) has rank at most k, since at each iteration the Frank-Wolfe proce-
dure adds one eigenvector of ∇f(R(k)) (up to some rescalings, see Algorithm 3).

Therefore, we write our iterate as R(k) = U (k)U (k)∗, where U (k) ∈ C((2fc+1)d+1)×k.
We only store the matrix U (k), and at each iteration we add a column to it.

Fast Fourier Transform (FFT) computations. When applying the matrix M =

∇f(R(k)) to a vector

(
w1

ω

)
, the computation of 1

2(2fc+1)d
I+1

ρR)w1 = ( 1
2(2fc+1)d

w1+

1
ρU (k)(U (k)∗w1) involves only the products of small matrices. But the computation
of PTℓ(R) can be quite involved. It turns out that computing this projection and
applying the corresponding Toeplitz operator amount to a discrete convolution
with zero-padding of well chosen vectors (see [5, Prop. 5 and 6]). As a result,
it can be computed using the Fast Fourier Transform (FFT), which requires only
O(N logN) operations, where N = (2ℓ+ 1)d + 1.

Diagonal matrices. It remains to compute H∗
φHφz. That is not necessarily very dif-

ficult. As noted above, in the convolution case Hφ is diagonal. In the case of sub-
sampled convolution observations on a regular grid G of dimension L1× . . .×Ld, if
2fc < min(L1, . . . , Ld), the columns of Hφ are orthogonal, and therefore the matrix
H∗
φHφ is diagonal. If 2fc ⩾ min(L1, . . . , Ld), H

∗
φHφ is not diagonal, but only a few

of its diagonals are non-zeros. Therefore, in these two cases, the computation and
the storage of H∗

φHφz are not very expensive.

However, for general non-translation-invariant operators (such as spatially varying
filtering case), the matrix H∗

φHφ is of size (2fc + 1)d × (2fc + 1)d (since Hφ is of

size |G| × (2fc + 1)d) and needs to be fully stored.

As in the case of the Sliding Frank-Wolfe, a key to a fast convergence of the algorithm
is to add a non-convex corrective step. The non-convex step that we add after each Frank-
Wolfe update consists, in a gradient (or BFGS) descent on F : U 7→ f(UU∗). The idea
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is to continuously move the iterate U in the manifold of fixed rank matrices to improve
the value of the functional. This is similar to the celebrated Burer-Monteiro non-convex
method for low-rank minimization, which has proven to be very efficient in practice
[BVB16].

The full algorithm is summarized in Algorithm 3. In Line 3, the matrix Jℓ is simply
a diagonal matrix, of the form,

Jℓ
def.
=

(
1

(2ℓ+1)d
I(2ℓ+1)d 0

0 1

)
(7.46)

and the argmin is computed using the power iterations, which can be done efficiently as
explained above. In Line 7, the optimal coefficients α and β can be computed explicitly
(see [5, Prop. 7]). In Line 8, a local descent is performed using the BFGS algorithm,
which can be done efficiently too, using the same tricks. In particular, both the objective
and its gradient can be evaluated using H∗

φHφ (and not Hφ), for instance ∥y −Hφz∥2H =

∥y∥2H − 2ℜ
〈
H∗
φy, z

〉
+
〈
H∗
φHφz, z

〉
, and the vector H∗

φy can be pre-computed. In the
case of convolutions or subsampled convolutions on a regular grid, that is particularly
interesting since H∗

φHφ is diagonal. The computational costs of evaluating the gradients
in Line 3 and Line 8 are gathered in Table 7.1 in the different cases (assuming regular
grids).

Algorithm 3 Fourier-Frank-Wolfe Algorithm

1: Initialize with U0 = [0 . . . 0]⊤, D0 = 2f(0).
2: for r = 0, 1, . . . do
3: Linear minimization:

vr = D0J
− 1

2
ℓ

(
arg min

∥v∥⩽1
v⊤ ·

(
J
− 1

2
ℓ ∇f(UrU∗

r )J
− 1

2
ℓ

)
· v
)
J
− 1

2
ℓ

4: if ⟨UrU∗
r − vrv∗r , ∇f(vrv∗r )⟩ ⩽ εf(x0) then

5: (R, z̃, τ) such that Ur =

(
R z̃
z̃∗ τ

)
is an (approximate) solution of (Q(ℓ)

0 (z)).

Stop.
6: else
7: Obtain

Ûr+1 =
[√

αrUr,
√
βrvr

]
,where

αr, βr = arg min
α⩾0,β⩾0,α+β⩽1

f(αUrU∗
r + βvrv

∗
r )

8: Corrective step (local minimization)

Ur+1 = bfgs
{
U 7→ f(UU∗) | U ∈ C((2ℓ+1)d+1)×(r+1), starting from Ûr+1

}
9: end if

10: end for

7.3.4 Extracting the support from the moment matrices

Once the moment matrix R has been found, it remains to extract the support and find
the corresponding measure, which is not trivial. We only briefly sketch some directions,
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Table 7.1: Computational costs.

Filter Φ f ′(UU) w F ′(U)

convolution O(rℓd log ℓ) O(r2ℓd + rℓd log ℓ)

subsampled
convolution O(rℓd log ℓ) O(r2ℓd + rℓd log ℓ)

(with regular grid)

spatially varying filtering O(rℓd log ℓ+ f2dc ) O(r2ℓd + rℓd log ℓ+ f2dc )

since it would lead us to far in the description of notions of algebraic geometry, but that
is roughly an extension to the multidimensional setting of Prony’s method [dP95]. We
refer to Paul Catala’s PhD thesis [Cat20] for more detail.

Assuming that R is flat (hence it provides the moments of a uniquely determined mea-
sure), the Stetter-Möller method [MS95] consists in building the so-called multiplication
matrices corresponding to the moment matrix R (see [Las10, Ch.4], [HKM17, JLM19]),
which can be done using the singular value decomposition (SVD) or a Gram-Schmidt
decomposition of R.

Roughly speaking, one builds a matrix Nj (1 ⩽ j ⩽ d) which represents the operation
of multiplicating a (class of) trigonometric polynomial (in a well chosen quotient space
which depends on kerR) with a monomial e2i⟨ej , x⟩,

Nj : P 7−→
(
x 7→ e2i⟨ej , x⟩P (x)

)
,

where ej is j-th vector of the canonical basis of Rd. The Nj ’s are co-diagonalizable
and their common eigenvalues are e2i⟨ej , xi⟩ (1 ⩽ i ⩽ s) if the underlying measure is∑s

i=1 biδxi . In practice, the joint diagonalization of the Nj ’s allows us to recover the
different components

(
e2i⟨ej , xi⟩

)
1⩽j⩽d for each xi in the support. That joint diagonaliza-

tion is usually done by diagonalizing a random linear combination of the Nj ’s. We refer
to [JLM19] for a comparison of this method with several variants.

In his PhD thesis [Cat20], Paul Catala has shown that, when trying to estimate
measures which have a continuous support (e.g. curves, or sets with nonempty interior),
the above joint diagonalization procedure may fail in finding the correct support. He has
proposed a joint diagonalization algorithm which addresses that issue with a variational
approach. The proposed method works much better than the previous method for non
sparse measures. The interested reader may consult [Cat20, Sec. 1.6.3].

7.3.5 Numerical examples

We discuss here numerical results provided by Paul Catala’s implementation of the
Fourier-Frank-Wolfe algorithm5. A first reconstruction example using different forward
operators is shown in Figure 7.11 (on synthetic data). We have also tested our method on
images from the Single-Molecule Localization Microscopy (SMLM) challenge [EPF13],
see Section 7.2.3 for the principle of SMLM. An example of frame is shown in Figure 7.12.
The full reconstruction Figure 7.13, left image, is obtained by super-resolving 12000 such
images with randomly activated molecules.

We display the performance (in terms of the Jaccard index, see Equation (7.24)),
versus the number of BFGS iterations in Figure 7.13. Indeed, as the the non-convex

5https://github.com/Paulcat/Super-Resolution-SDP

https://github.com/Paulcat/Super-Resolution-SDP
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fc = 15, ∥w∥
∥y0∥

= 10−4 fc = 30, ∥w∥
∥y0∥

= 4.10−5 fc = 30, ∥w∥
∥y0∥

= 10−2, G :
64× 64

fc = 30, ∥w∥
∥y0∥

= 10−3, G :
64× 64

λ0 = 2.10−3, ρ = 103 λ0 = 2.10−3, ρ = 103 λ0 = 10−3, ρ = 104 λ0 = 10−3, ρ = 104

Figure 7.11: From left to right: Measurements y = Φm0 + w (we plot F∗
c y in the

first two figures) in the case of Dirichlet convolution, Gaussian convolution, Subsam-
pled Gaussian convolution, and (Subsampled) Gaussian foveation. The support of m0

is represented by red (positive spikes) and blue (negative spikes) dots. On the bottom
line, the indicated errors are defined as ∥x0 − xr∥ / ∥x0∥, x0 and xr being respectively
the ground-truth and the reconstructed supports.

corrective step is the most costly step, one may wish to bound the number of BFGS
iterations.

Empirically, it seems that a finite convergence as in the Sliding-Frank-Wolfe algo-
rithm occurs, at least when the spikes of the unknown measure are sufficiently separated.

Eventually, let us mention that the Fourier Frank-Wolfe method can be adapted
to other problems than the Blasso. In Paul Catala’s PhD thesis, the algorithm is
extended to Optimal Transport problems, see for instance Figure 7.14 for an example of
transport between two continuous measures. Numerically, that is quite challenging, as
a transport plan between two measures 2-dimensional domains is a measure defined on
a 4-dimensional domain. As a result, the relaxation is only taken to the order ℓ = 10.

7.4 Conclusion

7.4.1 Summary

The use of extreme points in inverse problems is not only relevant theoretically, but
also numerically. The Frank-Wolfe (or conditional gradient) algorithm is an optimization
method which is suitable beyond the framework of Hilbert spaces, one may typically
apply it in Banach spaces or locally convex vector spaces; for our concern we have used
in the space of Radon measures. It turns out that the linear minimization step can be
solved by choosing an extreme point of the constraint set (or level set of the regularizer).
When the set of extreme points has a smooth structure, one may take advantage of that,
using an additional property of Frank-Wolfe: one may choose the next iterate as any
feasible point which has lower energy than the exact line search. It results in algorithms
which interwind linear minimizations and local (non-convex) descents which optimize
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Figure 7.12: Example of reconstruction on data from the smlm challenge. Relative
error is ∥xrec − x0∥ / ∥x0∥ = 1.57× 10−2
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Figure 7.13: Left: Recovery from a full dataset of SMLM challenge. This result is
obtained by combining the super-resolved output of 12000 individual frames similar to
Figure 7.12. Right: Performance versus maximum number of BFGS iterations
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Figure 7.14: Examples of transport between “continuous” measures recovery using the
FFW algorithm.

over all the selected extreme points, as suggested in [BP13, BSR17]. We have applied that
powerful principle to the case of Radon measures and moment matrices, corresponding
respectively to the Sliding Frank-Wolfe and the Fourier Frank-Wolfe algorithms. One
major advantage of the non-convex refinement is that it allows for convergence after a
finite number of outer iterations, under some non-degeneracy property.

7.4.2 Comments

Sliding Frank-Wolfe versus FISTA on a grid. A standard approach for solv-
ing super-resolution problems is to define a grid on the domain X and to solve the
corresponding Lasso problem, for instance using FISTA [BT09]. As we have seen in
Chapter 5 this induces moderate discretization artifacts. Still, proximal methods are well
understood and are quite efficient, and it is not obvious that an “infinite-dimensional”
method like the SFW could be a viable alternative. In his PhD thesis [Den18], Quentin
Denoyelle has made an extensive comparison of both approaches, using the sampled
Laplace forward operator. It turns out that SFW outperforms FISTA both in terms of
quality of estimation (even if the output of FISTA is postprocessed with a clustering
step) and in computation time. That illustrates the power of “gridless” methods: the
elementary steps such as the update rule are done on small vectors, yielding small prob-
lems, and the continuous nature of the observation operator is exploited by the sliding
step.

Update rules in the Sliding Frank-Wolfe. In Line 3 of Algorithm 2, we only
add one element of the set of maximizers of

∣∣η[k]∣∣ to the current support, as follows
straightforwardly from the standard Frank-Wolfe algorithm. Still, other strategies may
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be employed. Motivated by a connection with exchange methods in semi-infinite pro-
gramming (see also [ET19]), the authors of [FdGW21] have advocated for the addition
of every local maximizer of η[k], which seems to be more efficient.

Semi-definite programs and hierarchies for the Blasso. It should be noted that
semi-definite programs for the resolution of theBlasso and variants have been used since
[CFG14, CFG13]. However, the problem they use is a reformulation of the dual problem
(D(TV)(0, y)) (resp. (D(TV)(λ, y))) which aims at finding a dual polynomial. It turns out
that the p.s.d. matrices involved do not have low rank, in fact the dimension of their
kernel is typically the number of saturations points of the polynomial (in general, the
number of recovered Dirac masses), which is generally small. Therefore, it is difficult to
encode such matrices. On the contrary, the moment approach that we have used (inspired
from [TBSR13]) takes advantage of the low rank of moment matrices and makes it
possible to solve 2D (and even 4D when recovering transport plans in optimal transport)
problems. Let us mention that hierarchies for the Blasso in the real polynomial setting
were developed in [DCGHL17]. In [YXS16], the authors develop a trigonometric moment
approach similar but complementary to ours (relying on a Vandermonde decomposition,
which hold only in specific cases, instead of hierarchies).

Conic Particle Gradient Descent. An alternative to the Sliding Frank-Wolfe or the
Semi-definite programs for the resolution of the Blasso is the Conic Particle Gradient
Descent proposed in [CB18, Chi21]. The idea is to initialize the algorithm with many
Dirac masses, and then to let them evolve according to a gradient flow for a specific
metric. The main result is that, if the initialization point is sufficiently close to the
uniform measure on X, the algorithm converges towards a solution of the problem. Key
properties of the Conic Particle Gradient Descent are its easiness of implementation and
the low computational cost of each iteration.

For a detailed comparison of semi-definite programs, Sliding Frank-Wolfe, and the
Conic Particle Gradient Descent on Single Molecule Localization Microscopy (SMLM)
data, see the review [LBFA21].

Finite convergence of hierarchies In dimension d = 2, the hierarchy of relaxations
introduced in Section 7.3.2 should be tight at some finite order ℓ ⩾ fc, as a consequence
of a result of Scheiderer [Sch06] which states that a positive trigonometric polynomial
admits a sum-of-squares representation. However, the corresponding order is unknown.
In our experiments, we have always observed convergence at ℓ = fc.

A recent result [YXS16] (see also [AC16]) states that every Hermitian p.s.d. gen-
eralized Toeplitz matrix with rank r ⩽ fc has a Vandermonde decomposition. Since

our variational problem (Q(ℓ)
0 (z)) involves the trace, which tends to promote low-rank

solutions, that could explain why we have always observed this convergence at ℓ = fc.
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Chapter 8

Conclusion and perspectives

The classical Carathéodory theorem and the decomposition of a convex set into its
elementary faces are simple principles which have far-reaching consequences in linear
inverse problems.

When the number of measurements is finite (as is the case in practical applications), it
is possible to decompose some solutions of variational problems as convex combinations
of the extreme points of the level sets of the regularizer (Chapter 1). The family of
“decomposable” solutions is rich enough to describe the whole solution set, insofar as it
includes all the extreme points and the extreme rays of the solution set.

The “atoms” of that decomposition provide a lot of information on the structures
promoted by the regularizer R. But sometimes the knowledge of the extreme points of
the level sets of R is not enough. One needs to understand how they are organized into
finite-dimensional faces to describe finely the structure of the solutions. In that respect,
the case of the total (gradient) variation is particularly interesting (Chapter 2).

When it comes to studying the stability of such decompositions, one needs to assume
more regularity. The theory of duality exposed in Chapter 3 is helpful for that: the
solutions to the dual problem give access to a “dual certificate”, i.e. a subgradient
of R, which exposes a face of the epigraph of R which contains the solutions of the
primal problem. Therefore it gives access to a face (perhaps not the minimal one) which
contains them.

When both the noise and the regularization are small, the dual solutions concentrate
around the minimal-norm solution to the (noiseless) dual problem, which gives access to
the minimal-norm certificate. Understanding that certificate is the key to understanding
the behavior of the reconstruction at low noise. We have described in Chapter 4 a
linearization procedure which gives access to it if one is able to guess its minimal face in
the feasible set of the dual problem.

The stability of the decomposition is then studied in Chapter 5 in the cases of the
Lasso, Blasso, and total variation denoising. In all cases, it is possible to obtain the
Hausdorff convergence of the support when the noise and the regularization parameter
vary. In the polyhedral case, the support is thus locally constant, provided the dual
certificate is tight. However, if the problem comes from the discretization of a continuous
one, the tightness of the dual certificate almost never holds, and discretization artifacts
appear. For the Blasso, the support identification is not granted: even with a tight
dual certificate, the cardinal of the support may vary. It is the examination of the second
derivatives of the dual certificate which allow to ensure identification of the support. In
that case, the solutions have the same structure and the locations and amplitdes vary
smoothly.

A limitation of the Blasso is the impossibility to recover measures with spikes with
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opposite signs that are too close. However, if all the spikes have the same sign, it is
possible, under some assumptions, to recover the unkown measure and the condition on
the noise is studied in Chapter 6.

On the numerical side, the Frank-Wolfe algorithm produces iterates that have the
same structure as our “decomposable” solutions: they are a convex combination of a
few extreme points of the level sets of the regularizer. The Sliding Frank-Wolfe and
Fourier Frank-Wolfe described in Chapter 7 take advantage of that property together
with the possibility of improving the iterates using a non-convex update which consists
in moving the selected extreme points. Such a non-convex update allows for finite-time
termination of the global algorithm in non-degenerate cases. It results in very efficient
algorithms which solve the Blasso in a competitive way compared to the state of the
art. Their applicability to practical problems has been demonstrated on Single-Molecule
Localization Microscopy datasets, which are particularly suited to the Blasso.

While investigating all the above-mentioned topics, I was struck by the power of the
continuous approach (Blasso) compared to the discrete one (Lasso). For instance,the
study of support stability in discrete problems is possible on the last solution path (which
corresponds to some face of the regularizer), but it becomes tedious beyond that last
path (which is all the shorter as the grid is thin). That study is considerably simplified
in the continuous problem by the use of differential calculus: the faces vary continuously
and it is then easy to track them as the parameters (noise, regularization level) vary. The
grid, which is introduced as a computational tool rather than an object relevant to the
physical problem, somehow obscures the problem. In terms of numerical computations,
thin grids also tend to induce a heavy computational load and numerical instabilities.
On the contrary, algorithms which work in the continuous setting have a low memory
footprint, and exploit the differential structure of the problem.

The surprising thing is that, after all, it is possible to study and numerically solve
problems in the space of Radon measures, which is infinite-dimensional - and rather
complicated. The cornerstone is the representer theorem and the Frank-Wolfe algorithm,
which rely on Carathéodory’s theorem and the decomposition of convex sets into their
elementary faces. As they only manipulate the atoms induced by the total variation of
measures (Dirac masses), which are easy to work with, they open the door to analysis
and computations. It is therefore natural to ask if it can be extended beyond that case.

Is it possible to go beyond the recovery of pointwise sources and recover more complex
objects (like curves, or shapes)?

That is certainly a challenging question, since the corresponding atoms would be
more difficult to handle than the simple Dirac masses. However, capturing the essence
of a continuous problem and removing the artifacts induced by the discretization grids
(anisotropy, blur) is a promising avenue.

Recently, a step towards the recovery of curves in a continuous setting has been made
with the series of papers [BCFR20, BF20, BCF20, BCFR21] which relate the extreme
points of the optimal transport squared distance (through the Benamou-Brenier formula)
and measures supported on curves. An algorithm has been proposed, but it is compu-
tationally demanding, as the space of curves (even though they are sampled in time) is
large. Providing a fast algorithm is crucial for practical applications. Understanding the
performance of the model is also interesting (stability, identifiability).

As for the total (gradient) variation, we have already gathered some information in
this thesis, with the structure of the faces and the Hausdorff convergence of the support.
Designing an algorithm which exploits the faces of the total variation unit ball is quite
challenging, and several approaches are possible. Moreover, it is natural to wonder if
an equivalent condition of the “non-degeneracy” of the dual certificates of the Blasso
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(namely, the fact that the Hessian is definite) exists for the total gradient variation. In
particular, is it possible to ensure that the reconstructed solution has the same number
of simple sets as the reference solution?

Together with my students Romain Petit (PhD, co-supervised with Yohann De Cas-
tro) and Robert Tovey (postdoc), we are currently investigating those two problems that
I find fascinating.

Beyond, the understanding of more modern regularizers such as the total generalized
variation (TGV) seems to be an even more challenging horizon [IW21].
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Appendix A

Reminder on the properties of
BV functions

This appendix summarizes a few basic notions on functions with bounded variation
and sets of finite perimeter. We refer the reader to [AFP00, Mag12] for more detail on
this topic.

Definition A.1. Let Ω ⊆ Rd be an open set, and u : Ω→ R a locally integrable function.
We define the variation of u as

V (u,Ω)
def.
= sup

{∫
Rd

udiv(φ) | φ ∈ C 1
c (Rd;Rd), sup

x∈Rd

|φ(x)|2 ⩽ 1

}
. (A.1)

By the Radon-Riesz representation theorem, V (u,Ω) < +∞ if and only if the distri-
butional derivative Du is a bounded (vector) Radon measure, in which case V (u,Ω) is
the (vector) total variation of the measure Du. In any case, we commonly write |Du| (Ω)
for V (u,Ω).

Given a Lebesgue measurable set A ⊆ Ω, we say that A has finite perimeter (in Ω)

if V (1A,Ω) < +∞, and we define its perimeter as P (A,Ω)
def.
= V (1A,Ω). If Ω = Rd, we

simply denote it by P (A). Note that A has finite perimeter if and only if so has A∁, and
P (A) = P (A∁).

If A has smooth boundary, then P (A,Ω) is simply the (d−1)-surface of its boundary
(∂A) ∩ Ω. In the general case, P (A,Ω) is the (d− 1)-dimensional Hausdorff measure of
its reduced boundary ∂∗A, P (A,Ω) = Hd−1((∂∗A) ∩ Ω), where

∂∗A
def.
=

{
x ∈ Supp(D1A) | lim

r→0+

−D1A(B(x, r))

|D1A(B(x, r))| exists and has unit norm

}
. (A.2)

For x ∈ ∂∗A, the measure theoretic outer unit normal νA(x) is defined as the limit
in (A.2).

An important property of the perimeter is its submodularity, namely

P (A ∪B) + P (A ∩B) ⩽ P (A) + P (B). (A.3)

The variation of a function is related to the perimeter of its level sets through the
coarea formula.

Theorem A.1 (Coarea formula, [AFP00, Thm. 3.40]). For any open set Ω ⊆ Rd, and
all locally integrable function u : Ω→ R, the variation of

V (u,Ω) =

∫ +∞

−∞
P ({x ∈ Ω | u(x) > t } ,Ω)dt.

171



172 APPENDIX A. REMINDER ON THE PROPERTIES OF BV FUNCTIONS

In particular, if V (u,Rd) < +∞ the set {u > t} has finite perimeter for a.e. t ∈ R and

|Du| (B) =

∫ +∞

−∞

∣∣D1{u>t}
∣∣ (B)dt, (A.4)

for any Borel set B ⊆ Ω.

We have used the notation {u > t} def.
= {x ∈ Ω | u(x) > t } (and similarly for <, ⩾,

and ⩽).
Since the set of t ∈ R such that Ld(Rd)({x ∈ Ω | u(x) = t } > 0 is at most count-

able, we may replace the sets {x ∈ Ω | u(x) > t } with {x ∈ Ω | u(x) ⩾ t }, or even with
{x ∈ Ω | u(x) < t } or {x ∈ Ω | u(x) ⩽ t } using that P (A) = P (A∁).



Appendix B

Duality and subdifferentials

The subdifferential of a convex function as well as the duality between variational
problems involve the notion of dual space. The reader might be surprised that, in our
analysis, we regard spaces such as the spaceM(X) of bounded Radon measures as the
primal space where the primal problem should be solved, while we see the space C0(X)
of continuous functions (vanishing at infinity) as its dual space. Indeed, C0(X) is a non-
reflexive Banach space, and whileM(X) is its (topological) dual, the dual ofM(X) is
strictly larger than C0(X)!

The present chapter explains that, instead of considering each set as a Banach space
together with its topological dual, using a duality pairing together with suitable topolo-
gies makes the situation perfectly symmetric: spaces likeM(X) and C0(X) are dual to
each other. After describing that duality pairing, we explain how the subdifferential of
a convex function R yields information on the faces FepiR (u,R(u)) of its epigraph.

B.1 Duality pairing

B.1.1 Definition

Following [Roc89], we consider a duality pairing between two real linear spaces V
and Υ, i.e. a bilinear form ⟨·, ·⟩ on V ×Υ. We say that the duality pairing is separating
in V if for all u ∈ V \ {0}, there exists η ∈ Υ such that ⟨u, η⟩ ≠ 0. In that case, the
mapping u 7→ ⟨u, ·⟩ from V to the (algebraic) dual of Υ is injective. The definition of
“V separates the points of Υ” is symmetric. If both separation properties hold, we say
the pairing is separating.

B.1.2 Choice of a topology

A locally convex topology τV on V (resp. τΥ on Υ) is said to be compatible with the
pairing if every linear form ⟨·, η⟩ for η ∈ Υ (resp. ⟨u, ·⟩ for u ∈ V ) is continuous for τV
(resp. τΥ), and if every continuous linear form on V (resp. Υ) has that form.

The weak topology σ(V,Υ) induced by Υ on V is always compatible with the pairing
[Bou07b, Prop. II.6.3], and it is the weakest of all such topologies. We note that the
pairing is separating in V if and only if σ(V,Υ) is Hausdorff [Bou07b, Prop II.6.2].
Symmetrically, the pairing is separating in Υ if and only if σ(Υ, V ) is Hausdorff.

Other choices of compatible topologies are possible, and that choice can become
crucial to ensure strong duality between variational problems (see Corollary B.1 below).
For instance, the strongest locally convex topology which is compatible with the pairing
is known as the Mackey topology [Roc89]. Nevertheless, the Hahn-Banach theorem
implies that the closed convex sets (hence the lower semi-continuous convex functions)

173



174 APPENDIX B. DUALITY AND SUBDIFFERENTIALS

only depend on the choice of the linear spaces V and Υ, and not on the particular choice
of compatible topology. In the following, when we say that (V,Υ, ⟨·, ·⟩) is a duality
pairing between V and Υ, we always endow V and Υ with compatible topologies which
we need not specify, as far as we deal with closed convex sets or lower semi-continuous
convex functions.

Example B.1. Let X ⊆ Rd be an open set and V
def.
= Lp(X), Υ

def.
= Lq(X) for 1 < p < +∞,

1/p+ 1/q = 1. Define

∀(f, g) ∈ V ×Υ, ⟨f, g⟩ def.
=

∫
X
f(x)g(x)dx. (B.1)

On V (resp. Υ), both the strong Lp(X) topology and the weak Lp(X) topology (resp.
strong Lq(X) and weak Lq(X) topologies) are compatible with the pairing.

More generally, if V , endowed with some norm, is a Banach space and Υ = V ′ is its
topological dual, then both the strong (induced by the norm) and the weak topologies on
V are compatible with the pairing. However, if V is not reflexive, the strong topology of
V ′ (induced by the dual norm) is not compatible with the pairing, since some continuous
linear forms on V ′ are not represented by V . Such is the case of Example B.1 when p = 1
and q = +∞ (see [Roc89, Sec. 3]), as well as continuous functions and Radon measures.

Example B.2. Let X be a locally compact separable metric space, and set V
def.
= M(X),

Υ
def.
= C0(X) with

∀(m, η) ∈ V ×Υ, ⟨m, η⟩ def.
=

∫
X
η(x)dm(x). (B.2)

On Υ, both the strong topology induced by ∥·∥∞ and the corresponding weak topology
are compatible with the pairing. However, on V , the (strong) topology induced by the
total variation norm ∥m∥M = |m| (X) is not compatible with the pairing. The dual of
the Banach spaceM(X) is rather complicated (see [Kap57, Kap59, Kap61]) and strictly
contains C0(X). On the other hand, the weak-* topology σ(M(X),C0(X)), i.e. the
topology induced onM(X) by C0(X) is compatible with the pairing.

B.1.3 Legendre-Fenchel conjugation

The duality pairing allows us to define the Legendre-Fenchel conjugate of a function
on V or Υ. Given f : V → R (resp. g : Υ → R) we set f∗ : Υ → R (resp. g∗ : V → R)
as

∀η ∈ Υ, f∗(η)
def.
= sup

u∈V
(⟨u, η⟩ − f(u)) , ∀u ∈ V, g∗(u) def.

= sup
η∈Υ

(⟨u, η⟩ − g(η)) . (B.3)

The biconjugate of f is defined as f∗∗
def.
= (f∗)∗ (and similarly for g). It is equal to f

provided f is convex, proper, and lower semi-continuous. We refer to [ET76] for the
properties of the Legendre-Fenchel conjugate.

B.2 Normals and subdifferentials

In this section, we discuss the notion of normal cone and relate it the subdifferential
of a convex function.
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u1 u2u0

NC (u2)NC (u1)NC (u0)

C

Figure B.1: The point u2 is an extreme point of C, but it is not exposed. The normal
cone at u2 is the same as the normal cone at u1, but they lie on different elementary
faces.

B.2.1 Normal cones and exposed faces

We consider a duality pairing (V,Υ, ⟨·, ·⟩). Let C ⊆ V be a convex set and u ∈ C.
The normal cone to C at u is

NC (u)
def.
=
{
η ∈ Υ | ∀u′ ∈ C,

〈
u′ − u, η

〉
⩽ 0

}
. (B.4)

In other words, η ∈ NC (u) if and only if u ∈ N−1
C (η), where

N−1
C (η)

def.
= argmaxu′∈C

〈
u′, η

〉
. (B.5)

Given η ∈ Υ, the set {u′ ∈ C | η ∈ NC (u′) } = N−1
C (η) is therefore a face of C. All the

subsets of C of that form are called the exposed faces of C. In an elementary face, the
normal cone is constant: for all u′ ∈ FC (u), NC (u) = NC (u′).

➢ Indeed, let η ∈ NC (u). Since N−1
C (η) is a face of C containing u, it must contain

FC (u), see Section 1.2.1. Hence, η ∈ NC (u) implies η ∈ NC (u′) for all u′ ∈ FC (u),
so that NC (u) ⊆ NC (u′). Swapping the roles of u and u′ (since FC (u) = FC (u′))
we obtain the equality.

However, the normal cones do not characterize the elementary faces. In other words,
NC (u) = NC (u′) does not imply FC (u) = FC (u′), see Figure B.1.

It is possible to prove that {u′ ∈ C | NC (u′) = NC (u) } is a face of C, hence it is a
union of elementary faces of C (including FC (u)). Often, one cannot have access to the
full cone NC (u), but one can simply find one element in NC (u). The normals which
provide the maximal amount of information are those in the relative algebraic interior
of NC (u) (provided it is nonempty).

Proposition B.1. Let C ⊆ V be a convex set, u ∈ C and η ∈ rcore(NC (u)). Then, for
all η′ ∈ NC (u),

FC (u) ⊆
{
u′ ∈ C | NC

(
u′
)
= NC (u)

}
⊆ N−1

C (η) ⊆ N−1
C

(
η′
)
. (B.6)

Proof. The first inclusion has already been discussed, and the second one is straightfor-
ward since NC (u′) = NC (u) implies η ∈ NC (u′). We prove the third one.

Since η ∈ rcore(NC (u)), there exists ε > 0 such that (η − ε(η′ − η)) ∈ NC (u). In
particular, for any u′ ∈ N−1

C (η),〈
u− u′, η − ε(η′ − η)

〉
⩾ 0. (B.7)
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Since u, u′ ∈ N−1
C (η) = argmaxC ⟨·, η⟩, we have ⟨u− u′, η⟩ = 0, hence, by (B.7),

ε ⟨u′ − u, η′⟩ ⩾ 0. Thus, for all u′′ ∈ C,〈
u′ − u′′, η′

〉
=
〈
u′ − u, η′

〉︸ ︷︷ ︸
⩾0

+
〈
u− u′′, η′

〉︸ ︷︷ ︸
⩾0

⩾ 0 (B.8)

(the second term is nonnegative since η′ ∈ NC (u)).

Let us note that each inclusion in (B.6) might be strict, as illustrated in Fig. B.1.

Remark B.1. As the first inclusion in (B.6) might be strict, let us stress again that
relying on the normal cone to locate x is not as sharp as identifying its minimal face.
Nevertheless, normal vectors appear naturally when writing optimality conditions, and
they are a powerful tool to study the stability of representations.

Remark B.2. In infinite dimension, the existence of η (i.e. rcore(NC (u)) ̸= ∅) is not
guaranteed. Moreover, there exist nonempty closed convex sets whose normal cone is
everywhere reduced to {0} [Bou07b, Sec. II.3]. Such sets must have empty interior.

B.3 Subdifferentials

Observe that the pairing (V,Υ, ⟨·, ·⟩) can be “lifted” into a pairing (V × R,Υ ×
R, ⟨·, ·⟩′) on the epigraphical space, with

⟨(u, t), (η, β)⟩′ def.
= ⟨u, η⟩+ tβ. (B.9)

Let R : V → R ∪ {+∞} be a convex function. Given u ∈ V , η ∈ Υ, we say that η is
a subgradient to R at u, i.e. η ∈ ∂R(u), if

∀v ∈ V, R(v) ⩾ R(u) + ⟨η, v − u⟩ . (B.10)

The subdifferential ∂R(u) is related to the epigraph of R (see [HUL93, Prop. VI.1.3.1]):
η ∈ ∂R(u) if and only if the vector (η,−1) is in the normal cone to epiR at u,R(u).
Moreover, one may check that

NepiR (u,R(u)) = { γ(η,−1) | γ > 0, η ∈ ∂R(u) } ∪ (NdomR (u)× {0}) . (B.11)

As a result, studying the subdifferential ∂R(u) gives access to a normal of epiR at
u,R(u), hence to a superset of FepiR (u,R(u)).

According to Proposition B.1, the normals which provide the sharpest bound on
FC (u) are those in rcore(NepiR (u,R(u))). As the next result shows, that is equivalent
to η ∈ rcore(∂R(u)).

Proposition B.2. Assume that ∂R(u) ̸= ∅, and let (α, β) ∈ Υ × R. The following
assertions are equivalent.

1. (α, β) ∈ rcore(NepiR (u,R(u))),

2. (α, β) = γ(η,−1) with γ > 0 and η ∈ rcore(∂R(u)).

Proof. For brevity, write K
def.
= NepiR (u,R(u)) and consider the cone K0

def.
=

{ γ(η,−1) | γ > 0, η ∈ ∂R(u) }. We note that K0 ⊆ K and

∀(α, β) ∈ K0, ∀(α′, β′) ∈ K,
]
(α, β), (α′, β′)

[
⊆ K0.
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In particular, K is the linear closure of K0, and thus rcore(K) = rcore(K0).
As a result, (α, β) ∈ rcore(K) if and only (α, β) ∈ K0 and for all (α′, β′) ∈ K0,

(α′′, β′′)
def.
= (α, β)− ε((α′, β′)− (α, β)) ∈ K0 for all ε > 0 small enough.

Let η
def.
= −α/β (resp. η′

def.
= −α′/β′). We note that for ε > 0 small enough,

(α′′, β′′) = γ′′
(
(η,−1)− (−β′)ε

γ′′
(
(η′,−1)− (η,−1)

))
where γ′′

def.
= −(β − ε(β′ − β)) > 0.

As a result, (α′′, β′′) ∈ K0 if and only if
(
(η,−1)− (−β)ε

γ′′ ((η′,−1)− (η,−1))
)
∈ ∂R(u).

Hence, if η ∈ rcore(∂R(u)), then (α, β) ∈ rcore(K0), and conversely.

In the favorable case where η ∈ R(u) is such that N−1
epiR ((η,−1)) = FepiR (u,R(u)),

we say that η is a tight dual certificate.

B.4 Dual problems

This section is a reminder about the perturbative approach to convex duality. Stan-
dard references on the topic include [ET76, Roc89]. Our goal here is to emphasize the
symmetry between the primal and dual problems, even though we work with “non-
reflexive spaces”. Let (V,Υ, ⟨·, ·⟩) and (Π, P, ⟨·, ·⟩) denote two duality pairings1.

B.4.1 Perturbed problems.

We assume that we are given a convex function F : V × Π → R ∪ {+∞} and we
consider the family of problems

inf
u∈V

F (u, ρ), (Pρ)

sup
p∈P

(−F ∗(η, p)) . (Dη)

Each problem (Pρ), ρ ̸= 0, is regarded as a perturbed problem, while our main goal is
to solve the primal problem ((P0)). Symmetrically, each (Dη) is a perturbed version of
the dual problem ((D0)), and the Legendre-Fenchel inequality implies the weak duality
inequality inf (P0) ⩾ sup (D0). The equality case (strong duality) is obtained when (P0)
(resp. (D0)) is called normal.

Proposition B.3 ([ET76, Prop. III.2.1]). Assume that F is convex, proper, lower
semi-continuous (l.s.c.). Then, the following properties are equivalent.

1. inf (P0) = sup (D0) and that number is finite,

2. The function φ : P → R, φ(ρ) def.
= infu∈V F (u, ρ), is l.s.c. at 0, with φ(0) finite,

3. The function γ : Υ→ R, γ(η) def.
= infp∈P F

∗(η, p), is l.s.c. at 0, with γ(0) finite.

Proving that (P0) or (D0) is normal is not easy in general, and one usually proves a
sufficient property, namely that (P0) (or (D0)) is stable: the function φ (or γ) is finite
and subdifferentiable at 0.

Additionally, the subdifferential of φ is related to the solution set of the dual problem
(a symmetrical statement holds for γ and (P0) if F is convex, l.s.c., proper).

1We use the same notation ⟨·, ·⟩ for the pairings since the risk of ambiguity is minor.
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Lemma B.1 ([ET76, Lem. III.2.4]). Let F be a proper convex function. Then, the
solution set to (D0) is equal to ∂φ∗∗(0). In particular, if φ∗∗(0) = φ(0), the solution set
to (D0) is equal to ∂φ(0).

Remark B.3. So far, in this convex framework, the duality theory exposed above only
depends on the linear spaces V,Υ,Π, P , but not on the chosen compatible topologies,
as they all have the same closed convex sets and l.s.c. functions. The key point is
that, in order to prove the stability of the (primal or dual) problem, one usually invokes
a continuity argument, proving that φ (or γ) is finite at 0 and upper-bounded in a
neighborhood of 0 (see Corollary B.1). The continuity of convex functions does depend
on the choice of topology, and for that purpose, it is convenient to choose one with
neighborhoods which are “as small as possible”.

B.4.2 Duality in our inverse problem.

Now, we specialize our discussion to the family of perturbed problems

F (u, ρ)
def.
= R(u) + f(Φu− y − ρ), (B.12)

where R and f are convex, proper, l.s.c., y ∈ Π is a fixed parameter (the observation)
and Φ : V → Π is linear.

In the spirit of Remark B.3, we do not assume that Φ is continuous for the chosen
compatible topologies τV and τΠ. We assume instead that Φ is continuous from σ(V,Υ)
to σ(Π, P ), which ensures that F is l.s.c. for any choice of compatible topology.

➢ Since f is convex and lower semi-continuous (for the chosen topology τΠ hence also
for σ(Π,Υ)), the mapping (u, ρ) 7→ f(Φu− y − ρ) is l.s.c. for the product topology
generated by σ(V,Υ)× σ(Π, P ). Since the closed convex sets for that topology are
the same as those for the product topology generated by τV ×τΠ, we obtain the lower
semi-continuity of (u, ρ) 7→ f(Φu− y − ρ) (hence of F ) for the chosen topologies.

Additionally, we assume that the duality pairing (V,Υ, ⟨·, ·⟩) is separating in Υ (so
that Φ∗ : P → Υ is well defined and continuous from σ(P,Π) to σ(Υ, V ), see [Bou07b,
Prop. II.6.5]) and that (Π, P, ⟨·, ·⟩) is separating in Π (so that Φ∗∗ is well-defined and
equal to Φ).

Since F ∗(η, p) = R∗(η +Φ∗p) + f∗(−p)− ⟨y, p⟩, the dual problem is

sup
p∈P

(−R∗(Φ∗p)− f∗(−p) + ⟨y, p⟩) .

Adapting [ET76, Th. II.4.2] to make it symmetric yields

Corollary B.1. Let R : V → R ∪ {+∞} and f : Π → R ∪ {+∞} be convex, proper,
lower semi-continuous functions and Φ : V → Π be linear, continuous from σ(V,Υ) to
σ(Π, P ). Assume that the duality pairings are separating as described above.

Then, the strong duality holds (i.e. inf (P0) = sup (D0)) provided one of the following
two properties holds.

1. inf (P0) is finite, there exists u0 ∈ V such that R(u0) < +∞, f(Φu0 − y) < +∞
and f is continuous at Φu0 − y for some compatible topology τΠ,

2. sup (D0) is finite, there exists p0 ∈ P such that R∗(Φ∗p0) < +∞, f∗(−p0) < +∞,
and R∗ is continuous at Φ∗p0 for some compatible topology τΥ.

Moreover, in the first (resp. second) case, the problem (P0) (resp. (D0)) is stable.
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Under strong duality, studying the dual problem (D0) is instructive since its solutions
(if they exist) are related to those the primal problem (if they exist). Any pair (u, p) ∈
V × P such that u is a solution (P0) and p is a solution to (D0) satisfies

Φ∗p ∈ ∂R(u) and − p ∈ ∂f(Φu− y). (B.13)

Conversely, for any pair (u, p) ∈ V ×P , if (B.13) holds, then u is a solution to (P0) and
p is a solution to (D0).

Remark B.4. Not only do the relations (B.13) yield a convenient means to check that
some given u is a solution to (P0), but, if u is unknown, they also provide a subgradient
of R at u, hence an a priori estimate of FepiR (u,R(u)).

B.4.3 Uniqueness in the dual problem for almost every data

Problems of the form (B.12) exhibit a surprising uniqueness property when the data y
varies. Observing that the value function φ defined in Appendix B.4.1 actually depends
on the data y, we denote it by φy and we observe that

φy(ρ) = φ0(ρ+ y). (B.14)

In particular, φy is (Gateaux)-differentiable at 0 if and only if φ0 is (Gateaux)-differentiable
at y. Since, by Lemma B.1, the uniqueness of the solution to (D0) is related to the dif-
ferentiability of φy at 0, standard results on the continuity and differentiability of convex
functions yield the following two propositions.

Proposition B.4 (Generic uniqueness, finite-dimensional case). Assume that Π = P
is finite-dimensional, and let R : V → R ∪ {+∞} and f : Π → R ∪ {+∞} be convex,
proper, l.s.c. functions, and let Φ : V → Π be linear continuous for σ(V,Υ). Assume
that the duality pairings are separating as described in Appendix B.4.2.

If φ0 is finite on an open subset ω ⊆ Π, then

• strong duality holds for every y ∈ ω,

• there is a unique solution to (D0) for (Lebesgue) almost every y ∈ ω.

We omit the proof since the above proposition directly follows from the continuity and
differentiability almost everywhere of convex functions in the interior of their domain.
A similar result holds in the infinite-dimensional case, where a generic set is understood
as a dense Gδ set.

Proposition B.5 (Generic uniqueness, infinite-dimensional case). Assume that for some
compatible topologies τΥ and τΠ, Υ is a Banach space and Π is a separable Banach space.
Let R : V → R ∪ {+∞} and f : Π→ R ∪ {+∞} be convex, proper, l.s.c. functions, and
let Φ : V → Π be linear continuous from σ(V,Υ) to σ(Π, P ). Assume that the duality
pairings are separating as described in Appendix B.4.2.

If φ0 is finite on a convex open subset ω ⊆ Π, then

• strong duality holds for every y ∈ ω,

• the set of data points y ∈ ω for which there is a unique solution to (D0) is a dense
Gδ subset of ω.
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Proof. Since Π and Υ are both Banach spaces, that F is convex l.s.c. and proper,
and 0 ∈ int(domφy) = core(domφy), we deduce from [Roc89, Thm. 18.c)] that φy
is bounded above in a neighborhood of 0, hence continuous at 0 (hence strong duality
holds).

As a result, the function φ0 is convex continuous on the convex open set ω ⊆ Π and
Π is a separable Banach space. By a theorem of Mazur [Phe93, Thm. 1.20], the set of
points for which φ0 is Gateaux-differentiable is a dense Gδ subset of ω. The uniqueness
result follows from the link between the differentiability of φy = φ0(·+ y) at 0 and the
solutions of the dual problem (see Lemma B.1).

More generally, convex continuous functions are generically Gateaux-differentiable
provided that the ambient space is weak Asplund (see [Phe93]), which includes the
case of Banach spaces whose topological dual is separable. We should not need any
generalization of Proposition B.5 to that setting.



Appendix C

Reminder on Γ-convergence

The notion of Γ-convergence was introduced by E. De Giorgi to describe the conver-
gence of energies and of their minimizers. We only provide elementary notions here and
we refer to [DM93, Bra02] for more detail.

Let V be a topological vector space, T a metric space, and a family of function-
als {Eτ}τ∈T , with Eτ : V → R. For ũ ∈ V , we denote by V(ũ) the collection of all
neighborhoods of ũ.

Definition C.1. Let τ0 ∈ T . The Γ-lower limit (resp. Γ-upper limit) of Eτ for τ → τ0
is defined as

Γ− lim inf
τ→τ0

Eτ (ũ) def.
= sup

U∈V(ũ)
lim inf
τ→τ0

inf
u∈U
Eτ (u), (C.1)

resp. Γ− lim sup
τ→τ0

Eτ (ũ) def.
= sup

U∈V(ũ)
lim sup
τ→τ0

inf
u∈U
Eτ (u). (C.2)

If both quantities are equal for all ũ ∈ V , we say that Eτ Γ-converges, and we refer to
the corresponding function as the Γ-limit of Eτ , denoted by Γ− limτ→τ0 Eτ .

If V satisfies the first axiom of countability (the existence of a countable base of
neighborhoods at each point), then it is possible to use sequences in the characterization
of Γ-convergence.

Proposition C.1 ([DM93, Prop. 8.1]). Assume that V satisfies the first axiom of
countability, and let τ0 ∈ T . Then Eτ Γ-converges towards some function E if and only
if

• for every ũ ∈ V and every sequence (τ (n))n∈N converging to τ0 in T and every
sequence (un)n∈N converging to ũ in V ,

E(ũ) ⩽ lim inf
n→+∞

Eτ (n) (C.3)

• for every ũ ∈ V and every sequence (τ (n))n∈N converging to τ0 in T , there exists a
sequence (un)n∈N converging to ũ in V such that

E(ũ) ⩾ lim sup
n→+∞

Eτ (n) . (C.4)

The interest of the notion of Γ-convergence lies in the convergence of the minimizers.

Proposition C.2 ([DM93, Cor. 7.20]). Let τ0 ∈ T , and assume that Eτ Γ-converges
towards E for τ → τ0. Let (τ (n))n∈N be a sequence converging to τ0, and let (un)n∈N be
a sequence of minimizers of Eτ (n), n ∈ N.

If u ∈ V is a cluster point of (un)n∈N, then u is a minimizer of E.

181
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In particular, if the family {Eτ}τ∈T is (sequentially) equicoercive, i.e. for every t ∈ R
there exists a (sequentially) compact set Kt ⊆ V such that

∀τ ∈ T , {Eτ ⩽ t} ⩽ Kt, (C.5)

the existence of the cluster points in Proposition C.1 is guaranteed.
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et leur application à une transformation fonctionnelle. In Ninth Scan-
dinavian Mathematical Congress, pages 345–366, 1938.

[BF20] Kristian Bredies and Silvio Fanzon. An optimal transport approach for
solving dynamic inverse problems in spaces of measures. ESAIM: Math-
ematical Modelling and Numerical Analysis, 54(6):2351–2382, Novem-
ber 2020. arXiv: 1901.10162.
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[CGN15] Antonin Chambolle, Michaël Goldman, and Matteo Novaga. Fine prop-
erties of the subdifferential for a class of one-homogeneous functionals.
Adv. Calc. Var., 8(1):31–42, 2015.
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Paris Sciences et Lettres (ComUE) 2018.

[DH78] Joseph C. Dunn and Stephanie L. Harshbarger. Conditional gradient
algorithms with open loop step size rules. Journal of Mathematical
Analysis and Applications, 62(2):432–444, February 1978.

[DK00] Francoise Dibos and Georges Koepfler. Global Total Variation Mini-
mization. SIAM Journal on Numerical Analysis, 37(2):646–664, 2000.

[DM93] Gianni Dal Maso. An Introduction to Γ-convergence. Number v. 8
in Progress in nonlinear differential equations and their applications.
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[IW21] José A. Iglesias and Daniel Walter. Extremal points of total gen-
eralized variation balls in 1D: characterization and applications.
arXiv:2112.06846 [math], December 2021. arXiv: 2112.06846.

[Jag13] Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex
optimization. In ICML (1), pages 427–435, 2013.

[JJGL+08] Manuel Juette, Travis J Gould, Mark Lessard, Michael Mlodzianoski,
Bhupendra S Nagpure, Brian Thomas Bennett, Samuel Hess, and Jo-
erg Bewersdorf. Three-dimensional sub-100 nm resolution fluorescence
microscopy of thick samples. Nature methods, 5:527–9, 07 2008.

[JLM19] Cédric Josz, Jean Bernard Lasserre, and Bernard Mourrain. Sparse
polynomial interpolation: sparse recovery, super-resolution, or Prony?
Advances in Computational Mathematics, 45(3):1401–1437, June 2019.

[Kai90] Thomas Kailath. ESPRIT–estimation of signal parameters via rota-
tional invariance techniques. Optical Engineering, 29(4):296, 1990.

[Kap57] Samuel Kaplan. On The Second Dual of the Space of Continuous Func-
tions. Transactions of the American Mathematical Society, 86(1):70–90,
1957. Publisher: American Mathematical Society.

[Kap59] Samuel Kaplan. The Second Dual of the Space of Continuous Functions,
II. Transactions of the American Mathematical Society, 93(2):329–350,
1959. Publisher: American Mathematical Society.

[Kap61] Samuel Kaplan. The Second Dual of the Space of Continuous Functions,
III. Transactions of the American Mathematical Society, 101(1):34–51,
1961. Publisher: American Mathematical Society.

[Kar68] Samuel Karlin. Total Positivity. Number vol. 1 in Total Positivity.
Stanford University Press, 1968.
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[VPF13] Samuel Vaiter, Gabriel Peyré, and Jalal Fadili. Robust Polyhedral Reg-
ularization. In SAMPTA, page 4, 2013.
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Résumé

Par leur flexibilité et les garanties
de reconstructions qu’elles appor-
tent, les méthodes variationnelles
donnent des outils puissants pour la
résolution des problèmes inverses,
en particulier dans le traitement du
signal et des images. Ce mémoire,
consacré aux méthodes variation-
nelles convexes, met en évidence
l’importance cruciale des notions de
face et de point extrémal dans le
comportement des modèles, et no-
tamment leur influence sur la struc-
ture des solutions. Nous démontrons
un théorème de représentation qui
décrit les solutions en fonction des
points extrémaux des ensembles
de niveau de la fonctionnelle de
régularisation. Ce principe permet de
décrire les solutions de problèmes en
dimension infinie, par exemple dans
l’espace des mesures de Radon
(BLASSO). Le cas de la variation
totale du gradient est également
étudié. Nous discutons de la sta-
bilité de ces représentations en fonc-
tion du bruit et de la régularisation.
Enfin, nous montrons que cette
représentation peut être exploitée
par des algorithmes efficaces, qui
tirent parti de la nature continue des
problèmes considérés, et qui suppri-
ment les artefacts de discrétisation.

Mots Clés

Points extrémaux; méthodes
variationnelles; variation totale;
problèmes inverses; mesures de
Radon

Abstract

Due to their flexibility and to the re-
covery guarantees they provide, vari-
ational methods are powerful tools
for the resolution of inverse prob-
lems, especially in signal and image
processing. The present habilitation
thesis, devoted to convex variational
methods, highlights the crucial im-
portance of the notions of face and
extreme point in determining the be-
havior of variational models, and no-
tably the structure of solutions.
We prove a representer theorem
which describes the solutions us-
ing the extreme points of the level
sets of the regularizer. That princi-
ple allows to describe the solutions
of infinite-dimensional problems, e.g.
in the space of Radon measures
(BLASSO). The case of the total gra-
dient variation is studied too. We dis-
cuss the stability of those representa-
tions when the noise and the regulari-
sation parameter vary. Eventually, we
show that such a representation may
be exploited by efficient algorithms
which take advantage of the contin-
uous nature of the considered prob-
lems, and which do not suffer from
the standard discretization artifacts.

Keywords

Extreme points; variational meth-
ods; total variation; inverse problems;
Radon measures
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