
HAL Id: tel-03719158
https://theses.hal.science/tel-03719158

Submitted on 11 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Imprecision in machine learning problems
Vu-Linh Nguyen

To cite this version:
Vu-Linh Nguyen. Imprecision in machine learning problems. Machine Learning [stat.ML]. Université
de Technologie de Compiègne, 2018. English. �NNT : 2018COMP2433�. �tel-03719158�

https://theses.hal.science/tel-03719158
https://hal.archives-ouvertes.fr

 Par Vu-Linh NGUYEN

Thèse présentée
pour l’obtention du grade
de Docteur de l’UTC

Imprecision in machine learning problems

Soutenue le 27 septembre 2018
Spécialité : Informatique : Unité de recherche Heudyasic (UMR-
7253) D2433

University of Technology of Compiègne

Doctoral Thesis

Imprecision in Machine Learning
Problems

Author:
Vu-Linh Nguyen
(Nguyễn Vũ Linh)

Supervisors:
Dr. Sébastien Destercke
(CNRS Researcher)
Assoc. Prof. Marie-Hélène Masson

Jury:
Assoc. Prof. Cassio Polpo de Campos
(Reviewer)
Prof. Inés Couso
(Reviewer)
Prof. Thierry Denoeux
(Examiner)
Prof. Eyke Hüllermeier
(Examiner)

Utrecht University,
Utrecht, The Netherlands
University of Oviedo,
Oviedo, Spain
University of Technology of
Compiègne, Compiègne, France
Paderborn University,
Paderborn, Germany

A thesis submitted in fulfillment of the requirements
for the degree of Doctor in the

CID (Connaissances, Incertitudes, Données) Team
Heudiasyc Laboratory

September 27, 2018

 Spécialité : Informatique

https://www.utc.fr/en/utc.html
https://www.hds.utc.fr/~nguyenli/dokuwiki/en/start
https://www.hds.utc.fr/~sdesterc/dokuwiki/
https://www.hds.utc.fr/~massomar/dokuwiki/fr/accueil
https://www.uu.nl/staff/CPolpodeCampos/0
https://scholar.google.com/citations?user=5-TIf8cAAAAJ&hl=en
https://www.hds.utc.fr/~tdenoeux/dokuwiki/en/start
https://cs.uni-paderborn.de/index.php?id=60202
https://www.uu.nl/en
http://www.uniovi.es/en
https://www.utc.fr/en/utc.html
https://www.utc.fr/en/utc.html
https://www.uni-paderborn.de/en/university/
https://www.hds.utc.fr/recherche/equipes-de-recherche/cid-connaissances-incertitudes-donnees.html
https://www.hds.utc.fr/heudiasyc/laboratoire/

iii

Acknowledgements
This work has been funded by the University of Technology of Compiègne (UTC).

My first thanks go to my two supervisors, Dr. Sébastien destercke and Assoc.
Prof. Marie-Hélène masson. Finding appropriate words to describe their tremendous
supports appears to be extremely exhausted, so I would like to simply say thank you
for helping me to see uncertainty less uncertain.

I would like to thank Assoc. Prof. Van-Nam Huynh, Japan Advanced Institute of
Science and Technology (JAIST), who introduced me to the UTC and has encouraged
me since my first days at JAIST.

Thanks to the members of my jury for their comments and the various discussions
about my works.

I also especially thank Prof. Eyke hüllermeier and members of the Intelligent
Systems and Machine Learning group, Paderborn University, who have given me the
opportunities to visit and collaborate with them on scientific interests that we have
in common.

I would also like to thank members of the UTC, JAIST and others for sharing the
office with me, and the enjoyable moments spent together, scientific conversations,
sport, friendship and beers. So, in a non exhaustive list, they are: Dang-Phong Bach,
Ngoc-Thang Bui, Carranza Alarcon Yonatan Carlos, Alia Chebly, Xuan-Nam Do, Clé-
ment Dubos, Dinh-Hiep Duong, Alberto García-Durán, Duc-Anh Hoang, Mohamed
Ali Kandi, Minh-Ly Lieu, Duc-Hieu Nguyen, Tan-Nhu Nguyen, Cong-Cuong Pham,
Trung-Nghia Phung, Shameem Puthiya Parambath, Khoat Than, Thi-Thuy-Hong
Trinh, Gen Yang, ...

My final thanks go to my family, who have encouraged me, even if they do not
understand what my job is really about. Especially, thank you mother, Thi-Tuoi vu,
who gave me the first lectures on the perseverance, farming.

v

“Somewhere, something incredible is waiting to be known.”

– Carl Sagan

vii

UNIVERSITY OF TECHNOLOGY OF COMPIÈGNE

Abstract
CID (Connaissances, Incertitudes, Données) Team

Heudiasyc Laboratory

Doctor

Imprecision in Machine Learning Problems

by Vu-Linh Nguyen
(Nguyễn Vũ Linh)

We have focused on imprecision modeling in machine learning problems, where avail-
able data or knowledge suffers from important imperfections. In this work, imper-fect
data refers to situations where either some features or the labels are imperfectly known,
that is can be specified by sets of possible values rather than precise ones. Learning
from partial data are commonly encountered in various fields, such as bio-statistics,
agronomy, or economy. These data can be generated by coarse or censored
measurements, or can be obtained from expert opinions. On the other hand, imperfect
knowledge refers to the situations where data are precisely specified, however, there are
classes, that cannot be distinguished due to a lack of knowledge (also known as
epistemic uncertainty) or due to a high uncertainty (also known as aleatoric uncer-
tainty).

Considering the problem of learning from partially specified data, we highlight
the potential issues of dealing with multiple optimal classes and multiple optimal
models in the inference and learning step, respectively. We have proposed active
learning approaches to reduce the imprecision in these situations. Yet, the distinction
epistemic/aleatoric uncertainty has been well-studied in the literature. To facilitate
subsequent machine learning applications, we have developed practical procedures to
estimate these degrees for popular classifiers. In particular, we have explored the use
of this distinction in the contexts of active learning and cautious inferences.

Keywords imprecision, machine learning, active learning, racing algorithms, epis-
temic uncertainty, aleatoric uncertainty, multi-class classification

HTTPS://WWW.UTC.FR/EN/UTC.HTML
https://www.hds.utc.fr/recherche/equipes-de-recherche/cid-connaissances-incertitudes-donnees.html
https://www.hds.utc.fr/heudiasyc/laboratoire/

ix

List of contributions

[1] Nguyen, V.-L., Destercke, S., Masson, M.-H. & Hüllermeier, E. Reliable Multi-
class classification based on pairwise epistemic and aleatoric uncertainty in Pro-
ceedings of the 27th International Joint Conference on Artificial Intelligence (IJ-
CAI) (2018), 5089-5095.

[2] Nguyen, V.-L., Destercke, S. & Masson, M.-H. Partial data querying through
racing algorithms. International Journal of Approximate Reasoning 96, 36-55
(2018).

[3] Nguyen, V.-L., Destercke, S. & Masson, M.-H. K-nearest neighbour classification
for interval-valued data in Proceedings of the 11th International Conference on
Scalable Uncertainty Management (SUM)(2017), 93-106.

[4] Nguyen, V.-L., Destercke, S. & Masson, M.-H. Querying partially labelled data
to improve a K-nn classifier in Proceedings of the 31st AAAI Conference on
Artificial Intelligence (AAAI)(2017), 2401 - 2407.

[5] Nguyen, V.-L., Destercke, S. & Masson, M.-H. Partial data querying through
racing algorithms in Proceedings of the 5th International Symposium on Inte-
grated Uncertainty in Knowledge Modelling and Decision Making (IUKM)(2016),
163-174.

[6] Nguyen, V.-L., Shaker, A., Hüllermeier, E., Destercke, S. & Masson, M.-H. Epis-
temic and aleatoric uncertainty in active learning. submitted (2018).

[7] Nguyen, V.-L., Destercke, S., Masson, M.-H. & Ghassani, R. Racing trees to
query partial data. submitted (2017).

xi

Contents

Acknowledgements iii

Abstract vii

1 Introduction 1
1.1 Learning problems . 1
1.2 Learning from partial data . 3
1.3 Active learning: missing and partial data 4
1.4 Cautious inferences . 6
1.5 Our contributions . 7

2 Transductive learning and partial data 9
2.1 Problem statements . 9

2.1.1 A Maximax approach for learning from partial data 9
2.1.2 Active learning for partial data 11

2.2 Learning from partially featured data 12
2.2.1 Determining interval ranks . 12
2.2.2 Determining the extreme scores 14
2.2.3 Learning from interval-valued feature data 15
2.2.4 Experimental evaluation . 15

2.3 Querying partially labelled data to improve the maximax approach . . 17
2.3.1 Generic querying scheme . 19
2.3.2 Indecision-based querying criteria 21
2.3.3 Experimental evaluation . 29

2.4 Perspectives on querying partially featured data 31
2.4.1 Determining the possible label set 32
2.4.2 Determining the necessary label set 34

2.5 Conclusion . 35

3 Racing Algorithms 37
3.1 Loss function and expected risk for partial data 37
3.2 Our generic racing approach . 39
3.3 Application to SVM . 41

3.3.1 Interval-valued features . 41
3.3.2 Set-valued labels . 50
3.3.3 Experimental evaluation . 51
3.3.4 Discussion on computational issues 57

3.4 Application to decision trees . 59
3.4.1 Set-valued labels . 59
3.4.2 Interval-valued features . 64
3.4.3 Experimental evaluation . 75

3.5 Conclusion . 80

xii

4 Epistemic uncertainty for active learning and cautious inferences 83
4.1 Likelihood to estimate epistemic and aleatoric uncertainties 83

4.1.1 A formal framework for uncertainty modeling 83
4.1.2 Estimation for local models . 86
4.1.3 Estimation for logistic regression 88
4.1.4 Estimation for Naive Bayes . 90

4.2 Active learning . 93
4.2.1 Related methods . 93
4.2.2 Principle of our method . 96
4.2.3 Experimental evaluation . 99

4.3 Cautious inference . 107
4.3.1 Principle of our method . 107
4.3.2 Experimental evaluation . 109

4.4 Conclusion . 112
4.4.1 Active learning . 112
4.4.2 Cautious inference . 113

5 Conclusion, perspectives and open problems 115

xiii

List of Figures

1.1 Inductive versus transductive learning 2

2.1 Example with |D| = 5 . 13
2.2 3-nn classifiers . 19

3.1 Illustration of partial data and competing models 39
3.2 Illustration of interval-valued instances 42
3.3 Illustrations for the different possible cases corresponding to the pair-

wise difference . 47
3.4 Experiments for interval-valued features data with preferred model . . 54
3.5 Experiments for interval-valued features data with preferred model . . 55
3.6 Experiments for set-valued labels data with preferred model 55
3.7 Experiments for set-valued labels data with preferred model 56
3.8 Decision tree illustration θl . 60
3.9 Example of imprecise instance . 67
3.10 Case where the union of intervals is not an interval 69
3.11 Example of determining the single effect 70
3.12 Example of determining the pairwise effect 72
3.13 Interval-valued features: Size of undominated model sets 77
3.14 Interval-valued features: Similarity between the current best and refer-

ence models . 78
3.15 Interval-valued features: Accuracy on the test set 79
3.16 Experiments for set-valued label data with preferred model 81

4.1 From left to right: Epistemic, aleatoric, and the total of epistemic
aleatoric uncertainty as a function of the numbers of positive (x-axis)
and negative (y-axis) examples in a region (Parzen window) of the
instance space (lighter colors indicate higher values). 87

4.2 From left to right: Exponential rescaling of the credal uncertainty mea-
sure, epistemic uncertainty and aleatoric uncertainty for interval prob-
abilities with lower probability (x-axis) and upper probability (y-axis).
Lighter colors indicate higher values. 98

4.3 Average accuracies (y-axis) over 5×5-folds for the Parzen window clas-
sifier (K = 8) as a function of the number of examples queried from the
pool (x-axis). 100

4.4 Average maxmin distances (y-axis) over 5× 5-folds for the Parzen win-
dow classifier (K = 8) as a function of the number of examples queried
from the pool (x-axis). 101

4.5 Average accuracies (y-axis) over 10× 3-folds for logistic regression as a
function of the number of examples queried from the pool (x-axis). . . 103

4.6 Average distances (y-axis) over 10 × 3-folds for logistic regression as a
function of the number of examples queried from the pool (x-axis). . . 104

xiv

4.7 Average accuracies (y-axis) over 10× 3-folds for Naive Bayes as a func-
tion of the number of examples queried from the pool (x-axis). 106

4.8 Average KL divergence (y-axis) over 10 × 3-folds for Naive Bayes as a
function of the number of examples queried from the pool (x-axis). . . 106

4.9 Preorder induced by Example 18 (strict preference symbolized by di-
rected edge, indifference by undirected edge, incomparability by missing
edge). 109

4.10 (a) Correctness of the PREORDER in the case of abstention versus
accuracy of the VOTE. (b) Correctness of the NONDET in the case
of abstention versus accuracy of the VOTE. (c) Proportion of partial
predictions when at least one method produces a partial prediction. (d)
Average normalized size of the predictions in such cases. 113

xv

List of Tables

1.1 Summary of the work . 8

2.1 The corresponding ζ matrix for example in Figure 2.1 13
2.2 Data sets used in the experiments . 16
2.3 Experimental Results: Accuracy of classifiers (%) 18
2.4 Weights and neighbours of Example 2 20
2.5 Effect scores obtained by using fMW in Example 2 21
2.6 Minimal and maximal scores for Example 2 22
2.7 Check for propositions for Example 2 28
2.8 Ambiguity effect for Example 2 . 28
2.9 Data set used in the experiments . 30
2.10 Complexities of query schemes . 30
2.11 Average error rates % (average ranks) over the 15 data sets 31

3.1 Data set used in the experiments . 52
3.2 Data set used in the experiments . 75

4.1 Data set used in the experiments . 99
4.2 Data sets used in the experiments . 110
4.3 Average utility-discounted accuracies (%) 111
4.4 Nemenyi post-hoc test: null hypothesis H0 and p-value 112

xvii

List of Notations

Symbols Descriptions

Data related notations
X input space, dimension P
Y output space, dimension M
x precise input
X imprecise input
Xp
n p-th imprecise coordinate of instance Xn

xpn p-th precise coordinate of instance Xn

y precise output
Y imprecise output
ym m-th class among the M possible ones
N number of training instances
D,T,U training, test and pool data set
t input of instance of either pool or test set
D,d set of replacements of D and its element

Hypothesis-space, model related notations
θ either a hypothesis or its corresponding parameters
Θ set of models, dimension S
θ(x) (θ(t)) output of model θ for input x (t)
`(y, θ(x)) 0-1 loss
`(Y, θ(X)),`(Y, θ(X)) lower and upper 0-1 losses
R(θ |D) empirical risk of model θ
R(θ |D),R(θ |D) lower and upper empirical risks of model θ
θ∗mm, θ∗mM minimin and minimax optimal models
R(θk−l |D) lower difference of empirical risks between θk and θl
L(θ |D) discriminative likelihood of model θ
θ∗ optimal model within Θ

Uncertainty related notations
[rn, rn] set-valued rank of xn
smaxt (y), smint (y), ssmallt (y) extremely voting scores of label y
PLt,NLt possible and necessary label set of t
Nt nearest neighbour set of t
PNt,NNt possible and necessary neighbour of t set
Θ∗ set of undominated models

Query related notations
qpn a query: asking for the precise value of the Xp

n

qn a query: asking for the precise label of instance n
Eqpn(θl) single effect of query qpn
Jqpn(θk, θl) pairwise effect of query qpn

Decision tree related notations
H number of terminal nodes of a tree

xviii

Ah h-th terminal node of a tree
Aph projection of Ah on the p-th axis
yh class associated to leaf Ah

Experiment related notations
(ε, η) contamination parameters in the experiments

Probability related notations
pθ(y |x) conditional probability given for label y by model θ
πΘ(θ) normalized likelihood of model θ
π(y |x) degree of support for label y
ue(x), ua(x) degrees of epistemic and aleatoric uncertainty
sy(x) degree of strict preference
s(θ,x) degree of uncertainty
|A| cardinality of set A

Fuzzy relations related notations
� strict preference
∼ incomparability
⊥ indifference

xix

To my parents

1

Chapter 1

Introduction

This work focuses on imprecision modeling in machine learning problems, where avail-
able data or knowledge suffers from important imperfections. By imperfect data, we
refer to the situations where either some features or the labels are imperfectly known,
that is can be specified by sets of possible values rather than precise ones. For ex-
ample, when the label of some training instances is only known to belong to a set of
labels, or when some features are imprecisely given in the form of intervals (or, more
generally, sets). In the second scenario, imperfect knowledge refers to the situations
where data are precisely specified, however, there are classes, that cannot be distin-
guished due to a lack of knowledge (also known as epistemic uncertainty) or due to a
high uncertainty (also known as aleatoric uncertainty). In this introduction, we are
going to formulate the problems we will consider, before providing a quick overview of
our contributions. We are first going to summarize the basics of the learning problem,
then highlight possible scenarios where the classical methods is likely to be insufficient
and quickly introduce our proposals to tackle these situations.

1.1 Learning problems

Learning is, in general, the problem of teaching a learner (classifier) to generalize
from experience [7, 47]. In the context of supervised learning, generalization refers
to the ability of a learning machine to perform accurately on new examples after
having experienced a training data set [89, 92]. Almost of the works on supervised
learning literature can be categorized into either inductive techniques or transductive
techniques. Roughly speaking, inductive techniques learn a model θ∗ issued from the
hypothesis space Θ ⊆ YX that best fits the training data set D = {(xn, yn)}Nn=1 ⊆
X × Y of N input/output samples, where X := RP and Y := {y1, . . . , yM} are,
respectively, the input and the output spaces, and uses θ∗ to make predictions for new
instances (t, ?). When using transductive techniques, training data are used directly
to perform the inference step (on new instances (t, ?)) without any induction step.
This is illustrated by Figure 1.1.

Before going further, let us note that, we denote by Θ the underlying hypothesis
space, i.e., the class of candidate models θ : X −→ Y the learner can choose from.
Often, hypotheses are parametrized by a parameter vector θ ∈ Θ; in this case, we
equate a hypothesis with the parameter θ, and the model space with the parameter
space Θ.

Inductive learning

The goal of inductive learning (the upper path of Figure 1.1) is to extract a model
θ∗ : X → Y within a model space Θ which best fits the training data set D [34, 40,
89–91]. This strategy has been widely studied and detailed for numerous applications,

2 Chapter 1. Introduction

Model
θ∗ : X 7−→ Y

Induction Inference/Prediction

{(xn, yn)}Nn=1 (t, ?)
Transductive Learning
Case-based reasoning

θ∗ : X 7−→ Y

Figure 1.1: Inductive versus transductive learning

e.g, support vector machine (SVM) [10, 16], logistic regression [21, 93], Naive Bayes
[77], etc. Two classical map to derive the optimal model θ∗ are to use either the
loss minimisation approach which seeks for the model (in the hypothesis space) that
minimizes the loss on the training set, or, the likelihood maximization approach whose
optimal candidate is the one that is most probable for the training data, usually
assuming that there are i.i.d observations.

In the loss minimization approach, candidates of Θ are assessed by the mean of a
risk scoring function R : Θ → R and seeks for the one minimizing this risk function
function, i.e, the one minimizes the expected loss

R(θ) =

∫
X×Y

`(y, θ(x))dP(x, y), (1.1)

where ` : Y × Y → R is the loss function, and `(y, θ(x)) is the loss of predicting θ(x)
when observing y. It is obvious that the probability measure P(x, y), which specifies
the data generating process, is unknown, thus the risk (1.1) cannot be computed di-
rectly. Therefore, in practice, it is usually estimated using the empirical risk R(θ |D),
that is

R(θ |D) =
N∑
n=1

`(yn, θ(xn)). (1.2)

The selected model is then the one minimizing (1.2). Thus, loss minimisation approach
can be in principle applied as soon as a loss function is defined [43, 91].

Maximum likelihood estimation (MLE) [32, 65] requires a well-defined likelihood
function and a probabilistic hypothesis space. MLE is based on the principle (origi-
nally developed by R.A. Fisher [32]) stating that the desired probability distribution
is the one that makes the observed data most likely, which means the optimal model
should be the one maximizing the likelihood function [65]. This can be done by either
maximizing the conditional probability pθ(y |x), for discriminative methods, or, the
joint probability pθ(x, y), for generative learning methods [66].

- The discriminative methods, e.g, logistic regression [21, 93], or, support vector
machines (SVM) [10, 16], assume some functional form of pθ(y |x), the condi-
tional probability that the label y ∈ Y will be assigned to the instance x, and
seek for the model θ∗ ∈ Θ maximizing the discriminative likelihood function, i.e,

θ∗ = arg max
θ∈Θ

L(θ |D) := arg max
θ∈Θ

N∏
n=1

pθ(yn |xn). (1.3)

1.2. Learning from partial data 3

The optimal model θ∗ is then used to make inference/predictions on new in-
stances (t, ?), typically using the expected loss minimisation, e.g, to assign for
t the label y∗ ∈ Y with the highest conditional probability pθ∗(y | t).

- Generative learning methods, for instance, Naive Bayes [77], assume some func-
tional form of pθ(y) and pθ(x | y). With the assumption of conditional inde-
pendence, which is typically made for generative models, the joint probability
pθ(x, y) can be expressed in the factorized form as follows

pθ(x, y) = pθ(y)pθ(x | y) = pθ(y)
P∏
p=1

pθ(x
p | y). (1.4)

Thus, the optimal model θ∗, which will be used to make inference, is the one
maximizing the generative likelihood function, that is

θ∗ = arg max
θ∈Θ

L(θ |D) : = arg max
θ∈Θ

N∏
n=1

pθ(xn, yn)

= arg max
θ∈Θ

N∏
n=1

pθ(yn)
P∏
p=1

pθ(x
p
n | yn). (1.5)

Transductive learning

In a transductive learning approach, in contrast with inductive learning one, estimates
for each new instance (t, ?) a potential model by using additional information related
to this point [48, 50, 69, 92] (the lower path of the Figure 1.1). This means that, in
a transductive approach, the training data D are always maintained and are used to
make inference for the new instances (t, ?) (rather than using an optimal model θ∗

as in inductive learning). For instance, in case of the K nearest neighbours (K-nn)
method, a non-parametric classifier, for each new instance (t, ?), we extract directly
fromD a set ofK nearest neighbours, denoted byNt, and derive an optimal prediction
y∗ for t based on the voting scores given by training instances in Nt.

Let us remind that, in traditional learning problems, the input and output data
are supposed to be precise, i.e, (x, y) ∈ X × Y. In this work, one of our interest is to
investigate what could happen when either the input or the output becomes partially
known, i.e, when having data of the form (X, Y) ⊆ X × Y.

1.2 Learning from partial data

The first question we look at is what happens when data becomes partial, i.e, given in
form (X, Y) ⊆ X ×Y, and we have to learn from them. Such situations are commonly
encountered in various fields, such as biostatistics [41], agronomy [54], or economy [59].
These data can be generated by coarse or censored measurements (see e.g., [30]),
anonymization techniques [29], or can be obtained from expert opinions. In particular,
partially labelled data may come from easy-to-obtain high-level information. For
instance, when characterizing names in subtitles to identify those characters present
in an image/video [18], labeling characters with its location in word segmentation
[100] or in signal segmentation [9, 56]. Another possible setting of partial data is
when some features of some instances can only be partially specified, i.e, belong to
intervals (or sets). This kind of data may come from imprecise measurement devices,

4 Chapter 1. Introduction

imperfect knowledge of an expert, or can also be the result of the summary of a huge
data set.

To tackle the problem of learning from partial data, generic learning methods have
to be adapted to cope with partial data, as the notion of optimal model is no longer
well-defined. Two general trends in literature are:

- to adapt the criteria, for instance, likelihood [26, 27] or loss function [18, 43, 45]
(e.g, the ones defined in (1.2)-(1.5)), so that the notions of optimal models are
again well-defined,

- or, to consider sets of models corresponding to ways in which the data can be
completed, e.g., by comparing interval-valued loss function, or by considering
imprecise likelihoods [88].

Note that, in general, one may consider problems where only a part of the data is
partially specified: either the labels or the features.

Partially labelled data

There are different approaches to learn from partially labelled data, i.e, data are given
in the form (x, Y).

- T. Cour, et al. [18] assume that the precise value and observed partial data
x, y, Y are distributed according to an (unknown) distribution pθ(x, y, Y) =
pθ(x)pθ(y |x)pθ(Y |x, y) and seek for the the distribution (model) with high
conditional entropy for pθ(Y |x, y). The generic approach is formulated and
investigated for the particular case of voting classifiers, which assign, for a given
instance x, a score gθ(y |x) to each label y and select the highest scoring label
gθ(. |x). The optimal model θ∗ is the candidate within Θ that minimizes the
Convex Loss for Partial Labels (CLPL), a generalization of (1.2) with `(y, θ(x))
being the 0/1 loss.

- Adopting the superset assumption, which does not assume anything else than
the observation Y being a superset of y, in [43–45], some authors propose to
choose the optimal model by minimizing the optimistic superset loss (OSL).

- Another method to learn from partial data is fuzzy EM (FEM) [26, 27] which
proposes to estimate the parameters of a probabilistic model based on maximiz-
ing the observed-data likelihood defined as the probability of the fuzzy data.

These methods differ by the choice of the likelihood/loss function and/or the prior
assumptions about the incompleteness process generating partial data [19].

The first part of this work focuses on the superset assumption based approach [43,
45], this means we will process under a very generic assumption that whenever a
feature or label is partially given, it is a superset of (i.e, covers) the true value. Yet,
this approach has been detailed and justified, in both theoretical and experimental
aspects, for the case of partially labelled data. Adapting the approach for the case of
partially featured data is still challenging.

1.3 Active learning: missing and partial data

Missing data

In classical active learning, some observed data are complete and form the initial
training data set D = {(xn, yn)}Nn=1. The goal of active learning is to determine
which new data is useful to improve the learned model.

1.3. Active learning: missing and partial data 5

A popular assumption in classical active learning is that it is possible to ask for
the label of unlabelled data. In this work, we will concentrate on the solution where
we have a set of precise data D, and a pool U of unlabelled data. In this solution,
several active learning approaches exist:

- The uncertainty sampling approach [55], measures how uncertain the current
optimal model θ∗ is about each instance within the given poolU, using an utility
score, e.g, conditional entropy, maximum conditional, margin of confidence, etc.,
and queries the instance with the highest uncertain score.

- The query-by-committee approach [83] assumes that a set of models ΘQBC ⊆ Θ
is available and can be employed to assess the instances within the pool U. For
each unlabelled instance (t, ?) ∈ U, each member θ ∈ ΘQBC is then allowed to
vote for its prediction θ(t). The most informative query is considered to be the
instance about which they most disagree, e.g, to maximize the vote entropy or
the Kullback-Leibler (KL) divergence.

- The expected model/error approach [82] has been developed upon the intuition
that the learner seeks for instances that are likely to most influence the model,
regardless of its true label. This approach has been highlighted to work well in
empirical studies, however, can be computationally expensive if both the number
of features and cardinality of the output space Y are very large.

These approaches assess the effect of querying each unlabelled instance, within a given
pool U, by mean of an utility score and query the instance with the highest score.
Thus, they differ by the choice of utility score.

Yet, classical active learning approaches have shown advantages, including simple
implementations and interpretable results, it have been debated for the lack of in-
forming about the reasons for why an instance is considered uncertain, although this
might be relevant for judging the usefulness of an instance. This demand comes from
the fact that different sources of uncertainty could play quite different roles in specific
applications [79, 85]. For instance, in active learning, Sharma and Bilgic [85] propose
an evidence-based approach to active learning, in which conflicting-evidence uncer-
tainty is distinguished from insufficient-evidence uncertainty. Experimentally, they
support their conjecture that the former is more informative for an active learner
than the latter, however, the uncertainty measures used by [85] are somewhat ad-hoc,
and their approach is tailored for a specific learning algorithm (Naïve Bayes [77]).

Pursuing a similar purpose, in [79], authors proposed a distinction between the
epistemic, caused by a lack of training data, and aleatoric, due to intrinsic randomness,
uncertainty. Thus, it is reasonable to make the hypothesis that, when doing active
learning, querying instances with high degrees of epistemic uncertainty could provide
a significant improvement on the classifiers performance comparing with querying the
ones of high aleatoric and other types of uncertainty. Furthermore, the formal model
in [79] is generic as it can be, in principle, applied to any probabilistic classifier with a
well-defined likelihood function. Thus, active learning methods (if can be) developed
upon this building block can be applied in a broader context (compared to the ones
of evidence-based approach).

Partially specified data

Classical active learning assumes either full or completely missing information, and
mostly focuses on the output data. A much less studied setting is the case of partially
known data, either in features or labels. Note that in this case, it is not clear that

6 Chapter 1. Introduction

whether we should (1) made a distinction between the (partial) training set D :=
{(Xn, Yn)Nn=1} and pool U, consisting of data to be queried, or (2) it is desirable to
use the partial data in the learning step.

In this work, by assuming that the pool U is identical to the partial training set D,
we thus look at the following question: given the partial data D = {(Xn, Yn)Nn=1} and
some model Θ to learn, what partial data should we query (by query we mean choosing
partially specified features or labels and asking its precise value to an oracle) in order
to better learn the optimal model θ∗. This problem can be seen as a generalisation
of the classical active learning [35, 55, 80, 81], where training instances are precisely
specified while the instances in the pool U have precise features X := x ∈ X and
completely missing labels, i,e, Y is either empty or identical to the output space
Y. The scenario where the feature values are either completely missing or precisely
specified [60, 61] is also covered in our concern.

In our settings, we adopt the superset assumption [18, 43–45] and allow to use
the partial data in the learning step. For instance, we will use the maximax approach
[43–45] to make inferences. Thus, the presence of partial data can lead to the following
indecision situations, where using active learning can be an efficient way to reduce the
imprecision.

- When doing induction on a partial data set D = {(Xn, Yn)}Nn=1, it is reasonable
to say that model θ is better than θ′ if L(θ |d) < L(θ

′ |d), for any replacement
d of D. Thus there is a possibility of obtaining a set of models Θ∗ ⊆ Θ whose
candidates are equivalently optimal, rather than a singleton. Yet, even if we
can use either a minimin (optimistic) or a maximin (pessimistic) approach [87,
95] to learn an optimal model, this model is actually one candidate of Θ∗ and
the larger the size of Θ∗, the higher chance we pick up the wrong model. Thus
if we are allowed to query some (partially specified) features or labels of some
instances, we should query the data that can help to quickly reduce the set Θ∗.

- Another possible scenario is when a non-parametric model, e.g, a K nearest
neighbours classifier (K-nn), is employed to make inference. In this case, we
are following a transductive learning approach where the partial training data
D = {(Xn, Yn)}Nn=1 are used directly to perform the inference step. Thus, it
is quite possible that for some new instances (t, ?), we see multiple optimal
predictions, i.e, a set Y (t) ⊆ Y of labels that are equivalently optimal. Thus,
if we can do active learning to reduce the risk of choosing wrong decision, we
should query the data that can help the most to reduce Y (t).

1.4 Cautious inferences

In classical supervised learning, typical (probabilistic and/or deterministic) models,
once learned from the precise training data set D = {(xn, yn)}Nn=1, will provide, for
each new instance (t, ?), an optimal inference or prediction in the form of a single
class [7, 34, 89]. Yet, there are situations where it could be useful to make cautious
inferences, in the form of set-valued, or credal, predictions when we are unsure about
the optimal class to predict. This is especially true in safety-critical applications, such
as medical diagnosis [28, 70] or drug discovery process [1, 31]. Cautious inference has
been increasingly tackled in literature, for instances:

- A nondeterministic classifier [15] produces a set-valued prediction by invoking
the principle of expected loss minimization, where the underlying cost measure
combines the precision and correctness of the prediction.

1.5. Our contributions 7

- Methods based on imprecise probabilities, such as [15], augment probabilistic
predictions into probability intervals or sets of probabilities, the size of which
reflects the lack of information. Similar to this are methods based on confi-
dence bands in calibration models, for instance [53, 99]. They usually control
the amount of imprecision by adjusting some certainty parameters, e.g., a con-
fidence value.

- Conformal prediction [4, 84] is another generic approach to reliable (set-valued)
prediction that combines ideas from probability theory (specifically the prin-
ciple of exchangeability), statistics (hypothesis testing, order statistics), and
algorithmic complexity. Roughly speaking, for each new instance (t, ?), it as-
signs a non-conformity score to each candidate output. Then, considering each
of these outcomes as a hypothesis, those outcomes for which the hypothesis can
be rejected with high confidence are eliminated. The set-valued prediction is
given by the set of outcomes that cannot be rejected.

These proposals can be seen as extensions of classification with a reject option whose
prediction is either a singleton set or the entire Y [13]. Yet the predictive abilities
of theses set-valued prediction classifiers have been studied both theoretically and
experimentally. Giving the reasons for why a class should be included into or discarded
from a set-value prediction seems to be challenging.

In a cautious inference approach, it is important to identify those instances for
which the prediction is the most uncertain, or the less robust (i.e., for which a slight
model change would change the prediction), and to find a good balance between infor-
mativeness (providing rather precise, but possibly wrong predictions) and cautiousness
(predicting numerous classes probably containing the right one, but being poorly in-
formative). It thus appears important, in this problem, to identify what make the
prediction uncertain or poorly robust: is it ambiguous due to statistical variability
and effects that are inherently random, or, to a lack of knowledge due to inadequate
training data?

These two types of uncertainty, as mentioned in the active learning problem, are
usually referred as aleatoric and epistemic [42, 79]. The distinction between epistemic
and aleatoric can indeed provides insightful evidences for why we should be cautious
while its complement, i.e, the strict preferences in favor of predicting one class over
another/others are important when insisting on the informativeness.

Yet, the distinction epistemic/aleatoric is well-accepted in the literature on un-
certainty [42] and has been very recently considered in machine learning [51, 79].
To practically determine/estimate such degrees of uncertainty may become rather
complex and highly depends on the choice of the class of hypothesis and likelihood
function. Thus, developing practical procedures to determine/estimate these degrees
certainly benefits further applications based on this distinction. For instances, the
problem of making cautious inference, considered here, or, the active learning prob-
lem highlighted in the previous Section.

1.5 Our contributions

In this work, we make the following contributions:

- In the case of transductive learning, and more precisely K nearest neighbours
(K-nn) classifier, we propose to look at both the learning problem and the active
learning problem from partial data, solving the first one by using a maximax

8 Chapter 1. Introduction

approach and the second one by proposing a querying scheme inspired by voting
rules with incomplete information. This will be detailed in Chapter 2.

- Considering partial data and imprecisely-valued loss functions, we propose a
generic racing approach to query partial data, in order to improve the subsequent
learning step. Our proposal can also be seen as a contribution to formulate the
active learning problem for partial data. This will be detailed in Chapter 3.

- In chapter 4, we differentiate two kinds of uncertainties: an aleatoric or irre-
ducible one, that just comes from the fact that classes are mixed, and an epis-
temic or reducible one, that comes from the fact that we have few information
about the instance. We provide estimation methods for the classical models that
are logistic regression, local models and Naive Bayes. Finally, we explain how
these estimates can be used to solve two problems: the one of active learning,
and the one of performing cautious inferences.

Before detailing the proposals, let us note that there are two possible readings of
this work: following a problem flow as sketched in the horizontal structure of Table 1.1,
or going through the vertical structure for a method flow.

Problem
Method

Transductive Inductive
Loss minimization likelihood

Learning from
partial data Chapter 2

Active learning
for partial data Chapter 2 Chapter 3

Active learning
for classical data Chapter 4

Cautious inference Chapter 4

Table 1.1: Summary of the work

9

Chapter 2

Transductive learning and partial
data

This chapter first tackles the problem of making inference from the partially speci-
fied data and then presents active learning methods to reduce the imprecision in the
inference step introduced by partially specified data.

2.1 Problem statements

The setting we consider here is when the training data set is partially specified, i.e,
D = {(Xn, Yn)}Nn=1, and the maximax approach [43–45] is used to make inference
for new (precise) instance (t, ?) (the general case when new instance can be partially
specified is left as an open problem). We will process both learning and active learning
problem under the superset assumption that is whenever a label or a feature is partially
specified, the partial information covers the true value.

2.1.1 A Maximax approach for learning from partial data

Let us first recall that, in the classical loss minimization approach [43, 91], the
candidates of hypothesis space Θ are assessed by the mean of a risk scoring function
R : Θ→ R and the chosen model is the one minimizing the expected loss

R(θ) =

∫
X×Y

`(y, θ(x))dP(x, y), (2.1)

where ` : Y × Y → R is the loss function, and `(y, θ(x)) is the loss of predicting θ(x)
when observing y. As recalled in the introduction, in practice, it is usually estimated
using the empirical risk R(θ |D) on the training data D = {(xn, yn)}Nn=1, that is

R(θ |D) =

N∑
n=1

`(yn, θ(xn)), (2.2)

The selected model is then the one minimizing (2.2), that is

θ∗ = arg min
θ∈Θ

R(θ |D). (2.3)

Given the optimal model θ∗, we can simply assign for each new instance t the label
candidate that minimizes the prediction loss `(y, θ∗(t)), i.e,

y∗ = arg min
y∈Y

`(y, θ∗(t)). (2.4)

10 Chapter 2. Transductive learning and partial data

Assuming that the non-parametric K-nn classifiers [20, 97] are used to make pre-
dictions, i.e, following a transductive approach [48, 69, 92], for each new instance t its
prediction is learned directly from the training data D = {(xn, yn)}Nn=1. This mean
that only the inference step (2.4) is concerned (without any learning step (2.2)-(2.3)).
Denoting by Nt = {(xk, yk)}Kk=1 and w = (w1, . . . , wk), the set of K nearest neigh-
bours of t within D and the corresponding weight vectors, respectively, each label
y ∈ Y will be given a voting score st(y) (of how likely it will be assigned for t) s.t,

st(y) =

K∑
k=1

wk1y=yk , (2.5)

with 1A the indicator function of A (1A = 1 if A is true and 0 otherwise). The optimal
prediction for t is thus the one maximizing (2.5), i.e,

y∗ = arg max
y∈Y

st(y). (2.6)

The maximax approach [43–45] can be seen as a generalization of this K-nn classi-
fier. Let us remind that in the case of general partial data, i,e, when having a training
data D = {(Xn, Yn)}Nn=1 and a new precise instance t, the superset assumption means
that the observation Xp

n and Yn are supersets of xpn and yn, respectively. We define
the set of possible replacements of D as follows:

D =
{
d := {(xn, yn) ∈ (Xn, Yn)}Nn=1

}
. (2.7)

Thus, a replacement d of D is a precise data set where each partial information (either
a feature or the label of an instance) in D is replaced by a possible precise value. For
each replacement d ∈ D, denoting by

Nd
t =

{
(x1, y1), . . . , (xK , yK)

}
, (2.8)

the set of K nearest (precise) neighbour instances of t in the replacement d. Thus,
the voting score that can be given for a label y ∈ Y is defined as follows

sdt (y) =
K∑
k=1

wk1y=yk , (2.9)

Thus to minimize the optimistic superset loss (OSL) [43, 45] is equivalent to maximize
the maximum voting score sdt over the possible replacement d ∈ D, i.e, to look for

y∗ = arg max
y∈Y

smaxt (y) := arg max
y∈Y

(
max
d∈D

sdt (y)
)
. (2.10)

It is clear that determining the maximum scores

smaxt (y) = max
d∈D

sdt (y), ∀y ∈ Y, (2.11)

is the main task when adopting this maximax approach. This maximax approach
is detailed for the scenario of set-valued labelled and precisely specified data, i.e,
D = {(xn, Yn)}Nn=1, in [44] and further justified in [18, 43, 45]. In this specific case,

2.1. Problem statements 11

the maximum score can be simply determined using counting operations, that is

smaxt (y) =
K∑
k=1

wk1y∈Yk . (2.12)

As the nearest neighbour sets is determined based on a distance in X , in case of
partially labelled data, the possible replacements differ only by its choice of the re-
placement of partial labels. Determining the maximum score (2.11) is reduced to
manipulate a set of set-valued labels, i,e., the set {Yk}Kk=1 where Yk is the partial
labels of the k-th nearest neighbour of t. However, it is not necessarily the case where
some features of some instances are partially specified. In this later case, the notion
of nearest neighbour set Nt is no-longer well defined. To tackle this issue, we adopt
an optimistic approach, in Section 2.2, to replace the ill-known values, that requires
to compute sets of possible and necessary neighbours of an instance.

2.1.2 Active learning for partial data

Let us first note that under the superset assumption, it is reasonable to consider that
the optimal predictions learned from different replacements d ∈ D (i.e, the labels
maximizing the score (2.9) for at least one replacement d) have equal possibility to
be the true optimal one. Thus, in this sense, by minimizing the optimistic superset
loss (OSL), the maximax approach assigns for each new instance t a possible optimal
prediction. On the other hand, if a label y ∈ Y is the winner in all the possible
replacements, it should remain to be the optimal one when having the complete precise
training data, i.e, a necessary optimal label. In the specific case of partially labelled
data [18, 43–45], the sets of such possible and necessary optimal labels are identical to
the possible and necessary winner sets, respectively, studied in the voting procedures
with incomplete preferences [5, 52, 64].

The notions of possible and necessary label sets, denoted by PLt and NLt, re-
spectively, can be easily extended for the general setting of partial data, i.e, D =
{(Xn, Yn)}Nn=1. For a new instance t, denoting by ydt its corresponding optimal pre-
diction learned from a replacement d, we can define its possible and necessary label
sets as follows:

PLt = {y ∈ Y | ∃d ∈ D s.t y = ydt } (2.13)

NLt = {y ∈ Y | ∀d ∈ D, y = ydt } (2.14)

Thus, if we have to make a precise inference, we should assign for t a label y∗ ∈
PLt, e.g, by using the maximax approach. This means a larger size of PLt implies
a higher chance of picking up a wrong decision, or, a higher degree of imprecision.
We thus tackle the following problem: if we are allowed to query (ask for the true
values of) some features or labels of some partial instances, which partial data should
we query first to reduce the imprecision in the inference step? Let us remind that by
querying partial data, we assume that the pool U is identical to the partial training
set D in a active learning setting.

It is clear from (2.7) that the number of possible replacements d ∈ D should
be reduced along the querying process. Thus, the cardinality of the possible label set
PLt (2.13) should decrease while the cardinality of the necessary label set NLt (2.14),
in contrast, should increase when the querying process goes along. The changes of
possible and necessary label sets will be considered as the potential effects in our
active learning proposals.

12 Chapter 2. Transductive learning and partial data

- For the purpose of making (precise) inference, it is clear that we should look
for partial data which, if they are queried (to know its precise value and update
the training data set), can help to quickly reduce the cardinality of the possible
label set PLt.

- Also, at the beginning (of the querying process), it is reasonable to assume that
the training data contains many partial data and there is a high chance of seeing
empty necessary label sets. Furthermore, as soon as we see a non-empty empty
necessary label set, i.e, NLt 6= ∅, we can pick up any of them as an optimal
prediction of t and making any further query is redundant. Thus seeking for
a quick enlargement of the necessary label set NLt should be considered as
another potential effect when querying partial data.

Our querying proposals developed upon these intuitions will be detailed for the case of
partially labelled data in Section 2.3 and perspectives on developing similar proposals
for partially featured data are given in Section 2.4.

2.2 Learning from partially featured data

We are going to detail the maximax approach for the case of interval-valued featured
data (a simple yet reasonable assumption in the setting of partially featured data).
Of course, the general assumption where both of training and test data can be par-
tially featured are more reasonable and popular in practice. However, working on
such a setting requires extensions in mathematical-based technique, e.g, the extreme
distances between instances. We thus focus on a simpler setting that the training data
can be partially featured while the test data are precisely given and leave the general
case as a future work. More precisely, we consider here the setting consisting of a
partially featured training data set D = {(Xn, yn)}Nn=1, where Xn = (X1

n, . . . , X
P
n)

and Xp
n = [apn, b

p
n], ∀p = 1, . . . , P , and precise test instances T = {(tt, ?)}Tt=1. In

addition, we will only focus on the unweighted version of maximax approach while
leaving the case of weighted maximax opened.

Let us remind that, the main concern when implementing the maximax approach,
is to compute the maximum score smaxt (y) (2.11) that can be assigned to each class
candidate ∀y ∈ Y. Our idea here is to first determine the set of possible and necessary
neighbour sets, through computing interval ranks of distances, and, from that, smaxt (y)
can be derived easily using simple counting operations.

2.2.1 Determining interval ranks

Given a partial training data instance Xn ∈ D and a precise instance t, Groenen
et al. [38] provide simple formulae to determine the imprecise distance d(Xn, t) =[
d(Xn, t), d(Xn, t)

]
of Xn with respect to t:

d(Xn, t) =

(P∑
p=1

[
|cpn − tp|+ rpn

]2)1/2

, (2.15)

d(Xn, t) =

(P∑
p=1

max
[
0, |cpn − tp| − rpn

]2)1/2

, (2.16)

where cpn = (bpn + apn)/2 and rpn = (bpn − apn)/2, the center and width of the interval
Xp
n = [apn, b

p
n], for p = 1, . . . , P . Such interval of distances allow us to define a partial

2.2. Learning from partially featured data 13

X 2

X 1

(t, ?)
(X1, a)

(X2, b)
(X3, c)

(X4, b)
(X5, a)

[d(X1, t), d(X1, t)] = [3, 5]
[d(X2, t), d(X2, t)] = [1, 1.4]
[d(X3, t), d(X3, t)] = [2.8, 4.4]
[d(X4, t), d(X4, t)] = [3, 3.2]
[d(X5, t), d(X5, t)] = [5.6, 7]

Figure 2.1: Example with |D| = 5

X1 X2 X3 X4 X5
∑

r

X1 1 1 0 0 0 2
X2 0 1 0 0 0 1
X3 0 1 1 0 0 2
X4 0 1 0 1 0 2
X5 1 1 1 1 1 5∑
c 2 5 2 2 1

Table 2.1: The corresponding ζ matrix for example in Figure 2.1

order on the set D of training instance as follows

Xi � Xj if d(Xi, t) ≥ d(Xj , t) (2.17)

where Xi � Xj means that Xi is farther than Xj from t. As demonstrated by Patil
and Taille [71, Sec. 4.1], this partial order then allows us to derive interval rank values
as we have that

Xi � Xj ⇒ r(Xi) ≥ r(Xj),

where r(Xi) is the rank that can be assigned to Xi.
Once the relation � is determined, D is a poset (partially ordered set) and the

corresponding relation matrix, denoted by ζ, is a N ×N matrix defined as

ζi,j =

{
1 if Xi � Xj

0 otherwise.
(2.18)

The results given by Theorems 1 and 2 in [71, Sec. 4.1] imply that each instance
Xn ∈ D can be associated to an imprecise rank rn = [rn, rn], which measures how
close it is to the target instance t, where

rn =

N∑
j=1

ζn,j and rn = N + 1−
N∑
j=1

ζj,n. (2.19)

Example 1. Let us consider an example where |D| = 5 and target instance t as
illustrated in Figure 2.1. Using the relation (2.17), the corresponding ζ matrix is
given in Table 2.1.

14 Chapter 2. Transductive learning and partial data

By applying (2.19), we can easily compute the imprecise ranks of the training
instances.

([r1, r1], [r2, r2], [r3, r3], [r4, r4], [r5, r5]) = ([2, 4], [1, 1], [2, 4], [2, 4], [5, 5]). (2.20)

2.2.2 Determining the extreme scores

Denoting by Rt = {rn = [rn, rn] |n = 1, . . . , N} the imprecise ranks of the instances
in D, we can easily determine the sets of possible and necessary neighbours as

PNt = {Xn | rn ≤ K} (2.21)
and

NNt = {Xn | rn ≤ K}. (2.22)

We have that Xn ∈ NNt if it is in the set of nearest neighbours Xn ∈ Nd
t for any

replacement d ∈ D, while Xn ∈ PNt if Xn ∈ Nd
t only for some replacement d ∈ D.

For each label y ∈ Y, we can then compute its minimum number of votes

ssmallt (y) =
∣∣{Xn ∈ NNt | yn = y

}∣∣, (2.23)

given by its necessary neighbours. From ssmallt (y) we can then be deduced the maximal
and minimal number of votes y can receive from K nearest neighbours, according to
the following formulae:

smaxt (y) = min

[∣∣{Xn |Xn ∈ PNt, yn = y
}∣∣,K −∑

y′ 6=y

ssmallt (y
′
)

]
, (2.24)

and

smint (y) = max

[
ssmallt (y),K −

∑
y′ 6=y

smaxt (y
′
)

]
. (2.25)

These scores are simply derived from the fact that, among the K nearest neighbours,
at least ssmallt (y) among them must give their votes to label y. This is proved in
the next Lemma, where it is shown that smint (y) and smaxt (y) are the minimum and
maximum number of votes that can be given to y over all replacements d ∈ D (i.e,
they are consistent with the one defined in the general setting (2.11)).

Lemma 1. Given a number of nearest neighbours K, a target instance t, the corre-
sponding maximum and minimum score vectors(

smint (y1), . . . , smint (yM)
)
and

(
smaxt (y1), . . . , smaxt (yM)

)
,

then, for any y ∈ Y, we have that

smint (y) = min
d∈D

sdt (y) and smaxt (y) = max
d∈D

sdt (y) (2.26)

and consequently, we have that, ∀d ∈ D,

smaxt (y) ≥ sdt (y) ≥ smint (y),∀y ∈ Y. (2.27)

Proof. The relation that smaxt (y) = maxd∈D s
d
t (y) can be simply proved by observing

that K −
∑

y′ 6=y s
small
t (y

′
) bounds the number of instances that could be in the set of

nearest neighbours and have y for label, while the value |{Xn |Xn ∈ PNt, yn = y}|

2.2. Learning from partially featured data 15

simply gives the maximal number of such elements that are available within the set of
possible neighbours, and that may be chosen freely to be/not be in the neighbour set,
as long as they remain lower than the bound K −

∑
y′ 6=y s

small
t (y

′
). So, maximising

this number of elements simply provides smaxt (y).
Let us now prove that smint (y) = mind∈D s

d
t (y), recalling that we just proved that

smaxt (y) is reachable for some replacement. We are going to focus on two cases:
Case 1: ssmallt (y) ≥ K −

∑
y′ 6=y s

max
t (y

′
) implies that smint (y) = ssmallt (y), hence

for every replacement there is at least ssmallt (y) nearest neighbors of label y. Further-
more, ssmallt (y) ≥ K −

∑
y′ 6=y s

max
t (y

′
) implies that

∑
y′ 6=y s

max
t (y

′
) + ssmallt (y) ≥ K,

meaning that we can choose the remaining K−ssmallt (y) neighbours so that they vote
for other labels. In other words, we can find a replacement d where ssmallt (y) = sdt (y),
proving that smin(y) = mind∈D s

d
t (y) in the first case.

Case 2: ssmallt (y) < K−
∑

y′ 6=y s
max
t (y

′
) implies that smint (y) = K−

∑
y′ 6=y s

max
t (y

′
).

First note that for any replacement we cannot have sdt (y) < K −
∑

y′ 6=y s
max
t (y

′
),

otherwise the set of nearest neighbour would be necessarily lower than K. smint (y)
then reaches this lower bound by simply taking the replacement d for which we have
sdt (y

′
) = smaxt (y

′
), proving that smint (y) = mind∈D s

d
t (y) in the second case.

2.2.3 Learning from interval-valued feature data

The maximax approach (2.10) can be then practically implemented for interval-valued
featured data as follows:

θ(t) = arg max
y∈Y

smaxt (y) (2.28)

= arg max
y∈Y

(
min

[∣∣{Xn |Xn ∈ PNt, yn = y
}∣∣,K −∑

y′ 6=y

ssmallt (y
′
)

])
.

It may also happen that Equation (2.28) returns multiple labels that have the highest
number of votes. We can then follow a different strategy, where we consider the
result of the K-nn procedure for a peculiar replacement. Since every label receives its
maximal number of votes by considering the lower distance d(Xn, t), a quite simple
idea is to consider the result obtained by the case of set-valued labelled data [44]
when we consider the replacement d giving d(Xn, t) = d(Xn, t) for every Xn. The
procedure to make predictions is summarized in Algorithm 1.

2.2.4 Experimental evaluation

Experiments

We run experiments on a contaminated version of 6 standard benchmark data sets
described in Table 2.2 1. By contamination, we mean that we introduce artificially
imprecision in these precise data sets. These data sets have various numbers of classes
and features, but have a relatively small number of instances, for the reason that
handling imprecise data is mainly problematic in such situations: when a lot of data
are present, we can expect that enough precise data will exist to reach an accuracy
level similar to the one of fully precise methods.

Our experimental setting is as follows: given a data set, we randomly chose a
training set D consisting of 10% of instances and the rest (90%) as a test set T,

1In this thesis, all experiments will be performed on data sets from the UCI repository http:
//archive.ics.uci.edu/ml/index.php

http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php

16 Chapter 2. Transductive learning and partial data

Algorithm 1: Maximax approach for interval-valued training data.
Input: D-imprecise training data, T-test set, K-number of nearest neighbours
Output: {p(t)|t ∈ T}-predictions

1 foreach t ∈ T do
2 compute its zeta matrix ζ through (2.15)-(2.18);
3 foreach Xn ∈ D do
4 compute imprecise rank [rn, rn] defined in (2.19);

5 determine the PNt and NNt defined in (2.21)-(2.22);
6 foreach y ∈ Y do
7 compute smaxt (y) through (2.23)-(2.24);

8 determine θ(t) defined in (2.28);
9 if |θ(t)| = 1 then

10 p(t) = θ(t);

11 else
12 replace the imprecise distances by dt = {d(Xn, t)|n = 1, . . . , N};
13 determine p(t) by performing classical K-nn on dt;

Name # instances # features # labels
iris 150 4 3
seeds 210 7 3
glass 214 9 6
ecoli 336 7 8

dermatology 385 34 6
vehicle 846 18 4

Table 2.2: Data sets used in the experiments

2.3. Querying partially labelled data to improve the maximax approach 17

to limit the number of training samples. For each training instance xn ∈ D and
each feature xpn, p = 1, . . . , P and n = 1, . . . , N , a biased coin is flipped in order
to decide whether or not the feature xpn will be contaminated; the probability of
contamination is ε and we have tested different values of it ({0.2, 0.4, 0.6, 0.8}). In
case xpn is contaminated, its precise value is transformed into an interval which can
be asymmetric with respect to xpn.

To do that, a pair of widths {lpn, rpn} will be generated from two Beta distributions,
Beta(αl, β) and Beta(αr, β). To control the skewness of the generated data, we
introduce a so called unbalance parameter η and assign {αl, αr} = {β ∗ η, β/η}. Then
the generated interval valued data is Xp

n = [xpn + lpn(Dp − xpn), xpn + rpn(D
p − xpn)]

where Dp = minn(xpn) and Dp
= maxn(xpn). As usual when working with Euclidean

distance based K-nn, data is normalized. Then, the proposed method is used to make
predictions on the test set and its accuracy is compared with the accuracy of two
other cases: classical K-nn when fully precise data is given, and a basic imputation
method consisting in replacing an interval-valued data Xp

n by its middle value, i.e,
xpn = (Xp

n + X
p
n)/2. The disambiguated data is used to make predictions under the

classical K-nn procedure.
Because the training set is randomly chosen and contaminated, the results maybe

affected by random components. Then, for each data set, we repeat the above pro-
cedure 100 times and compute the average results. The experimental results on the
data sets (described in Table 2.2) with several combinations of parameters (K, ε, η, β)
are given in the Table 2.3, with the best results between imputation and the pre-
sented method put in bold (the precise case only serves as a reference value of the
best accuracy achievable). These first results show that the difference between the
two approaches is generally small. Surprisingly, this is true for all explored settings,
even for skewed imprecision and high uncertainty (η = 0.25, ε = 0.8). However, on
the two data sets dermatology and vehicle, our approach really provides a significant,
consistent increase of accuracy, and this even for low and balanced imprecision (η = 1,
ε = 0.2).

Conclusion

The very first experiments provided here suggest that a simple imputation method
could often work as well as the presented approach, but for some data sets the maximax
approach can bring a real advantage. In the future, we intend to do more experiments
(varying K, increasing the number of data sets) and also try to understand the origin
of the witnessed difference. However, the more interested point here is, by identifying
possible and necessary neighbours, the maximax approach can also provides us with
information about how uncertain our prediction is. This later advantage is instrumen-
tal in the next step we envision for this part of the work: determining which sample
feature should be queried first to improve the overall algorithm accuracy, much like
what we are going to investigate, in the next Section, for the case of partial labels.

2.3 Querying partially labelled data to improve the max-
imax approach

We are going to present our proposals for querying partially labelled data to improve
the inference ability of the maximax method. We will first present a generic querying
principle and a simple neighbour-based querying criteria which inspired by the high-
density regions based technique in classical active learning [81], before detailing the
idea highlighted in Section 2.1.2.

18 Chapter 2. Transductive learning and partial data

iris seeds glass ecoli derma. vehicle

ε = 0.2,
η = 0.25

Precise 91.55 84.88 49.70 75.21 82.26 53.55
Imputation 88.93 83.79 47.30 74.40 80.20 49.45
Maximax 89.39 83.80 48.37 74.57 81.19 53.21

ε = 0.2,
η = 0.5

Precise 91.57 85.15 50.46 74.98 81.76 53.65
Imputation 89.07 84.16 47.41 74.23 77.41 50.35
Maximax 89.43 83.92 48.54 74.13 80.55 53.19

ε = 0.2,
η = 1

Precise 91.35 85.39 50.49 75.11 82.13 53.65
Imputation 88.80 84.36 47.48 74.52 75.12 50.76
Maximax 89.08 84.31 48.73 74.35 80.54 53.24

ε = 0.4,
η = 0.25

Precise 91.44 85.31 50.34 75.33 82.26 53.54
Imputation 87.70 83.83 46.70 74.49 75.87 49.88
Maximax 88.59 83.88 48.06 74.02 80.32 52.95

ε = 0.4,
η = 0.5

Precise 91.14 85.26 50.20 75.47 82.04 53.50
Imputation 87.00 83.77 46.31 74.60 75.14 49.70
Maximax 87.42 83.61 47.69 73.87 79.75 52.79

ε = 0.4,
η = 1

Precise 91.11 85.33 50.18 75.36 82.24 53.52
Imputation 86.87 83.80 46.17 74.62 73.10 49.77
Maximax 86.59 83.52 47.58 73.57 79.51 52.70

ε = 0.6,
η = 0.25

Precise 92.53 84.59 50.82 74.54 81.10 53.25
Imputation 80.46 80.88 43.56 72.27 75.38 43.41
Maximax 84.86 80.85 45.90 69.48 77.40 50.87

ε = 0.6,
η = 0.5

Precise 92.00 85.39 50.97 74.86 81.98 53.38
Imputation 80.06 82.51 44.04 73.13 73.28 45.10
Maximax 82.43 82.06 46.08 70.24 77.29 50.75

ε = 0.6,
η = 1

Precise 91.66 85.57 51.01 74.83 81.97 53.46
Imputation 80.22 82.47 44.37 73.45 68.41 46.48
Maximax 80.79 82.16 46.19 70.47 75.84 50.59

ε = 0.8,
η = 0.25

Precise 91.62 85.46 50.74 74.97 81.91 53.40
Imputation 79.13 81.92 44.34 73.27 69.42 44.52
Maximax 81.26 81.86 45.88 70.19 76.04 48.88

ε = 0.8,
η = 0.5

Precise 91.27 85.29 50.85 74.92 82.08 53.44
Imputation 78.53 81.95 44.33 73.34 69.00 44.18
Maximax 80.92 82.00 45.66 70.17 75.71 48.32

ε = 0.8,
η = 1

Precise 91.16 85.35 50.71 75.00 82.18 53.45
Imputation 78.58 82.04 44.25 73.60 66.67 44.71
Maximax 80.38 82.47 45.48 70.46 74.99 47.92

Fixed parameters: K = 3, β = 10

Table 2.3: Experimental Results: Accuracy of classifiers (%)

2.3. Querying partially labelled data to improve the maximax approach 19

X2

X1
Y1 = {y1, y3}

Y2 = {y1, y3}

Y3 = {y2, y3}

Y4 = {y1, y2}
Y5 = {y1}

Y6 = {y1}t1

t2

t3

t4

t5

Figure 2.2: 3-nn classifiers

2.3.1 Generic querying scheme

General setting

In this proposal, we assume that we have a training data setD = {(xn, Yn)}Nn=1 used to
make predictions, with xn ∈ X the features and Yn ⊆ Y are partially specified labels.
Let us remind that we will adopt the superset assumption that is to assume that Yn
contains the true label yn, as usual when working with partial labels [17, 18, 43–45,
100]. We also assume that we have an unlabelled target data set T = {(tt, ?)}Tt=1 that
will be used to determine the partial labels to query and can be defined differently
based on the usage purposes as pointed out latter in Section 2.3.3.

For a new instance t and a valueK, its set of nearest neighbours inD is denoted by
Nt = {xt

k|k = 1, . . . ,K} where xt
k is its k-th nearest neighbour. We will also say that

Yn ∈ Nt if xn is among theK nearest neighbours of a given instance t. We also assume
that we have a vector wt = (wt

1, . . . , w
t
K) weighting each neighbour in Nt according

to its distance to the target. Similarly, for a training instance xn ∈ D, we denote by
Gxn = {t |x ∈ Nt} the set of target instances of which xn is a nearest neighbour.

In the remainder of this proposal, we will use the maximax approach [43–45] to
make decision, i.e, assign for each new instance t, the prediction such that:

θ(t) = arg max
y∈Y

∑
xt
k∈Nt

wt
k1y∈Y t

k
. (2.29)

The idea of the above method is to count one (weighted) vote for y whenever it is in
the partial label Y t

k .

Example 2. Let us consider the case illustrated in Figure 2.2, where the training
data set contains 6 instances, the target set has 5 instances and the output space Y =
{y1, y2, y3}.

Assuming that we work with K = 3, the nearest neighbours of each target instance
and their associated (illustrative) weights are given in Table 2.4. And we have also:

Gx1 = Gx2 = Gx3 = {t1, t2}
Gx4 = Gx5 = Gx6 = {t3, t4, t5}.

Instances x5 and x6 cannot be queried because they are precise, but which label
among x1,x2,x3 and x4 should be queried is not obvious. Indeed, x4 is involved in
more decisions than the three other partial labels (as |Gx4 | is greater than all other
sets), but getting more information about x4 will not change these decisions, as the
result of Equation (2.29) will not change whatever the true label of x4. In contrast,
knowing the true label of x1, x2 or x3 may change our decision about x1 and x2,
hence, from a decision viewpoint, querying these partial labels seems more interesting.

20 Chapter 2. Transductive learning and partial data

t Nt wt

t1 {x1,x3,x2} (0.9,0.8,0.7)
t2 {x2,x3,x1} (0.8,0.8,0.4)
t3 {x6,x4,x5} (0.8,0.8,0.4)
t4 {x6,x4,x5} (0.7,0.7,0.7)
t5 {x4,x5,x6} (0.8,0.8,0.4)

Table 2.4: Weights and neighbours of Example 2

We are going to explore querying patterns following both intuitions (neighbour-
based and ambiguity-based), but we first introduce a general querying scheme and a
simple neighbour-based criteria.

A generic scheme

Our generic querying scheme follows a simple rule: for each partially labelled instance
xn and each target instance t, we will define a function

fxn(t) (2.30)

called local effect score, whose exact definition will vary for different criteria. The role
of this function is to evaluate whether querying the training instance xn can impact
the result of the maximax method (2.29) for the target instance t. Since we want to
improve the algorithm over the whole target set, this will be done by simply summing
the effect of xn over all data in the target set T, that is by computing

fxn(T) =
∑
t∈T

fxn(t), (2.31)

that we will call global score function. The chosen instance to be queried, denoted by
xn∗ , will then simply be the one with the highest effect score, or in other words

xn∗ = arg max
xn∈D

fxn(T).

We will now propose different ways to define fxn(t), that will be tested in the
experimental evaluation section. Since the computation of the global effect score from
the local ones is straightforward, we will focus in the next sections on computing
fxn(t) for a single instance. Also, we will denote by qn the query consisting in asking
the true label of xn.

Neighbour-based querying criteria

Our first idea is quite simple and consists in evaluating whether a partially labelled
instance xn is among the neighbours of the target instance t, hence if xn will partic-
ipate to its classification, and how strongly xn does so. This can be estimated by the
simple function fMW

xn (t) as follows

fMW
xn (t) =

wn∑K
k=1w

t
k

(2.32)

where wn is wt
k if xn is the k-th neighbour of t, and zero otherwise. The global

effect score of xn can then be computed using Equation (2.31). In the unweighted
case, this score is the number of target instances of which xn is a neighbour. This

2.3. Querying partially labelled data to improve the maximax approach 21

fMW
xn t1 t2 t3 t4 t5 T

x1 0.4 0.2 0 0 0 0.6
x2 0.3 0.4 0 0 0 0.7
x3 0.3 0.4 0 0 0 0.7
x4 0 0 0.4 0.3 0.4 1.1

Table 2.5: Effect scores obtained by using fMW in Example 2

strategy is similar to the one of querying data in high-density regions in active learning
techniques [81].

Table 2.5 summarizes the global effect scores for Example 2. As expected, x4 is
the one that should be queried according to fMW

xn , since it is the one participating to
most decisions.

2.3.2 Indecision-based querying criteria

This Section presents other effect scores based on whether a partially labelled instance
xn introduces some ambiguity in the decision about an instance t. We first define what
we mean by ambiguity.

Ambiguous instance: definition

In the maximax approach [43–45], each neighbour can be seen as a (weighted) voter in
favor of her preferred class. Partial labels can then be assimilated to voters providing
incomplete preferences. For this reason, we will define ambiguity by using ideas issued
from plurality voting with incomplete preferences [5, 52, 64]. More precisely, we will
use the notions of necessary and possible winners of such a voting scheme to determine
when a decision is ambiguous.

For an instance t, as its set of neighbours Nt = {xt
1, . . . ,x

t
K} can be derived

easily, manipulating the set of possible replacement D is thus reduced to handling the
following set

Dt = {dt =: (yt1, . . . , y
t
K) | ytk ∈ Y t

k },

i,e., the set of possible replacements of Nt with cardinality |Dt| =
∏K
k=1 |Y t

k |. For a
given replacement dt, the corresponding winner(s) of the voting procedure is (are)

ydt = arg max
y∈Y

K∑
k=1

wt
k1ytk=y

with wt
k the weight corresponding to the k-th neighbor. Let us note that the arg max

can return multiple labels.
The possible and necessary label sets of t (i.e., PLt and NLt defined in (2.13)-

(2.14)) can be determined as follows:

PLt = {y ∈ Y | ∃dt ∈ Dt s.t y ∈ ydt } (2.33)
and

NLt = {y ∈ Y | ∀dt ∈ Dt, y ∈ ydt }, (2.34)

which are nothing else but the set of possible and necessary winners in social choice
theory [5, 52, 64]. By definition, we have NLt ⊆ PLt. Given a target instance t, we
adopt the following definition of ambiguity.

22 Chapter 2. Transductive learning and partial data

y scores x1 x2 x3 x4 x5

y1
smin 0 0 1.2 1.4 1.2
smax 0.7 0.8 2 2.1 2

y2
smin 0 0 0 0 0
smax 1.7 1.2 0.8 0.7 0.8

y3
smin 0 0 0 0 0
ssmax 2.4 2 0 0 0

Table 2.6: Minimal and maximal scores for Example 2

Definition 1. A target instance t is called ambiguous if NLt 6= PLt.

Let us remind that querying partial labels is equivalent to reducing the number of
possible replacements dt. Thus, we can reduce the ambiguity of t by either reducing
PLt or increasing NLt, eventually getting NLt = PLt. We are going to investigate
those effects and then present our querying proposals.

Ambiguous instance: computation

A first issue is how to actually compute NLt and PLt. The problem of determining
NLt is very easy [52]. However, determining PLt is in practice much more difficult.
In the unweighted case, known results [5, 98] indicate that PLt can be determined
in cubic (hence polynomial) time with respect to M , by solving a maximum flow
problem and using the fact that when votes are (made) unitary, the solution of this
flow problem is integer-valued (due to the submodularity of the constraint matrix).

However, when votes are non-unitary (when weights are different), this result does
not hold anymore, and the problem appears to be NP-complete, as it can be reduced
to a 3-dimensional matching problem. A refined analysis of the complexity in terms
of fixed parameters (M or K) could however help to identify those cases that are
harder to solve from those that remain easy (polynomial). In addition to that, in
our setting we can have to evaluate the set of possible labels PLt a high number of
times (in contrast with what happens in social choice, where NLt and PLt have to be
evaluated at most a few times), hence even a cubic algorithm may have a prohibitive
computational time. This is why we will provide an easy-to-compute approximation
of it, denoted by APLt. Let us first provide some definitions.

Given the set of nearest neighbours Nt, we denote by Yt = ∪Kk=1Y
t
k ⊆ Y all labels

included in the neighbours of t. For each label y ∈ Yt, its minimum and maximum
scores are

smint (y) =

K∑
k=1

wt
k1y=Y t

k
and smaxt (y) =

K∑
k=1

wt
k1y∈Y t

k
,

respectively. For a given replacement dt, we also denote by sdt (y) =
∑K

k=1w
t
k1y=ytk

the score received by y. For any dt, we can see that

smint (y) ≤ sdt (y) ≤ smaxt (y). (2.35)

smint (y) and smaxt (y) are therefore the minimal and maximal scores that the candidate
y can receive (thus are consistent with the generic notion defined in (2.11)).

Table 2.6 provides the score bounds obtained for the different xn of Example 2.
From the minimal and maximal scores, we can easily get NLt and an approxima-

tion (APLt) of PLt, as indicated in the next proposition and definition.

2.3. Querying partially labelled data to improve the maximax approach 23

Proposition 1. Given target instance t, weight wt and nearest neighbour set Nt, a
label y ∈ NLt iff

smint (y) ≥ smaxt (y
′
), ∀y′ 6= y, y

′ ∈ Yt. (2.36)

Proof. (⇒): For any pair y, y′ ∈ Yt, ∃dt s.t

sdt (y) = smint (y) and sdt (y
′
) = smaxt (y

′
). (2.37)

Just consider dt s.t ytk = y
′ if y′ ∈ Y t

k , and ytk = y if Y t
k = y. Then, if y ∈ NLt,

sdt (y) ≥ sdt (y
′
) ∀dt, and in particular the one reaching smint (y), smaxt (y

′
). Combined

with relation (2.37), we have

smint (y) ≥ smaxt (y
′
), ∀y′ 6= y, y

′ ∈ Yt.

(⇐): Suppose y ∈ Yt satisfies condition (2.36),then

sdt (y) ≥ smint (y) ≥ smaxt (y
′
) ≥ sdt (y

′
), ∀dt

thus sdt (y) ≥ sdt (y
′
) ∀dt. Hence y ∈ NLt.

Definition 2. Given target instance t, weight wt and nearest neighbour set Nt, a
label y ∈ APLt iff

smaxt (y) ≥ max
y′∈Yt

smint (y
′
), ∀y′ 6= y, y

′ ∈ Yt. (2.38)

Example 3. According to Table 2.6, the sets obtained for Example 2 with K = 3 are

NLt3 = NLt4 = NLt5 = APLt3 = APLt4 = APLt5 = {y1}
and

NLt1 = NLt2 = ∅ APLt1 = APLt2 = {y1, y2, y3},

showing, as expected, that only t1, t2 are ambiguous.

The next proposition states that APLt is an outer approximation of PLt (there-
fore not missing any possible answer) and that both coincide whenever NLt is non-
empty (therefore guaranteeing that using APLt will not make some instance artifi-
cially ambiguous). The following Lemma which determines a condition for a label y
to not be in PLt, and an illustrative example are necessarily to carry out the proof
of the Proposition.

Lemma 2. Given t , wt and Nt, y 6∈ PLt if ∃ y′ 6= y s.t smin(y
′
) > smax(y).

Proof. If ∃ y′ 6= y s.t smint (y
′
) > smaxt (y), then for ∀dt, we have

sdt (y
′
) ≥ smin(y

′
) > smaxt (y) ≥ sdt (y),

or sdt (y
′
) > sdt (y), then y is not a possible label of t.

Thus APLt is an outer approximation of PLt. The next example shows that
APLt can indeed be a strict superset of PLt.

Example 4. Consider the simple unweighted case where K = 4, Y1 = {y1, y2} and
Y2 = Y3 = Y4 = {y2, y3}. As we have smint (y) = 0 and smaxt (y) > 0 for all labels

24 Chapter 2. Transductive learning and partial data

y ∈ Y, then APLt = {y1, y2, y3}, but PLt = {y2, y3} (indeed, y1 can get only one
vote, while the two others will receive at least two votes).

Proposition 2. Given target instance t, weight wt and nearest neighbour set Nt, the
following properties hold

A1 APLt ⊇ PLt

A2 if NLt 6= ∅, then APLt = PLt.

Proof. (A1): By definition of PLt and NLt, we have that PLt ⊇ NLt. Lemma 2
together with the definition of APLt tells us that all labels not in APLt are also not
in PLt, hence

APLt ⊇ PLt ⊇ NLt.

with Example 4 showing that APLt can be a strict outer-approximation of PLt.
(A2): We are going to show that if NLt 6= ∅, then APLt = PLt. Since (A1)

ensures APLt ⊇ PLt, then (A2) will be proved by showing that if NLt 6= ∅,
then APLt ⊆ PLt.

Since NLt 6= ∅, then ∃y
′ ∈ NLt s.t sminsdt (y

′
) ≥ smaxsdt (y) for y 6= y

′ . From that,
we can infer that if y ∈ APLt, then we have sminsdt (y

′
) = smaxsdt (y) for any y′ ∈ NLt.

This means that ∃dt s.t sdt (y) = smaxt (y) = smint (y
′
) ≥ sdt (y

′′
) for y′′ ∈ Yt \ {y, y

′}.
Hence y is also in PLt, or in other words APLt ⊆ PLt.

Effect of a query on ambiguous instances

Now that we have defined how to identify an ambiguous instance, the question arises
as to how we can identify queries that will help to reduce this ambiguity. This Section
provides some answers by using the notions of necessary and (approximated) possible
labels to define a local effect score (2.30). More precisely, the local effect score fxn(t)
will take value one if a query can modify either the sets PLt or APLt, or the set
NLt. Additionally, as this local effect score aims at detecting whether a query can
affect the final decision, it will also take value one if it can change the decision θ(t)
taken by Equation (2.29). In some sense, such a strategy is close to active learning
techniques aiming to identify the instances for which the decision is the most uncertain
(uncertainty sampling [55], query-by-committee [83]).

To define this score, we need to know when a query qn can potentially change the
values of the possible label set PLt, the approximated possible label set APLt, the
prediction set θ(t) or the necessary label set NLt. A first remark is that if an instance
xn 6∈ Nt is not among the neighbours of t, then a query qn cannot change any of these
values. Let us now investigate the conditions under which qn can change the sets when
xn ∈ Nt. We first introduce some useful relations between the sets PLt, APLt, or
NLt. We will denote by PLqnt , APLqnt , and NLqnt the sets potentially obtained once
xn is queried.

In this proposal, a query will be considered interesting (i.e., having a local effect
score of one) if at least one value y ∈ Yn can change NLt, PLt, APLt or θ(t). Indeed,
requiring all possible values y ∈ Yn to change the sets of necessary labelsNLt, possible
labels PLt, approximation APLt or prediction set θ(x) is much too demanding, and
is unlikely to happen in practice.

We will go from the cases that are the most likely to happen in practice, that is
changes in PLt or APLt, to the most unlikely cases, that is changes in NLt. The
next proposition investigates conditions under which APLt will not change.

2.3. Querying partially labelled data to improve the maximax approach 25

Proposition 3. Given target instance t, nearest neighbour set Nt, approximated pos-
sible label set APLt of t and weight wt, query qn cannot change APLt if the two
following conditions hold

B1 for any y ∈ APLt \ Yn, we have

smaxt (y) ≥ max
y′∈Yn

smint (y
′
) + wn.

B2 and for any y ∈ APLt ∩ Yn, we have

smaxt (y)− wn ≥ max

(
max

y′∈Yn\{y}
smint (y

′
) + wn, max

y′∈Yt\Yn
(smint (y

′
)

)
.

Proof. It is clear from the definition (2.33) that APLqnt ⊆ APLt. To show that
APLqnt = APLt under conditions (B1) and (B2), we will show that (B1) and (B2)
imply APLqnt ⊇ APLt. To do so, we will show that if y ∈ APLt, and y satisfies
(B1) and (B2), then y ∈ APLqnt . As (B1) and (B2) partition APLt in two disjoint
sets (we have either y ∈ APLt \Yn or y ∈ APLt ∩Yn), we can treat them separately.

Also recall that if y ∈ APLt, then smaxt (y) ≥ maxy′ 6=y,y′∈Yt s
min
t (y

′
).

(B1) Case y ∈ APLt \ Yn: once a query qn is done for xn, it can only increase the
minimal score of one label (the true unknown one) by wn, hence the highest
increase of a minimal score is

max
y′∈Yn

smin,qnt (y
′
) = max

y′∈Yn
smint (y

′
) + wn,

meaning that if condition (B1) holds, we have smax,qnt (y) ≥ maxy′ 6=y s
min,qn
t (y

′
)

regardless of the result of qn, implying that y ∈ APLqnt .

(B2) Case y ∈ APLt∩Yn: once a query qn is done, it can decrease the maximal score
of a label within Yn of at most wn, meaning that at worst we have smax,qn(y) =
smax(y)− wn, while we still have

max
y′∈Yn\{y}

smin,qnt (y
′
) = max

y′∈Yn\{y}
smint (y

′
) + wn.

Condition (B2) holding implies that smax,qn(y) ≥ maxy′ 6=y s
min,qn
t (y

′
), regard-

less of the result of qn, hence y ∈ APLqnt .

According to Equation (2.38), a label y 6∈ APLt if there is a label y
′ whose minimal

score smint (y
′
) is higher than smaxt (y). Proposition 3 identifies, for a label y ∈ APLt,

those conditions under which an increase of the minimal score smint (y
′
) for other labels

is not sufficient to become higher than smaxt (y). Otherwise, y could get out of APLt.
The case of PLt is more complex, and since estimating it requires to enumerate

selections, the same goes for evaluating whether a query can change it. In particular,
we could not find any simple-to-evaluate conditions (as those of Proposition 3) to
check whether a query can change PLt, and we are reduced to provide the following
definition. This means that evaluating whether a query can change the set PLt will
only be doable when K or the cardinality of partial labels neighbours will be small.

26 Chapter 2. Transductive learning and partial data

Definition 3. Given partial label Yn, nearest neighbours Nt, possible label set PLt,
set Yt and weight wt, a query qn on xn ∈ Nt is said to not affect PLt if, for every
possible answer y ∈ Yn of the query, we have PLqn=y

t = PLt, where PLqn=y
t denotes

the set PLqn when Yn = y.

The next proposition investigates whether or not a query can change the decision
given by Equation (2.29) that we use to make predictions from partially labelled
neighbours.

Proposition 4. Given target instance t, nearest neighbour set Nt, prediction set θ(t),
label set Yt and weight wt, query qn does not affect θ(t) if at least one of following
conditions hold

C1 θ(t) ∩ Yn = ∅.

C2 ∀y ∈ θ(t) ∩ Yn,
smaxt (y)− wn > max

y′∈Yt\{y}
smaxt (y

′
) (2.39)

Proof. (C1) Note that Equation (2.29) is equivalent to

θ(t) =

{
y | y = arg max

y∈Yt
smaxt (y)

}
.

It is clear that for a query qn on xn such that θ(t)∩Yn = ∅, then smax,qnt (y) = smaxt (y)
for all y ∈ θ(t), while the maximal scores for y 6∈ θ(t) can only decrease. Hence
θqn(t) = θ(t).

(C2) Since y ∈ θ(t)∩Yn, its maximal score either become smax,qnt (y) = smaxt (y)−
wn in the worst case or is unchanged. Then Equation (2.39) guarantees that y ∈ θqn(t),
regardless of the true label of Yn.

Since classifier θ takes decisions based on the maximal number of votes a label can
receive, this proposition simply identifies the cases where the reduced score of smaxt (y)
with y ∈ θ(x) (or non-reduction in case C1) cannot become smaller than another
smaxt (y

′
). Finally, we give some conditions under which NLt will not change, which

may happen in practice.

Proposition 5. Given target instance t, nearest neighbour set Nt, necessary label set
NLt and weight wt, then query qn cannot change NLt if the two following conditions
hold

D1 for any y 6∈ NLt and y 6∈ Yn,

smint (y) < max

(
max

y′ 6=y,y′∈Yt\Yn
smaxt (y

′
), max
y′∈Yn

smaxt (y
′
)− wn, min

y′∈Yn
smaxt (y

′
)

)
,

D2 for any y 6∈ NLt and y ∈ Yn

smint (y) + wn < max

(
max
y′ 6∈Yn

smaxt (y
′
), max
y′∈Yn\{y}

smaxt (y
′
)− wn

)
.

Proof. Note that showing that NLqnt = NLt is equivalent to show that NLt = NLqnt ,
where NLt (NLqnt) denotes the complement of NLt (NLqnt).

2.3. Querying partially labelled data to improve the maximax approach 27

It is implied by the definition of NLt (2.34) that NLqnt ⊆ NLt, hence showing
that under Conditions (D1) and (D2), NL

qn
t ⊇ NLt is sufficient to show the desired

equality.
We will proceed as for Proposition 3, by showing that if y ∈ NLt and satisfies

(D1) and (D2), then y ∈ NL
qn
t , which is equivalent to show that at least one label

has a maximal score higher than y, i.e.,

smin,qnt (y) < max
y′ 6=y

smax,qnt (y
′
). (2.40)

Again, note that (D1) and (D2) form a partition of NLt, hence, the two cases can
be treated separately.

(D1) Case y 6∈ NLt and y 6∈ Yn: once query qn is performed, the minimal score of y is
unchanged because y 6∈ Yn, smin,qnt (y) = smint (y). The maximal scores of labels
in Yn is

max
y′∈Yn

smax,qnt (y
′
) = max

(
max
y′∈Yn

smaxt (y
′
)− wn, min

y′∈Yn
smaxt (y

′
)

)
,

because all labels within Yn see their maximal scores decrease, except one. The
maximal scores outside yn remain unchanged:

max
y
′ 6=y,y′ 6∈Yn

smax,qnt (y
′
) = max

y
′ 6=y,y′ 6∈Yn

smaxt (y
′
).

Then satisfying Equation (2.40) in case (C1) is equivalent to

smint (y) < max

(
max

y
′ 6=y,y′ 6∈Yn

smaxt (y
′
), max
y′∈Yn

smaxt (y
′
)− wn, min

y′∈Yn
smaxt (y

′
)

)
.

(D2) Case y 6∈ NLt and y ∈ Yn: after performing query qn, the minimal score of y
can increase to smin,qnt (y) = smint (y) + wn. Such an increase also implies that
for all other labels y′ ∈ Yn and y

′ 6= y, we have smax,qnt (y
′
) = smaxt (y

′
) − wn,

while the maximal scores of labels outside Yn remain unchanged. Therefore,
satisfying Equation (2.40) in case (D2) is equivalent to

smint (y) + wn < max

(
max
y′ 6∈Yn

smaxt (y
′
), max
y′∈Yn\{y}

smaxt (y
′
)− wn

)
.

According to Equation (2.36), a label y ∈ NLt if its minimal score smint (y) is
higher than the maximal scores of all the other labels y′ . Proposition 5 identifies,
for a given label y ∈ Yt, the conditions under which a decrease of the maximal score
smaxt (y

′
) of the other labels is not sufficient to become lower than smint (y) (otherwise,

y could be included in NLt after the query). Condition D1 covers the cases where y
is certainly not the true label, while condition D2 covers the cases where it may be
the true label.

28 Chapter 2. Transductive learning and partial data

APLt θ(t) NLt PLt

Prop. 3 Prop. 4 Prop. 5 Def. 3
x1 No (y3) No (y2) No (y3) No (y3)

t1 x2 No (y3) Yes Yes Yes
x3 No (y2) No (y2) Yes Yes
x1 Yes No (y2) Yes Yes

t2 x2 Yes No (y1) Yes No (y3)
x3 No (y3) No (y3) No (y3) No (y3)

Table 2.7: Check for propositions for Example 2

fPLxn (t1) fAPLxn (t1) fPLxn (t2) fAPLxn (t2)

x1 0.4 0.4 0.2 0.2
x2 0 0.3 0.4 0.4
x3 0.3 0.3 0.4 0.4

Table 2.8: Ambiguity effect for Example 2

We can now use those propositions and definitions to define the two local effect
scores measuring whether querying xn can impact our decision on t:

fPLxn (t) =

{
0 if Def. 3, Prop. 4, Prop. 5 hold

wn∑K
k=1 w

t
k

otherwise.
(2.41)

and

fAPLxn (t) =

{
0 if Prop. 3, Prop. 4, Prop. 5 hold

wn∑K
k=1 w

t
k

otherwise.
(2.42)

In the next Sections, query schemes corresponding to fPLxn (t) and fAPLxn (t) are denoted
shortly by PL and APL, respectively. Since fPLxn (t) uses exact information to identify
the ambiguous instances, we can expect the model accuracy to improve faster by using
it, yet getting fPLxn (t) is computationally demanding. In practice, fAPLxn (t) offers a
cheap approximation that can still provide good results (this will be confirmed by
our experiments).

Tables 2.7 and 2.8 provide an overview of the computations associated to Exam-
ple 2. Each time a proposition does not hold, we provide between parenthesis the
specific answer for which it does not hold.

From Table 2.8, we can see that fPLx3
(T) = fAPLx3

(T) = 0.7, but that fPLx2
(T) = 0.4

and fAPLx2
(T) = 0.7, meaning that the two effect scores given by Equations (2.42)

and (2.41) would provide different results. Finally, note that since fPLxn (t) and fAPLxn (t)
will be positive as soon as only one proposition or definition does not hold, we do not
need to evaluate all of them if we know that one does not hold.

We are going to finish this section with comments on the relation between the
approximation approach fAPL and the exact approach fPL. Let us first note that
there are queries that can changeAPLt, however it can not changePLt. In particular,
such an example can be derived by focusing on the elements of APLt \ PLt. For
example, if we query Y1 in the example 4 and its true value is y2, thus PLt is remain,
however we can reduce APLq1t = {y2, y3}.

Let us remind that if a query qn can discard a label y from the PLt, hence, there is
no replacement d ∈ D whose winners contain y (after performing qn). Thus, y cannot

2.3. Querying partially labelled data to improve the maximax approach 29

belong to APLqnt since the definition of smaxt (y) (2.11) implies that y is the winner of
the replacement (among the possible replacements) which gives the maximum voting
score for y. Or in other word, if a query can change PLt, it can also change APLt.

In short, there two approaches would provide different results when the querying
process goes along. However, as pointed out the next section, the improvements
provided by two approaches appear to be experimentally close. Furthermore, if we
have sufficient precise data, we should have NLt 6= ∅ where APLt = PLt as discussed
in A2 of the proposition 2.

2.3.3 Experimental evaluation

This Section presents the experimental setup and the results obtained with benchmark
data sets which are used to illustrate the behaviour of the proposed schemes.

Experimental setup

We do experiments on “contaminated” versions of standard, precise benchmark data
sets. To contaminate a given data set, we used two methods [44]:

Random Model: Each training instance is contaminated randomly with prob-
ability ε. In case an example xn is contaminated, the set Yn of candidate labels is
initialized with the original label yn, and all other labels y′ ∈ Y \{yn} are added with
probability η, independently of each other.

Bayes Model: In order to take the dependencies between labels (more likely to
happen in practice) into account, a second approach is used. First, a Naive Bayes
classifier θ is trained using the original data (precise labels) so that each label is
associated to a posterior probability pθ(y |xn). As before, each training instance will
be contaminated randomly with probability ε. In case of contamination, the true label
is retained, the other labels are re-arranged according to their probabilities and the
k-th label is included in the set of labels with probability 2kη

|Y| .
Note that in Bayes model, the probability 2kq/|Y| can exceed 1 when parameter ε is

greater than 0.5. However, this value of 2kη/|Y| ensures that the expected cardinality
of the partial labels, in case of contamination, is 1 + (M − 1)η for both contamination
models, making them comparable [44]. In practice, we lowered 2kη/|Y| to 1 once it goes
over it.

Results have been obtained for 15 UCI data sets described in Table 2.9. Three
different values for K (3, 6 and 9) have been used for all experiments. The weight
wt
k for an instance t is wt

k = 1 − (dtk)/(
∑K

j=1 d
t
j) with dtj the Euclidean distance

between xt
j and t. As usual when working with Euclidean distance based K-nn, data

is normalized.
We use a three-folds cross-validation procedure: each data set is randomly split

into 3 folds. Each fold is in turn considered as the test set, the other folds are used
for the training set. The training set is contaminated according to one of the models
with two combinations of (ε, η) parameters: (ε = 0.7, η = 0.5) and (ε = 0.9, η = 0.9),
which correspond to low and high levels of partiality. The error rate is computed as
the average error obtained from the 3 test sets. This process is repeated 10 times and
results are also averaged. For each data set, the number of queries I has been fixed
to 10% of the number of training data.

Similarly to what is done in active learning, the pool of instances to be queries
U is identical the set of partially labelled instances, i.e, U = {(xn, Yn) | (xn, Yn) ∈
D, |Yn| > 1}. The target set T used to assess the querying effects is defined as the
data space with imperfect information, i.e, T = {(xn, ?) | (xn, Yn) ∈ U}. Thus, we

30 Chapter 2. Transductive learning and partial data

Name # instances # features # labels
iris 150 4 3
wine 178 13 3
forest 198 27 4
seeds 210 7 3
glass 214 9 6
ecoli 336 7 8
libras 360 91 15

dermatology 385 34 6
vehicle 846 18 4
vowel 990 10 11
yeast 1484 8 12

winequality 1599 11 6
optdigits 1797 64 10
segment 2300 19 7

wall-following 5456 24 4

Table 2.9: Data set used in the experiments

RD MP/ACT MW APL PL
O(1) O(T) O(TK) O(TM(M +K)) O(TMK)

Table 2.10: Complexities of query schemes

apply the querying process using only information from training data set D, instead
of requiring a separated validation/target set.

To evaluate the efficiency of the proposed query schemes (MW, PL and APL), we
compare our results with 3 baseline schemes:

- RD: a query is picked up at random from the pool;

- MP: the one with the largest partial label is picked up;

- ACT: partially labelled instances are considered as unlabeled ones and ModFF,
a classical active learning scheme [49], is used to query instances. ModFF selects
the queries in such a way that all target data have labelled samples at a bounded
maximum distance.

The complexity of each scheme for a single query is given in Table 2.10. Note that
the more computationally demanding PL scheme was only tested for the case K = 3.

Results

For each scheme, the error rate after querying 10% of the number of training data has
been computed and the schemes have been ranked according to this error rate. The
average error rates and the average ranks of the schemes over the 15 data sets are
given in Table 2.11.

A Friedman test done over the ranks indicates that, in all settings, there are
significant evidence that not all algorithms are equivalent (except for the random
setting with low partiality that gave a p-value of 0.002, all other are below 10−5).
Nemenyi post-hoc test performed to identify the differences between the schemes
indicate that our proposed schemes (MW, PL, APL) work almost systematically better
than any baseline, with APL having a significant positive difference in pairwise tests.

2.4. Perspectives on querying partially featured data 31

Random Bayes Random Bayes
K Scheme ε = 0.7 ε = 0.7 ε = 0.9 ε = 0.9

η = 0.5 η = 0.5 η = 0.9 η = 0.9

3

no query 36.4 42.6 77.8 78.8
RD 30.8(4.60) 34.6(4.40) 61.6(3.73) 62.4(3.33)
MP 29.9(3.60) 34.3(4.20) 62.4(4.13) 63.1(3.93)
ACT 32.6(5.53) 37.5(5.73) 66.2(5.33) 66.5(5.07)
MW 27.6(2.33) 29.9(2.73) 54.0(2.20) 54.2(1.53)
APL 27.3(1.67) 29.4(1.67) 53.5(1.53) 54.1(1.60)
PL 27.2(1.27) 29.3(1.33) 53.5(1.33) 54.1(1.60)

6

no query 25.7 30.4 63.3 65.6
RD 24.0(3.40) 26.4(3.53) 44.9(3.27) 45.6(3.27)
MP 23.7(2.00) 26.0(3.00) 45.6(3.80) 46.6(3.60)
ACT 24.4(3.87) 27.8(4.87) 51.2(4.93) 52.7(4.93)
MW 23.6(2.40) 25.0(2.07) 37.8(1.87) 38.9(1.73)
APL 23.4(1.53) 24.6(1.07) 36.0(1.13) 37.5(1.20)

9

no query 25.4 27.9 53.7 57.5
RD 24.4(2.47) 25.5(2.67) 37.0(2.93) 38.2(2.80)
MP 24.1(1.53) 25.6(2.93) 38.3(3.73) 39.8(3.67)
ACT 24.6(3.07) 26.5(4.40) 43.4(4.73) 45.8(4.87)
MW 24.5(3.07) 25.8(2.47) 33.7(2.33) 34.8(2.33)
APL 24.3(2.40) 25.6(1.73) 31.7(1.13) 33.3(1.33)

Table 2.11: Average error rates % (average ranks) over the 15
data sets

A noticeable exception is when the partiality is low and K = 9. However in this case
it can be seen from Table 2.11 that all querying techniques only improve results in a
very marginal way (with an accuracy gain around 1% for all methods).

A second look at Table 2.11 confirms that the proposed methods really provide an
edge (in terms of average accuracy gain) in the situations where ambiguous situations
are the most present, that is when:

- K is low, in which case even a few partial labels among the neighbours may lead
to ambiguous situations, a fact that is much less likely when K gets higher.

- There is a large amount of partial labels, in which case increasing the value of
K will have a very limited effect on the number of ambiguous cases.

Both cases are of practical interest, as even if picking a higher value of K is desirable
when having low partiality, it may be computationally unaffordable.

Finally, we can notice that the Bayes contamination induces slightly more ambi-
guity in the data sets, as more likely classes (hence similar labels in a given region
of the input space) have more chances to appear in the contaminated labels. Bayes
contamination also seem somehow more realistic, as experts or labellers will have a
tendency to provide sets of likely labels as partial information.

2.4 Perspectives on querying partially featured data

Yet, in the case of partially featured data and precisely featured test data, by using the
specific properties of the partially ordered sets and the monotonicity of the extreme
distances, we can perform the querying procedure with a manageable complexity

32 Chapter 2. Transductive learning and partial data

(polynomial time). However, no significant improvement has been observed from
the experiments we did on the case of partially featured data. Let us note that in
Section 2.2, we restrict ourselves to the unweighted version of the maximax. Thus,
the unpromising experimental results in this very specific case is somehow insufficient
to envision any conclusion about the performance the maximax in the more generic
settings, e.g, to investigate the performance of the weighted version or to explore the
general setting of partially featured data where both training and test data can be
partially featured. On the other hand, the computations of the possible and necessary
label sets, summarizing in this section, might suggest extensions/adaptations for other
generic settings which are still left opened.

2.4.1 Determining the possible label set

Let us note that we will only consider the setting consists of a partially featured
training data set D = {(Xn, yn)}Nn=1, where Xn = (X1

n, . . . , X
P
n) and Xp

n = [apn, b
p
n],

∀p = 1, . . . , P , and precise target instances T = {(tt, ?)}Tt=1.
For a label ym ∈ Y, the relations among scores (2.27) and the definition of the

possible label set (2.13) imply that ym is a possible label (ym ∈ PLt) if and only if
there is a replacement d ∈ D with a score vector

(
sdt (y1), . . . , sdt (yM)

)
such that

M∑
i=1

sdt (yi) = K, (2.43)

and

min
(
sdt (ym), smaxt (yi)

)
≥ sdt (yi) ≥ smint (yi), i = 1, . . . ,M. (2.44)

The condition
∑M

i=1 s
d
t (yi) = K simply ensures that d is a legal replacement. The

constraint (2.44) then ensures that all other labels have a score lower than sdt (ym) for
the replacement d (note that min(sdt (ym), smaxt (ym)) = sdt (ym)), and that their scores
are bounded by Eq. (2.27).

The question is now to know whether we can instantiate such a vector making
a winner of ym. To achieve this task, we will first maximise its score, such that
sdt (ym) = smaxt (ym). The scores of all other labels yi is also lower-bounded by
smint (yi), meaning that among the K neighbours we choose in d, only K−smaxt (ym)−∑M

i=1,i 6=m s
min
t (yi) remain to be fixed in order to specify the score vector. Then we

can focus on the relative difference between smin(yi) and the additional number of
chosen neighbours voting for yi. Solving the problem defined by Eqs. (2.43), (2.44)
is equivalent to determine a score vector (w(y1), . . . , w(ym−1), w(ym+1), . . . , w(yM))
with w(yi) = sdt (yi)− smint (yi), ∀i 6= m, s.t.

M∑
i=1,i 6=m

w(yi) = K−smaxt (ym)−
M∑

i=1,i 6=m
smint (yi), (2.45)

min
(
smaxt (ym), smaxt (yi)

)
− smint (yi) ≥ w(yi) ≥ 0,∀i 6= m. (2.46)

Eq. (2.45) again ensures that the replacement is a legal one (the number of neighbours
sums up to K), and Eq. (2.46) ensures that ym is a winning label. Also note that if
∃yi ∈ Y \ {ym} s.t smaxt (ym) < smint (yi), then there no chance for ym to be a possible
label.

We will now give a proposition allowing to determine in an easy way if a label
belongs to the set of possible labels.

2.4. Perspectives on querying partially featured data 33

Proposition 6. Given the number of nearest neighbours K, a target instance t, its
corresponding maximum and minimum score vectors

(
smint (y1), . . . , smint (yM)

)
and(

smaxt (y1), . . . , smaxt (yM)
)
. Assuming that smaxt (ym) ≥ smint (yi), for ∀yi ∈ Y \ {ym},

then ym is a possible label if and only if

K ≤ smaxt (ym) +
M∑

i=1,i 6=m
min

(
smaxt (ym), smaxt (yi)

)
. (2.47)

Proof. (⇒) Let us prove that ym being a possible label implies (2.47). First, if ym ∈
PLt and d is a legitimate replacement, we have that

w(yi) ≤ min
(
smaxt (ym), smaxt (yi)

)
− smint (yi), ∀i 6= m (2.48)

otherwise ym would not be a winner, or we would give a higher score to yi than it
actually can get (we would have sdt (yi) > smaxt (yi)). Since for any replacement we
have that Eq. (2.45) must be satisfied, we have necessarily

K − smaxt (ym)−
M∑

i=1,i 6=m
smint (yi) =

M∑
i=1,i 6=m

w(yi).

If we replace w(yi) by its upper bound (2.48), we get the following inequality

K − smaxt (ym)−
M∑

i=1,i 6=m
smint (yi) ≤

M∑
i=1,i 6=m

min
(
smaxt (ym), smaxt (yi)

)
−

M∑
i=1,i 6=m

smint (yi),

that is equivalent to the relation

K ≤ smaxt (ym) +

M∑
i=1,i 6=m

min
(
smaxt (ym), smaxt (yi)

)
.

(⇐) Let us now show that if the conditions given by Eqs. (2.45)-(2.46) are satisfied,
then ym ∈ PLt. First remark that, once we have assigned the maximal score to ym
and the minimal ones to the other labels, there remain

K − smaxt (ym)−
M∑

i=1,i 6=m
smint (yi)

neighbours to choose from. We also know from (2.46) that at most

M∑
i=1,i 6=m

[
min

(
smaxt (ym), smaxt (yi)

)
− smint (yi)

]

34 Chapter 2. Transductive learning and partial data

neighbours can still be affected to other labels than ym without making it a loser.
Clearly, if

K − smaxt (ym)−
M∑

i=1,i 6=m
smint (yi) ≤

M∑
i=1,i 6=m

[
min

(
smaxt (ym), smaxt (yi)

)
− smint (yi)

]
,

we can reach the number of K neighbours without making ym a loser, or inversely
letting ym be a winner for the chosen replacement, meaning that ym ∈ PLt.

Example 5. Let us continue with the data set in Example 1 with value K = 3. From
Table 2.1 and the interval ranks (2.20), we can see that

PNt = {(X1, a), (X2, b), (X3, c), (X4, b)},NNt = {(X2, b)}.

Then the maximum and minimum scores for all the labels are

(smint (a), smint (b), smint (c)) = (0, 1, 0)

(smaxt (a), smaxt (b), smaxt (c)) = (1, 2, 1).

We will now determine whether a given label in Y = {a, b, c} is a possible label. For
label a, we have that

smaxt (a) + min
(
smaxt (a), smaxt (b)

)
+ min

(
smaxt (a), smaxt (c)

)
= 1 + 1 + 1 = 3 ≥ K,

hence a ∈ PLt. The same procedure applied to b and c gives the result PLt = {a, b, c}.

2.4.2 Determining the necessary label set

Let us now focus on characterizing the set NLt defined in (2.14). The following
propositions gives a very easy way to determine it, by simply comparing the minimum
score of a given label ym to the maximal scores of the others.

Proposition 7. Given the maximum and minimum scores
(
smint (y1), . . . , smint (yM)

)
and

(
smaxt (y1), . . . , smaxt (yM)

)
, then a given label ym is a necessary label if and only if

smint (ym) ≥ smaxt (yi),∀i 6= m. (2.49)

Proof. (⇒) We proceed by contradiction. Assuming that ∃ ym ∈ NLt and ∃ yi ∈ Y
where smint (ym) < smaxt (yi), we show that we can always find a replacement d ∈ D
s.t sdt (ym) < sdt (yi), or in other words, ∃ d ∈ D s.t ym 6∈ ydt , and therefore ym is not
necessary. Let us consider the two cases

1. K −
∑

j 6=m s
max
t (yj) ≥ ssmallt (ym), then for ∀j 6= m, we give its the maximum

score s.t sdt (yj) = smaxt (yj) and give ym the score sdt (ym) = K−
∑

j 6=m s
max
t (yj).

Then it is clear that

sdt (ym) = K −
∑
j 6=m

smaxt (yj) = smint (ym) < smaxt (yi) = sdt (yi).

2. K −
∑

j 6=m s
max
t (yj) < ssmallt (ym), then we give ym a score sdt (ym) = ssmallt (ym)

and give yi a score sdt (yi) = ssmaxt (yi). As we have

K <
∑

j 6={m,i}

smaxt (yj) + ssmallt (ym) + smaxt (ym)

2.5. Conclusion 35

by assumption, we can choose K − ssmallt (ym) − ssmaxt (yi) nearest neighbours
from at most

∑
j 6={m,i} s

max
t (yj) possible nearest neigbours whose labels are not

ym or Yn. In such a replacement we have sdt (ym) < sdt (yi).

(⇐) We are going to prove that (2.49) implies that the label ym ∈ NLt is necessary.
Let us first note that

min
d∈D

sdt (ym) = smint (ym) and max
d∈D

sdt (yi) = smaxt (yi), ∀i 6= m,

then (2.49) ensures that, for any replacement d ∈ D,

sdt (ym) ≥ min
d∈D

(sdt (ym)) ≥ max
d∈D

(sdt (yi)) ≥ sdt (yi),∀i 6= m,

which is sufficient to get the proof.

Example 6. Consider the data set given in Example 5 with the maximum and mini-
mum scores of the labels are

(smint (a), smint (b), smint (c)) = (0, 1, 0)

(smaxt (a), smaxt (b), smaxt (c)) = (1, 2, 1).

Then (2.49) implies that the necessary label set NLt = {b}.

2.5 Conclusion

Our first contribution in this Chapter is an implementation of the maximax ap-
proach for the case of partially featured data. Our implementation is computationally
tractable and the first experiments indicate that there are cases when the maximax
approach can bring a real advantage. Thus, motivating further works on broadening
the applications of the maximax approach. Let us note that, we have focused on
the setting where only training data are partially specified. Yet, developing similar
decision rules for the generic setting, i.e, both training and test data are partially fea-
tured, could be a potential direction. Detailing it could be complicated since defining
the partial order (2.17) is still a challenge. One reason is that if we have a partially
featured test instance t, we are no-longer allowed to freely choose and compare the
possible positions of its neighbours.

Considering the active learning problem, we have proposed two querying schemes,
both based on the computation of an effect score quantifying the impact of a dis-
ambiguation on the final result, to query partially labelled data. Our first strategy
(neighbour-based) consists in selecting an instance when it is involved in many de-
cisions. A more refined strategy (indecision-based) consists in selecting an instance
when it can potentially reduce the ambiguity of one or several decisions. This second
strategy is more complex from a computational point of view, and we have therefore
proposed an approximate scheme leading to very close performance. The experiments
have shown that the accuracy of the maximax method is significantly improved by
querying partial label instances and that indecision-based querying strategies are the
best-performing schemes.

Yet, our attempt on developing a similar querying scheme for the specific setting
where only training data can be partially featured has not provided any significant
improvement. The perspectives we presented could be useful for further tackling both
learning and active learning problem in the generic setting where both training and

36 Chapter 2. Transductive learning and partial data

test data are partially featured (and the weighted version of Maximax is employed
to make prediction). Thus, there are at least two open issues, in order to completely
tackle these problems:

1. to investigate the decision rules for the generic setting where both training and
test data can be imprecise.

2. to develop efficient subsequent techniques to determine the possible and neces-
sary label sets and its potential changes when the querying process goes along.

37

Chapter 3

Racing Algorithms

This Chapter focuses on imprecision modeling in the problem of learning from par-
tially specified data. We first generalise the loss function to cope with partial data
and highlight the potential issue of obtaining multiple optimal models, i.e, a set of
undominated models. The size of this undominated model set will be considered as
a degree of imprecision due to the presence of partial data. We thus focus on de-
veloping active learning schemes to identify the partially specified data that should
be queried to quickly reduce the undominated model set. We are going to present a
generic querying scheme inspired by the racing algorithms and then implement it for
two specific settings: binary SVM and decision trees.

3.1 Loss function and expected risk for partial data

Let us remind that, in classical supervised setting, the goal of the learning approach
is to extract a model θ∗ : X → Y within a set Θ of models from a data set D =
{(xn, yn)}Nn=1. The empirical risk R(θ |D) associated to a model θ is then evaluated as

R(θ |D) =
N∑
n=1

`(yn, θ(xn)), (3.1)

where `(yn, θ(xn)) is the loss of predicting θ(xn) when observing yn. The selected
model is then the one that minimizes (3.1), that is

θ∗ = arg min
θ∈Θ

R(θ |D). (3.2)

Another way to see the model selection problem is to say that a model θl is better
than θk (denoted θl � θk) if

R(θk |D)−R(θl |D) > 0, (3.3)

or, in other words, if the risk of θl is lower than the risk of θk.
In this proposal, we are interested in a more general case where data is potentially

only partially known, that is where general samples are of the kind (Xn, Yn) ⊆ X ×Y.
In such a case, Equations (3.1), (3.2) and (3.3) are no longer well-defined, and there
are different ways to extend them. Two of the most common ways to extend them is
either to use a minimin (optimistic) [44] or a minimax (pessimistic) approach. That

38 Chapter 3. Racing Algorithms

is, if we extend Equation (3.1) to a lower bound

R(θ |D) = inf
(xn,yn)∈(Xn,Yn)

N∑
n=1

`(yn, θ(xn)) (3.4)

=
N∑
n=1

inf
(xn,yn)∈(Xn,Yn)

`(yn, θ(xn)) :=
N∑
n=1

`(Yn, θ(Xn))

and an upper bound

R(θ |D) = sup
(xn,yn)∈(Xn,Yn)

N∑
n=1

`(yn, θ(xn)) (3.5)

=
N∑
n=1

sup
(xn,yn)∈(Xn,Yn)

`(yn, θ(xn)) :=
N∑
n=1

`(Yn, θ(Xn))

then the optimal minimin θ∗mm and minimax θ∗mM models are

θ∗mm = arg min
θ∈Θ

R(θ |D) and θ∗mM = arg min
θ∈Θ

R(θ |D).

The minimin approach usually assumes that data are distributed according to the
model, and tries to find the best data replacement (or disambiguation) combined with
the best possible model [43]. Conversely, the minimax approach assumes that data
are distributed in the worst possible way, and selects the model performing the best
in the worst situation, thus guaranteeing a minimum performance of the model [39].
However, such an approach, due to its conservative nature, may lead to sub-optimal
models. When having to choose a preferred model in the race, we will follow the
optimistic approach, that is also in line with the idea of racing algorithms.

However, in this proposal, we are not primarily interested into learning a single
model from partial data, but we want to determine which partial data makes the
potentially best models incomparable, in order to complete such data through queries.
To define such a set of potentially optimal models, we will say that a model θl is better
than θk (still denoted θl � θk) if

R(θk−l |D) = inf
(xn,yn)∈(Xn,Yn)

[
R(θk |D)−R(θl |D)

]
> 0, (3.6)

which is a direct extension of Equation (3.3). That is, θl � θk if and only if it is better
under every possible precise instances (xn, yn) consistent with the partial instances
(Xn, Yn). Such an approach is similar to decision rules used, for instance, in imprecise
probability [87]. We can then denote by

Θ∗ = {θ ∈ Θ | 6 ∃θ′ ∈ Θ s.t. θ
′ � θ} (3.7)

the set of undominated models within Θ, that is the set of models that are maximum
with respect to the partial order �.

Example 7. Figure 3.1 illustrates a situation where Y consists of two different classes
(gray and white), and X of two dimensions. Only imprecise data are numbered.
Squares are assumed to have precise features. Points 1, 2 and 3 are imprecise with
respect to their second feature. Shaded squares (points 4 and 5) have unknown labels.
Assuming that Θ = {θ1, θ2} (the models could be decision stumps, i.e, one-level deci-
sion trees [76], we would have that θ2 = θ∗mM is the minimax model and θ1 = θ∗mm

3.2. Our generic racing approach 39

X 2

X 1

1

2 3

4

5

m2

m1

[R(θ1 |D), R(θ1 |D)] = [0, 5]

[R(θ2 |D), R(θ2 |D)] = [1, 3]

R(θ1−2 |D) = −1

R(θ2−1 |D) = −2

Figure 3.1: Illustration of partial data and competing models

the minimin one. The two models would however be incomparable according to (3.6),
hence Θ∗ = Θ in this case, and the minimax and minimin rules would have given us
different answers.

3.2 Our generic racing approach

We are going to present a generic querying scheme based on racing ideas and then
investigate the computational issue of such a scheme for the specific settings of binary
SVM and decision trees.

Both the minimin and minimax approaches have the same goal: obtaining a unique
model from partially specified data. Our objective in this proposal is different: we
want to query those data that will increase the most the accuracy of a learnt model.
To do so, we propose to start from a set Θ of potentially optimal models, and to
identify in a racing scheme those data that will help the most to select the best model
within Θ, hence are likely to be determinant in differentiating model quality. Much
like querying-by-committee in classical active learning [57], the purpose of the race is
here only to select the query to be made, as Θ is unlikely to contain the risk minimizing
model. Once the queries have been made, a new model should be learned from the
completed data set. How we quantify the usefulness of a query within the race is
formalized in what follows.

Let us recall that we have been considering the setting that X = X 1× . . .×XP is
a Cartesian product of P real spaces R, that a partial data (Xn, Yn) can be expressed
as (×Pp=1X

p
n, Yn), and furthermore that if Xp

n ⊆ R is a subset of the real line, then Xp
n

is a closed interval.
A query on a partial data (×Pp=1X

p
n, Yn) consists in transforming one of its dimen-

sion Xp
n or Yn into the true precise value xpn or yn, thanks to an oracle (an expert, a

precise measuring device). More precisely, qpn denotes the query made on Xp
n or Yn,

with p = P + 1 for Yn. Given a model θl and a data (×Pp=1X
p
n, Yn), we are interested

in knowing two things:

- whether the result of a query can have an effect on the the empirical risk bounds
[R(θl |D), R(θl |D)], which will be the case only if the query can have an effect
on the interval [`(Yn, θl(Xn)), `(Yn, θl(Xn))]. We will then speak about the single
effect of a query, as we will consider a single model;

- whether the model θl can be preferred to θk after performing a query, in which
case we have to assess whether the query can have an influence on the lower
bound R(θk−l |D) or not, since θl will be preferred to θk as soon as this bound
becomes positive.

40 Chapter 3. Racing Algorithms

This can be formalized by two functions, Eqpn : Θ→ {0, 1} and Jqpn : Θ×Θ→ {0, 1}
such that:

Eqpn(θl) =

{
1 if ∃xpn ∈ Xp

n that reduces [R(θl |D), R(θl |D)]
0 else (3.8)

and

Jqpn(θk, θl) =

{
1 if ∃xpn ∈ Xp

n that increases R(θk−l |D)
0 else. (3.9)

When p = P + 1, Xp
n is to be replaced by Yn. Eqpn simply tells us whether or

not the query can affect our evaluation of θl performances, while Jqpn(θk, θl) informs
us whether the query can help to differentiate θl and θk. If we denote by k∗ =
arg mink∈{1,...,S}R(θk |D) the currently winning model (racing algorithms do focus
on this model, trying to determine if it is really the winner of the race), the total
effect of a query qpn is defined as

V alue(qpn) = Eqpn(θk∗) +
∑
k 6=k∗

Jqpn(θk, θk∗). (3.10)

This value or utility is then used to assess which data (label or feature) should be
queried next. It should be noticed that scores (3.8) and (3.9) can be modified, for
example to account for different loss functions. Unless there are other reasons to
change it, our choice appears to be the most natural and simple.

Example 8. In Figure 3.1, questions related to partial classes (points 4 and 5) and
to partial features (points 1, 2 and 3) have respectively the same potential effect, so
we can restrict our attention to q3

4 (the class of point 4) and to q2
3 (the second feature

of point 3). For these two questions, we have

- Eq34 (θ1) = Eq34 (θ2) = 1 and Jq34 (θ1, θ2) = Jq34 (θ2, θ1) = 0.

- Eq23 (θ1) = 1, Eq23 (θ2) = 0 and Jq23 (θ1, θ2) = Jq23 (θ2, θ1) = 1.

This example shows that while some questions may reduce our uncertainty about many
model risks (q3

4 reduce risk intervals for both models), they may be less useful than other
questions to tell two models apart (q2

3 can actually lead to declare θ2 better than θ1,
while q3

4 cannot).

The effect of a query being now formalized, we can propose a method inspired by
racing algorithms. To create the initial set of racing models, a convenient method is
to sample S times a precise data set {(xn, yn) ∈ (Xn, Yn)}Nn=1 and then to learn an
optimal model for each such selection. Algorithm 2 summarises the general procedure
applied to find the best query and to update the race. This algorithm simply searches
the query that will have the biggest impact on the minimin model and its competitors,
adopting the optimistic attitude of racing algorithms. Once a query has been made,
the data set as well as the set of competitors are updated, so that only potentially
optimal models remain. Note that in practice, such a sampling is close to methods
used in query-by-committee approaches [57, 67], and makes no specific assumption
about the process that has led to imprecision. Also, as in usual query-by-committee
and racing approaches, we also assume that we work with models of the same nature
and of comparable complexity.

3.3. Application to SVM 41

Algorithm 2: One iteration of the racing algorithm to query data
Input: data (Xn, Yn), set Θ∗ := {θ1, . . . , θS} of models
Output: updated data and set of models

1 k∗ = arg mink∈{1,...,S}R(θk |D);
2 foreach query qpn do
3 V alue(qpn) = Eqpn(θk∗) +

∑
k 6=k∗ Jqpn(θk, θk∗);

4 (n∗, p∗) = arg max(n,p) V alue(q
p
n);

5 Get value xp
∗

n∗ of X
p∗

n∗ ;
6 foreach k, l ∈ {1, . . . , S} × {1, . . . , S}, k 6= l do
7 Compute R(θk−l |D) ;
8 if R(θk−l |D) > 0 then remove θk from Θ∗ ;

3.3 Application to SVM

In this Section, we illustrate our proposed setting and its potential interest with the
popular SVM algorithm. We separate the two cases of interval-valued features from
set-valued labels, for three reasons: (i) we can expect that imprecision in both aspects
is less likely to happen in practice, (ii) this makes the exposure of the methods easier to
follow, and (iii) considering both cases at once would quickly induce a too important
imprecision in the results. We leave the combination of the two approaches to the
reader, especially since binary SVM are here used as an illustration of our general
approach.

3.3.1 Interval-valued features

In the binary SVM setting [10], the input space X = RP is the real space and the
binary output space is Y = {−1, 1}, where −1, 1 encode the two possible classes. The
model θl = (wl, cl) corresponds to the maximum-margin hyperplane wlx + cl with
wl ∈ RP and cl ∈ R. For convenience sake, we will use (wl, cl) and θl interchangeably
from now on. We will also focus in this section on the case of imprecise features and
precise labels, and will denote yn the label of training instances. We will also focus
on the classical 0-1 loss function defined as follows for an instance (xn, yn):

`(yn, θl(xn)) =

{
0 if yn · θl(xn) ≥ 0

1 if yn · θl(xn) < 0,
:= `l(yn,xn) (3.11)

where θl(xn) = wlxn + cl, and `l(yn,xn) is used as a short notation for `(yn, θl(xn)).
Similarly, the extreme losses `(yn, θl(Xn)) and `(yn, θl(Xn)) are shortened to `l(yn,Xn)
and `l(yn,Xn), respectively.

Instances inducing imprecision in empirical risk

Before entering into the details of how single risk bounds [R(θl |D), R(θl |D)] and
pairwise risk bounds R(θk−l |D) given by Equations (3.4)-(3.6), and query effects
Eqpn(θl) and Jqpn(θk, θl) given by Equations (3.8)-(3.9) can be estimated in practice,
we will first investigate under which conditions an instance (Xn, yn) induces impreci-
sion in the empirical risk. Such instances are the only ones of interest here, since if
`l(yn,Xn) = `l(yn,Xn) = `l(yn,Xn), then Eqpn(θl) = 0 for all p = 1, . . . , P . Further-
more, if an instance (Xn, yn) is precise w.r.t both θk and θl, then Jqpn(θk, θl) = 0 for

42 Chapter 3. Racing Algorithms

X 2

X 1

1

4

2 3

θ1

θ2

Figure 3.2: Illustration of interval-valued instances

all p = 1, . . . , P . Thus, only instances which are imprecise w.r.t at least one model
are interested when determining Jqpn(θk, θl).

Definition 4. Given a SVM model θl, an instance (Xn, yn) is called an imprecise
instance w.r.t. θl if and only if

∃x′n,x
′′
n ∈ Xn s.t θl(x

′
n) ≥ 0 and θl(x

′′
n) < 0. (3.12)

Instances that do not satisfy Definition 4 will be called precise instances (w.r.t.
θl). Being precise means that the sign of θl(xn) is the same for all xn ∈ Xn, which
implies that the loss `l(yn,Xn) = `l(yn,Xn) is precisely known. The next example
illustrates the notion of (im)precise instances.

Example 9. Figure 3.2 illustrates a situation with two models and where the two
different classes are represented by grey (y = +1) and white (y = −1) colours. From
the figure, we can say that (X1, y1) is precise w.r.t both θ1 and θ2, (X2, y2) is precise
w.r.t θ1 and imprecise w.r.t θ2, (X3, y3) is imprecise w.r.t both θ1 and θ2 and (X4, y4)
is imprecise w.r.t θ1 and precise w.r.t θ2.

Determining whether an instance is imprecise w.r.t. θl is actually very easy in
practice. Let us denote by

θl(Xn) := inf
xn∈Xn

θl(xn) and θl(Xn) := sup
xn∈Xn

θl(xn) (3.13)

the lower and upper bounds reached by model θl over the space Xn. The following
result characterizing imprecise instances, as well as when a hyperplane θl(xn) = 0
intersects with a region Xn, follows from the fact that the image of a compact set by
a continuous function is also compact.

Proposition 8. Given θl(xn) = wlxn+ cl and the set Xn, then (Xn, yn) is imprecise
w.r.t. θl if and only if

θl(Xn) < 0 and θl(Xn) ≥ 0. (3.14)

Furthermore, we have that the hyperplane θl(xn) = 0 intersects with the region Xn if
and only if (3.14) holds. In other words, ∃xn ∈ Xn s.t. θl(xn) = 0.

Proof. Since continuous functions preserve compactness and connectedness [33], then
the image f(X) = Y of a compact and connected set X is compact and connected.
Furthermore, a set on RP is compact if and only if it is closed and bounded (Heine–
Borel Theorem [74]), then X is a closed, bounded and connected set which is exactly
a closed interval. Or in other words, we have that

θl(Xn) =

[
θl(Xn), θl(Xn)

]
,

3.3. Application to SVM 43

is an interval consisting of every possible values that can take θl(xn) for xn ∈ Xn.
That (3.14) is equivalent to (3.12) then immediately follows. Also, we have that

∃xn ∈ Xn s.t. θl(xn) = 0 if and only if 0 ∈
[
θl(Xn), θl(Xn)

]
.

This proposition means that to determine whether an instance (Xn, yn) is impre-
cise, we only need to compute values θl(Xn) and θl(Xn), which can be easily done
using Proposition 9.

Proposition 9. Given (Xn, yn) with Xp
n = [apn, b

p
n] and SVM model (wl, cl), we have

θl(Xn) =
∑
wpl ≥0

wpl b
p
n +

∑
wpl <0

wpl a
p
n + cl

θl(Xn) =
∑
wpl ≥0

wpl a
p
n +

∑
wpl <0

wpl b
p
n + cl.

Proof. Since θl(xn) is a linear function, it is monotonic in each dimension, hence
the extreme values are obtained at points xn ∈ ×Pp=1{a

p
n, b

p
n}. Furthermore, θl(xn)

decreases (increases) w.r.t xpn if wpl < 0 (wpl > 0). Hence, Proposition 9 holds.

Again, it should be noted that only imprecise instances are of interest here, as
these are the only instances that, once queried, can result in an increase of the lower
empirical risk bounds. We will therefore focus on those in the next sections.

Example 10. Consider the model θl on a 3-dimensional space given by wl = (2,−1, 1)
and the partial instance Xn = [1, 3]× [2, 5]× [1, 2]. In this case, we have

θl(Xn) = 1× 2 + 5×−1 + 1× 1 = −2,

θl(Xn) = 3× 2 + 2×−1 + 2× 1 = 6,

hence the instance Xn is imprecise with respect to θl.

Empirical risk bounds and single effect

We are now going to investigate the practical computation of R(θl |D), R(θl |D), as
well as the value Eqpn(θl) of a query on a model θl. Equations (3.4) (resp. (3.5)) implies
that the computation of R(θl |D) (resp. R(θl |D)) can be done by first computing
`l(yn,Xn) (resp. `l(yn,Xn)) for n = 1, . . . , N and then summing the obtained values.
This means that we can focus our attention on computing `l(yn,xn) and `l(yn,xn)
for a single instance, as obtaining R(θl |D), R(θl |D) from them is straightforward.
Note that we have `l(yn,Xn) = 0 and `l(yn,Xn) = 1 if and only if Xn is imprecise
w.r.t. θl, a fact that can easily be checked using Proposition 8. The bounds of the
loss interval for the model θl and datum (Xn, yn) is

[`l(yn,Xn), `l(yn,Xn)] =


[0, 0] if min(yn · θl(Xn), yn · θl(Xn)) ≥ 0

[0, 1] if θl(Xn) · θl(Xn) < 0

[1, 1] if max(yn · θl(Xn), yn · θl(Xn)) < 0

(3.15)

Let us now focus on estimating the effect of a query. As with the loss bounds,
the only situation where a query qpn can affect the empirical risk bounds, and hence
the only situation where Eqpn(θl) = 1, is when the interval [`l(yn,Xn), `l(yn,Xn)] can
be reduced by querying Xp

n. Therefore we can also focus on a single instance to
evaluate it.

44 Chapter 3. Racing Algorithms

In the case of 0-1 loss, the only case where Eqpn(θl) = 1 is the one where the
imprecise loss [`l(yn,Xn), `l(yn,xn)] goes from [0, 1] before the query to a precise

value after it, or in other words if there is xpn ∈ Xp
n such that Xqpn

n = ×p′ 6=pX
p
′

n ×{xpn}
is precise w.r.t. θl. According to Proposition 8, this means that either θl(X

qpn
n) should

become positive, or θl(X
qpn
n) should become negative after a query qpn. The conditions

to check whether this is possible are given in the next proposition.

Proposition 10. Given (Xn, yn) with Xp
n = [apn, b

p
n] and a model θl s.t. Xn is impre-

cise, then Eqpn(θl) = 1 if and only if one of the following conditions holds

θl(Xn) ≥ −|wpl |(b
p
n − apn) (3.16)

or

θl(Xn) < |wpl |(b
p
n − apn). (3.17)

Proof. Let us concentrate on the first condition (the second one can be proved simi-
larly). If we denote by θl(X

qpn
n) the lower bound reached by θl on Xqpn

n (the set resulting
from the query answer), then we have the following inequality

θq
p
n

l (Xqpn
n) ≤ θl(Xn) + |wpl |(b

p
n − apn)

giving us a tight upper bound for it. Indeed, if wpl ≥ 0, then θl is obtained for xpn = apn
(by Proposition 9), and it can increase by at most wpl (b

p
n − apn) if the result of the

query qpn is xpn = bpn (the case wpl ≤ 0 is similar). Since θl(Xn) is known to be negative
(from Proposition 8 and the fact that Xn is imprecise), it can only become positive
after a query qpn if θl(Xn) + |wpl |(b

p
n − apn) is positive.

Finally, by investigating the change of sign(wpl), we have:

B1: qpn can change the sign of θl(xn) iff

{
θl(xn) + wpl (b

p
n − apn) ≥ 0 if wpl ≥ 0,

θl(xn)− wpl (b
p
n − apn) ≥ 0 if wpl < 0.

B2: qpn can change the sign of θl(xn) iff{
θl(xn)− wpl (b

p
n − apn) < 0 if wpl ≥ 0

θl(xn) + wpl (b
p
n − apn) < 0 if wpl < 0.

R(θl |D), R(θl |D), needed in the line 1 of Algorithm 2 to identify the most promis-
ing model k∗, are computed easily by summing over all training instances the intervals
[`l(yn,Xn), `l(yn,Xn)] given by Equation (3.15), while Equations (3.16)-(3.17) give
easy ways to estimate the values of Eqpn(θk∗), needed in line 3 of Algorithm 2.

Example 11. Let us consider again Example 10, and check whether querying the last
(p = 3) or second dimension may induce some effect on the emprical risk bounds.
Using Proposition 10, we have for q3

n that

θl(Xn) = −2 < −1× (2− 1) and θl(Xn) = 6 > 1× (2− 1),

3.3. Application to SVM 45

hence Eq3n(θl) = 0, as none of the conditions are satisfied. We do have, on the contrary,
that

θl(Xn) = −2 ≥ −1× (5− 2),

hence Eq2n(θl) = 1. Indeed, if x2
n = 2 (the query results in the lower bound), then the

model becomes positive for any replacement of Xq2n
n = [1, 3]× 2× [1, 2].

Pairwise risk bounds and effect

Let us now focus on how to compute, for a pair of models θk and θl, whether a query
qpn will have an effect on the value R(θk−l |D). For this, we will have to compute
R(θk−l |D), which is a necessary step to estimate the indicator Jqpn(θk, θl) of a possible
effect of qpn. To do that, note that R(θk−l) can be rewritten as

R(θk−l |D) = inf
xn∈Xn,n=1,...,N

(R(θk |D)−R(θl) |D) =

N∑
n=1

`k−l(yn,Xn) (3.18)

with

textwith`k−l(yn,Xn) = inf
xn∈Xn

(
`k(yn,xn)− `l(yn,xn)

)
, (3.19)

meaning that computing R(θk−l |D) can be done by summing up `k−l(yn,Xn) over
all Xn, similarly to R(θl |D) and R(θl |D). Also, Jqpn(θk, θl) = 1 if and only if qpn can
increase `k−l(yn,Xn). We can therefore focus on the computation of `k−l(yn,Xn) and
its possible changes.

First note that if Xn is precise w.r.t. both θk and θl, then `k(yn,Xn)−`l(yn,Xn) is
a well-defined value, as each loss is precise, and in this case Jqpn(θk, θl) = 0. Therefore,
the only cases of interest are those where Xn is imprecise w.r.t. at least one model.
We will first treat the case where it is imprecise for only one, and then we will proceed
to the more complex one where it is imprecise w.r.t. both. Note that imprecision with
respect to each model can be easily established using Proposition 8.

Case 1: Imprecision with respect to one model

Let us consider the case where Xn is imprecise w.r.t. either θk or θl. In each of
these two cases, the loss induced by (Xn, yn) on the model for which it is precise is
fixed. Hence, to estimate the lower loss `k−l(yn,Xn), as well as the effect of a possible
query qpn, we only have to look at the model for which (Xn, yn) is imprecise. The next
proposition establishes the lower bound `k−l(yn,Xn), necessary to compute R(θk−l).

Proposition 11. Given (Xn, yn) with Xp
n = [apn, b

p
n] and two models θk and θl s.t

(Xn, yn) is imprecise w.r.t. one and only one model, then we have

`k−l(yn,Xn) = `k(yn,Xn)− 1 if Xn imprecise w.r.t. θl (3.20)
`k−l(yn,Xn) = 0− `l(yn,Xn) if Xn imprecise w.r.t. θk. (3.21)

Proof. We will only prove Equation (3.20), the proof for Equation (3.21) being similar.
First note that if Xn is precise with respect to θk, then `k(yn,Xn) is precise. Second,
the value of `l(yn,Xn) ∈ {0, 1}, since Xn is imprecise with respect to θl, hence the
lower bound is obtained for xn ∈ Xn such that `l(yn,xn) = 1.

We kept the 0 in Equation (3.21) to make clear that we take the lower bound
of the loss w.r.t. θk, and the precise value of `l(yn,Xn). Let us now study under

46 Chapter 3. Racing Algorithms

which conditions a query qpn can increase `k−l(yn,Xn), hence under which conditions
Jqpn(θk, θl) = 1. The two next propositions respectively address the case of imprecision
w.r.t. θk and θl. Given a possible query qpn on Xn, the only possible way to increase
`k−l(yn,Xn) is for the updated Xqpn

n to become precise w.r.t. the model for which Xn

was imprecise, and moreover to be so that `l(yn,X
qpn
n) = 0 (`k(yn,X

qpn
n) = 1) if Xn is

imprecise w.r.t. θl (θk).

Proposition 12. Given (Xn, yn) with Xp
n = [apn, b

p
n] and two models θk and θl s.t.

(Xn, yn) is imprecise w.r.t. θl, the question qpn is such that Jqpn(θk, θl) = 1 if and only
if one of the two following conditions holds

yn = 1 and θl(Xn) ≥ −|wpl |(b
p
n − apn) (3.22)

or

yn = −1 and θl(Xn) < |wpl |(b
p
n − apn). (3.23)

Proof. First note that if Xn is imprecise w.r.t. θl, then the only case where `k−l(Xn)

increases is when the updated instance Xqpn
n is precise w.r.t. θl after the query qpn is

performed and the precise loss becomes `l(yn,X
qpn
n) = 0.

Let us consider the case yn = 1 (the case yn = 0 is similar). To have `l(yn,X
qpn
n) =

0, we must have θl(X
qpn
n) ≥ 0. Using the same argument as in Proposition 10, we

easily get the result.

Proposition 13. Given (Xn, yn) with Xp
n = [apn, b

p
n] and two models θk and θl s.t.

(Xn, yn) is imprecise w.r.t. θk, the query qpn is such that Jqpn(θk, θl) = 1 if and only if
one of the two following condition holds

yn = 1 and θk(Xn) < |wpk|(b
p
n − apn) (3.24)

or
yn = −1 and θk(Xn) ≥ −|wpk|(b

p
n − apn). (3.25)

The proof is analogous to the one of Proposition 12.
In summary, if Xn is imprecise w.r.t. only one model, estimating Jqpn(θk, θl) comes

down to identify whether the Xn can become precise with respect to such a model,
in such a way that the lower bound is possibly increased. Propositions 12 and 13
show that this can be checked easily using our previous results investigated in the
Proposition 10 concerning the empirical risk. Actually, in this case, the problem
essentially boils down to the problem of determining the empirical risk bounds and
single effect.

Case 2: Imprecision with respect to both models

Given Xn and two models θk, θl, we define :

θk−l(Xn) = θk(Xn)− θl(Xn). (3.26)

We thus have:

θk−l(Xn) > 0 if θk(xn)− θl(xn) > 0 ∀xn ∈ Xn (3.27)
θk−l(Xn) < 0 if θk(xn)− θl(xn) < 0 ∀xn ∈ Xn. (3.28)

In the other cases, this means that there are x
′
n,x

′′
n ∈ Xn for which the model dif-

ference have different signs. The reason for introducing such differences is that, if

3.3. Application to SVM 47

X2

X1

Xn

θ1

θ2

(a) θ1−2(Xn) > 0

X2

X1

Xn

θ1

θ2

(b) m1−2(Xn) < 0

X2

X1

Xn

θ1
θ2

(c) Non-constant sign

Figure 3.3: Illustrations for the different possible cases corresponding
to the pairwise difference

θk−l(Xn) > 0 or θk−l(Xn) < 0, then not all combinations in {0, 1}2 are possible for
the pair (`k(yn,xn), `l(yn,xn)), while they are in the other case. These various sit-
uations are depicted in Figure 3.3, where the white class is again the negative one
(yn = −1).

Since θk(xn)− θl(xn) is also of linear form (with weights wpk −w
p
l), we can easily

determine whether the sign of θk−l(Xn) is constant: it is sufficient to compute the
interval [

inf
xn∈Xn

(θk(xn)− θl(xn)), sup
xn∈Xn

(θk(xn)− θl(xn))

]
that can be computed similarly to [θl(Xn), θl(Xn)] in the Proposition 9. If zero is
not within this interval, then θk−l(Xn) > 0 if the lower bound is positive, otherwise
θk−l(Xn) < 0 if the upper bound is negative. The next proposition indicates how to
easily compute the lower bound `k−l(yn,Xn) for the different possible situations.

Proposition 14. Given (Xn, yn) with Xp
n = [apn, b

p
n] and two models θk, θl s.t.

(Xn, yn) is imprecise w.r.t. both models, then the minimal difference value is

`k−l(yn,Xn) =


min(0,−yn) if θk−l(Xn) > 0

min(0, yn) if θk−l(Xn) < 0

−1 if θk−l(Xn) can take both signs
(3.29)

Proof. First note that when neither θk−l(Xn) > 0 nor θk−l(Xn) < 0 hold, then
there are values xn for which θk(xn) and θl(xn) are either positive and negative, or
negative and positive, or of the same sign. Hence there is always a value xn such that
`k(yn,xn) = 0 and `l(yn,xn) = 1.

Let us then deal with the situation where θk−l(Xn) > 0 (the case θk−l(Xn) < 0
can be treated similarly). In this case, there are values xn ∈ Xn such that θk(xn)
and θl(xn) have the same sign (0/1 loss difference is then null), or θk(xn) is positive
and θl(xn) negative, but no values for which θk(xn) is negative and θl(xn) positive.
When θk(xn) is positive and θl(xn) negative, the loss difference is −1 if yn = +1, and
1 if yn = −1.

The next question is to know under which conditions a query qpn can increase
`k−l(yn,Xn) (or equivalently R(θk−l)), or in other words to determine a pair (n, p)
s.t Jqpn(θk, θl) = 1. Proposition 14 tells us that `k−l(yn,Xn) can be either 0 or −1 if
θk−l(Xn) > 0 or θk−l(Xn) < 0, and is always −1 if θk−l(Xn) can take both signs. The
next proposition establishes conditions under which `k−l(yn,Xn) can increase.

48 Chapter 3. Racing Algorithms

Proposition 15. Given (Xn, yn) with Xp
n = [apn, b

p
n] and two models θk and θl s.t

(Xn, yn) is imprecise w.r.t both of the given models, then Jqpn(θk, θl) = 1 if the following
conditions hold

if `k−l(yn,Xn) = −1 and yn = 1:

θk(Xn) < |wpl |(b
p
n − apn) or θl(Xn) ≥ −|wpl |(b

p
n − apn) (3.30)

if `k−l(yn,Xn) = −1 and yn = −1:

θk(Xn) ≥ −|wpk|(b
p
n − apn) or θl(Xn) < |wpl |(b

p
n − apn). (3.31)

if `k−l(yn,Xn) = 0 and θk−l(Xn) < 0:

θk(Xn) < |wpl |(b
p
n − apn) and θl(Xn) ≥ −|wpl |(b

p
n − apn) (3.32)

if `k−l(yn,Xn) = 0 and θk−l(Xn) > 0:

θk(Xn) ≥ −|wpk|(b
p
n − apn) and ml(Xn) < |wpl |(b

p
n − apn). (3.33)

Proof. Let us first investigate the case where `k−l(yn,Xn) = −1 and yn = 1 (the case
`k−l(yn,Xn) = −1 and yn = −1 is similar). In this case, Jqpn(θk, θl) = 1 if and only if
qpn can either increase `k(yn,Xn) = 0 or decrease `l(yn,Xn) = 1, that is become precise
for at least one of them, with `k(yn,X

qpn
n) = 1 or `l(yn,X

qpn
n) = 0. The conditions are

then obtained by following arguments similar to those of Proposition 10.
The second case `k−l(yn,Xn) = 0 only happens when either θk−l(Xn) < 0 or

θk−l(Xn) > 0, and we will treat the first case. According to Proposition 14, this
means that yn = −1. Also, since according to Proposition 11 the value 0 is an
upper bound of `k−l(yn,Xn) when Xn is imprecise with either θk or θl, to go from
`k−l(yn,Xn) = 0 to `k−l(yn,X

qpn
n) = 1, we need a value xpn ∈ Xp

n such that θk(X
qpn
n) < 0

and θl(X
qpn
n) > 0, as yn = −1. Again, we can get the conditions to have such a value

by deriving arguments similar to those of Proposition 10.

For instance, in Figure 3.3(a) and 3.3(b), Jq1n(θ2, θ1) = 0 and Jq2n(θ2, θ1) = 1
for both cases. The whole procedure is summed up in Algorithm 2. Algorithm 3
summarizes how to determine the query effect qpn, which can be considered as the main
computational difficulty when performing the querying step (line 2−3 in Algorithm 2).
Determining the set of undominated models (line 6−8 in Algorithm 2) is summarized
in Algorithm 4.

Let us now study the complexity of the whole approach. Lines 2 and 4 of Algorithm
3 are in O(P), since they correspond to linear operations. Iterations from 5− 10 are
in O(S × P), since we must check all undominated models once. Iterations from
13− 15 are also in O(S×P), for the same reason. Thus, one run of Algorithm 3 is in
O(S × P). If we have I partial features in the data, then loop 2 − 3 of Algorithm 2
takes O(I ×S×P) in the case of SVM, so it remains linear in each of the parameter.
Algorithm 4 corresponds to lines 6-8 of Algorithm 2, and computing R(θk−l) can be
done in O(N × P) since we must compute ` for each data point. Finally, since this
must be done for every pair of models in the worst case, performing Algorithm 4 is
in O(S2 ×N × P), which is quadratic in S and linear in the other parameters. This
can be approximated by only comparing intervals [R(θk), R(θk)] of every models, that
would bring down the complexity to O(S ×N ×P), but would provide a super-set of
the set of undominated models.

3.3. Application to SVM 49

Algorithm 3: Determining the query effect V alue(qpn)

Input: partial data (Xn, yn), set Θ = {θ1, . . . , θS} of models, the best
potential model θk∗

Output: the query effect V alue(qpn)
1 initialize Eqpn(θk∗) = 0, Jqpn(θk, θk∗) = 0, V alue(qpn) = 0, ∀k 6= k∗;
2 check whether (Xn, yn) is imprecise w.r.t θk∗ using Prop. 8 and 9;
3 if (Xn, yn) is imprecise w.r.t θk∗ then
4 compute Eqpn(θk∗) using Prop. 10 ;
5 foreach k 6= k∗ do
6 if (Xn, yn) is imprecise w.r.t θk then
7 use Prop. 14 to get `k−k∗(yn,Xn) ;
8 use Prop. 15 to get Jqpn(θk, θk∗) ;

9 else
10 use Prop. 12 to get Jqpn(θk, θk∗);

11 compute V alue(qpn) using Definition 3.10;

12 else
13 foreach k 6= k∗ do
14 if (Xn, yn) is imprecise w.r.t θk then
15 use Prop. 13 to get Jqpn(θk, θk∗) ;

16 compute V alue(qpn) using Definition 3.10;

Algorithm 4: Determining the undominated set
Input: data D = {(Xn, yn)}Nn=1, set Θ = {θ1, . . . , θS} of models
Output: the set of undominated model Θ∗

1 foreach k, l ∈ {1, . . . , S} × {1, . . . , S}, k 6= l do
2 R(θk−l |D) = 0;
3 foreach data (Xn, yn) do
4 if (Xn, yn) is imprecise w.r.t both θk and θl then
5 use Prop. 14 to get `k−l(yn,Xn) ;

6 else if (Xn, yn) is imprecise w.r.t only one of θk and θl then
7 use Prop. 11 to get `k−l(yn,Xn) ;

8 else
9 compute `k−l(yn,Xn) = `k(yn,Xn)− `l(yn,Xn) using (3.15);

10 R(θk−l |D) = R(θk−l |D) + `k−l(yn,Xn);

11 if R(θk−l |D) > 0 then
12 remove θk from {θ1, . . . , θS} ;

50 Chapter 3. Racing Algorithms

3.3.2 Set-valued labels

This section investigates the computations of racing algorithms to query set-valued
labels when using binary SVM with precise features and when labels are partially
given. Let us first note that, in the binary case, the problem of querying partial
label data is identical to classical active learning as label data is either precise or
fully partial (completely missing). One suitable technique in such a case is query-
by-committee [83]. However, the strategies of query-by-committee technique and our
racing technique are different. The previous one focus on missing labels that are the
least consensual or the most ambiguous among a given set of models, while racing
algorithms focus on labels having the most effect on reducing the uncertainty about
the best potential model performance, as well as its difference to other models. From
such intuitions, we could hope that, in practice, query-by-committee provide a quick
reduction on the size of the set of undominated models while racing algorithms give
faster convergence on determining the best potential model. In any case, it is worth
exploring whether the two techniques perform similarly or if they show significant
differences.

Before investigating the detailed computations of racing algorithms, let us recall
that we focus here on binary SVM with 0/1 loss function (3.11). Also, as the output
is partially given and inputs are precise, from now on and to facilitate exposure, we
will adopt the notation (xn, Yn) where Yn ⊆ {−1, 1} = Y and xn ∈ X . Let us first
note that, in case of precise label (i.e, Yn = yn), it is clear that the corresponding loss
score is precisely given as in (3.34) and such an instance cannot be queried.

`l(Yn,xn) = `l(Yn,xn) = `l(Yn,xn) =

{
0 if Ynθl(xn) ≥ 0,

1 otherwise.
(3.34)

We are now going to determine the imprecise loss function,

[`l(Yn,xn), `l(Yn,xn)]

and investigate under which conditions an imprecise label can have an effect on the
risk bounds.

Proposition 16. Given a model θl and an instance (xn, Yn), if Yn = {−1, 1}, then
the following results hold

A1 [`l(Yn,xn), `l(Yn,xn)] = [0, 1]

A2 Eqn(θl) = 1.

Proof. It is clear that, in the binary case, if Yn = {−1, 1}, whatever the prediction of
the given model is (either 1 or −1), there always exist element yn and y′n in Yn s.t

`l(yn,xn) = 0 and `l(y
′
n,xn) = 1,

or in other words, [`l(Yn,xn), `l(Yn,xn)] = [0, 1]. Furthermore, querying Yn always
help to modify [`l(Yn,xn), `l(Yn,xn)] into single value (either to 0 or 1). Or, in other
words, A2 holds.

Proposition 16 simply points out that all partial labels give the same (interval-
valued) losses and have an effect on modifying the corresponding losses. In the next
Proposition, we show that if the predictions of two given models for a partially labelled
instance are different, then the corresponding lower pairwise difference is −1 and the
effect of querying such labels is 1. Otherwise, both values are 0.

3.3. Application to SVM 51

Proposition 17. Given two models θk and θl and an imprecise instance (xn, Yn)
(Yn = {−1, 1}) then the following properties hold

B1 if θk(xn) = θl(xn) then

`k−l(Yn,xn) = 0 and Jqn(θk, θl) = 0.

B2 if θk(xn) 6= θl(xn) then

`k−l(Yn,xn) = −1 and Jqn(θk, θl) = 1.

Proof. B1 follows from the fact that if θk(xn) = θl(xn), then `k−l(yn,xn) = 0 for all
yn ∈ Yn. Furthermore, for any yqnn ∈ Yn to be returned after performing qn, we always
have `k−l(y

qn
n ,xn) = 0, or in other words Jqn(θk, θl) = 0.

We are now going to give the proof for B2. Let us first notice that when θk(xn) 6=
θl(xn), there always exists yn ∈ Yn (i.e yn = θl(xn)) s.t `k−l(yn) = −1. Then it is
clear that `k−l(Yn,xn) = −1. Furthermore, if yqnn = θl(xn) is the given label after
performing qn, then the pairwise difference `qnk−l(y

qn
n ,xn) = 1. In other words, we have

Jqn(θk, θl) = 1.

Propositions 16 and 17 provide an interesting property of V alue(qn). In fact,
for any given partial label Yn, the corresponding total effect (V alue(qn)) is exactly
1 + ui where ui is the number of models in the undominated set that give predictions
against the best potential model (θk∗). This means that while the query-by-committee
approach does consider the consensus between all models for each instance, the racing
algorithms are based on the consensus of each model w.r.t. to the best potential
model, for all instances. Again, we can see similarities and differences between the
two approaches, and comparing them makes sense.

The whole procedure is again summed up in Algorithm 2. Similarly to the case
of interval-valued features, we summarize how to determine the query effect qn (line
2− 3 in Algorithm 2) and the set of undominated models (line 6− 8 in Algorithm 2)
in Algorithm 5 and 6, respectively. The complexity analysis is similar to the one of
interval-valued features.

Algorithm 5: Determining the query effect V alue(qn)

Input: partial data (xn, Yn) with Yn = {−1, 1}, set Θ = {θ1, . . . , θS} of
models, the best potential model θk∗

Output: the query effect V alue(qn)
1 initialize Eqn(θk∗) = 1;
2 foreach k 6= k∗ do
3 use Prop. 17 to get Jqn(θk, θk∗);

4 compute V alue(qn) using Definition 3.10;

3.3.3 Experimental evaluation

We run experiments on a “contaminated” version of 7 standard benchmark (binary
classes) data sets that are described in Table 3.1. The next two paragraphs present the
details of the experiments and the results obtained in the two cases of interval-valued
features and set-valued labels.

52 Chapter 3. Racing Algorithms

Algorithm 6: Determining the undominated set
Input: data D = {(xn, Yn)}Nn=1, set Θ = {θ1, . . . , θS} of models
Output: the set of undominated modelM∗

1 foreach k, l ∈ {1, . . . , S} × {1, . . . , S}, k 6= l do
2 R(θk−l |D) = 0;
3 foreach data (xn, Yn) do
4 if (xn, Yn) is imprecise then
5 use Prop. 17 to get `k−l(Yn,xn) ;

6 else
7 compute `k−l(Yn,xn) = `k(Yn,xn)− `l(Yn,xn) using (3.34)

8 R(θk−l |D) = R(θk−l |D) + `k−l(Yn,xn);

9 if R(θk−l |D) > 0 then remove θk from {θ1, . . . , θS} ;

Name # instances # features
parkinsons 197 22

vertebral-column 310 6
ionosphere 351 34

climate-model 540 18
breast-cancer 569 30

blood-transfusion 784 4
banknote-authentication 1372 4

Table 3.1: Data set used in the experiments

Interval-valued features case

Given a data set, we randomly chose a training set D consisting of 10% of instances
and the rest (90%) as a test set T. For each training instance xn ∈ D, and each
dimension p = 1, ..., P , a biased coin is flipped in order to decide whether or not xpn
will be contaminated; the probability of contamination is ε (ε is fixed to 0.4 in all the
experiments). Note that the probability that an instance has at least one contaminated
feature is equal to 1 − 0.6P (the complement of having no features contaminated),
which is quite high: 0.87 when P = 4, our lowest number of features in any data set.
In case xpn is contaminated, a width ηpn will be generated from a uniform distribution.
Then, the generated interval valued data is Xp

n = [xpn+ηpn(Dp−xpn), xpn+ηpn(D
p−xpn)]

where Dp = minn(xpn) and Dp
= maxn(xpn).

Example 12. Assume that the initial precise observed value is x = 1, that the domain
is [D,D] = [0, 10], and that we have randomly picked η = 0.5. In this case, the
resulting interval-valued data is X = [0.5, 5.5].

The set of undominated models is generated as follows: we randomly choose 100
precise replacements from the interval-valued training data. From each replacement,
one linear SVM model is trained. The set of such 100 models is considered as the
initial set Θ of undominated models.

After each query, the efficiency of the querying scheme is assessed based on the
two following criteria:

- the proportion on the test set T = {(xt, yt)}Tt=1 of identical predictions between
the current best potential model θk∗ and a reference model θref . This similarity

3.3. Application to SVM 53

is computed as
|{(xt, yt)|θref (xt) = θk∗(xt)}|

T
.

This similarity is 1 if the two models make identical predictions on the test set
(hence have the same performances), and 0 if they systematically disagree. The
reference model is chosen to be the one in the initial undominated set that has
the best accuracy on the fully precise training set. It is thus the model towards
which any querying strategy, and the race in particular, should converge;

- the size of the undominated set.

To make comparisons about the convergence of the two criteria, two baseline
algorithms are also used to query interval-valued features:

- a random querying strategy where, each time, an interval feature to be queried
is chosen randomly;

- the most partial querying strategy i.e, each time, the feature with the largest
imprecision (i.e., the largest sampled value ηpn) is queried.

Because the training set is randomly chosen and contaminated, the results may
be affected by random components. Then, for each data set, we repeat the above
procedure 10 times and compute the average results.

Set-valued labels case

Experiments for the case of set-valued labels is performed in a similar way. Firstly,
we randomly chose a training set D consisting of 20% of instances and the rest (of
80%) as a test set T. Then, each label yn in the training set D will be contaminated
with probability ε (ε is fixed to 0.8 in all the experiments). Since the label is binary,
if a label is contaminated, it becomes completely missing.

To make comparisons, the two following baseline querying schemes are also used:

- a random querying strategy, where, each time, a set-valued label is chosen ran-
domly,

- and a query-by-committee (QBC) strategy in which each model is allowed to vote
on the labellings of query candidates. The most informative query is considered
to be the instance for which they most disagree. The disagreement measure
used is the vote entropy:

x∗VE = arg max
x
−

M∑
m=1

Vx(ym)

S
log

Vx(ym)

S

where Vx(ym) denotes the number of models predicting class ym for a given
instance x, and S = |Θ∗| denotes the number of models in the committee.

The experimental results for the case of interval-valued features and set-valued labels
are given in Figures 3.4-3.5 and 3.6-3.7, respectively.

54 Chapter 3. Racing Algorithms

0 30 60 90 120 150 180
0

33

66

99

of queries

U
nd

om
in
at
ed

si
ze

(a) parkinson

0 30 60 90 120 150 180
0.8

0.87

0.93

1

of queries

Si
m
ila

ri
ty

(b) parkinson

0 20 40 60 80
0

33

66

99

of queries

U
nd

om
in
at
ed

si
ze

(c) vertebral

0 20 40 60 80
0.8

0.87

0.93

1

of queries

Si
m
ila

ri
ty

(d) vertebral

0 15 30 45 60 75 90 105 120
0

33

66

99

of query

U
nd

om
in
at
ed

si
ze

(e) blood-transfusion

0 15 30 45 60 75 90 105 120
0.91

0.94

0.97

1

of query

Si
m
ila

ri
ty

(f) blood-transfusion

0 30 60 90 120 150 180 210
0

33

66

99

of query

U
nd

om
in
at
ed

si
ze

(g) banknote-authentication

0 30 60 90 120 150 180 210
0.97

0.98

0.99

1

of query

Si
m
ila

ri
ty

(h) banknote-authentication

0 90 180 270 360 450
0

33

66

99

of query

U
nd

om
in
at
ed

si
ze

(i) ionosphere

0 90 180 270 360 450
0.87

0.91

0.96

1

of query

Si
m
ila

ri
ty

(j) ionosphere

Racing Most partial Random

Figure 3.4: Experiments for interval-valued features data with pre-
ferred model

3.3. Application to SVM 55

0 80 160 240 320 400
0

33

66

99

of query

U
nd

om
in
at
ed

si
ze

(a) climate-model

0 80 160 240 320 400
0.98

0.99

0.99

1

of batches

Si
m
ila

ri
ty

(b) climate-model

0 80 160 240 320 400 480 560 640
0

33

66

99

of query

U
nd

om
in
at
ed

si
ze

(c) breast-cancer

0 80 160 240 320 400 480 560 640
0.91

0.94

0.97

1

of query

Si
m
ila

ri
ty

(d) breast-cancer

Racing Most partial Random

Figure 3.5: Experiments for interval-valued features data with pre-
ferred model

0 6 12 18 24 30 36
0

33

66

99

of queries

U
nd

om
in
at
ed

si
ze

(a) parkinson

0 6 12 18 24 30 36
0.75

0.83

0.91

1

of queries

Si
m
ila

ri
ty

(b) parkinson

0 14 28 42 56
0

33

66

99

of queries

U
nd

om
in
at
ed

si
ze

(c) vertebral

0 14 28 42 56
0.7

0.8

0.9

1

of queries

Si
m
ila

ri
ty

(d) vertebral

Racing QBC Random

Figure 3.6: Experiments for set-valued labels data with preferred
model

56 Chapter 3. Racing Algorithms

0 15 30 45 60
0

33

66

99

of query

U
nd

om
in
at
ed

si
ze

(a) ionosphere

0 15 30 45 60
0.7

0.8

0.9

1

of query

Si
m
ila

ri
ty

(b) ionosphere

0 10 20 30 40 50 60 70 80 90
0

33

66

99

of query

U
nd

om
in
at
ed

si
ze

(c) climate-model

0 10 20 30 40 50 60 70 80 90
0.8

0.87

0.93

1

of query

Si
m
ila

ri
ty

(d) climate-model

0 10 20 30 40 50 60 70 80 90 100
0

33

66

99

of query

U
nd

om
in
at
ed

si
ze

(e) breast-cancer

0 10 20 30 40 50 60 70 80 90 100
0.8

0.87

0.93

1

of query

Si
m
ila

ri
ty

(f) breast-cancer

0 15 30 45 60 75 90 105 120
0

33

66

99

of query

U
nd

om
in
at
ed

si
ze

(g) blood-transfusion

0 15 30 45 60 75 90 105 120
0.8

0.87

0.93

1

of query

Si
m
ila

ri
ty

(h) blood-transfusion

0 30 60 90 120 150 180 210
0

33

66

99

of query

U
nd

om
in
at
ed

si
ze

(i) banknote-authentication

0 30 60 90 120 150 180 210
0.97

0.98

0.99

1

of batches

Si
m
ila

ri
ty

(j) banknote-authentication

Racing QBC Random

Figure 3.7: Experiments for set-valued labels data with preferred
model

3.3. Application to SVM 57

In the case of set-valued labels, we can see that there are only slight differences
between the methods. This result was expected, since, in the case of binary classi-
fication, partial labels are completely missing labels. Querying partial labels is thus
equivalent to standard active learning methods like QBC. A lot of queries are needed
to significantly reduce the set of undominated models and to converge through the
best model. Also, the random strategy has performances that are often comparable
to the active learning ones. In contrast, the performances of our approach are much
better than the others in the case of interval-valued features. One can see that the
size of the set of undominated models is very quickly reduced and that our racing
algorithm converges faster than the other approaches to the winning model.

In order to provide some insights about the potential difficulties of adapting our
method to other models, the next section discuss briefly computational issues by
building upon the results obtained for SVM.

3.3.4 Discussion on computational issues

The reader may have noticed that the section devoted to SVM with interval-valued
features was quite long, and presented more complex methods than the one about set-
valued labels. Such an observation extends beyond SVM, and we try in this section
to give some reasons why we may expect the problem of interval-valued features to be
more complex than the problem of set-valued labels. As with the previous sections, we
will stick to the case of 0−1 loss functions. We will first provide some general remarks
about the implementation of our generic approach, and then will shortly discuss how
results obtained for the SVM case could be extended to monotone models in general.

General discussion

A first remark is that when we have a partial data (Xn, yn) with interval-valued
features, a query qpn will not make the data precise unless only one feature is partial,
but will transform Xn into Xqpn

n = ×p′ 6=pX
p
′

n × xpn. In contrast, querying a partial
data (xn, Yn) with set-valued label Yn guarantees that the queried data becomes the
precise data (xn, y

qn
n), hence guaranteeing that the loss with respect to any model θl

will also become precise.
Let us now consider the problem of computing bounds of loss functions and po-

tential effect of queries, with a focus on pairs of models and on the case where partial
data will induce imprecision in the loss functions of both models, which constitute
the most difficult aspects of our approach (our conclusions also apply to other cal-
culations, yet these are typically easier to solve for both interval-valued features and
set-valued labels).

Let us first consider the computations of `k−l: in the case of set-valued label Yn,
we do have

`k−l(Yn,xn) =

{
0 if θk(xn) = θl(xn) ∨ {θk(xn), θl(xn)} ∩ Yn = ∅
−1 else

(3.35)

as the first case describes the only situations where we cannot find a label yn ∈ Yn
such that θk(xn) = yn and θl(xn) 6= yn. These conditions are rather easy to check
in practice. In contrast, when one has interval-valued features, or more generally

58 Chapter 3. Racing Algorithms

set-valued features Xn with a precise label yn, we have that

`k−l(yn,Xn) =


1 if ∀xn ∈ Xn, θk(xn) 6= yn ∧ θl(xn) = yn

−1 if ∃xn ∈ Xn s.t. θk(xn) = yn ∧ θl(xn) 6= yn

0 else
(3.36)

with the last case corresponding to the situation where we can only find1 xn ∈ Xn

such that either θk(xn) = θl(xn) = yn, or θk(xn) 6= yn and θl(xn) 6= yn. In contrast
with Equation (3.35) whose conditions are easily checked provided θk(xn) and θl(xn)
are easy to compute (this is the greatest majority of model-based learning methods),
identifying which case of Equation (3.36) does apply is more complex and highly
depends on the properties of the considered learning method.

Similar conclusions can be drawn to compute the effect Jqpn(θk, θl) of a possible
query. In the case of a set-valued label Yn, we can directly extend the observation
made in Proposition 17 for SVM to have that

Jqn(θk, θl) = 1 iff `k−l(Yn,xn) = −1

where `k−l(Yn,xn) = −1 is given by the general and usually easy to estimate Equa-
tion (3.35). In contrast, we cannot extend Proposition 15 to arbitrary models when
we have interval-valued features. Of course we still have that Jqpn(θk, θl) = 0 when
`k−l(yn,Xn) = 1, as it cannot be increased by any query. Yet, in the other cases, one
must check that the conditions to have an increase of `k−l(yn,Xn) are met at least for
one value xpn ∈ Xp

n, and we do not see how to provide a generic, efficient algorithmic
procedure to check them without considering the specificities of the considered model.

The case of monotone models

In the case of the SVM methods, Proposition 14 uses the fact that linear functions are
monotonic in every dimension X p. Note that our analysis could be extended easily
to all monotonic models, such as logistic regression or models based on Choquet
Integral [86] and more generally on non-additive and fuzzy integrals [37].

As an illustration of this fact, let us consider the case of the logistic regression
model. Keeping X = RP and the output space Y = {−1, 1} encoding the two possible
classes, the logistic regression corresponding to a model θl can be read2 as

θl(xn) = ln
Pl(1 |xn)

Pl(−1 |xn)
=

P∑
p=0

wpl x
p
n,

with Pl(. |xn) the posterior probabilities induced by model θl, and vector wl its pa-
rameters with the convention x0

n = 1. This model obviously shares with the SVM that
it is monotone in each of its parameters, and in the case of the 0− 1 loss function, we
also have

`l(yn,xn) =

{
0 if yn · θl(xn) ≥ 0

1 if yn · θl(xn) < 0.
. (3.37)

Indeed, if θl(xn) > 0, we have Pl(1 |xn) ≥ Pl(−1 |xn), hence predicting ŷn = 1. If
we consider now that the features xn are imprecisely known (as said in the previous

1In addition to those possible xn for which θk(xn) 6= yn and θl(xn) = yn.
2The adopted formulation allows us to better shows the similarities with the SVM case.

3.4. Application to decision trees 59

section, the major computational difficulties will mostly happen in the case of set-
valued features), and that Xp

n = [apn, b
p
n] (note that we still have X0

n = [1, 1]), we can
again easily determine when (Xn, yn) will be imprecise (1) w.r.t. a model θl and (2)
w.r.t. both models θk and θl. Clearly, for the first case, we will have

[θl(Xn), θl(Xn)] =

∑
wpl ≥0

wpl a
p
n +

∑
wpl <0

wpl b
p
n,
∑
wpl ≥0

wpl b
p
n +

∑
wpl <0

wpl a
p
n

 ,
and (Xn, yn) will be imprecise w.r.t. θl if and only if it contains the value 0 (arguments
are similar to the one of the SVM case). Let us now consider the case of not one but
two models θk and θl, (Xn, yn) being imprecise w.r.t. both of them (in the other
situations, the same remarks as the one done for the SVM case apply). Without loss
of generality, we can assume that yn = 1, and we then have that

`k−l(yn,Xn) =


1 if ∀xn ∈ Xn, θk(xn) < 0 ∧ θ`(xn) > 0

−1 if ∃xn ∈ Xn, θk(xn) > 0 ∧ θ`(xn) < 0

0 else .

It is clear that the first case will never happen, as (Xn, yn) is imprecise w.r.t. θk (so
there is an xn for which θk is positive). To check the second condition, we have to
know whether we can find xn with θl(xn) < 0, under the constraint that θk(xn) > 0.
This comes down to solve the following linear optimisation problem

inf
xn∈Xn
θk(xn)>0

P∑
p=0

wpl x
p
n

and to check whether it is negative, in which case the lower bound is −1, and 0
otherwise. The methodology is here slightly different than in the SVM case, but
still takes advantage of the monotonicity and linearity of the model. Completely
implementing our proposal in the case of logistic regression would of course require
some additional work (left here to the interested reader), but seems quite doable in
the light of the above remarks.

3.4 Application to decision trees

We are going to implement our generic racing approach to the particular case of deci-
sion tree classifiers [73, 78]. Decision trees are well-known to be sensitive to changes
in the data, hence the importance of querying meaningful data for such classifiers.
Similar to the case of binary SVM, we will focus on the settings when either the labels
or the features are imprecise.

3.4.1 Set-valued labels

In this section, we consider that the labels of some instances are partially given, but
that all the features are precise. A query will simply be denoted by qn meaning that
the label of instance xn is queried. In the classical setting of decision trees, the input
space is X = X 1 × . . . × XP ⊆ RP (where R is the real line) and the output space
is Y = {y1, . . . , yM}, where ym, m = 1, . . . ,M , encode all the possible classes. A
decision tree θl is formally a rooted tree structure consisting of terminal nodes and
non-terminal nodes [73, 78]:

60 Chapter 3. Racing Algorithms

X2

t1 = ([1, 10]× [10, 15), a)

X 2
< 15

X1

X2

t3 = ([1, 4]× (17, 20], b)

X 2
> 17

t4 = ([1, 4]× [15, 17], c)

X
2 ≤ 17X 1≤ 4

t2 = ((4, 10]× [15, 20], b)

X
1 > 4

X
2 ≥ 15

Figure 3.8: Decision tree illustration θl

- each non-terminal node of the tree is associated to an attribute X p (p ∈ {1, . . . , P}),
and to each branch issued from this node is associated a condition on this at-
tribute that determines which data of the sample D go into that branch.

- terminal nodes are called leaves. Each leaf is associated to a predicted class
yh ∈ Y and a partition element Ah = A1

h × . . . × APh where Aph ⊆ X
p. In the

rest of this paper, we will adopt, for each leaf th, the following notation

th = (Ah, yh) (3.38)

as such information is enough for the purpose of making prediction for new
instances: we have θl(xn) = yh for any instance xn ∈ Ah.

The next small example illustrates those notations.

Example 13. Let us consider a given tree trained from data set D ∈ XP with P = 2
attributes, and M = 3 classes. Input and output spaces are described as follows:

X 1 = [1, 10],X 2 = [10, 20],Y = {a, b, c}.

Figure 3.8 illustrates a possible decision tree θl for the above setting.
Assume we have new instances x1 = (2, 17) and x2 = (6, 11). Then x1 will reach

leaf t4 and be assigned to class θl(x1) = c while x2 will reach leaf t1 with an assigned
class θl(x2) = a.

We will focus on the classical 0 − 1 loss function defined as follows: for a given
instance (xn, yn),

`l(yn,xn) =

{
0 if yn = θl(xn)

1 otherwise.
(3.39)

In case of partially labelled data, the label is a set Yn ⊆ Y instead of a single label.
Then the loss in (3.39) becomes an interval

[
`l(Yn,xn), `l(Yn,xn)

]
where

`l(Yn,xn) = min
yn∈Yn

`l(yn,xn), (3.40)

`l(Yn,xn) = max
yn∈Yn

`l(yn,xn). (3.41)

Example 14. Let us now continue with the data set and the decision tree from Ex-
ample 13. Assume that instances x1 and x2 are partially labelled with Y1 = {a, c} and

3.4. Application to decision trees 61

Y2 = {b, c}, respectively. Then using (3.40) and (3.41), we can easily get[
`l(Y1,x1), `l(Y1,x1)

]
= [0, 1],[

`l(Y2,x2), `l(Y2,x2)
]

= [1, 1].

Let us note that the detail computations in this case is quite similar to the case
of SVM, as highlighted in the Section 3.3.4. We first study under which conditions a
given partial label introduces imprecision in the empirical risks, before detailing the
computation of querying value scores.

Instances introducing imprecision in empirical risk

For a given instance (xn, Yn) and a decision tree θl, the lower and upper losses in
(3.40) and (3.41) can be determined as follows:

`l(Yn,xn) =

{
0 if θl(xn) ∈ Yn,
1 otherwise,

(3.42)

`l(Yn,xn) =

{
0 if {θl(xn)} = Yn,

1 otherwise.
(3.43)

Given a decision tree θl, we will say that an instance is imprecise w.r.t. θl if

`l(Yn,xn) 6= `l(Yn,xn). (3.44)

The next proposition characterizes simple conditions under which an instance is
imprecise w.r.t. θl.

Proposition 18. Given a model θl and instance (xn, Yn), then (xn, Yn) is imprecise
w.r.t. θl if and only if

θl(xn) ∈ Yn and |Yn| > 1. (3.45)

Proof. Let us first note that by definitions we always have

`l(Yn,xn) ≤ `l(Yn,xn).

Then combining with condition (3.44) the lower and upper losses of an imprecise
instance can be determined explicitly by

`l(Yn,xn) = 0 and `l(Yn,xn) = 1. (3.46)

Conditions in (3.39) guarantee that `l(Yn,xn) = 0 is equivalent to condition that
θl(xn) ∈ Yn. Furthermore, condition |Yn| > 1 ensures that `l(Yn,xn) = 1 (otherwise,
{θl(xn)} = Yn, and both lower and upper losses will be 0).

Proposition 18 simply translates the fact that imprecision can happen only if a
partial label could contain the prediction of θl. Using Proposition 18, we can conclude
that in Example 14, instance x1 is imprecise w.r.t. model θl while x2 is precise, even
if it has a partial label.

We are now going to investigate the practical computation of the empirical risk
bounds of a single model, the pairwise risk bounds in a given set Θ of models and the
effect of querying partial labels on those risks. It is easy to see that the empirical risk

62 Chapter 3. Racing Algorithms

bound of a given model can be changed only by querying imprecise instances and the
pairwise risk bounds can be changed if the chosen instance is imprecise w.r.t. at least
one model. We will then focus on those cases in the next Sections.

Empirical risk bounds and single effect

Equation (3.4) (resp. (3.5)) implies that the computation of R(θl |D) (resp. R(θl |D))
can be done by computing `l(Yn,xn) (resp. `l(Yn,xn)) for n = 1, . . . , N and then by
summing the obtained values. Therefore, the computation of the lower and upper
risks of a given model can be carried out easily after determining the lower and upper
losses of each instance.

Before going to present conditions under which a query qn have an effect on mod-
ifying the interval [R(θl |D), R(θl |D)] (or in other words Eqn(θl) = 1), let us first
note that a query qn is effective if and only if [`l(Yn,xn), `l(Yn,xn)] can be modified.
Then, as pointed out in the next proposition, such effect (i.e Eqn(θl) = 1) will simply
hold for all imprecise instances.

Proposition 19. Given a model θl and an instance (xn, Yn), then Eqn(θl) = 1 if and
only if (xn, Yn) is imprecise w.r.t. θl.

Proof. Firstly, it is easy to see that querying any instance that is precise w.r.t. θl will
not help to modify [`l(Yn,xn), `(Yn, θl(xn)]. Furthermore, (3.46) implies that qn have
an effect by either increasing `l(Yn,xn) or decreasing `l(Yn,xn). We will now show
that at least one of such losses can be changed after querying any imprecise instance
(xn, Yn).

Assuming that yqnn is the label we get after query qn, then either yqnn = θl(xn)
or yqnn 6= θl(xn). In the first case, both of lower and upper losses will be 0 after
performing qn while both lower and upper losses will be 1 in the latter case. In other
words, Eqn(θl) = 1 if (xn, Yn) is imprecise w.r.t. θl.

Computation of pairwise risk bounds and the effect Jqn(θk, θl) will be investigated
in the next Section. Again, if an instance is precise w.r.t. both models, then querying
it will not affect the pairwise risk bounds. Therefore, we will focus our interest on
instances that are imprecise with respect to at least one model.

Pairwise risk bounds and effect

Let us now focus on how to compute, for a pair of models θk and θl, the corresponding
pairwise risk R(θk−l |D) and whether a query qn can increase this risk. The computa-
tion will be treated in two cases: when an instance is imprecise w.r.t. only one model
and when an instance is imprecise w.r.t. both.

First note that, similarly to the empirical risk bounds of a unique model, the
computation of R(θk−l |D) can be carried out by simply summing up the values
`k−l(Yn,xn) for all (xn, Yn) with

`k−l(Yn,xn) = inf
yn∈Yn

[
`k(yn,xn)− `l(yn,xn)

]
.

Furthermore, a query qn can increase R(θk−l |D) if and only if it can increase the
value `k−l(Yn,xn). This is why, in this section, we will focus on computing `k−l(Yn,xn)
and its possible change after a query qn.

Case 1: Imprecision with respect to one model

3.4. Application to decision trees 63

We are now going to present the computation of `k−l(Yn,xn) and the conditions under
which Jqn(θk, θl) = 1.

Proposition 20. Given (xn, Yn) and two models θk and θl s.t. xn is imprecise w.r.t.
one and only one model, then we have

`k−l(Yn,xn) = `k(Yn,xn)− 1 if xn imprecise w.r.t. θl, (3.47)
`k−l(Yn,xn) = 0− `l(Yn,xn) if xn imprecise w.r.t. θk. (3.48)

Proof. Since instance xn is imprecise w.r.t. only one model, the imprecision is only
associated to such a model, and we can select the worst case: `l(yn,xn) = 1 for
Equation (3.47) and `k(yn,xn) = 0 for Equation (3.48).

Now we are going to study under which conditions a query qn can increaseR(θk, θl).
As the given instance is imprecise w.r.t. only one model, it can only increase the
pairwise risk by either increasing `k(Yn,xn) or decreasing `l(Yn,xn). As shown in
the next Proposition, this can always happen, meaning that we systematically have
Jqn(θk, θl) = 1 in this case.

Proposition 21. Given (xn, Yn) and two models θk and θl s.t xn is imprecise w.r.t.
one and only one model, then query qn can always increase `k−l, or in other words
Jqn(θk, θl) = 1.

Proof. We investigate the case where (xn, Yn) is imprecise w.r.t. θk, the case for θl
can be treated similarly.

Assuming that (xn, Yn) is imprecise w.r.t. θk, then Proposition 19 ensures that
there always exists a label yn ∈ Yn such that the lower bound `k(Yn,xn) will be
increased to 1 after query qn.

Similar claim about decreasing the upper bound `l(Yn,xn) can be carried when
(xn, Yn) is imprecise w.r.t. θl.

Case 2: Imprecision with respect to both models

For the cases where xn is imprecise w.r.t. both models θk and θl, the computation
of `k−l(Yn,xn) and the conditions under which Jqn(θk, θl) = 1 will be investigated
separately in two circumstances: when θk(xn) = θl(xn) and when θk(xn) 6= θl(xn).

Proposition 22. Given (xn, Yn) and two models θk and θl s.t xn is imprecise w.r.t.
both models, then the following results hold

- if θk(xn) = θl(xn), then

`k−l(Yn,xn) = 0 and Jqn(θk, θl) = 0.

- if θk(xn) 6= θl(xn), then

`k−l(Yn,xn) = −1 and Jqn(θk, θl) = 1.

Proof. - When θk(xn) = θl(xn), then `(yn, θk(xn)) = `(yn, θl(xn)) for any value
of yn ∈ Yn. Therefore, we always have

`k−l(Yn,xn) = `k−l(Yn,xn) = `k−l(Yn,xn) = 0.

Furthermore, for any label y ∈ Yn to be given after performing query qn, the
lower difference (i.e, `k−l(Yn,xn)) will be 0. Or in other words, if θk(xn) =
θl(xn), then we can simply conclude that `k−l(Yn,xn) = 0 and Jqn(θk, θl) = 0.

64 Chapter 3. Racing Algorithms

- In case θk(xn) 6= θl(xn), as pointed out in Proposition 18, xn being imprecise
w.r.t. both models implies that

θk(xn) ∈ Yn and θl(xn) ∈ Yn. (3.49)

Then there always exists a label yn in Yn (i.e yn = θk(xn)) s.t. model θk
returns a true prediction while θl returns a wrong one. In other words, we have
`k−l(Yn,xn) = −1. The effect Jqn(θk, θl) = 1 follows simply by assuming that
label y = θl(xn) will be given after querying xn which implies that `k−l(Yn,xn)
will be increased into 1.

The next section provides practical algorithms to perform a single querying step.

Algorithms

Algorithm 7 summarizes the complete procedure to perform an iteration of our query-
ing strategy. Sub-routines are described in other algorithms. Algorithm 8 computes
the individual risk bounds of every model, according to the corresponding values of
`l(Yn,xn), `l(Yn,xn). Algorithm 9 simply summarises the model selection procedure,
that will also be used in the case of interval-valued features.

Finally, Algorithm 10 summarises the main procedure that determines the value of
the different possible queries, allowing us to pick the best one among all the possible
ones. Let us now analyse the complexity of this procedure. Lines 1-2 of Algorithm 7 is
in O(S ×N), as Algorithm 8 is called S times and is in O(N). Line 3 of Algorithm 7
is in O(S). Finally, since Algorithm 10 is in O(S), lines 4-5 of Algorithm 10 are in
O(S ×N). So the overall complexity of Algorithm 10 is in O(S ×N), meaning that
the approach is computationally affordable.

Algorithm 7: A single step to query set-valued data.
Input: Training data set D = {(xn, Yn)}Nn=1,

label set Y = {y1, . . . , yM}, set of undominated models Θ∗.
Output: The optimal query qn∗

1 foreach θk ∈ Y do
2 Compute empirical risk (R(θk |D), R(θk)) bounds using Alg. 8;

3 Determine the best model mk∗ and the undominated model set Θ using Alg. 9;
4 foreach n = 1, . . . , N do
5 Determine the query effect value V alue(qn) using Alg. 10;

6 Determine qn∗ = arg max
n

V alue(qn);

3.4.2 Interval-valued features

We now deal with the case of interval-valued features, which is much more involved
than the case of partial labels, yet still manageable from a computational point of
view. Such additional difficulties may explain why there are very few active learning
methods dealing with missing features, and none (to our knowledge) dealing with
partially known features, at least to our knowledge.

3.4. Application to decision trees 65

Algorithm 8: Compute the empirical risk bounds (R(θl |D), R(θl |D)).
Input: Training data set D = {(xn, Yn)}Nn=1,

label set Y = {y1, . . . , yM}, model θl.
Output: Empirical risk bounds (R(θl |D), R(θl |D))

1 R(θl |D) = 0, R(θl |D) = 0;
2 foreach n = 1, . . . , N do
3 if |Yn| > 1 then
4 if θl(xn) /∈ Yn then R(θl |D) = R(θl |D) + 1;
5 R(θl |D) = R(θl |D) + 1

6 else if {θl(xn)} 6= Yn then R(θl |D) = R(θl |D) + 1,
R(θl |D) = R(θl |D) + 1;

Algorithm 9: Determine the best model θk∗ and the undominated model set
Θ∗.
Input: Model set Θ, empirical risk bounds {(R(θk |D), R(θk |D))|∀θk ∈ Θ}
Output: The best model θk∗ and the undominated set Θ∗

1 θk∗ = arg minθk∈ΘR(θk |D);
2 Rmin = minθk∈ΘR(θk |D) ;
3 foreach θk ∈ Θ do
4 if R(θk |D) > Rmin then Remove θk from Θ;

Algorithm 10: Determine the effect value of a query V alue(qn).
Input: Training instance (xn, Yn), undominated model set Θ∗.
Output: The querying effect value V alue(qn)

1 Initialize Eqn(θk∗) = 0, Jqn = 0;
2 if |Yn| > 1 and θk∗(xn) ∈ Yn then
3 Eqn(θk∗) = 1;
4 foreach θk ∈ Θ and k 6= k∗ do
5 if θk(xn) ∈ Yn and θk(xn) 6= θk∗(xn) then Jqn = Jqn + 1;
6 else if θk(xn) 6∈ Yn then Jqn = Jqn + 1;

7 else if |Yn| > 1 then
8 foreach θk ∈ Θ and k 6= k∗ do
9 if θk(xn) ∈ Yn then Jqn = Jqn + 1;

10 V alue(qn) = Eqn(θk∗) + Jqn ;

66 Chapter 3. Racing Algorithms

Instances introducing imprecision in empirical risk

Before going further, let us remind that, for a given tree θl, each terminal node (which
is sufficient in later analysis) is associated with a partition element

Ah = A1
h × . . . ,×APh , (3.50)

where Aph can be a closed, open or semi-closed interval in our case. However, for the
sake of practical implementation and exposure, we will from now on assume that Aph
is a closed interval.

Since we work with interval-valued feature data, for each instance (Xn, yn), its
feature Xn can be represented as a hyper-cube (similar to terminal node in (3.50))
denoted by

Xn = X1
n × . . .×XP

n . (3.51)

Then, the intersection between partition elements and/or partial instances is nothing
else but the one of two hyper-cubes. Given two such hyper-cubes U = U1 × . . .×UP
and V = V 1 × . . .× V P , their corresponding intersection, denoted by U ∩ V is

U ∩ V = ×Pp=1U
p ∩ V p. (3.52)

(3.52) provides a practical way to check whether the intersection of two cubic forms
is non-empty. More precisely, we have that U ∩V 6= ∅ iff

Up ∩ V p 6= ∅, ∀p = 1 . . . , P. (3.53)

As for the case of partial labels, an instance (Xn, yn) is said to be imprecise w.r.t.
a decision tree θl if

∃xn,x
′
n ∈ Xn s.t `l(y,xn) 6= `l(y,x

′
n). (3.54)

Furthermore, as an instance can intersect several partition elements which are possibly
associated to different labels, then (3.54) is equivalent to the following relation

∃Ah,Ah′ s.t Xn ∩Ah 6= ∅,Xn ∩Ah′ 6= ∅ and yh = yn and yh′ 6= yn. (3.55)

Note that (3.55) can be easily determined using (3.53). The following Example gives
illustrations of an imprecise instance w.r.t. a given decision tree.

Example 15. Figure 3.9 gives an example of a tree θl and two instances, (X1, 0),
(X2, 1).

It is easy to see that (X1, 0) is a precise instance since it only intersects with a
partition element associated to label 0. However X2 is imprecise since (3.55) holds.
More precisely, (X2, 1) intersects with A5 and A6 whose associated labels are different.

Empirical risk bounds and single effect

We are now going to investigate how risk bounds [R(θl), R(θl)] can be computed effi-
ciently from data {(X1, y1)}Nn=1 by computing extreme bounds `l(yn,Xn), `l(yn,Xn),
and how the potential effect of a query qpn (qpn corresponding to ask the true value
within Xp

n) on those bounds can be estimated.
Let us first study how bounds on loss functions can be estimated. Similarly to

the case of set-valued labels, an instance Xn will get the imprecise empirical risk

3.4. Application to decision trees 67

X 2

X 1

(A2, 1)

(A3, 1)

(A6, 1)

(A4, 1)

(A5, 0)

(A1, 0)

(X1, 0)

(X2, 1)

Figure 3.9: Example of imprecise instance

bounds
[
`l(yn,Xn), `l(yn,Xn)

]
= [0, 1] iff it satisfies condition (3.55). Otherwise, the

corresponding loss is precise and such an instance can be discarded from the querying
process. For example, in Figure 3.9, we can see that

[
`l(y1,X1), `l(y1,X1)

]
= [0, 0]

while
[
`l(y2,X2), `l(y2,X2)

]
= [0, 1]. Note that a training instance (Xn, yn) is precise

if and only if partition elements that intersect with it either are all of label yn or all
different from yn. To determine whether such a condition holds, let us firstly introduce
the following information vectors

K = (k1, . . . , kH) with kh =

{
1 if Xn ∩Ah 6= ∅,
0 otherwise,

(3.56)

Byn = (b1yn , . . . , b
H
yn) with bhyn =

{
0 if yh = yn,

1 otherwise,
(3.57)

Cyn = (c1
yn , . . . , c

H
yn) with chyn =

{
1 if yh = yn,

0 otherwise,
(3.58)

with H the number of terminal nodes of the decision tree θl. Note that K can easily
be built using (3.53), and that B,C have to be built only once. A given training
instance Xn is imprecise w.r.t. θl if and only if (KB>yn)(KC>yn) 6= 0, where ab> is the
dot product of two vectors a and b. Before going further, let us note that we can use
information vectors to deduce that `l(yn,Xn) has the precise value 0 and 1, as this
happens when KB>yn = 0 and KC>yn = 0, respectively.

One can see that performing a query qpn can only change K. Denoting by Kqpn
the

vector resulting from qpn, the single effect Eqpn(θl) = 1 if and only if (KB>yn)(KC>yn) 6= 0

and ∃xpn ∈ Xp
n s.t (Kqpn

B>yn)(Kqpn
C>yn) = 0. Verifying whether such a situation happens

can be done by checking the two following conditions

∃xpn ∈ Xp
n s.t (Kqpn

B>yn) = 0 or ∃xpn ∈ Xp
n s.t (Kqpn

C>yn) = 0 (3.59)

We will present detailed developments and computations for the first condition
and then present the result for the second one (which can be developed in a similar
manner). The definition of K ensures that only elements of value 1 can change to
zero after a query, since reducing Xp

n can only lead to the fact that a non-empty
intersection with Ah becomes empty. Furthermore, (3.53) implies that if kh = 1 then
for all dimensions p = 1, . . . , P , we have Xp

n ∩ Aph 6= ∅. Such an observation ensures
that the results after performing qpn, kh = 0 if and only if ∃xpn ∈ Xp

n s.t xpn ∩ Aph = ∅,
that is if the intersection with Ah on dimension p can become empty after querying

68 Chapter 3. Racing Algorithms

Xp
n. It then implies that the condition ∃xpn ∈ Xp

n s.t (Kqpn
B>yn) = 0 is equivalent to

the following condition

∃xpn ∈ Xp
n s.t xpn ∩A

p
h = ∅, ∀h where khbhyn = 1, (3.60)

or, in other words, there is a value xpn ∈ Xp
n s.t xpn does not belong to any of Aph for

which the condition khbhyn = 1 holds, that is for this value the resulting hyper-cube
intersects with no leaves having yn as prediction. Such a condition comes down to
check whether the following assertion is true:

Xp
n \
(
∪khbhyn=1 A

p
h

)
6= ∅. (3.61)

Similarly, to determine whether ∃xpn ∈ Xp
n s.t (Kqpn

C>yn) = 0, we can simply investi-
gate whether

∃xpn ∈ Xp
n s.t xpn ∩A

p
h = ∅, ∀h when khchyn = 1, (3.62)

which can be done by checking the condition

Xp
n \
(
∪khchyn=1 A

p
h

)
6= ∅. (3.63)

The general problem we have to solve is to check whether an interval Xp
n =

[
apn, b

p
n

]
contains a value that is outside the union of some collection of intervals

[
di, d

i] (here,
the intervals Aph satisfying the conditions in (3.61) and (3.63)). Once we notice this,
we can rewrite the computational problem in the following form[

apn, b
p
n

]
\ ∪Ii=1

[
di, d

i] 6= ∅, when ∀i = 1, . . . , I,
[
apn, b

p
n

]
∩
[
di, d

i] 6= ∅. (3.64)

The intuitive idea is that (3.64) is not satisfied if and only if ∪Ii=1

[
di, d

i] is a closed
interval including

[
apn, b

p
n

]
. Then to check whether (3.64) is satisfied, we just have to

firstly check whether ∪Ii=1

[
di, d

i] is a closed interval, and if it is, whether it includes[
apn, b

p
n

]
. To check that ∪Ii=1

[
di, d

i] is a closed interval comes down to check whether
there is a gap in the union of intervals. Let {d(1), . . . , d(I)} be the ordered list of lower
bounds, or starts of intervals. A gap happens if, when increasing values from apn to bpn,
all intervals that have been opened are closed before another one starts (as illustrated
in Figure 3.10). In formal terms, there exists an index j such that∣∣{di : d

i
< d(j)}

∣∣ = j − 1,

which expresses the fact that before the jth interval [d(j), d
(j)

] starts, the j−1 previous
ones are closed, hence their union is not a closed interval. Provided ∪Ii=1

[
di, d

i] is a
closed interval, then checking whether it includes

[
apn, b

p
n

]
can simply be done by

checking that
d(1) ≤ apn ≤ bpn ≤ d

(I)
.

For a given interval
[
apn, b

p
n

]
and a set of interval

{[
di, d

i]|i = 1, . . . , I
}
, then

whether there is a value within
[
apn, b

p
n

]
that is not included in ∪i

[
di, d

i] (i.e., whether
condition (3.64) is satisfied) can be checked using Algorithm 11.

Let us now illustrate how to practically determine the single effect using a simple
example.

Example 16. Consider the tree θl and two instances X1, X2 illustrated in Figure

3.4. Application to decision trees 69

d(1)
d

(1)

d(j)
d

(j)

d(j+1)max{d(1)
, . . . , d

(j)}

gap

Figure 3.10: Case where the union of intervals is not an interval

Algorithm 11: Checking whether the condition (3.64) is satisfied

Input:
[
apn, b

p
n

]
, sets

{[
di, d

i]|i = 1, . . . , I
}
s.t, for ∀i,

[
apn, b

p
n

]
∩
[
di, d

i] 6= ∅
Output: Return In = 1 if (3.64) is satisfied and 0 otherwise

1 Order {d1, . . . , dI} into {d(1), . . . , d(I)} ;
2 foreach i = 1, . . . , I do
3 if |{dk : d

k
< d(i)}| = i− 1, then

4 Return In = 1 and Stop the Algorithm

5 if mini d
i > apn then

6 Return In = 1 and Stop the Algorithm

7 else if bpn > maxi d
i then

8 Return In = 1 and Stop the Algorithm

9 Return In = 0;

3.9. Instance X1 is precise w.r.t. the model θl, hence querying its feature is useless
for this model. We then focus on determining the effect of querying the features of X2.

Using (3.56)-(3.58), the information vectors associated to X2 are

K = (1, 1, 1, 1, 1, 1) and By2 = (1, 0, 0, 0, 1, 0) and Cy2 = (0, 1, 1, 1, 0, 1).

Let us now investigate whether X2 can become precise (w.r.t. the model mk) by query-
ing its feature X1

2 . We have that

∪khbhyn=1A
1
h = A1

1 ∪A1
5

as leaves A1 and A5 are overlapping with X2 and predict a different class from its
true one. We can see on the picture that A1

1 ∪ A1
5 is a closed interval that does not

includes X1
2 . Then, for any value x1

2 belonging to the interval (x1
2, x

1
2] as illustrated in

the Figure 3.11, we have that Kqpn
B>y2 = 0. In other words, we have that instance X2

can become a precise instance after querying its feature X1
2 .

Similarly, for the case of querying X2
2 , we have that

∪khbhyn=1A
2
h = A2

1 ∪A2
5.

Since A2
1 ∪A2

5 is not a closed interval, then, for any value x2
2 belonging to the interval

(x2
2, x

2
2) (illustrated in the Figure 3.11), we have that Kqpn

B>y2 = 0.
Finally, we conclude that instance X2 can become a precise instance after querying

either X1
2 or X2

2 .

70 Chapter 3. Racing Algorithms

X 2

X 1

(A2, 1)

(A3, 1)

(A6, 1)

(A4, 1)

(A5, 0)

(A1, 0)

(X2, 1) x12
x12

x22
x22

Figure 3.11: Example of determining the single effect

Pairwise risk bounds and effect

This section focuses on how to compute, for a pair of models θk and θl, the corre-
sponding pairwise risk bounds `k−l(yn,Xn) for all instance Xn and whether a query
qpn can increase this risk. In a way similar to the case of set-valued labels (Section
3.4.1), computations will be treated in two cases: when the instance is imprecise w.r.t.
only one model; and when it is imprecise for both.

Case 1: Imprecision with respect to one model

In case an instance Xn is imprecise w.r.t. one model (either θk or θl), the pairwise
risk bound `k−l(yn,Xn) can be determined in a way similar to the case of set-valued
labels (Proposition 20). Note that this bound is, in the context of imprecise features,
defined as:

`k−l(yn,Xn) = inf
xn∈Xn

[
`k(yn,xn)− `l(yn,xn)

]
.

Proposition 23. Given (Xn, yn), and two models θk and θl s.t Xn is imprecise w.r.t.
one and only one model, we have

`k−l(yn,Xn) = `k(yn,Xn)− 1 if Xn imprecise w.r.t. θl (3.65)
`k−l(yn,Xn) = −`l(yn,Xn) if Xn imprecise w.r.t. θk. (3.66)

Proof. Similar to proof of Proposition 20.

Then a query qpn will have an effect Jqpn(θk, θl) = 1 if either it increases `k(yn,Xn)

or decreases `l(yn,Xn). The detailed arguments can be found in the next proposition.

Proposition 24. Given (Xn, yn) and two models θk and θl s.t. Xn is imprecise
w.r.t. one and only one model, then Jqpn(θk, θl) = 1 if and only if one of the following
conditions holds

- if Xn is imprecise w.r.t. model θk, then Jqpn(θk, θl) = 1 if and only if Equation
(3.63) holds for the model mk.

- if Xn is imprecise w.r.t. model θl, then Jqpn(θk, θl) = 1 if and only if Equation
(3.61) holds for the model θl.

Proof. Let us start with the case when Xn is imprecise w.r.t. model θk. The condition
that Equation (3.63) holds for the model θk simply implies that after performing a
query qpn, the loss `k(yn,Xn) becomes precisely 1. Hence it is clear that the pairwise
risk bound is increased.

3.4. Application to decision trees 71

Similarly, when Xn is imprecise w.r.t. model θl, that Equation (3.61) holds implies
that after performing a query qpn, the loss `l(yn,Xn) is precisely 0 which results in
increasing `k−l(yn,Xn).

Case 2: Imprecision with respect to both models

Note that when an instance Xn is imprecise with respect to both models θk and θl,
the pairwise risk bounds `k−l(yn,Xn) can get values in {−1, 0, 1}. Let us denote by
yθlh the label associated to the partition Aθl

h of a tree θl, then the relation between Xn

and leaves of θk and θl can be encoded in matrix form as follows

Wk,l =

(
wk,li,j

)
i=1,...,Hk,j=1,...,Hl

(3.67)

s.t

wk,li,j =


2 if Xn ∩Aθk

i ∩Aθl
j = ∅,

1 if Xn ∩Aθk
i ∩Aθl

j 6= ∅, y
θk
i 6= yn, y

θl
j = yn,

0 if Xn ∩Aθk
i ∩Aθl

j 6= ∅, y
θk
i = yθlj ,

−1 if Xn ∩Aθk
i ∩Aθl

j 6= ∅, y
θk
i = yn, y

θl
j 6= yn.

(3.68)

It is easy to see that the matrix Wk,l covers all possible values of `k−l(yn,Xn), with 2
being an arbitrary value to denote that Xn prediction does not depend on Aθk

i ∩A
θl
j .

The pairwise lower risk bound is then simply the minimum value of elements in matrix
Wk,l i.e.,

`k−l(yn,Xn) = min
i,j

wk,li,j . (3.69)

Before going to determine whether a query qpn can increase the pairwise risk bound
`k−l(yn,Xn), note that whether Xn ∩Aθk

i ∩Aθl
j = ∅ can be easily determined as a

consequence of Equation (3.52), as we have

Xn ∩Aθk
i ∩Aθl

j = ×Pp=1X
p
n ∩A

θk
i,p ∩A

θl
j,p. (3.70)

Then for an instance Xn, its corresponding pairwise risk bound w.r.t. two models θk
and θl can be determined explicitly using Equations (3.67) and (3.68). A query qpn can
increase the pairwise risk bound if and only if it can increase the value of all elements
of value mini,j w

k,l
i,j . Let

Smin =
{
wk,l
i′ ,j′
|wk,l
i′ ,j′

= min
i,j

wk,li,j
}

(3.71)

be the set of such elements, then Jqpn(θk, θl) = 1 if ∃ xpn ∈ Xp
n s.t after querying Xp

n,
all elements in the set Smin are increased.

Note that for a given pair
(
Aθk
i ,A

θl
j

)
, using (3.53), we have that their intersection is

Ai,j = Aθk
i ∩Aθl

j = ×Pp=1A
θk
i,p ∩A

θl
j,p := ×Pp=1A

p
i,j , (3.72)

where Api,j is a closed interval, for p = 1, . . . , P . Furthermore, a query qpn can increase
the pairwise risk bound if ∃ xpn ∈ Xp

n s.t xpn /∈ Api,j , for all wk,li,j ∈ Smin. The next
Proposition provides a practical procedure to check whether such a condition holds.

Proposition 25. Given a training instance Xn which is imprecise w.r.t. both mod-
els θk and θl, the corresponding Wk,l matrix, assuming that mini,j w

k,l
i,j < 1, then

72 Chapter 3. Racing Algorithms

X 2

X 1

A2,1(1, 1)

A1,1(0, 1)

A1,2(0, 1)

A2,2(1, 1)

A2,3(1, 0)

A3,2(1, 0)

A3,3(1, 1)

Figure 3.12: Example of determining the pairwise effect

Jqpn(θk, θl) = 1 if and only if

Xp
n \
(
∪
i,j|wk,li,j∈Smin

Api,j

)
6= ∅. (3.73)

Proof. Let us first note that if (3.73) holds, then ∃ xpn ∈ Xp
n s.t xpn /∈ Api,j , for all

wk,li,j ∈ Smin. Then the corresponding elements wk,li,j are increased to be 2. It is then
resulting in the increasing of mini,j w

k,l
i,j , or in other words, the pairwise risk bound

`k−l(yn,Xn).

Checking whether Equation (3.73) is true can easily be reformulated in the form
of Equation (3.64), Algorithm 11 can then be used to perform the check. In practice,
such a check is quadratic in the number of leaves of the models θk, θl, which remains
affordable from a computational standpoint. The next example illustrates how to
practically determine the effect of queries on the pairwise risk bounds.

Example 17. Assume that we have two models θ1 and θ2 with 3 leaves each, whose
intersection of partition elements is illustrated in Figure 3.12.

Instance X covers the red region and has label y = 1. From Figure 3.12, we can see
that X is imprecise w.r.t. both models m1 and m2, and its corresponding information
matrix W1,2 can be determined as follows

W1,2 =

1 1 2
0 0 2
2 −1 2


Then it is clear that `1−2(y,X) = −1 and

Smin =
{
wk,l
i′ ,j′
|wk,l
i′ ,j′

= min
i,j

wk,li,j
}

= w1,2
3,2.

Let us now investigate whether the empirical risk bound `1−2(y,X) can increase
by querying the features of X. It is easy to see that A1

3,2 is a closed interval that does
not include X1. Then we always can find value x1 ∈ X1 s.t A1

3,2 ∩ x1 = ∅. In other
words, we can increase the bound `1−2(y,X) by querying X1.

However, as A2
3,2 is a closed interval that includes X2, there is no value x2 ∈ X2

s.t A2
3,2 ∩ x2 = ∅, or in other words, the bound `1−2(y,X) can not be increased by

querying X2.

3.4. Application to decision trees 73

Algorithms

Algorithm 12 summarizes how to determine the optimal query for a single querying
step in case of imprecise features. It is very similar to Algorithm 7, but takes different
sub-routines specific to the case of partially known features.

Algorithm 13 summarises how risk bounds, from which can be deduced the best
potential model (through Algorithm 9, that remains unchanged), can be computed.
Algorithms 14 and 15 describe how potential effects of querying an instance (Xn, yn),
respectively on empirical risk bounds and on pairwise risk bound, can be determined.
Note that Algorithm 15 computes the sum of the pairwise effects between the best
potential model θk∗ and the other ones. Let us now look at the complexity of Al-
gorithm 13, assuming that all decision trees have H leaves. Before doing that, note
that checking whether two hyper-cubes do intersect is in O(P), according to Equa-
tion (3.53). Lines 2-3 are in O(S×N×H×P), since Algorithm 13 is in O(N×H×P),
as computing vector K (line 3 of Algorithm 13) is in O(H ×P). Algorithm 9 remains
in O(S). Lines 4-9 of Algorithm 13 is in O(N×S×P ×H4): indeed, in Algorithm 15,
lines 7-9 are in O(P ×H4), as we must apply Algorithm 11 to at most H2 intervals.

In particular, Algorithm 15 treats both the cases of an instance that is imprecise
with respect to both models, as well as the other cases (other loops): Line 2 determines
whether the instance is imprecise w.r.t θk∗ , Line 4 whether it is imprecise w.r.t θk.
So Lines 4-9 corresponding to imprecision with respect to both models, lines 10-13 to
imprecision w.r.t only θk∗ , and lines 15-19 w.r.t only θk.

Algorithm 12: A single step to query interval-valued data.
Input: Training data set D = {(Xn, yn)}Nn=1,

label set Y = {y1, . . . , yM}, set of undominated model Θ∗.
Output: The optimal query qn∗

1 foreach θk ∈ Θ do
2 Compute empirical risk [R(θk |D), R(θk |D)] bounds using Alg. 13;

3 Determine the best model θk∗ and the undominated model set Θ∗ using Alg. 9;
4 foreach n = 1, . . . , N do
5 Determine (Eq1n(θk∗), . . . , EqPn (θk∗)) using Alg. 14 with model θk∗ ;
6 Determine the cumulative pairwise effects (Jq1n , . . . , JqPn) using Alg. 15;
7 foreach p = 1, . . . , P do
8 V alue(qpn) = Eqpn(θk∗) + Jqpn ;

9 Determine (n∗, p∗) = arg max(n,p) V alue(q
p
n);

Algorithm 13: Compute the empirical risk bounds (R(θk |D), R(θk |D)).
Input: Training data set D = {(Xn, yn)}Nn=1,

label set Y = {y1, . . . , yM}, model θk.
Output: Empirical risk bounds (R(θk |D), R(θk |D))

1 R(θk) = 0, R(θk) = 0;
2 foreach n = 1, . . . , N do
3 Compute K, Byn and Cyn using (3.56)-(3.58);
4 if KC>yn = 0 then R(θk |D) = R(θk |D) + 1, R(θk |D) = R(θk |D) + 1;
5 if

(
KB>yn

)(
KC>yn

)
6= 0 then R(θk |D) = R(θk |D) + 1;

74 Chapter 3. Racing Algorithms

Algorithm 14: Determine the single effects (Eq1n(θl), . . . , EqPn (θl)).

Input: Training instance (Xn, yn), a model θl.
Output: The single effects (Eq1n(θl), . . . , EqPn (θl))

1 Initialize (Eq1n , . . . , EqPn) = (0, . . . , 0);
2 if `l(yn,Xn) 6= `l(yn,Xn) then
3 foreach p = 1, . . . , P with ‖Xp

n‖ > 0 do
4 In← Alg. 11 with inputs Xp

n, {Aph|k
hchyn = 1};

5 if In = 1 then Eqpn(θl) = 1;
6 In← Alg. 11 with inputs Xp

n, {Aph|k
h
ynb

h
yn = 1};

7 if In = 1 then Eqpn(θl) = 1;

Algorithm 15: Determine the cumulative pairwise effects (Jq1n , . . . , JqPn).

Input: Training instance (Xn, yn), undominated model set Θ∗, best model θk∗ .
Output: The cumulative pairwise effects (Jq1n , . . . , JqPn)

1 Initialize (Jq1n , . . . , JqPn) = (0, . . . , 0);
2 if `k∗(yn,Xn) 6= `k∗(yn,Xn) then
3 foreach θk ∈ Θ and k 6= k∗ do
4 if `k(yn,Xn)) 6= `k(yn,Xn) then
5 Compute matrix Wk,k∗ defined in (3.67);
6 if minWk,k∗ < 1 then
7 foreach p = 1, . . . , P and ‖Xp

n‖ > 0 do
8 In← Alg. 11 with inputs Xp

n, {Api,j : wk,k
∗

i,j = minWk,k∗};
9 if In = 1 then Jqpn = Jqpn + 1;

10 else
11 foreach p = 1, . . . , P and ‖Xp

n‖ > 0 do
12 In← Alg. 11 with inputs Xp

n, {Aph of θk∗ |khynb
h
yn = 1};

13 if In = 1 then Jqpn = Jqpn + 1;

14 else
15 foreach θk ∈ Θ and k 6= k∗ do
16 if `k(yn,Xn) 6= `k(yn,Xn) then
17 foreach p = 1, . . . , P and ‖Xp

n‖ > 0 do
18 In← Alg. 11 with inputs Xp

n, {Aph of θk|khync
h
yn = 1};

19 if In = 1 then Jqpn = Jqpn + 1;

3.4. Application to decision trees 75

Name # instances # features # classes
wine 178 13 3

breast-cancer 569 30 2
vowel 990 10 11

segment 2310 19 7

Table 3.2: Data set used in the experiments

The overall complexity is polynomial in all parameters, which may be considered
as reasonable when the number of partial data, and the complexity of the trees both
remain limited. Also, this is a worst-case complexity, assuming that every feature
of every training data is imprecise, and that every resulting hyper-cube intersect all
leaves of all the decision trees in Θ. In practice, we may expect partial features to be
quite less numerous, as well as their intersections with tree leaves.

It should also be noticed that since the models will not change during the race, and
that data will only be queried iteratively, one can in principle compute all matrices
at the start of the race, and then proceed to a minimal update at each query, thus
considerably reducing the time to determine optimal queries. Finally, it should be
noticed that querying data mainly makes sense when data are scarce (as an increased
quantity of data improves the model accuracy even in the presence of imperfections).

3.4.3 Experimental evaluation

In this section, we run experiments on a “contaminated” version of 4 standard bench-
mark data sets as described in Table 3.2. To evaluate the efficiency of our proposal,
we compare our racing algorithm with baseline algorithms whose details will be de-
scribed separately in each setting of partial data. Note that when data are partial
and, in contrast with classical active learning, it is usually difficult to divide the data
between a set of training data and a set of data with missing values, especially if all
data are partial. This is why we will do the queries on the same data we use to train
the models. As the situation where both input and output are partially given rarely
happens in practice, we only focus on two settings: partiality in inputs; and partiality
in outputs. The next two subsections present details about the experimental settings
and the results for interval-valued features and set-valued labels data, respectively.

Interval-valued features

We follow a 2 × 5 fold cross-validation procedure: Each data set is randomly split
into 5 folds. Each fold is in turn considered as the training set D, while other folds
are used for testing T. For each feature xpn in the training set, a biased coin is
flipped in order to decide whether or not this example will be contaminated; the
probability of contamination is ε. The level of partiality ε is fixed to two values (0.3
and 0.6) which correspond to a low and a high level of imprecision. Similarly to the
SVM experimental parts, in case xpn is contaminated, a width ηpn is generated from
a uniform distribution on the unit interval and the generated interval valued data is
Xp
n = [xpn+ηpn(Dp−xpn), xpn+ηpn(D

p−xpn)] where Dp = minn(xpn) and Dp
= maxn(xpn).

Similar to the case of binary SVM, we generate an initial set of undominated
models from 100 completions of interval-valued data. From each completion, one tree
model (with a minimal number of training observations in any terminal node fixed to
3 for first two small data sets and 5 for the two later ones) is trained. The budget
will be fixed to be the total number of partially featured values. After each query,

76 Chapter 3. Racing Algorithms

we discard the dominated models and determine the best potential model. In case
of multiple minimum risk models, the one with a minimum value of R(θk |D) will be
chosen as the best potential model.

The two following baseline algorithms are employed to query interval-valued data
and make comparison about the evolution of the size of the sets of undominated
models and the performance of the best potential model:

- a random querying strategy where, at each iteration, the queried example
and feature will be chosen randomly,

- and themost partial querying strategy designed such that, at each iteration,
examples with the largest imprecision will be queried.

In practice, it may be the case that not all features appear in the set of racing
trees. In those cases, keeping all the features in the instances would disadvantage both
random and most partial querying in the race, since in this latter only the features
present in the trees are relevant (i.e., will play a role to discard racing models). To
make a comparable setting and to not give an unfair advantage to our method, we
thus eliminate the features that do not appear in the trained trees.

In order to evaluate the performances of those different strategies, we will use three
measures:

- the similarity of the best potential model θk∗ with a reference model θref is
computed on the precise test set T.

- the size of the undominated set Θ∗, that should decrease as fast as possible,
both to ensure computational efficiency and model performances.

- the accuracy on the test set. The above criteria aim to assess the effect of
querying strategies in the learning step. To evaluate the relevance of the queries
on unseen data, we consider the queried data set after querying 5% of the partial
values, and this up to 30% (so, we test our queried data set for 5%, 10%,
15%, . . . queries). Since some partial data remain, we first impute those ones
(replacing Xp

n by their middle values), learn a model θ∗ on the obtained fully
precise training set, and evaluate its accuracy on the test set.

The 5-folds process is repeated 2 times and the average size of the sets of models, the
average similarity of the best potential model and the average acuracy on the test set
are reported.

The experimental results are presented in Figure 3.13 to 3.15. They show that,
using the racing approach, the size of the undominated set can be quickly reduced and
that the best potential model converges very fast to the desired model when knowing
a small number of the precise data. The reduction of the size of the set is much
slower for other querying strategies. This is true for the four tested data sets, and the
advantage of using the racing approach is obvious whether we have little (ε = 0.3) or
a lot (ε = 0.6) of imprecision. The exception observed for high imprecision (ε = 0.6)
in the case of the segment data set is due to the fact that few features are used in the
different trees, hence all models are quite similar, and all querying strategies focus
on those features, converging at comparable speeds. Regarding the interest of the
queries on the final learnt model, we can see that the racing approach provides better
improvements in most cases, in particular when the accuracy difference before and
after querying is significant.

3.4. Application to decision trees 77

0 3 6 9 12 15
0

33

66

99

of queries (×10) (ε =0.3)

U
nd

om
in
at
ed

si
ze

(a) Wine

0 6 12 18 24 30
0

33

66

99

of queries (×10) (ε =0.6)

U
nd

om
in
at
ed

si
ze

(b) Wine

0 10 20 30 40 50 60 70 80 90 100
0

33

66

99

of queries (×10) (ε =0.3)

U
nd

om
in
at
ed

si
ze

(c) Breast

0 20 40 60 80 100 120 140 160 180 200
0

33

66

99

of queries (×10) (ε =0.6)

U
nd

om
in
at
ed

si
ze

(d) Breast

0 9 18 27 36 45 54 63
0

33

66

99

of queries (×10) (ε =0.3)

U
nd

om
in
at
ed

si
ze

(e) Vowel

0 20 40 60 80 100
0

33

66

99

of queries (×10) (ε =0.6)

U
nd

om
in
at
ed

si
ze

(f) Vowel

0 25 50 75 100 125 150 175 200 225 250
0

33

66

99

of queries (×10) (ε =0.3)

U
nd

om
in
at
ed

si
ze

(g) Segment

0 22 44 66 88 110 132 154 176 198 220
0

33

66

99

of queries (×10) (ε =0.6)

U
nd

om
in
at
ed

si
ze

(h) Segment

Racing Most partial Random

Figure 3.13: Interval-valued features: Size of undominated model
sets

78 Chapter 3. Racing Algorithms

0 3 6 9 12 15
0.87

0.91

0.96

1

of queries (×10) (ε =0.3)

Si
m
ila

ri
ty

(%
)

(a) Wine

0 6 12 18 24 30
0.8

0.87

0.93

1

of queries (×10) (ε =0.6)

Si
m
ila

ri
ty

(%
)

(b) Wine

0 20 40 60 80 100
0.9

0.93

0.97

1

of queries (×10) (ε =0.3)

Si
m
ila

ri
ty

(%
)

(c) Breast

0 20 40 60 80 100 120 140 160 180 200
0.9

0.93

0.97

1

of queries (×10) (ε =0.6)

Si
m
ila

ri
ty

(%
)

(d) Breast

0 9 18 27 36 45 54 63
0.4

0.6

0.8

1

of queries (×10) (ε =0.3)

Si
m
ila

ri
ty

(%
)

(e) Vowel

0 20 40 60 80 100
0.3

0.53

0.76

1

of queries (×10) (ε =0.6)

Si
m
ila

ri
ty

(%
)

(f) Vowel

0 25 50 75 100 125 150 175 200 225 250
0.8

0.87

0.93

1

of queries (×10) (ε =0.3)

Si
m
ila

ri
ty

(%
)

(g) Segment

0 22 44 66 88 110 132 154 176 198 220
0.4

0.6

0.8

1

of queries (×10) (ε =0.6)

Si
m
ila

ri
ty

(%
)

(h) Segment

Racing Most partial Random

Figure 3.14: Interval-valued features: Similarity between the current
best and reference models

3.4. Application to decision trees 79

0 1 2 3 4 5 6
0.77

0.79

0.81

0.83

of queries (×5%) (ε =0.3)

U
nd

om
in
at
ed

si
ze

(a) Wine

0 1 2 3 4 5 6
0.77

0.79

0.82

0.84

of queries (×5%) (ε =0.6)

U
nd

om
in
at
ed

si
ze

(b) Wine

0 1 2 3 4 5 6
0.9

0.92

of queries (×5%) (ε =0.3)

U
nd

om
in
at
ed

si
ze

(c) Breast

0 1 2 3 4 5 6
0.88

0.89

0.9

0.91

of batches (×5%) (ε =0.6)

U
nd

om
in
at
ed

si
ze

(d) Breast

0 1 2 3 4 5 6
0.47

0.48

0.49

0.5

of queries (×5%) (ε =0.3)

U
nd

om
in
at
ed

si
ze

(e) Vowel

0 1 2 3 4 5 6
0.41

0.44

0.47

0.5

of queries (×5%) (ε =0.6)

U
nd

om
in
at
ed

si
ze

(f) Vowel

0 1 2 3 4 5 6
0.84

0.86

0.87

0.89

of queries (×5%) (ε =0.3)

U
nd

om
in
at
ed

si
ze

(g) Segment

0 1 2 3 4 5 6
0.44

0.46

0.48

0.5

of queries (×5%) (ε =0.6)

U
nd

om
in
at
ed

si
ze

(h) Segment

Racing Most partial Random

Figure 3.15: Interval-valued features: Accuracy on the test set

80 Chapter 3. Racing Algorithms

Set-valued labels

We perform on the same data sets as before (cf. Table 3.2) and the 2 × 5 cross-
validation procedure as described for partially featured data (without the feature
filtering step as we only consider the partial labels here). In order to contaminate a
given data set, we used the following strategy: for each example in the training set, a
biased coin is flipped in order to decide whether or not this example will be contami-
nated; the probability of contamination is ε. When an example is contaminated, the
class candidates are added with probability η, independently of each other. Thus, the
contamination procedure is parametrized by the probabilities ε and η, where ε corre-
sponds to the expected fraction of imprecise examples in a data set, and η reflects the
average number of classes added to contaminated examples. The expected cardinality
of a label set, in case of contamination, is given by 1+(M −1)η. In all experiments, ε
and η are fixed respectively to 0.3 and 0.8. To start the race, 100 precise replacements
for each imprecise labels are randomly chosen. From each selection, one classification
tree is trained. Similarly to the case of partial features, the minimal number of ob-
servations in any terminal node is fixed to 3 and 5 for the first two data sets and the
later ones, respectively.

Similar to the case of binary SVM, we compare our racing approach with two
baseline querying schemes: a random query and a query by committee approach
(QBC). Finally, the size of the sets of models and the similarity of the best potential
model θk∗ w.r.t. the reference model θref are reported and used to make comparison.
Since in the case of partial labels there is almost no difference between the approaches,
we did not evaluate their performances on test sets.

The experimental results, presented in Figure 3.16, show that, among the three
approaches, random queries usually converge more slowly towards the reference model
(except for the vowel data set), while the set of undominated models decreases simi-
larly for all data sets and all strategies (with a slight advantage for the QBC strategy,
and a poorly performing random queries for the segment data set). This contrasts
with the partial feature case, where our approach significantly outperforms the oth-
ers. A reason for that maybe that the case of partial labels offers much less degrees of
freedom, hence the impact of the querying strategy may be quite less important than
for the feature case.

3.5 Conclusion

The problem of actively learning with partial data has been little explored in the
literature, in particular the case of partially known features. Indeed, active learning
techniques usually focus on the case where a part of the labels are completely missing,
while a few are precisely known. To solve the problem, we have proposed in this
Chapter a generic querying approach based on the idea of racing algorithms. Our
generic approach has been then detailed for the specific cases of binary SVM and
decision trees. To do so, we have developed a number of efficient algorithms to detect
which data should be queried, in order to identify as soon as possible the best model
among a set of racing ones.

We have then made some experiments to study the behaviour of our approach,
compared to other querying strategies, starting from the same set of initial models.
Our conclusion is that our approach significantly outperforms simpler strategies in
the case of partially specified features, while it achieves similar performances in the
case of partially specified labels. We think that this is due to the fact that partial
labels offer much less degrees of freedom to the learning algorithms, meaning that

3.5. Conclusion 81

most smart strategies, or even random ones will perform similarly. This is not the
case for partial features, where purely random strategies performs poorly.

0 2 4 6 8 10 12 14
0

33

66

99

of queries (ε = 0.3, η = 0.8)

U
nd

om
in
at
ed

si
ze

(a) Wine

0 2 4 6 8 10 12 14
0.75

0.83

0.92

1

of queries (ε = 0.3, η = 0.8)

Si
m
ila

ri
ty

(%
)

(b) Wine

0 5 10 15 20 25 30 35
0

33

66

99

of queries (ε = 0.3, η = 0.8)

U
nd

om
in
at
ed

si
ze

(c) Breast

0 5 10 15 20 25 30 35
0.82

0.88

0.94

1

of batches (ε = 0.3, η = 0.8)

Si
m
ila

ri
ty

(%
)

(d) Breast

0 8 16 24 32 40 48 56 64
0

33

66

99

of queries (ε = 0.3, η = 0.8)

U
nd

om
in
at
ed

si
ze

(e) Vowel

0 8 16 24 32 40 48 56 64
0.5

0.67

0.83

1

of queries (ε = 0.3, η = 0.8)

Si
m
ila

ri
ty

(%
)

(f) Vowel

0 15 30 45 60 75 90 105 120 135 150
0

33

66

99

of queries (ε = 0.3, η = 0.8)

U
nd

om
in
at
ed

si
ze

(g) Segment

0 15 30 45 60 75 90 105 120 135 150
0.75

0.83

0.92

1

of queries (ε = 0.3, η = 0.8)

Si
m
ila

ri
ty

(%
)

(h) Segment

Racing QBC Random

Figure 3.16: Experiments for set-valued label data with preferred
model

83

Chapter 4

Epistemic uncertainty for active
learning and cautious inferences

As mentioned in the introduction, we think that differentiating sources of uncertainty
should benefit to machine learning applications. For instances, it could be useful for
developing querying criteria when doing active learning or balancing the informative-
ness and cautiousness when making cautious inferences. This research direction has
been well-studied in the literature on uncertainty and machine learning. We will re-
strict ourselves, in this chapter, to a distinction between two sources of uncertainty:
epistemic, caused by a lack of training data and, and aleatoric, due to intrinsic random-
ness. After summarizing the basic concepts and presenting the practical procedures
to estimate these degrees of uncertainty, we will explain how these estimates can be
used to solve two machine learning problems: active learning and cautious inferences.

4.1 Likelihood to estimate epistemic and aleatoric uncer-
tainties

We are going to provide a quick literature review on this line of research and then recall
the basics of a contour-likelihood based approach which will be adopted in the later
proposals. To facilitate subsequent applications, we will propose practical procedures
to estimate the degrees of uncertainty for popular classifiers.

4.1.1 A formal framework for uncertainty modeling

Epistemic uncertainty in learning theory

As already said, the problem of differentiating sources of uncertainty has been increas-
ingly investigated [42, 51, 53, 79, 85]. In this line of research, several approaches exist
and have been successfully implemented for different applications, including classifi-
cation [53, 79] and active learning [85]. We are going to quickly mention approaches
related to our interests as well as their subsequent applications.

- Sharma and Bilgic [85] recently proposed an evidence-based approach to ac-
tive learning, in which conflicting-evidence uncertainty is distinguished from
insufficient-evidence uncertainty. Roughly speaking, a high conflicting evidence
captures the case where the evidences are close and both of large magnitude. In
other words, it refers to the situation where a model is highly uncertain about
an instance, and has strong but conflicting evidence for both classes. On the
other hand, a high insufficient-evidence uncertainty refers to the case where a
model is highly uncertain about an instance because of not having enough ev-
idence for either class. Experimentally, they support their conjecture that the

84 Chapter 4. Epistemic uncertainty for active learning and cautious inferences

conflicting-evidence uncertainty is more informative for an active learner than
the conflicting-evidence one.

- Conformal prediction [4, 84] is a generic approach to reliable (set-valued) pre-
diction that combines ideas from probability theory (specifically the principle
of exchangeability), statistics (hypothesis testing, order statistics), and algo-
rithmic complexity. The basic version of conformal prediction is designed for
sequential prediction in an online setting, and comes with certain correctness
guarantees (predictions are correct with probability 1−ξ, where ξ is a confidence
parameter). Roughly speaking, given an instance t, it assigns a non-conformity
score to each candidate output. Then, considering each of these outcomes as a
hypothesis, those outcomes for which the hypothesis can be rejected with high
confidence are eliminated. The set-valued prediction is given by the set of those
outcomes that cannot be rejected.

- Cautious (set-valued) prediction methods based on imprecise probabilities, such
as [15], augment the probabilistic predictions into probability intervals or sets
of probabilities, the size of which reflects the lack of information (reflecting
epistemic uncertainty). Similar to this are approaches based on confidence bands
in calibration models, for instance [53, 99], which usually control the amount of
imprecision by adjusting some certain parameters, e.g., a confidence value.

- Credal uncertainty sampling [3] is another approach that seeks to differenti-
ate between parts of the uncertainty. This approach assumes that a credal set
C ⊆ Θ is given and learns for each label y ∈ Y, an interval-valued probability
[p
C

(y | t), pC(y | t)]. In this case, p
C

(y | t) and pC(y | t) are the minimum and
maximum conditional probabilities that can be given for y by candidates of
C, respectively. The widths of the interval-valued probabilities reflect the re-
ducible part of uncertainty while its extreme probabilities reflect the irreducible
one. More precisely, we can shrink the interval [p

C
(y | t), pC(y | t)] (or, reduce

the epistemic part) by acquiring additional training data, eventually getting a
precise value. We will only illustrate how the extreme probabilities reflect the ir-
reducible part (of uncertainty) in the case of binary classification, i.e, Y := {0, 1}
(the case of multi-class classification could be rather complicated and will not
be investigated here). In this case, we could image that if the interval prob-
abilities [p

C
(y | t), pC(y | t)] is symmetrical around 0.5, shrinking such intervals

is not very helpful in distinguishing the classes (i.e, a high irreducible uncer-
tainty), especially when its extreme probabilities are close to 0.5. However, if
[p
C

(y | t), pC(y | t)] is highly asymmetrical around 0.5, shrinking it should benefit
in distinguishing the classes (i.e, a low irreducible uncertainty).

- The distinction between the epistemic and aleatoric uncertainty involved in the
prediction for an instance t is well-accepted in the literature on uncertainty [42,
79] and has been considered in only few recently machine learning works, e.g,
[51]. Roughly speaking, the aleatoric uncertainty refers to the notion of random-
ness, that is, the variability in the outcome of an experiment which is due to
inherently random effects. As opposed to this, the epistemic uncertainty refers
to the uncertainty caused by a lack of knowledge. Thus, the distinction con-
sidered here appears to be quite related to the one between conflicting-evidence
and insufficient-evidence uncertainty [85], and the one considered in credal un-
certainty sampling [3]. Detailed comparisons will be given in our proposal for
active learning.

4.1. Likelihood to estimate epistemic and aleatoric uncertainties 85

Yet, the concepts of the degrees of epistemic and aleatoric uncertainty are, in
principle, defined in the literature. Practically quantifying these degrees for different
classifiers still remains a challenge. We are going to summarize the contour-likelihood
based approach [79] and then detail it for the local model, logistic regression and
Naive Bayes classifiers.

Contour-likelihood based approach

In the rest of this chapter, we adopt the contour-likelihood based approach proposed by
Senge et al. [79], which is based on the use of relative likelihoods, historically proposed
by Birnbaum [6] and then justified in other settings such as possibility theory [94]. In
the following, the essence of this approach is briefly recalled.

We proceed from an instance space X = RP , an output space Y = {0, 1} encod-
ing the two classes, and a hypothesis space Θ consisting of probabilistic classifiers
θ : X −→ [0, 1]. We denote by pθ(1 |x) = θ(x) and pθ(0 |x) = 1 − θ(x) the (pre-
dicted) probability that instance x ∈ X belongs to the positive and negative class,
respectively. Given a set of training data D = {(xn, yn)}Nn=1, the contour likelihood
of a model θ is defined as

πΘ(θ |D) =
L(θ |D)

L(θ∗ |D)
=

L(θ |D)

maxθ′∈Θ L(θ′ |D)
, (4.1)

where L(θ |D) =
∏N
n=1 pθ(yn |xn) is the likelihood of θ, and θ∗ ∈ Θ the maximum

likelihood estimation on the training data D. For a given instance t, the degrees of
support (plausibility) of the two classes are defined as follows:

π(1 | t) = sup
θ∈Θ

min
[
πΘ(θ |D), pθ(1 | t)− pθ(0 | t)

]
, (4.2)

π(0 | t) = sup
θ∈Θ

min
[
πΘ(θ |D), pθ(0 | t)− pθ(1 | t)

]
. (4.3)

So, π(1 | t) is high if and only if a highly plausible model supports the positive class
much stronger (in terms of the assigned probability mass) than the negative class (and
π(0 | t) can be interpreted analogously)1. Note that, with f(a) = 2a− 1, we can also
rewrite (4.2)-(4.3) as follows:

π(1 | t) = sup
θ∈Θ

min
[
πΘ(θ |D), f(θ(t))

]
, (4.4)

π(0 | t) = sup
θ∈Θ

min
[
πΘ(θ |D), f(1− θ(t))

]
. (4.5)

Given the above degrees of support, the degrees of epistemic uncertainty ue and
aleatoric uncertainty ua are defined as follows [79]:

ue(t) = min
[
π(1 | t), π(0 | t)

]
, (4.6)

ua(t) = 1−max
[
π(1 | t), π(0 | t)

]
. (4.7)

Thus, the epistemic uncertainty refers to the case where both the positive and the
negative class appear to be plausible, while the degree of aleatoric uncertainty (4.7)
is the degree to which none of the classes is supported. These uncertainty degrees are
completed with degrees s1(t) and s0(t) of (strict) preference in favor of the positive

1Technically, we assume that, for each t ∈ X , there are hypotheses θ, θ′ ∈ Θ such that θ(t) ≥ 0.5
and θ′(t) ≤ 0.5, which implies π(1 | t) ≥ 0 and π(0 | t) ≥ 0.

86 Chapter 4. Epistemic uncertainty for active learning and cautious inferences

and negative class, respectively:

s1(t) =


1− (ua(t) + ue(t)) if π(1 | t) > π(0 | t),

1−(ua(t)+ue(t))
2 if π(1 | t) = π(0 | t),

0 if π(1 | t) < π(0 | t).

With an analogous definition for s0(t), we have

s0(t) + s1(t) + ua(t) + ue(t) ≡ 1 ,

i.e., the quadruple (s1(t), s0(t), ue(t), ua(t)) defines a partition of unity. Besides, it
has the following properties:

- s1(t) (s0(t)) will be high if and only if, for all plausible models, the probability
of the positive (negative) class is significantly higher than the one of the negative
(positive) class;

- ue(t) will be high if the class probabilities strongly vary within the set of plau-
sible models, i.e., if we are unsure how to compare these probabilities. In par-
ticular, it will be 1 if and only if we have θ(t) = 1 and θ′(t) = 0 for two totally
plausible models θ and θ′;

- ua(t) will be high if the class probabilities are similar for all plausible models,
i.e., if there is strong evidence that θ(t) ≈ 0.5. In particular, it will be close to
1 if all plausible models allocate their probability mass around θ(t) = 0.5.

Roughly speaking, the aleatoric uncertainty is due to influences on the data-generating
process that are inherently random, whereas the epistemic uncertainty is caused by
a lack of knowledge. Or, stated differently, ue and ua measure the reducible and the
irreducible part of the total uncertainty, respectively.

As said in [79], determining the degrees of support (4.4)-(4.5) comes down to
solving optimization problems, the complexities of which strongly depend on the model
space Θ, and may become rather complex. We are going to summarize the details for
the case of Parzen window classifiers, whose details is given in [79] and presents our
proposals for the cases of logistic regression and Naive Bayes.

4.1.2 Estimation for local models

By local learning, we refer to a class of non-parametric models that derive predictions
from the training information in a local region of the instance space, for example the
local neighborhood of a query instance [8, 20]. As a simple example, we consider
the Parzen window classifier [11], to which our approach can be applied in a quite
straightforward way. To this end, for a given instance t, we define the set of its
neighbours as follows:

R(t, δ) =
{

(xn, yn) ∈ D | ‖xn − t‖ ≤ δ
}
, (4.8)

where δ is the width of the Parzen window (a practical method to determine such a
width will be given latter).

In binary classification, a local region R can be associated with a constant hypoth-
esis θ ∈ Θ = [0, 1], where θ(t) is the probability of the positive class in the region;
thus, θ predicts the same probabilities θ(1 | t) = θ and θ(0 | t) = 1 − θ for all t ∈ R.
The underlying hypothesis space is given by Θ = {θ | 0 ≤ θ ≤ 1}.

4.1. Likelihood to estimate epistemic and aleatoric uncertainties 87

0 10

10

0

5

5 0 10

10

0

5

5 0 10

10

0

5

5

Figure 4.1: From left to right: Epistemic, aleatoric, and the total of
epistemic aleatoric uncertainty as a function of the numbers of positive
(x-axis) and negative (y-axis) examples in a region (Parzen window)

of the instance space (lighter colors indicate higher values).

With α and β the number of positive and negative instances, respectively, within
a Parzen window R(t, δ), the likelihood is then given by

Lt(θ |D) =

(
α+ β
β

)
θα(1− θ)β , (4.9)

and the maximum likelihood estimate is

θ∗ =
α

α+ β
. (4.10)

Therefore, the degrees of support for the positive and negative classes are

π(1|t) = sup
θ∈[0,1]

min

 θα(1− θ)β(
α

α+β

)α(β
α+β

)β , 2θ − 1

 , (4.11)

π(0|t) = sup
θ∈[0,1]

min

 θα(1− θ)β(
α

α+β

)α(β
α+β

)β , 1− 2θ

 . (4.12)

Solving (4.11) and (4.12) comes down to maximizing a scalar function over a bounded
domain, for which standard solvers can be used. We applied Brent’s method2 (which
is a variant of the golden section method) to find a local minimum in the interval
θ ∈ [0, 1]. From (4.11–4.12), the epistemic and aleatoric uncertainties associated
with the region R can be derived according to (4.55) and (4.56), respectively. For
different combinations of α and β, these uncertainty degrees can be pre-computed
(cf. Figure 4.2).

How to determine the width δ of the Parzen window? This value is difficult to
assess, and an appropriate choice strongly depends properties of the data and the
dimensionality of the instance space. Intuitively, it is even difficult to say in which
range this value should lie. Therefore, instead of fixing δ, we fixed an absolute number
K of neighbors in the training data, which is intuitively more meaningful and easier
to interpret. A corresponding value of δ is then determined in such a way that the
average number of nearest neighbours of instances xn in the training data D is just

2For an implementation in Python, see https://docs.scipy.org/doc/scipy-0.19.1/
reference/generated/scipy.optimize.minimize_scalar.html

https://docs.scipy.org/doc/scipy-0.19.1/reference/generated/scipy.optimize.minimize_scalar.html
https://docs.scipy.org/doc/scipy-0.19.1/reference/generated/scipy.optimize.minimize_scalar.html

88 Chapter 4. Epistemic uncertainty for active learning and cautious inferences

K (see Algorithm 16). In other words, δ is determined indirectly via K.
Since K is an average, individual instances may have more or less neighbors in

their Parzen windows. In particular, a Parzen window may also be empty. In this
case, we set ue(t) = 1 by definition, i.e., we consider this as a case of full epistemic
uncertainty. Likewise, the uncertainty is considered to be maximal for all other sam-
pling techniques. If the accuracy of the Parzen classifier needs to be determined, we
assume that it yields an incorrect prediction.

Algorithm 16: Determining the width δ.
Input: D-normalized data, K-number
Output: the local width δK

1 foreach xn ∈ D do
2 foreach xm 6= xn do
3 compute d

(
xn,xm

)
;

4 form 1× (n− 1) vector dn =
(
d
(
xn,xm

)
|n 6= m

)
;

5 sort dn by increasing order and determine the K-th element dKn ;

6 return δK =
∑ |D |
n=1 dKn
|D | ;

4.1.3 Estimation for logistic regression

Recall that logistic regression assumes posterior probabilities to depend on feature
vectors x = (x1, . . . , xP) ∈ RP in the following way:

θ(x) = pθ(1 |x) =
exp

(
θ0 +

∑P
p=1 θ

p xp
)

1 + exp
(
θ0 +

∑P
p=1 θ

p xp
) (4.13)

This means that learning the model comes down to estimating a parameter vector θ =
(θ0, . . . , θP), which is commonly done through likelihood maximization [62]. To avoid
numerical issues (e.g, having to deal with the exponential function for large θ) when
maximizing the target function, we employ L2-regularization. The corresponding
version of the log-likelihood function (4.14) is strictly concave [75]:

l(θ |D) = logL(θ |D) =
N∑
n=1

yn

θ0 +
P∑
p=1

θpxpn

 (4.14)

−
N∑
n=1

ln

1 + exp

θ0 +
P∑
p=1

θpxpn

− γ

2

P∑
p=0

(θp)2,

where the regularization parameter γ will be fixed to 1.
We now focus on determining the degree of support (4.4) for the positive class,

and then summarize the results for the negative class (which can be determined in
a similar manner). Associating each hypothesis θ ∈ Θ with a vector θ ∈ RP+1, the
degree of support (4.4) can be rewritten as follows:

π(1 | t) = sup
θ∈Rd+1

min
[
πΘ(θ |D), 2θ(t)− 1

]
(4.15)

4.1. Likelihood to estimate epistemic and aleatoric uncertainties 89

It is easy to see that the target function to be maximized in (4.15) is not necessarily
concave. Therefore, we propose the following approach.

Let us first note that whenever θ(t) < 0.5, we have

2θ(t)− 1 ≤ 0 and min
[
πΘ(θ |D), 2θ(t)− 1

]
≤ 0.

Thus the optimal value of the target function (4.15) can only be achieved for some
hypotheses θ such that θ(t) ∈ [0.5, 1].

For a given value α ∈ [0.5, 1), the set of hypotheses θ such that θ(t) = α corre-
sponds to the convex set

θα =

{
θ
∣∣ θ0 +

P∑
p=1

θpxp = ln

(
α

1− α

)}
. (4.16)

The optimal value π∗α(1 | t) that can be achieved within the region (4.16) can be
determined as follows:

π∗α(1 | t) = sup
θ∈θα

min
[
πΘ(θ |D), 2α− 1

]
= min

[
sup
θ∈θα

πΘ(θ |D), 2α− 1
]
. (4.17)

Thus, to find this value, we maximize the concave log-likelihood over a convex set:

θ∗α = arg sup
θ∈θα

l(θ |D) (4.18)

As the log-likelihood function (4.14) is concave and has second-order derivatives, we
tackle the problem with a Newton-CG algorithm [68]. Furthermore, the optimization
problem (4.18) can be solved using sequential least squares programming3 [72]. Since
regions defined in (4.16) are parallel hyperplanes, the solution of the optimization
problem (4.15) can then be obtained by solving the following problem:

sup
α∈[0.5,1)

π∗α(1|x) = sup
α∈[0.5,1)

min
[
πΘ(θ∗α |D), 2α− 1

]
(4.19)

Following a similar procedure, we can estimate the degree of support for the negative
class (4.5) as follows:

sup
α∈(0,0.5]

π∗α(0|x) = sup
α∈(0,0.5]

min
[
πΘ(θ∗α |D), 1− 2α

]
(4.20)

Note that limit cases α = 1 and α = 0 cannot be solved, since the region (4.16) is
then not well-defined (as ln(∞) and ln(0) do not exist). For the purpose of practical
implementation, we handle (4.19) by discretizing the interval over α. That is, we
optimize the target function for a given number of values α ∈ [0.5, 1) and consider the
solution corresponding to the α with the highest optimal value of the target function
π∗α(1 | t) as the maximum estimator. Similarly, (4.20) can be handled over the domain
(0, 0.5].

In practice, we evaluate (4.19) and (4.20) on uniform discretizations of cardinality
50 of [0.5, 1) and (0, 0.5], respectively. We can further increase efficiency by avoiding
computations for values of α for which we know that 2α−1 and 1−2α are lower than
the current highest support value given to class 1 and 0, respectively. See Algorithm
17 for a pseudo-code description of the whole procedure.

3For an implementation in Python, see https://docs.scipy.org/doc/scipy/reference/
generated/scipy.optimize.minimize.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

90 Chapter 4. Epistemic uncertainty for active learning and cautious inferences

Algorithm 17: Degrees of support for logistic regression
Input: Q, D, θ∗, t- initial pool, training data, classifier, unlabelled instance
Output: π(1 | t), π(0 | t) - degrees of support

1 initialize subsets Q1, Q0 of cardinality Q;
2 π(1 | t) = max(2θ∗(t)− 1, 0) , π(0 | t) = max(1− 2θ∗(x), 0) ;
3 for q = 1, . . . , Q do
4 α1 = max(Q1); α0 = min(Q0) ;
5 if 2α1 − 1 > π(1 | t) then
6 solve (4.18) for t, α1 and return θ;
7 π(1 | t) = max(π(1 | t),min(πΘ(θ |D), 2α1 − 1)) ;

8 if 1− 2α0 > π(0 | t) then
9 solve (4.18) for t, α0 and return θ;

10 π(0 | t) = max(π(0 | t),min(πΘ(θ |D), 1− 2α0)) ;

11 Q1 = Q1 \ {α1}, Q0 = Q0 \ {α0} ;
12 Return π(1 | t), π(0 | t) ;

4.1.4 Estimation for Naive Bayes

Let us first remind that we have been working on a training data setD = {(xn, yn)}Nn=1,
where xn = (x1

n, . . . , x
P
n) s.t xpn ∈ X p = {ap1, . . . , a

p
Tp
}, for p = 1, . . . , P . For each fea-

ture X p, denoting by

θ
p,tp
1 = pθ(X p = aptp |Y = 1)

θ
p,tp
0 = pθ(X p = aptp |Y = 0),

(4.21)

we then have that

Tp∑
tp=1

θ
p,tp
1 =

Tp∑
tp=1

θ
p,tp
0 = 1, ∀p = 1, . . . , P,

θ
p,tp
1 , θ

p,tp
0 ∈ [0, 1],∀tp = 1 . . . Tp, p = 1, . . . , P.

(4.22)

Furthermore, denoting by θ1 := pθ(Y = 1) and θ0 := pθ(Y = 0), we have that

θ1 + θ0 = 1

θ1, θ0 ∈ [0, 1].
(4.23)

Given a training data set D = {(xn, yn)}Nn=1, following information can be com-
puted directly for all pairs of indices (p, tp):

s1 = |{n|yn = 1}|, s0 = |{n|yn = 0}|

s
p,tp
1 = |{n|xpn = aptpyn = 1}|, sp,tp0 = |{n|xpn = aptpyn = 0}|.

(4.24)

The underlying hypothesis space Θ ⊆ Rf , where f = 2
∑P

p=1 Tp+2, and its individual
θ can be rewritten as follows:

θ := (θ1, θ0, θ
p,tp
1 , θ

p,tp
0 |tp = 1 . . . Tp, p = 1, . . . , P), (4.25)

Θ := {θ|θ satisfies (4.22) and (4.23)}. (4.26)

4.1. Likelihood to estimate epistemic and aleatoric uncertainties 91

The log-likelihood function is defined for binary Naive Bayes classifier as follows [14]

l(θ |D) : =
N∑
n=1

ln

(
pθ(yn)

P∏
p=1

pθ(X
p = xpn|Y = yn)

)

= s1 ln(θ1) + s0 ln(θ0) +

P∑
p=1

[
s
p,tp
1 ln(θ

p,tp
1) + s

p,tp
0 ln(θ

p,tp
0)

]
. (4.27)

with its maximum estimate θ∗(
(θ1)∗, (θ0)∗

)
=

(
s1

N
,
s0

N

)
,

(
(θ
p,tp
1)∗, (θ

p,tp
0)∗

)
=

(
s
p,tp
1

s1
,
s
p,tp
0

s0

)
.

(4.28)

Thus, the corresponding regularized log-likelihood estimate θ∗ are

(
(θ
p,tp
1)r, (θ

p,tp
0)r

)
= (1− γ)

(
s
p,tp
1

s1
,
s
p,tp
0

s0

)
+
γ

2
, (4.29)

where γ ∈ [0, 1] is the regularization parameter and will be fixed to be 0.001. Let
us note that we employ the regularization form of the log-likelihood estimate here
to avoid unexpected effect caused by the zero count, which is common when works
with Naive Bayes, especially when dealing with small data sets with a large number
of features.

We now focus on determining the degree of support for the positive class (4.4) and
then summarize the results for the negative class (4.5) (which can be determined in a
similar manner). Given an unlabelled instance t = (t1, . . . , tP), denoting by

θp,1t := pθ(X
p = tp|Y = 1) = θp,t

p

1 , p = 1, . . . , P, (4.30)

θp,0t := pθ(X
p = tp|Y = 0) = θp,t

p

0 , p = 1, . . . , P. (4.31)

Then, the degree of support (4.4) can be rewritten explicitly as follows

π(1|t) = sup
θ∈Θ

min
[
πΘ(θ |D),max

(
2θ(t)− 1, 0

)]
(4.32)

where, θ(t) =
θ1
∏P
p=1 θ

p,1
t

θ1
∏P
p=1 θ

p,1
t + θ0

∏P
p=1 θ

p,0
t

(4.33)

Let us notice that the target function to be maximized in (4.32) is not necessarily
concave, which can lead to difficulties when maximizing the function. We propose
the following approach inspired by ε-contamination model. Given θ∗, the maximum
likelihood estimate computed using (4.28), for a given number ε ∈ [0, 1], we define a
contour region Θε as follows

Θε = {θ|θ ∈ Θ ∩ [(1− ε)θ∗, (1− ε)θ∗ + ε]}. (4.34)

The intuitive idea we interest here is to enlarge Θε from a singleton {θ∗} to the entire
hypothesis space Θ by increasing ε from 0 to 1. Following this direction, we can, as
pointed out in the following, simultaneously increase θ(t) and decrease πΘ(θ |D) (in
general). Thus, starting from the highest value of πΘ(θ |D), we will converge to the
value of πΘ(θ |D) where θ(t) and πΘ(θ |D) are identical (or closed in practice), which

92 Chapter 4. Epistemic uncertainty for active learning and cautious inferences

is the optimal estimate for the solution of (4.32).
For a contour region Θε, the highest value of θ(t) attained at

θtε = arg max
θ∈Θε

θ(t) (4.35)

=
(
(1− ε)(θ1)∗ + ε, (1− ε)(θ0)∗, (1− ε)(θp,1t)r + ε, (1− ε)(θp,0t)r, p = 1, . . . , P

)
.

The formula given in (4.35) comes from the combination of the monotonicity of θ(t)
and the property that guarantees the feasibility of θtε s.t,

(1− ε)(θ1)∗ + ε+ (1− ε)(θ0)∗ = (1− ε)
(
(θ1)∗ + (θ0)∗

)
+ ε = 1, ∀ε ∈ [0, 1].

When assessing the probability θ(t), the regularization
(
(θp,1t)r, (θp,0t)r

)
is employed

(instead of
(
(θp,1t)∗, (θp,0t)∗

)
) to overcome the effect of zero count. Furthermore, the

monotonicity of θ(t) ensures that we can increase θ(t) (and consequently 2θ(t) − 1)
by increase ε. In other words, for ε ≤ ε′ , we have that θtε(t) ≤ θtε′ (t).

It is worth noticing that θtε only contains 2 + 2 ∗ d variables which is relatively
smaller than f , the total number of variables within θ. Thus, the highest value θ(t)
over Θε is associated to a region θtε∩Θε. That is to fix all the variables given in (4.35)
while letting others freely as long as the condition of belonging to Θε still satisfied.

The highest value that πΘ(θ |D) can attain within Θε when fixing θ(t) to be θtε(t)
can be determined as follows:

πΘ(θtε) = arg max
θ∈Θε∩θtε

πΘ(θ |D). (4.36)

Thus, the highest degree of support π(1|t) can be given to t over the hypothesis region
Θε can be approximated as

πε(1|t) = min
(
2θtε(t)− 1, πΘ(θtε |D)

)
(4.37)

To this end, we obtain an estimate of π(1|t) as follows

π(1|t) = arg max
ε∈[0,1]

πε(1|t). (4.38)

Let us notice that at the beginning, we always have that πΘ(θt0 |D) ≥ 2θt0(t) − 1.
This observation is quite interesting for making an early stopping criteria (as the
optimization problem (4.36) could be expensive due to large number of variables)
that is to continually increase ε (from 0 to 1) as long as πΘ(θtε |D) ≥ 2θtε(t)− 1 and
stop as soon as the side is reversed, i.e, when seeing ε′ s.t πΘ(θt

ε′
|D) ≤ 2θt

ε′
(t) − 1.

The intuitive idea of this criteria is that when seeing a reverse, we are quite sure that
we just already jumped over the crossing point, i,e, the optimal solution θt s.t

π(1|t) = πΘ(θt |D) = 2θt(t)− 1,

Thus, simply approximating π(1|t) = πε(1|t) could give a close estimate. Readers
interested in more accurate approximations are recommended to do a further search
within the region [ε, ε′].

Following a similar manner, we find an estimate of π(0|t) s.t

π(0|t) = arg max
ε∈[0,1]

πε(0|t). (4.39)

4.2. Active learning 93

In practice, we evaluate Eqs. (4.38) and (4.39) on uniform discretizations of cardinality
200 of [0, 1].

4.2 Active learning

In this proposal, we advocate a distinction between two different types of uncertainty,
referred to as epistemic and aleatoric, in the context of active learning. We conjecture
that, in uncertainty sampling, the usefulness of an instance is better reflected by its
epistemic than by its aleatoric uncertainty. This leads us to suggest the principle of
epistemic uncertainty sampling, which we instantiate by means of a concrete approach
for measuring epistemic and aleatoric uncertainty.

4.2.1 Related methods

In this section, we recall the setting of uncertainty sampling and present two recent
approaches that are related to our work in that they also distinguish different sources
of uncertainty.

Uncertainty sampling

As usual in active learning, we assume to be given a labelled set of training data D =
{(xn, yn)}Nn=1 and a pool of unlabeled instances U = {(tt, ?)}Tt=1 that can be queried
by the learner. Instances are represented as features vectors xn =

(
x1
n, . . . , x

P
n

)
∈ X =

RP . In this proposal, we only consider the case of binary classification, where labels yn
are taken from Y = {0, 1}, leaving the more general case of multi-class classification
for future work.

In uncertainty sampling, instances are queried in a greedy fashion. Given the
current model θ that has been trained on D, each instance t in the current pool U is
assigned a utility score s(θ, t), and the next instance to be queried is the one with the
highest score [55, 80, 81, 85]. The chosen instance is labelled (by an oracle or expert)
and added to the training data D, on which the model is then re-trained. The active
learning process for a given budget B (i.e, the number of unlabelled instances to be
queried) is summarized in Algorithm 18.

Algorithm 18: Uncertainty sampling
Input: U, D, θ- initial pool, training data, classifier, and B-budget
Output: U, D, θ - updated pool, training data, classifier

1 initialize b = 0;
2 while b < B do
3 foreach t ∈ U do
4 compute s(θ, t)

5 query the label of the optimal instance t∗ with respect to s(θ, t)
D = D ∪ {t∗, y∗} ;

6 U = U \ {t∗, y∗} ;
7 train θ from D;
8 b = b+ 1;

9 Return U, D, θ;

94 Chapter 4. Epistemic uncertainty for active learning and cautious inferences

Assuming a probabilistic model producing predictions in the form of probability
distributions pθ(· | t) on Y, the utility score is typically defined in terms of a mea-
sure of uncertainty. Thus, instances on which the current model is highly uncertain
are supposed to be maximally informative [80, 81, 85]. Popular examples of such
measures include

– the entropy:

s(θ, t) = −
∑
y∈Y

pθ(y | t) log pθ(y | t) , (4.40)

– the least confidence:

s(θ, t) = 1−max
y∈Y

pθ(y | t) , (4.41)

– the smallest margin:

s(θ, t) = pθ(ym | t)− pθ(yn | t) , (4.42)

where ym = arg maxy∈Y pθ(y | t) and yn = arg maxy∈Y\ym pθ(y | t).

While the first two measures ought to be maximized, the last one has to be minimized.
In the case of binary classification, i.e, Y = {0, 1}, all these measures rank unlabelled
instances in the same order and look for instances with small difference between
pθ(0 | t) and pθ(1 | t).

Evidence-based uncertainty sampling

In their evidence-based uncertainty sampling approach [85], the authors propose to
differentiate between conflicting-evidence uncertainty and insufficient-evidence uncer-
tainty. The corresponding measures are specifically tailored for the Naive Bayes clas-
sifier as a learning algorithm.

In the spirit of the Naive Bayes predictor, evidence-based uncertainty sampling
first looks at the influence of individual features tp in the feature representation
t = (t1, . . . , tP) of instances. More specifically, given the current model θ, denote
by pθ(tp | 0) and pθ(tp | 1) the class-conditional probabilities on the values of the pth

feature. For a given instance t, the set of features is partitioned into those that provide
evidence for the positive and for the negative class, respectively:

Pθ(t) :=

{
tp
∣∣∣∣ pθ(tp | 1)

pθ(tp | 0)
> 1

}
, (4.43)

Nθ(t) :=

{
tp
∣∣∣∣ pθ(tp | 0)

pθ(tp | 1)
> 1

}
. (4.44)

Then, the total evidence for the positive and the negative class is determined as
follows:

E1(t) =
∏

tp∈Pθ(t)

pθ(t
p | 1)

pθ(tp | 0)
, (4.45)

E0(t) =
∏

tp∈Nθ(x)

pθ(t
p | 0)

pθ(tp | 1)
. (4.46)

4.2. Active learning 95

The conflicting evidence-based approach simply queries the instance with the highest
conflicting evidence, while the insufficient evidence-based approach looks for the one
with the highest insufficient evidence:

t∗conf = arg max
t∈S

(
E1(t)× E0(t)

)
, (4.47)

t∗insu = arg min
t∈S

(
E1(t)× E0(t)

)
. (4.48)

Note that the selection is restricted to the set S of top high uncertain instances, i.e.,
those instances t in the pool U having a high score s(θ, t) according to standard
uncertainty sampling. This ensures that the evidences for the two classes, E0(t) and
E1(t), are close to each other. Then, a high conflicting evidence (4.47) captures the
case where the evidences are close and both of large magnitude. In other words, it
refers to the situation where a model is highly uncertain about an instance, and has
strong but conflicting evidence for both classes. On the other hand, a high insufficient-
evidence uncertainty (4.48) refers to the case where a model is highly uncertain about
an instance because of not having enough evidence for either class.

Note, however, that this line of reasoning neglects the influence of the prior class
probabilities, which is especially relevant in the case of imbalanced class distributions.
In such cases, evidence-based uncertainty may strongly deviate from standard uncer-
tainty, i.e., the entropy of the posterior distribution. For instance, E0(t) and E1(t)
could both be very large, and pθ(t | 0) ≈ pθ(t | 1), although pθ(0 | t) is very differ-
ent from pθ(1 | t) due to unequal prior odds, and hence the entropy small. Likewise,
the entropy of the posterior can be large although both evidence-based uncertainties
are small.

Credal uncertainty sampling

Credal uncertainty sampling [3] is another approach that seeks to differentiate between
the reducible and irreducible part of the uncertainty. Denote by C ⊆ Θ a credal set
of models, i.e., a set of plausible candidate models. We say that a class y dominates
another class y′ if y is more probable than y′ for each distribution in the credal set,
that is

s(y, y′, t) := inf
θ∈C

pθ(y | t)
pθ(y′ | t)

> 1 . (4.49)

The credal uncertainty sampling approach simply looks for the instance t with the
highest uncertainty, i.e, the least evidence for the dominance of one of the classes. In
the case of binary classification with Y = {0, 1}, this is expressed by the score

s(t) = −max
(
s(1, 0, t), s(0, 1, t)

)
. (4.50)

Practically, the computations are based on the interval-valued probabilities, denoted
by [p

C
(y | t), pC(y | t)], assigned to each class y ∈ Y, where

p
C

(y | t) := inf
θ∈C

pθ(y | t) , pC(y | t) := sup
θ∈C

pθ(y | t) . (4.51)

Such interval-valued probabilities can be produced within the framework of the Naive
credal classifier [2, 3, 23, 103]. In the case of binary classification, where pθ(0 | t) =

96 Chapter 4. Epistemic uncertainty for active learning and cautious inferences

1− pθ(1 | t), the score s(1, 0, t) can be rewritten as follows:

s(1, 0, t) = inf
θ∈C

pθ(1 | t)
pθ(0 | t)

= inf
θ∈C

pθ(1 | t)
1− pθ(1 | t)

=
p
C

(1 | t)
1− p

C
(1 | t)

(4.52)

Likewise,

s(0, 1, t) = inf
θ∈C

pθ(0 | t)
pθ(1 | t)

= inf
θ∈C

1− pθ(1 | t)
pθ(1 | t)

=
1− pC(1 | t)
pC(1 | t)

. (4.53)

Finally, the uncertainty score (4.50) can simply be expressed as follows:

s(t) = −max

(
p
C

(1 | t)
1− p

C
(1 | t)

,
1− pC(1 | t)
pC(1 | t)

)
(4.54)

4.2.2 Principle of our method

Let us remind that, aleatoric uncertainty is due to the influences on the data-generating
process that are inherently random, whereas the epistemic uncertainty is caused by
a lack of knowledge. Or, stated differently, ue and ua, respectively defined in (4.6)
and (4.7), measure the reducible and the irreducible part of the total uncertainty, re-
spectively. It thus appears reasonable to assume that epistemic uncertainty is more
relevant for active learning: while it makes sense to query additional class labels in
regions where uncertainty can be reduced, doing so in regions of high aleatoric uncer-
tainty appears to be less reasonable.

This leads us to the principle of epistemic uncertainty sampling, which prescribes
the selection

t∗ = arg max
t∈U

ue(t) . (4.55)

For comparison, we will also consider an analogous selection rule based on the aleatoric
uncertainty, i.e.,

t∗ = arg max
t∈U

ua(t) , (4.56)

as well the toal uncertainty:

t∗ = arg max
t∈U

(ue(t) + ua(t)) . (4.57)

Note that the latter is closest to standard uncertainty sampling, where the entire
uncertainty is quantified in a single measure.

Let us remind that the above approach is completely generic and can in principle
be instantiated with any hypothesis space Θ. The uncertainty measures (4.6–4.7) can
be derived very easily from the support degrees (4.2–4.3). The computation of the
latter may become difficult, however, as it requires the solution of an optimization
problem, the properties of which depend on the choice of Θ (as studied in Sections
4.1.2-4.1.4).

Comparison with the evidence-based uncertainty sampling

Although the concepts of conflicting evidence and insufficient evidence of Sharma &
Bilgic [85] appear to be quite related, respectively, to aleatoric and epistemic uncer-
tainty, the correspondence becomes much less obvious (and in fact largely disappears)

4.2. Active learning 97

upon a closer inspection. Besides, a direct comparison is complicated due to various
technical issues with their evidence-based approach. In particular, we will subse-
quently ignore the preselection of top high uncertain instances (i.e., the set S) in
evidence-based uncertainty sampling, so as to separate the effect of their measures
from standard entropy.

As a first important observation, note that the evidences E1(t) and E0(t) solely
depend on the relation of the class-conditional probabilities pθ(tp | 1) and pθ(t

p | 0),
which hides the number of training examples they have been estimated from, and
hence their confidence. The latter, however, has an important influence on whether
we qualify something as aleatorically or epistemically uncertain. As an illustration,
consider a simple example with two binary attributes, the first with domain {a1, a2}
and the second with domain {b1, b2}. Denote by ni,j = (n+

i,j , n
−
i,j) the number of

positive and negative example observed for (t1, t2) = (ai, bj). Here are three scenarios:

b1 b2
a1 (1, 1) (1, 1)
a2 (1, 1) (1, 1)

b1 b2
a1 (100, 100) (100, 100)
a2 (100, 100) (100, 100)

b1 b2
a1 (1, 1) (10, 1)
a2 (1, 10) (1, 1)

In the first two scenarios, the insufficient evidence would be high, because all class-
conditional probabilities are equal. In our approach, however, the first scenario would
largely be a case of epistemic uncertainty, due to the few number of training ex-
amples, whereas the second would be aleatoric, because the equal posteriors4 are
sufficiently confirmed.

Similar remarks apply to conflicting evidence. In the third scenario, the latter
would be high for (a1, b1), because pθ(a1 | 1) � pθ(a1 | 0) and pθ(b1 | 0) � pθ(b1 | 1).
The same holds for (a2, b2), whereas the uncertainties for (a1, b2) and (a2, b1) would be
low. Note, however, that in all these cases, exactly the same conditional probability
estimates pθ(tp | 1) and pθ(tp | 0) are involved.

We would argue that the epistemic uncertainty should directly refer to these prob-
abilities, because they constitute the parameter θ of the model. Thus, to reduce the
epistemic uncertainty (about the right model θ), one should look for those examples
that will mostly improve the estimation of these probabilities. Aleatoric uncertainty
may occur in cases of posteriors close to 1/2, in which case the conflicting evidence
may indeed be high (although, as already mentioned, the latter ignores the class pri-
ors). Yet, we would not necessarily call such cases a conflict, because the predictions
are completely in agreement with the underlying model (Naive Bayes), which assumes
class-conditional independence of attributes, i.e., an independent combination of evi-
dences on different attributes.

Comparison with the credal uncertainty sampling

Credal uncertainty sampling seems to be closer to our approach, at least in terms of
the underlying principle. In both approaches, the model uncertainty is captured in
terms of a set of plausible candidate models from the underlying hypothesis space,
and this (epistemic) uncertainty about the right model is translated into uncertainty
about the prediction for a given t. In the credal uncertainty sampling, the candidate
set is given by the credal set C, which corresponds to the distribution πΘ(θ |D) in our
approach–as a difference, we thus note that ours is a graded set, to which a candidate θ
belongs with a certain degree of membership (the relative likelihood), whereas a credal
set is a standard set in which a model is either included or not. Using machine learning

4The class priors are ignored here.

98 Chapter 4. Epistemic uncertainty for active learning and cautious inferences

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

Figure 4.2: From left to right: Exponential rescaling of the credal un-
certainty measure, epistemic uncertainty and aleatoric uncertainty for
interval probabilities with lower probability (x-axis) and upper prob-

ability (y-axis). Lighter colors indicate higher values.

terminology, C plays the role of a version space [63], whereas πΘ(θ |D) represents a
kind of generalized (graded) version space.

More specifically, the wider the interval [p
C

(1 | t), pC(1 | t)] in (4.54), the larger the
score s(t), with the maximum being obtained for the case [0, 1] of complete ignorance.
This is well in agreement with our degree of epistemic uncertainty. In the limit,
when [p

C
(1 | t), pC(1 | t)] reduces to a precise probability pθ(1 | t), i.e., the epistemic

uncertainty disappears, (4.54) is maximal for pθ(1 | t) = 1/2 and minimal for pθ(1 | t)
close to 0 or 1. Again, this behavior is in agreement with our conception of aleatoric
uncertainty. More generally, comparing two intervals of the same length, (4.54) will
be larger for the one that is closer to the middle point 1/2. Thus, it seems that the
credal uncertainty score (4.54) combines both epistemic and aleatoric uncertainty in
a single measure.

Yet, upon closer examination, its similarity to our measure of epistemic uncer-
tainty is much higher than the similarity to aleatoric uncertainty. Note that, for
our approach, the special case of a credal set C can me imitated with the measure
πΘ(θ |D) = 1 if θ ∈ C and πΘ(h)(θ |D) = 0 if θ 6∈ C. Then, (4.2) and (4.3) become

π(1 | t) = sup
θ∈C

max[2 pθ(1 | t)− 1, 0] = max[2 pC(1 | t)− 1, 0] ,

π(0 | t) = sup
θ∈C

max[2 pθ(0 | t)− 1, 0] = max[1− 2 p
C

(1 | t), 0] ,

and ue and ua can be derived from these values as before. Figure 4.2 shows a graphical
illustration of the credal uncertainty score5 (4.54) as a function of the probability
bounds p

C
and pC , and the same illustration is given for epistemic uncertainty ue and

aleatoric uncertainty ua. From the visual impression, it is clear that the credibility
score closely resembles ue, while behaving quite differently than ua. This impression
is corroborated by a simple correlation analysis, in which we ranked the intervals

[p
C
, pC] ∈

{
Ia,b =

[
a

100
,
b

100

] ∣∣∣ a, b ∈ {0, 1, . . . , 100}, a ≤ b
}
,

i.e., a quantization of the class of all probability intervals, according to the different
measures, and then computed the Kendall rank correlation. While the ranking ac-
cording to (4.54) is strongly correlated with the ranking for ue (Kendall is around
0.86), it is almost uncorrelated with ua.

5The score s is not well scaled, and may assume very large negative values. For better visibility,
we therefore plotted the monotone transformation exp(s).

4.2. Active learning 99

name # instances # features attributes
1 parkinsons 197 22 real
2 vertebral-column 310 6 real
3 ionosphere 351 34 real
4 climate-model 540 18 real
5 breast-cancer 569 30 real
6 blood-transfusion 748 5 real
7 banknote-authentication 1372 4 real

Table 4.1: Data set used in the experiments

In summary, the credal uncertainty score appears to be quite similar to our measure
of epistemic uncertainty. As potential advantages of our approach, let us mention
the following points. First, our degree is normalized and bounded, and thus easier
to interpret. Second, it is complemented by a degree of aleatoric uncertainty—the
two degrees are carefully distinguished and have a clear semantics. Third, handling
candidate models in a graded manner, and modulating their influence according to
their plausibility, appears to be more reasonable than creating an artificial separation
into plausible and non-plausible models (i.e., the credal set and its complement).

4.2.3 Experimental evaluation

Some experiments are conducted to illustrate the performance of our uncertainty
measures in active learning. Our main concern here is how fast different uncertainty
sampling approaches improve the performance of classifiers and restrict ourselves to
three classical models that are the local model, the logistic regression and the Naive
Bayes classifier.

Local method

Data sets and experimental setting

We perform experiments on data sets from the UCI repository whose descriptions are
given in Table 4.1. We follow a 5 × 5-fold cross-validation procedure: each data set
is randomly split into 5 folds. Each fold is in turn considered as the test set, while
the other folds are used for learning. The latter is randomly split into a training data
set and a pool set. The proportions of (training, pool, test) sets are (20%, 60%, 20%).
The whole procedure is repeated 5 times, and accuracies are averaged. The budget
of the active learner is fixed to be the length of the pool, and the performance of the
classifiers is monitored over the entire learning process.

After each query, we update the data sets and, correspondingly, the classifiers. The
improvements of the classifiers are compared for four different uncertainty measures,
i.e., uncertainty sampling (following the strategy presented in Algorithm 18) based
on four measures for selecting unlabelled instances: standard uncertainty (4.41), epis-
temic uncertainty (4.6), aleatoric uncertainty (4.7), total of epistemic and aleatoric
uncertainty (4.57).

We also evaluate how quickly the querying procedure will be able to fill the low
density regions. To this end, we measure the maximal distance between testing in-
stances and their nearest neighbours.

Experimental results

100 Chapter 4. Epistemic uncertainty for active learning and cautious inferences

Experiments were conducted for two values of the width ε, corresponding to neigh-
borhood sizes K = 4 and K = 8. These can be considered as a small and large width
of the Parzen window. Since the results are very similar, we only present those for
the case K = 8.

As it can be seen in Figure 4.3, the results are nicely in agreement with our
expectations: the epistemic uncertainty sampling performs the best and the aleatoric
uncertainty sampling the worst. Moreover, the standard uncertainty sampling is in-
between the two, very similar to total uncertainty (aleatoric plus epistemic). This
supports our conjecture that, from an active learning point of view, the epistemic
uncertainty is the more useful information. Even if the improvements compared to
standard uncertainty sampling are not huge, they are still visible and quite consistent.

Figure 4.4 also shows that the epistemic uncertainty sampling achieves the best
coverage of the instance space, measured in terms of the maximal distance between
testing instances and their nearest neighbours. As expected, the aleatoric uncertainty
is again the worst, and standard uncertainty sampling is in-between.

0 25 50 75 100
0.66

0.71

0.76

0.81

(a) parkinsons

0 30 60 90 120 150 180
0.56

0.61

0.66

0.71

(b) vertebral

0 30 60 90 120 150 180 210
0.64

0.65

0.67

0.68

(c) ionosphere

0 50 100 150 200 250 300
0.74

0.79

0.84

0.89

(d) climate

0 50 100 150 200 250 300
0.7

0.73

0.76

0.8

(e) breast

0 70 140 210 280 350 420
0.57

0.62

0.67

0.73

(f) blood

0 130 260 390 520 650 780
0.84

0.89

0.93

0.97

(g) banknote

Epis Alea

EpAl Stan

(h) methods

Figure 4.3: Average accuracies (y-axis) over 5×5-folds for the Parzen
window classifier (K = 8) as a function of the number of examples

queried from the pool (x-axis).

4.2. Active learning 101

0 25 50 75 100
0.87

1.01

1.15

1.29

(a) parkinsons

0 30 60 90 120 150 180
0.47

0.5

0.53

0.56

(b) vertebral

0 30 60 90 120 150 180 210
2.47

2.5

2.54

2.58

(c) ionosphere

0 50 100 150 200 250 300
1.27

1.32

1.37

1.42

(d) climate

0 50 100 150 200 250 300
1.07

1.12

1.17

1.23

(e) breast

0 70 140 210 280 350 420
0.24

0.31

0.38

0.45

(f) blood

0 130 260 390 520 650 780
0.12

0.15

0.17

0.2

(g) banknote

Epis Alea

EpAl Stan

(h) methods

Figure 4.4: Average maxmin distances (y-axis) over 5 × 5-folds for
the Parzen window classifier (K = 8) as a function of the number of

examples queried from the pool (x-axis).

102 Chapter 4. Epistemic uncertainty for active learning and cautious inferences

Logistic regression

Data sets and experimental setting

We perform experiments on the same UCI data sets as before (cf. Table 4.1). To
avoid the relatively strong bias imposed by the linear model assumption, we start
with a very small amount of initial training data, thereby making improvements in
the beginning more visible. We conduct a 10×3-fold cross validation procedure: each
data set is split into 3 folds. Each fold is in turn considered as the learning set, while
other folds are used for testing. The learning set is randomly split into a training data
set and a pool set. The proportions of (training, pool, test) set are (1%, 32%, 67%).
The whole procedure is repeated 10 times, and the accuracies are averaged. Similar
to the case of the local learning, we fix the budget to be the length of the pool.

In addition to accuracy, we monitor the convergence of the ML estimate θ̂ toward
the best model θ∗. Since the latter is not known, we use the parameter that would
have been learned on the entire data as a surrogate. More specifically, we measure the
convergence in terms of the Euclidean distance ‖θ̂−θ∗‖, and average over a sufficiently
large number of repetitions to smooth the curves.

As before, the uncertainty sampling (Algorithm 18) is instantiated with four mea-
sures for selecting unlabelled instances: standard uncertainty (4.41), epistemic un-
certainty (4.6), aleatoric uncertainty (4.7), and the sum of epistemic and aleatoric
uncertainty (4.57). This time, we also include the conflicting-evidence (Conf) and
insufficient-evidence (Insu) measures by Sharma & Bilgic [85]6. Let us remind that
these measures are tailored for Naive Bayes as a classifier. Yet, in contrast to the case
of local learning, a comparison is now meaningful, because both linear regression and
Naive Bayes construct a linear decision boundary.

Experimental results

As can be seen in Figure 4.5, the epistemic uncertainty sampling does again perform
quite well in comparison to the others, except on the ionosphere data. Moreover,
it achieves the overall best convergence to the best model, as shown in Figure 4.6.
Furthermore, in Figure 4.6, it is clear that the improvements provided by difference
uncertain measure are well-fitted to our expectation that epistemic and aleatoric un-
certainty sampling provide, respectively, the best and the least improvement while
the classical uncertainty sampling and the total of epistemic and aleatoric uncer-
tainty provide something in between. Finally, no general pattern has been drawn for
evidence-based uncertain measures.

Compared with the case of local learning, however, the improvements in compar-
ison to standard uncertainty sampling are now smaller, and sometimes completely
disappear. This is arguably due to the relatively strong bias imposed by the linear
model assumption: Although we initialize with a comparatively small set of training
data, the learning curves converge quite quickly (in the case of climate and blood,
there is almost no improvement at all). In other words, the linear model is more or
less fixed from the beginning, so that it becomes difficult for any sampling strategy
to make a real difference.

6For better comparison, we use the measures in a pure form, that is, without using the high
uncertainty criterion as a pre-filter. Thus, we seek to avoid mixing the effect of their measures with
standard entropy.

4.2. Active learning 103

0 7 14 21 28 35 42 49 56 63
0.68

0.74

0.79

0.85

(a) parkinsons

0 12 24 36 48 60 72 84 96
0.67

0.7

0.72

0.75

(b) vertebral

0 16 32 48 64 80 96 112
0.4

0.55

0.7

0.85

(c) ionosphere

0 19 38 57 76 95 114 133 152 171
0.91

0.92

(d) climate

0 20 40 60 80 100 120 140 160 180
0.5

0.65

0.8

0.95

(e) breast

0 25 50 75 100 125 150 175 200 225
0.7

0.72

0.75

0.77

(f) blood

0 70 140 210 280 350 420
0.5

0.66

0.81

0.97

(g) banknote

Epis Alea

EpAl Stan

Conf Insu

(h) methods

Figure 4.5: Average accuracies (y-axis) over 10× 3-folds for logistic
regression as a function of the number of examples queried from the

pool (x-axis).

104 Chapter 4. Epistemic uncertainty for active learning and cautious inferences

0 7 14 21 28 35 42 49 56 63
0

0.8

1.6

2.4

(a) parkinsons

0 12 24 36 48 60 72 84 96
0

0.85

1.7

2.55

(b) vertebral

0 16 32 48 64 80 96 112
0

1.3

2.6

3.9

(c) ionosphere

0 19 38 57 76 95 114 133 152 171
0

1.26

2.52

3.78

(d) climate

0 20 40 60 80 100 120 140 160 180
0

1.8

3.6

5.4

(e) breast

0 25 50 75 100 125 150 175 200 225
0

0.95

1.9

2.85

(f) blood

0 70 140 210 280 350 420
0

3

6

9

(g) banknote

Epis Alea

EpAl Stan

Conf Insu

(h) methods

Figure 4.6: Average distances (y-axis) over 10 × 3-folds for logistic
regression as a function of the number of examples queried from the

pool (x-axis).

4.2. Active learning 105

Naive Bayes

Data sets and experimental setting

We perform experiments on the first two small data sets described in the Table 4.1.
Similarly to the case of logistic regression, we start with a very small amount of
initial training data, thereby making improvements in the beginning more visible.
We conduct a 10 × 3-fold cross validation procedure: Each data set is split into 3
folds. The learning set is randomly split into a training data set and a pool set. The
proportions of (training, pool, test) set are (5%, 28%, 67%). The whole procedure
is repeated 10 times, and the accuracies are averaged. We fix the budget to be the
length of the pool. Let us note that we start from a slightly larger training data to
reduce the effect of the zero frequency problem which could present unexpected effects
when assessing the improvements provided by the methods.

In addition to accuracy, we monitor the convergence of the Kullback–Leibler di-
vergence (KL divergence) of θ̂ toward the best model θ∗. Since the latter is not known,
we use the parameter that would have been learned on the entire data as a surrogate.
More specifically, we measure convergence in terms of DKL(θ∗ ‖ θ̂), which is often
called the information gain achieved if θ̂ is used instead of θ∗, such that:

DKL(θ∗ ‖ θ̂) = −
∑
i

θ∗(i) ln

(
θ̂(i)

θ∗(i)

)
.

As before, uncertainty sampling (Algorithm 18) is instantiated with six measures
for selecting unlabelled instances: standard uncertainty (4.41), epistemic uncertainty
(4.6), aleatoric uncertainty (4.7), the sum of epistemic and aleatoric uncertainty (4.57),
the conflicting-evidence (Conf) and insufficient-evidence (Insu) measures by Sharma
& Bilgic [85]. In addition, we employ the credal uncertainty sampling (Credal), which
shares similar purpose with our interests and is applicable for Naive Bayes, to select
unlabelled instances.

Experimental results

As can be seen in Figure 4.7-4.8, there are very similar improvements provided by four
methods: standard uncertainty (4.41), epistemic uncertainty (4.6), aleatoric uncer-
tainty (4.7), the sum of epistemic and aleatoric uncertainty (4.57). The evidence-based
methods and credal uncertainty sampling (Credal) appear less effective in this test.

We think that these behaviors could be due to the presence of zero frequencies.
For instance, if we see zero frequencies when assessing an instance t, (4.33) implies
that the probabilities assigned for both classes are close to 0.5. On the other hand,
the plausible hypotheses tend to assign for t the conditional probabilities around 0.5.
Consequently, (4.19) and (4.20) suggest that the degrees of support for both classes
are close to zero, i.e, a high degree of aleatoric uncertainty.

We thus derive a hypothesis that zero frequency problem have introduced another
kind of uncertainty (lack of knowledge on the unobserved parameters θp,tp1 and θp,tp0)
that will be preferred by both the standard uncertainty (4.41) and aleatoric uncer-
tainty (4.7). In contrast, the epistemic uncertainty (4.6) is interested in the lack of
knowledge on some observed parameters. How to effectively investigate such situations
is not obvious, we thus leave it as an open problem.

106 Chapter 4. Epistemic uncertainty for active learning and cautious inferences

0 7 14 21 28 35 42 49 56
0.77

0.79

0.82

0.84

(a) parkinsons

0 12 24 36 48 60 72 84
0.67

0.71

0.74

0.78

(b) vertebral

Epis Alea

EpAl Stan

Conf Insu

Credal

(c) methods

Figure 4.7: Average accuracies (y-axis) over 10 × 3-folds for Naive
Bayes as a function of the number of examples queried from the pool

(x-axis).

0 7 14 21 28 35 42 49 56
0

33

66

99

(a) parkinsons

0 12 24 36 48 60 72 84
0

6.5

13

19.5

(b) vertebral

Epis Alea

EpAl Stan

Conf Insu

Credal

(c) methods

Figure 4.8: Average KL divergence (y-axis) over 10 × 3-folds for
Naive Bayes as a function of the number of examples queried from the

pool (x-axis).

4.3. Cautious inference 107

4.3 Cautious inference

This section presents a method for reliable prediction in multi-class classification,
where the reliability refers to the possibility of partial abstention in cases of uncer-
tainty. More specifically, we allow for predictions in the form of preorder relations
on the set of classes, thereby generalizing the idea of set-valued predictions. Our ap-
proach relies on combining learning by pairwise comparison with the distinction made
between reducible (a.k.a. epistemic) uncertainty caused by a lack of information and
irreducible (a.k.a. aleatoric) uncertainty due to intrinsic randomness. The problem
of combining uncertain pairwise predictions into a most plausible preorder is then
formalized as an integer programming problem. This inference procedure is inspired
by the belief functions-based approach proposed recently by Masson et al. [58].

4.3.1 Principle of our method

We are going to present our approach to reliable multi-class prediction, which is based
on the idea of binary decomposition and a stepwise simplification (approximation) of
the information contained in the set of pairwise comparisons between classes—first in
terms of a preorder and then in terms of a set.

Learning by Pairwise Comparison

In the multi-class classification setting, we are dealing with a set of M > 2 classes
Y = {y1, . . . , yM}. Suppose a set of training data D = {(xn, yn)}Nn=1 to be given, and
denote by Dm = {xn | (xn, ym) ∈ D} the observations from class ym.

Learning by pairwise comparison (LPC) a.k.a. all-pairs is a decomposition tech-
nique that trains one (binary) classifier θi,j for each pair of classes (yi, yj), 1 ≤ i < j ≤
M [36]. The task of θi,j , which is trained on Di,j = Di ∪Dj , is to separate instances
with label yi from those having label yj . Suppose we solve these problems with the
approach described in the previous section, instead of using a standard binary classi-
fier. Then, given a new query instance t ∈ X , we can produce predictions in the form
of a quadruple

Ii,j(t) :=
(
si,jyi (t), si,jyj (t), ui,je (t), ui,ja (t)

)
, (4.58)

one for each pair of classes (yi, yj). These predictions can also be summarized in three
[0, 1]M×M relations, a (strict) preference relation P , an indifference relation A, and
an incomparability relation E:

P =
(
si,jyi (t)

)
i,j
, A =

(
ui,ja (t)

)
i,j
, E =

(
si,je (t)

)
i,j

Let us note that, in our approach, predictions are always derived per instance, i.e., for
an individual query instance t. Likewise, all subsequent inference steps are tailored
for that instance. Keeping this in mind, we will henceforth simplify notations and
often omit the dependence of scores and relations on t.

Inferring a preorder

The structure (P,A,E) provides a rich source of information, which we seek to rep-
resent in a condensed form. To this end, we approximate this structure by a preorder
R. This approximation may also serve the purpose of correction, since the relational
structure (P,A,E) is not necessarily consistent; for example, since all binary classifiers
are trained independently of each other, their predictions are not necessarily transitive.

108 Chapter 4. Epistemic uncertainty for active learning and cautious inferences

Recall that a preorder is a binary relation R ⊆ Ω × Ω that is reflexive. In the
following, we will also use the following notation:

yi �R yj (or simply yi � yj) if ri,j = 1, rj,i = 0 ,

yi ∼R yj (or simply yi ∼ yj) if ri,j = 1, rj,i = 1 ,

yi ⊥R yj (or simply yi⊥ yj) if ri,j = 0, rj,i = 0 ,

where ri,j = 1 if (yi, yj) ∈ R and ri,j = 0 if (yi, yj) 6∈ R. Note that the binary relations
�, ∼, ⊥ are in direct correspondence with the relations P , A, and E, respectively.

How compatible is a relation R with a structure (P,A,E)? Interpreting the scores
(4.58) as probabilities, we could imagine that a relation R is produced by randomly
“hardening” the soft (probabilistic) structure (P,A,E), namely by selecting one of the
relations yi � yj , yj � yi, yi ∼ yj , yi⊥ yj with probability si,jyi , s

i,j
yj , u

i,j
a , and ui,je ,

respectively. Then, making a simplifying assumption of independence, the probability
of ending up with R is given as follows:

p(R) =
∏

yi�Ryj

si,jyi

∏
yj�Ryi

si,jyj

∏
yi⊥R yj

ui,je
∏

yi∼Ryj

ui,ja (4.59)

The most probable preorder R∗ then corresponds to

R∗ = arg max
R∈R

p(R) , (4.60)

where R is the set of all preorders on Y.
Let us now propose a practical procedure to determine R∗, which is based on

representing the optimization problems (4.60) as a binary linear integer program. To
this end, we introduce the following variables:

X1
i,j = ri,j(1− rj,i), X2

i,j =rj,i(1− ri,j), X3
i,j = (1− ri,j)(1− rj,i), X4

i,j = ri,jrj,i.

Then, by adding the constraints
∑4

l=1X
l
i,j = 1 and X l

i,j ∈ {0, 1}, we can rewrite the
probability (4.59) as follows:

p(R) =
∏
i<j

(
si,jλi
)X1

i,j
(
si,jλj
)X2

i,j
(
ui,je
)X3

i,j
(
ui,ja
)X4

i,j (4.61)

Furthermore, the transitivity property

ri,k + rk,j − 1 ≤ ri,j , ∀ i 6= j 6= k. (4.62)

can easily be encoded by noting that ri,j = X1
i,j +X4

i,j and ri,j = X2
j,i +X4

j,i if i < j
and j < i, respectively.

Altogether, the most probable preorderR∗ ∈ R is determined byX∗ = (X1
i,j , . . . , X

4
i,j)i,j ,

which is the solution of the following optimization problem:

max
∑
i<j

X1
i,j ln

(
si,jλi
)

+X2
i,j ln

(
si,jλj
)

+X3
i,j ln

(
ui,je
)

+X4
i,j ln

(
ui,ja
)

(4.63)

s.t.
4∑
l=1

X l
i,j = 1, ∀ 1 ≤ i < j ≤M ,

X1
i,j , X

2
i,j , X

3
i,j , X

4
i,j ∈ {0, 1}, ∀ 1 ≤ i < j ≤M ,

ri,k + rk,j − 1 ≤ ri,j , ∀ i 6= j 6= k .

4.3. Cautious inference 109

1

2
3

4

5

Figure 4.9: Preorder induced by Example 18 (strict preference sym-
bolized by directed edge, indifference by undirected edge, incompara-

bility by missing edge).

Note that if ui,je = 0 for all pairs, then the solution will be a complete preorder (in
which the binary relations are either ∼ or �) between class probabilities, which is
consistent with our interpretation. Similarly, if ui,ja = 0 and ui,je = 0 for all pairs, we
would obtain a linear ordering, as in [12].

Obtaining credible sets from R∗

Consider the preorder R∗ = R∗(t) for an unlabelled query instance t, and suppose we
seek a set-valued prediction θ(t) ⊆ Y. A reasonable way to obtain such a prediction
is to collect all non-dominated classes, i.e., to exclude only those classes yj for which
yi �R∗ yj for at least one competing class yi. A class label of that kind can be seen
as a potentially optimal prediction for t. Adopting the above notation, the set-valued
prediction can thus be determined as

θ(t) =

{
yi ∈ Y |

∑
j<i

X1
j,i +

∑
i<j

X2
i,j = 0

}
, (4.64)

which means that it can immediately be derived from the solution of (4.63). Note
that full uncertainty, i.e, θ(t) = Y, only occur if all pairs (yi, yj) are incomparable
or indifferent.

How to obtain a set-valued prediction from the pairwise information is illustrated
in the following example.

Example 18. Assume that we have the output space Y = {y1, . . . , y5} and pairwise
information (4.58) for an unlabelled instance t given by the following quadruples:

I1,2(t) = (0, 0.1, 0.6, 0.3), I1,3(t) = (0.6, 0, 0.1, 0.2),

I1,4(t) = (0.9, 0, 0.1, 0), I1,5(t) = (0.4, 0, 0.3, 0.3),

I2,3(t) = (0.6, 0, 0.2, 0.2), I2,4(t) = (0.7, 0, 0, 0.3),

I2,5(t) = (0.9, 0, 0, 0.1), I3,4(t) = (0.6, 0, 0.2, 0.2),

I3,5(t) = (0.9, 0, 0.1, 0), I4,5(t) = (0.05, 0.05, 0.4, 0.5).

Solving the optimization problem (4.63) gives the most probable preorder R∗ pictured
in Figure 4.9 with the corresponding value X∗ s.t. X3

1,2 = X1
1,3 = X1

2,3 = X1
3,4 =

X1
3,5 = X4

4,5 = 1. Finally, from (4.64) we get θ(t) = {1, 2}.

4.3.2 Experimental evaluation

This section presents some experimental results to assess the performance of our ap-
proach to reliable classification.

110 Chapter 4. Epistemic uncertainty for active learning and cautious inferences

name # instances # features # labels
a iris 150 4 3
b wine 178 13 3
c forest 198 27 4
d seeds 210 7 3
e glass 214 9 6
f ecoli 336 7 8
g libras 360 91 15
h dermatology 385 34 6
i vehicle 846 18 4
j vowel 990 10 11
k yeast 1484 8 12
l wine quality 1599 11 6
m optdigits 1797 64 10
n segment 2300 19 7
o wall-following 5456 24 4

Table 4.2: Data sets used in the experiments

Data sets and experimental setting

We perform experiments on 15 data sets from the UCI repository (cf. Table 4.2),
following a 10 × 10-fold cross-validation procedure. We compare the performance of
our method (referred to as PREORDER) with two competitors. To make the results
as comparable as possible, these methods are also implemented with pairwise learning
using a logistic regression classifier as base learner. Thus, they only differ in how
the pairwise information provided by the logistic regression is turned into a (reliable)
multi-class prediction.

• VOTE: The first method is based on aggregating pairwise predictions via stan-
dard voting, which is a common approach in LPC. However, instead of simple
weighted voting, we apply the more sophisticated aggregation technique pro-
posed in [46], which shows better performance. Note that, by predicting the
winner of the voting procedure, this approach always produces a precise predic-
tion.

• NONDET: As a baseline for set-valued predictions, we use the approach of
[22], which has been shown to exhibit competitive performance in compari-
son to other imprecise prediction methods [104]. Recall that this approach
produces nondeterministic predictions from precise probabilistic assessments.
This requires turning pairwise probability estimates into conditional probabili-
ties (pθ(y1 | t), . . . , pθ(yM | t)) on the classes, a problem known as pairwise cou-
pling. To this end, we apply the δ2 method, which performs best among those
investigated in [96].

Evaluation metrics for assessing set-valued predictions have to balance correctness
(the true class y is an element of the predicted set Y := θ(t)) and precision (size
of the predicted set) in an appropriate manner. For example, in [104], the authors
argue that using the simple discounted accuracy (1/|Y | if y ∈ Y and 0 otherwise) is
equivalent to saying that producing a set-valued prediction is the same as choosing
within this set (uniformly) at random. This means that the discounted accuracy does
not reward any cautiousness. Also, it can be shown that minimizing the expected
discounted accuracy in expectation would never lead to imprecise predictions [102].

4.3. Cautious inference 111

VOTE PREORDER NONDET
acc. u80 u65 u80 u65

a 84.33(3, 1) 90.45(1) 83.29(2) 86.71(2) 76.88(3)
b 96.35(1, 1) 95.89(2) 93.18(2) 93.47(3) 88.92(3)
c 89.76(2, 1) 92.15(1) 88.82(2) 88.49(3) 81.57(3)
d 88.81(3, 1) 92.15(1) 88.16(2) 90.03(2) 83.60(3)
e 47.14(3, 3) 67.32(1) 57.24(1) 65.03(2) 52.98(2)
f 75.57(3, 1) 80.66(1) 75.25(2) 77.02(2) 68.89(3)
g 50.50(3, 3) 70.51(1) 63.91(1) 62.50(2) 53.02(2)
h 96.43(2, 2) 97.70(1) 96.46(1) 96.01(3) 93.38(3)
i 63.99(3, 1) 71.07(1) 62.17(2) 68.92(2) 57.17(3)
j 39.57(3, 2) 51.10(1) 42.57(1) 48.22(2) 37.27(3)
k 49.35(3, 2) 60.60(2) 50.04(1) 60.84(1) 49.22(3)
l 58.10(3, 3) 69.65(2) 59.92(1) 71.02(1) 59.16(2)
m 96.37(3, 2) 97.67(1) 96.81(1) 96.85(2) 95.46(3)
n 84.51(3, 3) 91.87(1) 89.16(1) 90.01(2) 85.49(2)
o 68.69(3, 3) 76.42(2) 70.79(1) 77.34(1) 70.39(2)

aver. (u80, u65) u80 u65 u80 u65

rank (2.73, 1.93) 1.27 1.40 2.00 2.67

Table 4.3: Average utility-discounted accuracies (%)

Here, we therefore adopt the average utility-discounted accuracy measure, which has
been proposed and formally justified in [104]:

u(y, Y) =

 0 if y /∈ Y
φ1

|Y |
− φ2

|Y |2
otherwise

More specifically, we use the measures u65 with (φ1, φ2) = (1.6, 0.6) and u80 with
(φ1, φ2) = (2.2, 1.2). Note that, in the case of precise decisions, both u65 and u80

reduce to standard accuracy.

Experimental Results

The average performances in terms of the utility-discounted accuracies are shown
in Table 4.3, with ranks in parenthesis (note that we provide one set of ranks for
u65, and another one for u80). Firstly, we notice that PREORDER yields the best
average ranks over the 15 data sets, both for u80 and u65. Furthermore, a Friedman
test [24] on the ranks yields p-values of 0.0003138 and 0.002319 for u80 and u65,
respectively, thus strongly suggesting performance differences between the algorithms.
The Nemenyi post-hoc test (see Table 4.4) further indicates that PREORDER is
significantly better than VOTE regarding u80 and NONDET in the case of u65.
Since u80 rewards cautious predictions stronger than u65 does, it is not surprising
that indeterminate classifiers do better in this case. Yet, even when considering u65,
PREORDER remains competitive with VOTE. This suggests that it tends to be
more precise than NONDET, while still accurately recognizing those instances for
which we have to be cautious.

Ideally, an imprecise classifier should abstain (i.e., provide set-valued predictions)
on difficult cases, on which the precise classifier is likely to fail [101]. The goal of Figure

112 Chapter 4. Epistemic uncertainty for active learning and cautious inferences

H0 u80 u65

1 V = P 0.00017 0.3101
2 V = N 0.11017 0.1102
3 P = N 0.11017 0.0015

Table 4.4: Nemenyi post-hoc test: null hypothesis H0 and p-value

4.10(a,b) is to verify this ability. Figure 4.10(a) displays, for each data set, the percent-
age of times the true class is in the prediction of PREORDER, given the prediction
was imprecise, versus the accuracy of VOTE on those instances. Figure 4.10(b) does
the same for NONDET. Both imprecise classifiers achieve high percentages (> 80)
of correct partial predictions, while the corresponding percentages of VOTE vary in
a wider range. Also, the accuracy of the latter significantly drops on those instances
(for example, the average accuracy for data set g is 50% in Table 4.3, but drops to
less than 30% in Figure 4.10(a)), confirming that the imprecise classifiers do indeed
abstain on difficult cases. Finally, note that the points in Figure 4.10(a) are a bit
more to the left than those in Figure 4.10(b), again suggesting that PREORDER is
doing slightly better in recognizing difficult instances than NONDET.

For the two imprecise classifiers, we also compare the average proportion of par-
tial predictions and the average (normalized) size of the predictions when at least
one method produces a partial prediction. Figures 4.10(c) and 4.10(d) indicate that
NONDET produces more partial predictions of (slightly) larger size.

4.4 Conclusion

Yet the distinction between epistemic and aleatoric uncertainty has been increasingly
studied, a lack of efficient techniques to estimate these degrees of the uncertainty
seems to restrict its subsequent applications. We have proposed estimators for pop-
ular classifiers and used it to solve two machine learning problems: active learning
and cautious inference. Our general conclusion is that the distinction between epis-
temic and aleatoric uncertainty can indeed provide advantages for subsequent machine
learning applications.

4.4.1 Active learning

We reconsider the principle of uncertainty sampling in active learning from the per-
spective of uncertainty modeling. More specifically, it starts from the supposition
that, when it comes to the question of which instances to select from a pool of candi-
dates, a learner’s predictive uncertainty due to not knowing should be more relevant
than its uncertainty due to inherent randomness.

To corroborate this conjecture, we have proposed the epistemic uncertainty sam-
pling, in which standard uncertainty measures such as the entropy are replaced by a
novel measure of epistemic uncertainty. The latter is borrowed from a recent frame-
work for uncertainty modeling, in which the epistemic uncertainty is distinguished
from the aleatoric uncertainty [79]. In comparison to previous proposals based on
similar ideas, our approach is arguably more principled. Moreover, it is completely
generic and can be instantiated with any (probabilistic) classifier as a learning algo-
rithm.

We interpret the experiments conducted with a simple local learning algorithm
(Parzen window classifier) and logistic regression as evidence in favor of our conjec-
ture. They clearly show that a separation of the total uncertainty (into epistemic and

4.4. Conclusion 113

V.

P.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

a bcd

e
fg

hij
k l

mno

(a) PREORDER & VOTE

V.

N.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

a bcd

e
fg

hij
k l

mno

(b) NONDET & VOTE

P.

N.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

a

b

c
d

e

f

g

h

i

jk
l

m

n

o

(c) Average proportion

P.

N.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

ab

c

d

e
f

g

h

i

j

k
l

m
n

o

(d) Average size

Figure 4.10: (a) Correctness of the PREORDER in the case of ab-
stention versus accuracy of the VOTE. (b) Correctness of the NON-
DET in the case of abstention versus accuracy of the VOTE. (c)
Proportion of partial predictions when at least one method produces
a partial prediction. (d) Average normalized size of the predictions in

such cases.

aleatoric) is effective, and that the epistemic part is the better criterion for selecting
instances to be queried. As already said, investigating how to effectively implement
our approach for the case of Naive Bayes requires significant extra efforts and will be
left as an open problem.

4.4.2 Cautious inference

We have introduced an approach to cautious inference and reliable prediction in multi-
class classification. The basic idea is to provide predictions in the form of preorder
relations, which allow for representing preferences for some candidate classes over oth-
ers, as well as indifference and incomparability between them; the two latter relations
are in direct correspondence with two types of uncertainty, aleatoric and epistemic.
This can be seen as a sophisticated way of partial abstention, which generalizes set-
valued predictions and classification with reject option. Technically, our approach
combines reliable binary classification with pairwise decomposition and approximate
inference over preorders.

Our experiments on this type of problem are quite promising and suggest that our
method is highly competitive to existing approaches to reliable prediction. Yet, by

114 Chapter 4. Epistemic uncertainty for active learning and cautious inferences

using to the set of maximal elements, we only used preorder predictions for the purpose
of set-valued classification. The preoder, however, provides very rich information
about the preference for classes, which could be used for other purposes.

115

Chapter 5

Conclusion, perspectives and open
problems

In this work, we have studied different aspects of imprecision treatment, focusing on
two potential settings where imprecision due to imperfect data and imperfect knowl-
edge, respectively. Considering the former setting, we have studied both the problem
of making inference and the one of learning an optimal model from partially speci-
fied data. We have investigated different potential situations where one may have to
deal with multiple optimal decisions (either labels or models) due to the presence of
partial data and developed active learning techniques to tackle these situations. We
have focused, in the later setting, on the situations where data are precisely specified,
however, these are classes that can not be distinguished due to a lack of knowledge
or due to a high uncertainty. In particular, we have advocated a distinction between
epistemic and aleatoric uncertainty in machine learning problems.

The main conclusions from Chapter 2, in which we have (1) implemented the
maximax approach for the case of partially featured data and (2) developed active
learning approaches to reduce the imprecision in the inference step due to the presence
of partial data, are following:

- We can employ the maximax approach to make inferences from partially speci-
fied data using tractable and scalable techniques. Furthermore, in complement
to the promising results regarding the case of partially labelled data, our exper-
iments indicate that, in the case of partially featured data, a simple imputation
method could often work as well as the maximax approach, but for some data
sets the maximax approach can bring a real advantage. This conclusion can
motivate further research on broadening the applications of the maximax ap-
proach.

- The possible and necessary label sets have appeared to be efficient tools for
quantifying the imprecision introduced to learners by partial data. Experimen-
tally, our investigation have indicated that (1) there are situations where partial
data can indeed affect the predictive ability of the maximax approach (e.g, when
employing a small number K or there is a large amount of partial labels) and
(2) by doing active learning, we can significantly improve the performance of
the maximax approach.

- The perspectives we provided in the end of this Chapter could benefit future
attempts on tackling both the problem of making inferences and the active
learning in the generic setting of partially specified data.

The first conclusion from Chapter 3 is that, together with the active learning pro-
posal presented in Chapter 2, we have addressed different settings of the active learning
problem for partial data. This problem has been little explored in the literature, in

116 Chapter 5. Conclusion, perspectives and open problems

particular in the case of partially featured data. Furthermore, the improvements on all
criteria suggest that the presence of partial data can introduce significant imprecision
to the learning step. Considering the case of partially featured data, our racing algo-
rithms have consistently outperformed other simple baselines. This means that doing
active learning in this case is a promising direction while it is not necessarily the case
for partially labelled data where even random strategies performs similar to others.
Yet, our proposals have been developed upon noticeable intuitions. Developing more
sophisticated approaches would be a worthy research direction.

From Chapter 4, we can conclude that a separation of the total uncertainty into
epistemic and aleatoric part is effective.

- In the active learning problem, the epistemic part has appeared to be the better
criterion for querying instances. Given this affirmation, we are now encouraged
to elaborate on epistemic uncertainty sampling in more depth, and to develop it
in more sophistication. This also includes an extension to other active learning
strategies (e.g., expected model change).

- Considering the problem of making cautious inferences, the distinction epis-
temic/aleatoric uncertainty provides pairwise information from which we can
learn predictions in the form of preorder relations. Such a preorder allows for
representing preferences for some candidate classes over others, as well as indif-
ference and incomparability between them. It thus suggests reasons for why a
class should be included into or discarded from the set-valued prediction. This
characteristic gives the ability to appropriately balance reliability and precision
which is a crucial demand when doing cautious inferences. Thus, next research
efforts should focus on exploiting more of the potential of preorder predictions,
and to use such predictions in other contexts and problem settings. In active
learning, for example, preorder predictions may provide very useful information
for guiding the selection of queries. Since our approach applies as soon as a
likelihood is defined, extending it to other kinds of likelihood such as evidential
ones [25] would be another promising direction.

117

Bibliography

1. Ahlberg, E. et al. Using conformal prediction to prioritize compound synthesis in
drug discovery in The 6th Symposium on Conformal and Probabilistic Prediction
with Applications (COPA) (2017), 174–184.

2. Antonucci, A. & Cuzzolin, F. Credal Sets Approximation by Lower Probabilities:
Application to Credal Networks in Proceedings of the 13th international Confer-
ence on Information Processing and Management of Uncertainty in Knowledge-
Based Systems (IPMU) (Springer, 2010), 716–725.

3. Antonucci, A., Corani, G. & Gabaglio, S. Active Learning by the Naive Credal
Classifier in Proceedings of the Sixth European Workshop on Probabilistic Graph-
ical Models (PGM) (2012), 3–10.

4. Balasubramanian, V., Ho, S.-S. & Vovk, V. Conformal Prediction for Reliable
Machine Learning: Theory, Adaptations and Applications (Morgan Kaufmann,
2014).

5. Betzler, N. & Dorn, B. Towards a Dichotomy for the Possible Winner Problem
in Elections based on Scoring Rules. Journal of Computer and System Sciences
76, 812–836 (2010).

6. Birnbaum, A. On the Foundations of Statistical Inference. Journal of the Amer-
ican Statistical Association 57, 269–306 (1962).

7. Bishop, C. M. Pattern recognition and machine learning (springer, 2006).

8. Bottou, L. & Vapnik, V. Local Learning Algorithms. Neural Computation 4,
888–900 (1992).

9. Briggs, F., Fern, X. Z. & Raich, R. Rank-loss support instance machines for
MIML instance annotation in Proceedings of the 18th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (SIGKDD) (2012),
534–542.

10. Burges, C. J. A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery 2, 121–167 (1998).

11. Chapelle, O. Active Learning for Parzen Window Classifier in Proceedings of
the Tenth International Workshop on Artificial Intelligence and Statistics (AIS-
TATS) 5 (2005), 49–56.

12. Cheng, W. & Hüllermeier, E. Probability estimation for multi-class classification
based on label ranking in Proceedings of the 2012 European conference on Ma-
chine Learning and Knowledge Discovery in Databases (ECML-PKDD) (2012),
83–98.

13. Chow, C. On optimum recognition error and reject tradeoff. IEEE Transactions
on Information Theory 16, 41–46 (1970).

14. Collins, M. The Naive Bayes model, Maximum-likelihood Estimation, and the
EM Algorithm. Lecture Notes. <http : / / web2 . cs . columbia . edu /
~mcollins/em.pdf> (2012).

http://web2.cs.columbia.edu/~mcollins/em.pdf
http://web2.cs.columbia.edu/~mcollins/em.pdf

118 BIBLIOGRAPHY

15. Corani, G., Abellán, J., Masegosa, A., Moral, S. & Zaffalon, M. in Introduction
to Imprecise Probabilities 230–257 (John Wiley & Sons, Ltd, 2014).

16. Cortes, C. & Vapnik, V. Support-vector networks. Machine Learning 20, 273–
297 (1995).

17. Cour, T., Sapp, B., Jordan, C. & Taskar, B. Learning from Ambiguously Labeled
Images in Proceedings of the 2009 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2009), 919–926.

18. Cour, T., Sapp, B. & Taskar, B. Learning from Partial Labels. Journal of Ma-
chine Learning Research 12, 1501–1536 (2011).

19. Couso, I. & Dubois, D. A general framework for maximizing likelihood under
incomplete data. International Journal of Approximate Reasoning 93, 238–260
(2018).

20. Cover, T. & Hart, P. Nearest Neighbor Pattern Classification. IEEE Transac-
tions on Information Theory 13, 21–27 (1967).

21. Cox, D. R. The regression analysis of binary sequences. Journal of the Royal
Statistical Society. Series B (Methodological), 215–242 (1958).

22. Coz, J. J. d., Díez, J. & Bahamonde, A. Learning Nondeterministic Classifiers.
Journal of Machine Learning Research 10, 2273–2293 (2009).

23. De Campos, L. M., Huete, J. F. & Moral, S. Probability Intervals: A Tool
for Uncertain Reasoning. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 2, 167–196 (1994).

24. Demšar, J. Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research 7, 1–30 (2006).

25. Denoeux, T. Likelihood-based belief function: justification and some extensions
to low-quality data. International Journal of Approximate Reasoning 55, 1535–
1547 (2014).

26. Denœux, T. Maximum Likelihood Estimation from Fuzzy Data using The EM
algorithm. Fuzzy Sets and Systems 183, 72–91 (2011).

27. Denoeux, T. Maximum Likelihood Estimation from Uncertain Data in the Belief
Function Framework. IEEE Transactions on Knowledge and Data Engineering
25, 119–130 (2013).

28. Devetyarov, D. et al. Conformal predictors in early diagnostics of ovarian and
breast cancers. Progress in Artificial Intelligence 1, 245–257 (2012).

29. Dobra, A. & Fienberg, S. E. Bounds for cell entries in contingency tables given
marginal totals and decomposable graphs. Proceedings of the National Academy
of Sciences 97, 11885–11892 (2000).

30. Efron, B. Censored data and the bootstrap. Journal of the American Statistical
Association 76, 312–319 (1981).

31. Eklund, M., Norinder, U., Boyer, S. & Carlsson, L. The application of conformal
prediction to the drug discovery process. Annals of Mathematics and Artificial
Intelligence 74, 117–132 (2015).

32. Fisher, R. On the Mathematical Foundations of Theoretical Statistics. Philo-
sophical Transactions of the Royal Society of London. Series A, Containing
Papers of a Mathematical or Physical Character 222, 309–368 (1922).

33. Fitzpatrick, P. Advanced calculus (American Mathematical Soc., 2006).

BIBLIOGRAPHY 119

34. Friedman, J., Hastie, T. & Tibshirani, R. The Elements of Statistical Learning
(Springer Series in Statistics New York, 2001).

35. Fu, Y., Zhu, X. & Li, B. A Survey on Instance Selection for Active Learning.
Knowledge and Information Systems, 1–35 (2013).

36. Fürnkranz, J. Round robin classification. Journal of Machine Learning Research
2, 721–747 (2002).

37. Grabisch, M. & Nicolas, J.-M. Classification by fuzzy integral: Performance and
tests. Fuzzy Sets and Systems 65, 255–271 (1994).

38. Groenen, P. J., Winsberg, S., Rodriguez, O & Diday, E. I-Scal: Multidimensional
Scaling of Interval Dissimilarities. Computational Statistics & Data Analysis 51,
360–378 (2006).

39. Guillaume, R., Couso, I. & Dubois, D. Maximum Likelihood with Coarse Data
based on Robust Optimisation in Proceedings of the Tenth International Sym-
posium on Imprecise Probability: Theories and Applications (ISIPTA) (2017),
169–180.

40. Guyon, I, Vapnik, V, Boser, B, Bottou, L & Solla, S. Structural risk minimiza-
tion for character recognition in Proceedings of the 4th International Conference
on Neural Information Processing Systems (NIPS) (1991), 471–479.

41. Heitjan, D. F. Ignorability and coarse data: Some biomedical examples. Bio-
metrics, 1099–1109 (1993).

42. Hora, S. C. Aleatory and Epistemic Uncertainty in Probability Elicitation with
an Example from Hazardous Waste Management. Reliability Engineering &
System Safety 54, 217–223 (1996).

43. Hüllermeier, E. Learning from Imprecise and Fuzzy Observations: Data Dis-
ambiguation through Generalized Loss Minimization. International Journal of
Approximate Reasoning 55, 1519–1534 (2014).

44. Hüllermeier, E. & Beringer, J. Learning from Ambiguously Labeled Examples.
Intelligent Data Analysis 10, 419–439 (2006).

45. Hüllermeier, E. & Cheng, W. Superset Learning Based on Generalized Loss
Minimization in Proceedings of the European Conference on Machine Learning
and Knowledge Discovery in Databases (ECML) (2015), 260–275.

46. Hüllermeier, E. & Vanderlooy, S. Combining predictions in pairwise classifica-
tion: An optimal adaptive voting strategy and its relation to weighted voting.
Pattern Recognition 43, 128–142 (2010).

47. James, G., Witten, D., Hastie, T. & Tibshirani, R. An introduction to statistical
learning (Springer, 2013).

48. Joachims, T. Transductive Inference for Text Classification using Support Vector
Machines in Proceedings of the Sixteenth International Conference on Machine
Learning (ICML 1999) (1999), 200–209.

49. Joshi, A. J., Porikli, F. & Papanikolopoulos, N. Coverage optimized active learn-
ing for k-NN classifiers in Proceedings of the 2012 IEEE International Confer-
ence on Robotics and Automation (ICRA) (2012).

50. Kasabov, N. & Pang, S. Transductive support vector machines and applications
in bioinformatics for promoter recognition in Proceedings of the 2003 Inter-
national Conference on Neural networks and Signal Processing (ICNNSP) 1
(2003), 1–6.

120 BIBLIOGRAPHY

51. Kendall, A. & Gal, Y. What Uncertainties do We Need in Bayesian Deep Learn-
ing for Computer Vision? in Proceedings of the Thirty-first Annual Conference
on Neural Information Processing Systems (NIPS) (2017), 5580–5590.

52. Konczak, K. & Lang, J. Voting Procedures with Incomplete Preferences in Pro-
ceedings of the IJCAI 2005 Multidisciplinary Workshop on Advances in Prefer-
ence Handling 20 (2005).

53. Kull, M. & Flach, P. Reliability maps: a tool to enhance probability estimates and
improve classification accuracy in Proceedings of the 2014 European Conference
on Machine Learning and Knowledge Discovery in Databases (ECML-PKDD)
(2014), 18–33.

54. Lagacherie, P., Cazemier, D. R., Martin-Clouaire, R. & Wassenaar, T. A spatial
approach using imprecise soil data for modelling crop yields over vast areas.
Agriculture, Ecosystems & Environment 81, 5–16 (2000).

55. Lewis, D. D. & Gale, W. A. A Sequential Algorithm for Training Text Classifiers
in Proceedings of the 17th annual International SIGIR Conference on Research
and Development in Information Retrieval (SIGIR) (Springer, 1994), 3–12.

56. Liu, L.-P. & Dietterich, T. G. A Conditional Multinomial Mixture Model for
superset label learning in Proceedings of the 25th International Conference on
Neural Information Processing Systems (NIPS) (2012), 548–556.

57. Mamitsuka, N. A. H. et al. Query Learning Strategies Using Boosting and Bag-
ging in Proceedings of the Fifteenth International Conference on Machine Learn-
ing (ICML) (1998), 1–9.

58. Masson, M.-H., Destercke, S. & Denoeux, T. Modelling and predicting partial
orders from pairwise belief functions. Soft Computing 20, 939–950 (2016).

59. McDonald, J., Stoddard, O. & Walton, D. On using interval response data in
experimental economics. Journal of Behavioral and Experimental Economics
72, 9–16 (2018).

60. Melville, P., Saar-Tsechansky, M., Provost, F. & Mooney, R. Active Feature-
Value Acquisition for Classifier Induction in Proceedings of the Fourth IEEE
International Conference on Data Mining (ICDM) (2004), 483–486.

61. Melville, P., Saar-Tsechansky, M., Provost, F. & Mooney, R. An Expected Utility
Approach to Active Feature-Value Acquisition in Proceedings of the Fifth IEEE
International Conference on Data Mining (ICDM 2005) (2005), 745–748.

62. Menard, S. Applied Logistic Regression Analysis (Sage, 2002).

63. Mitchell, T. M. Version Spaces: A Candidate Elimination Approach to Rule
Learning in Proceedings of the 5th International Joint Conference on Artificial
Intelligence (IJCAI) (1977), 305–310.

64. Moulin, H. et al. Handbook of Computational Social Choice (Cambridge Uni-
versity Press, 2016).

65. Myung, I. J. Tutorial on maximum likelihood estimation. Journal of Mathemat-
ical Psychology 47, 90–100 (2003).

66. Ng, A. Y. & Jordan, M. I. On Discriminative vs. Generative classifiers: A
comparison of logistic regression and naive Bayes in Proceedings of the 15th
International Conference on Neural Information Processing Systems (NIPS) 2
(2002), 841–848.

BIBLIOGRAPHY 121

67. Nigam, K. & McCallum, A. Pool-based active learning for text classification
in Proceeding of the 1998 Conference on Automated Learning and Discovery
(CONALD) (1998).

68. Nocedal, J. & Wright, S. Numerical Optimization (Springer New York, 2006).

69. Pang, S. & Kasabov, N. Inductive vs transductive inference, global vs local mod-
els: SVM, TSVM, and SVMT for gene expression classification problems in
Proceedings of 2004 IEEE International Joint Conference on Neural Networks
(IJCNN) 2 (IEEE, 2004), 1197–1202.

70. Papadopoulos, H., Gammerman, A. & Vovk, V. Reliable diagnosis of acute
abdominal pain with conformal prediction. Engineering Intelligent Systems 17,
127 (2009).

71. Patil, G. & Taillie, C. Multiple Indicators, Partially Ordered Sets, and Lin-
ear Extensions: Multi-criterion Ranking and Prioritization. Environmental and
Ecological Statistics 11, 199–228 (2004).

72. Philip, E & Elizabeth, W. Sequential Quadratic Programming Methods. UCSD
Department of Mathematics Technical Report NA-10-03 (2010).

73. Quinlan, J. R. Induction of decision trees. Machine learning 1, 81–106 (1986).

74. Raman-Sundström, M. A pedagogical history of compactness. The American
Mathematical Monthly 122, 619–635 (2015).

75. Rennie, J. D. Regularized Logistic Regression is Strictly Convex. Technical re-
port, MIT (2005).

76. Rodríguez, J. J. & Maudes, J. Boosting recombined weak classifiers. Pattern
Recognition Letters 29, 1049–1059 (2008).

77. Russell, S. J. & Norvig, P. Artificial intelligence: A modern approach (Pearson
Education Asia Ltd., 2016).

78. Safavian, S. R. & Landgrebe, D. A survey of decision tree classifier methodology.
IEEE Transactions on Systems, Man, and Cybernetics 21, 660–674 (1991).

79. Senge, R. et al. Reliable Classification: Learning Classifiers that Distinguish
Aleatoric and Epistemic Uncertainty. Information Sciences 255, 16–29 (2014).

80. Settles, B. Active Learning Literature Survey. Technical Report, University of
Wisconsin, Madison 52, 11 (2010).

81. Settles, B. & Craven, M. An Analysis of Active Learning Strategies for Sequence
Labeling Tasks in Proceedings of the 2008 Conference on Empirical Methods in
Natural Language Processing (EMNLP) (2008), 1070–1079.

82. Settles, B., Craven, M. & Ray, S. Multiple-instance active learning in Proceed-
ings of the 20th International Conference on Neural Information Processing
Systems (NIPS) (2007), 1289–1296.

83. Seung, H. S., Opper, M. & Sompolinsky, H. Query by committee in Proceedings
of the fifth Annual Workshop on Computational Learning theory (1992), 287–
294.

84. Shafer, G. & Vovk, V. A Tutorial on Conformal Prediction. Journal of Machine
Learning Research 9, 371–421 (2008).

85. Sharma, M. & Bilgic, M. Evidence-based Uncertainty Sampling for Active
Learning. Data Mining and Knowledge Discovery 31, 164–202 (2017).

122 BIBLIOGRAPHY

86. Tehrani, A. F., Cheng, W., Dembczyński, K. & Hüllermeier, E. Learning mono-
tone nonlinear models using the Choquet integral. Machine Learning 89, 183–
211 (2012).

87. Troffaes, M. C. Decision Making under Uncertainty using Imprecise Probabili-
ties. International Journal of Approximate Reasoning 45, 17–29 (2007).

88. Utkin, L. V. & Augustin, T. Decision making under incomplete data using the
imprecise Dirichlet model. International Journal of Approximate Reasoning 44,
322–338 (2007).

89. Vapnik, V. N. An overview of statistical learning theory. IEEE Transactions on
Neural Networks 10, 988–999 (1999).

90. Vapnik, V. N. Estimation of dependences based on empirical data (Springer-
Verlag New York, 1982).

91. Vapnik, V. N. Principles of risk minimization for learning theory in Proceedings
of the 4th International Conference on Neural Information Processing Systems
(NIPS) (Morgan Kaufmann Publishers Inc., 1991), 831–838.

92. Vapnik, V. N. Statistical Learning Theory (Wiley, New York, 1998).

93. Walker, S. H. & Duncan, D. B. Estimation of the probability of an event as a
function of several independent variables. Biometrika 54, 167–179 (1967).

94. Walley, P. & Moral, S. Upper Probabilities based only on the Likelihood Func-
tion. Journal of the Royal Statistical Society: Series B (Statistical Methodology)
61, 831–847 (1999).

95. Wiencierz, A. & Cattaneo, M. On the Validity of Minimin and Minimax Meth-
ods for Support Vector Regression with Interval Data in Proceedings of the 9th
International Symposium on Imprecise Probability: Theories and Applications
(ISIPTA) (2015), 325–332.

96. Wu, T.-F., Lin, C.-J. & Weng, R. C. Probability estimates for multi-class clas-
sification by pairwise coupling. Journal of Machine Learning Research 5, 975–
1005 (2004).

97. Wu, X. et al. Top 10 algorithms in data mining. Knowledge and Information
Systems 14, 1–37 (2008).

98. Xia, L. & Conitzer, V. Determining Possible and Necessary Winners under
Common Voting Rules given Partial Orders. Journal of Artificial Intelligence
Research 41, 25–67 (2011).

99. Xu, P., Davoine, F., Zha, H. & Denoeux, T. Evidential calibration of binary
SVM classifiers. International Journal of Approximate Reasoning 72, 55–70
(2016).

100. Yang, F. & Vozila, P. Semi-supervised Chinese Word Segmentation using Partial-
label Learning with Conditional Random Fields in Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP) (2014),
90–98.

101. Yang, G., Destercke, S. & Masson, M.-H. Nested Dichotomies with probability
sets for multi-class classification in Proceedings of the Twenty-first European
Conference on Artificial Intelligence (ECAI) (2014), 363–368.

102. Yang, G., Destercke, S. & Masson, M.-H. The Costs of Indeterminacy: How to
Determine Them? IEEE Transactions on Cybernetics 47, 4316–4327 (2017).

BIBLIOGRAPHY 123

103. Zaffalon, M. The Naive Credal Classifier. Journal of Statistical Planning and
Inference 105, 5–21 (2002).

104. Zaffalon, M., Corani, G. & Mauá, D. Evaluating credal classifiers by utility-
discounted predictive accuracy. International Journal of Approximate Reason-
ing 53, 1282–1301 (2012).

	PDT NGUYEN Vu Linh
	Soutenue le 27 septembre 2018

	PhD_Thesis_Final_Version
	Acknowledgements
	Abstract
	Introduction
	Learning problems
	Learning from partial data
	Active learning: missing and partial data
	Cautious inferences
	Our contributions

	Transductive learning and partial data
	Problem statements
	A Maximax approach for learning from partial data
	Active learning for partial data

	Learning from partially featured data
	Determining interval ranks
	Determining the extreme scores
	Learning from interval-valued feature data
	Experimental evaluation

	Querying partially labelled data to improve the maximax approach
	Generic querying scheme
	Indecision-based querying criteria
	Experimental evaluation

	Perspectives on querying partially featured data
	Determining the possible label set
	Determining the necessary label set

	Conclusion

	Racing Algorithms
	Loss function and expected risk for partial data
	Our generic racing approach
	Application to SVM
	Interval-valued features
	Set-valued labels
	Experimental evaluation
	Discussion on computational issues

	Application to decision trees
	Set-valued labels
	Interval-valued features
	Experimental evaluation

	Conclusion

	Epistemic uncertainty for active learning and cautious inferences
	Likelihood to estimate epistemic and aleatoric uncertainties
	A formal framework for uncertainty modeling
	Estimation for local models
	Estimation for logistic regression
	Estimation for Naive Bayes

	Active learning
	Related methods
	Principle of our method
	Experimental evaluation

	Cautious inference
	Principle of our method
	Experimental evaluation

	Conclusion
	Active learning
	Cautious inference

	Conclusion, perspectives and open problems

