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Abstract

Urban distribution refers to the distribution activities of goods serving urban areas
and suburbs. Recent technological advances in unmanned distribution fields, as well
as new regulations limiting the use of combustion engine vehicles, will significantly
change urban goods distribution. Besides, the new e-commerce business mode also
brings new opportunities and challenges to urban goods distribution. Combining the
above three new trends, this thesis designs and studies a van-based robot distribution
system to provide better services for urban logistics distribution.

We first introduce a van-based robot urban delivery system. This problem typically
applies on delivering parcels or other small commodities to pedestrianized areas such
as campuses or residential clusters. To model the proposed vehicle routing problem, we
introduce a mixed-integer programming and adopt column generation to get a better
lower bound. We further propose construction heuristics and a hybrid metaheuristic
approach with backtracking for solving larger instances. A sensitivity analysis for vehi-
cle speed combinations reveals that increasing robot speeds has only very limited cost
effects. We therefore recommend to keep robot speeds rather low because of a more
pedestrian-friendly environment in practical implementations.

Then, we incorporate electric vehicles, en-route charging, and reverse charging tech-
nology into the van-based robot urban delivery system in logistics operations. The time
during which electric vans are carrying robots can be used effectively to recharge the
robots, thereby increasing distribution systems’ efficiency. To model the proposed sys-
tem, we present a mixed-integer programming. We note that the energy transfer from
a van to its robot needs time and will cause the available travel distance of a van to de-
crease and that of a robot to increase. Focusing on the new time-distance-energy trade-
off problem, which increases the difficulty of checking any given route’s feasibility, we
further propose a greedy route evaluation approach and a linear programming-based
route evaluation method. An adaptive large neighborhood search algorithm is pre-
sented for solving larger instances. A sensitivity analysis for vehicle charging modes,
maximum battery capacities, and charging rate shows that using en-route charging
while appropriately increasing battery level and charging rate can have useful cost ef-
fects.

Finally, we incorporate hybrid pickup and delivery operations into the van-based
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robot urban distribution system to adapt to the new business model of e-commerce en-
terprises. Five van/robot pickup and delivery modes are introduced, according to the
van/robot’s roles in the process of pickup/delivery and whether the van helps to trans-
port its robot. To model the proposed problem, we introduce a mixed-integer program-
ming in detail, especially for the new freight flow constraints and position constraints
that emerged from the hybrid pickup and delivery operation in the van-based robot
system. We further propose an adaptive large neighborhood search algorithm to solve
larger instances and a capacity feasibility test approach for a single route. Then we as-
sess the influence of parking node density on model output. A case study based on a
realistic city scene is introduced. A sensitivity analysis on the robot’s travel cost rate
and maximum travel distances, as well as compared the van no-go area’s effect on our
model is conducted. Two classical models have been compared with our model, and
results show the 2E-VRHPD model is competitive in appropriate scenarios settings.

Overall, through this thesis’s research, we have established a framework that van-
based robot distribution system. We have developed the methodologies to solve this
kind of problem. Furthermore, we have put forward some suggestions for enterprises
to use the van-based robot distribution system after our computational study experi-
ments.

Keywords: Innovative last mile distribution; Mothership based robot services; Elec-
tric vehicle routing; En-route charging; Hybrid pickup and delivery
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Résumé

La distribution urbaine fait référence aux activités de distribution des biens qui desser-
vent les zones urbaines et les banlieues. Les progrès technologiques récents dans champs
de distribution sans pilote et la limite d’utilisation des véhicules à moteur thermique
par les nouvelles réglementations modifieront considérablement la distribution des bi-
ens urbains. Un nouveau modèle commercial de site e-commerce apporte également de
nouvelles opportunités et défis à la distribution de biens urbains. Combinant les trois
nouvelles tendances ci-dessus, cette thèse conçoit et étudie un système de distribution
robotisé basé sur des fourgons pour fournir de meilleurs services pour la distribution
de la logistique urbaine.

Nous introduisons d’abord un système de livraison urbaine de robot qui est basé sur
une fourgonnette. Ce système pose des problèmes qui s’appliquent généralement à la
livraison de colis ou d’autres petits produits aux zones piétonnières telles que les cam-
pus ou les groupes d’habitations. Pour modéliser le problème de routage de véhicule
proposé, nous introduisons un programme d’entiers mixtes et adoptons la génération
de colonnes pour obtenir une meilleure borne inférieure. Nous proposons en outre des
constructions heuristiques et une approche métaheuristique hybride avec un retour en
arrière pour résoudre des cas plus importants. Une analyse pour la sensibilité des com-
binaisons de vitesse de véhicule révèle que l’augmentation de la vitesse du robot n’a
que des effets de coût très limités. Nous recommandons de maintenir la vitesse du
robot à un niveau bas en raison d’un environnement plus convivial pour les piétons
dans les implémentations pratiques.

Ensuite, nous intégrons les véhicules électriques, la recharge en route et la tech-
nologie de recharge inversée dans le système de livraison urbaine robotisé par la four-
gonnette dans les opérations logistiques. Pendant le temps pour lequel les fourgons
électriques transportent des robots peut être utilisé efficacement sur les recharges des
robots, ainsi fait l’augmentation de l’efficacité des systèmes de distribution. Pour mod-
éliser le système proposé, nous présentons un programme d’entiers mixtes. On con-
state que le transfert d’énergie d’une fourgonnette vers son robot nécessite du temps
et entraînera une diminution de la distance de déplacement disponible d’un fourgon,
par contre celui entraine une augmentation de déplacement d’un robot. Nous concen-
trons sur le nouveau problème de compromis temps-distance-énergie, qui augmente la
difficulté de vérifier la faisabilité d’un itinéraire donné, nous proposons une approche
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d’évaluation d’itinéraire gourmande et une méthode d’évaluation d’itinéraire basée sur
la programmation linéaire. Un algorithme de recherche adaptatif de grand voisinage
est présenté pour résoudre des instances plus importantes. Une analyse de sensibilité
pour les modes de charge des véhicules, les capacités maximales de la batterie et le
taux de charge montre que l’utilisation de la charge en route permet d’augmenter de
manière appropriée le niveau de la batterie et le taux de charge, qui conduisent des
effets bénéficiaires de coût.

Enfin, Pour s’adapter au nouveau modèle économique des entreprises de commerce
électronique, nous intégrons des opérations de ramassage et de livraison hybrides dans
le système de distribution urbaine de robots basés sur des fourgons. Selon les rôles
du fourgon/robot dans le processus de ramassage/livraison et si le fourgon aide à
transporter son robot. Cinq modes de ramassage et de livraison de fourgon/robot sont
introduits. Pour modéliser le problème proposé, nous avons détaillé un programme
d’entiers mixtes, en particulier pour les nouvelles contraintes de flux de marchandises
et les contraintes de position qui ont émergé de l’opération hybride de ramassage et
de livraison dans le système de robot basé sur fourgonnette. Nous proposons un al-
gorithme de recherche adaptatif de grand voisinage pour résoudre des instances plus
importantes et une approche de test de faisabilité de capacité pour un seul itinéraire,
puis nous évaluons l’influence de la densité des nœuds de stationnement sur la sortie
du modèle. Une étude basée sur une scène de ville réaliste est introduite. Une analyse
de sensibilité sur le taux de coût de voyage du robot et les distances de déplacement
maximales, ainsi que la comparaison de l’effet de la zone de no-go des fourgons sur
notre modèle est réalisée. Deux modèles classiques ont été comparés à notre modèle,
et les résultats montrent que le modèle 2E-VRHPD est compétitif dans des scénarios
appropriés.

Dans l’ensemble, grâce à cette recherche de thèse, nous avons établi un cadre de
système de distribution de robot basé sur fourgonnette. Nous avons développé les
méthodologies pour résoudre ce genre de problème. En outre, nous avons proposé aux
entreprises d’utiliser le système de distribution de robots basés sur des fourgons après
nos expériences d’études informatiques.

Mots-clés: Distribution innovante du dernier kilomètre; Services de robots basés
sur le vaisseau mère; Routage de véhicules électriques; Recharge en route; Ramassage
et livraison hybrides
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Chapter 1

Introduction

In this introduction, we present the motivation of this work, and outline the structure
of this thesis.

1.1 Motivation

Over 50% of the world’s population is now living in cities. In Europe, 75% of European
citizens lived in urban areas (European Commission, 2014). This percentage is expected
to increase to over 80% by 2050. In some countries, the urbanization rate will rise to over
90%. Urban mobility accounts for 40% of all CO2 emissions from road transport and up
to 70% of other pollutants from transport (European Commission, 2015). Optimizing
urban transport has become an essential part of transport management as it will affect
the quality of life of increasingly more urban citizens.

Traditional urban logistics is a critical component of urban transport, but it is criti-
cized for causing traffic jams and urban pollution today. The rapid development of e-
commerce is driving a steady yet steep rise in parcel pickup/delivery demands. Global
B2C e-commerce turnover forecasted to reach over $2 trillion in 2019, and continues
growing steadily at around 11% (SAP, 2019). The rise of e-commerce has led to the
explosive growth of urban logistics. OECD predicts the urban freight road activity will
double from the year 2015 to the year 2050 (OECD, 2017). In parallel, rising labor costs
and restrictions on delivery-staff workhours are challenging logistic companies’ efforts
to provide customers with affordable, efficient and round-the-clock courier services.
Cities thus need to identify new delivery strategies to increase the quality of life of
their citizens while keeping traffic smooth and environmental pollution under control.

The developments of the communication technologies, sensor capabilities, the In-
ternet of Things (IoT), and artificial intelligence are making drones/robots smarter.
By leveraging drones and robots, many companies are developing new logistic sys-
tems that can change the competition landscape (Tang and Veelenturf, 2019). We ob-
served interest in freight distribution with drones/robots has surged in the past five
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years, producing a number of studies and tests on new automated logistics and dis-
tribution tools. For example, UPS tested home delivery via drones in Florida (Lithia,
2017). JD.com launched city delivery by robots in several Chinese universities and
districts in Beijing (Li, 2017; Gu, 2018). French start-up TwinswHeel is testing an un-
manned delivery robot with the ability to climb a certain sidewalk height to complete
last-mile delivery (Chevallier, 2017). Starship Technologies (Andrew, 2019) have im-
plemented autonomous distribution robots on campuses and in some residential areas.
Kiwi Coldewey, 2019 had used food delivery bots to deliver foods. Note that most
small fully-automated robots are electrically driven, helping reduce local emissions in
cities.

Drones are usually not subject to crowded traffic infrastructure and can carry lim-
ited goods serving limited ranges with fast speed (Bakach et al., 2020). However, in the
real world, the application of drones is restricted by a lot of factors. (i) Could lead to
more severe accidents. For example, when a fast-flying drone stalls, it will cause seri-
ous accidents in a city. (ii) Making more noise than cars (Christian and Cabell, 2017).
(iii) Drones are also often not allowed to visit no-fly zones, such as airports.

Robot delivery can overcome the above defects of drone delivery. Robots make less
noise than cars. Compared to the dangers of distribution with the drone to a slowly
moving robot, accidents caused by stalled robots are controllable. And robots can al-
ways deliver most of the areas. Hence, the delivery robot seems more pragmatic and
safer than drones. This thesis focuses on robot delivery in urban areas.

Also, public acceptance of the delivery robot is very high and positive. United States
Postal Service surveyed public opinion on delivery robots (USPS, 2018), and 70% of
interviewees would consider receiving deliveries from robots. Figure 1.1 is the public
opinion about delivery robots (USPS, 2018). Figure 1.1 shows that more than 50% of
interviewees believe delivery robots could offer a more flexible delivery experience,
and nearly 30% of interviewees would be willing to pay slightly more to receive those
benefits.

Most robots are electrically powered in real-world applications because electric robots
have no local pollutant emissions (Bektaş et al., 2019). However, in the foreseeable fu-
ture, the robots’ applications are limited by their limited travel distances and speed for
technical and safety reasons (Daimler, 2017).

Research question 1: How to overcome the shortages of robot delivery?
Research question 2: How to make the robot charging more efficiently?
With the continuous development of e-commerce, the business modes of e-commerce

companies have begun to diversify, and their distribution modes have also diversified.
The hybrid distribution business mode requires logistics companies to perform one-
to-one or one-to-many-to-one pickup and/or delivery services simultaneously, which
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FIGURE 1.1: Public opinion about delivery robots

poses new challenges to the design and optimization of the distribution system.
Research question 3: How to integrate multiple modes of pickup and delivery op-

erations to make the logistics distribution system more efficient?
We note the following technology development trend and business model distri-

bution trend of enterprises may help a lot in solving the three research questions. (i)
UPS tested home delivery via truck and robot in Florida as a move towards a more
automated delivery process (Lithia, 2017) (ii) Automotive companies have begun to
study mobile charging vans. NIO, an electric car company in China, is courting Tesla
owners with mobile charging stations inside electric vans (Fred, 2018). (iii) JD.com, an
e-commerce company in China, should deliver and pick up self-products and help in-
dividuals or individual stores (bricks and mortars or local supermarkets) deliver goods
in real business operations. For the latter, a request consists of picking up goods from
individuals or individual stores, and transporting them to corresponding customers
needs to be completed.

This thesis will integrate these new technological and business concepts for reorga-
nizing urban distribution. The new urban distribution should provide a more efficient
choice of distribution model that can adopt new technologies and services and, on the
other hand, limit emissions and energy consumption. Specifically speaking, this thesis
mainly aims at these three strategic and operational levels:

• include new means of distribution (Van-based robot urban delivery)

• include new means of charging strategy (Van-based robot urban delivery with
en-route charging)

• include new means of the business model (Van-based robot routing with hybrid
pickup and delivery)
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1.2 Structure of the thesis

The rest of this thesis is organized as follows.
Chapter 2 first introduces the state of the art of the van-based robot routing prob-

lems and the similarities and differences between them. Then Chapter 2 reviews the
vehicle routing problems (VRP) related to the van-based robot routing problem: two-
echelon vehicle routing problem, two-echelon location routing problem, truck and trailer
routing problem, open vehicle routing problem, electric two-echelon routing problem,
and pickup and delivery problem.

Chapter 3 - Chapter 5 study the two-echelon van-based robot routing problem (2E-
VRRP), electric two-echelon van-based robot deliveries with en-route charging (2E-
VREC), and two-echelon van-based robot hybrid pickups and deliveries routing prob-
lem (2E-VRHPD) respectively.

Chapter 3 investigates an innovative two-echelon van-based multiple robots urban
delivery problem that contains the time window constraint, capacity constraint, and
maximum travel time constraint. This innovative distribution model can eliminate a
lot of real estates and human resources compared to the traditional two-echelon deliv-
ery model, which provides a new choice for logistics enterprises. We found that simply
improving the robot’s speed leads to only limited cost reduction during our experi-
ments. Therefore we recommend keeping robot speeds rather low because of a more
pedestrian-friendly environment in practical implementations.

Chapter 4 focuses on incorporating en-route charging and reserve charging tech-
nologies into van-based robot delivery problem. We use the time during which vans
are carrying robots effectively to recharge the robots, thereby increasing distribution
systems’ efficiency. Because of the difficulty in processing the trade-off between en-
ergy, distance and time for checking the feasibility of a given 2E-VREC route, we further
propose a greedy route evaluation approach and an LP-based route evaluation method.
We recommend that logistics companies use en-route charging technology if the new
technology’s fixed cost is controllable, based on our computational study.

Chapter 5 considers incorporating multiple modes of pickup and delivery opera-
tions into the van-based robot logistic distribution system to adapt to the new business
modes and needs of logistics enterprises. We detailed introduce five pickup and de-
livery cases in the 2E-VRHPD problems and model the new freight flow and position
constraints, which never occur so far. We have a case study based on realistic scenarios.
We conduct a sensitivity analysis on the robot’s travel cost rate and maximum travel
distances, as well as compare the van no-go area’s effect on the 2E-VRHPD model. Be-
sides, we compare the 2E-VRHPD model with two classical models. We recommend
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that companies consider the 2E-VRHPD model for distribution in appropriate scenar-
ios to improve the system’s efficiency.

Chapter 6 concludes the thesis and points out potential future works.
The chapters of the thesis are based on the following papers:
Chapter 3 Yu, S., Puchinger, J., & Sun, S. (2020). Two-echelon urban deliveries us-

ing autonomous vehicles. Transportation Research Part E-Logistics and Transportation
Review, 141, 102018.

Chapter 4 Yu, S., Puchinger, J., & Sun, S. (2020). Electric van-based robot deliveries
with en-route charging. Transportation Research Part C-Emerging Technologies, Under
Review.

Chapter 5 Yu, S., Puchinger, J., & Sun, S. (2020). Van-based robots hybrid pickups
and deliveries routing problem. European Journal of Operational Research, prepare to
submit.

In addition, the different elements of the research conducted in this thesis are pre-
sented in the following conferences:

Puchinger, J., & Yu, S. (2018). A two-echelon vehicle routing problem with un-
manned ground vehicles for city logistics. EURO 2018. 29th European Conference On
Operational Research.

Yu, S., Puchinger, J., & Sun, S. (2020). Urban deliveries using robots in a two-
echeleon system. 21ème Congrès Annuel de La Société Française de Recherche Opéra-
tionnelle et d’Aide à La Décision (ROADEF).
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Chapter 2

Literature Review

In this chapter, we first give a brief introduction of the van-based robot routing problem.
We then introduce some types of vehicle routing problems relative to the van-based
robot routing problems this thesis considered.

2.1 A brief introduction of van-based robot routing prob-

lem

Van-based robot routing problem (2E-VRRP), see Figure 2.1, has drawn much atten-
tion (Otto et al., 2018). In the van-based robot routing problem, the van can transport
robots, and along the route, it can drop off and pick up the robot at different positions.
The advantage of van-based robot deliveries is that goods can be delivered in parallel
by the van and its robot, thereby increasing the efficiency of distribution systems com-
pared to VRP-based systems. Murray and Chu, 2015 first presented the 2E-VRRP, and
farther-reaching problems have since been studied. We give a van-based robot routing
similarities and differences comparison table (Table 2.1) with recent related research
articles.

FIGURE 2.1: Van-based robot routing problem
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The comparison focuses on how many vans and robots are considered and the ob-
jective of the problem, the number of customers a robot can visit in the course of one
trip (VMC), whether there are time window constraints for customers (CTW), whether
both pickup and delivery are allowed in the model (PD), whether the van can serve
customers directly (VD), whether charging is possible in the model (Charging), and the
contribution of the work (Contribution).

TABLE 2.1: Similarities and differences between van-based robot routing
problems

Reference Vans Robots Objective VMC CTW PD VD Charging Contribution
Murray and Chu, 2015 1 1 time 1 no no yes no MILP, heuristic
Poikonen et al., 2017 n m time 1 no no yes no Theoretical insights

Wang et al., 2017 n m time 1 no no yes no Theoretical insights
Pugliese and Guerriero, 2017 n m cost 1 yes no yes no MILP

Luo et al., 2017 n 1 time m no no no no MILP, heuristic
Carlsson and Song, 2017 1 1 time 1 no no no no Heuristic

Agatz et al., 2018 1 1 time 1 no no yes no IP, heuristic
Bouman et al., 2018 1 1 cost 1 no no yes no DP

Schermer et al., 2019a n m time 1 no no yes no MILP, VNS, matheuristic
Schermer et al., 2019b n m time 1 no no yes no MILP, VNS, matheuristic

Karak and Abdelghany, 2019 1 m cost m no yes no no MIP, heuristic
Sacramento et al., 2019 n 1 cost 1 no no yes no MILP, ALNS
Wang and Sheu, 2019 n m cost m no no yes no MIP, branch-and-price
Poikonen et al., 2019 1 1 time 1 no no yes no Branch-and-bound, heuristic
Murray and Raj, 2020 1 m time 1 no no yes no MILP, heuristic

Poikonen and Golden, 2020b 1 1 time 1 no no yes no Branch-and-bound, heuristic
Poikonen and Golden, 2020a 1 m time m no no no no ILP, heuristic
Kitjacharoenchai et al., 2020 n m time m yes no yes no MIP, heuristic, LNS
Moshref-Javadi et al., 2020a 1 m waiting time 1 no no yes no MIP, heuristic
Moshref-Javadi et al., 2020b 1 m waiting time 1 no no yes no MIP, hybrid TS-SA

Dayarian et al., 2020 1 1 maximize orders m no no yes no Heuristics
Gonzalez-R et al., 2020 1 1 time m no no yes no MIP, Iterated greedy heuristic

Salama and Srinivas, 2020 1 m time,cost 1 no no yes no MIP, Heuristic
Chapter 3 n m cost m yes no no no MILP, hybrid metaheuristic
Chapter 4 n m cost m yes no yes yes MILP, ALNS
Chapter 5 n m cost m yes yes yes no MIP, ALNS

We introduce these papers in detail in terms of solution methods from exact meth-
ods, matheuristics, and heuristics (include metaheuristics).

2.1.1 2E-VRRP with exact methods

Wang et al., 2017 studied the vehicle routing problem with drones (TSP-D). They posed
several situations to explore the maximum savings from cooperatively using van and
drones rather than van only in delivering freights and then derive several worst-case
results. Poikonen et al., 2017 extended models of (Wang et al., 2017) further.

Bouman et al., 2018 presented dynamic-programming-based approaches for the
TSP-D. Their approaches can solve larger problems than the mathematical program-
ming approaches that have been presented so far in the experimental comparison study.
They found restrictions on the number of locations the van can visit while the drone is
away can significantly reduce the solution times. Besides, the limits have relatively
little impact on the overall solution quality.
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Poikonen and Golden, 2020b introduced a new type of TSP-D problem, called moth-
ership (carrier) and drone routing problem. The new problem allows the van to move
in continuous space, allowing second-order cone programs to be used throughout as
subroutines in solution methods. They presented a branch and bound method to solve
small instances and presented several heuristics to address large cases.

Wang and Sheu, 2019 proposed an arc-based and path-based integer programming
model for vehicle routing problems with drones (VRP-D) and docking node. They
further develop a branch-and-price algorithm to solve this kind of problem, and the
proposed algorithm performs well.

2.1.2 2E-VRRP with matheuristics

Pugliese and Guerriero, 2017 extended the VRP-D by considering customer time win-
dows to perform last-mile deliveries operations. They presented a MIP model and
investigated the advantages and disadvantages of using drones. Computational study
results show the higher the van transportation cost, the higher the number of deliveries
performed by the drones.

Agatz et al., 2018 modeled TSP-D as an integer program and develop several fast
route-first, cluster-second heuristics based on local search and dynamic programming.
The worst-case approximation ratios for the heuristics are proved. Computational
study shows the algorithm’s high efficiency and shows that substantial savings are pos-
sible with this concept compared to van-only delivery.

Poikonen et al., 2019 proposed four heuristic methods based on the branch-and-
bound algorithm for the TSP-D variant (the truck may remain stationary while the
drone makes a delivery) of Agatz et al., 2018.

2.1.3 2E-VRRP with heuristics

Luo et al., 2017 considered a two-echelon cooperated routing problem for a van and
its drone. There are specific parking lots for the vehicle to drop off and pick up the
drone. They developed a 0-1 integer programming model and proposed two heuristics
to solve the model.

Carlsson and Song, 2017 studied a TSP-D problem with the drones that can be
launched from several points (not only customer locations). Heuristic methods were
presented to analyze the benefit of using van and drone delivery systems and describe
how much improvement can be realized by involving drones to deliver packages. They
have concluded that the improvement in efficiency due to augmenting a delivery truck
with a drone is related to the square root of the ratio of the truck’s speeds and the drone.
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Schermer et al., 2019a considered the VRP-D problem with the en-route operations
by allowing drones to be dropped off and picked up at some discrete locations on each
arc. They used MILP to model the new problem and propose a heuristic that combines
the variable neighborhood search and tabu search. The computational study showed
that allowing en-route operations can lead to more efficient solutions due to the time-
objective’s potential reduction. Schermer et al., 2019b also extended the VRP-D prob-
lem by allowing the execution of cyclic operations for drones. The authors further
introduced several additional valid inequalities and discussed the benefits of using the
new MILP formulation. In addition, a matheuristic that decomposes the problem into
an allocation subproblem and a sequencing subproblem is proposed. Computational
study shows the benefits of using drones to minimize the makespan and conclude that
their heuristic is effective and efficient.

Karak and Abdelghany, 2019 first studied the hybrid vehicle-drone routing problem
for pickup and delivery services, in which the node has goods pickup and delivery de-
mands simultaneously. The MIP formulation was presented. A novel solution method-
ology is developed which extends the classic Clarke and Wright algorithm. Sacramento
et al., 2019 considered the VRP-D problem with time limit constraints, and designed an
adaptive large neighborhood search metaheuristic for the problem.

Murray and Raj, 2020 extended their research in 2015 by considering parcel deliv-
ery with multiple drones. They presented a heuristic solution approach that leverages
a subset of subproblems is proposed. They gave some critical insights into the truck-
drone system design according to their computational study. (1) Although it is gener-
ally faster to reach a customer with a drone rather than a truck, it is rarely beneficial
to serve all drone-eligible customers via drone. (2) UAVs with high-speed and long-
range offer more incredible benefits in larger geographic regions, where customers are
distributed over a larger area. (3) Adding more UAVs to an existing fleet tends to have
diminishing marginal makespan improvements, with UAVs offering a more signifi-
cant benefit in instances involving many customers. (4) Problem instances involving
densely-distributed customers tend to benefit the most. (5) Automation within both
the truck and the depot result in time savings, with depot automation providing the
greatest savings.

Poikonen and Golden, 2020a studied the multi-visit drone routing problem. Poiko-
nen and Golden, 2020a allows the energy drain function to be any non-decreasing func-
tion of weight for each location pair and decouples the set of launch/landing vertices
from the set of customer locations. Computational study indicates that objective func-
tions are highly sensitive to drone speed. The number of drones was also very impactful
on the objective value.

Moshref-Javadi et al., 2020a and Moshref-Javadi et al., 2020b studied a truck and
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drones delivery model for last-mile delivery to minimizes the waiting time of cus-
tomers in the system. Moshref-Javadi et al., 2020a presented a mathematical formu-
lation and a heuristic solution approach for the optimal planning of delivery routes in
a multi-modal system combining truck and drone operations. Moshref-Javadi et al.,
2020b extended the model of Moshref-Javadi et al., 2020a by allowing launch drones
multiple times from each stop location to serve customers, like Schermer et al., 2019b
did. They developed a hybrid tabu search-simulated annealing algorithm to address
the problem. The computational study showed that the new delivery system could re-
duce the customer waiting time for a wide range of model parameters compared to the
classical delivery models.

Dayarian et al., 2020 introduced a novel way to exploit drones in same-day home
delivery settings: drone resupply. They considered a home delivery system in which
drones regularly resupply delivery trucks. They developed different algorithms and
compared their performance. Computational study shows the potential benefits of
drone resupply.

2.2 Related vehicle routing problem

Here we introduced some vehicle routing problems related to the van-based robot rout-
ing problems this paper studied. Section 2.2.1 - 2.2.4 are the problems related to the pro-
posed basic 2E-VRRP model. Section 2.2.5 introduces the electric two-echelon routing
problem, which is related to the 2E-VREC problem. Section 2.2.6 introduces the pickup
and delivery problem, which is related to the 2E-VRHPD problem.

2.2.1 Two-echelon vehicle routing problem (2E-VRP)

The two-echelon vehicle routing problem (2E-VRP), which is shown in Figure 2.2, is a
well-known variant of the classic VRP. It involves determining a set of optimal routes
for a two-level freight distribution system, where goods are delivered from a depot to
a subset of intermediary satellites in the first echelon, and from the satellites to cus-
tomers in the second echelon. For cost effectiveness reasons, delivery tasks in the first
echelon are usually accomplished by large identical trucks while delivery tasks in the
second echelon are usually accomplished by small identical vehicles (Baldacci et al.,
2013; Dellaert et al., 2018; Liu et al., 2018). In 2E-VRP, the intermediary satellite can
be seen as a transfer station. The freight is the primary connection between truck and
small identical vehicle. In the 2E-VRRP model, the intermediary satellite is just like a
rendezvous node and does not possess any goods storage function. Furthermore, the
connection between van and robot is closer than that of truck and small vehicle in the
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2E-VRP problem. The van not only carries the robots but also sends them out and picks
them up at same/different rendezvous nodes.

2.2.2 Two-echelon location routing problem (2E-LRP)

The two-echelon location routing problem (2E-LRP), which is shown in Figure 2.3, is
similar to the 2E-VRP. The main difference is that the 2E-LRP incorporates the location
decision problem into the VRP while the 2E-VRP does not (Crainic et al., 2011; Cuda
et al., 2015; Bala et al., 2017; Wang et al., 2018). The 2E-VRRP model is like the 2E-LRP
model in that we need to decide which vans/robots need to visit which rendezvous
nodes, but the models differ on the earliest time that a vehicle is allowed to leave the
pick-up rendezvous node. In 2E-LRP, the earliest leaving time of a vehicle is equal to
the time when the vehicle arrived at the satellites, whereas in the 2E-VRRP model it
depends on the time when its robots arrive at the pick-up node.

2.2.3 Truck and trailer routing problem (TTRP)

The truck and trailer routing problem (TTRP), as shown in Figure 2.4, describes a fleet of
truck and trailer combinations with known capacity serving a set of customers with pre-
determined demands and locations. In this problem, a vehicle may be a truck pulling a
trailer, called a complete vehicle, or a single truck, called a pure truck. Some customers
must be served by a truck while others can be served either by a truck or a complete
vehicle (Chao, 2002; Li et al., 2016; Parragh and Cordeau, 2017; Rothenbächer et al.,
2018). In the 2E-VRRP model, both the van and the robot can move by themselves,
whereas the trailer in TTPR model stays stationary while the truck is not pulling.

2.2.4 Open vehicle routing problem (OVRP)

The open vehicle routing problem (OVRP), in which a vehicle does not necessarily
return to the start node after servicing the last customer on its route, performs as a
Hamiltonian path (or Hamiltonian circuit if the vehicle chooses to come back to the
start node) (Li et al., 2007; Repoussis et al., 2007; Brandão, 2018). The OVRP has at-
tracted less attention than the VRP, largely due to its limited application environment:
the main application background cited in the academic study is a company using hired
vehicles for goods delivery, where the vehicle does not need to return to the depot af-
ter finishing serving the last customer. Note that in the second-level 2E-VRRP delivery
scenario, the robot route could be regarded as a Hamiltonian path since the van can
drop off and pick up a robot at different rendezvous nodes. Consequently, the OVRP
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can be expected to receive more attention as automated distribution such as automated
vehicle and/or drone delivery gains currency. The OVRP is shown in Figure 2.5.

2.2.5 Electric two-echelon routing problem (E2EVRP)

The electric two-echelon vehicle routing problem (E2EVRP), as shown in Figure 2.6,
have begun to be studied by researches for application to city scenarios in recent years.
And the E2EVRP is related to the 2E-VREC problem we studied in Chapter 4.

Breunig et al., 2019 extended the two-echelon vehicle routing problem where electric
vehicles are used on the second echelon with full charging technology. They proposed a
large neighborhood search and an exact mathematical programming algorithm, which
uses decomposition techniques to enumerate promising first-level solutions in conjunc-
tion with bounding functions and route enumeration for the second-level routes.

Jie et al., 2019 and Wang et al., 2019 studied the two-echelon vehicle routing problem
with battery swap technology. Jie et al., 2019 considered a two-echelon capacitated elec-
tric vehicle routing problem with battery swapping stations. In their problem setting,
the first and second echelon vehicles could all swap their batteries in the battery swap-
ping stations. They proposed an integer programming formulation and a hybrid algo-
rithm that combines a column generation and an adaptive large neighborhood search to
solve the problem. Wang et al., 2019 addressed a two-echelon vehicle routing problem
involving electric vehicles considering time windows and battery swapping stations.
They formulated the mathematical model and minimized the total of shipping cost,
handling cost, battery swapping cost, fixed cost of vehicles, and penalty cost due to
tardiness.

In the E2EVRP model, the vehicle (robot) can only be recharged at the charging
station. However, the robot can also be recharged by other vehicles in the 2E-VREC
model.

2.2.6 Pickup and delivery problem (VRPPD)

The vehicle routing problem with pickup-and-delivery (VRPPD), depicted in Figure
2.7, is an essential family of routing problems in which freight or passengers have to
be transported between different origins and destinations (Paolo and Vigo, 2014). The
pickup and delivery problem is related to the 2E-VRHPD problem we studied in Chap-
ter 5, not only about picking up and delivering freights, but also robots.

The VRPPD can basically be subdivided into four subclasses (Polat, 2017). In the
VRP with clustered backhauls (VRPCB), mixed linehauls and backhauls (VRPMB), and
simultaneous pick-ups and deliveries (VRPSPD), the vehicles only visit each customer
once for pickups and deliveries, i.e. loads cannot be split. In the VRP with divisible
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deliveries and pickups (VRPDDP), the vehicles can arrive at each customer twice. Nagy
et al., 2013 formulated the VRPDDP as a mixed-integer linear programming problem
and presented an exact and heuristic algorithm to implement the problem. Polat, 2017
presented an efficient parallel approach based on variable neighborhood search to solve
the VRPDDP that significantly improved the best solutions available in the literature.
The classification of pickup and delivery problems can also be seen in Battarra et al.,
2014, and Ko et al., 2020.

Time window constraints are usually needed in urban pickup and delivery. Dumas
et al., 1991 were the first to use column generation for solving pickup and delivery
problem with time window (PDPTW). They propose a branch-and-bound method that
can handle problems with up to 55 requests. Ropke and Pisinger, 2006 presented an
adaptive large neighborhood search heuristic for the pickup and delivery problem with
time windows.

In 2E-VRHPD model, van and robot can be seen as heterogeneous vehicles. Qu and
Bard, 2013 studied a heterogeneous pickup and delivery problem in which each vehi-
cle’s capacity can be modified by reconfiguring its interior to satisfy different types of
customer demands. The number of participants and support equipment that a van can
accommodate depends on how it is configured. They developed a two-phase heuris-
tic that uses ideas from greedy randomized adaptive search procedures with multiple
starts to solve this problem. Avci and Topaloglu, 2016 studied a heterogeneous vehicle
routing problem with simultaneous pickup and delivery problems. They developed a
hybrid local search algorithm in which a non-monotone threshold adjusting strategy is
integrated with tabu search. They indicated that the developed approach could pro-
duce efficient and effective solutions. Sun et al., 2019 presented the formulation and
exact solution for heterogeneous vehicle pickup and delivery problems, intending to
minimize carbon emissions of pickups and deliveries by a fleet of heterogeneous vehi-
cles. Their exact algorithm is based on a set partitioning model and the key character-
istics of its optimal solution, which can rapidly find the largest-scale instance’s optimal
solution. Drexl, 2020 studied a one-to-one pickup-and-delivery problem with time win-
dows and trailers. The discussed extension consists in consideration of a heterogeneous
vehicle fleet comprising lorries with detachable trailers. Trailers are advantageous as
they increase the overall vehicle capacity. However, some locations may be accessible
only by lorries.

In the 2E-VRHPD model, the pickup and delivery operation is also reflected in the
pickup and delivery robots. The van picks up and delivers robots, while the van in the
VRPPD model picks up and delivers freights. Besides, the van must first launch the
robot before recovering it. Whereas the vehicle has no priority for delivery and pick-
up in the VPRPD, they could be delivered first and pickup second; mixed pickups and
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deliveries; simultaneous pickups and deliveries. Besides, in the 2E-VRHPD model,
there is a minimum time interval between releasing and recovering the same robot.
This interval equals the shortest completion time for the robot to finish delivery to all
its customers from origins to destinations. Note that the pickup and delivery operation
(target is the robot) also exist in the 2E-VRRP and 2E-VREC model.



16 Chapter 2. Literature Review

FIGURE 2.2: 2E-VRP FIGURE 2.3: 2E-LRP

FIGURE 2.4: TTRP FIGURE 2.5: OVRP

FIGURE 2.6: E2EVRP FIGURE 2.7: VRPPD
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Chapter 3

Van-based robot urban deliveries
problem

Abstract
We introduce a two-echelon urban delivery problem with second-level robots. This

problem typically applies for delivering parcels or other small commodities to pedes-
trianized areas such as campuses or residential clusters. To model the proposed vehi-
cle routing problem, we introduce a mixed-integer program. We further propose con-
struction heuristics and a hybrid metaheuristic approach with backtracking for solving
larger instances. A sensitivity analysis for vehicle (van/robot) speed combinations re-
veals that increasing robot speeds has only very limited effects on cost. We therefore
recommend to keep robot speeds rather low because of a more pedestrian friendly en-
vironment in practical implementations.

3.1 Background

Autonomous delivery services can be realized in certain areas as of today. Researchers
have begun to study autonomous vehicle delivery problems under restricted condi-
tions, for example Scherr et al., 2019 designed an urban service network with mixed
autonomous fleets.

However, in the foreseeable future, the applications of the robot are limited by its
travel distances and speed for technical and safety reasons. Hence, one innovative city
logistics delivery concept was presented by combining traditional vehicles and robots.
Boysen et al., 2018 considered using vans to transport and drop off small robots. They
presented a decentralized robot depot within the city center, only used for storing de-
livery robots. Mercedes-Benz also presented the idea and works closely together with
Starship Technologies to develop the “mothership approach” (van carries robots) in
their Future Transportation unit. They believe that the carrier system can avoid the
drawback of robot-only delivery (Daimler, 2017).
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Based on the mothership concept, we propose a 2E-VRRP model where multiple
vans cooperate with their associated robots. The van carries the robots, sending out and
picking up the robot in rendezvous nodes while the robot manages customer service.
The 2E-VRRP model has the following advantages:

(1) The 2E-VRRP model can avoid some drawbacks of robot-only delivery. For ex-
ample, the robot will only have a very limited range. Logically, the range is limited
by battery capacity, besides, the robots move at walking speed for safety reasons, so
that their application for long distances is not efficient (Daimler, 2017). If we adopt the
2E-VRRP model, the van can carry robots to implement long distances and high-speed
transportation. (2) The 2E-VRRP model can greatly reduce the cost of the enterprise
in operational aspects when compared to the traditional two echelon delivery model.
Since the 2E-VRRP model does not need suitable real city estate, also without a lot of
manpower cost. Note that satellites (intermediate warehouse) and labor costs are two
big expenses of logistics enterprises. (3) The number of rendezvous nodes is always
larger than that of satellites, which means vans can be more flexible in choosing trans-
fer nodes. Moreover, the second level route in the 2E-VRRP model is an open route, the
robot can choose being picked up from a different node than the one they have been
dropped off, which often brings about a lower cost at the second level of delivery. (4)
Compared to the truck-based drone model, we believe the 2E-VRRP model is safer in
urban delivery. For example, when a fast-flying drone stalls, it will cause serious acci-
dents in a city. However, to a slowly moving robot, accidents caused by stalled robots
are controllable.

The contributions of this chapter are as follows. We consider a new two-echelon
urban delivery concept with time windows relying on autonomous robots, in which
the 2nd-level route is an open route. First we introduce the problem and propose a
mathematical formulation. A column generation procedure is presented for trying to
get a tighter lower bound (compared with the low bound got by CPLEX) for the MIP
model. Next we propose a construction heuristic for the newly introduced problem,
which is useful for quickly generating feasible initial solutions and providing a first
upper bound. We then propose a multi-start hybrid metaheuristic approach based it-
erative local search and backtracking. The backtracking procedure accurately connects
the chosen robot routes to the van route. Furthermore, we analyze how van/robot
speed combinations influence the objective value, which can provide a reference for
real-world implementation of such a service.

The remainder of the chapter is structured as follows. Section 3.2 describes the prob-
lem and model and Section 3.3 elaborates on the heuristic approaches. A computational
study is presented in Section 3.4 and Section 3.5 concludes the chapter.
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3.2 Problem description and model

3.2.1 Problem statement

We consider a two-echelon urban delivery problem using robots for 2nd-level route de-
livery. The van carries the robots on the 1st-level route and drops off and picks up them
in the rendezvous nodes, while the robot handles customer service on the 2nd-level
route. The research developed in this chapter considers using the van only for carry-
ing robots, and so no direct shipping from vans to customers is allowed. This setting
is reasonable, since the robot can only deliver parcels or other small commodities to
pedestrianized areas such as campuses or residential clusters with current technolo-
gies. Also, our target customers are in these pedestrianized areas, where vans are often
banned. Hence, we assume the van cannot serve customers directly.

Since campuses and residential clusters have multiple entrances and exits, the van
can drop off and pick up a robot at different positions. In other words, the van can
move to other rendezvous nodes after making a drop-off operation without having to
wait for its robot to come back to the same rendezvous location. Besides, the robot is
not forced to return back to the rendezvous node it departed from, which means the
2nd-level route is an open route.

Each pick-up or drop-off (rendezvous) node can only be visited at most once by the
same vehicle. This setting is reasonable, as a van can release all its associated robots
immediately at a drop-off node and has no need to reach that node again. Likewise, a
van can arrive at a pick-up node when all its associated robots have arrived. Hence, a
drop-off/pick-up node does not have to be visited twice by the same van. Each cus-
tomer node must be visited by just one robot exactly once. In addition, customer nodes
and depot have their time windows based on real demand in city logistics. Our model
accommodates waiting at all locations without cost. Moreover, we allow a robot to visit
multiple customers during a dispatch rather than only visit one customer, since the ca-
pacity for a robot is usually larger than that of a drone. The travel range of a van is
infinite. Nevertheless, the total travel time of a robot cannot exceed a predetermined
value on the 2nd-level route, as the robot tends to be small-sized and thus equipped with
limited fuel/battery capacity.

We present three (simplifying) assumptions. In order to simplify the model and
reduce the complexity of our problem, a robot is dropped off and picked up by a single
van. Furthermore, we assume constant operation times, and we can therefore integrate
it into the travel time from and to the rendezvous nodes (Grangier et al., 2016). In
the 2E-VRRP model proposed here, freight can only be loaded when rounds begin at
the depot. In other words, the van carries a sufficient number of robots full of freight
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instead of carrying some robots and freight and then taking on freight replenishment
during the van route.

Figure 3.1 shows an example of the 2E-VRRP model. Triangles represent rendezvous
nodes, the square represents the depot, and circles correspond to customer nodes. Solid
lines correspond to 1st-level routes (Van routes) and dotted lines correspond to 2nd-level
routes (robot routes).

FIGURE 3.1: Delivery system with van/robot

3.2.2 Mixed Linear Integer Programming Model

The problem is defined on a directed graph G = (V, A), where the depot V0 is rep-
resented by two nodes 0 and 0

′
. Let Vr = {1, 2, ..., m, m + 1, ..., 2m} be rendezvous

nodes where vans drop off and pick up their robots. The node m + i in pick-up nodes
set Vp = {m + 1, m + 2, ..., 2m} is a copy of the drop-off node i (physical rendezvous
node) in set Vd = {1, 2, ..., m}. Note that node i and node m + i correspond to a same
physical rendezvous node. We use different names to distinguish drop-off and pick-
up operations of vans. Furthermore, Vc = {2m + 1, 2m + 2, ..., 2m + n} represents the
customer nodes set. Moreover, we define Vdc = Vd ∪ Vc and Vpc = Vp ∪ Vc. Also,
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V0
r = Vr ∪ {0} and V0

c = Vc ∪ {0} while V
′
r = Vr ∪ {0

′} and V
′
c = Vc ∪ {0

′}. Let
A1 = {(i, j) | i ∈ {0}; j ∈ Vd} ∪ {(i, j) | i, j ∈ Vr, i 6= j} ∪ {(i, j) | i ∈ Vp; j ∈ {0′}} be
the 1st-level route (Van routes) and A2 = {(i, j) | i ∈ Vd; j ∈ Vc} ∪ {(i, j) | i, j ∈ Vc, i 6=
j} ∪ {(i, j) | i ∈ Vc; j ∈ Vp} be the 2nd-level route (robot routes).

For each edge, let ti,j > 0 be the associated travel time and ci,j be the associated
travel cost. The freight must be delivered from depot {0} to customer node i with
the demand di and serving time si. The time window of the customer nodes i ∈ Vc

is [ai, bi], which is the time interval that the service at node i is allowed to start. Fur-
thermore, let [a0, b0] = [a0′ , b0′ ], where a0/a0′ represents the earliest possible depar-
ture time from the depot 0/0′ and b0/b0′ is the latest possible arrival time at the depot
0/0′. These time windows are hard constraints. FT = {1, 2, ..., K} is the set of vans
and Fk

D = {(k, 1), (k, 2), ..., (k, L)} is the set of robots belonging to the kth van, where
K is the number of vans and L is a maximum number of robots assignable to a van.
FD = F1

D ∪ F2
D∪, ...,∪FK

D = {(1, 1), (1, 2), ..., (k, l), ..., (K, L)} denotes the set of all robots.
Let C, T, and M be capacity, maximum total travel time for a robot, and an arbitrary
large constant number, respectively. In addition, we further introduce the following
decision variables:

• Let xi,j,k equal to 1 if arc (i, j) in A1 is traveled by the kth van, 0 otherwise.

• Let yk,l
i,j equal to 1 if arc (i, j) in A2 is traveled by the lth robot belonging to kth van,

0 otherwise.

• Let Qi,j,k be the robot flow carried by kth van passing through arc (i, j) in A1, i.e.,
the number of robots.

• Let Wk
i be the arrival time of kth van (or the robot belonging to the kth van) at

node i. Note that Wk
i represents the last arrival time of kth van and the robots

belonging to the kth van at node i.

The 2E-VRRP problem is modeled as the following MIP:

Lex-min( ∑
k∈FT

∑
j∈Vd

x0,j,k, ∑
k∈FT

∑
(i,j)∈A1

ci,jxi,j,k + ∑
(k,l)∈FD

∑
(i,j)∈A2

ci,jy
k,l
i,j ) (3.1)
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∑
(i,j)∈A1

xi,j,k ≤ 1, ∀j ∈ V
′
r , k ∈ FT (3.2)

∑
i∈Vp

xi,0′ ,k = ∑
j∈Vd

x0,j,k, ∀k ∈ FT (3.3)

∑
(i,j)∈A1

xi,j,k − ∑
(j,i)∈A1

xj,i,k = 0, ∀j ∈ Vr, k ∈ FT (3.4)

∑
(k,l)∈FD

∑
i∈Vdc

yk,l
i,j = 1, ∀j ∈ Vc (3.5)

∑
i∈Vdc

yk,l
i,j − ∑

i∈Vpc

yk,l
j,i = 0, ∀j ∈ Vc, (k, l) ∈ FD (3.6)

∑
i∈Vp

Qi,0′ ,k = ∑
j∈Vd

Q0,j,k, ∀k ∈ FT (3.7)

∑
j∈Vd

Q0,j,k = ∑
l∈Fk

D

∑
i∈Vc

∑
j∈Vd

yk,l
j,i , ∀k ∈ FT (3.8)

∑
i∈V0

r

Qi,j,k − ∑
i∈Vr

Qj,i,k = ∑
l∈Fk

D

∑
i∈Vc

yk,l
j,i , ∀j ∈ Vd, k ∈ FT (3.9)

∑
i∈Vr

Qi,j,k − ∑
i∈V′r

Qj,i,k = − ∑
l∈Fk

D

∑
i∈Vc

yk,l
i,j , ∀j ∈ Vp, k ∈ FT (3.10)

0 ≤ Qi,j,k ≤ xi,j,k ∗ L, ∀(i, j) ∈ A1, k ∈ FT (3.11)

Wk
i + ti,j −Wk

j ≤ M(1− xi,j,k), ∀(i, j) ∈ A1, k ∈ FT (3.12)

Wk
i + ti,j −Wk

j ≤ M(1− yk,l
i,j ), ∀i ∈ Vd, j ∈ Vc, (k, l) ∈ FD (3.13)

Wk
i + ti,j + si −Wk

j ≤ M(1− yk,l
i,j ), ∀i ∈ Vc, j ∈ Vpc, (k, l) ∈ FD (3.14)

ai ≤Wk
i , ∀i ∈ V0

c , k ∈ FT (3.15)

Wk
i ≤ bi, ∀i ∈ V

′
c , k ∈ FT (3.16)

∑
i∈Vc

di ∑
j∈Vpc

yk,l
i,j ≤ C, ∀(k, l) ∈ FD (3.17)

∑
(i,j)∈A2

yk,l
i,j ti,j ≤ T, ∀(k, l) ∈ FD (3.18)

xi,j,k ∈ {0, 1}, ∀(i, j) ∈ A1, k ∈ FT (3.19)

yk,l
i,j ∈ {0, 1}, ∀(i, j) ∈ A2, (k, l) ∈ FD (3.20)

The lexicographic objective function (3.1) minimizes the number of vans first and
then minimizes the total transportation cost of 1st-level and 2nd-level routes. Constraint
(3.2) implies that each van departs from (or arrives at) the rendezvous node no more
than once, and each van arrives at the depot no more than once. Constraints (3.3-3.4)
ensures the number of arrivals is equal to the number of departures for the van at
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the depot/rendezvous node. Constraints (3.5-3.6) indicate that each customer node is
visited exactly once. Constraints (3.7-3.8) assure the number of robots (carried by the
kth van) departing from/arriving at the depot is equal to the total number of robots
(carried by the kth van) departing from the drop-off nodes. Constraints (3.9-3.10) link
the number of robots carried by van to the number of robots departing from the drop-
off node/arriving at the pick-up node. Constraint (3.11) guarantees that the number of
robots carried by a given van cannot exceed its capacity on 1st-level route.

Constraint (3.12) is the time-flow constraint for the vans. Constraints (3.13-3.14)
are time-flow constraints for the robots. Service time does not need to be considered
when a robot departs from drop-off nodes to customer nodes, but need to be considered
when a robot is traveling between customer nodes or from customer nodes to pick-up
nodes. Constraint (3.12-3.14) can also eliminate the subtour of 1st-level route and 2nd-
level route. Constraints (3.15-3.16) are the time window constraints for the customer
nodes. Constraint (3.17) ensures the demand of every customer is met. Constraint
(3.18) forces the maximum travel time of each robot. Constraints (3.19-3.20) are the
constraints on variables.

3.3 Methodology

This section introduces approximate solution methods for the 2E-VRRP problem. Sec-
tion 3.3.1 proposes a construction heuristic to obtain a feasible solution quickly. The
construction heuristic is applied to provide an upper bound during optimization of the
primary objective of the MIP model, and also to generate multiple initial solutions for a
hybrid metaheuristic approach. In Section 3.3.2 we propose a hybrid multi-start meta-
heuristic including destroy and repair operators together with a backtracking compo-
nent.

3.3.1 Construction heuristic

The general structure of the construction heuristic is sketched out in Algorithm 1. Let S2

be the set of rendezvous nodes and the depot. The sequence GetStartCustomerNode, Get-
DropOffNode and ModifiedNearestNeighbor is repeated to construct multiple robot routes
(2nd-level route) until no customer nodes are left in the unvisited customer nodes set S1

(lines 2-8). Meanwhile, set S1 and the complete robot route set S3 are updated (lines
6-7). Afterwards, a simple connection heuristic (SimpleConnectionHeuristic) is applied
to construct multiple van routes (1st-level route) to get the final solution S (line 9).
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Algorithm 1 Construction_Heuristic(S1, S2)

1: Initialization: S3 ← ∅
2: while S1 6= ∅ do
3: Node1 ← GetStartCustomerNode(S1)
4: Node2 ← GetDropO f f Node(Node1, S2)
5: RobotRoute← Modi f iedNearestNeighbor(Node1, Node2, S1, S2)
6: Remove Customer nodes in RobotRoute from S1
7: S3.add(RobotRoute)
8: end while
9: S← SimpleConnectionHeuristic(S3)

10: Output: S
Note: S1: unvisited customer nodes, S2: rendezvous nodes and depot, S3: complete
robot routes, S: final solution.

First, we introduce how to construct the 2nd-level route. The GetStartCustomerNode
procedure is run to select a customer node for the second level route construction algo-
rithm (lines 2-8) to start in Algorithm 1. Here, we introduce the deterministic/random
start customer node selection strategies that can be used in GetStartCustomerNode. The
deterministic start customer node selection strategy is the one we obtain the start cus-
tomer node with the minimum latest service time (similar to (Li et al., 2016)), while
in the random start customer node selection strategy, the start visiting customer node
from the customer nodes set is chosen randomly to maintain the diversity of solutions.

After choosing a start customer node, we select a drop-off node to connect the de-
pot, drop-off node and start customer node. We propose optimal/nearest drop-off node
selection strategies that can be implemented in GetDropOffNode. The optimal drop-off
node selection strategy chooses the drop-off node for which distance to depot plus dis-
tance to start customer node is the smallest, whereas the nearest drop-off node selection
strategy picks the drop-off node with the nearest distance to the start customer node.

It is important to note here that the optimal drop-off node selection strategy tends
to select a drop-off node close to the depot; whereas the nearest drop-off node selection
strategy tends to choose a drop-off node close to customer nodes. These two different
selection strategies thus yield a significant difference in initial solutions.

Next, we apply ModifiedNearestNeighbor to select the remaining customer nodes and
a pick-up node sequentially for constructing the robot route. ModifiedNearestNeighbor
not only uses the nearest distance information like the nearest neighbor search does,
but it also considers the start time window information at the chosen customer node.
The total nearest of ModifiedNearestNeighbor is described as the robot start serving time
earliest. In other words, we choose the customer node with the earliest time at which
the robot can start to provide services.

The specific operation of ModifiedNearestNeighbor chooses the total nearest customer
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node based on the current chosen point subject to all constraints. The constraints in-
volve the time window constraints for the robot and van, the capacity constraint, and
the maximum travel time constraint for the robot. The procedure iterates until there is
no customer node that satisfies the constraints, then selects the nearest pick-up node to
finally make a complete robot route.

Second, we introduce how the SimpleConnectionHeuristic constructs the 1st-level route.
The general structure of the simple connection heuristic is sketched out in Algorithm
2, which is based on a distance nearest neighbor search to connect the given robot
routes with vans. The sequence of GetStartRendezvousNode, GetRobotRoute and Con-
nectionCheck procedure is repeated to construct one complete 2E-VRRP route until the
number of chosen robot routes in set S2 is equal to the capacity of the van (Vanmax) or
until all unconnected robot routes in set S3 (a copy of unconnected robot routes set S1)
have been tried (lines 5-15). The process iterates until all robot routes are connected
(lines 2-18). Finally, we output final solution S.

Algorithm 2 Simple_Connection_Heuristic(S1)

1: Initialization: S2 ← ∅, S← ∅, Vanmax
2: while S1 6= ∅ do
3: S2 ← ∅
4: S3 ← Copy(S1)
5: while S3 6= ∅ do
6: Node← GetStartRendezvousNode(S2, S3)
7: RobotRoute← GetRobotRoute(Node, S2, S3)
8: S3.remove(RobotRoute)
9: if !(VanRobotRoute← ConnectionCheck(S2, RobotRoute)) then

10: S2.add(RobotRoute)
11: end if
12: if len(S2) = Vanmax or S3 = ∅ then
13: S.add(VanRobotRoute), break while loop
14: end if
15: end while
16: S1.remove(S2)
17: end while
18: Output: S
Note: S1: unconnected robot routes set, S2: chosen robot routes, S3: a copy of S1, S:
final solution, Vanmax: capacity of van.

The GetStartRendezvousNode procedure is applied to choose a drop-off node for Al-
gorithm 2 to start constructing one 2E-VRRP route. If it is the first drop-off node we will
choose, then we select the node with the maximum number of robot routes departing
from it. Otherwise, we select the drop-off node based on the nearest distance criterion.
Furthermore, a drop-off node can be selected more than once if there are robot routes
from this node not chosen. The GetRobotRoute procedure is implemented to choose a
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robot route based on the selected drop-off node. We classify the procedure into two
types involving four sub-scenarios as described in Table 3.1. The ConnectionCheck pro-
cedure is executed to connect the chosen robot routes. In order to simplify the con-
nection process, ConnectionCheck accesses all the drop-off nodes first according to the
chosen sequence. Afterward, ConnectionCheck visits the pick-up nodes according to the
selected order. The procedure checks the constraints during the whole process.

TABLE 3.1: Get Robot Route procedure

Scenario Sub-Scenario Operator

The drop-off node is the first
node a van visited in one 2E-
VRRP route

There is no previous robot route
connected

Choose the corresponding robot
route with the smallest robot ar-
rival time at its pick-up node

There is previous robot route
connected

Choose the node with nearest
distance from the chosen robot
route’s pick-up node to the pre-
vious robot route’s pick-up node

The drop-off node is not the first
node a van visited in one 2E-
VRRP route

For the robot routes depart-
ing from current drop-off node,
there exist corresponding pick-
up nodes the same as the pick-
up nodes of already chosen
robot routes

Select the robot route with the
same pick-up node to the al-
ready chosen robot routes

For the robot routes depart-
ing from current drop-off node,
there not exist corresponding
pick-up nodes the same as the
pick-up nodes of already chosen
robot routes

Select the robot route with the
nearest distance between its
pick-up node and the previous
robot route’s pick-up node

Third, we give a simple example of how the simple connection heuristic performs
in Figure 3.2. The triangles represent the rendezvous nodes, the square represents the
depot, and the circles are the customer nodes. The solid line with the arrow is the van
route, and the dotted lines with the arrow are robot routes. In order to simplify the
example and focus on the specific selection process, we assume that the van route 0-
A-D-B-C-0 is feasible in advance. Also, we assume robot route 1 has the shortest robot
arrival time at its pick-up node.

• Step 1: First we choose drop-off node A as it has 3 robots departing from it, which
is larger than the number for drop-off node D. Then we select robot route 1 since
it has the smallest robot arrival time at its pick-up node. Afterward, we check van
route 0-A-B-0 and find it feasible.

• Step 2: We select drop-off node A since it is closest to the drop-off node of the
previously chosen route 1. Next, we choose robot route 2 since its pick-up node
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B is nearest to the pick-up node for the previously selected route 1. Finally, van
route 0-A-B-0 is connected, and it is feasible.

• Step 3: We select the drop-off node A and robot route 3 based on the nearest
distance criterion, as done in step 2. Afterward, we use ConnectionCheck to check
and connect van route 0-A-B-C-0.

• Step 4: First we find drop-off node D as it has the nearest distance to the drop-off
node of the chosen route 3. Afterward, we choose robot route 4 since its pick-up
node C has already been chosen before. Van route 0-A-D-B-C-0 is feasible, and we
find the number of robots that the van carried is up to its capacity. One complete
2E-VRRP route is successfully constructed.

FIGURE 3.2: Simple Connection Heuristic example

3.3.2 Hybrid metaheuristic

Hemmelmayr et al., 2012 and Breunig et al., 2016 proposed a large neighborhood search-
based approach for handling general two-echelon routing problems in which they used
a destroy and repair operator with local search phase. Here, we draw on some of their
ideas and then present a hybrid metaheuristic approach to improve the construction
heuristic solutions. One way to achieve diversification is to re-start the procedure from
a new solution (Martí et al., 2019). It is clear that if the iteration number is fixed, the
initial solution has a significant impact on quality of the final solution. Hence, we also
borrow some of the ideas used in multi-start heuristics (Nguyen et al., 2012; Han and
Chu, 2016) to design the hybrid metaheuristic.
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The general structure of the hybrid metaheuristic is depicted in Figure 3.3. The
destroy-repair loop aims to minimize the primary objective while the iterated local
search (ILS) loop optimizes the primary and secondary objectives simultaneously. A
multi-start loop restarts the algorithm by starting from a new initial solution clearly
distinct from the previous one. Furthermore, we use maximum iteration numbers as
the acceptance criteria 1,2,3,4.

A more detailed algorithm in pseudocode is given in Algorithm 3. The construction
heuristics are used to generate multiple initial solutions from Sinitial

1 to Sinitial
max (line 2).

The destroy-repair loop with an iteration number IterN2max (lines 5-13) is performed
to obtain solution Sdr (line 14). In which the destroy and repair procedures are run
until there is no customer node in the chosen customer node set Snode (lines 8-11). If we
get Sdr for the first time or if the number of complete 2E-VRRP routes in Sdr is smaller
than the previous one, the local search and ILS procedures are implemented (lines 16-
27). Otherwise, the algorithm breaks out of the repair-destroy-ILS loop (lines 3- 32).
The ILS loop (lines 17-26) is run to update and obtain best solution Sbest (line 22). In
which the perturbation and local search repeat until the iteration number is equal to
IterN3max. If the perturbation is feasible for the current best solution Sbest, the local
search is conducted to get solution Send (lines 19-20). If Send is better than Sbest, then
update Sbest (lines 21-22). These procedures restart using the multi-start loop (lines
2-34), and every best solution Sbest will be saved in solution set S (line 33).

For two-echelon routing problems, the number of satellites is generally much less
than the number of customer nodes since a satellite is essentially like a small depot
and maintaining its normal operation requires funds. Hence, using an exact algorithm
to build the 1st-level route is a viable method if the number of rendezvous nodes is
small. In this chapter, we first construct the 2nd-level route and then use vans to connect
them. If we have several robots belonging to one van, we can employ a backtracking
algorithm to connect the robot routes with the van route. The method is applied in the
repair and ILS procedures. After a customer node has been inserted into a complete
2E-VRRP route or after performing moves in the ILS, the backtracking algorithm is
applied to check whether the 1st-level route can be successfully connected, and then
the backtracking outputs the solution with the minimum travel cost of 1st-level route if
needed.

Destroy and Repair

A feasible and straightforward way to reduce the number of vans used is to choose
a complete 2E-VRRP route to destroy it and then insert its customer nodes into other
2E-VRRP routes.



3.3. Methodology 29

FIGURE 3.3: Hybrid metaheuristic-General flowchart
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Algorithm 3 Hybrid_metaheuristic(IterN1max, IterN2max, IterN3max)

1: Sinitial
1 , ..., Sinitial

max ← ConsrtuctionHeuristic(), The solution set S← ∅
2: for Sinitial

1 to Sinitial
max do

3: Initialization: IterN1← 0
4: while IterN1 < IterN1max do
5: Initialization: The temp solution set Stemp ← ∅, IterN2← 0
6: while IterN2 < IterN2max do
7: Snode ← ∅, Stemp1 ← Sinitial

i
8: while Snode is empty do
9: Stemp2 ← Stemp1

10: (Snode, Stemp1)← Repair(Destroy(Stemp1))
11: end while
12: Stemp.add(Stemp2), IterN2← IterN2 + 1
13: end while
14: Get Sdr by choosing the solution with minimum primary objective value in set Stemp

15: if we get the Sdr for the first time or the number of complete 2E-VRRP route in Sdr is
smaller than the previous one then

16: Sbest ← Localsearch(Sdr)
17: Initialization: IterN3← 0
18: while IterN3 < IterN3max do
19: if Perturbation(Sbest) is feasible then
20: Send ← Localsearch(Perturbation(Sbest))
21: if Send better than Sbest then
22: Sbest ← Send

23: end if
24: end if
25: IterN3← IterN3 + 1
26: end while
27: Sinitial

i ← Sbest

28: else
29: break while loop
30: end if
31: IterN1← IterN1 + 1
32: end while
33: S.add(Sbest)
34: end for
35: Output: Output the best solution in S
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The destroy procedure destroys a chosen complete 2E-VRRP route into the list of
nodes for re-inserting. In this chapter, we consider randomly choosing a 2E-VRRP
route to be destroyed, which guarantees a diversity of solutions. At each repair phase,
we randomly insert the lists of nodes obtained by the destroy procedure to other com-
plete 2E-VRRP routes in random order. In addition, the repair procedure inserts each
customer node at its first feasible position or at the position with the largest positive
saving of the secondary objective. If there are still nodes that cannot be successfully
inserted at the end, the insertion fails.

Local search

In this chapter, we exploit well-known moves such as insertion, swap, and 2-opt. Fur-
thermore, the moves we called ‘change-satellites’ are also used to change the drop-off
and pick-up nodes of a robot route.

The 2-opt moves are executed inside the robot route. Details on 2-opt can be found
in (Croes, 1958). The insertion and swap operators are applied in three different route
configurations that are inside a robot route, inside a complete 2E-VRRP route, and be-
tween complete 2E-VRRP routes, respectively. The insertion moves searches the inter-
calation of one node after one of the neighbor nodes while the swap moves explore
swapping one node with one of the neighbor nodes. For one robot route, the change-
satellites operator involves changing the drop-off and pick-up node individually or si-
multaneously. Specific insertion, swap, and change-satellites operations are introduced
in greater depth below.

Figure 3.4 describes three neighborhood structures, and each contains several sub-
neighborhood structures. The insertion operators N1, N2, and N3 all consist of remov-
ing a customer node from a position i and inserting it after a position j: N1 removes and
inserts customer nodes in the same robot route, N2 removes and inserts customer node
in different robot routes from a same van, and N3 removes and inserts customer node in
different robot routes between different 2E-VRRP routes. Swap operators N4, N5, and
N6 all involve swapping customer-node positions. N4 swaps two customer nodes in
the same robot route whereas N6 swaps two customer nodes in different robot routes
incident to different 2E-VRRP routes. N5 swaps customer nodes in two robot routes
within a same van route. The change-satellites operators N7, N8, and N9 change pick-
up node only, drop-off node only, and both drop-off and pick-up nodes, respectively.

Since the insertion moves make it possible to reduce the number of van routes, the
local search procedure can simultaneously optimize both the primary and secondary
objectives. In the insertion process, we multiply a significant penalty by the number
of van routes in the cost function. Hence, once a solution emerges that reduces the
primary objective, it can readily become the current optimal solution and can be saved.
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In this chapter, we apply the sequential Variable Neighbor Descent (VND) with first
improvement (Duarte et al., 2018) to conduct the local search. Note that the neighbor
sequence is randomly predetermined before starting the VND in order to promote a
diversity of solutions.

Perturbation

We present the perturbation procedure involving three perturbations that bring a sig-
nificant change to the structure of the solution, which is good for escaping local optima.

The first perturbation Change-Multisatellites is an enhanced version of the change-
satellites operator which allows simultaneous change of two rendezvous nodes in a 2E-
VRRP route. The second perturbation Change-Robotroute determines that robot routes
can swap between different 2E-VRRP routes. The last perturbation Destroy-Repair-
Reconstruction randomly destroys a 2E-VRRP route and inserts its customer nodes into
other 2E-VRRP routes. If there are nodes left, the route is reconstructed by construction
heuristics.

For the reconstruction procedure, we use the GetStartCustomerNode procedure by
choosing the random start customer node selection strategy. Moreover, we randomly
choose a drop-off node selection strategy in the GetDropOffNode procedure, which is
used in the multi-start procedure of the hybrid metaheuristic. These two node selection
strategies guarantee the diversity of solutions.

Backtracking algorithm for connection

In general, one van carries several robots not exceeding its capacity. Furthermore, each
robot route starts from a drop-off node and ends at a pick-up node. However, different
robot routes may start from the same drop-off node or end at the same pick-up node. If
the number of robots carried by a van is larger than the number of physical rendezvous
nodes, in other words, L > m, there are 2m nodes that will be visited at most by one
van. Otherwise, there are at most 2L nodes that will be visited by one van. Overall,
a maximum of 2 ∗ min(L, m) different rendezvous nodes will be visited by one van.
Hence, there are less than A2∗min(L,m)

2∗min(L,m)
cases that need to be examined in a full enumer-

ation method. Furthermore, as there are priority constraints between visiting drop-off
and pick-up nodes belonging to the same robot route, for example a van should visit
the drop-off node first before it can access the pick-up node on the same robot route,
then the possible combinations of visiting sequences will be significantly reduced.

If one of the two values L or m is small, we can connect the robot routes belonging to
one van entirely through an exact algorithm. For the instances studied here, L = 4, m =
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FIGURE 3.4: Local search operator
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3, 4, 5. Hence, we choose a simple and adaptable backtracking algorithm to address the
connection between a van and its robots.

The backtracking algorithm involves a depth-first search scheme and recursive in-
vocation. After the van visits a rendezvous node, the collection of accessible ren-
dezvous nodes is synchronously updated. Pruning is also implemented if the current
arrival time of the van is greater than the pre-calculated latest allowed arrival time of
the van at the rendezvous node. Note that the general constraints are checked during
the whole flow of the algorithm for pruning. The algorithm records and outputs the
best solution finally.

The general structure of the backtracking connection algorithm is depicted in Al-
gorithm 4. If current accessible points set S2 is empty (line 1), check and update the
best solution (Line 2-8). Return the status true/ f alse, best link Sbest and best value V.
If S2 is not empty (line 1), execute (lines 10-22). JudgeTimeWindow and UpdateCollection
procedures are run sequentially if connecting node i does not violate the JudgeTimeWin-
dow constraints (lines 12-14). Backtracking_Connection calls itself to obtain the new Sbest

and V if its status is true (line 15). If V is larger than a predetermined value that the
2E-VRRP route value cannot reach, return status as false (lines 20-22).

We introduce the UpdateCollection and JudgeTimeWindow procedures as follows.
UpdateCollection: For the robot routes belonging to one van, there are priority

constraints between the drop-off and pick-up nodes. For example, there may be sev-
eral viable robot routes starting from the same drop-off node but ending at different
pick-up nodes. These pick-up nodes have to be visited after the drop-off node has been
visited. Similarly, there may be several viable robot routes ending at the same pick-up
node but starting from different drop-off nodes. This pick-up node should be visited af-
ter all its relative drop-off nodes have been visited. During the Backtracking_Connection
algorithm, we continually update the accessible point collection (UpdateCollection) syn-
chronously after one rendezvous node has been visited.

The UpdateCollection procedure is addressed at each rendezvous node during the
backtracking algorithm. In the beginning, only drop-off nodes are allowed to be visited.
Once a drop-off node has been visited, we remove it from the accessible point collection.
For the current chosen drop-off node, there may be several robot routes departing from
it and ending at one or more than one pick-up nodes. For these pick-up nodes, if there
is the node whose corresponding drop-off nodes have all been visited, we put it into
the accessible point collection. In addition, if the algorithm visited one pick-up node,
we just remove it from the accessible point collection.

JudgeTimeWindow: In order to speed up the backtracking, we calculate the latest
allowed drop-off nodes arrival times for a van as a pruning standard. If a van arrived
at the drop-off node later than its latest allowed arrival time, the route is unfeasible. We
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Algorithm 4 Backtracking_Connection(S1, S2, Sbest, T, V, P)

1: if S2 is empty then
2: if the value of S1 is large than V then
3: V ← value(S1)
4: Sbest ← S1
5: return(true, Sbest, V)
6: else
7: return( f alse, Sbest, V)
8: end if
9: else

10: for i to S2 do
11: Stemp

1 , Stemp
2 , Ttemp ← Copy(S1, S2, T)

12: if !(JudgeTimeWindow(i, Stemp
1 , Ttemp, P)) then

13: Ttemp ← JudgeTimeWindow(i, Stemp
1 , Ttemp, P)

14: (Stemp
1 , Stemp

2 )← UpdateCollection(i, Stemp
1 , Stemp

2 )

15: (Sbest
1 , V)←!(Backtracking_Connection(Stemp

1 , Stemp
2 , Sbest, Ttemp, V, P))

16: else
17: return( f alse, Sbest

1 , V)
18: end if
19: end for
20: if V large than predetermined largeValue then
21: return( f alse, Sbest

1 , V)
22: end if
23: end if
24: return(true, Sbest

1 , V)
Note: S1: already visited node list, S2: current could visited node set, Sbest: best result,
T: current time, V: value. P: chosen robot routes.
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can quickly exclude permutations that are obviously not feasible.
We calculate the latest allowed drop-off node arrival time of a robot route from

back to front. First, we calculate the latest allowed arrival time of the relative pick-up
node, which equals the end of the depot time window minus the travel time between
depot and pick-up node. Second, we add the latest allowed arrival time of the previous
node to the travel time between the previous node and the current node. Then we
compare the value obtained before to the end of the customer node time window and
take the largest one. Third, we count the latest allowed arrival time of the drop-off
node considering the travel time from the previous node. Note that if several robot
routes depart from one drop-off node, we choose the smallest latest allowed arrival
time among them.

The specific operation process calculates the latest allowed drop-off arrival time be-
fore the Backtracking_Connection algorithm executes. Then we make a dictionary, in-
cluding the drop-off nodes and their corresponding latest allowed arrival times, to fa-
cilitate the query during JudgeTimeWindow procedure.

The JudgeTimeWindow procedure is applied to check the feasibility of the van visiting
each rendezvous node and output the departure time from that node. If the judged
node is a drop-off node, query the dictionary then see if we need to prune this node or
not. If the node does not need to be pruned, calculate and output the departure time
of the judged node. If the judged node is the pick-up node, judge the time window
constraints for the van and robot routes then output the departure time for the judged
nodes if feasible.

3.4 Computational study

We performed three types of computational experiments. First, we use CPLEX to pro-
vide benchmarks for small instances and estimate the scale of the problem that the
solver can manage. Second, we evaluate the performance of the multi-start heuristic,
iteration number, different moves and perturbations in the hybrid metaheuristic, and
then compare the hybrid metaheuristic results against the CPLEX results to analyze its
performance. Third, we implement a sensitivity analysis on the van/robot speed ratio
to see how the related speed influences the objective of the 2E-VRRP model.

The mathematical programming algorithm is coded in OPL. CPLEX 12.8 is used to
solve the MIP model. The hybrid metaheuristic is coded in python version 3.6.5. Both
CPLEX and python are executed on an Intel(R) Core(TM) 3.6GHz processor with 32 GB
memory running under Windows 10. Note that python is run with single-threading.
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3.4.1 Instance generation

Here we borrow the instances of (Van Woensel, 2018) adapted to testing the 2EVRPTW
problem. The specific instance generation approach can be found in (Dellaert et al.,
2018). There are 12 types of instances with 3/4/5 rendezvous nodes and 15/30/50/100
customer nodes, respectively. Each type of instance counts 20 instances that can be
divided into four cases according to the different time window and demand generation
methods:

• For customer i of an instance of category CA. randomly generate 20 ≤ ai ≤ 260
and ai ≤ bi ≤ ai + 20 and dz = 10 or 20

• For customer i of an instance of category CB. randomly generate 20 ≤ ai ≤ 260
and ai ≤ bi ≤ ai + 20 and 5 ≤ dz ≤ 25

• For customer i of an instance of category CC. randomly generate 60 ≤ ai ≤ 360
and ai ≤ bi ≤ ai + 90 and dz = 10 or 20

• For customer i of an instance of category CD. randomly generate 60 ≤ ai ≤ 360
and ai ≤ bi ≤ ai + 20 and dz = 10 or 20

We decreased the number of depots in the instances, as there is only one depot rather
than multi-depots in 2E-VRRP model. In our test setting, the first depot in the instances
is always chosen. In the algorithm design verification phase, we assume that speed of
the van and robot and cost of the van and robot per meter are identical. Note that we
propose a speed sensitivity analysis in section 3.4.3. Here, we assume that one van can
carry 4 robots at most, that the capacity of one robot equals 50, that the largest travel
time for one robot is 200, and that the time window of the depot is [0, 450].

After modifying the instances, there are several unfeasible instances for our exper-
iments. The infeasibility mainly manifested in violating the time windows of the cus-
tomer and the depot even in the most optimistic situation. In order to ensure the fea-
sibility of our instances, we maintained the absolute value width of the time window
unchanged, and then adjust the time window to just not violate the constraints.

3.4.2 CPLEX experiment

The total computation time for CPLEX 12.8 in each instance to minimize the primary
and secondary objective is limited to 5 hours (18000s), respectively. In order to speed
up the search, the upper bound of the primary objective value is obtained from the
construction heuristic. We also try to compute a better lower bound of the secondary
objective by column generation procedure (Desaulniers et al., 2006) within 5 hours.
If the column generation procedure is not completed in 5 hours, the best of a valid
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lower bound each iteration generated will be chosen as the column generation lower
bound. We finally choose an enhanced lower bound, a better one between CPLEX lower
bound and column generation lower bound, to assess the performance of our hybrid
metaheuristics. Note that the column generation procedure is coded in DOcplex by
calling CPLEX 12.8. The detailed column generation procedure is in A.1.

For each instance, CPLEX12.8 runs with default settings until finding an optimal
solution or exhausting the predetermined maximum computation time. The computa-
tional results of all instances are presented in Table 3.2-3.3. Column 1 indicates the test
instances, column 2 and column 4 show the solving time for primary and secondary
objective. Column 3 gives a minimum number of vans required to be used while the
columns 5, 6, and 7 are the upper bound and the lower bound of the secondary ob-
jective and the achieved gap, respectively. Column 8 and column 9 are the enhanced
lower bound got by column generation and the achieved gap between CPLEX upper
bound and the enhanced lower bound.

TABLE 3.2: CPLEX results for 15 customer instances

3-15 4-15 5-15
TK(s) K TC(s) UB LB Cgap(%) ELB Egap(%) TK(s) K TC(s) UB LB Cgap(%) ELB Egap(%) TK(s) K TC(s) UB LB Cgap(%) ELB Egap(%)

CA1 0.5 2.0 5.0 383.9 383.9 0.0 383.9 0.0 0.6 2.0 29.0 411.3 411.3 0.0 411.3 0.0 2.2 2.0 8.8 403.7 403.7 0.0 403.7 0.0
CA2 0.7 2.0 1.1 378.5 378.5 0.0 378.5 0.0 0.5 2.0 11.7 407.8 407.8 0.0 407.8 0.0 0.5 2.0 90.3 420.5 420.4 0.0 420.4 0.0
CA3 0.7 2.0 1.9 387.8 387.8 0.0 387.8 0.0 0.6 2.0 10.9 444.7 444.7 0.0 444.7 0.0 0.8 2.0 65.7 360.2 360.2 0.0 360.2 0.0
CA4 0.4 2.0 2.6 400.9 400.9 0.0 400.9 0.0 1.4 1.0 93.7 397.8 397.8 0.0 397.8 0.0 1.7 2.0 108.1 345.9 345.9 0.0 345.9 0.0
CA5 2.6 2.0 4.5 382.8 382.8 0.0 382.8 0.0 0.4 1.0 1.5 308.7 308.7 0.0 308.7 0.0 2.3 2.0 25.5 386.7 386.7 0.0 386.7 0.0
CB1 1.7 2.0 2.2 391.8 391.7 0.0 391.8 0.0 1.3 2.0 11.3 414.5 414.4 0.0 414.5 0.0 253.0 1.0 5623.8 530.0 530.0 0.0 530.0 0.0
CB2 0.5 2.0 1.8 410.4 410.4 0.0 410.4 0.0 0.6 2.0 28.6 446.9 446.9 0.0 446.9 0.0 2.6 2.0 47.1 406.9 406.8 0.0 406.9 0.0
CB3 0.9 2.0 61.6 448.4 448.4 0.0 448.4 0.0 1.4 2.0 30.9 438.5 438.5 0.0 438.5 0.0 2.3 2.0 67.0 366.2 366.2 0.0 366.2 0.0
CB4 1.1 2.0 2.4 377.6 377.5 0.0 377.6 0.0 0.8 2.0 52.6 393.6 393.5 0.0 393.6 0.0 8.2 1.0 124.5 335.2 335.2 0.0 335.2 0.0
CB5 2.6 1.0 4.3 408.1 408.1 0.0 408.1 0.0 1.2 1.0 2.0 361.6 361.6 0.0 361.6 0.0 2.4 2.0 54.9 396.6 396.6 0.0 396.6 0.0
CC1 2064.6 2.0 31.8 361.9 361.8 0.0 361.8 0.0 1038.3 2.0 18000.0 419.9 346.4 17.5 415.5 1.0 0.6 1.0 4321.8 340.3 340.3 0.0 340.3 0.0
CC2 18000.0 2.0 182.1 344.8 344.7 0.0 344.8 0.0 770.0 2.0 530.7 391.5 391.5 0.0 391.5 0.0 2.4 1.0 18000.0 359.8 308.0 14.4 350.7 2.5
CC3 448.6 2.0 97.8 380.9 380.9 0.0 380.9 0.0 18000.0 2.0 18000.0 435.9 369.8 15.2 419.8 3.7 1764.7 2.0 18000.0 354.5 284.6 19.7 337.9 4.7
CC4 1225.0 2.0 2633.8 379.3 379.3 0.0 379.3 0.0 17.2 2.0 18000.0 377.6 326.4 13.6 364.4 3.5 18000.0 2.0 13593.3 347.3 347.2 0.0 347.2 0.0
CC5 0.4 1.0 1107.2 286.5 286.4 0.0 286.5 0.0 0.8 1.0 29.6 301.4 301.4 0.0 301.4 0.0 300.5 2.0 18000.0 392.8 320.4 18.4 374.4 4.7
CD1 1.5 2.0 1.8 370.8 370.8 0.0 370.8 0.0 0.8 2.0 21.5 408.4 408.4 0.0 408.4 0.0 1.8 2.0 9.5 385.4 385.4 0.0 385.4 0.0
CD2 0.2 1.0 1.6 348.8 348.8 0.0 348.8 0.0 2.0 2.0 6.8 396.9 396.9 0.0 396.9 0.0 0.6 1.0 6.0 384.2 384.2 0.0 384.2 0.0
CD3 0.2 1.0 1.4 382.1 382.1 0.0 382.1 0.0 1.5 2.0 33.0 451.2 451.2 0.0 451.2 0.0 11.8 2.0 50.1 351.2 351.2 0.0 351.2 0.0
CD4 0.5 2.0 6.2 381.6 381.6 0.0 381.6 0.0 1.2 2.0 18.5 355.4 355.3 0.0 355.4 0.0 4.0 2.0 42.5 339.5 339.4 0.0 339.4 0.0
CD5 0.5 2.0 2.2 368.9 368.9 0.0 368.9 0.0 0.7 1.0 29.4 301.4 301.4 0.0 301.4 0.0 1.6 2.0 13.7 404.3 404.2 0.0 404.2 0.0

TABLE 3.3: CPLEX results for 30 customer instances

3-30 4-30 5-30
TK(s) K TC(s) UB LB Cgap(%) ELB Egap(%) TK(s) K TC(s) UB LB Cgap(%) ELB Egap(%) TK(s) K TC(s) UB LB Cgap(%) ELB Egap(%)

CA1 54.9 3.0 18000.0 756.6 687.2 9.2 752.7 0.5 123.7 3.0 18000.0 702.3 594.0 15.4 693.7 1.2 16.0 3.0 18000.0 624.4 558.6 10.5 602.2 3.6
CA2 55.8 3.0 18000.0 653.1 618.9 5.2 653.1 0.0 19.5 3.0 18000.0 687.1 613.5 10.7 676.8 1.5 18.5 3.0 18000.0 635.7 552.4 13.1 624.8 1.7
CA3 26.6 3.0 18000.0 688.5 616.0 10.5 680.3 1.2 141.1 3.0 18000.0 649.1 556.2 14.3 639.5 1.5 71.3 3.0 2050.1 602.6 602.5 0.0 602.5 0.0
CA4 34.2 3.0 2100.4 579.5 579.4 0.0 579.4 0.0 24.2 3.0 18000.0 688.8 590.2 14.3 676.3 1.8 18.8 3.0 18000.0 662.2 578.1 12.7 578.1 12.7
CA5 30.8 3.0 18000.0 650.1 577.2 11.2 650.1 0.0 17.8 3.0 18000.0 585.1 542.5 7.3 585.1 0.0 6845.4 3.0 18000.0 649.4 488.1 24.8 488.1 24.8
CB1 192.3 3.0 18000.0 768.8 706.3 8.1 758.2 1.4 41.1 3.0 18000.0 713.6 563.7 21.0 673.1 5.7 180.9 3.0 18000.0 644.3 512.6 20.4 580.1 10.0
CB2 6.4 3.0 14885.8 632.2 632.2 0.0 632.2 0.0 161.5 3.0 18000.0 647.5 584.2 9.8 642.9 0.7 6844.3 3.0 18000.0 640.0 531.0 17.0 588.1 8.1
CB3 130.8 3.0 18000.0 691.3 606.4 12.3 679.9 1.6 46.8 3.0 18000.0 651.7 564.5 13.4 623.1 4.4 572.4 3.0 18000.0 637.8 534.5 16.2 534.5 16.2
CB4 17.0 3.0 18000.0 613.0 557.4 9.1 609.2 0.6 121.6 3.0 18000.0 689.7 561.9 18.5 654.1 5.2 18000.0 3.0 18000.0 681.6 572.2 16.1 572.2 16.1
CB5 30.4 2.0 2809.0 623.6 623.5 0.0 623.5 0.0 175.8 3.0 18000.0 615.5 553.9 10.0 601.9 2.2 18000.0 3.0 18000.0 690.5 498.2 27.8 498.2 27.8
CC1 18000.0 2.0 18000.0 658.9 436.8 33.7 436.8 33.7 18000.0 3.0 18000.0 713.4 418.0 41.4 503.3 29.5 18000.0 3.0 18000.0 685.4 407.1 40.6 407.1 40.6
CC2 18000.0 3.0 18000.0 695.8 381.1 45.2 381.1 45.2 18000.0 3.0 18000.0 647.5 466.0 28.0 466.0 28.0 18000.0 3.0 18000.0 611.9 399.4 34.7 399.4 34.7
CC3 18000.0 3.0 18000.0 651.8 336.6 48.4 450.8 30.8 18000.0 3.0 18000.0 671.3 436.5 35.0 436.5 35.0 18000.0 3.0 18000.0 670.0 460.4 31.3 460.4 31.3
CC4 18000.0 3.0 18000.0 599.9 397.9 33.7 442.0 26.3 18000.0 3.0 18000.0 627.5 440.9 29.7 453.8 27.7 18000.0 3.0 18000.0 682.1 431.6 36.7 431.6 36.7
CC5 18000.0 3.0 18000.0 651.0 381.7 41.4 432.7 33.5 18000.0 3.0 18000.0 595.3 418.3 29.7 418.3 29.7 18000.0 2.0 18000.0 628.4 340.6 45.8 340.6 45.8
CD1 47.4 2.0 977.0 619.7 619.7 0.0 619.7 0.0 17.8 3.0 18000.0 688.7 624.0 9.4 671.2 2.5 19.2 3.0 18000.0 656.4 522.4 20.4 624.5 4.9
CD2 31.3 3.0 15046.2 628.3 628.2 0.0 628.2 0.0 1039.3 3.0 18000.0 647.4 548.5 15.3 643.9 0.5 16.7 3.0 18000.0 635.0 538.4 15.2 612.7 3.5
CD3 315.3 3.0 12249.1 648.6 648.6 0.0 648.6 0.0 1143.2 3.0 18000.0 614.0 575.6 6.3 606.5 1.2 28.0 3.0 6316.7 590.1 590.0 0.0 590.0 0.0
CD4 31.2 3.0 516.0 583.9 583.9 0.0 583.9 0.0 69.0 3.0 18000.0 664.5 564.1 15.1 661.7 0.4 349.8 3.0 18000.0 673.0 570.1 15.3 630.1 6.4
CD5 12.4 3.0 18000.0 647.9 595.9 8.0 641.9 0.9 41.8 3.0 18000.0 640.6 539.0 15.9 630.5 1.6 312.3 3.0 18000.0 647.4 487.8 24.6 487.8 24.6

It is easy to observe from the results that CPLEX could solve most instances of
15 customers with 3, 4, and 5 rendezvous nodes. 3/6 instances cannot be solved in
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5 hours for the primary/secondary objective. For 30 customers instances, 17/60 in-
stances cannot be solved within the specified time. While the secondary objective of
most 30 customer instances cannot be solved within 5 hours, especially for 4-30 and
5-30 rendezvous nodes-customer cases. In general, data suggest that the increase in the
number of rendezvous nodes increases the difficulty of the problem for the primary
and secondary objective.

In addition, The Egap is very lower for most 15 customers instances. For instances
with larger Cgap, The value of Egap decreased significantly compared with the value of
Cgap. Such as instance CC1-4-15, CC3-4-15, CC4-4-15, CC2-5-15, CC3-5-15, and CC5-
5-15. For 30 customers instances, the value of Egap is lower than that of the Cgap for
a lot of instances. In other words, the column generation lower bound is better than
the CPLEX lower bound, and the gap improvement is significant for some instances.
However, there still are instances with big Egap, which also reflects the difficulty of
solving the problem.

3.4.3 Hybrid metaheuristic experiment

We tested 60 instances of 15 customer nodes with 3/4/5 rendezvous nodes. The hybrid
metaheuristic results were compared against the CPLEX results to evaluate the multi-
start heuristic, iteration number, different moves, and perturbations performances in
the hybrid metaheuristic. After preliminary experiments, we selected an initial set
of algorithmic components to investigate the contribution of the different algorithmic
components. In which IterN1max = 5, IterN2max = 10, IterN3max = 50 and the two-
start heuristic contains the optimal and nearest drop-off nodes selection strategy in Al-
gorithm 3 are chosen. Furthermore, the four moves involve swap, insertion, 2-opt, and
change-satellites, as well as the two perturbations Change-Multisatellites, Destroy-Repair-
Reconstruction, are used.

In Tables 3.4-3.7, the AT(s) row is the average runtime for the hybrid metaheuristic,
the gap0(%) row represents the gap between the average hybrid metaheuristic result
and the CPLEX upper bound (baseline) for the secondary objective value. The average
gap0 and runtime were obtained by solving each instance 10 times.

Based on the performance evaluation of the different algorithmic components, we
designed an efficient hybrid metaheuristic. We compared the results obtained using
the hybrid metaheuristic against the results with CPLEX to see how the algorithm per-
forms: See Section 3.4.3.
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Multi-start, iteration number, moves and perturbations performance

First, we investigated whether the multi-start procedure performs better than the one-
start procedure. Section 3.3.1 provided optimal and nearest drop-off node selection
strategies for construction heuristics. Here we evaluate the performance of one-start
(optimal/nearest) and two-start strategies at a fixed runtime and see how they per-
form. Note that the one-start or two-start strategy are both adopted in the construction
heuristic and reconstruction.

The two-start and one-start strategies were compared with the runtime of the hybrid
metaheuristic set to 70s. The results are shown in Table 3.4. The table quickly shows that
the gap0 of the two-start strategy at gap0 1.655% is better than both one-start strategies
with gap0 1.781% and gap0 2.143%. We suspect that in cases where the runtime is pre-
determined, presetting two distinct initial solutions make the search space larger. Note
that the drop-off node selection strategies used in the multi-start procedure are also
involved in the reconstruction phase of perturbation.

TABLE 3.4: Comparison of multi-start and one-start strategies

Optimal-Nearest Optimal Nearest

gap0(%) 1.655 1.781 2.143

Second, we investigated how the quality of the solution changes as number of
IterN3max increases. The experimental results are reported in Table 3.5, where row 1
represents the iteration number from 25 to 400. It is easy to observe from Table 3.5 that
as the iteration number increases, the gap0 is trends downward while the AT is on an
approximately linear upward trend. It seems that the algorithm can give a fairly good
solution as long as it allowed for longer computation times.

The gap0 decreased significantly from 3.259% at iteration number 25 down to 2.050%
at iteration number 50. From iteration number 50 to 200, the gap0 fell by nearly 0.9% as
runtime increased from 47.186s to 185.061s. From 200 to 400 iterations, the gap0 slowly
declined from 1.189% to 0.844% as runtime increased rapidly from 185.016s to 362.556s.
We can choose the appropriate IterN3max based on the runtime limit and accuracy re-
quirements.

TABLE 3.5: Sensitivity analysis on iteration number

25 50 75 100 200 300 400

gap0(%) 3.259 2.050 1.732 1.527 1.189 1.031 0.844
AT(s) 25.012 47.186 69.984 94.633 185.016 277.287 362.556
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Third, we compared the performances of the moves. Table 3.6 reports the results
of our sensitivity analysis on the moves. Row 1 indicates the different combinations of
moves in which the basemoves contain the swap, insertion, 2-opt, and change-satellites,
and the next four columns represent the combinations of the 3 moves respectively.
From the simulation results, we know that the change-satellites operator is the most
time-consuming one. If we remove the change-satellites operator, the average runtime
reduces to 11.572s compared with 47.186s for the basemoves. However, without the
change-satellites operator, the gap0 drops rapidly from 2.050% to 5.189%. Removing
the swap or insertion operator reduces the quality of the solution to a similar extent as
removing the change-satellites operator, but less time gets saved. Overall, removing
swap, insertion or change-satellites increases the gap0 to over 5%, which makes the
quality of the solution challenging to accept.

The 2-opt operator had almost no effect on the quality of the solution, giving a gap0
of 1.978% versus 2.050% for basemoves. Also, removing the 2-opt operation did not
significantly reduce the solution time. The cause for this phenomenon may come from
our instances as there were fewer than 5 customer nodes visited in each robot route,
which limited the space for the 2-opt operation. We keep this move and hope it could
be useful to the problem where each robot route contains a more significant number of
customer points.

TABLE 3.6: Sensitivity analysis on the moves

basemoves no swap no insertion no 2-opt no change-satellites

gap0(%) 2.050 6.315 5.430 1.978 5.189
AT(s) 47.186 34.167 41.007 46.843 11.572

Fourth, we analyzed the quality of each perturbation. Table 3.7 reports our sensi-
tivity analysis on perturbations. Experiments kept the IterN3max = 50 unchanged then
employed the different perturbations combinations shown in row 1. CMS is for Change-
Multisatellites, CR is for Change-RobotRoute and DRR if for Destroy-Repair-Reconstruction.

Table 3.7 shows that DRR has the best gap0 compared to CMS and CR. CR per-
formed the worst but also had the shortest runtime. We also found that using the
CMS-DRR combination gave the best quality of solution, with a 2.050% gap0 among
all combinations. Compared to several other well-behaved perturbation combinations,
like CMS-CR-DRR with 2.523% gap0 or DRR with 2.668% gap0, CMS-DRR gave better
performance at a comparably similar runtime. We thus removed the CR perturbation
from the final hybrid metaheuristic.
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TABLE 3.7: Sensitivity analysis on the perturbations

CMS-CR-DRR CMS-CR CR-DRR CMS-DRR CMS CR DRR

gap0(%) 2.523 4.766 2.937 2.050 5.832 8.755 2.668
AT(s) 44.065 39.645 39.262 47.186 46.625 28.959 50.842

Hybrid metaheuristic results

The hybrid metaheuristic was run for all the instances of 15/30/50/100 customer nodes.
We set IterN3max = 200 for instances with 15/30/50 customers as it guarantees good-
quality solutions at acceptable runtimes. For instances with 100 customers, we set
IterN3max = 50 to ensure that the average runtime of the hardest instances with 5
rendezvous nodes and 100 customers can be solved in 1 hour.

The 120 instances with 15/30 customers were compared to the results obtained by
CPLEX. We found that the hybrid metaheuristic has an acceptable runtime and always
reaches optimal solutions (when known) computed using CPLEX.

Tables 3.8-3.11 report the results for the hybrid metaheuristic. BK and AK are the
best and average primary objective value. BC and AC are the best and average sec-
ondary objective value. SDK and SDC represent the standard deviation of the primary
and secondary objective value. AT(s) is the average runtime of the hybrid metaheuris-
tic. Tables 3.8-3.9 also feature gap1(%) and gap2(%), which are the gap between best
hybrid metaheuristic result and CPLEX upper bound (baseline) and the gap between
average hybrid metaheuristic result and CPLEX upper bound (baseline) for secondary
objective value, respectively. Besides, the gap3(%) and gap4(%) are the gap between
best hybrid metaheuristic result and enhanced lower bound (baseline) and the gap be-
tween average hybrid metaheuristic result and enhanced lower bound (baseline) for
secondary objective value, respectively.

For the instances CB5-3-15, CB5-4-15, and CB1-5-15, the best/average primary ob-
jective values obtained from the hybrid metaheuristic are different from the CPLEX
values, and so this data was eliminated when calculating the average gap1, gap2, gap3,
and gap4. For clarity, we put a star behind the value where there is a difference be-
tween CPLEX and our algorithm in the primary objective. All gap1, gap2, gap3, and
gap4 values ≤ 0 are highlighted in bold (except those with a star). In addition, the
instances with Egap(%) larger than 10% in Tables 3.2-3.3 are highlighted in italics in
Tables 3.8-3.9.

First, we compared the hybrid metaheuristic results of small and medium-sized in-
stances to CPLEX results. Tables 3.8-3.9 report comparative results. For the primary
objective value, the hybrid metaheuristic performs almost as well as the CPLEX results
(in Tables 3.2-3.3). Two CPLEX results are better (CB5-3-15 and CB1-5-15), while other
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values of the 118 instances are the same. Note that for these two instances with different
primary objective values, we will eliminate them when comparing the secondary ob-
jective value since such comparisons do not make sense. For why the better secondary
objective solutions are derived by our hybrid metaheuristic for these two instances, we
think increasing the number of vans used may lead the total travel distances of the
2E-VRRP model decrease in some cases.

For the secondary objective value, more than two thirds of the hybrid metaheuris-
tic’s best results are the same as or even better than the CPLEX upper bounds (gap1 ≤
0). Furthermore, the average gap2 is below 0.9% for 15/30 customers instances. Note
that for the instances with 5 rendezvous nodes and 30 customers, the hybrid meta-
heuristic performs much better than CPLEX upper bound.

Besides, more than two-thirds of the hybrid metaheuristic’s best results are the same
as the enhanced lower bound (gap3 = 0), and the average gap4 is nearly 1.43% for 15
customers instances. For 30 customers instances, some best results of hybrid meta-
heuristic have a larger gap with the enhanced lower bounds. The main reason may be
the enhanced lower bounds we got are still weak, and the enhanced lower bound may
have a larger gap with the optimal value. If we remove the instances of 30 customers
with Egap > 10% (highlighted in italics in Tables 3.9), the average gap3 and gap4 are
acceptable, 2.2% and 4.2% respectively.

The results for 50 and 100 customers are shown in Tables 3.10-3.11, which show
that as the number of rendezvous nodes increases, the average secondary objective
value trends downward. Hence, a reasonable increase in rendezvous nodes is useful
for saving transportation costs.

For all the instances, category CC instances with wide time windows had the longest
runtimes. We suspect that the wider time windows result in a larger solution space, and
our hybrid metaheuristic contains backtracking algorithms that need an exact search of
the solution space, so category CC instances cause long runtimes.

3.4.4 Sensitivity analysis on related speed

As speed of the vehicles may affect the model-computed outputs, we analyzed the
impact of vehicle speed changes on the results.

The speed of robots is commonly around walking speed (5km/h) in real-world ap-
plications. For the robot, a speed faster than 10km/h seems to be unrealistic in pedes-
trianized and high density urban areas. Hence, we assume the speed of the robot to be
between 5 and 10 km/h in our experiments. Besides, the van speed can be assumed to
be usually less than 30km/h as imposed by speed limits in city centers. We assume the
speed of vans to be between 15 and 25 km/h in our experiments.
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TABLE 3.10: Hybrid metaheuristic for 50 customer instances (Iteration 200)

3-50 4-50 5-50

BK BC AK AC SDK SDC AT(S) BK BC AK AC SDK SDC AT(S) BK BC AK AC SDK SDC AT(S)

CA1 4.0 1029.5 4.0 1057.6 0.0 19.4 587.4 4.0 965.6 4.0 984.3 0.0 12.3 1214.1 4.0 926.5 4.0 961.7 0.0 35.7 1611.3
CA2 4.0 1066.8 4.0 1076.7 0.0 8.8 774.4 4.0 983.2 4.0 996.5 0.0 10.8 1959.4 4.0 913.7 4.0 930.3 0.0 11.6 1276.4
CA3 4.0 1012.7 4.0 1034.7 0.0 17.2 1064.6 4.0 969.6 4.0 982.9 0.0 7.2 1178.8 4.0 889.9 4.0 904.2 0.0 9.8 2520.1
CA4 4.0 993.2 4.0 1000.2 0.0 5.8 1028.6 4.0 840.5 4.0 854.8 0.0 13.1 1395.4 4.0 920.6 4.0 935.9 0.0 10.8 2452.0
CA5 4.0 952.4 4.0 964.3 0.0 7.5 881.8 4.0 943.8 4.0 964.1 0.0 21.7 1382.3 4.0 927.3 4.0 951.8 0.0 15.9 2609.6
CB1 4.0 994.0 4.0 1007.1 0.0 10.1 1068.1 4.0 965.7 4.0 1004.3 0.0 17.4 940.4 4.0 922.5 4.0 945.7 0.0 21.4 1451.0
CB2 4.0 1000.0 4.0 1016.0 0.0 12.6 791.2 4.0 965.7 4.0 1004.3 0.0 17.4 940.4 4.0 971.8 4.0 1006.9 0.0 28.0 952.8
CB3 4.0 1022.4 4.0 1053.9 0.0 23.1 742.0 4.0 986.6 4.0 1024.8 0.0 30.3 1114.2 4.0 1047.0 4.9 1044.2 0.3 11.8 1765.6
CB4 4.0 983.8 4.0 994.8 0.0 8.6 714.9 4.0 888.4 4.0 919.7 0.0 18.6 1060.1 4.0 896.1 4.0 945.5 0.0 29.2 1586.6
CB5 4.0 982.1 4.0 1003.6 0.0 13.7 1056.8 4.0 994.0 4.0 1020.0 0.0 19.3 1313.1 4.0 908.8 4.0 935.0 0.0 14.9 2689.2
CC1 4.0 940.8 4.0 946.6 0.0 5.2 2384.6 4.0 866.5 4.0 879.6 0.0 10.6 3386.5 4.0 853.7 4.0 876.3 0.0 14.0 5573.0
CC2 4.0 990.4 4.0 1003.5 0.0 12.1 2017.8 4.0 886.3 4.0 909.4 0.0 12.9 3278.9 4.0 847.2 4.0 879.2 0.0 23.3 7529.1
CC3 4.0 902.6 4.0 920.6 0.0 11.0 2071.6 4.0 898.4 4.0 909.5 0.0 9.0 3246.4 4.0 876.3 4.0 886.9 0.0 5.1 4812.3
CC4 4.0 941.4 4.0 947.3 0.0 4.8 1796.6 4.0 792.4 4.0 807.2 0.0 11.6 3420.2 4.0 901.6 4.2 920.9 0.4 17.0 3594.1
CC5 4.0 1001.6 4.0 1008.9 0.0 5.4 1861.8 5.0 996.9 5.0 1021.4 0.0 16.8 3449.4 4.0 889.2 4.0 911.3 0.0 23.5 5779.2
CD1 4.0 993.9 4.0 1006.3 0.0 11.0 1580.8 4.0 913.8 4.0 935.0 0.0 13.4 2391.0 4.0 871.3 4.0 889.8 0.0 13.5 3628.7
CD2 4.0 1067.8 4.0 1080.9 0.0 10.8 1029.8 4.0 943.4 4.0 951.7 0.0 6.4 1867.2 4.0 873.6 4.0 886.0 0.0 9.6 4995.0
CD3 4.0 960.3 4.0 980.2 0.0 17.9 1352.9 4.0 988.6 4.0 1007.8 0.0 14.3 1448.6 4.0 910.3 4.0 931.4 0.0 10.8 3166.7
CD4 4.0 977.4 4.0 993.9 0.0 13.3 1371.3 4.0 822.5 4.0 845.6 0.0 15.8 2018.1 4.0 863.7 4.0 889.8 0.0 20.1 3783.1
CD5 4.0 1011.0 4.0 1042.4 0.0 27.1 818.3 4.0 968.2 4.0 986.0 0.0 11.8 2091.0 4.0 901.9 4.0 926.0 0.0 14.5 3909.1

Aver 4.0 991.2 4.0 1007.0 0.0 12.3 1249.8 4.1 929.0 4.1 950.4 0.0 14.5 1954.8 4.0 905.6 4.1 927.9 0.0 17.0 3284.3

TABLE 3.11: Hybrid metaheuristic for 100 customer instances (Iteration 50)

3-100 4-100 5-100

BK BC AK AC SDK SDC AT(S) BK BC AK AC SDK SDC AT(S) BK BC AK AC SDK SDC AT(S)

CA1 8.0 1925.3 8.0 1977.6 0.0 29.6 1234.0 8.0 1891.8 8.0 1927.7 0.0 29.9 1485.4 8.0 1812.6 8.0 1855.4 0.0 34.9 2296.4
CA2 8.0 1958.4 8.0 2033.9 0.0 61.1 1046.9 7.0 1810.2 7.0 1864.2 0.0 68.3 886.5 8.0 1699.8 8.0 1758.0 0.0 34.7 2018.1
CA3 8.0 1990.1 8.0 2035.5 0.0 29.8 1111.3 8.0 2069.1 8.0 2142.5 0.0 45.8 1377.7 8.0 1705.4 8.0 1777.1 0.0 39.1 1657.8
CA4 8.0 2315.4 8.0 2380.8 0.0 38.2 1077.1 7.0 1700.8 7.0 1764.3 0.0 35.1 1317.1 8.0 1798.1 8.0 1868.6 0.0 40.1 2266.2
CA5 8.0 1855.0 8.0 1916.0 0.0 33.6 1669.4 8.0 1817.0 8.0 1867.0 0.0 35.8 2476.8 8.0 1761.4 8.0 1842.0 0.0 46.3 2213.5
CB1 7.0 1852.0 7.0 1924.5 0.0 43.8 839.4 7.0 1899.4 7.0 1986.6 0.0 61.0 774.4 8.0 1823.6 8.0 1904.3 0.0 50.5 2129.1
CB2 8.0 1964.6 8.0 2027.9 0.0 45.2 1040.4 8.0 1892.5 8.0 1929.6 0.0 27.9 1607.0 8.0 1711.7 8.0 1797.2 0.0 43.5 1886.0
CB3 8.0 1970.2 8.0 2026.8 0.0 32.7 1156.2 8.0 2090.3 8.0 2158.7 0.0 40.6 1318.7 8.0 1767.4 8.0 1847.4 0.0 35.8 1854.0
CB4 8.0 2301.5 8.0 2365.4 0.0 38.2 828.2 8.0 2122.7 8.9 2058.1 0.3 42.4 1385.4 8.0 1960.6 8.4 2019.5 0.5 65.0 1466.6
CB5 8.0 1902.0 8.0 1941.2 0.0 27.0 1181.1 8.0 1890.6 8.0 1976.2 0.0 47.2 1144.2 8.0 1910.7 8.0 2047.3 0.0 98.5 1294.1
CC1 8.0 1847.9 8.0 1891.1 0.0 28.7 3557.8 8.0 1737.3 8.0 1813.6 0.0 38.1 3153.3 8.0 1695.2 8.0 1764.4 0.0 42.7 6271.8
CC2 8.0 1742.4 8.0 1780.9 0.0 30.2 2483.4 8.0 1771.7 8.0 1828.4 0.0 33.1 4161.9 8.0 1600.9 8.0 1641.2 0.0 31.6 4970.2
CC3 8.0 1875.0 8.0 1914.0 0.0 35.1 1994.1 7.0 1768.1 7.0 1849.7 0.0 37.0 5149.8 8.0 1677.1 8.0 1721.8 0.0 28.7 5113.4
CC4 8.0 2185.3 8.0 2237.0 0.0 31.4 2139.8 8.0 1741.4 8.0 1786.8 0.0 29.3 4083.3 8.0 1653.7 8.0 1728.1 0.0 35.9 5625.3
CC5 8.0 1810.1 8.0 1839.2 0.0 24.7 2439.4 8.0 1774.6 8.0 1822.2 0.0 27.7 3436.2 8.0 1720.4 8.0 1791.0 0.0 36.4 4613.2
CD1 8.0 1801.2 8.0 1846.5 0.0 35.6 1615.9 8.0 1885.6 8.0 1917.3 0.0 14.4 2173.0 8.0 3282.0 8.0 3347.5 0.0 52.6 1966.1
CD2 8.0 1927.9 8.1 2017.9 0.3 48.7 905.9 8.0 1767.5 8.0 1858.9 0.0 39.0 1825.0 8.0 1650.3 8.0 1696.1 0.0 38.0 3638.4
CD3 8.0 1931.2 8.0 1964.5 0.0 26.1 976.0 7.0 1851.5 7.0 1919.9 0.0 36.8 1673.8 8.0 1700.5 8.0 1762.6 0.0 50.3 3604.8
CD4 8.0 2201.7 8.0 2261.1 0.0 40.1 1019.2 8.0 1838.5 8.0 1905.2 0.0 33.7 1972.8 8.0 1742.0 8.0 1796.1 0.0 40.7 3604.1
CD5 8.0 1832.0 8.0 1901.4 0.0 48.8 1529.0 8.0 1827.6 8.0 1868.9 0.0 23.9 1841.5 8.0 1777.9 8.0 1841.2 0.0 38.2 3808.2

Aver 8.0 1959.5 8.0 2014.2 0.0 36.4 1492.2 7.8 1857.4 7.8 1912.3 0.0 37.4 2162.2 8.0 1822.6 8.0 1890.3 0.0 44.2 3114.9
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We chose simple instances to test different van/robot speed combinations by CPLEX
to see how vehicle speeds influence the results. We set 5km/h as the baseline speed.

For the CPLEX experiments, we generated the different van/robot speed combina-
tions via the following step. First, we set the speed of robot equals to 5km/h. Then, we
kept robot speed unchanged but gradually increased van speed from 15km/h, 20km/h,
up to 25km/h. Next, we kept van speed unchanged but increased robot speed from
5km/h up to 10km/h.

We chose 15 simple instances with 3 rendezvous nodes and 15 customers to imple-
ment the CPLEX experiments. Tables 3.12 shows the instances used in column 1. For
the primary objective value, all results for van/robot speed combinations were identi-
cal. The secondary objective results are reported in Table 3.12, where row 1 gives the
different combinations of the van/robot speed. Bold-type shows that results are differ-
ent from the previous column.

TABLE 3.12: Sensitivity analysis on related speed by CPLEX

3-15 (15km/h,5km/h) (20km/h,5km/h) (25km/h,5km/h) (25km/h,10km/h)

CA1 383.86 383.86 383.86 383.49
CA2 378.54 378.54 378.54 378.54
CA3 385.91 385.91 385.91 385.91
CA4 400.92 400.92 400.92 400.92
CA5 382.76 382.76 382.76 380.72
CB1 391.76 391.76 391.76 391.76
CB2 363.70 363.70 363.70 351.87
CB3 412.51 412.51 412.51 399.63
CB4 377.55 377.55 377.55 377.55
CB5 408.05 408.05 408.05 353.84
CD1 370.84 370.84 370.84 359.50
CD2 348.82 348.82 348.82 348.82
CD3 382.10 382.10 382.10 382.10
CD4 381.56 381.56 381.56 381.56
CD5 368.87 368.87 368.87 352.81

Aver 382.52 382.52 382.52 375.27

In experiments with simple instances, we found that increasing the van speed from
15km/h to 25km/h has little effect on reducing the secondary objective function. How-
ever, increasing the robot speed helps reduce average costs. For example, increasing
robot speed from 5km/h to 10km/h reduces the secondary objective value from 382.52
to 375.27. We assumed that the bottleneck of the 2E-VRRP delivery system may be
caused by the speed of the robot.

Hence, we implemented an in-depth experimental analysis on the speed of robot.
We conducted the hybrid metaheuristic to test all instances with 15 and 30 customers.
The van/robot speed combination (25km/h,5km/h) was chosen as the control group.
We fixed the speed of the van and let the speed of the robots be 6.25km/h, 7.5km/h,...,
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10km/h, as the experimental groups. There are 120 instances, and every instance is run
10 times with Iter3=50 for each type of van/robot speed combination.

For the primary objective, the best results in the experimental group are all equal
to the control group results in all the experiments. This comes from two factors: First,
the number of vans used depends on a variety of constraints, not only the speed of the
vehicles but also on vehicle capacity constraints, maximum travel time constraints, and
so on. As long as one type of constraint is limiting, the number of vans used cannot be
reduced. Second, in our instances, the value of the primary objective is usually 1,2 or
3. The need to cause changes in vehicle numbers often requires a significant change in
conditions.

Table 3.13 shows the sensitivity analysis on the secondary objective. Row 1 repre-
sents the different combinations of van/robot speed. Row 2 and row 3 are the average
best results for the 15 customers and 30 customers instances, in which the control group
result (baseline) is the average best secondary objective value and the quality of the ex-
perimental group solution is reported as an average percentage gap from the baseline.

Table 3.13 shows that as robot speed grows, the quality of solutions for the sec-
ondary objective value increases. However, the total improvement is limited. Increas-
ing the speed of the robot from 5km/h to 10km/h reduces the cost by less than 0.6% of
the cost for our 15 customers and 30 customers instances. We suspect that the improve-
ment of the objective value is affected by many factors (constraints). Simply improving
the speed of robot can improve the solution, but improvements remains limited. Also,
the objective functions where no term is related to travel times on edges or the number
of robots used, therefore, increasing the speed of robots can only make the time window
constraints easier to be satisfied and has marginal effect on the objective values.

We therefore recommend to keep robot speeds rather low because of increased
safety and a more convenient environment for pedestrians in practical implementa-
tions.

TABLE 3.13: Sensitivity analysis on speed with the hybrid metaheuristic

baseline(25km/h,5km/h) (25km/h,6.25km/h) (25km/h,7.5km/h) (25km/h,8.75km/h) (25km/h,10km/h)
15 cust best cost 380.13 -0.23% -0.34% -0.50% -0.58%
30 cust best cost 648.20 -0.21% -0.42% -0.50% -0.50%

3.5 Conclusions

This chapter provides an efficient transportation delivery model for the logistics dis-
tribution of autonomous robots in the city. We investigate an innovative two-echelon
urban delivery problem using autonomous robots that contains the time window con-
straint, capacity constraint and maximum travel time constraint. The van carries the
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robots on the 1st-level route and drops off and picks up them in the rendezvous nodes,
while the robot handles customer service on the 2nd-level route. In addition, our model
allows each van carries multiple robots, and each robot can visit multiple customers
during a trip. This innovation distribution model can eliminate a lot of real estates and
manpower compared to the traditional two-echelon delivery model. Which provides a
new choice for logistics enterprises.

We first define this problem and present its mixed linear integer programming for-
mulation, and present a column generation procedure to try to get a better lower bound.
Since CPLEX cannot solve medium-sized and large-scale problems, we introduce con-
struction heuristics that can provide a nice upper bound for the CPLEX solver and
quickly generate the feasible initial solutions. The construction heuristic first uses a
modified nearest neighbor approach to construct multiple robot routes (1st-level route),
then adopts a simple connection heuristic to construct multiple van routes (1st-level
route) to get the final solution. In addition, a hybrid metaheuristic that involves multi-
start, destroy, repair, iterative local search, and backtracking is presented to quickly
solve the medium-sized and large-scale problems that CPLEX cannot address. And
a performance evaluation of the different algorithmic components for hybrid meta-
heuristic are implemented. Besides, we used the CPLEX upper bound and enhanced
lower bound to assess the hybrid metaheuristic for the small-sized problem. Assess-
ment results show that our hybrid metaheuristic is competitive. Furthermore, we have
provided a benchmark solution for the problem along with a sensitivity analysis for
the van/robot speed combinations. In general, increasing the speed of the robot rather
than the speed of van can reduce the objective function value in real-word applications.
However, simply improving the speed of the robot leads to only limited reduction in
cost. We therefore recommend to keep robot speeds rather low because of a more pedes-
trian friendly environment in practical implementations.
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Chapter 4

Electric van-based robot deliveries with
en-route charging

Abstract
We present a two-echelon electric van-based robot delivery system with en-route

charging for last-mile delivery in logistics operations. Robots can visit areas with van
access restrictions, such as pedestrianized areas or university campuses. The time
during which electric vans are carrying robots can be used effectively to recharge the
robots, thereby increasing the efficiency of distribution systems.

To model the proposed system, we present a mixed-integer program. We note that
the energy transfer from a van to its robot needs time and will cause the available travel
distance of a van to decrease and that of a robot to increase. Focusing on the new time-
distance-energy trade-off problem, which increases the difficulty checking the feasibil-
ity of any given route, we further propose a greedy route evaluation approach and a
linear programming-based route evaluation method. An adaptive large neighborhood
search algorithm is presented for solving larger instances. A sensitivity analysis for ve-
hicle charging modes, battery capacities, and charging rate shows that using en-route
charging, while appropriately increasing battery capacity and charging rate can have
useful effects on cost.

4.1 Background

Current research tends to use traditional vehicles with robots (mothership concept) for
collaborative distribution. Chapter 3 presented a two-echelon vehicle routing problem
with robots for 2nd-level route delivery, the van carrying the robot along a 1st-level route
for dropping off and picking up at parking nodes. We note that the robot still needs to
be recharged and replenished if it is to be used multiple times.

To take van-based robot delivery research further, we present electric van-based
robot deliveries as prototypical problems, where vans and robots are all-electric vehi-
cles. In addition, the time during which the vans are carrying the robots can be used
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effectively to recharge the robots, thereby increasing the efficiency of the distribution
system.

Current technological and research developments can also support our concept: (i)
Automotive companies have begun to study mobile charging vans. For example, NIO,
an electric car company in China, is courting Tesla owners with mobile charging sta-
tions inside electric vans (Fred, 2018). (ii) Mobile charging platforms have also been
studied in robot research. For example, Mathew et al., 2015 and Yu et al., 2019 con-
sidered and tested joint planning of mobile recharging platforms and drone routes to
enable the drone to successfully visit specified nodes. This prior work suggests that
a van, stationary or moving, can act as a mobile charging station to charge its robots
en-route.

Given that the battery accounts for about 40% of the price of electric vehicles, we fo-
cus here on fast-charging rather than battery swapping, since fast-charging technology
can reduce a company’s fixed costs. In addition, we use partial recharging (Keskin and
Çatay, 2016) to improve distribution efficiency.

We describe here a two-echelon electric van-based robot delivery system with en-
route charging (2E-VREC). Larger electric vans carry small electric robots along the
1st-level route. The robots travel along the 2nd-level open route. The van and robot can
both serve customers directly, but some constrained customers can be visited only by
the delivery robots. The van stops at parking nodes for dropping off and/or picking
up its robot, and to recharge and replenish its robot if needed. The van can charge its
onboard robot on the move or at nodes, and the van can be recharged at the parking
nodes.

Our 2E-VREC model offers the following advantages over the vehicle routing prob-
lem with drones (VRPD) model (Otto et al., 2018): (i) in our 2E-VREC model, we extend
the VRPD model to cover electric vehicle aspects (E-VRPD), (ii) the 2E-VREC model
brings two new technologies (en-route charging and reverse charging) into the E-VRPD
model, (iii) the 2E-VREC model makes full use of the time during which vans are car-
rying robots on the road to charge them, shortening the extra waiting time spent by
robots at parking stations for recharging, and thereby improving the effectiveness of the
distribution system (in other words, transmission of electric power between vehicles is
carried out in the 2E-VREC model, and efficiency improved), and (iv) autonomous elec-
tric vehicles are generally safer than other VRPD delivery models in cities; for example,
when a fast-flying drone stalls, it can cause serious accidents in a city, whereas for a
slowly moving robot, accident risks from stalled vehicles are controllable (Yu et al.,
2020).

In theoretical terms, the new model adds a new time-distance-energy trade-off to
electric vehicle routing. In the classical electric vehicle routing problem (EVRP), the
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decrease in a vehicle’s energy is caused only by the increase in the distance the vehicle
travels, and these two variables are usually negatively correlated. By contrast, in the
2E-VREC model, the decrease in the energy of a van can be caused by the increase in
the distance the van has traveled, but also by the amount of energy it transfers to its
robot. The energy transfer is negatively correlated with the available travel distance of
a van, but positively correlated with the available travel distance of its robot (i.e. the
energy transfer will cause the available travel distance of a van to decrease and that of
a robot to increase).

In addition, energy transfer needs time. Generally speaking, charging a robot en-
route can reduce extra waiting time for charging, but it reduces the available travel
distance of the van. Whether to charge the robot en-route and how much energy to
transfer is therefore a difficult choice. To the best of our knowledge, these characteristics
have not been considered, modeled, and solved in research to date. The work reported
here makes the following contributions:

(1) We describe a new two-echelon van-based robot routing problem with en-route
charging, which has the potential to improve the efficiency of the distribution system.

(2) We introduce the 2E-VREC model and propose a mathematical formulation.
(3) We provide a high-accuracy heuristic for single route feasibility checking of the

2E-VREC problem with time-distance-energy trade-off.
(4) We propose an ALNS algorithm for the newly presented problem.
(5) We conduct a sensitivity analysis for vehicle charging modes, battery capacities,

and charging rate.
In what follows, Section 4.2 describes the problem and model, Sections 4.3 and 4.4

deal with the route evaluation and meta-heuristic approaches, respectively, a computa-
tional study is presented in Section 4.5, and Section 4.6 concludes.

4.2 Problem description and formulation

4.2.1 Problem statement

In the real world, there are customers located in narrow streets, on campuses, or in
other communities where the entry of vans is restricted. We therefore distinguish two
kinds of customers. One kind can be visited by either the van or the robot: we call these
customers van customers. The other kind can only be visited by the robot: we call these
robot customers. This implies that the robot can serve all the customers, but the van can
only serve some of the customers.

We consider a two-echelon routing problem with van/robot delivery. Vans or vans
carrying robots move along a 1st-level route, serve van customers, or drop off/pick up,
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and replenish their robots at parking nodes. Robots handle customer services along
2nd-level open routes: in other words, the robots need not return to the parking node
from where they set out.

We assume there are specific parking nodes for the vehicles, used for the van to
rendezvous, replenish and recharge its robot, rather than performing these operations
at customer nodes. This setting is reasonable, especially for electric vehicles, since it is
often impossible for vans/robots to be recharged at customer nodes, and parking nodes
can be visited multiple times by the vans/robots.

For replenishing, the freight carried by the robot can be loaded by the van at parking
nodes, while the freight carried by the van must be loaded at the beginning of the tours
at the depot. There are capacities for both the van and the robot. We also allow a robot
to visit multiple customers during a dispatch instead of only one customer, since the
capacity for a robot is usually greater than that of a drone.

For recharging, we consider partial and en-route charging. Recharging takes time
for both the van and the robot, depending on the recharging rate and level. The van can
be recharged at parking nodes. The robot can be recharged by the van while moving
or at parking nodes and at customer nodes if it is on board the van. In addition, there
are battery capacities for both the van and the robot. We note that the battery capacity
of the robot corresponds to its maximum individual travel distance. The van’s battery
not only provides its own power, but is also needed to recharge the robots. When the
van charges the robot, the power of the van decreases, while the power of the robot
increases.

We do not consider the case where the robot charges the van, nor the case where
the robot replenishes the van. Nor do we consider the case where the van replenishes
other vans. Here we assume that each customer node must be visited by exactly one
van/robot once. Customer nodes and the depot have time windows. Our model allows
costless waiting at all locations.

We make the following assumptions: (i) each van can only carry one robot, (ii) the
robot cannot leave the depot to serve customers directly, (iii) a robot dropped off by a
van must be picked up by the same van, and (iv) the operating time spent dropping off,
picking up, replenishing and preparing for recharging is ignored.

An example illustrating the problem is presented in Figure 4.1. Triangles represent
parking nodes, the square represents the depot, and circles correspond to robot cus-
tomer nodes/van customer nodes. Solid lines correspond to 1st-level routes and dotted
lines to 2nd-level routes.

In addition, we define five types of route in the 2E-VREC model for the sake of illus-
tration. The van route is the 1st-level-route. The robot route is the 2nd-level-route. In other
words, the robot route is the route where a robot moves under its own power. The route
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along which the van carries its robot is termed the van-robot route, the route where the
van moves independently is termed the independent-van route, and the route traveled
by the robot is called the whole-robot route.

FIGURE 4.1: 2E-VREC model

4.2.2 Variable and Parameter Definitions

The problem is defined on a directed graph G = (V, A), where the depot V0 is repre-
sented by two nodes 0 and 0

′
. Every van route starts at 0 and ends at 0

′
. Let Vr be the set

of parking nodes where vans can drop off, pick up, replenish and recharge their robots;
the van can also be recharged at parking nodes. We note that a parking node may be
visited more than once, we use dummy nodes in the model. Vc1 denotes the van cus-
tomer nodes set and Vc the customer nodes set. We have Vc1 ∈ Vc, and Vc2 = Vc \Vc1 is
the robot customer nodes set. The set V0

α , V
′
α, V

′′
α is the nodes set Vα union the depot 0,

0
′
, 0 ∪ 0

′
respectively, and α can be expressed in a variety of different combinations of

customer nodes and parking nodes sets. Let A1 = {(i, j) | i ∈ {0}; j ∈ Vrc1} ∪ {(i, j) |
i, j ∈ Vrc1, i 6= j} ∪ {(i, j) | i ∈ Vrc1; j ∈ {0′}} be the 1st-level route (van routes) and let
A2 = {(i, j) | i ∈ Vr; j ∈ Vc} ∪ {(i, j) | i, j ∈ Vc, i 6= j} ∪ {(i, j) | i ∈ Vc; j ∈ Vr} be
the 2nd-level route (robot routes). We also let A3 = A1 ∪ A2 be the complete possible
robot routes and A4 = A3 \ A1 be the routes that the van cannot reach. For each edge,
di,j is the associated travel distance, while h1 ∗ di,j (h2 ∗ di,j) is the associated travel cost
and di,j/v1 (di,j/v2) is the associated travel time for the van (robot). The freight must be
delivered from the depot {0} to customer nodes i, with the demand di and serving time
si. The time window of the customer nodes i ∈ Vc is [ai, bi], is the time interval that the
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service at node i is permitted to start. Let [a0, b0] = [a0′ , b0′ ], where a0/a0′ represents
the earliest possible departure time from the depot 0/0′ and b0/b0′ is the latest possi-
ble arrival time at the depot 0/0′. These time windows are hard. FT = {1, 2, .., k, .., K}
presents the set of vans, where K is the number of vans. k ∈ FT represents the robot
belonging to the kth van. Let M be an arbitrary large constant number. Let C1 be the
capacity for the van and robot and C2 the capacity for the robot. Let G1 and G2 be the
battery capacity for the van and robot respectively. Let g1 and g2 be the recharging rates
of the van and the robot, and let h1 and h2 be the charge consumption rate of the van
and the robot. In addition, we introduce the following decision variables.

Let xi,j,k be equal to 1 if arc (i, j) in A1 is traveled by the kth− van, 0 otherwise.
Let yi,j,k be equal to 1 if arc (i, j) in A3 is traveled by the kth− robot, 0 otherwise.
Let Qi,j,k be equal to 1 if arc (i, j) in A1 is traveled by the kth− van with its robot on

board, 0 otherwise.
Let zk

i represent the recharging amount of the robot at the parking node i, i ∈ Vr.
Let Zk

i represent the recharging amount of of the van at the parking node i, i ∈ Vr.
Let zk

i,j represent the recharging amount of the robot by the van during arc (i, j),
(i, j) ∈ A1.

Let Ek
i and ek,l

i be the remaining battery level of the van and the robot at node i on
arrival.

Let Wk
i and wk

i be the arrival time for the van and robot at node i.
Let pi,j,k be the freight flow of the robot in arc (i, j) in A2.
Let uk

i be the dummy variable for node Vr.
To illustrate which route type is allowed and which is not allowed, we show the

2E-VREC route cases in Figure 4.2. For the customer nodes, cases (1)–(3) show that
customers can only be reached and then left by van, robot, or van carrying robot, re-
spectively. Cases (4)–(6) forbid customers being reached by both van and robot inde-
pendently or left by both van and robot independently. For the parking nodes, case (7)
allows a van to arrive and depart from a parking node. Case (8) forbids a robot from
accessing the parking node independently unless there is a van also accessing this node
– cases (9)–(12). For the depot, only the van carrying the robot can arrive and leave the
depot – case (15) and case (19), while cases (13), (14), (16), (17), (18), (20) are forbidden.

4.2.3 Mixed Integer Programming Model

Electric van-based robot delivery with en-route charging problem can be modeled as
follows.

Objective

min( ∑
k∈FT

∑
(i,j)∈A1

h1 ∗ di,j ∗ xi,j,k + ∑
k∈FT

∑
(i,j)∈A3

h2 ∗ di,j ∗ yi,j,k − ∑
k∈FT

∑
(i,j)∈A1

h2 ∗ di,j ∗Qi,j,k) (4.1)
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FIGURE 4.2: 2E-VREC route cases of permission and prohibition

Subject to
Arc constraints

∑
(i,j)∈A1

xi,j,k ≤ 1, ∀j ∈ Vrc1, k ∈ FT (4.2)

∑
(i,j)∈A1

xi,j,k − ∑
(j,i)∈A1

xj,i,k = 0, ∀j ∈ Vrc1, k ∈ FT (4.3)

∑
(i,j)∈A3

yi,j,k ≤ 1, ∀j ∈ Vrc, k ∈ FT (4.4)

∑
(i,j)∈A3

yi,j,k − ∑
(j,i)∈A3

yj,i,k = 0, ∀j ∈ Vrc, k ∈ FT (4.5)

∑
i∈Vrc1

xi,0′ ,k = ∑
j∈Vrc1

x0,j,k = ∑
i∈Vrc1

yi,0′ ,k = ∑
j∈Vrc1

y0,j,k ≤ 1, ∀k ∈ FT (4.6)

∑
k∈FT

( ∑
(i,j)∈A3

yi,j,k + ∑
(i,j)∈A3

xi,j,k − ∑
(i,j)∈A3

Qi,j,k) = 1, ∀j ∈ Vc (4.7)

∑
(i,j)∈A3

yi,j,k + ∑
(i,j)∈A1

xi,j,k − ∑
(i,j)∈A1

Qi,j,k ≤ 1, ∀i ∈ V0
c1, k ∈ FT (4.8)

∑
(i,j)∈A3

yi,j,k + ∑
(i,j)∈A1

xi,j,k − ∑
(i,j)∈A1

Qi,j,k ≤ 1, ∀j ∈ V
′
c1, k ∈ FT (4.9)

∑
(i,j)∈A3

yi,j,k ≤ ∑
(i,j)∈A1

xi,j,k, ∀i ∈ Vr, k ∈ FT (4.10)

2 ∗Qi,j,k ≤ xi,j,k + yi,j,k ≤ 2 ∗Qi,j,k + 1, ∀(i, j) ∈ A1, k ∈ FT (4.11)

xi,j,k, yi,j,k, Qi,j,k ∈ {0, 1}, ∀(i, j) ∈ A3, k ∈ FT (4.12)

Qi,j,k = 0, ∀(i, j) ∈ A4, k ∈ FT (4.13)

xi,j,k = 0, ∀(i, j) ∈ A4, k ∈ FT (4.14)
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Time and energy constraints

max(Wk
i + Zk

i /g1, Wk
i + zk

i /g2, wk
i + zk

i /g2) + di,j/v1 −Wk
j ≤ M(1− xi,j,k), ∀{i ∈ V0

r |(i, j) ∈ A1}, k ∈ FT
(4.15)

max(Wk
i , wk

i ) + zk
i /g2 + di,j/v2 − wk

j ≤ M(1− yi,j,k + xi,j,k), ∀{i ∈ Vr|(i, j) ∈ A2}, k ∈ FT (4.16)

Wk
i + max(si, zk

i /g2) + di,j/v1 −Wk
j ≤ M(1− xi,j,k), ∀{i ∈ Vc1|(i, j) ∈ A1}, k ∈ FT (4.17)

wk
i + si + di,j/v2 − wk

j ≤ M(1− yi,j,k + xi,j,k), ∀{i ∈ Vc|(i, j) ∈ A2}, k ∈ FT (4.18)

wk
i − wk

j ≤ M(1− yi,j,k), ∀{i ∈ V0
rc|(i, j) ∈ A3}, k ∈ FT (4.19)

|Wk
j − wk

j | ≤ M(1− ∑
(i,j)∈A1

Qi,j,k), ∀{j ∈ V
′
rc1}, k ∈ FT (4.20)

ai ≤Wk
i , wk

i ≤ bi, ∀i ∈ V
′′
c , k ∈ FT (4.21)

Ek
j + h1 ∗ di,j − Zk

i + zk
i + zk

i,j − Ek
i ≤ M(1− xi,j,k), ∀{(i, j) ∈ A1|i ∈ V0

r }, k ∈ FT (4.22)

Ek
j + h1 ∗ di,j + zk

i + zk
i,j − Ek

i ≤ M(1− xi,j,k), ∀{(i, j) ∈ A1|i ∈ Vc1}, k ∈ FT (4.23)

ek
j − zk

i − zk
i,j − ek

i ≤ M(1−Qi,j,k), ∀{(i, j) ∈ A1|i ∈ V0
rc1}, k ∈ FT (4.24)

ek
j + h2 ∗ di,j − zk

i − ek
i ≤ M(1− yi,j,k + xi,j,k), ∀{(i, j) ∈ A2|i ∈ Vr}, k ∈ FT (4.25)

ek
j + h2 ∗ di,j − ek

i ≤ M(1− yi,j,k + xi,j,k), ∀{(i, j) ∈ A2|i ∈ Vc}, k ∈ FT (4.26)

0 ≤ zk
i ≤ G2 ∗ ∑

(i,j)∈A1

yi,j,k, ∀i ∈ Vr, k ∈ FT (4.27)

0 ≤ zk
i ≤ G2 ∗ ∑

(i,j)∈A1

Qi,j,k, ∀i ∈ V0
c1, k ∈ FT (4.28)

0 ≤ Zk
i ≤ (G1 + G2) ∗ ∑

(i,j)∈A1

xi,j,k, ∀i ∈ V0
r , k ∈ FT (4.29)

0 ≤ zk
i,j ≤ G2 ∗Qi,j,k, ∀(i, j) ∈ A1, k ∈ FT (4.30)

0 ≤ Ek
i + Zk

i − zk
i ≤ G1, ∀i ∈ V0

r , k ∈ FT (4.31)

0 ≤ ek
i + zk

i ≤ G2, ∀i ∈ V0
r , k ∈ FT (4.32)

0 ≤ Ek
i ≤ G1, ∀i ∈ V

′′
rc1, k ∈ FT (4.33)

0 ≤ ek
i ≤ G2, ∀i ∈ V

′′
rc, k ∈ FT (4.34)

Freight constraints

∑
(i,j)∈A2

pi,j,k − ∑
(j,i)∈A2

pj,i,k = dj ∗ ∑
(i,j)∈A2

(yi,j,k −Qi,j,k), ∀j ∈ Vc, k ∈ FT (4.35)

∑
i∈Vc

di ∑
j∈V′rc |(i,j)∈A2

(yi,j,k −Qi,j,k) + ∑
i∈Vc1

di ∑
j∈V′rc1|(i,j)∈A1

xi,j,k ≤ C1, ∀k ∈ FT (4.36)
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0 ≤ pi,j,k ≤ C2 ∗ (yi,j,k −Qi,j,k), ∀(i, j) ∈ A2, k ∈ FT (4.37)

Extra subtour elimination constraints

uk
i − uk

j + 1 ≤ M ∗ (1− xi,j,k), ∀i ∈ Vr, j ∈ Vr, (i, j) ∈ A1, k ∈ FT (4.38)

0 ≤ uk
i ≤ M, ∀i ∈ Vr, k ∈ FT (4.39)

The objective function (4.1) minimizes the total travel cost. It corresponds to the van
routes cost plus the whole-robot routes cost, minus the van-robot routes cost.

Constraints (4.2)-(4.14) are pure van/robot arc constraints. Constraints (4.2)-(4.6)
ensure every node is visited by a van/robot at most once, and the times of departures
are equal to the times of arrivals. Constraints (4.6) force the number of a van leaving
the depot to be equal to that of its robot leaving the depot, and equal to the number of
van/robot coming back to the depot. Constraints (4.7) ensure that every customer node
is visited by vans or robots exactly once. Constraints (4.8)-(4.9) enforce for customer
nodes and depot, that a van and its robot cannot visit the same node unless the robot is
on board the van. Constraints (4.10) ensure a robot cannot visit a parking node unless
its van visited this node. Constraints (4.11) let Qi,j,k be equal to 1 only if xi,j,k and yi,j,k

are all equal to 1. Constraints (4.12) are the binary variable constraints. Constraints
(4.13)-(4.14) force the arc variable to be equal to 0 where they are not allowed to visit.

Constraints (4.15)-(4.32) are the time and energy constraints. Constraints (4.15)-
(4.16) are time flow constraints describing vehicle departure from the parking node
or depot. Constraints (4.15) are the time flow of the van routes, and constraints (4.16)
are the time flow of robot routes. Constraints (4.17)-(4.18) are time flow constraints, en-
suring that the van and robot depart from the customer node. Constraints (4.17) are the
time flow of the van routes, and constraints (4.18) are the time flow of the robot routes.
Constraints (4.19) are the subtour elimination constraints on the whole-robot routes.
Constraints (4.20) force the arrival time of the van at a node to be equal to that of the
robot if its van is carrying the robot. Constraints (4.21) are time window constraints.

Constraints (4.22)-(4.23) define the battery level of van route in A1. Constraints
(4.22) consider that a van departs from a parking node or depot, while constraints (4.23)
consider that a van departs from a van customer node. Constraints (4.24)-(4.26) define
the energy flow of the robot. Constraints (4.24) ensure the robot energy flow when it
is carried. Constraints (4.25)-(4.26) ensure the energy flow when the robot moves on
its own. Constraints (4.27)-(4.34) represent the variable constraints. Constraints (4.27)-
(4.28) define that only when both the van and the robot reach the same node, can the
charging amount of robot be greater than 0. Constraints (4.27) represent the case where
the van and robot rendezvous at the parking node while constraints (4.28) are the case
where the van carries the robot to the parking node. Constraints (4.29) ensure that
only when a van reaches a parking node/depot can the charging amount of the van be
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greater than 0. Constraints (4.30) ensure that only when a van carries its robot can the
charging amount of the robot en-route be greater than 0. Constraints (4.31)-(4.32) ensure
that when a van or a robot leaves a parking node, the battery amount of van/robot is
below its battery capacity. Constraints (4.33)-(4.34) are variable constraints.

Constraints (4.35)-(4.37) are freight flow constraints. Constraints (4.35) are the freight
flow along 2nd-level routes (robot routes). Constraints (4.36) guarantee the total capacity
of a van and its robot. Constraints (4.37) are the variable constraints.

Constraints (4.38)-(4.39) are Miller-Tucker-Zemlin constraints to eliminate subtours
in dummy stations.

Note: Some constraints are used to allow or forbid the cases in Figure 4.2. Con-
straints (4.6) forbid cases (13), (14), (17), (18). Constraints (4.8)-(4.9) forbid cases (4), (5),
(6), (16), (20). Constraints (4.10) forbid case (8). In addition, nonlinear constraints in the
MIP model can be linearized as follows.

Constraints (4.15-4.17) can be linearized as follows:

Wk
i + Zk

i /g1 + di,j/v1 −Wk
j ≤ M(1− xi,j,k), ∀{i ∈ V0

r |(i, j) ∈ A1}, k ∈ FT (4.40)

Wk
i + zk

i /g2 + di,j/v1 −Wk
j ≤ M(1− xi,j,k), ∀{i ∈ V0

r |(i, j) ∈ A1}, k ∈ FT (4.41)

wk
i + zk

i /g2 + di,j/v1 −Wk
j ≤ M(1− xi,j,k), ∀{i ∈ V0

r |(i, j) ∈ A1}, k ∈ FT (4.42)

Wk
i + zk

i /g2 + di,j/v2 − wk
j ≤ M(1− yi,j,k + xi,j,k), ∀{i ∈ Vr|(i, j) ∈ A2}, k ∈ FT (4.43)

wk
i + zk

i /g2 + di,j/v2 − wk
j ≤ M(1− yi,j,k + xi,j,k), ∀{i ∈ Vr|(i, j) ∈ A2}, k ∈ FT (4.44)

Wk
i + si + di,j/v1 −Wk

j ≤ M(1− xi,j,k), ∀{i ∈ Vc1|(i, j) ∈ A1}, k ∈ FT (4.45)

Wk
i + zk

i /g2 + di,j/v1 −Wk
j ≤ M(1− xi,j,k), ∀{i ∈ Vc1|(i, j) ∈ A1}, k ∈ FT (4.46)

Constraints (4.20) can be linearized as follows:

−M(1− ∑
(i,j)∈A1

Qi,j,k) ≤Wk
j − wk

j ≤ M(1− ∑
(i,j)∈A1

Qi,j,k), ∀{j ∈ V
′
rc1}, k ∈ FT (4.47)

4.3 Single Route Evaluation and Feasibility

We will propose a local search based metaheuristic for solving the problem presented.
Before developing the metaheuristic, we need to introduce methods required for eval-
uating and checking the feasibility of a given 2E-VREC route. For example, Gschwind,
2019 and Gschwind and Drexl, 2019 designed new route feasibility checking technol-
ogy for pickup and delivery problems.

Move procedures in metaheuristics for solving vehicle routing problems aim to de-
termine which node to visit in what order. However, other essential decisions need to
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be made first during move procedures. For example, we need to decide the departure
time of a vehicle from a node, and the charging time at a charging station in EVRP.

In the classical VRP problem, a strategy that lets vehicles leave nodes as early as
possible is usually adopted. This is a best choice from a feasibility point of view (Savels-
bergh and Martin, 1992). For the partial charging EVRP problem, the decision strategy
is more complicated. Hiermann et al., 2016; Hiermann et al., 2019 presented a greedy
route evaluation approach to make a charging decision, and prove that this greedy ap-
proach leads to an optimal decision.

However, research in VRP has been extended to more complex fields, including
VRPD and 2EVRP problems in recent years. Sometimes we need to consider the tem-
poral, spatial, and energy synchronization between vehicles. In our problem, vans and
robots are all-electric vehicles. The van can charge the robot when the van is carrying
its robot, even during the arc. We need to make decisions about: (i) who charges, (ii)
how much, (iii) where, and (iv) when. We also need to consider synchronization in the
mothership system, such as pickup and delivery, time windows, and other constraints.
Hence making a suitable decision involves a broad variety of constraints that are not
straightforward in the problem we are addressing.

Because of the increasing difficulty met when making complex decisions for a given
route, sometimes even checking the feasibility of a given single route is a hard, possibly
even an NP-hard problem. Ideas for solving such cases have been studied. Masson
et al., 2017 adopted heuristics to check the feasibility of a given route in the ALNS
since they believe there is no polynomial-time algorithm to solve the rolling containers
assignment problem (feasibility checking problem). Hunsaker and Savelsbergh, 2002
presented a linear-time complexity heuristic to check the feasibility of a given route in
a dial-a-ride problem.

In this section, we first propose a greedy route checking approach to solving our
route feasibility checking problem. We then present a linear programming (LP) check-
ing approach to accurately check the feasibility of a given single route. We also compare
the two route checking approaches in Section 4.4. Checking the freight of a given route
is straightforward, and so will not be dealt with here.

4.3.1 Greedy route checking approach

We draw on the idea of a greedy route evaluation approach (Hiermann et al., 2019)
to solve our 2E-VREC route feasibility checking problem. Here we apply a greedy
recharging policy with a simple rule, which is to give priority to charging the van bat-
tery over the robot battery: the robot needs the van to carry and charge it, so prioritizing
the van battery is reasonable.
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We define and calculate the time warp between two parking stations, to calculate
how much free time can be used for recharging at the departure station, without in-
creasing the time to reach the arrival station. The time warp can be calculated as fol-
lows. For the sequence from node i to node j, we calculate the earliest arrival time at
node j, and then the latest starting time from node i subject to the earliest arrival time
at node j not being changed. The time warp between node i and node j is equal to the
latest start time at node i minus the earliest start time at node i. The pseudocode for
calculating the time warp is given in B.1.

Based on the greedy recharging policy, we propose a four-step heuristic procedure
to charge the vehicles. A 2E-VREC route example in Figure 4.3 is used to introduce our
heuristic. In the four-step heuristic, the robot-battery may be recharged to low-level,
high-level, or max-level. Low-level charging means the robot battery is charged to the
level that makes sure the robot can independently finish its next trip, e.g. tour 4-5-4
in Figure 4.3. High-level charging means the robot battery is charged to the level that
ensures the robot can independently finish the tours before its van leaves the parking
station, e.g. tour 4-5-4 and 4-6-8 in Figure 4.3. Max-level charging means the robot
battery is charged to its maximum level. The van battery may be recharged to low-
level or max-level. Low-level charging of a van means the van battery is charged to the
level that ensures that the van can reach the next parking station. Max-level charging
of a van means the van battery is charged to its maximum level.

FIGURE 4.3: A 2E-VREC route example

The four-step (Priority) heuristic procedure is as follows.

1. We ensure the current van battery level is enough to reach the next parking sta-
tion.

• Example We must ensure the van battery is charged enough to travel from
node 2 to node 4 in Figure 4.3, even if the charging time is longer than the
calculated time warp.
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2. We charge the current robot battery to high-level.

• Subject to Priority 1 and time warp.

• Special case 1 If the parking station where the vehicles are now is at the
node where this robot is to be dropped off, we must charge the robot battery
to low-level even if the charging time is longer than the calculated time warp.

• Special case 2 When we used the whole calculated time warp to charge the
robot, but the robot battery is still at less than its high-level, we perform en-
route charging subject to the van battery being charged enough to reach the
next parking station.

• Example In station node 2, we charge the robot battery so it can finish route
4-5-4 and route 4-6-8 in Figure 4.3. If we used the whole calculated time
warp to charge the robot, but the robot battery is still at less than its high-
level, we conduct en-route charging on arc 2-3-4 subject to the van battery
being charged enough to reach station 4. In station node 4, we must ensure
that the robot can finish tour 4-5-4 even if the charging time is longer than
the calculated time warp.

3. We charge the current battery of the van to its max-level

• Subject to Priority 1, 2 and time warp.

4. We charge the current battery of the robot to its max-level.

• Subject to Priority 1, 2, 3 and time warp.

After we have defined the priority charging strategy, we can further optimize the
charging by appropriately setting charging time. The target for the further optimal
charging approach is to minimize the recharging end time of vehicles. An example
of further optimizing the charging is shown in Figure 4.4. First, we charge the van
battery to its low-level in case (A). Second, we charge the robot-battery to its high-level
in case (B). We can then optimize the charging by properly setting the charging time
of the van and the robot, by bringing forward the charging time of the robot to the
starting recharging time of the van, as in case (C). We note that if the robot charging
time is longer than the charging time of the van, we charge the van battery until its
charging time reaches the robot charging time or charge the van-battery up to its max-
level. Third, we charge the van battery to its max-level in case (D), and then charge
the robot-battery to its max-level in the fourth step in case (E). We can further optimize
the charging by bringing forward the charging time of the robot to the recharging start
time of the van again, as in case (F).
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FIGURE 4.4: Example of further optimizing the charging
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4.3.2 Linear programming model for route checking

We present an LP model for route evaluation. It is used to accurately check the feasibil-
ity of time, distance, and energy for a given single route. The input of the LP model is
a 2E-VREC route, and the output is the feasibility of the given route. The details of the
formulation and explanation of the LP model are given in B.2.

4.4 Adaptive Large Neighborhood Search

In this section, we adopt an adaptive large neighborhood search (ALNS) algorithm to
solve the 2E-VREC problem. Since our problem considers electric vehicles in a two-
echelon concept, we draw on some operations proposed in Hemmelmayr et al., 2012,
Keskin and Çatay, 2016, and Sacramento et al., 2019. The specific structure of our prob-
lem lies in parking stations that have a variety of functions, unlike other similar situ-
ations that have been solved by ALNS. For example, in our problem, parking stations
can be used for dropping off and picking up robots (vehicle transshipment), and can
also be used as charging stations or stations where a van can top up its robot. The park-
ing station is an independent station and can be visited multiple times. Table 4.1 gives
the characteristics of stations in different problem types.

TABLE 4.1: Characteristics of station in different problems

charging vehicle
transshipment

freight
transshipment

multi-visit
station

independent
station

EVRP yes no no yes yes
2EVRP yes no yes no yes
VRPD no yes yes no no

This work yes yes yes yes yes

After the initial solution has been constructed, the proposed ALNS algorithm seeks
to improve it iteratively until a stopping condition is satisfied. We adopt a maximum
iteration number (MaxIteNum) limit to terminate the algorithm. At each iteration,
the existing feasible solution is destroyed by removing some nodes or routes by a de-
stroy algorithm. The resulting partial solution is then repaired using a repair algorithm
which heuristically repairs the existing route or constructs a new route if needed, for
the purpose of obtaining a better solution than the previous one. We also set a number
of non-improving iterations (MaxNonImp) before restarting the ALNS algorithm from
a new initial solution as in Breunig et al., 2019.

During repair operations, the route evaluation method is used to check the feasi-
bility of the routes. We adopt simulated annealing as acceptance criterion, which al-
lows the algorithm to accept poor solutions during iterations. In addition, each of our
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destroy-and-repair operations is assigned a weight that controls how often the opera-
tion is selected. The weights are adjusted dynamically as the search progresses by a
weight-adjusting method. The algorithm thus adapts to the instance at hand and to the
state of the search. We draw on simulated annealing and weight-adjusting proposed
by Pisinger and Ropke, 2019. The details of simulated annealing and weight-adjusting
used here can be found in B.3.

Our proposed ALNS algorithm is described in Algorithm 5. The best solution is
recorded in recordset (Line 1). The algorithm starts with an initial solution x and it is
also the current best solution xb (Line 2). The value of NumNunImp is then initialized
to 0 (Line 3), where NumNunImp records the number of iterations until NumNunImp
becomes larger than MaxNunImp. Next, a destroy-and-repair operation is performed
until the stopping criterion (MaxIteNum) is met (Line 4-19). The restart() function is
used to restart the ALNS from Line 2 but keeps the iteration number unchanged.

Algorithm 5 Adapt_Large_Neighborhood_Search()

1: recordset = {}
2: Initialization: use RR move to get an initial solution x, let xb = x.
3: NumNunImp = 0
4: while stopping criterion is not met do
5: select destroy and repair methods from set.
6: xt = r(d(x))
7: if simulated annealing criterion accepts the solution then
8: x = xt

9: end if
10: if c(x) < c(xb) then
11: xb = x, NumNunImp = 0
12: else
13: NumNunImp+ = 1
14: if restart conditions is met then
15: recordset.append(xb) and then restart()
16: end if
17: end if
18: update weights and selection parameters
19: end while
20: return: output best xb from recordset

4.4.1 Initial solution

At the beginning of the algorithm, all customers are inserted into an un-assigned cus-
tomer list in random order. We then repeat the following two steps until all the cus-
tomer nodes are assigned. In the first step, we randomly choose a customer node in
the un-assigned customer list. If the chosen node is a robot customer node, then we
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construct a 2E-VREC route with van routes and robot routes. Otherwise, we decide
whether to construct a 2E-VREC route with van routes and robot routes or to construct
a 2E-VREC route only including van routes, according to roulette-wheel selection. The
second step randomly sorts the order of the un-assigned customer list, and then chooses
a customer to insert into the random-feasible position of the constructed route, until no
customer node can be inserted.

4.4.2 Destroy moves and operations

A destroy operation destroys a chosen 2E-VREC route by removing nodes or routes.
We define four destroy operations: customer removal, station removal, route closure,
and route destruction. The ALNS algorithm destroys a part of the current solution in
each iteration. We mainly adopt a random and a greedy destroy strategy.

In our problem setting, we denote a parking station used for charging only a charg-
ing station. Otherwise, it is denoted a connection station. We distinguish between
removing two kinds of stations in station removal operations, since removing a con-
nection station dramatically changes the solution, while removing a charging station
does not.

The four destroy operations and the moves used are as follows:

1. Customer removal operation: The customer removal operation removes cus-
tomers from a 2E-VREC route with a probability β ∈ [0, 1]. We adopt random
customer removal and greedy customer removal moves.

• Random customer removal randomly removes a customer node.

• Greedy customer removal removes the customer that can yield the largest cost
reduction for a given route.

2. Station removal operation: The station removal operation removes a parking sta-
tion from a 2E-VREC route. Here we adopt station-route removal, charging station
removal and redundant charging station removal moves. After we remove a station,
the route may become battery-unfeasible. We remove a customer before or after
the removed station in the van route, or we insert a station different from the re-
moved station in the van route to make the route feasible if needed, since visiting
fewer customers or visiting more stations could make a battery-unfeasible route
feasible.

• Station-route removal randomly removes a connection station and the robot
routes depart from and arrive at this station.

• Charging station removal randomly removes a charging station.
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• Redundant charging station removal removes a redundant charging station if
one exists.

3. Route closure operation: The route closure operation closes a van or robot route
in a 2E-VREC route. We use van/robot route closure moves, and we adopt ran-
dom/greedy strategies.

• Random van/robot route closure removes all customers from a randomly chosen
van/robot route.

• Greedy van/robot route closure removes the route that can yield the largest cost
reduction.

4. Route destruction operation: The route destruction operation chooses a 2E-VREC
route and then destroys it. All customer nodes in this 2E-VREC route are put in
the un-assigned customer list. We adopt random/greedy route destruction moves.

• Random route destruction randomly chooses a 2E-VREC route in the solution
to destroy.

• Greedy route destruction chooses a 2E-VREC route, with a minimum number
of customer nodes to destroy.

4.4.3 Repair moves and operations

Route repair operations repair the existing routes or construct a new route if needed, us-
ing three kinds of repair operations: route reconstruction, customer insertion, and route
structure change first / customer insert second. The repair operations do not allow un-
feasible solutions but allow worse solutions through simulated annealing evaluation
and calibration. Note that in the repair process, we consider opening a new van/robot
route from a connection station, or changing the role of charging stations to connection
stations and then opening a robot route to considerably change the solution.

The three kinds of repair operation are as follows.

1. Route reconstruction operation: The route reconstruction operation ensures that
we always obtain a viable solution. We adopt the same method as we used to
obtain the initial solution in Section 4.4.1.

2. Customer insertion operation: The customer insertion operation is used to in-
sert customers in a 2E-VREC route. First, we use random/greedy customer inser-
tion moves to insert customer nodes. If a customer cannot be inserted because
of battery outage, we try to use nearest station insertion moves to make the route
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feasible. If all the possible positions have been tried and the customer still can-
not be inserted, we try to open a new robot route, where the start node and end
node of the route are the same, and then insert the customer node. Finally, if there
still are unassigned customer nodes, we use route reconstruction-based repair to
reconstruct a new 2E-VREC route.

• Random customer insertion sorts the order of the un-served customers list ran-
domly and chooses a customer to insert into the random-feasible position of
the 2E-VREC route until all customers have been tried.

• Greedy customer insertion sorts the order of un-served customers list randomly,
and then chooses a customer to insert into the 2E-VREC route with the least
cost increases.

• Nearest station insertion is used after we have inserted a customer node and
found the route is unfeasible: we try to insert a station before or after the
inserted customer position.

3. Route structure change first / customer insert second operation: We present two
kinds of route structure change approach: (i) we use van/robot route open moves
to begin a new van/robot route from a station; the van/robot route includes one
customer node, and the ending station can be the same one or a different one;
we then perform a customer insertion operation, (ii) we first use random/greedy
station insertion moves to insert a station into a 2E-VREC route and then follow
route open moves at this station if the station is not inserted in an independent
van route; next, we conduct customer insertion- based repair moves.

• Van route open to begin a new van route from a connection station.

• Robot route open to begin a new robot route from a station; robot route open
can convert a charging station into a connection station or increase the robot
route from a connection station. The ending station can be the same as or
different from the starting station.

• Random station insertion randomly chooses a position in the 2E-VREC route
to insert a station.

• Greedy station insertion chooses the best insertion position with feasible and
least total travel cost increases to insert a station.

4.5 Computational study

We performed four types of computational experiment. First, we used the parameter
tuning approach to determine the parameters. Second, we evaluated the performance



70 Chapter 4. Electric van-based robot deliveries with en-route charging

of two proposed route evaluation approaches. Third, we conducted the ALNS exper-
iment to see the overall performance of the proposed ALNS algorithm. Fourth, we
performed a sensitivity analysis to determine the impact of related charging modes,
battery capacities, and charging rate. In the four types of computational experiment,
we ran our algorithms 10 times for every instance.

The mathematical programming model was coded in OPL. CPLEX 12.8 was used
to solve the model. The ALNS was coded in python version 3.6.8. Both CPLEX and
python were executed on an Intel(R) Core(TM) 3.2GHz processor with 8 GB memory
running under Windows 10. Python was run with single-threading.

4.5.1 Instance generation

We used the instances of Dellaert et al., 2018 and Yu et al., 2020 as a basis. The specific
instance generation approach is described in those two articles. We chose eight types
of instances with 3/5 parking nodes and 15/30/50/100 customer nodes, respectively.
Each type includes 20 instances that could be divided into four cases according to the
different time window and demand generation methods.

We set the speed of the van at 2, and the speed of the robot at 1. The van’s energy
consumption rate was 2 units per distance, and the robot’s energy consumption rate
was 1 unit per distance. The recharging rate was 10 units per time for a van and 4 units
per time for a robot. The capacity of a robot was 50, and the capacity of a van was
200. The battery capacity of a robot was 120, and the battery capacity of a van was 400.
The depot time window was [0,500]. Vans could access two-thirds of the total customer
nodes in each instance. If the calculated number of van customer nodes was fractional,
we rounded up. The first two-thirds of customers in the instance are the van customers.

4.5.2 Parameter tuning

We drew on the parameter tuning concept (Jie et al., 2019) to determine the parameters.
The parameter tuning approach started with a set of initial parameter values. Param-
eter tuning conducted the ALNS algorithm with the parameter values in the search
interval. The parameter value that had the best solution was chosen to perform the fol-
lowing calculation. The process was repeated until all the parameters in the parameter
set had been tuned. We chose eight instances with 3-15 satellite-customers to conduct
the parameter tuning procedure: CA1-3-15, CA2-3-15, CB1-3-15, CB2-3-15, CC1-3-15,
CC2-3-15, CD1-3-15, and CD2-3-15. The parameter notations, descriptions, and values
used here can be found in B.4.
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4.5.3 Comparison of greedy route evaluation and LP-based evalua-

tion

Since the greedy route evaluation (GE) approach presented is an approximate method,
we compared it with the LP-based evaluation approach to assess its accuracy and
speed. We also conducted additional experiments to evaluate an approach combin-
ing the GE-based and LP-based evaluation (GE-LP-based evaluation) to exactly check
the feasibility of a given route. The GE-LP-based evaluation first uses a GE-based eval-
uation to test the feasibility of the route. If the GE-based evaluation finds the route
feasible, it is deemed feasible, and the evaluation procedure ends. Otherwise, the eval-
uation procedure takes the LP-based evaluation approach to finally check the feasibility
of the route.

The instances used in this experiment were the same as those in the turning param-
eter section. Table 4.2 gives the results for the comparison of GE-based, LP-based, and
GE-LP-based evaluations. Column 1 indicates the instances tested. Our num1 is the
average number of times the output of the GE-based route evaluation differs from the
output of the LP-based route evaluation approach. Our num2 is the average total num-
ber of times that the route evaluation procedure is performed. The LP time, GE time,
and GE-LP time are the average evaluation times of LP-based, GE-based, and GE-LP-
based evaluation approaches in 10 experiments, respectively. The runtime (LP time,
GE time, GE-LP time) was the time for the ALNS to solve the instance using different
evaluation approaches.

TABLE 4.2: Comparison of greedy route evaluation and linear program-
ming based evaluation

3-15 num1/num2 LP time(s) GE time(s) GE-LP time(s)
CA1 0/284603 2953.2 44.0 2895.1
CA2 11/317831 3146.9 61.9 3070.2
CB1 6/259734 2955.8 48.6 2535.5
CB2 3/353319 3422.8 59.6 3206.3
CC1 54/175804 1955.1 35.1 1608.4
CC2 57/183887 2167.2 40.9 1690.8
CD1 90/291439 3065.8 51.3 2604.9
CD2 8/326793 3692.7 54.0 3329.8

AVER 229/2193410 2919.9 49.4 2617.6

It is obvious from the results that the estimation error (num1/num2) of the GE-
based evaluation approach was around one in a thousand. The GE-based evaluation
ran 59 times faster than the LP-based evaluation method. The GE-LP-based evaluation
also ran faster than the LP-based evaluation approach. However, the runtime reduc-
tion was only about 10%. This may be because many unfeasible routes that need to be
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checked using the LP-based evaluation method were generated in the process of run-
ning the ALNS algorithm. In any case, if we need to check the feasibility of a route
exactly, the GE-LP-based evaluation approach is faster than the evaluation method us-
ing only the LP-based approach.

4.5.4 ALNS experiment

First, we compared the GE-based ALNS results with the GE-LP-based ALNS results to
analyze the GE-based ALNS algorithm’s performance. Second, we compared the ALNS
results with the CPLEX results in very small-scale instances. Third, we used the ALNS
algorithm to solve larger instances and see the overall performance of the proposed
ALNS algorithm.

Comparison the GE-based with GE-LP-based ALNS results

In Subsection 4.5.3, we analyzed the estimation error of the GE-based evaluation ap-
proach, which was about one in a thousand. Here we ran the GE-based ALNS algo-
rithm and the GE-LP-based ALNS algorithm on 3–15 satellite-customer instances to
see whether a one thousandth estimation error greatly changed the results.

Table 4.3 gives a comparison of the GE-based ALNS and GE-LP-based ALNS results.
AC and BC are the averages and best objective values. SDC is the standard deviation
of the objective value, and AT(s) is the average runtime of the GE-based(GE-LP-based)
ALNS algorithm.

Table 4.3 shows that the average performance difference between the two algo-
rithms was not significant, and the average solving time of the GE-based ALNS was
much shorter than that of the GE-LP-based ALNS algorithm. We therefore used the
GE-based ALNS algorithm in the subsequent ALNS computation study.

Comparison of the ALNS results with the CPLEX results

The VRPD model is hard to solve for general-purpose MIP solvers. For example, Wang
and Sheu, 2019 showed the commercial solver can only address the VRPD problem with
10 nodes (contains parking nodes and customer nodes), and even the branch and price
algorithm they provided can only solve the problem with 12 points. In our problem, we
replicated the parking nodes for multiple visiting. Dummy nodes increase the number
of nodes in the model, making the problem more difficult to solve, and reducing the
problem size we can address.

We tested 20 instances with five customer nodes and three parking nodes. Theo-
retically, each parking node can be reached up to 5+1 times. However, using too many
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TABLE 4.3: GE-based and GE-LP-based ALNS algorithm comparison

GE-based ALNS GE-LP-base ALNS
3-15 AC BC SDC AT AC BC SDC AT
CA1 532.2 532.2 0.0 40.6 532.2 532.2 0.0 2546.5
CA2 612.3 598.3 11.4 52.5 615.6 598.3 7.6 2938.7
CA3 586.1 574.8 9.7 45.2 583.4 574.8 7.8 3002.7
CA4 590.5 573.2 18.9 46.3 583.1 573.2 11.9 2789.2
CA5 584.8 582.9 4.0 47.0 585.0 582.9 3.7 2557.7
CB1 570.0 557.4 6.7 45.6 573.6 569.8 4.0 2653.5
CB2 607.8 588.9 17.0 51.2 596.4 568.0 20.3 3188.2
CB3 663.5 650.6 6.7 41.6 668.4 659.7 5.2 2363.7
CB4 541.4 515.7 13.1 44.4 546.4 515.7 14.4 2370.4
CB5 540.6 537.2 4.4 40.4 540.0 537.2 4.0 2379.2
CC1 445.9 426.2 11.4 31.0 446.7 426.2 10.5 1553.4
CC2 460.4 457.6 1.0 36.1 461.1 459.5 2.0 1690.2
CC3 516.1 513.4 2.6 32.0 517.3 513.4 4.5 1576.6
CC4 481.7 466.5 7.6 30.6 476.3 450.6 11.3 1577.8
CC5 391.4 391.4 0.0 34.9 391.4 391.4 0.0 2227.2
CD1 526.4 520.0 6.7 45.5 529.4 520.0 8.7 2646.6
CD2 530.0 516.9 15.8 49.7 536.6 516.9 14.2 3125.7
CD3 604.6 595.2 7.1 47.8 602.6 597.5 4.8 3248.7
CD4 522.6 516.1 7.8 34.0 521.6 520.7 2.9 2187.0
CD5 513.8 513.8 0.0 46.3 513.8 513.8 0.0 2695.3

AVER 541.1 531.4 7.6 42.1 541.0 531.1 6.9 2465.9

dummy parking nodes usually makes the problem difficult to solve. We therefore itera-
tively solved our model by CPLEX, gradually increasing the number of dummy nodes.
The increase in the number of dummy nodes stops when no improvement in the solu-
tion cost is found. However, if the solution is still worse than the ALNS solution, we
continue to increase the number of dummy nodes until the CPLEX solution is better
than or equal to the ALNS solution. The iterative process will also stop if the procedure
runs out of solving time or out of memory.

For each instance, CPLEX 12.8 runs with default settings until it finds an optimal
solution, exhausting the predetermined maximum computation time (7200s), or until
the program runs out of memory. The computational results for all instances are pre-
sented in Table 4.4, in which K represents the number of times a vehicle can visit a
parking node, and UB and LB are the upper and lower bounds of CPLEX solutions. E1
is the CPLEX gap between CPLEX upper bound (baseline) and CPLEX lower bound,
and TIME is the CPLEX solving time. BC and AT are the best solutions for ALNS in 10
tests and average solving time of ALNS. E2 is the gap between the ALNS best solution
and CPLEX upper bound (baseline). The symbol ∗means CPLEX is run out of memory.
The solution selected at the end of each instance is in bold.

Table 4.4 shows that our ALNS can always reach the best solutions in very small
instances. For case CB2, ALNS performed better than the CPLEX solver, which ran out
of memory in K = 3.
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TABLE 4.4: CPLEX and ALNS results comparison (5 customer nodes and
3 parking nodes)

K=2 K=3 K=4 K=5 ALNS
UB LB GAP1 TIME UB LB GAP1 TIME UB LB GAP1 TIME UB LB GAP1 TIME BC AC SDC AT GAP2

CA1 291.6 291.5 0.0 22.1 286.8 286.7 0.0 372.0 284.2 284.1 0.0 5058.0 286.8 217.0 24.3% 7200 284.2 284.2 6.0 14.6 0.0
CA2 360.3 360.3 0.0 18.2 360.3 360.3 0.0 2753.6 / / / / / / / / 360.3 367.2 8.9 12.4 0.0
CA3 275.2 275.2 0.0 1.5 275.2 275.2 0.0 29.3 / / / / / / / / 275.2 275.2 0.0 17.0 0.0
CA4 261.2 261.2 0.0 1.3 261.2 261.2 0.0 17.7 / / / / / / / / 261.2 261.2 0.0 14.6 0.0
CA5 192.2 192.2 0.0 1.0 167.7 167.7 0.0 4.4 167.7 167.7 0.0 100.7 / / / / 167.7 167.7 0.0 14.8 0.0
CB1 288.7 288.7 0.0 8.6 288.7 288.6 0.0 485.6 / / / / / / / / 288.7 288.7 0.0 15.0 0.0
CB2 406.6 406.6 0.0 33.2 * * * * / / / / / / / / 360.3 360.3 0.0 24.4 -11.4%
CB3 320.5 320.5 0.0 6.8 314.7 314.6 0.0 118.5 314.7 302.1 0.0 7200.5 / / / / 314.7 314.7 0.0 20.0 0.0
CB4 256.3 256.3 0.0 1.3 256.3 256.3 0.0 15.6 / / / / / / / / 256.3 256.3 0.0 14.2 0.0
CB5 190.7 190.7 0.0 0.7 170.6 170.6 0.0 4.5 170.6 170.6 0.0 129.8 / / / / 170.6 170.6 0.0 14.7 0.0
CC1 199.9 199.9 0.0 0.3 195.7 195.7 0.0 1.4 195.7 195.7 0.0 23.328 / / / / 195.7 195.7 0.0 12.9 0.0
CC2 297.2 297.2 0.0 8.0 297.2 297.2 0.0 227.7 / / / / / / / / 297.4 297.4 0.0 15.5 0.0
CC3 306.0 306.0 0.0 6.6 262.6 262.6 0.0 95.6 306.0 249.1 0.2 7200 / / / / 262.6 262.6 0.0 13.6 0.0
CC4 270.6 270.6 0.0 2.8 270.6 270.6 0.0 64.4 / / / / / / / / 270.6 270.6 0.0 14.4 0.0
CC5 180.4 180.4 0.0 2.7 157.8 157.8 0.0 5.8 157.8 157.8 0.0 67.4 / / / / 157.8 157.8 0.0 12.2 0.0
CD1 295.2 295.2 0.0 5.8 295.2 295.2 0.0 331.5 / / / / / / / / 295.2 295.2 0.0 19.0 0.0
CD2 321.3 321.3 0.0 2.4 321.3 321.3 0.0 170.9 / / / / / / / / 321.3 321.3 0.0 19.2 0.0
CD3 270.7 270.7 0.0 4.3 249.1 249.1 0.0 23.4 249.1 249.1 0.0 750.1 / / / / 249.1 249.1 0.0 16.7 0.0
CD4 281.0 281.0 0.0 7.1 281.0 281.0 0.0 97.3 / / / / / / / / 281.0 281.0 0.0 16.8 0.0
CD5 190.7 190.7 0.0 1.0 170.6 170.6 0.0 8.2 170.6 170.6 0.0 160.0 / / / / 170.6 170.6 0.0 12.1 0.0

ALNS to solve larger instances

We used the ALNS algorithm for all the instances with 15/30/50/100 customer nodes
and 3/5 parking nodes to evaluate the performance of our ALNS algorithm.

The results of ALNS for 15, 30, 50, and 100 customers are shown in Tables 4.5-4.6.
AC and BC are the averages and best objective values. The SDC represents the standard
deviation of the objective value, and the AT(s) is the average runtime of the ALNS.

TABLE 4.5: ALNS (15 and 30 customers)

3-15 5-15 3-30 5-30
AC BC SDC AT AC BC SDC AT AC BC SDC AT AC BC SDC AT

CA1 532.2 532.2 0.0 40.6 683.0 672.4 7.3 44.7 1189.2 1159.1 21.4 134.3 1063.6 1041.7 14.7 143.0
CA2 612.3 598.3 11.4 52.5 717.0 708.1 8.8 40.4 1027.4 972.1 31.9 138.8 1004.4 965.1 21.4 127.5
CA3 586.1 574.8 9.7 45.2 485.9 485.9 0.0 41.8 1004.8 979.0 16.8 150.5 1045.6 992.5 26.7 144.2
CA4 590.5 573.2 18.9 46.3 490.0 486.4 11.1 43.5 826.7 802.7 16.5 128.5 1268.3 1229.3 23.8 130.9
CA5 584.8 582.9 4.0 47.0 620.6 605.0 9.5 46.5 971.9 958.3 9.1 132.2 1047.1 1019.4 18.2 140.9
CB1 570.0 557.4 6.7 45.6 639.5 622.3 10.5 46.5 1216.2 1177.4 24.4 144.1 1073.0 1060.9 12.8 141.7
CB2 607.8 588.9 17.0 51.2 646.9 643.7 3.4 49.1 935.8 914.9 17.3 134.0 1017.0 1002.4 11.8 129.8
CB3 663.5 650.6 6.7 41.6 512.9 512.9 0.0 41.6 973.0 948.7 20.7 133.5 1008.8 960.7 20.6 148.0
CB4 541.4 515.7 13.1 44.4 523.3 522.7 1.3 37.4 876.0 862.4 7.7 142.7 1295.2 1264.2 24.6 142.7
CB5 540.6 537.2 4.4 40.4 608.8 608.8 0.0 50.0 961.0 940.9 14.0 193.8 1032.8 1018.5 14.4 191.9
CC1 445.9 426.2 11.4 31.0 474.0 463.0 12.6 43.6 946.9 919.5 19.6 126.1 939.8 904.8 22.9 131.8
CC2 460.4 457.6 1.0 36.1 518.2 501.6 10.7 37.2 796.5 771.4 15.5 98.7 823.0 813.5 6.7 91.9
CC3 516.1 513.4 2.6 32.0 431.6 431.2 1.1 30.5 831.8 789.7 23.5 124.9 878.5 858.1 13.7 162.4
CC4 481.7 466.5 7.6 30.6 466.9 452.0 18.5 38.6 770.4 719.4 23.8 130.8 1000.6 944.2 38.5 114.6
CC5 391.4 391.4 0.0 34.9 560.4 557.9 5.8 40.9 846.5 824.1 13.5 111.8 802.1 757.4 28.9 113.4
CD1 526.4 520.0 6.7 45.5 585.9 580.5 11.4 50.1 1137.7 1113.3 21.3 130.6 1118.3 1064.2 31.6 153.2
CD2 530.0 516.9 15.8 49.7 625.9 618.3 3.0 47.6 996.0 955.0 27.4 139.3 1017.5 973.0 24.7 137.0
CD3 604.6 595.2 7.1 47.8 476.4 475.2 1.6 49.8 1014.2 982.4 15.6 125.3 965.5 933.7 22.9 163.8
CD4 522.6 516.1 7.8 34.0 529.9 526.9 2.1 48.8 877.9 858.6 13.7 153.8 1123.5 1086.8 23.0 152.2
CD5 513.8 513.8 0.0 46.3 634.3 631.6 5.5 43.9 954.7 926.6 27.0 156.7 965.3 932.9 27.7 144.1

AVER 541.1 531.4 7.6 42.1 561.6 555.3 6.2 43.6 957.7 928.8 19.0 136.5 1024.5 991.2 21.5 140.2

The results show that the average solving time for the hardest instances with five
parking nodes and 100 customers was less than 900s. It also shows that our algorithm
has the potential to solve larger problems quickly.
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TABLE 4.6: ALNS (50 and 100 customers)

3-50 5-50 3-100 5-100
AC BC SDC AT AC BC SDC AT AC BC SDC AT AC BC SDC AT

CA1 1722.5 1674.0 31.4 284.6 1608.5 1550.5 36.7 287.5 2839.8 2748.6 44.3 1061.3 2814.0 2745.9 55.5 1014.1
CA2 1743.2 1684.7 34.0 309.4 1541.7 1481.2 36.1 312.2 3153.5 3103.6 41.3 1258.0 2735.0 2648.3 47.5 1152.4
CA3 1676.3 1597.9 36.7 313.5 1558.5 481.7 68.0 298.4 3225.9 3096.4 83.4 1002.0 2972.0 2865.3 74.5 1083.7
CA4 1630.7 1550.1 41.3 293.4 1493.0 1451.8 27.1 299.4 3971.1 3799.8 107.8 830.6 3052.6 2952.7 71.8 916.2
CA5 1562.2 1468.6 45.8 370.0 1539.3 1485.9 37.6 376.9 2981.8 2886.4 51.2 979.4 2861.0 2816.3 39.7 855.3
CB1 1707.9 1632.8 41.7 368.3 1683.5 1629.9 38.4 359.9 2635.9 2567.8 54.0 808.3 2896.6 2780.4 69.4 808.4
CB2 1633.7 1577.7 31.0 296.2 1581.7 1539.9 31.9 331.5 2931.8 2782.7 89.4 898.8 2869.9 2791.6 41.4 891.1
CB3 1738.0 1669.6 35.1 337.4 1625.7 1558.5 30.8 313.8 3196.1 3042.3 70.7 849.1 2896.9 2757.5 97.5 822.1
CB4 1601.9 1544.6 32.3 323.1 1453.1 1431.6 19.9 322.3 3977.5 3756.2 97.8 848.8 2991.9 2872.0 80.4 896.3
CB5 1590.7 1499.1 43.0 266.3 1566.2 1534.8 20.5 269.2 2913.6 2837.4 43.3 853.9 2916.9 2735.4 84.0 818.8
CC1 1380.5 1334.3 25.8 199.5 1290.0 1238.5 31.6 217.7 2414.3 2300.6 64.5 700.1 2443.0 2406.7 33.7 690.2
CC2 1414.5 1380.0 20.6 203.8 1238.0 1203.5 21.1 214.7 2518.9 2411.2 59.1 697.3 2265.6 2157.4 69.3 679.9
CC3 1387.6 1325.2 35.3 209.8 1351.0 1302.9 36.0 227.6 2551.9 2387.5 87.9 787.1 2541.3 2498.5 31.2 743.9
CC4 1348.6 1301.3 31.3 208.4 1321.8 1274.1 30.0 204.4 3049.3 2958.4 54.9 756.9 2437.1 2316.6 75.5 803.5
CC5 1511.8 1474.6 21.4 219.5 1307.9 1248.4 32.8 192.4 2460.0 2381.4 57.1 710.7 2385.6 2343.4 31.9 640.2
CD1 1630.7 1559.5 49.2 251.4 1518.4 1465.0 30.8 242.8 2791.5 2617.1 78.4 844.6 5483.2 4990.8 227.9 1268.1
CD2 1702.3 1617.1 48.1 249.9 1537.6 1477.3 35.6 247.8 3083.4 2995.9 49.3 865.8 2783.9 2684.6 51.3 878.5
CD3 1684.1 1629.9 35.9 252.9 1522.7 1481.6 30.9 242.0 3195.2 3114.0 76.3 856.3 3080.9 2944.5 78.4 963.0
CD4 1589.1 1515.2 38.4 253.7 1431.9 1382.5 35.5 252.8 3813.6 3690.6 82.3 809.5 2957.5 2901.9 40.3 901.4
CD5 1602.0 1544.3 33.9 245.2 1534.8 1478.0 32.8 261.6 2884.5 2801.4 58.2 945.9 2774.8 2646.0 61.7 846.7

AVER 1592.9 1529.0 35.6 272.8 1485.3 1384.9 33.2 273.7 3029.5 2914.0 67.6 868.2 2907.9 2792.8 68.1 883.7

4.5.5 Sensitivity analysis on impact of charging modes, battery capac-

ities, and charge speeds

We analyzed the impact of the en-route-charge, static-charge, and no-charge modes of
vehicles on the mode-computed outputs. The en-route-charge mode is the mode we
are studying here. The static-charge mode does not allow a van to charge its robot
en-route, and the van can only recharge its robot at charging stations. The no-charge
mode only allows the van and robot to be recharged at the depot only. The battery
capacity of vehicles and the charging rate of vehicles may also affect the efficiency of the
distribution system. Hence, we also analyzed the impact of battery capacity / charging
rate changes on the results.

We reset the battery capacity for each instance in the sensitivity analysis section, to
better distinguish the impact of charging modes, battery capacity, and charging rate
changes. The baseline battery capacity of the van (G1) and robot (G2) for each instance
were set as follows.

Step 1: We let a van carry its robot to provide services for a customer with a mini-
mum total van and robot travel distance and then let the van and robot return from the
original road.

Step 2: We recorded the maximum van travel distance / maximum robot travel
distance in Set 1/Set 2, and then repeated Step 1 until all the customers were served.

Step 3: We chose the maximum van/robot travel distance in Set 1/Set 2. We set
the maximum van travel distance to twice the maximum robot travel distance if the
selected van robot travel distance was less than twice that of the robot. We then multi-
plied the maximum van/robot travel distance by θ1 ∗ h1/θ2 ∗ h2 as the battery capacity
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of van/robot for each instance, respectively, where the θ1/θ2 was the multiplication
factor for the battery capacity of the van/robot.

We chose 20 instances with three parking nodes and 15 customers to conduct the
sensitivity analysis experiments.

First, we performed a comparison experiment between different charging modes.
We set the en-route-charge mode as baseline, with a value of 575.69. The experimental
results show that en-route-charge and static-charge can effectively reduce the cost of the
2E-VREC model. The average best cost fell by nearly 21% compared with the no-charge
mode. Adopting the en-route-charge mode instead of static-charge mode reduced the
average best cost by 0.35%. Furthermore, we doubled or halved the customer time win-
dow to see the efficiency improvement using en-route-charge mode rather than static-
charge-mode in different customer time window settings. However, the improvements
were still 0.3%-0.4% in our 2E-VREC model settings.

Even if using the en-route-charge mode only reduced best cost by nearly 0.35% on
average compared with using the static-charge mode, we recommend unmanned logis-
tics companies to use an en-route-charge mode if the fixed cost of the new technology
is controllable, since the reduction of 0.35% in cost is a valuable saving in a distribution
system.

For the sensitivity analysis on the impact of battery capacity experiments, we gener-
ated the different van/robot battery capacity combinations by multiplying the van/robot’s
battery capacity by a different multiplication factor. Table 4.7 gives the sensitivity anal-
ysis on battery capacities. Row 1 shows the different battery capacity combinations, in
which θ1/θ2 is the multiplication factor. Row 2 shows the average best result for the in-
stances in which the control group result (baseline) and the quality of the experimental
group solution are reported as an average percentage gap.

TABLE 4.7: Comparison of battery capacities

(θ1/θ2=1.0/1.2) (θ1/θ2=1.0/1.1) baseline(θ1/θ2=1.0/1.0) (θ1/θ2=1.1/1.0) (θ1/θ2=1.2/1.0)
-5.59% -3.65% 575.69 -0.02% -0.05%

Table 4.7 shows that increasing the battery capacity of the robot 1.1 and 1.2 times
can reduce the cost by 3.65% and 5.59%, respectively. Increasing the battery capacity of
the van 1.1 and 1.2 times produces only a tiny increase in efficiency.

For the sensitivity analysis on the impact of charging rate experiments, we set the
charging rate used in the en-route-charge mode as the baseline. We then set the charg-
ing rate at 1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2, and 2 times the baseline. The com-
parison of the charging rate is shown in Figure 4.5.
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FIGURE 4.5: Comparison of charging rate

Figure 4.5 shows that increasing charging rate can significantly reduce cost. How-
ever, the yield curve on increasing the charging rate tends to flatten as the charging rate
increases.

4.6 Conclusions

The van-based robot delivery concept is beginning to gain acceptance by logistic com-
panies, such as JD.COM, Amazon, etc., since robots can visit pedestrianized areas or
university campuses that vans cannot reach. Recent demonstrations by NIO have
shown the potential of electric vans for mobile charging platforms.

This chapter notes that the time during which vans are carrying robots can be used
effectively to recharge the robots, thereby increasing the efficiency of distribution sys-
tems. Here we present a novel transportation delivery model that incorporates en-
route-charging for autonomous electric vehicle logistics in cities. The model extends
the VRPD model to electric vehicle aspects and brings en-route-charge technologies
into the E-VRPD model, which provides a new option for logistics operators.

In the 2E-VREC model, the vans carry small robots along the 1st-level route, and
the robot itself travels along the 2nd-level open route. The van and robot can both serve
customers directly, but some constrained customer sets can be visited only by robots.
The van stops at parking nodes for dropping off and/or picking up its robot, and for
recharging and replenishing its robot if needed. The van can charge its robot (if it is on
board the van) during its trip. The van can be recharged at the parking nodes.

To model the proposed problem, we introduce a mixed-integer program. The 2E-
VREC model brings a new time-distance-energy trade-off to electric vehicle routing.
The energy transfer is negatively correlated with the van’s available travel distance,
but positively correlated with the robot’s available travel distance. Energy transfer also
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needs time. Owing to the difficulty processing the trade-off for checking the feasibility
of a given 2E-VREC route, we further propose a greedy route evaluation approach and
an LP-based route evaluation method. A comparison of greedy route evaluation and
LP-based evaluation showed that the GE-based evaluation method has high accuracy
and runs faster.

An adaptive large neighborhood search algorithm is presented for solving larger
instances. A sensitivity analysis for vehicle charging modes, battery capacities, and
charging rate reveals that using en-route-charge technologies, with appropriate increases
in battery capacity and charging rate, has useful effects on cost. We recommend that
logistics companies use en-route-charge technology if the fixed cost of the new technol-
ogy is controllable.
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Chapter 5

Van-based robots hybrid pickups and
deliveries routing problem

Abstract
We present a two-echelon van-based robot last-mile pickup and delivery system in

an urban area. Robots can visit areas with van access restrictions, such as pedestrian-
ized areas or university campuses. The van stops at parking nodes to drop off and/or
pick up its robot, and to replenish its robot and/or swap its robot’s battery if needed.
Five van/robot pickup and delivery cases are considered, according to the roles the
van/robot plays in the process of pickup/delivery and whether the van helps to trans-
port its robot.

To model the proposed problem, we introduce a mixed-integer program including
time, freight, and energy. We further propose an adaptive large neighborhood search
algorithm to solve larger instances and a capacity feasibility test approach for a single
route. We then assess the influence of parking node density on model output. A case
study based on a realistic city scene is introduced, A sensitivity analysis is performed
on the robot’s travel cost rate and maximum travel distances, and examines the van
no-go area’s effect. Two classical models are compared with ours, and results show our
model is competitive in appropriate scenario settings. We therefore advocate using the
two-echelon van-based robot last-mile pickup and delivery system in urban areas.

5.1 Background

Pickup-and-delivery problems (PDPs) are an essential family of routing problems in
which goods or passengers have to be transported from different origins to different
destinations (Battarra et al., 2014).

Urban logistics and transportation companies have to conduct goods pickup and
delivery operations. Supposing an e-commerce company has surplus logistics distribu-
tion capacity after completing its e-commerce logistics distribution task. In such a case,
it can make gainful use of its surplus logistics capacity to generate additional earnings
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by helping other individuals deliver freight. For example, JD.com delivers and picks up
JD-Mall’s own products and helps individuals or individual stores (offline store or local
hypermarket) deliver goods in real business operations. For the latter, a request needs
to be made to pick up goods from individuals or individual stores and transport them
to corresponding customers. A hybrid distribution model requires logistics companies
to perform one-to-one or one-to-many-to-one pickup and/or delivery services simul-
taneously, raising new challenges for the design and optimization of the distribution
system.

Bergmann et al., 2020 analyzed the route efficiency trade-offs that emerge from com-
bining first-mile pickup and last-mile delivery operations in an urban logistics network.
They show that combining deliveries and pickups on a single route can significantly
improve the distribution system efficiency. Integrating e-commerce proprietary logis-
tics into one system instead of executing them separately may thus improve logistics
distribution efficiency.

As the e-commerce market has grown, technology companies and traditional lo-
gistics providers have been experimenting with robot delivery (Kitjacharoenchai et al.,
2020). The van-based robot service models studied in Chapter 3 and Chapter 4 are in-
novation models for companies addressing urban distribution. However, the models
considered in Chapter 3 and Chapter 4, as well as other van-based robot routing models
cited in Chapter 2, mainly focus on the delivery of goods, and very few studies involve
pickup goods operations. To our knowledge, only Karak and Abdelghany, 2019 have
studied a one-to-many-to-one problem with van-based robot pickup and delivery. The
mothership leaves a depot to deliver commodities to customers, pick up commodities
from the customers, and then transport them back to the depot.

We extend the van-based robot pickup and delivery research by integrating multiple
pickup and delivery modes in one trip to increase the efficiency of distribution systems,
as envisaged by Bergmann et al., 2020.

This chapter presents van-based robot hybrid pickup and deliveries (2E-VRHPD)
as a prototypical problem. Larger vans carry small robots along the 1st-level route. The
robots travel along the 2nd-level open route. Both van and robot can serve customers
directly, but some constrained customers can be visited only by robots. The van stops
at parking nodes to drop off and/or pick up its robot, replenish its robot and swap its
robot’s battery if needed. For hybrid pickup and delivery operations, vans and robots
can load goods from a depot and deliver them to a customer, or they can pick up goods
from a customer (supplier) and deliver them to another customer or to a depot.

Because of its involvement in pickup operations, the allocation and adjustment of
goods during the route becomes a critical scientific problem. This holds especially for
allocating goods to the van and its robot in the parking nodes before they leave to



5.2. Problem description and formulation 81

do the distribution separately. The difficulties are twofold: (i) Both robots and vans can
reach their capacity when they serve customers independently. However, the combined
capacity of the robot and van cannot exceed the van’s capacity when the robot is on
board the van. Cargo load needs to be coordinated. (ii) Whether a couple of pickup-
delivery-pair customers are in a van/robot route or not will influence the freight flow
of the van/robot. The details of the differences are described in Section 5.2.3.

Our 2E-VRHPD model offers the following advantages over the vehicle routing
problem with drones (VRPD) (model of Otto et al., 2018) and the truck-and-trailer rout-
ing problem with pickup and delivery (TTRPPD) (model of Battarra et al., 2014). (i) in
our 2E-VRHPD model, we extend the VRPD model to cover hybrid pickup and deliv-
ery aspects, (ii) the 2E-VRHPD model extends TTRPPD with second-level open routes,
and also introduces a new van and robot load trade-off problem, and (iii) small robots
are generally safer than other transport modes in cities. For example, when a fast-flying
drone stalls, it can cause serious accidents in a city, whereas for a slowly moving robot,
accident risks from stalled vehicles are controllable (Yu et al., 2020).

This chapter makes the following contributions: 1. We offer a new two-echelon van-
based robot routing problem with hybrid pickup and delivery, which has the potential
to improve the efficiency of the distribution system. 2. We introduce five pickup and
delivery modes in the van-based robot pickup and delivery problem and the van-robot
load trade-off problem. 3. We first offer the 2E-VRHPD model and propose a math-
ematical formulation. 4. We propose an ALNS algorithm for the newly introduced
problem and a capacity feasibility test approach. 5. We introduce a case study and
perform a sensitivity analysis on the travel cost rate of a robot, maximum travel dis-
tances of a robot, and the impact of van no-go zones on the system. 6. We compare the
2E-VRHPD model with two classical models.

In the following, Section 5.2 describes the problem and formulation, Sections 5.3
deals with the adaptive large neighborhood search approaches, a computational study
and a case study are presented in Section 5.4 and Section 5.5, respectively, and Section
5.6 concludes.

5.2 Problem description and formulation

5.2.1 Problem statement

There are customers located in narrow streets, on campuses, or in other communities
where the entry of vans is restricted in the real world. We therefore distinguish two
kinds of customers. One kind can be visited by either the a van or the a robot: we call
these customers van customers. The other kind can only be visited by the a robot: we
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call these robot customers. This implies that the a robot can serve all the customers, but
the a van can only serve some of the customers.

We consider a two-echelon routing problem with van/robot pickup and delivery.
Vans or vans carrying robots move along a 1st-level route, serve van customers, or drop
off/pick up, and replenish or swap their robots’ batteries at parking nodes. Robots
handle customer services along 2nd-level open routes: in other words, the robots need
not return to the parking node from where they set out.

In our hybrid pickup and delivery system, we define three kinds of pickup and de-
livery modes: (i) picking up goods from customers and delivering them to a depot, (ii)
delivering goods from a depot to customers, and (iii) picking up goods from suppliers
(or customers) and delivering them to other customers (or suppliers).

For the pickup-delivery-pair customers, we assume they have pairing (coupling)
and precedence constraints. These constraints mean that the pick-up of goods from
a customer and then delivery to other customers is one-to-one, and each customer’s
goods must be picked up before being delivered. We also let the pickup-delivery-pair
customers be served by the same van-based robot mothership system.

In our 2E-VRHPD model, there are five pickup and delivery cases for the vehicles
to serve the pickup-delivery-pair- customers. Figure 5.1 shows the five cases.

• Case 1: A robot picks up goods from a customer and delivers them to another
customer.

• Case 2: A van picks up the goods from a customer and delivers them to another
customer.

• Case 3: A van picks up goods from a customer and its robot then delivers them to
another customer.

• Case 4: A robot picks up goods from a customer and returns to the van; the van
then delivers the goods to another customer.

• Case 5: A robot picks up goods from a customer and returns to the van. The
van carries the robot and then drops off the robot letting it deliver the goods to
another customer.

These five cases stem mainly from substantial constraint restriction or optimization
needs. For example, some pickup-delivery-pair goods can only be picked up and/or
delivered by a robot.

We assume there are specific parking nodes for the vehicles, used for the van to
rendezvous, replenish and swap the battery for its robot, rather than performing these
operations at customer nodes. This is reasonable because some customer nodes cannot
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FIGURE 5.1: Pickup and delivery cases

be accessed by the van and some are unsuited to vehicles performing rendezvous op-
erations in the real world. Parking nodes can be visited multiple times by vans/robots.
However, we assume that rendezvous and other operations take a fixed amount of
time.

The robot has a battery capacity. We note that the battery capacity of the robot
determines the maximum distance it can travel by itself. Here we choose battery-swap
technologies, and the robot can swap its battery when it meets its corresponding van.
We also assume that the van has no maximum travel distance restrictions.

The robot can be replenished with goods from the van at parking nodes, but the
van’s freight must be loaded at the depot. We do not consider the case where a van
replenishes other vans, or where robots replenish other robots. There are capacities for
both the van and the robot. We assume that when the robot is on board the van, the
van and its robot’s total load cannot exceed the van’s capacity. We also allow a robot to
visit multiple customers during a dispatch instead of serving only one customer, since
the robot’s capacity is usually greater than a drone’s.

Here we assume that each customer node must be visited by exactly one van/robot
once. Customer nodes and the depot have their time windows.

We make the following assumptions: (i) each van can carry only one robot, (ii) the
robot cannot leave the depot to serve customers directly, (iii) a robot dropped off by
a van must be picked up by the same van, (iv) waiting at all locations is costless, and
(v) the operating time spent dropping off, picking up, replenishing, and swapping a
battery is a fixed value.

We define five types of route here for illustration, drawing on Chapter 4: (i) a van
route (1st-level route) is a route where a van travels, (ii) a robot route (2nd-level route)
is a route where a robot travels under its own power, (iii) a van-robot route is a route
along which a van carries its robot, (iv) an independent-van route is a route where a
van travels independently, and (v) a whole-robot route is a route traveled by a robot.

An example illustrating the problem is given in Figure 5.2. Triangles represent park-
ing nodes, the square represents the depot, and circles correspond to customer nodes
(including pickup-customers, delivery-customers, and pickup-delivery-pair-customers).
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Green circles correspond to customers that can be served by vans and robots, and yel-
low circles correspond to customers that can be served only by robots. Solid lines cor-
respond to van routes, dotted lines to robot routes. Circles with P/D/P(1)/D(1) corre-
spond to pickup-customers, delivery-customers, pickup-pair-customer, and delivery-
pair-customer, respectively.

FIGURE 5.2: 2E-VRHPD model

5.2.2 Variable and Parameter Definitions

The problem is defined on a directed graph G = (V, A), where the depot V0 is repre-
sented by two nodes 0 and 0

′
. Every van route starts at 0 and ends at 0

′
. Let Vr be

the set of parking nodes where vans can drop off, pick up, replenish and swap the bat-
tery for their robots. A parking node may be visited more than once. We use dummy
nodes in the model. We use Num to represent the number of parking nodes in the
model. Vc1 denotes the van customer nodes set and Vc the customer nodes set. We
have Vc1 ∈ Vc, and Vc2 = Vc \ Vc1 is the robot customer nodes set. The set V0

α , V
′
α, V

′′
α

is the nodes set Vα union the depot 0, 0
′
, 0 ∪ 0

′
respectively, and α can be expressed in

a variety of different combinations of customer nodes and parking nodes sets. For the
pickup-delivery-pair-customer, Vcp = {1, ..., l} and Vcd = {l + 1, ..., 2 ∗ l}. For pickup-
customers or delivery-customers, Vcpd = {2 ∗ l + 1, ...n}. Let A1 = {(i, j) | i ∈ {0}; j ∈
Vrc1} ∪ {(i, j) | i, j ∈ Vrc1, i 6= j} ∪ {(i, j) | i ∈ Vrc1; j ∈ {0′}} be the van routes and let
A2 = {(i, j) | i ∈ Vr; j ∈ Vc} ∪ {(i, j) | i, j ∈ Vc, i 6= j} ∪ {(i, j) | i ∈ Vc; j ∈ Vr} be
the robot routes. We also let A3 = A1 ∪ A2 be the complete possible robot routes and
A4 = A3 \ A1 be the routes that the van cannot reach.



5.2. Problem description and formulation 85

For each edge, di,j is the associated travel distance, c1 ∗ di,j (c2 ∗ di,j) is the associated
travel cost and di,j/v1 (di,j/v2) is the associated travel time for the van (robot). The
freight must be delivered from the depot {0} to customer nodes i, or from pickup node
Vcp to the corresponding delivery node Vcd, with the demand di and serving time si.
We let di < 0 for pickup-customers and let di > 0 for the delivery-customers, and di =
−di−l for the pickup-delivery-pair customers. The time window of the customer nodes
i ∈ Vc is [ai, bi], is the time interval where the service at node i is permitted to start.
Let [a0, b0] = [a0′ , b0′ ], where a0/a0′ represents the earliest possible departure time from
the depot 0/0′ and b0/b0′ is the latest possible arrival time at the depot 0/0′. These
time windows are hard. FT = {1, 2, .., k, .., K} presents the set of vans, where K is the
number of vans. k ∈ FT represents the robot belonging to the kth van. Let M be an
arbitrary large constant number. Let C1 be the capacity for the van and C2 the capacity
for the robot. Let T be the fixed operational time at depot or parking nodes. Let G be
the battery capacity for the robot. Let h be the charge consumption rate of the robot. In
addition, we introduce the following decision variables.

Let xi,j,k be equal to 1 if arc (i, j) in A1 is traveled by the kth− van, 0 otherwise.
Let yi,j,k be equal to 1 if arc (i, j) in A3 is traveled by the kth− robot, 0 otherwise.
Let Qi,j,k be equal to 1 if arc (i, j) in A1 is traveled by the kth− van with its robot on

board, 0 otherwise.
Let ek

i be the remaining battery level of the robot at node i on arrival.
Let Wk

i be the last arrival time for the kth− van (or/and kth− robot) at node i.
Let pi,j,k be the freight flow of the robot in arc (i, j) in A2.
Let Pi,j,k be the freight flow of the van in arc (i, j) in A1. If there is robot on board the

van, let Pi,j,k be the freight flow of the van and its robot.
Let wk

i be the binary variable in parking nodes.
Let Setpk

i be the binary variable for the subroute. If there is a couple of pair-customers
in the subroute, then we define Setpk

i = 0, 1 otherwise. Where i is a pickup-pair-
customer.

Let ppk
i,j be the specific freight flow of the robot in arc (i, j) in A2. The specific freight

flow is defined as the robot flow carries from the parking nodes.
Let PPk

i,j be the specific freight flow of the van in arc (i, j) in A1. The specific freight
flow is defined as the van flow carries from the parking nodes.

5.2.3 Mixed Linear Integer Programming Model

Objective

min( ∑
k∈FT

∑
(i,j)∈A1

c1 ∗ di,j ∗ xi,j,k + ∑
k∈FT

∑
(i,j)∈A3

c2 ∗ di,j ∗ yi,j,k − ∑
k∈FT

∑
(i,j)∈A1

c2 ∗ di,j ∗Qi,j,k) (5.1)
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The objective function (5.1) minimizes the total travel cost. It corresponds to the van
routes cost plus the whole-robot routes cost, minus the van-robot routes cost.

Arc constraints

Pure van/robot arc constraints guarantee which route type is allowed and which route
type is not allowed. The arc constraints are similar to those in Chapter 4, described in
Figure 4.2.

∑
(i,j)∈A1

xi,j,k ≤ 1, ∀j ∈ Vrc1, k ∈ FT (5.2)

∑
(i,j)∈A1

xi,j,k − ∑
(j,i)∈A1

xj,i,k = 0, ∀j ∈ Vrc1, k ∈ FT (5.3)

∑
(i,j)∈A3

yi,j,k ≤ 1, ∀j ∈ Vrc, k ∈ FT (5.4)

∑
(i,j)∈A3

yi,j,k − ∑
(j,i)∈A3

yj,i,k = 0, ∀j ∈ Vrc, k ∈ FT (5.5)

∑
i∈Vrc1

xi,0′ ,k = ∑
j∈Vrc1

x0,j,k = ∑
i∈Vrc1

yi,0′ ,k = ∑
j∈Vrc1

y0,j,k ≤ 1, ∀k ∈ FT (5.6)

∑
k∈FT

( ∑
(i,j)∈A3

yi,j,k + ∑
(i,j)∈A3

xi,j,k − ∑
(i,j)∈A3

Qi,j,k) = 1, ∀j ∈ Vc (5.7)

∑
(i,j)∈A3

yi,j,k + ∑
(i,j)∈A1

xi,j,k − ∑
(i,j)∈A1

Qi,j,k ≤ 1, ∀i ∈ V0
c1, k ∈ FT (5.8)

∑
(i,j)∈A3

yi,j,k + ∑
(i,j)∈A1

xi,j,k − ∑
(i,j)∈A1

Qi,j,k ≤ 1, ∀j ∈ V
′
c1, k ∈ FT (5.9)

∑
(i,j)∈A3

yi,j,k ≤ ∑
(i,j)∈A1

xi,j,k , ∀i ∈ Vr , k ∈ FT (5.10)

2 ∗Qi,j,k ≤ xi,j,k + yi,j,k ≤ 2 ∗Qi,j,k + 1, ∀(i, j) ∈ A1, k ∈ FT (5.11)

xi,j,k , yi,j,k , Qi,j,k ∈ {0, 1}, ∀(i, j) ∈ A3, k ∈ FT (5.12)

Qi,j,k = 0, ∀(i, j) ∈ A4, k ∈ FT (5.13)

xi,j,k = 0, ∀(i, j) ∈ A4, k ∈ FT (5.14)

∑
(i,j)∈A3

xi,j,k + ∑
(i,j)∈A3

yi,j,k − ∑
(i,j)∈A3

Qi,j,k ==

∑
(j,vd(i))∈A3

xj,vd(i),k + ∑
(j,vd(i))∈A3

yj,vd(i),k − ∑
(j,vd(i))∈A3

Qj,vd(i),k , ∀i ∈ VP, k ∈ FT (5.15)

Constraints (5.2)-(5.14) are pure van/robot arc constraints. Constraints (5.2)-(5.6) en-
sure that every node is visited by a van/robot at most once, and the times of departures
are equal to the times of arrivals. Constraints (5.6) force the number of a van leaving
the depot to be equal to that of its robot leaving the depot, and equal to the number
of van/robot coming back to the depot. Constraints (5.7) ensure that every customer
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node is visited by vans or robots exactly once. Constraints (5.8)-(5.9) specify for cus-
tomer nodes and depot, that a van and its robot cannot visit the same node unless the
robot is on board the van. Constraints (5.10) ensure a robot cannot visit a parking node
unless its van visited this node, and vice versa. Constraints (5.11) let Qi,j,k be equal to
1 only if xi,j,k and yi,j,k are all equal to 1. Constraints (5.12) are the binary variable con-
straints. Constraints (5.13)-(5.14) force the arc variable to be equal to 0 where they are
not allowed to visit.

Constraints (5.15) are new constraints ensuring that the origin and destination nodes
of a request are visited by the same mothership vehicles (van and/or robot).

Time constraints

Van and robot can serve different customers in parallel. However, the case where a
van picks up/delivers a pair-customer and its robot delivers/picks up the correspond-
ing pair-customer in the parallel route cannot occur, even if the mothership visits the
pickup-pair-customer earlier than the corresponding delivery-pair-customer. Figure
5.3 is a simple example of such a forbidden case. Here we used time constraints to for-
bid cases where a van and its robot serve a couple of pair-customers in a parallel route.

FIGURE 5.3: Forbidden cases for serving a couple of pair-customers in par-
allel route

Wk
i + T + di,j/v1 −Wk

j ≤ M(1− xi,j,k), ∀{i ∈ V0
r |(i, j) ∈ A1}, k ∈ FT (5.16)

Wk
i + T + di,j/v2 −Wk

j ≤ M(1− yi,j,k + xi,j,k), ∀{i ∈ Vr |(i, j) ∈ A2}, k ∈ FT (5.17)

Wk
i + di,j/v1 + si −Wk

j ≤ M(1− xi,j,k), ∀{i ∈ Vc1|(i, j) ∈ A1}, k ∈ FT (5.18)

Wk
i + di,j/v2 + si −Wk

j ≤ M(1− yi,j,k + xi,j,k), ∀{i ∈ Vc|(i, j) ∈ A2}, k ∈ FT (5.19)

Wk
i + T −Wk

j ≤ M(1− yi,j,k), ∀{(i, j) ∈ A3}, k ∈ FT (5.20)

Wk
i ≤Wk

i+l − si − di,i+l/v1, ∀{i ∈ Vp}, k ∈ FT (5.21)
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ai ≤Wk
i ≤ bi , ∀i ∈ V

′′
c , k ∈ FT (5.22)

∑
(i,o)∈A2

(yi,o,k −Qi,o,k)− ∑
(i+l,o)∈A1

(xi+l,o,k −Qi+l,o,k)) == 0 >>

Wk
i <= Wk

j <= Wk
i+l , ∃j ∈ Vr , ∀i ∈ Vp, k ∈ FT (5.23)

∑
(i,o)∈A1

(xi,o,k −Qi,o,k)− ∑
(i+l,o)∈A2

(yi+l,o,k −Qi+l,o,k)) == 0 >>

Wk
i <= Wk

j <= Wk
i+l , ∃j ∈ Vr , ∀i ∈ Vp, k ∈ FT (5.24)

Constraints (5.16-5.22) are the time constraints. Constraints (5.16-5.17) are time flow
constraints for the van and robot leaving the parking node/depot. Constraints (5.16)
model the time flow of the van route. Constraints (5.17) are the time flow constraints
of the independent robot route. Constraint (5.18-5.19) represent time flow constraints
for the van and robot leaving the customer node. Constraints (5.18) represent the time
flow of the van route. Constraints (5.19) represent the time flow of the robot route. Con-
straints (5.20) model the time flow of the whole-robot route leaving the parking node.
Constraints (5.21) ensure precedence constraints for the visiting of pickup-customers
and delivery-customers. Constraints (5.22) enforce time window constraints for all
nodes.

Constraint (5.23-5.24) model time and arc constraints to forbid the cases in Figure
5.3. Constraints (5.23) ensure that when a pickup-pair-customer is in a robot route, and
its corresponding delivery-pair-customer is in an independent-van route, there exists
at least one parking node visited by van after the pickup-pair-customer but before the
delivery-pair-customer. Constraints (5.24) ensure that when a delivery-pair-customer
is in a robot route, and its corresponding pickup-pair-customer is in an independent-
van route, there exists at least one parking node visited by van after the pickup-pair-
customer but before the delivery-pair-customer.

Freight and energy constraints

Drexl, 2020 described capacity considerations on subroutes for a one to one pickup and
delivery truck and trailer routing problem. Drexl, 2020 pointed out that the following
two quantities are relevant: the minimal truck load at decoupling and the subroute load
balance at each position. Here we present a freight flow mathematical model for our
2E-VRHPD problem, which can also be used in truck and trailer routing problems.

If there are pair-customers in the subtour (van/robot route between two parking
nodes), the freight flow may differ from the case where there are no pair-customers
present. Figure 5.4 is a simple example for the freight flow in a robot route, with a
pickup-pair-customer and a delivery-pair-customer in the robot subroute. We assume
the capacity of the robot is 50. There is no couple of pair-customers in the subroute,
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and the robot should load 40 when leaving the parking node in case (i). Before serv-
ing delivery-pair-customer 2, the robot should first serve pickup-pair-customer 1, so
the freight flow in robot route exceeds the robot’s capacity. There is a couple of pair-
customers in the subroute in case (ii), and the robot could serve a pickup-pair-customer
1 and then serve a delivery-pair-customer 1, so the freight flow in the robot route will
not exceed the robot’s capacity of 50.

FIGURE 5.4: An example of freight flow in robot route

Freight constraints

∑
(i,j)∈A2

pi,j,k − ∑
(j,i)∈A2

pj,i,k = dj ∗ ∑
(i,j)∈A2

(yi,j,k −Qi,j,k), ∀j ∈ Vc, k ∈ FT (5.25)

∑
(i,j)∈A1

Pi,j,k − ∑
(j,i)∈A1

Pj,i,k = dj ∗ ∑
(i,j)∈A1

xi,j,k , ∀j ∈ Vc1, k ∈ FT (5.26)

∑
(i,j)∈A1

Pi,j,k − ∑
(j,i)∈A1

Pj,i,k = ∑
(i,j)∈A2

pi,j,k − ∑
(j,i)∈A2

pj,i,k , ∀j ∈ Vr , k ∈ FT (5.27)

∑
(i,j)∈A1

Pi,j,k + ∑
(i,j)∈A1

pi,j,k ≤ C1, ∀j ∈ Vr , k ∈ FT (5.28)

0 ≤ pi,j,k ≤ C2 ∗ (1−Qi,j,k), ∀(i, j) ∈ A1, k ∈ FT (5.29)

0 ≤ pi,j,k ≤ C2 ∗ (yi,j,k −Qi,j,k), ∀(i, j) ∈ A2, k ∈ FT (5.30)

0 ≤ Pi,j,k ≤ C1 ∗ (xi,j,k), ∀(i, j) ∈ A1, k ∈ FT (5.31)

Setpk
i+l == 0 >> Wk

i ≤Wk
j ≤Wk

i+l , ∀i ∈ Vp, k ∈ FT , ∃j ∈ VR (5.32)

Setpk
i+l == 1 >> Wk

i ≤Wk
j ≤Wk

i+l , ∀i ∈ Vp, k ∈ FT ,@j ∈ VR (5.33)

PPi,j,k == Pi,j,k , ∀i ∈ {Vr |(i, j) ∈ A1}, k ∈ FT (5.34)

ppi,j,k == pi,j,k , ∀i ∈ {Vr |(i, j) ∈ A2}, k ∈ FT (5.35)

0 ≤ PPi,j,k ≤ C1 ∗ xi,j,k , ∀(i, j) ∈ A1, k ∈ FT (5.36)

0 ≤ ppi,j,k ≤ C2 ∗ (1−Qi,j,k), ∀(i, j) ∈ A1, k ∈ FT (5.37)

0 ≤ ppi,j,k ≤ C2 ∗ (yi,j,k −Qi,j,k), ∀(i, j) ∈ A2, k ∈ FT (5.38)
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∑
(i,j)∈A2

ppi,j,k − ∑
(j,i)∈A2

ppj,i,k = 0, ∀j ∈ Vp ∪ {Vdp|dj ≤ 0}, k ∈ FT (5.39)

∑
(i,j)∈A2

ppi,j,k − ∑
(j,i)∈A2

ppj,i,k = dj ∗ ∑
(i,j)∈A2

(yi,j,k −Qi,j,k), ∀j ∈ {Vdp|dj > 0}, k ∈ FT (5.40)

Setpk
j == 1 >> ∑

(i,j)∈A2

ppi,j,k − ∑
(j,i)∈A2

ppj,i,k = 0, ∀j ∈ Vd, k ∈ FT (5.41)

Setpk
j == 0 >> ∑

(i,j)∈A2

ppi,j,k − ∑
(j,i)∈A2

ppj,i,k = dj ∗ ∑
(i,j)∈A2

(yi,j,k −Qi,j,k), ∀j ∈ Vd, k ∈ FT (5.42)

∑
(i,j)∈A1

PPi,j,k − ∑
(j,i)∈A1

PPj,i,k = 0, ∀j ∈ Vp ∪ {Vdp|dj ≤ 0} ∩Vc1, k ∈ FT (5.43)

∑
(i,j)∈A1

PPi,j,k − ∑
(j,i)∈A1

PPj,i,k = dj ∗ ∑
(i,j)∈A1

(xi,j,k), ∀j ∈ {Vdp|dj > 0} ∩Vc1, k ∈ FT (5.44)

Setpk
j == 1 >> ∑

(i,j)∈A1

PPi,j,k − ∑
(j,i)∈A1

PPj,i,k = 0, ∀j ∈ Vd ∩Vc1, k ∈ FT (5.45)

Setpk
j == 0 >> ∑

(i,j)∈A1

PPi,j,k − ∑
(j,i)∈A1

PPj,i,k = dj ∗ ∑
(i,j)∈A1

(xi,j,k), ∀j ∈ Vd ∩Vc1, k ∈ FT (5.46)

Energy constraints

ek
j + di,j ∗ h− ek

i ≤ M(1− yi,j,k + xi,j,k), ∀{i ∈ Vrc|(i, j) ∈ A2}, k ∈ FT (5.47)

0 ≤ ek
i ≤ G, ∀i ∈ Vrc, k ∈ FT (5.48)

Constraints (5.25-5.31) model freight flow constraints. Constraints (5.25) represent
the freight flow in the 2nd-level route (robot route). Constraints (5.26) represent the
freight flow in the 1st-level route (van route). Constraints (5.27) ensure the conservation
of cargo flow at parking nodes. Constraints (5.28) ensure that at the parking node the
load of the van and the robot is less than the capacity of the van. Constraints (5.29-5.31)
are the variable constraints.

Constraints (5.32-5.46) are new freight flow constraints for collaborative distribu-
tion of vehicles. Constraints (5.32-5.33) are used to mark whether there is a couple of
pair-customers in a subroute (independent van/robot route). Constraints (5.32) ensure
that if binary variable Setpk

i+l = 0 for a delivery-pair-customers in the subroute, then
there are no couples of pair-customers in the subroute. In other words, there exist at
least one parking nodes visited by van after the pickup-pair-customer but before the
corresponding delivery-pair-customer. Constraints (5.33) force that if binary variable
Setpk

i+l = 1 for a delivery-pair-customers in the subroute, then there is a couple of pair-
customers in the subroute. In other words, there is no parking node visited by van after
the pickup-pair-customer but before the corresponding delivery-pair-customer.

Constraints (5.34-5.38) represent the continuous variable constraints for the specific
freight flow of the robot route. Constraints (5.34-5.35) ensure that when the van/robot
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leaves the parking node, the specific freight flow is equal to the freight flow. Con-
straints (5.39) ensure that when the robot visits a pickup-customer (or pickup-pair-
customer), the specific freight flow keeps unchanged. Constraints (5.40) ensure that
when the robot visits a delivery-customer, the specific freight flow change is equal to
the weight of goods. Constraints (5.41) ensure that when the robot visits a delivery-
pair-customer, and its corresponding pickup-pair-customer is also in the subroute, the
specific freight flow remains unchanged. Constraints (5.42) ensure that when the robot
visits a delivery-pair-customer, and its corresponding pickup-pair-customer is not in
this subroute, the change in the specific freight flow is equal to the weight of goods.

Constraints (5.43-5.46) model the continuous variable constraints for the specific
freight flow of the van route. Details are not given.

Constraints (5.47-5.48) represent energy constraints for the robot.

Constraint linearization

Constraints (5.23-5.24) and constraints (5.32-5.33) can be linearized by using the binary
variable wk

i in parking nodes as follows. For example, constraints (5.49-5.51) can ex-
press the constraints (5.23).

Setpk
i+l == 0 >> Wk

i ≤Wk
j + M ∗ wk

j , ∀i ∈ Vp, j ∈ Vr , k ∈ FT (5.49)

Setpk
i+l == 0 >> Wk

j + M ∗ wk
j ≤Wk

i+l , ∀i ∈ Vp, j ∈ Vr , k ∈ FT (5.50)

∑
i∈Vr

wk
i ≤ Num− 1, ∀k ∈ FD (5.51)

Constraints (5.24), (5.32), and (5.33) can also be expressed using the same lineariza-
tion methods.

5.3 Adaptive Large Neighborhood Search

We propose an adaptive large neighborhood search (ALNS) algorithm to solve the 2E-
VRHPD problem. The main idea of ALNS is to iteratively apply a set of removal and
insertion operators on an initial solution until the best solution is found (Ropke and
Pisinger, 2006; Mourad et al., 2020).

Since our problem contains the pickup and delivery, two-echelon, van no-go cus-
tomer, and VRPD part, we draw on some operations used in (Ropke and Pisinger,
2006; Mühlbauer and Fontaine, 2020; Anderluh et al., 2019; Sacramento et al., 2019).
In our problem, we have parking stations for the vehicle, battery, and cargo transship-
ment, and the parking station is an independent station that can be visited multiple
times. The framework of our ALNS is the same as the framework in Chapter 4, which
contains simulated annealing (SA) acceptance criterion and weight-adjusting. We also
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need to consider the pickup and delivery in the vehicle collaborative distribution sce-
nario during destroy-repair operations. We focus mainly on forbidding the cases in
Figure 5.3 and addressing the capacity constraints described in Figure 5.4.

The feasibility of a given route is also important in the ALNS algorithm. We focus
mainly on the capacity feasibility in this section, since the time and energy feasibility of
a given route is straightforward.

5.3.1 Initial solution

We start with a simple heuristic to generate initial feasible solutions. At the beginning
of the heuristic, all customers are in an un-assigned customer list with random order.
We then repeat the following two main steps until all the customer nodes are assigned.

1. We randomly choose a customer node in the un-assigned customer list. If the cho-
sen node is a pickup/delivery-customer node and can only be served by robots,
we construct a route with van routes and robot routes. If the chosen node is a
pickup/delivery-customer node and can both be served by vans and robots, we
decide whether to construct a route with van routes and robot routes or to con-
struct a route with only van routes, according to a roulette-wheel mechanism. If
the chosen customer is a pickup/delivery-pair-customer, we first find its corre-
sponding pickup/delivery-pair-customer. We then construct a route based on the
pickup-pair-customer. Next, we insert the corresponding delivery-pair-customer
into the random-feasible position of the constructed route. If the delivery-pair-
customer can not be inserted into the constructed route, we try to build a new
robot route from the constructed route.

2. The second step is to randomly sort the order of the un-assigned customers list,
then choose a customer to insert into the constructed route’s random-feasible po-
sition until no customer node can be inserted. We note that for the pair-customer,
we need to insert customers according to the precedence constraint in order. For
example, in the process of a van launching and recycling its robot, the van serving
a pickup/delivery pair-customer and its robot serving a corresponding customers
is not allowed.

To this end, the feasibility of the returned solution, in terms of request time win-
dows, capacity, energy, reachability synchronization, couple and precedence constraint,
is assured. This initial feasible solution can then be improved by the ALNS operators
as it does not lead to optimization route. We describe the destroy and repair operators
used by the ALNS algorithm in the following subsections.
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5.3.2 Destroy operators

The destroy operation destroys a chosen 2E-VREC route by removing nodes or routes.
We define six destroy operators:

1. Random customer removal operator randomly removes customer nodes from a
2E-VRHPD route. If the removed customer is a pair-customer, we remove its
corresponding pair-customer node.

2. Greedy customer removal operator removes the customer that can yield the largest
cost reduction for a given route. If the removed customer is a pair-customer, we
remove its corresponding pair-customer node.

3. Pair-customer removal operator removes a couple of pair-customers (pickup-
pair-customer and its corresponding delivery-pair-customer) that can yield the
largest cost reduction for a given route.

4. Station-route removal operator randomly removes a parking station, and the
robot routes depart from and arrive at this station.

5. Random route destruction operator randomly selects a 2E-VRHPD route in the
solution to destroy.

6. Greedy route destruction operator selects a 2E-VRHPD route,with a minimum
number of customer nodes to destroy.

5.3.3 Repair operators

The route repair operator repairs the existing routes or constructs a new 2E-VRHPD
route if needed, using five repair operations. The repair operations do not allow infea-
sible solutions but allow worse solutions through simulated annealing evaluation and
calibration.

1. Route reconstruction operator ensures that we always get a viable solution. We
adopt the same method as used to get the initial solution in Section 5.3.1.

2. Random customer insertion operator randomly chooses a customer to insert into
a random-feasible position in a given route until all customers have been tried. If
the inserted customer is a pickup/delivery-pair-customer, we randomly insert its
corresponding delivery/pickup-pair-customer node after/before this customer.

3. Greedy customer insertion operator randomly chooses a customer to insert into
a position in the route with the least cost increases. If the inserted customer is a
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pickup/delivery-pair-customer, we greedy insert its corresponding delivery/pickup-
pair-customer node after/before this customer.

4. Random station-route insertion operator randomly chooses a station to insert
into a given route and then generates a robot route from this station with one cus-
tomer node. If the customer is a pickup/delivery-pair-customer, we randomly in-
sert its corresponding delivery/pickup-pair-customer node after/before this cus-
tomer.

5. Greedy station-route insertion operator chooses a station with least total travel
cost increases to insert into a given route and then generates a robot route from
this station with one customer node. If the customer is a pickup/delivery-pair-
customer, we greedy insert its corresponding delivery/pickup-pair-customer node
after/before this customer.

5.3.4 Capacity feasibility tests

We draw on the capacity feasibility checking approach of (Drexl, 2020), who studied
the one-to-one pickup-and-delivery problem with time windows and trailers. A 2E-
VRHPD route usually includes single van-robot routes and parallel routes (contains
the independent-van route and robot route). For a single van-robot route, the capacity
feasibility test is straightforward, so we focus on testing the capacity feasibility of the
parallel routes.

A parallel path is capacity-feasible if and only if the capacity in the parking nodes,
together with the independent-van route and robot route, are all feasible. At each
parking node for dropping off or picking up the robot, the van and robot’s total load
should be less than the van’s capacity. In a parallel path, capacity considerations on the
independent-van route and robot route, the following four amounts usually need to be
considered:

(i) How many goods a robot must carry before leaving the parking nodes. This
load includes the delivery-customers and the delivery-pair-customers whose corre-
sponding pickup-pair-customer is not in this robot route.

(ii) How many goods a robot can carry at most before leaving the parking nodes.
This load should be as large as possible provided the goods do not exceed the robot’s
capacity on each customer node during a robot route.

(iii) How many goods a van must carry before leaving the parking nodes. This
load includes the delivery-customers and the delivery-pair-customers whose corre-
sponding pickup-pair-customer is not in this independent-van route.
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(iv) How many goods a van can carry at most before leaving the parking nodes.
This load should be as large as possible provided the goods do not exceed the van’s
capacity on each customer node during an independent-van route.

One easy way to check the capacity feasibility of a parallel route is to ensure the
robot capacity in the robot route and let the robot carry as many goods as possible
subject to ensuring the van capacity feasibility for the independent-van-route. We then
check the capacity feasibility in the parking node used for picking up the robot.

Algorithm 6 is the algorithm to check the capacity of the parallel route. The in-
put is the van and robot’s total load (FreightAmount) at the parking node, the parallel
routes (RouteRoute and IndependentVanRoute), and the BasicData (Line 1). The Ba-
sicData includes the van customer nodes, the demand of customer node (Load[node]),
the capacity of van (C1) and robot (C2), and a large value (LargeValue). We note that
Dict[node] represents the corresponding pair-customer of the node. We first calculate
how many goods a robot must carry before leaving the parking nodes (Line 2 - Line
13). We then test the feasibility of the RobotRoute and calculate the ’Gap’ between the
number of goods the robot must take and the number of goods the robot can take at
most. (Line 14 - Line 29). We further calculate how many goods a van must carry before
leaving the parking nodes (Line 30 - Line 41). Next, we calculate how many FreightA-
mount the van must carry according to the Gap (Line 42 - Line 46), and we test whether
the independent-van route’s capacity is feasible (Line 47 - Line 54). Finally, we test
whether the van and robot’s total load in the parking node for picking up exceeds the
van’s capacity (Line 55 - Line 59).

5.4 Computational study

We implemented extensive computational studies to assess our solution method’s per-
formance and evaluated the influence of parking node density on solutions. First, we
explained how we generate test instances, and we described the different parameters
used in Section 5.4.1. Second, we compared our ALNS results with CPLEX results to
assess our algorithm’s performance and assessed the influence of parking node density
on the solution in Section 5.4.2.

The mathematical programming model was coded in DOCPLEX by calling CPLEX
12.8 to solve the MIP model. The ALNS was coded in python version 3.6.8. Both CPLEX
and python were executed on an Intel(R) Core(TM) 2.8GHz processor with 16 GB of
memory running under Windows 10. Python was run with single-threading.
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Algorithm 6 TestParallelRouteCapacity()
1: Input: FreightAmount, RobotRoute, IndenpedentVanRoute, BasicData
2: for node in RobotRoute do
3: RobotFreight = 0
4: if node is DeliveryCustomerNode then
5: RobotFreight += Load[node]
6: end if
7: if node is DeliveryPairCustomer and Dict[node] is not in RobotRoute then
8: RobotFreight += Load[node]
9: end if

10: end for
11: if RobotFreight > C2 then
12: return False
13: end if
14: FreightAmount -= RobotFreight
15: TempGap = LargeValue
16: for node in RobotRoute do
17: if node is CustomerNode then
18: RobotFreight -= Load[node]
19: if RobotFreight > C2 then
20: return False
21: else
22: Gap = C2 - RobotFreight
23: if Gap < TempGap then
24: TempGap = Gap
25: end if
26: end if
27: end if
28: end for
29: Gap = TempGap
30: for node in IndependentVanRoute do
31: VanFreight = 0
32: if node is DeliveryCustomerNode then
33: VanFreight += Load[node]
34: end if
35: if node is DeliveryPairCustomer and Dict[node] is not in IndependentVanRoute then
36: VanFreight += Load[node]
37: end if
38: end for
39: if FreightAmount < VanFreight then
40: return False
41: end if
42: if FreightAmount - Gap < VanFreight then
43: FreightAmount = VanFreight
44: else
45: FreightAmount -= Gap
46: end if
47: for node in IndependentVanRoute do
48: if node is CustomerNode then
49: FreightAmount = FreightAmount - Load[node]
50: if FreightAmount > C1 then
51: return False
52: end if
53: end if
54: end for
55: FreightAmount = FreightAmount + RobotFreight + Gap
56: if FreightAmount > C1 then
57: return False
58: end if
59: return True, FreightAmount
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5.4.1 Instance generation and parameters

For testing the proposed solution approach, we used the instances of Dellaert et al., 2018
and Yu et al., 2020 as a basis. The specific instance generation approach is described in
those two articles.

We set the speed of the van at 2, and the speed of the robot at 1. The capacity of
a robot was 50, and the capacity of a van was 200. When the robot was on board the
van, the van and robot’s total capacity was 200. The battery capacity of a robot was
100. The robot’s energy consumption rate was 1 unit per distance. The depot time
window was [0,500]. Vans could access two-thirds of the total customer nodes in each
instance. If the calculated number of van customer nodes was fractional, we rounded
up. The first two-thirds of customers in the instance were the van customers. We chose
2 ∗math.ceil(n/8) customers as the pair-customers, in which n was the total number of
customers. When choosing a couple of pair-customers, we ensured that a van and its
robot could feasibly visit a pair of pickup-delivery-pair-customers.

The set of parameters used in the computational study along with their descriptions
and values are presented in Table C.1.

5.4.2 ALNS experiments

We first compared the ALNS results with the CPLEX results in small-scale instances
to see the proposed ALNS algorithm’s overall performance. Next, we analyzed the
influence of parking node density on the solution and then obtained a suitable number
of parking nodes for the model-comparison below.

Comparison of CPLEX and ALNS

The VRPD model is hard to solve for general-purpose MIP solvers (Wang and Sheu,
2019). In our problem, we replicated the parking nodes for multiple visiting. Dummy
nodes increase the number of nodes in the model, making it more difficult to solve and
reduce the problem size we can address.

We tested 20 instances with five customer nodes and three parking nodes using
CPLEX 12.8, and used the dummy node iterates-growth steps as used by Chapter 4:
We iteratively solved our model by CPLEX, gradually increasing the number of dummy
nodes. The increase in the number of dummy nodes stops when no improvement in
the solution cost is found. However, if the solution is still worse than the ALNS solu-
tion, we continue to increase the number of dummy nodes until the CPLEX solution is
better than or as good as the ALNS solution. The iterative process will also stop if the
procedure runs out of solving time or out of memory.
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For each instance, CPLEX 12.8 runs with default settings until it finds an optimal
solution, until it reaches the predetermined maximum computation time (10800 s), or
until the program runs out of memory. The computational results for all instances are
presented in Table 5.1, in which CplexK represents the number of times a vehicle can
visit a parking node, and UB is the upper bounds of CPLEX solutions. E1 is the CPLEX
gap between CPLEX upper bound (baseline) and CPLEX lower bound, and TIME is
the CPLEX solving time. BC and AC are the best and average solutions for ALNS in 10
tests. SDC and AT are the standard deviation and solving time of ALNS in 10 tests.

TABLE 5.1: CPLEX and ALNS results comparison

Cplex K=2 Cplex K=3 Cplex K=4 ALNS
UB E1(%) TIME(s) UB E1(%) TIME(s) UB E1(%) TIME(s) BC AC SDC AT(s)

CA1 262.0 0.0 179.6 262.0 0.0 9801.0 253.3 13.1 10800.0 253.3 258.6 4.5 97.1
CA2 365.8 0.0 784.3 365.8 47.8 10800.0 / / / 365.8 365.8 0.0 122.9
CA3 333.8 0.0 5933.6 333.8 53.1 10800.0 / / / 333.8 353.6 7.0 206.1
CA4 261.2 0.0 23.2 261.2 0.0 3379.2 261.2 43.4 10800.0 261.2 261.2 0.0 94.1
CA5 171.6 0.0 5.1 167.7 0.0 25.5 167.7 0.0 25.4 167.7 169.7 2.0 83.8
CB1 249.6 0.0 93.6 249.6 0.0 8196.2 249.6 21.3 10800.0 249.6 249.6 0.0 107.8
CB2 393.0 0.0 226.1 403.4 59.0 10800.0 / / / 366.9 366.9 0.0 128.9
CB3 346.2 0.0 6454.5 346.2 49.7 10800.0 / / / 346.2 356.7 7.3 133.4
CB4 261.2 0.0 13.3 261.2 0.0 57.0 261.2 0.0 446.7 261.2 261.2 0.0 79.7
CB5 151.0 0.0 6.9 151.0 0.0 136.7 151.0 45.8 10800.0 151.0 151.0 0.0 85.5
CC1 183.8 0.0 11.2 183.8 0.0 39.4 183.8 0.0 852.8 183.8 183.8 0.0 67.9
CC2 289.5 0.0 241.3 289.5 31.3 10800.0 / / / 289.5 289.5 0.0 87.0
CC3 297.7 0.0 1012.3 297.7 41.2 10800.0 / / / 297.7 309.6 1.1 89.0
CC4 333.0 0.0 839.6 337.9 41.1 10800.0 / / / 277.6 277.6 0.0 88.1
CC5 140.7 0.0 4.6 138.3 0.0 35.1 138.3 0.0 80.7 138.3 131.2 0.0 57.9
CD1 276.4 0.0 30.2 276.4 0.0 270.4 276.4 0.0 464.6 276.4 276.4 0.0 88.7
CD2 353.4 0.0 32.5 353.4 0.0 2044.2 353.5 22.1 10800.0 353.5 364.6 3.9 111.8
CD3 271.3 0.0 19.5 271.3 0.0 391.6 271.3 0.0 1623.3 271.3 277.7 5.3 98.2
CD4 253.9 0.0 19.7 253.9 0.0 10356.0 253.9 38.8 10800.0 231.9 238.5 6.6 94.9
CD5 151.0 0.0 6.6 151.0 0.0 104.4 / / / 151.0 151.0 0.0 68.4

AVER 267.3 0.0 796.9 / / / / / / 261.4 264.7 1.9 99.6

Table 5.1 shows that our ALNS can always reach the best solutions in very small
instances. For case CB2, CC4, CD4, ALNS performed better than the CPLEX solver,
which ran out of time in K = 3 or K = 4. We note in ALNS solution of case CB2, CC4,
and CD4, K = 3, K = 4, and K = 4 dummy parking nodes were replicated, respectively.

Assessment of the influence of parking node density on the solution

As the number of parking points in the city is likely to affect the delivery efficiency of
the 2E-VRHPD system, we analyzed the impact of parking node density (the number
of parking nodes) changes on the results.

We chose 20 instances with one depot and 15 customers to conduct the sensitivity
analysis experiments. The random distribution scenario was adopted for the parking
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node distribution. To quantify the impact of parking node density, we gradually in-
creased the number of parking nodes from 10, 20, up to 50.

Table 5.2 reports the influence of parking node density on the solutions. Row 1
shows the number of parking nodes. Row 2 shows the average best result for the in-
stances. Row 3 reports an average percentage gap between the baseline and experi-
mental group solution.

TABLE 5.2: Influence of parking node density on the solution

Number of parking nodes 10 20 30 40 50
Aver Best Objective 530.8 520.5 507.5 504.5 504.3

Gap between baseline baseline 1.9% 4.4% 5.0% 5.0%

Table 5.2 shows that the cost function of the system presents a rising trend with
the increase in the number of parking nodes. Increasing the number of parking nodes
from 10 to 30 had a strong effect on reducing the objective function. Increasing the
number of parking nodes from 30 to 50 had little impact on reducing the objective
function. Therefore, planning an appropriate number of stops can bring the 2E-VRHPD
distribution system’s efficiency to a high level. At the same time, there is no need to
occupy too many public resources.

5.5 Case study

In this section, we first built realistic scenarios and instances for the case study. We
then conducted a sensitivity analysis experiment on the robot’s travel cost rate and
maximum travel distances and assessed the effect of the restricted area (that are van
can not access) on the 2E-VRHPD model. Finally, we compared the 2E-VRHPD model
with the other two classical models.

5.5.1 Scenario construction

We examined our distribution concept, its model, and the proposed solution algorithm
on realistic scenarios.

Figure 5.5 is an example of a realistic scenario (depot and distribution range) for
Xi’an city used in our case study. The distribution range (colored in blue) is the south-
west corner of Xi’an (China). The depot we chose is marked in red. It is the Xi’an
Intelligent Logistics depot of JD.com.

The van no-go areas, parking nodes, customer nodes, and satellites were set as fol-
lows.

Van restricted areas: Van no-go areas were selected within the city walls of Xi ’an
and seven universities in the southwest corner of Xi ’an.
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FIGURE 5.5: Example of the distribution range and depot in Xi’an city

Supplier locations: For suppliers, here we only considered four supermarkets,
namely Wal-mart, RT-Mart, Yonghui Superstores, and Renrenle Supermarket. The Wal-
mart is in the van restricted areas.

Parking node: Some parking nodes were selected near the campuses and city walls,
where the van could park. We also randomly selected some parking nodes in the dis-
tribution area.

Customer nodes: We randomly generated some customer nodes on the distribution
area and ensured that some customers were within van no-go areas.

Satellites: The satellites wer chosen as the JD.com Xi’an GaoXin satellite, YouYi
satellite, and ZaoYuan satellite, responsible for serving our selected distribution range.
The satellite was only used in model comparisons part.

Figure 5.6 is a detailed example of the scenarios of Xi’an city used in our case study.
The van no-go zone is filled in the red area on the map. The blue nodes represent the
parking nodes we chose, the black dots represent the suppliers, the gray-green dots
represent customer nodes, and the orange dots represent satellites.

The basic parameters used in the case study were set as follows.
According to Yu et al., 2020, simply improving the robot’s speed can improve the

solution, but improvements remain limited in the complex constraints model. We set
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FIGURE 5.6: Example of van no-go zone, parking nodes, suppliers, cus-
tomer nodes, and satellites in Xi’an city
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the robot’s speed equal to 5km/h, and the van’s speed was 25km/h, suggested by (Yu
et al., 2020).

We reset the robot’s maximum travel distances equal to 10km. We used artificial
customer demands selected in [-20,-10,10,20], and vehicle capacities of 50 for robot and
200 for the van. We used a planning horizon of 8 hours. Accordingly, the depot time
windows were set to [0,8 h]. We randomly selected typical values for the customer time
windows from [30 min, 8 h], and the service times were 10 min. The associated travel
cost rate for a van was 3/km, and the robot’s associated travel cost rate was 0.3/km
since the robot is smaller than the van and electrically powered.

We built ten instances, and each instance was run ten times in the following 2E-
VRHPD model analysis experiments and model comparison experiments. The instances
were generated as follows. For ten instances, the locations of the depot, satellites, sup-
pliers, and parking nodes were the same. We set one depot, three satellites, four sup-
plier nodes, and 30 parking nodes for each instance. For customer nodes, we randomly
generated 100 customer nodes in the distribution range and ensured that 1/3 of the
customer nodes were in the van no-go zone. These 100 customer nodes constituted the
customer node pool. We then randomly chose 15 customer nodes from the customer
node pool for each instance. We ensured there were customers in the van no-go zone for
each instance. We note that some pickup-pair-customers were chosen from suppliers.

5.5.2 2E-VRHPD model analysis experiments

In 2E-VRHPD model analysis experiments, we analyzed the impact of the travel cost
rate (TCR) for robots, the maximum travel distance (MTD) of the robot, and the travel
cost rate and the maximum travel distance combination (TCR-MTD) of the robot on the
mode-computed outputs. We also compared the effects of no-go zones on the solution:
we assumed the van could also access the no-go areas in the 2E-VRHPD model, called
the 2E-VRHPD-NR model, and compared it with the 2E-VRHPD model, to see how the
no-go areas would affect the output of the system.

The experiments were conducted as follows.
Experiment 1: We gradually increased the travel cost rate for the robot from 0.3/km,

0.6/km,.., 3.0/km in 2E-VRHPD and 2E-VRHPD-NR models.
Experiment 2: We gradually increased the maximum travel distance of the robot

from 10km, 15km, 20km, ..., to 55km in the 2E-VRHPD and 2E-VRHPD-NR models.
Experiment 3: We gradually increased the travel cost rate for the robot and the

maximum travel distance of the robot simultaneously from (0.3/k, 10km), (0.6/km,
15km),...,(3.0/km,55km) in the 2E-VRHPD and 2E-VRHPD-NR models.
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Table 5.3 reports the results of sensitivity analysis on different of TCR, MTD, and
TCR-MTD combinations of robots. The NR represent the 2E-VRHPD-NR model as
shorthand in the table. The e1, e2, and e3 represent the gap between the cost of the 2E-
VRHPD model (baseline) and the 2E-VRHPD-NR model in TCR, MTD, and TCR-MTD
experiments, respectively.

TABLE 5.3: Impact of TCR, MTD, TCR-MTD and no-go zone constraint

TCR MTD TCR-MTD
TCR 2E-VRHPD NR e1 MTD 2E-VRHPD NR e2 TCR-MTD 2E-VRHPD NR e3
0.3 159.88 155.85 2.52 10 159.88 155.85 2.52 0.3,10 159.88 155.85 2.52
0.6 165.88 160.84 3.03 15 158.70 152.77 3.74 0.6,15 162.43 158.05 2.70
0.9 170.23 164.00 3.66 20 157.89 150.79 4.50 0.9,20 167.76 160.49 4.34
1.2 173.60 167.74 3.37 25 157.91 150.02 5.00 1.2,25 172.30 165.54 3.93
1.5 176.49 169.87 3.76 30 157.87 149.84 5.09 1.5,30 174.32 168.28 3.47
1.8 179.97 171.97 4.44 35 157.87 149.37 5.38 1.8,35 178.88 171.58 4.08
2.1 181.87 173.93 4.36 40 156.76 149.51 4.63 2.1,40 181.67 174.22 4.10
2.4 184.84 175.09 5.28 45 157.66 149.41 5.23 2.4,45 184.36 175.31 4.91
2.7 187.45 175.93 6.15 50 157.28 149.53 4.93 2.7,50 186.36 175.24 5.97
3.0 189.33 176.36 6.85 55 157.29 149.52 4.94 3.0,55 188.46 176.42 6.39

For the sensitivity analysis on TCR (Columns 1-4 in Table 5.3), we have found that
the no-go area constraint of the van would probably reduce the efficiency of the 2E-
VRHPD distribution system by 2-7%. With the increase in TCR, e1 tends to increase.
Besides, with the rise in TCR, TCR’s impact on the distribution system is gradually
decreasing.

For the sensitivity analysis on MTD (Columns 5-8 in Table 5.3), increasing MTD
could increase the system’s efficiency, but the increase was limited in the 2E-VRHPD
model.

For the sensitivity analysis on TCR-MTD (Column 9-12 in Table 5.3), we found that
no-go areas of the van would probably reduce the efficiency of the distribution system
by 2-7%.

We knew that the van’s no-go restriction had no more than a 7% effect on the system
from the above experiments. Increasing the driving distance of robots can improve
system efficiency, but the overall improvement is tiny. The unit mileage of a robot has
a strong influence on the system cost.

5.5.3 Comparison 2E-VRHPD model with classical models

We compared the 2E-VRHPD model with a parallel van and robot scheduling prob-
lem with hybrid pickup and delivery operations (PVRSP-HPD) and model with a two-
echelon vehicle routing problem with hybrid pickup and delivery operations (2E-VRP-
HPD). We also allowed the van to visit all the customers in the PVRSP-HPD model,
used different types of robots, and added the fixed cost of using van, robot, and depot
in the 2E-VRP-HPD models to see the influence.
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Comparison with PVRSP-HPD model
The PVRSP-HPD model is similar to the parallel drone scheduling TSP (PDSTSP)

introduced by (Murray and Chu, 2015), but has hybrid pickup and delivery operations.
In the PVRSP-HPD model-setting, the van and robot went alone from the depot to serve
customers, and then returned to the depot. Van/robot multiple visits to the depot were
not allowed. The other constraints of van, robot, and customers were the same as those
in the 2E-VRHPD model.

Through the pre-analysis of instances we found all ten instances were unworkable
in the PVRSP-HPD model, because almost no robot customers or pair customers with
robot customers could be successfully served by robots (beyond the maximum travel
distance of robots).

We tried to gradually increase the robot’s maximum travel distance from 10 km to
100 km (far enough); however, instances were also unworkable because robot deliv-
ery violated some customer time windows. It is obviously not feasible to unilaterally
increase the robot’s speed to a value high enough to fit the customer’s time window.

In the next experiments, we relaxed the PVRSP-HPD model’s constraints to allow
vans to access the no-go areas (PVRSP-HPD-NR model). Hence all instances would
become feasible.

However, the distribution system efficiency may be affected due to the high cost
per unit van mileage. The experimental results show the average best cost for all the
instances was 184.47.

We found that even though we increased the travel cost rate for the robot in the
2E-VRHPD model to 1.5/km (half the consumption of vans), the cost was smaller than
that for the PVRSP-HPD-NR model (176.49 compared to 184.47). Hence our model is
better than the PVRSP-HPD model and to some extent better than the PVRSP-HPD-NR
model.

Comparison with 2E-VRP-HPD model
The 2E-VRP-HPD model is similar to the two-echelon vehicle routing problem (2E-

VRP) introduced by (Perboli et al., 2011), but has hybrid pickup and delivery opera-
tions. In the 2E-VRP-HPD model, vans transport goods from the depot to the satellites
and then transport recycled goods from satellites to the depot. Robots travel from satel-
lites to serve customers and then back to satellites. We assumed that there were enough
robots in the satellites. The other constraints of van, robot, and customers are the same
as those in the 2E-VRHPD model.

Through the pre-analysis of instances, we found that there might be instances that
are unworkable in the 2EVRP-HPD model setting. Robots still could not complete the
delivery task because some customers or pair-customers lay beyond the robot’s maxi-
mum travel ranges (10 km).
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We then provided different types of robot to see how this would work in the 2E-
VRP-HPD model. The types of robot are shown in Table 5.4. Row 1 shows five types of
robots. Row 2 represents the maximum travel distances of each kind of robot, and Row
3 gives the travel cost rate of each type of robot.

TABLE 5.4: Types of robot

Robot L1 Robot L2 Robot L3 Robot L4 Robot L5
Maximum travel distances 10km 15km 20km 25km 30km

Travel cost rate 0.3/km 0.6/km 0.9/km 1.2/km 1.5/km

In our computational study, we used the type of robot that would just do the hybrid
pickup and delivery task, and then looked at the system’s efficiency. In other words,
we assumed there were different types of robots in the satellites, and multiple types of
robots could be mixed-used in an experiment.

Experimental results show the average best cost of the 2E-VRP-HPD model with
different types of robots was 139.43, better than the average best cost of the 2E-VRHPD
model, which cost was 159.88.

We suspected that the travel cost rate might affect the comparison results of the
model. We therefore conducted a sensitivity analysis of the robot’s different TCR from
0.3, 0.6,..., 3.0 in the 2E-VRP-HPD model like in Section 5.5.2. We found that when TCR
was equal to (or larger than) 2.1, the average best cost of the 2E-VRP-HPD model was
higher than that of the 2E-VRHPD model: 185.37 for the 2E-VRP-HPD model compared
to 181.87 (see Table 5.3) for the 2E-VRHPD model.

Hence, when the objective function is total energy consumption, the model output
is closely related to the robot’s travel cost rate.

In the above 2E-VRHPD and 2E-VRP-HPD model comparison, we did not consider
the fixed cost of robot and van, or the satellites. We therefore added the fixed cost of
using van, robot, and satellite into the objective of the two models to see how the fixed
cost influenced the model-output.

We set at 10 the cost of using one satellite once, at 10 the cost of using one robot once,
and at 20 the cost of using one van once. The experimental results show that the average
best cost of the 2E-VRHPD model was equal to 201.88, and the average best cost of 2E-
VRP-HPD was equal to 205.43. In this case, the 2E-VRHPD model is more competitive.
Hence the price of corporate logistics infrastructure will also strongly affect the output
of 2E-VRHPD and 2E-VRP-HPD models.

We therefore advocate using the 2E-VRHPD model for distribution in appropriate
scenarios to improve the system’s efficiency.
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5.6 Conclusion and future research directions

Recent demonstrations by JD.com and Starship Technologies (among others) have shown
the potential of robots for small parcel pickup and delivery services. In addition, the
service demand of logistics companies has begun to diversify, requiring the combina-
tion of multiple modes of pickup and delivery operations in one trip. Current research
also shows that combining pickup and delivery operations in one trip can improve the
distribution system’s overall efficiency.

In this chapter, a van-based robot logistic distribution system that combines hybrid
pickup and delivery operations was studied. Larger vans carry small robots along
the van route. The robots travel along with the robot open route. The van and robot
can serve customers directly, but some constrained customers can be visited only by
robots. The van stops at parking nodes to drop off and/or pick up its robot, replenish
its robot, and swap its robot’s battery if needed. Five detailed pickup and delivery cases
in the 2E-VRHPD model were introduced. A van and/or robot can load goods from a
depot and deliver them to a customer, or a van and/or robot can pick up goods from a
customer and take them to another customer, or a van and/or robot can pick up goods
from a customer and take them to a depot.

The associated optimization problem was formulated as a two-echelon heteroge-
neous vehicle routing problem with hybrid pickup and delivery, time windows, and
vehicle collaborations. An MIP formulation including arc, time, freight, and energy
parts, along with a simple ALNS-based heuristic approach solving large instances that
have been introduced. The capacity feasibility test approaches are proposed for a given
2E-VRHPD route. An extensive computational study to evaluate the performance of
the proposed ALNS approaches is presented. How the parking node density influences
the output solution was studied. We constructed a case study based on realistic scenar-
ios. We conducted a sensitivity analysis on the robot’s travel cost rate and maximum
travel distances and compared the van no-go area’s effect on the 2E-VRHPD model.
The results show that no-go restrictions for a van may significantly impact 2E-VRHPD
system efficiency, and that the maximum travel distance of robots has a limited impact
on 2E-VRHPD system efficiency if the robot’s maximum travel distances exceed 10 km.
We also compared the 2E-VRHPD model with two classical models. Results show the
2E-VRHPD model is competitive in appropriate scenarios. We therefore advocate con-
sidering the 2E-VRHPD model for distribution in appropriate scenarios to improve the
system’s efficiency.
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Chapter 6

Conclusion and future research

6.1 Key findings and contributions

This dissertation aims at developing optimization models and methods for tour plan-
ning in smart urban logistics. Considering the recent booming research and develop-
ment of the robot distribution system, we focus on van-based robot routing for urban
distribution.

We start with three research questions proposed in Chapter 1 to summarize this
thesis.

Research question 1: How to overcome the shortages of robot delivery?
We design a van-based robot delivery model (2E-VRRP) to overcome three signif-

icant drawbacks of robot delivery: limited travel distance, limited driving speed, and
limited freight capacity. The van-based robot delivery system works as follows.

In a 2E-VRRP model, the van carries the robots on the 1st-level route and drops off
and picks them up in the parking nodes, while the robot handles customer services on
the 2nd-level route.

This 2E-VRRP model overcomes the drawbacks of robot delivery by van transports,
replenishes, and recharges its robot, realizing the collaborative delivery of vans and
robots, and therefore helps improve system efficiency.

Note our 2E-VRRP model contains the time window constraint, capacity constraint,
and maximum travel time constraint. In addition, our model allows each van to carry
multiple robots, and each robot can visit multiple customers during a trip.

Research question 2: How to make the robot charging more efficiently?
Charging robots takes time. While the time window constraint is vital in the urban

distribution system, time is thus becoming a valuable resource. How to make more
efficient use of time to recharge is the key of charging problem.

Based on the van-based robot delivery model, we considers van and robot are all
electric-driven, and then use reverse charging and en-route charging technologies to
achieve more efficient charging.
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We further studies a 2E-VREC model: the vans carry small robots along the 1st-level
route, and the robot itself travels along the 2nd-level open route. The van stops at parking
nodes for dropping off and/or picking up its robot, and for recharging and replenishing
its robot if needed. The van can charge its robot (if it is onboard the van) during its trip.
The van can be recharged at the parking nodes.

The 2E-VREC model makes full use of the time during which vans are carrying
robots on the road to charge them, shortening the extra waiting time spent by robots at
parking stations for recharging, thereby improving the effectiveness of the distribution
system—carried out the transmission of electric power.

Research question 3: How to integrate multiple modes of pickup and delivery op-
eration to make the logistics distribution system more efficient?

Based on Chapter 3 and Chapter 4, using only vans to deliver goods or using only
robots to deliver goods has their shortcomings. For example, customers may be lo-
cated on narrow streets where the entry of vans is restricted. Besides, the increasing
diversification of distribution demands in modern cities has brought challenges to lo-
gistics companies. Research shows that integrating multiple distribution modes into a
distribution system can improve the efficiency of enterprises.

We thus design a van-based robot hybrid pickup and delivery model to integrate
various scenarios of pickup and delivery into the model. Various pickup and delivery
operations can be completed with the van and robot’s coordination, instead of passing
through a depot for transshipment, the system’s efficiency could be improved. Also, as
pair-customers’ goods can be transferred between a van and its robot, the flexibility of
goods delivery is greatly enhanced.

Next, we introduce the contribution and key finding of this thesis.
Contribution of the thesis
Problem level: We consider a new two-echelon van-based robot urban delivery

model with time windows, in which the 2nd-level route is an open route (Chapter 3 2E-
VRRP problem). We then extend the model to the electric level and allow en-route op-
erations by introducing reverse charging and en-route charging technologies into this
model (Chapter 4 2E-VREC problem). Furthermore, we extend the van-based robot
model to a hybrid pickup and delivery level to adapt to the latest business modes
(Chapter 5 2E-VRHPD problem).

Model and theoretical level: We first introduce the fundamental problem and pro-
pose the mathematical formulations for 2E-VRRP, 2E-VREC, and 2E-VRHPD problems.
For the 2E-VRRP model, a column generation procedure is presented for trying to get a
better lower bound for the MIP model. For the 2E-VREC model, we further detailedly
introduce time-distance-energy trade-off in the problem. For the 2E-VRHPD model,
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we further detailedly introduce five pickup and delivery modes and the van-robot load
trade-off in the problem.

Algorithm level: We presented heuristic to solve the 2E-VRRP, 2E-VREC, and 2E-
VRHPD problems. For the 2E-VRRP problems, We propose a construction heuristic for
the newly introduced problem, which is useful for quickly generating feasible initial
solutions and providing a first upper bound. We propose a multi-start hybrid meta-
heuristic approach based on iterative local search and backtracking. The backtracking
procedure is led to connect the chosen robot routes to the van route accurately. For
the 2E-VREC problem, we provide a high-accuracy heuristic for single route feasibility
checking of the 2E-VREC problem with time-distance-energy trade-off. We propose an
ALNS algorithm for the newly presented problem. For the 2E-VRHPD problem, we
propose an ALNS algorithm for the problem and a capacity feasibility tests approach
for a single route.

Experiment level: For the 2E-VRRP problem, we analyze how van/robot speed
combinations influence the objective value, which can reference real-world implemen-
tation of such a service. For the 2E-VRRC problem, we conduct a sensitivity analy-
sis for vehicle charging modes, battery capacities, and charging rate. And for the 2E-
VRHPD model, we conduct a sensitivity analysis on the robot’s travel cost rate and
maximum travel distances and compare the van no-go area’s effect on the 2E-VRHPD
model. Moreover, we also compared the 2E-VRHPD model with two classical models.

Key finding: (1) After a sensitivity analysis for the van/robot speed combinations,
we find increasing the robot’s speed rather than the van’s speed can reduce the cost
in real-world applications. However, simply improving the speed of the robot leads
to an only limited reduction in cost. Therefore, we recommend keeping robot speeds
rather low because of a more pedestrian-friendly environment in practical implemen-
tations. (2) We find that using en-route-charge technologies, with appropriate increases
in battery capacity and charging rate, has beneficial effects on cost through a sensi-
tivity analysis for vehicle charging modes, battery capacities, and charging rate. We
thus recommend that logistics companies use en-route-charge technology if the new
technology’s fixed cost is controllable. (3) After comparing the 2E-VRHPD model with
two classical models, and results show the 2E-VRHPD model is very competitive in
real scenes. We thus recommend that companies consider the 2E-VRHPD model for
distribution in appropriate scenarios to improve the system’s efficiency.

6.2 Challenges and further research directions

In this thesis, we mainly studied the van-based robot model for urban distribution with
time window constraints. We focused on evaluating the potential benefits of van-based
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robot systems from the operational point of view. We thus believe that this thesis has
opened the door for many exciting research topics.

Problem level. (1) Urban distribution system includes drones, robots, and vans that
could be explored. (2) Shared robot delivery systems could be considered. (3) The
logistics facility layout for the smart urban distribution system can be studied.

Model level. (1) More concise and efficient mathematical models for the 2E-VREC
and 2E-VRHPD problems are worth exploring. (2) Extending the 2E-VREC and 2E-
VRHPD models by allowing a van carries multiple robots is an exciting research direc-
tion. (3) The other objective of the 2E-VREC model can be studied. For example, if the
2E-VREC model’s objective is to minimize travel duration, and there is no time win-
dow on customers, the en-route-charge mode may significantly reduce travel duration.
Besides, nonlinear objective functions can also be explored.

Theoretical level. (1) A more in-depth study on a new time-distance-energy trade-
off problem in Chapter 4, can be conducted. (2) The van-robot load trade-off problem
in Chapter 5 can continue to be studied exclusively.

Algorithm level. (1) Future research could design a fast and accurate algorithm for
checking the feasibility of a given route in 2E-VRRP, 2E-VREC, and 2E-VRHPD models.
(2) The mathematics-heuristic method is also a significant research direction. (3) The
branch and pricing method is promising. How to quickly solve the sub-problems of
a single path in the 2E-VRHPD model is a critical research field. (4) For particularly
large-scale real-time requirement problem, algorithms based on machine learning can
be studied.
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Appendix A

Appendix for Chapter 3

A.1 Column generation procedure

We design a basic column generation procedure, based on the book of column genera-
tion (Desaulniers et al., 2006), to solve the original MIP model. The objective function
in Chapter 3 first minimizes the number of vans used, then keep the number of used
vans unchanged, to minimize the total travel cost. Since the CPLEX can well solve the
primary objective, we only use the column generation to calculate the secondary objec-
tive lower bound. In the column generation procedure, we first keep the fixed number
of vans (primary objective got from CPLEX) unchanged and then adopt the column
generation to get a lower bound of the secondary objective.

Appendix A.1.1 and A.1.2 describe the master problem and pricing sub-problem
for the column generation procedure of the original MIP model. A column generation
lower bound computational study for small-sized instances is presented in Appendix
A.1.3.

A.1.1 Master problem

The master problem is simply stated as a set partitioning problem.
Let R be the set of all feasible tour-trees. We define a tour-tree is feasible if the

capacity, time window, travel distance, and synchronization constraints are respected.
For each tour-tree r ∈ R, we define cr as the total cost for tour-tree r. Furthermore,
let αrz be a binary coefficient equal to 1 if the customer z is visited by the tour-tree r
(0 otherwise). Let yr denote a binary variable that takes the value 1 if and only if the
tour-tree r ∈ R is included in the solution (0 otherwise). Let K f ix be the fixed number
of van we used.

Based on these definitions, the van-robot problem formulation can be written as the
following set partitioning problem:
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Objective

min(∑
r∈R

cryr) (A.1)

Subject to

∑
r∈R

αrzyr = 1, ∀z ∈ Z (A.2)

yr ∈ {0, 1}, ∀r ∈ R (A.3)

∑
r∈R

yr = K f ix (A.4)

The objective function (A.1) minimizes the total cost of the used tour-trees. Con-
straints (A.2) ensure each customer is served by one tour-tree. Constraints (A.3) are
the domain constraint for the decision variables. Note that for implementation issues,
constraints (A.3) can be replaced by 0 ≤ yr ≤ 1. Constraints (A.4) ensure the number
of the vehicle used is fixed.

A.1.2 Pricing sub-problem

We use MIP model to solve the pricing sub-problem.
Let γz, z ∈ Z be the dual variable associated with constraints (A.2). And β be the

dual variable of constraint (A.4). The reduced cost cr = cr − ∑r∈R αrzγz − β. Expla-
nation of other symbol definitions and inequalities are the same as the explanation in
our van-robot model expect without symbol k. Which means we consider one van, not
multi-vans. For the sake of simplicity, we will not explain more.

The pricing sub-problem, aiming to generate columns, with the most negative re-
duced cost, is formulated as follows:

Objective

min( ∑
(i,j)∈A1

ci,j ∗ xi,j + ∑
(i,j)∈A2

(ci,j − γi)yl
i,j − β) (A.5)
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Subject to

∑
(i,j)∈A1

xi,j ≤ 1, ∀j ∈ V
′
r (A.6)

∑
i∈Vp

xi,0′ = ∑
j∈Vd

x0,j = 1 (A.7)

∑
(i,j)∈A1

xi,j − ∑
(j,i)∈A1

xj,i = 0, ∀j ∈ Vr (A.8)

∑
l∈FD

∑
i∈Vdc

yl
i,j <= 1, ∀j ∈ Vc (A.9)

∑
i∈Vdc

yl
i,j − ∑

i∈Vpc

yl
j,i = 0, ∀j ∈ Vc, l ∈ FD (A.10)

∑
i∈Vp

Qi,0′ = ∑
j∈Vd

Q0,j, (A.11)

∑
j∈Vd

Q0,j = ∑
l∈FD

∑
i∈Vc

∑
j∈Vd

yl
j,i, (A.12)

∑
i∈V0

r

Qi,j − ∑
i∈Vr

Qj,i = ∑
l∈FD

∑
i∈Vc

yl
j,i, ∀j ∈ Vd (A.13)

∑
i∈Vr

Qi,j − ∑
i∈V′r

Qj,i = − ∑
l∈FD

∑
i∈Vc

yl
i,j, ∀j ∈ Vp (A.14)

0 ≤ Qi,j ≤ xi,j ∗ L, ∀(i, j) ∈ A1 (A.15)

Wi + ti,j −Wj ≤ M(1− xi,j), ∀(i, j) ∈ A1 (A.16)

Wi + ti,j −Wj ≤ M(1− yl
i,j), ∀i ∈ Vd, j ∈ Vc, l ∈ FD (A.17)

Wi + ti,j + si −Wj ≤ M(1− yl
i,j), ∀i ∈ Vc, j ∈ Vpc, l ∈ FD (A.18)

ai ≤Wi, ∀i ∈ V0
c (A.19)

Wi ≤ bi, ∀i ∈ V
′
c (A.20)

∑
i∈Vc

di ∑
j∈Vpc

yl
i,j ≤ C, ∀l ∈ FD (A.21)

∑
(i,j)∈A2

yl
i,jti,j ≤ T, ∀l ∈ FD (A.22)

xi,j ∈ {0, 1}, ∀(i, j) ∈ A1 (A.23)

yl
i,j ∈ {0, 1}, ∀(i, j) ∈ A2, l ∈ FD (A.24)

A.1.3 Computational results of column generation lower bound

According to (Desrosiers and Lübbecke, 2005), the lower bound can be calculate as
LB = z + K ∗ c, where z denotes the optimal objective function value to the restricted
master problem. The c is the reduce cost got from the subproblem, and K is an upper
bound of the number of van we used. The runtime of the column generation procedure
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also limited to 5 hours, and the best of the valid lower bounds, each iteration generated,
are chosen as the column generation lower bound. Note that the column generation
procedure is code in DOcplex by calling CPLEX 12.8.

The column generation computational results for 15 and 30 customer instances are
in Table A.1. In which column 1 indicates the test instances, column 2 and column 3
show the column generation lower bound and the solving time for the instance.

TABLE A.1: Column generation lower bound for 15 and 30 customer in-
stances

3-15 4-15 5-15 3-30 4-30 5-30
CLB CT(s) CLB CT(s) CLB CT(s) CLB CT(s) CLB CT(s) CLB CT(s)

CA1 375.6 49.6 411.1 284.6 403.7 522.5 752.7 3375.3 693.7 8332.5 602.2 8484.6
CA2 378.5 80.3 403.2 115.3 418.4 698.5 653.1 13591.0 676.8 6965.7 624.8 18000.0
CA3 387.5 108.5 443.7 113.0 354.4 251.6 680.3 7756.6 639.5 18000.0 602.2 8488.1
CA4 400.9 71.4 397.8 2578.1 343.5 440.8 578.4 2837.0 676.3 18000.0 -1367.4 18000.0
CA5 382.8 52.8 308.7 102.1 386.7 963.2 650.1 9257.5 585.1 9598.6 249.6 18000.0
CB1 391.8 91.2 414.5 505.1 530.0 8060.2 758.2 16025.0 673.1 18000.0 580.1 18000.0
CB2 410.1 45.5 446.9 361.9 406.9 1224.6 626.5 4762.1 642.9 18000.0 588.1 18000.0
CB3 446.9 76.6 438.5 527.3 364.6 311.0 679.9 4886.4 623.1 18000.0 301.2 18000.0
CB4 377.6 59.8 393.6 515.0 334.2 18000.0 609.2 6910.0 654.1 18000.0 -1923.9 18000.0
CB5 408.1 89.6 361.6 127.6 393.7 941.4 621.5 18000.0 601.9 18000.0 315.8 18000.0
CC1 358.8 210.9 415.5 18000.0 332.7 18000.0 389.0 18000.0 503.3 18000.0 316.8 18000.0
CC2 344.8 1198.2 391.5 10235.8 350.7 18000.0 290.0 18000.0 377.4 18000.0 -3355.5 18000.0
CC3 380.9 976.4 419.8 18000.0 337.9 18000.0 450.8 18000.0 -2773.7 18000.0 292.3 18000.0
CC4 373.3 547.3 364.4 18000.0 307.9 18000.0 442.0 18000.0 453.8 18000.0 -3453.5 18000.0
CC5 286.5 5557.1 301.4 7705.9 374.4 18000.0 432.7 18000.0 272.9 18000.0 -983.8 18000.0
CD1 370.8 71.3 405.3 395.8 385.4 792.1 619.7 13819.9 671.2 4944.2 624.5 18000.0
CD2 348.8 95.5 396.9 258.3 384.2 828.9 624.8 12195.6 643.9 9956.6 612.7 18000.0
CD3 382.1 116.8 445.0 403.4 348.3 320.5 645.7 4853.2 606.5 18000.0 588.3 9042.9
CD4 381.6 114.0 355.4 780.9 337.3 585.1 578.4 1612.6 661.7 18000.0 630.1 18000.0
CD5 362.5 60.0 301.4 7790.1 393.2 520.3 641.9 5025.1 630.5 7475.1 441.5 18000.0
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B.1 Time warp calculating algorithm

Algorithm 7 is used to calculate the time warp. The input of the algorithm (Line 1)
contains the Path from station n to station m. DepartTime is the time a vehicle leaves the
parking station. Distance is the distance matrix. StartTimeWindow, EndTimeWindow
and ServiceTime are the time window list and service time list for nodes. The algorithm
starts with time DepartTime (Line 2). For the sequence from node n to node m, we
calculate the earliest arrival time at the node m (Line 3-11). Next, we reverse the Path,
and we then calculate the latest starting time from node n subject to the earliest arrival
time at the node m not changing (Line 13-20). The time warp is equal to the latest
starting time at node n minus the earliest start time at node n (Line 21).
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Algorithm 7 Time_warp_calculating

1: Input: Path, DepartTime, Distance, StartTimeWindow, EndTimeWindow, ServiceTime

2: T = DepartTime
3: for i in range(len(Path)-1) do
4: T = T + Distance[Path[i]][Path[i+1]]/v
5: T = max(StartTimeWindow[Path[i+1]],T)
6: if T > EndTimeWindow[Path[i+1]] then
7: return: (False)
8: else
9: T = T + ServiceTime[Path[i+1]]

10: end if
11: end for
12: reverse(Path)
13: for i in range(len(Path)-1) do
14: T = T - Distance[Path[i]][Path[i+1]]/v - ServiceTime[Path[i+1]]
15: T = max(StartTimeWindow[Path[i+1]],T)
16: T = min(T, EndTimeWindow[Path[i+1]])
17: if StartTimeWindow[Path[i+1]] > T then
18: return: (False)
19: end if
20: end for
21: Time Warp = T - DepartTime
22: return: Time Warp



B.2. Formulation of LP model 117

B.2 Formulation of LP model

The LP model is used to check the feasibility of a given 2E-VREC route.
Explanations of symbol definitions are the same as in Subsection 4.2.3 for our 2E-

VREC model, expect without symbol k. This means we consider a van, not multi-vans.
For the sake of simplicity, no further explanation is given. We add the following new
symbols: R1: van route; R2: robot route; R3: van-robot route and independent-van
route and robot route; R4: independent-van route; R5: van-robot route. The LP model
is as follows.

Objective
Checking the feasibility of a given route
Subject to

Wi + Zi/g1 + di,j/v1 −Wj ≤ 0, ∀{i ∈ V0
r |(i, j) ∈ R1} (B.1)

Wi + zi/g2 + di,j/v1 −Wj ≤ 0, ∀{i ∈ V0
r |(i, j) ∈ R1} (B.2)

wi + zi/g2 + di,j/v1 −Wj ≤ 0, ∀{i ∈ V0
r |(i, j) ∈ R1} (B.3)

Wi + zi/g2 + di,j/v2 − wj ≤ 0, ∀{i ∈ Vr|(i, j) ∈ R2} (B.4)

wi + zi/g2 + di,j/v2 − wj ≤ 0, ∀{i ∈ Vr|(i, j) ∈ R2} (B.5)

Wi + si + di,j/v1 −Wj ≤ 0, ∀{i ∈ Vc1|(i, j) ∈ R1} (B.6)

Wi + zi/g2 + di,j/v1 −Wj ≤ 0, ∀{i ∈ Vc1|(i, j) ∈ R1} (B.7)

wi + si + di,j/v2 − wj ≤ 0, ∀{i ∈ Vc|(i, j) ∈ R2} (B.8)

Wj = wj, ∀{(i, j) ∈ R5|j ∈ V
′
rc1} (B.9)

ai ≤Wi, wi ≤ bi, ∀i ∈ V
′′
c (B.10)

Ej + h1 ∗ di,j − Zi + zi + zi,j − Ei ≤ 0, ∀{(i, j) ∈ R5|i ∈ V0
r } (B.11)

Ej + h1 ∗ di,j − Zi + zi − Ei ≤ 0, ∀{(i, j) ∈ R4|i ∈ V0
r } (B.12)

Ej + h1 ∗ di,j + zi + zi,j − Ei ≤ 0, ∀{(i, j) ∈ R5|i ∈ Vc1} (B.13)

Ej + h1 ∗ di,j − Ei ≤ 0, ∀{(i, j) ∈ R4|i ∈ Vc1} (B.14)

ej − zi − zi,j − ei ≤ 0, ∀{(i, j) ∈ R5|i ∈ V0
rc1} (B.15)

ej + h2 ∗ di,j − zi − ei ≤ 0, ∀{(i, j) ∈ R2|i ∈ Vr} (B.16)

ej + h2 ∗ di,j − ei ≤ 0, ∀{(i, j) ∈ R2|i ∈ Vc} (B.17)
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0 ≤ zi ≤ G2, ∀i ∈ V0
rc1 (B.18)

0 ≤ Zi ≤ (G1 + G2), ∀i ∈ V0
r (B.19)

0 ≤ zi,j ≤ G2, ∀(i, j) ∈ R1 (B.20)

0 ≤ Ei + Zi − zi ≤ G1, ∀i ∈ V0
r (B.21)

0 ≤ ei + zi ≤ G2, ∀i ∈ V0
r (B.22)

0 ≤ Ei ≤ G1, ∀i ∈ V
′′
rc1 (B.23)

0 ≤ ei ≤ G2, ∀i ∈ V
′′
rc (B.24)

Constraints (B.1-B.10) are the time flow constraints for the given routes. Constraints
(B.1-B.3) and (B.6-B.7) enforce the time flow of the van for R1. Constraints (B.4-B.5) and
(B.8) enforce the time flow of the robot for R2. Constraints (B.9) ensure that when a van
carries its robot, their arrival time for each node is equal. Constraints (B.10) are the time
window constraints for each node.

Constraints (B.11-B.24) are the energy constraints for the given routes. Constraints
(B.11) and (B.13) are the energy flow of the van for the route along which the van carries
its robot, and constraints (B.15) are the energy flow of the robot for the routes when the
robot is carried in its van. Constraints (B.12) and (B.14) are the energy flow of the van
for the independent-van routes. Constraints (B.16) and (B.17) are the energy flow of the
robot for the robot routes. Constraints (B.18-B.24) are the energy variable constraints.
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B.3 Simulated annealing and weight-adjusted approach

Simulated annealing
The simulated annealing uses a temperature parameter T to control the acceptance

probability. The temporary solution xt is always accepted if xt has a better objective
value than the current best solution xb (c(xt) <= c(xb)), and it is accepted with proba-
bility exp(c(xb)− c(xt)/T) if this is not the case. Here T > 0 is the current temperature.
The start temperature is initialized at Tst > 0 and is decreased gradually by performing
an update T = α ∗ T at each iteration, where α ∈ [0, 1] is the cooling rate of simulated
annealing.

Weight-adjusted
For the destroy and repair operations, a score ψ = max(w1, w2, w3, w4) is used to

adjust their respective weights and is computed according the following formula:

ψ =


w1 if the new solution is a new global best solution,
w2 if the new solution is better than the current solution,
w3 if the new solution is accepted,
w4 if the new solution is rejected.

Normally we have w1 ≥ w2 ≥ w3 ≥ w4 ≥ 0.
The components corresponding to the selected destroy-and-repair operations in the

ρ− and ρ+ vectors are updated using the following equations: ρ−a = λρ−a + (1− λ)ψ,
ρ+b = λρ+b + (1− λ)ψ, in which a and b are the indices of the destroy-and-repair meth-
ods that were used in the last iteration of the algorithm, respectively. The components
corresponding to the selected destroy, and repair methods in the ρ− and ρ+ vectors
are updated using the equations. λ ∈ [0, 1] is the decay parameter that controls how
sensitive the weightings are to changes in the performance of the destroy-and-repair
methods.
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B.4 Parameter notations, descriptions, and values

Table B.1 lists and describes the parameters investigated in our experiment. Column 1
gives the parameter name, and column 2 its corresponding notation and description.
Table B.2 lists the parameter notations, the initial value of the parameters, the allowed
range for each parameter, and the final values found by the parameter tuning process.
Final values are used for the rest of the experiments.

TABLE B.1: Parameters notation and description

Parameter Notation and description
MaxIteNum Maximum iteration number of ALNS
MaxNunImp Maximum iteration number with no improved solution

β Destruction rate
λ Decay parameter that controls how sensitive the weights are to changes

Tst Start temperature per customer of SA
α Cooling rate of SA

w1 if the new solution is a new global best solution
w2 if the new solution is better than the current one
w3 if the new solution is accepted
w4 if the new solution is rejected

TABLE B.2: Parameters values of ALNS for 2E-VREC

Parameter Initial value Search interval Final value
MaxIteNum 10000 10000-50000 (5000) 20000
MaxNunImp 500 100-2000 (100) 1800

β 0.15 0.05-0.5 (0.05) 0.35
λ 0.9 0.1-1.0 (0.01) 0.95

Tst 2000 1000-10000 (1000) 1000
α 0.95 0.90-0.99 (0.01) 0.92

w1 3 3-30 28
w2 2 2-27 13
w3 1 1-12 3
w4 0 0 0
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C.1 ALNS parameters

TABLE C.1: Parameters values of ALNS for 2E-VRHPD

Parameter Notation and description Final value
MaxIteNum Maximum iteration number of ALNS 20000
MaxNunImp Maximum iteration number with no improved solution 1800

β Destruction rate 0.35
λ Decay parameter 0.95

Tst Start temperature per customer of SA 1000
α Cooling rate of SA 0.92

w1 new solution is a new global best solution 3
w2 new solution is better than the current one 2
w3 new solution is accepted 1
w4 new solution is rejected 0
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Titre: Modèles et méthodes d’optimisation pour la planification des tournées dans la
logistique urbaine intelligente

Mots clés: Distribution innovante du dernier kilomètre, Services de robots basés sur le vaisseau
mère, Routage de véhicules électriques, Recharge en route, Ramassage et livraison hybrides

Résumé: La distribution urbaine désigne les
activités de distribution de marchandises desser-
vant les zones urbaines et les banlieues. Les pro-
grès technologiques récents dans le domaine de
la distribution sans personnel, ainsi que les nou-
velles réglementations limitant l’utilisation des
véhicules à moteur à combustion, vont modi-
fier de manière significative la distribution ur-
baine de marchandises. En outre, le nou-
veau modèle commercial du commerce électron-
ique apporte également de nouvelles opportu-
nités et de nouveaux défis à la distribution ur-
baine de marchandises. Cette thèse se con-
centre sur un nouveau système de distribution
visant à fournir de meilleurs services pour la dis-
tribution logistique urbaine. Nous allons tout

d’abord étudier un système de livraison urbaine
robotisé basé sur un fourgon qui peut trans-
porter plusieurs robots, ce qui rend le système
de distribution plus flexible et efficace. En-
suite, nous proposons d’intégrer la technolo-
gie de recharge en route et de recharge inverse
dans le système de livraison urbaine robotisée
par camionnette dans les opérations logistiques,
afin d’économiser le temps pendant lequel les
camionnettes électriques transportent les robots
pour les recharger, ce qui augmente l’efficacité
des systèmes de distribution. Enfin, nous incor-
porons les ramassages hybrides et les opérations
de livraison dans le système de distribution ur-
baine robotisée basés sur des fourgons pour nous
adapter au nouveau modèle commercial des en-
treprises de commerce électronique.

Title: Optimization models and methods for tour planning in smart urban logistics

Keywords: Innovative last mile distribution, Mothership based robot services, Electric vehicle
routing, En-route charging, Hybrid pickup and delivery

Abstract: Urban distribution refers to the
distribution activities of goods serving urban
areas and suburbs. Recent technological ad-
vances in unmanned distribution field, as well
as new regulations limiting the use of combus-
tion engine vehicles, will significantly change ur-
ban goods distribution. Besides, the new e-
commerce business model also brings new op-
portunities and challenges to urban goods dis-
tribution. This thesis focuses on a novel dis-
tribution system to provide better services for
urban logistics distribution. We first study a

van-based robot urban delivery system and al-
low a van can carry multiple robot to make the
distribution system more flexible. Then we in-
corporate en-route charging, and reverse charg-
ing technology into the van-based robot urban
delivery system in logistics operations, to effec-
tively use the time during which electric vans are
carrying robots to recharge the robots, thereby
increasing distribution systems’ efficiency. Fi-
nally, we incorporate hybrid pickup and delivery
operations into the van-based robot urban dis-
tribution system to adapt to the new business
model of e-commerce enterprises.
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