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Résumé: Un système multi-énergie local (LMES)
est un système énergétique décentralisé produisant
de l’énergie sous de multiples formes pour satis-
faire les besoins énergétiques de clients situés dans
son voisinage. Les LMES présentent de nombreux
avantages, par exemple une efficacité de produc-
tion plus élevée et des coûts de maintenance plus
faibles. Toutefois, afin de fournir leurs meilleures
performances potentielles, les LMES doivent être
conçus avec soin.

Le problème de conception d’un LMES, en tant
que problème d’optimisation combinatoire, est dif-
ficile à résoudre en raison de sa grande taille. De
nombreux outils numériques pour aider les gens à
concevoir des LMES reposent sur des hypothèses
fortes et des simplifications, et ils limitent générale-
ment la taille des instances considérées afin de pou-
voir proposer des solutions dans un temps de calcul
acceptable.

Cette thèse de doctorat se concentre sur la

modélisation et la résolution des problèmes de con-
ception optimale des LMES. En termes de modéli-
sation du problème, nous permettons de constru-
ire le système en plusieurs phases d’investissement
et de considérer l’opération détaillée aux pas de
temps horaires. Le problème d’optimisation qui
en résulte, sous la forme d’un grand programme
linéaire à nombres entiers mixtes, est résolu par
deux approches de décomposition : un algorithme
de décomposition hiérarchique étendu et un algo-
rithme de décomposition de Benders généralisé.

Les résultats numériques obtenus à partir de
trois études de cas réels montrent d’abord que les
algorithmes de décomposition proposés sont plus
performants que les approches de résolution tra-
ditionnelles. Nos résultats montrent également
que, même si certaines approximations sont ap-
pliquées, les plans de déploiement obtenus sont de
très bonne qualité.

Title: Optimal design of local multi-energy systems: mixed-integer linear programming models and
bi-level decomposition approaches
Keywords: Multi-energy system, Mixed-integer linear programming, Planning optimisation

Abstract: A local multi-energy system (LMES)
is a decentralized energy system producing mul-
tiple forms of energy to satisfy the needs of cus-
tomers in its vicinity. LMESs display many advan-
tages, e.g., higher production efficiency and lower
maintenance costs. However, to provide their best
potential performance, LMESs should be carefully
designed.

The design problem of an LMES, as a combi-
natorial optimization problem, is difficult to solve
due to its large size. Many off-the-shelf numerical
decision-aid tools rely on strong assumptions and
simplifications, and they usually limit the size of
the considered instances to enable the resolution
process to terminate within an acceptable compu-
tation time.

This PhD thesis focuses on the modelling

and resolution of optimal design problems of
LMESs. In terms of problem modelling, we allow
to construct the system within multiple investment
phases and consider the detailed operation with
hourly timestep. The resulting optimization prob-
lem, as a large mixed-integer linear program, are
solved by two decomposition approaches: an ex-
tended hierarchical decomposition algorithm and a
generalized Benders’ decomposition algorithm.

The numerical results obtained from three real-
life case studies first show that the proposed de-
composition algorithms significantly outperform
the traditional solving approaches. Our results also
show that, even if some approximations are ap-
plied, the obtained deployment plans are of very
good quality.
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Abstract

Over the last decades, the energy industry has been striving to improve the en-
ergy production efficiency, to lower the greenhouse gas emissions related to energy
production and distribution and to better integrate renewable energy resources. Lo-
cal multi-energy systems (LMESs) are an interesting alternative to meet these chal-
lenging objectives. Basically, an LMES is a decentralized energy system producing
energy within multiple forms to satisfy the energy needs of customers located in its
vicinity. The customers correspond to a set of buildings belonging e.g. to a uni-
versity campus, a hospital complex or a city district. LMESs have a higher produc-
tion efficiency and a lower maintenance cost than traditional individual (i.e., single-
building) energy systems.

LMESs thus display many practical advantages. However, in order to provide
their best potential performance, they should be carefully designed. Designing an
LMES essentially consists in selecting the energy conversion and storage devices
making up the system. The obtained LMES should be able to satisfy the fluctuating
energy demand at all time and to minimize the total construction and operation cost
of the system over its lifetime usually spanning several decades.

Many off-the-shelf numerical decision-aid tools already exist to assist people in
the design of LMESs. However, most of these tools rely on strong assumptions and
simplifications. For example, they assume that the capacity of an energy conversion
device may take any value within a predefined continuous range, while this capacity
should in fact be selected within a discrete list of values corresponding to the avail-
able models produced by equipment manufacturers. Moreover, these tools usually
strongly limit the size of the considered instances to enable the resolution process to
terminate within an acceptable computation time.

This PhD thesis focuses on the problem of optimally designing an LMES involv-
ing both energy conversion and storage devices. In terms of problem modelling,
we improve the current state-of-the art in several directions. First, we allow to
choose the capacity of the installed devices within a predefined discrete list of value.
Second, we consider the fact that building an LMES is not a one-step but rather a
multi-step process in which investment decisions are made little by little to adjust
the system layout to the long-term increase of the energy demand. We thus seek to
build a multi-phase strategic deployment plan for the LMES. Third, we incorporate
in the objective function the operation cost of the system over its lifetime. To esti-
mate this cost as accurately as possible, we build detailed daily operation schedules
using hourly time steps for a set of representative days. These schedules take into
account several realistic complicating features such as the partial load efficiency and
the minimum working load of energy conversion devices.

The resulting optimization problem is formulated as a very large mixed-integer
linear program. To solve it efficiently, we develop two new decomposition algo-
rithms exploiting the specific bi-level structure of the problem. The first algorithm
extends a previously published hierarchical decomposition algorithm, the second
one is a generalized Benders’ decomposition algorithm.

The proposed modelling and solving approach are applied to three real-life case
studies located in China. Our numerical results first show that the proposed de-
composition algorithms significantly outperform both the generic branch-and-cut
algorithm embedded in a mathematical programming solver and the original hi-
erarchical decomposition algorithm at solving the mixed-integer linear program to
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optimality. Our results also show that, even if some approximations are done in the
problem modelling, the obtained deployment plans are of very good quality.
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Résumé

Au cours des dernières décennies, l’industrie énergétique s’est efforcée d’améliorer
l’efficacité de la production d’énergie, de réduire les émissions de gaz à effet de serre
liées à la production et à la distribution d’énergie et de mieux intégrer les ressources
énergétiques renouvelables. Les systèmes multi-énergies locaux (LMES) constituent
une alternative intéressante pour atteindre ces objectifs ambitieux. Fondamentale-
ment, un LMES est un système énergétique décentralisé produisant de l’énergie sous
de multiples formes pour satisfaire les besoins énergétiques de clients situés dans
son voisinage. Les clients correspondent à un ensemble de bâtiments appartenant,
par exemple, à un campus, un complexe hospitalier ou un quartier urbain. Les LMES
ont une efficacité de production plus élevée et un coût de maintenance plus faible
que les systèmes énergétiques traditionnels fonctionnant au niveau d’un seul bâti-
ment.

Les LMES présentent donc de nombreux avantages pratiques. Toutefois, afin de
fournir leurs meilleures performances potentielles, ils doivent être conçus avec soin.
La conception d’un LMES consiste essentiellement à sélectionner les dispositifs de
conversion et de stockage de l’énergie qui composent le système. Le LMES obtenu
doit être capable de satisfaire à tout moment la demande énergétique fluctuante et
de minimiser le coût total de construction et d’opération du système sur sa durée de
vie, qui s’étend généralement sur plusieurs décennies.

Il existe déjà de nombreux outils numériques pour aider les gens à concevoir
des LMES. Cependant, la plupart de ces outils reposent sur des hypothèses et des
simplifications importantes. Par exemple, ils supposent que la capacité d’un dis-
positif de conversion d’énergie peut prendre des valeurs dans une gamme continue
prédéfinie, alors que cette capacité devrait en fait être sélectionnée dans une liste
discrète de valeurs correspondant aux modèles disponibles produits par les fabri-
cants d’équipements. De plus, ces outils limitent généralement fortement la taille
des instances considérées afin de pouvoir proposer des solutions dans un temps de
calcul acceptable.

Cette thèse de doctorat se concentre sur le problème de la conception optimale
d’un LMES impliquant à la fois des dispositifs de conversion et de stockage d’énergie.
En termes de modélisation du problème, nous améliorons l’état de l’art actuel dans
plusieurs directions. Premièrement, nous permettons de choisir la capacité des dis-
positifs installés dans une liste de valeurs discrètes prédéfinies. Deuxièmement,
nous considérons le fait que la construction d’un LMES ne se fait pas en une seule
étape mais est plutôt un processus en plusieurs étapes dans lequel les décisions
d’investissement sont prises petit à petit pour ajuster le déploiement du système
à l’augmentation à long terme de la demande d’énergie. Nous cherchons donc à
construire un plan de déploiement stratégique en plusieurs phases pour le LMES.
Troisièmement, nous incorporons dans la fonction objectif le coût d’opération du
système sur sa durée de vie. Pour estimer ce coût aussi précisément que possible,
nous construisons des plannings d’opération journaliers détaillés aux pas de temps
horaires pour un ensemble de jours représentatifs. Ces plannings tiennent compte
de plusieurs caractéristiques réalistes compliquées telles que l’efficacité à charge par-
tielle et la charge minimale des dispositifs de conversion d’énergie.

Le problème d’optimisation qui en résulte est formulé comme un très grand
programme linéaire à nombres entiers mixtes. Pour le résoudre efficacement, nous
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développons deux nouveaux algorithmes de décomposition qui exploitent la struc-
ture spécifique à deux niveaux du problème. Le premier algorithme étend un al-
gorithme de décomposition hiérarchique précédemment publié, le second est un
algorithme de décomposition de Benders généralisé.

L’approche de modélisation et de résolution proposée sont appliquées à trois
cas d’étude réels situés en Chine. Nos résultats numériques montrent d’abord que
les algorithmes de décomposition proposés sont plus performants que l’algorithme
générique de branch-and-cut intégré à un solveur de programmation mathématique
et que l’algorithme original de décomposition hiérarchique pour résoudre le pro-
gramme linéaire en nombres entiers à l’optimalité. Nos résultats montrent égale-
ment que, même si certaines approximations sont effectuées dans la modélisation
du problème, les plans de déploiement obtenus sont de très bonne qualité.
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Chapter 1

Introduction

1.1 Introduction

A Local Multi-Energy System (LMES), or Decentralized Energy System, produces
energy within multiple forms in order to satisfy the energy needs of customers lo-
cated in its vicinity. The produced energy can be in the form of heating power, cool-
ing power, domestic hot water or locally generated electricity The served customers
may correspond to e.g. a small set of buildings [Wak+19; Meh+12], a hospital com-
plex [AFF07] or a urban district [JFS14].

LMESs contrast with individual energy systems in which each single building is
equipped with its own heating or cooling system. LMESs are usually much more
efficient than individual energy systems with respect to both energy conversion
and cost. Namely, individual energy systems mostly rely on small-capacity energy
production devices whose conversion efficiency is much lower than the one of the
medium-capacity devices that can be used in an LMES. In addition, the energy con-
sumption pattern of a building depends on its function. For instance, the energy
consumption of an office building concentrates in weekday daytime while the one
of a residential building is higher at night and during the weekend. An LMES serves
buildings with various functions. As a consequence, the total demand that it will
have to satisfy will be somewhat less variable than the one of an individual building
and is less likely to fall to zero, which will reduce the idle time of the system. Fi-
nally, the local generation of electricity may contribute in reducing the dependence
of the customers from the national and global electricity markets, in which the price
of electricity displays strong fluctuations.

An LMES is thus a decentralized energy system involving a variety of energy
conversion devices (photo-voltaic panels, combined heat and power generators, boil-
ers, chillers. . . ) and in some cases, energy storage systems (hot/chilled water tanks,
ice storage, batteries, . . . ). These devices are used to transform energy resources into
multiple forms of energy to satisfy the demands of the system’s customers. The
energy resources may be local energy resources (solar, wind, waste heat, geother-
mal, . . . ) or conventional energy sources (electricity, gas, biofuels, . . . ). Figure 1.1
describes the structure of an illustrative local multi-energy system aiming at satis-
fying the local demand of power, gas, cold and heat by consuming and converting
electricity and gas bought from the national distribution network.

Although LMESs display many practical advantages, they should be carefully
designed in order to provide their best potential performance. This PhD thesis
focuses on the LMES optimal design problem which can be described as follows.
Given the available energy resources, the predicted total energy demand in the
neighbourhood over the LMES lifetime and the available energy conversion and
storage technologies, select the proper technologies to be installed in the system and
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FIGURE 1.1: Example of a local multi-energy system [Xie+20]

determine the size (i.e. capacity) of the corresponding conversion and storage de-
vices so as to minimize the total construction and operation cost of the system while
satisfying the customers’ demand at all time.

Indeed, design decisions will have a strong impact on the daily operational man-
agement of the LMES so that the system design should consider not only the con-
struction cost but also the operation cost over the system lifetime which usually
spans several decades. Namely, the operation cost typically represents between 20%
and 60% of the total cost of LMES over its lifetime. Moreover, a given conversion
device may be rather cheap in terms of purchasing and installation costs but lead to
high operation costs due to e.g. a poor energy conversion efficiency.

The operation cost of an LMES, which corresponds mainly to the cost of the en-
ergy resources bought from external suppliers to power the installed conversion de-
vices, is however challenging to compute. Namely, the energy demands are highly
variable and display a daily, weekly and yearly seasonality together with random
variations. The price of the energy resources to be bought is also time-varying.
Moreover, due to the technical features of some of the conversion devices, the en-
ergy resource consumption of the system is not proportional to the produced energy.
This implies that using an average or aggregate representation of the demand to esti-
mate the operation cost may lead to a significant underestimation of its actual value.
Thus, in order to accurately estimate it, a detailed schedule describing, on a hourly
basis, the on/off status and the load allocation of each conversion device should be
built for an horizon spanning a whole year.

Furthermore, an LMES is often built together with the district it will serve. This
means that the forecasted yearly energy demands feature an upward trend over the
years as the district is developed and new buildings progressively connect to the
LMES. As a consequence, the design of an LMES should not be seen as a one-time
decision but rather as a process in which investment decisions are made step by
step, following the development of the district and the increase of the demand. This
implies that a multi-phase strategic deployment plan should be built.
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We thus need to simultaneously determine, for each investment phase of the de-
ployment plan, the optimal system layout and the corresponding detailed operation
plan ensuring that the customers’ energy demands are satisfied at all time and com-
puting an estimation of the operation cost. Therefore, the optimal design problem
is also referred to as the simultaneous system design and operation optimization
problem.

1.2 Context

1.2.1 Industrial context

This PhD thesis results from a collaboration between EDF China, EDF R&D France
and the University Paris Saclay.

In addition to its activities related to the large-scale generation of electricity in nu-
clear reactors or coal-fired power plants, EDF China is involved in several projects,
sometimes together with Chinese external clients and partner companies, to build
and operate LMESs in China. For instance, EDF China have been operating since
2016, together with the Chinese company Datang Group, a district heating network
in the city of Sanmenxia [EDF22a]. The operation of the network is based on the heat
recovered from two existing Datang power plants and 2x17 km backbone pipes have
been built to connect the thermal power plants to the distribution networks in three
industrial and business districts of the city. The heating area represented a total of
12 millions m2 in 2020. Similarly, EDF China is currently developing, in partnership
with ChangFeng Energy, a multi-energy system in the city of Sanya [EDF22b]. This
system will supply chilled water for air conditioning and will contribute to the sup-
ply of sanitary hot water to a set of buildings (hotels, shopping centers and hospital)
located along the Haitang Bay, a fast-developing tourist area. It is estimated that
the LMES will reduce CO2 emission by 20% as compared to using individual and
isolated systems, which represents a reduction of 70,000 tons of CO2 emission each
year.

These LMES projects usually start with a call for tenders launched by cities wish-
ing to develop an LMES in one of their districts. Companies such as EDF China and
its competitors may reply by presenting a tender describing potential layouts for the
system, together with their costs. This tender process usually comprises two steps.
The first step involves a global selection of the technologies to be used in the system
but usually relies on a gross estimate of the system operation cost assuming e.g. that
the operating cost of each device is strictly proportional to the amount of output
power. The second step consists in providing a detailed description of the future
system comprising the number and capacity of each type of conversion and storage
device to be installed in this system. In this second step, an estimation, as accurate
as possible, of the future operation cost of the system is required. Overall, the goal
of EDF China while presenting a tender is to select and size the devices installed in
the system in such a way to simultaneously ensure that all the energy demands will
be satisfied and that the total design and operation cost will be as low as possible.

Currently, the detailed tender to be prepared for the second step of this process
is built manually by EDF China practitioners. Basically, the cost of each considered
potential system layout is estimated through a set of computations carried out in
Excel files. These computations rely on strong assumptions on the operation of the
system, (e.g. devices are activated to produce energy in a predefined order and and
energy storing and releasing is limited to some specific time periods). The system
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layout to be presented in the tender is then selected through a manual trial-and-error
process but there is no systematic exploration of the set of all potential layouts.

Clearly, there is a need for a decision-aid tool based on mathematical optimiza-
tion to help EDF China practitioners identify the best system layout (together with
the multi-phase deployment plan) to make sure that the LMES projects developed
will be profitable.

EDF R&D has a strong experience in developing mathematical-programming
based decision-aid to help in the strategic and daily management of energy systems.
For instance, EDF Lab Chatou developed a software called Clevery to help in the
daily operation of smart micro-grids and local energy systems. This system is able
to build optimal operation schedules for a large set of small-scale systems whose
layout is already known. It however does not allow to make design decisions for
such systems.

Thus, EDF currently has no decision-aid tool dedicated to the long-term design
of LMESs. Our work in this PhD thesis aims at developing such a tool.

1.2.2 Academic context

As discussed in the previous subsection, optimally designing an LMES is a very
challenging problem for practitioners which may be overwhelmed by the exponen-
tial number of design possibilities to be considered and compared. The difficulty
experienced by practitioners is supported theoretically by the fact that the LMES
design problem was recently proved to be NP-hard in [GCW19], even when there
is a single type of conversion device, no storage device and a single time-step to
represent the demand at the operational level.

[KV21] provided a recent state of the art on the modeling and solution approaches
proposed to design LMES. They highlighted the fact that mixed-integer linear pro-
gramming (MILP) was one of the most used optimization techniques, probably thanks
to its high flexibility in terms of problem modeling and to the availability of mature
off-the-shelf commercial MILP solvers. The literature review focused on MILP mod-
els and decomposition approaches for the LMES design problem, to be presented in
Chapter 2, shows that the research is this field is currently very active and that much
progress has been made over the last two decades.

However, there remains a significant gap between the current state of the art on
the LMES design problem and the needs of our industrial partner.

Indeed, we first note that all the reviewed works consider that the system is
built in a single construction phase while, in our practical problem, the LMES is
to be built and extended progressively following a multi-phase deployment plan.
Second, in most previously published works, the sizing of technologies is oversim-
plified. Namely, these works assume that, for each technology, there is a single piece
of equipment to be installed and that the capacity of this device may be set to any
value within a continuous range. However, in practice, we may install several de-
vices corresponding to the same technology, the capacity of which should be selected
among a set of discrete values corresponding to the models available in the catalog
of the equipment manufacturer. Third, due to the high complexity of the problem,
the assessment of the operation cost is usually carried out by introducing some sim-
plifications on the functioning of the conversion devices, in particular with respect
to their conversion efficiency, and by using a limited number of representative days.

In terms of solution approaches, most of the reviewed papers rely on a direct
resolution of the problem by an MILP solver. This direct resolution is only possi-
ble at the expense of some strong simplifications on the actual problem. Moreover,
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decomposition approaches exploiting the natural hierarchy between the design and
operation decisions in the problem have been proposed. But their direct application
on the problem under study here is not straightforward.

Clearly, some research is needed to extend the previously published works and
to incorporate into the problem modeling the above-mentioned important practical
features. Taking these features into account leads to an increase in the MILP size
and consequently makes it harder to solve. Part of the work carried out in this thesis
will thus be devoted to the development of efficient solution approaches for this
problem.

1.3 Background on mixed-integer linear programming

In this work, we heavily rely on mathematical programming, more specifically on
mixed-integer linear programming (MILP), to tackle the problem of optimally de-
signing an LMES. We thus provide in this section a short background on MILP to
ease the reading of the manuscript.

1.3.1 Definition

A mathematical programming problem is an optimization problem taking the fol-
lowing form [BBV04]:

minimize f0(x)
subject to fi(x) ≤ bi, i = 1, · · · , m

x ∈ Rn

The vector x = (x1, · · · , xn) represents the set of optimization or decision vari-
ables, the value of which is to be determined by solving the optimization problem.
The function f0 : Rn → R is the objective function and represents the performance
criterion used to evaluate and compare the various solutions of the problem. There
is a set of m inequalities defining the feasible space, i.e. the subset of vectors x which
are considered as acceptable (feasible) solutions of the optimization problem. These
set of inequalities is defined through constraint functions fi : Rn → R, i = 1, · · · , m
and right-hand side values b1, · · · , bm.

In case the objective function and all the constraint functions are linear functions
of x, the problem simplifies into a linear programming (LP) problem in the form:

minimize ∑n
j=1 cjxj

subject to ∑n
j=1 ai,jxj ≤ bi i = 1, · · · , m

x ∈ Rn

Here, all input parameters cj, ai,j and bi are real numbers whose value is assumed to
be known.

An LP problem can also be written in the matrix form, using the convention that
the ≤ sign compares the two vectors located on each side element-wise:

minimize cTx
subject to Ax ≤ b

x ∈ Rn

Linear programming is a mathematical optimization tool which is widely ap-
plied to design energy systems. This may be explained by the fact that it enables
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to flexibly model a rather large range of design problems and that it leads to the
formulation of mathematical programs which are relatively easy to solve. However,
linear programming presents some drawbacks and limitations and may lead to rec-
ommending system designs which are sub-optimal or even not relevant in practice.
In particular, the fact that the decision variables x may take any continuous value
poses some modeling problems to represent e.g. decisions that should take integer
values (such as the number of energy conversion units of a given type that should
be installed in the system) or logical conditions (such as the fact that if a device is
turned on, it should produce an amount of energy above its minimum production
load). The optimal solution of an LP progam may involve components of x with a
frational value and simply rounding this frational value up and down does not al-
ways provide a feasible, let alone a good, solution of the optimization problem (see
e.g. [Wol20]).

We thus sometimes have to add constraints to the formulation stating that some
decision variables should be binary or integer in the solution. If all the variables are
restricted to be binary, we obtain a Binary Linear Programming (BLP) problem. If
all the variables are restricted to be integer, the problem is an Integer Linear Pro-
gramming (ILP) problem. If the formulation involves both real valued variables and
integer/binary variables, the problem is called a Mixed Integer Linear Programming
(MILP) problem. The variables taking resp. binary, integer or fractional values are
often referred to as resp. binary, integer and continuous variables. Let p be the num-
ber of integer variables in the MILP problem with 0 < p < n, the matrix form of an
MILP problem takes the following form:

minimize cTx
subject to Ax ≤ b

x ∈ Zp ×Rn−p

1.3.2 Formulation of a mixed-integer linear program

The formulation of a real-life optimization problem as an MILP problem, i.e. the
transformation of an informal textual description of the problem into a mathematical
model, can be done through e.g. the procedure described in Chapter 1 of [PW06].
This modeling relies on the definition of the indices, data, variables, constraints and
objective function of the MILP problem.

Indices Similar objects are grouped into object classes represented by mathemati-
cal indices, allowing one to use indexed notation for data, variables, and constraints.
For instance, the index y (resp. ϕ) may be used to represent a year within the set of
years (resp. a phase within the set of investment phases) of the LMES lifetime. Simi-
larly, the index m may be used to indicate a type of energy conversion device within
the set of all considered energy conversion devices.

Data Data refer to the "known values" in the optimization problem. For instance,
the installation price of an energy conversion unit is considered as an input param-
eter in our case, the value of which is assumed to be known before solving the opti-
mization problem.

Variables Variables are the "unknown values" of an MILP model and represent
the decisions to be made to define a solution to the optimization problem. When
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formulating real-life problems, for the sake of clarity and readability, we usually
do not use a single variable vector x to represent all the decisions to be made, but
rather a set of multi-dimensional vectors referred to by different names. Thus, in
our context, the integer decision variable SDϕ,m indicates the number of conversion
and storage units of type m to be installed at the beginning of investment phase ϕ
whereas STOt,m represents the amount of energy stored in the devices of type m at
the beginning of the scheduling time-step t. A solution of an optimization problem
thus consists in an assignment of a (binary, integer or continuous) value to each
decision variable involved in the problem modeling.

Constraints Constraints are mathematical relationships between the input data
and the decision variables and take the form of inequalities or equalities. Recall that
in order to obtain an MILP problem, these relationships should be linear expres-
sions of the decision variables. A feasible solution of an MILP problem is a solution
in which the values assigned to the decision variables satisfy all the constraints. A
solution is said to be infeasible as soon as it violates one or several constraints. The
set of all feasible solutions is called the feasible region or feasible space of the op-
timization problem. If the feasible region of a problem is empty, the optimization
problem is said to be infeasible.

Objective function The objective function provides a way to evaluate or compare
feasible solutions and to select the best or optimal solution among the feasible ones.
Both its optimization direction and its mathematical expression should be clarified.
The optimization direction can be either maximization or minimization: these direc-
tions are interchangeable by adding a negative sign to the objective function. As for
the mathematical expression, in an MILP problem, it should be a linear expression
of the decision variables. Finally, if there exists a sequence of feasible solutions in
the feasible region whose objective values are unbounded, in other words if the ob-
jective function of the problem can take any arbitrarily ’good’ value, the problem is
referred to as an unbounded problem. In some books, the objective value of a mini-
mization problem is defined as +∞ if it is unfeasible and as −∞ if it is unbounded
(and vice versa for maximimization problems).

1.3.3 Branch-and-bound algorithm

One of the reasons explaining the widespread use of mixed-integer linear program-
ming to tackle optimization problem is the successful implementation of the branch-
and-bound (B&B) algorithm in mathematical solvers. The B&B algorithm basically
carries out an enumeration of all feasible solutions of an MILP, but uses the infor-
mation provided by the linear programming relaxation of the original problem to
cut out solutions proven to be non-optimal whenever it is possible. Note that using
a B&B algorithm does not guarantee to find the optimal solution of any MILP in a
reasonable time. However, as compared with other resolution strategies, it provides
a relatively efficient solving routine for a large class of MILPs. It is in any case a
fundamental cornerstone and a good starting point for solving MILPs.

Before introducing the details of algorithm, we will first explain a trivial but
important proposition for MILPs.

Proposition 1.3.1. Let IP1 := min{cTx : x ∈ F1} and IP2 := min{cTx : x ∈ F2} be two
MILP problems. We denote by F1 and F2 the feasible regions of IP1 and IP2. Let z∗1 and z∗2
denote respectively the optimal objective value of IP1 and IP2. If F1 ⊆ F2, then z∗1 ≥ z∗2 .
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Proof. The proof of this proposition is straightforward. If the optimal solution of IP1
exists and can be found at point x∗1 ∈ F1, then by inclusion, x∗1 is also in F2 and the
optimal objective value of P2 is at most z∗1 . Moreover, if we adopt the convention that
the optimal value of an infeasible problem is +∞ and the one of unbounded problem
−∞, this proposition still holds. If IP2 is infeasible, then F2 is empty, which implies
that F1 is also empty and IP1 also infeasible. On the other hand, if IP1 is unbounded,
then there exists a sequence of {xn}n in F1 whose objective value is unbounded, i.e.,
lim infn→∞ cTx = −∞. By inclusion, this sequence is also in F2, hence the problem
IP2 is also unbounded.

We then consider an MILP problem of the form IP := min{cTx : x ∈ F}, where
F = P0 ∩Zp ×Rn−p and P0 = {x ∈ Rn : Ax ≤ b}. P0 is the convex set obtained
when removing the integrality constraints on the variables of IP. Problem LP0 :=
min{cTx : x ∈ P0} is a linear program called the linear programming (LP) relaxation
of the original MILP problem.

The B&B algorithm starts with the resolution of LP0. A solution of the LP re-
laxation is said to be integer feasible if it is feasible for the original MILP problem.
There are three possible cases for the optimal solution of LP0: it may be infeasible,
non-integer feasible or integer feasible. First, if it is infeasible, from Proposition 1.3.1,
we deduce that IP is also infeasible. Second, if it is integer feasible, we can deduce
from Proposition 1.3.1 that the solution of LP0 is the optimal solution of IP. Third,
if it is non-integer feasible, i.e., if it contains non-integral values for some integer
variables, by Proposition 1.3.1, the optimal solution of LP0 provides a lower bound
of the optimal solution of IP.

In the first two cases, the algorithm may stop, having either proved that the MILP
is infeasible or found an optimal integer solution. Let us now focus on the third
case. We select one of the integer variables having a non-integral value in the LP
relaxation and denote by x1 this integer variable and by x̂1 ̸∈ Z its current value.
We create two new LP problems: LP1 (resp. LP2) is obtained by adding constraint
x1 ≥ ⌈x̂1⌉ (resp. x1 ≤ ⌊x̂1⌋) to the LP relaxation. The LP relaxation together with
these two generated LP problems form a binary tree, which is usually referred to
as the branch-and-bound search tree, and the operation of generating two new LP
problems is called branching. The root node of the tree, indexed by 0, corresponds
to Problem LP0 whereas its immediate children, Node 1 and Node 2, are associated
to the two LP problems LP1 and LP2 created by branching. Let P1 and P2 denote the
feasible region respectively of these two new LP problems. P1 and P2 are two disjoint
subsets of the feasible region of LP0, i.e., P1 ∪ P2 ⊆ P0 and P1 ∩ P2 = ∅. Moreover,
the corresponding integer sets F1 = P1 ∩Zp ×Rn−p and F2 = P2 ∩Zp ×Rn−p form
a partition of the feasible set F of IP, i.e., F1 ∪ F2 = F and F1 ∩ F2 = ∅. So the optimal
solution of IP, if it exists, is either in F1 or in F2.

We thus continue searching for the optimal solution of IP by repeating the pro-
cess described above. At each iteration, we select an active node, branch from it and
solve the LP problems corresponding to its newly created child nodes. For each child
node, we again have three cases. If the solution found is not feasible, we prune the
node and will not consider branching from it in the latter iterations. If the solution
found is integer feasible, it means that it is a feasible solution of IP. We refer to the
best integer feasible solution of IP found so far as the incumbent: each time a new
feasible integer solution is found, its value is compared with the one of the current
incumbent and if this value is better, the incumbent is updated. If the child node
returns a non-integer feasible solution, we add it to the list of active nodes and start
a new iteration by selecting another active node.
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The B&B tree thus progressively grows with each branching operation. How-
ever, as such, the B&B algorithm is equivalent to a trivial enumeration of all integer
solutions in the feasible region. In order to be more computationally efficient, we
can decide to prune nodes corresponding to non-integer feasible solutions by com-
paring the objective value of the associated LP problem with the one of the current
incumbent. If the objective value of the associated LP problem is worst (i.e. larger or
smaller depending on the optimization sense) than the one of the current incumbent,
we can prune this node and stop branching from it. Namely, all integer feasible solu-
tions of IP located in the feasible sub-region of IP defined by the branching decisions
made up to this node, if they exist, cannot be better than the current incumbent and
thus cannot be the optimal solution. This directly relies on Proposition 1.3.1.

Proposition 1.3.2. In the B&B search tree of a minimization (resp. maximization) problem,
the objective value of a parent node is always smaller (resp. greater) than the objective value
of its child nodes.

Proof. The proof is also straightforward, since the feasible region of a child node is
always a subset of the one of its parent node and from the Proposition 1.3.1, we show
that this proposition is true.

The B&B algorithm terminates when the set of active nodes is empty, and the
incumbent is the optimal solution of the original IP problem.

Algorithm 1 provides a detailed description of the branch-and-bound algorithm
than can be used to solve for a minimization problem.

1.3.4 Branch-and-cut algorithm

The computational efficiency of a branch-and-bound algorithm heavily depends on
the quality of the bound computed at each node of the search tree. In a nutshell, the
better this bound, the sooner a branch can be discarded and the less nodes have to
be explored before the algorithm converges. In the context of mixed-integer linear
programming, this bound is most often obtained by solving the linear programming
relaxation of the problem. The main advantage of this is that linear programs can be
very efficiently solved by the simplex algorithm. However, in many cases, the linear
programming bound is of poor quality, which negatively impacts the performance
of the branch-and-bound algorithm. In order to solve this issue, branch-and-bound
algorithms can be coupled with a cutting-plane generation approach, giving rise to
a branch-and-cut algorithm. Basically, a cutting-plane generation approach aims at
improving the quality of the linear programming bound by adding a set of linear
inequalities to the problem formulation. These inequalities are chosen so as to cut
away non-integer solutions that would otherwise be solutions of the linear relax-
ation and to improve the value provided by the linear relaxation by restricting its
feasible space. The problem of finding a cut separating a non-integer solution from
the feasible space of the linear relaxation of the MILP is called the separation prob-
lem. The branch-and-cut algorithms embedded in MILP solvers use generic cuts,
i.e. cuts that may apply to any MILP or at least to a wide range of MILPs, such as
Gomory fractional cuts, clique cuts or mixed-integer rounding cuts.

Thanks among others to the use of branch-and-cut algorithms, MILP solvers
have undergone tremendous progress over the last thirty years. For instance, [Bix12]
reported that the machine-independent computational performance of CPLEX solver
improved by a factor of 29000 between the 1.2 version of the software released in
1991 and the 11.0 version released in 2007. Yet, despite this progress, there still are
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Algorithm 1: Branch and Bound Algorithm for a minimization problem
Data: The MILP formulation of the problem
Result: The optimal solution and the minimum objective value

1 Solve the LP relaxation LP0 of the original MILP problem;
2 if LP0 is infeasible then
3 return the original problem is infeasible;
4 else
5 if the solution of LP0 is integer feasible then
6 return the solution of LP0 as the optimal solution and the objective

value of LP0 as the minimum objective value ;
7 else
8 Create the root node Node 0 of the search tree and add it to the list of

active nodes;
9 end

10 end
11 Set Zbest to positive infinity and xbest to be empty;
12 while the list of active nodes is not empty do
13 Select an active node, Node i associated to problem LPi, remove Node i

from the list of active nodes;
14 Select an integer variable with a fractional value in the solution xi:

xj = x̂j,i ;
15 Create two child nodes of Node i in the search tree and index them by li

and ri ;
16 Associate to Node li an LP problem LPli corresponding to problem LPi in

which the constraint xj ≤ ⌊x̂j,i⌋ has been added to the formulation, and
associate to Node ri an LP problem LPri corresponding to problem LPi
in which the constraint xj ≥ ⌈x̂j,i⌉ has been added to the formulation;

17 for each newly created node n ∈ {li, ri} do
18 Solve the corresponding problem LPn;
19 if LPn is infeasible then
20 Prune Node n;
21 else
22 Find the optimal solution x∗n and the optimal objective value Zn;
23 if x∗n is not integer feasible then
24 if Zn ≥ Zbest then
25 Prune Node n;
26 else
27 Add Node n to the list of active nodes;
28 end
29 else
30 if Zn < Zbest then
31 Update the incumbent and set xbest ← x∗n and Zbest ← Zn;
32 end
33 end
34 end
35 end
36 end
37 return xbest and Zbest ;
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many MILPs whose direct resolution by a mathematical programming solver leads
to prohibitive computation times. In particular, this arises when the MILP to be
solved involves a large number of integer variables and constraints, as this is the
case in the LMES optimal design problem.

1.4 Research objectives and main contributions

In this thesis, we aim to create a decision-aid tool based on mathematical optimiza-
tion to help EDF practitioners at optimally designing an LMES. This tool should
take as input data a list of available energy storage and conversion technologies, to
be potentially installed in the LMES, together with a set of time series describing
the predicted evolution of energy resources’ price and availability and of the clients’
energy demands during the expected lifetime of the system. The output should be
a multi-phase deployment plan indicating the technologies to be used in the LMES
together with the number and size of the conversion and storage devices of each
technology to be installed in each construction phase. The obtained plan should en-
sure that the system will be able to satisfy the clients’ energy demands at all time
and that the total cost of the system, which includes its design and operation cost, is
minimized.

The numerical tool to be developed should be flexible enough to design a broad
class of LMESs and thus should take into account a wide range of energy resources,
energy demands and energy conversion and storage technologies. Moreover, it
should make it possible to size the selected technology in a practically relevant man-
ner, i.e. by selecting the conversion and storage devices to be installed in the LMES
among the discrete list of models available in the catalog of the equipment manufac-
turer rather than by simply fixing the capacity within a continuous range. Finally, as
the operation cost makes up a large part of the total cost of an LMES, the tool should
be able to accurately estimate this operation cost. A large number of typical and
extreme days should thus be used in the mathematical optimization model to repre-
sent, as best as possible, the various conditions under which the system will be op-
erated. Moreover, it will be necessary to take into account some practical constraints
related to the conversion devices, in particular a non-zero minimum working load
and non-linear performance curves. Finally, the tool should be able to provide de-
ployment plans with a reasonable computational effort. Namely, even if the design
of an LMES is a long-term strategic decision, the tool might not be adopted by its
end-users if the computation time needed to find a deployment plan exceeds a few
hours.

As can be seen from the description of the state of the art to be provided in Chap-
ter 2, none of the available off-the-shelf decision-aid tools is able to meet all these
needs. Moreover, to the best of our knowledge, no previously published academic
work investigated a mathematical optimization-based approach for the LMES de-
sign problem while simultaneously considering all the above-mentioned practical
features. Our contributions are thus threefold.

The first contribution pertains to the modeling of the LMES design problem as
a mixed-integer linear program. First, we explicitly consider the fact that building
an LMES is most often not accomplished in a single step but that it is rather a pro-
cess involving multiple construction phases, each of which expanding over one or
several years, to adjust to the long-term increase of the energy demand. To the best
of our knowledge, this is the first time the LMES design problem is modeled as a
multi-phase investment problem. Second, our model allows to choose the capacity
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of the installed devices within a discrete list of available models. We thus not only
decide whether a technology will be used or not in the LMES but also determine
the number and capacity of the devices belonging to this technology that should
be installed. Finally, to estimate the operation cost of the system as accurately as
possible, we build detailed daily operation schedules using hourly time steps. Each
of these operation schedules consider several realistic complicating features such
as the partial load efficiency and the minimum working load of energy conversion
devices. Clearly, taking into account all these aspects of the problem leads to the for-
mulation of a huge mixed-integer linear program which as such is computationally
intractable. We thus propose a modeling approach aiming at reducing the size of the
obtained mathematical program and at removing the non-linearities. This approach
relies on the use of a limited number of investment phases to make design decisions
and on the careful selection of a rather large number of disjoint representative days
to estimate the operation costs. Moreover, in order to obtain a mixed-integer linear
program, we use a piece-wise linear approximation of the energy conversion per-
formance curves in case these ones are non-linear. Finally, we propose to exploit
the convexity of these performance curves to build aggregate operation schedules,
i.e. schedules describing the number of active devices, the energy consumption and
the energy production of each set of identical devices, rather than detailed opera-
tion schedules describing the on/off status, the energy consumption and the energy
production of each individual device. This enables us to reduce to a significant ex-
tent the number of decision variables needed in the MILP formulation to build these
operation schedules.

The second contribution consists in the application and extension of two de-
composition approaches to efficiently solve the large-scale MILP problem. Both ap-
proaches exploit the natural hierarchy between the design decision variables (used
to build the deployment plan) and the operation decision variables (used to build the
operation schedules). This hierarchy translates into a special structure of the mathe-
matical problem. Namely, once the design decisions determining the system layout
at each investment phase are fixed, the problem decomposes into a set of indepen-
dent operation sub-problems, one for each considered representative day, aiming at
building an optimal operation schedule for this day under the current system layout.
This special structure is exploited by the hierarchical decomposition method previ-
ously published in [Yok+15] but our numerical results show that a direct application
of this method on our multi-phase problem is not computationally efficient. We thus
extend the algorithm of [Yok+15] to improve its efficiency at solving our multi-phase
problem. This is achieved in particular through the addition of single-phase no-good
cuts into the upper-level problem to forbid deployment plans using a system layout
found to be infeasible for a certain investment phase, and through the recording of
the solution value of previously solved operation sub-problems to avoid repetitive
calculations. Furthermore, we develop a new decomposition approach for the prob-
lem which can be seen as a generalized Benders’ decomposition algorithm. Note
that the classical Benders’ decomposition algorithm requires that the second-stage
sub-problems display a strong duality property, which is not the case here since the
operation scheduling sub-problems include discrete variables. We thus customize
the framework presented in [BR21] to extend the classical Benders’ decomposition
algorithm to a larger class of optimization problems. The proposed generalized Ben-
ders’ decomposition algorithm relies on a new set of feasibility and optimality cuts.
These cuts exploit the specific structure of the constraints coupling the first-stage
and the second-stage decisions in the operation scheduling sub-problems and en-
able us to obtain an algorithm with a theoretically guaranteed finite and optimal
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convergence.
The third contribution deals with the evaluation of the proposed modeling and

solution approaches on instances based on three case studies corresponding to three
real-life LMESs currently under construction by EDF in China. Two of these LMESs
are district cooling systems (DCS) aiming at meeting a demand for cold. The third
one is a district cooling and heating system aiming at meeting a demand for cold
and heat: for this system, the installation of a trigeneration system, i.e. of a device
capable of converting gas into electricity, cold and/or heat, is considered. For each
of these three projects, the deployment plan includes multiple construction phases.
Moreover, each system potentially involves conversion devices with non-linear per-
formance curves and a non-zero minimum load rate. Our numerical results showed
that the two proposed decomposition approaches significantly outperform, in terms
of solution quality and computation time, both an MILP solver directly solving the
MILP formulation and the previously published hierarchical decomposition method
at solving the problem. In particular, the proposed generalized Benders’ decompo-
sition algorithm was able to solve all the considered instances to optimality within
two hours of computation. However, solving the MILP problem to optimality does
not guarantee that the obtained deployment plan is optimal with respect to the ini-
tial optimization problem as some approximations were made during the problem
modeling. We thus carried out a post-optimization simulation study to evaluate the
quality of the deployment plans obtained for the two DCS projects. Overall, this
study indicates that, provided the number of representative days used in the model
is large enough, the design decisions do not depend on the subset of selected repre-
sentative days and the operation cost is estimated with a good level of accuracy by
the optimization model so that the obtained deployment plans may be confidently
recommended for a practical implementation.

This remainder of this manuscript is organized as follows. In Chapter 2, we re-
view the academic works closely related to ours, focusing in particular on the ones
using an MILP model and/or a decomposition-based solution approach. In Chapter
3, we provide a detailed description of the optimization problem. We start by intro-
ducing the main components of an LMES: the commodities and the energy conver-
sion and storage technologies. We then explain a number of additional aspects to be
considered when designing an LMES and formally state the resulting optimization
problem in terms of input data, decisions, constraints and objective function. Chap-
ter 4 is devoted to the problem modeling and to its mathematical formulation as an
MILP. We present among others the modeling choices and assumptions we made
to obtain an MILP of tractable size. We then provide a detailed description of the
three case studies used to create instances of the problem. We finally present the
numerical results obtained when attempting to directly solve these instances with
CPLEX 12.8 solver using the proposed MILP formulation. In Chapter 5, we extend
the hierarchical decomposition approach previously published in [Yok+15] to make
it more efficient at solving the large-scale MILP model formulated in Chapter 4. This
approach is applied on the three case studies. Our computational results show a
clear improvement of the computational efficiency on the instances related to the
two DCS projects. However, out-of-memory issues were still encountered while try-
ing to solve the instances related to the trigeneration project. In Chapter 6, a new
generalized Benders’ decomposition algorithm is proposed. This new generalized
Benders’ decomposition algorithm relies on the specific structure of the constraints
coupling the first-stage and the second-stage decisions in the operation scheduling
sub-problems and extends the scope of the traditional Benders’ decomposition to
the case where sub-problems are MILP problems. The results of our computational
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experiments, carried out on instances based on our three case studies, are reported.
They show that the generalized Benders’ decomposition algorithm clearly outper-
forms all the other considered algorithms at solving the problem. Moreover, the
outcome of a post-optimization simulation study carried out to evaluate the quality
of the deployment plans obtained for the two DCS projects is discussed. Finally, in
Chapter 7, we provide a general conclusion and discuss several potential research
perspectives.
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Chapter 2

State-of-the-art on the LMES
design problem

2.1 Introduction

We provide in this chapter an overview of the works closely related to ours. We first
discuss in Section 2.2 papers proposing a mathematical-programming based model
to optimize the design of an LMES. We also present several already existing numer-
ical MILP-based tools that may assist in managing and designing an LMES. We then
focus in Section 2.3 on the literature dealing with solution algorithms relying on a
decomposition of the main problem into a strategic design master problem and one
or several operation scheduling sub-problems.

2.2 Mathematical programming models

Several modeling and optimization techniques have been investigated to tackle the
problem of optimally designing an LMES: see e.g. [KV21] for a recent review on
existing approaches. Among all these techniques, mixed-integer linear program-
ming appears to be one of the most widely studied. This may be explained by the
fact that MILP offers a high flexibility for modeling the problem and that several
off-the-shelf mature commercial solvers (e.g. CPLEX [IBM21], Gurobi [Gur21] and
Xpress [FIC21]) capable of solving large size MILPs to optimality with a reasonable
computational effort are now available.

This section thus aims at presenting the current state of the art on MILP models
for the LMES design problem. Our work initially focused on the optimal design
of district cooling systems (DCS) supplying a single type of energy (cold) and was
later generalized to a broader class of local multi-energy systems supplying energy
under different forms (cold, heat, electricity...). In what follows, we thus first review
the works related to the design of a DCS before broadening the discussion to papers
investigating the design of more general LMESs.

2.2.1 Optimal design of district cooling systems

DCSs have been the subject of many research works. We refer the reader to the
two recent literature reviews provided by [EA19] and [Gan+16] for a general intro-
duction on this domain and concentrate on papers dealing with a mathematical-
programming based approach to optimally design a central chiller plant.

As mentioned among others by [EA19], most previously published works focus
on optimizing the DCS distribution network configuration. Thus, we could find only
a limited number of papers discussing the design of the central chiller plant. [Sö07]
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studies the optimal design of a district cooling network in an urban region. His
problem consists in simultaneously locating and sizing a set of electric-powered
compression chillers and of cold water storage sites and in selecting cooling pipeline
routes to distribute the chilled water to the customers’ buildings. The optimization
problem seeks to minimize the total cost of building the system and operating it,
i.e. of running the installed chillers and pumping the water in the pipes. A set
of 8 twelve-hour periods are used to represent the seasonal and daily (night/day)
variations of the cooling demand. [KH15] considers a similar problem and uses an
oriented graph to represent the potential DCS. This graph comprises a single supply
node representing the central chiller plant whose location is assumed to be known,
a set of demand nodes representing the customers’ buildings and a set of connection
nodes corresponding to pipe junctions. Their design problem involves choosing the
chiller plant capacity and the storage tank capacity among a discrete set of options,
in selecting the arcs of the networks where distribution pipes should be built and in
sizing these pipes. [ANKH19] extends the work of [KH15] to the case where chillers
may be installed at different potential supply nodes in the graph. Both works as-
sume that the cooling demand of each connected building is one-day periodic and
stationary and use a single typical day divided into 4 to 24 scheduling periods to
evaluate the operation cost of the system. [Alg+20] addresses the problem of opti-
mally designing a DCS based on an absorption chiller using the hot water obtained
from a set of solar collectors to produce chilled water. The design decisions involve
determining the type and area of the solar collectors, sizing the absorption chiller
and the auxiliary boiler and choosing the capacity of the cold and hot thermal stor-
age tanks. The operation cost of the system is estimated by considering 12 typical
days (one per each month in the year) divided into 24 scheduling periods. In all
the above-mentioned works, the obtained optimization problem is formulated as a
mixed-integer linear program and directly solved by a mathematical programming
solver.

2.2.2 Optimal design of local multi-energy systems

Unlike DCSs which supply energy under a single form (cold), an LMES involves
multiple forms of energy and a wide variety of conversion and storage devices,
which significantly complicates the design problem. Several articles ([Yok+15;
WHY21; Zho+13b]) point out that directly solving to optimality the LMES design
problem with an MILP solver might not be possible in practice. These numerical
findings are backed by the recent theoretical results presented in [GCW19]. The op-
timal design problem, which is referred to as the synthesis problem in this paper, is
proven to be NP-hard even if there is a single type of conversion device, no storage
device and a single period to represent the demand at the operational level.

In what follows, we review papers dealing with the design of the central power
plant of an LMES. Papers dealing with the structure of the pipeline networks, such
as [CEA+15], [Meh+13] or [WMF07], are out of the scope of this study. Tables 2.1
and 2.2 provide a summarized description of a list of recent papers dealing with
the optimal design problem of an LMES. Each work is described according to five
main features. The first three features, which are related to the problem modeling,
are presented in Table 2.1. We thus consider the structure of the LMES (i.e., the
available energy resources, the form of the energy demands to be met, the available
conversion and storage technologies), the temporal granularity (length of a schedul-
ing time-step and number of representative days) used to estimate the operation
cost and the representation of the conversion efficiency of the devices (constant or
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partial-load efficiency). The last two features, which are related to the mathematical
formulation and the solution approach, are presented in Table 2.2. We thus report for
each paper the type (continuous, integer or binary) of the design and operation vari-
ables, the characteristics of the mathematical formulation (mixed-integer linear or
non-linear programming) and the type of solution approach (direct resolution by a
solver, evolutionary algorithm, Benders’ decomposition...). Notice that in [Zho+13b]
and [Ste+15], the proposed mathematical model can be used to design a wide range
of LMESs and does not assume a specific structure of the system: this is indicated by
noting "All" for the set of energy resources, energy demands and conversion tech-
nologies in Table 2.1.

Tables 2.1 and 2.2 show among others the wide variety in terms of structure of the
LMESs investigated in the literature. In what follows, we review the papers while
focusing mainly on the way the structure of the LMES is determined in the mathe-
matical model and on three aspects which have a strong impact on the formulation
of the operation sub-problems: the representation of the performance curves, the in-
corporation of an imposed minimum load for conversion devices and the presence
of storage devices. The solution approaches will be compared and discussed in the
next section.

We first compare the papers with respect to the way design decisions about the
type and capacity of the installed devices are made: see column ’Design variables’
in Table 2.2. We note that most papers use a combination of binary and continuous
(’B+C’) variables. The binary variables are used to decide whether a specific technol-
ogy (heat pump, electric heater, gas-fired boiler, photo-voltaic panels...) or the device
corresponding to this technology is selected or not. Continuous variables are used
to determine, for each selected technology, the capacity of the installed device. Note
that some papers [Zho+13b; UDT19; Ste+15; AFF07] use only continuous variables
for the system design. However, sizing a technology, i.e. determining the capacity
of the corresponding device installed in the system, using continuous variables is
not relevant for many industrial case studies. Namely, in practice, the capacity of
the installed devices cannot be set to any arbitrary value but rather has to be chosen
within a set of discrete values. This set is defined by the catalog of available models
provided by the equipment manufacturer. Moreover, using binary variables to de-
cide whether a technology will be used or not in the LMES relies on the assumption
that there is a single type of device available for this technology whereas there may
be several types of devices, each one corresponding to a given capacity, for a given
technology. This is why integer variables indicating the number of devices of each
type (i.e. of each technology and each possible value of the capacity) to be installed
should be used to determine the structure of an LMES. We found only four papers
[Zho+13a; Ren+10; CSL11; Yok+15] using integer variables to determine the number
of conversion devices to be installed in the system. Moreover, in [OHO16], a single
integer variable is used to determine the number of solar thermal collector panels to
be built, while the size of the electric heater is chosen within a continuous range.

The second important aspect when modeling the LMES design problem by MILP
is the representation of the performance curves of the conversion devices: see col-
umn ’Conversion efficiency’ in Table 2.1. Recall that these curves provide the amount
of energy consumed by a device as a function of the energy produced. The conver-
sion efficiency of a device may depend on many factors such as the ambient tem-
perature (see e.g. the solar thermal collectors in [OHO16]) or the capacity of the
device (see e.g. the gas turbine of the combined heat and power unit in [WMF07]).
As long as these factors do not depend on the scheduling decisions, the conversion
efficiency can be considered as constant, which results in linear performance curves.
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However, for some types of device (e.g. electric chillers), the conversion efficiency
depends on the load rate of the device, which is a scheduling decision, and most
often, its partial-load efficiency is smaller than its full-load or nominal efficiency.
This translates into non-linear performance curves, which are difficult to handle in
the MILP formulation. Note that the vast majority of the reviewed papers assume
a constant conversion efficiency and use linear performance curves. We could find
only three exceptions. In [Zho+13a], the non-linear performance curves of the gas
boiler, the gas engine and the absorption chiller are linearized using a piece-wise lin-
ear approximation approach. The fuel consumption of the combined heat and power
(CHP) component in [Els+17] depends on both the load rate and the extraction valve
opening rate: the authors use a triangle method [DLM10] to approximate this func-
tion by a two-dimensional piece-wise linear function. In [UDT19], the partial-load
efficiency of a combined heat and power unit is explicitly considered in the model,
leading to the formulation of an MINLP.

There is a third feature strongly impacting the problem modeling: the minimum
load rate of the conversion devices. Namely, in some cases, the output power of a
device cannot take any arbitrary value between zero and its maximum capacity. In-
stead, a device, when active, has to produce a minimum amount of power. As can
be seen from the column ’Operation variables’ of Table 2.2, most papers use binary
variables to represent the on/off status in each scheduling time-step of the single
piece of equipment installed for each technology. However, models using a binary
variable for selecting a technology and a continuous variable for sizing it neglect the
fact that there will in fact be multiple devices of this technology in the system and
can therefore not optimize the detailed operation of these multiple devices. The sim-
ulation study presented in [Che+20] shows that the actual energy consumption of a
DCS designed while explicitly building optimal schedules for each of the chillers in-
volved in the system can be around 20% that the one of a DCS designed while using
a simplified control strategy not taking into account the presence of multiple chillers
in the system. Among the three papers using integer design variables to determine
the number of devices of each type to be installed, we may distinguish two cases.
[Zho+13a] builds a detailed operation schedule for each individual device thanks to
the use of binary operation variables whereas [Ren+10] builds an aggregate oper-
ation schedule for the set of similar devices thanks to the use of integer operation
variables. As for [CSL11], the authors’ focus is mostly on the environmental impact
of the system design and operation details, such as the minimum load rate of the
conversion devices, are not considered in their model.

Finally, the last aspect to be discussed is the presence of energy storage devices in
the LMES: see column ’Storage technology’ in Table 2.1. When there is no storage de-
vice in the system, the only way to satisfy the energy demand in a given time-step is
to produce it through a conversion device during this time-step. Therefore, once the
system design is determined, each operation sub-problem consists in ensuring the
demand satisfaction in a single time-step and is thus of limited size. In contrast, the
presence of an energy storage device results in a coupling between the scheduling
time-steps as the amount of energy stored in the device at the end of a time-step de-
fines the amount of energy available in this device at the beginning of the following
time-step. These means that the single time-step operation sub-problems mentioned
above are linked together by inventory balance equations, leading to larger and more
difficult to solve operation sub-problems. As shown in Table 2.1, about one third of
the reviewed articles do not involve energy storage in their system. Among the ar-
ticles considering energy storage, the most common method to assess the operation
cost of the LMES consists in using representative days, each one typically covering
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24 one-hour time-steps. These representative days are chosen to represent as best as
possible the energy demand profile along the year and are assigned a weight cor-
responding to the number of actual days in the year they represent. [MEC16] and
[Wak+19] both use a set of disjoint representative days, i.e. a set of representative
days not linked to one another by inventory balance equations, and build a separate
schedule for each of these days. Note that they consider that the entering energy
inventory at the beginning of a representative day should be equal to the leaving
energy inventory of the same day. This amounts to assuming that each represen-
tative day will be cyclically repeated during the year a number of times equal to
its weight. [UDT19] consider inventory balance equations for all time-steps of the
year and apply the rolling-horizon approach described in [Bis+19]. This approach
solves a sequence of operation sub-problems spanning two consecutive days. At it-
eration k, an operation schedule is buit for two consecutive days, denoted by Day
k and Day k + 1 and the inventory level at the end of Day k is recorded. This level
is used during iteration k + 1 to define the inventory level at the beginning of the
Day k + 1 and build an operation schedule for Days k + 1 and k + 2. [Gab+18] also
build an operation schedule spanning a whole year and taking into account all the
inventory balance equations. However, they use an approximation enabling them to
significantly reduce the number of binary scheduling variables and to obtain a com-
putationally tractable problem. Namely, the authors propose to first build clusters of
days. Then, when building the operation schedule for the whole year, they impose
that the binary scheduling variables describing the on/off status of each device in
each time-step should take the same value for all the days belonging to the same
cluster. They however allow the continuous variables describing e.g. the output
power of each device to vary from one day to the next in each cluster.

We end this section by a short discussion on the available decision-aid tools that
may be used to optimize the cost of energy systems ([VBGS15; Man14; Lop+18]).
Noe of them seems to be versatile enough to model and optimize all the aspects
of an LMES that we wish to take into account. For example, the tools Balmorel
[Bal21; Wie+18] and EnergyPLAN [Ene21]) can only optimize the operational cost.
The tool DER-CAM ([DC21]) models an LMES by an MILP and can find an optimal
strategy for the planning and operation of the system. It however does not allow to
make design decisions and cannot take into account the fact that some devices may
be operated under multiple modes (such as a dual-mode electric chiller producing
either cold water or ice). Finally, eTransport ([BSW07]), another tool based on MILP,
focuses on the topology structure of the system and the timing of the investments to
be made. But its modeling of the operational functioning is not detailed enough to be
used in our case as it considers neither the partial load efficiency, nor the minimum
load rate, nor the multiple operation modes of energy conversion devices.

2.3 Decomposition-based solution approaches

Modeling the optimal design of local or district energy systems as a combinatorial
optimization problem leads to the formulation of large-size mathematical programs
which are very challenging to solve. Consequently, a wide variety of operation
research-based solution approaches have been investigated for these problems. We
focus here on the subset of approaches exploiting the natural hierarchy between the
design and the operation decisions to decompose the optimization problem. More
precisely, in the considered works, the optimization problem is split into a master
problem determining the general structure of the energy system and one or several
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Energy
resource

Energy
supply

Conversion
technology

Storage
technology

Timestep
&

scale

Conversion
effciency

[Els+17] Fuel E, H CHP
boiler H 1 hour

3 rep. weeks partial-load

[MEC16] S, E,
G, H

E, H,
ES

CHP, PV, ST
boiler H 1 hour

12 rep. days constant

[Zho+13b] All All All H, I, B 1 hour
4 rep. days constant

[UDT19] Fuel E,H CHP,
boiler H

1 hour
1 year

(rolling horizon)
partial-load

[OHO16] S, E H ST, EH H 1 hour
1 year constant

[Ste+15] All All All H, I, B 1 hour
24 rep. days constant

[Zho+13a] E, G E, H, C CCHP,
boiler H 1 hour

3 rep. days partial-load

[Ren+10] E, G,
S, W

E, H,
C, HW

CCHP, PV,
boiler, FC,

HP, WT
B 1 hour

2 rep. days constant

[AB16] E, S,
Fuel

E, ES,
H, C

CCHP, PV,
boiler, EC / 1 hour

2 rep. days constant

[CSL11] G, E H, C CCHP, EC,
boiler / 1 hour

24 rep. days constant

[Gab+18] G, E,
S E, H PV, FC,

boiler, EL
B, H,
H2

1 hour
3-72 rep. days constant

[Wak+19] G, E E, H CHP, HP H 1 hour
12 rep. days constant

[AFF07] G, E E, H, C,
ES, HW

CHP, HP,
boiler / 1 hour

12 rep. days constant

[YZX15] G, E E, H, C CCHP, EC,
boiler / 2 hour

3 rep. days constant

[CEA+15] G, E H, C CCHP, Airco,
boiler H 1 hour

3 rep. days constant

[Meh+13] G, S H, E CHP, PV,
boiler H 1 hour

3 rep. days constant

[WMF07] G, E H, ES,
E,HW

CHP, HP,
boiler / 12 hour

1 rep. days constant

[WHY21] G, H, E H, ES,
E, C,HW

CCHP, GFAC,
boiler H 1 hour

3 rep. days constant

[Yok+15] G, E E, H, C CCHP, EC,
boiler / 1 hour

3 rep. days constant

[Sch+18] G, E,
S

H, E,
ES

ST, EH, PV,
HP, CHP,

boiler
H, B 1 hour

12 rep. days constant

[Liu+20b] G, S, W E, H, C
CCHP, FC,
EC, PV, HP,

boiler

H2, B,
H, C

1 hour
4 rep. days constant

Energy Type: S = solar radiation, E = electricity, G = natural gas, W = wind power, H = heating power, C = cooling power,
ES = electricity sold to the grid, HW = hot water. Conversion Technology: CHP = combined heating and power, ST = solar
thermal collector, EH = electric heater, CCHP = Combined cooling, heating and power, FC = fuel cell, HP = heat pump,
WT = wind turbine, EC = electric chiller, EL = electrolyzer, Airco = air conditioning, GFAC = gas-fired absorption chiller.
Storage Technology: H = heat storage, C = cooling storage, B = battery, H2 = hydrogen.

TABLE 2.1: Recent articles on the optimal design problem of LMES
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Design
variables

Operation
variables Formulation Solution

approach

[Els+17] B+C B+C MINLP EA+MILP
[MEC16] B+C B+C MILP Direct
[Zho+13b] C B+C MINLP EA+MILP
[UDT19] C B+C MINLP EA+MILP

[OHO16] I+C C MILP Iterative
procedure

[Ste+15] C C LP DER-CAM
[Zho+13a] I B+C MILP Direct
[Ren+10] I I+C MILP Direct
[AB16] B+C B+C MILP Direct
[CSL11] I B+C MILP Direct
[Gab+18] B+C B+C MILP Direct
[Wak+19] B+C B+C MILP AIS+MILP
[AFF07] C B+C MINLP Direct
[YZX15] I+C I+C MILP Direct
[CEA+15] B+C C MILP Direct
[Meh+13] B+C C MILP Direct
[WMF07] B+C C MINLP EA+LP

[WHY21] B+C B+C MILP BD+DW
(sub-optimal)

[Yok+15] I B+C MILP Hierarchical
decomposition

[Sch+18] B+C B+C MILP DW
[Liu+20b] B+C B+C MILP Direct

Variable type: I = integer, B = binary, C = continuous. Solution ap-
proach: EA = evolutionary algorithm, AIS = artificial immune sys-
tem, BD = Benders decomposition, DW = Danzig-Wolfe decomposi-
tion, DER-CAM = a numerical tool.

TABLE 2.2: Recent articles on the optimal design problem of LMES
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sub-problems seeking to optimize its daily operation management under various
demand and price conditions.

A first set of approaches is based on evolutionary algorithms: see among others
[WMF07], [Els+17], [Zho+13b] and [UDT19] in Table 2.2, as well as [FBM14] which is
not in the table. These works consider a master problem in which all the operational
decision variables and constraints have been removed and explore the set of feasible
design decisions through a scatter search algorithm [UDT19; Zho+13b; Els+17] or
a multi-objective evolutionary algorithm [WMF07; FBM14]. The operation cost of
each potential design solution considered during this exploration is evaluated by
solving a set of scheduling sub-problems using a mixed-integer linear programming
solver.

Benders’ decomposition algorithms such as the ones investigated e.g. by [FS16]
and [LB15] also consider master problems comprising only design decisions. The
impact of these decisions on the operation scheduling sub-problems is taken into
account in the master problem through a set of feasibility and optimality cuts. Note
however that the generation of these cuts rely on the assumption that the schedul-
ing problems are linear or convex programs involving neither binary nor integer
variables. This implies that these algorithms may not straightforwardly extended to
incorporate features such as a minimum working load or multiple operating modes
for the conversion devices. [WHY21] also proposes to apply Benders’ decomposition
to a design problem in which sub-problems contains binary variables. The feasibility
cuts are added in the form of no-good cuts but the optimality cuts are generated by
using the dual solution of the linear relaxation of the scheduling sub-problems. This
means that the operation cost is under-estimated in the master problem and that the
obtained design solution is sub-optimal.

A decomposition approach based on the selection of representative days is pro-
posed in [Tso+20]. The system design is determined by solving a MILP problem
with a small number of representative days, and then, its corresponding operation
cost over the full time horizon is computed. If the gap between the total cost com-
puted with representative days and the total cost over the full time horizon is larger
than the threshold, the algorithm increases the number of representative days and
repeats the whole process.

Finally, several works consider master problems in which some or all of the op-
erational decision variables and constraints are kept within the master problem but
only (relaxed) continuous operation variables are considered. In this way, [IG98]
proposes a bi-level decomposition method. At the upper level, they formulate a
master problem corresponding to the initial optimization problem in which all the
binary operation variables have been removed but the continuous ones are kept.
This master problem selects the conversion devices to be installed. Each time a po-
tential system design is found, a set of lower level sub-problems is solved, each
one taking as input the current system design and seeking to build optimal single-
period schedules. The authors introduce the concept of design cuts to tighten the
gap between the solutions obtained at both levels. [Yok+15] also presents a bi-level
decomposition method. The upper level problem is a relaxed version of the initial
optimization problem, in which all operation integer variables are kept but relaxed
to be continuous. This problem is solved by a Branch & Cut algorithm. Each time a
potential incumbent solution is found during the tree search, a set of single-period
independent scheduling sub-problems is solved to check the feasibility and accu-
rately compute the operation cost of the current system design.
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2.4 Conclusion

We provided in this section an overview of the literature closely related to our prob-
lem. This overview enabled us to identify a significant gap between the current state
of the art on the LMES design problem and our industrial problem.

Namely, we first note that all reviewed works consider a single construction
phase while, in our practical problem, the LMES is to be built and extended pro-
gressively following a multi-phase deployment plan. Second, in most previously
published works, the sizing of technologies is oversimplified. Namely, these works
assume that, for each technology, there is a single piece of equipment to be installed
and that the capacity of this device may be set to any value within a continuous
range. As mentioned above, in practice, we may install several devices correspond-
ing to the same technology, the capacity of which should be selected among a set
of discrete values corresponding to the models available in the catalog of the equip-
ment manufacturer. Third, due to the high complexity of the problem, the assess-
ment of the operation cost is usually carried out by introducing some simplifications
on the functioning of the conversion devices, in particular with respect to their con-
version efficiency, and by using a limited number of representative days. In terms of
solution approach, most of the reviewed papers solve the MILP problem directly by
a mathematical solver. Some articles propose decomposition algorithms exploiting
the hierarchical structure of the LMES but only a handful of these algorithms has a
guaranteed finite and optimal convergence.

This is why, in this thesis, we aim to extend the current state of the art in or-
der to meet the needs of our industrial partner. We thus seek to develop an MILP
model of the LMES design problem which can simultaneous take into account (i)
multiple construction phases, (ii) a wide range of energy resources, energy demand,
energy conversion and storage devices, (iii) a realistic choice of these devices among
the models available at the manufacturer, (iv) the non-linearity of the performance
curves of some conversion devices and (v) a number of representative days suffi-
ciently large to obtain a good estimation of the actual operation cost of the system.
In order to solve the resulting large-size combinatorial optimization problem to op-
timality within an acceptable computation time, we will investigate and extend de-
composition algorithms exploiting the bi-level nature of the problem.
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Chapter 3

Problem description

3.1 Introduction

This chapter provides a detailed description of the optimization problem under
study and introduces the various elements to be taken into account when model-
ing it as a mathematical program.

In Section 3.2, we first introduce the key components of a generic LMES and
provide a short technical description for the main energy conversion and storage
technologies encountered in LMESs. We then further explain in Section 3.3 a num-
ber of additional aspects to be considered when designing an LMES. In Section 3.4,
we formally state the optimization problem by defining the problem input data, the
decisions to be made, the main constraints to be respected and the performance cri-
terion to be optimized. Section 3.5 finally describes three application case studies
corresponding to LMESs EDF is currently developing in China.

3.2 Components of an LMES

An LMES usually comprises one or several local energy plants, producing energy
under multiple forms, and a distribution network to distribute this energy to the
buildings connected to the system. In the present work, we will consider the case
where the LMES involves a single local energy plant and will focus on choosing
and sizing the conversion and storage devices in this energy plant. The problem of
optimally designing the distribution network is thus outside of the scope of this PhD
thesis. This corresponds to situations, often encountered in practice, in which the
LMES system to be designed will use local pipeline networks which either already
exist or will be built by a partner company. Such situations were considered e.g.
in [AFF07; GCW19; Sch+18].

The central energy plant of an LMES involves a large number of various com-
ponents and the complexity of its structure makes the design problem difficult to
solve. However, not all the components have the same importance when making
long-term decisions on the system layout. Our focus will be on choosing and siz-
ing the energy conversion and storage devices so that the structure of the central
energy plant can be significantly simplified without a big loss of accuracy. Thus,
auxiliary components (such as pipes, valves, pumps and etc.) will not be considered
in our problem modeling. Namely, the cost of these auxiliary elements is usually ei-
ther fixed or proportional to the cost of the selected conversion and storage devices.
It can thus be incorporated in the construction cost of these devices without major
consequences on the long-term design decisions.
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Therefore, we will consider two main classes of components of the LMES: com-
modities and technologies. Commodities refer to the various forms of energy in-
volved in the system: electricity, cooling power, heat... Technologies are the pro-
cesses which transform one or several types of commodities into one or several other
types of commodities.

In what follows, we discuss in more detail the commodities and technologies to
be considered.

3.2.1 Commodities

We first classify the available commodities into three sub-types according their role
in the LMES: resource commodities, supply commodities and intermediate com-
modities.

A resource commodity refers to a form of energy consumed by the system (e.g
electricity from the national grid, natural gas and solar radiation). It is associated to
a buying price, and/or to a limit on the available instantaneous power.

A supply commodity refers to a form of energy produced by the LMES. It can be
used to satisfy the customers’ demand (e.g. cooling power, heating power, electric-
ity), in which case it is associated to a time-varying demand that should be satisfied
at all time. In some cases, a supply commodity can also be sold (e.g. generated
electricity sold to the national grid) and it is associated with a selling price.

Finally, an intermediate commodity refers to a form of energy produced and con-
sumed within the system (e.g. hot water for storage, locally generated electricity,
ice, exhausted gas). Intermediate commodities, as they exist only within the system,
should be balanced between production and consumption.

Besides this classification based on their role in the LMES, commodities can also
be described according to their nature. We introduce in what follows several types
of commodities commonly used in LMESs.

Electricity An LMES generally consumes electricity coming either from the na-
tional grid or from a local generation. According to our classification, the electricity
bought from the national grid is a resource commodity for which a time-varying
price per unit of consumed electricity is charged. In some cases, there is also a limit
(determined e.g. by a contract with the electricity supplier) on the electric instanta-
neous power that the LMES is allowed to consume. Electricity can also be generated
locally by Combined Heat and Power (CHP) units or photo-voltaic (PV) panels. This
locally generated electricity can be seen as an intermediate commodity consumed
within the LMES by some conversion devices and/or as a supply commodity sold
to the national grid or used to satisfy the customers’ demand for electricity.

Natural gas Natural gas is a resource commodity for an LMES. The unit buying
price of natural gas is usually much more stable than the one of electricity. The flame
temperature of natural gas is around 1980◦C, which means that its combustion gen-
erates a lot of heat. Natural gas can thus be used to supply an internal combustion
engine generating electricity and/or to provide direct heating. When it is used to
generate electric power, the exhaust heat can be collected by heat exchangers or ab-
sorption chillers to produce heating or cooling power. This technique is widely used
to improve the energy efficiency of natural gas combustion.
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Chilled water The thermal energy produced in the central plant of an LMES is
transferred to the customers via a pipeline network, in which the circulating medium
is usually water. Chilled water has a temperature lower than the one of the ambient
environment and is used among others to provide air conditioning to the customers
in summer. Chilled water is obtained either by cooling down water through devices
such as chillers and heat pumps or by melting ice held in a thermal storage tank.
Chilled water is transferred to the customers’ buildings and is thus considered as a
supply commodity with a given time-varying demand to be satisfied.

Ice Similar to chilled water, ice is produced to provide cooling power to the cus-
tomers. Ice is obtained by cooling down water below its melting point through spe-
cific devices such as dual-mode chillers. Once produced, ice is usually stored for a
short period of time (typically a few hours) in a thermal storage tank. When neces-
sary, the LMES operator can melt the stored ice to obtain chilled water to be trans-
ferred to the customers’ buildings. Ice is thus a way of storing thermal energy and
is not used directly to satisfy the customers’ demand. In an LMES, it is considered
as an intermediate commodity.

Hot water In winter, hot water is circulated in the pipeline network to satisfy the
customers’ heating demand. The heating energy carried by hot water can be ob-
tained from the combustion of gas (e.g. in a CHP unit or a boiler) or from an
electricity-driven thermodynamic cycle (e.g. in an air source heat pump). The hot
water may be directly circulated to the customers’ side to provide heating energy or
be stored for a short period of time in a thermal storage tank. Hot water is thus both
an intermediate and a supply commodity in an LMES.

Solar radiation Solar radiation is seen as a clean and sustainable source of energy
but it has some practical drawbacks. First, it is of course only available at daytime.
Second, its availability strongly depends on the weather conditions and on the sea-
son. In practice, researchers use local historical solar radiation records to forecast the
future availability of solar energy: see e.g. [Alg+20; Tso+20]. Solar radiation is thus
considered as a resource commodity which is free (the unit buying price is zero) but
has a strongly time-varying limited availability. Solar radiation can be converted to
electricity by photo-voltaic panels and/or to hot water by solar collectors.

3.2.2 Technologies

The energy conversion and storage technologies that may be used in an LMES differ
among others with respect to their technical functioning and to the consumed and
produced commodities. Due to the high variety of available technologies, it is not
possible to provide here an exhaustive description. We thus only briefly present
some technologies commonly used in LMES, focusing in particular on the ones
encountered in our application case studies. For each considered technology, we
present among others the consumed commodities, the produced commodities, the
working load range, the conversion efficiency and the sizing pattern.

Electric chillers An electric chiller is a machine converting electricity into cooling
power. This cooling power can be in the form of chilled water, which circulates
through a pipeline network to absorb the heat in the buildings served by the LMES,
or in the form of ice, which is stored in a thermal storage tank for a few hours and
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melted into chilled water afterwards. Not all chillers produce ice. We thus refer to
chillers producing only chilled water as single-mode electric chillers (SMEC) and to
chillers producing both chilled water and ice as dual-mode electric chillers (DMEC).
An electric chiller has a working range defined by a maximum load, i.e. a maximum
amount of cooling power it can produce per hour, and a minimum load, i.e. a min-
imum amount of cooling power it produces per hour when turned on. In practice,
the minimum load under which it cannot be operated is equal to 10% to 20% of its
maximum load. The efficiency of a chiller is usually characterized by its coefficient
of performance (COP), defined as: COP = removed heat

input electricity . The value of this COP is not
constant: it varies with the chiller load, i.e. with the amount of produced cooling
power, and with the ambient temperature. For example, at an ambient temperature
of 30◦C, the COP of a single-mode chiller is about 6 when it is operated at full load,
but goes down to 4 (resp. to 3) when the chiller is operated at a 30% (resp. 20%)
load rate. Taking into account this varying part-load efficiency is especially impor-
tant when the cooling demand is satisfied by multiple chillers running in parallel:
the load rate of each active chiller should be carefully chosen to maximize the over-
all conversion efficiency. When designing an LMES in which some cooling capacity
is required, we have to select the types of chillers to install by choosing among the
available types of chillers provided in a given predefined list. Each type of chiller
corresponds to a given category (either SMEC or DMEC), to a given working range
(i.e. a minimum and maximum load) and to a given set of performance curves.
These performance curves give the amount of consumed electricity as a function of
the produced cooling power for some discrete values of the ambient temperature.
The design decisions thus correspond to determining the number of chillers of each
type to be installed in the system.

CHP unit A Combined Heat and Power (CHP) unit, also called cogeneration sys-
tem, converts natural gas to electricity and heating power. It contains two main com-
ponents: a gas engine and a heat exchanger. A gas engine is an internal combustion
engine which consumes gaseous fuel (usually natural gas in an LMES) to generate
electric power. The exhaust heat is collected by the heat exchanger to obtain heat-
ing power. As mentioned above, the locally generated electricity is an intermediate
commodity consumed by other devices in the LMES and/or a supply commodity
distributed to the customers and sold to the national grid. The heating power pro-
duced is either an intermediate commodity stored in a thermal storage tank or a
supply commodity used to satisfy the heating demand of the customers. The gas
engine has a minimum working load which is usually set to more than half of its
maximum working load or capacity [Bis+14]: this means that a CHP unit should
be operated within a minimum and maximum working load. Moreover, since the
thermal energy is collected from the waste heat of power generation, heating power
and electric power are always produced simultaneously in a CHP unit. A CHP unit
is thus associated with both a heat efficiency coefficient and an electricity efficiency
coefficient measuring the conversion efficiency of gas into electricity and heat. These
two coefficients are usually constant, i.e. their value depends neither on the ambi-
ent temperature nor on the CHP load. When installing a CHP unit in an LMES, we
have to select the type of CHP unit among a discrete list of available types given in
a catalog, each type of CHP unit corresponding to a given gas engine and a given
heat exchanger. The design decisions thus correspond to determining the number of
CHP units of each type to be installed in the system.
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CCHP unit A Combined Cooling, Heat and Power (CCHP) generation unit, also
called trigeneration system, is a CHP unit linked with an absorption chiller. The ab-
sorption chiller uses some of the heat produced by the CHP unit to produce chilled
water for air conditioning. A CCHP unit thus converts natural gas into electricity,
heating power and cooling power. A CCHP unit cannot simultaneously produce
heating and cooling power. It should be either on heating mode (i.e. producing
heating power and electricity) or cooling mode (i.e. producing cooling power and
electricity). Similar to a CHP unit, a CCHP unit is associated with a heat efficiency
coefficient, a cooling efficiency coefficient and an electricity efficiency coefficient. All
these three coefficients are constant as they vary neither with the ambient temper-
ature nor with the load rate. Moreover, a CCHP unit must be operated within a
minimum and maximum working load. When installing a CCHP unit in an LMES,
we need to select the type of CCHP unit in a list of available types. Each type refers
to a specific type of gas engine, a given heat exchanger and an a given type of ab-
sorption chiller, which are linked as a whole. The design decisions thus consist in
determining the number of CCHP units for each type to be installed in the LMES.

Boiler A boiler converts natural gas to heating power. Basically, it is a pressure
vessel in which water is heated through the combustion of natural gas. This hot
water then circulates through the pipeline network to transfer heating power to the
customers’ buildings. Boilers may be operated at any value between 0 and their
maximum working load or capacity, i.e. the minimum working load is equal to
0. Their conversion efficiency is constant and does not vary with the load or the
ambient temperature. Similar to chillers and CHP units, installing a boiler in an
LMES requires to select a type of boiler from a list of available models in a given
catalog. The design decisions thus correspond to determining the number of boilers
of each type to be installed in the system.

Heat pump A heat pump converts electricity to heating or cooling power. The ther-
mal energy is transferred from the customers’ buildings to the environment thanks
to the circulation of a refrigerant which is driven by electricity. Heat pumps dif-
fer with respect to their environmental thermal source: there are e.g. air source heat
pumps, geothermal heat pumps and water source heat pumps. In contrast to electric
chillers which provide only cooling power, a heat pump can work either in heating
mode or in cooling mode by reversing the circulation direction of the refrigerant.
The cooling power produced by a heat pump cannot be stored and must be directly
consumed by customers, while the heating power can be stored in the form of hot
water. A heat pump may be operated at any value between 0 and its maximum
working load or capacity. For a given (heating or cooling) mode, its conversion ef-
ficiency, which is defined as the ratio between the thermal energy production and
the electricity consumption, varies only with the ambient temperature and does not
depend on the load rate. When designing an LMES, we are given a discrete list of
available heat pump sizes and we should choose the number of heat pumps of each
size to install.

Thermal storage Thermal storage in an LMES usually refers to a container of heat
or cooling material such as hot water or ice. There are many reasons to integrate
thermal storage in an LMES. First, thermal storage may be useful to handle the short-
term (i.e. intra-day) variations of the energy demand. Thus, the system can produce
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more thermal energy than what is requested by the customers in low-demand pe-
riods, store the excess in the thermal storage container for a few hours and use this
excess later in peak periods in which the customers’ demand is high. Thus, a ther-
mal storage may enable us to avoid installing energy conversion devices with a very
large capacity to be used only in a small number of peak periods. Second, thermal
storage may also be useful in an LMES involving co-generation devices such as a
CHP unit. Namely, recall that with this technology, heat power and electric power
are generated simultaneously when the gas engine is turned on. But the customers’
thermal demand and electric demand do not necessarily vary in the same way. In
this case, the surplus heat energy produced by the CHP unit can be stored in the
thermal storage and used later instead of being rejected in the environment [Bis+14].
A thermal storage may be used at any value between 0 and its maximum storage
capacity. When designing an LMES, this storage capacity can usually be flexibly
chosen to any value within a predefined continuous range. At the operational level,
two main constraints should be complied with when operating a thermal storage:
the amount of stored energy should not exceed the chosen thermal storage capacity
and the evolution of the stored quantity should respect energy inventory balance
equations stating that the energy flows into and out of the container together with
the energy stored within the container respect the law of energy conservation.

3.2.3 RES diagram and superstructure

The design of an LMES starts from the high-level description of the potential energy
system through a tool commonly used in the field of energy systems management
called a Reference Energy System (RES) diagram. This diagram describes the com-
modities, the energy conversion and storage technologies, the energy flows between
these technologies and the energy inputs and outputs. The commodities are repre-
sented by vertical segments and the technologies by rectangles. Arrows are used to
indicate the commodity flows within the system and the connection relationships
between commodities and technologies.

The upper part of Figure 3.1 displays the RES diagram of a small illustrative
example corresponding to a simple co-generation system. The system consumes
natural gas to produce heating power and electricity. The heating power is provided
to the buildings connected to the LMES and the generated electricity is sold to the
national grid. In this example, the resource commodity is the natural gas, which is
noted as GAS in the figure. The supply resources are the heating power provided to
the customers and the generated electricity, which are noted respectively as HEAT2
and ELEC. The hot water stored in the thermal storage tank, noted as HEAT1, is
an intermediate commodity. The available technologies are CHP units, boilers and
thermal storage. The CHP units consume natural gas to simultaneously produce
heat and electricity. The produced heat can be either stored as hot water in the stor-
age tank or transferred directly to customers’ end. The electricity generated is sold
to the national grid. The hot water produced by boilers is used in the same way as
the one produced by CHP components.

However, a RES diagram only displays the technologies that may be used in the
system but does not provide the detailed catalog describing the types of device avail-
able for each technology. It is thus possible to introduce a more detailed description
of the design problem through the use of a diagram representing the superstructure
of an LMES. As defined by [YI06], the superstructure of an LMES is composed of all
the units of equipment considered as candidates for selection. The superstructure
thus describes the set of available conversion and storage technologies with their
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corresponding input and output commodities together with a list of the available
equipment types for each technology (described e.g. by their size or capacity, their
energy conversion performance and their price).

The bottom part of Figure 3.1 displays the superstructure of our illustrative ex-
ample. Let us assume that, for the design of this co-generation system, two types
of CHP units with different efficiency coefficients and capacities are available in the
catalog and that we can install at most 5 units for each type in the system. There
are also two types of boilers with distinct efficiencies and capacities and we are al-
lowed to install no more than 10 units of each type of boiler. Finally, there is a single
thermal storage tank and its storage capacity should not exceed 50 MWh. In the
superstructure provided in Figure 3.1, the input parameters associated to the maxi-
mum number of each type of devices or to the maximum storage capacity allowed
are displayed in grey.

Designing an LMES will thus consist in determining the number of units of each
type of devices (among the ones belonging to the superstructure) to be installed
in the actual system and in fixing the capacity of the energy storage devices to be
installed.

In our simple example, the design decisions would consist in fixing the number
of CHP units and boilers of each available type to install (if any) and in determining
the size of the thermal storage tank to be built (if any). These decisions are denoted
by blue question marks in the superstructure provided in Figure 3.1.

3.3 Design considerations

Besides the description of the superstructure, some other aspects need to be taken
into account when designing an LMES.

3.3.1 Price and availability of the resource commodities

As mentioned in Subsection 3.2.1, the resource commodities are often bought from
an external supplier. The corresponding unit buying price is likely to vary over the
lifetime of the LMES. In fact, depending on the case, this price may vary over the
day, the week and the season and may also display long-term trends over the years.
When designing an LMES, it is important to take into account these variations and
thus to follow as precisely as possible the time at which the resource commodities
are used. This will namely directly impact our ability at accurately estimating the
operation cost of the LMES. Moreover, the daily variations of the price will have a
strong impact on the sizing of the thermal storage. In case there are strong variations
in the buying price within the day, it may be interesting to install a rather large
thermal storage capacity. This will enable us to produce energy in periods where the
price of the resource commodities is low, store it for a few hours and use it afterwards
to meet the energy demand in periods where the price of the resource commodities
is higher. On the contrary, a thermal storage might not be as useful in case the price
is relatively stable throughout the day.

Furthermore, we should also take into account the limited availability of these
resource commodities. For instance, the electricity, when considered as a resource
commodity, is bought from an external supplier through the national electric grid.
There is usually a limit on the electric instantaneous power that may be consumed
by the system. The value of this limit is negotiated each year with the supplier and
gives rise to a contract. The corresponding cost is proportional to the value of the



32 Chapter 3. Problem description

CHP

STO

Boiler

GAS
HEAT1

HEAT2
ELEC

Type1: ?/5

Type2: ?/5

CHP

Capacity: ?/50 MWh

STO

Type1: ?/10

Type2: ?/10

Boiler

GAS
HEAT1

HEAT2
ELEC

FIGURE 3.1: RES diagram (above) and superstructure (bottom) of a
simple cogeneration system

contracted maximum electric power. As for renewable energy sources such as solar
radiation, as mentioned above, their availability depends on weather conditions and
is also strongly limited.
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3.3.2 Demand for the supply commodities

The energy demand to be satisfied by an LMES depends on many factors, among
which is the ambient temperature, the number of consumers located in the district
and their daily and weekly schedules. As a consequence, it displays a strong tempo-
ral variability.

First, the energy demand strongly varies throughout the day. For instance, the
demand for cooling power is usually much higher at daytime than at night. Second,
the demand pattern of a weekday often differs from the one observed during the
week-end due to the fact that consumers do not have the same routines in working
days as in the week-end. Third, the cooling and heating demands are highly depen-
dent on the ambient temperature and thus feature strong seasonal variations: the
total cooling (resp. heating) demand of a winter day is thus significantly smaller
(resp. higher) than the one of a summer day. These demand variations display a
seasonal and periodic pattern and are thus to some extent predictable. Neverthe-
less, extreme weather conditions which are more difficult to accurately anticipate
may happen. These extreme conditions lead to the presence of extreme days, i.e
days in which the energy demand is exceptionally high or low as compared to its
average value. A major requirement is that the LMES should be able to meet this
demand at all time, whatever the hour of the day, the day in the week and the time
in the year. In particular, it should be able to satisfy all the demand, even during the
extreme days.

Furthermore, an LMES is a long-term investment with an expected lifetime span-
ning several decades and is often built together with the district it will serve. This
means that the forecasted yearly energy demands feature an upward trend over the
years as the district is developed and new buildings progressively connect to the
LMES. As a consequence, the design of an LMES should not be seen as a one-time
decision but rather as a process in which investment decisions are made step by step,
following the development of the district and the increase of the demand. This im-
plies that we not only have to determine the final optimal layout of the system but
also a multi-phase strategic deployment plan describing how the various conversion
and storage devices should be progressively added to the system over the years.

3.3.3 Ambient temperature

The ambient temperature has an impact on the efficiency of some technologies. For
example, the COP of electric chillers varies with the ambient temperature and this
impact should be considered when estimating the operation cost of the system.

3.3.4 Maintenance cost

Each device installed in an LMES needs to regularly undergo maintenance to stay in
a good working condition. The total maintenance cost of a device over its lifetime
can be straightforwardly computed once we know when it will be installed in the
system. Depending on the project, the maintenance cost of a device is either fixed or
varies with the number of years the device functions in the LMES. In both cases, this
maintenance cost can be incorporated in the fixed installation cost, resulting either
in a fixed or a time-varying total installation and maintenance cost.
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3.3.5 Discount rate

Since the construction of an LMES is a long-term investment project lasting several
decades, we need to take into account the time value of money. Basically, investing
money in the project now is more costly than investing money in the future. This is
because an amount of capital, if not invested in the project now, will grow each year
thanks to e.g. bank interests.

Let β denote the discount rate, i.e. the percentage by which an amount of money
will grow each year if not invested in the project. Investing an amount R of money
n years from now is considered equivalent to investing the amount of money R

(1+β)n

now. Consequently, installing a device in the LMES in the future costs less than
installing it now.

Our objective in this work will thus be to minimize the net present cost of the
LMES, i.e. the net present value (NPV) of the total cost of designing and operating
the system over its whole lifetime.

3.4 Problem statement

In Sections 3.2 and 3.3, we described the various elements to be considered when
optimally designing an LMES. This optimization problem can be formally stated as
follows. Given the available energy resources, the predicted total demand for sup-
ply commodities in the neighbourhood over the LMES lifetime and the predefined
superstructure, select the technologies to be installed in the system and determine
the number and size (i.e. capacity) of the corresponding conversion and storage de-
vices so as to minimize the total construction and operation cost of the system while
satisfying the customers’ demand at all time.

We now describe in more details the problem input data, the decisions to be
made, the main constraints to be complied with and the objective to be reached.

3.4.1 Input data

The problem input data first consist in a description of the superstructure of the sys-
tem. As explained in Subsection 3.2.3, the superstructure gives a list of all the con-
version and storage devices considered as candidates for selection. Each candidate
device corresponds to a given technology (with its input and output commodities),
to a size (or maximum capacity), to an energy conversion performance (if relevant)
and to an installation and maintenance price. We also know the unit cost per kilowatt
(KW) of the maximum electric power to be contracted with the electricity supplier.

Second, we are given a set of time series describing the forecasted time variations
(usually on a hourly basis) of the buying price and availability of the resource com-
modities, of the demand for supply commodities and of the ambient temperature
over the LMES lifetime.

Finally, the value of the rate to be used to discount the value of future costs is
also assumed to be known.

3.4.2 Decisions

Design decisions The design decisions to be made consist in selecting, among the
list of technologies and devices provided in the superstructure, the ones to be in-
stalled in the system and in determining the value of the maximum electric power
to be contracted with the electricity supplier. Note that, regarding the sizing of the
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installed devices, two different situations occur. For some technologies such as ther-
mal storage, the capacity of the device can be fixed to any continuous value in a
predefined range and we only have to determine this value. In contrast, for other
technologies such as chillers, CHP units or heat pumps, the capacity of the devices
is to be chosen within a discrete list of values corresponding to off-the-shelf models
available at the equipment manufacturers. In this case, we should determine the
discrete number of devices of each available type to be installed in the system.

Moreover, as mentioned above, as the energy demand features long-term trends
over the years, these decisions should not be made once and for all at the beginning
of the system lifetime, but rather progressively, year after year, to adjust to the long-
term variations of the energy demand. In other words, we should be able to provide,
not only a final layout of the system, but also a multi-phase deployment plan cov-
ering the system lifetime and describing how the devices should be installed year
after year.

Operation decisions Our design decisions will have a strong impact on the daily
operational management of the system, in particular on our ability at satisfying the
demand for supply commodities. Furthermore, the operation cost, which corre-
sponds mainly to the cost of buying the resource commodities, makes up for a large
part of the total cost of the system (typical value is between 20% and 60% of the total
cost) and can therefore not be neglected when computing the total cost of an LMES.

The main challenge here is that it is not possible to use average values of the
demand for supply commodities and/or average values of the buying price of re-
source commodities to estimate the impact of our design decisions on the opera-
tional management of the system. Namely, both the demands and prices display
strong time variations. Moreover, the technical features of the conversion devices,
in particular the fact that they have a non-zero minimum working load and a max-
imum working load, make it impossible to ensure that an LMES able to satisfy the
average hourly demand will be able to actually satisfy the time-varying demand
at all time. Furthermore, some devices such as chillers have a load-dependent and
temperature-dependent COP, which means that the consumption of resource com-
modities is not proportional to the production of supply commodities. Finally, as
the buying price of resource commodities is time varying, it is not enough to know
how much resource commodities we need: we also have to determine when these
resource commodities will be bought to accurately compute the corresponding cost.
Hence, using an average or aggregated representation of the demand to estimate the
operation cost may lead to a significant underestimation of its actual value.

As a consequence, in order to accurately estimate the impact of our design de-
cisions on the operational management of the LMES, we should build a detailed
operational schedule describing, on a hourly basis, the on/off status and the load
allocation of each conversion device, the amount of energy stored in each storage
device and the amount of supply commodities bought from an external supplier.
Ideally, we should build such a schedule for each hour, each day and each year of
the LMES lifetime.

The design and operation scheduling decisions to be made for the illustrative
simple cogeneration system are partially represented in Figure 3.2. The upper part
of the figure shows the design decisions which have been made for a given year
of the system lifetime: note how the blue question marks of the superstructure of
Figure 3.1 are replaced by blue numbers. Thus, at the beginning of the considered
year, the LMES comprises 2 CHP unites of type 2, 8 boilers of type 1, 2 boilers of type
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2 and a thermal storage capacity of 30 MWh. For each hour of the corresponding
year, we should build a schedule describing among others the on/off status of each
devices. The bottom part of Figure 3.2 partially describes (see the red numbers) this
schedule by displaying the number of units of each type active during this hour
together with the amount of thermal energy stored in the tank at the end of this
hour.

Type1: 0/5

Type2: 2/5

CHP

Capacity: 30/50 MWh

STO

Type1: 8/10

Type2: 2/10

Boiler

GAS
HEAT1

HEAT2
ELEC

Type1: 0/0/5

Type2: 2/2/5

CHP

Capacity: 25/30/50 MWh

STO

Type1: 6/8/10

Type2: 0/2/10

Boiler

GAS
HEAT1

HEAT2
ELEC

FIGURE 3.2: System layout for a given year and operation schedule
for a given hour for a simple cogeneration system
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3.4.3 Constraints

The designed LMES should comply with some restrictions. For instance, we have
an upper bound on the number of devices of a given type that may be installed. For
technologies such as thermal storage for which the capacity can be customized, we
also have an upper bound on the capacity of the tank to be installed.

We also have a large set of constraints to ensure that the operational schedule
built for each hour is relevant in practice. These constraints guarantee among oth-
ers that the demand for supply commodities is satisfied, that the energy balance in
thermal storage devices is respected, that energy conversion is carried out in each
device following its actual COP... and this at all time, i.e. at each hour of the LMES
lifetime.

3.4.4 Objective

As mentioned above, our objective is to minimize the net present total cost of the
LMES, i.e. the net present value (NPV) of the total cost of designing and operating
the system over its whole lifetime.

3.5 Case studies

We now introduce three case studies which we will use in our numerical experi-
ments to evaluate our models and algorithms. These case studies correspond to
LMESs that EDF is currently developing in China.

3.5.1 District cooling systems

A district cooling system (DCS) is a local energy system which distributes cooling
capacity in the form of chilled water to a set of buildings located nearby. The cus-
tomers purchase the delivered chilled water from the DCS operator and use it for air
conditioning and dehumidifying or for industrial process cooling.

In a DCS, we have a single supply commodity, the chilled water, whose demand
displays strong daily, weekly and seasonal variations. In our numerical experiments,
we consider two DCSs located in two different cities. City A is in a tropical region
in the south of China so that customers need cooling power during most of the year.
City B is in a region with a temperate climate: hence, the cooling demand is mainly
concentrated around the summer. In both cases, the expected lifetime of the DCS is
30 years. The population of the district, and as a consequence the demand for chilled
water, is anticipated to increase during the first years and to stay stable afterwards.

In the considered DCSs, there is a single resource commodity corresponding the
electricity bought from the national grid. The price for electricity is daily periodic but
is otherwise stationary and does not change from one day to the next. Its availability
is limited by a contract with the electricity supplier that may be renegotiated each
year.

In terms of technologies, the superstructure comprises a set of single-mode elec-
tric chillers, dual-mode electric chillers and a thermal storage. The capacity of the
thermal storage tank may take any continuous value within a predefined range. As
for the chillers, we have a discrete set of available models that may be bought from
equipment manufacturers and we should determine the number of chillers of each
type to be installed in the DCS.
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Figure 3.3 displays the RES diagram of the DCSs considered in our two case
studies. The resource commodity is denoted by ELEC, the intermediate commod-
ity by ICE and the supply commodity by COLD. Single-mode chillers consume the
ELEC commodity to produce COLD. As for the dual-mode chillers consume, they
also consume the ELEC commodity but produce both ICE to be stored in the storage
tank and COLD to be directly delivered to the customers’ buildings.

Single-Mode
Chiller

STO

Dual-Mode
Chiller

ELEC
ICE

COLD

FIGURE 3.3: RES of the studied district cooling systems

3.5.2 Trigeneration system

The third case study corresponds to a trigeneration system located in a city where
both heating and cooling power are demanded. The system serves various types of
customers in the surrounding area, such as residential buildings, commercial cen-
ters, office buildings and hotels. Its expected lifetime is 30 years. The served district
is currently under development: the population is thus expected to increase for the
first four years and to stay stable afterwards.

The system should satisfy both a cooling demand and a heating demand. These
demands have a seasonal feature. Cooling power is needed during 6 months whereas
heating power is required during 4 months. The cooling supply period and heating
supply period have no overlap. We assume that the energy demand grows with the
same trend as the population in the district. The ambient temperature of the system
is considered to be yearly periodic.

The available resource commodities are natural gas and electricity. The unit buy-
ing price natural gas is constant in time. The price for electricity is daily periodic but
is otherwise stationary and does not change from one day to the next.

The technologies available in the superstructure include CCHP units, boilers,
air source heat pumps, single-mode electric chillers, dual-mode electric chillers, hot
water thermal storage and ice thermal storage. Recall that for thermal storage, the
capacity can be set to any value in a predefined continuous range. For the other
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technologies, the installed devices should be selected among the ones available in
the manufacturer’s catalog so that there is only a finite and discrete set of potential
capacities.

Figure 3.4 displays the RES diagram of the trigeneration system. On this fig-
ure, ELEC1 and GAS denote the resource commodities, ELEC2, HEAT1 and ICE
the intermediate commodities and HEAT2 and COLD the supply commodities. The
CCHP unit converts the resource commodity GAS into electricity ELEC2 (to be con-
sumed within the LMES), heating power HEAT1 (to be stored in the thermal storage
STO_HEAT), HEAT2 and COLD (to be distributed directly to the customers’ build-
ings). As for the boiler, it also converts GAS into HEAT1 or HEAT2 heating power.
We then have three technologies powered by electricity (either bought from the sup-
plier ELEC1 or generated locally by the CCHP unit ELEC2). The heat pump pro-
duces HEAT1 or HEAT2 heating power and COLD, i.e. cooling power to be directly
distributed to the customers in the form of chilled water. Single-mode chillers only
produce COLD while dual-mode chillers produce both COLD and ICE, i.e. cooling
power to be stored in the thermal storage STO_COLD before being distributed.

CCHP

HeatPump

Dual-Mode
Chiller

Boiler

Single-Mode
Chiller

STO_HEAT

STO_COLD

GAS
ELEC1

ELEC2
HEAT1

ICE
HEAT2

COLD

FIGURE 3.4: RES of the trigeneration system

3.6 Conclusion

This chapter provided a detailed description of the optimization problem under
study in this PhD work. We first introduced the main components of an LMES by fo-
cusing on the ones which have a major impact on the total cost of the system. These
components are roughly classified into two classes: commodities and technologies.
This classification allowed us to represent the layout of an LMES using either an
RES diagram or a more detailed superstructure diagram. Second, we presented sev-
eral additional key aspects of the problem which also have a strong influence on the
LMES final layout. The overall optimal design problem was then formally stated as
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a classic combinatorial optimization problem. We underlined the necessary input
data, the decision variables, the main constraints to be respected and the objective
function. Finally, we briefly introduced the three case studies that we will use in our
numerical experiments. They correspond to two types of energy systems: district
cooling systems and trigeneration systems.
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Chapter 4

Problem modeling and
mathematical formulation

4.1 Introduction

The combinatorial optimization problem described in Chapter 3 leads to the formu-
lation of a huge-size mixed-integer non-linear program which is computationally
intractable. This huge size mainly comes from the need to simultaneously make
strategic design decisions over a long-term planning horizon and evaluate the im-
pact of these strategic decisions on the operation cost of the system through the
building of detailed schedules using short (typically hourly) time-steps. Moreover,
the presence of energy conversion devices whose efficiency depends on the load
(e.g. electric chillers) brings some non-linearities in the mathematical programming
formulation.

In this chapter, we first present in Section 4.2 the modeling choices and assump-
tions we use to reduce to some extent the size of the obtained mathematical program
and to eliminate the aforementioned non-linearities. We then provide in Section 4.3
the resulting MILP formulation. Finally, Section 4.4 presents the computational re-
sults obtained when directly solving this MILP formulation with a mathematical
programming solver on instances based on the three case studies described in Sec-
tion 3.5.

4.2 Problem modeling

4.2.1 Investment phases

The lifetime of an LMES usually spans several decades: let us denote by Y the corre-
sponding number of years. As explained earlier in Section 3.4, the energy demand
to be satisfied by the LMES is likely to display a long-term upward trend, especially
when the LMES is built in a new district currently under development. This means
that it may not be cost-efficient to build the whole system in one step. We should
rather only install part of the energy conversion and storage devices at the begin-
ning of the system lifetime and progressively add, year after year, the other devices
as they become necessary to adjust to the long-term variations of the demand.

In what follows, we propose to divide the system lifetime into a set of Φ invest-
ment periods termed phases. A phase typically spans one or several years. Let y

ϕ

(resp. yϕ) be the index of the first (resp. the last) year belonging to phase ϕ.
We make two modeling assumptions here. First, design decisions, such as the

installation of new devices or the building of additional storage capacity, can only
be made at the beginning of a phase. Second, the hourly evolution over the year
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of the energy demands, of the price and availability of resource commodities are
described by the same time series for all the years belonging to the same phase.
Note that these two modeling assumptions are based on the ones currently used by
EDF practitioners when studying the design of an LMES.

4.2.2 Representative days

Ideally, the operation cost during a given investment phase should be estimated by
building a detailed operation schedule describing the on/off status and the load
allocation of each device together with the stored energy for each hour, each day
and each year of this phase. This clearly leads to a huge intractable optimization
problem.

A first simplification can be made here by exploiting the second assumption on
investment phases mentioned in Subsection 4.2.1. Basically, this one amounts to as-
suming that all years belonging to the same phase are strictly identical in terms of
energy demand, commodity prices and availability. Thus, a single operation sched-
ule covering 365 days may be built for all these years and the total operation cost
over the investment phase can be computed as the sum, over all years belonging to
this phase, of the actualized value of the cost of this schedule.

However, building an operation schedule covering the 365 days of a full year
for each investment phase is still out of reach in terms of computational effort. This
is why, in order to further decrease the size of the problem, we propose to build an
operation schedule only for a subset of disjoint typical and extreme days. These days
should be carefully selected in order to represent, as best as possible, the various
conditions under which the LMES will be operated and to obtain an estimation, as
accurate as possible, of the operation cost.

We propose to select a subset of typical days based on an analysis of the time
series representing the hourly evolution of the input parameters over a full year.
More precisely, we seek to identify the ’best’ typical days by solving a clustering
problem which corresponds to an extension of the k-medoid problem investigated
by [Zat+19]. This problem consists in partitioning the set of days belonging to the
available time series into a predefined number of groups or clusters and in selecting
one member (i.e. one day) in each cluster to represent all the days belonging to the
cluster. The objective is to minimize the sum of the Euclidean distance between each
day in the time series and its representative.

Moreover, we propose to choose 4 extreme days for each supply commodity and
for each resource commodity with a limited availability. For each supply commod-
ity, we first select 2 days, the day with the highest total daily demand and the one
with the highest hourly demand, in order to ensure that the capacity of the installed
devices will be large enough to satisfy the demand even if it is extremely high. More-
over, in case the demand is very low but not equal to zero, we may encounter diffi-
culties to satisfy it due to the constraints on the minimum production power of some
devices. In order to avoid it, we also select as extreme days the day with the lowest
non-zero total demand and the one with the lowest non-zero hourly demand. As
for the resource commodities with a limited availability (e.g. solar radiation), we
also select 4 extreme days: the day with the highest hourly availability, the one with
the highest total daily availability, the one with the smallest hourly availability and
the one with the smallest total daily availability. Note that, the extreme days are as-
sumed to happen once in the year so that the corresponding cost has a small impact
on the total annual operation cost. However, by imposing that the system is able to
satisfy the energy demands even under extreme conditions these extreme days have
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a huge impact on the design of the system. Moreover, for the time being, we do not
select extreme days with respect to the price of resource commodities because in our
case studies, these prices are either constant or follow the exact same pattern every
day.

Figure 4.1 shows the hourly evolution of the cooling demand for 6 representa-
tive days which may be selected with respect to the supply commodity COLD to
estimate the operation cost during a given investment phase for the district cooling
system located in City B (see Subsection 3.5.1). Note that the hourly demand is nor-
malized, i.e., is expressed as a proportion of the maximum hourly cooling demand.
We choose 2 typical days and 4 extreme days to represent the cooling demand vari-
ation of the year. Each representative day is allocated a weight, which corresponds
to the number of days of the year it stands for in the clustering. Thus, Day 136 (resp.
Day 263) is a typical day which acts as the representative of a cluster comprising 66
(resp. 95) days and will be assigned a weight equal to 66 (resp. 95). Each extreme
day is assumed to occur only once a year and is thus assigned a weight equal to
1. Note that the sum of these weights is not equal to 365 because in the considered
DCS located in a region with a temperate climate, there is no cooling demand in
more than half of the year.

FIGURE 4.1: Representative days (2 typical days and 4 extreme days)
for the cooling demand during Investment Phase 1 for the DCS lo-

cated in City B

4.2.3 Piece-wise linear approximation of non-linear performance curves

As explained in Chapter 3, for some technologies, the conversion efficiency coeffi-
cient is not constant but rather depends on the ambient temperature and/or on the
load. In this case, the manufacturer of each conversion device provides us with a
set of non-linear performance curves giving the energy consumption as a function
of its load rate under a discrete set of values of the ambient temperature. A typical
example are the electric chillers. The conversion efficiency of a single-mode chiller
is described by a set of performance curves: each curve depicts the electric power
consumed by the chiller as a function of the produced cooling power under a certain
ambient temperature. Similarly, the conversion efficiency of a dual-mode chiller is
described by two sets of performance curves: one set for its cooling mode and one
set for its ice-production mode.

The non-linearity of these performance curves poses a major difficulty for the
efficient resolution of the optimization problem as this one would be formulated as
a mixed-integer non-linear program.

To overcome this difficulty, we propose, for each type of conversion device fea-
turing a part-load efficiency, to approximate each of its non-linear performance
curves through a piece-wise linear function. This function is built using the follow-
ing procedure. We first choose a number of breakpoints to be used in the piece-wise
linear approximation. We then determine the coordinates of these breakpoints so
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as to minimize the distance between the approximate performance curve and the
actual one. This is done by heuristically solving a small non-linear unconstrained
optimization problem through the Powell’s conjugate direction method [Pow64]. In
Figure 4.2, we show as an example the piece-wise linear approximation of a the
performance curve of a single-mode electric chiller (SMEC). Four breakpoints are
used to approximate the non-linear curve so that the piece-wise linear approxima-
tion comprises three continuous segments.

FIGURE 4.2: Piece-wise linear approximation of the performance
curve at 30°C of a single-mode electric chiller

We then consider historical data about the average ambient temperature at each
time-step of each representative day and use this information to identify which ap-
proximate performance curve (among the ones built in the previous step) should be
used to compute the energy consumption of each type of device during this time-
step.

4.2.4 Leveraging the convexity of the performance curves

When applicable, we propose to exploit the convexity of the performance curves of
the conversion devices to further reduce the size of the optimization problem. When
the performance curves of a given type of energy conversion devices are convex, we
have the following property.

Lemma 4.2.1. For a set of identical active conversion devices producing the same com-
modity, the optimal load allocation consists in equally distributing the total output power
between the active devices.

Proof. The proof is done by contradiction. Suppose we have two identical active
devices, producing a total output power of P with device 1 producing P1 and device
2 producing P2 > P1. Let π : P 7→ Q = π(P) be the convex performance curve
of these two devices. The total amount of input commodity consumed by the two
devices producing P is Q = π(P1) + π(P2).
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We show that this load allocation is not optimal, i.e. that it is possible to reduce
the total amount of consumed commodity. Namely, let δP be a small variation in the
output. By decreasing the output of device 2 by δP, we can obtain a decrease in the
input commodity consumed by this device of π′(P2)δP, where π′ is the derivative
function of π. In order to still be able to provide a total output of P, we increase
the output of device 1 by δP, which leads to an increase in its input commodity
consumption of π′(P1)δP.

By convexity of function π, π′(P1) < π′(P2). Hence the total amount of input
commodity consumed with the load allocation (P1 + δP, P2− δP) is smaller than the
one consumed with the load allocation (P1, P2). The result follows.

Let us now focus on the case in which the performance curve π is convex and
piece-wise linear. When several identical active devices are simultaneously produc-
ing the same output commodity, the relation providing the total amount of con-
sumed input commodity as a function of the total amount of output power can be
plotted as an aggregate performance curve. We have the following property:

Lemma 4.2.2. Let π be the piece-wise linear and convex performance curve of a given type
of active device producing a given commodity. π involves B breakpoints. Let (ab, ob) be the
abscissa and ordinate of breakpoint b.

The aggregate performance curve ΠS of S identical active devices of this type simulta-
neously producing the same commodity is also piece-wise linear and convex. It involves B
breakpoints whose coordinates are given by (Sab, Sob).

Proof. Let us consider the case where the total output of the S active devices is P ∈
[SPmin; SPmax] where [Pmin, Pmax] is the production range of a single device.

By Lemma 4.2.1, the optimal load allocation consists in requiring that each active
device σ = 1...S produces the same output Pσ = P

S . Let b be the index of the break-
point of function π such that Pσ ∈ [ab, ab+1]. The energy consumed by each device σ
is thus given by: Qσ = sbPσ + cb where sb and cb are the slope and constant value of
the bth line segment of π. The total energy consumed by the S devices is thus equal
to Q = sbP + cbS. This equality holds for any value of P such that P

S ∈ [ab, ab+1],
i.e. any value of P ∈ [Sab, Sab+1]. This means that ΠS is linear over the segment
[Sab, Sab+1], with a slope equal to sb and a constant value of cbS.

By generalizing this result to all possible values of the total output P, we have
that ΠS is a piece-wise linear function involving B breakpoints of coordinates (Sab, Sob).
Moreover the slope of ΠS on its bth segment is sb. As π is convex, we have sb ≤
sb+1, b = 1...B. ΠS is thus convex.

We first note that, when the performance curves are convex, the optimal load
allocation between a set of identical active devices producing the same commodity
consists in equally distributing the total output power between the active devices:
see Lemma 4.2.1. For instance, a set of identical single-mode electric chillers simul-
taneously producing cooling power should be operated at the same working load to
minimize the electricity consumption.

Moreover, let us now focus on the case where the performance curve of these
devices is piece-wise linear and convex. In this case, when several identical active
devices are simultaneously producing the same output commodity, the relation pro-
viding the total amount of consumed input commodity as a function of the total
amount of output power can be plotted as an aggregate performance curve taking
the form of a piece-wise linear and convex function: see Lemma 4.2.2. More pre-
cisely, assume that the performance curve of an individual active device producing
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a given commodity involves B breakpoints with (ab, ob) the abscissa and ordinate
of breakpoint b. The aggregate performance curve of S identical active devices of
this type simultaneously producing the same commodity is also piece-wise linear
and convex and involves B breakpoints whose coordinates are given by (Sab, Sob).
Figure 4.3 illustrates this for a given type of single-mode electric chillers. The blue
curve describes the performance of a single active chiller of this type as a piece-wise
linear function. The orange (resp. green) curve describes the aggregate performance
of two (resp. three) chillers of this type simultaneously producing cooling power at
the same load rate. Thus, each point of these aggregate performance curves gives (in
ordinate) the minimum electricity power needed to produce the demanded cooling
power (in abscissa) for the corresponding number of identical active chillers.

FIGURE 4.3: Aggregate performance curves of single-mode electric
chillers

Note that in case the performance curves are linear, i.e. in case the energy conver-
sion coefficient is constant, any load allocation of the total output power of a set of
identical active devices leads to the same total consumption of the input commodity.
It is thus also possible to build aggregate linear performance curves in this case.

The use of these (convex or linear) aggregate performance curves enables us
to simplify to some extent the building of the operation schedules for each repre-
sentative day. Namely, it is possible to build these schedules by using aggregate
scheduling variables describing the number of on/off devices of each type, their ag-
gregate production of output commodity and their aggregate consumption of input
commodity (rather than detailed scheduling variables describing the on/off status,
output and input power of each individual conversion device). This leads to a signif-
icant decrease in the number of variables and constraints introduced in the formu-
lation. It also avoids symmetry problems coming from the fact that there exist many
alternative optimal solutions that differ from one another only by the way each de-
tailed operation schedule is assigned to one of the identical conversion devices.

Moreover, thanks to the fact that we will seek to minimize the operation cost, we
do not have to introduce extra binary variables to handle these piece-wise linear and
convex functions. We only have to add a set of linear constraints to ensure that the
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point representing the aggregate amounts of output and input commodity of a set
of S identical active devices will be in the epigraph of each corresponding aggregate
curve. In any optimal solution, this point will be on the aggregate performance
curve. This leads to the formulation of the union of a sequence of disjoint convex sets
depending on three aspects: the aggregate cooling power, the aggregate electricity
consumption power and the number of active identical chillers. Such formulation
problem is usually called a disjunctive programming problem and we recommend
readers to refer to [Vie15] for more details.

4.3 Mixed-integer linear programming formulation

Thanks to the modeling choices and assumptions introduced in the previous section,
the problem of optimally designing an LMES can be formulated as an MILP. We
provide in this section a detailed description of the corresponding formulation.

4.3.1 Indices and input parameters

Time representation and management
We use a three-level time discretization in our problem modeling. We first di-

vide the system lifetime involving Y years into a set of Φ investment periods termed
phases. Let y

ϕ
(resp. yϕ) be the index of the first (resp. the last) year belonging to

phase ϕ. The index d represents the time unit used to build schedules at the opera-
tional level. In practice, the length of this time unit is chosen from a half day to one
week. In this thesis, we use a time unit of one day to build operation schedules. For
each considered phase ϕ ∈ {1, ..., Φ}, a set Dϕ of typical and extreme days selected
as explained in Subsection 4.2.2 are used to represent the various daily patterns of
the energy demand, commodity price and availability. Each representative day d of
phase ϕ, denoted by (ϕ, d), is assigned a weight wϕ,d. If d is a typical day identified
through the clustering approach discussed in Subsection 4.2.2, wϕ,d corresponds to
the number of days it represents, i.e. to the number of days in the original data as-
signed to the same cluster as day (ϕ, d). If d is an extreme day, wϕ,d is set to 1. Finally,
in order to depict the intra-day variation of the input parameters, each representa-
tive day is further divided into H time-steps indexed from 0 to H− 1, each of which
has a duration of ∆t hours. For the sake of readability, in the remainder of this thesis,
we use the bold letter t to represent the time period (ϕ, d, h), which corresponds to
phase ϕ, selected day d and time step h.

The net present value of the future cost is calculated using an annual discount
rate denoted by γ. We use two distinct actualization rates in our problem formula-
tion. The first one, called the design actualization rate, is used to compute the net
present value of the system design cost at the beginning of each phase. It is equal
to αϕ = 1

(1+γ)
y

ϕ
for phase ϕ. The second one, called the operation actualization rate,

is used to calculate the net present value of the operation cost during phase ϕ. It is

defined by βϕ = ∑
yϕ
y=y

ϕ

1
(1+γ)y for phase ϕ. Recall that all years belonging to a given

phase ϕ are assumed to be described through the same input data so that the total
annual operation cost is constant for all years belonging to ϕ. The net present value
of the operation cost during ϕ can thus be obtained by multiplying the total annual
operation cost during phase ϕ by βϕ.
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Commodities
Let N = {GAS, ELEC, HEAT, COLD, ICE, ...} denote the various forms of en-

ergy in the considered LMES. As can be seen from the examples and case studies
described in Chapter 3, in an LMES, a given form of energy may correspond to dif-
ferent commodities ( e.g. electricity bought from the national grid or generated by
a gas engine). In order to distinguish between them, we denote each commodity by
a pair (n, s): index n ∈ N represents the form of energy and index s ∈ {1, · · · , Sn}
is used to number commodities with the same type n. The set of all commodities
is thus C = {(n, s) : n ∈ N , s ∈ {1, · · · , Sn}}. C may be partitioned into the set
of resource commodities CR, the set of intermediate commodities C I and the set of
supply commodity CS.

For example, the set of commodities involved in the trigeneration system de-
scribed by Figure 3.4 is given by:

C = {(ELEC, 1), (ELEC, 2), (GAS, 1), (HEAT, 1), (HEAT, 2), (ICE, 1), (COLD, 1)}

with CR = {(ELEC, 1), (GAS, 1)}, C I = {(ELEC, 2), (HEAT, 1), (ICE, 1)} and CS =
{(HEAT, 2), (COLD, 1)}.

We use EPt,c to denote the energy price of a commodity c at timestep t. This
parameter corresponds to the price for purchasing one unit of energy if c ∈ CR is a
resource commodity. Moreover, let CS,Sell ⊂ CS be the subset of supply commodities
which may be sold to an outsider buyer in addition (or instead of) being sold to the
buildings connected to the LMES (e.g. electricity generated by the LMES sold to the
national grid). For c ∈ CS,Sell , EPt,c denotes the price for selling one unit of energy to
the outsider buyer.

The demand of a supply commodity c at time-step t, i.e. the amount of this
commodity to be produced by the LMES, is denoted by Demt,c. In a typical cool-
ing system, the difference between the temperature of the circulating chilled water
and the ambient temperature is less than 20◦C. Therefore, we may assume that the
thermal loss during distribution in a cooling system is negligible and directly use
the actual demand of the customers for cooling power to set the value of Demt,c. In
contrast, in a heating system, the difference between the temperature of the circulat-
ing hot water and the ambient temperature is above 60◦C. We should thus consider
heat losses during distribution. The heat loss rate, denoted by ϵt,HEAT, is the ratio
of heat dissipation when the hot water is transferred from the LMES to customers at
time-step t. To take this into account, Demt,c should be set to the value of the actual
demand of the customers for heating power divided by (1− ϵt,HEAT).

Finally, the availability of some resource commodities is limited. Let CR,Ph be the
set of resource commodities for which this limited availability comes from physical
reasons (e.g. renewable energy resources such as solar radiation whose availability
depends on weather conditions). In this case, the amount of commodity c available
at time t is an input parameter denoted by Consomax

t,c . Moreover, the availability of
some resource commodities (e.g. electricity bought from the national grid) may also
be limited due to a contract signed with the outside supplier. Let CR,Co be the set
of resource commodities for which this limited availability comes from a contract
negotiated with an outside provider. Let MaxCc be the highest allowed value for
this contracted maximum instantaneous power. In theory, the contracted maximum
power may take any value between 0 and MaxCc. However, in practice, this one
is most often fixed at a value corresponding to an integer multiple of a predefined
discretization unit denoted by Cstep

c . The largest number of discrete units of power
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that may be contracted for commodity c is thus MaxUnitsc = ⌊MaxCc

Cstep
c
⌋. We denote by

SCϕ,c the cost of contracting one discrete unit of size Cstep
c of maximum nstantaneous

power.

Technologies
Let P = {CCHP, BOILER, SMEC, ..., STO_HEAT, ...} denote the set of available

energy conversion and storage technologies. Each technology is described among
other by N in

p , the set of energy forms it consumes, and N out
p , the set of energy forms

it produces. In what follows, for the sake of simplicity, we will assume that |N in
p | = 1

and denote by nin
p the single form of energy consumed by technology p.

By using the high-level description of the LMES structure provided by the RES
diagram, we may define, for each technology p ∈ P , the set C in

n,p (resp. Cout
n,p ) of all

consumed (resp. produced) commodities belonging to the energy form n ∈ N . The
other way round, we may define, for each commodity c ∈ C, the set P out f low

c (resp.
P in f low

c ) of technologies that consume (resp. produce) commodity c.
As explained in Chapter 3, the set of technologies P can be partitioned according

to the nature of the design decisions to be made. Thus, for the set PDIS ⊂ P of
discrete technologies, the design decisions consist in selecting from a discrete list
of equipment types available in the manufacturers’ catalogs the number of devices
of each type to install. In this case, let l ∈ {1, · · · , Lp} denote the various types of
device available for technology p. The pair m = (p, l) thus represents a given type
of energy conversion device belonging to technology p. The maximum number of
devices of type m that may be installed is denoted by MaxNumm.

In contrast, for the set PCONT ⊂ P of continuous technologies, the design deci-
sions consist in selecting the capacity of the single piece of equipment to be installed
within 0 and a maximum size. In this second case, for the sake of readability, we
will assume Lp = 1 and denote by (p, 1) the single available type of equipment, the
capacity of which should be determined during the design of the system. The maxi-
mum size of the installed piece of equipment is denoted by MaxSizem. Although in
theory, the size of the installed device may take any value between 0 and MaxSizem,
in practice, this one is most often fixed at a value corresponding to an integer mul-
tiple of a predefined discretization unit denoted by Sizestep

m . The maximum number
of discrete units of capacity that may be installed for the device of type m is thus
MaxNumm = ⌊MaxSizem

SizeStep
m
⌋.

Let M = {(p, l)|p ∈ P , l ∈ {1, · · · , Lp}} be the set of all types of devices and
Mp1 = {(p, l) ∈ M|p = p1} be the subset of all devices belonging to technology
p1 ∈ P .

Each type of device m ∈ M is associated with an installation cost FCm and an
accumulated maintenance cost MCϕ,m. The installation cost includes the purchase
and construction costs, to be paid only once at the beginning of the phase in which
the device is installed. Note that FCm corresponds to the cost of installing one device
m = (p, l) if m belongs to a discrete technology p ∈ PDIS and to the cost of installing
one discrete capacity unit of size Sizestep

m if m belongs to a continuous technology
p ∈ PCONT. Once this device (or discrete capacity unit) is installed, we may com-
pute its actualized total maintenance cost over the interval between its installation
time (beginning of phase ϕ) and the end of the system’ lifetime. The corresponding
cost, whose value depends on the installation phase, is defined as the accumulated
maintenance cost MCϕ,m. Therefore, when installing a device of type m in phase ϕ,
the net present value (NPV) computed at phase ϕ of the total cost is FCm + MCϕ,m
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and the NPV computed at the beginning of the project can be obtained by multiply-
ing FCm + MCϕ,m by the design discount rate αϕ.

In what follows, we will also distinguish when needed between the set of con-
version technologies PCONV ⊂ P and the set of storage technologies PSTO ⊂ P . We
denote byMCONV the set of types of energy conversion devices andMSTO the set
of types of energy storage devices.

Regarding the energy conversion devices, we have a set of additional input pa-
rameters to describe the working range and energy conversion efficiency.

We thus define, for each type of conversion device m = (p, l) with p ∈ PCONV

and each form of energy n ∈ N out
p produced by technology p, Pmin

n,m (resp. Pmax
n,m ) the

minimum (resp. maximum) amount of energy of type n that an active device of type
m can produce within one scheduling time-step.

As for the conversion efficiency, two main situations may occur:

• The efficiency does not depend on the load. In this case, we use the input data
describing the forecasted evolution of the ambient temperature over the year
to determine the value of the energy conversion efficiency to be applied to each
scheduling time-step. We thus introduce a coefficient ηt,n,m giving the amount
of energy of form n ∈ Cout

n,p produced per unit of consumed energy of type nin
p

by an active device of type m at scheduling time-step t. Note that, when the
energy conversion efficiency depends neither on the load nor on the ambient
temperature, the value of coefficient ηt,n,m is the same for all time-steps t.

• The efficiency depends on the load. In this case, we use the procedure de-
scribed in Subsection 4.2.3 to build a piece-wise linear approximation of the
performance curves provided by the manufacturer and to determine which
approximation should be used at each time-step t. Let Bt,n,m be the number of
breakpoints used in the approximation of the performance curve providing the
amount of energy of form n ∈ N out

p produced per unit of consumed energy of
type nin

p by an active device of type m at scheduling time-step t. Each of these
breakpoints has coordinates given by (at,n,m,b, ot,n,m,b).

4.3.2 Design variables and constraints

In order to formulate the problem as an MILP, we first introduce the decision vari-
ables relative to the system layout at each phase ϕ. Note that, to avoid ambiguity in
the notation, the names of all decision variables are printed in bold letters.

For each discrete technology p ∈ PDIS, we introduce SDϕ,m, the integer decision
variable representing the number of devices of type m = (p, l) ∈ Mp added to the
system at the beginning of phase ϕ.

Similarly, for each continuous technologies p ∈ PCONT, we introduce SDϕ,m, the
integer decision variable indicating the number of discrete capacity units of type
m = (p, l) ∈ Mp added the system at the beginning of phase ϕ.

This leads to the following design constraints, stating that, for each m ∈ M, the
total number of devices /discrete capacity units present in the system during the last
investment phase Φ should be less that the maximum allowed number.

Φ

∑
φ=1

SDφ,m ≤ MaxNumm ∀m ∈ M (4.1)

Furthermore, we have a second set of design decisions. These decisions are rela-
tive to the resource commodities c ∈ CR,Co bought from an outside supplier under a
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contract specifying a maximum value for the instantaneous power of this commod-
ity that may be bought. This maximum value may be changed from one phase to the
next. We thus introduce Cdisϕ,c the integer decision variable indicating the number
of discrete units of power contracted at phase ϕ with the supplier of commodity c.

This leads to the following design constraints, ensuring that, for each commodity
c ∈ CR,Co and each phase ϕ, the contract signed with the provider of c stays below
the maximum allowed value.

Cdisϕ,c ≤ MaxUnitsc ∀c ∈ CR,Co, ∀ϕ (4.2)

In what follows, we detail the variables and constraints introduced in the formu-
lation in order to build a feasible operation schedule for each day d ∈ D. We first
describe the variables and constraints relative to the commodities, then the ones rel-
ative to the technologies and finally the constraints linking commodities and tech-
nologies.

4.3.3 Operation variables and constraints for commodities

Variables for the commodities
In the operational schedule relative to time-step t = (ϕ, d, h), the total amount of

commodity c produced (resp. consumed) by all the devices corresponding to tech-
nology p ∈ P is indicated respectively by the continuous variable Inflowt,c,p (resp.
Outflowt,c,p). Note that, thanks to this notation, each arrow in a RES diagram is
associated with a flow variable: if the arrow points towards the vertical line rep-
resenting the commodity, it will be associated to an Inflow variable and if it starts
from this vertical line, it will be associated to an Outflow variable.

Figure 4.4 illustrates this definition on a small RES diagram in which c1 = (n1, s1)
is an intermediate commodity. The arrows in the diagram indicates that technolo-
gies p1 and p2 produce commodity c1 and technology p3 consumes commodity c1.
Therefore, at time-step t, the production of commodity c1 by technologies p1 and p2
is denoted as Inflowt,c1,p1 and Inflowt,c1,p2 , and the consumption of commodity c1
by p3 is denoted as Outflowt,c1,p3 .

Moreover, we introduce two additional set of decision variables for each time-
step: Consot,c, the total amount of resource commodity c ∈ CR consumed by the
system within t, and Soldt,c, the amount of supply commodity c ∈ CS,Sell sold within
t.

Table 4.1 recalls the sets of indices, data and variables relative to commodities.

We now describe the constraints relative to commodities to be added to the MILP
formulation. These constraints are grouped according to the type (resource, interme-
diate or supply) of the considered commodity.

Constraints for the resource commodities
The total amount of resource commodity c ∈ CR consumed by the system during

time-step t is equal to the sum of the amount consumed by all the technologies in
P out f low

c .
Consot,c = ∑

p∈P out f low
c

Outflowt,c,p ∀c ∈ CR, ∀t (4.3)
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Set of indices
N Set of energy forms
C Set of commodities
CR Set of resource commodities
CR,Ph Set of resource commodities with a physically limited availability
CR,Co Set of resource commodities with a contractually limited availability
C I Set of intermediate commodities
CS Set of supply commodities
CS,Sell Set of supply commodities sold to an outside buyer
P out f low

c Set of technologies consuming commodity c.
P in f low

c Set of technologies producing commodity c.
Data
EPt,c Buying (resp. selling) price for commodity c ∈ CR (resp. c ∈ CS,Sell) in t
ϵt,HEAT Ratio of heat dissipation in t
Demt,c Demand for commodity c ∈ CS in t
Consomax

t,c Available amount of commodity c ∈ CR,Ph in t
Cstep

c Size of the discrete units used to define the value of the maximum
instantaneous power contracted with the supplier of commodity c ∈
CR,Co

SCϕ,c Cost of contracting one discrete unit of size Cstep
c of commodity c ∈

CR,Co

MaxUnitsc Maximum number of discrete units of power that may contracted with
the supplier of commodity c ∈ CR,Co

Variables
Cdisϕ,c Number of discrete units of power contracted at phase ϕ with the sup-

plier of commodity c ∈ CR,Co (Integer)
Outflowt,c,p Amount of commodity c ∈ C consumed by technology p within t (Con-

tinuous)
Inflowt,c,p Amount of commodity c ∈ C produced by technology p within t (Con-

tinuous)
Consot,c Total amount of resource commodity c ∈ CR consumed by the system

within t (Continuous)
Soldt,c Amount of supply commodity c ∈ CS,Sell sold within t (Continuous)

TABLE 4.1: Notations for commodities
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p1

p3

p2

c1
=
(n1, s1)

Outflowt,c1,p3

Inflowt,c1,p1

Inflowt,c1,p2

FIGURE 4.4: Inflow and outflow variables related to intermediate
commodity c1 = (n1, s1)

For each resource commodity c ∈ CR,Ph, the total amount consumed by the system
in each time-step t should stay below the maximum available amount determined
by some physical limitations.

Consot,c ≤ Consomax
t,c ∀c ∈ CR,Ph, ∀t (4.4)

For each resource commodity c ∈ CR,Co, the total amount consumed by the system
in each time-step t should stay below the maximum available amount determined
by the contract signed with the outside supplier. This limit is equal to the maximum
instantaneous power contracted for phase ϕ, Cstep

c Cdisϕ,c, multiplied by the length
of the time-step ∆t.

Consot,c ≤ Cstep
c Cdisϕ,c∆t ∀c ∈ CR,Co, ∀t (4.5)

Constraints for the supply commodities
The LMES should be able to satisfy the customers’ demand at all time. Thus, for

each supply commodity c ∈ CS, the total amount of energy produced by the tech-
nologies in P in f low

c in time-step t should be equal to the sum of the forecast energy
demand coming from the buildings connected to the LMES and of the amount of
energy sold to an outside buyer.

∑
p∈P in f low

c

Inflowt,c,p = Demt,c + Soldt,c ∀c ∈ CS, ∀t (4.6)
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The amount of energy sold to an outside buyer is equal to 0 in time-step t for all
supply commodities c ∈ CS not belonging to CS,Sell .

Soldt,c = 0 ∀c ∈ CS \ CS,Sell , ∀t (4.7)

Constraints for the intermediate commodities
An intermediate commodity c ∈ C I is produced and consumed within the system.

The total amount produced by the technologies in P in f low
c of production should thus

be equal to the total amount consumed by the technologies in P out f low
c at all time.

∑
p∈P in f low

c

Inflowt,c,p = ∑
p∈P out f low

c

Outflowt,c,p ∀c ∈ C I , ∀t (4.8)

4.3.4 Operation variables and constraints for the conversion technologies

We now focus on modeling the energy conversion technologies PCONV at the oper-
ation level. Recall that MCONV denotes the set of all types of conversion devices:
MCONV = {(p, l) : p ∈ PCONV , l = 1, . . . , Lp}.

For the sake of simplicity, we will use two assumptions in what follows. First,
we suppose that PCONV ⊂ PDIS, i.e. that all conversion technologies are of discrete
nature. This means in particular that we assume that there is a set of Lp types of
devices available for each technology p and that that the total number of devices of
type m = (p, l) available at the beginning of phase ϕ can be computed using the
discrete design variables as ∑

ϕ
φ=1 SDφ,m.

Second, we will assume that the performance curves of all available types of con-
version devices are either linear (which corresponds to a load-independent conver-
sion efficiency coefficient) or piece-wise linear and convex. As explained in Subsec-
tion 4.2.4, this allows us to use aggregate scheduling variables indicating, for a given
type of device and a time-step, the number of on/off devices and the aggregate pro-
duction and consumption of energy and to avoid building a detailed schedule for
each individual device.

Variables for the conversion technologies
We first introduce, for each type of energy conversion device m ∈ MCONV , two

sets of continuous variables: Pin
t,n,m (resp. Pout

t,n,m) gives the aggregate amount of en-
ergy of form n ∈ N in

p (resp. n ∈ N out
p ) consumed (resp. produced) by the devices of

type m in t.
Second, the integer decision variable St,m represents the number of active devices

of type m in t. These variables are needed among others for all devices belonging to
technologies for which the minimum output power of an operating device is strictly
positive.

Finally, recall that for some technologies, the devices may produce energy under
various operating modes: see e.g. CCHP units which may produce either cold or hot
water (in addition to electricity) or dual-mode electric chillers (DMEC) which may
produce either cold water or ice. These operating modes are mutually exclusive, i.e.,
in a time-step t, a given device is either off or producing using a single operating
mode. Each operating mode will be identified by the distinguishing form of energy
it produces. We thus introduce MODEt,n,m the integer variable representing the
number of devices of type m operating in mode n ∈ N out

p in t. Note that these
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variables are introduced in the formulation only for the types of devices for which
several operating modes exist.

Table 4.2 recalls all the notation (set of indices, input parameters and decision
variables) related to commodities.

In what follows, for the sake of simplicity, we do not provide operation con-
straints for all potential technologies but only for the subset of technologies men-
tioned in the case studies reported in Chapter 3. Note that these constraints are ba-
sically of three main types. They ensure that the schedule is feasible with respect to
the limited capacity defined by design decisions, that each device is operated within
its working range and that the energy consumed by an active device complies with
its energy conversion efficiency.

Constraints for Combined Cooling, Heating and Power (CCHP) units
At time-step t, the number of active CCHP units should be less than the total

number of CCHP units present in the system, which is computed using the design
variables SDϕ,m.

St,m ≤
ϕ

∑
φ=1

SDφ,m ∀m ∈ MCCHP, ∀t (4.9)

A CCHP unit converts natural gas either into electricity and heating power or into
electricity and cooling power. It thus has two operating modes that may be referred
to as heating mode (n = HEAT) and cooling mode (n = COLD). At time-step t, a
CCHP unit operates using a single mode. The total number of active CCHP units in
t is thus equal to the sum, over the two operating modes, of the number of CCHP
units operating in each mode.

Modet,HEAT,m + Modet,COLD,m = St,m ∀m ∈ MCCHP, ∀t (4.10)

Each CCHP component should be operated within its working range. The aggregate
amount of energy of form n ∈ {ELEC, HEAT, COLD} produced by the set of CCHP
units of type m active at t should thus stay within the aggregate working ranges
defined as follows.

Pmin
ELEC,mSt,m ≤Pout

t,ELEC,m ≤ Pmax
ELEC,mSt,m ∀m ∈ MCCHP, ∀t (4.11)

Pmin
n,m Modet,n,m ≤Pout

t,n,m ≤ Pmax
n,m Modet,n,m ∀m ∈ MCCHP, ∀t,

∀n ∈ {HEAT, COLD} (4.12)

A CCHP unit consumes a single type of energy form (nin
CCHP = GAS) and its con-

version efficiency is load-independent. For each type of devices m ∈ MCCHP, this
efficiency is thus characterized by three coefficients: an electricity efficiency coef-
ficient ηt,ELEC,m, an heating efficiency coefficient ηt,HEAT,m and a cooling efficiency
coefficient ηt,COLD,m.
The relation between the amount of consumed gas and the amount of produced
electricity at time-step t is thus given by the following relation.

Pin
t,GAS,m =

Pout
t,ELEC,m

ηt,ELEC,m
∀m ∈ MCCHP, ∀t (4.13)

Moreover, the relation between the amount of consumed gas and the amounts of
heating energy (produced by the CCHP units in heating mode) and cooling energy
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Set of indices
P Set of technologies
N in

p Set of energy forms consumed by technology p ∈ P
N out

p Set of energy forms produced by technology p ∈ P
C in

n,p Set of commodities with energy form n consumed by technology p
Cout

n,p Set of commodities with energy form n produced by technology p
PDIS Set of discrete technologies
PCONT Set of continuous technologies
PCONV Set of energy conversion technologies
PSTO Set of energy storage technologies
M Set of device types
MCONV Set of energy conversion device types
MSTO Set of energy storage device types
Mp Set of device types belonging to technology p
Data
FCm Total cost for installing one device / one discrete unit capacity of type

m
MCϕ,m Accumulated maintenance cost of one device / one discrete unit capac-

ity of type m from phase ϕ to the end of system lifetime
MaxSizem Maximum size for the device of type m = (p, l) belonging to technol-

ogy p ∈ PCONT

Sizestep
m Size of a discrete capacity unit for the device of type m = (p, l) belong-

ing to technology p ∈ PCONT

MaxNumm Maximum number of devices / discrete capacity units of type m that
may be installed

Pmin
n,m Minimum amount of energy of type n that a device of type m can pro-

duce within one time-step
Pmax

n,m Maximum amount of energy of type n that a device of type m can pro-
duce within one time-step

ηt,n,m Load-independent conversion efficiency of a device of type m ∈
MCONV producing commodity n at time-step t

Bt,n,m Number of breakpoints in the piece-wise linear approximation of the
performance curve for a device of type m ∈ MCONV producing com-
modity n with a load-dependent conversion efficiency at time-step t

at,n,m,b Abscissa of breakpoint b of this piece-wise linear approximation
ot,n,m,b Ordinate of breakpoint b of this piece-wise linear approximation
Variables
SDϕ,m Number of devices / number of discrete units of type m ∈ M newly

added in the system at the beginning of phase ϕ (Integer)
Pin

t,n,m Total amount of energy of type n ∈ N in
p consumed by the devices of

type m ∈ M in t (Continuous)
Pout

t,n,m Total amount of energy of type n ∈ N out
p produced by the devices of

type m ∈ M in t (Continuous)
St,m Number of devices of type m ∈ MCONV active in t (Integer)
Modet,n,m Number of active devices of type m ∈ MCONV operating under mode

n ∈ N out
p in t (Integer)

STOt,m Amount of energy stored in the devices of type m ∈ MSTO at the be-
ginning of t (Continuous)

TABLE 4.2: Notations for technologies
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(produced by the CCHP units in cooling mode) at time-step t is given by the follow-
ing relation.

Pin
t,GAS,m ≥

Pout
t,HEAT,m

ηt,HEAT,m
+

Pout
t,COLD,m

ηt,COLD,m
∀m ∈ MCCHP, ∀t (4.14)

Note that in a CCHP unit, all the waste heat coming from the exhausted gas
produced by the internal combustion engine does not have to be transformed into
heating or cooling energy. This is why Constraints (4.14) are expressed as inequali-
ties rather than equalities.

Constraints for air source heat pumps (ASHP)
The number of ASHPs active at time-step t should be less than the total number

of ASHPs currently installed in the system.

St,m ≤
ϕ

∑
φ=1

SDφ,m ∀m ∈ MASHP, ∀t (4.15)

An ASHP converts electricity into either heating power or cooling power. It thus
has two operating modes which may be referred to as heating mode n = HEAT or
cooling mode n = COLD. The total number of active ASHPs in t is thus equal to
the sum, over the two operating modes, of the number of ASHPs operating in each
mode.

Modet,HEAT,m + Modet,COLD,m = St,m ∀m ∈ MASHP, ∀t (4.16)

Heat pumps should be operated within their working range. Recall that a heat pump
does not have a minimum load rate, i.e. Pmin

n,m = 0 for n ∈ {HEAT, COLD} and
m ∈ MASHP, and can thus be operated at any value between 0 and its maximal
capacity. The aggregate amount of energy of form n ∈ {HEAT, COLD} produced
by the ASHPs operating in mode n ∈ {HEAT, COLD} in t should thus comply with
the following inequality.

Pout
t,n,m ≤ Pmax

n,m Modet,n,m ∀m ∈ MASHP, ∀t,
∀n ∈ {HEAT, COLD} (4.17)

The conversion efficiency of an ASHP does not depend on its load. The relation
between the amount of consumed electricity and the amount of produced cool-
ing/heating energy is thus given by the following equality.

Pin
t,ELEC,m =

Pout
t,HEAT,m

ηt,HEAT,m
+

Pout
t,COLD,m

ηt,COLD,m
∀m ∈ MASHP, ∀t, (4.18)

Constraints for boilers
The number of boilers of type m active at time-step t should be less than the total

number of boilers currently installed in the system:

St,m ≤
ϕ

∑
φ=1

SDφ,m ∀m ∈ MBOILER, ∀t (4.19)

The heating power produced by a boiler can take any value between zero and its
maximum capacity, i.e. Pmin

HEAT,m = 0 for any m ∈ MBOILER. At any time-step t,
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the aggregate production of a set of active boilers of type m should thus lie between
zero and the capacity of one boiler multiplied by the number of active boilers.

Pout
t,HEAT,m ≤ Pmax

HEAT,mSt,m ∀m ∈ MBOILER, ∀t (4.20)

Note as boilers have a zero minimum working range, it is possible to remove vari-
ables St,m from the formulation and to replace each variable St,m by the expression
∑

ϕ
φ=1 SDφ,m in Constraints (4.20).

A boiler of type m converts gas into heating power with a load-independent con-
version efficiency coefficient denoted by ηt,HEAT,m. The aggregate amount of gas
consumed by all the active boilers of type m active at time-step t is thus given by the
following equality.

Pin
t,GAS,m =

Pout
t,HEAT,m

ηt,HEAT,m
∀m ∈ MBOILER, ∀t (4.21)

Constraints for single-mode electric chillers (SMEC)
The number of SMECs of type m active at time-step t should be less than the total

number of SMECs currently installed in the system.

St,m ≤
ϕ

∑
φ=1

SDφ,m ∀m ∈ MSMEC, ∀t (4.22)

A SMEC of type m should be operated within its working range defined by
[Pmin

COLD,m; Pmax
COLD,m], with Pmin

COLD,m > 0. The aggregate amount of cooling power
(n = COLD) produced by the set of SMECs of type m active at t should thus lie
within the aggregate working range defined as follows.

Pmin
COLD,mSt,m ≤Pout

t,COLD,m ≤ Pmax
COLD,mSt,m ∀m ∈ MSMEC, ∀t (4.23)

The conversion efficiency coefficient of a SMEC depends on its load and on the am-
bient temperature. We will therefore use the approach described in Subsection 4.2.3
to handle the set of performance curves provided by the manufacturer of each con-
sidered type of SMEC. Thus, the conversion efficiency of a SMEC of type m at t
is described by a piece-wise linear function comprising Bt,COLD,m breakpoints with
at,COLD,m,b and bt,COLD,m,b the abscissa and ordinate of breakpoint b. Moreover, thanks
to the fact that this piece-wise linear function is convex, we may use aggregate per-
formance curves (see the discussion provided in Subsection 4.2.4 and Lemma 4.2.2)
to compute the aggregate amount of input electricity Pin

t,ELEC,m consumed by St,m
active SMECs to produce the aggregate amount of Pout

t,COLD,m.

Pin
t,ELEC,m ≥ st,COLD,m,bPout

t,COLD,m + cstt,COLD,m,bSt,m ∀m ∈ MSMEC, ∀t

∀b = 1, . . . , Bt−1,COLD,m (4.24)

Here, st,COLD,m,b =
ot,COLD,m,b+1−ot,COLD,m,b
at,,COLD,mb+1−at,COLD,m,b

is the slope and cstt,COLD,m,b = ot,COLD,m,b −
st,COLD,m,bat,m,COLD,b the constant value of the line segment between breakpoints b
and b + 1 in the performance curve of as a single active device of type m.
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Constraints for dual-mode electric chillers (DMEC)
The number of DMECs of type m active at time-step t should be less than the total

number of DMECs currently installed in the system.

St,m ≤
ϕ

∑
φ=1

SDφ,m ∀m ∈ MDMEC, ∀t (4.25)

An DMEC converts electricity into either cooling power or ice. It thus has two oper-
ating modes which may be referred to as cooling mode n = COLD or ice-producing
mode n = ICE. The total number of active DMECs in t is thus equal to the sum,
over the two operating modes, of the number of DMECs operating in each mode.

Modet,COLD,m + Modet,ICE,m = St,m ∀m ∈ MDMEC, ∀t (4.26)

A DMEC should be operated within its working range, the bounds of which de-
pends on its mode. Therefore, the aggregate amount of output energy n ∈ {COLD, ICE}
produced by the set of DMECs operating in mode n at t should lie within the aggre-
gate working range defined as follows.

Pmin
n,m Modet,n,m ≤ Pout

t,n,m ≤ Pmax
n,m Modet,n,m ∀m ∈ MDMEC, ∀t

∀n ∈ {COLD, ICE} (4.27)

Similar to SMECs, the conversion efficiency coefficient of a DMEC depends on its
load. It is described by its manufacturer by two set of performance curves: one
set giving the amount of electricity consumed as a function of the produced cool-
ing energy (in cooling mode) at various ambient temperatures and one set giving
the amount of electricity consumed as a function of the amount of produced ice
(in ice-producing mode) at various ambient temperatures. We will therefore use
the approach described in Subsection 4.2.3 to handle these two sets of performance
curves. Thus, the conversion efficiency of a DMEC of type m at t operating in mode
n ∈ {COLD, ICE} is described by a piece-wise linear function comprising Bt,n,m
breakpoints with at,n,m,b and bt,n,m,b the abscissa and ordinate of breakpoint b. More-
over, thanks to the fact that this piece-wise linear function is convex, we may use
aggregate performance curves (see the discussion provided in Subsection 4.2.4 and
Lemma 4.2.2) to compute the aggregate amount of input electricity consumed to
produce the aggregate amount of Pout

t,n,m. This leads to the following constraints.

Pin
t,ELEC,m ≥ st,n,m,bPout

t,n,m + cstt,n,m,bModet,n,m ∀m ∈ MSMEC, ∀t

∀n ∈ {COLD, ICE}
∀b = 1, . . . , Bt−1,n,m (4.28)

Here, st,n,m,b =
ot,n,m,b+1−ot,n,m,b
at,n,m,b+1−at,n,m,b

is the slope and cstt,n,m,b = ot,n,m,b − st,n,m,bat,n,m,b the
constant value of the line segment between breakpoints b and b + 1 of the perfor-
mance curve of a single DMEC operating in mode n at t.
Note how Constraints (4.28) are expressed using variables Modet,n,m instead of vari-
ables St,m.
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4.3.5 Operation variables and constraints for the storage technologies

Let us now focus on modeling the energy storage technologies PSTO at the operation
level. Recall that MSTO denotes the set of all types of storage devices: MSTO =
{(p, l) : p ∈ PSTO, l = 1, . . . , Lp}.

For the sake of simplicity, we will use two assumptions in what follows. First,
we suppose that PSTO ⊂ PCONT, i.e. that all storage technologies are of continuous
nature. This means in particular that we assume that there is at most one storage
device of type m = (p, 1) installed in the system and that the corresponding capacity
available at the beginning of phase ϕ can be computed using the discrete design
variables as SizeStep

m ∑
ϕ
φ=1 SDφ,m.

Second, we assume that |N in
p | = |N out

p | = 1, i.e. that there is a single form of
energy put into and released from the storage device. Let us denote by nin

p (resp. nout
p )

the form of the energy put into (resp. released from) the storage device. Note that
the energy is stored within the device under a form n = nin

p . Thus, for instance, for
a cold storage tank (p = STO_COLD), the energy is put into and stored in the tank
under the form nin

p = ICE and released from the tank under the form nout
p = COLD.

As for a heat storage tank (p = STO_HEAT), the energy is put into, stored in and
released from the tank under the form nin

p = nout
p = HEAT.

Variables for energy storage commodities
We first introduce two set of continuous variables: Pin

t,nin
p ,m (resp. Pout

t,nout
p ,m) gives the

total amount of energy of form nin
p (resp. nout

p ) put into (resp. released from) by the
storage device of type m in t.

Moreover, STOt,m represents the amount of energy in the form nin
p stored in the

storage device at the beginning of time-step t.

Constraints for energy storage commodities
For any type storage device of type m, the amount of energy stored in the device at

the beginning of time-step t should stay below the current installed storage capacity.

STOt,m ≤ SizeStep
m

ϕ

∑
φ=1

SDφ,m ∀m ∈ MSTO, ∀t (4.29)

Moreover, the amount of energy released from the storage device during t should
not exceed the amount stored in the device at the beginning of t.

Pout
t,nout

p ,m ≤ STOt,m ∀m ∈ MSTO, ∀t (4.30)

The time evolution of the energy stored in the device is described through inventory
balance equations. We thus have:

STOϕ,d,h,m + Pin
ϕ,d,h,nin

p ,m − Pout
ϕ,d,h,nout

p ,m = STOϕ,d,h+1,m ∀m ∈ MSTO, ∀(ϕ, d) ∈ D,

∀h = 0, . . . , H − 1 (4.31)

Constraints (4.31) state that the amount of energy stored at the beginning of hour
h + 1, STOϕ,d,h+1,m, is equal to the amount of energy already stored at the beginning
of time-step h, STOϕ,d,h,m, plus the total amount of energy put into the device during
time-step h minus the energy released during h.
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Finally, for each representative day (ϕ, d) ∈ D, we have:

STOϕ,d,0,m = STOϕ,d,H,m ∀m ∈ MSTO, ∀(ϕ, d) ∈ D (4.32)

In practice, the entering inventory of a given day in the scheduling horizon is im-
posed by the leaving inventory of the previous day. In our case, we do not consider
each individual day of the scheduling horizon but rather a number of representa-
tive days which will not necessarily occur successively in practice. We thus impose
that the entering inventory of a representative day (ϕ, d) ∈ D, STOϕ,d,0,m, should
be equal to the leaving inventory of the same selected day STOϕ,d,H,m. This might
be understood as the fact that the representative day d will be cyclically repeated
wϕ,d times in the simplified scheduling horizon used in our optimization problem
for phase ϕ.

4.3.6 Operation constraints linking commodities and technologies

On one hand, Subsection 4.3.3 presented the operation constraints relative to the
commodities using variables Inflowt,c,p or Outflowt,c,p. Each of these variables rep-
resents the aggregate amount of commodity c produced/consumed in t by all the
devices belonging to technology p. Note that these Inflow or Outflow variables do
not allow to follow the exact production/consumption of c by each type l = 1, . . . , Lp
of devices belonging to technology p.

On the other hand, Subsections 4.3.4 and 4.3.5 presented the operation constraints
relative to the technologies using variables Pin

t,n,m and Pout
t,n,m. Each of these variables

represents the amount of energy of form n consumed/produced in t by the devices
of type m. Note that these Pin and Pout variables do not allow to follow the ex-
act consumption/production by the devices of type m of the various commodities
c = (n, s), s = 1, . . . , Sn, corresponding to the energy form n.

In order to link the variables relative to commodities to the ones relative to
technologies in our formulation, we assume that a given technology p has a sin-
gle point of entry (resp. a single point of exit) for each form of energy n ∈ N in

p (resp.
n ∈ N out

p ). The point of entry (resp. of exit) corresponding to the energy form n is
connected to each commodity belonging to C in

n,p (resp. Cout
n,p ). It is also connected to

each set of devices m = (p, l), l = 1, . . . , Lp. Moreover, we assume that the flows of
the various commodities entering (resp. exiting) technology p at a given point are
merged and shared amongst the various types of device belonging toMp.

Under these assumptions, the constraints linking commodities and technologies
at the operation level are flow balance equations expressed at each entry/exit point
of each technology.

∑
c∈C in

n,p

Outflowt,c,p = ∑
m∈Mp

Pin
t,n,m ∀p ∈ P , ∀n ∈ N in

p , ∀t (4.33)

∑
c∈Cout

n,p

Inflowt,c,p = ∑
m∈Mp

Pout
t,n,m ∀p ∈ P , ∀n ∈ N out

p , ∀t (4.34)

Figure 4.5 illustrates these constraints for a technology denoted by p1. p1 con-
sumes energy of forms N in

p1
= {n1, n2} and produces energy in the form N out

p =
{n3}. Two types of devices denoted by l1 and l2 are available for this technology.
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p1

c3c2c1 c4
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l2
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n3
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Outflowt,c2 ,p1
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P in
t,n1 ,p1 ,l1
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P
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t,n 2,p

1,l 1
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t,n2 ,p1 ,l2

P outt,n3 ,p1 ,l1

Pout
t,n3,p1,l2

FIGURE 4.5: Example of inputs and outputs variables

In the RES diagram provided in the upper part of the figure, technology p1 con-
sumes three commodities c1 = (n1, 1), c2 = (n1, 2) and c3 = (n2, 1) , and pro-
duces commodity c4 = (n3, 1). We thus have C in

n1,p1
= {c1, c2}, C in

n2,p1
= {c3} and

Cout
n3,p1

= {c4}. The lower part of the figure displays the flows of energy, together
with the corresponding operation variables, at each entry/exit point of technology
p1. Observe how the entering flows of commodities corresponding to the same form
n are merged at the corresponding entry point and how the resulting total amount
of energy of form n is allocated between the various types of device. Similarly, the
energy of form n produced by all types of devices is merged at the corresponding
exit point before being allocated between the exiting flows of commodities of this
form.

4.3.7 Objective Function

Finally, while optimizing the design of an LMES, we seek to minimize the net present
cost of the system which comprises the actualized design and operation costs. The
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objective function is thus given by:

min
Φ

∑
ϕ=1

[
αϕ

(
∑

m∈M
(FCm + MCϕ,m)SDϕ,m + ∑

c∈CR,Co

SCϕ,cCdisc,ϕ

)

+ βϕ ∑
d∈Dϕ

wϕ,d

H−1

∑
h=0

(
∑

c∈CR

EPϕ,d,h,cConsoϕ,d,h,c − ∑
c∈CS,Sell

EPϕ,d,h,cSoldϕ,d,h,c

)]
(4.35)

The cost computed for each phase ϕ involves two main parts. The first part
corresponds to the direct cost of the design decisions, i.e. to the cost of installing
and maintaining the newly added conversion and storage devices, plus the cost of
the contract negotiated with the supplier of each resource commodity in CR,Co. The
second part can be seen as an estimation of the cost that will have to be paid at phase
ϕ to operate the designed system so as to satisfy the energy demand at all time. This
operation cost is estimated by computing the weighed sum, over all representative
days in Dϕ, of the cost of the best operation schedule found for each representative
day. Note that the operation cost at day (ϕ, d), is equal to the sum, over all time-
steps h, of the cost of buying the resource commodities consumed during h minus
the revenue obtained by selling the supply commodities during h.

4.3.8 Formulation of a generic technology

In Subsections 4.3.2, 4.3.4 and 4.3.5, we described how the design problem may be
formulated as an MILP for a subset of energy conversion and storage technologies,
focusing mostly on the ones encountered in our case studies. However, we did not
cover all technologies that may be encountered in an LMES. Therefore, as a first
step towards developing a tool able to deal with a larger class of LMESs, we define
in this section a framework for formulating the problem for a generic technology.
This framework can be seen as a template that should be customized to add new
technologies within the optimization tool when necessary. Using the terminology
commonly used in UML, the template technology can be considered as an abstract
class and each technology mentioned above is a class which extends the abstract
class.

For a given type of device m belonging to technology p, the mandatory decision
variables for a general technology are the discrete design variables SDϕ,m and the
continuous variables Pin

t,n,m and Pout
t,n,m used to follow the commodity flows between

the set of devices of type m ∈ Mp and the other components of the LMES.
However, these variables may not be sufficient to fully describe the detailed in-

ternal functioning of a technology. We thus may have to introduce additional vari-
ables such as the number of active devices St,m, the number of devices operating
in a given mode Modet,n,m or the amount of energy stored in the devices STOt,m.
These additional auxiliary variables will be useful to model the internal behaviour of
a the technology (rather than its exchanges with the other commodities). Let Vt,m,a,
a ∈ {1, · · · , A}, denote the set of auxiliary (integer or continuous) variables needed
to model the internal functioning of a set of devices m ∈ Mp at t.

The set of constraints relative to any technology can be roughly classified into
three subsets.
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First, the number of devices/number of discrete capacity units of a type of device
m ∈ Mp installed in the system should not exceed the maximum allowed number.

Φ

∑
φ=1

SDφ,m ≤ MaxNumm (4.36)

Second, in general, the maximum output power of a type of device m producing
energy of type n is constrained by the number of installed devices/discrete capacity
units. We cannot give a unique and explicit expression for the constraints describing
how the design decisions affect the output power of a technology as different tech-
nologies may have different rules for this maximum output power: see e.g. Con-
straints (4.9)-(4.12) for CCHP units and Constraints (4.29)-(4.30) for storage devices.
To represent these linear constraints in a generic way, we introduce a linear function
Om. These constraints are formulated in a general form as follows:

Om(
Φ

∑
φ=1

SDφ,m, Pout
t,n,m, Vt,n,m,1, · · · , Vt,n,m,A) ≤ 0 (4.37)

Third, there is a last set of constraints to handle the relationship between the in-
put power and output power of a type of technology. This relationship may again
take many different forms. For instance, for a heat pump or a CCHP unit, the effi-
ciency coefficients are constant and these constraints are relatively easy to formulate.
For single-mode and dual-mode electric chillers, we have a set of convex non-linear
performance curves for which a piece-wise linear approximation may be built. For
thermal storage, the output power is directly determined by the input power and
can be chosen within a range defined by the variable of the amount of stored energy.
To represent these linear constraints in a generic way, we introduce a linear function
Em. These constraints may also involve auxiliary variables and have the following
general form.

Em(Pin
t,n,m, Pout

t,n,m, Vt,n,m,1, · · · , Vt,n,m,A) ≤ 0 (4.38)

4.4 Computational experiments

We would like to assess the computational performance of a mathematical program-
ming solver using the MILP formulation provided in Section 4.3 at solving the LMES
optimal design problem. To this aim, we carried out some numerical experiments
using instances based on the three cases studies reported in Section 3.5.

4.4.1 Instances

District cooling system in City A
The first set of instances are based on a DCS to be built in City A, located in the

south of China, using as a starting point the RES diagram provided in Figure 3.3. We
thus have the set of available technologies P = {SMEC, DMEC, STO_COLD} and
the set of energy forms N = {ELEC, COLD, ICE}. The set of resource commodities
is CR = {(ELEC, 1)}, the set of intermediate commodities C I = {(ICE, 1)} and the
set of supply commodities CS = {(COLD, 1)}.

The expected lifetime of the DCS is Y = 30 years. According to the construction
plan of the district, the population of the district is anticipated to increase during the
first three years and stay stable afterwards. We thus introduce Φ = 3 investment
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phases. Phase 1 corresponds to the first year (i.e. y
1
= y1 = 1), Phase 2 to the second

year (i.e. y
2
= y2 = 2) and Phase 3 to the last 28 years (i.e. y

3
= 3 and y3 = 30). The

annual discount rate used in the objective function to actualize the future costs is set
to γ = 8%.

For each phase ϕ, we have a time series representing the predicted hourly evo-
lution of the demand for the supply commodity (COLD, 1) throughout the year.
These time series are obtained by combining historical data on the weather condi-
tions and the typical cooling consumption in the area with forecasts on the number
of buildings who will connect to the DCS. In order to highlight the upward trend of
the resulting cooling demand, the total annual cooling demand and the maximum
hourly demand expected for each of the three phases are provided in Table 4.3.

Phase 1 2 3
Length (years) 1 1 28
Total Yearly Demand (GWh) 54.7 250.0 276.8
Max Hourly Demand (MWh) 13.6 62.2 93.8

TABLE 4.3: City A project: upward trend of the annual demand

As for the price of the resource commodity (ELEC, 1), it depends on the time
of the day and of the commodity produced but does not vary from one day to the
next. Figure 4.6 displays the evolution of the electricity price over the course of
a day. It shows among others that, within a day, three types of periods may be
identified. Valley periods are usually at night and early morning and correspond to
a low electricity price. Peak periods happen when the demand for electricity is high,
i.e. at noon and in the evening, and correspond to a high electricity price. Finally,
the other periods are referred to as flat periods. It is possible to take advantage of
these price variations to reduce the total energy cost of the DCS. Thus, in practice,
the DCS operators often produce ice at night during valley periods, store it for a few
hours and melt it to obtain chilled water at daytime during peak periods. In City
A, this strategy is in fact encouraged by the grid operator which offers during valley
periods an electricity price for producing ice power lower than the one for producing
cooling power. In this specific case study, the price of resource commodity (ELEC, 1)
thus depends on the time of the day and of the type of commodity produced.

FIGURE 4.6: City A project: daily variations of the price for commod-
ity (ELEC,1)



66 Chapter 4. Problem modeling and mathematical formulation

As the price of the resource commodity does not vary with the day in the year,
we select the set of representative days Dϕ using only the time series representing
the cooling demand. Moreover, note that City A is located in a tropical region so that
customers need cooling power during most of the year. Accordingly, the number of
zero-demand days per year is relatively low: over the 3 considered phases, there is
on average only 35 zero-demand days per year. The set Dϕ should thus comprise a
relatively large number of days to represent as best as possible the remaining non-
zero demand days. We considered the following values of |Dϕ| in our numerical
experiments: {6, 14, 22, 30, 38, 58, 78}. Dϕ comprises |Dϕ| − 4 typical days selected
through the approach described in Subsection 4.2.2 and 4 extreme days (the day
with the highest total demand, the one with the highest hourly demand, the one
with the lowest non-zero total demand and the one with the lowest non-zero hourly
demand). In Figure 4.7, we show the cooling demand profile of the four extreme
days in Phase 3. Each day is divided into H = 24 time steps, each one lasting ∆t = 1
hour. The maximum (resp. minimum non-zero) daily and hourly demand are 2.09
GWh and 93.8 MWh (resp. 423 kWh and 1.33 kWh).

FIGURE 4.7: City A project: daily variations of the cooling demand
during the 4 extreme days of Phase 3

Finally, for the resource commodity (ELEC, 1), there is a contract, to be negoti-
ated at each phase ϕ with an outside electricity provider, fixing a limit on the maxi-
mum instantaneous power that may be bought from the grid, i.e. (ELEC, 1) ∈ CR,Co.
The maximum contracted power should stay below MaxC(ELEC,1) = 30MW. We use
a discrete unit of power equal to Cstep

c = 3000kW so that MaxUnits(ELEC,1) = 10.
Moreover, the price per contracted kW for is equal to 280CNY for all phase ϕ so that
SC(ELEC,1),ϕ = 280× Cstep

c = 840kCNY.
Regarding the energy conversion technologies PCONV = {SMEC, DMEC}, we

have LSMEC = 3 types of single-mode electric chillers and LDMEC = 2 types of dual-
mode electric chillers available. For each type of device m, the installation cost FCm
and the maximum production capacity Pmax

n,m , for each n ∈ P out
p , are shown in Ta-

ble 4.4. The installation cost FCm of each type is assessed according to the typical cost
of chillers in the market and the regional conditions for construction. Note that the
chillers of type (SMEC, 1) and (SMEC,2) have the same cooling capacity Pmax

COLD,m, but
chillers of type (SMEC, 2) are less energy-efficient and less expensive than chillers of
type (SMEC, 1). For each type of chiller and each commodity, the minimum output
power Pmin

n,m is equal to 0.1Pmax
n,m . The performance curves of the available types of
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m Pmax
COLD,m (MW) Pmax

ICE,m (MW) FCm (CNY)
(SMEC,1) 9 - 1.3× 108

(SMEC,2) 9 - 1.2× 108

(SMEC,3) 5 - 7.9× 107

(DMEC,1) 8 6 1.3× 108

(DMEC,2) 5 3 8.2× 107

TABLE 4.4: City A project: available types of chiller

SMEC and DMEC at an ambient temperature of 30◦C are displayed in Figures 4.8
and 4.9. In order to build the piece-wise linear approximation of the performance
curve to be used for each chiller of type m, each form of energy n and each time-
step t, we use Bt,n,m = 4 breakpoints. The breakpoint coordinates are obtained as
described in Subsection 4.2.3.

For each device type m, the maximum number of devices that may be installed,
MaxNumm, is equal to 10 and the maintenance cost MCϕ,m is assumed to be equal
to 0 for all phase ϕ.

FIGURE 4.8: City A project: performance curves of the single-mode
electric chillers (also termed standard chillers) at 30◦C

Finally, we have a single energy storage technology and this one is of continuous
nature: PSTO = {STO_COLD} ⊂ PCONT. The capacity of the thermal storage tank
m = (STO_COLD, 1) to be installed may namely take any value between 0 MWh
and MaxSizem = 200 MWh. We use a discrete capacity unit Sizestep

m equal to 5000
kWh so that MaxNumm = 40 . The cost for installing a kWh of ice storage capacity
is 220 CNY so that FCm = 220× Sizestep

m = 1.1MCNY . The maintenance cost MCϕ,m
is assumed to be equal to 0 for all phase ϕ.

District cooling system in City B
The second set of instances are based on a DCS to be built in City B, located

in the east of China, using as a starting point the RES diagram provided in Fig-
ure 3.3. Similar to the first case study, we have the set of available technologies P =
{SMEC, DMEC, STO_COLD} and the set of energy formsN = {ELEC, COLD, ICE}.
The set of resource commodities is CR = {(ELEC, 1)}, the set of intermediate com-
modities C I = {(ICE, 1)} and the set of supply commodities CS = {(COLD, 1)}.
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FIGURE 4.9: City A project: performance curves of the dual-mode
electric chillers (also termed ice chillers) at 30◦C

The expected lifetime of the DCS is Y = 30 years and we anticipate the popu-
lation of the district to increase during the first five years before getting stable. We
thus consider Φ = 5 investment phases, with the first four phases lasting one year
and the fifth one lasting 26 years (i.e. y

5
= 5 and y5 = 30). The annual discount rate

used in the objective function to actualize the future costs is set to γ = 8%.
Similar to City A project, we have, for each phase ϕ, a time series representing

the predicted hourly evolution of the demand for the supply commodity (COLD, 1)
throughout the year. In order to highlight the upward trend of the resulting cool-
ing demand, the total annual cooling demand and the maximum hourly demand
expected for each of the five phases are provided in Table 4.5.

Phase 1 2 3 4 5
Length(yr) 1 1 1 1 26
Total Yearly Demand(GWh) 0.8 8.4 26.1 48.8 62.2
Max Hourly Demand(MWh) 1.4 14.0 45.3 90.0 132.0

TABLE 4.5: City B project: upward trend of the annual demand

The price of the resource commodity (ELEC, 1) features some daily periodic vari-
ations but is otherwise stationary, i.e. does not vary from one day to the next. More-
over, contrary to City A project, there is no discounted electricity price to produce
ice during valley periods: the electricity price thus does not depend on the produced
commodity in City B project. Figure 4.10 displays the evolution of the electricity
price over the course of a day.

As the price of the resource commodity does not vary with the day in the year,
we select the set of representative days Dϕ using only the time series representing
the cooling demand. City B is located in a region with a temperate climate. Thus, in
contrast with City A where cooling power is needed year round, the cooling demand
in City B is mainly concentrated around the summer and the average number of
zero-demand days per year in City B project is high: over the 5 considered phases,
there is on average 204 zero-demand days per year. This is why we use a rather small
number of representative days to represent in our optimization model the remaining
non-zero demand days and set the value of |Dϕ| to {6, 8, 10, 12, 14}. Dϕ comprises
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FIGURE 4.10: City B project: daily variations of the price for com-
modity (ELEC, 1)

|Dϕ| − 4 typical days and 4 extreme days selected as described in Subsection 4.2.3.
The profile of these four extreme days during Phase 5 is shown in Figure 4.11. Each
day is divided into H = 24 time steps, each one lasting ∆t = 1 hour. The maximum
(resp. minimum non-zero) daily and hourly demand are 1.17 GWh and 132 MWh
(resp. 761 kWh and 1.03 kWh).

FIGURE 4.11: City B project: daily variations of the cooling demand
during the 4 extreme days of Phase 5

Finally, the resource commodity (ELEC, 1) belongs to CR,Co. The maximum con-
tracted power should stay below MaxC(ELEC,1) = 30MW. We use a discrete unit
of power equal to Cstep

c = 3000kW so that MaxUnits(ELEC,1) = 10. Moreover, the
price per contracted kW for is equal to 440CNY for all phase ϕ so that SC(ELEC,1),ϕ =

440× Cstep
c = 1.32MCNY.

Regarding the energy conversion technologiesPCONV = {SMEC, DMEC}, there
are LSTDC = 2 types of single-mode electric chillers and LICEC = 1 type of dual-mode
electric chiller that may be installed. These types correspond to the large-capacity
chillers (SMEC, 1), (SMEC, 2) and (DMEC, 1) used for City A project: the corre-
sponding performance curves at an ambient temperature of 30◦C are thus displayed
in Figures 4.8 and 4.9. However, the installation cost FCm in City B differs from the
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Pmax
COLD,m (MW) Pmax

ICE,m (MW) FCm (CNY)
(SMEC,1) 9 - 1.3× 108

(SMEC,2) 9 - 1.2× 108

(DMEC,1) 8 6 1.3× 108

TABLE 4.6: City B project: available types of chiller

one in City A project and is provided in Table 4.6. For each device type m, the max-
imum number of devices that may be installed, MaxNumm, is equal to 10 and the
maintenance cost MCϕ,m is assumed to be equal to 0 for all phase ϕ.

Finally, we have a single energy storage technology and this one is of continuous
nature: PSTO = {STO_COLD} ⊂ PCONT. The capacity of the thermal storage tank
m = (STO_COLD, 1) to be installed may namely take any value between 0 MWh
and MaxSizem = 180MWh. We use a discrete capacity unit Sizestep

m equal to 9kWh
so that MaxNumm = 20 . The cost for installing a kWh of ice storage capacity is
130CNY so that FCm = 130× Sizestep

m = 1.17MCNY . The maintenance cost MCϕ,m
is assumed to be equal to 0 for all phase ϕ.

Trigeneration system in City C
The last set of instances are related to the trigeneration system to be built in City

C, using as a starting point the RES diagram provided in Figure 3.4. We thus have the
set of available conversion technologiesPCONV = {CCHP, BOILER, SMEC, DMEC, ASHP},
the set of available storage technologies PSTO = {STO_COLD, STO_HEAT} and
the set of energy forms N = {ELEC, GAS, HEAT, COLD, ICE}. The set of re-
source commodities is CR = {(ELEC, 1), (GAS, 1)}, the set of intermediate com-
modities C I = {(ELEC, 2), (HEAT, 1), (ICE, 1)} and the set of supply commodities
CS = {(HEAT, 2), (COLD, 1)}.

The expected lifetime of the trigeneration system is Y = 30 years and the popula-
tion of the district is expected to increase in the first four years before getting stable.
Therefore, we consider Φ = 4 construction phases, with the first three phases lasting
one year and the fourth one lasting 27 years (i.e. y

4
= 4 and ȳ4 = 30). The annual

discount rate of this project is set to γ = 8%.
For each phase ϕ and each supply commodity, we have a time series describ-

ing the predicted hourly evolution over the year. The total yearly demand and the
maximum hourly demand are given in Table 4.7 for (HEAT, 2) and (COLD, 1): in
both cases, we observe a clear upward trend over the years. The heat dissipation is
integrated into the numerical values of energy demand for (HEAT, 2).

Phase 1 2 3 4
Length (years) 1 1 1 27
Total Yearly Cooling Demand (GWh) 2.3 3.1 12.7 18.9
Max Hourly Cooling Demand (MWh) 4.6 5.8 20.2 30.2
Total Yearly Heating Demand (GWh) 14.0 24.2 31.1 38.3
Max Hourly Heating Demand (MWh) 11.0 17.3 24.6 32.6

TABLE 4.7: Trigeneration system: upward trend of the annual de-
mand
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Moreover, City C is located in central China where the climate is temperate. The
cooling demand and the heating demand of the neighboring residents thus display
a seasonal character and occur in two non-overlapping periods during a year. More
precisely, the cooling supply period covers six months, from the 1st May to the 31st
October and the heating supply period covers four months, from the 15th November
to the 15th March of the next year.

The price of the resource commodity (ELEC, 1) bought from the national grid
varies within the day. Four periods may be distinguished: valley, flat, high and peak
periods. The valley period is from 23:00 to 7:00 the next day and corresponds to a
unit price of 0.27 CNY/kWh. The high period is from 9:00 to 16:00 with a price 0.85
CNY/kWh. The peak period lasts for two hours from 20:00 to 22:00 with a price
1.03 CNY/kWh. The rest of the day is termed flat period and corresponds to a unit
price of 0.57 CNY/kWh. The variation of the electricity price is shown in Figure
4.12. The buying price of the resource commodity (GAS, 1) natural gas is assumed
to stay stable during the lifetime of the system unit and is set to is 0.27 CNY/kWh.

FIGURE 4.12: Trigeneration system: daily variations of the price for
commodity (ELEC, 1)

As the price of the resource commodities does not vary with the day in the year,
we select, for each phase ϕ, a set of representative days using only the time series cor-
responding to the predicted hourly evolution of the cooling demand and of the heat-
ing demand throughout the year. We thus select a set of |Dϕ| ∈ {12, 16, 20, 24, 28, 32, 36}
representative days: |Dϕ| − 8 typical days selected using the procedure described in
Subsection 4.2.2, 4 extreme days for the cooling demand and 4 extreme days for the
heating demand. Each day is divided into H = 24 time-steps and each time-step is
of length ∆t = 1 hour. Figure 4.13 displays the 4 extreme days selected for each type
of demand at phase 4.

Finally, the maximum instantaneous electric power that may be bought from
the electricity power is limited through a contract which may be renegotiated at
the beginning of each phase. We thus have CR,Co = {(ELEC, 1)}. The maximum
contracted power should stay below MaxC(ELEC,1) = 30MW. We use a discrete unit
of power equal to Cstep

c = 0.5MW so that MaxUnits(ELEC,1) = 60. Moreover, the price
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per contracted kW for is equal to 270CNY for all phase ϕ, which gives SC(ELEC,1),ϕ =

270× Cstep
c = 135kCNY.

(A) Extreme days for cooling demand (B) Extreme days for heating demand

FIGURE 4.13: Trigeneration: daily variations of the cooling and heat-
ing demand during the 4 corresponding extreme days of Phase 4

Let us now consider the available conversion technologies PCONV =
{CCHP, BOILER, ASHP, SMEC, DMEC}.

A single type of CCHP unit (LCCHP = 1) is available for installation in the LMES.
The available model has an electricity generation capacity equal to Pmax

ELEC,(CCHP,1) =

1500kW and thermal generation capacities equal to Pmax
COLD,(CCHP,1) = Pmax

HEAT,(CCHP,1) =

1500kW. Its minimum load rate is 50%, which means that an active CCHP unit
should produce at least Pmin

ELEC,(CCHP,1) = Pmin
COLD,(CCHP,1) = Pmin

HEAT,(CCHP,1) = 750kW
of electric power. Its electric and thermal conversion efficiencies are load-independent
and constant: ηt,ELEC,(CCHP,1) = ηt,COLD,(CCHP,1) = ηt,HEAT,(CCHP,1) = 38% for all t.
The purchasing price of one unit of (CCHP, 1) is 7MCNY and the corresponding
total installation cost is FC(CCHP,1) = 17MCNY.

There is also a single type of boiler: LCCHP = 1. The available model may be
operated at any value between Pmin

HEAT,(BOILER,1) = 0kW and its maximum capacity
Pmax

HEAT,(BOILER,1) = 7000kW. Its conversion efficiency coefficient is load-independent
and constant: ηt,HEAT,(BOILER,1) = 95% for all t. The cost for purchasing a unit of
(BOILER, 1) is 1.1MCNY and the total installation cost per unit is FC(BOILER,1) =
2.94MCNY.

As for the single-mode electric chillers, LSMEC = 2 types of devices are avail-
able. Both types of chiller have a maximum working load of Pmax

COLD,(SMEC,1) =

Pmax
COLD,(SMEC,2) = 3.5MW. Chillers of type (SMEC, 1) have a minimum load rate of

10% so that Pmin
COLD,(SMEC,1) = 0.35MW. Chillers of type (SMEC, 2) have a minimum

load rate of 20% so that Pmin
COLD,(SMEC,2) = 0.70MW. Their conversion efficiencies are

load- and temperature dependant. They are depicted by a set of convex performance
curves providing the consumed electric power as a function of the produced cooling
power under different ambient temperatures. The performance curves of both types
of chillers at an ambient temperature of 30◦C are shown in Figure 4.14. The pur-
chase price of one device of type (SMEC, 1) is 2.1MCNY and the total installation
cost is FC(SMEC,1) = 5.2MCNY. The purchase price of one device of type (SMEC, 1)
is 1.2MCNY and the total installation cost is FC(SMEC,2) = 3.1MCNY.

A single type of dual-mode chiller is available for installation in the system:
LDMEC = 1. Its maximum cooling capacity is Pmax

COLD,(DMEC,1) = 3.5MW and its max-
imum ice-making capacity is Pmax

ICE,(DMEC,1) = 2.4MW. The minimum load rate for



4.4. Computational experiments 73

FIGURE 4.14: Trigeneration system: performance curves of the single-
mode electric chillers (also termed standard chillers) at 30◦C

both modes is 30% so that Pmin
COLD,(DMEC,1) = 1.1MW and Pmin

ICE,(DMEC,1) = 0.72MW. Its
conversion efficiency is load- and temperature dependant. It is depicted by two sets
of convex performance curves providing the consumed electric power as a function
of the produced cooling power (or produced ice) under different ambient tempera-
tures. The performance curves of both modes are shown in Figure 4.14. The pur-
chase price for one unit of (DMEC, 1) is 1.8 MCNY and the total installation cost is
FC(DMEC,1) = 4.4MCNY.

FIGURE 4.15: Trigeneration system: performance curves of the dual-
mode electric chillers (also termed ice chillers) at 30◦C
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There is one type of air-source heat pump available to in the catalog: LASHP = 1.
Its heating and cooling capacities are equal to Pmax

COLD,(ASHP,1) = Pmax
HEAT,(ASHP,1) =

1.6MW. There is no mininum loading rate so that Pmin
COLD,(ASHP,1) = Pmin

HEAT,(ASHP,1) =

0MW. The conversion efficiency of the heating mode depends on the ambient tem-
perature: we have ηt,HEAT,(ASHP,1) = 0.064Toutdoor,t + 1.75, in which Toutdoor,t is the
predicted ambient temperature at time-step t. The cooling mode conversion effi-
ciency is constant: ηt,COLD,(ASHP,1) = 2 for all t. The purchase price for a unit of
(ASHP, 1) is 1.8MCNY and the total installation cost FC(ASHP,1) = 4.4 MCNY.

The description of the available energy conversion devices is summarized in Ta-
ble 4.8. The installation cost FCm comprises both the purchase cost PCm and the
construction cost CCm of a device. The annual maintenance cost of any installed de-
vice is set to 2.5% of its purchase cost for each year of the lifetime of the system. This
gives MCm,ϕ = 0.025 ∗ PCm ∑Φ

φ=1 βφ.

m Pmax
COLD,m Pmax

ICE,m Pmax
HEAT,m Pmax

ELEC,m FCm (CNY)
(CCHP,1) 1.5 - 1.5 1.5 1.70× 107

(BOILER,1) - - 7 - 2.94× 106

(SMEC,1) 3.5 - - - 5.20× 106

(SMEC,2) 3.5 - - - 3.05× 106

(DMEC,1) 3.5 2.4 - - 4.39× 106

(ASHP,1) 1.6 - 1.6 - 4.38× 106

TABLE 4.8: Trigeneration system: available types of technology

Finally, the parameters relative to the energy storage technologies PSTO =
{STO_COLD, STO_HEAT} are the following.

The capacity of the heat storage tank m = (STO_HEAT, 1) may be chosen at any
value between 0kWh and MaxSizem = 180MWh. We use a discrete capacity unit
Sizestep

m equal to 9000kWh so that MaxNumm = 20. The cost for installing a kWh of
heat storage capacity is 17CNY, which gives FCm = 17× Sizestep

m = 153kCNY.
The capacity of the ice storage tank m = (STO_COLD, 1) may be chosen at any

value between 0kWh and MaxSizem = 180MWh. We use a discrete capacity unit
Sizestep

m equal to 9000kWh so that MaxNumm = 20. The cost for installing a kWh of
ice storage capacity is 120CNY, which gives FCm = 120× Sizestep

m = 1.08MCNY.

4.4.2 Results

In this subsection, we report the results of the computational experiments carried
out on the instances based on the three case studies described above.

All tests were carried out on a machine with an Intel Xeon 2.90GHz processor
with 8 cores and 16GB RAM, running under Windows 7. All the algorithms were
implemented in Python. The direct resolution of the LMES design problem was done
by the mathematical programming solver CPLEX 12.8 using the MILP formulation
introduced in Section 4.3. We set the solver to use up to 8 threads and a maximum
RAM of 11.2GB (70% of the machine’s RAM) during the resolution, impose a time
limit of 7200s and otherwise use the solver default settings.

The numerical results are provided in Table 4.9, Table 4.10 and Table 4.11 for
the instances corresponding to City A DCS project, City B DCS project, and City C
trigeneration project.

For each instance, we display the following information:
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• #Var: the total number of continuous or integer decision variables involved in
the MILP formulation.

• #IntVar: the total number of integer decision variables.

• #Cons: the total number of constraints.

• GapLP: the integrality gap, i.e. the percentage relative difference between the
lower bound provided by the linear relaxation of the problem and the optimal
solution of the problem. Note that the exact optimal objective value is found
using the hierarchical decomposition algorithm and/or the generalized ben-
ders decomposition algorithm, which will be introduced in Chapters 5 and 6.

• Time: the total computation time of the algorithm before a guaranteed optimal
solution of the design problem is found or the time limit is reached.

• GapMIP: the percentage residual gap between the best lower bound and the
best integer feasible solution of the design problem found by the algorithm
within the time limit. Note that Gap = 0.00% in case a guaranteed optimal
solution of the problem was found within the time limit.

Results from Tables 4.9-4.11 first show that the direct resolution of design prob-
lems by a mathematical solver never provides a guaranteed optimal solution within
the computation time limit but that near-optimal solutions (i.e. solutions displaying
a residual gap below 1.0%) can be found for most instances. However, numerical
difficulties arise when the number of representative days |Dϕ| and consequently the
MILP size increase. This can be seen for the City A project instance corresponding
to |Dϕ| = 78 for which the residual gap is large (i.e. equal to 2.83%). Moreover,
out-of-memory issues were encountered during the resolution for the City B project
instances corresponding to |Dϕ| ∈ {12, 14} and for the City C project instances cor-
responding to |Dϕ| ∈ {12, 16, 24, 28, 32, 36}.

Furthermore, we found that the system deployment plan given by the best found
feasible solution may significantly change with the number of representative days
considered for each phase in the instance. This may be due to the fact that the num-
ber of representative days is not large enough to correctly assess the operation cost
(so that the design decisions depend heavily on the subset of selected representative
days) or to the fact that the best found feasible solution is not the optimal one due to
the existence of non-zero residual gap GapMIP. In any case, we have doubts about
the quality of the system deployment plans obtained through this direct resolution
of the MILP formulation by a solver.

|Dϕ| 6 14 22 30 38 58 78
MILP #Var 12555 29259 45963 61971 79371 121131 162984
size #IntVar 3909 9093 14277 19245 24645 37605 50565

#Cons 21611 50411 79211 106811 136811 208811 280839
Direct GapLP 1.57% 3.26% 3.41% 1.77% 2.17% 2.06% 2.34%
resolution Time 7200s 7200s 7200s 7200s 7200s 7200s 7200s

GapMIP 0.18% 0.04% 0.13% 0.39% 0.44% 0.73% 2.83%

TABLE 4.9: City A project: direct resolution by CPLEX 12.8 solver
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|Dϕ| 6 8 10 12 14
MILP #Var 13820 18380 22940 27500 32060
size #IntVar 3625 4825 6025 7225 8425

#Cons 23084 30764 38444 46124 53804
Direct GapLP 5.32% 4.26% 4.58% 4.77% 4.38%
resolution Time 7200s 7200s 7200s 2589s∗ 4411s∗

GapMIP 0.01% 0.02% 0.02% 0.04% 0.06%
"*" means that the computer ran out of memory before reaching the time limit.

TABLE 4.10: City B project: direct resolution by CPLEX 12.8 solver

|Dϕ| 12 16 20 24 28 32 36
MILP #Var 76080 101424 123600 148944 175872 201216 226560
size #IntVar 16164 21540 26244 31620 37332 42708 48084

#Cons 86420 115220 140420 169220 199820 228620 257420
Direct GapLP 5.11% 5.17% 5.20% 5.21% 5.15% 5.14% 5.13%
resolution Time 5934s∗ 6302s∗ 7200s 5259s∗ 6155s∗ 5968s∗ 5327s∗

GapMIP 0.06% 0.26% 0.23% 0.35% 0.32% 0.16% 1.21%
"*" means that the computer ran out of memory before reaching the time limit.

TABLE 4.11: Trigeneration project: direct resolution by CPLEX 12.8
solver

4.5 Conclusion

This section investigated how the problem of optimally designing an LMES over a
multi-phase investment horizon may be modeled and formulated as an MILP.

We first presented the modeling assumptions relative to the definition of the in-
vestment phases and the use of representative days to estimate the operation cost.
We also explain how the convexity of the performance curves of the technologies
displaying a part-load efficiency may be exploited to build operation schedules at
an aggregate level (instead of operation schedules for each individual device). The
main objective of this first section was to drastically reduce the number of variables
and constraints needed to formulate the problem as a mathematical program.

Thanks to this, we were able to propose an MILP formulation of computation-
ally tractable size for the problem. Note that the proposed MILP formulation relies
on some additional assumptions such as: all conversion (resp. storage) technologies
are of discrete (resp. continuous) nature, each technology consumes energy under a
single form and all conversion technologies have linear or convex energy conversion
performance curves. The proposed MILP formulation enabled us to model the three
case studies reported in Chapter 3 and could be applied to a large number of LMES
design problems. However, further research might be needed in order to extend this
MILP formulation so as to be able to design a broader class of LMESs. In partic-
ular, it would be interesting to study LMESs involving renewable energy sources,
conversion technologies consuming energy under two different forms (such as ab-
sorption chillers), conversion technologies with non-convex performance curves or
inter-seasonal thermal storage in which energy is stored for long periods spanning
several months. This is however left for future work.
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Finally, we assessed the numerical efficiency of a mathematical solver at pro-
viding optimal solutions by directly solving the problem using the proposed MILP
formulation. Our computational experiments carried out on a set of 19 large-size
instances coming from the three reported real-life case studies indicated many nu-
merical difficulties, in particular out-of-memory issues for the largest instances. This
motivated us to study the development of more advanced solution approaches using
decomposition-based algorithms which will be described in the next two chapters.
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Chapter 5

Hierarchical decomposition
algorithm

5.1 Introduction

The problem modeling proposed in Chapter 4 leads to the formulation of a large
size MILP which may be solved directly by a commercial MILP solver. The com-
putational results obtained with this direct resolution approach for our three case
studies are displayed in Tables 4.11-4.11. They show that, even with the smallest
number of representative days, the resolution process cannot converge before the
time limit, and that, for some instances, the resolution is terminated due to out-of-
memory issues. These numerical difficulties can mainly be attributed to the large
number of integer variables and constraints introduced in the formulation to build
the operation schedule for each representative day.

In the present chapter, we discuss a decomposition algorithm able to solve large
instances of the LMES optimal design problem. This algorithm exploits the fact that
the MILP problem introduced in Chapter 4 shows a special structure. Namely, the
variables of the MILP model defined in Chapter 4 can be classified into two classes.
The design variables refer to the decisions related to the sizing of technologies and
to the contracts determining the maximum allowed power consumption of resource
commodities, which are made at the beginning of each phase. The operation vari-
ables refer to decisions on the input-output of devices, inflow-outflow of commodi-
ties, the operating status of devices in each time-step. The decomposition algorithm
investigated here is based on the key observation that, once the values of the design
variables are determined for all construction phases, the original problem can be de-
composed into a series of independent sub-problems. Each of these sub-problems
takes the current value of the design variables as input and seeks to minimize, for the
corresponding system layout, the operation cost for one representative or extreme
day. The solution approach investigated in this chapter exploits this hierarchical
structure and is based on a bi-level decomposition of the problem. The original
problem is thus decomposed into an upper-level design problem and a set of lower-
level operation scheduling sub-problems of smaller size. The algorithm proposed
in this section can be seen as an extension of the hierarchical decomposition algo-
rithm introduced by [Yok+15]. The proposed extended algorithm mainly aims to be
more computationally efficient at solving problems involving multiple deployment
phases of the LMES and short-term thermal storage capacity.

This chapter is organized as follows. In Section 5.2, we formulate the original
problem in a concise and compact way to illustrate the bi-level hierarchical structure
of the problem. In Section 5.3, the original hierarchical decomposition algorithm
is presented. In Section 5.4, we investigate the proposed extension of the original
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algorithm. The computational results obtained for our three case studies are shown
in Section 5.5.

5.2 Compact reformulation and hierarchical structure of the
problem

In order to explain the hierarchical decomposition algorithm in an easier and more
concise way, we introduce in the present section a compact formulation of our prob-
lem.

In Chapter 4, we introduced two sets of design variables: integer variables SDφ,m
to represent the number of devices or the number of discrete capacity units of type
m ∈ M added in the system at the beginning of phase ϕ, and integer variables
Cdisϕ,c to represent the number of discrete units of power contracted for the re-
source commodity c ∈ CR,Co in phase ϕ. In order to obtain a more compact MILP
formulation, we form a single integer variable vector by juxtaposing these design
variables in a certain order. Therefore, we order the elements in the setM from m1
to m|M| and the element in the set CR,Cp from c1 to c|CR,Co |. Let νϕ = |M|+ |CR,Co|.
The system layout at phase ϕ is then represented in the compact formulation by the
following integer vector:

xϕ = (
ϕ

∑
φ=1

SDφ,m1 , · · · ,
ϕ

∑
φ=1

SDφ,m|M| , Cdisϕ,c1 , · · · , Cdisϕ,c|Ccont |
) ∈ Zνϕ (5.1)

xϕ gives the total number of devices / discrete capacity units of each type of device
in M present in the system at the beginning of phase ϕ and the number of basic
instantaneous power units contracted for each resource commodity in CR,Co at phase
ϕ. The integer variable vector x = (x1, ..., xΦ) ∈ Zν, with ν = ∑Φ

φ νφ, describes the
deployment plan over the whole investment horizon.

We denote by D = {(ϕ, d)|ϕ ∈ {1, ..., Φ}, d ∈ Dϕ} the set of all representative
days. For each day (ϕ, d) ∈ D, we introduce the vector yϕ,d to represent in a compact
way the continuous operation variables needed to describe the operation schedule
during this day. yϕ,d thus stands for all the Inflow, Outflow, Conso, Sold, Pin, Pout

and Sto variables relative to day (ϕ, d). Similarly, we introduce the vector zϕ,d to
represent in a compact way the integer operation variables needed to describe the
operation schedule during this day. zϕ,d thus stands for all the S and Mode variables
relative to day (ϕ, d). Let µ (resp. λ) denote the dimension of vector yϕ,d (resp. zϕ,d).

Note that, in Chapter 4, we used bold letters for the decision variables and italic
letters for the input parameters of the MILP formulation. Here, for the sake of read-
ability, we change our convention. We thus use a bold letter to denote a vector of
variables and an italic letter to denote a single variable. Input parameters do not
appear frequently in the compact formulation, but when they appear, we will give
detailed explanation to avoid ambiguity.

Let us now have a closer look at the constraints introduced in the MILP formula-
tion described in Chapter 4. We first have a set of design constraints, i.e. constraints
involving only design decisions: see Constraints (4.1)-(4.2). We then have a set of
constraints coupling together the design decisions and the operation decisions rel-
ative to a given representative day (ϕ, d): see e.g. Constraints (4.9), (4.15), (4.19),
(4.22), (4.25) for the energy conversion technologies, Constraints (4.29) for the energy
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storage technologies and Constraints (4.5) for the resource commodities in CR,Co. Fi-
nally, all the remaining constraints may be seen as operation constraints involving
only operation decisions relative to a given representative day (ϕ, d).

As a consequence, the LMES design problem can be reformulated compactly as
follows:

min ZCP = f0(x) + ∑
(ϕ,d)∈D

fϕ,d(yϕ,d, zϕ,d) (5.2)

h(x) ≤ 0 (5.3)
gϕ,d(xϕ, yϕ,d, zϕ,d) ≤ 0 ∀(ϕ, d) ∈ D (5.4)

lϕ,d(yϕ,d, zϕ,d) ≤ 0 ∀(ϕ, d) ∈ D (5.5)

x ∈ Zν (5.6)
yϕ,d ∈ Rµ ∀(ϕ, d) ∈ D (5.7)

zϕ,d ∈ Zλ ∀(ϕ, d) ∈ D (5.8)

The objective function (5.2) involves two terms.The first term f0(x) corresponds
to the total net present design cost of the deployment plan x. The second term com-
putes the sum, over all selected days, of the net present operation cost fϕ,d(yϕ,d, zϕ,d)
of the schedule computed for day (ϕ, d) and described by (yϕ,d, zϕ,d). Constraints
(5.3) represent the design constraints. Constraints (5.4) represent the coupling con-
straints which link together design and operation variables. Finally, Constraints (5.5)
stand for the operation constraints which are expressed using only operation vari-
ables. Constraints (5.6)-(5.8) give the domain definition of the variables. Problem
(5.2)-(5.8) will be referred to as the Complete Problem (CP) in what follows.

The hierarchical decomposition algorithm uses as the upper level problem a re-
laxation of CP in which the design variables are kept integer but the discrete op-
eration variables zϕ,d are relaxed to continuous variables. The resulting problem is
referred to as the semi-relaxed problem (SRP). SRP has the same number of vari-
ables and constraints as CP but a significantly smaller number of integer variables.
Its resolution by an MILP solver should thus be easier than the one of CP.

min ZSRP = f0(x) + ∑
(ϕ,d)∈D

fϕ,d(ỹϕ,d, z̃ϕ,d) (5.9)

h(x) ≤ 0 (5.10)
gϕ,d(xϕ, ỹϕ,d, z̃ϕ,d) ≤ 0 ∀(ϕ, d) ∈ D (5.11)

lϕ,d(ỹϕ,d, z̃ϕ,d) ≤ 0 ∀(ϕ, d) ∈ D (5.12)

x ∈ Zν (5.13)
ỹϕ,d ∈ Rµ ∀(ϕ, d) ∈ D (5.14)

z̃ϕ,d ∈ Rλ ∀(ϕ, d) ∈ D (5.15)

The hierarchical decomposition algorithm is based on the key observation we
mentioned above: when the system deployment plan is determined, i.e., when the
value of vector x is fixed, the problem can be decomposed into a series of indepen-
dent lower-level scheduling sub-problems. Let x♯ denote a fixed system deployment
plan. The operation sub-problem relative to representative day (ϕ, d) ∈ D, denoted
by OPϕ,d(x

♯
ϕ), is defined as follows:



82 Chapter 5. Hierarchical decomposition algorithm

min Zϕ,d(x
♯
ϕ) = fϕ,d(yϕ,d, zϕ,d) (5.16)

gϕ,d(x
♯
ϕ, yϕ,d, zϕ,d) ≤ 0 (5.17)

lϕ,d(yϕ,d, zϕ,d) ≤ 0 (5.18)

yϕ,d ∈ Rµ (5.19)

zϕ,d ∈ Zλ (5.20)

OPϕ,d(x
♯
ϕ) is an MILP problem involving a number of operation variables and con-

straints much smaller that the one involved in CP. It is thus much easier to solve than
the original complete problem CP.

5.3 Decomposition algorithm

5.3.1 Outline of the algorithm

The hierarchical decomposition algorithm proposed by [Yok+15] exploits the hierar-
chical structure of the problem discussed in Section 5.2. We note that a prerequisite
to apply this algorithm is that all design variables should be discrete. This restriction
comes from the customized branch-and-bound algorithm used to solve the upper-
level design problem, which will be explained in detail in what follows.

At the upper level of the algorithm, SRP is solved by a branch-and-cut (B&C)
algorithm. Since all the design variables remain discrete in SRP, each integer feasible
solution (x♯, ỹ♯, z̃♯) of SRP found during the B&C tree search corresponds to a po-
tential deployment plan described by the integer vector x♯ and complying with the
design constraints (5.3) and (5.6). However, as the integer scheduling variables zϕ,d
have been relaxed to continuous variables z̃ϕ,d in SRP, an integer feasible solution
(x♯, ỹ♯, z̃♯) of SRP is not necessarily an integer feasible solution of CP. Moreover, the
feasible region of CP is a subset of the feasible region of SRP. Therefore, the objective
value of SRP, Z♯

SRP = f0(x♯) + ∑(ϕ,d)∈D fϕ,d(ỹ
♯
ϕ,d, z̃♯ϕ,d), provides a lower bound to the

actual net present cost Z♯
CP of the deployment plan x♯.

Hence, during the B&C tree search, each time an integer feasible solution
(x♯, ỹ♯, z̃♯) of SRP is found, we should check its feasibility for CP with respect to
the operation constraints (5.4)-(5.5), (5.7)- (5.8) and compute its accurate net present
cost Z♯

CP. This can be done by solving a sequence of independent lower level op-
eration sub-problems. To be more precise, we solve, for each day (ϕ, d) ∈ D, the
problem OPϕ,d(x

♯
ϕ), in which the operation decision variables zϕ,d ∈ Zλ are integer.

This allows us to first check the feasibility of the system layout x♯ϕ for each selected

day. Moreover, if OPϕ,d(x
♯
ϕ) is a feasible problem, we solve it to optimality to obtain

an optimal operational schedule (y♯
ϕ,d, z♯ϕ,d), together with its corresponding exact

operation cost fϕ,d(y
♯
ϕ,d, z♯ϕ,d).

If all sub-problems OPϕ,d(x
♯
ϕ), (ϕ, d) ∈ D are feasible, (x♯, y♯, z♯) is a feasible solu-

tion of the original CP with a net present cost Z♯
CP = f0(x♯) + ∑(ϕ,d)∈D fϕ,d(y

♯
ϕ,d, z♯ϕ,d).

Let Zbest
CP denote the value of the best feasible solution of CP (xbest, ybest, zbest) found

since the beginning of the algorithm, which is also called the incumbent of CP. If
Z♯

CP is lower than Zbest
CP , we set (xbest, ybest, zbest) to (x♯, y♯, z♯) and Zbest

CP to Z♯
CP and
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add Zbest
CP as a new upper cutoff value for SRP in the upper-level B&C algorithm SRP,

i.e. add the constraint f0(x) + ∑(ϕ,d)∈D fϕ,d(ỹϕ,d, z̃ϕ,d) ≤ Zbest
CP to the formulation of

SRP.
Note that, whether the feasible solution (x♯, y♯, z♯) is accepted as a new incum-

bent of CP or not, the potential deployment plan (x♯, ỹ♯, z̃♯) is rejected in the B&C
search tree used to solve SRP at the upper level. Namely, the solver should not
take the integer feasible solution (x♯, ỹ♯, z̃♯) as the new incumbent of SRP but rather
should continue branching from this node.

This rejection is necessary for two reasons. First, if the current integer feasible
solution (x♯, ỹ♯, z̃♯) is not rejected as an incumbent of SRP, the upper-level B&C al-
gorithm may use the corresponding objective value Z♯

SRP as the current best known
upper bound and decide to prune nodes in the subsequent iterations based on this
value. However, Z♯

SRP is a lower bound of the actual net present cost and corre-
sponds only to an approximate estimation of the cost performance of the potential
deployment plan x♯. It therefore should not be used to compare x♯ with other po-
tential deployment plans and to decide which nodes to prune in the B&C tree. Sec-
ond, let n♯ denote the node of the B&C tree on which the potential deployment plan
(x♯, ỹ♯, z̃♯) is found and let F ♯ be the subset of the feasible domain of SRP defined
by the branching decisions made up to node n♯. For any solution (x, ỹ, z̃) in F ♯,
we have ZSRP ≥ Z♯

SRP. It is therefore not possible to find in F ♯ an integer feasible
solution of SRP with a value ZSRP lower than Z♯

SRP. However, as ZSRP is only an
approximation of the actual net present value of a deployment plan, we may find in
F ♯ an integer feasible solution (x•, ỹ•, z̃•) of SRP corresponding to an integer feasi-
ble solution (x•, y•, z•) of CP such that Z•CP < Z♯

CP. In other words, we should not
decide to stop the exploration in F ♯ by considering only the fact that (x♯, y♯, z♯) is
integer feasible for CP as better integer feasible solutions of CP may be found in F ♯.
Rejecting (x♯, ỹ♯, z̃♯) as the new incumbent solution for SRP thus prevents the solver
from using the value Z♯

SRP to wrongly prune nodes in the search tree, from prema-
turely stopping the exploration in F ♯ and thus from neglecting other integer feasible
solutions of CP contained in F ♯. This rejection is realized by a built-in function of
the mathematical solver

In fact, the upper-level B&C algorithm should never accept any incumbent of
SRP in the B&C search tree and the decision to prune nodes in this tree should only
be made by comparing the corresponding lower bound with the value Zbest

CP of the
incumbent of CP. More precisely, a node in the B&C search tree of the upper-level
problem should be pruned only if its corresponding deployment plan (x, ỹ, z̃) is such
that ZSRP > Zbest

CP or if it is infeasible with respect to SRP. Therefore, a node n with
objective value ZSRP < Zbest remains active and may be used for branching even
if (x, ỹ, z̃) is an integer feasible solution of SRP. In this case, the branching will be
carried out by a built-in function of the mathematical solver on an design decision
variable xϕ,i which already has an integer value at node n. This involves that an
integer potential deployment plan similar to the one found at node n may be found
while exploring the sub-tree of the B&C tree rooted in n. In order to avoid evaluating
multiple times the same deployment plan, we add to the formulation of SRP a no-
good cut ensuring that the integer potential deployment plan found at a node of the
B&C search tree is excluded from the feasible domain of SRP. This will be explained
in more detail in the next two sections.

When the B&B algorithm in the upper level problem terminates, i.e. when all
nodes have been closed, the incumbent of CP (xbest, ybest, zbest) gives an optimal so-
lution of CP.
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FIGURE 5.1: Example: Resolution of an integer program by a B&C
algorithm with systematic rejection of the incumbent

5.3.2 Incumbent rejection

In this subsection, we use a small example to clarify what happens when the solver
rejects the current integer feasible solution as incumbent and continues branching
from a node where an integer feasible solution has been found.

We consider the following small integer program.

min y (5.21)

s.t.
4
3

x + y ≥ 2 (5.22)

− 1
3

x + y ≤ 2 (5.23)

x ≤ 3
2

(5.24)

(x, y) ∈ Z2 (5.25)

The feasible domain of the linear relaxation of (5.21)- (5.25) is a triangle defined
by the vertices (0, 2), (1.5, 0) and (1.5, 2.5). It comprises three integer feasible solu-
tions: (1, 1), (0, 2) and (1, 2). As the objective function consists in minimizing the
value of the integer variable y, the optimal integer solution is (1, 1).

Let us now solve Problem (5.21)-(5.25) with a B&C algorithm in which no integer
feasible solution is accepted as incumbent during the solving process. The corre-
sponding search tree is shown in Figure 5.1.

We first note that, if we accept the current integer feasible solution as the in-
cumbent when suitable, the B&C algorithm terminates at Node 4 with the optimal
solution (1, 1) and optimal value 1. However, if we reject the integer feasible solu-
tion (1, 1) as incumbent, the algorithm will continue and will branch from Node 4 by
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adding bounds on the variable x, which already has an integer value at Node 4. Con-
trary to the traditional branching operation applied on fractional-valued variables,
this branching will not exclude the current integer feasible solution. Therefore, we
can observe that Node 6, a descendent node of Node 4, also provides the integer fea-
sible solution (1, 1). The branching actions will stop either when the LP relaxation
is infeasible (Nodes 10, 11 and 14) or when the value of each variable is restrained
to take a single value (Nodes 7, 9 and 13), i.e. when the feasible domain of the prob-
lem has been partitioned into subsets involving at most one integer feasible solution.
As a result, the modified B&C tree explores more nodes than a standard B&C tree
and returns no feasible solution at the end of exploration. Moreover, all the integer
feasible solutions contained in the feasible space are considered as integer feasible
solution on at least one node of the search tree.

Thanks to this small example, we see how rejecting the incumbent still guaran-
tees the finite and optimal convergence of the B&C algorithm. First, even if we reject
all found integer feasible solutions as incumbent, the B&C search tree terminates in
a finite number of steps, when enough branching decisions have been made to en-
sure that the feasible domain has been partitioned into subsets involving at most one
integer feasible solution, so that the termination of the algorithm is guaranteed the-
oretically. Second, all the integer feasible solutions are explored at least once during
the B&C search tree. As we can see in the example, even though an integer feasi-
ble solution is found in Node 4, all the other integer feasible solutions contained in
the feasible region defined by the branching decisions made up to Node 4 appear
on at least one node of the sub-tree rooted at Node 4. This ensures that the optimal
solution is found and evaluated at least once during the B&C search.

Let us now come back to the hierarchical decomposition algorithm mentioned
above.

The simple example provided above first shows that even if we do not cut off
open nodes based on a comparison between their lower bound and the current in-
cumbent, the B&C algorithm with a systematic incumbent rejection still terminates
in a finite number of steps, basically after having carried out a trivial enumeration of
all integer feasible solutions. The hierarchical decomposition algorithm can be seen
as an extension of this trivial enumerating algorithm in which we close nodes by
comparing their lower bound with the current best known integer value for CP. The
hierarchical decomposition algorithm will thus terminate in a finite number of steps
but is likely to be more computationally efficient that the basic algorithm based on a
full enumeration discussed above.

Moreover, thanks to the systematic incumbent rejection, when an integer feasible
solution of SRP has been found at a node, we will continue branching from that
node. This ensures that all the integer feasible solutions of SRP, and consequently all
integer feasible solutions of CP, compatible with the branching decisions made up
to that point will be explicitly considered and evaluated through the resolution of a
series of operation sub-problems. The only exception corresponds to the case where
the lower bound computed at a node is larger than the current best known integer
value for CP. In this case, we will close the node and by doing so, we will eliminate
some integer feasible solutions of CP. But as these solutions cannot be better than
the current best known solution of CP, this does not affect the optimal convergence
of the algorithm.
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5.3.3 No-good cuts

However, the systematic rejection of the incumbent leads to some loss of computa-
tional efficiency as the same integer feasible solution of SRP (and the same integer
feasible solution of CP) may be considered and evaluated multiple times during the
resolution process.

To prevent this from happening, ‘no-good cuts’ may be added to the formulation
of SRP [Wol20]. No-good cuts are applied on a set of binary variables, so we need to
carry out a binary expansion of the integer design variables. More precisely, for each
component xϕ,i of the vector xϕ, we introduce a set of additional binary variables,
xbinϕ,i,θ , with θ ∈ {0, ..., Θϕ,i}, and define the binary expansion of xϕ,i as:

xϕ,i =
Θϕ,i

∑
θ=0

2θxbinϕ,i,θ (5.26)

Here, xbinϕ,i,θ = 1 if coefficient 2θ is used to compute the value of xϕ,i and 0
otherwise. Note that Θϕ,i is set to Θϕ,i = ⌈log2 xmax

ϕ,i ⌉, where xmax
ϕ,i is an upper bound

of the variable xϕ,i. This binary expansion ensures that all possible integer values
of xϕ,i within its range has a one-to-one correspondence to the binary representation
(xbinϕ,i,0, · · · , xbinϕ,i,Θϕ,i).

Now, if a given deployment plan x1 = (x1
1, ..., x1

Φ) is rejected, we add a ‘no-good
cut’ using the binary expansion variables to exclude this potential deployment plan
from the feasible space of SRP. This cut is obtained by partitioning the set of all
indices used in the binary expansion of each vector xϕ, i.e., the set Iϕ = {(i, θ), i ∈
{1, · · · , νϕ}, θ ∈ {0, · · · , Θϕ,i}}, into two sub-sets according to the value of the binary
expansion of the given deployment plan xbin1: I0

ϕ = {(i, θ) ∈ I|xbin1
ϕ,i,θ = 0} and

I1
ϕ = {(i, θ) ∈ I|xbin1

ϕ,i,θ = 1}. Using this notation, we formulate the no-good cut as
follows:

Φ

∑
φ=1

 ∑
(i,θ)∈I0

φ

xbinφ,i,θ + ∑
(i,θ)∈I1

φ

(1− xbinφ,i,θ)

 ≥ 1 (5.27)

Constraint (5.27) enforces that any potential deployment plan considered differs
from x1 with respect to at least one of the binary variables involved in the binary ex-
pansion of x. Adding Constraint (5.27) to the formulation of SRP thus ensures that
any potential deployment plan encountered during the upper level branch-and-cut
search will appear only once, which allows us to avoid some repetitive computa-
tions.

5.4 Algorithmic improvement

The hierarchical decomposition algorithm discussed in Section 5.3 does not always
outperform the generic B&C algorithm embedded in CPLEX 12.8 at solving the de-
sign problem, as will be shown by the numerical results reported in Section 5.5.
There are two reasons for this inefficiency. Firstly, the presence of multiple construc-
tion phases leads to an increase in the number of potential deployment plans to
be explored and consequently to an increase in the computational burden. Second,
since all the operation discrete variables are relaxed to continuous variables in SRP,
an integer feasible solution of SRP is not necessarily feasible with respect to the orig-
inal problem CP. This means that the upper level algorithm explores a significant
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number of potential deployment plan which are feasible for SRP but infeasible for
CP. In this section, we will investigate two ways to handle these two factors which
slow down the resolution approach.

5.4.1 Leveraging previously computed results for the lower level sub-
problems

Part of the loss of efficiency comes from the fact that, over the course of the hier-
archical decomposition algorithm, the solver often solves the same lower level sub-
problems repetitively. This repetition is due to the multi-phase nature of CP. Namely,
even if two potential deployment plans found in the upper level B&B search tree
differ from each other, they may contain the same system layout for a subset of con-
struction phases. More precisely, two potential deployment plans x1 = (x1

1, ..., x1
Φ)

and x2 = (x2
1, ..., x2

Φ) may be such that x1 ̸= x2 and x1
ϕ = x2

ϕ for some but not all
phases ϕ ∈ {1, ..., Φ}. Therefore, for all ϕ such that x1

ϕ = x2
ϕ and all days d ∈ Dϕ,

we will have OPϕ,d(x1
ϕ) = OPϕ,d(x2

ϕ) and the computation of the exact net present
cost of x1 and x2, Z1

CP and Z2
CP, will involve solving a set of identical operation sub-

problems. The corresponding loss of computational efficiency is all the most impor-
tant in our case that these sub-problems are formulated with a scheduling horizon
comprising H > 1 time periods and are thus MILP problems of a significantly larger
size than the ones used in [Yok+15] to formulate the operation lower level sub-
problems. This comes from the fact that [Yok+15] do not consider short-term (intra-
day) energy storage and thus formulate operation sub-problems involving only a
single scheduling period (i.e. a single hour). In contrast, in our case, the existence of
energy storage leads to the formulation of inventory balance equations, which cou-
ple together the H time steps of a selected day and force us to consider multi-period
scheduling sub-problems.

In order to avoid this waste of computation capacity and thus reduce the com-
putational burden of the algorithm, we propose to improve the implementation of
the hierarchical decomposition algorithm.

Excluding infeasible system layouts
A first improvement deals with the case in which the system layout proposed by

a given potential deployment plan x1 = (x1
1, ..., x1

Φ) is infeasible at some phase ϕ, i.e.
is such that at least one operation sub-problem OPϕ,d(x1

ϕ) at phase ϕ is infeasible. In
this case, we add a no-good cut to exclude all potential deployment plans x such that
xϕ = x1

ϕ.
This cut is obtained by using the same partition of the set of all indices as the

one used for the no-good cuts (5.27), i.e., the sets I0
ϕ = {(i, θ) ∈ I|xbin1

ϕ,i,θ = 0} and
I1

ϕ = {(i, θ) ∈ I|xbin1
ϕ,i,θ = 1}. The no-good cut added to the formulation of SRP to

exclude the infeasible system layout x1
ϕ is formulated as follows:

∑
(i,θ)∈I0

ϕ

xbinϕ,i,θ + ∑
(i,θ)∈I1

ϕ

(1− xbinϕ,i,θ) ≥ 1 (5.28)

Constraint (5.28) enforces that any potential system layout considered for phase
ϕ differs from x1

ϕ with respect to at least one of the binary variables involved in the
binary expansion of xϕ. Adding Constraint (5.28) to the formulation of SRP thus
ensures that any potential deployment plan encountered during the upper level
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branch-and-cut search will be considered as a feasible solution of SRP only if at least
one of the components of xϕ has a value different to the one it has in x1

ϕ.

Storing the optimal value of previously solved operation sub-problems
In order to avoid repetitively solving the same operation sub-problems multiple

times over the course of the algorithm, we also propose to record in a hash table the
optimal value of any feasible operation sub-problem solved during the algorithm.
Thus, let x1 be a potential deployment plan found during the upper level branch-
and-cut search. For each phase ϕ, if the sub-problem OPϕ,d(x1

ϕ) relative to day (ϕ, d)
is feasible, its objective value Zϕ,d(x1

ϕ) is stored in the hash table with a key (x1
ϕ, ϕ, d).

This information can be latter used in the algorithm to save some computational
effort. Namely, suppose that x2 = (x2

1, ..., x2
Φ) is a potential design found after x1

during the upper level branch-and-cut search. For each phase ϕ and each d ∈ Dϕ,
we check whether (x2

ϕ, ϕ, d) is a key of the hash table. If so, i.e. if x2
ϕ = x1

ϕ, the
corresponding relaxed operation cost fϕ,d(ỹϕ,d, z̃ϕ,d) can be directly replaced in the
computation of Z2

CP by the value Zϕ,d(x1
ϕ) stored in the hash table so that we avoid

a new resolution of OPϕ,d(x1
ϕ) = OPϕ,d(x2

ϕ). If (x2
ϕ, ϕ, d) is not a key of the hash table,

we solve operation sub-problem OPϕ,d(x2
ϕ) as an MILP and record its optimal value

in the hash table if it is feasible. The searching time in a hash table is short and
independent of the table size, it is thus negligible as compared to the time needed to
solve an operation sub-problem as an MILP.

5.4.2 Valid inequalities

As explained in Section 5.3, an integer feasible solution of SRP (x♯, ỹ♯, z̃♯) provides a
potential deployment plan which is feasible to the original design constraints and to
a relaxed version of the operation constraints. However, x♯ may be infeasible with
respect to some of the original operation constraints containing integer operation
variables. In order to discuss this point in detail, we need to come back to the initial
formulation of CP.

Indeed, most of the feasibility issues encountered when solving the operation
sub-problems for a given potential deployment plan found at the upper level come
from the impossibility to comply with a specific set of operation constraints: the
minimum production constraints. Namely, when the integer operation variable St,m
representing the number of active devices of type m at time step t is relaxed to a con-
tinuous variable, the corresponding continuous energy production variable Pout

t,n,m
may take any value in the range [0, Pmax

n,m ] rather than in the range {0} ∪ [Pmin
n,m , Pmax

n,m ].
The same difficulty arises when the working range of a set of devices is linked to the
decision variable MODEt,n,m representing the number of devices operating under a
given mode n. In other words, a solution of SRP complies with the original maxi-
mum production constraints but does not have to respect the minimum production
constraints. As a result, the potential deployment plans found when solving SRP at
the upper level often involve only high capacity devices which are efficient at pro-
ducing a large amount of supply commodity but are not able to meet a small but
non-zero demand due to the minimum power restrictions.

In this subsection, we thus investigate a set of valid inequalities to tighten the
formulation of SRP and reduce the gap between CP and its relaxation SRP.

These valid inequalities focus on the supply commodities that cannot be sold
to outside buyers, i.e. to the commodities in CS \ CS,Sell . The demand for supply
commodity c = (n, s) can be satisfied by conversion and storage devices. Let us
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denote by c′ = (n′, s′) the input commodity of these storage devices. For example,
in the trigeneration system in Figure 3.4, the supply commodity c = (HEAT, 2)
has an associated intermediate stored commodity c′ = (HEAT, 1) and the sup-
ply commodity c = (COLD, 1) has an associated intermediate stored commodity
c′ = (ICE, 1). We define the set of conversion device types which can produce ei-
ther supply commodity c or its corresponding intermediate stored commodity c′ as
M(c) = {(p, l) ∈ MCONV |p ∈ P in f low

c ∪ P in f low
c′ } .

We introduce the concept of oversized devices. A device is defined as oversized
with respect to a supply commodity c = (n, s) for a representative day (ϕ, d) if it
will not be able to single-handedly meet the demand for this commodity for all time
steps h ∈ {0, ..., H − 1} of this day due to the restriction on its minimum power
production. Namely, an oversized device cannot be used to satisfy the demand for
c either because its minimum hourly production per hour of c is higher than the
demand value of one hour in the day, or because its minimum production per hour
of c′ is higher than the total daily demand. We thus define two sets of oversized
devices:

• the subset of M(c) of device types which do not produce c or whose mini-
mum production per hour of c is too large to allow them to produce the lowest
hourly demand for c = (n, s) during day (ϕ, d), i.e. Pmin

m,n > minh=0,..,H−1 Demϕ,d,h,n,s.
This subset is denoted asMO,1

ϕ,d,c.

• the subset ofM(c) of devices types which do not produce c′ or whose mini-
mum production per hour of c′ is too large to allow them to produce the total
daily demand of day (ϕ, d), i.e. Pmin

m,n′ > ∑H−1
h=0 Demϕ,d,h,n,s. This subset is de-

noted asMO,2
ϕ,d,c.

We define the set of oversized devices as the intersection of the oversized de-
vices of these two typesMO

ϕ,d,c =M
O,1
ϕ,d,c ∩M

O,2
ϕ,d,c. Clearly, a system layout at phase

ϕ comprising devices which are all in the setMO
ϕ,d,c will not be able to satisfy the de-

mand for the supply commodity c for day d ∈ Dϕ while simultaneously complying
with all the minimum power production constraints. Therefore, any feasible system
layout at phase ϕ must involve at least one non oversized device, i.e. one device
inM(c) not belonging toMO

ϕ,d,c. Moreover, we note that, when expressing theses
constraints, there is no need to consider all days in Dϕ. Namely, thanks to the way
extreme days are selected (see Subsection 4.2.2), it is enough to focus, for each phase,
on the extreme day displaying the smallest hourly demand and on the one display-
ing the smallest total daily demand. The constraints relative to the other days will
be redundant with the ones relative to these two extreme days.

Let Dlow
ϕ ⊂ Dϕ be the set of these two extreme days. We add the following valid

inequalities to the formulation of SRP in a pre-treatment step, i.e. before starting the
upper level branch-and-cut search.

∑
m∈M(c)\MO

ϕ,d

ϕ

∑
φ=1

SDφ,m ≥ 1 ∀d ∈ Dlow
ϕ , ∀ϕ (5.29)

By adding Constraint (5.29), we ensure that any system layout found in the upper
level problem will contain at least one non-oversized device corresponding to the
supply commodity c to deal with the energy demand with small values.

Moreover, due the definition of the setMO
ϕ,d, we may encounter system layouts

satisfying Constraints (5.29) but containing no devices in the set m ∈ M(c) \MO,1
ϕ,d .
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In this case, the only way the LMES may satisfy a small daily demand of c consists
in producing c′ during one (or several) hour(s) and storing it in an energy storage
device. This implies that, if ∑m∈M(c)\MO,1

ϕ,d
∑

ϕ
φ=1 SDφ,m = 0, at least one unit of dis-

crete energy storage capacity should be installed. This leads to a second set of valid
inequalities:

ϕ

∑
φ=1

∑
m′∈M′(c′)

SDφ,m′ ≥ 1− ∑
m∈M(c)\MO,1

ϕ,d

ϕ

∑
φ=1

SDφ,m ∀d ∈ Dlow
ϕ , ∀ϕ (5.30)

The set M′(c′) denote the set of storage devices m′ = (p, l) such that p ∈
PSTO ∩ P out f low

c′ , i.e. the set of storage devices able to store commododity c′. Con-
straints (5.30) state that if a system layout contains only oversized devices of Type 1,
it should have at least one unit of discrete energy storage capacity corresponding to
the stored commodity c′.

These valid inequalities will contribute in improving the efficiency of the hier-
archical decomposition algorithm by a priori excluding some infeasible potential
deployment plans, thus saving the computational effort needed to determine that
they are infeasible.

5.4.3 Summary of the improved hierarchical decomposition algorithm

Before presenting our numerical results, we provide a summarized description of
the proposed extended hierarchical decomposition algorithm: see Algorithm 2. More-
over, Figure 5.2 provides a graphical description of the improved hierarchical de-
composition algorithm as applied to our multi-phase deployment problem.

5.5 Computational experiments

We now focus on assessing the performance of the hierarchical decomposition algo-
rithm, both in its initial and extended variants, at solving the problem of optimally
designing an LMES over a multi-phase investment plan. This assessment is carried
out by using the set of instances based on our three case studies presented in Sub-
section 4.4.1.

Each instance is solved by the original hierarchical decomposition algorithm pre-
sented in [Yok+15] and by the extended hierarchical decomposition discussed above.
The experimental setup was the same as the one described at the beginning of Sub-
section 4.4.2. In both variants of the hierarchical decomposition algorithm, the upper
level master problem was solved by CPLEX 12.8 solver. Incumbent Callbacks were
used to control the flow of information between the upper and lower problems and
Usercut Callbacks were used to set the upper cutoff value to the current value of
Zbest

CP . Due to the presence of a Usercut Callback, which is classified as a "Control
Callback", parallel MILP solving is turned off and CPLEX 12.8 solver uses a single
thread to solve the upper level master problem. We imposed a time limit of 7200s.

Similar to what was done in Subsection 4.4.2, we provide, for each instance and
each considered solution approach, the integrality gap GapLP, the computation time
and the residual gap GapMIP. Moreover, we also report:
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Algorithm 2: Extended Hierarchical Decomposition
Data: Parameters of commodities and technologies, construction phases and

discount rate
Result: The optimal system deployment plan and the minimum total cost

1 For each supply commodity in CS \ CS,Sell , add the valid
inequalities (5.29)-(5.30) to the formulation of SRP;

2 Set Zbest
CP to positive infinity;

3 Create the root node of the B&C search tree ;
4 while active nodes exist in B&C search tree do
5 Branch from an active node in the tree ;
6 if an integer feasible solution (x♯, ỹ♯, z̃♯) with an objective value Z♯

SRP ≤ Zbest
CP

is found then
7 Set IsNewIncumbent to True;
8 for each phase ϕ ∈ {1, ..., Φ} and each day d ∈ Dϕ do
9 if (x♯ϕ, ϕ, d) is in the hash table then

10 Retrieve the corresponding value of Zϕ,d(x
♯
ϕ);

11 Set Z♯
CP to Z♯

CP + Zϕ,d(x
♯
ϕ)− fϕ,d(ỹ

♯
ϕ,d, z̃♯ϕ,d);

12 else
13 Solve Problem OPϕ,d(x

♯
ϕ) as an MILP;

14 if OPϕ,d(x
♯
ϕ) is infeasible then

15 Add the no-good cut (5.28) corresponding to x♯ϕ to SRP;
16 Set IsNewIncumbent to False;
17 break ; /* To break the for loop in Line 8 */
18 else
19 Store the value of Zϕ,d(x

♯
ϕ) under the new key (x♯ϕ, ϕ, d) in

the hash table;
20 Set Z♯

CP to Z♯
CP + Zϕ,d(x

♯
ϕ)− fϕ,d(ỹ

♯
ϕ,d, z̃♯ϕ,d);

21 end
22 end
23 if Z♯

CP > Zbest
CP then

24 Set IsNewIncumbent to False;
25 Reject (x♯, ỹ♯, z̃♯);
26 Add the no-good cut (5.27);
27 break; /* To break the for loop in Line 8 */
28 end
29 end
30 if IsNewIncumbent is True then
31 Set (x♯, y♯, z♯) to (xbest, ybest, zbest) and Z♯

CP to Zbest
CP ;

32 Add cut f0(x) + ∑(ϕ,d)∈D fϕ,d(yϕ,d, zϕ,d) ≤ Zbest
CP to SRP ;

33 Reject (x♯, ỹ♯, z̃♯);
34 Add the no-good cut (5.27);
35 end
36 end
37 end
38 return (xbest, ybest, zbest) and Zbest

CP ;
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Z♯
CP < Zbest?

Reject current solution
and add the no-good
cut coressponding to
x♯ to formulation SRP

Solve the subprblem
OPϕ,d(x

♯
ϕ) with for-

mulation (5.16)-(5.20)

Is OPϕ,d(x
♯
ϕ)

feasible?

Store Zϕ,d(x♯) in hash
table with key (x♯ϕ, ϕ, d)

Add the no-good cut
corresponding to x♯ϕ
to formulation SRP

Set (xbest, ybest, zbest) ←
(x♯, y♯, z♯), set
Zbest ← Z♯

CP

no

no

yes

yes

no

yes

yes

no

no

yes

yes

no

FIGURE 5.2: Flow chart of hierarchical decomposition algorithm

• #IFSSRP: the number of integer feasible solutions of SRP explored during the
upper level branch-and-cut search before the algorithm converges or the time
limit is reached,

• #OP: the number of lower-level operation sub-problems solved over the course
of the algorithm.

Results from Tables 5.1-5.3 first show that, in general, the initial hierarchical de-
composition algorithm does not seem to be able to outperform the direct resolution
by CPLEX 12.8. Namely, over the 19 considered instances, the average residual gap
(GapMIP) is 1.59% when using this algorithm as compared to 0.40% when directly
solving the whole problem as an MILP.

In contrast, the extended hierarchical decomposition algorithm provides a guar-
anteed optimal solution of the MILP problem formulated in Chapter 4 for all in-
stances of City A project and for 4 out of 5 instances for City B project. Note that a
near-optimal solution with a residual gap of 0.07% is obtained for the last instance
related to City B project. Furthermore, the average computation time over the 12
instances related to City A or City B projects is significantly reduced from more than
7200s when using a direct resolution by CPLEX 12.8 or the initial hierarchical algo-
rithm to 2949s when using the extended hierarchical decomposition algorithm.

This improved computational efficiency may be explained by three main reasons.
First, the addition of valid inequalities (5.29)-(5.30) to SRP leads to a reduction of the
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integrality gap. Namely, over the 12 instances, the average value of GapLP is re-
duced from 3.32% with the initial formulation of SRP to 2.56% with the formulation
of SRP strengthened by valid inequalities (5.29)-(5.30). Even if this gap reduction is
relatively small, it is obtained by adding a very limited number of constraints (4Φ) to
the formulation and thus does not negatively impact the computation time needed
to solve the linear relaxation of SRP at each node of the upper level B&C search tree.
Moreover, adding these valid inequalities to the formulation enables us to a priori
exclude from the upper level search space deployment plans which are feasible for
SRP but not for CP and thus to save the computation time needed to determine that
they are infeasible. Second, over the 12 considered instances, the average value of
#IFSSRP, the number of integer feasible solutions of SRP explored during the up-
per level B&C search, is significantly reduced from 2467 with the initial hierarchi-
cal decomposition algorithm to 962 with the extended hierarchical decomposition
algorithm. This shows the efficiency of the no-good cuts (5.28) at preventing the up-
per level B&C algorithm from uselessly considering multiple times a system layout
which is known to be infeasible for a given investment phase. Finally, thanks to the
combined used of the no-good cuts (5.28) and the recording of previously computed
results in a hash table, the average number of lower-level operation sub-problems
solved over the course of the hierarchical decomposition algorithm, #OP, is dras-
tically reduced from 31709 with the initial variant of the algorithm to 894 with the
extended variant. Even if each of these sub-problems is a small MILP which can be
solved without any numerical difficulty, dividing by a factor of 35 the number of
sub-problems solved over the course of the algorithm positively impacts the overall
computation time.

However, the extended hierarchical decomposition algorithm seems to have a
poor performance on the instances based on the trigeneration system located in City
C. Namely, even if the integrality gap was significantly reduced by adding valid in-
equalities (5.29)-(5.30), out-of-memory issues were encountered while solving all the
instances. Moreover, the average residual gap obtained with the extended hierarchi-
cal decomposition algorithm (GapMIP = 0.53%) is larger than the one obtained with
the direct resolution approach (GapMIP = 0.37%). This difficulty may come from
the large number of design variables. Namely, the total number of design variables,
excluding the binary expansion variables, is 28 (resp. 25) for the DCS project of City
A (resp. City B) , while there is a total of 36 design variables for the trigeneration
project. This larger number of variables leads to a larger feasible space for SRP to be
explored by the B&C algorithm and thus to a larger computational effort. A second
reason might be the fact that the lower bound provided by ZSRP is of lower quality
for this set of instances than for the City A and City B instances, which forces the
B&C algorithm to explore more nodes before converging.

5.6 Conclusion

In this chapter, we first highlighted the bi-level structure of the MILP problem for-
mulated in Chapter 4. This special structure allows to split the original large-scale
MILP problem into a set of small-size MILP problems once the deployment plan of
the system is determined.

We then applied the previously published hierarchical decomposition algorithm
to the large-scale MILP problem formulated in Chapter 4. Note that the hierarchi-
cal decomposition algorithm requires that the upper-level variables are all discrete
and that the original MILP model introduced in Chapter 4 meets this requirement.
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|Dϕ| 6 14 22 30 38 58 78
MILP #Var 12555 29259 45963 61971 79371 121131 162984
size #IntVar 3909 9093 14277 19245 24645 37605 50565

#Cons 21611 50411 79211 106811 136811 208811 280839
Direct GapLP 1.57% 3.26% 3.41% 1.77% 2.17% 2.06% 2.34%
resolution Time 7200s 7200s 7200s 7200s 7200s 7200s 7200s

GapMIP 0.18% 0.04% 0.13% 0.39% 0.44% 0.73% 2.83%
Initial GapLP 1.57% 3.26% 3.41% 1.77% 2.17% 2.06% 2.34%
Hier. Dec. #IFSSRP 9009 1469 3017 2764 1180 1187 488

#OPsolved 28150 15295 15595 31555 20335 31848 29561
Time 7200s 7200s 7200s 7200s 7200s 7200s 7200s
GapMIP 0.10% 0.68% 1.46% 0.50% 0.88% 0.74% 1.21%

Extended GapLP 1.56% 1.45% 1.53% 1.56% 1.56% 1.56% 1.56%
Hier. Dec. #IFSSRP 892 1980 1083 874 919 908 1171

#OPsolved 172 581 779 515 1254 1654 2058
Time 123s 814s 1043s 977s 990s 1984s 6822s
GapMIP 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

TABLE 5.1: City A project: numerical comparison of the solution
methods

|Dϕ| 6 8 10 12 14
MILP #Var 13820 18380 22940 27500 32060
size #IntVar 3625 4825 6025 7225 8425

#Cons 23084 30764 38444 46124 53804
Direct GapLP 5.32% 4.26% 4.58% 4.77% 4.38%
resolution Time 7200s 7200s 7200s 2589s∗ 4411s∗

GapMIP 0.01% 0.02% 0.02% 0.04% 0.06%
Initial GapLP 5.32% 4.26% 4.58% 4.77% 4.38%
Hier. Dec. #IFSSRP 4087 1603 1303 2348 1688

#OPsolved 45406 35193 31752 55160 34656
Time 5162s 7200s 7200s 7200s 7200s
GapMIP 0.00% 0.92% 0.86% 1.60% 0.66%

Extended GapLP 4.13% 3.37% 4.10% 4.24% 4.04%
Hier. Dec. #IFSSRP 1764 1432 1441 394 1660

#OPsolved 505 794 618 520 1287
Time 954s 2889s 4580s 7200s 4062s
GapMIP 0.00% 0.00% 0.00% 0.07% 0.00%

"*" means that the computer ran out of memory before reaching the time limit.

TABLE 5.2: City B project: numerical comparison of the solution
methods



5.6. Conclusion 95

|Dϕ| 12 16 20 24 28 32 36
MILP #Var 76080 101424 123600 148944 175872 201216 226560
size #IntVar 16164 21540 26244 31620 37332 42708 48084

#Cons 86420 115220 140420 169220 199820 228620 257420
Direct GapLP 5.11% 5.17% 5.20% 5.21% 5.15% 5.14% 5.13%
resolution Time 5934s∗ 6302s∗ 7200s 5259s∗ 6155s∗ 5968s∗ 5327s∗

GapMIP 0.06% 0.26% 0.23% 0.35% 0.32% 0.16% 1.21%
Initial GapLP 5.11% 5.17% 5.20% 5.21% 5.15% 5.14% 5.13%
Hier. Dec. #IFSSRP 4065 3019 2470 1888 1714 1512 1145

#OPsolved 35631 21560 33267 33418 37872 42548 47503
Time 5286s∗ 3608s∗ 5405s∗ 5461s∗ 5938s∗ 6587s∗ 7200
GapMIP 2.69% 2.21% 2.46% 2.41% 2.28% 2.88% 5.70%

Extended GapLP 3.41% 3.65% 3.68% 3.66% 3.6% 3.58% 3.56%
Hier. Dec. #IFSSRP 3646 2770 2271 1904 1583 1352 1243

#OPsolved 1501 1341 3177 1166 2294 2056 5189
Time 2609s∗ 4127s∗ 2929s∗ 3244s∗ 3863s∗ 5060s∗ 3713s∗

GapMIP 0.50% 0.38% 0.71% 0.54% 0.53% 0.36% 0.72%
"*" means that the computer ran out of memory before reaching the time limit.

TABLE 5.3: Trigeneration project: numerical comparison of the solu-
tion methods

The hierarchical decomposition algorithm takes as upper-level master problem the
semi-relaxed problem (SRP) which is obtained by relaxing all lower-level discrete
variables of the original complete problem (CP). The resolution of the upper-level
problem is carried out by the built-in B&C algorithm of a commercial mathematical
solver. This B&C algorithm is however customized through the use of callbacks: at
each node where an integer feasible solution of SRP, i.e. a potential deployment plan,
is found, we solve a series of operation sub-problems (OP) to find out the real ob-
jective value corresponding to the current deployment plan. All integer solutions at
the upper-level are rejected to guarantee the optimal convergence of the algorithm.

We also proposed two ways to further improve the computational efficiency of
the hierarchical decomposition method. The first improvement is related to the
multi-phase nature of our design problem. In order to avoid repetitively solving
several times the same sub-problems, we store in a hash table the optimal value of
all feasible solved sub-problems and retrieve this value to reuse it when needed over
the course of the algorithm. In case a sub-problem is found to be infeasible, we also
add a no-good cut to exclude the current system layout for the corresponding in-
vestment phase from the feasible space of SRP. The second improvement consists in
adding valid inequalities into the formulation of SRP. Namely, due to the relaxation
of discrete lower-level variables, the SRP problem does not consider the minimum
load rate of devices and tends to favor the installation of large-capacity devices. The
proposed valid inequalities aim at preventing the SRP from choosing only oversized
devices and thus contribute in reducing the number of infeasible deployment plans
explored by the upper-level B&C algorithm.

Both the initial and extended hierarchical decomposition algorithms are tested
on the instances based on the three case studies introduced in Chapter 4. One one
hand, the numerical results show that the initial hierarchical decomposition method
is on average less efficient than the direct resolution of CP by CPLEX 12.8 solver.
On the other hand, the extended hierarchical decomposition algorithm significantly
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outperforms the two other methods on the instances related to the two DCS projects,
providing optimal (or near optimal) solutions for all instances within the time limit.
However, out-of-memory issues were still encountered for the instances related to
the trigeneration project, even the ones involving a small number of representative
days.

This motivated us to explore another resolution strategy based on a generalized
Benders’ decomposition algorithm taking advantage of a specific property of the
sub-problems of the MILP problem. This solution approach will be presented in
Chapter 6.
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Chapter 6

Generalized Benders’
decomposition algorithm

6.1 Introduction

The numerical results presented in Chapter 5 showed that the extended hierarchical
decomposition algorithm is more effective at solving the LMES optimal design prob-
lem than an off-the-shelf MILP solver for the instances related to the DCS projects.
However, numerical difficulties were still encountered while trying to solve the in-
stances related to the trigeneration system. We thus investigate in this chapter an-
other solution approach which is also based on a decomposition strategy. This ap-
proach can be seen as a generalized Benders’ decomposition algorithm, more pre-
cisely as an extension of the conventional Benders’ decomposition algorithm to a
case where the second-stage sub-problems involve integer variables. In particular,
we propose a new type of optimality and feasibility cuts exploiting the special struc-
ture of the constraints linking the design and operation variables in our problem.
Thanks to these new cuts, we are able to develop a generalized Benders’ decompo-
sition algorithm converging in a finite number of iterations to an optimal solution of
the original problem CP.

In this chapter, we first present in Section 6.2 the overall framework used to de-
velop a generalized Benders’ decomposition algorithm for our problem. The optimal
and finite convergence of this algorithm relies on the use of strong dual bounding
functions. We explain in Section 6.3 how such functions can be obtained for our
problem by exploiting the special structure of the constraints coupling the design
and operation variables. The resulting master problem contains a set of non-linear
constraints. Section 6.4 thus investigates how this master problem may be refor-
mulated as an MILP thanks to the introduction of a set of additional binary vari-
ables. Section 6.5 summarizes the outline of the proposed algorithm. Finally, Sec-
tion 6.4 reports the results of the computational experiments carried out to assess
the numerical performance of the algorithm. It also presents the outcome of a post-
optimization simulation study carried out to evaluate the quality of the deployment
plans obtained for the two DCS projects.

6.2 A generalized Benders’ decomposition framework

Bolusani and Ralphs [BR21] recently described a framework to extend the well-
known decomposition framework introduced by Benders [Ben62] to a more general
class of optimization problems. In particular, they highlighted the fact that Benders’
decomposition may be used even if the second-stage sub-problems do not display
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the strong duality properties holding for linear and convex programs. In what fol-
lows, we discuss how this generalized Benders’ decomposition framework may be
applied to our LMES optimal design problem.

To this aim, we start by recalling the compact reformulation of the original prob-
lem, denoted by CP in Chapter 5.

Z∗CP = min f0(x) +
Φ

∑
ϕ=1

∑
d∈Dϕ

fϕ,d(yϕ,d, zϕ,d) (6.1)

h(x) ≤ 0 (6.2)
gϕ,d(xϕ, yϕ,d, zϕ,d) ≤ 0 ∀(ϕ, d) ∈ D (6.3)

lϕ,d(yϕ,d, zϕ,d) ≤ 0 ∀(ϕ, d) ∈ D (6.4)

x ∈ Zν (6.5)
yϕ,d ∈ Rµ ∀(ϕ, d) ∈ D (6.6)

zϕ,d ∈ Zλ ∀(ϕ, d) ∈ D (6.7)

As mentioned in [BR21], a Benders’ decomposition approach can be seen as a
reformulation technique in which the original optimization problem is reformulated
using only a subset of the original variables. This subset of variables are referred to
as the first-stage variables whereas the variables not included in the reformulation
are called the second-stage variables. Thus, a Benders’ decomposition method essen-
tially carries out a projection of the original optimization problem onto the subspace
corresponding to the first-stage variables.

In order to explain how this reformulation/projection technique can be applied
on CP, we first introduce some additional notation. Let X = {x ∈ Zν|h(x) ≤ 0} de-
note the set of deployment plans feasible with respect to the design constraints (6.2)
and Xϕ = projxϕ

(X ) the projection of X onto the space of the design variables rela-

tive to phase ϕ. Let Sϕ = {(yϕ, zϕ) ∈ Rµ|Dϕ| ×Zλ|Dϕ||lϕ,d(yϕ,d, zϕ,d) ≤ 0, ∀d ∈ Dϕ}
denote the set of operation schedules relative to days d ∈ Dϕ feasible with respect to
the operation constraints (6.4). Finally,Fϕ = {(xϕ, yϕ, zϕ) ∈ Xϕ×Sϕ|gϕ,d(xϕ, yϕ,d, zϕ,d) ≤
0, , ∀d ∈ Dϕ} represents the set of system layouts and operation schedules relative to
phase ϕ complying with the design, coupling and operation constraints (6.2)-(6.4).

Using this notation, CP can be equivalently formulated as:

Z∗CP = min
x∈X

{
f0(x) +

Φ

∑
ϕ=1

min
(yϕ,zϕ)∈Sϕ

{
∑

(ϕ,d)∈Dϕ

fϕ,d(yϕ,d, zϕ,d)|(xϕ, yϕ, zϕ) ∈ Fϕ

}}
(6.8)

We now replace each inner minimization problem by a function. This allows us
to reformulate CP using only the first-stage design variable x:

Z∗CP = min
x∈X

{
f0(x) +

Φ

∑
ϕ=1

Zϕ(xϕ)
}

(6.9)

Function Zϕ : Rνϕ → R∪ {+∞} is defined as:
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Zϕ(xϕ) =

 min
(yϕ,zϕ)∈Sϕ

{
∑

d∈Dϕ

fϕ,d(yϕ,d, zϕ,d)|(xϕ, yϕ, zϕ) ∈ Fϕ

}
if xϕ ∈ projxϕ

(Fϕ)

+∞ otherwise

where projxϕ
(Fϕ) ⊂ Xϕ is the projection of Fϕ onto the space of the first-stage vari-

ables xϕ. projxϕ
(Fϕ) can be intuitively seen as the set of system layouts for phase ϕ,

xϕ, such that there is at least one feasible operation schedule for each day d ∈ Dϕ.
Zϕ is thus a function that returns the sum of the cost of the best operation sched-

ule that can be found for each day d ∈ Dϕ under the system layout xϕ if one exists.
In fact, Zϕ(xϕ) is the sum, over all days d ∈ Dϕ, of the optimal value of the opera-
tion sub-problems OPϕ,d(xϕ) introduced in Section 5.2. Moreover, Zϕ prevents any
first-stage design solution xϕ that is not feasible with respect to one or several days
d ∈ Dϕ, i.e. which is not in projxϕ

(Fϕ), from being considered.
In principle, solving Problem (6.9) would provide us with an optimal solution

of CP. However, this would require a closed-form expression of each function Zϕ.
As noted in [BR21], even when such a closed form exists in theory, its description is
typically of exponential size and computationally impractical.

The basic idea of a Benders’ decomposition approach consists in overcoming this
difficulty by replacing each function Zϕ by a dual bounding function Zϕ to obtain a
relaxation of Problem (6.9) called the master problem.

A dual bounding function Zϕ : Rνϕ → R ∪ {+∞} is defined as a function such
that Zϕ(xϕ) ≤ Zϕ(xϕ) for all xϕ ∈ Rνϕ . This dual function is called strong at x̂ϕ ∈ Rνϕ

if Zϕ(x̂ϕ) = Zϕ(x̂ϕ).
The master problem can thus be written as:

min
x∈X

{
f0(x) +

Φ

∑
ϕ=1

Zϕ(xϕ)
}

(6.10)

Problem (6.10) is a relaxation of Problem (6.9) (and consequently a relaxation
of the initial problem CP) and thus provides a lower bound of Z∗CP. The aim of
a generalized Benders’ decomposition algorithm will be to iteratively improve the
formulation of the master problem by progressively strengthening the dual bound-
ing function Zϕ used for each phase ϕ. Basically, at each iteration k, we solve the
master problem using the current expression of the dual bounding functions, yield-
ing a lower bound LBk of Z∗CP and a design solution denoted by xk. We then evaluate
Zϕ(xk

ϕ), for each phase ϕ, by solving a series of operation sub-problems OPϕ,d(xk
ϕ),

obtain an upper bound UBk = f0(xk) + ∑Φ
ϕ=1 Zϕ(xk

ϕ) of Z∗CP and use the informa-
tion obtained during this process to update each dual bounding function Zϕ so as to
strengthen it. The algorithm terminates when LBk = UBk.

Hooker and Ottosson [HO03] showed that the finite convergence towards an
optimal solution of such a generalized Benders’ decomposition algorithm is guar-
anteed as long as two conditions are respected. The first one is that the approxi-
mation of the dual bounding function used at iteration k for each phase ϕ is strong
at each of the previously considered iterates, i.e. is such that Zϕ(x

j
ϕ) = Zϕ(x

j
ϕ) for

all iterations j in 1...k. The second one is that each set projxϕ
(Fϕ) is finite, i.e. that

|projxϕ
(Fϕ)| < ∞.
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The first condition can be more easily satisfied by defining Zϕ as the maximum
of the lower bounding functions obtained at each previous iteration, i.e. by defining
Zϕ at iteration k as:

Zϕ(xϕ) = max
1≤j≤k

Zj
ϕ(xϕ) (6.11)

where Zj
ϕ is the dual bounding function obtained at iteration j ≤ k. In this case, if Zj

ϕ

is strong at xj
ϕ, the dual bounding function used at a latter iteration k ≥ j, Zϕ, will

also be strong at xj
ϕ.

The master problem (6.10) can be reformulated using auxiliary variables ηϕ to
eliminate the maximum operator involved in (6.11). We thus obtain at iteration k the
following master problem denoted by MPk.

min ZMPk = f0(x) +
ϕ

∑
ϕ=1

ηϕ (6.12)

x ∈ X (6.13)

ηϕ ≥ Zj
ϕ(xϕ) ∀ϕ ∈ {1, · · · , Φ}, ∀j ∈ {1, · · · , k} (6.14)

Fj
ϕ(xϕ) ≤ 0 ∀ϕ ∈ {1, · · · , Φ}, ∀j ∈ {1, · · · , k} (6.15)

ηϕ ∈ R ∀ϕ ∈ {1, · · · , Φ} (6.16)

In this formulation, Constraints (6.14) can be understood as Benders’ optimal-
ity cuts. Moreover, in order to avoid handling infinite values of the lower bound-
ing function Zϕ, we may add a series of constraints to explicitly exclude first-stage
variables x such that xϕ /∈ projxϕ

(Fϕ,d) for some phase ϕ. This may be done by
adding some constraints called Benders’ feasibility cuts. This is the purpose of Con-
straints (6.15) in which Fj

ϕ(xϕ) denotes a general mathematical expression involving
elements of xϕ.

Moreover, in our problem, all the first-stage decision variables are bounded inte-
ger variables: see the design constraints (4.1)-(4.2) introduced in Chapter 4. Xϕ and
as a consequence projxϕ

(Fϕ) ⊂ Xϕ are therefore finite sets for all phases ϕ.
Hence, the main remaining challenge towards ensuring that the generalized Ben-

ders’ decomposition will finitely converge towards an optimal solution is to build,
for each phase ϕ, a strong lower bounding function at each iteration k, i.e. to build a
function Zk

ϕ such that Zk
ϕ(xϕ) ≤ Zϕ(xϕ), ∀xϕ ∈ Rνϕ and Zk

ϕ(xk
ϕ) = Zϕ(xk

ϕ). This is the
purpose of the next section.

6.3 Strong dual bounding functions

We now investigate the development of strong dual bounding functions for our
problem. This development exploits the specific structure of the coupling constraints
(6.3) in CP.

We start by defining a partial order between the integer vectors describing the
system layout at phase ϕ. Thus, a system layout described by vector x♯ϕ is defined

to be smaller than the system layout described by vector x•ϕ if x♯ϕ is element-wise

smaller than x•ϕ, i.e. if we have x♯ϕ,i ≤ x•ϕ,i for each i = 1 . . . νϕ. In this case, we note
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x♯ϕ ⪯ x•ϕ. Two system layouts are said to be comparable if one is smaller than the
other.

Moreover, we note that the constraints (6.3) coupling the design and the oper-
ation variables in CP have a specific structure. Namely, they either take the form
yϕ,d,h,j ≤ xϕ,i (see e.g. Constraints (4.9), (4.15), (4.19), (4.22), (4.25) for the energy con-
version technologies) or the form zϕ,d,h,j ≤ cixϕ,i with ci > 0 (see e.g. Constraints (4.5)
for the resource commodities in CR,Co and Constraints (4.29) for the energy storage
technologies.)

Let us now consider two operation sub-problems OPϕ,d(x
♯
ϕ) and OPϕ,d(x•ϕ) and

their feasible spaces denoted by V ♯
ϕ,d and V•ϕ,d. Thanks to the key observation on the

coupling constraints mentioned above, we note that if x♯ϕ,i ⪯ x•ϕ,i, all the coupling

constraints involved in OPϕ,d(x
♯
ϕ) have a right-hand side smaller than the one of the

coupling constraints involved in OPϕ,d(x•ϕ) and are thus stricter so that V ♯
ϕ,d ⊆ V•ϕ,d.

This inclusion relationship between their feasible regions implies that if both oper-
ation scheduling sub-problems OPϕ,d(x

♯
ϕ) and OPϕ,d(x•ϕ) are feasible with optimal

objective value Z♯
ϕ,d and Z•ϕ,d, Z♯

ϕ,d ≥ Z•ϕ,d. Moreover, if OPϕ,d(x•ϕ) is infeasible,

OPϕ,d(x
♯
ϕ) is also infeasible. Note that this mathematical reasoning can be intuitively

related to the fact that a system layout x♯ϕ which has more components of each type
(i.e. which has more energy conversion devices of each type, a larger storage capac-
ity, a larger contracted power....) than the system layout x•ϕ can be operated using the
same operation schedules as the ones used with the system layout x•ϕ (and maybe

with less expensive operation schedules). This implies that the operation cost of x♯ϕ
cannot be larger than the one of x•ϕ.

This property can be illustrated by an example based on the case study related
to the DCS project located in City B. We consider the operation cost for Day 143 of
Phase 4 of this project. The number of single-mode chillers of type (SMEC, 1) is
fixed to 0, the ice storage capacity to 171MWh and the contracted maximum power
to 15MW. Figure 6.1 shows how the operation cost for this day, Z4,143, varies as a
function of the design vector x4 = (x4,1, x4,2) where x4,1 is the number of chillers
of type (SMEC, 2) and x4,2 the number of chillers of type (DMEC, 1) present in the
DCS at the beginning of Phase 4. The z-axis indicates the value of the operation cost
Z4,143(x4): a value of Z4,143(x4) above 550000 corresponds to an ’infinite value’ indi-
cating that the system layout x4 is infeasible for day (4,143). Note that, in order to
obtain a more readable figure, x4 was considered as a continuous vector when draw-
ing the graphical representation of Z4,143 but the scheduling variables z4,143 were
kept integer when solving OP4,143(x4).

We first observe that OP4,143(x4) is infeasible for small values of x4 (see the region
colored in yellow on the figure). Moreover, if OP4,143(x

♯
4) is infeasible for a given

design vector x♯4, it is infeasible for all smaller design vectors: see e.g. how vector
(1,3) and all smaller vectors, i.e. vectors (0,3) (0,2), (0,1), (1, 2), (1,1), (1,0) and (0,0),
are infeasible. We also note that Z4,143 is a piece-wise constant function and that for
a given value of x4,1 (resp. x4,2), Z4,143 is non-increasing with respect to x4,2 (resp.
x4,1). Finally, we observe that if OP4,143(x

♯
4) is feasible for a given design vector x♯4,

Z4,143(x
♯
4) is a lower bound for the optimal value of OP4,143(x4) as long as x4 ⪯ x♯4.

See e.g. how Z4,143(10, 10) = 357996 is a lower bound for Z4,143(x4) as long as x4 ⪯
(10, 10).

Let x♯ϕ ∈ projxϕ
(Fϕ) be a system layout at phase ϕ feasible for each day d ∈ Dϕ.
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FIGURE 6.1: Operation cost of day (4,143) in the DCS of City B as a
function of the number of installed chillers

As discussed above, we have, for each day d ∈ Dϕ, Zϕ,d(x
♯
ϕ) ≤ Zϕ,d(xϕ) for any xϕ

such that xϕ ⪯ x♯ϕ. In other words, Zϕ,d(x
♯
ϕ) is a lower bound on the operation cost

of day d ∈ Dϕ as long as xϕ is smaller than x♯ϕ. This allows us to define a lower
bounding function for the total operation cost at phase ϕ, Zϕ, as follows.

Zϕ(xϕ) = Zϕ(x
♯
ϕ)1xϕ⪯x♯ϕ

(6.17)

where 1xϕ⪯xk
ϕ

is the indicator function defined by:

1xϕ⪯x♯ϕ
=

{
1 if xϕ ⪯ x♯ϕ
0 otherwise

(6.18)

We have Zϕ(xϕ) = Zϕ(x
♯
ϕ) ≤ Zϕ(xϕ) for any xϕ smaller that x♯ϕ and Zϕ(xϕ) =

0 ≤ Zϕ(xϕ) for any xϕ greater or incomparable to x♯ϕ. Thus Zϕ(xϕ) ≤ Zϕ(xϕ) for
all xϕ ∈ Rνϕ . Zϕ is thus a lower bounding function of Zϕ. Moreover, we have

Zϕ(x
♯
ϕ) = Zϕ(x

♯
ϕ) so that Zϕ is strong at x♯ϕ.

Furthermore, let x♯ϕ /∈ projxϕ
(Fϕ) be a system layout infeasible for some day d ∈

Dϕ. As discussed above, we know than any xϕ such that xϕ is smaller that x♯ϕ will also
be an infeasible system layout for this day. We can thus exclude any xϕ smaller that
x♯ϕ from the feasible space of the master problem by adding the following equality:

1xϕ⪯x♯ϕ
= 0 (6.19)

Thus, the master problem MPk to be solved at iteration k of a generalized Ben-
ders’ decomposition algorithm may be rewritten as:
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min ZMPk = f0(x) +
ϕ

∑
ϕ=1

ηϕ (6.20)

x ∈ X (6.21)

ηϕ ≥ Zϕ(x
j
ϕ)1xϕ⪯xj

ϕ
∀ϕ ∈ {1, · · · , Φ},

∀j ∈ {1, · · · , k|xj
ϕ ∈ projxϕ

(Fϕ)} (6.22)

1xϕ⪯xj
ϕ
= 0, ∀ϕ ∈ {1, · · · , Φ},

∀j ∈ {1, · · · , k|xj
ϕ /∈ projxϕ

(Fϕ)} (6.23)

ηϕ ∈ R ∀ϕ ∈ {1, · · · , Φ} (6.24)

In this formulation, Constraints (6.22) are optimality cuts generated at each it-
eration j to approximate the total operation cost at phase ϕ when the iterate xj

ϕ be-

longs to projxϕ
(Fϕ). In case xj

ϕ /∈ projxϕ
(Fϕ), i.e. in case there is no feasible opera-

tion schedule for some day d ∈ Dϕ with the system layout xj
ϕ, we add a feasibility

cut (6.23) to forbid xj
ϕ.

6.4 MILP reformulation of the master problem

Problem (6.20)-(6.24), as such, cannot be directly solved by an MILP solver due to
the presence of a set of non-linear indicator functions 1xϕ⪯xj

ϕ
, j = 1, · · · , k. We thus

investigate in what follows a MILP reformulation of the master problem MPk.
To this aim, we introduce two sets of binary variables. First, for each j = 1, · · · , k

and each phase ϕ, the binary variable β
j
ϕ is defined as β

j
ϕ = 1 if xϕ ⪯ xj

ϕ and β
j
ϕ = 0

otherwise. We thus have β
j
ϕ = 1xϕ⪯xj

ϕ
. Moreover, for each j = 1, · · · , k, each phase ϕ

and each element i = 1, · · · , νϕ of xj
ϕ, the binary variable α

j
ϕ,i is defined by α

j
ϕ,i = 1

if xϕ,i > xj
ϕ,i and α

j
ϕ,i = 0 otherwise. We thus have β

j
ϕ = 1 iif α

j
ϕ,i = 0 for all

i = 1, · · · , νϕ.
Thanks to these binary variables, the master problem MPk can be reformulated

as follows:
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min ZMPk = f0(x) +
ϕ

∑
ϕ=1

ηϕ (6.25)

x ∈ X (6.26)

ηϕ ≥ Zϕ(x
j
ϕ)β

j
ϕ ∀ϕ, ∀j ∈ {1, · · · , k|xj

ϕ ∈ projxϕ
(Fϕ,d)} (6.27)

β
j
ϕ = 0 ∀ϕ, ∀j ∈ {1, · · · , k|xj

ϕ /∈ projxϕ
(Fϕ,d)} (6.28)

α
j
ϕ,i ≤

xϕ,i

xj
ϕ,i + 1

∀ϕ, ∀j ∈ {1, · · · , k}, ∀i ∈ {1, · · · , νϕ} (6.29)

α
j
ϕ,i ≥

xϕ,i − xj
ϕ,i

xϕ,i − xj
ϕ,i

∀ϕ, ∀j ∈ {1, · · · , k}, ∀i ∈ {1, · · · , νϕ} (6.30)

β
j
ϕ ≥ 1−

νϕ

∑
i=1

α
j
ϕ,i ∀ϕ, ∀j ∈ {1, · · · , k} (6.31)

β
j
ϕ ≤

∑
νϕ

i=1(1− α
j
ϕ,i)

νϕ
∀ϕ, ∀j ∈ {1, · · · , k} (6.32)

ηϕ ∈ R ∀ϕ (6.33)

β
j
ϕ ∈ {0, 1} ∀ϕ, ∀j ∈ {1, · · · , k} (6.34)

Constraints (6.27)-(6.28) are the optimality and feasibility cuts (6.22)-(6.23) in
which the indicator function 1xϕ⪯xj

ϕ
has been replaced by the binary variable β

j
ϕ.

Constraints (6.29)-(6.30) link the value of α
j
ϕ,i to the one of element i of vector xj

ϕ.

They ensure that α
j
ϕ,i = 0 if xϕ,i ≤ xj

ϕ,i (see Constraints (6.29)) and α
j
ϕ,i = 1 if

xϕ,i > xj
ϕ,i (see Constraints (6.30) in which xϕ,i denotes an upper bound on xϕ,i). Fi-

nally, Constraints (6.31)-(6.32) link the value of β
j
ϕ to the value of variables α

j
ϕ,i. Thus,

Constraint (6.31) forces β
j
ϕ to be equal to 1 when all variables α

j
ϕ,i, ∀i ∈ {1, · · · , νϕ},

are equal to 0, i.e. when all elements of xϕ are smaller that their counterpart in xj
ϕ.

Similarly, Constraint (6.32) ensures that β
j
ϕ is equal to 0 as soon as there is one ele-

ment of xϕ which is greater that that its counterpart in xj
ϕ, i.e. as soon as one of the

variables α
j
ϕ,i, i ∈ {1, · · · , νϕ} is equal to 0. It should be mentioned that the upper

bound xϕ,i should numerically be set to a value large enough to ensure that the de-
nominator of the right-hand-side of Constraints (6.30) remains strictly positive and
to avoid the division-by-zero issue.

6.5 Generalized Benders’ decomposition algorithm

Sections 6.2 to 6.4 described a framework for developing a generalized Benders’ de-
composition approach applied to our problem and provided a set of lower bounding
functions displaying the sufficient mathematical properties to ensure the finite and
optimal convergence of this algorithm. Overall, the outline of the algorithm can be
described by Algorithm 3.
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Algorithm 3: Basic generalized Benders’ decomposition algorithm
Data: Parameters of commodities and technologies, construction phases,

discount rate and a value of the optimality tolerance gap ϵ
Result: The optimal system deployment plan and the minimum total cost

1 Set the number of iteration k to 0;
2 Set the upper bound UB0 to +∞ and the lower bound LB0 to −∞;
3 while |UBk − LBk| < ϵ do
4 Set k to k + 1;
5 Solve the master problem MPk using formulation (6.25)-(6.34) with an

MILP solver;
6 Set LBk to ZMPk ;
7 Record the current design solution xk = (xk

1, · · · , xk
ϕ, · · · , xk

Φ);
8 Set IsFeasible to True;
9 for each phase ϕ ∈ {1, ..., Φ} do

10 Set Zϕ(xk
ϕ) to 0;

11 for each d ∈ Dϕ do
12 Solve the operation sub-problem OPϕ,d(xk

ϕ) as an MILP;
13 if OPϕ,d(xk

ϕ) is feasible then
14 set Zϕ(xk

ϕ) to Zϕ(xk
ϕ) + Zϕ,d(xk

ϕ);
15 else
16 Add the feasibility cut (6.28) corresponding to xk

ϕ to MPk;
17 Set IsFeasible to False;
18 break ; /* To break the for loop started in Line 11 */
19 end
20 end
21 if IsFeasible is False then
22 break ; /* To break the for loop started in Line 9 */
23 else
24 Add the optimality cut (6.27) corresponding to xk

ϕ to MPk;
25 end
26 end
27 if IsFeasible is True then
28 Set UBk = min{ f0(xk) + ∑Φ

ϕ=1 Zϕ(xk
ϕ), UBk−1};

29 if |UBk − LBk| < ϵ then
30 return xk as the optimal design decision and UBk as the minimum

cost;
31 end
32 end
33 end
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However, a direct implementation of Algorithm 3 showed some numerical inef-
ficiencies.

First, the solution of MPk found at Line 4 of Algorithm 3 may be far from be-
ing feasible (never mind optimal) for the operation sub-problems, especially in the
first iterations of the generalized Benders’ decomposition algorithm. In particular,
we noted that xk is sometimes neither feasible nor optimal with respect to the linear
relaxation of the operation sub-problems denoted by ÕPϕ,d(xk

ϕ). As a consequence,
when running Algorithm 3, we sometimes solve a series of operation sub-problems
OPϕ,d(xk

ϕ) as MILPs only to find out that xk
ϕ is infeasible with respect to the linear

relaxation of one of this sub-problems. This computational effort could be avoided
by first strengthening the formulation of MPk through the use of ’classical’ Benders’
cuts generated using the strong duality property holding for the linear programs
ÕPϕ,d(xk

ϕ). These cuts may be generated through a significantly smaller effort than
the one required to generate cuts of type (6.27)-(6.28) as they only necessitate the
resolution of a set of LPs rather than MILPs. This is why we propose to replace
the resolution of MPk with an MILP solver by the resolution of another relaxation
of CP, denoted by SRPk, through a classical Benders’ decomposition algorithm im-
plemented in an off-the-shelf MILP solver. Problem SRPk corresponds to Problem
SRP introduced in Chapter 5, i.e. to a relaxation of CP in which all integer variables
y are relaxed to continuous variables, in which the cuts of type (6.27)-(6.28) gen-
erated up to iteration k by the generalized Benders’ decomposition algorithm have
been added. This allows us to obtain, at each iteration of the generalized Benders’
decomposition algorithm, first-stage solutions xk, k = 1...K, of better quality and to
solve operation sub-problems OPϕ,d(xk

ϕ) as MILPs, which requires a significant com-
putational effort, only to evaluate potentially ’interesting’ deployment plans.

Second, similar to what was observed for the hierarchical decomposition algo-
rithm, we often repetitively solve the same lower level sub-problems over the course
of the algorithm. This repetition is due to the multi-phase nature of our problem.
Namely, even if two deployment plans found by solving the master problem differ
from each other, they may contain the same system layout for a subset of construc-
tion phases. This is why we record in a hash table the optimal value Zϕ(xk

ϕ) of the
total operation cost relative to a given phase ϕ obtained with the system layout xk

ϕ

considered at iteration k and retrieve this cost at a later iteration j > k of the algo-
rithm in which the same system layout xj

ϕ = xk
ϕ is used for phase ϕ.

This leads to an extended variant of the generalized Benders’ decomposition al-
gorith described in Algorithm 4.

Note that solving SRPk using the classical Benders’ decomposition algorithm
embedded e.g. in CPLEX solver at the upper level amounts to adding to MPk a set
of optimality and feasibility cuts based on the resolution of the dual of each relaxed
operation sub-problem ÕPϕ,d(·). We thus build a ’temporary’ dual bounding func-
tion for each function Zϕ, ϕ ∈ {1, · · · , Φ}, involved in Problem (6.9), which is most
often not strong at iterate xk. However, these dual bounding functions are only used
to improve the quality of iterate xk. Over the course of each iteration, we build a dual
bounding function for each function Zϕ which is strong at iterate xk. This ensures
that Algorithm 4 has a finite and optimal convergence.
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Algorithm 4: Modified Generalized Benders Decomposition
Data: Parameters of commodities and technologies, construction phases and

discount rate
Result: The optimal system deployment plan and the minimum total cost

1 For c, add the valid inequalities (5.29)- (5.30) to the formulation of SRP0;
2 Set the number of iteration k to 0.;
3 Set the upper bound UB0 to +∞ and the lower bound LB0 to −∞.;
4 while |UBk − LBk| < ϵ do
5 Set k to k + 1;
6 Solve SRPk using formulation (5.9)-(5.15) with the classical Benders’

decomposition algorithm embedded in an MILP solver in which design
variables x are the first stage variables and relaxed operation variables
(ỹ, z̃) are the second stage variables;

7 Set LBk = ZSRPk ;
8 Record the current design solution xk = (xk

1, · · · , xk
ϕ, · · · , xk

Φ);
9 Set IsFeasible to True;

10 for each phase ϕ ∈ {1, ..., Φ} do
11 if Zϕ(xk

ϕ) is recorded in the hash table then
12 Retrieve Zϕ(xk

ϕ) from the hash table;
13 else
14 Set Zϕ(xk

ϕ) to 0;
15 for each d ∈ Dϕ do
16 Solve the operation sub-problem OPϕ,d(xk

ϕ) as an MILP;
17 if OPϕ,d(xk

ϕ) is feasible then
18 set Zϕ(xk

ϕ) to Zϕ(xk
ϕ) + Zϕ,d(xk

ϕ);
19 else
20 Add the feasibility cut (6.28) corresponding to xk

ϕ to SRPk;
21 Set IsFeasible to False;
22 break ; /* To break the for loop started in Line 15

*/
23 end
24 end
25 end
26 if IsFeasible is False then
27 break ; /* To break the for loop started in Line 10 */
28 end
29 end
30 if IsFeasible is True then
31 Set UBk = min{ f0(xk) + ∑Φ

ϕ=1 Zϕ(xk
ϕ), UBk−1};

32 if |UBk − LBk| < ϵ then
33 return xk as the optimal design decision and UBk as the minimum

cost;
34 end
35 end
36 end
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6.6 Computational experiments

We report in this section the results of the computational experiments carried out
to assess the numerical performance of the extended variant of the generalized Ben-
ders’ decomposition algorithm introduced in Section 6.5 and to compare it with the
one of the direct resolution by an MILP solver and of the hierarchical decomposi-
tion algorithms investigated in Chapter 5. We then discuss the outcome of a post-
optimization simulation study carried out to evaluate the quality of the deployment
plans obtained for the two DCS projects.

6.6.1 Numerical efficiency of the extended generalized Benders’ decom-
position algorithm

The computational experiments were based on instances related to the three case
studies introduced in Chapter 4. Each instance was solved with the extended vari-
ant of the generalized Benders’ decomposition algorithm. The experimental setup
was the same as the one described at the beginning of Subsection 4.4.2. We use the
classical Benders’ decomposition algorithm embedded in CPLEX 12.8 solver to solve
SRPk at each iteration of the algorithm.

The results are shown in Tables 6.1 - 6.4. We report, for each instance, the value
of the residual gap GapMIP, the computation time and the number of iterations #Iter
carried out by the generalized Benders’ algorithm.

We first observe from the results displayed in Tables 6.1, 6.2 and 6.4 that the mod-
ified generalized Benders’ decomposition algorithm significantly outperforms both
the direct resolution approach and the extended hierarchical decomposition for all
considered instances. Namely, it was able to solve to optimality the 19 considered
instances within the imposed time and memory limits whereas the extended hier-
archical decomposition algorithm could only solve to optimality 11 out of these 19
instances and encountered out-of-memory issues for the 7 instances related to the
trigeneration project. Moreover, the modified generalized Benders’ decomposition
algorithm has a significantly higher efficiency than the extended hierarchical decom-
position algorithm. Thus, over the 12 instances corresponding to the DCS projects
in Cities A and B, the average computational time is decreased from 2279s with the
extended hierarchical decomposition to 628s with the generalized Benders’ decom-
position, which represents a reduction of the computation time by a factor larger
than 3.6.

Furthermore, since the average computational time for the 5 instances related
to the DCS project in City B was less than 1 minute (see Table 6.2), we created 6
additional larger instances for this project by increasing the number of typical days
taken into account to represent the demand evolution over the year. Note that the
instance with |Dϕ| = 165 takes into account the 165 days with a non-zero cooling
demand in the initial time series and assigns a weight equal to 1 to each of them, it
is thus equivalent to the initial problem considering the cooling demand of all 365
days of a year. We note that, although the computational time increases with the
size of the instance, the generalized Benders’ decomposition algorithm returns the
optimal solution for these 6 new instances within the time limit.

The second observation deals with the number of iterations #Iter carried out by
the generalized Benders’ decomposition algorithm. It seems that, for a given case
study, this number does not change when the instance size increases, i.e. when the
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|Dϕ| 6 14 22 30 38 58 78
MILP #Var 12555 29259 45963 61971 79371 121131 162984
size #IntVar 3909 9093 14277 19245 24645 37605 50565

#Cons 21611 50411 79211 106811 136811 208811 280839
Direct GapLP 1.57% 3.26% 3.41% 1.77% 2.17% 2.06% 2.34%
resolution Time 7200s 7200s 7200s 7200s 7200s 7200s 7200s

GapMIP 0.18% 0.04% 0.13% 0.39% 0.44% 0.73% 2.83%
Initial GapLP 1.57% 3.26% 3.41% 1.77% 2.17% 2.06% 2.34%
Hier. Dec. #IFSSRP 9009 1469 3017 2764 1180 1187 488

#OPsolved 28150 15295 15595 31555 20335 31848 29561
Time 7200s 7200s 7200s 7200s 7200s 7200s 7200s
GapMIP 0.10% 0.68% 1.46% 0.50% 0.88% 0.74% 1.21%

Extended GapLP 1.56% 1.45% 1.53% 1.56% 1.56% 1.56% 1.56%
Hier. Dec. #IFSSRP 892 1980 1083 874 919 908 1171

#OPsolved 172 581 779 515 1254 1654 2058
Time 123s 814s 1043s 977s 990s 1984s 6822s
GapMIP 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Generalized #Iter 10 7 9 8 9 9 11
Benders Time 72s 147s 376s 593s 824s 1637s 3708s

GapMIP 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

TABLE 6.1: City A project: numerical comparison of the solution
methods

number of typical days |Dϕ| increases. This means that the increase of the computa-
tion time observed when |Dϕ| increases mainly comes from the additional computa-
tional effort needed to solve the larger number of operation sub-problems. However,
we note that the number of iterations #Iter varies significantly with the case study,
e.g. from an average value of 4 iterations for City B project to an average value of
20 iterations for City C project. These variations may be first explained by the num-
ber of design variables. This one is namely smaller in City B projects (25 design
variables) than in City C project (36 design variables). This means that the design
feasible space is larger for City C project than for City B project, which may make it
harder for the generalized Benders’ decomposition algorithm to converge towards
the optimal deployment plan. A second explanation might be related to the ’qual-
ity’ of the deployment plans obtained while solving Problem SRPk with a classical
Benders’ decomposition algorithm. This quality depends heavily on the strength
of formulation SRPk: if this formulation is strong, it is more likely to provide de-
ployment plans which will be feasible (or even close to optimal) for the complete
problem CP so that the generalized Benders’ algorithm will have to carry out less
iterations. This point should however be further investigated.

6.6.2 Discussion on the quality of the obtained deployment plans

Solving the MILP problem formulated in Chapter 4 to optimality does not guarantee
that the obtained deployment plan is optimal with respect to the initial optimization
problem. Indeed, in the MILP problem formulated in Chapter 4, the actual operation
cost resulting from a given deployment plan is only computed in an approximate
way. First, each initial time series representing the hourly evolution of the demand
for each resource commodity or the limited availability of a supply commodity over
a year is approximately represented by a limited set of representative days. Second,
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|Dϕ| 6 8 10 12 14
MILP #Var 13820 18380 22940 27500 32060
size #IntVar 3625 4825 6025 7225 8425

#Cons 23084 30764 38444 46124 53804
Direct GapLP 5.32% 4.26% 4.58% 4.77% 4.38%
resolution Time 7200s 7200s 7200s 2589s∗ 4411s∗

GapMIP 0.01% 0.02% 0.02% 0.04% 0.06%
Initial GapLP 5.32% 4.26% 4.58% 4.77% 4.38%
Hier. Dec. #IFSSRP 4087 1603 1303 2348 1688

#OPsolved 45406 35193 31752 55160 34656
Time 5162s 7200s 7200s 7200s 7200s
GapMIP 0.00% 0.92% 0.86% 1.60% 0.66%

Extended GapLP 4.13% 3.37% 4.10% 4.24% 4.04%
Hier. Dec. #IFSSRP 1764 1432 1441 394 1660

#OPsolved 505 794 618 520 1287
Time 954s 2889s 4580s 7200s 4062s
GapMIP 0.00% 0.00% 0.00% 0.07% 0.00%

Generalized #Iter 4 2 2 2 3
Benders Time 32s 23s 29s 34s 72s

GapMIP 0.00% 0.00% 0.00% 0.00% 0.00%
"*" means that the computer ran out of memory before reaching the time limit.

TABLE 6.2: City B project: numerical comparison of the solution
methods

|Dϕ| 22 30 38 58 78 165
Generalized #Iter 4 4 4 4 4 4
Benders Time 207s 364s 463s 991s 1593s 4370s

GapMIP 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
"*" includes all days with non-zero cooling demand in one year

TABLE 6.3: City B project: results obtained with the generalized Ben-
ders’ decomposition algorithm on large instances
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|Dϕ| 12 16 20 24 28 32 36
MILP #Var 76080 101424 123600 148944 175872 201216 226560
size #IntVar 16164 21540 26244 31620 37332 42708 48084

#Cons 86420 115220 140420 169220 199820 228620 257420
Direct GapLP 5.11% 5.17% 5.20% 5.21% 5.15% 5.14% 5.13%
resolution Time 5934s∗ 6302s∗ 7200s 5259s∗ 6155s∗ 5968s∗ 5327s∗

GapMIP 0.06% 0.26% 0.23% 0.35% 0.32% 0.16% 1.21%
Initial GapLP 5.11% 5.17% 5.20% 5.21% 5.15% 5.14% 5.13%
Hier. Dec. #IFSSRP 4065 3019 2470 1888 1714 1512 1145

#OPsolved 35631 21560 33267 33418 37872 42548 47503
Time 5286s∗ 3608s∗ 5405s∗ 5461s∗ 5938s∗ 6587s∗ 7200
GapMIP 2.69% 2.21% 2.46% 2.41% 2.28% 2.88% 5.70%

Extended GapLP 3.41% 3.65% 3.68% 3.66% 3.6% 3.58% 3.56%
Hier. Dec. #IFSSRP 3646 2770 2271 1904 1583 1352 1243

#OPsolved 1501 1341 3177 1166 2294 2056 5189
Time 2609s∗ 4127s∗ 2929s∗ 3244s∗ 3863s∗ 5060s∗ 3713s∗

GapMIP 0.50% 0.38% 0.71% 0.54% 0.53% 0.36% 0.72%
Generalized #Iter 24 23 18 19 20 19 19
Benders Time 929s 1453s 1271s 1835s 2791s 3253s 3801s

GapMIP 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
"*" means that the computer ran out of memory before reaching the time limit.

TABLE 6.4: Trigeneration project: numerical comparison of the solu-
tion methods

the consumption of all devices displaying non-linear performance curves is not com-
puted exactly due to the use of a piece-wise linear approximation of these curves. A
too rough estimate of the actual operation cost in the MILP problem may lead to
poor design decisions and thus negatively impact the quality and relevancy of the
proposed deployment plan. In this subsection, we thus seek to assess the quality of
the deployment plans obtained with the proposed modeling and solution approach.

We first discuss the impact of the number of selected days |Dϕ| on the deploy-
ment plans. Tables 6.5-6.8 describe respectively the best feasible deployment plan
found for City A, City B and City C projects obtained by solving the MILP problem
formulated in Chapter 4 with the generalized Benders’ decomposition algorithm as
a function of the number of representative days used to estimate the operation cost.
We first provide the value of the objective function (4.35), i.e. the value of the total net
present cost of the deployment plan computed by the MILP model, followed by the
value of the actualized design cost and the value of the actualized operation cost. We
then give, for each phase ϕ in {1, ..., Φ}, the number SDϕ,m of devices of each type to
be installed in each phase, the energy storage capacity Sizestep

m SDϕ,m to be built and
the maximum instantaneous power Cstep

(ELEC,1)Cdisϕ,(ELEC,1) to be contracted.
Results from Table 6.5 show that, for City A project, even if the total net present

cost of the deployment plan slightly varies with the number of representative days,
its actualized design cost and the design decisions to be made at each phase are
the same in all the solutions obtained for |Dϕ| greater than 14 days. Similarly, we
observe in Tables 6.6 - 6.7 that, for City B project, the obtained deployment plans
are the same for all values of |Dϕ|. Results from Table 6.8 also show that, for the
trigeneration project, the optimal deployment plans are the same for |Dϕ| greater
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|Dϕ| 6 14 22 30 38 58 78
Obj. value 5.50× 108 5.74× 108 5.74× 108 5.75× 108 5.74× 108 5.73× 108 5.74× 108

Design cost 2.44× 108 2.36× 108 2.36× 108 2.36× 108 2.36× 108 2.36× 108 2.36× 108

Operation cost 3.06× 108 3.38× 108 3.39× 108 3.40× 108 3.39× 108 3.37× 108 3.38× 108

Phase 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
(SMEC,1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(SMEC,2) 1 5 2 1 5 3 1 5 3 1 5 3 1 5 3 1 5 3 1 5 3
(SMEC,3) 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
(DMEC,1) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(DMEC,2) 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
Stor. cap. (MWh) 20 5 40 20 5 0 20 5 0 20 5 0 20 5 0 20 5 0 20 5 0
Cont. power (MW) 3 9 15 3 9 15 3 9 15 3 9 15 3 9 15 3 9 15 3 9 15

TABLE 6.5: City A project: deployment plan obtained as a function of
the number of representative days

|Dϕ| 6 8 10 12 14
Obj. value 2.27× 108 2.36× 108 2.35× 108 2.35× 108 2.36× 108

Design cost 1.93× 108 1.93× 108 1.93× 108 1.93× 108 1.93× 108

Operation cost 3.38× 107 4.26× 107 4.17× 107 4.20× 107 4.26× 107

Phase 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
(SMEC, 1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(SMEC, 2) 0 0 1 3 3 0 0 1 3 3 0 0 1 3 3 0 0 1 4 2 0 0 1 3 3
(DMEC, 1) 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 0 2 1 0 1 1 1
Stor. cap. (MWh) 9 27 81 54 0 9 27 81 54 0 9 27 81 54 0 9 27 81 54 0 9 27 81 54 0
Cont. power (MW) 3 3 6 9 15 3 3 6 9 15 3 3 6 9 15 3 3 6 9 15 3 3 6 9 15

TABLE 6.6: City B project: deployment plan obtained as a function of
the number of representative days

than 12 days. Overall, these results indicate that, provided the number of represen-
tative days used to estimate the operation cost is large enough and the generalized
Benders’ decomposition algorithm can converge within the time limit, the design
decisions do not depend on the cardinality of the subset of representative days and
may thus be recommended for implementation.

We then seek to further assess the impact of using a limited number of repre-
sentative days and a piece-wise linear approximation of the devices’ performance
curves to estimate the future operation cost in our optimization model. This assess-
ment relies on a post-optimization numerical simulation study aiming at computing
as accurately as possible the actual operation cost corresponding to the deployment
plan recommended by our optimization model. Due to time reasons, we carried out
this assessment only on the DCS projects. Note that in these projects, all the available
conversion devices have non-linear convex performance curves.

For this simulation study, we use the following procedure:

1. We retrieve the design decisions for each phase ϕ obtained when solving the
MILP problem formulated in Chapter 4 to optimality. For City A project (resp.

|Dϕ| 22 30 38 58 78 165
Obj. value 2.35× 108 2.35× 108 2.36× 108 2.36× 108 2.36× 108 2.36× 108

Design cost 1.93× 108 1.93× 108 1.93× 108 1.93× 108 1.93× 108 1.93× 108

Operation cost 4.24× 107 4.22× 107 4.28× 107 4.27× 107 4.28× 107 4.29× 107

Phase 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
(SMEC, 1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(SMEC, 2) 0 0 1 3 3 0 0 1 3 3 0 0 1 3 3 0 0 1 3 3 0 0 1 3 3 0 0 1 3 3
(DMEC, 1) 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1
Stor. cap. (MWh) 9 27 81 54 0 9 27 81 54 0 9 27 81 54 0 9 27 81 54 0 9 27 81 54 0 9 27 81 54 0
Cont. power (MW) 3 3 6 9 15 3 3 6 9 15 3 3 6 9 15 3 3 6 9 15 3 3 6 9 15 3 3 6 9 15

TABLE 6.7: City B project: deployment plan obtained as a function of
the number of representative days
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|Dϕ| 12 16 20 24 28 32 36
Obj. value 1.64× 108 1.64× 108 1.62× 108 1.63× 108 1.63× 108 1.63× 108 1.64× 108

Design cost 5.46× 107 5.42× 107 5.42× 107 5.42× 107 5.42× 107 5.42× 107 5.42× 107

Operation cost 1.09× 108 1.10× 108 1.08× 108 1.09× 108 1.09× 108 1.09× 108 1.10× 108

Phase 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
(SMEC, 1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(SMEC, 2) 0 0 4 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1
(DMEC, 1) 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
(CCHP, 1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(BOILER, 1) 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0
(ASHP, 1) 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
Ice Stor. cap. (MWh) 9 9 0 18 0 0 18 18 0 0 18 18 0 0 18 18 0 0 18 18 0 0 18 18 0 0 18 18
Heat Stor. cap. (MWh) 18 0 0 45 18 0 0 36 18 0 0 36 18 0 0 36 18 0 0 36 18 0 0 36 18 0 0 36
Cont. power (MW) 1 1 1.5 2 1 1 1.5 2 1 1 1.5 2 1 1 1.5 2 1 1 1.5 2 1 1 1.5 2 1 1 1.5 2

TABLE 6.8: Trigeneration project: deployment plan obtained as a
function of the number of representative days

City B project), we use the deployment plan corresponding to |Dϕ| = 78 (resp.
to |Dϕ| = 165) representative days displayed in Table 6.5 (resp. Table 6.6).

2. We use the initial time series describing, for each phase ϕ, the hourly evolution
of the cooling demand over the year and solve a sequence of 2-days scheduling
problems within a rolling horizon framework. More precisely, for each phase
ϕ = 1, ..., Φ:

• for each day d = 1, ..., 364:
- We solve a scheduling problem spanning days d and d+ 1. This schedul-
ing problem uses as input data the system layout given for phase ϕ by the
deployment plan, the cooling demand for days d and d + 1 in the time
series provided by the company technical experts and the piece-wise lin-
ear approximation of the chillers performance curve described in Sub-
section 4.2.3. Moreover, it considers an entering ice inventory level in
the thermal storage m = (STO_COLD, 1) at the beginning of day d, i.e.
STOϕ,d,0,m, equal to the leaving ice inventory level computed in the sim-
ulation for day d− 1, i.e. STOsim

ϕ,d−1,H,m. For day 1, STOϕ,1,0,m is set to 0.
- We record, for each hour h = 0, .., H − 1 of day d, the load allocation
Pout,sim

ϕ,d,h,n,m of each type of chiller together with the total operation cost Zsim
ϕ,d

computed by the model for day d. We also record the leaving ice inven-
tory level, i.e. STOsim

ϕ,d,H−1,m.

• When the scheduling problem of Day 364 and Day 365 is solved, which is
the last two-day scheduling problem of the phase, the load allocation of
each type of chiller of both two days, Pout,sim

ϕ,364,h,n,m and Pout,sim
ϕ,365,h,n,m, as well as

the corresponding total operation cost, Zsim
ϕ,364 and Zsim

ϕ,365, will be recorded.

We finally compute, for each phase ϕ, a total ’simulated’ operation cost Zsim
ϕ

equal to Zsim
ϕ = ∑365

d=1 Zsim
ϕ,d .

3. We use the performance curves provided by the chillers’ manufacturer to com-
pute the actual operation cost. Thus, for each phase ϕ = 1, ..., Φ, each day
d = 1, ..., 365, each hour h = 1, .., H, each type of chiller m ∈ MSMEC ∪MDMEC

and each operating mode n, we retrieve the value Pout,sim
ϕ,d,h,n,m obtained in Step 2

of the simulation procedure and use the chiller performance curve provided
by its manufacturer to compute the corresponding actual electricity consump-
tion Pin,actual

ϕ,d,h,ELEC,m. This allows us to compute the total consumption of com-

modity (ELEC, 1)for the corresponding time-step: Consoactual
ϕ,d,h,(ELEC,1). We thus
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obtain, for each phase ϕ, a total ’actual’ operation cost Zactual
ϕ equal to Zactual

ϕ =

∑365
d=1 ∑H−1

h=0 ∑m∈M ∑c∈CR EPϕ,d,h,cConsoactual
ϕ,d,h,c.

The corresponding results are displayed in Table 6.9 for City A project and in
Table 6.10 for City B project. We provide for each phase ϕ:

• Zoptim
ϕ : the value of the approximate operation cost in the objective function (4.35)

of the optimization model (computed using a limited set of representative days
and a piece-wise linear approximation of the chillers performance curves),

• Zsim
ϕ : the value of the simulated operation cost obtained at the end of Step 2 of

the simulation procedure (computing using the initial time series for the cool-
ing demand and a piece-wise linear approximation of the chillers performance
curves),

• Zactual
ϕ : the value of the actual operation cost obtained at the end of Step 3 of the

simulation procedure (computing using the initial time series for the cooling
demand and the original non-linear chillers performance curves provided by
the manufacturer),

• ϵ
optim
ϕ : the relative percentage difference between the value of the approximate

operation cost computed by the optimization model and the value of the actual
operation cost computed by the simulation procedure,

• ϵsim
ϕ : the relative percentage difference between the value of the simulated op-

eration cost computed at Step 2 of the simulation procedure and the value of
the actual operation cost computed by the simulation procedure.

The last line of each table provides the corresponding net present operation cost over
the whole lifetime of the DCS.

We note from the results presented in Tables 6.9-6.10 that the approximation of
the operation cost used in the optimization model is of very good quality. Namely,
the relative percentage difference between Zoptim

ϕ and Zactual
ϕ , ϵ

optim
ϕ , stays below 1%

in all but one cases. The only large percentage difference is observed for Phase 1
of City B project. It is mainly explained by the fact that the demand in year 1 of
this project is weak and that, in this case, it may be profitable to produce in one
time-step an amount of ice covering the total cooling demand over the next two
forthcoming days. In the optimization model, such a production strategy in which
ice is kept in inventory for more than one day is not exploited due to the use of
separate representative days. However, this has a limited impact on the relative
percentage difference between the total approximated cost over all phases, Zoptim =

∑Φ
ϕ=1 βϕZoptim

ϕ , and the total actual cost over all phases, Zactual
ϕ = ∑Φ

ϕ=1 βϕZactual
ϕ , as

the relative difference stays below 1% for both projects. We thus conclude that the
use of a large number of representative days and of a 3-segment piece-wise linear
approximation of the chillers performance curves leads to an estimation of the actual
electric consumption of the system in the optimization model accurate enough to
provide good-quality deployment plans. It would clearly be interesting to carry out
such a post-optimization simulation study for the trigeneration project.

6.7 Conclusion

This chapter was devoted to the presentation of a generalized Benders’ decomposi-
tion algorithm for the LMES design problem.
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Phase Zoptim
ϕ ϵoptim Zsim

ϕ ϵsim Zactual
ϕ

1 4.38× 106 -0.75% 4.38× 106 -0.83% 4.41× 106

2 1.89× 107 -0.90% 1.88× 107 -1.12% 1.90× 107

3 3.15× 108 -0.70% 3.14× 108 -0.87% 3.17× 108

Total 3.38× 108 -0.71% 3.38× 108 -0.88% 3.41× 108

TABLE 6.9: City A project: comparison of the approximated, simu-
lated and actual operation cost

Phase Zoptim
ϕ ϵoptim Zsim

ϕ ϵsim Zactual
ϕ

1 5.17× 104 3.85% 4.96× 104 -0.41% 4.98× 104

2 5.85× 105 -0.86% 5.88× 105 -0.26% 5.90× 105

3 1.63× 106 -0.22% 1.62× 106 -0.38% 1.63× 106

4 2.82× 106 -0.75% 2.83× 106 -0.45% 2.84× 106

5 3.76× 107 -0.98% 3.77× 107 -0.68% 3.79× 107

Total 4.26× 107 -0.93% 4.28× 107 -0.65% 4.30× 107

TABLE 6.10: City B project: comparison of the approximated, simu-
lated and actual operation cost

We first presented in Section 6.2 the overall framework used to develop this al-
gorithm. This framework basically consists in reformulating the problem using only
design variables and in using a set of functions to represent the impact on the op-
eration cost at a given investment phase of the design decisions. As there is no
closed-loop expression for these functions, the algorithm will iteratively build an
approximation, called a dual bounding function, for each of them.

The finite and optimal convergence of a generalized Benders’ decomposition al-
gorithm requires that these dual bounding functions are strong at all the iterates. We
thus showed in Section 6.3 how such dual bounding functions may be used in our
problem. This was achieved by exploiting the special structure of the constraints
coupling design and operation variables in the operation sub-problems. We then
explained in Section 6.4 how the resulting non-linear master problem may be refor-
mulated as an MILP thanks to the introduction of a set of additional binary variables.
Finally, Section 5.3 summarized the proposed generalized Benders’ decomposition
algorithm and highlighted the extension of the basic variant of the algorithm we
introduced in order to improve its numerical efficiency.

Finally, Section 6.6 reported the results obtained on instances based on our three
case studies. These results show that the generalized Benders’ decomposition al-
gorithm clearly outperforms the solution approaches investigated in the previous
chapters. In particular, using this algorithm, we were able to solve to optimality
all considered instances within the time and memory limits. Furthermore, we pre-
sented the results of a post-optimization simulation study carried out to estimate the
quality of the deployment plans obtained with the proposed approach. These results
show that, even if some approximations and simplifications were made when mod-
eling the actual optimization problem, the obtained deployment plans are of good
quality and may be recommended for a real-life implementation.
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Chapter 7

Conclusion

7.1 Conclusion

This PhD thesis aimed to develop a numerical decision-aid tool based on mathemat-
ical optimization to help our industrial partner, EDF Chine, at optimally designing
a Local Multi-Energy System (LMES). The LMES optimal design problem consists
in choosing a combination of devices belonging to various energy conversion and
storage technologies to compose a district energy system which can satisfy the fore-
casted energy demands of the local residents and minimize the total cost comprising
the installation cost and the operation cost over the system’s lifetime.

We provided in Chapter 2 an overview of the current state of the art on this prob-
lem. In particular, an analysis of the papers proposing mathematical programming
models for the LMES design problem was carried out while focusing on four im-
portant features: the modeling of the design decisions (selection and sizing of the
technologies), the representation of the performance curves of the conversion de-
vices, the incorporation of an imposed minimum load for conversion devices and
the presence of storage devices. This analysis enabled us to see that none of the pre-
viously published works could meet the needs of our industrial partner in terms of
problem modeling. Namely, none of the reviewed works consider that building an
LMES is a multi-phase project in which the system is gradually built and extended
over the years. Moreover, the modeling of the design decisions is often oversimpli-
fied by assuming that a technology may be sized by choosing its capacity within a
continuous range. This is not practically relevant as the sizing of a technology de-
pends in fact of the models available in the catalog of the equipment manufacturer.

Chapter 3 was devoted to a detailed description of the LMES design problem. We
started by introducing the two main components of an LMES: the commodities and
the energy conversion and storage technologies. We explained how the LMES design
problem uses as a starting point a description of the LMES superstructure which can
be seen as a pre-selection of the technologies and corresponding devices considered
for installation in the system. We then described a number of additional aspects to
be considered when designing an LMES, in particular the fact that building an LMES
requires a multi-phase deployment plan and that detailed operation schedules need
to be built to accurately estimate the operation cost of the system.

In Chapter 4, we discussed the problem modeling and its formulation as an
MILP. The proposed model extends the current state of the arts by simultaneously
considering: (i) multiple construction phases, (ii) a realistic choice of the energy con-
version and storage devices among the models available at the manufacturer, (iii)
a careful selection of a number of representative days sufficiently large to obtain
a good estimation of the actual operation cost of the system, (iv) a realistic repre-
sentation of the actual functioning of the conversion devices in terms of minimum
working load and partial-load efficiency. As taking into account all these aspects of
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the problem leads to the formulation of a huge mixed-integer non-linear program
which, as such, is computationally intractable, we proposed a modeling approach
aiming at reducing to some extent the size of the obtained mathematical program
and at removing the non-linearities. This was achieved among others by using in-
vestment phases spanning several years, using a medium number of representative
days to estimate the operation cost, building piece-wise linear approximations of
the performance curves and exploiting the convexity of these curves. The proposed
MILP formulation was tested on instances based on three case studies correspond-
ing to two DCSs and a trigeneration system currently under development by EDF in
China. However, significant numerical difficulties were encountered while trying to
directly solve the proposed MILP formulation with CPLEX 12.8 solver.

We thus investigated the development of two decomposition-based approaches.
These approaches exploit the bi-level nature of our problem, i.e. the fact that there is
a natural hierarchy between the design decision variables used to determine the sys-
tem deployment plan and the operation decision variables used to build operation
schedules and to estimate the future operation cost of the system. This hierarchy
translates into a special structure of the mathematical problem. Namely, once the
design decisions determining the system layout at each investment phase are fixed,
the problem decomposes into a set of independent operation sub-problems. Each
of these sub-problems is a small-size MILP aiming at building an optimal operation
schedule for a given representative day under the system layout determined for the
corresponding phase.

The first algorithm was discussed in Chapter 5. It consists in an extension of
the hierarchical decomposition algorithm presented by [Yok+15]. This algorithm is
based on the resolution of a semi-relaxed problem (SRP), i.e. of a relaxation of the
original MILP in which all the integrality restrictions on the discrete operation vari-
ables are relaxed, by the built-in branch-and-cut algorithm of an MILP solver. Each
time an integer feasible solution of SRP, i.e. a potential system deployment plan in-
volving only integer design variables, is found in the B&C search tree, a sequence
of operation sub-problems (OP) in which the operation variables are kept discrete
when relevant is solved. This enables to first check the feasibility of the potential
system deployment plan with respect to the operation constraints and second to
compute the actual operation cost of this deployment plan. The nodes in the upper
level B&C search tree are only pruned when their bound exceeds the value of the
actual design and operation cost of the currently best known feasible deployment
plan, so that the optimality of the final solution is guaranteed. We proposed a new
extension of this hierarchical decomposition algorithm to make it more efficient at
solving our multi-phase design problem. This was achieved in particular through
the addition of single-phase no-good cuts into the upper-level problem to forbid
deployment plans using a system layout found to be infeasible for a certain invest-
ment phase, through the recording of the solution value of previously solved oper-
ation sub-problems to avoid repetitive calculations and through the use of a small
set of valid inequalities. Our numerical results showed that the proposed extended
hierarchical decomposition algorithm significantly outperforms both the initial hier-
archical decomposition algorithm and the direct resolution by a mathematical solver
on the instances based on the two DCS projects. However, for the instances based on
the trigeneration system, which has a more complex structure than the two DCSs,
the extended hierarchical decomposition algorithm could not find the optimal solu-
tion within the computation time and memory limits.
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This is why we investigated the development of a generalized Benders’ decom-
position algorithm by using the generic framework provided in [BR21]. This algo-
rithm can be seen as an extension of the conventional Benders’ decomposition algo-
rithm to the case where the second-stage sub-problems involve integer variables. It
is based on the use of a master problem involving only design variables and of a set
of dual bounding functions providing an estimation of the operation cost at each in-
vestment phase as a function of the system layout fixed for this phase by the design
variables. The optimal and finite convergence of this algorithm requires among oth-
ers that these dual bounding functions are strong. This was achieved in our case by
proposing new optimality and feasibility cuts exploiting the special structure of the
constraints linking the design and operation variables in our problem. Moreover,
we developed an extended variant of this generalized Benders’ decomposition algo-
rithm in order to further improve its efficiency. This extended variant relies among
others on the resolution of the semi-relaxed problem mentioned above by the classi-
cal Benders’ decomposition algorithm embedded in an MILP solver. This allows us
to improve the convergence speed of the algorithm by improving the quality of the
potential deployment plan evaluated at each iteration of the generalized Benders’
decomposition algorithm. Our computational results showed that the extended
variant of the generalized Benders’ decomposition algorithm clearly outperforms
all the solution approaches investigated in the previous chapters. In particular, us-
ing this algorithm, we were able to solve to optimality all the considered instances,
even the ones related to the trigeneration project, within the time and memory lim-
its. However, solving the MILP problem to optimality does not guarantee that the
obtained deployment plan is optimal with respect to the initial optimization prob-
lem as some approximations were made during the problem modeling. This is why
we conducted a post-optimization simulation study to estimate the quality of the
deployment plans obtained for the two DCS projects with the proposed approach.
The outcome of this study was that, even if some approximations and simplifications
were made when modeling the actual optimization problem, the obtained deploy-
ment plans are of good quality and may confidently be recommended for a real-life
implementation.

Note that the work related to the hierarchical decomposition approach intro-
duced in Chapter 5 was presented in several national conferences [Liu+19; Liu+20a;
Liu+21b] and was published in the proceedings of an international conference [Liu+21a].
A paper version was also submitted to an international journal [Liu+].

7.2 Research perspectives

The work presented in this manuscript raises several research perspectives that would
be worth further investigation.

First, an interesting direction for further research might be to study the hybridi-
sation of the hierarchical decomposition and generalized Benders’ decomposition
algorithms. For instance, the optimality and feasibility cuts of the generalized Ben-
ders’ decomposition algorithm could be added during the resolution of the semi-
relaxed problem (SRP) by the upper level B&C algorithm of the hierarchical decom-
position algorithm each time an integer feasible solution of SRP is found in the B&C
search tree. This would avoid repetitively solving to optimality a sequence of vari-
ants of the semi-relaxed problem (SRP), differing from one another only by the ad-
dition of a small set of optimality and feasibility cuts, as is currently done in the
generalized Benders’ decomposition algorithm. However, this hybridisation is not
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straightforward and raises several difficulties. Namely, generating the optimality
and feasibility cuts of the generalized Benders’ decomposition algorithm requires
the introduction of additional binary variables into the problem formulation during
its resolution by a B&C algorithm (see Section 6.4). This means that the B&C algo-
rithm would become a branch-and-price-and-cut algorithm. Furthermore, even if
using the hybrid algorithm may reduce the time needed for obtaining integer feasi-
ble solutions of the original problem, it will involve however carrying out an accu-
rate computation (through the resolution of a set of scheduling sub-problems) of the
operation cost of potential deployment plans that may be of lesser quality than the
optimal solution of the semi-relaxed sub-problem SRP. This may negatively impact
the overall computation time of this hybrid approach.

Second, in terms of problem modeling, the MILP formulation we proposed for
the LMES design problem relies on the assumption that the performance curves of
all the conversion devices are linear or convex. This convexity has two advantages.
First, it allows us to consider the epigraph of the curve rather than the curve itself
so that the energy consumption of a device can be accurately computed as a func-
tion of its energy production without introducing auxiliary binary variables in the
formulation. Second, the operation schedule can be built at the aggregate level for
each set of identical devices (using a small number of integer variables) rather than
at the detailed level for each individual device (using a larger number of binary vari-
ables). However, in case this assumption on the convexity of the performance curves
does not hold, the formulation becomes more difficult to deal with. The piece-wise
linear approximation method discussed in Subsection 4.2.3 can still be applied to
approximate the non-convex performance curves. But the exact computation of the
energy consumption of a device as a function of its energy production will require
the use of formulation techniques based on auxiliary binary variables or Special Or-
dered Set (SOS) variables (see e.g. [CPSM14]). Furthermore, it may not be possible
anymore to build aggregate schedules for each set of identical devices. Namely, this
aggregation is made possible by the property that all active identical devices should
work at the same load when the performance curves are convex. This property is
however not valid in the presence of non-convex performance curves. This would
force us to build a detailed schedule for each individual device, which would re-
quire the introduction a large number of binary variables to represent the on/off
status (and in some cases the operating mode) of each conversion device. Moreover,
symmetry problems coming from the fact that there will exist many alternative op-
timal solutions that differ from one another only by the way each detailed operation
schedule is assigned to one of the identical conversion devices may arise and lead to
additional numerical difficulties.

Taking into account non-convex performance curves would thus complicate the
resolution of the problem by the proposed decomposition algorithms, leading to a
potential loss of numerical efficiency, but this resolution would still be possible. In
contrast, some modeling extensions might make it impossible to use these decompo-
sition algorithms. Namely, both the hierarchical decomposition and the generalized
Benders’ decomposition algorithms require that all design variables are discrete. In
our case, this requirement could be rather easily met as the number of conversion
devices to be installed should be chosen as an integer and the size of the energy stor-
age to be built should be an integer multiple of a predefined small discrete capacity
unit. However, in case a design variable must be considered as continuous, the op-
timal convergence of the two decomposition algorithms investigated in this work is
not guaranteed anymore and we will have to solve the large-scale MILP problem di-
rectly with a mathematical solver. Furthermore, both decomposition algorithms are
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based on the key property that, once the design decisions are fixed, the problem de-
composes into a set of independent scheduling sub-problems. This property might
not hold anymore if the LMES to be designed involves long-term seasonal energy
storage. This technology consists e.g. in producing and storing ice in winter to use it
several months later to provide cold during summer. It thus differs from the short-
term daily energy storage considered in our work. Taking into account a seasonal
energy storage means introducing in the MILP formulation an additional coupling
(through a set of constraints) between the operation scheduling sub-problems. The
development of a new solution approach might be required to handle this difficulty.

Finally, the current decision-aid tool uses as input data forecasts about the long-
term evolution of the energy demand, resource commodities price and availability.
It assumes that these forecasts are accurate and use this information to build a sys-
tem deployment plan using a deterministic optimization approach. However, these
long-term forecasts are subject to many uncertainties. For instance, the forecasted
energy demand which, in our case studies, features a clear upward trend over the
years might in fact decrease drastically, stay stable or simply increase in an smaller
extent. In these cases, the LMES designed using the initial forecasts might be signif-
icantly oversized, leading to difficulties for meeting the demand in some time-steps
(due to the minimum working load of the conversion devices) and to investment
costs higher than necessary. This problem may be partly mitigated through the use
of a stochastic optimization approach such as multi-stage stochastic programming.
Multi-stage stochastic programming is a stochastic optimization paradigm based on
the assumptions that a probabilistic description of the uncertain parameters is avail-
able and that some decisions do not have to be made right now but rather might
be differed to a later point in time. When applied to our LMES design problem,
this would mean that we have on hand some probabilistic information about the
long-term demand forecast errors and that the design decisions relative to a fu-
ture investment phase do not have to be made now but rather can be postponed
to the beginning of this phase, at a point in time where more accurate information
about the energy demands and resource commodities prices will be available. Such
a multi-stage stochastic programming approach would typically rely on a scenario
tree to represent the potential evolution of the input parameters over the investment
phases. It would result in the formulation of an MILP displaying the same overall
structure as the one investigated in this work. However, the size of this MILP will
be drastically increased as it will be broadly proportional to the number of nodes
in the scenario tree rather than to the number of investment phases involved in the
investment planning horizon. Solving this MILP efficiently will thus be particularly
challenging.
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