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École doctorale des sciences exactes et leurs applications

Combined Analysis for Physical and
Economical Management of Energy

Systems for housings

THÈSE
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(mention Énergétique)

par
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Résumé
La transition énergétique, c’est-à-dire le passage d’un mix énergétique basé sur les énergies fossiles à

un mix basé sur les énergies renouvelables, est largement acceptée comme une nécessité imposée par les
objectifs mondiaux de lutte contre le réchauffement climatique. Malheureusement, cette transition ne se
fait pas sans heurts. Si l’on se restreint à des considérations purement techniques, les sources d’énergie
pressenties comme les piliers des futurs mix énergétiques, le solaire et le vent, sont intermittentes et non
contrôlables. De plus, les zones les plus productives ne sont pas nécessairement celles où l’on consomme
le plus. Les principales solutions envisagées pour corriger ce double décalage, spatial et temporel, sont
respectivement la rénovation du réseau électrique et le développement du stockage. Il s’agit de solutions
coûteuses.
Le travail réalisé dans cette thèse se concentre sur une autre approche, complémentaire, le Demand-Side
Management (DSM). Ce dernier est un paradigme dans lequel le gestionnaire de réseau d’énergie peut,
dans une certaine mesure, adapter la consommation aux contraintes de production. Le principe n’est pas
neuf, les tarifs heures pleines/heures creuses faisant pleinement partie du DSM. Plus précisément, notre
recherche a porté en premier sur le développement d’un logiciel capable de gérer en temps réel des réseaux
d’énergie en s’appuyant sur du Direct-Load Control (DLC), c’est-à-dire en pilotant directement certains
équipements domestiques. L’objectif principal est de se servir de la flexibilité offerte par le DLC pour
améliorer l’utilisation locale des énergies renouvelables et ainsi de limiter les besoins en stockage ou les
appels au réseau. Une telle méthode soulève de nombreuses questions hors du champ physique. En effet,
on s’intéresse ici également aux aspect économiques du problème, non seulement via une approche techno-
économique classique, mais aussi via une collaboration avec le laboratoire d’Économie de l’Université de
Pau et des Pays de l’Adour. Au travers de ces interactions, nous nous sommes basés sur une approche
contractuelle, où différents contrats sont proposés aux consommateurs (avec ou sans DLC) et nous avons
conçu un ensemble de règles adaptées. On s’intéresse en particulier aux questions suivantes : quelles
compensations financières pour les consommateurs ? quel modèle économique pour le gestionnaire du
réseau ? L’approche repose sur trois piliers fondamentaux : les appareils, les contrats et les stratégies.
Un logiciel associé a été conçu pour qu’il soit facile d’ajouter des éléments pour chaque objet (ajouter
une nouvelle technologie de production, par exemple). Dans un second temps, nous avons réalisé des
simulations visant à éclaircir les relations entre taux de consommateurs participant au DLC, demande en
énergie (quelle quantité ? consommée à quel moment ?), réseaux d’énergie présents (électricité, chaleur,
gaz ?), technologies disponibles pour la production, la conversion ou le stockage (quelles technologies ?
quelles capacités installées ?) et, enfin, stratégie appliquée pour la gestion des réseaux (quelle priorité ? en
appliquant quelle technique ?). Si les résultats obtenus via ces simulations ne permettent pas de répondre
définitivement à ces questions, plusieurs observations peuvent être faites. D’abord, l’utilisation du DLC
améliore bien l’usage des énergies renouvelables et réduit bien la nécessité de recourir au réseau, que ce
soit pour l’achat ou la revente d’énergie. Ensuite, des effets de seuil semblent exister : l’impact du DSM
est marginal au-delà de certains taux de participation. Enfin, si le DSM réduit le montant des factures,
les taux de coupure sont très (trop ?) élevés avec les stratégies et les contrats utilisées.

Mots-clés: demand side management, demand response, énergies renouvelables, simulation, smart grids
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Abstract
Energy transition, i.e.the passage from a fossil fuel-based energetic mix to a renewable-based

energetic mix, is commonly accepted as a necessity imposed by the fight against climate change. Unfor-
tunately, this transition is not smooth. Regarding only technical issues, energy sources identified as the
basis of the futur energetic mix, sun and wind, are intermittent and non-controllable. Moreover, the most
productive areas are not necessarily those where consumption occurs. The main solutions considered to
resolve this spatial and temporal gap are respectively electric grid renovation and the diffusion of storage.
These solutions are expensive.
The work realized in this thesis explores on another approach, complementary, Demand-Side Management
(DSM). This one is a paradigm in which the grid manager can adapt partially the consumption to pro-
duction constraints. This principle is not new, as time of use tariffs are fully part of DSM. More precisely,
our research started with the development of a software designed to manage in real-time multi-energy
grids and relying on Direct-Load-Control (DLC), i.e.by monitoring directly some domestic appliances.
The main objective is to use the flexibility offered by DLC to improve the use of local renewable energy
and thus to reduce the need of storage or energy exchanges with the grid. This method raises numerous
questions outside of the physical field. Here, we integrate economical aspects of the problem, not only
via a classical techno-economical approach, but also via a collaboration with the economy laboratory of
Université de Pau et des Pays de l’Adour. Through our interactions, we based our work on a contract-
based approach, where different contracts are proposed to consumers (with or without DLC) and we
designed a set of adapted rules. We are especially concerned with the following questions : Which return
for consumers ? Which economical model for the grid manager ? Our approach is based on three main
objects : devices, contracts and strategies. A software has been developed with this approach and addi-
tion of new elements for each object (add a new production technology, for example). Then, we realized
simulations exploring the relations between DLC popularity, energy demand (which quantity ? consumed
when ?), kind of energy networks (electricity, heat, gas ?), available technologies for production, conver-
sion or storage (which ones ? With which capacity ?) and applied strategy for grid management (Which
objective ?). If results obtained thanks to these simulations do not allow to draw definitive conclusions,
several observations can be made. First, using DLC improves renewable energy usage and reduce the
need to call the grid, either for buying or selling energy. Second, it seems that thresholds effects exist.
Last, if DSM reduces effectively consumers’ bills, curtailment rates observed with our current strategies
and contracts are very (too much ?) high.

Keywords: demand side management, demand response, renewable energy, simulation, smart grids
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Chapitre 1

Introduction générale

1.1 Contexte

Le changement climatique est un défi majeur du XXIième siècle. Fort heureusement, son origine est
connue et diverses manières de le combattre ont été identifiées. L’utilisation d’énergies fossiles étant l’un
des principaux problèmes, la transition énergétique s’impose comme l’une des principales solutions. Cette
dernière est le passage d’un mix énergétique basé sur les énergies fossiles à un autre basé sur des énergies
renouvelables ou au moins décarbonées ("décarbonées" si l’on considère que le nucléaire est une partie
de la solution et non du problème). L’accord de Paris, ratifié par plus de 190 pays dans le monde (dont
les États-Unis et la Chine, les plus gros pollueurs), statue que l’augmentation de température moyenne
sur terre ne doit pas dépasser 2oC (et idéalement 1.5oC) à la fin du siècle, comparé aux niveaux pré-
industriels. Cet objectif implique d’accélérer la transition énergétique, i.e.le déploiement des énergies
renouvelables. De nombreuses politiques ont été mises en place pour fournir une feuille de route et fixer
des buts intermédiaires. Par exemple, l’Union Européenne souhaite que les émissions de gaz à effet de
serre soient réduites de 40% par rapport aux niveaux de 1990 d’ici 2030 et de 100% d’ici 2050. De telles
politiques de soutien sont nécessaires car les énergies renouvelables ont plusieurs inconvénients (voir [1],
rapport explorant différents scénarios de mix énergétiques pour 2050).
En effet, si le coût des énergies renouvelables tend à se rapprocher du coût des autres énergies, de nom-
breux problèmes se posent du point de vue de l’exploitation. L’ancien modèle reposait sur des unités
de production de grande capacité, plus ou moins flexibles : si l’on ne peut pas qualifier une centrale
nucléaire de flexible, on peut au moins programmer ses périodes d’arrêt. Or, le soleil et le vent sont
identifiées comme des sources d’énergie primaire majeures dans un mix énergétique renouvelable. Et ni
l’un ni l’autre n’offre un confort d’utilisation équivalent aux énergies fossiles. Le vent, d’abord, est difficile
à prévoir et n’est pas une source fiable : à plusieurs semaines ventées peuvent succéder d’autres semaines
de calme plat. La production solaire, ensuite, s’avère relativement stable d’une année sur l’autre, mais
atteint son pic en été et autour de midi, là où les pics de consommation se situent plutôt en hiver et
pendant la soirée. D’autres énergies existent, comme l’énergie hydraulique ou la géothermie, sont plus
souples mais assujetties à des contraintes géographiques : les lieux les plus adaptés à la production ne
sont pas nécessairement ceux où l’on consomme le plus. Ainsi, de nouvelles difficultés apparaissent du
point de vue la gestion de ces réseaux (notamment l’équilibrage du réseau électrique).
Il existe de nombreux axes de recherche visant à résoudre ces problèmes. D’abord, on pense aux travaux
sur le stockage d’énergie, qui permet de gérer le décalage temporel [2]. Ces travaux portent sur l’amélio-
ration des technologies existantes ou le développement de nouvelles. Pour le moment, c’est une solution
coûteuse, au moins 80 $/kWh toutes technologies confondues d’après [3] et qui ne règlent pas tous les
problèmes environnementaux. On s’interroge aussi sur les meilleures manières de dimensionner et de pi-
loter des systèmes énergétiques complexes. Ces deux questions, proches, sont souvent traitées ensembles,
principalement à l’aide de logiciels d’optimisation [4, 5]. De tels recherches en ont entraînés d’autres sur
des sujets connexes, notamment sur la modélisation des technologies de production [6, 7, 8] (comment
calculer et prévoir la production d’un panneau photovoltaïque ? De quels paramètres dépend-elle ?) et de
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Chapitre 1. Introduction générale

la consommation (comment prévoir ou modéliser les comportements des consommateurs ? À quelle échelle
de temps ? Avec quelle fiabilité ?) pour plusieurs niveaux de granularité, allant de l’appareil [9] au pays
tout entier [1] en passant par le bâtiment [10] ou le quartier [11]. On peut d’ailleurs relever que plusieurs
pays, dont la France fait partie, laissent en libre accès de nombreuses données (courbe de consommation
agrégée, production/échanges à différentes échelles spatiales, etc.) à la fois pour l’électricité et pour le
gaz. Enfin, tous ces axes se déclinent sur les autres vecteurs énergétiques, en particulier les réseaux de
chaleur et de froid [12]. Certains travaux portent aussi spécifiquement sur des réseaux multi-énergies,
notamment à travers le couplage entre plusieurs réseaux d’énergie via la cogénération ou des points de
connexion (energy hubs) tels que présenté par [13, 14].
Cependant, on trouve d’autres approches qui ne reposent pas uniquement sur des aspects techniques,
comme le Demand-Side Management, sur lequel porte cette thèse.

1.2 Demand Side Management

Le Demand-Side Management est le terme le plus général pour décrire le paradigme dans lequel on
ne considère plus la demande comme inflexible mais comme partiellement ajustable aux besoins du ges-
tionnaire du réseau. Pris au sens large, le terme recouvre des méthodes très variées [15, 16], incluant les
politiques d’efficacité énergétique. Ces techniques sont illustrées sur la Fig.1.1. L’objectif initial du DSM
était de lisser au maximum la courbe de demande, afin de réduire les pics de consommations. En effet,
dans les mix énergétiques traditionnels, la puissance maximale des unités de production doit être égale
(ou supérieure) au pic de consommation. On s’intéresse alors au Peak-to-Average Ratio (PAR), comme
dans [17] : le rapport entre le pic de consommation et la consommation moyenne. Plus le PAR est bas,
plus la puissance des unités de production est basse et plus le taux de charge de ces dernières est élevé, ce
qui amène un coût de l’énergie plus intéressant. De plus, le DSM peut simplifier la vie du gestionnaire du
réseau ou des des producteurs d’énergie de plusieurs façons, ainsi que l’explique [18] : amélioration de la
stabilisation de la tension, réduction des risques de congestion, facilitation des opérations de maintenance,
etc..
Le terme Demand Response (DR) recouvre les techniques permettant d’adapter les comportements des
utilisateurs à des contraintes de production ou de gestion du réseau [19]. Les plus anciennes méthodes ne
modifient pas la demande en temps réel mais adaptent relativement en amont les habitudes des consom-
mateurs. Par exemple, historiquement, on peut faire démarrer le DR avec les tarifs Time Of Use (TOU,
heures pleines/heures creuses en français) : dans ce cas, il s’agit de modifier les habitudes des consomma-
teurs de manière statique. Le nombres de couples plages horaires/prix d’achat n’est d’ailleurs pas limité
à 2 : en Espagne, certains contrats définissent 3 plages horaires par jour, chacune étant associée à un
prix différent. Au cours du temps, des techniques plus raffinées sont apparues. On peut citer ici les tarifs
Tempo anciennement proposés par EDF aux particuliers, dans lesquels, 22 jours par an, de novembre
à mars, EDF se réserve le droit de multiplier par 4 le prix de l’électricité. Ce type de tarification est
appelé critical peak pricing : le prix est la plupart du temps fixe mais augmente significativement lors des
pics. Dans le même ordre d’idée, on trouve également, notamment en France, les tarifs RTP (Real Time
Pricing), qui suivent le prix horaire de l’électricité sur le marché national : on espère alors que les consom-
mateurs ajustent leur consommation à l’évolution des prix. En France, ce que l’on peut rattacher au DSM
se limite, globalement, à ces différents tarifs pour le marché électrique relevant du price-based DR : les
consommateurs ne s’adaptant pas d’eux-mêmes sont pénalisés. Au contraire, il existe des programmes
de DR dits incentive-based dans lesquels les consommateurs participants sont récompensés. Le capacity
market, l’emergency program et le demand bidding/buyback de la Fig.1.1 consistent en des versements
ponctuels aux consommateurs,à chaque fois qu’il s’effacent ou réduisent leur consommation. Un consom-
mateur souscrivant à un interruptible program a accès à un rabais systématique sur le prix de l’énergie
en échange de la promesse de s’effacer sur demande de son fournisseur. Le Direct-Load Control (DLC)
est une technique de DR dans lequel une entité extérieure au consommateur a directement ’la main’ sur
certains de ses appareils, sous certaines conditions. Il s’agit également de la seule technique dans laquelle
le consommateur est passif et celle qui permet par conséquent la réactivité la plus importante.
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1.2. Demand Side Management

Figure 1.1 – Présentation de différentes techniques rattachées au DSM extrait de [19] (qui l’avait adapté
de [16])

Il existe une vaste littérature sur le DR en général : scopus propose près de 1500 articles scientifiques
publiés en 2021 comprenant le terme ’Demand Response’ 1. De nombreuses études sont d’ailleurs des
simulations ou des expériences réalisées dans des cas particuliers, à différentes échelles, de l’habitation
(appelé HEMS, Home Energy Management System, comme par exemple dans [20]) au microgrid [21, 22] :
ce dernier correspond à un réseau de "petite" taille pouvant aller de quelques bâtiments à une ville. Il
s’agit d’une échelle d’étude assez courante dans laquelle on considère souvent des réseaux locaux coupés
d’un réseau principal. Un tel modèle décrit bien la situation de communautés isolées de petite ou de
moyenne taille, telles que des petites îles (Ouessant dans [23]) ou des zones peu peuplées et/ou difficiles
d’accès (l’Himalaya indien dans [24]). Ces simulations ou expériences diffèrent sur de nombreux points.
Déjà, on retrouve les différents types de tarification présentés ci-dessus (comme dans [25], où on en teste
3 différentes). On s’interroge également sur les stratégies de gestion à adopter : cherche-t-on à lisser
la courbe de consommation [17], augmenter l’auto-suffisance [26] ou à diminuer directement les coûts
d’exploitation [27] ? Une fois la stratégie choisie, de nombreux modèles numériques existent, notamment
en terme de techniques d’optimisation (même si on trouve plus d’approches heuristiques, i.e.basée sur
des approches aléatoires,comme dans [28]). Certains articles s’intéressent à l’implémentation concrète
de ces techniques, en terme d’électronique, par exemple [29]. Le pilotage du DR couplé à des énergies
renouvelables et/ou à des systèmes de stockage fait l’objet de nombreux travaux ([30], par exemple). On
étudie aussi le gisement de flexibilité à différents niveaux [19], selon le type de consommateur ([31] pour
les bâtiments de bureaux/résidentiels ou [32] pour les industriels) ou en classant les différents appareils
[22]. Si on l’associe à des effets positifs, il peut être difficile de quantifier l’impact du DR. En effet, dans
la réalité, on a soit la courbe sans DR soit la courbe avec, pas les 2 : mesurer son impact quand il est mis
en place demande donc un travail spécifique, comme [33].

Si l’électricité reste la principale énergie associée au DSM et au DR, les réseaux de chaleur (et de froid)
ne sont pas oubliés [34], car on y retrouve des bénéfices similaires. Il existe même des expérimentations
dans de grands réseaux de chaleur comme celui de Turin [35]. Ils offrent même une souplesse supplé-
mentaire au gestionnaire : on peut plus facilement exploiter le réseau en lui-même. En effet, on peut sur
ou sous-chauffer temporairement un réseau de chaleur, ce dernier agissant comme un stock. Les travaux
portant sur les réseaux multi-énergies [36] et les réseaux de gaz [37] sont plus rares mais existent : on y

1. consulté en octobre 2021
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Chapitre 1. Introduction générale

espère que l’intégration du DR apportera les mêmes avantages qu’ailleurs.

Par ailleurs, le développement de l’électronique et de l’internet des objets permettent d’envisager
des réseaux d’énergie traitant une masse importante d’information. De tels réseaux s’inscrivent dans le
paradigme des Smart Grids (SG), terme aux nombreuses significations, ainsi que le présente [38]. En
effet, il est indifféremment employé pour qualifier des réseaux d’énergie plus instrumentés que les réseaux
traditionnels, comme par exemple ceux intégrant des compteurs intelligents tels que Linky ou Gazpar (on
parle alors de smart metering) ou des réseaux semi-autonomes aux fonctionnalités avancées, telle que le
repérage et la correction de certaines avaries techniques. On peut dire que le terme SG recouvre tous les
réseaux (avant tout électriques) intégrant des innovations en terme d’acquisition et/ou de traitement des
données. Ces réseaux, qui gèrent une masse importante d’informations, rendent accessibles l’utilisation
du DLC à une vaste échelle. Une telle technique a comme avantage de pouvoir cibler précisément et
pertinemment les consommations à reporter, effacer, ou ajuster : un gestionnaire réseau disposant de
telles possibilités pourrait faire coïncider une partie du chauffage de l’Eau Chaude Sanitaire (ECS) avec
une production photovoltaïque, sans générer beaucoup d’inconfort pour le consommateur. Néanmoins, un
minimum d’inconfort subsistera toujours, car de telles techniques sont intrusives et impliquent donc un
désavantage pour le consommateur. Ces questions d’intrusivité et, plus généralement, de transmission et
de collecte d’informations liées à la consommation d’énergie domestique génèrent des inquiétudes quant
aux problèmes de sécurité de la donnée et de respect de la vie privée. Heureusement, ces thèmes sont
aussi abordés par la recherche [39] (et encadrés par la loi RGPD, d’ailleurs).
Il n’existe pas, à notre connaissance, de logiciels centrés ni sur le DSM en général, ni sur le DLC en
particulier, la plupart étant des logiciels de pilotage/dimensionnement de systèmes d’énergie renouvelables
qui l’intègrent à la marge comme option, ainsi que le décrit [40] (HOMER energy est régulièrement utilisé
par exemple). Ils ne permettent en particulier pas de simuler des masses importantes d’objets appelant des
prises de décisions individuelles, ce qu’exige le DLC. Les travaux de simulation sur le DR qui n’utilisent
pas des logiciels généralistes font appel à des codes "maison" qui n’ont pas vocation à être généralisés.

Pour conclure, on peut dire que, malgré la grande quantité d’articles portant sur le DSM et même sur
le DR en particulier, il est très difficile de dégager des principes ou des modèles généraux, en raison du
nombre élevé de paramètres dont l’influence, prise isolément ou couplée à d’autres, est méconnue.

Enfin, on ne peut pas réduire limiter la recherche sur le DSM aux sciences exactes. De nombreuses
problématiques en relation avec l’attitude des consommateurs relèvent directement des sciences sociales.
Cela explique que cette thèse soit incluse dans le projet CAPEESH, qui finance également une thèse en
économie : certaines questions ont ainsi pu être abordées de manière pluridisciplinaire.

1.3 Économie

1.3.1 Quelques notions économiques

Il existe plusieurs définitions de l’économie. Ici, on dira qu’il s’agit de la science qui s’intéresse à
la production, à la consommation et à l’échange de biens et de services. L’économie est constituée de
plusieurs disciplines mais on peut à peu près la découper en deux : la macro et la micro-économie. La
première s’intéresse à l’économie à un niveau agrégé et traite de croissance, de chômage, d’inflation, de
dette nationale. La seconde traite des comportements des agents dans les différents marchés. Les agents
sont les participants au marchés, séparés entre producteurs et consommateurs. Les marchés sont les lieux
de rencontre dans lesquels se font les échanges. Ils ne sont pas nécessairement des espaces physiques et
ils comportent des règles et/ou des contraintes de fonctionnement.
Les agents, en fonction de l’offre et de la demande, font des choix (consommer ou ne pas consommer
par exemple). En règle générale, on considère que les agents vont chercher à maximiser leur surplus,
i.e.le gain qu’ils peuvent obtenir via une transaction. La valeur de ce gain correspond à la différence
entre l’utilité (notée U , mesure du bien-être, de la satisfaction apportée par un produit) associée à ce
que l’on reçoit et celle associée à ce que l’on donne. Cette utilité associée découle de la perception des
agents et varie donc d’un agent à l’autre. Par exemple, elle est inversée entre un consommateur et un
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Figure 1.2 – Exemple de courbe prix/quantités 2

producteur : le consommateur trouvera le bien plus utile que l’argent qu’il dépense pour l’acheter, au
contraire du producteur. L’utilité varie également d’un consommateur à l’autre : deux consommateurs
peuvent préférer des biens différents. Surtout, le prix à partir duquel un consommateur n’achète plus un
bien ou un service varie. Cette sensibilité au prix se calcule via l’élasticité définie comme e = ∂Q

∂P , avec
P le prix et Q les quantités échangées. Cette grandeur est généralement négative, i.e.les consommateurs
achètent moins quand le prix augmente. Bien entendu, les prix ne sont pas fixés librement et dépendent
des coûts de production.
Les relations entre le surplus, quantités échangées et le prix sont au cœur des travaux de la microéconomie.
Elles sont notamment étudiées à l’aide des notions de valeurs "marginales". Par "marginale", on entend
la valeur associée à la dernière quantité échangée. Pour les consommateurs, elle correspond à l’utilité
qu’on associe à la dernière quantité que l’on consomme. Cette utilité a tendance à diminuer quand les
quantités augmentent : par exemple, on associe peu d’utilité à posséder un deuxième lave-vaisselle quand
on en a déjà un. Pour les producteurs, elle correspond au coût de production (C) de la dernière unité.
Mathématiquement, elles correspondent respectivement à ∂U

∂Q (Qchanges) et ∂C
∂Q (Qchanges). Ces notions de

coût et de surplus marginaux permettent de déterminer les quantités échangées à partir du prix : les
consommateurs arrêtent d’acheter quand le prix atteint l’utilité qu’ils associent à l’achat d’une quantité
supplémentaire. Pareillement, les producteurs arrêtent de produire lorsque leur coût de production mar-
ginale rejoint le prix de vente. Le prix qui maximise les quantités échangées est appelé prix d’équilibre et
correspond au point d’intersection des courbes d’offre et de demande, comme l’illustre la Fig.1.2.

Maintenant que ces différentes notions ont été présentées, on peut aborder les principales hypothèses
souvent faites en microéconomie. D’abord, la microéconomie étudie principalement les équilibres, i.e.les
moments ou les quantités et les prix sont stables. Même quand plusieurs temps sont présents dans un
modèle, il s’agit la plupart du temps d’une succession d’équilibres. Ensuite, la microéconomie s’inspire
de la théorie des jeux et suppose en règle générale que les agents sont rationnels, i.e.qu’ils vont chercher
à maximiser leur surplus individuel. Enfin, la plupart du temps, on se place dans les conditions de la
concurrence pure et parfaite, i.e.dans une configuration qui satisfait les conditions suivantes : un grand
nombre d’acheteurs et de producteurs afin qu’aucun d’entre eux ne détienne un pouvoir suffisant ; des
produits identiques et interchangeables ; aucune barrière n’existe pour produire sur ce marché ; et toutes
les informations sont connues de tous. Il est important de remarquer que l’utilisation de "souvent" ou "en
règle générale" signifie que certains travaux prennent des hypothèses plus fines (parce que plus adaptées
à l’objet étudié) ou évaluent leur validité. On peut penser au marché des vendeurs de voitures d’occasion
tel que décrit dans [41], dans lequel la concurrence pure et parfaite ne s’applique pas en raison du déficit
d’information du consommateur. En effet, la qualité du produit n’est pas perceptible par le consommateur
au moment de l’achat et ce dernier sait que le vendeur peut donc dissimuler des défauts. Dans ce contexte,

2. schéma provenant de Wikipédia et sous license Creative Commons
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les consommateurs partent du principe que tous les produits ont des défauts et refusent de les acheter à
un prix élevé. Ainsi, une bonne voiture d’occasion sera vendue au prix d’une mauvaise voiture d’occasion,
chose impossible dans le cadre de la concurrence pure et parfaite, les informations étant connues de tous.

Il est à noter que le premier objectif de la microéconomie théorique, à laquelle nous avons recours, n’est
pas de réaliser des modèles prédictifs. Il est d’étudier ou de proposer les mécanismes régissant différents
marchés. Par exemple, on cherche à comprendre comment évoluent les quantités échangées en fonction
du prix, à identifier la configuration menant au surplus maximum, producteurs et consommateurs inclus,
ou encore à décrire comment se répartissent les consommateurs entre deux producteurs concurrents.
Concrètement, cela signifie que dans de nombreux modèles, on n’associe jamais une valeur numérique à
une grandeur. L’exercice est d’ailleurs assez compliqué, puisque même des grandeurs comme le coût ou
le prix sont à prendre au sens large : l’argent est compris dedans mais on y associe également une notion
d’effort à fournir.
On peut retrouver et approfondir les notions présentées ici dans le livre "Introduction à la microéconomie"
[42].

1.3.2 Économie, énergie et DSM

Le but de cette partie est de présenter des notions économiques ciblées en lien avec le travail effectué.
Pour commencer, l’économie s’est concentrée sur l’étude du réseau électrique et du marché de l’électricité.
En France, entre autres, il se déroule à une échelle nationale, bien que des échanges soient possibles avec
l’extérieur et, surtout, il ne permet basiquement pas de stock. En réalité, il y a plusieurs marchés selon
l’échelle de temps considéré. Déjà, des accords sont conclus en amont entre producteurs et fournisseurs
pour les productions/consommations les plus stables. Ensuite, il y a le marché horaire, où sont attribuées
toutes les quantités dont on prévoit qu’elles seront consommées. Ce marché horaire fonctionne sur un
système d’enchères : les producteurs et les fournisseurs publient des couples quantité/prix. Ces couples
sont triés par prix décroissant pour les fournisseurs et par prix croissant pour les producteurs. Si l’on
trace les 2 courbes comme illustré sur la figure 1.3, on voit que la quantité échangée est alors égale à la
quantité à laquelle se rencontre les 2 courbes, i.e.quand Qconso(P ) = Qprod(P ). Le prix correspondant à
cette quantité échangée devient alors le prix unique pour toutes les quantités échangées et c’est lui qu’on
appelle le RTP. Enfin, après que tous les consommateurs aient été servis, vient le marché de l’ajustement,
où l’on attribue les quantités "orphelines", qui ont bien été produites et consommées mais qui n’ont pas
donné lieu à la transaction correspondante. Ces quantités proviennent du fait que tous les marchés situés
avant la consommation effective de l’électricité reposent sur des modèles prédictifs pour la consommation
et la production et qu’il y a toujours un écart entre le prévu et le réel.

En économie, quand le marché horaire est étudié, le modèle le plus répandu consiste à se baser sur
les coûts de production marginaux : les technologies renouvelables ne nécessitant pas de carburant, leur
coût de production marginal peut être fixé à 0. Cela permet d’expliquer qu’elles soient produites en
priorité (parce qu’elles sont les moins chères) sans avoir besoin de modéliser l’obligation d’achat dont
elles jouissent. Les autres technologies sont divisées en 2 catégories : les technologies de base, utilisées
en priorité et les technologies d’appoint, utilisées en cas de consommation importante. Dans la même
logique, les technologies de base, le nucléaire en France, sont considérées comme vendant moins cher leur
énergie pour pouvoir la vendre en priorité.

Le comportement des consommateurs a aussi été analysé. L’un des résultats les plus importants
concerne l’élasticité : à court-terme, elle est faible, i.e.la grande majorité des consommateurs ne vont pas
changer leurs comportement d’une heure sur l’autre ou d’une semaine sur l’autre mais plutôt d’une année
sur l’autre. L’explication est simple : on ne constate le prix de l’électricité et du gaz qu’une fois la facture
reçue, auquel s’ajoute le lissage de la facture (les fournisseurs tendent à lisser la facture pour éviter des
déséquilibres importants entre l’été et l’hiver). On ne s’interroge donc pas sur le prix de l’électricité au
moment où on la consomme. Ce résultat est capital car il rend toutes les approches basées sur la réacti-
vité des consommateurs délicates : il faut accompagner le signal prix d’un autre, un SMS prévenant de
l’élévation du prix, par exemple.
En ce qui concerne la modélisation du DR en particulier, le modèle le plus courant est contre-intuitif : les
quantités effacées ne sont pas des quantités non-consommées mais des quantités rachetées aux consom-
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Figure 1.3 – Illustration du marché horaire de l’électricité

mateurs. Cela signifie qu’on les considère comme des quantités produites. Ainsi, au lieu de diminuer le
volume de quantités échangées, le DR le maintient en créant artificiellement un supplément de produc-
tion. Ce choix de modélisation a l’avantage de mettre sur un pied d’égalité quantités effacées et quantités
réellement produites : on peut donc choisir entre l’une ou l’autre en comparant leurs prix respectifs. On
parle ici uniquement de quantités effacées et non de quantités décalées dans le temps, car il n’y a pas à
ma connaissance d’étude portant spécifiquement sur elle. Néanmoins, il en existe sur le risque de rebond :
les quantités effacées à un instant t peuvent être simplement reportées à t+1. C’est ce comportement
qui a conduit, par exemple, EDF à passer d’une unique plage horaire heures pleines/heures creuses à une
gamme de plages horaires choisies localement par Enedis : avant, tous les chauffe-eaux démarraient à la
même heure, ce qui créait un pic au milieu de la nuit.
Maintenant que ces quelques éclaircissements sur l’état de l’art en économie ont été fournis, il est possible
de présenter le travail réalisé dans cette thèse.

1.4 Objectifs de la thèse

1.4.1 Conception et développement de PEACEFULNESS

On peut rappeler ici l’absence d’outil numérique dédiés au DR ou au DLC qui permettraient de mener
des études plus générales et systématiques sur le sujet. L’objectif à long terme du projet de recherche est
ainsi de proposer un logiciel permettant de gérer en temps réel des réseaux multi-énergies s’appuyant sur
du DLC. La raison est la suivante : le DLC permet de gérer séparément des appareils offrant différents
types de flexibilité et aussi en raison de notre approche contractuelle. En effet, nous avons choisi d’adopter
une approche contractuelle, dans laquelle le contrat définit les prix d’achat et de vente d’énergie mais
aussi les possibilités offertes au gestionnaire (report, effacement, étalement du besoin). Fatalement, nous
avions donc besoin de connaître la demande de chaque consommateur pris isolément, ce qui impose de
toute façon une granularité fine. L’idée derrière cette approche contractuelle est la suivante : sachant
que les consommateurs s’adaptent pas ou peu à l’équilibre entre offre et demande (et aux évolutions de
prix qui en découlent) en temps réel, des contrats de DLC permettent de définir clairement au préalable
les modalités du DLC et ensuite de laisser un tiers se charger de la gestion au jour le jour. Ainsi, dans
un même temps, les consommateurs et le gestionnaire réseau bénéficient respectivement d’une offre de
DLC souple (puisqu’on peut fixer les conditions à l’échelle des appareils) et d’une demande très réactive
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(puisque modifiée directement par le gestionnaire lui-même). Une telle approche imposant un volume
de données important, il convient de s’assurer qu’elles soient traitées rapidement, le réseau électrique
imposant une réactivité de l’ordre de la minute.
Dans notre logiciel, le gestionnaire est ce qu’on appelle un agrégateur : un agent intermédiaire gérant
plusieurs consommateurs dialoguant à leur place avec les producteurs et les transporteurs d’énergie. Nos
agrégateurs sont en charge d’une zone géographique relativement réduite et continue : il n’est pas ques-
tion ici d’agrégateurs en charge de consommateurs répartis ici ou là sur l’ensemble du pays. Ils sont
également responsables de la gestion de tous les éléments du réseau : infrastructure de transport, unité
de production, de conversion et de stockage. Ce parti pris donne à l’agrégateur la possibilité de favoriser
l’autoconsommation de l’énergie produite localement, notamment via les énergies renouvelables. Mais
attention : si toutes les consommations et productions sont transmises à l’agrégateur pour qu’il puisse
équilibrer le réseau, le pouvoir qu’il a sur celles-ci dépend du contrat. Ainsi, l’agrégateur ne pourra pas
imposer du DLC aux gens n’ayant pas adopté un contrat l’autorisant explicitement. D’ailleurs, la dé-
finition de ces contrats, l’évaluation de leur utilité à l’échelle du réseau (pour les consommateurs, les
producteurs et le gestionnaire) et les mécanismes de compensation associés sont au cœur du travail de
recherche effectué par nos collaboratrices économistes.
Dans cette thèse, le premier objectif est de développer un logiciel appelé PEACEFULNESS, porté uniquement
sur la simulation, mais satisfaisant toutes les autres exigences exprimées ci-dessus. Il fallait donc mettre
au point une architecture et un algorithme adaptés et intégrer divers modèles pour la consommation et
la production, et éventuellement pour la conversion ou le stockage (si les délais le permettaient). D’un
point de vue informatique, il s’agit d’un logiciel orienté objet, écrit en Python3, dans lequel il est facile
d’ajouter de nouveaux appareils, profils de consommation, vecteurs énergétiques, contrats et stratégies
de gestion. En effet, une fois la documentation achevée (via la rédaction d’un wiki et la préparation d’un
tutoriel), il est prévu qu’il soit disponible en open-source sur github. Ce dernier est une sorte de réseau
social du développement de logiciels open-source, car il permet aux uns de publier leurs projets et aux
autres de participer librement à ceux qui les intéressent. La facilité de prise en main et d’ajout d’éléments
étaient donc des points de vigilance. Le détail du modèle conçu est présenté dans le premier chapitre.
Le choix de se limiter à de la simulation vient, déjà, d’une contrainte lié à la durée de la thèse. Par ailleurs,
comme mentionné dans la partie 1.1, le pilotage réel de réseaux multi-énergie sans DSM est déjà suffisam-
ment délicat pour être l’objet de travaux de recherche. De plus, le fait d’intégrer activement un nombre
important de consommateurs à une expérimentation requiert des partenaires politiques et s’accompagne
de problématiques juridiques. Par conséquent, le travail réalisé sera de nature prospective et tous les
résultats, en particulier ceux tirés des cas d’études, seront tributaires d’une validation expérimentale.

1.4.2 Études de cas

Cette thèse ne se limite pas au développement de PEACEFULNESS. Son second objectif est d’utiliser les
fonctionnalités qui seront disponibles durant la thèse pour réaliser des cas d’études. Ces cas simuleront
des réseaux, mono ou multi-énergie, réalistes mais pas tirés de données de terrain : en effet, nous n’avons
trouvé ni études, ni données fournissant des profils de consommation à l’échelle des appareils. D’ailleurs,
même en disposant de telles données, nous n’aurions pu que supposer les profils de demande : en effet,
la demande, i.e.ce que les gens souhaitent diffère de la consommation lorsqu’on applique du DR. Par
exemple, "je veux que mon lave-vaisselle ait fait un cycle pendant la nuit" est une demande. Le profil de
consommation correspondant est le profil des puissances appelées par le lave-vaisselle pendant la nuit.
Ainsi, même si l’on dispose de la consommation d’un appareil, on ne peut pas déterminer avec certitude
la demande correspondante.
PEACEFULNESSest capable de sortir facilement des bilans économique et énergétique à différents niveaux de
granularité (appareils, agents, contrats, agrégateur ou nature de l’énergie). Des indicateurs plus complexes,
issus de ces bilans sont disponibles : les minima, maxima et moyennes et aussi des indices normalisés tels
que le taux d’autoconsommation de la production locale ou le taux de refus de service aux consommateurs
ou les revenus de l’agrégateur. On se sert ensuite de ces différentes métriques pour réaliser des analyses de
sensibilités : sur une base similaire, on s’intéresse à l’impact du taux de participation à des programmes
de DLC, des stratégies employées par l’agrégateur et de l’environnement technologique. Deux études de ce
type sont présentées dans ce document et constituent chacune un chapitre de la thèse. La première porte
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sur une comparaison entre un réseau purement électrique et un réseau de chaleur et sur des stratégies aux
objectifs similaires mais utilisant des approches physiques ou économiques pour y parvenir. La seconde
est le fruit d’une collaboration avec Dr Ramousse et Dr Fitó, tous deux membres du LOCIE. On y
propose une méthode permettant d’intégrer la présence de DLC chez les consommateurs dès la phase
de conception du système de production d’énergie. Cette méthode est ensuite appliquée sur un exemple.
L’évolution du dimensionnement y est donc étudiée en plus des autres métriques. Via une collaboration
avec l’université de Saragosse, en Espagne, nous avons eu l’opportunité de nous pencher sur la viabilité
économique de petits agrégateurs-producteurs privés. Dans ce travail, mené en majeure partie par Dr
Pinto, grâce au code qu’il a développé pendant sa thèse, nous avons étudié deux agrégateurs, l’un en
France, l’autre en Espagne. Ayant accès aux mêmes technologies, ces deux agrégateurs diffèrent par le
profil de demande à satisfaire et la tarification. Chacun de ces agrégateurs se positionne comme l’unique
fournisseur d’énergie d’un lotissement de 50 personnes et optimise via le code de l’université de Saragosse
son système de polygénération. On s’intéresse à la viabilité économique de tels mini-agrégateurs en se
basant sur la "valeur nette actualisée (NPV pour Net Present Value en anglais), sans toutefois négliger
d’autres aspects via l’observation des émissions de CO2 et des choix technologiques. Il est important de
noter que ce dernier travail n’inclut pas de DSM.

1.5 Structure du document
Le corps de ce document est composé d’articles publiés ou soumis. Dans cette section, je précise ma

part de travail personnel pour chacun des chapitres.
Le chapitre 2 détaille le modèle développé pour PEACEFULNESS. Le modèle a été co-construit tout au long
de la thèse avec mes encadrants, mais j’ai développé seul le logiciel. J’ai également largement contribué
à la rédaction de l’article. Il est soumis à Smart Energy.
Le chapitre 3 porte sur la simulation d’un quartier résidentiel à l’aide PEACEFULNESS. J’ai conçu le cas
d’étude, réglé les différents paramètres et réalisé les simulations et le post-traitement. J’ai écrit toutes les
parties en dehors de l’introduction. Il est aussi soumis à Smart Energy.
Ce troisième travail expose les résultats de notre collaboration avec le LOCIE, une articulation entre
PEACEFULNESSet une méthode de dimensionnement. La démarche générale et le cas d’étude ont été conçus
collectivement. Je me suis chargé de toute l’investigation liée à PEACEFULNESS, en particulier les simula-
tions. Concernant la rédaction, j’ai décrit les aspects liés au DSM dans la méthodologie et analysé tous
les résultats du point de vue du DSM et participé à la conclusion. Ce travail est d’ores et déjà publié
dans la revue Energy (https://doi.org/10.1016/j.energy.2021.121517).
Le dernier chapitre est celui réalisé avec l’université de Saragosse sur la pertinence économique d’agré-
gateurs d’énergie indépendants. J’ai participé à la conception du cas et a la rédaction. Je me suis aussi
servi de PEACEFULNESSpour fournir les profils de consommation. Il est soumis à Energy.
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Abstract1

This paper presents the PEACEFULNESS software platform, an open framework dedicated to multi-energy2

smart-grids, based on a techno-economic modeling integrating economic and legal considerations (contracts).3

As such, it is mainly oriented towards the evaluation of multi-energy grid supervision strategies, i.e. the4

energy management, and the corresponding policies and legal organization. The main goal is then to highlight5

the various possible behaviors and strategies to organize the probable future interconnections between the6

different energy carriers. In particular, it aims at investigating how to maximize the use of renewable energy7

sources (RES), using Demand Side Management (DSM) techniques and energy storage, in a shared economy8

context. The open-source tool PEACEFULNESS, written in Python, is described here in details. It combines a9

top-down description of the energy networks and connections between the various agents (energy providers,10

distribution system operators, aggregators, consumers, producers, prosumers, etc.), together with a techno-11

economic bottom-up description for all devices. Here, both public databases and users’ data (basic heating12

demands or based on buildings modeling) can be used, as well as generic or more specific models (e.g. PV13

panels with constant or temperature-dependent efficiency). As one of its major specificity compared to14

other tools, it extends the use of DSM techniques to various energy grids which can also interact altogether.15

Furthermore, different economic models can be set for both the aggregators and the customers, and even16

among themselves. As a last competitive advantage, PEACEFULNESS allows to simulate the operation and17

supervision of tens, and even hundreds, of thousands of agents. It also provides a reporting system giving18

access to all the data, with a configurable granularity and frequency for the retained indicators. Finally,19

several validation cases are presented, followed by a series of test cases with increasing size: a smart home,20

a smart district (2 000 housings) and a smart community (50 000 housings).21

Keywords: smart mixed grids; multi-carrier energy flows; DSM; aggregator; energy models; renewable generation; energy storage
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Highlights:

• energy management system handling DSM for coupled multi-carrier energy networks

• operation either at the building or regional scales (from single home to thousands of people)

• large simulation width, from single day to years, with minutes to hourly steps

• integration of legal and socio-economic considerations in the market framework

• possibilities to test simultaneously (or not) various configurations of DSM approaches and level of
flexibility, as well as different adoption curves of these tools
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Nomenclature22

Latin symbols23

A surface area, m224

A incidence matrix of a DH, −25

a0 optical efficiency, −26

a1 first heat loss coefficient, W m−2 K−127

a2 second heat loss coefficient, W m−2 K−228

B benefits, €29

C consumption, kWh30

C thermal capacitance, J kg−131

CF concentration factor, −32

CP power coefficient, −33

c specific heat capacity, J K−1 kg−134

CAPEX capital expenditures, €35

CF cash flow, €36

COP coefficient of performance, −37

D demand, kWh38

DOD allowable depth of discharge, %39

E total energy, J or kWh40

EER coefficient of performance, −41

G building heat loss coefficient, W K−1 m−342

g gravitational acceleration, m s−243

Hh hydraulic height, m44

h specific enthalpy, J kg−145

I solar irradiance, W m−246

IT income tax, €47

ItR interests rate, %48

Iv investments, €49

L latent heat, J kg−150

LF loss factor, %51

LHV lower heating value, J m−3 or J kg−152

m mass, kg53

NOCT nominal operating cell temperature, °C54

OPEX operational expenditures, €55

P power, W56

P price, €57

PAR peak-to-average ratio, −58

Q heat, J or kWh59

q flow-rate, m3 s−1 or L s−160

R thermal resistance, W−1 K m261

r discount rate, %62

S supply, kWh63

SD self-discharge, %/month64

SOC state of charge, %65

T temperature, K or °C66

t time, s or min67

U velocity, m s−168

V volume, m369

70

Greek symbols71

γ ground roughness factor, −72

η efficiency, − or %73

κ open-circuit voltage thermal coefficient, K−174

Ξ exergy, J or kWh75

ρ density, kg m−376

τ time constant, s77

78

Subscripts and superscripts79

a air80

amb ambient81

bot bottom82

bui building83

c cooling84

cell cell85

ch charge86

cut cutoff87

beg beginning of the fusion88

dis discharge89

el electrical90

fu fuel91

end end of the fusion92

Q heat93

ht heating94

in indoor95

inv inverter96

l liquid97

liq liquidus98

M melting99

nom nominal100

out outdoor101

pan panel102

pp pipe103

ref reference104

s solid105

sol solidus106

sp set point107

th thermal108

top top109

wt water110
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Acronyms111

BB biomass burner112

BEES battery electrical energy storage113

BIM building information modeling114

BIPV building-integrated photovoltaic115

CCHP combined cooling, heating and power116

CHP combined heating and power117

CSP concentrated-solar plant118

DBPS dynamic building performance simulation119

DC district cooling120

DH district heating121

DHC district heating and cooling122

DHW domestic hot water123

DLC direct load control124

DR demand response125

DSM demand side management126

DSO distribution system operator127

ECC electricity control center128

ECS energy consumption scheduler129

ED economic dispatch130

EMS energy management system131

EU European Union132

FERC Federal Energy Regulatory Commission133

GA genetic algorithm134

GDP gross domestic product (PIB)135

GHG green-house gas136

GIS geographic information system137

HEMS home energy management system138

HP heat-pump139

IAM integrated assessment models140

ICES integrated community energy systems141

ICT information and communications technology142

IEA International Energy Agency143

IMF International Monetary Fund144

IOA input-output analysis145

IoE internet of energy146

IoT internet of things147

IPBES Intergovernmental Panel on Biodiversity and
Ecosystem Services

148

IPCC Intergovernmental Panel on Climate Change149

IRR internal rate of return150

LCA life cycle assessment151

LCO levelized cost152

LHTES latent heat thermal energy storage153

LS load scheduling154

LS load shifting155

MCDA multi-criteria decision analysis156

MCES multi-carrier energy system157

MES multi-energy system158

PCM phase-change material159

PV photo-voltaic160

RES renewable energy sources161

RTP real time pricing162

SG smart grid163

SHTES sensible heat thermal energy storage164

ST solar thermal165

TOU time-of-use166

TOUP time-of-use pricing167

TSO transmission system operator168

WT wind turbine169

170
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1 Introduction171

1.1 Foreword172

Apparently, we will finally know what the future holds for us: in light of the upcoming IPCC report,173

huge challenges and strong efforts are to be planned, and our way to consume energy should change174

drastically. Hopefully, researches on such issues have begun for a long time. Therefore, there are already175

several possibilities to pave the road for a new energy paradigm. To name but a few, the increasing176

installed capacities of renewable sources (RES) [1–3], such as photovoltaic (PV) and wind turbine (WT),177

aim at decarbonizing our societies [4]. Meanwhile, there is a global impetus for district heating (DH) and178

cooling (DHC) [5,6], especially in Europe [6–8], with deeper integration of RES [9,10]. Besides, since a179

couple of decades, this trend is strengthened by the appearance of multiple energy infrastructures [11–13]180

and polygeneration networks [14], or in general with the 4th DH generation [15, 16]. Similarly, one can181

also cite the emergence of integrated community energy systems (ICES) [17], energy hubs [18, 19] or182

coupled operation of DH and electrical networks [20]. Furthermore, the concept of intelligent networks,183

a.k.a. smart grids (SG) nowadays, developed to manage shortcuts and congestion issues, has shown184

to be particularly relevant for an efficient operation of electric grids [21]. A complete presentation of185

their principles, advantages and weaknesses, and of the associated methods (demand-side-management186

(DSM), demand-response (DR), load-scheduling (LS). . . ), being out of scope of the present paper, it is187

only recalled that the underlying idea is to influence and modify the consumers consumptions. Interested188

readers are referred to [22] and [23, 24], but also to the excellent reviews provided in [25–27]. Though189

focused towards the European context, it could be useful to look also at the JRC’s compendium [28].190

Nevertheless, it is worth mentioning that such techniques are particularly efficient to cope with the191

variability problems raised by non-predictable intermittent RES [29,30]. Indeed, they are clearly pointed192

out as serious candidates for energy efficiency and to promote flexibility [31,32], or to secure the future193

power systems [33]; for instance, for Europe and North Africa, it has been interestingly shown that 15194

to 37% reduction of the maximum peaks could be obtained [34]. In the sequel of the numerous studies195

pertaining to DSM in electrical grids, the natural path is to extend their use to other energy vectors, such196

as DHC [35,36] and DH [37,38]. Thus, interesting concepts have been proposed, such as dual DSM (or197

2DSM) to manage electrical and thermal flows at the city level [39], or Nash equilibrium optimization to198

manage electrical and gas flows in a pelagic islanded micro-grid [40] and Stackelberg game for residential199

agents [41]. Afterwards, the underpinning evolution is the promotion of multi-energy SG [16,42,43] and200

of multi-energy systems (MES) [12].201

1.2 Literature review202

As far as modeling of multi-energy networks is concerned, there is a distinction to do based on system’s203

size. Thus, integrated assessment models (IAM) concern the regional or country scale, whereas planning204

and operational tools for ICES apply to city or district levels; let us add that both are equally useful205

and can be interconnected, in the manner of global and regional climate models. In this respect, several206

tools are available to model from the building’s size to the national one. A listing of these programs,207

and a list of references describing them is available on the web1. In addition, in [44], a very exhaustive208

review was carried out to identify the most relevant tools to analyse the integration of RES. With209

a collaboration with the developers, they performed a painstaking analysis of 37 tools over 68 (with210

dedicated paragraph for all of them), using as main classification criterion the ability to simulate a211

1such as https://wiki.openmod-initiative.org/wiki/Main_Page or https://www.energyplan.eu/othertools/
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100% RES situation (Tables 3 p. 1063 and 4 p. 1064 summarized the main properties). Though212

restrained to electrical systems, the strategic review proposed by [45] gave important insights of the213

various market regimes, and a good description of the corresponding tools. For the optimized planning214

and analysis of ICES, bottom-up descriptions can be found in [46]. Together with a pertinent overview215

of optimization problems, an interesting section on regulation is given. Software tools for district-level216

energy systems were very well described in [47], and more specifically three parts concerning MES and217

low-temperature DH, RES and seasonal storage, and links between demand and urban micro-climate. A218

very synthetic and didactic summary is available in Table 1 p. 1397 of this reference. More recently, [48]219

screened meticulously 51 tools for ICES, and retained 13, focusing on RES planning and energy storage220

and DSM. In addition to the (excellent) initial screening and the final results, summarized in their Tables221

1 pp. 676-677 and 2 p. 678, they proposed an engrossing methodology to select between various tools.222

Then, a comprehensive review of techno-economic analysis methods at building, regional and national223

scales is available in [49], which compared also 31 computer tools and 20 arithmetical models (gathered224

in Fig. 4 p. 403). Rural and islanded situations are also treated. Lastly, a very complete review of 75225

tools, ranging from small-scale power systems to global long-term ones, is developed by [50]. Here, a226

compelling analysis is available between bottom-up and optimization problems, as well as computable227

general equilibrium models. As a final note, the recent analysis of energy-economy-environment models228

of [51] is also worth considering in the perspective of the future tools development; and IAMs are229

particularly well synthesized here.230

1.3 Contribution and novelty of the study231

Regarding that all energies and poly-generation systems should be included in planning and operational232

tools [14], it is proposed here a method to allow for the simulation of multi-energy SG. The novelty is to233

couple techno-economic modeling with economy and legal considerations, PEACEFULNESS being developed234

in a multi-disciplinary framework including Physicists, Economists and Jurists. Its main goal is to shed235

light on the various behaviors and strategies to organize the future possible inter-connections between236

the different energy vectors. Without jeopardizing both the balance and the operational efficiency of237

the present grids, the goal is to see how maximizing RES, using DSM techniques and energy storage, in238

a shared economy context [52]. Besides, PEACEFULNESS permits to test a huge variety of scenarii, with239

thousands of customers, some adopting flexibility contracts. To achieve it, aggregators belong to the240

agents modeled. In terms of contribution, this paper presents:241

• an holistic energy management approach [53, 54] dealing with all types of energy and a whole set242

of technologies (fossil and renewables, controllable or not, etc.);243

• various DSM contracts (in variable proportion), obeying heuristics but which can also handle244

optimization tools [55];245

• aggregators, whose number and positioning are configurable, close to multi-agent systems [56], but246

also from stand-alone home energy management systems (HEMS) [57].247

• the possibility to simulate tens of thousands of agents;248

• a large list of specific or average indicators, both physical and financial;249

• a transparent and open-source approach [58].250
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Organization of the paper is: Section 2 presents the modeling and assumptions, with illustrations of the251

DSM by aggregators. Validation cases and detailed examples are provided in section 3. Those latter252

vary from a single smart home to a complete community involving hundreds of thousands appliances253

and customers. Finally, conclusions and perspectives are developed in section 4.254

2 Model and methods255

PEACEFULNESS is deeply guided by legal and policy contexts, in their present form but also on their256

possible evolution [53,54,59]. Similarly, the type and distribution of aggregators and of flexible contracts257

among the customers have tried to integrate the conclusions and remarks provided by social sciences [60];258

in fact, and in spite of not being developed in the present study (due to a lack of place), it is planned259

to include nudges and experimental exploitations of PEACEFULNESS.260

As depicted in Fig. 1, PEACEFULNESS can handle several agents. These later can be consumers with261

different types of loads (residential, commercial, hospital, etc.); they can also be producers, centralized262

(e.g. an always accessible national grid) or distributed; and finally, there are prosumers, producing one263

or several types of energy (electricity, heat, gas, etc.). Finally, agents include aggregators, either as264

third-party managing and/or exchanging with several other agents or as HEMS. All grids can work in265

autonomous mode, or in connection with one or several macro-grids.266

Figure 1 – Schematic example of the type of multi-energy smart-grids simulated by PEACEFULNESS

2.1 General description267

As depicted in Fig. 2, management of the interconnections between the agents and the networks is268

inspired by a bottom-up description. Thus, each device presents a dynamic specific consumption or269

production profile; i.e. at every step, and integrating their current internal state, all of them report the270

amount of energy they need or produce according to endogenous parameters (previous state of charge271

and discharged power for instance) and exogenous ones (e.g. weather conditions). All devices are con-272

nected and under the supervision of one (and only one) aggregator, apart from storages and conversion273

preprint 8 submitted to Smart Energy

21



Franquet et al. PEACEFULNESS: a numerical tool for multi-energy smart grids Oct. 2021

units. Aggregators are in charge of the energy balance of both their customers and the networks. Their274

supervision can lead them to authorize or not some devices to produce or consume. Several different275

strategies are available to ensure this balance (e.g. business as usual or autarky mode).276

The rules of the game between aggregators and devices are technically handled by a contract. It sets the277

prices at which energy is bought or sold by the devices, and defines the level of "authority" (possibility278

of reducing or adjusting the energy levels) that the aggregator has over the devices. In compensation279

to this flexibility, customers achieve to different pricing (lower prices, extended off-peak prices. . . ). To280

allow a more flexible modeling, a top-down approach is also set and aggregators behave like devices for281

higher-level aggregators to which they are connected. Consequently, the whole hierarchical structure282

and the positioning of aggregators can be easily modified. In addition, it permits a bidding selection283

where child aggregators can choose their parent aggregators after a competition based either on energy284

quantity, prices or any other parameters.285

Communication between the entities is done through the exchange of messages containingrelevant in-286

formation: energy supply or demand, price signals, or any other key indicator defined by the user (e.g.287

CO2 footprint). The role of these messages, which can be bottom-up or top-down, is to guide the288

decision-making process, and to transmit these decisions (once arbitrated) to all entities.289

2.2 Supervision process290

Supervision is handled with two consecutive phases, one ascending and the other descending, divided291

into five steps. Chronologically, the ascending phase involves two steps:292

1. Each device sets its needs (consumers) or supply capacity (producers), and communicates them to293

its aggregator through its contract. The latter can modify the message sent to apply contractual294

constraints (e.g. limited power call) and add missing information.295

2. The aggregator performs a local balance and transmits, using the same procedure, its demand/supply296

to the higher-level aggregator, again through the contract filter.297

This process continues until the root aggregator is reached, which ends the bottom-up phase.298

The descending phase concerns the decision-making process, and consists of three steps:299

1. The root aggregators check their capacity to satisfy the demand, and can choose to satisfy it300

entirely (BAU) or partially (autarky) according to its capacities and available flexibility contracts.301

Once the choices arbitrated, the decision is transmitted to the entities under, through the contract302

that completes the level of supply/demand granted and the associated tariffs.303

2. Each lower-level aggregator receives its energy repartition scheme, and must try to reconcile with304

the needs expressed before. In case of deficits, she must prioritize between the managed devices305

and apply a strategy, considering the different contracts.306

At the end of this stage, a similar transmission process to the sub-level is performed.307

3. Finally, each device receives its possibility of consumption/production and updates its status308

accordingly.309

This marks the end of the whole supervision.310

From an algorithmic point of view, as strategies rely on this two-phase process and not on a general311

optimization, the complexity of resolution in each aggregator is about n log(n), with n being the number312

of devices managed by the aggregator.313
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Agent 1

Agent 3 Agent 4

Heat

Electricity

Agent 2

Dev 1 Dev 5Dev 2 Dev 3 Dev 4

Conv

Aggregator 2Aggregator 1

Aggregator 5

Aggregator 7 Aggregator 8

Agent 5

Aggregator 4 Aggregator 6Aggregator 3

Figure 2 – Schematic example of the possible interactions between each agents, their perimeter of
influence and the energy exchanges for each flows
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2.3 Meteorological data314

Weather conditions can be required for RES such as PV and WT, or for heating/cooling needs. Here,315

wind speed, total and normal irradiation, outdoor temperature and the position of the sun are taken316

from PVGIS [61]. It would also have been feasible (as planned in a near future) to rely instead on the317

SWERA database2, on a global climate model such as HadCM3 [62] or on a mesoscale numerical weather318

prediction tool such as WRF3. For the specific case of radiation, one can also refer to [63, 64] or on319

recognized expert websites: IEA PVPS4, Solar Bankability Consortium5 or the European Photovoltaic320

Technology Platform6.321

2.4 Devices322

Generally, black box models are largely ignored to prefer mainly white-box models, i.e. physical-based323

models. Here, both are available. A non-exhaustive list of devices is presented thereinafter. These324

latter correspond either to various type of energy (electricity or heat for example) or to specific features325

(low-voltage and high-voltage); the currently available natures are: low voltage electricity, high voltage326

electricity, low-temperature heat, medium-temperature heat, high-temperature heat, low-temperature327

cold, high-temperature cold, low-pressure gas, high-pressure gas.328

For both supply and demand profiles, a by-default technical profile is always available. It contains basic329

and essential physical characteristics, and pre-defined parameters (e.g. a given user profile for DHW).330

2.4.1 Production units331

The first are the most famous intermittent ones, namely PV and WT providing low voltage electricity,332

and solar thermal collectors (ST) producing low-temperature heat.333

For WT, the produced power reads [65]:334

PWT =





0 if U ≤ Ucut,bot or U ≥ Ucut,top
1
2ρaCPU

3 U3 − Ucut,bot3
Unom

3 − Ucut,bot3
× A× ηWT if Ucut,bot < U ≤ Unom

1
2ρaCPU

3 × A× ηWT if Unom < U ≤ Ucut,top

(2.1a)335

U = Uref

(
z

zref

)γ
(2.1b)336

337

where the efficiency, the power coefficient, the wind velocity thresholds and reference velocity, and height338

are dependent on the technology, while the ground roughness factor is a soil parameter linked to the339

surface state [65–67].340

2https://openei.org/wiki/Solar_and_Wind_Energy_Resource_Assessment_(SWERA)
3https://www.mmm.ucar.edu/weather-research-and-forecasting-model
4https://iea-pvps.org/
5http://www.solarbankability.org/results.html
6www.eupvplatform.org
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PV panel production is well-known [68,69]:341

PPV = I × A× ηPV × ηinv (2.2a)342

ηPV(T ) = ηpan


1− κ

(
Tcell − T ref

cell

)
+ ℵ log10 I


 ≈ ηpan


1− κ

(
Tcell − T ref

cell

)
 (2.2b)343

Tcell = Tamb +
(
NOCT− T ref

cell

)
I
Iref (2.2c)344

345

though other relations are also available for the efficiency or the cell temperature [70, 71].346

Lastly, the ST production is (following the ISO standard EN 9806 [72]7):347

PST = I × A× ηST (2.3a)348

ηST(T ) = a0 −
a1

I
(
T − Tamb

)
− a2

I
(
T − Tamb

)2
(2.3b)349

350

with the optical efficiency, the first and second heat loss coefficients being collector-dependent.351

For the non-intermittent RES, one can rely on hydraulic dam for electricity [73–76]:352

Ph = ρwtg∆Hh× qwt × ηh (2.4)

with the efficiency, the volumetric flow-rate and the hydraulic height varying between the different353

apparatus but also between Kaplan, Pelton and Francis turbines;354

and on biomass burners for heat (and electricity in case of cogeneration plants) [77–80]:355

PBB = qfu × LHV × ηBB (2.5)

Finally, heat and cool production from reversible HP are:356

PHP =
(

COP
EER

)
× Pel (2.6)

The last elements to be defined are DH and DHC, which could still involve fossil fuels. However, what-357

ever the generation systems, it is governed either by the above or equivalent relations [5, 81–84]. The358

important parameters are the supply temperatures [35] and the heat losses [8, 85, 86]. For a more com-359

plete description, it is also possible to include an hydraulic and a thermal model: the first one mainly360

concern the pressure in the pipes and the associated mass flow-rates, and the second one the tempera-361

tures and the associated exchange heat powers [8, 9, 19, 35,37,87–89].362

A similar approach can be used for the electrical grid [90, 91], where voltages (magnitudes and angles)363

and impedance evolutions can be simulated for both the real and reactive power [19,20,92].364

365

In spite of being alternatively source or sink of energy, storage technologies are included in this section.366

For the sake of clarity, only the main technologies will be described, namely electrical energy storage367

through batteries (BEES) and thermal energy storage (TES).368

In the first case, the available energy is governed by [26,66,93–97]:369

EBEES = (1− SD)Et−1
BEES +

(
ηBEES,chPch −

Pdis

ηBEES,dis

)
∆t (2.7a)370

(1−DOD) SOCmax ≤ SOC ≤ SOCmax (2.7b)371372

7which superseds the former EN 9806
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In the same way, for TES, only sensible (SHTES) and latent (LHTES) storages are described (thermo-373

chemical storages being still at a lower TRL) [98]. Nonetheless, contrary to many studies, the modeling374

does account for the temperature variation and heat losses [48]. Thus, the energy evolution is:375

ESHTES = (1− LF )Et−1
SHTES − ρwtcwt

(
TSHTES − Tpp

)
× q∆t+ Pth∆t (2.8)

New storage temperature is in the sensible case:376

TSHTES = T t−1
SHTES + ESHTES − Et−1

SHTES
ρwtcwt

(2.9)

and for a latent storage:377

TLHTES =





Tref +

ESHTES

mSHTES
− href

cPCM,s
if ESHTES < hbeg

TM if hbeg ≤ ESHTES ≤ hend

TM +

ESHTES

mSHTES
− hend

cPCM,l
if ESHTES > hend

for first-order transition (2.10a)378

TLHTES =





Tref +

ESHTES

mSHTES
− href

cPCM,s
if ESHTES < hsol

Tsol + ESHTES − hsol
hliq − hsol

(
Tliq − Tsol

)
if hsol ≤ ESHTES ≤ hliq

Tliq +

ESHTES

mSHTES
− hend

cPCM,l
if ESHTES > hliq

otherwise (2.10b)379

380

2.4.2 Loads381

In general, most consumption devices do not need a physical modeling, with two notable exceptions
being space heating (or cooling) and DHW. In the first case, there exist several bottom-up building
stock models [99,100], among which CREEM, BREHOMES, Johnston’s, UKDCM, DECarb and CDEM
models [101, sec. 3 pp. 1686-1689]. As a matter of fact, many models often rely on thermal resistance-
capacitance (R − C) models [102, 103]8. Moreover, gray or black box models could also be used, as for
example using statistical survey data and historical measurements [105] or combination of these latter
with building simulations [106] or linear models [88].
Thus, heating demand can be expressed:

Pht,c = G · V · (Tsp − Tout) (2.11a)

Pht,c = C

∆t ·
(
Tsp − Tout − (Tin − Tout) e−

∆t
τ

)
. (2.11b)

or with one of the classic R− C model (see Fig. 3).382

For the DHW demand, a simple first law calculation is taken. The inlet temperature of cold water drawn383

from the pipes network as well as the temporal required flow-rates vary along the year and hours; they384

8successor of ISO 13790:2008 [104]
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Figure 3 – Examples of R− C models

are provided in the current study by the French environment agency [107] and the related ministry [108].385

Other possibilities could rely on mathematical modeling [106,109–111] or profiles from dedicated IEA’s386

report [112,113] or on statistical analysis and measurements [114].387

388

Finally, the last load profiles required come from the electrical appliances. In the present approach,389

it was decided to model individually only those appliances that can handle DSM orders. Indeed, the390

other devices usually do not represent an important part of the domestic consumptions, or they are not391

widely spread in households (and not expected to be in a near future). Consequently, a "background"392

profile aggregating all their profiles was created, using a specialized tool [115, 116]. Here again, other393

possibilities are offered as for instance with bottom-up models [117,118], stochastic approaches [119,120],394

or from measures [121].395

2.5 Haphazardness396

As clearly highlighted in [36, Fig. 5 p. 710], the existence of a common peak between various consumers397

do not mean that it occurs exactly at the same time. One cornerstone of PEACEFULNESS being to398

simulate large amount of agents, a generation tool permits to create easily large sets. Furthermore,399

since individual agents consumptions are quite discontinuous, as most devices have only a switch on/off,400

and unlike the aggregated load, some devices parameters can be randomized to represent such a behavior.401

As an example, the level of consumption (peak and mean), the length or the beginning of the usage, etc.402

can be tuned to allow for randomization. The corresponding process is based on a Gaussian law where403

the mean is the standard value and the standard deviation is set by the user. Thus, Fig. 4 illustrates404

the efficiency of this method: the individual profile is discontinuous, especially concerning heat, but405

the aggregated load of a set of 1 000 agents generated with this method and using the same pattern406

is clearly smoothed and representative of the usual behavior observed by DSO. Finally, by combining407

several of these randomized profiles generations, it is possible to obtain (quasi)-haphazardous profiles408

very close to real ones.409
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Figure 4 – Examples of consumption profiles over one week

2.6 Flexibility operation410

2.6.1 DSM411

Among all the available techniques, and given the most prominent and interesting [27,34], the retained412

ones in PEACEFULNESS are load shedding to constrain an agent for several minutes or hours, curtailment413

to temporarily limit the demand/supply, and load shifting at earlier times with direct load control (DLC)414

and at later times (LS).415

The overall methodology is inspired by a hierarchical control [122] yet it is implemented in a pragmatic416

way, using an hybridation method combining both a centralized and a decentralized coordination [39,417

111]. In practice, when faced with DSM needs, the various aggregators can propose to activate one of418

the above techniques for some of the voluntary agents having subscribed such contracts. Obviously,419

the utility of these contracts being of a lower quality (for the demand can be restrained), an incentive420

is proposed to the customer. She can therefore benefit from another pricing policy, based either on421

different off-/on-peak prices (or any equivalent time-of-use pricing -TOUP-) or on a real-time pricing422

(RTP). Once again, other possibilities could be tested, as for example with reward mechanisms for the423

consent effort, managed as a cooperative game program [123].424

From a technical viewpoint, thermostatically controlled loads (TCLs) offer a great possibility in terms425

of DSM [122], and similarly, the setting temperature of TES [39]. The indoor temperature is also an426

easily accessible parameter which can vary between two thresholds, defining lower and upper comfort427

range, without important noticeable effects for the customer. This option is also used, especially since it428

is under-exploited in spite of a huge potential [99]. Eventually, some appliances are partially or totally429

deferrable [30] and this option is available for dishwasher, washing machine and equivalent devices.430

Finally, all these elements permit to define a set of aggregators with some DSM capacities, which can be431

engaged depending on a list of pre-defined fixed orders managing their activation and dispatching [48].432

Here, everything is tunable and modifiable, and various rules can apply to different agents (consumers,433

prosumers, aggregators. . . ).434
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2.6.2 Contracts and aggregators’ strategies435

As said above, contracts have two goals: assigning a price signal to transactions, and modifying the436

message sent by the device in regard of non-physical conditions. Different pricing policies are proposed437

and the price can be either static, with a given schedule (TOUP), or dynamic. For these latter, there438

are several approaches available: it is possible to choose a RTP, at a national or regional scale, but also439

equilibrium prices calculated at the scale of the aggregator, directly from local considerations. Eventu-440

ally, these dynamic prices can also be linked to consumer’s contracts: the more the curtailed period, the441

more costly it is to curtail the customer, for example. Concerning the messages sent by the devices, they442

originally consider only physical constraints, such as the possibility (or not) to interrupt the device with-443

out any harmful effects or the urgency of an usage, etc. Secondly, contractual constraints unsurprisingly444

apply and can redefine the former message given the needs of the grid or aggregator from one hand,445

and the DSM options available in the contract from the other hand. Five different contracts have been446

tested, yet without any lack of generality since it would not be difficult to envisage and implement other447

ones. Concretely, these are ’business as usual’ (BAU) contract, which does not allow any modification;448

and contracts proposing one of the above DSM techniques. Lastly, as contracts are attached to devices,449

it is possible to have a contract, from the legal acceptation, which proposes a DLC contract for the450

space heating but a BAU contract for the dishwasher. . .Moreover, more complex contracts, specific to451

storage or conversion devices, are responsible for their activation: for storage, the contract defines the452

conditions to buy or to sell energy, or even to stay passive during a round of exchange. . . In fact, such453

possibilities will allow energy providers, aggregators and/or any equivalent department from a DSO, to454

test the various mix of options that could be proposed to the customers, and the consequences, boons455

and drawbacks for all of the agents.456

457

The contracts between the costumers (consumers, producers, prosumers) being defined, it is now time458

to present the various strategies accessible to the aggregators. Their main role is to ensure that energy459

grids are balanced and to efficiently manage both the supply and demand. To do so, each aggregator460

arbitrates between all the options allowed by the contracts with the agent under its perimeter and by461

communicating and exchanging with other aggregators. Here are some decisions they can take: to buy462

/ sell energy to another aggregator, to charge / discharge a storage, to start / shutdown production or463

conversion units, to apply DSM techniques (curtailement, DLC, LS, etc.). . . Based on the local balance464

of energies, differentiating mandatory ones (PV panels or non-DSM consumers for example) from ad-465

justable ones (gas plant, BEES or DHW for example), the strategy orients the decisional choices of the466

aggregator to exchange (or not) with other aggregators and, then, to distribute both production and467

consumption offers among the different devices. Naturally, mandatory demands or proposals of energy468

supply by non-controllable devices must be satisfied, otherwise it is considered that the SG fails.469

Thus, it is possible to consider many combinations between the exchange policy and the energies dis-470

patching. Once again, without any lack of generality but for the sake of simplicity, four strategies are471

presented. First, the ’always satisfied’ always try to satisfy all the devices requirements. Second, the472

’profitability’ strategy satisfy urgent needs only when the aggregator can earn money. Then, the ’ light473

autarky’ strategy, close to a "connected island mode" [124], aims at promoting self-sustainability but474

without decreasing the users comfort: exchanges are made only to satisfy urgent needs, and the dis-475

patching orders are based on a ranking of all the non-urgent needs. Practically, a customizable function476

is defined to allow to serve equivalently all devices, or to organize the classification using a single pa-477

rameter (such as the price, the degree of emergency, the quantity, etc.) or a combination of them (e.g. a478

weighted sum of the product of energy quantity with price, etc.). Finally, the ’autarky’ strategy repre-479

sents a stand-alone mode where the aggregator is islanded from the other external agents: no exchanges480
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are allowed and the demand can be satisfied only with the local supply (from both available production481

and storage units).482

3 Results and discussion483

3.1 Validation cases484

Due to the numerous elements possibly in interaction in PEACEFULNESS, a series of simulations dedicated485

to the validation of the different characteristics was set up, based on analytical solutions. Each simulation486

of this series tests one feature and checks that numerical values calculated during the run correspond487

to the reference values. Most of them are a replication of a simple situation, where the feature tested is488

the only element changing. As a side effect, such configuration highlights the impact of each feature on489

the code.490

In total, these tests are divided in 8 different families to check the validity for the agents hierarchy,491

contracts flexibility, contracts tariffs, converters, devices, distribution strategies, exchange strategies,492

natures, aggregators hierarchy and user profiles. Three of them, having been identified as cornerstones,493

are detailed hereafter, namely contract flexibility, distribution strategy and exchange strategy. In fact,494

these choices are governed by the important impacts of the DSM on the devices profiles, which can be495

easily visualized.496

Besides, following [49], a comprehensive set of indicators is proposed to render for all involved scales, i.e.497

from building’s size [125] to communities. . . Furthermore, all outputs, like energy or money balances at498

different levels (device, agent, aggregator, nature of energy or contract), can be exported. Several refined499

values are also proposed. At an aggregator scale, its benefits, the PAR, the mismatch, self-consumption,500

coverage rate and curtailment rates can be calculated for all agents. Finally, these values can be exported501

at the chosen frequency and it is possible to compute automatically the minimum, the maximum, the502

mean and the sum for any output. An option to generate automatically the corresponding graphs is503

also available.504

3.1.1 Contract flexibility505

Contracts first put a price on every exchange of energy. Second, they define the level of flexibility, i.e. the506

possibilities for the aggregator to modify demand/supply. Here, three different contracts corresponding507

to different levels of flexibility are created: a BAU contract, a cooperative contract where devices can508

be shifted or modulated in power, and a curtailment contract. Then, three different dishwashers are509

created, one for all of these contracts. All are managed by an aggregator without any production or510

storage units, but authorize to exchange with the national electrical grid, supposed to be able to buy511

or sell an infinite amount of energy. Finally a ’light autarky’ strategy is adopted for each aggregator.512

This implies that non-urgent needs are not satisfied if no energy is available locally. No local production513

being available, only urgent needs will be served. Consequently, it imposes that:514

• with a BAU contract, all the needs are urgent, i.e. dishwasher is served as soon as it asks;515

• with a cooperative contract, the emergency level is left untouched. The dishwasher is served at516

the last moment allowing to be on-time;517

• with a curtailment contract, no needs are urgent, i.e. dishwasher is never served.518

Corresponding results are provided in Fig. 5. The agreement is excellent between the simulated scenarios519

and the theoretical solutions, whatever the type of contracts.520
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Figure 5 – Energy consumptions as a function of the contract flexibilities: comparisons between the
numerical results (symbols) and analytical solutions (lines)

3.1.2 Distribution strategy521

This example tests the different priorities available for the strategy set-up during the distribution phase.522

Four aggregators are created, with a different strategy regarding with the various distribution paths.523

One of them serve partially all the devices, i.e. all receive the same proportion. For the other ones, only524

a part of the devices are fully satisfied, based on a selection by decreasing emergency, price or quantity525

of energy asked/proposed. In each of these aggregators are created three water heaters each: the first526

asks for an earlier demand, the second pays a higher price and the third asks for an higher amount of527

energy. Generation is present, but it is not enough powerful to satisfy the demand of these three water528

heaters. Concretely, the observed behaviors should be, for the aggregator based on:529

• Emergency: the first device, having a higher value of emergency, is served in priority;530

• Price: the second device, paying a higher price, is served in priority;531

• Quantity: the third device, asking for more energy, is served in priority;532

• Partial satisfaction: all the devices are served partially at the same time.533

Corresponding results are shown in Fig. 6. Here again, an excellent agreement is observed.534

3.1.3 Exchange strategy535

In the last case, we consider three aggregators, with different strategies regarding the exchanges with536

the outside world. The first aggregator applies a ’light autarky’ strategy, in which exchanges are made537

only when urgent demands cannot be satisfied. The second aggregator applies an ’autarky’ strategy,538

and so it never exchanges with the exterior of its SG. The last aggregator applies an ’always satisfied’539

strategy, to satisfy all demand. Here again, three identical water heaters belong to each aggregators:540

the first has a BAU contract, the second a cooperative contract, the third a curtailment contract. No541

local production is installed and consequently, aggregators rely completely on the outside to satisfy the542

consumptions. Therefore, it means that in the SG with an aggregator applying a :543
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Figure 6 – Energy consumptions as a function of the distribution strategies: comparisons between the
numerical results (symbols) and analytical solutions (lines)
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Figure 7 – Energy consumptions as a function of the exchange strategies: comparisons between the
numerical results (symbols) and analytical solutions (lines)

• ’light autarky’ strategy, the water heater with a BAU contract is served when calling, the one544

with a cooperative contract at the last moment, and the last with a curtailment contract is never545

served.546

• ’autarky’ strategy, no DHW is served.547

• ’always satisfied’ strategy, the three water heaters are served as soon as they ask.548

The Fig. 7 shows that simulated calculations and analytical solutions match perfectly.549

3.2 Test cases550

Now, three examples are presented to illustrate the different studies realizable with PEACEFULNESS,551

involving different scales, energy systems and returned ouputs.552

3.2.1 smart home553

This first case deals with the energy bill and the individual consumption of a single housing; the aggre-554

gator playing here the role of an HEMS. The test is realized over four weeks, at the end of March, June,555

September and December. For managing the house, the aggregator applies a light autarky strategy and556

it is connected to the national electrical grid.557

The housing is equipped with the following electrical devices: a 5 kW heater, a 2 kW DHW, a dish-558

washer, a washing machine, a dryer and lastly a background unit accounting for several small appliances559

(kettle, hair dryer, etc.). Added to this, 10 m2 of PV are installed on the roof. The location is situated in560

Pau, south-west of France. Finally, the inhabitants have a cooperative contract for their consumptions,561

where buying energy costs 0.15 €/ kWh. PV is associated with a BAU contract where selling energy562

brings in 0.10 €/ kWh. Eventually, this case is compared with a BAU scenario without any supervision.563

As depicted in Fig. 8, the heating needs vary (logically) significantly from one season to another; it564

vanishes in summer and is the most important demand in winter and spring. Only the PV panels and565

the water heater are affected by season: the former producing more in summer while the latter consumes566
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a bit less. For these three devices, seasonal variations are also observed, caused by meteorological con-567

ditions (external temperature and irradiation here). The other devices have stable patterns among days568

and seasons. When comparing the boons of the DSM by the aggregator (see Table 1), two important569

effects can be noticed. First, the maximum peak is singularly reduced since the called power decreases570

from 5.13% in winter, where the demand is the highest, to 18.75% in summer. Moreover, these peaks571

are shifted, with up to 4 h offset. Such a gap can also greatly help in the operation of the production572

units, and to avoid the start-up of technologies with higher marginal costs, lower efficiency, more CO2573

emissions. The second very important conclusion is the evolution of the peak-to-average ratio (PAR),574

and the overall consumption. The former is decreased between 11.76% to 47.62%, and the latter from575

15.64% to 51.26%; such reductions clearly offer a greater flexibility and huge energy and economy sav-576

ings. From the system’s viewpoint, this indeed permits to plan a more stable and constant operation577

of the generation capacities, and the capacity design is diminished. For a more day-to-day application,578

where existing capacities are already installed and running, this allows for a limitation of the installation579

of new capacity to absorb the increasing demand.580

Table 1 – Smart home: comparison between DSM case and a BAU case

case maximum power ( kW) time PAR (−) quantity ( kWh)

winter present DSM 7.4 23h 0.45 561
BAU 7.8 19h 0.51 665

spring present DSM 7.4 23h 0.31 387
BAU 7.5 19h 0.46 573

summer present DSM 2.6 22h 0.22 96
BAU 3.2 22h 0.32 174

autumn present DSM 5.1 3h 0.22 193
BAU 5.7 6h 0.42 396

3.2.2 smart district581

Table 2 – Dwellings composition in smart districts

Type Number of Amount Devices
persons

Apartment 1 500 Background, heating, DHW, washing machine
Apartment 2 1000 Background, heating, DHW, washing machine, dishwasher, dryer

House 5 500 Background, heating, DHW, washing machine, dishwasher, dryer

This case is oriented towards district-scale situations, with higher amounts of customers and numerous582

appliances. It involves 2 000 housings, connected to the regional electrical grid and possibly to a local583

DH fed by a 0.7 MW wood-fired plant and with a 2 MW HP as back-up. Local RES are 4000 m2 of584

PV and a 1.5 MW WT. These later being intermittent, only the thermal power is controllable. For the585

housings, they are divided into 500 and 1 000 apartments inhabited by a single person and a couple586

respectively, and in 500 5-persons houses, equipped as presented in Table 2. For each categories, the587

proportion of contracts is: 50% BAU, 30% cooperative and 20% curtailment. In an upcoming paper,588

preliminary studies [126,127] will be resumed to see the influence of the proportions of each contract due589

to its relative importance [36] but also to help in the understanding of the needed thresholds for such590
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Figure 8 – Demand and supply profiles for the single housing
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contracts. Two aggregators are in charge of the energy management of this district, one for electricity591

and the other for heat. Both apply a light autarky strategy. Aggregators try to maximize self-sufficiency.592

A regional electrical grid is available. HP has a static efficiency of 3.5. The simulation is performed593

for a whole year for a district in Pau, France. The outputs scrutinized in this test are mainly the self-594

sufficiency of the local electrical grid, and the energy balances for electricity and heat and between the595

local producers.596

Results are gathered in Fig. 9. In compliance with the previous observations, and the randomization597

process, the overall electricity consumption is stable over the year. However, it is not the case for electric-598

ity production: PV produce more in summer and the WT generation is unstable, with huge variations.599

Interestingly, one can remark however good levels of electrical coverage rate and self-consumption. On600

average, less than 20% of the electricity production is injected into the regional grid, thus avoiding601

balance issues for the DSO. Furthermore, the coverage part is commonly above 50%, which thus limits602

the dependency on the external grid and the need for new capacity. When looking at the heat demand603

and supply, it is logically more strongly affected by seasonality. However, a very good correlation is ob-604

tained between the production and consumption curves, due to the real-time adaptation of the thermal605

production, if needed, by the HP. With DSM, the number of periods where the remedy to the HP is606

required is relatively low. As a consequence, the biomass can run regularly at its full capacity, and on607

average at more than 60%. This is highlighted by the very high level of heat coverage rate, limiting608

electricity purchases to fulfill part of the HP needs. Finally, it is important to quantitatively pinpoint609

the advantages of the present configuration and of DSM by the two aggregators. As can be seen in610

Table 3, the maximum peak is really reduced since it achieves 16.67% and 50% for electricity and heat611

respectively. It is accompanied by a decrease of 24.1% and 22.85% of the corresponding demand, which612

is significant at these amounts of consumption (several thousands of kWh). As a last remark, it is worth613

mentioning that such calculations are not expensive and can be performed in 1.7 hours with an "Intel®614

Core™ i5-7300HQ 2.5 GHz x 4", 8 Go RAM, Debian 10. Brought back in term of time periods and615

persons, this corresponds to 0.7 s per simulated day or to 1.2 s per person and per year.616

Table 3 – Smart district: comparison between DSM case and a BAU case in the format elec/heat

case maximum power (MW) month PAR (−) quantity (MWh)
present DSM 1.5/1.0 Dec/Feb 0.44/0.41 5765/4415

BAU 1.8/2.0 Feb/Feb 0.58/0.14 7595/5723

3.2.3 smart community617

Table 4 – Dwellings composition of the smart community

Aggregator Type Number of Amount Devices
persons

eco-district House 2 5000 Background, heating, DHW, washing machine, dishwasher, dryer, PV
with PV House 5 5000 Background, heating, DHW, washing machine, dishwasher, dryer, PV

eco-district House 2 5000 Background, heating, DHW, washing machine, dishwasher, dryer, ST
with ST House 5 5000 Background, heating, DHW, washing machine, dishwasher, dryer, ST

condomium Apartment 1 12000 Background, heating, DHW, washing machine

district Apartment 2 9000 Background, heating, DHW, washing machine, dishwasher, dryer
House 5 9000 Background, heating, DHW, washing machine, dishwasher, dryer
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Figure 9 – Smart district operation over the year
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This last case concerns a community involving three districts in Marseille, a city in the south-east of618

France with a mediterranean climate. This example involves a very large number of customers, since it619

comprises 50 000 housings and a total of 145 000 people, distributed and equipped as detailed in Table620

4. The first two districts are eco-districts, with a different production system, ceteris paribus. Each621

of them is composed of 5 000 houses inhabited by 2 people and of 5 000 others occupied by a family622

of 5 people. In one of them, all houses do have building-integrated PV while the other eco-district is623

connected to a solar DH (containing also a HP). The third and last district is classical, composed of624

condomiums without any production system. It contains 12 000 apartments inhabited by 1 people,625

9 000 with a couple and another 9 000 with 5-people families. Among all these customers, proportion626

to participate to DSM are: 50% BAU, 30% cooperative and 20% curtailment. For all the aggregators, a627

light autarky strategy is applied. Cost of electricity is at 0.10€/kWh while its resale is set at 0.15€/kWh.628

629

The simulation is run for the month of March. In this test, the investigated parameters will be cur-630

tailment rate of consumers for each different contract, the level of energy consumption and the profits631

realized by the aggregators.632

When looking at Fig. 10, the first interesting result in Fig. 10a concerns the coverage rate and self-633

sufficiency of the two eco-districts. Apart for the electrical needs of the second district, only equipped634

with thermal generation, self-sufficiency shows very high levels with, respectively, 70% and 100% for the635

eco-district with PV and the eco-district with a solar DH. Consequently, the corresponding coverage rate636

for the electrical and thermal needs are 27% and 54%. Both districts having the same type of population637

and demand, this highlights first the interest of local thermal production (and not only electrical one)638

and second the pressure release that can be achieved when combining these RES with DSM. Lastly,639

the associated energy balances for each district are provided in Table 5. In a second step, it is worth640

noticing that when such possibilities are offered, the aggregators can heavily rely on DSM for the energy641

balances (see Fig. 10c). Nevertheless, it is also shown in Table 6 that the associated rates are different642

from one district to the other, though all of them have the same levels of participation for each contract.643

Such a difference is primarily explained by their various consumption profiles, and is also due to their644

different generation sources. This leads to two main remarks. First, curtailment rates can be tuned to645

be less a burden for both consumers and producers. This can be achieved either by combining more646

RES, and/or by increasing the number of such contracts to share this effort (both solutions are to be647

studied in an upcoming work). Second, the curtailment rate is not really higher even if no production648

units are available, as in the third district. This implies that, instead of a headlong rush for installation649

of new capacity to fulfill the ever increasing demand, DSM contracts could clearly play a more significant650

role. Naturally, this must be further investigated, and associated to a rigorous financial approach to see651

what would be at the end the most economically efficient solution. Eventually, it is important to remark652

that aggregators can earn money, as shown in Fig. 10d. Even in the unfavorable present situation,653

where the aggregator do not own neither production units nor any energy storage facilities to help her654

to manage supply and demand, the aggregation effect combined with the DSM approach permit to bring655

out a leeway and, consequently, to generate some profits. This underlines, if needed, the boons for the656

entrance of such participants in the energy market [128, Chapter III, Articles 17.1 and 19.1 and 32.1].657

As above, the final remark will concern CPU time. Indeed, even in this example involving 276 000658

devices for the 50 000 housings and 145 000 people, the needed time is only 4.5 hours. In terms of ratio,659

this corresponds to 0.1 s per people, or to 0.05 s per devices, which is more than acceptable.660
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Figure 10 – Smart community operation in March

Table 5 – Averaged monthly energy balances in MWh

aggregator total consumption local production energy bought (external exchange)
eco-district with PV 463 182 336
eco-district with DH 113/74 0/40 122/9.7

†

(in the format elec/heat)

old condomiums 576 0 576
† value corresponding to the heat demand (74-40=34) divided by the COP of the HP (34/3.5)
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Table 6 – Overall curtailment rates

Aggregator’s type Consumers Producers
eco-district with PV 0.31 0
eco-district with DH 0.46/0.62 N.A./0.52
(in the format elec/heat)

old condomiums 0.57 N.A.

4 Conclusion661

This paper extended the concept of smart grid to various grids (electrical, gas, heat, etc.) in mutual in-662

teractions. Combining a bottom-up description with a top-down management approach, PEACEFULNESS663

allows an holistic description of energy networks. Both centralized and distributed generation, as well as664

historical and RES technologies are available and can be managed; controllable or intermittent. Several665

DSM techniques are eligible for each nature of energy. Moreover, they can apply to productions (such666

as WT or hydraulic dams) or consumptions (e.g. space heating or elastic appliances), or to storage (for667

instance, BEES or SHTES). Strengths of PEACEFULNESS were demonstrated through several validation668

cases, highlighting the possibilities in terms of contract flexibility, distribution strategy and energy ex-669

changes strategy with the external grids. In addition, an analysis has been conducted on three examples670

ranging from a single smart home to a large smart community. Each time, the interests of both the671

aggregator and DSM possibilities have been clearly shown. Results also present the wide range analysis672

opportunities offered, specifically concerning the earnings affordable.673

Besides, it should be noted that present examples were primarily focused on the demonstration capac-674

ities of PEACEFULNESS. Several upcoming papers will further demonstrate these possibilities, and more675

interestingly, they will develop one of the aforementioned points. For example, the inclusion of storage,676

as well as other combinations of both RES and DSM contracts proportions will be scrutinized. In par-677

allel, the possible profits for the aggregator will be further investigated. Such an analysis is planned678

both from a pure economic way but also using techno-economic analysis. Meanwhile, an increasing cost679

of the curtailment and shifting techniques will be tested to avoid high rates, especially for single cus-680

tomers [123]. Moreover, the elasticity-price on demand will also be handled. Finally, a deeper inclusion681

of behavioral schemes will be analyzed [129–133], as well as inclusion of rebound effects [134–138] or682

use of nudges [139]. Concerning the political considerations, an ongoing study aims at targeting the683

possible existence of minimal (and maximal) thresholds required to fulfill the future increase in energy684

demand [140]. Furthermore, the use of a second-best approach will be looked as [141]. In this respect,685

PEACEFULNESS will permit to see if the market could lead to the adoption of such levels or if regulation686

will be needed [142].687
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Abstract1

Demand Response (DR) is an efficient and complementary approach to energy storage so as to cope with2

the management difficulties of renewable energy sources (RES). Specifically, Direct Load Control (DLC) has3

great potential as it allows managing both production and consumption.4

Here, 2 districts of 11,000 inhabitants relying on DLC, partially fueled by renewable energy, are simulated.5

One of this district is fully electrical while the other has access to a District Heating Network. Some con-6

sumers participate to DLC and receive lower tariffs but some prefer traditional energy contracts. Different7

levels of participation to DLC and different grid management strategies are tested. Especially, 2 strategies8

with the same objective are tested, but the first one is based on physical criteria when the second is based9

on economical ones.10

At the end, DLC has a positive impact on grid at the cost of a degradation of service for consumers par-11

ticipating (but their bills decrease). For several metrics, threshold are observed regarding levels of DLC12

participation. Last, the physical and the economical-based approaches give similar results.13

Keywords: Smart grid; Renewable energy integration; Demand side management; Simulation
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Nomenclature

Latin symbols14

A surface area, m215

C thermal capacitance, J kg−116

CP power coefficient, −17

c specific heat capacity, J K−1 kg−118

COP coefficient of performance, −19

D demand, kWh20

E total energy, J or kWh21

Eff total energy, J or kWh22

EER energy efficiency ratio, −23

G building heat loss coefficient, W K−1 m−324

g gravitational acceleration, m s−225

Hh hydraulic height, m26

I solar irradiance, W m−227

LHV lower heating value, J m−3 or J kg−128

MCC marginal cost of curtailment, €/ kWh29

NOCT nominal operating cell temperature, °C30

P power, W31

P price, €32

q flow-rate, m3 s−1 or L s−133

R residual effort, %34

T temperature, K or °C35

t time, s or min36

U velocity, m s−137

V volume, m338

z height, m39

40

41

Greek symbols42

η efficiency, − or %43

κ open-circuit voltage thermal coefficient, K−144

ρ density, kg m−345

τ erosion velocity in curtailment contracts, s46

47

48

Subscripts and superscripts49

a air50

amb ambient51

bot bottom52

c cooling53

cell cell54

cut cutoff55

el electrical56

fu fuel57

gd grid58

h hydraulic59

ht heating60

in indoor61

inv inverter62

nom nominal63

out outdoor64

pan panel65

pp pipe66

ref reference67

sp set point68

top top69

wt water70

71

72

Acronyms73

BAU business as usual74

BB biomass burner75

BEES battery electrical energy storage76

CCHP combined cooling, heating and power77

CHP combined heating and power78

DH district heating79

DHC district heating and cooling80

DHW domestic hot water81

DLC direct load control82

DR demand response83

DSM demand side management84

HEMS home energy management system85

HP heat-pump86

LS load shifting87

PV photo-voltaic88

RES renewable energy sources89

RTP real time pricing90

TES thermal energy storage91

TOU time-of-use92

TOUP time-of-use pricing93

WT wind turbine94

95
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1 Introduction96

1.1 Foreword97

Though faced with probably the most paramount challenges it has ever encountered, Humanity is98

still engaged in a dangerous headlong rush towards more energy demand while relying too much on99

fossil fuels [1]. Moreover, the actual deployment of more decarbonized technologies, despite real and100

important (and to be pursued), is not replacing former generation plants but is instead added to a101

global portfolio; this latter stacking more and more sources of energy rather really replacing them.102

Besides, this trend should not change drastically in the coming years since the political uncertainties103

tend to favor a balanced solution including fossil plants [2]. However, very good reviews on possible104

decarbonization scenarios have shown that even the less agressive scenario implied efficiency efforts never105

seen before [3, 4]. As a consequence, it is clear that renewable sources (RES) will not be sufficient to106

address the issues raised by the limiting of the global warming. To tackle such a problem, increase of107

flexibility in the energy paradigm seems indispensable [5–7]. Furthermore, among the relevant technical108

solutions to achieve such a goal, demand side management (DSM) and similarly demand response (DR)109

appear as serious candidates [7,8]. In fact, the underlying principles and methods behind smart-grid are110

particularly pertinent due to the appearance of the concept of 4th district heating generation [9, 10], or111

to manage intelligently multi-energy infrastructures [11, 12] as well as networks with multi-generation112

systems [13,14].113

1.2 Literature review114

For the specific case of Europe (and North Africa), a decrease of the peak values around 15 and 37%115

has been estimated [15]. For more general and global advantages of DSM, as well as a rather exhaustive116

definition, the interested readers are referred to excellent reviews on the topic as in [6, sec. 3, pp.117

787-791] or in [16] for coordination mechanisms. A complete analysis on the literature on smart-grids118

and DR being out of scope of the present work, the following examples will focus either on multi-energy119

cases or on load management (e.g. curtailment, direct load control, etc.). Thus, micro-grids relying120

on combined-heat-and-power (CHP) were tested without and with batteries (BEES) and DR programs121

in [17]. With a 25% curtailment limit, both solutions lead to a 15.77% decrease of the peak (from 558122

kW to 470 kW). In the same idea, by testing three scheduling algorithms on electrical clusters, and123

also new cost metrics, large modifications of the loads were obtained in [5] for non-flexible power on-124

demand loads and deferrable loads (mainly electric vehicles and thermostatically controlled appliances125

and electrical storage). In another vein, a reduction of 39% of the energy costs can be easily obtained126

by defining intelligently a user-expected price, used in a simple DR algorithm comparing this later with127

a real time pricing (RTP) to make decisions [18]. Still with a dynamic pricing methodology, appliances128

were scheduled as a function of market prices and price penalties to find the best time horizon in [19].129

It was thus shown that important reduction of the peak demand and increase of the load factor could130

be achieved, associated with a 68% reduction of the energy payments. Then, using interestingly an131

intermittent heating, which imposed bounds on temperature only at some hours, the procurement and132

consumers costs were reduced from 15 and 13% for heat needs in Belgian buildings [20]. Meanwhile,133

energy shifted was more than double and 14% of flexibility was attained with the same thermal comfort.134

By means of a new pricing policy, a for-profit aggregator-based residential DR approach achieved a135

12.5% peak reduction of 5555 customers by rescheduling their loads [21]. Thermal inertia can also be136

used to maintain the stability of the electrical grid [22]: flexibility options offered by thermal storage137

(TES) permitted to reshape significantly the load durations and, correspondingly, the times of high138
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power consumption. In the same way, a hierarchical energy management system using three temporal139

decomposition (for heat, gas and electricity) was able to reduce the operating costs of a poly-generation140

micro-grid [23]. Later, in [24], a 6.37 MW curtailed power was attained (over 16.04 MW) to limit141

congestions failures only by rendering all non essential loads curtailable. When PV and BEES are both142

available on a grid, an interesting ’reputation-based’ load management demonstrated the possibilities of143

68% of cost savings [25]. Similarly, load shifting in district heating (DH) can alleviate the peak power144

between 685 kW and 900 kW on a distribution loop [26]. Such results were obtained simply by small145

positive anticipative changes of the thermal request of buildings. Still in the framework of coordination146

method for appliance scheduling, a very promising method was developed in [27]. There, the day-ahead147

management of a very large amount of devices and smart homes was tested with two models (group-148

based and turn-based) and led to significant peak (14%) and cost (20%) reductions. In the same way,149

yet only for electrical grids, an incentive program was proposed to customers allowing to be curtailed150

in a micro-grid including RES (PV, wind, CHP) and TES; it was able to reduce the operational costs151

up to 6% [28]. Another example of optimization of consumption/production of energy hub (electrical152

and thermal) after determination of the marginal price on each branch was presented in [29]. The DR153

program involved a RTP, and costs and peak reductions were obtained for both the hubs and the the grid154

(-10% and -14%, -29% and -14% respectively). In an extension of the above work, schedules of start-up155

and shut-down of heating systems could reduce thermal peak from 5% to 10% in one of the distribution156

networks of the Torino DH [30]. In a completely different context, since it concerns pelagic islands, a157

day-ahead distributed algorithm was set up in [31] to find the Nash equilibrium between minimization158

of the operational costs for the providers and maximization of the revenues for the aggregator and of the159

payoffs for the users. Finally, control scheme of the elastic demand by means of dynamic price signal160

broadcasting was successfully tested in [32], to tackle RES fluctuations.161

1.3 Contribution and novelty of the study162

In light of the above discussion, it appears that DR programs need still to be investigated in the case163

of multi-energy infrastructures, be it for the analysis of RES integration but also to further improve164

energy efficiency. Added to this, there is still a room for debate concerning the business model of the165

aggregator [33, 34], or any equivalent third-party in charge of the energy balance and responsible for166

both networks equilibrium and customers satisfaction. These are the two first cornerstones of the present167

paper:168

1. studying the boons (or not) and drawbacks of implementing DR in smart mixed grids, in terms of169

energy efficiency, and of increase deployment and use of RES;170

2. testing various strategies, and associated tariffs policies, to see if any value is added by such an171

organization, and where it is captured.172

Since most business models are more guided by regulatory constraints than by physical factors173

[33], we will start from classic schemes, using various pricing used in DR programs like market174

mechanisms for the adoption by the customers [5]. Here, the idea is to start with light evolution175

of the contractual interactions, and to pave the way towards more share economy [35].176

Furthermore, once such rules have been defined, there is still a huge question to answer: how many177

people with such contracts are needed to really see some benefits ? And, are there any thresholds178

(minimum and maximum) ? In fact, more than flexibility, it queries the level of flexibility needed (or179

not) for DR to have significant impacts, and really justify its use. This research question was already180

addressed for electrical storages in order to limit excessive curtailment [36], or to target preferentially181

Université Côte d’Azur 6 Submitted to Smart Energy

57



Gronier et al. DR level influence in smart-mixed-grids November 1, 2021

buildings representing the main electrical consumption (i.e. more than 90%) [37]. In the same way,182

an enlightening study focused on the welfare impacts of DR depending on the noncooperative and183

cooperative behaviors of the agents [38]. More recently, the influence of the number of flexible users in a184

DH was investigated in [26,30]. To the best of the authors knowledge, such an analysis has never been185

performed for multi-energy grids and it is therefore the last contribution proposed in the present work.186

To summarize, the main novelty of this paper is:187

• to investigate the efficiency of DR for better use of RES in smart mixed grids;188

• to investigate the influence of the type of contracts and their proportion among customers on the189

physical and socio-economical parameters;190

• to explore the guidance of some political and economical decisions on the evolution of the energy191

market, in terms of need for enforced (or not) deployment of flexible contracts among customers.192

2 Methodology193

2.1 DSM194

PEACEFULNESS (platform for transverse evaluation of control strategies for multi-energy smart grids) is a195

python open-source tool developed to model day-to-day management of multi-energy grids incorporating196

DSM [39]. It is able to handle hundreds of thousands of agents (consumers, producers, prosumers,197

etc.), with possibly tens of thousands appliances, combining various supply and/or demand profiles for198

electricity, heat, cold, gas. . . Energy management and balance of the different grids, locally or regionally,199

are under the responsibility of aggregators, which can also rely on DSM (and especially on DLC) to200

fulfill their role. Depending on the terms defined in the contracts with the agents, aggregators can serve,201

delay or reject an offer of consumption or production. Indeed, through a collaboration with Economists202

and Jurists, a set of possible contracts and system’s organization have been defined: The underlying203

idea is that any effort consent by the customers is rewarded by another pricing policy (lower prices,204

extended off-peak pricing, etc.), or with other types of incentives. PEACEFULNESS is designed to be used205

as well as building’s scale than at urban or regional levels. To ensure relatively low and acceptable206

calculation time (especially for electrical grids), the decision-process favor rule-based nheuristics on207

optimization methods, yet these latter could also be used. The basic overall principle for the whole208

energy management is depicted in Fig. 1. For the moment, PEACEFULNESS is only available for modeling209

but it should be extended for real-time operational controls. Simulations can be performed on an hourly210

or minute basis, for several months or years.211

2.2 Devices212

They are one of the key elements and represent the appliances consuming, producing, converting or213

storing energy. At the beginning of each turn, devices compute how much energy they want to con-214

sume or produce. Computing of this quantity varies from one appliance to another (see below), but215

it can be based on technical characteristics, user’s habits (for domestic appliances) and databases (e.g.216

meteorological data for RES and temperature-related devices. . . ). Then, a message is built composed217

of their minimum and maximum energy requirements, and an index of emergency. At this step, only218

users’ habits, such as temperature setpoint for space heating or the last moment to start a cycle for a219

dishwasher, and technical constraints, as the irradiation for PV production or the maximum power of220
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Figure 1 – Round decision process of the DSM tool
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a water heater, are taken into account. Neither DSM nor pricing policies are involved, since they are221

managed by the contracts (see further).222

Once this message will have been treated by the contract and, later, by the aggregators, the devices223

will know at the end of the round what quantity of energy they can consume or produce. Based on224

their initial request, they will update their internal state accordingly. Consequently, it allows them to225

know, for example, if a scheduled cycle has started or if they will have to ask for it once more during226

the following round.227

2.2.1 Demand228

First of all, it is important to notice that in a DLC paradigm, demand and consumption are different
things. The former corresponds to the quantity of energy asked when the latter is the energy effectively
consumed. Here, demand construction, independent from the enforcement of a DLC maneuver, is de-
tailed, whereas consumption patterns are analyzed in section 4, as an outcome of DSM supervision.
In PEACEFULNESS, the demand is logically the sum of all the energy demand from each devices; each of
them thus expressing its own needs in function of its features. In this study, six devices are involved
(though many others are available): dishwashers, dryers, washing machines, space heating, water heaters
(for DHW) and "background consumption". This latter represents all the non-shiftable devices with low
levels of consumption: as their individual treatment has no interest for the grid manager, they are
grouped together. Practically, background profiles were established by [40].
Shiftable devices, i.e. dryers, washing machines and dishwashers, are modeled with a cycle of con-
sumption and a usage profile. The first indicates how many times the device will need energy and the
corresponding needs; for instance, a dishwasher may have a program with corresponding needs: 1 kW
the first hour, 3 kW the second hour, 0.5 the third and finally 2 kW for the last hour. The second
indicates the usage done of this cycle, that is to say a time width englobing the hour ranges during
which a cycle has to be launched and fully executed; as an example, the previous 4h program has to be
done before the return of the user at 6.00 pm and can therefore be launched between 8.00 am and 2.00
pm.
Space heating is modeled classically with respect of a temperature setpoint, possibly varying during
time. The corresponding quantity of energy is then calculated with a R−C model [41], or any equivalent
model [18, 42–45]:

Eht,c = ∆t · G · V ·
(
Tsp − Tout − (Tin − Tout) e−

∆t
τ

)
(2.1a)

Eht,c = C ·
(
Tsp − Tout − (Tin − Tout) e−

∆t
τ

)
. (2.1b)

Likewise, models decomposing consumption between a basis and temperature-related demande could be
used [46,47], or even energy efficiency resource standards [48].
DHW profiles is composed of ranges of hours available to heat the water and the volume to be heated.
All the usage data are extracted from [49]. Calculation of the amount of energy is made in two steps:
first, the volume of water to be heated is calculated1, secondly, the energy needed is deduced using the
first law:

Vh = V m
DHW

40− Tpp
60− Tpp

. (2.2a)

EDHW = ρwtVh · cwt · (60− Tpp) (2.2b)
1It is different from the volume of hot water consumed. In France, DHW is heated at 55-60°C and consumed around

40°C.
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That being said, the hundreds of thousands devices are not generated one after one. Instead, a random229

generator has been developed, using a customizable finite number of different profiles. Concretely,230

during the creation of each dwelling, a haphazard draw on the main characteristics of the device (level231

of consumption, start time of usage, etc.) is made: the mean is the value in the profile and the standard232

deviation is chosen by the user. With this method, we can, on the one hand, keep realistic individual233

profiles, with discontinuities and asynchronous behaviors between different agents. On the other hand,234

we can obtain smoother aggregated curbs, coherent with the real ones. An example of the differences235

between an individual profile and the corresponding aggregated demand of 1 000 people (once again,236

without any form of DSM) is viewable on Fig. 2.237
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Figure 2 – Examples of demand over one week

2.2.2 Production238

Among the various generation sources available, five different production devices are used in this study:239

PV panel, WT, hydraulic dam, biomass burner (BB) and HP. PV and WT are not considered as240

flexible here, therefore their production must always be evacuated, one way or the other. However, the241

supervision can modulate the production of dams, HP and biomass burners. For the sake of clarity,242

yet without any loss of generality, no inertia is considered when running these technologies. They can243

consequently produce any amount of their maximal capacity.244

PV production depends on the irradiation and the cell temperature, and it is given by [50,51]:245

PPV = I × A× ηPV × ηinv (2.3a)246

ηPV(T ) = ηpan


1− κ

(
Tcell − T ref

cell

)
+ ℵ log10 I


 ≈ ηpan


1− κ

(
Tcell − T ref

cell

)
 (2.3b)247

Tcell = Tamb +
(
NOCT− T ref

cell

)
I
Iref (2.3c)248

249
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For WT production, one gets [28,52]:250

PWT =





0 if U ≤ Ucut,bot or U ≥ Ucut,top
1
2ρaCPU

3 U3 − Ucut,bot3
Unom

3 − Ucut,bot3
× A× ηWT if Ucut,bot < U ≤ Unom

1
2ρaCPU

3 × A× ηWT if Unom < U ≤ Ucut,top

(2.4a)251

U = Uref

(
z

zref

)γ
(2.4b)252

253

For the electrical production of a dam, one can use the following expression [53–56]:254

Ph = ρwtg∆Hh× qwt × ηh (2.5)

The heat production of a biomass burner is [57–60]:255

PBB = qfu × LHV × ηBB (2.6)

Finally, heat and cool production from reversible HP rread:256

PHP =
(

COP
EER

)
× Pel (2.7)

2.3 Contracts257

As told above, contracts are first in charge of the pricing policy for the contemplated transactions.258

Secondly, given the allowed DSM rules for each device, they can modify (or not) the request sent by these259

latter before transmitting it to the aggregator. As an example, if no DSM is authorized, the emergency260

is set to maximum and the entire requested power is asked. In contrast, a curtailment contract will261

always indicate that a demand can be cut or delayed if necessary. In addition, other information than262

the ones related to the energy features can be provided, such as the carbon footprint, etc. To reward263

customers choosing DSM contracts, it was mentioned that several possibilities could be endorsed: an264

incentive for the amount curtailed, an equivalent amount available later (without modification of the265

price, especially during peak hours), a favorable TOUP . . .266

In the present study, a modified TOUP is enabled and three types of contrats are tested. The first,267

Business As Usual (BAU), is the contract for customers refusing DSM. It corresponds to the present268

paradigm where no efforts are asked and it is possible to consume or produce whatever and whenever269

they want. The second, "Cooperative" is a contract authorizing DLC but with little losses of comfort:270

it activates the shiftable devices, manages water heating and has a ±1°C margin for space heating.271

Practically, given the thermal inertia of the building, it is for instance possible to slightly overheat to272

maximise usage of solar energy and then to reduce the evening consumption, or on the contrary, to let273

the temperature falls (within the above margin) to wait for the last moment to consume when thermal274

response is fast. People with this contract has a 10% discount on energy for both the off-peak and on-275

peak tariffs. The third contract, "Curtailment", gives the power to the aggregator to outright reject any276

demand or supply. Obviously, such a constraint is pretty tough and, as a consequence, people accepting277

such contracts are rewarded in two ways. First, they also have the aforementioned 10% discount. Second,278

and more interestingly, an approach directly inspired from Economics works [33, 34, 61] is tested: the279

aggregator has to repay them the energy it refuses to them: refusing a demand, is, for the aggregator, like280

buying energy from a producer. Practically, the price of the energy repaid by the aggregator increases281
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with the effort made by a consumer: curtailing a second time someone is more expensive than curtailing282

someone for the first time and the aggregator is encouraged to distribute the effort among the consumers283

(having such contracts). This price is a product of the effort Eff and a coefficient defined by the user:284

Prefund = Eff ·MCC (2.8)

This effort is incremented each time the customer is curtailed, proportionally to the amount of energy285

rejected:286

Eff = Eff + Erefused

Eserved
(2.9)

Meanwhile, the effort is also decremented at each round, following an exponential decrease, whose287

velocity is governed by two parameters: a residual and the time necessary to reach it. For example, a288

residual of 50% after 1 week would mean that, after 1 week without curtailment, the value of effort is289

divided by 2:290

Eff = Eff · exp
(
t · ln(1−R)

τ

)
(2.10)

2.4 Aggregators and strategies291

Aggregators are the agents in charge of clusters of customers and of their devices [62]. Concretely,292

they have to make sure consumption and production are equal at each time step. Several options are293

available to them: modulate the production, use storage, exchange energies with other energy networks294

but also adapt the consumption curb through DLC. In order to arbitrate between these different options,295

aggregators are relying on a strategy. In PEACEFULNESS, aggregators have a spatial identity: they are in296

charge of all the buildings of this village or of this district.297

When they receive the messages sent by contracts, they make local energy balances and decide how much298

they want to exchange, taken into account all the previous parameters and the options really feasible299

inside their own perimeter of influence (e.g. access to a storage, or not, etc.) [5]. Three exchanges300

strategies are presented in this work: "Always Satisfied", "Light Autarky" and "Profitable". "Always301

Satisfied" is the no-DSM strategy, where every demand or supply of energy is always accepte. It serves302

as a reference when comparing with grids incorporating DSM. "Light Autarky" is a strategy aiming to303

maximize self-sufficiency while guaranteeing a minimum service: it does not exchange energy if it is not304

to satisfy urgent needs. "Profitable" is a strategy where the aggregator, once a solution is found for305

urgent needs, exchanges only if it can make benefits on the transaction.306

As it was shown in Fig. 1, once aggregators know how much they have exchanged with the outside307

(because other aggregators have the choice to accept or refuse the exchange), they have to distribute308

energy internally. To do so, two approaches are demonstrated in this article: "Full Service" and "Partial309

Service". In the full service approach, all the demands and proposals of energy are sorted according310

to an user-defined criterion. Once it is made, aggregator satisfies completely the first devices in the311

sorted list. In this study, emergency is the chosen criterion. In the partial service approach, every312

non-urgent demand or proposal is served, but not completely: they all receive the same proportion of313

energy demand.314

2.5 Dedicated example315

In Fig. 3, an illustration is presented for the implementation of DSM for one of the strategy employed316

in this study. There, at the beginning of a supervision round, the example of a dryer asking to start317
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a non-urgent cycle is shown. This demand is thus transmitted to its contract. The latter adapts the318

message, since DLC constraints are accepted by this device and, consequently, non-urgent tasks can319

be curtailed. A price signal is also tagged with this demand, and sent to the aggregator. Then, this320

one, considering all the demand to fulfill and for the dryer’s needs are non-urgent, decides to refuse this321

start-up in accordance with its "Light Autarky" strategy. This decision is sent to the contract. As this322

specific kind of contract has nothing to do here, it just transmits the information to the dryer. The323

dryer learns it won’t be able to start the cycle: it will ask for it once again next time. The round ends324

here.
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Coop.
contract
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autarky

Dryer

Coop.
contract

Initial
configuration

Dryer

Coop.
contract

The contract
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Figure 3 – An illustration of DSM process
325

3 Cases investigated326

3.1 Description327

Two different smart-districts will be presented to study the influence of the DSM strategies on the328

fulfillment of the customers needs, the equilibrium of the network, and the corresponding costs. In both329

cases, 5 000 dwellings, distributed as presented in Table 1, are involved. For the DSM strategies to be330

tested, a physical and an economical approaches are used; they have in common the objective to test if331

such a choice is neutral or not. Concerning the level of engagement of the customers to DSM contracts,332

five values will be tested, from 0 to 80%. Indeed, DSM having potentially non-linear effects, it is333

fundamental to investigate the influence of its widespread (and maybe its needs) among the population.334

The first case investigated is represented on Fig. 4a. It deals with a single energy network, namely an335

electrical grid. Non-flexible RES are available through 12 500 m of PV panels and 5 WT of 6 MW336

each, as well as a controllable 3 MW hydraulic dam associated with a flexible contract allowing the337

aggregator of the grid to manage its production (start-up or shut-down, full power or not, etc.).338
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The second case is illustrated by Fig. 4b and considers multi-energy networks, since the previous339

electrical grid now co-exists with a DH network. For the generation, only the above non-flexible RES340

are installed for electricity, while heat (for space heating and DHW) are provided by the DH by means341

of a flexible 2 MW BB and a 2 MW HP.342

For the sake of simplicity, basic loads are the same in the two cases. Furthermore, the sizing is insufficient343

to cover all the needs and therefore, the backup solution lies in the connection with the regional electrical344

grid. Besides, non-flexible RES will generate important production peaks (especially the WT) that will345

have to be handled by the aggregators. All meteorological data correspond to the city of Pau, in France.346

Table 1 – Description of the dwellings

Type Number of Amount Devices
persons

Apartment 1 2000 Background, heating, DHW, washing machine
Apartment 2 2000 Background, heating, DHW, washing machine, dishwasher, dryer

House 5 1000 Background, heating, DHW, washing machine, dishwasher, dryer
n.b.: Background is an aggregated profile, combining TVs, computers, lights, kettles, etc.

The different prices practiced are detailed in Table 2. They were set up with the "Profitable" strategy347

in mind. On the electrical side, the aggregator looses money when it uses national grid energy to satisfy348

DSM customers needs and when it sells renewable energy to the national grid. On the DH side, using the349

local producer to fuel the DSM customers is also unprofitable. Thus, an aggregator using a "Profitable"350

approach is encouraged to maximise the local consumption of RES, especially the non-flexible ones, i.e.351

PV and WT. Being set like this, it is expected to behave similarly to light autarky strategies. The352

price of the HP comes from the cost of electricity: HP is seen like a cooperative consumer for the local353

electrical grid and thus pays electricity 15.3 c€/ kWh. Divided by its efficiency of 2.5, it gives a price of354

6.12 c€/ kWh for the DH.355

Table 2 – Financial parameters

Electricity Heat
National grid Producers Consumers HP Producer Consumers
buying selling BAU DSM BAU DSM

Price 17 5 14 17 15.3 6.12 10 10 9

Concerning the curtailment contract, we chose that the effort had to reach 1% of its initial value after356

1 month. We also imposed that the refund for the consumer had to reach the price of electricity from357

the national grid after three demands entirely rejected per day, i.e. 90 hours per month. We used the358

following formula to find the corresponding refund:359

Prefund = Pgd − PDSM

Nh/month
(3.11)

At the end, we get a refund per demand refused of 0.019 c€ for electricity and 0.011 c€ for heat.360

3.2 Simulation plan361

As mentioned before, the main goal is to explore the impact of DSM in two different smart-grids, scruti-362

nizing different grid management approaches and DSM penetration levels. Concretely, three parameters363

are varied all along this work:364
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Figure 4 – Schematic representation of the two smart-districts investigated
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• DSM proportion: the percentage of people having subscribed to a DSM program. Four different365

levels are investigated, from 20 to 80%, the case with 0% being also treated and taken as a reference.366

It was hypothesized that cooperative contracts are more popular than curtailment contracts, as367

they are less constraining, in a 40/60% proportion.368

• Exchange strategy: two situations were considered regarding exchanges with the national electrical369

grid, namely "Light Autarky" and "Profitable" (see subsection 2.4).370

• Distribution strategy: two candidates are investigated here, "Full Service", where even some non-371

urgent needs are fully covered, and "Partial Service", where all non-urgent needs are partially372

covered (see ibidem).373

Finally, this leads to 32 combinations, plus 2 references cases with no DSM at all, which are all presented374

in Table 3. The simulation lasts for a whole year, at an hourly time step.375

Table 3 – Simulation plan

Name of the run smart grid Contracts proportion (%) Exchange strategy Distribution strategyBAU Cooperative Curtailment
RE electricity 100 0 0 classic N/A

AFE20 electricity 80 12 8 autarky full
APE20 electricity 80 12 8 autarky partial
PFE20 electricity 80 12 8 profitable full
PPE20 electricity 80 12 8 profitable partial
AFE40 electricity 60 24 16 autarky full
APE40 electricity 60 24 16 autarky partial
PFE40 electricity 60 24 16 profitable full
PPE40 electricity 60 24 16 profitable partial
AFE60 electricity 40 36 24 autarky full
APE60 electricity 40 36 24 autarky partial
PFE60 electricity 40 36 24 profitable full
PPE60 electricity 40 36 24 profitable partial
AFE80 electricity 20 48 32 autarky full
APE80 electricity 20 48 32 autarky partial
PFE80 electricity 20 48 32 profitable full
PPE80 electricity 20 48 32 profitable partial
RM multi-energy 100 0 0 classic N/A

AFM20 multi-energy 80 12 8 autarky full
APM20 multi-energy 80 12 8 autarky partial
PFM20 multi-energy 80 12 8 profitable full
PPM20 multi-energy 80 12 8 profitable partial
AFM40 multi-energy 60 24 16 autarky full
APM40 multi-energy 60 24 16 autarky partial
PFM40 multi-energy 60 24 16 profitable full
PPM40 multi-energy 60 24 16 profitable partial
AFM60 multi-energy 40 36 24 autarky full
APM60 multi-energy 40 36 24 autarky partial
PFM60 multi-energy 40 36 24 profitable full
PPM60 multi-energy 40 36 24 profitable partial
AFM80 multi-energy 20 48 32 autarky full
APM80 multi-energy 20 48 32 autarky partial
PFM80 multi-energy 20 48 32 profitable full
PPM80 multi-energy 20 48 32 profitable partial
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3.3 Outputs analysed376

In this work, physical, social and economic aspects of grid management and DSM are analysed. If peaks377

and self-sufficiency are essential in an energetical approach, curtailment rates and bills of consumers are378

the key performance indicators for social desirability. Last, producers revenues and aggregator profits379

are needed to assess the economical sustainability of the system. Therefore, we analyse the following380

outputs:381

• Raw peaks: consumption and production peaks during the whole year.382

• Mismatch peak: most important differences between local consumption and local production dur-383

ing the year: consumption corresponds to the largest excess of consumption and production to the384

largest excess of production.385

• Self-consumption: proportion of local production being consumed locally.386

• Coverage rate: proportion of energy consumed being produced locally.387

• Curtailment and delaying: proportion of needs expressed by devices being refused by the aggre-388

gator.389

Here, it is worth mentioning that it does not necessarily imply comfort losses, since it corresponds390

also to LS (for example DHW or dishwashers) where the demand is just postponed. It is calculated391

for consumers and producers separately.392

• Consumers bills: money spent monthly by consumers.393

• Producers revenues: quantity of money received by the producers along the year.394

Note that no production costs are integrated in this study.395

• Aggregator profits: profits realized by the aggregator along the year by trading energy and man-396

aging production and consumption appliances.397

4 Results and discussion398

To have a synthetic view of the two test cases, physical powers have been gathered in Fig. 5 while the399

operational and economic parameters are visible in Fig. 6.400

4.1 Smart electrical grid401

The specific results for the electricity-only network are detailed in Table 4. As a reminder, in this case,402

the aggregator has to manage a PV plant, six WT and an electric dam to satisfy 5 000 dwellings. It403

has also access to the national electrical grid. Examples of the obtained production profiles, and the404

corresponding total production and consumptions are shown in Fig. 7 for the AFE20 and AFE80 cases.405

406

First, it is important to note in Fig. 5a that consumption peaks are decreased up to 30% with DSM407

penetration of 60%. Second, it is worth noticing that no more gains are achieved by increasing this408

proportion to 80%. This clearly demonstrates the interest of DSM, but also that it is not necessary409

for all the customers to shift towards such contracts. Besides, there are few differences observed here410

between the tested distribution and exchange strategies. At best, the "Profitable" and "Full Service"411
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Figure 5 – Evolution of supply and demand as a function of strategy and DSM adoption
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Figure 6 – Metrics evolution in function of strategy and DSM, part 2
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configuration leads to a reduction of 4% by comparison with the other schemes (corresponding to an412

absolute 1.2% decrease from the reference case). Concretely, it implies that a very high level of demand413

would be necessary, i.e. a very large energy community, for this 1.2% supplementary reduction to be414

meaningful. In any case, it is of second order when compared with the use of DSM. Lastly, the mismatch415

is also singularly decreased since it is 46% lower when participation to DSM is of 80%. Similarly, strate-416

gies employed are not very different, those preferring "Partial Service" being 3% better than the others.417

Concerning production, we can see on Table 4 that the different levels of DSM and strategies have no418

importance: the peak is always at 22.4 MW when it is of 24.5 MW for the reference case. This is419

due to the impossibility here to cut-off PV or WT production, and only dam generation is controllable,420

which is the least powerful source. Nonetheless, as observed in Fig. 7, the final profiles can be very421

different and the DSM can really decrease the mismatch between supply and demand. Unfortunately,422

a precise analysis demonstrated that no flexible consumption was available during the peak with the423

present configuration, i.e. for such a district and its RES: the rise of wind production being progressive,424

they were all used by the aggregator in the hours preceding the peak. This means that, in an approach425

aiming specifically at reducing production excess, meteorological forecast would have been mandatory426

to get reductions scaling with DSM participation yet it would have been feasible.427

428

Simulations show that DSM is able to improve the self-sufficiency of the district. For self-consumption,429

i.e. RES production absorbed locally, the situation is the same as for production and production excess430

peaks: a gap is observed between reference configuration and DSM ones (from 75% to 90%), with close431

values for the latter. The explanation is also the same: the non-controllable nature of PV and WT432

production limit DSM possibilities. However, this is already a real improvement, which could be further433

exploited with forecasts and use of storage (but with extra costs). For coverage rate (proportion of434

consumption satisfied by local production), it increases proportionally with the participation to DSM,435

as shown by Fig. 6a: it goes from 51% to 78%, which is excellent, whatever the strategy implemented.436

Reference has, by definition, no curtailment but DSM solicited both consumers and producers. On the437

consumers side, illustrated by Fig. 6b, curtailment and delaying increase with DSM participation, up438

to 70%. More important, the strategy adopted by the aggregator has here a significant impact: the best439

strategies are those applying Partial Service, followed by the Autarky Full Service (+5-10% compared to440

the bests) and the Profitable Full Service is the worst (+15-20%). The relative efficiency of the Partial441

Service comes from the fact that, as it tries to serve everyone, it tends to start earlier the different442

devices and this reduces the delaying (accounted in this metric). Moreover, Profitable strategies do not443

necessarily use the dam to satisfy non-urgent needs and it is thus not so efficient. For producers, the444

Profitable Full service strategy tends to curtail more than the others strategies (between 23% and 100%445

more), and more with an increasing DSM levels (from 16% to 20%). The three other strategies, however,446

are almost insensible to this level, and give identical results with less curtailment when DSM increases447

(from 13% to 11%). This upturn comes from DSM: passing from 20 to at least 40% of participation448

creates more flexible demand and allows to improve the use of the dam. The difference between strategies449

arises from the previous difference on consumer’s curtailment and delaying. In summary, there is indeed450

a (natural) increase or curtailment yet this latter can be limited, and it achieves high values only for a451

small part of the consumers (the maximum having such contract being 32%). In contrast, production452

is rarely limited.453

Eventually, on the financial side (see Fig. 6c), consumers’ bills decrease significantly from 130€to 79€per454

month. And here, people curtailed are finally not losing so much: the curtailed energy is not consumed,455

and consequently not bought, while the rest of the consumption is obtained at a cheaper price. Besides,456

no differences beyond 10% are observed among strategies and they are a consequence of consumers457

curtailment. Similarly, producers’ revenues are inversely proportional to producers curtailment: for all458
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strategies except Profitable full service, it decreases from 4.4 to 3.6 M€per year when 20% of people459

participate to DSM and then rises to 3.9. For the Profitable full service strategy, it decreases continuously460

with DSM, to 3.5 M€per year. Concerning the aggregator’s profits, presented on Fig. 6d, Profitable461

Full Service strategy, once again, differs from the others, earning less and less than the others as DSM462

increases (up to 11% less). The effect of DSM is interesting here: an important increase is seen between463

the reference scenario (510k€) and the 20% DSM cases (614 and 626k€). This comes from the better464

usage of local RES allowed by DSM. As renewable energy is cheaper, it improves aggregator’s benefits.465

Meanwhile, as observed earlier, going beyond 20% does not increase significantly this usage. Thus, when466

DSM is adopted by 40 to 80% of the population, the reduction of consumption, combined with the lower467

tariffs offered by DSM, lead to a reduction of the benefits. However, there is still place for a profitable468

business for an aggregator, showing thus the feasibility of such modifications of the market.469

4.2 smart electrical and thermal grids470

The results for the multi-energy network are detailed in Table 5 (electricity/heat). Here, the aggrega-471

tor has access to a PV plant, WT and a connection with the national grid to satisfy electrical needs472

of the 5 000 dwellings. Space heating and DHW are covered by a DH having access to a BB and a473

HP. As previously, various profiles over the year are presented in Fig. 8 for the AFM20 and AFM80 cases.474

475

Beginning by the analysis of the peaks, it is noticeable that increasing DSM always allows to decrease476

largely consumption peaks, for both electricity (from 7.2 to 3.7 MW) and heat (from 11.3 to 5 MW)477

(Figs. 5a and 5c). Profitable strategies are better for high levels of DSM participation (up to -25/45%478

compared to autarky, and the same behaviour is observed for partial service compared to full service479

(around -10% for both energies). Meanwhile, when 20% of people have DSM contracts, the peak is480

not better than the reference for heat and even worse for electricity (from 7.2 to 8.6 MW). This is a481

matter of timing: generally, partial service strategies tend to serve earlier than full service. Nonetheless,482

increasing DSM allows to reduce mismatch peaks for consumption for all strategies. Production peaks,483

however, never change on both networks for different reasons. On the electrical grid, the two RES, PV484

an WT, are not controllable, with no reduction possibility. Meanwhile, the mismatch peak for produc-485

tion tells us that DSM is unable to improve the usage of this production peak: it comes form the fact486

that electrical loads are far less flexible than thermal ones. On the DH side, production peak measures487

the BB production; 2 MW being the max capacity. It means that it is used at full capacity at least488

once in the year. There is no mismatch on production on the DHN because, as the production is fully489

controllable, the plant is activated only when consumption is available.490

491

One of the consequence of this is that, contrary to electricity, all the DH production is consumed. As492

said before, the lack of flexibility for both production and consumption forbids DSM to improve self-493

consumption: in all cases, reference scenario included, it goes from 60 to 65%. However, the coverage494

rate is really improved by DSM for both electricity (+73%) and heat (+45%). Fig. 6a shows the aver-495

aged coverage rate, both energies included. The chosen strategy has little influence for electricity but496

not for the DH: Profitable strategies are a bit more efficient (up to +10% more).497

Curtailment on the consumer side increases with DSM. Highest values are observed for heat (up to 87%)498

than for electricity (up to 57%), for an average of 71-76% for both energies, as shown on Fig. 6b. The499

chosen strategy has a significant impact, but differently for electricity and heat. Profitable strategies500

practice less curtailment than autarky ones (from -25 to -43% for full service and from -30 to -63% for501

the other) on the electricity grid. It has opposite effects on the DH: it goes up to 87% for Profitable full502

service, 69% for Profitable partial service, 66% for autarky full service and 62% for autarky partial ser-503
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vice. For producers, there is no curtailment for the electrical grid (PV and WT being non-controllable).504

In the DH, it works as observed in the previous section: the maximum curtailment is reached at 20% of505

DSM participation and then reduces to 90% when DSM increases, just like in the electricity-only grid:506

DSM offers new opportunities to use the local plant. All strategies are equal (between 27 and 31%)507

except Profitable full service, which curtails 50% more.508

509

As observed in the previous example, producers’ revenues are inversely proportional to producers’ cur-510

tailment. Consequently, they are always equal to 1.9 M€per year for electricity and evolve a bit for511

heat. They are around 1.0 M€per year for Profitable full service and 1.3 M€per year for the others.512

Concerning consumers’ bills, depicted on Fig. 6c, they decrease with DSM, in the same proportions for513

electricity and heat (-30%), for almost all strategies. The only exception is the Profitable full service514

strategy for heat: as it curtails more, bills are lower, with a maximum reduction of 50% when compared515

to the reference scenario. Lastly, aggregator’s benefits, presented on Fig. 6d, are always positive overall516

but, in configurations with 80% DSM, it looses money on the DH alone. Generally, increasing DSM517

tends to reduce the benefits, because of curtailment and lower tariffs (from 178 /170 k€per year to 72518

/-69). Among the different strategies, close results are obtained for electricity. For heat, however, Prof-519

itable partial service strategy is noticeably worse: it earns between 12 (with 20% DSM participation)520

and 36 k€(with 80% DSM participation) less than the other strategies.521
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Figure 7 – Examples of local production (black, left axis) with the total production and consumption
(blue and green, right axis) for the AFE20 and AFE80 cases (left and right respectively)
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Figure 8 – Examples of local production (black, left axis) with the total production and consumption
(blue and green, right axis) for the AFM20 and AFM80 cases (left and right respectively)
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5 Conclusion522

In this study, PEACEFULNESS platform was used to explore the advantages and drawbacks of DSM523

techniques on multi-energy smart-grids, but also the equivalence between physical and economical ap-524

proaches. In the same time, the influence of the number of participants on the flexibility was addressed.525

Two situations were considered, a smart electrical grid and a smart electrical and thermal grid, with pres-526

ence of RES each time. These networks involved several thousands of customers, with tens of thousands527

controllable and non-controllable devices offering thus different levels of elasticity. Finally, several tens528

of simulations were performed, varying the proportion and type of contracts among customers, as well as529

the strategy of the aggregators. In both examples, as expected, limited impacts are observed on produc-530

tion since it was set as rigid. Therefore, low curtailments and limited decrease of the profits are obtained.531

In contrast, a more pronounced effet is seen for consumers, more subject to curtailment. Consequently,532

there is possibly a strong decrease of the consumption peaks, yet accompanied by a decrease of the533

bills. In addition, the mismatch between supply and demand can be singularly reduced, and both self-534

sufficiency and coverage-rate are increased. Nevertheless, their improvement could be further facilitated535

by other type of organisation. All in all, little differences are observed between strategies, regarding536

both exchange and distribution policies: there is always less than 15% of divergence between them.537

This means that the economical approach did as well as the physical one, which highlights the boons538

of testing new market configurations. Finally, thresholds effects are observed especially for producer’s539

curtailment (and thus, revenues), consumption peaks and self-consumption. The main conclusions are540

the interests of DSM for increase the local use of RES, yet it has been demonstrated that further ben-541

efits could be obtained with forecasts and storages. The two options are under investigation, using a542

kernels approach [63] in the first case, and considering both electrical and thermal storages in the second.543

544

As perspectives, it is planned to extend the analysis by considering also behavioral schemes [64–69], and545

especially rebound effects [70–74]. Meanwhile, a more thorough analysis of the position of aggregators546

and of the interactions between the agents will be conducted to see if they must really play on vertical547

differentiation [75] or if sharing economy concepts could be developded [35] .548
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Highlights
• Iterative sizing method to account for the load control strategy in the design stage

• Method is illustrated through an example case with both electric and thermal loads.

• 10 scenarios evaluated, different load control strategies and types of contracts.

• Method proved to reduce equipment size and improve several other indicators.

• Method proved iteration-stable: all scenarios converged after 2 iterations.
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Abstract
Demand-side management and load-shifting strategies can reduce peak loads as well as temporal production/consumption
mismatch, two classic issues in district energy networks that integrate solar sources. Nevertheless, the classic current
sizing methods for such networks only consider the total demand, and not the possible loads after use of such techniques.
The present paper aim is so to ascertain the connection between the possible demand reductions and the capacity design
of generation sources. The study proposes an iterative sizing method with demand-side management as the central pillar.
It retro-fits production units by assessing the network’s overall performance through several criteria, both energetic and
economical and with operational considerations. Exergy, which accounts for the quality of energy and is especially useful
for multi-energy networks, is also considered. The method is illustrated on a mixed grid coupling a standalone heating
network with a local electrical grid. Thousands of residential dwellings, with haphazard demands covered by solar-assisted
technologies and a heat-pump are used in a series of ten scenarios with various management strategies, pricing policies and
types of end-user contracts. In summary, the iterative method reduced the number of installed solar thermal collectors
and photovoltaic panels by 13-38% and 8-30%, respectively. Furthermore, the method is stable: results converged after 2
iterations, in all scenarios. We also discuss the influence of low or high demand-side management penetration rate, and
the final sizing selection by the decision-maker.

Keywords: Sizing; Demand-Side Management (DSM); District Energy Networks (DEN); Solar energy; Mixed-energy
grids; Exergy.
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Nomenclature

Latin symbols
A surface area, m2

a0 optical efficiency, −
a1 first heat loss coefficient, W m−2 K−1

B benefits, €
C consumption, kWh
C cost, €
CAPEX capital expenditures, €
CF cash flow, €
COP coefficient of performance, −
CRF capital recovery factor, −
d duration, s
E total energy, J or kWh
I solar irradiance, W m−2

LCOE levelized cost of energy, €/(kWh)
LT life time, year
O&M operation and maintenance costs, €
P power, W
P price, €
Q heat, J
r discount rate, %
T temperature, K or °C
t time, s or h

Greek symbols
ε exergy efficiency, − or %
η efficiency, − or %

Subscripts and superscripts
amb ambient
avg average
avl available
cons consumed
d day
elec electrical
ht heating
Ht heat needs
pp piping
req required

Acronyms
CHP combined heating and power
DHW domestic hot water
DLC direct load control
DR demand response
DSM demand side management
EDF Électricité de France
HP heat-pump
IEA International Energy Agency
PV photo-voltaic
RTP real-time pricing
ST solar thermal
TOU time-of-use
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1 Introduction

1.1 Foreword
According to the 2018 version of "world energy outlook" from the IEA [1], the total primary energy
demand should increase between 26.8% and 37.7% in 2040 depending on the scenario implemented (new
or current policies respectively), while the heating and cooling energy requirements should increase
respectively by 70% by 2050 [2]. Furthermore, in both of the IEA cases, and even for the last scenario
(called sustainable development1), it is planned a strong increase of the renewables capacity of 98%,
125% or 211% respectively for the same period, since almost all countries in the world are trying to
tackle the issue of decarbonization. On this point, the reader is referred to Loftus et al. [3] for an
interesting analysis on the relative feasibility of seventeen global decarbonization scenarios. Meanwhile,
many energy policies or roadmaps tend to aim to better energy efficiency in all sectors (transport,
buildings, etc.) or to better address the corresponding issues [4]. As an example, the European Directive
2012/27 [5] thus clearly stated quantitative targets for the year 2030 and beyond in its Chapter I Article
1. Nonetheless, increased efficiency can sometimes be followed by rebound effects, either globally [6] or
at the household’s scale [7]. As far as renewable generation is concerned, the projections concerning the
retained technologies clearly show that solar and wind energy should pave the way, though hydropower
will still be deployed when feasible and bio-energy (especially the developing hydrogen sector) should
also play a significant role. However, the former solutions are clearly known to face foreseeability and
intermittence issues [8], as for instance with large PV deployment [9], not to mention possible negative
prices as it has been observed in Germany [10] or in the US [11]. Despite no noticeable harmful effects
are noticed for the moment, these difficulties are already appearing due to the present shift towards
more decentralized and distributed energy resources (generation and/or storage) and the increase of the
number of prosumers.
As a matter of fact, it is generally admitted that the promotion of flexibility is one of the main solutions
to solve the above difficulties. As there are different methods and approaches to define and implement
flexibility measures (which are well presented in Lund et al. [12]), there is not one unique solution
to handle such a problem. Firstly, the flexibility can arise from intrinsic features of some devices
relying for instance on their operational flexibility potential, for electric systems [13], heating systems
for housings [14] and inter-connection between technologies [15], or even by re-orienting their use as with
thermal plants operated as combined heat-power (CHP) plants [16], and also simply with these latter
ones [17,18]. Another possibility is to rely on the demand side, as for instance by playing with the thermal
inertia of buildings [19], of buildings cluster [20], of district heating networks [21] or even both [22].
Secondly, the energy storage, for instance, can give fast or long flexibility depending obviously on their
size but above all on their type: electrical [23] and battery-types [24], short and/or long term thermal
storage [25], separated or combined [26]. Added to this, they can be used alone or combined [27], or even
in a combination of various technologies and types [28]. Thirdly, the flexibility can be the result of a
better integration and synchronization between various energy networks inter alia the electrical grid and
the gas grid but also with the more and more common district heating (and/or cooling) networks [29].
The concept of the 4th Generation of District Heating and smart energy systems [30] is completely in
phase with this approach, as well as the development of integrated community energy systems [31],
energy hubs [32] or coupled district heating and electrical distribution networks [33]. Last but not
least, the flexibility can come from the use of intelligent systems or smart-grids, originally designed

1in which the total energy demand is decreased by -1.84%, yet which is also pointed out as requesting a "complete
reversal of the historic relationship between economic growth, energy demand and emissions"
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for electricity networks [34], but showing high potential, as demonstrated for Europe and the US or
Brazil and India [35], and which can ease the coordination between renewable generations and energy
storages for example [36]. Furthermore, such concept is applicable to thermal grids and mixed/combined
grids [37, 38]. Finally, these approaches are also often relying on adaptation of the load/demand side
with the use of demand side management (DSM) or demand response (DR) techniques. Indeed, the
corresponding potential and leeway appear to be high in Europe [39], be it in district heating [40] or to
manage slow or fast power requirements [40].
In the present study, the retained approach will combine four of the five above possibilities, letting aside
energy storage.

1.2 Literature review
A rich and ever-growing literature is devoted to smart grids and DR and DSM, and studies pertaining
to multi-energy grids and their design and capacity sizing are ubiquitous. A stringent analysis should
require a painstaking review that is clearly beyond the present scope. However, the corresponding papers
demonstrate two important characteristics [36,40–42]: i) adapting the demand leads to a decrease of the
peak consumptions and a strong modification of the load profiles, ii) capacity sizing (and corresponding
single- or multi-objective optimization) usually use both features as set-points. Considering these two
points, it is clear that a possible quandary is undoubtedly entailed by the fact that these two effects are
not considered altogether.
Thus Stötzer et al. [43] have interestingly studied the theoretical potential of DSM. Considering a
German city of 500,000 inhabitants, they pointed out that an optimization process based on genetic
algorithms can lead to a reduction of the peak consumption from 120 MW to 80 MW, and to integration
of 8 GW of renewable generation. However, these possible reductions are not used to question the
sizing and capacity needs of the whole system, which are let as future perspectives. In Pan et al.
[44], the differences in time-response of an electrical grid and a district heating network, where CHP
units dominate, are used to correct several types of disturbances. In conjunction with the topic of
the present study, it is proven that both electricity and heating systems can be affected by any effects
modifying the normal strategy of operation. Besides, it is stated that this work is only an elementary
step and that future studies should consider (among others) more strategies and operational conditions.
In [45], Amrollahi and Bathaee propose an interesting techno-economical study of an electrical micro-
grid involving both PV and wind turbines as well as battery storage handled without or with DR. The
minimization of the total net present costs with HOMER has demonstrated that the sizing is influenced
since a 36.8% peak reduction is obtained together with a 57.9% increase in the load factor. So, it
highlights the link between DR programs and sizing optimization. Nevertheless, the test case concerns
only a forestry camp, that is to say an autonomous microgrid of a relatively low size. Besides, it is
conducted only for electricity, and added to this, only for the nondispatchable renewable sources. Even
closer to the present study, Bahl et al. argue in [38] that DSM should be considered when optimizing an
energy network for industrial applications. For the trigeneration system they are considering, with three
absorption chillers, three compression chillers, two boilers and three CHP units, very interesting results
are obtained. For instance, they show that the most promising steps to perform DSM are not only those
with demand peaks, and consequently that heuristics focused on these latter are not sufficient. Here
again, the influence of DR strategies on the consumption and associated sizing is so identified. However,
the industrial situation is still limited, and perspectives call for an application to general energy systems.
More recently, Khawaja et al. have performed in [46] an enlightening study for the city of Newcastle
UK. An evaluation method is proposed to compare the initial sizing of an electrical standalone hybrid
grid (with PV, battery storage, diesel combustion engine and a fuel-cell) with the implementation of
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a similar system obtained using finite automata. Considering only PV capacity, it leads to more than
50% of decrease, from 140 kW to 60 kW. Therefore, the benefit of a retro-active sizing is shown, yet
it is done for a standalone electricity-only grid and should be enlarged. Meanwhile, the tested energy
management strategies do not focus on the classic and well-known DR methods.

1.3 Contribution and novelty of the study
With regard with the previous analysis, there is an impetus for a crossover study focusing on the
interconnections between loads modifications due to DR programs and the capacity sizing of generation
sources in multi-carrier energy grids. The main role of the present paper is thus to pinpoint these
possible impacts of DSM on the sizing of the generation units. The modification of the sizing for the
underpinning systems is so analyzed from both an energetic and an economical point of view, for the
consumers, but also for the aggregators when present. As far as "smart" devices and energy management
strategies are concerned, since they are prone to be more and more integrated (specifically with the rise
of the 5G), another research question is the assessment of their impact on the sizing and if integrating
DSM is worthy or not.
In terms of contribution, this paper describes a mixed grid coupling a standalone heating network with
a local electrical grid, connected with the national grid, in which aggregators can set DSM for customers
eager to adopt it. Renewable generation is ensured by PV panels and solar thermal collectors, which
are intermittent. A heat-pump (HP) is also available in case of insufficient heat supply. As the primary
objective is to assess the effect of DSM on sizing, a simplified case is chosen where neither energy
storages nor forecasting are considered. Then, two types of sizing are considered: i) a first one based
on the consumption peak (i.e. the classic and usual method); ii) a second one based on the mean
consumption. Furthermore, two types of DSM techniques are tested, direct load control and curtailment,
together with two levels of penetration of the associated contracts (i.e. two various proportions of agents
embracing them). Last but not least, three strategies are scrutinized concerning the business-model for
the aggregator and so the energy exchanges. All these steps are performed with PEACEFULNESS [47,48], a
platform for transverse evaluation of control strategies for multi-energy smart grids, developed in Python
and whose aim is to simulate or manage such networks.
The novelty of the present work is threefold.

• The network investigated, the most extended so far in this DSM-integrated sizing approach, in-
volves thousands of customers and two types of energy (electricity and heat). In addition, from
the demand side, stringent test cases are also considered with these thousands of inhabitants, since
they are clustered in three main load profiles corresponding to different types of families yet with
randomized variations among them to present their own needs in electricity and heat.

• Secondly, the district heating network is considered in the economic analysis. Moreover, the
levelized costs of energy are computed for both the electrical and heat grids.

• Thirdly, a painstaking analysis is conducted for several performance indicators involving specifi-
cally the self-consumption and coverage rates but also the exergy efficiency and the bills and profits
(if any) are calculated for respectively the customers and the aggregators.

The rest of this paper is organized as follows. Section 2 describes the methodology for the sizing
procedure and its iterative retrofitting, and the modeling framework. Section 3 presents the case study
and experimental plan. Finally, the results and discussions are developed in Section 4, and conclusions
and perspectives are drawn in Section 5.
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2 Methodology
As shown in Fig. 1, the approach is based on a 7-steps procedure integrating DSM techniques:

0. Case definition. The number and types of dwellings are given, together with their demands
for each energy types, which permit to size the capacities of the various technologies (ST, PV,
HP). Here, two sizing rules are used, based on the peak or average consumptions. Then, the DSM
strategy is set and the sizing adapted iteratively until convergence is reached. Meanwhile, the
relevant assessment criteria to identify the best DSM strategy are detailed.

1. Demand profiles. They differ from the consumption profiles since the former are static, and
correspond to the ’ideal’ energy needs, while the latter represent the real consumption, depending
on the DSM arbitration. The basic profiles come either from real operational data or are calculated
with surrogate models.

2. First sizing. Knowing the demands and the above sizing rule, capacities are computed, as well
as the LCOE. Note that at this step, the optimal size of the production units can be determined
by a mono-objective optimization assisted by any numerical tool.

3. Pricing policy. Tariffs are attributed for all agents (consumers, producers, aggregators), depend-
ing on the basic structure (TOU, real-time pricing, etc.) and on the associated adaptations when
DSM is involved.

4. DSM configuration. Two techniques can be used here in the iterative process, namely DLC and
curtailment, with various ratios of consumers adopting them.

5. Iterative sizing. The following steps are repeated until convergence (associated parameters were
defined in 1). Note that the method is not dependent on the chosen DSM tool:

(a) Simulation of the DSM-governed grid.
(b) Calculation of the new sizings, LCOE and prices based on these results.
(c) Comparison between the new sizing and the previous one.

6. Final suggestion for decision-maker(s). The list of the possible sizings is presented, accom-
panied by their performance criteria (production and consumption peaks, self-sufficiency, exergy
efficiency, etc.), to help stakeholders in the choice for the most suitable operation-mode.

For the real-time management of the multi-energy grids, as done in the step 5.a), the PEACEFULNESS2

model is used [47,48]. It is a multi-disciplinary tool, involving physicists, economists and jurists, which
allows to handle a multi-agent-based system where a partial or complete control of either the supply
or the demand can be done. The digital platform based on this structure can simulate micro-grids,
at the housing’s scale or for districts or cities, which are able to operate in standalone modes or in
connection with one or several macro-grids (such as the national or regional electrical grid). These grids
can describe various types of centralized and distributed multi-generation, both fossil and renewable,
such as hydraulic dam, biomass burner, PV, wind turbines. . . On the other hand, a lot of different loads
can be set and customized in function of their size or other features or number of associated people
as for example with R − C models and set indoor temperature, consumptions profiles for domestic hot

2platform for transverse evaluation of control strategies for multi-energy smart grids
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Figure 1 – Schematic representation of the algorithm
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water. . . The cornerstone between demand and supply relies on aggregators. These are special agents
which can be either independent and act as third-parties, or be associated with an other agent such as a
customer or group of customers, or even a distribution system operator. Their main role is to authorize
or forbid some devices to produce or consume energy. To supervise these choices, they have access to
various features of the demand/supply (quantity involved, emergency, associated price, etc.) relative to
the ongoing round. For the sake of clarity, all values represent the real-time loads, and no forecasting
nor uncertainties are considered in the present case. In practice, the aggregators also have to fulfill the
rules defined in the contract (e.g. acceptation or not of curtailment or shifts) between a consumer and
the energy providers. Obviously, customers participating to DSM have access to a lower price of energy:
the higher level of constraint accepted, the lower price of energy. Last but not least, the local balances
are governed by a given strategy (such as autarky for instance), which vary among the tested scenarios.
Contracts and strategies are detailed in section 3.1.3.
In brief, the algorithm used is composed of 6 steps, as described in Fig. 2:

1. Devices express their needs by sending a message to their contracts.
At this stage, only physical considerations are taken into account.

2. Contracts complete this message, adding a price and specifying if the device request can be re-
ported, canceled, half-served. . . Then, this completed message is sent to the aggregator.

3. The aggregator makes a balance of production and consumption. Notably, it distinguishes between
the urgent demands, that must be served, and the non-urgent demands, presenting more flexibility.

4. The aggregator exchanges energy between district heating network and local electric grid.

5. The aggregator decides which quantity of energy is bought from or sold to the national electric
grid.

6. The aggregator distributes the energy ’permits’ or orders among devices.

7. Devices update themselves according to the decisions made by the aggregator.

3 Description of the tests

3.1 Configuration
The energy system consists in a small district, schematized in Fig. 3. It involves both a district
heating network and a local electric grid, which is also connected to the national grid. The loads
correspond to various buildings, occupied by different types of families, with their own electrical and
heat needs. Renewable generation is provided by PV panels and ST collectors, and a HP is also available
to compensate any default in heat. The external grid is supposed to accept infinite injections or demands
without any limitations. Fig. 4 illustrates all these elements, and provides a line diagram showing the
configuration of the integrated heat and electricity system.

Concerning the two aforementioned sizing rules, the peak-approach does not raise issues on the de-
mands, yet contingencies are plausible and the corresponding costs are clearly maximized (and resources
not optimally used). In contrast, for the mean-approach, far cheaper, a possible risk of lack of energy
could arise. In both cases, an aggregator is responsible for ensuring the balances of the grids, by means
of two actions: distributing energy among the various carrier energy systems, or exchanging with the
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Figure 2 – Process of one round of the DSM tool
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national electrical grid. There are two key parameters here: the strategy applied by the aggregator
(favorizing self-sufficiency or profitability), and the proportion of DSM contracts among the consumers
(from 0% to 67% participation to DSM). For each run, the overall performances are evaluated through
various indicators: energetic indicators (self-consumption, peaks of consumption and production, over-
all exergy efficiency, etc.) but also economic ones, like the aggregators revenue or the bill paid by
consumers. This hybrid energy grid is located in Pau, France whose corresponding meteorological data
(solar irradiation and ambient temperatures) are extracted from PVGIS [49]. It is simulated over 1 year
with a time step of 1 hour.

3.1.1 Construction of the demand profiles

Demands from the 2,000 dwellings come from various apparatus (see Table 1), which are all modeled
individually. The behavior of each device is defined first by its type, indicating if shifts and power
adjustments are authorized, and then by its technical features. For instance, it can be its efficiency,
maximal power (if any), full description of a complete cycle (e.g. washing machines, dishwashers and
dryers), etc.. Lastly, a user profile is giving the pattern of utilisation (e.g. every evening, once a week).
Practically, the duration of cycles and consumptions of dishwashers, washing machines and dryers were
extracted from [50], whereas the background profile (see Table 1 ) is generated by the activity tool
developed by Richardson et al. [51–53]. Space heating is modeled through a classic physical bottom-up
lumped capacitance model, using a RC model for the building [54]. We considered here that the two
apartments had the same surface and thus the same heating demand. For the user’s behaviors, we
distinguish between evening and night. In the evening, the set temperature is 20°C± 1°C, which means
that the comfort is ensured while the temperature stays between 19°C and 21°C. During the night, it is
18°C±3°C. For the DHW, a monthly variation is considered, in compliance with a French standardized
method [55], but a variable inlet temperature is taken all along the year (varying from 9 to 21°C). Some
examples are provided in Fig. 5.

Table 1 – Description of the dwellings

Type Number of Amount Devices
persons

Apartment 1 500 Background, heating, DHW, washing machine
Apartment 2 1000 Background, heating, DHW, washing machine, dishwasher, dryer

House 5 500 Background, heating, DHW, washing machine, dishwasher, dryer
n.b.: Background is an aggregated profile, combining TVs, computers, lights, kettles, etc.

Finally, all the temperature-dependent consumptions present monthly variations, as depicted in Figs.
5a and 5b, and the background electric consumptions are based on weekly variations, as illustrated in
Fig. 5c. Background profiles vary also with the size and the number of inhabitants. Shiftable loads
have, by definition, no predefined working periods but their consumption cycle is described in Tab. 2.
Besides, a randomization step has been added to obtain more haphazard profiles for the total needs.
It uses a Gaussian function to modify the peak and pattern consumption. In practice, the following
initial pertinent parameters, characteristic of the load, have been considered: the consumption level,
the duration of the usage, and the start hour. Each of them is modified through the following process:
the initial value of the parameter is taken as a mean value, and new profiles are built using a standard
deviation of this input. Then, a random draw is made and the randomized value is the one used in the
profile of the device. Consequently, the final real end-users present different patterns of consumptions,
which lead to aggregated profiles that are not a simple homothetic multiplication of a single profile.
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Here again, an illustration of the difference between the consumption profile of the apartment inhabited
by 1 person and the aggregated total consumption is visible in Fig. 6.

Table 2 – Example cycles for shiftable electric loads

Device Consumption ( kWh) Duration (min)
Dishwasher 0.5 then 0.4 48 then 30

Dryer 0.67 40
Washing machine 0.4 1

3.1.2 Initial sizing

The priority is given on solar PV for producing the electricity, but it is also possible to retrieve unmatched
demand by means of the national grid since the district is not islanded. Similarly, this grid can be used
in case of excess of production.
Concerning the installed technologies, a constant efficiency of 15 % is taken for the PV panels. In a same
manner, ST collectors represent the main heat generation sources. However, the excess heat produced
by ST is dissipated. The ST efficiency is calculated dynamically [56]:

ηST = a0 −
a1

I
(
Tfluid − Tamb

)
, (3.1)

with a0 = 0.833, a1 = 2.7095 W m−2 K−1 and Tfluid = 45°C.
In case of heat mismatch between production and consumption, the HP is used. It is a single unit,
directly connected to the district heating network, and it consumes preferentially PV-electricity to pro-
mote self-consumption. The COP is supposed static and its value set at 3.6.

Given the hourly power consumptions over the entire year, associated with the above load profiles,
it is easy to determine both the peak and average energy needs Pmax and Pavg. Then, the computation
of the corresponding surface areas is straightforward. Next, the sizing of the HP is based on the night
needs in heat. However, since these ones represent either space heating or DHW, a specific method is
adopted because the former is always supposed urgent (and must therefore be fulfilled) while the DHW
needs can often be shifted. Therefore, the heat peak due to space heating is first identified alone and,
then, the (possible) remaining available energy for DHW is computed:

Eavl = dnight
(
Pht

max − Pht
avg

)
, (3.2)

where dnight is the night duration, taken constant to 8h.
The sizing of the HP imposes thus that:

if Eavl ≥ EDHW
req then

PHP = Pht
max , (3.3)

else

PHP = Pht
max +

EDHW
req − Eavl

dnight
. (3.4)

n.b.: in the second case, the extra-need in energy for DHW is assumed to be delivered all along the
night in order to minimize the size of the HP.

Eventually, the sizing of the HP, and of both the total PV and ST areas, are obtained.
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Figure 5 – Variation of consumption for the different devices
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Figure 6 – Consumption profiles over one week

3.1.3 LCOE, contracts and energy tariffs, and management strategies
Among the various existing economic methods to assess the profitability of an investment, such as value
or rate methods, the LCOE [57] is often used since it permits to compare the effectiveness to produce
energy for a given amount of money. This is the retained parameter in the present study, and so its
annuitized value is calculated for each unit:

LCOEk = CRF (CAPEXk + Cpp + O&Mk)
Ek

, (3.5a)

CRF = r (1 + r)LT

(1 + r)LT − 1
. (3.5b)

Then the LCOE is computed for both electricity and heat. In the first case, electricity is sold at 10
c€/ kWh and bought at 20 c€/ kWh from the external grid. In the second case, the mean value is a
weighted average between the values of the ST and HP, depending on their respective energy contribution
to the final heat:

LCOEHt =

LT∑

i=1
QST

i LCOEST +
LT∑

i=1
QHP

i LCOEHP

LT∑

i=1

(
QST

i +QHP
i

) . (3.6)

All the needed values for the above parameters are provided in Table 3.

In the present study, the role of the contracts is twofold. First, they define the prices at which energy
is bought or sold. Second, they define the type of control allowed for the aggregator, for each device.
Three contracts are considered here:

• Business As Usual (BAU);

• Direct Load Control (DLC);

• Curtailment.
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Table 3 – Parameters values for the economic analysis [57–59]

Parameters Value or expression
PV ST HP

CAPEX(k€) 3.50 €/Wpk 0.94 k€/m2 1.47 €/W
O&M(k€) N/A 0.02%CAPEX CAPEXHP ×QHP

i

Cpp(k€) 0.10%CAPEX
LT 25
r 3%

BAU contracts force the aggregator to respect all the requirements of any device, which corresponds
to the case without any DSM. On the contrary, DLC and curtailment contracts allow the aggregator
to modify the profile curves. In the first case, this control of the load can be operated by i) modifying
the starting time (for dishwashers or dryers for instance), ii) slightly overheating or letting the temper-
ature decrease for space heating, as long as the temperature remains in the above operational comfort
temperature limits, iii) heating the DHW if the tank is not fully charged. In the second case, it simply
consists in a cancelling of the consumption. Obviously, in exchange of these constraints, the consumers
benefit from specific tariffs. Thus, the prices associated with the DLC and curtailment contracts are
respectively 10% and 20% lower than the current price (BAU). The lowest price for both heat and
electricity, is the rounded up value of their respective LCOE.

Lastly, three different strategies are considered for the aggregator, to decide the way to set the various
contributions of each agent, depending on the produced and needed quantities of each type of energy
and on the level and type of contracts in the set of consumers. For the sake of simplicity, no prosumers
are considered and all production units are assumed to belong to the aggregator. These strategies are:

• Always satisfied;

• Light autarky;

• Profitable.

Here again, the first one corresponds to no DSM and is the reference case. The Light autarky strategy is
designed to favor self-consumption: calls to the external grid are limited only to urgent demands. The
profitable strategy aims to maximise the profits of the aggregator, which ensures that urgent demands
are satisfied but will serve consumers only if it is less rentable than selling to the grid.

3.2 Simulation plan
Given the previous methods for the sizing, and the above types of contracts and strategies, an experi-
mental plan involving 10 cases is built; it is summarized in Table 4. The different proportion of people
participating or not to DSM are assumptions of the tests: we just assume that curtailment contracts are
less popular than DLC ones, as they are more constraining. Moreover, different prices are taken for heat
and electricity: flat prices (i.e. constant) and TOU prices (on and off-peak) are respectively chosen,
calculated. The corresponding values are given in Table 5; for the on-peak tariff, it is 40% higher than
off-peak, following the scheme of EDF (the French historic national electricity provider). As explained
in the previous section, they are derived from the calculation of the LCOE.

Preprint 17 Submitted to Energy

106



Gronier et al. June 10, 2021

Table 4 – Simulation plan

Name of the run Sizing ID Contracts proportion Strategy
Reference scenario mean Mean RM 100% BAU Always Satisfied

Light Autarky low DSM Mean ALM 67% BAU, 20% DLC, 13% curtailment Light Autarky
contracts mean

When profitable low DSM Mean PLM 67% BAU, 20% DLC, 13% curtailment When profitable
contracts mean

Light Autarky high DSM Mean AHM 33% BAU, 40% DLC, 27% curtailment Light Autarky
contracts mean

When profitable high DSM Mean PHM 33% BAU, 40% DLC, 27% curtailment When profitable
contracts mean

Reference scenario peak Peak RP 100% BAU Always Satisfied

Light Autarky low DSM Peak ALP 67% BAU, 20% DLC, 13% curtailment Light Autarky
contracts peak

When profitable low DSM Peak PLP 67% BAU, 20% DLC, 13% curtailment When profitable
contracts peak

Light Autarky high DSM Peak AHP 33% BAU, 40% DLC, 27% curtailment Light Autarky
contracts peak

When profitable high DSM Peak PHP 33% BAU, 40% DLC, 27% curtailment When profitable

Table 5 – Energy prices (in c€/ kWh)

Sizing Contract Electricity Heat
on-peak/off-peak

BAU 0.19/0.14 0.21
Mean DLC 0.17/0.12 0.19

Curtailment 0.15/0.11 0.17
BAU 0.39/0.28 0.31

Peak DLC 0.35/0.25 0.28
Curtailment 0.25/0.28 0.25
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3.3 Performance assessment of the DSM-governed grids
3.3.1 Convergence criterion

The proposed iterative process leads to a new sizing, depending on the loads modifications due to the
DSM. In order to control the convergence rate of the corresponding loop, the following criterion is
adopted:

ξ =

∣∣∣∣∣
An

P V − An−1
P V

An−1
P V

∣∣∣∣∣+
∣∣∣∣∣
An

ST − An−1
ST

An−1
ST

∣∣∣∣∣+
∣∣∣∣∣
Pn

HP − Pn−1
HP

Pn−1
HP

∣∣∣∣∣
3 (3.7)

It corresponds to the average normalized sizing difference, between 2 iterations, in terms of installed
capacity, for the different production units (PV, ST and HP). Then, we set 2% as the value below which
convergence is reached.

3.3.2 Performance indicators

Once the final converged sizing is obtained, each solution is analyzed by 10 different metrics, so as to
develop a broader analysis. All those metrics are expected to be DSM-sensible, as they derive from
energy management:

• the self-consumption rate and the coverage rate;

• the exergy efficiency;

• the curtailment rates for consumers and producers;

• the peaks of consumption and production, and the maximum energy mismatch;

• the benefits of the aggregator and the bill paid by consumers.

The self-consumption and coverage rates are, respectively, the proportion of the production consumed
locally and the proportion of local needs satisfied by the local production. They evaluate the level
of dependency on the national electric grid or, in other words, the level of autonomy and associated
resiliency.
The grid’s yearly exergy efficiency εgrid (i.e. upstream of the end-users) is the ratio of all useful exergy
outputs to the exergy inputs:

εgrid =

LT∑

i=1
Qend users

Ht

(
1− T0

Tgrid

)
+ Eend users

elec

LT∑

i=1
I
(

1− T0

Tsun

)
(AST + APV) + EEDF

elec

(3.8)

The useful exergy outputs correspond to the electricity Eend users
elec (kWh) and the heat Qend users

Ht (kWh)
sold to the residential end-users. In the case of electricity, energy equals exergy. The exergy content of
the heat delivered to residential users is calculated for Tgrid = 363K, which is an acceptable hypothesis
for the service temperature of a 4th Generation District Heating Network dedicated to a residential
application [60]. The reference temperature was T0 = 293K. As exergy inputs, the solar irradiance
I coming from the Sun is currently associated with a black body at Tsun = 5778K. This irradiance
varies over time, and its yearly profile was obtained for the city of Pau (France) from the meteorological
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database PVGIS [49]. Its annual sum was multiplied by the panels’ total surface in order to determine
the total solar input. The remaining input is the electricity provided by the national grid.
The curtailment rates represent the proportion of energy demand not covered, over the total energy
demand. They play a major role in the satisfaction of producers and consumers.
The consumption and production peaks are, respectively, the highest instantaneous consumption and
production throughout the year. The mismatch is the difference between local production and local
consumption. For electricity, the mismatch peak represents the peak of energy exchanged with the na-
tional electrical grid. For heat, it represents the peak of usage of the heat pump. Negative and positive
values correspond respectively to the sale and to the purchase of energy from outside.
The aggregator benefits are the profits made by the aggregator over the observation period, and con-
versely, the energy bills represent the average money spent by a consumer each month.

The case studied is summed up below:

• consumption: 2000 dwellings, key devices modeled individually, basic profiles randomized

• production units: HP, PV panels and ST collectors

• 2 sizings, one based on the mean consumption and one on the peak consumption

• tariffs based on the calculation of the LCOE

• 3 different contracts: BAU, DLC and curtailment

• 3 different strategies: always satisfied, light autarky and profitable

• 10 simulations with different sizing, DSM participation and strategies

• convergence criterion based on the sizing of the 3 technologies

• technical and economic performance indicators. Among them, exergy is calculated.

4 Results and discussion

4.1 Analysis of the iterative process with the final sizes
Firstly, the initial results for the pre-sizing obtained with each method are presented in Table 6. Then,
in Table 7, the entire set of physical and economic results are given altogether, as well as the convergence
rate, after the iterative sizing. First, for all the scenarios, iterations converged in two steps below 2%.
Our interpretation of this fast convergence is that the case studied is quite simple in terms of DSM
possibilities. More precisely, the new sizings for the PV panels and ST collectors obtained after the
first round of DSM-governed simulations do not change significantly the situation for the aggregators
during the second round: they are constrained by the mismatch between the production period (around
midday) and the main consumption period (the evening). This is also the reason why the Heat Pump’s
nominal power remains at 3.8 MW, independently of the DSM approach (see Table 6). Would we have
included storage, more manageable renewable plants (such as dams) or demand and production forecast,
we would have more interaction between sizing and DSM. In this case, more iterations would have been
expected.
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For the sake of clarity, the LCOE is presented for electricity and for heat, and, for the latter, a distinc-
tion is made between ST and HP. Last but not least, it is worth mentioning that the HP power is the
same for every case, that is 3.8 MW; such a result is, ceteris paribus, very logical since the maximum
output is needed during night where all cases behave similarly in the present study.

Foremost, all surfaces and LCOE are higher when the sizing is based on the peak consumption. This
indicates a clear oversizing, and so such a method is not economically optimal. To further highlight
this point, one can note the values for the surface area, which are 2 to 4 times greater that with the
mean-approach. It can also be observed that the ST heat LCOE is between 2-fold and 7-fold higher
than for the HP. There are three factors leading to this result: 1) Investment cost of ST is higher than
that of the HP, especially when sized with respect to peak demand; 2) All heat produced by the HP is
sold to the users, while much of the heat produced by ST is dissipated; 3) Despite consuming electricity,
the HP is an energy-efficient unit due to its COP of 3.6. Furthermore, the influence of solar temporal
mismatch is an interesting point for analysis. Note how the LCOEs for electricity are 4 to 5 times lower
than those of heat produced by solar thermal collectors. Efficiency is certainly not the cause of this
discrepancy, since that of ST (60 to 80%) is higher than that of PV panels (15%). And although PV
has lower investment costs than ST, this only explains partially the differences in LCOE. Thus, the
most influential factor is the temporal mismatch. As it is later presented hereinafter, much of the heat
produced by solar collectors is dissipated (see red values in Table 8, at column "curtailment ratios",
sub-column "producers").

Table 6 – Initial sizings

Approach
Sizing LCOE (€/ kWh)

ST PV HP Heat (ST) Heat (HP) Heat (overall) Electricity (PV)
A(m2)/P(MW) A(m2)/P(MW) P(MW)

pre-sizing mean 8431/1.2 18165/0.93 3.8 0.483 0.104 0.165 0.109
pre-sizing peak 20985/3.80 48712/2.50 3.8 0.993 0.107 0.249 0.223

Table 7 – Final sizes

Run
Sizing LCOE (€/ kWh)

IterationsST PV Heat (ST) Heat (HP) Heat (overall) Electricity (PV)
A(m2)/P(MW) A(m2)/P(MW)

RM 8031/1.46 17233/0.89 0.535 0.106 0.174 0.108 2
ALM 6711/1.22 15222/0.78 0.398 0.125 0.182 0.105 2
PLM 6711/1.22 15222/0.78 0.372 0.157 0.218 0.105 2
AHM 5260/0.96 12792/0.66 0.297 0.159 0.198 0.102 2
PHM 5260/0.96 12792/0.66 0.317 0.152 0.218 0.102 2
RP 18340/3.33 48712/2.50 1.056 0.150 0.315 0.232 2
ALP 18347/3.33 44722/2.30 0.930 0.168 0.355 0.221 2
PLP 18347/3.33 49450/2.54 0.852 0.213 0.430 0.234 2
AHP 18340/3.33 44790/2.30 0.851 0.213 0.430 0.232 2
PHP 18340/3.33 48765/2.50 0.851 0.213 0.430 0.233 2

Preprint 21 Submitted to Energy

110



Gronier et al. June 10, 2021

4.2 Results for the different scenarios
4.2.1 Mean trends

The main results of the simulation of DSM-governed grids are presented in Table 8, differentiating
the electricity and heat values in blue and red respectively. First, it is worth mentioning that some
parameters are invariant: self-consumption of the district heating is equal to 100%, curtailment rate
of PV panels to 0%, and the consumption and mismatch peak for heat is 3.8 MW. These results are
completely in phase with the hypothesis or operational choices considered in this approach. Thus, the
district heating does not have any possibility to sell its energy so it imposes to consume it locally. Next,
it is not possible to cut-off the PV panels, and any excess in production is injected in the national grid.
For the mismatch, it corresponds to the HP power, whose sizing is imposed by the night needs, which
cannot be met by solar generations (without the help of energy storages).
Second, the self-consumption and coverage rates globally increase with active supervision and with
the ’popularity’ of DSM (i.e. their acceptance rate and increase of dedicated contracts). In the most
favorable case, it is possible to go from 75% to 88% in the mean sizing configuration, and from 51%
to 53% in the peak sizing configuration, in terms of self-consumption of energy produced by the PV
panels. For the district heating, the equivalent parameter is the curtailment rate of ST (i.e. the
percentage of heat dissipated), which is quite constant, whatever the scenario: it goes from 87% to
98%. Concerning the coverage rates, DSM is more effective for heat than for electricity. It is due to the
proportion of demand shiftable from the night to day, which is higher for heat (DHW production) than
for electricity (dishwashers, dryers and washing machines, not necessarily used daily). Generally, and
unsurprisingly, scenarios combining autarky with a high share of DSM contracts are the most efficient
in terms of independence from the grid. Another predictable tendency is the better self-consumption of
PV electricity (20-30% more) with mean sizing, and similarly, a better coverage rate (around 15% more)
with peak sizing. However, this increase in autonomy comes at the cost of curtailment of consumers: if
reference scenarios never cut them, it is not always the case for the others. Like before, it is in autarky
scenarios combined with high DSM share that this effect is the most important: in the mean sizing,
curtailment can achieve 40% for electricity and 78% for heat and, in the peak sizing, 34% and 80%. It
is interesting to note that the type of sizing (mean or peak) has only a little impact. This underlines
that, if DSM allows some financial savings, it could be at the cost of quality of service for consumers,
especially for curtailment contracts.
Lastly, an interesting point to raise is the behavior of the profitable strategy. Buying energy from the
national grid always costs 0.20 €/ kWh, but the off-peak price of electricity for customers accepting
curtailment is around 0.10 €/ kWh in mean sizing and around 0.23 €/ kWh for peak sizing. Therefore,
this leads incontrovertibly to a cut-off in the first case (mean sizing) but not in the second (peak sizing).
When looking at the peaks, it appears that behavior differs for each energy. It is most sensible for heat,
as it is impacted by both the degree of adoption of DSM contracts and the strategy since they tend
to increase the peak from 1.5 MW to 3.4 MW (+127%). In contrast, the sizing does not show any
significant impact, and the only noticeable effect is for autarky and high DSM with an increase from
2.6 to 3.4 MW (+31%). As consumption peaks occur, unsurprisingly, during night, only curtailment
can reduce them. Thus consumption peaks for electricity vary with DSM participation. Concerning
heat, it seems that, even with curtailment, the minimum amount of non-curtailable demand is equal
to the maximum power of the HP. This can explain why DSM, in our configuration, failed to reduce
significantly these peaks. On the electrical grid, the peaks of production and mismatch vary almost
only with the sizing approach. The mismatch peak even goes from a positive value, around 2 MW (a
purchase of energy) to a negative value of -2.8 MW (a sale of energy), that is to say a change in behavior

Preprint 22 Submitted to Energy

111



Gronier et al. June 10, 2021

and an amplitude in variation of 140% due to DSM.
Let us consider now the economic analysis. In peak-sizing approaches, the reference scenario is the

sole to loose money when selling electricity (-297 k€). In general, the mean-sizing approaches loose
revenue when peak sizing earn money. It comes from the evolution of the LCOE (on which prices
are indexed) between the mean and the peak sizing, which is slightly greater than 0.10 €/ kWh and
around 0.20€/ kWh respectively: as buying electricity from the national electrical grid is always equal
to 0.20 €/ kWh, it is rentable in peak sizing but not in mean sizing. However, though selling electricity
to the grid brings 0.10 €/ kWh, it is always disadvantageous for the aggregator, whatever the case.
Furthermore, the preponderant low values of coverage rates in all the scenarios (<34%) indicate an
important quantity of electricity taken from the national grid, which explains this difference. Another
interesting point to raise is that selling electricity to the heat pump is always a financial loss for the
national grid: as a matter of fact, the price on the electricity side is divided by 3.6 due to the efficiency
of the HP. Nevertheless, in the same time, selling heat from the HP is always a benefit for the district
heating. This explains why, in all scenarios, the aggregator earns money in the district heating (from
636 to 1890 k€), as its two sources are lucrative. Lastly, the benefits tend to decrease with the increase
of DSM, because this increase is accompanied with an increase in curtailment, as said above. From a
consumer point of view, autarky combined with DSM reduces the bill up to 32% in mean-sizing, but it
has to be linked with the curtailment rates. The savings are less effective in peak-sizing: the maximal
reduction obtained is 22%, in the scenario combining autarky with high DSM. Moreover, the profitable
strategy has a different impact depending on the sizing: in mean-sizing, it leads to similar bills than
the autarky scenarios, yet, in peak-sizing, the bills are the highest of all the scenarios. Here, it has to
be reminded that the participation of the agent to a DSM program reduces the price of energy: this
explains why scenarios implying high DSM are systematically cheaper than their counterparts with low
DSM. Lastly, as said before, the peak sizing multiplies the price of energy, for both electricity and heat:
it explains the increase of bills between the mean and the peak sizings (from 84-125 €/month to 164-280
€/month, i.e. +95% and +124%).

Finally, the overall exergy efficiency is notably higher with mean-sizing than for peak-sizing (20%
against 8%), especially due to temporal mismatch. The main explanation comes from the fact that,
with peak-sizing, large surfaces of solar panels are installed. However, without storage units, this does
not increase at all the matching between productions and consumptions. It is also important to remark
that thermal self-consumption, coverage rate and curtailment ratios are approximately the same, no
matter the sizing approach. In the same time, electric self-consumption drops notably when switching
from mean-sizing to peak-sizing, going from 75-88% to 52%. Consequently, one can conclude that
deterioration of the exergy efficiency mainly steams from the drop in electric matching indices. Lastly,
the relatively low values of exergy efficiency in all scenarios are somewhat typical of solar-driven systems.
Solar irradiation is a high-quality source with an exergy factor around 0.95. On one hand, heat delivered
by ST collectors has a much lower exergy factor (around 0.2), and this outweighs their high efficiency
(around 80%). On the other hand, PV panels deliver electricity with a low efficiency (15%) but their
exergy efficiency is 1.

4.2.2 Impact on consumption and production profiles

The Fig. 7 permits to identify that autarky has a significant impact. Consumption is globally lower,
due to the presence of curtailment contracts, which are not served at all. In contrast, the peak of
consumption for heat is higher than for electricity. This comes from the need of DHW during the
morning: in the reference scenario, these needs are satisfied early, during the night, while for the others,
this need is served at the last moment. This allows to employ the ST and to improve the use of renewable
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(c) Consumption of heat in mean sizing
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(d) Consumption of heat in peak sizing

Figure 7 – One day of consumption in all runs
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Figure 8 – Repartition of production and consumption over one day
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energy. On the contrary, on a year basis, the peak of consumption for heat is higher in the reference
case (it is reached during a night in winter). Added to this, the profitable strategies behave like autarky
in mean-sizing and like BAU in peak-sizing, for the reasons explained in the previous section. Thus, we
did not represent them in the figures 8, which compare the repartition of consumption and production
between the BAU and the autarky high DSM scenarios, in mean-sizing for a specific day in June. One
can note that both the PV and ST are able to satisfy the demand around midday and could even produce
more, though solar thermal collectors are switch-off and the major part of the PV production is sold to
the national grid.

4.3 Discussion on the choice of a final sizing
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Figure 9 – Crossed analysis using clustering method as a function of the sizing rule (mean in olive/peak
in orange)

It is now proposed to rise up to have a look on the practical consequences of the present results,
and how they can affect or help in a future decision-making process by stakeholders or policy makers.
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In fact, several methods have been proposed and tested, yet no selection has been done. Indeed, such
a choice is also a political or societal decision. As such, the final selection can be driven by different
objectives. After the presentation of the various results, depending on the DSM approach used and on
the adopted strategy for the business model, it is therefore impossible to define an universal objective
rule to incontrovertibly pilot these decisions. However, it is possible to build a clustering analysis in
order to confront some indicators so as to help in pinpointing the best political decision (in its primary
definition). Such an analysis is provided in Fig. 9.
For instance, the decrease in energy bills can be related to the rate of curtailment in Fig. 9a. Beyond
the logical higher bill due to higher costs when designing the entire system on the peak, it is also clear
that it will still lead to higher bills, even with high levels of curtailment (see ’ALP’ and ’AHP’). In
addition, when adopting the profitable strategy (’PLP’ and ’PHP’), the advantage for the customer is
absent, whatever the level of DSM since the bill is greater than the reference case. In contrast, with the
mean sizing, the bill is mainly governed by the level of DSM, and not by the business model (profitable
or light autarky). Put in perspective, this means that a peak sizing would undeniably create high bills,
even for more "virtuous" customers, who would agree to reduce their consumptions and accept some cur-
tailments. Besides, for a mean sizing, the choice of the customer to accept or not DSM is the paramount
factor, and is clearly more important than the strategy. This gives a high power to the customer, on
both its curtailment and bill.
From the aggregator viewpoint, see Fig. 9b, it can obtain higher benefits, but this can sometimes lead
to the disuse of some production units. This has to be related with the well-known marginal (produc-
tion/cost) analysis, that could help here. Furthermore, whatever the sizing approach (mean or peak), it
seems that Pareto(-like) frontiers appear, which reveal that each method can present some advantages.
In conclusion, the aggregator can have some earnings and in the meantime increase the use of the gen-
eration sources. In the same idea, it is shown in Fig. 9c how which scenario can help to choose between
favorizing the coverage rate or the self-consumption, and thus achieving more standalone behaviors. And
here again, the advantages of the DSM, and its mandatory or optional presence, is singularly different
for the mean and peak sizing.
Last but not least, the comparisons of the LCOEs in Fig. 9d clearly entail how the combination of a
sizing with a strategy can privilege one nature of energy over the other, and also how efficient can be the
level of DSM in each case. When thinking of the incentives that are often used to foster the deployment
of some technologies, such observation could give an interesting leeway.

To continue apace the analysis of the practical consequences of the present study, two major questions
are undeniably raised: how to handle the fact that the level of penetration of DSM and the corresponding
retained techniques may be unknown when designing the capacity ? Even if they are known, what if they
evolve with time ? The second question can be answered first since the modification of the sizing due
to the use of DSM could be studied more precisely. Moreover, other parameters, such as environmental
criteria could also be considered. Added to this, the resiliency of the results and analyses could be
further improved by bounding their variations, which could then help to quantify this possible risk.
When pushing further the reasoning, a practical answer can be proposed for the first question. If one
accepts that such uncertainties exist, or if the previous uncertainty quantification shows that large
deviations could occur, a very concrete conclusion could be to modify the sizing to take into account
this uncertainty. For instance, one could plan to install a device responsible for a small part of the
needs (e.g. 10 or 20%) and, contrary to the common sense, to choose a cheaper device with a lower life
time. And then, when this one will have to be replaced, it should be possible to see if it is still needed
or not. In other words, the possible adjustment could be integrated in the initial costs, and the money
savings will first come from the avoidance of the replacement costs. Furthermore, to alleviate the risks
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and stress on the energy providers, it is not inconceivable to imagine that an incentive policy could lead
to some regulations that will oblige the actors of the energy market to ensure certain levels of DSM,
even if DSM has a social cost. In the same manner that laws were voted to force the development of
renewable generation, similar objectives could be defined for DSM. The consumer could still be free to
choose or not such contracts, as they are constraining and can be seen as intrusive, to change her mind,
to change from provider to another, etc.. However the actors of the market would have to propose some
new contracts, incentives or any other actions (regulations letting the free market operating its own
choices) to guarantee these levels of DSM.

5 Conclusion and perspectives
The aim of this article was to propose a novel procedure for the sizing of multi-carrier energy networks,
combining several mixed grids, and to assess it through a simple case study. In brief, the main research
question is to investigate how the future modifications of the loads due to DSM implementation will
modify the design of the capacity. The main characteristic of the approach relies on the use of an
iterative procedure, which takes into account these modifications of the demand and supply profiles
due to the use of DSM and which consequently adapt the types and power of generation units needed
to fulfill them. In the present case, the technologies are focused on solar energy, yet without any lack
of generality. Thus, the method can be regarded as an "anticipatory retrofitting" of the design of the
generation units. It has been illustrated on a basis test case involving thousands of residential dwellings,
with various uncorrelated needs in both electricity and heat. The energy vectors are composed of a
district heating network, combined with a local electrical grid, which is also connected to the national
grid. The distributed multi-generation systems consist in PV panels and ST collectors, completed
by a HP. Two types of DSM are considered, namely direct load control and curtailment, and also
two different strategies for the aggregator enforcing these techniques. A series of ten simulations is
conducted to highlight the various interactions, as a function of these parameters. Meanwhile, several
performance criteria are scrutinized such as the exergy efficiency, economical value, self-consumption
and coverage rates, bills and revenues for the customers and aggregators respectively. . . The most
important conclusions drawn from this study are:

• DSM can reduce the size of equipments, the aggregator’s profits and the users’ final energy bills.
In the present case, the number of PV panels and ST collectors calculated by the sizing is reduced
by 13-38 % and 8-30 % respectively.

• The method is proven to be iteration-stable: results converge after 2 iterations, in all scenarios.
However, it is worth mentioning that this facility could be tempered if energy storages, manageable
renewable plants and/or forecasting would be present. Such remarks hold also for technologies like
CHP and wind turbines.

• Each DSM strategy improves some performance indicators at the expense of others, especially
the curtailment of consumers, which goes from 0% in BAU cases to 80% in the worst case. Since
comparison between the different strategies is complicated, a multi-criteria decision-aiding method
was developed and recommended after the procedure. Then, some guidance can be provided to
help stakeholders in the choices governing the energy policy.

Finally, as the method developed in this paper seems promising, future works will be realized,
focusing firstly on other types of technologies, especially combined heat and power and wind turbines,
but also on the addition of both energy storages and forecasting (as mentioned just above). Then, the
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forecasts of the weather, and consequently of productions, the forecast of demand and the forecasts of
prices evolution can be combined altogether to develop other types of strategies. It also permits to
be more closed to the real case. Simultaneously, other types of DSM techniques will be implemented,
specifically with the possibilities offered by the forecasts. In addition, it is also planned to scrutinize
the role and impacts of the possible initial uncertainties, as for example on the DSM adaptability and
reactivity, level of penetration, etc.. Lastly, the case study will be extended to consider more agents
and not only residential loads. This will allow first to test the scalability and also the convergence of
the method. Moreover, this will also lead to a diversification of the types of exchanges between all the
agents (consumers, producers, prosumers, aggregators) altogether.
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Abstract1

Residential sector plays an important role to combat climate change since it represents about2

40% of the global final energy consumption and 30% of direct CO2 emissions in the European3

Union. Moreover, it is expected that renewable energy development will create grid management4

issues. Then, polygeneration systems, specifically designed to satisfy the needs of a residential5

district, have some interest.6

This study is focused on the techno-economical assessment of such polygeneration systems. These7

systems are designed by an optimization tool to meet the demands of 50 dwellings. We tested the8

financial viability in term of Net Present Value, in 2 locations: Zaragoza, in Spain and Marseille, in9

France. While consumption levels are similar in these places, regulations are not. Three different10

financial configurations are investigated. The composition of the system and its CO2 emissions are11

also compared to a reference case relying on classical technologies (a gas boiler and a mechanical12

chiller).13

In the end, chosen technologies are similar, with different capacities: mainly PV, reversible heat14

pump, gas boiler and thermal energy storage. In all situations, the business model turns out15

profitable while reducing consumers’ bills and the CO2 emissions compared to the reference.16

Keywords: Polygeneration Systems; Aggregator; Net Present Value; Optimization; Renewable Energy; Residential
Sector
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Nomenclature17

Latin symbols18

A surface area, m219

a0 optical efficiency, −20

a1 first heat loss coefficient, W m−2 K−121

a2 second heat loss coefficient, W m−2 K−222

C cost, €23

C thermal Capacitance, J kg−124

CAP installed capacity, kWh or MWh25

CP power coefficient, −26

c specific heat capacity, J K−1 kg−127

CAPEX capital expenditures, €28

CF cash flow, €29

COP coefficient of performance, −30

D demand, kWh31

DD degree day −32

DCF discounted cash flow, €33

Dep depreciation, €34

DOD allowable depth of discharge, %35

E total energy, J or kWh36

EER coefficient of performance, −37

G irradiation, W m−238

Fm installation costs, €39

G building heat loss coefficient, W K−1 m−340

I solar irradiance, W m−241

IT income tax, €42

ItR interests rate, %43

LCC life cycle cost, €44

LCOE levelized cost of energy, €/(kWh)45

LF loss factor, %46

LHV lower heating value, J m−3 or J kg−147

LT life time, year48

M Very large number (i.e. 1e6), −49

MCR major components replacement, €50

N integer number, -51

NOCT nominal operating cell temperature, °C52

NPV net present value, €53

O&M operation and maintenance costs, €54

OPEX operational expenditures, €55

P power, W56

P price, €57

PP payback period, year58

Q heat, J or kWh59

q flow-rate, m3 s−1 or L s−160

R revenue, €61

R thermal resistance, W−1 K m262

RV residual value, €63

r discount rate, %64

SD self-discharge, %/month65

SOC state of charge, %66

T temperature, K or °C67

TI taxable income, €68

Tr tax rates, %69

t time, s or min70

U velocity, m s−171

V volume, m372

VAT value added tax, %73

z position, m74

75

Greek symbols76

η efficiency, − or %77

κ open-circuit voltage thermal coefficient, K−178

ρ density, kg m−379

ω weight of a representative day, −80

81

Subscripts and superscripts82

a air83

amb ambient84

c cooling85

/c cycle86

cd cold87

cell cell88

ch charge89

cut cutoff90

d day91

dw dw92

dis discharge93

el electrical94

fu fuel95

g gas96

gd grid97

ht heating98

h hour99

in indoor100

inv inverter101

m month102

nom nominal103
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out outdoor104

pan panel105

pp pipe106

pur purchased107

ref reference108

sld sold109

sp set point110

stor storage111

th thermal112

wt water113

114

Acronyms115

AbCh absorption chiller116

BEES battery electrical energy storage117

CCHP combined cooling, heating and power118

CHP combined heating and power119

CM cogeneration module120

DH district heating121

DHW domestic hot water122

EU European Union123

FC fuel cell124

FiT feed-in tariffs125

GA genetic algorithm126

GB gas boiler127

GHG green-house gas128

GIS geographic information system129

HP heat-pump130

ICE internal combustion engine131

IEA International Energy Agency132

IPCC Intergovernmental Panel on Climate Change133

IRR internal rate of return134

LCA life cycle assessment135

MILP mixed integer linear programming136

MINLP mixed integer non-linear programming137

MT micro-turbine138

PV photo-voltaic139

RES renewable energy system140

ST solar thermal141

TES thermal energy storage142

TSR thermal storage for heating143

TSQ thermal storage for cooling144

WT wind turbine145

146
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1 Introduction147

1.1 Foreword148

In the ongoing race for a decarbonized world, challenges are numerous. Indeed, current statistics and149

future projections clearly show an increase of the demand [1]. Unfortunately, this latter is still mainly150

based on fossil fuels, which endangers obviously the climate but also abiotic ressources. When analyzing151

more finely this demand, building sector represents 40% of the total final consumption in the EU, 75% of152

which being supplied by fossil fuels [2]. The increase by 2050 should be of 79% and 84% for the heating153

and cooling demand respectively [3]. Therefore, the residential buildings is identified by the IPCC as a154

paramount objective in the pathway to limit global warming [4].155

To tackle such a problem, the usual approach mainly relies on renewable energy sources (RES) and energy156

efficiency [5,6]. In the former case, the preferred solutions involve increased deployment of photovoltaic157

(PV) and wind (WT) energy as well as solar thermal (ST) energy [7–10]. In the latter case, several158

options are envisaged to increase. It is first planned to further develop district heating and cooling159

networks [5,11,12], and to integrate more smartness [13,14] and more cross-sectoral interactions [15,16].160

There is consequently a strong impetus for multi-energy systems [17, 18] which flexibilise the energy161

management, or more appropriately, to energies management since multi-energy flows are involved.162

Among the available technologies, heat-pumps (HP) and combined-heat-and-power (CHP) are serious163

candidates [6, 19, 20], especially in a context of renewable electricity or to pave the way for biogas or164

power-to-gas [2,18,21]. Secondly, the smart-grid concept could be further extended, especially to other165

energy networks, as well as the flexibility of the whole network. To achieve such a goal, it has been166

pointed out that the advent of aggregators should be promoted [22] to either access all types of market167

or to increase energy sharing (see for instance Chapter III, Article 16.3 of the previous reference).168

In the same idea, it appears that innovation in the development of new business models should be169

encouraged [23, 24]. Finally, it is worth highlighting that all these solutions should benefit or will170

probably require a more important use of energy storage [2, 10,23,25].171

1.2 Literature review172

With regard to the above discussion, it is clear that a broad portfolio of technologies is to be considered,173

together with polygeneration systems, when planning the features of the future energy network. Unsur-174

prisingly, many papers have been devoted to such a topic: the interested reader is referred to [14], and [26]175

for a recent review of future infrastructures involving them, but also to [27] for an overview of models176

and assessment techniques and to [28] for investment models assessment. To name but a few examples177

of their advantages, they are particularly well fitted in real-time demand response programmes [29] and178

help to gain in flexibility [30]; they permit to reduce CO2 emissions and capital costs [28, 31]; they can179

increase self-sufficiency [32,33], etc.180

Besides, it is common to use optimization when designing energy systems [34,35]. A complete literature181

review on this topic is out of scope of the present study, but it is just recalled that such optimization182

could be done either for a single type of energy or for multiple energy vectors. As an example, a techno-183

economic optimization of a stand-alone power-only grid, combining PV and WT and a diesel engine184

(ICE) with batteries (BEES), is conducted in [36] for ten houses located in Ghardaïa, Algeria. In the185

same manner, an autonomous isolated microgrid based on PV and WT and BEES is designed for Agios186

Efstratios (a Greek island) by means of a techno-economic analysis in [37]. Similarly, cost minimization187

is performed in [30] to optimally design a system involving PV and a CHP, as well as BEES and thermal188

preprint 5 submitted to Energy

132



Pinto et al. Economic assessment of a multi-energy aggregator November 1, 2021

storage (TES), so as to supply an isolated tourist resort in Northern Italy. Finally, integration inside a189

district heating of ST field and seasonal storages (with gas boiler as backup) is investigated for a 20 000190

inhabitants municipality in Latvia in [38].191

Afterwards, and closer to this study are works devoted to poly-generation technologies in multi-carrier192

energy systems. Let us mention here that the used taxonomy defines polygeneration technologies as193

appliances able to provide more than one type of energy and multi-carrier energy systems as networks194

involving several types of energy flows (produced either by single- or poly-generation systems). Thus,195

Weber & Shah used a MILP optimization to decrease emissions and increase self-sufficiency of a 6 500196

inhabitants eco-town in England by combining CHP plants with HP, together with PV, WT and ST [39].197

They showed that such a system can be cheaper than a business-as-usual situation. Then, two important198

conclusions are drawn: firstly, external (historical) grid appeared essential if storages are not involved,199

and secondly, ST is essential at the building level even if their role is minimal compared to the HP.200

In [40], Destro et al. considered the Italian resort mentioned above, yet for designing here a combined-201

cold-heat-and-power (CCHP) system composed of PV, CHP and reversible HP. Moreover, cold and hot202

TES, BEES and pumped hydro storage were also available. Their results highlighted that a system with203

the reversible HP was the most efficient, though it imposed a cold TES. Interestingly, Das & Al-Abdeli204

studied in [41] the influence of the electrical and thermal loads on the optimization of a stand-alone grid205

involving PV and BEES, and ICE or MT used as a CHP plant. The LCOE was not really impacted by206

the power management strategy, namely following the electric load or the thermal load or both. Besides,207

this latter possibility resulted in better performance. Next, Jiménez Navarro et al. proposed to optimize208

a CCHP grid for a park located in Málaga, Spain [42]. When minimizing the total annual cost of a CHP,209

with boiler as backup, combined with mechanical and absorption chillers and cold TES, they showed210

the importance of a base load demand to guarantee the performance in case of large daily variations. In211

addition, the demand uncertainties were clearly able to jeopardize the investment. Next, in the context212

of a high latitude community in Finland, Hirvonen et al. performed the techno-economic optimization of213

a system containing PV, ST and a geothermal HP, and TES [43]. A scaling effect was observed, leading214

to lower costs for the same performance, when considering 200 buildings instead of 50. Then, in [44], Li215

et al. optimized a multi-energy system combining PV and FC with CHP and electric and gas boilers.216

Hydrogen storage was also considered, together with the associated electrolyzer. It is worth mentioning217

that the location of the PV panels, ceteris paribus, influenced greatly the sizing of the other components.218

Moreover, a decrease of the investment costs of the FC and the electrolyzer increased the PV capacity.219

More recently, Bartolini et al. [21] were interested in power-to-gas potential in a multi-energy small220

district involving a large set of technologies: PV and FC, two types of CHP and air-source HP, sensible221

TES and Lithium-ion BEES, electrolyzer and hydrogen storage, electric air-conditioning-unit. . . For real222

user demands and renewable electricity production data in Austin, Texas, US, they conducted a MILP223

optimization to minimize the total cost which clearly showed the boons of multi-energy architectures224

and storages and their interests to achieve RES communities. Using also a MILP approach, Zhu et al.225

maximized the NPV or IRR of five different buildings in Shanghai, China [45]. The involved technologies226

were PV and WT, together with CHP and electric boiler and TES, as well as an absorption chiller and227

an electric chiller. Better results were obtained when the optimization criterion was NPV maximisation.228

Moreover, there was still a need for imported electricity and the impacts of both FiT and electrical and229

thermal mismatch were important.230

Finally, in parallel of these studies pertaining to optimized design, a huge work was also devoted to231

aggregators, specifically in the field of smart-grids. Indeed, these ones are more and more scrutinized232

and should be more and more encountered in real applications. Therein, the main role of an aggregator is233

to group distinct agents [46]. Though interesting, and aimed in a forthcoming study, the organization of234
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the smartness will not be discussed here. Instead, the focus is set on the business model of aggregators,235

particularly well presented in [46, 47]. The important underlying question is to asses their economic236

value [48]. It is indeed particularly tricky due to the current change of both the markets and the role237

of each actors, accompanied by some uncertainties or too strict legal rules [42] or, in the contrary, by a238

lack in regulation [49].239

1.3 Contribution and novelty of the study240

The main goal of this study is to investigate the economic viability of an energy supplier company241

delivering various types of energy to a set of several tens of customers. This intermediate company is242

delivering electricity, heat and cold with its own production and storage units, and it has access to the243

regional electrical and gas grids. Secondly, it plays the role of an aggregator, and as such, can singularly244

decrease the corresponding demand to these latter grids, and corresponding peaks. Furthermore, by245

investing directly in these equipments, it relieves such a burden from the basic customers who will not246

have to assume the initial investment costs and future operating costs. Therefore, the underlying idea247

is to look if there is an added-value for both this supplier and the customers.248

Several technologies are tested, in a polygeneration framework. Various business models will be an-249

alyzed. Lastly, this methodology is applied to two different locations (Spain and France) in order to250

scrutinize the effects of demand and regulations on the final sizing. This latter is done by optimizing251

a superstructure involving flexible appliances, RES and storage (both electrical and thermal). The ob-252

jective is to maximize the NPV [45, 50] through a MILP model, while paying attention to the CO2 eq253

emissions.254

In terms of contribution, the novelty of this study are manyfold:255

1. The range of the test cases is in the mid-term, that is to say between the current historical paradigm256

and an (hypothetical) completely decarbonized one.257

2. Evolutions of the energy prices are considered.258

3. Three business models are tested:259

(a) case A: constant price of energy and no resale authorized.260

(b) case B: variable price of energy and no resale authorized.261

(c) case C: variable price of energy and resale authorized.262

4. 12 representative days are identified considering hourly energy demand profiles, RES and CO2263

emissions from the grid, for both Zaragoza, Spain and Marseille, France.264

5. Optimization is conducted at a small district scale, for 50 dwellings.265

The paper is organized as follows. The methodology is presented in section 2 and the test cases in266

section 3. Section 4 is devoted to the analysis and discussion of the results, and section 6 concerns the267

conclusions and perspectives.268

2 Methodology269

The objective is to attend the demand (electricity Edw,el, heating Edw,th and cooling Edw,c) for a residen-270

tial building compound of 50 dwellings. Usually, the dwellings owners (customers) enter directly into271
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individual electricity and gas contracts to fulfill their demands. As mentioned previously, this study272

aims to evaluate the feasibility of modifying this organization by the introduction of an intermediate273

company: a third-party, illustrated in Fig. 1, between the customers and the historical grids. This274

third-party aggregates the demands of the consumers, and also owns different multi-carrier energy sys-275

tems. By means of polygeneration and storage, it can offer interesting prices on the long term, due to276

lower losses and operational and maintenance costs. It can also sell energy surplus or rely on the outter277

grids. On the other hand, the customers do not have to pay the capital expenditures but can still access278

to cheaper (possibly decarbonized) energy. Added to this, they will keep the possibility to change their279

energy provider and they are not stuck to binding contracts.280

The analysis is performed for Zaragoza, Spain and Marseille, France, considering thus different physical281

conditions. Likewise, the environmental impact is estimated for both locations through the calculation282

of CO2 eq emissions.283

Figure 1 – Illustration of the role of a third-party acting as an aggregator and an energy provider

2.1 Superstructure284

The superstructure depicted in Fig. 2 shows the technologies available to cover the demand. The effi-285

ciency of every technology is assumed constant. These candidate technologies can be divided according286

to the kind of energy that they provide. PV panels and wind turbines (WT) produce electricity; gas287

boiler (GB) and solar thermal collectors (ST), heat; and single-effect absorption chiller (AbCh), cool-288

ing. Some technologies supply two services, such as the cogeneration modules (CM), producing both289

electricity and heat, or the reversible heat pump (HP) providing heating or cooling. Lastly, thermal290

energy storage is available for heating (TSQ) and cooling (TSR), while batteries (BEES) are considered291

for electricity. Obviously, the required appliances, such as inverters and inverter chargers, are involved292

to take into account the need to convert direct current into alternating current and conversely.293
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Figure 2 – Basic components of the superstructure involved in the optimization design

Since GHG emissions are to be considered, the corresponding features of the electricity mix in each coun-294

try is considered. As shown in Fig. 3, the emissions are thus greater in Zaragoza than in Marseille, due295

to the availability of nuclear energy in France. Similarly, the legal coefficient for natural gas combustion296

are 0.203 kgCO2 eq/ kWh and 0.227 kgCO2 eq/ kWh in Spain [51] and in France [52] respectively.297
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Figure 3 – Hourly CO2 eq emissions from the electric grid for Spain [53] and France [54] in 2018
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2.2 Supply and demand298

2.2.1 Poly-generation production299

As mentioned above, there are many types of technologies considered in this study (see Fig. 2) which
are further detailed here. The first ones concern the RES producing electricity, namely PV and WT,
whose hourly power is for PV [55–57]:

Pel,PV = I A · ηPV · ηinv (2.1a)

ηPV(T ) = ηpan


1− κ

(
Tcell − T ref

cell

)
 (2.1b)

Tcell = Tamb +
(
NOCT− T ref

cell

)
I
Iref , (2.1c)

while WT production is calculated using manufacturers’ curves [58].300

In the case of heat production by ST, it is proportional to the mean difference temperature between the
collector temperature at 60 °C and the ambient temperature [38,59,60]:

Pth,ST = I A · ηST (2.2a)

ηST(T ) = a0 −
a1

I
(
T − Tamb

)
− a2

I
(
T − Tamb

)2
. (2.2b)

All the other production or conversion energy devices are completely controllable.301

Among devices delivering a single type of energy, only the GB and the AbCh are missing. The corre-302

sponding description is, for the boiler:303

Pth,GB = ηGB · qfu · LHV , (2.3)

and for the chiller:304

Pc,AbCh = COP · Pth . (2.4)
Finally, for cogeneration devices:

Pth,CHP = ηth,GB · qfu · LHV (2.5a)
Pel,CHP = ηel,GB · qfu · LHV , (2.5b)

and the reversible HP:

Pth,HP = COP · Pel (2.6a)
Pc,HP = EER · Pel . (2.6b)

n.b.: all these appliances provoke GHG emissions, whose values will be provided further (see Table 3).305

2.2.2 Energy storage306

For storage, the energy balance is done on an hourly basis, taking into account an energy loss factor.307

Whatever the type of energy stored (heat or electricity), the evolution of the available energy is:308

Eh+1
stor = LF · Eh

stor +
(
Pch

el − Pdis
el

)
∆t . (2.7)

preprint 10 submitted to Energy

137



Pinto et al. Economic assessment of a multi-energy aggregator November 1, 2021

In the case of BEES, the loss coefficient corresponds to the self-discharge value [61]. Besides the hourly309

energy losses, the round trip efficiency ηrt is also considered. Lastly, the number of cycles must be lower310

or equal to the cycle life of the battery:311

N/c ≤ N/c,failure . (2.8)

On the other hand, for both TSQ and TSR, sensible water tanks are considered since their heat losses312

are often lower [62,63] and, more important, because their technology readiness level is higher.313

2.2.3 Energies demand314

As explained before, consumption profiles are divided between heat (space heating and DHW – Eth,dw =
Eht + EDHW –), cooling and electricity. In the first case, heating and cooling needs are calculated with
a classic R− C model, or an average volumetric or total heat loss coefficient model [64–68]:

Pht,c = G · V · (Tsp − Tout) (2.9a)

Pht,c = C

∆t ·
(
Tsp − Tout − (Tin − Tout) e−

∆t
τ

)
. (2.9b)

Outdoor temperatures are taken from [69] and are thus different for Marseille and Zaragoza. C is set to
0.3 kWhK−1.
For the DHW demand, it is based on a wanted volume of hot water at 40 °C, varying monthly over
the year. Initial temperature of the water supplied to the tank is variable and taken from [70]. For an
average temperature in the tank of 60 °C, the DHW demand reads:

EDHW = ρwtVh · cwt · (60− Tpp) (2.10a)

Vh = V m
DHW

40− Tpp

60− Tpp
. (2.10b)

Finally, the electrical consumption is composed of a typical consumption week, with important variations315

between weekdays and week-ends, and also with differences between Marseille and Zaragoza. Fig.316

4 presents the consumption of the day where the peak consumption occurs for heating, cooling and317

electricity. These peaks are reached in December for heating and July for cooling. As electricity318

consumption consists in a typical consumption week, the consumption peak occurs the week-end. Lastly,319

the annual corresponding aggregated consumptions are gathered in Table 1.320

Table 1 – Annual energy demands in kWh/year

Location Dwellings Heating Cooling Electricity
Zaragoza 50 335 412 26 132 206 804
Marseille 234 300 11 014 206 755

2.2.4 Representative days321

Usually, when several time series and binary variables are involved, optimization is computationally322

expensive. Therefore, representative days have been widely used to tackle this issue [71, 72]. Since this323

work considers up to seven time series, some having high variability such as WT production and hourly324
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Figure 4 – Daily energy demand profiles at peak, for each energy type

CO2 eq emissions from the grid (especially in Spain), the kM-OPT method [73] was applied. This method325

merged two methods, the k-Medoids method developed by Domínguez-Muñoz et al. [74] which aims to326

group the days of the year into clusters; and the OPT method developed by Poncelet et al. [75] which327

fits the data duration curve obtained from representative periods to the duration curve of the original328

time series.329

Thus, a set of 12 representative days Drep can be built, where each representative day consists of a set330

H of 24 time periods h of 1 hour, with a daily respective weight ω for each location. The corresponding331

values are available in Table 6 and are discusses in section 3.2.332

2.3 Economic model333

2.3.1 Gross and retail energy prices334

The electricity and fuel prices depend on the total annual consumption: the higher the consumption,335

the lower the price. Consequently, it is logical to set different available prices for the customers and336

for the aggregator. Figs. 5a and 5b present the average price for the last 2 years for electricity tariffs337

for households and non-households respectively. Figs. 6a and 6b present the same average prices for338

the last 2 years for natural gas. In this sense, for the customers, the reference system is based on339

household tariffs, whereas the aggregator can buy at non-household prices. For electricity, in the 20-500340

MWh/year range, the tariff is 0.1477 €/ kWh for France and 0.1582 €/ kWh for Spain. For natural341
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gas, consumption below 288 MWh/year is expected in France, corresponding so to a tariff of 0.0622342

€/ kWh, whereas, for Spain, the expected consumption is about 0.28-2.8 GWh/year, for a tariff of 0.045343

€/ kWh. These are the average values for 2018 [76].344
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Figure 5 – Electricity prices [76]
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Figure 6 – Natural gas prices [76]

2.3.2 Energy prices evolution345

Electricity and natural gas prices have a high variability and tend to increase. From 2007 to 2019346

(12 years), electricity and natural gas prices in France and Spain have increased about 50% and 40%347

respectively (see Figs. 7a and 7b) according to the Eurostat survey tool from the European Commission348

[76]. Therefore, in a horizon of 20 years (2038), it is expected that electricity and natural gas prices can349

double or even triple, and hence, also the price of final energy (electricity, heating and cooling).350

As a consequence, in an horizon of 20 years, the hypothesis is that electricity and natural gas prices351

double following an exponential function Pi = P0(21/20)i (roughly +3.5% per year), where Pi is the352

unit price of each energy vector at year i. The final prices applied during the present simulations are353

represented on Fig. 8.354
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Figure 7 – Energy prices from 2007 to 2019 for households [76]
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Figure 8 – Retained projections for the energy prices evolution

2.3.3 Net present value355

NPV is a commonly used indicator to evaluate the economic viability of an investment, which applies a
discount to cash flows. The discount, r, is proportional to the year corresponding to the net cash flows,
after balancing the input and output flows. Such method allows to estimate if a quantity of money
earned immediately has more value than 10 years later.
In practice, one gets:

NPV = −CAPEX +
LT∑

i=1

CFi

(1 + r)i (2.11a)

CAPEX =
∑

set of technologies j∈J

(
Cj (1 + Fmj)

)
· CAPj · (1 + VAT) (2.11b)

CFi = Ri − OPEXi − ITi . (2.11c)

Revenue comes from the sales of the various types of energy (heat, electricity, cool) to the customer and,356

for case B and C, to the electricity fed to the grid:357

Ri =
∑

consumers
PEel,dw,iEel,dw,i + PEth,dw,iEth,dw,i + PEc,dw,iEc,dw,i +

(
PEel,sld,iEel,sld,i

)
. (2.12)
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Usually, the operational expenditures express as:358

OPEXi = MCRi +
∑

set of technologies j∈J

O&Mj,i , (2.13)

but in the present case, the second term only contains the operational costs consisting in the purchase
of electricity (Eel,pur, at unit price CEel,pur) and of natural gas (Eg,pur, at unit price CEg,pur), since the
maintenance costs are considered within the installation factor Fm in Eq. 2.11b.
Accordingly, Eq. 2.13 can be re-written:

MCRi =





∑

j∈J

CAPEXj

(1 + r)i
if i < LTj

0 otherwise
(2.14a)

∑

j∈J

O&Mj,i = CEel,pur,iEel,pur,i + CEg,pur,iEg,pur,i . (2.14b)

Finally, the income tax is:

ITi = TIi × Tr (2.15a)
TIi = Ri − OPEXi − Depi (2.15b)

Depi = CAPEX − RV
LT . (2.15c)

For the sake of clarity, the sum of the discounted cash flow appearing in Eq. 2.11a can be divided into
three parts: revenues, operational expenditures an income taxes. Thus, the first term will express for
the three cases considered here:

case A:
LT∑

i=1

Ri

(1 + r)i = ℵ
LT∑

i=1

1
(1 + r)i (2.16a)

case B:
LT∑

i=1

Ri

(1 + r)i = ℵ
LT∑

i=1

(21/20)i

(1 + r)i (2.16b)

case C:
LT∑

i=1

Ri

(1 + r)i =
(
PEel,sld,0Eel,sld,0 + ℵ

) LT∑

i=1

(21/20)i

(1 + r)i (2.16c)

with ℵ =
∑

consumers
PEel,dw,0Eel,dw,0 + PEth,dw,0Eth,dw,0 + PEc,dw,0Ec,dw,0 (2.16d)

Similarly, the second term reads (for all cases):359

LT∑

i=1

OPEXi

(1 + r)i =
LT∑

i=1

MCRi

(1 + r)i +
(
CEel,pur,0Eel,pur,0 + CEg,pur,0Eg,pur,0

) LT∑

i=1

(21/20)i

(1 + r)i (2.17)

And, eventually, the term associated with the income tax is straightforward, giving Eq. 2.15 and Eqs.360

2.16 and 2.17.361

Concretely, a 20 years lifetime is considered. A 5% value for the nominal discount rate is common [25,77]362

and so adopted here; this leads to real discount rate of 3.4%. Finally, the tax rates Tr for the incomes363

of the aggregator is set to 25%, while the VAT is 21% for Spain and 20% for France. Lastly, the residual364

value is assumed null at the end of the project.365
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2.4 Optimization model366

As mentioned earlier, the objective function is to maximize the NPV as in [45,50]:367

max NPV = max
(
−CAPEX +

LT∑

i=1
DCFi

)
, (2.18)

where the capital expenditures are given by Eq. 2.11b and the discounted cash flows by Eqs. 2.16 and368

2.17.369

The associated choice variables and constraint conditions are:370

• Installation of technologies: The installation of the components is determined by the binary vari-371

able Yins considering the maximum capacity of each component:372

CAP(j) ≤ Yins(j) ·max CAP(j) ∀j ∈ J (2.19)

• Energy balance: It is carried out in each node of the superstructure for every day d and hour h.373

For the generic variable E, representing any type of energy (electricity Eel, heating Eth or cooling374

Ec), one gets for each time step between the inputs and outputs:375

∑
Ein(d, h) =

∑
Eout(d, h) ∀ E∈{Eel, Eth, Ec}, d ∈ Drep, h ∈ H (2.20)

• Energy storage: The stored energy at the beginning of the day (h = 1) must be equal at the end376

of the day (h = 24) due to the use of representative days:377

Estor(d, 1) = Estor(d, 24) (2.21)

• Installed capacity limitations: The total energy production is mandatory equal or lower than the378

installed nominal capacity:379

E(d, h) ≤ CAP(j) ∀ E∈{Eel, Eth, Ec}, j ∈ J, d ∈ Drep, h ∈ H (2.22)

In the case of the electric grid, the contracted power Pct is set according to the purchased or sale380

electricity:381

Pct ≥ Eel,pur(d, h) + Eel,sld(d, h) ∀ d ∈ Drep h ∈ H (2.23)

• Operational restrictions: Partial load PL of the cogeneration module is considered by applying
a binary variable YON along with the M number. This last one is used to model, for instance,
specific piecewise-defined functions; its value being dependent on the type of problem [78].
Thus, the engine can be operated such that it works with linear performance only above the
minimum PL, and below the engine is off. In this way, the engine can modulate according to:

PCHP − PL · CAPCHP ≥−M · (1− YON) (2.24a)
PCHP ≤M · YON (2.24b)

Here, a value of 106 has been set for M .382

• RES: For the renewable production, the aim is to find the surface areas of the PV modules APV383

and ST collectors AST, and the number NWT of WT.384
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Finally, the optimization of the polygeneration system is carried out by solving a MILP model developed
in the optimizer software Lingo [79]. During the calculations, the GHG emissions are also computed.
They correspond to emissions of burnt fuel and of the electricity mix of the grid:

CO2 eq =
12∑

d=1
ω(d)

( 24∑

h=1
CO2, fu(d, h) + CO2, gd(d, h)

)
(2.25a)

CO2, fu(d, h) =
∑

j∈J

CO2(j) · qfu(j, d, h) ∀ d ∈ Drep, h ∈ H (2.25b)

CO2, gd(d, h) =CO2 gd(d, h) · (Epur(d, h)− Esld(d, h)) ∀ d ∈ Drep, h ∈ H (2.25c)

Therefore, the outputs of the optimization are the presence (or absence) of each component together with385

its sizing (or installed capacity), the primary energy consumption, the GHG emissions and obviously386

the value of the maximized NPV.387

3 Case studied388

3.1 Reference case389

In order to establish unambiguously the boons of the present configuration, where customers contract390

with an aggregator, which owns poly-generation systems and storage, a reference system has been391

defined (see Fig. 9). Considering the current situations in Spain and France, in this reference system,392

each dwelling has a GB with an efficiency of 96% to cover the heating demand and a mechanical chiller393

(Mch) with a EER of 4.0 for the cooling demand. In turn, each dwelling has an individual contract with394

the electricity and natural gas companies (at household tariffs). The annual electricity and natural gas395

consumption per dwelling for Zaragoza and Marseille are presented in Table 2.396

Figure 9 – Conventional reference energy system for a dwelling.

The operational unit price of each energy service can be calculated with the efficiency of the GB and397

the EER of the Mch, based on the 2018 tariffs. For Zaragoza, electricity consumption is below 5 000398

kWh/year and natural gas consumption is below 50 000 kWh/year. For Marseille, electricity and nat-399

ural gas consumption are both below 5 000 kWh/year.400

401
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Table 2 – Annual electricity and natural gas consumption in kWh/year per dwelling-Reference system.

Location Electricity Natural gas
Zaragoza 4 268 6 988
Marseille 4 192 4 881

For each case was considered a fixed cost proportional to Pct, around 10 and 30 €/ kW for France and402

Spain respectively. In the reference case, based on the energy demand profiles depicted in Fig. 4, the403

expected contracted power Pct from the electric grid, for a residential building composed of 50 dwellings,404

is of 93 kW in Zaragoza and 80 kW in Marseille. For a dwelling in Zaragoza, it is around 1.85 kW and405

for Marseille around 1.6 kW; as a reminder, large consumption, such as heating, do not rely on electrical406

appliances, which explains these rather low values.407

For both countries, additional fees for electricity and natural gas costs must also be applied as subscrip-408

tion fees. For natural gas, it is about 110 €/year, added to the heating bill. For electricity, it is about409

120 €/year, added to the electricity and cooling bills, proportional to their annual consumption. The410

individual bills per dwelling are so multiplied by 50 in order to have a reference value. To this end, only411

operational costs have been considered.412

3.2 Simulation plan413

First, in Table 3 are presented all the technical, economic and environmental data of the different414

technologies. The investment costs are calculated based on the unit cost, and considering the installation415

costs, by applying a factor Fm for each technology (see above). The maintenance costs are within the416

offset of the average installation costs considered since, for most of the equipments (PV, WT, etc.), they417

are only about 1% of the installation costs [80]. Replacements costs are also integrated.418

Secondly, the characteristics of the three cases evaluated, summarized in Table 4, are:419

• Case A: Selling the energy services to the customer at 95% of the reference price, remaining420

constant for 20 years. Electricity sale to the grid is not allowed.421

• Case B: Selling the energy services to the customer at 70% of the reference price at the start-422

ing point (2018), and increasing these prices in the same way of the electricity and natural gas423

(exponentially at a0(21/20)i). Electricity sale to the grid is not allowed.424

• Case C: Selling the energy service to the customer at 70% of the reference price at the starting point425

(2018), and increasing these prices in the same way of the electricity and natural gas (exponentially426

at a0(21/20)i). Electricity sale to the grid is allowed at 0.05 €/ kWh.427

Table 5 shows the unit cost of electricity and natural gas for households, as well as the unit price for428

electricity, heating and cooling.429

Finally, the set of 12 representative days Drep is shown in Table 6. Two additional days corresponding430

to cooling and heating peak demands are considered with weight zero, having influence in the sizing431

equipment but not on the operational cost.432
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Table 4 – Summary of the three different test cases

Case Pricing Selling electricity
A 95% of initial reference price, without increase No
B 70% of reference price, increase throughout the years No
C 70% of reference price, increase throughout the years Yes

Table 5 – Tariffs and unit price services for 1 dwelling reference system 2018.

Location
Customers

PEel,dw,0 PEth,dw,0 PEc,dw,0

[€/ kWh] [€/ kWhth] [€/ kWhc]
Zaragoza 0.2430 0.0802 0.0608
Marseille 0.1774 0.1558 0.0443

Table 6 – Set of representative days

Location Month day (d) weight (ω) Month day (d) weight (ω) Month day (d) weight (ω)

Zaragoza

February 37 34 May 132 37 August 228 39
February 50 23 May 136 23 September 245 28
April 112 19 May 146 27 September 256 38
April 115 35 July 208 18 December 339 44

Marseille

January 24 22 June 165 44 September 256 33
January 29 28 June 168 29 November 310 44
February 44 13 July 193 37 November 319 50

May 143 24 August 220 22 December 352 19
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4 Results433

The optimization model has 56 456 constraints and 45 394 variables of which 2 689 are integers. The434

runtime varies from 1 minute up to 3 hours, case C being the longest. All runs were performed on an435

Intel Core i5-6200 CPU @ 2.3 GHz, with a memory of 8 GB and 64-bit system.436

437

Table 7 shows the results of the optimization for the installed capacity for each appliances and cases;438

Tables 8 and 9 gather the corresponding investment costs and electricity and natural gas consumption.439

Moreover, the final bills for the customers, for the reference case as well as the three test cases, are440

provided in Table 10. The summarized values of the economic indicators are presented in Table 11.441

Eventually, Table 12 presents the annual CO2 eq emissions per dwelling.442

Table 7 – Results in terms of capacity ( kW) of the optimization of the polygeneration system

Technology Case A Case B Case C
Zaragoza Marseille Zaragoza Marseille Zaragoza Marseille

Pct 48.8 67.2 48.8 67.2 49.7 67.7
CM 22 4.5 22 4.5 20.2 4.1
PV 29 20.8 29 20.8 49.4 43.1
Inv 35 25 35 25 59.2 51.7
HP 111 69.7 111 69.7 110.6 69.7
GB 82 96.6 82 96.6 87.4 98.8
TSQ 24 9.5 24 9.5 23.7 8.1
TSR 13 0 13 0 12.5 0

Table 8 – Results in terms of investment (€) of the optimization of the polygeneration system

Technology Case A Case B Case C
Zaragoza Marseille Zaragoza Marseille Zaragoza Marseille

Pct 1 463 672 1 463 672 1 491 677
CM 51 502 10 527 51 502 10 527 47 806 9 514
PV 48 497 34 550 48 497 34 550 82 476 71 467
Inv 16 854 12 007 16 584 12 007 28 663 24 837
HP 80 271 50 151 80 271 50 151 80 271 50 151
GB 11 907 13 906 11 907 13 906 12 689 14 231
TSQ 6 846 2 661 6 846 2 661 6 695 2 270
TSR 4 265 0 4 265 0 4 265 0

Table 9 – Annual energy flows in MWh/year

Commodity Reference Case A Case B Case C
Zaragoza Marseille Zaragoza Marseille Zaragoza Marseille Zaragoza Marseille

Electricity Purchased 213 210 94 193 94 193 83 178
Electricity Sold N/A N/A N/A N/A N/A N/A 16 21

Natural gas 349 244 418 143 418 143 396 132
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Table 10 – Total individual customer bills in k€

Source Reference Case A Case B Case C
Zaragoza Marseille Zaragoza Marseille Zaragoza Marseille Zaragoza Marseille

Electricity 34.0 25.9 20.1 14.6 21.4 15.6 21.4 15.6
Heating 19.7 25.5. 10.7 14.6 11.4 15.5 11.4 15.5
Cooling 1.1 0.3 0.6 0.2 0.7 0.2 0.7 0.2
Total 54.8 51.7 31.4 29.4 33.5 31.3 33.5 31.3

Table 11 – Economic results

Indicator (k€) Case A Case B Case C
Zaragoza Marseille Zaragoza Marseille Zaragoza Marseille

NPV 14.7 39.4 46.6 69.5 55.0 75.9
CAPEX 220.1 123.8 220.1 123.8 262.9 172.5∑DCF 234.7 163.2 266.7 193.3 317.9 248.3

R 1 068.3 999.2 1 110.9 1039.5 1 127.2 1 060.3
OPEX 760.0 784.0 760.0 784.4 708.7 732.3

IT 73.6 52.1 84.2 62.1 100.6 79.6

Table 12 – Annual operational CO2 eq emissions in kCO2/year

Source Reference Case A Case B Case C
Zaragoza Marseille Zaragoza Marseille Zaragoza Marseille Zaragoza Marseille

Electric grid 44 350 7 550 19 683 7 446 19 689 7 446 14 140 6 267
Natural gas 70 950 55 400 84 919 32 566 84 916 32 566 80 419 29 903
Equipment 0 0 3 382 2 218 3 382 2 218 4 888 3 872

Total 115 300 62 950 107 983 42 229 107 987 42 229 99 446 40 042
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4.1 Case A443

The optimal configuration is made of HP+GB, some PV, a CM and TSQ. TSR is selected only for444

Zaragoza Table 7 shows the capacity, Table 8 the investment costs, and Table 9 the consumptions.445

In both locations, the contracted power decreases by 48% and 16% in Zaragoza and Marseille respectively,446

with respect to the reference energy system. This is due to the support of technologies such as PV and447

the CM. Nonetheless, for Marseille, there is more dependency on the electric grid, the contracted power448

(Pct) being higher (+37%). As a result, the capacity of technologies such as CHP and PV are lower in449

Marseille (-80% and -28%): this is because electricity is cheaper in France. The reversible HP capacity450

in Zaragoza is almost the double of Marseille (111 and 69.7 kW). This explains also the absence of TSR451

in Marseille.452

Concerning energy bought to the electric grid, it decreases by 56% by comparison with the reference453

system in Zaragoza. In contrast, gas consumption increases there by 20%. For Marseille, electricity and454

natural gas consumption decrease by 8% and 41% respectively. These results are in accordance with the455

higher heating demand, along with the lower natural gas price in Zaragoza with respect to Marseille,456

and also to the difference in installed capacity of CM.457

According to the economic results in Table 11, the aggregator business model is clearly more profitable458

in Marseille than in Zaragoza, yet for average similar savings for the customer around 41% and 42% (see459

Table 10). This entails first that a real win-win relation is achievable, i.e. that both parts can benefit460

from this configuration. Secondly, in terms of investment effectiveness, the economic projection of the461

profitability depicted in Fig. 10 underlines that payback period is drastically different: it is of 16 and 7462

years for Zaragoza and Marseille respectively. This logically coincides with the important differences in463

the NPV visible in Table 11.464

As a last remark, it is worth mentioning that a positive NPV is obtained, in spite of a progressive decrease465

of the yearly discounted cash flow. In other words, case A can be beneficial however the aggregator will466

have to accept that its revenue will be less attractive in the future (due to the constant prices guaranteed467

to the customers, while its energy costs are increasing when relying on the external grids).468
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Figure 10 – Economic projection of the profitability in case A

Regarding the environmental impact, Table 12 shows the CO2 eq emissions per year due to the investment469

and operation of the energy system. According to the results, 77% is due to combustion, 18% to the470
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electric grid and only 5% is coming from the CO2 eq emissions embodied in the equipment in France. In471

turn, for Spain, 79% is due to the combustion, 18% to the electric grid and only 3% arises from the CO2 eq472

emissions of the equipment. Although both locations have similar values in terms of percentage, there473

is a remarkable difference in absolute terms (+157% for Zaragoza). On the other hand, when the total474

CO2 eq emissions are compared to the reference system, they decrease about 6% and 33% for Zaragoza475

and Marseille. Therefore, the polygeneration system in this case has a higher impact in Marseille, in476

spite of the availability of nuclear energy which is already largely decarbonized.477

4.2 Case B478

The results of the optimal configuration and design are the same as the previous one (Tables 7 and 8)479

and the consumptions also, as shown in Table 9.480

Nonetheless, as presented in Table 11, NPV is about three times the one obtained for Zaragoza and about481

twice the one obtained for Marseille with respect to the case A. Even with the same investment as in482

case A, the NPV are significantly higher: +76% in Marseille and 3 times more in Zaragoza. Furthermore,483

Marseille’s aggregator is still the most profitable. In this case, the savings for the customer are about 39%484

with respect to the reference system for both locations, as shown in Table 10. This clearly demonstrated485

an interest for both parts: the customers and the aggregator.486

However, in return of a lower initial energy price (70% instead of 95%), and though its revenue will be487

larger in the end, the aggregator has to accept a longer payback period: 17 and 13 years for Zaragoza488

and Marseille respectively (Fig. 11). Obviously, this could be reduced, without hampering the boons489

for the customer, either by using another initial price (for instance 80%) or by modifying the annual490

energy increase defined in section 2.3.2 or in Eq. 2.16b.491
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Figure 11 – Economic projection of the profitability in case B

4.3 Case C492

Table 7 and Table 8 show respectively capacity and investment costs associated to this configuration.493

In this case the same components are selected but the optimal sizing is different. The most important494
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difference lies in the PV system which increases by 70% and 107% in Zaragoza and Marseille respectively.495

CM and GB capacity are stable: -7% in Zaragoza and -10% in Marseille for the former, and +7% in496

Zaragoza and +2% in Marseille for the latter.497

Concerning energy consumption, purchased electricity and gas consumption decrease by 61% and 13%498

respectively compared to the reference system in Zaragoza, whereas, in Marseille, they decrease by 15%499

and 46% respectively (see Table 9). More electricity is sold to the grid in Marseille than in Zaragoza,500

though the irradiation is higher, due to a better self-consumption.501

Regarding the economic results in Table 11, there are no differences with the previous case from the502

customers point of view. However, for the aggregator, its NPV now increases compared to case B (+18%503

and +9% in Zaragoza and Marseille respectively), which was already better than case A. Investment504

costs increase by 19% and 39% in Zaragoza and Marseille respectively, mainly because of the increase505

in PV capacity installed.506

Regarding the economic projection of the investment, the payback period is now 17 and 14 years for507

Zaragoza and Marseille respectively (Fig. 12). These values come once again from the lower initial energy508

prices which delay the return on investment, but they are also due to a higher initial investment (+19.5%509

and + 39.3% for Zaragoza and Marseille). In other words, the PP is not singularly affected, compared510

to case B, even with these higher CAPEX. Therefore, this configuration is particularly interesting for511

the aggregator, as shown by the associated NPV. Finally, there is no noticeable effect for the customer,512

and it is still more beneficial than the reference situation.513
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Figure 12 – Economic projection of the profitability in case C

When looking now at the environmental impact, Table 12 shows the CO2 eq emissions per year: in514

Spain, 81% is due to combustion, 14% to electric grid and 5% to equipment. In France, 74% is due to515

combustion, 16% to electric grid and 10% to the equipment. Thus, appliances have a higher impact516

on the total CO2 eq emissions in Marseille (9.7%). Concerning the total GHG emissions, they decrease517

by 14% in Zaragoza whereas in Marseille they decrease by 36% compared to reference. In this case,518

electricity sale to the grid allows higher emissions reductions with more impact in Zaragoza than in519

Marseille.520
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5 Discussion521

Cost of the contracted power from the membership fees apart, the cost for the reference system is of522

about 1 717 k€ (34.3 k€/dwelling) for France and about 1 819 k€ (36.4 k€/dwelling) for Spain. The523

difference between the total cost of the energy bills for the reference system and the revenue of the524

aggregator corresponds to potential savings for the customer.525

For the three business models tested, the results show savings for the customers of approximately 40%526

compared to reference, as shown in Table 10 and observable on Fig. 13. In other words, it is possible to527

achieve significant savings for the consumers; in addition, these latter are released from the burden of528

the financial management of such systems. In fact, these boons could also be singularly higher since the529

retained projection was finally very conservative. Indeed, from 2020 to 2021, energy prices were tripled530

in Spain and it is not sure that such variations could not occur again, or even that the expected decrease531

will lead to lower values than the present projections. Furthermore, due to the European legislation,532

the gross price is correlated to the last marginal cost of production, which usually correspond to the use533

of combined cycle gas turbines. More explicitly, the electricity price is influenced by the fluctuations of534

the gas price, even for countries like France where the main part of the electricity comes from nuclear535

and hydropower plants.536

Concerning economic aspects, NPV are always positive. This clearly demonstrates the sustainability537

of polygeneration systems managed by a third party between national grids and residential consumers,538

whose consumptions are aggregated. From the aggregator viewpoint, higher NPV are achieved when a539

variable price is applied to the customer, but at the cost of a longer payback period. The possibility to540

resell extra-production of electricity brings another source of revenues, increasing the NPV of 18% and541

9.2% in Zaragoza and Spain respectively. The practical conclusions are twofold. First, incentives are542

not necessarily required but, second, it clearly simplifies both the management of the system and allows543

for complementary earnings for the aggregator.544

545

Regarding the chosen production units, the optimal configuration always contains for both locations a546

combination of PV, CM, reversible HP, GB and TSQ; in Zaragoza, TSR is also selected. The dependency547

of the pricing strategy on this sizing is finally not very strong (case A and B being relatively close),548

yet the resale of electricity plays a more important role. Meanwhile, technologies such as WT, ST and549

single-effect AbCh are not chosen anywhere. Similarly, no special tropism is observed toward batteries.550

This underlines the necessity to think carefully of the associated business models, or to specific tariffs551

or incentives if such technologies are to have a significant place in the energy paradigm.552

In practice, PV and CM enable the reduction of the contracted power from the electric grid and, hence,553

the corresponding costs. Nevertheless, the results show that there is a higher dependency on the electric554

grid in Marseille, due to lower electricity prices. On the thermal side, the reversible HP capacity is higher555

in Zaragoza because of its higher cooling demand. Consequently, due to the support of the reversible HP,556

cogeneration module and TSQ and GB capacities tend to be lower in Zaragoza, although the heating557

demand is higher in Zaragoza. Moreover, yet unsurprisingly, reversible HP are better exploited where558

cooling and heating demands are more balanced.559

560

Lastly, all scenarios decrease the GHG emissions. When selling electricity is forbidden, CO2 eq emissions561

reduction is of 6% and 33% in Zaragoza and in Marseille respectively. In absolute terms, this means562

reductions about 7.1 tCO2 eq in Zaragoza and 21 tCO2 eq in Marseille compared to the reference system.563

However, when selling electricity is allowed, CO2 eq emissions reduction, compared to the previous cases,564

is of 8.5 tCO2 eq in Zaragoza and only of 2.2 tCO2 eq in Marseille. Therefore, selling electricity in Zaragoza565
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Figure 13 – Yearly bill for the 50 dwellings along the years

has a higher impact. It is also important to notice that the lower CO2 eq emissions from the electric grid566

in France are more significant to explain the lowest pollution than the lower demand in heating and567

cooling.568

6 Conclusion569

This paper studied the economic viability and social interest of an aggregator, third party between the570

classic distribution grids and several tens of customers. By proposing to install a set of technologies,571

ranging from PV and WT to ST, HP or CHP, or GB and AbCh as well as thermal (hot and cold)572

or electrical storages, this new economic agent can either propose to fulfill alone the demand of the573

consumers or to rely partly on the external grids. An optimization is conducted to find the most prof-574

itable situation so as to provide electricity, heat and cold to a district of 50 dwellings. To highlight575

the possibilities of such an organization, three various business model were tested: one with a constant576

energy price and two others considering different variable energy prices. Meanwhile, the resale of the577

extra-electricity produced can be authorized or not. Finally, two locations have been tested, Zaragoza578

in Spain and Marseille in France, so as to study the influence of the local regulations on the optimal579

configuration for relatively similar demand (with slight variations, principally for the cooling demand).580

581

The results show that all these configurations lead to a similar polygeneration system. This latter com-582

bines PV with CM and reversible HP, as well as a GB and a TSQ. In the Spanish case, TSR is also583

present. It is worth highlighting that WT, ST and batteries are not enough cost-effective to be selected,584

meaning that incentives or specific pricing could (or should) be considered to promote their use.585

The most important and interesting result demonstrated is that a win-win situation is achievable, where586

both the consumers and the aggregator can develop a doubly beneficial situation. In comparison with587

the reference case, the savings for the customers are always greater than 30%, which is enough to be588

really accountable. Besides, it is always possible to get a positive NPV, which shows the economic589

viability of the concept. All in all, an added-value is found and there are some interests for both parts:590

the customers do not have to support the expenditure and operational costs and could still change their591
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energy providers, the aggregator can generate sufficient revenues. The most favorable situation for its592

incomes is with a variable pricing, and with the possibility to resale the extra-production of electricity.593

Eventually, reductions of the GHG emissions are achieved but with a great variation between France,594

where significant decrease around 30% are obtained, and Spain, where they are diminished between 6595

and 13%.596

597

In the following of this work, it is planned to extend the study to smart mixed grids, that is to say to598

electrical grids and heat networks operated in a smart grid context. Indeed, the demand side management599

techniques could be used for all types of energy and thus give an interesting leeway to better manage600

the polygeneration system and/or increase the self-sustainability and self-consumption and/or decrease601

the total installed capacity of several technologies (production units as well as storage). Moreover,602

another important mechanism is to be considered: the price-elasticity of the demand which can lead to603

severe modifications of the demand, similarly to demand response strategies, and is worth investigating.604

Last, the demand part could be refined, using for example the multi-level thermal request prediction605

developed by Guelpa et al. [106] to benefit from a compact model for the buildings demand. Added to606

this, it would be instructive to either use or to perform a comparative analysis using demand profiles607

that integrate one or several scenarios of the climate evolution in the next 30 years. For instance, a608

downscaling approach could be used [107] for such a purpose. Finally, the present results also give an609

impetus for a more refined and extended economic study of the role and added-value of the aggregator610

between the customers and the classic energy providers, but also on its positioning between the transport611

and distribution operators.612
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Chapitre 6

Conclusion générale

Pour commencer, on peut rappeler que le principal objectif de la thèse était de concevoir un modèle
permettant de gérer en temps réel des réseaux multi-énergies basé sur du DLC et de développer un lo-
giciel basé sur celui-ci. Ensuite, l’objectif était d’exploiter ce logiciel afin de réaliser des simulations sur
l’utilisation coordonnée du DLC et des énergies renouvelables. On reviendra brièvement sur les aspects
saillants du travail effectué pendant 3 ans ainsi que sur les résultats obtenus avant de conclure.

6.1 Modèle
On peut considérer que le modèle est terminé : les différents concepts et mécanismes utilisés se sont

révélés adaptés au problème abordé. Le modèle repose sur 3 éléments clés : les appareils, les contrats et
les stratégies. D’abord, les appareils représentent les objets connectés à un réseau d’énergie et qui peuvent
consommer, produire, convertir ou stocker de l’énergie. Ensuite, les contrats définissent les règles entre les
appareils et les agrégateurs (les gestionnaires de réseau tels que définis dans l’introduction, section 1.4.1).
Ces derniers, enfin, reposent sur une stratégie pour équilibrer les réseaux dont ils ont la charge : c’est elle
qui choisit d’effacer/produire/stocker/déstocker/acheter/vendre de l’énergie en fonction d’un objectif qui
lui est propre. Tous les appareils et tous les agrégateurs appartiennent à un agent, qui représente leur
propriétaire. Les agents servent à réaliser des bilans intermédiaires et ne jouent pas un rôle actif : par
exemple, ils permettent d’étudier les flux d’argent et d’énergie à l’échelle d’un foyer composé de plusieurs
appareils. On peut également définir des hiérarchies d’agent, afin de représenter des organisations éta-
blissant des bilans à plusieurs niveaux, comme les différents sites d’une université.
Lors d’un tour, les appareils envoient un message contenant leur demande/offre d’énergie et leurs contraintes
physiques à leurs contrats. Les contrats complètent ce message en y ajoutant le prix de la transaction et
en précisant à l’agrégateur les possibilités dont il dispose. Ce dernier, comme son nom l’indique, agrège
toutes les requêtes et sa stratégie décide en premier lieu s’il souhaite échanger. Le choix a été fait de
limiter les échanges à un unique agrégateur jouant le rôle de supérieur. L’agrégateur de rang inférieur
est lié à son supérieur par un contrat et se comporte exactement comme un appareil, en formulant une
demande/offre d’énergie. Dès qu’un agrégateur connaît les quantités qu’il va échanger, il répartit l’énergie
entre les différents appareils à sa charge et leur envoie un message notifiant sa décision. Ce second message
permet aux appareils de s’adapter à la décision de l’agrégateur : par exemple, s’ils ne sont pas servis, ils
savent qu’ils doivent reporter leur demande. Ce second message est également transmis aux contrats car
certaines compensations versées aux agents acceptant de participer au DLC dépendent de l’effort fourni
par l’agent.

6.2 Logiciel
Ensuite, PEACEFULNESS, le logiciel que j’ai développé, est fonctionnel et permet, dans son état actuel,

de réaliser des études de cas. En effet, tous les principaux éléments du modèle sont implémentés : ap-
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pareils, agrégateurs, stratégies, contrats, agents. On va revenir ici sur les appareils, les contrats et les
stratégies. D’ailleurs, si les appareils, les contrats et les stratégies disponibles ne sont pas exhaustifs,
l’architecture est conçue pour faciliter les ajouts.

Du point de vue de l’agrégateur, tous les appareils ont un comportement identique. Cependant, le fonc-
tionnement interne des appareils est protéiforme. D’abord, les appareils de consommation fonctionnent
à l’aide d’un double profil : le premier représente le comportement des utilisateurs et le second les carac-
téristiques techniques. Certains appareils incluent en plus un modèle physique et utilisent des données
météorologiques : aujourd’hui, il s’agit du chauffage, de la climatisation et des chauffe-eaux. De plus, le
choix a été fait d’agréger la consommation de certains appareils domestiques, soit parce que les énergies
en jeu sont faibles, soit parce qu’ils ne sont pas éligibles à une action ciblée de l’agrégateur. L’objectif
était de réduire la masse d’information à traiter par l’agrégateur et de simplifier la modélisation. Enfin, un
dernier obstacle restait à résoudre : la différence entre les profils de consommation individuels, plutôt dis-
continus (notamment autour des heures de départ/arrivée dans le foyer) et les courbes de consommation
observables à une échelle macroscopique, beaucoup plus continues. Plutôt que de démultiplier les profils
d’appareils et d’utilisateurs, le logiciel propose de randomiser les profils à l’aide d’une loi normale : un
tirage aléatoire est réalisé lors de la création de chaque appareil, dans lequel les valeurs nominales servent
de moyennes et dans lequel l’écart-type est choisi par l’utilisateur. Néanmoins, seuls des consommations
domestiques ont déjà été modélisées : aucun profil industriel ou commercial n’est disponible.
Les appareils de production s’appuient toujours sur un profil technique et peuvent avoir recours à un mo-
dèle physique et à des données météorologiques. Il est à noter que si les technologies renouvelables sont
modélisées finement, les dynamiques de démarrage/arrêt des centrales pilotables ne sont pas intégrées
pour le moment. Les appareils de conversion ont la particularité d’être rattaché plusieurs agrégateurs,
se comportant en consommateur pour l’un et en producteur pour l’autre. Une technique similaire est
employée pour modéliser les dispositifs de cogénération. Enfin, une solution a également été trouvée pour
le stockage : il se présente à la fois comme producteur ou consommateur potentiel et le choix entre l’un et
l’autre est déterminé par un contrat spécifique. L’idée sous-jacente est que le propriétaire du stock définit
préalablement les règles d’utilisation avec l’agrégateur et que le contrat découle de celles-ci. Malheureu-
sement, l’implémentation tardive des appareils de stockage n’a pas permis de les intégrer à nos simulations.

Les contrats, quand à eux, restent pour le moment plutôt simples : en règle générale, ils se contentent
d’accorder des tarifs plus intéressants (acheter pour moins ou vendre pour plus) aux agents acceptant de
fournir de la flexibilité à l’agrégateur. Néanmoins, des mécanismes plus sophistiqués ont été essayé avec
succès : en plus des contrats spécialisés évoqués ci-dessus pour les convertisseurs et les stockeurs, l’une
de nos études intègre un contrat proposant des compensations proportionnelles aux efforts fournis. Par
ailleurs, si inventer de nouveaux mécanismes contractuels est relativement aisé, il est important de les
co-concevoir avec des économistes : identifier les liens entre niveaux de prix, mécanismes de compensation,
comportement des consommateurs, producteurs ou agrégateurs est crucial. Sinon, il y a un risque non-
négligeable de ne pas identifier des effets indésirables du DLC ou, au contraire, certaines conséquences
inattendues et positives.

Plusieurs stratégies ont été proposées. Elles se différencient en deux points : leur politique en terme
d’échanges extérieurs et leurs choix de priorités lors de la distribution de l’énergie. Pour le moment, les
stratégies disponibles se basent sur un quadruple bilan : la quantité d’énergie qui doit absolument être
consommée, celle qui doit être produite et les quantités d’énergies à consommer ou produire que l’on peut
choisir de ne pas satisfaire. À noter que lorsque l’on refuse une demande/offre d’énergie, on peut la voir
ressurgir lors des prochains pas de temps : on appelle cela l’effet rebond. Actuellement, aucune prédiction,
ni pour la consommation, ni pour la production, n’est prise en compte par les stratégies et pour cause :
elles ne sont pas implémentées dans le logiciel. Si quelques réflexions préliminaires ont pu être menées,
nous n’avons à ce jour pas de solution fonctionnelle pour les intégrer dans PEACEFULNESS. De même,
nous avons fait le choix de ne pas avoir recours à des techniques d’optimisation dans nos stratégies, afin
de garder des temps de calcul faibles mais il serait intéressant d’essayer, afin de pouvoir confirmer ou
infirmer notre choix initial : en effet, on peut espérer que l’emploi de techniques d’optimisation améliore
les décisions prises et donc les performances du réseau.
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Enfin, d’un point de vue plus général, on envisage d’ajouter plus d’informations dans les communica-
tions entre les appareils, les contrats et les agrégateurs. En particulier, on pourrait indiquer les émissions
CO2 associées à telle ou telle technologie afin que les agrégateurs puissent les prendre en compte dans
leur décision.

6.3 Études de cas

Nous avons eu l’occasion de nous servir de PEACEFULNESSpour réaliser des cas d’études. La première
étude, présentée dans le chapitre ??, porte uniquement sur le DLC et son impact sur diverses métriques
dans 2 réseaux intégrant une part importante de production renouvelable non-contrôlable. De plus, nous
avons comparé dans cette étude deux stratégies différentes, une basée sur des critères physiques et une
basée sur des critères économiques, mais poursuivant le même objectif : réduire la dépendance vis-à-vis
du réseau.
Dans les résultats des simulations, on peut observer en premier lieu que le DLC a des effets prévisibles :
les pics de consommation, la dépendance vis-à-vis du réseau électrique et les factures des consommateurs
diminuent. Par contre, dans ce contexte d’une production peu souple et en l’absence de stockage, les
consommateurs subissent des taux élevés d’effacement/reports de consommation car ils sont les princi-
paux leviers de flexibilité de l’agrégateur. Les deux approches testées, physique ou économique, renvoient
des résultats similaires : si cette observation était généralisable, cela permettrait d’offrir une certaine
liberté dans le choix de l’approche. Enfin, on observe des effets de seuil : au-delà de certains seuils de
participation au DLC, l’évolution de plusieurs métriques devient beaucoup plus faible. Cela s’explique
ainsi : une fois qu’on a suffisamment de flexibilité sur la demande pour auto-consommer la production
renouvelable, on ne peut plus valoriser efficacement toute flexibilité supplémentaire. Cela signifie qu’il
serait inutile que tout le monde participe au DLC ou même au DSM en général.

Dans un deuxième temps, dans le chapitre ??, en collaboration avec Dr Ramousse et Dr Fitó du LO-
CIE, nous avons tenté d’intégrer le DSM en général (i.e.pas uniquement restreint au DLC de PEACEFULNESS)
dès la phase de dimensionnement des unités de production. Pour cela, nous avons proposé une méthode
itérative, indépendante des outils d’optimisation et de DSM utilisés. On fait un premier dimensionnement
à l’aide de profils de consommation non modifiés. On fait ensuite une simulation de DSM avec premier
dimensionnement, qui fournit de nouveaux profils de consommation. Tant que les profils de consommation
changent, on refait un dimensionnement qui donne lieu à une nouvelle simulation de DSM. Nous avons
ensuite testé cette méthode sur un cas simple : les seules technologies renouvelables autorisées étaient
des panneaux PV et des collecteurs solaires thermiques. Plusieurs configurations ont été étudiées : deux
méthodes de dimensionnement, deux stratégies et deux niveaux de DSM.
Parmi les différents résultats, on peut retenir en premier que la méthode a convergé en 2 itérations dans
tous les scenarios testés. On s’attend par contre à une augmentation du nombre d’itérations nécessaires
dans des configurations plus complexes, notamment celles incluant de nombreuses technologies de pro-
duction et de stockage. Dans tous les scénarios, on constate une diminution de la puissance installée.
Néanmoins, l’utilisation d’une telle méthode dans la vie réelle nécessiterait de pouvoir prédire de ma-
nière fiable le taux de participation des consommateurs à des programmes de DSM, ou tout du moins de
pouvoir estimer un taux minimum fiable de participation. On constate également, comme dans l’étude
précédente, un taux élevé d’effacement/report pour les consommateurs.

PEACEFULNESSa aussi été utilisé, bien qu’avec un rôle moins central, pour réaliser une dernière étude, en
collaboration avec Dr Pinto et Pr Serra de l’université de Saragosse et présentée dans le chapitre ??. Dans
celle-ci, on optimise le dimensionnement d’un système énergétique destiné à satisfaire la consommation
de 50 résidences. Ce système énergétique est possédée par une compagnie intermédiaire et le critère de
l’optimisation est le NPV. Différentes configurations sont testées. D’abord, on s’intéresse à deux villes
situés dans des pays différents, Saragosse et Marseille : le climat, les courbes de consommation, les prix,
les niveaux d’émission de CO2 changent entre les deux villes. Ensuite, on étudie trois business model
différents pour la compagnie intermédiaire.
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Quelle que soit la configuration, les équipements choisis sont similaires, même si les capacités installées
varient. Toujours dans toutes les configurations, on observe à la fois que la compagnie est viable et que
les consommateurs réduisent leurs factures.

6.4 Conclusion générale et perspectives
De manière générale, les objectifs de la thèse ont été atteints : d’abord, le modèle et le logiciel déve-

loppé sont fonctionnels. Certes, ce dernier est largement améliorable, mais le but de la thèse n’a jamais
été d’en fournir une version complète : par exemple, le stockage était initialement en-dehors du champ
de cette thèse. Si on a pu réaliser différentes études de cas, on se gardera bien de fournir des conclusions
fermes et définitives sur les effets du DLC, pour plusieurs raisons. Déjà, rappelons que l’impact du DSM
en général et du DLC en particulier dépendent de nombreux facteurs : popularité du DSM (ou du DLC),
mécanismes de compensation et tarification, courbes de demandes, technologies en présence, stratégies
de gestion adoptées et climat. Ainsi, il faudrait un nombre très important de simulations pour parvenir
à des conclusions générales. De plus, nos simulations ne peuvent pas se comparer à une expérience de
référence et il est ainsi compliqué de mesurer l’exactitude de certains choix de modélisation. Toute notre
travail est donc en attente d’une confirmation (ou d’une infirmation) expérimentale.

Ces quelques constats fournissent de nombreuses directions pour poursuivre ce travail. Déjà, ajouter
plus de technologies, de contrats et de stratégies dans le logiciel. Pour ces dernières, on s’attend à ce
que l’ajout de modèles prédictifs pour la production et la consommation améliore significativement les
résultats des simulations faites avec PEACEFULNESS. D’ailleurs, à propos des simulations, on a plusieurs
fois indiqué dans ce document qu’il en faudrait beaucoup pour réellement avoir une idée des effets du
DLC. On peut songer à d’autres études ciblées et faites à la main comme celles présentées ici, mais aussi à
un procédé automatisé : un nombre très élevé de cas d’études, dans lesquels tous les éléments varieraient.
On aurait alors une masse importante de données que l’on pourrait exploiter avec des approches de type
big data. On serait peut-être alors en mesure de dégager des relations ou d’identifier des mécanismes qui
seraient précieux dans la perspective d’une utilisation réelle du DLC. Utiliser PEACEFULNESSpour pilo-
ter des réseaux réels, d’ailleurs, nécessitera de trouver une réponse (au moins) aux questions suivantes :
Quels équipements électroniques ? via des prises contrôlées ou via l’intégration directe dans les appareils,
comme pour les ballons d’eau chaude ? Comment gérer les avaries et les imprévus, notamment en terme
d’impact sur le consommateur ? Par quels moyens communiqueront les données ? Comment s’assurer de
la confidentialité des données des consommateurs qui seront mises en circulation et potentiellement sto-
ckées ? D’ailleurs, au-delà des problématiques de pure confidentialité, les agrégateurs tels que nous les
avons définis seront probablement considérés comme des "opérateurs d’importance vitale" et par consé-
quent soumis à une législation renforcée en terme de cybersécurité. Dans les faits, cela signifie que la mise
en place d’un essai réel (comprendre agir sur la consommation de gens en chair et en os) exigera une
vigilance particulière quand à ces questions.

Plus largement, certains problèmes et interrogations ne pourront être traités par les sciences naturelles,
et c’est pour cela que le projet s’est fait en collaboration avec des économistes. Par exemple, la relation
liant l’effort consenti par les consommateurs aux compensations financières à fournir sera cruciale pour
concevoir des programmes de DLC réalistes. On doit aussi s’interroger sur les effets rebonds, qui sont
absents de nos simulations. Enfin on aurait besoin de sociologues pour répondre aux questions suivantes :
quelle part de la population serait prête à accepter de participer à de tels programmes de DLC, malgré
leurs défauts (perte de contrôle, intrusivité) ? À quelles conditions ?
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