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Résumé

L'injection de faute -notamment par lumière focalisée, impulsion électromagnétique, ou perturbation de la tension d'alimentation -est un moyen extrêmement puissant pour compromettre une application embarquée dans un microcontrôleur. En perturbant physiquement l'environnement de ce dernier, il est possible de modifier son comportement pour extraire des informations secrètes, ou pour contourner des mécanismes de sécurité. Si les attaques par injection de faute peuvent théoriquement nuire à la sécurité des systèmes embarqués, la mise en pratique est souvent difficile car la réussite de ces attaques dépend souvent de la capacité à obtenir un effet de faute particulier, or les effets des fautes sur un microcontrôleur ne sont pas connus à l'avance. Dans le but d'évaluer les vulnérabilités à l'injection de faute, les effets des fautes peuvent être simulés par un outil adéquat. Cependant les effets simulés sont souvent hypothétiques et de nombreuses vulnérabilités identifiées par l'outil seront irréalistes en pratique car l'effet supposé n'existe pas.

Ainsi, l'objectif de cette thèse est de proposer de nouvelles méthodes, techniques et outils pour réduire l'écart entre simulation et expérimentation, dans le but d'optimiser l'identification et l'exploitation de ces vulnérabilités. Pour cela, nous proposons une méthodologie de bout-en-bout, combinant des résultats obtenus expérimentalement et par simulation, dans le but de se concentrer uniquement sur les modèles de faute les plus probables pour améliorer le réalisme des fautes simulées. Cette première approche nous conduira à nous intéresser aux programmes dédiés à la propagation de fautes. Ainsi, nous proposons également plusieurs recommandations pour améliorer la conception de ces derniers, dans le but d'améliorer notre compréhension des fautes sur les microcontrôleurs. Enfin, nous proposons d'utiliser, pour la première fois dans le contexte de l'injection de faute, plusieurs techniques d'optimisation récentes pour optimiser l'identification des meilleurs paramètres d'équipement, afin de faciliter l'exploitation des vulnérabilités à l'injection de faute. 

Mot-clés

Contexte et motivations

Les microcontrôleurs sont de plus en plus présents dans notre quotidien. Rien qu'une berline contient plus de 50 microcontrôleurs en moyenne [START_REF] Fleming | Microcontroller units in automobiles [automotive electronics[END_REF]. Une tendance qui n'est sans doute pas près de s'inverser, en particulier avec le développement de l'Internet des Objets, des voitures autonomes, des réseaux électriques intelligents, ou encore de la domotique. Cependant, du fait de leur omniprésence, ces composants deviennent une cible de choix pour un attaquant. En effet, une vulnérabilité identifiée sur un microcontrôleur peut potentiellement conduire à la compromission de nombreux systèmes embarqués basés sur ce dernier. D'autant plus que, pour le plus grand bonheur des attaquants, il est généralement très difficile et couteux de corriger les vulnérabilités identifiées, une fois les microcontrôleurs en production.

Par conséquent, pour garantir le bon fonctionnement des systèmes embarqués en milieu hostile, la sécurité des microcontrôleurs passe souvent par l'usage de primitives cryptographiques ou par une limitation (protection) des accès en mémoire. Malheureusement, même en l'absence de bug, cela ne suffit pas à lever toutes les menaces qui pèsent sur les microcontrôleurs. En particulier, l'injection de faute est une technique consistant à perturber délibérément l'environnement physique du microcontrôleur dans le but d'induire une faute pour modifier le comportement de ce dernier. Ainsi, avec l'injection de faute, il est alors possible d'attaquer l'implémentation physique des mécanismes de sécurité, sans reposer sur la présence d'une vulnérabilité logicielle. Pour le développeur, cela peut s'avérer être un véritable casse-tête, notamment du fait qu'il est difficile d'identifier en amont les vulnérabilités à l'injection de faute.

Justement, pour détecter ces dernières, on peut recourir à la simulation ou, à l'inverse, à l'expérimentation. La première approche vise à modéliser les effets des fautes supposés sur le microcontrôleur dans le but d'identifier rapidement et à moindre coût les sections vulnérables de l'application embarquée. La deuxième solution consiste placer le microcontrôleur et l'application embarquée en conditions réelles, en injectant un grand nombre de fautes, de manière à éprouver les mécanismes de sécurité comme le ferait un attaquant. Chaque technique possède ses forces et ses faiblesses. Si l'approche par simulation permet de mener une analyse exhaustive (vis-à-vis des modèles supposés) et d'être intégrable au processus de développement de l'application embarquée pour identifier les vulnérabilités en amont, il se pose la question de la représentativité des résultats de l'analyse pour savoir si les vulnérabilités identifiées seront exploitables. À l'inverse, s'il n'est généralement pas possible de conduire une analyse exhaustive expérimentalement, l'injection de fautes en conditions réelles permet de stresser le comportement du microcontrôleur similairement aux situations rencontrées en milieu hostile. Cependant, bien que l'intérêt de combiner ces deux approches paraisse évident, joindre la simulation et l'expérimentation n'est pas trivial.

Problématiques

La raison principale limitant le passage de la simulation vers l'expérimentation et viceversa est la différence de représentation entre les résultats de la simulation selon la modélisation de faute retenue, et les paramètres de l'équipement d'injection faute en fonction du microcontrôleur ciblé. Alors que les résultats de la simulation sont exprimés en fonction de grandeurs liées au niveau d'analyse (registre fauté, instruction ciblée, etc.), les paramètres d'équipement sont exprimés en fonction de grandeurs physiques (position visée sur la puce, puissance du laser, etc.), et il n'y a pas de lien immédiat permettant de relier ces deux représentations différentes. Par conséquent, il est difficile 1) d'exploiter les vulnérabilités identifiées par simulation et 2) de comprendre les vulnérabilités exploitées pendant l'expérimentation.

Une deuxième problématique concerne l'injection de fautes multiples indépendantes, c'est-à-dire l'injection de plusieurs fautes pendant l'exécution de l'application embarquée, dans le but de contourner un mécanisme de sécurité et une éventuelle contre-mesure à l'injection de faute. Si ces attaques sont puissantes, l'explosion combinatoire du nombre de chemins d'attaque avec le nombre de fautes indépendantes injectées complique l'identification et l'exploitation de ces vulnérabilités.

Une autre problématique en injection de faute est de comprendre les effets des fautes sur le microcontrôleur ciblé. Une manière de mettre en évidence ces effets et de charger dans le microcontrôleur ciblé un programme conçu spécifiquement pour maximiser la propagation des effets, dans le but de faciliter l'observation de ces derniers. Dans la littérature, de nombreux programmes de test pour caractériser les fautes ont été proposés afin d'identifier de nouveaux modèles de faute. Cependant, il n'existe pas de formalisation de ces derniers ni de métriques pour les comparer, et ainsi il est difficile d'en choisir un en fonction du besoin.

Enfin, identifier les paramètres d'équipement permettant d'injecter des fautes sur le microcontrôleur ciblé est sans doute l'étape la plus importante. Ce processus, pouvant requérir une grande expertise selon l'équipement utilisé, est long et chronophage. Si plusieurs tech-niques d'optimisation ont déjà été proposées dans la littérature pour identifier efficacement les meilleurs paramètres, les techniques les plus récentes, déjà utilisées en apprentissage automatique par exemple, n'ont pas été évaluées dans le contexte de l'injection de faute.

Contributions

Dans cette thèse, nous proposons plusieurs méthodologies et solutions techniques dans le but de réduire l'écart entre simulation et expérimentation. Plus précisément, les contributions de cette thèse sont les suivantes :

• Pour identifier et l'exploiter plus efficacement les vulnérabilités à l'injection de fautes multiples, nous proposons une méthodologie combinant les résultats obtenus expérimentalement avec ceux obtenus par simulation dans le but de se concentrer uniquement sur les modèles de faute les plus probables, pour accélérer la détection de vulnérabilités, améliorer le réalisme des fautes simulées et faciliter la calibration de l'équipement.

• Pour améliorer les tests de caractérisation de fautes, nous formalisons les propriétés importantes de ces tests comme la propagation des effets des fautes, puis nous proposons des métriques de performance pour comparer plusieurs tests populaires dans la littérature. À partir de cette première étude, nous proposons des recommandations pour concevoir ces tests. Avec ces dernières, nous générons plusieurs tests optimaux pour différents modèles de fautes.

• Pour identifier plus rapidement les meilleurs paramètres d'équipement selon le microcontrôleur ciblé, nous proposons de nouvelles techniques d'optimisation basées sur les algorithmes du problème du bandit manchot et l'optimisation bayésienne. Ces techniques récentes sont déjà utilisées pour optimiser des solveurs de problèmes combinatoires très difficiles (e.g. IBM CPLEX [START_REF] Hutter | Sequential modelbased optimization for general algorithm configuration[END_REF]). En plus de ces techniques, nous proposons une méthodologie en deux étapes pour optimiser les paramètres d'équipement indépendamment de l'application embarquée et ainsi accélérer l'identification des meilleurs paramètres.

• Pour simuler plus rapidement les injections de faute, y compris les injections de fautes multiples, de nouvelles fonctionnalités, comme le multithreading, ont été rajoutées à l'outil de simulation d'injection de faute CELTIC. Pour injecter plus facilement et à bas coût des fautes sur une grande variété de microcontrôleurs, nous proposons l'outil GLITCH STATION qui permet d'injecter des fautes par perturbation de la tension d'alimentation. Cet outil permet de contrôler finement la forme de la perturbation via un convertisseur numérique-analogique low cost.

Plan du manuscrit

La suite de ce manuscrit est organisée en six chapitres. Tout d'abord, le chapitre 2 présentera l'état de l'art des attaques par fautes, et en particulier l'histoire de l'injection de faute, des origines jusqu'à nos jours. Bien que les attaques par fautes visent le plus souvent les algorithmes de chiffrements dans la littérature académique, nous présenterons quelques attaques récentes sur des cibles moins conventionnelles comme une console de jeux vidéos ou un portefeuille électronique de crypto-monnaie. Ensuite, nous détaillerons les principales techniques d'injection de fautes par perturbation. Notamment, nous reviendrons sur la problématique de l'optimisation de l'équipement d'injection de faute et les approches actuelles pour identifier les paramètres induisant le plus de fautes sur la cible. Aussi, dans le but de mieux comprendre les effets des fautes, nous aborderons le processus de caractérisation de fautes et les différentes techniques permettant de recueillir le maximum d'information sur les effets des fautes sur la cible. Nous terminerons ce chapitre avec la modélisation des fautes. En particulier, nous détaillerons les différents niveaux d'analyse possibles, les méthodes proposées pour combler l'écart entre ces niveaux, et le cas de l'injection de fautes multiples indépendantes. Dans la suite de l'état de l'art, au chapitre 3, nous présenterons les outils développés pendant cette thèse, à savoir un outil de simulation d'injection de faute CELTIC et un équipement d'injection de faute, la GLITCH STATION. Pour ces deux outils, nous décrirons leurs architectures respectives et leurs spécificités.

Le chapitre 4 détaillera notre méthodologie d'identification et d'exploitation de vulnérabilités à l'injection de fautes multiples. Cette dernière sera ensuite illustrée par le biais de plusieurs expériences avec différents microcontrôleurs et techniques d'injection de faute. Puis, nous évaluerons la pertinence de notre approche selon différents critères, notamment la détection de vulnérabilités. Enfin, plusieurs améliorations seront proposées, et certaines d'entre elles seront étudiées de manière approfondie dans les chapitres suivants. En particulier, dans le but d'améliorer la caractérisation de fautes, le chapitre 5 présentera les résultats d'une étude sur un panel de huit tests de caractérisation issus de la littérature en fonction de propriétés qui seront définies. Ces travaux permettront de mettre en évidence les critères à prendre en compte lors de la conception de tests. Ensuite, à partir de cette première étude, nous déterminerons les tests permettant de maximiser la propagation fautes selon un ensemble de modèles de faute. Finalement, ces tests seront utilisés en pratique avec la GLITCH STATION pour identifier les modèles de faute les plus probables.

Toujours dans le but d'améliorer la caractérisation de fautes, de nouvelles techniques d'optimisation seront étudiées au chapitre 6. Après avoir détaillé le fonctionnement de ces techniques, nous comparerons les performances de ces dernières avec les techniques d'optimisation fréquemment utilisées lors d'évaluations de sécurité. Également, nous proposerons une nouvelle approche pour accélérer l'identification de vulnérabilités en boîte noire. Puis, avec cette approche et les techniques d'optimisation proposées, nous contournerons un mécanisme de sécurité d'un microcontrôleur récent. Enfin, le chapitre 7 conclura ce manuscrit en résumant les contributions et présentera les perspectives ouvertes par ces travaux.

Introduction

Les attaques par injection de faute sont des attaques actives visant l'implémentation physique de la cible. Elles se différencient des attaques logicielles, qui ne visent pas l'implémentation physique, même si cette frontière est de plus en plus fine, notamment depuis les attaques micro-architecturales comme Plundervolt, CLKSCREW et RowHammer [MOG + 20, TSS17, KDK + 14]. Également, elles se distinguent des attaques par canaux auxiliaires qui sont dites passives, car basées uniquement sur l'observation et l'interprétation de fuites physiques d'information, notamment sous la forme de rayonnement électromagnétique (EM) de la cible.

Les attaques par injection de faute permettent de contourner des mécanismes de sécurité, de prime abord robustes, en exploitant astucieusement l'implémentation de ces derniers. Ces attaques sont d'ailleurs spécialement complexes à prendre en compte lors de la conception d'un produit sécurisé, du fait qu'il soit particulièrement difficile de prévoir les effets des fautes sur une nouvelle puce. Ainsi, ce chapitre présente l'état de l'art des attaques par injection de faute, mais aussi les techniques et les méthodes d'optimisation d'équipement afin de mieux appréhender les différentes facettes de ces attaques.

Après avoir présenté les origines de l'injection de faute, les différents moyens d'injection et quelques attaques originales à la section 2.2, nous reviendrons à la section 2.3 sur un point crucial en injection de faute, à savoir l'optimisation de l'équipement. Ensuite, à la section 2.4, nous étudierons les effets des fautes sur différentes architectures et les approches proposées pour mieux les comprendre. Puis, à la section 2.5, nous détaillerons la modélisation et la simulation des fautes ainsi que les méthodologies existantes visant à combler l'écart entre différents niveaux d'analyse. Enfin, la section 2.6 conclut ce chapitre en positionnant les objectifs de cette thèse.

Les attaques par injection de faute

Dans cette section, nous revenons sur les notions de faute, d'erreur et de défaillance, puis nous nous intéressons à l'injection de faute, de son origine jusqu'à son utilisation en cybersécurité. Ensuite, nous revenons sur les moyens d'injection connus. Enfin, nous terminons par présenter quelques attaques originales.

Faute, Erreur, Défaillance

On désigne sous le terme d'erreur une déviation par rapport au comportement nominal. Une erreur est la manifestation d'une faute, dans notre cas induite par une perturbation. Lorsqu'une erreur se propage jusqu'à être observable, on parle alors de défaillance. Si une faute est nécessaire pour causer une erreur, toutes les fautes ne résulteront pas en défaillance. Certaines erreurs peuvent être masquées, c'est-à-dire corrigées avant de pouvoir se propager. La figure 2.1 résume schématiquement la relation entre faute, erreur et défaillance [START_REF] Mukherjee | Architecture design for soft errors[END_REF][START_REF] Avizienis | Fundamental concepts of dependability[END_REF][START_REF] Laprie | Dependability : Basic concepts and terminology[END_REF].

Les fautes peuvent être classifiées selon la durée de leurs effets. En sécurité, on retrouve principalement des fautes transitoires, c'est-à-dire des fautes temporaires, n'apparaissant qu'à la suite d'une perturbation. On les distingue des fautes permanentes, qui lorsqu'elles surviennent, persistent dans le temps. Dans cette thèse, on traitera exclusivement de fautes transitoires.

Les effets des fautes est évidemment un aspect très important dans le contexte de l'évaluation de la sécurité aux attaques par fautes. Il est fréquent d'utiliser des modèles de faute pour décrire les effets des fautes sur le microcontrôleur ciblé. Nous reviendrons plus en détail sur ce sujet à la section 2.5. Ce n'est que bien plus tard, dans les années 1990, que l'injection de faute apparait dans le domaine de la sécurité, avec les premières attaques sur les cartes à puce utilisées par les systèmes de télévision à péage [START_REF] Anderson | Tamper resistance-a cautionary note[END_REF]. L'injection de faute permet ici de perturber délibérément le comportement du système afin de contourner les mécanismes de sécurité et de récupérer, dans le cas de la télévision à péage, la clé nécessaire pour déchiffrer le contenu payant. Mais c'est surtout à cette même période que Boneh et al. [START_REF] Boneh | On the importance of checking cryptographic protocols for faults[END_REF] théorisent la première attaque par faute, aujourd'hui connue sous le nom d'attaque BellCore, permettant de retrouver la clé privée de certaines implémentations de l'algorithme de chiffrement asymétrique RSA. Cette attaque exploite la différence entre deux signatures d'un même message, l'une étant fautée, pour factoriser le modulo n et trouver la clé.

L'injection de faute, des origines à nos jours

Le terme d'analyse différentielle de fautes (Differential Fault analysis, DFA) sera d'ailleurs introduit par Biham et al. [START_REF] Biham | Differential fault analysis of secret key cryptosystems[END_REF], et regroupe l'ensemble des attaques exploitant des différences entre les résultats corrects et fautés obtenus. À l'inverse, l'analyse de faute par collisions (Collision Fault analysis, CFA, [START_REF] Blömer | Fault based collision attacks on aes[END_REF]) exploite le fait que deux chiffrés, dont l'un fauté, soient identiques. Une variante de cette classe d'attaque consiste à injecter des fautes sans effet (Ineffective Fault analysis, IFA, [START_REF] Clavier | Secret external encodings do not prevent transient fault analysis[END_REF]).

Pour aller plus loin, l'analyse de faute par outil statistique (Statistical Fault analysis, SFA, [START_REF] Fuhr | Fault attacks on aes with faulty ciphertexts only[END_REF]) permet de relâcher les contraintes sur la connaissance précise du modèle de faute, en comparaison avec l'analyse différentielle de fautes. Plus récemment, en généralisant les résultats des travaux sur l'IFA, et en utilisant les outils statistiques de la SFA, il est possible de retrouver la clé privée avec des fautes sans effet, en contournant les contremesures ne prenant pas en compte ce type de fautes (Statistical Ineffective Fault analysis, SIFA, [DEK + 18]).

En réponse à ces nouvelles classes d'attaque, des contre-mesures furent proposées (e.g. [START_REF] Ciet | Practical fault countermeasures for chinese remaindering based rsa[END_REF][START_REF] Giraud | Fault resistant rsa implementation[END_REF]). Si ces contre-mesures permettaient de se protéger contre une seule injection de faute par exécution, elles ne prenaient pas en considération le cas de plusieurs injection de faute par exécution. En injectant une première faute pour corrompre le résultat puis une deuxième pour contourner la contre-mesure, Kim et al. [KQ07] parviennent, avec une attaque BellCore modifiée, à retrouver la clé privée, réussissant, par la même occasion, la première attaque multi-faute expérimentalement. Depuis, plusieurs travaux démontrent de l'importance de prendre en compte l'injection de faute multiple [TK10, BDSG + 14, BH15, SHS16, VdHOGT21]. Cependant, ces attaques restent difficiles à identifier, en particulier pour les développeurs de systèmes sécurisés. Nous reviendrons sur cette problématique à la section 2.5.

Si les attaques par fautes sont souvent associées aux systèmes cryptographiques dans la littérature (AES, RSA, etc.), nous présenterons des exemples d'attaques sur des systèmes non-cryptographiques à la sous-section 2.2.4. Enfin pour conclure cet exposé sur les attaques par injection de faute, le dernier point important à aborder concerne les techniques d'injection de faute.

Techniques d'injection de faute par perturbation

Il existe une grande variété de techniques pour injecter des fautes sur un composant. Pendant cette thèse, on s'est intéressé plus particulièrement aux techniques d'injection de faute par perturbation. La particularité de ces dernières est d'altérer l'environnement du composant localement pour modifier son comportement. On parle aussi d'attaque semiinvasive car il peut être nécessaire de préparer la cible, en la décapsulant par exemple, c'està-dire retirer le boitier pour avoir un accès direct au silicium. Si les attaques semi-invasives peuvent entrainer par inadvertance ou malchance une destruction de la puce, les attaques invasives conduisent nécessairement à une détérioration du circuit. Dans la suite de cette section, nous détaillons uniquement les techniques d'injection de faute par perturbation.

Perturbation de la tension d'alimentation

Cette technique est l'une des premières utilisées pour générer des fautes dans le but de compromettre un système [START_REF] Anderson | Tamper resistance-a cautionary note[END_REF][START_REF] Anderson | Low cost attacks on tamper resistant devices[END_REF]. Le principe consiste à faire varier la tension d'alimentation de la cible (figure 2.2), aussi appelé Power Glitch. En s'éloignant brutalement de la tension nominale du composant pendant un court instant, il est possible de modifier l'exécution de l'application ciblée. L'équipement nécessaire pour contrôler la forme de l'impulsion électrique générée est généralement peu onéreux. Si cette technique requiert quelques connaissances, elle reste néanmoins accessible, car ne nécessitant pas d'outillage spécialisé. La faute produite est transitoire, globale et difficilement contrôlable. Cependant, nous verrons qu'il est possible d'améliorer le contrôle et la précision des impulsions électriques générées en utilisant un outillage avancé au chapitre 3. 

Perturbation du signal d'horloge

Similairement, perturber le signal d'horloge du composant est une autre technique peu coûteuse pour induire une faute pendant l'exécution d'une application (figure 2.3). L'approche classique consiste à modifier subitement la fréquence d'horloge [START_REF] Balasch | An in-depth and black-box characterization of the effects of clock glitches on 8-bit mcus[END_REF], aussi appelée Clock Glitch de manière à induire des défauts de propagation de signaux. Cette technique d'injection ne nécessite pas d'outillage onéreux ou spécialisé, typiquement, un FPGA permet à la fois de générer et de perturber le signal d'horloge de la cible. Cependant, cette technique requiert une cible dont l'horloge est contrôlée par un signal externe, ce qui n'est pas toujours le cas. De plus, comme pour les perturbations de la tension d'alimentation, la faute produite est transitoire, globale et difficilement contrôlable.

Température

Augmenter la température au delà de la plage de fonctionnement de la cible permet d'induire des fautes. Les fautes générées peuvent être locales et permanentes [START_REF] Skorobogatov | Local heating attacks on flash memory devices[END_REF] ou globales et transitoires [START_REF] Hutter | The temperature side channel and heating fault attacks[END_REF]. L'expertise technique et le coût d'équipement varie avec l'approche utilisée. L'approche classique (figure 2.4a) ne requiert pas d'outillage spécialisée (une plaque chauffante suffit). Cependant, la précision et le contrôle est très limité car il est difficile de provoquer des variations de température localisées, rapides et contrôlées avec une plaque chauffante. Contrairement aux perturbations précédentes, le risque de détériorer le 

Impulsion électromagnétique

Perturber la cible à l'aide d'impulsions électromagnétiques est une technique populaire pour injecter des fautes transitoires et localisées. Depuis la première attaque Bell-Core avec cette technique, proposée par Schmidt et al. [START_REF] Schmidt | Optical and em fault-attacks on crtbased rsa : Concrete results[END_REF], l'injection de faute par impulsion électromagnétique (EM) est particulièrement bien couverte dans la littérature [DDRT12, MDH + 13, OGST + 14, MBB16, TBE + 21]. Cette approche consiste à générer un champ magnétique, le plus souvent avec une bobine et un courant impulsionnel. Noter que cette attaque peut se réaliser sans décapsuler la carte, mais les résultats sont meilleurs en ouvrant le composant (figure 2.4b). Le coût d'équipement et l'expertise technique demandée est généralement plus élevée que les approches précédentes. Cela est à nuancer car Abdellatif et al. [START_REF] Karim | Silicontoaster : a cheap and programmable em injector for extracting secrets[END_REF] ont récemment proposé un équipement bon marché.

Lumière focalisée

Lorsque le prix de l'équipement et l'expertise ne sont plus des contraintes et que seuls comptent les résultats, l'injection de faute par lumière focalisée est une technique permettant d'induire avec précision des fautes transitoires dans un circuit. L'approche consiste à tirer parti de l'énergie apportée par le rayonnement lumineux pour commuter l'état des transistors ciblés (figure 2.5a). La première attaque BellCore par lumière focalisée est réalisée en 2002 par Skorobogatov et al. [START_REF] Sergei | Optical fault induction attacks[END_REF] avec un simple laser classe 21 à 8$. Depuis l'équipement a évolué, avec notamment l'utilisation de laser en proche infrarouge [START_REF] Dutertre | Experimental analysis of the laser-induced instruction skip fault model[END_REF] ou d'équipement laser 

Rayon X

Si l'injection par lumière focalisée n'est pas suffisamment élitiste pour vous, pourquoi ne pas essayer l'injection par nanofaisceaux à rayons X ? En 2017, Anceau et al. [ABC + 17] propose d'utiliser la ligne de lumière de tomographie ID16B de l'ESRF (European Synchrotron Radiation Facility) pour injecter des fautes semi-permanentes sur un ATmega1284P (figure 2.5b). Ce type d'équipement est extrêmement rare et onéreux. Un faisceau intense, d'une dizaine de nanomètres seulement, est focalisé sur la mémoire flash, EPROM et RAM du circuit ciblé. Les fautes sont dites semi-permanentes car l'effet produit est réversible, et un simple traitement thermique permet de supprimer l'effet induit. La faute est très localisée, il est possible de viser précisément un seul transistor.

Comparatif

Pour conclure sur les techniques d'injection de faute, le tableau 2.1 compare ces dernières en fonction de la précision et du contrôle sur les fautes induites, l'expertise technique requise et le coût de l'outillage. Noter que de récents travaux proposant diverses améliorations pour réduire le coût de l'outillage ou augmenter la précision des fautes injectées ([BFP19, AH20, CPHR21]) bouscule cette classification. Aussi, certaines variantes, qui ne sont pas prises en compte dans ce comparatif, permettent d'induire des fautes plus précises. Par exemple, il est possible de générer des fautes par température localisée avec un laser au lieu d'utiliser une plaque chauffante. 

Sélection d'exemple d'attaques

Précédemment, nous avons évoqué les attaques par faute sur des algorithmes de chiffrement (e.g. attaque BellCore) pour compromettre des accélérateurs cryptographiques. Comme les travaux de cette thèse ne se restreignent pas aux crypto-systèmes, nous présentons quelques attaques supplémentaires sur des consoles de jeux vidéos ou des portefeuilles électroniques de crypto-monnaie. Ces attaques reposent sur la compromission des mécanismes de protection limitant les fonctionnalités du chargeur de démarrage.

Chargeur de démarrage et mécanismes de protection

Le chargeur de démarrage ou bootloader est une application, le plus souvent préprogrammé directement sur le microcontrôleur en usine, permettant à l'utilisateur de lire et écrire en mémoire. Des mécanismes de protection, désignés sous le nom de Code Readout Protection (CRP) [START_REF] Van Den Herrewegen | Fill your boots : Enhanced embedded bootloader exploits via fault injection and binary analysis[END_REF], peuvent être activés pour restreindre l'accès en lecture et en écriture à partir du bootloader. Les CRP proposent généralement plusieurs niveaux de protection, allant de la limitation des fonctionnalités du bootloader jusqu'à la désactivation complète et irréversible de ce dernier. En compromettant ces mécanismes, un individu malveillant peut récupérer des informations sensibles (e.g. clé privée) ou étudier la conception d'un produit concurrent (rétro-ingénierie). Par ailleurs, la compromission de CRP fait partie des domaines de recherche très actifs ces dernières années, par exemple, en perturbant les cellules mémoires contenant la valeur du niveau de protection CRP par lumière focalisée ([OT17]), ou bien en contournant les vérifications du niveau de protection CRP avec des power glitches [Ces16, Ger17, BFP19, RDN19, VdHOGT21]. Une fois ces vulnérabilités connues, elles sont difficiles (impossibles) à corriger une fois le microcontrôleur commercialisé. Cela peut être critique, en particulier lorsque que l'application finale a pour but la protection de données sensibles. 

Portefeuille électronique de crypto-monnaie

Un portefeuille électronique de crypto-monnaie ou hardware wallet est un support physique permettant de stocker les clés privées et publiques de l'utilisateur, nécessaire pour envoyer et recevoir des crypto-monnaies. En dérobant la clé privée d'un utilisateur, un individu malveillant peut se saisir de la fortune amassée sur cette dernière. Mais alors, quel rapport avec l'injection de faute ? En 2019, deux équipes [AGH19, Kra20] ont montré que le hardware wallet Trezor One était vulnérable à l'injection de faute (figure 2.6). En abaissant le niveau de protection CRP du microcontrôleur embarqué dans le Trezor One, le bootloader normalement inaccessible, peut être réactivé. Il est alors possible de lire en SRAM et de récupérer la phrase mnémonique de l'utilisateur (seed). L'individu malveillant, une fois en possession de la seed de l'utilisateur, peut récupérer l'ensemble des fonds associés aux adresses gérées par le portefeuille. Cette attaque est rendue possible car le microcontrôleur contenant les données sensibles de l'utilisateur n'est pas sécurisé. Les microcontrôleurs sécurisés sont conçus pour être robustes aux attaques physiques comme les injections de faute et sont conseillés pour ce type d'application.

Consoles de jeux vidéos

L'injection de faute peut être utilisée pour exploiter des vulnérabilités logicielles plus classiques. Un très bon exemple récent est sans doute celui de Yifan Lu [START_REF] Lu | Injecting software vulnerabilities with voltage glitching[END_REF] qui, en 2019, réussit à extraire l'intégralité de la mémoire système de la PlayStation Vita (une console portable de jeux vidéos) contenant, entre autres, le bootloader de cette dernière. Lors du démarrage de la console, le secteur 0 de la partition est lu, contenant la zone d'amorce (Master Boot Record, MBR). Ce dernier contient un champ contenant la taille du bootloader et sa position dans la partition. L'auteur supposa (après quelques expérimentations) que le bootloader était vraisemblablement lu et chargé dans un tableau de taille fixe, après une vérification de la taille du bootloader pour éviter un dépassement de tampon (buffer overflow). Avec une injection de faute au bon moment, il est possible de sauter cette vérification, et Paramètres 

Optimisation des paramètres d'attaque

Perturber un microcontrôleur sans que ce dernier s'interrompt inopinément se joue souvent à des détails, quelques mV avec des power glitches par exemple. Ainsi, le nerf de la guerre en injection de faute est de trouver les paramètres d'attaque, c'est-à-dire d'une part, les paramètres d'équipement qui induisent des fautes sur le microcontrôleur ciblé, et d'autre part, les délais d'injection qui ciblent les zones critiques de l'application embarquée. Cette section présente les différentes techniques et approches utilisées pour trouver les meilleurs paramètres d'attaque.

Paramètre d'attaque

Dans ce manuscrit, les paramètres d'attaque désignent l'ensemble des paramètres expérimentaux pour reproduire physiquement une attaque, à savoir, les paramètres d'équipement et les délais d'injection.

Paramètre d'équipement

Les paramètres d'équipement désignent l'ensemble des réglages spécifiques pour un équipement d'injection de faute donné. La taille et le nombre de dimensions (i.e. paramètres) de l'espace des réglages possibles est variable d'un équipement à un autre. Par exemple, si on retrouve seulement 2 paramètres pour une grande majorité des équipements d'injection de power glitch (figure 2.7), un équipement d'injection Laser standard se configure généralement avec 5 paramètres (tableau 2.2). Ainsi, en fonction de l'équipement utilisé, la difficulté à identifier les paramètres induisant des fautes sur la cible n'est pas la même. De manière générale, elle est proportionnelle aux nombres de combinaisons de paramètres possibles pour l'équipement considéré. Par exemple, si un équipement d'injection de power glitch se limite à 10 4 combinaisons [START_REF] Picek | Fault injection with a new flavor : Memetic algorithms make a difference[END_REF], un équipement d'injection EM peut atteindre 10 

Délai d'injection

Le délai d'injection est un paramètre commun à tous les équipements d'injection de faute, dès lors que l'on souhaite injecter une faute transitoire. Le délai d'injection désigne le temps écoulé entre un point de référence et l'injection de la faute. Par exemple, le pin reset du circuit est souvent utilisé comme point de référence pour compromettre des CRP ([BFP19, RDN19]). Autre exemple, au chapitre 6, à la section 6.6, le point de référence est la fin de transmission UART. Noter qu'en fonction du point de référence choisi, il peut avoir des variations temporelles (jitter) entre deux exécutions ce qui peut gêner à la répétabilité des attaques. Autre point important, pour induire des fautes sur le microcontrôleur cible, il est primordial de trouver les bons paramètres d'équipement, mais pas nécessairement les délais d'injection. Pour cette raison, nous verrons dans la suite que certaines approches séparent le délai d'injection du reste des paramètres d'équipement ([CPB + 13]), pour réduire l'espace de recherche.

Recherche exhaustive

La recherche exhaustive consiste à tester toutes les combinaisons de paramètres d'attaque possibles. Or, l'espace des paramètres d'attaque (i.e. paramètres d'équipement et délai) est généralement bien trop large pour être couvert entièrement avec une recherche exhaustive. Ainsi plusieurs techniques ont été proposées pour contourner ce problème. On retrouve d'une part les techniques d'optimisation accélérant l'identification des meilleurs candidats, et d'autre part les techniques de réduction de l'espace, qui visent à délimiter et réduire significativement l'espace des paramètres en identifiant les zones d'intérêt. Ces approches seront respectivement détaillées à la sous-section 2.3.2 et sous-section 2.3.3.

Technique d'optimisation

Les techniques d'optimisation dans le contexte de l'injection de faute reposent généralement sur des approches simples et bien connues : la recherche par quadrillage et la recherche aléatoire. Ce n'est que récemment que des stratégies plus évoluées ont émergé, notamment basées sur des algorithmes métaheuristiques. Cependant, peu importe la stratégie choisie, le but reste le même : trouver le plus rapidement des combinaisons de paramètres d'attaque induisant une faute sur le microcontrôleur. Tout d'abord, nous expliquerons la recherche par quadrillage et la recherche aléatoire ainsi que leurs inconvénients. Ensuite, nous reviendrons sur les différents algorithmes métaheuristiques qui ont été proposés dans la littérature dans le contexte de l'injection de faute.

Recherche par quadrillage

La recherche par quadrillage, ou Grid Search (GS), est une recherche semi-exhaustive sur une plage de valeurs prédéterminée et progressivement affinée. Bien que GS soit suffisante lorsque l'espace de recherche est de faible taille, cette technique est inefficace pour un espace de paramètres de grande dimension, car le nombre de configurations évaluées augmente de façon exponentielle avec le nombre de paramètres considérés (fléau de la dimension [Bel61]). L'autre inconvénient de la recherche par quadrillage est illustrée à la figure 2.8. Dans cet exemple, la recherche par quadrillage échantillonne à intervalle régulier chaque paramètre de l'espace. Or l'un des paramètres a peu d'effet sur le microcontrôleur. En explorant seulement trois valeurs différentes du paramètre important sur 9 essais, la recherche par quadrillage manque la région intéressante de l'espace des paramètres.

Recherche aléatoire

La recherche aléatoire, ou Random Search (RS), est une autre stratégie simple qui corrige l'inefficacité de la recherche par quadrillage, illustrée précédemment. En effet, comme illustré à la figure 2.8, RS permet d'explorer 9 valeurs différentes du paramètre important et par la même occasion, d'explorer la région intéressante. Cependant, même si RS est un peu plus efficace que GS pour explorer des espaces de grande dimension [START_REF] Bergstra | Random search for hyper-parameter optimization[END_REF], RS et GS ont un défaut commun, à savoir qu'elles sélectionnent la prochaine configuration à tester indépendamment des résultats précédents, ce qui a pour conséquence de gâcher de nombreuses évaluations sur des configurations sans intérêt particulier.

Algorithme métaheuristique

D'autres approches ont été proposées pour identifier les paramètres d'attaque en fonction de l'équipement utilisé et du microcontrôleur ciblé. En particulier, les algorithmes métaheuristiques permettent d'explorer plus efficacement l'espace des paramètres que GS et RS. Les algorithmes métaheuristiques désignent les algorithmes d'optimisation s'inspirant de théories du vivant, le plus souvent stochastiques et itératifs, [GT13], et visant à résoudre des problèmes difficiles pour lesquels on ne connaît de méthode classique plus efficace.

En injection de faute, on retrouve d'une part l'algorithme génétique, ou Genetic Algorithm (GA), un algorithme métaheuristique populaire basé sur la théorie de l'évolution, déjà utilisé pour optimiser les paramètres des équipements dinjection EM [START_REF] Maldini | Optimizing electromagnetic fault injection with genetic algorithms[END_REF], mais aussi des équipements d'injection de power glitch [BFP19, PBJC14, CPB + 13]. D'autre part, Picek et al. [START_REF] Picek | Fault injection with a new flavor : Memetic algorithms make a difference[END_REF] proposent un algorithme mémétique pour calibrer un équipement d'injection de power glitch, qui est une extension du GA classique avec une technique de recherche locale.

Un algorithme génétique est un algorithme itératif s'articulant autour de quatre étapes, l'évaluation, la sélection, le croisement et la mutation. Le but est de faire évoluer une population de candidats, sélectionnés initialement aléatoirement, pour s'approcher progressivement de la solution optimale du problème, comme illustré à la figure 2.9. Croisement Les deux individus parents, sélectionnés précédemment, sont croisés pour former un individu enfant. Encore une fois, plusieurs stratégies existent. Par exemple, avec un croisement uniforme, chaque valeur de paramètre de l'enfant est choisie parmi l'un ou l'autre parents avec une probabilité égale.

Initialisation

Mutation Des mutations sont appliquées aux valeurs des paramètres de l'enfant. Une fois n'est pas coutume, il existe de nombreux opérateurs de mutation. En particulier, l'opérateur de mutation gaussien ajoute une valeur aléatoire suivant une distribution gaussienne pour chaque valeur de paramètre de l'enfant.

Ce processus itératif continue jusqu'à atteindre la dernière génération, fixée par l'utilisateur. Les algorithmes génétiques sont flexibles et s'adaptent facilement à une grande variété de problèmes, ce qui permet de les utiliser pour optimiser les paramètres d'attaque dans plusieurs situations différentes.

Cependant, ces derniers souffrent de deux inconvénients majeurs. D'une part, entre les multiples stratégies de sélection, opérateurs de mutation, et technique de croisement, mais aussi la taille de la population et le nombre de générations, les algorithmes génétiques peuvent être complexes à paramétrer. D'autre part, qui est une conséquence du point précédent, les algorithmes génétiques, lorsque mal configurés, peuvent souffrir d'une convergence prématurée vers une solution sous-optimale. 

Apprentissage profond

Plus récemment, Wu et al. [WRBBP20], ont proposé une méthode pour caractériser la sensibilité d'un microcontrôleur sécurisé aux perturbations laser, en se basant sur de l'apprentissage profond, pour ajuster la largeur de l'impulsion et la puissance du laser. Cette technique souffre du même problème que les algorithmes génétiques à savoir comment ajuster les hyperparamètres du modèle (nombre de couches cachées, nombre de neurones par couche, etc.). Par ailleurs, les modèles d'apprentissage profond sont généralement si complexes à optimiser, qu'il faut recourir à des techniques d'optimisation (par exemple... un GA [YS20]).

Réduction de l'espace des paramètres

Lorsque applicable, réduire l'espace des paramètres en se concentrant uniquement sur les zones d'intérêt permet d'accélérer significativement l'identification des meilleurs paramètres d'attaque. Cette partie détaille les approches proposées à cette fin.

Positions

L'identification des positions sur la puce jouant un rôle critique lors de l'exécution de l'application cible est une priorité en injection EM ou Laser. Plusieurs approches peuvent être utilisées dans ce but. Par exemple, en utilisant un microscope électronique à balayage, [MAM17] proposent d'acquérir préalablement des traces électromagnétiques, afin de détecter les zones d'intérêt dans le but de réduire l'espace des paramètres, ici les positions x,y de la pointe de la sonde électromagnétique.

Délais d'injection

Si les approches précédentes de réduction des positions ciblées ne sont pas généralisables à toutes les techniques d'injection (e.g. power glitch), les approches de réduction des délais d'injection le sont. Notamment, il est possible d'isoler la recherche du délai d'injection des paramètres d'équipement. Par exemple, Carpi et al. [CPB + 13] divisent le problème d'optimisation en deux étapes ; tout d'abord en optimisant la forme des power glitches injectés indépendamment du délai d'injection, puis dans un second temps, en se concentrant uniquement sur le délai d'injection avec les meilleurs glitches identifiés. De plus, il est possible d'utiliser des méthodologies d'analyse de vulnérabilités à l'injection de faute dans le but d'identifier les sections critiques de l'application ciblée. Récemment, Van den Herrewegen et al. [START_REF] Van Den Herrewegen | Fill your boots : Enhanced embedded bootloader exploits via fault injection and binary analysis[END_REF] ont utilisé de l'exécution symbolique [START_REF] James | Symbolic execution and program testing[END_REF] pour construire des chemins d'attaque sur le bootloader d'un microcontrôleur Renesas 78K0. À partir de ces chemins d'attaque, ils réduisent significativement l'espace de recherche des délais d'injection, ce qui permet de se concentrer sur l'optimisation des paramètres d'équipement.

Comparatif

Le tableau 2.3 résume les travaux, présentés dans cette section, sur les différentes méthodes pour améliorer la recherche des paramètres d'attaque, en fonction de la technique d'injection de faute et de la technique d'optimisation utilisée.

Caractérisation de fautes

Au même titre que l'optimisation des paramètres d'attaque, la caractérisation de fautes, qui consiste à analyser et comprendre les effets des fautes sur le microcontrôleur ciblé, est une tâche complexe. Si cette étape est généralement chronophage et fastidieuse, principalement à cause de la difficulté à observer l'effet induit par la faute. Cette section détaille uniquement les travaux récents et les techniques employées pour mieux observer et comprendre les effets des fautes. La modélisation et la simulation de ces effets seront détaillées par la suite à la section section 2.5.

Principe

La caractérisation de fautes regroupe l'ensemble des méthodes et techniques dont le but est d'identifier et de comprendre les effets des fautes sur un microcontrôleur. Cela consiste dans un premier temps à injecter un grand nombre de fautes de manière à tester différentes combinaisons de paramètres d'équipement, puis à analyser les comportements observés. La complexité réside dans la difficulté à observer les effets produits par la faute injectée, ces derniers pouvant être masqués et donc difficilement observables par l'utilisateur. Plusieurs techniques ont été proposées pour répondre à cette problématique.

Test de caractérisation de fautes

Contrairement à l'application cible, un test de caractérisation de fautes est un programme conçu spécifiquement pour récupérer un maximum d'informations sur les comportements fautés du microcontrôleur ciblé, de manière à analyser plus facilement les effets des fautes. S'il existe de nombreux tests différents dans la littérature, ils s'articulent généralement autour de trois parties :

• Prologue Initialisation de l'état interne du microcontrôleur, qui le plus souvent, se limite à un ensemble de variables V (registres généraux, emplacement mémoires, etc.). • L'exception HardFault désigne l'exception matérielle par défaut, pouvant être déclenchée à cause d'une erreur pendant le traitement d'une exception.

• MemManage détecte les violations d'accès mémoire, comme l'exécution de code depuis une zone mémoire avec accès en lecture/écriture uniquement.

• BusFault décèle la présence d'erreurs sur le bus de donnée ou d'instruction, lors de la lecture/écriture de données, ou le chargement d'une instruction.

• UsageFault se déclenche lors de l'exécution d'une instruction non définie, d'un accès mémoire non aligné, d'une division par zéro, etc.

Pour chaque exception, les dernières valeurs des 4 premiers registres R0-R3, du registre PC et du registre LR sont sauvegardées et peuvent être utilisées pour analyser l'effet de la faute. En particulier, ces informations sont utilisées par Hummel [START_REF] Hummel | Exploring effects of electromagnetic fault injection on a 32-bit high speed embedded device microprocessor[END_REF] pour déterminer quelle instruction a été fautée, à ≈ 5 instructions près.

On-chip debugger

La plupart des microcontrôleurs intègrent un On-Chip Debugger (OCD) pour aider les utilisateurs à déboguer leur code. Un OCD intègre plusieurs fonctionnalités utiles comme écrire et lire en mémoire, modifier les valeurs des registres, charger le code machine de l'application sur le microcontrôleur, ou encore interrompre l'exécution de l'application avec des breakpoints. L'OCD s'utilise généralement via un port de débug (e.g. Serial Wire Debug, SWD) avec une sonde de débogage (figure 2.13). Cependant l'OCD n'est pas toujours disponible pendant une évaluation de sécurité. 

Tracing

Si l'OCD est disponible pour une grande majorité des microcontrôleurs du marché, le tracing n'est pas souvent intégré à ces derniers. Le tracing est un mécanisme de débogage qui permet de générer une trace d'exécution complète du programme, avec notamment les accès mémoire et les cycles pour chaque instruction exécutée. On retrouve cette fonctionnalité sur certains coeurs ARM (e.g. ARM Cortex-A8) sous le terme de Embedded Trace Macrocell (ETM). Le mécanisme de Tracing est rarement disponible pendant une évaluation de sécurité.

Hummel [START_REF] Hummel | Exploring effects of electromagnetic fault injection on a 32-bit high speed embedded device microprocessor[END_REF] propose pour la première fois en 2014 d'utiliser ce mécanisme dans le but d'observer plus facilement les effets des fautes. Malheureusement, le tracing ne s'adapte pas facilement aux injections de faute. En effet, l'opcode et l'adresse de l'instruction exécutée n'est pas contenue dans la trace produite et doivent être dérivés à partir du code assembleur. Cela n'est pas un problème pour une utilisation classique de débogage car le code est connu et le flot de contrôle n'est pas altéré. Cependant, lorsqu'une faute modifie le flot de contrôle, ce qui arrive fréquemment, la trace générée n'est pas utilisable. 

Travaux récents

La caractérisation des fautes sur les microcontrôleurs est un domaine actif depuis les premiers travaux de 

Modélisation et simulation des fautes

Les effets des fautes observés sont souvent modélisés pour étudier plus facilement la robustesse d'une application (un bootloader, un algorithme cryptographique, etc.) aux fautes. De manière générale, les modèles de faute sont utilisés pour évaluer la vulnérabilité à l'injection de faute via des outils de simulation de faute. Ces outils permettent d'analyser la robustesse d'une application vis-à-vis des modèles de faute établis, automatiquement, à moindre coût, et sans risque de détérioration physique du circuit. Différents niveaux d'abstraction peuvent être utilisés pour modéliser une faute en fonction du niveau d'analyse souhaité. Après avoir précisé ces niveaux, nous détaillerons les approches visant à combler l'écart entre ces niveaux d'analyse. Nous terminerons sur la problématique des fautes multiples.

Niveau d'abstraction

Les effets d'une faute peuvent être analysés à différents niveaux d'abstraction, comme illustré à la figure 2.14. Chaque niveau d'analyse est un compromis entre fidélité, extensibilité et praticité (figure 2.15). La fidélité désigne la représentativité de l'effet décrit par le modèle. L'extensibilité correspond à la capacité à s'adapter à l'évaluation d'applications plus complexes, c'est-à-dire à passer à l'échelle. Enfin la praticité représente la facilité d'utilisation dans le contexte d'évaluation de sécurité.

Niveau Circuit

Pour étudier le comportement des transistors soumis à des perturbations physiques, les effets des fautes peuvent être modélisés au niveau circuit (figure 2.16a) avec des simulateurs de circuits électroniques (SPICE, Eldo, etc.). Ces travaux sont intéressants pour confirmer ou réfuter des hypothèses de modèles à plus haut niveau, en particulier, les trois modèles suivant au niveau logique :

• Bit-set la valeur d'un bit est forcée à 1.

• Bit-reset la valeur d'un bit est forcée à 0.

• Bit-flip la valeur d'un bit est inversée. 

Niveau Applicatif

L'analyse au niveau applicatif permet de couvrir plus facilement des applications complexes mais requiert un accès au code source de l'application ciblée, ce qui est néanmoins souvent le cas en évaluation de sécurité. Le principal défaut de ce niveau d'analyse reste la fidélité du modèle, les effets modélisés pouvant être différents des effets des fautes injectées 

Combler l'écart

S'il existe de nombreux outils de simulation d'injection de faute dans la littérature, nous nous intéresserons seulement ici aux outils et approches pour combler l'écart soit 1) entre les effets des fautes simulées et les effets fautes injectées expérimentalement ou 2) entre les différents niveaux d'analyse présentés précédemment. + 15] proposent une approche pour inférer des modèles de fautes ISA à partir des résultats d'une caractérisation de faute. Les modèles de faute sont probabilistes et prennent en compte la probabilité d'obtenir chaque effet observé expérimentalement. À partir des modèles inférés, l'évaluation de sécurité est conduite au niveau ISA avec l'outil CELTIC (chapitre 3), et permet d'identifier les sections critiques de l'application ainsi que d'aider à la notation du potentiel d'attaque [START_REF]Application of attack potential to smartcards and similar devices[END_REF]. Le fait que les modèles soient tirés d'expérimentations augmente la fidélité des effets injectés pendant la simulation. Similairement, Given et al. [START_REF] Given-Wilson | Bridging software-based and hardware-based fault injection vulnerability detection[END_REF] vérifient la fidélité des modèles simulés au niveau ISA avec des résultats expérimentaux pour identifier les modèles les plus représentatifs des fautes observées. Cependant, alors que Dureuil et al. évaluent l'application en fonction des résultats expérimentaux, Given et al. utilisent les résultats expérimentaux pour vérifier la pertinence des résultats simulés. 

Entre simulation et expérimentation

Dureuil et al. [DPdC

Entre niveau d'analyse

Riviere et al. [RPL + 14] combinent une approche au niveau applicatif avec une approche au niveau microarchitecture. Au niveau applicatif, l'outil LAZART [START_REF] Potet | Lazart : A symbolic approach for evaluation the robustness of secured codes against control flow injections[END_REF] simule des injections de fautes multiples avec un modèle d'inversion de test ce qui permet, au niveau microarchitecture, de réduire significativement le nombre de fautes à injecter avec l'outil EFS [BBC + 14], en ciblant uniquement les sections critiques de l'application identifiées par LAZART.

Laurent et al [START_REF] Laurent | Bridging the gap between rtl and software fault injection[END_REF] analysent les fautes injectées au niveau logique pour identifier les modèles au niveau applicatif les plus pertinents. Une fois les modèles au niveau applicatif validés, ils peuvent être ensuite utilisés pour évaluer l'application ciblée avec des outils d'analyse statique comme FRAMA-C [CKK + 12] ou dynamique comme LAZART. À noter que les auteurs soulignent que de nombreux modèles de faute au niveau applicatif sont nécessaires pour atteindre une bonne couverture des effets observés au niveau logique.

Enfin, Alshaer et al. [ACD + 21] complètent l'approche de Laurent et al. en combinant les résultats expérimentaux avec les résultats d'analyse au niveau applicatif et logique (figure 2.17) ce qui permet de modéliser plus facilement les effets des fautes observés expérimentalement.

Fautes multiples

Depuis la première attaque par faute multiple proposée par Kim et al. [KQ07], peu de travaux ont été proposés pour améliorer l'identification et l'exploitation de vulnérabilité à l'injection de faute multiple. Pourtant l'injection de faute multiple permet de considérablement augmenter le nombre de chemins d'attaque possibles pour contourner un mécanisme de sécurité. En particulier, Van den Herrewegen et al. [START_REF] Van Den Herrewegen | Fill your boots : Enhanced embedded bootloader exploits via fault injection and binary analysis[END_REF] ont réussi à modifier le flot de contrôle à deux reprises avec des power glitches pour réactiver le bootloader d'un microcontrôleur 8-bit (figure 2.18). Cet exemple est la première attaque par fautes mul-tiples documentée sur une cible réelle, illustrant l'importance de prendre en considération ces dernières pendant les évaluations de sécurité.

Cependant, l'analyse de la vulnérabilité à l'injection de faute multiple est une tâche complexe en raison de l'explosion combinatoire dû au nombre de fautes injectées, augmentant significativement le temps consacré à l'analyse de l'application pour identifier les chemins d'attaques les plus prometteurs.

À ce jour, relativement peu d'outils d'analyse prennent en compte l'injection de fautes multiples nativement. On pourra noter parmi eux l'outil LAZART qui se base sur de la coloration de graphe couplée à de l'exécution concolique pour identifier les chemins possibles pour atteindre un bloc visé avec des modèles au niveau applicatif comme de l'inversion de test. Du point de vue des développeurs, cet outil permet notamment d'optimiser les contre-mesures d'une application en détectant celles inutiles [START_REF] Boespflug | Countermeasures optimization in multiple fault-injection context[END_REF].

Conclusion

Dans ce chapitre nous avons présenté, non seulement les différentes techniques pour injecter des fautes par perturbation sur un microcontrôleur, mais surtout les approches pour identifier les paramètres d'attaque et comprendre les effets des fautes sur la cible. Ces deux aspects sont très importants en injection de faute. Il peut être facile d'oublier l'aspect physique de ce type d'attaque et ne se focaliser que sur la partie analyse de code, sans prendre en considération les spécificités de la cible.

Ainsi, la première problématique est de réussir à lier les résultats simulés avec la réalité physique des paramètres d'équipement. L'étape consistant à passer de la simulation à l'expérimentation est rarement abordée dans la littérature, et pourtant, cette étape est particulièrement complexe et chronophage, du fait de la taille de l'espace des paramètres d'équipement. Ce point peut devenir bloquant lors de l'analyse de la vulnérabilité aux fautes multiples, du fait de l'explosion combinatoire dû au nombre de fautes injectées, complexifiant d'une part la simulation d'injection de faute et d'autre part l'expérimentation. Pourtant, les attaques par fautes multiples risquent de devenir de plus en plus fréquentes, particulièrement depuis la publication d'une attaque double faute entièrement documentée sur le bootloader d'un microcontrôleur 8-bit (figure 2.18). Il est donc important de les prendre en compte, et réussir à comprendre et identifier plus facilement cette nouvelle menace.

L'autre point important qui mérite d'être développé concerne les tests de caractérisation de fautes. Il en existe une multitude dans la littérature, mais il n'y a pas de métrique de performance pour comparer l'efficacité de ces derniers pour identifier les effets des fautes. Par exemple, en fonction des instructions choisies dans la partie Cible du test, certains effets ne seront pas observables. Cela peut conduire à une mauvaise interprétation de la sensibilité aux fautes du microcontrôleur ciblé, ce qui peut avoir des conséquences sur l'évaluation de sécurité.

Enfin, les techniques d'optimisation utilisées dans le contexte d'injection de faute ne suivent pas l'état de l'art des techniques d'optimisation utilisées dans d'autres domaines, comme l'apprentissage automatique. Il serait intéressant de confronter les techniques récentes d'optimisation aux problématiques spécifiques de l'injection de faute. Pour résumer, cette thèse vise à :

• Proposer une méthodologie d'identification et d'exploitation des vulnérabilités à l'injection de faute multiple. Le but est de réussir à lier les résultats simulés aux paramètres d'attaque dans le contexte d'injection de faute multiple (chapitre 4).

• Formaliser les propriétés des tests de caractérisation de la littérature dans le but d'améliorer la conception de ces derniers (chapitre 5).

• Etudier de nouvelles techniques d'optimisation jamais utilisées dans le contexte d'injection de faute pour accélérer l'identification des paramètres d'attaques (chapitre 6).

Avant de détailler nos travaux, nous présentons, au chapitre suivant, deux outils importants, CELTIC et la GLITCH STATION, qui ont été développés pendant cette thèse pour simuler et injecter des fautes, respectivement. 

Chapitre 3

Outillage pour l'injection de faute

Introduction

Dans ce chapitre, nous présentons les outils qui seront utilisés dans les chapitres suivants pour simuler ou injecter des fautes.

D'une part, on détaillera le fonctionnement de CELTIC, qui est un simulateur d'injection de faute développé initialement par Dureuil [START_REF] Dureuil | Analyse de code et processus d'évaluation des composants sécurisés contre l'injection de faute[END_REF], et qui sera utilisé pour identifier des attaques par fautes multiples au chapitre 4, et pour analyser l'efficacité des tests de caractérisation de fautes au chapitre 5.

D'autre part, on présentera un nouvel équipement d'injection de faute par perturbation de la tension d'alimentation, la GLITHSTATION. Cet équipement d'injection de power glitch a été développé pendant cette thèse pour être un outil facile d'utilisation, tout-en-un et abordable (≈ 100 €). La particularité de cet outil est d'intégrer un convertisseur numériqueanalogique (Digital-to-Analog Converter, DAC) pour générer des formes de glitch complexes, permettant d'induire des fautes sur une grande variété de microcontrôleurs. Cet outil sera utilisé pour injecter des fautes multiples au chapitre 4, évaluer des tests de caractérisation de fautes au chapitre 5 et contourner les mécanismes de protection de code du bootloader du STM32F103RE au chapitre 6.

Ainsi la suite du chapitre s'organise comme suit. À la section 3.2, nous présentons les motivations derrières l'outil CELTIC mais aussi l'architecture de ce dernier et les modèles de faute pris en compte. Ensuite, à la section 2.3 nous détaillons la GLITHSTATION, sa conception, son fonctionnement et ses spécificités par rapport aux autres outils existants.

CELTIC

Afin d'aider l'évaluateur à l'analyse des vulnérabilités à l'injection de faute, des outils ont été développés pour simuler les effets des fautes sur le comportement du microcontrôleur ciblé, dans le but de détecter de potentielles faiblesses d'implémentation. En particulier, le CESTI CEA-Leti utilise, entre autres, un outil développé par Louis Dureuil, CELTIC [START_REF] Dureuil | Analyse de code et processus d'évaluation des composants sécurisés contre l'injection de faute[END_REF].

Motivations

Dureuil relève les contraintes liées à l'analyse de vulnérabilités à l'injection de faute, qui ont conduit au développement de CELTIC. Dans le cadre d'une évaluation de sécurité, l'outil idéal doit être :

• Non-intrusif Afin de couvrir un maximum de scénarios, il est préférable que l'analyse soit directement effectuée sur le binaire qui a été remis par le client, et donc les approches par instrumentation ou par recompilation ne sont pas adaptées.

• Multi-architecture Toujours dans un souci de couvrir un maximum d'évaluation de sécurité, l'outil doit pouvoir supporter plusieurs architectures différentes et être suffisamment flexible de manière à pouvoir en rajouter de nouvelles.

• Représentatif L'outil doit pouvoir simuler des injections de faute fidèles à celles obtenues expérimentalement sur le microcontrôleur ciblé. Pour cela, l'analyse doit tenir compte du jeu d'instruction de la cible pour prendre en compte les fautes qui dépendent de l'encodage des instructions.

• Pertinent Il faut pouvoir classer les résultats de la simulation selon la criticité des fautes obtenues pour aider l'évaluateur dans la notation du potentiel d'attaque.

• Robuste L'outil se destine à être utilisé sur des cas réels d'évaluation. Il doit être suffisamment fiable et robuste pour permettre le passage à l'échelle.

CELTIC est l'outil développé en réponse à ces besoins. Les caractéristiques principales de CELTIC sont les suivantes :

• Analyse dynamique au niveau ISA Pour avoir des résultats proches de la réalité et tenir compte de l'architecture du microcontrôleur cible, le choix de l'analyse dynamique au niveau ISA a été retenu. Plus précisément, CELTIC émule l'architecture du microcontrôleur ciblé puis simule les injections de faute selon des modèles au niveau ISA pendant l'exécution du binaire évalué. Comme nous l'avons vu au chapitre 2, ce niveau d'analyse est un bon compromis entre fidélité, praticité et extensibilité.

• Langage de spécification d'architecture Pour répondre au besoin de polyvalence et de portabilité, un langage de spécification d'architecture, GISL, a été développé, permettant de supporter plusieurs architectures différentes, à partir du moment où ces dernières sont décrites en GISL.

• API Python L'évaluateur peut utiliser CELTIC via une API PYTHON [VRD + 00] ce qui permet de faciliter la prise en main de l'outil, mais aussi d'utiliser des librairies comme PANDAS [M + 11], facilitant l'analyse des résultats.

• Multi-thread et pré-compilation Enfin, CELTIC accélère la simulation d'injection de fautes en répartissant l'ensemble des fautes à injecter entre plusieurs exécutions parallèles. Aussi, CELTIC pré-compile le jeu d'instructions du microcontrôleur ciblé en instructions exécutables par la machine hôte, à l'aide du moteur LLVM MCJIT [START_REF] Lattner | Llvm : A compilation framework for lifelong program analysis & transformation[END_REF].

Réduire les temps de simulation est important, particulièrement dans le cas de l'injection de fautes multiples.

Contributions

L'outil de simulation d'injection de fautes, CELTIC, a fait l'objet d'une refonte complète. Une première raison est purement pratique. L'auteur original de l'outil, n'étant plus au CESTI, le code de l'outil, de plusieurs dizaines de milliers de lignes, n'était plus maintenu. Avec les années, certaines portions de code étaient en doublon ou non terminées, tandis que d'autres étaient difficilement modifiables sans changer l'architecture de l'outil. Ainsi, l'architecture a été repensée et certaines fonctionnalités ont été rajoutées, notamment : la parallélisation des attaques et la pré-compilation des instructions GISL en code machine pour réduire le temps de simulation. Les modèles de fautes ont été repensés, il est possible de reproduire tous les modèles de fautes génériques au niveau ISA, mais aussi des modèles de fautes plus complexes (détaillés à la sous-section 3.2.4). De plus, une interface Python a été développée pour faciliter l'utilisation de CELTIC.

Architecture

Dans les sections suivantes, nous détaillerons brièvement les étapes clés de CELTIC à savoir l'initialisation et la compilation du fichier de description d'architecture GISL, l'exécution du binaire évalué et la simulation d'injection de fautes. L'architecture générale est détaillée dans la figure 3.1.

Initialisation et compilation

La première étape lors de l'initialisation d'un nouveau projet avec CELTIC est de compiler le fichier de description d'architecture GISL (extension *.man). Ce fichier contient les informations nécessaires pour initialiser l'architecture qui sera simulée comme le nombre de registres, la taille mémoire et surtout le jeu d'instructions de l'architecture. La rédaction du fichier .man est à la charge de l'évaluateur si l'architecture n'est pas encore décrite en GISL. est une collection d'outils et de librairies modulables et réutilisables permettant de concevoir des compilateurs. Historiquement, LLVM est l'acronyme de Low Level Virtual Machine mais désigne maintenant le projet LLVM dans son ensemble : la représentation intermédiaire LLVM, la suite de compilation Clang, etc. Après la génération d'un arbre de syntaxe abstraite avec Flex et Bison, qui est une représentation fortement liée au langage source utilisé, l'arbre de syntaxe abstraite est transformé en une représentation intermédiaire, celle de LLVM, agnostique du langage source. Ensuite, la représentation intermédiaire LLVM générée est optimisée avec les optimisations de code mise à disposition par LLVM. Enfin, le code machine est généré directement à partir de cette représentation intermédiaire.

Après les analyses lexicale, syntaxique et sémantique du fichier, chaque instruction décrite

Exécution du binaire

Une fois l'architecture initialisée, CELTIC exécute le binaire en suivant le processus détaillé à la figure figure 3.3. Ce processus, en trois étapes, consiste à charger, décoder puis exécuter l'instruction pointée par le compteur ordinal, de manière à mettre à jour l'état courant.

L'état est une structure contenant les valeurs instantanées des registres généraux et des registres spéciaux comme le registre PC (compteur ordinal) ou le registre d'état. L'état contient aussi les valeurs lues et écrites en mémoire jusqu'à lors. Il est possible d'ajouter des watch variables pour observer et suivre plus facilement la valeur de certaines variables en mémoire. Par exemple, cela permet de vérifier la valeur de la variable g_authenticated pour savoir si l'authentification est acceptée, comme illustré à la figure 3.4. L'exécution se poursuit jusqu'à atteindre une adresse spécifiée par l'utilisateur ou jusqu'à déclencher une interruption, due par exemple à l'exécution d'une instruction non reconnue.

Enfin, des évènements sont générés à chaque étape de l'exécution du binaire :

• FetchEvent est généré pendant le chargement d'instruction et contient l'adresse de l'instruction chargée.

• DecodeEvent est généré pendant le décodage de l'instruction et contient l'opcode de l'instruction decodée.

• ExecEvent est généré pendant l'exécution de l'instruction et contient l'adresse, l'opcode de l'instruction et diverses informations supplémentaires comme un pointeur vers la description GISL de l'instruction exécutée.

• RegEvent est généré pendant la lecture et l'écriture d'un registre mémoire.

• MemEvent est généré pendant la lecture et l'écriture d'une donnée en mémoire. Ces évènements sont ensuite enregistrés pour produire une trace d'exécution. Cette dernière est une liste contenant les états exécutés et les événements générés. Cette trace est utilisée pendant la simulation d'injection de faute.

Simulation d'injection de faute

Avec la trace d'exécution de référence, c'est-à-dire sans faute, on détermine les sites d'injection possibles en fonction des modèles de faute considérés. Par exemple, pour pouvoir appliquer un modèle de faute sur les valeurs lues en mémoire, il faut avoir au préalable enregistré un événement MemEvent. Une fois les sites d'injection identifiés, on génère les fautes qui seront ensuite injectées pendant l'exécution du binaire. En particulier, c'est cette étape d'injection de faute qui est parallélisée dans CELTIC, comme illustré à la figure 3.5.

Enfin, avec l'oracle choisi par l'utilisateur, qui est une expression booléenne statuant sur la réussite de l'attaque (par exemple, "l'utilisateur est authentifié" peut se traduire par l'expression booléenne g_authenticated == 0xAA), on analyse les traces d'exécution fautées obtenues pour finalement ne conserver que celles permettant de valider l'oracle. Nous verrons 

Modèles de faute

CELTIC utilise des modèles au niveau ISA pour simuler les injections de faute. Ces modèles sont listés au tableau 3.1. On dénombre trois catégories principales, la corruption d'instruction, la corruption de registre et la corruption de mémoire, dans lesquelles 8 familles de modèles de faute : Fetch Cache 
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Glitch Station

Motivation

Il existe de nombreuses techniques pour générer des power glitches. Une technique fréquemment utilisée consiste à utiliser un transistor MOSFET pour générer pendant un court instant un court-circuit entre l'alimentation et la masse (figure 3 Une récente approche consiste à utiliser un générateur de signaux arbitraires (Arbitrary Waveform Generator, AWG) pour générer le glitch. Un AWG étant en partie composé d'un DAC, cette technique peut sembler très similaire à celle précédente. Seulement, au lieu de définir la forme du glitch uniquement en fonction de l'amplitude et de la durée, Bozzato et al. [START_REF] Bozzato | Shaping the glitch : optimizing voltage fault injection attacks[END_REF] définissent la forme du de la perturbation avec 8 points distincts (similairement à figure 3.10), permettant de contrôler très précisément les formes générées. Le prix de ce montage dépend fortement de l'AWG choisi.

Enfin, la GLITCH STATION est un outil développé pendant cette thèse s'inspirant de l'approche de Bozzato et al. Mais au lieu d'utiliser un AWG, nous avons choisi d'utiliser une carte de développement NUCLEO-H743ZI2 pour générer la forme du glitch, à l'aide d'un montage R2-R qui sera détaillé à la section suivante, permettant ainsi de réduire les coûts. Le tableau 3.2 résume les outils existants en fonction du prix et du contrôle du glitch.

Architecture

L'idée derrière ce projet était de concevoir un outil facile d'utilisation, à bas coût, mais offrant suffisamment de contrôle sur la forme du glitch. Pour ce faire, la GLITCH STATION est articulée autour de deux éléments, la GLITCH MASTER et la GLITCH UNIT, comme presenté à la figure 3.9.

Glitch Master

La GLITCH MASTER est chargée de calculer la forme de la perturbation, puis de l'envoyer à la GLITCH UNIT qui sera chargée de la générer. Concrètement, la GLITCH MASTER désigne le PC de bureau exécutant un script Python chargé de s'interfacer avec la GLITCH UNIT et Comme illustré sur la figure 3.10, la forme de la perturbation peut être ajustée avec 8 niveaux de tensions (x 0 ...x 7 ) par défaut, en plus de la durée de la perturbation. La forme calculée est une interpolation entre les points x 0 ...x 7 . Si les points x 0 ...x 7 permettent de contrôler précisément la forme du glitch pour s'adapter à une grande variété de microcontrôleurs, la taille de l'espace des paramètres explose, avec ≈ 10 18 configurations possibles.

Ainsi, pour identifier les paramètres d'équipement induisant des fautes sur le microcontrôleur ciblé, des techniques d'optimisation plus efficaces que la recherche aléatoire ou la recherche par quadrillage doivent être utilisées. À ce jour, la GLITCH STATION implémente 4 techniques d'optimisation différentes : la recherche aléatoire (voir chapitre 2), l'optimisation par algorithme génétique (voir chapitre 2), l'optimisation par algorithme de bandit (voir chapitre 6) et l'optimisation bayésienne (voir chapitre 6). Un exemple de script Python est présenté à la figure A.II en annexe.

Glitch Unit

Une fois la forme de la perturbation calculée et envoyée par la GLITCH MASTER, la GLITCH UNIT s'occupe de la génération physique du glitch. Pour ce faire, la GLITCH UNIT s'articule autour d'une NUCLEO-H743ZI2 surmontée d'une carte électronique chargée de la génération et de l'amplification de la perturbation, comme illustré à la figure 3.11.

Le fonctionnement de l'application chargée dans la NUCLEO-H743ZI2 est relativement Le schéma de la carte électronique est présenté à la figure 3.12. On peut distinguer trois blocs principaux : 

Améliorations

Une amélioration possible serait de remplacer le montage R2-R DAC 8-bit par un DAC AD9102 14-bit de chez Analog à 15€ pour atteindre les 180 Msps, soit un glitch d'une durée au plus courte de ≈ 5 ns, soit une durée 6 fois plus courte qu'avec le montage R2-R actuel. Néanmoins, cela n'est peut-être pas nécessaire à court terme, car nous n'avons pas rencontré de difficulté à générer des fautes sur une grande variété de microcontrôleurs avec le montage R2-R. D'autant plus que le montage du DAC AD9102 est plus complexe, nécessitant une horloge de référence externe. 

Conclusion

Introduction

Dans le chapitre 2, nous avons présenté, entre autres, plusieurs méthodologies pour combler l'écart entre différents niveaux d'évaluations. Pour aller plus loin, nous proposons une méthodologie pour l'identification et l'exploitation de vulnérabilité à l'injection de fautes multiples.

En particulier, notre méthode est conçue pour être utilisée de bout-en-bout, de la caractérisation de la cible, à l'exploitation d'injections de faute simple et multiple. Elle se divise en trois étapes, à savoir, 1) l'inférence de modèles de faute, 2) l'identification des vulnérabilités et enfin 3) l'exploitation des vulnérabilités. L'avantage principal de notre méthode est d'automatiser chacune de ces étapes pour 1) accélérer l'évaluation de sécurité, 2) augmenter la répétabilité des résultats et 3) systématiser le processus d'évaluation.

Au niveau expérimental, notre méthodologie est adaptable à la majorité des situations rencontrées lors d'évaluations de sécurité. Plusieurs techniques d'injections de fautes ont été évaluées sur 3 références de microcontrôleurs différentes. Par ailleurs, notre méthodologie a pu identifier une faiblesse d'implémentation dans une des macros de l'outil CFI-C [HLB19], permettant de générer automatiquement des contre-mesures d'intégrité de flot de contrôle au niveau source. Enfin, notre méthodologie permet d'exploiter une vulnérabilité à l'injection double faute jusqu'à 30 fois plus rapidement qu'une approche uniquement basée sur une caractérisation.

Après avoir préciser les motivations et les principaux défis pour identifier et exploiter des fautes multiples à la section 4.2, nous présenterons notre approche en détail à la section 4.3. La section 4.4 résume les expériences conduites avec notre méthodologie, et précise notamment les microcontrôleurs et les applications cibles retenues. En particulier, à la section 4.5, nous détaillons deux de ces expériences, illustrant la versatilité de notre méthodologie. Ensuite, à la section 4.6, nous évaluons notre méthodologie sur plusieurs critères, la couverture de fautes, la détection de vulnérabilités, et la vitesse d'exploitation. Enfin, à la section 4.7, les possibles pistes d'amélioration sont abordées.

Les travaux de ce chapitre ont été publiés à la conférence FDTC en septembre 2020 [START_REF] Werner | An end-to-end approach for multi-fault attack vulnerability assessment[END_REF] et sont en cours de soumission dans la revue The Journal of Cryptographic Engineering.

Motivations

Avant de présenter notre méthodologie, nous détaillons les principaux défis liés à l'injection de faute multiples, puis nous revenons sur les méthodologies présentées au chapitre 2 et leur positionnement face à ces problématiques.

Défis

Avec l'évolution des attaques par faute au cours de la dernière décennie, et en particulier des attaques par fautes multiples, une évaluation de sécurité doit maintenant prendre en compte les scénarios d'attaque basés sur plusieurs injections de faute [START_REF]Application of attack potential to smartcards and similar devices[END_REF].

Néanmoins, si identifier et exploiter des vulnérabilités à l'injection d'une seule faute est déjà une première épreuve, le fait d'en considérer plusieurs complique significativement la tâche. La raison principale est l'explosion combinatoire du nombre de paramètres d'attaque directement lié avec le nombre de fautes injectées. Par exemple, avec la GLITCH STATION, la taille de l'espace de paramètres d'équipement est de 10 18 (chapitre 3). En comptant un balayage temporel de 100 délais d'injection pour couvrir une application cible, cela nous donne 10 20 paramètres d'attaque différents en simple faute. En double faute, on passe à 10 40 paramètres d'attaque.

Comme il n'est pas possible de tester tous les paramètres d'attaque pendant une évaluation de sécurité en temps contraint, y compris en faute simple, l'évaluateur va, d'une part 1) identifier des vulnérabilités pour cibler les zones critiques de l'application de manière à réduire l'étendue du balayage temporel, et d'autre part 2) caractériser le microcontrôleur ciblé (chapitre 2) afin de réduire l'espace des paramètres d'équipement.

Si cela permet de réduire efficacement l'espace des paramètres d'attaque, l'identification de vulnérabilités et la caractérisation introduisent de nouveaux défis, en particulier pour les fautes multiples : Défi D1 : Identifier des modèles de faute spécifiques Pour identifier de potentielles vulnérabilités sur l'application cible, il est courant d'utiliser des modèles de faute génériques (chapitre 2) pour construire des chemins d'attaque. Malheureusement, l'utilisation de modèles génériques conduit généralement aux situations suivantes :

• Les modèles génériques ne tiennent pas compte des spécificités du microcontrôleur cible, et ainsi certains chemins d'attaque identifiés ne seront pas réalisables en pratique. Cela se traduit par une perte de temps tout d'abord pendant l'identification des vulnérabilités, mais aussi pendant l'exploitation des vulnérabilités avec l'équipement d'injection de faute.

• À l'inverse, comme les spécificités du microcontrôleur cible ne sont pas prises en compte par les modèles génériques, certaines vulnérabilités ne seront pas détectées. Avec la découverte de nouveaux modèles de faute de plus en plus complexes [DRPR19, RNR + 15, CMD + 18, LBD + 19], il est donc capital de ne pas se contenter uniquement des modèles génériques.

• Dans le cas de fautes multiples, l'explosion combinatoire ne fait qu'empirer les deux points précédents : plus de chemins d'attaque irréalisables expérimentalement et plus de vulnérabilités non détectées. Dans ce contexte, il est indispensable de tenir compte des spécificités du microcontrôleur.

Si l'identification de modèles spécifiques au microcontrôleur ciblé est une priorité pour réussir des attaques complexes, il faut au préalable réussir à diagnostiquer et modéliser l'effet des fautes sur la cible. Cependant, cela est le plus souvent fait manuellement, ce qui peut conduire à des erreurs ou des oublis, en plus d'être chronophage.

Défi D2 : Utiliser des modèles de faute différents en multi-fautes Pour trouver de nouveaux chemins d'attaque, on peut utiliser un modèle de faute différent à chacune des injections. En particulier, il est théoriquement possible de construire des attaques complexes avec des sauts d'instruction de différentes longueurs [START_REF] Péneau | Nop-oriented programming : Should we care ?[END_REF]. Mais cela a un coût non négligeable, à savoir augmenter considérablement le nombre de chemins d'attaque à analyser. Comme précédemment, cela augmente à la fois le temps passé pendant l'identification et l'exploitation des vulnérabilités. Enfin, il faut aussi s'assurer d'utiliser des modèles spécifiques à la cible, car dans le cas contraire, une grande majorité des chemins d'attaque identifiés ne seront pas réalisables en pratique.

Défi D3 : Sélectionner les paramètres d'attaque optimaux Si l'utilisation de modèles spécifiques à la cible permet de réduire l'écart entre l'identification et l'exploitation des vulnérabilités, il reste à sélectionner les paramètres d'attaque, à savoir les paramètres d'équipement et les délais d'injection. Pour obtenir des résultats reproductibles rapidement, les paramètres d'équipement maximisant la probabilité d'exploiter les vulnérabilités identifiées doivent être sélectionnés en priorité. Cela nécessite, entre autres, de réussir à lier les paramètres d'équipement aux modèles de fautes.

Méthodologies existantes

Les méthodologies existantes, présentées au chapitre 2, proposent des stratégies différentes pour réduire l'écart entre un ou plusieurs niveaux d'analyse. Dans ce qui suit, nous analysons leurs positionnements par rapport aux défis énoncés au paragraphe précédent.

Tout d'abord, Rivière et al. [RPL + 14] combinent une analyse au niveau code source et matériel pour réduire la zone temporelle à cibler. Les fautes injectées sont injectées artificiellement sur la cible avec l'outil EFS (Embedded Fault Simulator) ce qui ne répond que partiellement au Défi D3. De plus, les modèles spécifiques au microcontrôleur ciblé ne sont pas identifiés (Défi D1 ). Bien qu'il soit possible de faire du multi-fautes, il n'est pas possible de varier les modèles utilisés en multi-fautes (Défi D2 ) en utilisant leur stratégie.

Dureuil et al. [DPdC + 15] proposent une approche combinant une analyse au niveau binaire et matériel. L'accent est mis sur l'inférence de modèles de faute probabilistes, spécifiques au microcontrôleur ciblé (Défi D1 ). Ces modèles sont ensuite utilisés pour évaluer la robustesse de la cible en simulation. Si potentiellement il serait possible de sélectionner des paramètres d'attaque à l'aide des modèles probabilistes, cet aspect n'est pas détaillé dans leur approche (Défi D3 ). Enfin, les fautes multiples n'étant considérées, il n'est pas possible de construire des attaques complexes avec plusieurs modèles de faute différents (Défi D2 ).

Given et al. [START_REF] Given-Wilson | Bridging software-based and hardware-based fault injection vulnerability detection[END_REF] proposent d'identifier les modèles spécifiques à la cible en combinant une analyse au niveau binaire et matériel (Défi D1 ). Des modèles complexes basés sur une combinaison de plusieurs modèles génériques sont utilisés à ces fins. Cependant, comme les fautes multiples ne sont pas envisagées, il n'est pas possible de répondre au Défi D2. Également, s'il n'y a pas de sélection des paramètres d'attaque tel que défini dans le Défi D3, leur stratégie permet tout de même de cibler temporellement les zones d'intérêts pour l'analyse au niveau matériel.

Laurent et al. [START_REF] Laurent | Bridging the gap between rtl and software fault injection[END_REF] se basent sur des simulations d'injection de faute au niveau RTL pour mettre en évidence des modèles complexes de fautes spécifiques à l'architecture ciblée (Défi D1 ). L'analyse se poursuit alors au niveau binaire en utilisant les modèles identifiés. Les fautes multiples n'étant pas considérées, il n'est pas possible de répondre au Défi D2. Enfin, comme il n'y a pas d'analyse au niveau matériel, il n'est pas possible de sélectionner les paramètres d'attaque (Défi D3 ). [START_REF] Laurent | Bridging the gap between rtl and software fault injection[END_REF] en rajoutant une analyse au niveau matériel. On retrouve donc l'identification de modèles spécifiques à la cible (Défi D1 ). Pour le moment, la méthode a été appliquée seulement avec des injections de faute simple (Défi D2 ) et l'aspect de sélection des paramètres d'attaque (Défi D3 ) n'est pas détaillé.

Le tableau 4.1 compare les méthodologies détaillées au chapitre 2 en fonction des défis D1, D2 et D3. La méthodologie que nous proposons vise à répondre aux trois défis énoncés en mettant l'accent sur l'identification et l'exploitation des vulnérabilités aux fautes multiples.

Notre approche

Vue générale

La méthodologie proposée repose en grande partie sur l'identification des modèles spécifiques les plus probables pour le microcontrôleur ciblé (Défi D1 ). D'une part, diminuer considérablement le nombre de modèles de fautes à prendre en compte permet de réduire la complexité de la simulation d'injection de faute. D'autre part, se baser uniquement sur les modèles les plus probables permet de faciliter l'exploitation des vulnérabilités identifiées lors de la simulation.

L'autre point central de notre approche est d'évaluer séparément dans un premier temps le microcontrôleur et l'application, dans le but d'identifier les paramètres d'attaque optimaux (Défi D3 ). Ensuite, dans un deuxième temps, la cible complète (microcontrôleur et application) est évaluée avec les paramètres d'attaque sélectionnés.

Enfin le dernier aspect important de notre méthodologie est de prendre en considération l'injection de fautes multiples, et en particulier identifier des chemins d'attaque exotiques utilisant des modèles différents pour chaque injection de faute (Défi D2 ).

Pour résumer, la figure 4.1 détaille notre approche qui se décompose en trois étapes clés : Dans la suite de cette section, nous détaillons chaque étape, puis notre méthodologie sera illustrée sur des exemples à la section 4.5.

Première étape : Inférence de modèles de faute

L'objectif de la première étape est d'inférer des modèles de faute propres au microcontrôleur ciblé. Ces modèles de fautes identifiés seront utilisés par la suite pour identifier des vulnérabilités à l'injection de fautes sur l'application cible. Cette étape consiste à croiser les résultats expérimentaux de la caractérisation de fautes du microcontrôleur ciblé avec les résultats simulés de CELTIC. Cette étape nécessite des tests de caractérisation de fautes, qui seront utilisés à la fois pour la caractérisation et la simulation d'injection de fautes avec CELTIC. L'application cible n'est donc pas utilisée lors de la première étape. 

Caractérisation de fautes

Deuxième étape : Identification des vulnérabilités par simulation

Cette étape utilise seulement les modèles de faute les plus probables, inférés à l'étape précédente, pour simuler des injections de faute réalistes.

Filtrage des modèles les plus probables

La simulation d'injection de fautes multiples indépendantes entraine une explosion combinatoire des chemins d'attaque. Par conséquent, le nombre de modèles de faute simulés avec CELTIC est volontairement limité. Pour cela, les modèles de faute les plus probables sont filtrés en se basant sur les résultats expérimentaux précédents (figure 4.3).

L'évaluateur sélectionne les modèles avec une probabilité P (m|c) > P threshold , P threshold étant un seuil choisi arbitrairement. Diminuer le seuil P threshold augmente le nombre de modèles sélectionnés, ce qui permet d'améliorer l'exhaustivité de l'analyse de vulnérabilité avec CELTIC mais conduit à rallonger le temps de simulation et diminue la vraisemblance des vulnérabilités identifiées. Ici, l'ajustement du seuil se fait de manière itérative : le seuil diminue progressivement pour augmenter le nombre de modèles sélectionnés jusqu'à obtenir une attaque réussie.

Simulation d'injection de fautes multiples indépendantes

L'analyse de vulnérabilité à l'injection de fautes multiples est automatisée avec CELTIC, qui permet de trouver exhaustivement les attaques réussies par rapport à l'oracle et en fonction des modèles sélectionnés (partie B de la figure 4.3). Si l'accent est mis sur les fautes multiples, les vulnérabilités à l'injection de faute unique sont également prises en compte.

Algorithme 1 : FindMFA pseudocode Function FindMFA(X, n, H) is Input : An execution trace X, the fault injection history H, the set of fault models M , the attack order n and the oracle Oracle. Output : The successful attacks S. S ← ∅;

for i ← 1 to |X| do foreach m ∈ M do X ′ ← SimulateFI(x i , m); H ′ ← H ∪ {i, m}; if Oracle(X ′ ) then S ← S ∪ {H ′ }; else if n > 1 then S ← S ∪ FindMFA(X ′ , n -1, H ′ ); return S;
CELTIC simule des injections de fautes à partir des modèles sélectionnés (1). Chaque trace d'exécution fautée est analysée par l'oracle (2). Lorsqu'une attaque réussie est identifiée, le cycle d'exécution de l'instruction fautée et le modèle de faute associé sont sauvegardés dans une table (3). L'Algorithme 1 détaille le pseudocode de CELTIC pour identifier des vulnérabilités à l'injection de fautes multiples. Tout d'abord, CELTIC génère une trace d'exécution de l'application de référence, c'est-à-dire sans faute.

Ensuite, la fonction FindMFA est appelée. Cette fonction prend comme arguments une trace d'exécution de l'application X, un ensemble de modèles M , un historique des injections de fautes précédentes H, le nombre de fautes n (e.g. n = 2 pour l'injection de double faute), et enfin l'oracle Oracle définit par l'évaluateur. Lors du premier appel de FindMFA, X est l'exécution de référence et l'historique H est vide.

Pour chaque état x i de la trace d'exécution X et pour chaque modèle m, CELTIC simule une injection de faute selon le modèle m à l'état x i et retourne une nouvelle trace d'exécution fautée X ′ démarrant à l'état fauté x ′ i (figure 4.4). L'historique H est mis à jour dans une variable locale H ′ . Concrètement, le cycle d'exécution de l'instruction i ainsi que le modèle de faute m sont sauvegardés.

Si la trace X ′ est identifiée comme étant une attaque réussie par l'oracle, les informations concernant l'attaque (cycles et modèles de faute de l'historique H ′ ) sont enregistrées dans une table S (figure 4.3). Sinon, n est décrémenté et le processus continu avec la trace X ′ jusqu'à ce que toutes les fautes soient injectées. À la fin, la table S contenant les cycles et modèles de faute des attaques réussies est retournée par FindMFA.

Troisième étape : Exploitation des vulnérabilités

L'écart entre la simulation et la réalité est souvent difficile à combler. Cette dernière étape permet d'assister l'évaluateur à exploiter les vulnérabilités précédemment identifiées avec CELTIC plus facilement. L'équipement est configuré avec les meilleurs réglages identifiés lors de la caractérisation et le balayage temporel se concentre sur les zones critiques identifiées avec CELTIC.

Génération des paramètres d'attaque

Les paramètres d'attaque désignent les paramètres d'équipement d'injection de fautes en plus du délai d'injection de faute nécessaire à l'exécution d'une attaque donnée. On peut générer facilement les paramètres d'attaque en combinant les résultats précédents et 

Sélection des paramètres d'attaque

La sélection des paramètres d'attaque (figure 4.6) est proportionnelle à la probabilité P (m|c). Cette stratégie de sélection est identique à la sélection par tirage à la roulette avec acceptation stochastique (roulette-wheel selection via stochastic acceptance) [START_REF] Lipowski | Roulette-wheel selection via stochastic acceptance[END_REF] que l'on retrouve dans les algorithmes génétiques (voir chapitre 2).

Une fois les paramètres d'attaque sélectionnés, l'équipement est configuré avec les paramètres d'équipement et les fautes sont injectées aux délais d'injection correspondants. Aucune action n'est attendue de la part de l'évaluateur. Lorsqu'une attaque réussie est obtenue, les paramètres d'attaque ainsi que d'éventuelles informations supplémentaires (e.g. l'état final de l'application) sont sauvés dans un ficher de résultats.

Vue générale des expérimentations

Notre méthodologie a été utilisée sur différentes cibles pour montrer que notre approche s'adapte facilement aux diverses situations rencontrées pendant les évaluations de sécurité. Plus précisément, nous avons injecté des fautes par perturbation laser et par perturbation de la tension d'alimentation, sur trois microcontrôleurs 32-bit et deux implémentations différentes d'un VerifyPIN. Le tableau 4.2 détaille les cibles utilisées pour chaque expérimentation.

Dans les paragraphes suivants, nous présentons succinctement les microcontrôleurs utilisés ainsi que les implémentations évaluées du VerifyPIN. Les expériences 1 et 5 seront détaillées dans la section 4.5. La performance générale de notre méthodologie sera évaluée à la section 4.6 en se basant sur ces 5 expériences.

Microcontrôleurs cibles

Tous les microcontrôleurs sélectionnés sont basés sur un coeur ARM Cortex-M4, reposant sur une architecture Harvard ARMv7E-M avec un pipeline de trois étages (chargement, décodage, exécution) et prédiction de branchement. Cependant, même s'ils utilisent le même coeur, l'agencement de la puce et les caractéristiques sont différents entre chaque modèle, et donc ils ne réagissent pas de la même manière aux injections de fautes (cf. tableau 4.7). Le premier microcontrôleur sélectionné (µC 1) est un microcontrôleur dont le coeur est cadencé à 16 Mhz pendant l'expérience. Il a été ouvert par l'arrière pour réaliser des perturbations laser. Le deuxième (µC 2), provenant du même fabricant, est un microcontrôleur ultra basse consommation, cadencé à 48Mhz pendant l'expérience. Enfin le dernier microcontrôleur (µC3) provient d'un fabricant différent. C'est le microcontrôleur le plus rapide de nos expérimentations avec un coeur cadencé à 120 Mhz.

Implémentation cibles

Les deux applications évaluées sont des implémentations différentes du VerifyPIN5 du benchmark FISSC [DPP + 16], qui est un programme d'authentification avec un code PIN à 4 chiffres. La version originale du VerifyPIN5 utilise plusieurs contre-mesures logicielles, à savoir, des booléens endurcis, du double appel et exécution à temps constant. Pour les deux applications, l'oracle consiste à être authentifié avec un code PIN invalide, sans déclencher une contremesure. Le code est instrumenté pour renvoyer les valeurs des variables critiques à la fin de l'exécution du VerifyPIN.

Notre première implémentation (hVP5) reprend les contre-mesures du VerifyPIN5 mais ajoute des points de contrôles supplémentaires pour se protéger d'un saut de plusieurs instructions. La deuxième implémentation (hVP5CFI) est basée sur notre implémentation hVP5 avec une contremesure additionnelle d'intégrité de flot de contrôle. Cette dernière est générée automatiquement avec l'outil CFI-C de Heydemann et al. [START_REF] Heydemann | Formally verified software countermeasures for control-flow integrity of smart card c code[END_REF].

Les traces d'exécution de hVP5CFI sont approximativement 10 fois plus longues que celles de hVP5 ; autour de 200 cycles pour la trace exécution de référence de hVP5 et environ 2000 cycles pour celle de hVP5CFI. Cela rend l'identification et l'exploitation de vulnérabilités à l'injection de faute multiples beaucoup plus difficile sur hVP5CFI.

Expériences

Dans cette section, nous détaillons les expériences 1 et 5 (tableau 4.2). Ces expériences ont été retenues car elles diffèrent en termes de choix de microcontrôleur, et de la technique d'injection de faute. L'objectif est de montrer que notre méthode s'adapte facilement aux différentes situations qu'un évaluateur peut rencontrer.

Expérience 1 : double injection de faute laser à différentes positions

Notre approche va être utilisée pour identifier et exploiter des vulnérabilités à l'injection de fautes multiples. La particularité de cette expérience est d'utiliser un banc laser double spot pour viser différentes positions sur la puce afin d'induire des sauts d'instruction de différentes longueurs pour contourner l'authentification du hVP5.

Banc laser double spot

Notre banc de test pour l'injection de faute laser est constitué de deux diodes laser indépendantes, partageant des caractéristiques identiques, et émettant autour de 1 µm de longueur d'onde. Cette configuration a été inspirée par Selmke et al. [START_REF] Selmke | Attack on a dfa protected aes by simultaneous laser fault injections[END_REF] ou encore le banc laser D-LMS Alphanov. Chaque faisceau laser traverse la même lentille de focalisation 20x et peut être ajusté indépendamment l'un de l'autre ; nous pouvons régler la puissance de crête de l'impulsion laser, la forme du faisceau et les positions spatiales x, y, dans le champ de vision de la lentille de focalisation.

Enfin, l'illumination laser est déclenchée par un simple signal électrique qui peut être envoyé au bon moment. On peut donc injecter simultanément deux failles précises à des positions temporelles et spatiales différentes ; nous utiliserons cette propriété pour trouver des attaques multi-fautes complexes.

Première étape : Inférence de modèles de faute

Les deux lasers du banc partageant les mêmes caractéristiques, la caractérisation est réalisée seulement avec une diode laser. La durée de pulsation du laser est d'environ 60 ns (≈ 1 coup d'horloge) et la puissance-crête du laser est d'environ 1W.

La durée de pulsation et la puissance du laser n'ont pas été optimisés automatiquement car la recherche par quadrillage nous limite à 2-3 dimensions (chapitre 2). Les valeurs retenues sont des valeurs qui avait déjà donné des résultats satisfaisants pour d'autres cibles. D'autres techniques d'optimisation pourraient permettre de gérer plus de dimensions (voir chapitre 6). Par contre, les positions x, y visées avec le laser sur la puce sont balayées automatiquement avec une recherche par quadrillage.

Le code de test utilisé pour la caractérisation est similaire à celui proposé par Proy et al. [PHM + 19], détaillé en annexe (Test de caractérisation de fautes T1, tableau A.I).

La partie logique de la mémoire Flash, chargée de l'adressage, est scannée méticuleusement, dans le but de perturber l'étage de chargement et de décodage du pipeline dans le but d'induire des changements de flot de contrôle inattendus. Une recherche par quadrillage est utilisée pour trouver les positions avec une probabilité élevée d'induire des résultats fautés (chapitre 2). La partie scannée la plus intéressante de la mémoire Flash se situe dans un rectangle de 150 µm par 200 µm (figure 4.7).

Environ 70.000 fautes ont été injectées pendant 6 heures. Sur ces 70.000 fautes, 12.000 résultats fautés ont été obtenus. La grande majorité des injections fautes (≈ 50.000 fautes) conduisent à des erreurs fatales non récupérables ; c'est-à-dire qu'une exception matérielle est générée, interrompant prématurément l'exécution du test de caractérisation de faute, ou à l'inverse, que le microcontrôleur reste coincé dans une boucle infinie (timeout). Le reste des fautes injectées (≈ 4500 fautes) conduisent au résultat attendu.

Une vue agrandie de la zone intéressante de la puce, détaillée à la figure 4.7, permet de mettre en évidence les positions ayant une probabilité de faute élevée, en particulier la région centrale (x = 1070 µm, y = 1250 µm), avec une probabilité supérieure à 0.9.

En parallèle de la caractérisation, CELTIC simule 400.000 injections de faute sur hVP5, générant plus de 100.000 résultats fautés différents en se basant sur l'ensemble de modèles de fautes par défaut. Ensuite, les modèles de fautes spécifiques au microcontrôleur µC1 sont inférés à partir des résultats de la caractérisation et de la simulation. Le tableau 4.3 présente les modèles inférés. Parmi les 12.000 résultats fautés obtenus pendant la caractérisation, environ 9.000 d'entre eux peuvent être expliqués avec des modèles de faute grâce à notre approche. Les modèles inférés sont majoritairement des sauts de plusieurs instructions. En particulier, les modèles 16InstructionSkip, 32InstructionSkip et 48InstructionSkip (sous-section 3.2.4) décrivent un saut de 16, 32 et 48 octets respectivement par rapport à l'adresse normalement chargée. Concrètement, cela permet de sauter 4 à 12 instructions de suite.

Deuxième étape : Identification des vulnérabilités par simulation

En fixant arbitrairement P threshold = 0.25, seuls les trois modèles de saut d'instructions décrits précédemment ont P (m|c) > P threshold . Avec ces trois modèles, CELTIC ne trouve pas de vulnérabilité à l'injection d'une seule faute, notamment grâce à l'ajout de points de contrôle supplémentaires dans le code de notre version hVP5. Cependant, CELTIC identifie plusieurs vulnérabilités à l'injection de double faute, obtenant plus de 400 exécutions fautées de hVP5 contournant le mécanisme d'authentification. Nous allons maintenant, en guise d'exemple, détailler une des attaques trouvées par CELTIC.

Le coeur de hVP5 ...

3:

for ( i = 0; i < PINSIZE ; i ++) {

4: if ( userPIN [ i ] != cardPIN [ i ]) { 5: diff = BOOL_TRUE ; 6: } 7: } 8: 9: if ( i != PINSIZE ) { 10:
countermeasure (); 

Troisième étape : Exploitation des vulnérabilités

Les deux diodes laser indépendantes de notre banc sont réglées pour viser différentes positions de la puce, qui d'après l'étape d'inférence de modèles de faute, induisent les modèles 48InstructionSkip et 32InstructionSkip. À notre connaissance, c'est la première fois que deux diodes laser indépendantes focalisent différentes positions de la puce à travers le même faisceau optique, dans le but d'induire sciemment différents sauts d'instructions. À l'inverse, Selmke et al. [START_REF] Selmke | Attack on a dfa protected aes by simultaneous laser fault injections[END_REF] injectent les même fautes à différentes positions pour contrecarrer des contre-mesures basées sur des mécanismes de redondance.

Plus précisément, pour réaliser l'attaque simulée avec CELTIC avec combinaison des modèles de faute, le laser 1 est configuré pour viser une position liée au modèle 48InstructionSkip, tandis que le laser vise une position connue pour induire le modèle 32InstructionSkip (figure 4.8). Des exemples de paramètres d'attaques générés automatiquement avec notre approche sont présentés au tableau 4.4. À partir de ces paramètres d'attaque, il est possible de contourner l'authentification de hVP5 en quelques essais seulement (i.e. temps d'exploitation < 1 min).

Expérience 5 : corruption du cache d'instruction avec deux glitches

L'objectif de cette expérience est d'appliquer notre méthodologie sur un code plus long et plus complexe, tout en utilisant un équipement d'injection de faute moins onéreux et plus facile d'accès qu'un banc laser double spot. Nous arrivons à identifier et exploiter des vulnérabilités à l'injection de fautes multiples sur une application protégée par 5 contremesures logicielles différentes. Notamment, nous injectons plusieurs fautes pour corrompre le cache d'instruction du microcontrôleur ciblé à plusieurs reprises, en utilisant la GLITCH STATION (chapitre 3).

Première étape : Inférence de modèles de faute

Pendant la caractérisation, pour optimiser les paramètres d'équipement de la GLITCH STATION, nous utilisons un algorithme génétique, car une recherche par quadrillage n'est pas envisageable, comme détaillé au chapitre 3.

Comme pour l'expérience précédente, le code de test utilisé pour la caractérisation est similaire à celui proposé par Proy de fautes T1, tableau A.I). Environ 200.000 fautes sont injectées (≈ 12 heures) et un peu moins de 70.000 résultats fautés sont obtenus. Très peu de résultats normaux sont observés (seulement 1% des fautes injectées). À l'inverse, une grande majorité des fautes conduisent à une erreur fatale (62% des fautes injectées). La figure 4.9 présente une forme de glitch avec probabilité de faute élevée (> 0.9) identifiée pendant la caractérisation. En parallèle, CELTIC permet de simuler 400.000 injections de fautes et générer plus de 100.000 résultats fautés, similairement à l'expérience précédente.

L'inférence de modèles de faute met en évidence qu'une grande partie des fautes induisent des corruptions du cache d'instruction (≈ 90%). Le modèle 4CacheCorruption (sous-section 3.2.4), déjà mis évidence par Rivière et al [RNR + 15] en utilisant un équipement d'injection EM, permet de rejouer les 4 dernières instructions exécutées et de sauter les 4 suivantes.

Deuxième étape : Identification des vulnérabilités par simulation

4CacheCorruption est l'unique modèle avec une probabilité P (m|c) significative et sera par conséquent le seul simulé par CELTIC pour identifier de potentielles vulnérabilités dans hVP5CFI. Comme pour l'expérience précédente, CELTIC ne trouve aucune vulnérabilité à l'injection d'une seule faute. Malgré la contre-mesure additionnelle d'intégrité de flot de contrôle, 64 vulnérabilités à l'injection de double faute sont identifiées comme pouvant contourner le 4.10) de l'application hVP5CFI est le dernier branchement conditionnel, après la boucle de vérification du code PIN entré par l'évaluateur, qui teste l'état de la variable booléenne diff. Comme pour hVP5, pour être authentifié, il ne doit pas avoir de différence avec le code PIN attendu (diff == BOOL_FALSE). Le code contient de nombreuses macros générées automatiquement pour l'outil CFI-C pour garantir l'intégrité de flot de contrôle. Trois de ces macros (explicitées dans [START_REF] Heydemann | Formally verified software countermeasures for control-flow integrity of smart card c code[END_REF]) sont soulignées en vert dans la figure 4.10 :

• La macro INIT(B,1) initialise une variable booléenne supplémentaire B, par défaut à l'état vrai, et qui sera chargée de contenir la valeur de l'expression logique diff == BOOL_FALSE. La variable B peut être vue comme un garde-fou et sera utilisée ultérieurement pour vérifier l'intégrité du flot de contrôle.

• La macro INCR_COND met à jour la variable B avec la valeur de l'expression logique évaluée par le branchement conditionnel (ici diff == BOOL_FALSE). Pour être authen- Comme hVP5CFI utilise aussi une contre-mesure de double appel, il faut réussir à corrompre le cache d'instruction deux fois de suite pour s'authentifier sans déclencher de contremesure. Pour résumer, avec le modèle de faute 4CacheCorruption, CELTIC a identifié des vulnérabilités à l'injection de double faute, difficilement identifiables manuellement au vu de la complexité du code.

Troisième étape : Exploitation des vulnérabilités

Si la technique d'injection est différente de l'expérience précédente, la méthodologie reste la même. Les résultats de l'inférence de modèle de fautes sont combinés avec les attaques simulées avec CELTIC pour générer le tableau 4.6 des paramètres d'attaque. figure 4.11 présente la forme du double glitch correspondant au premier paramètre d'attaque du tableau 4.6. Ce double glitch permet de corrompre le cache d'instruction du microcontrôleur µC3 deux fois de suite pour réussir l'attaque présentée précédemment. Encore une fois, en seulement quelques tentatives on arrive à réussir l'attaque (soit <1min de temps d'exploitation) et être authentifié, malgré les 5 contre-mesures logicielles.

Évaluation de la méthodologie

Si les deux expériences présentées dans la section précédente montre que notre méthodologie permet d'identifier et d'exploiter des vulnérabilités à l'injection de fautes multiples, il est important d'évaluer notre approche sur plusieurs critères, à savoir, 1) la couverture de fautes, 2) la détection de vulnérabilités et 3) la vitesse d'exploitation.

Couverture de fautes

Notre méthodologie repose en grande partie sur les résultats de l'étape d'inférence de modèles de faute. Par conséquent, nous devons nous assurer que la majorité des résultats fautés observés sont couverts par des modèles pour différents microcontrôleurs et techniques d'injection de faute. Pour chaque microcontrôleur du tableau 4.2, nous avons évalué la proportion des résultats fautés qui peuvent être expliqués avec l'ensemble de modèles de faute par défaut (tableau 3.1).

Le tableau 4.7 présente le taux de couverture global et le modèle le plus représentatif pour chaque microcontrôleur évalué. De manière générale, notre approche permet d'expliquer 76% des résultats fautés observés en moyenne. Malgré l'utilisation de technique d'injection différentes, la majorité des fautes induisent des modifications du flot de contrôle, en particulier des sauts d'instruction.

Des modèles de fautes plus complexes sont nécessaires pour comprendre les résultats fautés non couverts. Ces modèles plus complexes, comme par exemple ceux présentés par Laurent et al. [LBD + 19] décrivant des fautes pendant la phase de writeback d'un coeur RISC-V, ne sont pas facilement implémentables dans CELTIC. Les limitations seront abordées plus en détail dans la section 4.7.

Détection de vulnérabilités et vitesse d'exploitation

Pour évaluer la détection de vulnérabilités et la vitesse d'exploitation, nous comparons notre méthodologie avec une approche communément utilisée lors d'évaluations de sécu- • Approche basée sur la caractérisation seule (Approche A) : l'évaluateur connait les paramètres d'équipement avec une probabilité de faute élevée pour le microcontrôleur évalué grâce à une caractérisation. Cependant, contrairement à notre approche, l'évaluateur n'a aucune connaissance préalable des sections critiques de l'application, l'obligeant à couvrir entièrement cette dernière.

• Notre approche (Approche B) : l'évaluateur connait les meilleurs paramètres d'attaque (paramètres d'équipement et délais d'injection) ce qui permet de réduire considérablement l'espace de recherche.

Notez que l'approche naïve, consistant à trouver au hasard à la fois les délais d'injection et les paramètres d'équipement, ne permet pas de réussir une attaque dans un délai raisonnable.

Détection de vulnérabilités

Dans ce paragraphe, nous vérifions que nous pouvons retrouver la majorité des vulnérabilités identifiées avec l'approche classique en utilisant notre méthodologie. Plus précisément, on évalue le ratio de détection de vulnérabilités entre l'approche basée sur la caractérisation seule (Approche A) et notre approche (Approche B). Le tableau 4.8 détaille le ratio de détection pour chacune des expériences. En moyenne, on parvient à retrouver 48% des vulnérabilités identifiées avec l'approche A.

Les figure 4.12 et figure 4.13 présentent respectivement le meilleur et le pire scénario possible. Sur ces figures, on retrouve 1) les vulnérabilités identifiées avec l'approche A symbolisés par les points verts, 2) la zone couverte par l'approche A en jaune et 3) la zone couverte avec notre approche en orange. Les deux axes correspondent au délai d'injection pour la première et la deuxième faute. Si pour expérience 5 (figure 4.12) notre approche 

Vitesse d'exploitation

Pour évaluer la vitesse d'exploitation des vulnérabilités de notre méthodologie, nous comparons la temps moyen d'exploitation d'une vulnérabilité à l'injection de fautes multiples avec l'approche basée sur une caractérisation seule (Approche A) et notre approche (Approche B).

Plus précisément, seul le temps d'exploitation est comptabilisé, c'est-à-dire le temps passé sur l'équipement d'injection dans le but de réussir un scénario d'attaque. Le temps de caractérisation (identique pour les deux approches) et le temps de simulation avec CELTIC (uniquement pour notre approche) ne sont pas comptabilisés. Le temps de simulation, rajouté par de notre approche, varie de quelques minutes pour l'application hVP5 à plusieurs heures pour l'application hVP5CFI sur un PC de bureau. Nous estimons que le temps de simulation sur un PC de bureau n'est pas comparable au temps d'exploitation sur un équipement d'injection de faute car lorsqu'il y a plusieurs évaluations de sécurité en cours, trouver un PC de bureau libre est souvent plus facile qu'un banc laser double spot. De plus, il n'y a aucun risque d'endommager le dispositif lors de la simulation d'injection de faute.

Le tableau 4.9 détaille le temps moyen et maximal d'exploitation pour chaque expérience, 

Amélioration de notre méthodologie

L'objectif de cette section est de comprendre les raisons des disparités des résultats observées lors de l'évaluation de notre méthodologie. Après avoir exposé les différentes limitations observées précédemment, nous reviendrons sur les possibles pistes d'améliorations de notre méthodologie.

Les limitations de notre méthodologie

Que ce soit durant les étapes d'inférence de modèles de faute, d'identification de vulnérabilités, ou encore d'exploitation de vulnérabilités, plusieurs limitations expliquent les disparités observées entre les expériences, notamment pendant la détection de vulnérabilités ou bien la vitesse d'exploitation.

• 1 ère limitation, les modèles de faute utilisés à l'étape d'inférence n'expliquent pas tous les résultats fautés observés. Certains fautes complexes ne sont pas couvertes par nos modèles. Or, la couverture de fautes influence la détection de vulnérabilités. Par exemple, le microcontrôleur µC2 de l'expérience 3 a le taux de couverture le plus faible du benchmark (64%, tableau 4.7). Ainsi, ces fautes non couvertes sont potentiellement à l'origine des vulnérabilités non détectées par notre méthodologie lors de l'expérience 3.

• 2 ème limitation, les tests de caractérisation de faute ne propagent pas tous les effets pouvant se produire sur le microcontrôleur. En effet, ces derniers ne représentent pas toute la complexité de l'application cible, ainsi certaines fautes peuvent potentiellement passées sous le radar lors de la caractérisation.

• 3 ème limitation, on ne simule pas tous les modèles spécifiques inférés. À l'étape d'identification des vulnérabilités de notre méthodologie, on introduit un compromis entre vitesse et couverture en ne simulant seulement qu'une partie des modèles de faute inférés. Si cela permet de réduire le temps de simulation et augmenter la vraisemblance des attaques simulées avec CELTIC, nous pouvons potentiellement passer à coté de vulnérabilités comme nous ne simulons qu'une partie des modèles de faute inférés.

• • 5 ème limitation, les modèles ISA ne capturent pas toute la complexité de l'effet d'une faute. La représentation des effets des fautes au niveau ISA ne permet pas de tenir compte de toutes les subtilités de la perturbation au niveau physique, ce qui impacte également le calcul des délais d'injection mais aussi la fidélité de l'effet décrit par le modèle.

• 6 ème limitation, mesurer précisément le début et la fin de l'application ciblée peut s'avérer complexe. Enfin à l'étape d'exploitation des vulnérabilités, des erreurs de mesure du début t 0 et de la fin t 1 de l'exécution de référence de l'application faussent le calcul des délais d'injection.

Pistes d'amélioration

Pour pallier ces limitations, nous avons identifié plusieurs pistes pour améliorer notre méthodologie, dans le but d'augmenter le taux de couverture de fautes et de détection de vulnérabilités. Ces améliorations concernent directement ou indirectement les éléments mis en évidence sur la figure 4.14. Pour couvrir plus de fautes, inférer plus de modèles spécifiques, trouver plus de paramètres d'attaques optimaux et enfin calculer des délais d'injection plus précis, nous proposons plusieurs pistes d'amélioration, à savoir :

• L'utilisation de meilleurs tests de caractérisation de fautes pour propager toujours plus d'effets et mieux comprendre le comportement du microcontrôleur ciblé en réponse aux injections de faute.

• L'utilisation de nouvelles techniques d'optimisation pour accélérer l'exploration de l'espace des paramètres dans le but de trouver de meilleurs paramètres d'équipement.

• La combinaison de modèles existant pour former de nouveaux modèles plus complexes dans le but de couvrir plus de fautes, similairement à Alshaer et al. [ACD + 21].

• La réutilisation et mutualisation des calculs précédents pour accélérer les simulations d'injection de faute multiples.

• L'émulation complète du pipeline et prise en compte du nombre réel de chaque instruction dans CELTIC pour augmenter la précision des délais d'injection calculés.

• L'analyse de la consommation ou d'émanations électromagnétiques dans le but d'améliorer la synchronisation avec la cible pour calculer des délais d'injection plus précis.

Parmi ces pistes d'amélioration possibles, nous avons choisi de porter nos efforts sur la formalisation des tests de caractérisation de fautes (chapitre 5) et sur l'application de nouvelles techniques d'optimisation inédites dans le domaine de l'injection de faute (chapitre 6).

Conclusion

De plus, l'autre originalité de notre approche est de pouvoir simuler des injections multifautes en utilisant différents modèles de faute pour chaque injection, dans le but d'explorer de nouveaux chemins d'attaque. Par ailleurs, en pratique, nous avons réalisé une double injection de faute par perturbation laser à différentes positions de la puce, pour induire de manière contrôlée des sauts d'instructions de différentes longueurs.

La possibilité d'élaborer plus facilement des attaques multi-fautes complexes, remet en question la fiabilité des contre-mesures logicielles seules pour protéger un microcontrôleur contre des attaques par fautes de plus en plus puissantes.

Toutefois, cela est à nuancer car plusieurs limitations pouvant entraver le bon déroulement de notre méthodologie ont été identifiées, même si plusieurs pistes d'amélioration sont envisagées. Parmi elles, l'amélioration de la caractérisation nous semble prioritaire car cette étape affecte grandement le reste de la méthodologie. C'est pourquoi nous formaliserons la conception de tests de caractérisation de fautes dans le chapitre 5 et étudierons de nouvelles techniques d'optimisation des paramètres au chapitre 6 dans le but d'améliorer l'identification et l'exploitation de vulnérabilité. 

Chapitre 5

Vers de meilleurs tests de caractérisation de fautes

Introduction

Dans le chapitre précédent, différentes pistes ont été proposées pour améliorer notre méthodologie, dont l'utilisation de meilleurs tests de caractérisation dans le but de trouver plus facilement des modèles de faute spécifiques. Néanmoins, il n'existe pas de critères objectifs pour juger de la qualité et de la pertinence d'un test. C'est pourquoi, dans ce chapitre, nous allons définir et étudier les critères de conception des tests de caractérisation de fautes afin de mieux comprendre les forces et faiblesses de ces derniers.

Dans ce sens, trois métriques sont proposées, se basant elles-mêmes sur deux propriétés importantes que nous définissons, à savoir, la propagation et la discrimination. Ces différentes métriques sont utilisées pour comparer les performances de plusieurs tests classiques issus de la littérature, afin d'identifier les critères de conception les plus importants selon le modèle de faute. À partir de ces observations, nous détaillons une approche générale pour concevoir les meilleurs tests de caractérisation de fautes selon nos métriques. Enfin, ces tests seront utilisés pour identifier rapidement les paramètres d'équipement optimaux pour notre GLITCH STATION avec un microcontrôleur Cortex-M4 32-bit.

Dans la suite de ce chapitre, nous reviendrons sur les principales motivations dernière cette démarche à la section 5.2. Les propriétés et métriques que nous proposons seront définies à la section 5.3. Ensuite, à la section 5.4, nous évaluerons, à l'aide de ces métriques, plusieurs tests de caractérisation de fautes issus de la littérature puis nous détaillons, à la section 5.5, notre approche pour concevoir de meilleurs tests. Enfin, à la section section 5.6, nous présentons un cas d'utilisation pratique de nos tests.

Motivations

Contexte

Le premier constat lorsque l'on souhaite utiliser des tests de caractérisation de fautes, est de remarquer la grande diversité de ces derniers dans la littérature. Néanmoins, en regardant de plus près, on peut retrouver certaines similarités entre ces tests comme la structure, ou encore les instructions utilisées. L'accent est généralement mis sur la facilité d'utilisation, c'est-à-dire pouvoir diagnostiquer facilement l'effet de la faute injectée. De plus, comme déjà détaillé au chapitre 2, ces tests sont construits empiriquement, sauf rares exceptions (e.g.

[TSW16]). Ainsi, les tests proposés sont rarement optimisés en fonction de critères objectifs, causant plusieurs complications. D'une part, l'une des premières difficultés rencontrées est de comprendre les motivations derrière chacun de ces tests, ainsi que les hypothèses de modèles de faute prises en compte lors de leurs conception. D'autre part, il peut être difficile de choisir le ou les tests à utiliser, car aucune étude à ce jour ne compare objectivement ces derniers. On peut s'interroger alors sur le niveau de couverture de fautes de ces tests mais aussi de leur pertinence, du fait qu'il soit difficile pour une situation donnée de choisir un test plutôt qu'un autre. D'autant plus lorsque les effets des fautes injectées sur le microcontrôleur ciblé ne correspondent pas aux hypothèses des modèles de faute choisies lors de la conception. Ainsi, Les effets des fautes injectées peuvent être entièrement masqués pendant l'exécution du test. Par exemple, Trouchkine et al. [START_REF] Trouchkine | Fault injection characterization on modern cpus[END_REF] proposent des tests de caractérisation idempotents, y compris pour observer des corruptions d'instruction (lors du chargement, du décodage, ou bien de l'exécution). Toutefois, nous verrons dans la section 5.4, que les tests idempotents sont particulièrement peu performants pour propager ce type d'effet de faute.

Plus généralement, nous montrerons que les tests de caractérisation doivent vérifier les propriétés de propagation et de discrimination (détaillées en section 5.3) en fonction des modèles de faute supposés. Il n'existe pas encore de directives générales pour concevoir des tests de caractérisation de fautes, d'où les nombreuses conceptions différentes proposées dans la littérature. Ainsi, une meilleure façon de concevoir des tests serait de vérifier et valider systématiquement leur propagation et leur discrimination ,avec une simulation d'injection de faute.

Contributions

Nous proposons des directives générales pour aider à la conception de tests de caractérisation de fautes optimisés pour un large éventail de modèles de faute, sur la base de la première étude approfondie des test de caractérisation de fautes les plus populaires. Ensuite, à l'aide de ces directives générales et CELTIC, nous générons des tests de caractérisation de fautes optimaux, spécialisés pour un modèle de faute particulier. Ces tests spécialisés sont alors combinés en un ensemble minimal de tests pour couvrir des corruptions d'instruction, de registre et de mémoire. Ainsi, nos contributions sont les suivantes :

• Proposition de métriques pour évaluer la performance des tests de caractérisation de fautes, selon les modèles de faute supposés.

• Évaluation de tests de caractérisation de fautes issus de la littérature pour mettre en évidence l'impact des choix de conception sur les performances, avec les métriques proposées.

• Proposition de directives générales pour aider à la conception de tests de caractérisation de fautes selon les modèles de faute supposés.

• Proposition de tests optimisés de caractérisation de fautes spécialisé pour un modèle de faute particulier.

• Proposition d'un ensemble minimal de tests pour couvrir de nombreux modèles de faute.

Propriétés et métriques

Dans cette section, nous définirons deux propriétés pertinentes pour les tests de caractérisation de fautes, la propagation et la discrimination. Ensuite, des métriques de performances seront dérivées de ces propriétés. 

∀(m, m ′ ) ∈ M 2 , m ̸ = m ′ , S m I ∩ S m ′ I = ∅
En d'autres termes, un test de caractérisation de faute, vis-à-vis d'un ensemble de modèles de faute M , doit maximiser le nombre d'états finaux fautés (i.e. des états finaux différents de l'état attendu) et les états finaux fautés doivent être distinguables entre les modèles de faute.

Nous pouvons dériver de ces propriétés des métriques de performance pour évaluer par simulation d'injection de faute les tests, à savoir le taux de propagation, ou propagation rate (PR), le taux discrimination, ou discrimination rate (DR) et le taux de couverture, ou coverage rate (CR). Table 5.1 -Modèles de fautes considérés.

Critères de conception

Dans cette section nous évaluons, par simulation d'injection de fautes avec CELTIC, la performance de différents tests populaires avec les métriques P R, DR et CR. Ensuite, nous comparons l'influence des différents choix de conception sur les métriques retenues et nous déduisons les critères généraux pour concevoir des tests de caractérisation de fautes selon les modèles de faute supposés.

Les modèles de faute

Nous avons considéré un ensemble classique de modèles de faute au niveau ISA. Cet ensemble, présenté au tableau 5.1, couvre un large éventail de modèles de faute pouvant se produire sur le microcontrôleur cible, de la corruption d'instruction (F1-F3), en passant par la corruption de registre (F4, F5) à la corruption de mémoire (F6, F7).

Les modèles 16InstructionSkip (saut de 16 octets par rapport à l'adresse normalement chargée), SetOpcodeBit6 (Bit-set du bit 6 de l'opcode) et ResetOpcodeBit4 (Bit-reset du bit 4 de l'opcode) sont des exemples de modèles de fautes appartenant à la catégorie de corruption d'instruction. Les modèles SetRegisterBit12 (Bit-set du bit 12 de la valeur du registre lue) et ResetRegisterBit8 (Bit-reset du bit 8 de la valeur du registre lue) sont des exemples de modèles de fautes appartenant à la catégorie de corruption de registre. Les modèles SetMemoryCellBit3 (Bit-set du bit 3 de la valeur de la mémoire lue) et ResetMemoryCellBit1 (Bit-reset du bit 1 de la valeur de la mémoire lue) sont des exemples de modèles de fautes appartenant à la catégorie de corruption de mémoire.

Ces modèles de faute sont implémentés dans CELTIC et seront utilisés pour comparer P R, DR et CR des différents tests de caractérisation de fautes.

Vue générale des tests de caractérisation de fautes

Nous avons sélectionné 8 tests de caractérisation de fautes de la littérature, résumé au tableau 5.2. Ces tests sont présentés en annexe. On peut y retrouver la séquence d'instructions I et les valeurs initiales V de chaque test. Ces tests de caractérisation de fautes ont été conçus pour comprendre les effets de fautes sur différents microcontrôleurs. Lorsque nécessaire, ces tests ont été traduits vers le jeu d'instructions ARMv7-M 16-bit de manière à comparer les performances plus facilement. Nous avons classifié ces tests selon différents critères :

• L'idempotence des instructions dans I : nous distinguons les instructions idempotentes donnant le même résultat appliquées une ou plusieurs fois de celles non-idempotentes.

• Le nombre d'instructions dans I : les tests sont classifiés selon la taille de la séquence I.

• La variété des instructions dans I : on distingue les tests utilisant plusieurs instructions différentes de ceux utilisant une unique instruction.

• Le type d'instruction dans I : on différencie les instructions logiques et arithmétiques des instructions mémoire.

• Le choix des valeurs initiales de V : Les valeurs initiales des tests peuvent être identiques ou bien distinctes.

Dans la partie suivante, nous mettons en évidence l'influence de ces critères sur les métriques de performance P R, DR et CR. Ces résultats nous serviront par la suite à concevoir de meilleurs tests de caractérisation de fautes.

Comparaison des performances

Les tests sélectionnés ont été évalués avec CELTIC par simulation d'injection de fautes. Nous présentons ici le comparatif des 8 tests en fonction des critères définis précédemment. Les métriques de performance P R, CR, DR et P R * CR * DR en fonction des modèles de fautes et des tests de caractérisation de fautes considérés sont présentées en annexe. Ces résultats serviront de référence pour évaluer nos tests à la section 5.5. Avant de rentrer dans les détails, quelques observations générales tirées des résultats obtenus :

• Les modèles de saut d'instruction(s) (F1) ont les résultats avec l'écart type le plus élevé, ce qui suggère que pour ces modèles, P R, DR et CR sont très dépendants des choix de conception.

• Mis à part pour les modèles de corruption de la mémoire, le test T1 est le test le plus générique car il fonctionne très bien avec les modèles de corruption d'instruction (F1,F2,F3) et avec les modèles de corruption de registre (F4,F5).

• Le test T6 est le moins performant pour les modèles testés.

En croisant les résultats des simulations d'injections de faute en fonction des caractéristiques des tests sélectionnés (tableau 5.2), nous pouvons identifier les choix de conception qui influencent le plus P R, DR et CR. distinctes. Les valeurs initiales de V ne sont pas impactantes dans le cas des modèles de corruption d'instruction (F1-F3). À l'inverse, en se basant sur les résultats de la figure 5.5, les valeurs initiales influencent les taux de propagation des modèles de fautes de corruption de registre (F4, F5). Similairement, modifier les valeurs initiales chargées en mémoire des tests T6 et T8 influencent la propagation de modèles de corruption de mémoire (F6, F7). En conséquence, nous recommandons de choisir avec soin les valeurs initiales de V pour les familles de modèles de faute sur les données, registre ou mémoire (F4-F7).

Critères de conception proposés

Pour résumer, le tableau 5.3 récapitule les critères de conception les plus importants en fonction des modèles de fautes du tableau 5.1. Certains critères peuvent sembler vagues ; et certaines questions subsistent, par exemple, quelles instructions arithmétiques et logiques doit on choisir pour I ? Ou bien encore comment initialiser les variables V ?

Il est malheureusement impossible de répondre de manière générale à ces questions, car les instructions ou les valeurs précises dépendent bien évidemment des modèles de fautes, mais aussi de l'architecture du microcontrôleur ciblé.

Néanmoins, dans la prochaine section, nous détaillons précisément comment choisir les valeurs initiales de V et les instructions optimales de I, en s'appuyant sur les critères de conception que nous venons de mettre en évidence, afin de concevoir des tests de caractérisation de fautes optimaux pour chacun des modèles de fautes considérés.

Concevoir des tests optimaux

Les tests de caractérisation de fautes des travaux précédents sont sous-optimaux, pour la majorité des modèles de fautes évalués avec CELTIC (à l'exception du modèle de saut d'instructions F1), dans le sens où P R * DR * CR < 1.

Dans cette section, nous concevons sept tests optimaux maximisant P R, DR et CR pour chaque modèle de faute. Cependant, comme les évaluations de sécurité se déroulent souvent en temps contraint, il n'est généralement pas possible d'utiliser un grand nombre de tests différents pour calibrer l'équipement et/ou caractériser le composant. Dans le but 

I V adds r0, #1 R0 0x00000000 adds r0, #1

Repeat n times

Table 5.4 -Test de caractérisation optimal pour les modèles de saut d'instructions (F1). de réduire le temps consacrer à la caractérisation, nous proposons un ensemble minimal de trois tests permettant de propager, discriminer, et couvrir l'ensemble des modèles de fautes du tableau 5.1.

Tests optimaux proposés

Un test est dit optimal s'il obtient P R * DR * CR = 1. Pour trouver les tests optimaux pour chaque modèle, nous allons nous appuyer sur les observations de la section 5.4, en particulier, sur le fait qu'une variété faible de la séquence I tend à spécialiser le test pour une famille de modèles de faute. Ainsi, l'objectif est de trouver l'unique instruction i répétée n fois, ainsi que les valeurs initiales V maximisant P R, DR et CR, pour chaque modèle du tableau 5.1.

Saut d'instructions (F1)

Test proposé Ce test est similaire aux travaux précédents ([PHM + 19, TSW16, DRPR19]). La séquence I est une addition avec une valeur immédiate répétée n fois, avec n plus grand que le plus grand saut possible supposé (tableau 5.4). Les valeurs initiales de V n'ont aucune influence et peuvent être choisies arbitrairement. Ce test est optimal (P R * DR * CR = 1) pour les modèles de saut d'instructions.

I V mov r0, r0 R0 0x00000000 mov r0, r0
Repeat n times Table 5.5 -Test de caractérisation optimal pour les modèles de bit-set sur la valeur du registre source (F4).

I V mov r0, r0 R0 0xffffffff mov r0, r0
Repeat n times Table 5.6 -Test de caractérisation optimal pour les modèles de bit-reset sur la valeur du registre source (F5).

Discussion L'instruction i doit mettre à jour l'état courant vers un nouvel état distinct, et ceci pour chaque exécution de i. Le nombre d'états distincts doit être supérieur au nombre supposé d'instruction sautées. Par exemple, une addition avec une valeur immédiate permet d'obtenir facilement n états distincts en incrémentant à chaque exécution le registre de destination. Au contraire, un ou exclusif ne permet d'obtenir que 2 états distincts et ne sera pas adapté pour les modèles de saut d'instructions.

Corruption de registre (F4, F5)

Test proposé Ce test est similaire aux travaux existants ([CMD + 18, TBC19]). La séquence I est une instruction mov entre le même registre (tableau 5.5, tableau 5.6). Le nombre d'instructions n peut être choisi arbitrairement. La valeur du registre utilisé doit être initialisée à 0x0...0 (0xf...f) pour les bit-set (bit-reset). Ces tests sont optimaux (P R * DR * CR = 1) pour les modèles de bit-set (bit-reset) sur la valeur du registre source. Discussion L'instruction i doit être idempotente pour ne pas mettre à jour l'état courant. Ainsi, si un bit-set (bit-reset) se produit sur la valeur du registre, la valeur corrompue sera propagée, et l'état final fauté dépendra seulement de la valeur du bit corrompu. L'instruction mov entre le même registre remplit parfaitement ce rôle.

Corruption de mémoire (F6, F7)

Test proposé Ce test est similaire aux travaux existants ([TBC19]). La séquence I est composée d'une instruction store suivie immédiatement d'une instruction load permettant de lire et écrire la même valeur à la même adresse mémoire (tableau 5.7, tableau 5.8). Le nombre d'instructions n peut être choisi arbitrairement. Le registre tampon et la valeur en mémoire V doivent être initialisées à 0x0...0 (0xf...f) pour les bit-set (bit-reset). Ces tests sont optimaux (P R * DR * CR = 1) pour les modèles de bit-set (bit-reset) sur la valeur de la cellule mémoire. Repeat n times Table 5.7 -Test de caractérisation optimal pour les modèles de bit-set sur la valeur de la cellule mémoire (F6).

I V ldr r0, =#0x20002000 ; [r0] = 0xffffffff R0 0x20002000 str r1, [r0] R1 0xffffffff ldr r1, [r0] [R0] 0xffffffff
Repeat n times Table 5.8 -Test de caractérisation optimal pour les modèles de bit-reset sur la valeur de la cellule mémoire (F7).

Discussion Comme pour les corruptions de la valeur du registre, l'instruction i doit être idempotente pour ne pas mettre à jour l'état courant. Cependant, il n'existe pas d'instruction atomique permettant de lire et écrire en mémoire, et donc, nous devons utiliser exceptionnellement deux instructions.

Corruption d'opcode (F2, F3)

Vue Générale Contrairement aux tests précédents, les travaux récents ne proposent pas de solutions optimales pour propager, discriminer et couvrir les effets de bit-set et bitreset sur l'opcode chargé. Nous proposons d'utiliser CELTIC (Algorithme 2) pour trouver systématiquement l'instruction optimale, i en fonction du jeu d'instruction cible. Le nombre d'instructions n et les valeurs initiales de V peuvent être choisis arbitrairement.

Algorithme Trouver l'instruction optimale pour propager des corruptions de l'opcode est plus difficile que pour les autres familles de modèles de faute. La raison principale vient du fait que l'instruction optimale dépend du jeu d'instruction. Les opcodes fautés doivent être valides selon le jeu d'instruction, tout en veillant à ne pas masquer la faute. Pour faciliter la recherche de l'opcode optimal pour propager les effets de bit-set (bitreset) sur l'opcode, nous proposons l'Algorithme 2. L'idée principale derrière cet algorithme est que le P R maximal possible pour un opcode à une distance de hamming d de l'opcode initial 0x0...0 (0xf...f) est 1 -d/size, avec size la taille d'instruction en bit.

En prenant soin de trier les opcodes par nombre de bits déjà set (reset), le premier opcode dont le P R associé est supérieur ou égal à 1-d/size est l'opcode du jeu d'instruction propageant le plus de faute selon le modèle F2 (F3). Egalement, DR ne dépend pas de la taille d'instruction ou de la distance de hamming et CR = P R car la séquence d'instructions Algorithme 2 : Recherche de l'opcode optimal pour propager les effets de bit-set (bitreset) sur l'opcode. Input : Jeu d'instructions J, taille d'instruction en bit size Output : Opcode optimal op best .

/* Get encodings w.r.t J sorted by number of bits already set (reset) */ E ← GetEncodingsSorted(J); I ne contient qu'une seule instruction répétée n fois. Ainsi, l'opcode optimal pour le jeu d'instruction J est le premier dont P R * DR est supérieur ou égal à 1 -d/size. Par exemple, on souhaite trouver la meilleure instruction 16-bit pour observer des bit-sets (single-bit) sur instruction (famille de modèles F2). Dans ce cas, l'instruction permettant d'observer théoriquement tous les bit-sets est 0x0000. Le taux de propagation maximal possible est 1. Si le P R = 1 pour 0x0000, 0x0000 est l'instruction optimale.

op best ← ∅ ; max ← 0 ; d ← 0; /*
Mais, en pratique, il est possible que l'instruction fautée obtenue n'existe pas dans l'ISA ou bien que l'instruction fautée obtenue n'engendre pas un résultat fauté observable ; et que Table 5.9 -Instructions optimales 16-bit du jeu d'instructions ARMv7-M trouvées avec l'Algorithme 2.

par conséquent le P R < 1 pour l'instruction 0x0000. Si P R < 1 pour 0x0000, le P R maximal devient 1-d/size = 0.975 car on doit considérer à présent toutes les instructions avec une distance de hamming d de 1 (toutes ces instructions ont un bit déjà set, limitant la propagation). Ainsi, si P R >= 0.975 pour l'instruction 0x0000, 0x0000 reste l'instruction optimale. Sinon on calcule le PR des instructions 0x1000, 0x2000, 0x4000, etc. (soit toutes les instructions d = 1). Puis les instruction d = 2, etc. jusqu'à ce qu'une instruction obtienne un P R >= 1 -d/size.

De plus, il faut tenir compte du nombre d'instructions, qui sans optimisation, est rapidement problématique. Par exemple, nous trouvons que l'opcode optimal pour l'architecture ARMv7-M 32-bit pour propager un effet de bit-set sur l'opcode est à une distance de hamming de 7 de l'opcode initial 0x0...0 (tableau 5.10). Sans optimisation, il faut tester toutes les combinaisons à une distance de hamming de 7, ce qui nous donnes 7 k=0 32 k ≈ 10 6 combinaisons possibles à simuler avec CELTIC.

De manière à réduire l'explosion combinatoire, en particulier pour les instructions 32-bit ou plus, nous utilisons les motifs d'encodage implémentés dans CELTIC [START_REF] Dureuil | Analyse de code et processus d'évaluation des composants sécurisés contre l'injection de faute[END_REF]. Au lieu de tester tous les opcodes jusqu'à une distance de hamming de d, seuls les bits des opérandes B des encodages valides sont utilisés. Par exemple, seuls les bits des opérandes de l'encodage i, Rn, imm3, Rd et imm8 de la figure 5.6 sont considérés pour générer les possibles bit-set (bit-reset) jusqu'à une distance de hamming d de l'opcode initial, moins le nombre de bits déjà set (reset) de cet encodage. 5.11 -Test de caractérisation optimal pour les modèles de bit-reset sur l'opcode (F3).

Exemple Nous avons sélectionné comme jeu d'instructions J un sous-ensemble du jeu d'instruction de l'architecture ARMv7-M en 16-bit et 32-bit (tableau A.V). À partir de ce jeu d'instruction, nous pouvons utiliser 54 encodages 16-bit et 222 encodages 32-bits différents. Les opcodes optimaux 16-bit et 32-bit pour propager les effets des familles de modèles de fautes F2 et F3 sont présentés au tableau 5.9 et tableau 5.10. Le tableau 5.11 présente un exemple de test de caractérisation optimal pour les modèles de bit-reset sur l'opcode (F3), basé sur l'instruction optimale subs r7, #ff trouvée avec Algorithme 2.

Pour référence, les meilleurs tests évalués à la section 5.4 ont un P R * DR * CR = 0.56 pour la famille de modèles F2 (test T5 ) et 0.34 pour la famille de modèles F3 (test T1 ). En comparaison, nos tests avec les instructions 16-bit du tableau 5.9 atteignent 0.56 pour F2 et 0.77 pour F3. Si, pour la famille de modèles F2, le test T5 est déjà optimal, pour la famille de modèles F3, notre test (tableau 5.11) est deux fois plus performant que le test T1 d'après nos métriques.

Ensemble minimal de tests

Les tests optimaux présentés sont spécialisés pour une famille de modèles de faute. Ainsi pour couvrir l'ensemble des familles du tableau 5.1, il faut recourir à 6 tests différents (le test F1 étant équivalent au test F2). Lors d'évaluations de sécurité en temps contraint, il n'est possible de faire une caractérisation de fautes avec 6 tests différents car extrêmement chronophage. Pour cette raison, nous proposons un ensemble minimal de tests permettant de couvrir l'ensemble des modèles du tableau 5.1. Les tests optimaux présentés à la sous-section précédente sont regroupés pour former trois tests couvrant les trois catégories de familles de modèles de faute considérées ; corruption d'instruction (F1-F3), corruption de registre (F4,F5) et corruption de mémoire (F6,F7). Ces tests sont les suivants :

• Le test de corruption d'instruction (IC) (tableau 5.12) contient une alternance des instructions optimales trouvées avec l'Algorithme 2, permettant de propager, discriminer et couvrir les effets de saut d'instructions mais aussi les effets de bit-set et bit-reset sur l'opcode.

• Le test de corruption de registre (RC) (tableau 5.12) est basé sur les tests optimaux pour les familles de modèles F4 et F5, propageant à la fois les effets de bit-set et bit-reset sur les registres (tableau 5.5,tableau 5.6).

• Le test de corruption de mémoire (MC) (tableau 5.13) regroupe les tests optimaux pour les familles de modèles F6 et F7, propageant les effets de bit-set et bit-reset sur

Test de corruption d'instruction (IC)

Test de corruption de registre (RC) I adds r2, #1 mov r0, r0 subs r7, #ff mov r1, r1 adds r2, #1 mov r0, r0 subs r7, #ff mov r1, r1

V R0 0x00000000 R1 0x11111111 R0 0x00000000 R1 0xffffffff R2 0x22222222 R3 0x33333333 R2 0x22222222 R3 0x33333333 R4 0x44444444 R5 0x55555555 R4 0x44444444 R5 0x55555555 R6 0x66666666 R7 0x77777777 R6 0x66666666 R7 0x77777777
Repeat n times

Repeat n times

Table 5.12 -Test de corruption d'instruction (IC) et Test de corruption de registre (RC) pour le jeu d'instruction ARMv7-M.

Test de corruption de mémoire (MC)

I ldr r0, =#0x20002000 ; [r0] = 0x00000000 ldr r2, =#0x20002004 ; [r2] = 0xffffffff str r1, [r0] ldr r1, [r0] str r3, [r2] ldr r3, [r2] V R0 0x20002000 R1 0x00000000 R2 0x20002004 R3 0xffffffff [R0] 0x00000000 [R2] 0xffffffff
Repeat n times Table 5.13 -Test de corruption de mémoire (MC) pour le jeu d'instruction ARMv7-M. la mémoire (tableau 5.7,tableau 5.8).

La performance de ces tests a été évaluée par simulation d'injections de faute en utilisant CELTIC. Le tableau 5.14 détaille les métriques P R, DR, CR pour les tests IC, RC et MC. Selon nos métriques de performance, les tests proposés propagent, discriminent et couvrent environ 8% plus de fautes que les meilleurs tests des travaux précédents.

Nous avons également essayé de combiner les tests optimaux proposés ci-dessus en un seul test de caractérisation de fautes, mais cela fait chuter considérablement P R, DR et CR. Cela est dû au fait que les instructions des tests optimaux sont spécialisées pour une seule famille de modèles. Par exemple, en combinant des instructions non-idempotentes et idempotentes dans le même test, cela implique nécessairement un compromis entre la propagation des effets de faute des familles de modèles F1 (saut d'instructions) et F4-F7 (corruption de données).

Cas pratique d'utilisation

Pour mettre la théorie en pratique, nous allons utiliser notre ensemble minimal de tests expérimentalement avec notre GLITCH STATION sur un microcontrôleur 32-bit. Avec ces tests, 

Résultats

Les résultats des expérimentations sont détaillés à la figure 5.7, montrant l'évolution de la probabilité de faute sur les 100 premières générations de paramètres d'équipement pour chaque test (soit 25.000 fautes). Également, la figure 5.8 présente les formes de glitch avec la probabilité de faute la plus élevée, obtenues en utilisant chacun des tests de caractérisation de fautes IC, RC et MC. Les principaux points à retenir des expériences sont discutés dans ce qui suit : Validation de modèles de faute En analysant l'évolution de la probabilité de faute (figure 5.7) des différents tests de caractérisation de fautes, nous validons (ou réfutons) des hypothèses de modèles de faute. D'après les taux de propagation, de discrimination, et de couverture en fonction des différentes familles de modèles de faute avec les tests IC, RC et MC (tableau 5.14), on déduit des résultats de l'expérimentation qu'il est très peu probable d'induire des effets conduisant à des bit-set/bit-reset sur les registres, car la probabilité de faute avec le test RC est très faible (< 0.1). À l'inverse, il est très probable d'obtenir une corruption de l'instruction exécutée d'après les résultats, car la probabilité de faute avec le test IC est élevée (> 0.5). En analysant les états finaux fautés du test IC, il s'est avéré que plus de 90% des états fautés sont causés par un saut d'une ou plusieurs instructions. Ces informations, obtenues facilement via notre ensemble de tests, peuvent s'avérer par la suite décisives lors d'évaluations de sécurité, car un attaquant pouvant injecter des sauts d'instructions de manière contrôlée peut alors construire des attaques complexes [START_REF] Péneau | Nop-oriented programming : Should we care ?[END_REF].

Spécialisation des paramètres d'injection de fautes

Les formes de glitch obtenues avec les différents tests de caractérisation de fautes sur le même microcontrôleur sont radicalement différentes (figure 5.8). Cela est dû au fait que les tests IC, RC et MC ne propagent pas les mêmes effets. Par exemple, comme le test RC ne propage pas les sauts d'instructions, la forme de glitch trouvée avec RC doit nécessairement provoquer un effet différent d'un saut d'instruction. En pratique, cela permet de constituer un ensemble de paramètres d'injection de fautes optimisés conduisant à des effets différents. Une utilisation directe est l'exploitation de vulnérabilité nécessitant plusieurs fautes avec des effets différents comme détaillé dans le chapitre précédent (chapitre 4).

Facilité d'utilisation et applicabilité

Avec chaque test de caractérisation de faute, seulement 100 générations (sur les 600), soit 25.000 fautes, sont nécessaires pour identifier des formes de glitch optimisées (figure 5.7) pour ce microcontrôleur. Par conséquent, cet ensemble de tests peut être envisagé pour caractériser des fautes, même lors d'évaluations de sécurité avec de fortes contraintes temporelles. De plus les résultats, (les paramètres d'injection de faute) sont transférables entre les microcontrôleurs avec la même référence, ce qui permet de rentabiliser le temps initialement investi passé à la caractérisation. Ainsi, les mêmes paramètres d'injection de faute peuvent être utilisés pour évaluer différentes applications sur le même microcontrôleur.

Conclusion

Dans ce chapitre, nous avons proposé des tests optimaux de caractérisation de fautes pour mieux comprendre les effets des fautes sur les microcontrôleurs. Plus précisément, nous avons évalué l'influence de différents choix lors de la conception de tests de caractérisation de fautes, sur la propagation et la discrimination des effets des fautes.

Après avoir défini ces propriétés, nous avons dérivé trois métriques de performance P R, DR et CR dans le but de comparer des tests de caractérisation de fautes issus de la littérature avec CELTIC et mettre en évidence les choix de conception les plus importants en fonction des modèles de fautes supposés. Ensuite, sur la base de ces observations et de CELTIC, nous avons trouvé des tests de caractérisation de fautes optimaux qui maximisent P R, DR et CR pour des modèles de fautes spécifiques. Puis nous avons combiné ces tests optimaux pour former un ensemble minimal de trois tests couvrant un large éventail d'effets de faute pouvant survenir en pratique. Par ailleurs, les tests que nous avons générés sont facilement généralisables à n'importe quel jeu d'instructions, bien que cela ne soit pas montré dans cette étude.

De plus, nous avons présenté un cas d'utilisation sur un microcontrôleur Cortex-M4 32-bit avec notre GLITCH STATION. Notre ensemble minimal de tests permet de facilement identifier les meilleures formes de glitch en moins de 20.000 injections de faute, mais aussi de valider des hypothèses de modèles de faute directement en comparant les résultats des différents tests. La possibilité de trouver rapidement plusieurs paramètres d'équipement conduisant à des effets différents peut considérablement aider à mener des attaques multi-fautes complexes (chapitre 4) qui dépendent en grande partie de l'étape de caractérisation. Enfin, il serait intéressant d'appliquer nos tests en utilisant d'autres techniques d'injection de fautes, pour étudier des effets de fautes plus inhabituels. Idéalement, pour valider la pertinence de notre ensemble de tests, il faudrait réaliser une étude de grande échelle sur une grande variété de microcontrôleurs avec différentes techniques d'injection, ce qui n'a pas pu être réalisé ici.

Toujours dans la démarche d'améliorer l'étape de caractérisation, nous allons nous intéresser aux nouvelles techniques d'optimisation pour identifier les meilleurs paramètres d'équipement dans le chapitre suivant. 

Introduction

Ce chapitre décrit en détail notre deuxième approche permettant d'identifier et exploiter des vulnérabilités à l'injection de fautes, mais cette fois-ci, en boîte noire. L'approche proposée est le résultat d'une étude des techniques d'optimisation récentes dans le but d'améliorer l'étape de caractérisation et combler les limitations évoquées au chapitre 4. Ainsi, ce chapitre met l'accent au niveau de l'optimisation des paramètres d'équipement.

Comme nous l'avons vu au chapitre 2, optimiser les paramètres d'équipement est sans doute l'étape la plus importante, car nécessaire pour obtenir des fautes intéressantes. Chaque équipement, en fonction de la technique d'injection de faute, a plusieurs paramètres spécifiques devant être ajustés précisément, telles que les positions x,y,z de la pointe d'une sonde d'un équipement d'injection électromagnétique. Comme l'espace des paramètres est trop grand pour être entièrement couvert, des méthodes ou des techniques d'optimisation ont été proposées pour réduire le temps passé à optimiser l'équipement.

Ainsi nous proposons d'utiliser pour la première fois, dans le contexte de l'injection de faute, de nouvelles techniques d'optimisation qui ont déjà fait leurs preuves dans d'autres domaines, comme notamment l'apprentissage automatique. Ces techniques permettent de significativement améliorer l'exploration de l'espace des paramètres d'équipement. L'approche proposée est applicable en boîte noire, c'est-à-dire lorsque l'attaquant n'a pas accès à l'application cible. Ainsi, contrairement à l'approche en boîte grise proposée au chapitre 4, l'application ne sera pas analysée avec CELTIC. Pour identifier plus facilement les zones critiques de l'application, les paramètres d'équipement sont optimisés séparément des délais d'injection.

La suite du chapitre s'organise comme suit. Après avoir présenté à la section 6.2 nos motivations et l'état de l'art des méthodes et techniques permettant d'explorer plus efficacement l'espace des paramètres, nous détaillerons notre approche et notamment les techniques d'optimisation retenues. Tout d'abord, à la section 6.3, nous présenterons l'approche générale qui vise à séparer l'optimisation du délai d'injection des paramètres d'équipement en utilisant des tests de caractérisation de fautes et de nouvelles techniques d'optimisations n'ayant pas été encore appliquées dans le domaine de l'injection de faute ; puis à la section section 6.4, nous détaillerons ces dernières. La section 6.5 est un comparatif entre plusieurs techniques d'optimisation, visant à mettre en évidence les forces et faiblesses des techniques proposées. Enfin, à la section 6.6, nous évaluerons notre approche sur un cas d'utilisation réel : contourner des contremesures de protection de code d'un microcontrôleur 32-bit.

Les travaux de ce chapitre ont été acceptés à la conférence CARDIS 2021.

Motivations

Contexte

Parmi les applications régulièrement prises pour cible dans la littérature, on retrouve en premières lignes les bootloaders préchargés de microcontrôleurs. Ces programmes permettent généralement d'avoir un accès complet en lecture et en écriture à la mémoire Flash et RAM du microcontrôleur, ce qui explique pourquoi ils sont régulièrement ciblés par les attaquants (chapitre 2). Pour cette raison, les fabricants rajoutent plusieurs contremesures permettant de restreindre les accès mémoires.

Une grande majorité des attaques publiées sur les bootloaders embarqués traitent ces derniers en tant que boîtes noires. Ainsi, il faut réussir à trouver les paramètres d'attaque sans connaissance du binaire. Plusieurs approches ont été proposées pour trouver plus rapidement les paramètres d'attaques dans ces conditions.Nous avons déjà présenté au chapitre 2 les différentes stratégies mises en place pour adresser cette problématique. Pour rappel, ces approches consistent à réduire l'espace des paramètres et/ou utiliser des techniques pour optimiser l'exploration de l'espace des paramètres. D'une part, pour réduire l'espace des paramètres, la majorité des stratégies proposées sont propres à la technique d'injection de faute utilisée. Pour l'injection de faute par perturbation laser, les zones d'intérêt sur la puce sont mis en évidence avec un microscope à balayage [CLMFT14] ou en mesurant le courant induit par faisceau optique [SFR + 15]. Similairement, pour l'injection de faute par perturbation électromagnétique, mesurer préalablement l'émanation électromagnétique de la puce permet de cibler les zones d'intérêt [START_REF] Madau | An em fault injection susceptibility criterion and its application to the localization of hotspots[END_REF]. Toutefois, une stratégie de réduction de l'espace des paramètres, facilement généralisable à l'ensemble des techniques d'injection de faute, consiste à isoler l'optimisation des paramètres d'équipement des délais d'injection [CPB + 13].

D'autre part, pour optimiser l'exploration des paramètres, on peut utiliser la recherche par quadrillage (Grid Search, GS) ou la recherche aléatoire (Random Search, RS). Ces deux techniques présentent l'avantage d'être facilement utilisables, mais sont limitées par la taille de l'espace des paramètres à explorer (chapitre 2). Récemment, les techniques d'optimisation populaires reposent majoritairement sur des algorithmes métaheuristiques, en particulier des algorithmes génétiques (Genetic Algorithm, GA) [CPB + 13, PBBJ15, PBJC14, BFP19, MSPB19]. Plus récemment, de l'apprentissage profond a même été proposé pour optimiser la puissance et largeur d'impulsion d'une diode laser [WRBBP20].

Néanmoins, la limitation principale des algorithmes métaheuristiques est l'introduction d'hyperparamètres supplémentaires, devant être également ajustés précisément, comme la taille de la population, l'opérateur de mutation, la stratégie de sélection, ou encore la valeur sélective d'un individu. De plus, en fonction du problème d'optimisation, les algorithmes métaheuristiques peuvent souffrir d'une convergence prématurée vers une solution sousoptimale. Similairement pour l'apprentissage profond, trouver le bon nombre de couches cachées, ainsi que le bon nombre de neurones pour chacune de ses couches, est si fastidieux, qu'il existe des techniques d'optimisation pour aider l'utilisateur à ajuster ces paramètres [START_REF] Yang | On hyperparameter optimization of machine learning algorithms : Theory and practice[END_REF]. Pour répondre à ces problèmes, nous avons exploré plusieurs techniques récentes d'optimisation prometteuses pour essayer de les appliquer au domaine de l'injection de faute.

Contributions

De nouvelles techniques d'optimisation ont été proposées, comme les techniques d'optimisation bayésienne, ou les techniques d'optimisation du problème des bandits manchots pour explorer plus rapidement l'espace des paramètres. Bien que ces techniques ont déjà été utilisées pour l'optimisation d'hyperparamètres d'algorithmes d'apprentissage automatique, elles n'ont jamais été utilisée dans le cadre de l'injection de faute. Par conséquent, nous proposons d'utiliser, pour la première fois, un configurateur automatique basé sur l'optimisation bayésienne et un algorithme d'optimisation du problème des bandits manchots pour aider à identifier les meilleurs paramètres d'équipement. Également, nous proposons aussi de réduire la complexité de l'exploration de l'espace des paramètres en divisant l'optimisation en deux sous-étapes, mais contrairement à Carpi et al. [CPB + 13] qui optimisent directement sur l'application ciblée, nous utiliserons un test de caractérisation de fautes. Ainsi nos contributions sons les suivantes :

• Nous appliquons pour la première fois deux techniques récentes d'optimisation d'hyperparamètres, pour trouver les meilleurs paramètres d'équipement de notre GLITCH STATION, pour trois microcontrôleurs 32-bit différents.

• Nous proposons de décomposer le problème d'optimisation en deux étapes, de manière à simplifier mais aussi à accélérer l'identification et l'exploitation de vulnérabilités en boîte noire. Tout d'abord, lors de l'étape de caractérisation, nous nous concentrons uniquement sur l'optimisation des paramètres d'équipement, puis, une fois les meilleures configurations identifiées, lors de l'étape d'exploitation, nous déterminons les délais d'injection de faute pour attaquer l'application cible.

• En utilisant notre approche boîte noire avec les techniques d'optimisation proposées, nous contournons avec succès le mécanisme de protection de code d'un bootloader préchargé sur un microcontrôleur 32-bit, deux fois plus rapidement qu'avec des algorithmes génétiques.

Notre Approche

Cette section présente notre approche boîte noire pour optimiser l'exploitation de vulnérabilités sur microcontrôleurs. Notre stratégie vise à réduire au maximum le temps passé à chercher les meilleurs paramètres d'équipement, en réduisant la dimensionnalité de l'espace des paramètres. Accélérer l'exploration de l'espace des paramètres est particulièrement important du fait que les évaluations de sécurité sont souvent en temps contraint.

Comme nous l'avons précédemment évoqué, la stratégie commune est d'optimiser l'équipement de faute directement avec l'application ciblée. Dans ce cas, seule la section de l'application jugée critique par l'évaluateur, c'est-à-dire pouvant potentiellement conduire à des failles de sécurité, est testée. Cependant, identifier la section critique d'une application pouvant être très complexe est fastidieux, d'autant plus dans un contexte d'évaluation en boîte noire en temps contraint. Dans ces conditions, il est alors très difficile de trouver les réglages optimaux pour réussir une attaque par injection de fautes, pour les raisons déjà évoquées au chapitre précédent (chapitre 2).

Description de l'approche

Pour optimiser l'identification et l'exploitation de vulnérabilités à l'injection de fautes en boîte noire, nous proposons de réduire la dimensionnalité de l'espace des paramètres en divisant le problème d'optimisation en deux sous-étapes, de manière à simplifier et accélérer l'exploration de l'espace des paramètres. Tout d'abord, 1) l'étape de caractérisation optimise les paramètres de l'équipement indépendamment de l'application cible, en utilisant un test de caractérisation de fautes, et ensuite, avec les paramètres optimisés, 2), l'étape d'exploitation, identifie le délai d'injection de faute afin d'exploiter une vulnérabilité sur l'application cible. La figure 6.1 présente schématiquement notre approche. Si Carpi et al. [CPB + 13] proposent une stratégie similaire en deux étapes, ils n'utilisent cependant pas de test de caractérisation de fautes ce qui, d'après le chapitre précédent (chapitre 5), peut engendrer des complications pour optimiser l'équipement d'injection de faute, en autres, une mauvaise propagation des fautes.

Test de caractérisation de fautes Comme pour l'approche en boîte grise, nous utilisons un ou plusieurs tests de caractérisation de manière à maximiser la propagation de fautes sur le microcontrôleur ciblé, afin de trouver plus rapidement les paramètres d'injection de faute. Tout d'abord, comme les tests sont constitués d'une série d'instructions répétée plusieurs fois, nons sur les particularités du problème d'optimisation des paramètres d'équipement. Puis nous détaillons les algorithmes proposés pour résoudre le problème des bandits manchots. Ensuite nous expliquons les récentes techniques d'optimisation bayésienne. Nous terminons en présentant de possibles alternatives aux techniques retenues.

Problème d'optimisation des paramètres d'équipement

Certains problèmes d'optimisation sont plus simples que d'autres. Lorsque la fonctionobjectif à minimiser est convexe, différentiable, et qu'elle admet un minimum global, n'importe quelle méthode basée sur une descente en gradient trouvera la solution. Néanmoins, notre problème d'optimisation n'appartient pas à cette catégorie, du fait de plusieurs particularités propres à ce dernier.

Optimisation stochastique L'une des premières difficultés dans la résolution du problème d'optimisation des paramètres d'équipement tient du caractère non-déterministe des fautes injectées. Il ne suffit pas de tester une seule fois une configuration d'équipement pour évaluer sa performance. Au contraire, plusieurs essais sont nécessaires pour estimer empiriquement la probabilité de faute pour chaque configuration.

Optimisation sans dérivées Les dérivées partielles de la fonction-objectif par rapport aux paramètres d'équipement ne sont pas accessibles, par conséquent, les approches classiques par descente de gradient ne sont pas applicables.

Optimisation discrète Le plus souvent, les paramètres des équipements d'injection de faute prennent des valeurs discrètes. Toutes les techniques d'optimisation ne sont pas adaptées à traiter des variables discrètes.

Optimisation avec contraintes L'espace des paramètres peut être contraint pour ne pas endommager la cible ou pour viser uniquement une zone délimitée (e.g. la mémoire Flash). Certaines techniques d'optimisation ne prennent pas en compte les problèmes avec contraintes. En théorie des probabilités, le problème des bandits manchots est un problème dans lequel un ensemble fixe de ressources limitées, aussi appelé budget, doit être alloué entre plusieurs choix (aussi désigné sous le terme de bras). Toute la difficulté du problème tient du fait que ces choix semblent équivalents de prime abord, car la récompense moyenne, propre à chacun des choix, n'est pas connue a priori, et ce n'est qu'en allouant des ressources à un choix qu'une meilleure connaissance sur cette dernière pourra être acquise [START_REF] Donald | Bandit problems : sequential allocation of experiments (monographs on statistics and applied probability)[END_REF] ; l'objectif étant de maximiser le gain cumulé pour le budget alloué.

Optimums locaux multiples

On dit encore que l'objectif est de minimiser le regret, c'est-à-dire la différence entre la récompense cumulée en choisissant systématiquement le meilleur bras n fois et la récompense cumulée des n bras sélectionnés. Le regret R après n essais peut se définir formellement de cette manière [Sli19], où µ ⋆ est la récompense associée au meilleur bras possible et µ(b k ) est la récompense obtenue en choisissant le bras b à l'essai k :

R(n) = nµ ⋆ - n k=1 µ(b k ) (6.1)
L'illustration classique de ce problème, à l'origine du nom par ailleurs, est d'imaginer un parieur dans un casino, qui devant des machine à sous (aussi appelé bandit manchot), doit décider lesquelles jouer, dans le but de maximiser ses gains avec son budget limité.

C'est un problème classique d'apprentissage par renforcement, et par conséquent, un parfait exemple du dilemme entre exploration et exploitation. On est constamment confronté à choisir d'allouer des ressources au bras avec la meilleure récompense moyenne (exploitation), ou au contraire, allouer des ressources pour acquérir de meilleures connaissances sur les récompenses moyennes des autres choix (exploration).

Si on retrouve facilement des analogies avec notre problème d'exploration de l'espace des paramètres d'un équipement d'injection de faute donné, il ne faut pas oublier que le problème des bandits manchots dans sa forme la plus classique considère un nombre discret de bras, inférieur au budget alloué, ce qui, dans notre situation, ne convient pas, du fait que la taille de l'espace des paramètres est généralement bien supérieure au nombre d'injections réalisables en temps contraint. Cependant, il existe plusieurs variantes du problème des bandits manchots, y compris lorsque le nombre de bras à considérer est largement supérieur au budget maximal qu'il est possible d'allouer [BCZ + 97]. En relâchant la contrainte sur le nombre de bras considérés, cette variante du problème est alors transposable à notre problème initial d'exploration de l'espace des paramètres.

Dans le paragraphe suivant, nous décrivons une variante du SHA, applicable à notre problématique.

Description de l'algorithme

L'algorithme SHA, proposé par Karnin et al. [START_REF] Karnin | Almost optimal exploration in multi-armed bandits[END_REF], est déjà utilisé dans le cadre de l'optimisation des hyperparamètres de modèles d'apprentissage automatique [START_REF] Yang | On hyperparameter optimization of machine learning algorithms : Theory and practice[END_REF]. L'Algorithme 3 détaille l'algorithme de réduction de moitié successive.

Le but de cet algorithme est d'identifier le meilleur bras (ici la meilleure configuration) dans les limites d'un budget fixe T (ici le nombre total d'injections de fautes). Le budget total fixé est alloué uniformément sur log 2 (n) tours d'élimination, où n est le nombre de configurations initiales ⃗ Θ 0 échantillonnées de l'espace des paramètres Θ. L'algorithme évalue ensuite chaque configuration de manière uniforme. À la fin de chaque tour, les pires configurations sont éliminées. Ensuite, au tour suivant, les configurations restantes sont évaluées deux fois plus qu'au tour précédent et ainsi de suite jusqu'à ce qu'il ne reste plus que la meilleure configuration θ inc .

Algorithme 3 : SHA Input : Budget total fixé T , l'espace de paramètre d'injection de faute Θ, n configurations intiales

⃗ Θ 0 ⊂ Θ Output : La meilleure configuration θ inc ∈ ⃗ Θ ⌈log 2 (n)⌉ for r = 0 to ⌈log 2 (n)⌉ -1 do t r ← T | ⃗ Θr|⌈log 2 (n)⌉ ; foreach θ i ∈ ⃗ Θ r do Test t r times each configuration θ i ; Compute the empirical mean µ r,i of θ i ; k r ← ⌈| ⃗ Θ r |/2⌉; /* Keep the k th r best θ i with the largest µ r,i */ ⃗ Θ r+1 ← BestKthConfigurations( ⃗ Θ r , k r ); return θ inc ∈ ⃗ Θ ⌈log 2 (n)⌉ ;
Dans la version proposée par Karnin et al., pour un budget total fixé T , toute la difficulté réside dans le choix du nombre n de configurations initiales. On peut prendre n grand, entrainant l'évaluation d'un grand nombre de configurations différentes, mais réduisant le nombre d'essais consacrés pour chacune d'entre elles, ou bien prendre n petit, permettant d'augmenter le nombre d'essais pour évaluer chaque configuration, au détriment du nombre de configurations évaluées.

La solution proposée par Aziz [START_REF] Aziz | On Multi-Armed Bandits Theory and Applications[END_REF] consiste à choisir n, puis à prendre un budget T = nlog 2 (n), ce qui entraine une sélection agressive des configurations après seulement un essai, dès le premier tour (t 0 = 1). Bien que seule une conjecture sur la borne supérieure de regret a été proposée, l'algorithme de réduction de moitié successive avec la paramétrisation T = nlog 2 (n) obtient empiriquement des résultats similaires, si ce n'est meilleurs, que d'autres solutions plus complexes, telles que HyperBand [LJD + 17]. Nous reviendrons sur HyperBand à la sous-section 6.4.4.

Néanmoins, le fait de sélectionner agressivement les configurations après seulement un seul essai peut être une limitation contraignante, particulièrement dans le cas d'une évaluation de microcontrôleur sécurisé. En effet, dans ce cas précis, il peut être difficile d'obtenir des fautes. Il est d'ailleurs fort probable de ne pas réussir à fauter le microcontrôleur lors des premières itérations avec les configurations testées. La sélection se fait alors aléatoirement car aucune configuration n'est jugée meilleure. Les résultats finaux seront alors potentiellement inutilisables.

Ceci étant dit, nous verrons à la section 6.5 que SHA permet d'identifier des paramètres d'équipement plus performants qu'avec les autres techniques d'optimisation.

SMAC

Le configurateur automatique d'algorithmes par optimisation séquentielle basée sur un modèle, proposé par Hutter et al. en 2011 [START_REF] Hutter | Sequential modelbased optimization for general algorithm configuration[END_REF], en anglais Sequential Model-Based Algorithm Configuration (SMAC), est un configurateur automatique d'algorithmes, qui comme le nom l'indique, s'appuie sur l'optimisation séquentielle basée sur un modèle, en anglais Sequential Model-Based Optimization (SMBO), qui est une généralisation de l'optimisation bayésienne.

SMAC a déjà été appliquée pour optimiser les hyperparamètres de solveurs complexes de programmation par contraintes (e.g. IBM CPLEX et ses 76 paramètres [START_REF] Hutter | Sequential modelbased optimization for general algorithm configuration[END_REF]) ou bien des modèles d'apprentissage automatique [START_REF] Yang | On hyperparameter optimization of machine learning algorithms : Theory and practice[END_REF]. Cependant, contrairement aux approches classiques basées sur l'optimisation bayésienne, SMAC supporte tout type de paramètres, y compris continus, discrets et qualitatifs, mais supporte également les processus non-déterministes ce qui est extrêmement important dans le cadre de l'injection de fautes, comme vu précédemment. Le paragraphe suivant présente succinctement l'optimisation séquentielle basée sur un modèle.

Optimisation séquentielle basée sur un modèle

Contrairement aux approches précédentes (SHA, GA, GS, RS), la principale caractéristique de SMBO est de tenir compte des résultats précédents pour adapter itérativement un modèle probabiliste, dans le but de sélectionner plus intelligemment les prochaines configurations d'équipement pouvant potentiellement maximiser le nombre de fautes sur le microcontrôleur. SMBO, comme détaillé dans Algorithme 4, est un algorithme itératif, articulé autour de deux éléments clés que l'on retrouve aussi en optimisation bayésienne classique, à savoir un modèle probabiliste et une fonction d'acquisition, aussi appelés modèle de substitution et fonction de sélection, respectivement. Le mécanisme d'intensification n'existe quant à lui pas dans la version classique de l'optimisation bayésienne.

Modèle probabiliste Comme la fonction-objectif n'est pas connue, un modèle probabiliste, ou modèle de substitution, généré à partir des données observables, va permettre d'approximer cette dernière. Le modèle probabiliste M est adapté (FitModel) aux résultats précédents R = {(θ 1 , o 1 ), ..., (θ n , o n )} où θ i est une configuration de l'espace des paramètres considérés Θ, et o i est la probabilité de faute observée avec la configuration θ i . Le modèle M vise à prédire la probabilité de faute o i+1 pour une nouvelle configuration θ i+1 afin de savoir si θ i+1 vaut la peine d'être évaluée expérimentalement.

Fonction d'acquisition Les nouvelles configurations ⃗

Θ new à évaluer pour l'itération courante sont sélectionnées de l'espace de paramètre d'injection de faute Θ par la fonction d'acquisition (SelectConfigurations), qui conserve un équilibre entre exploitation (échantillonner directement dans l'espace où le modèle prédit la probabilité de faute la plus élevée) et exploration (échantillonner là où le modèle n'a pas de distribution de probabilité a priori).

Intensification En plus du modèle probabiliste et de la fonction d'acquisition, SMBO ajoute un processus important d'intensification (Intensify) qui détermine 1) le budget alloué pour chaque configuration θ i (i.e. le nombre d'essai pour chaque configuration), et 2) la meilleure configuration connue pour le moment θ inc . C'est ce mécanisme qui permet notamment de tenir compte du caractère non-déterministe des fautes en laissant la possibilité de réévaluer plusieurs fois la même configuration. Aussi, le budget alloué à chaque configuration est adapté en fonction des résultats, et une nouvelle configuration est rejetée dès lors qu'elle sous-performe la meilleure configuration connue [START_REF] Hutter | Sequential modelbased optimization for general algorithm configuration[END_REF]. Si SMBO est une généralisation de l'optimisation bayésienne, SMAC peut être vu comme une instanciation de SMBO, avec pour modèle probabiliste une forêt d'arbres décisionnels, et pour fonction d'acquisition l'Amélioration Attendue ; ce que nous détaillerons dans le prochain paragraphe.

SMAC

SMAC est un configurateur automatique d'algorithmes basé sur l'optimisation bayésienne, reposant sur un modèle probabiliste original, une forêt d'arbres décisionnels. La fonction d'acquisition, l'Amélioration Attendue, est quant à elle plus classique et s'adapte aussi bien aux modèles probabilistes basés sur une forêt d'arbres décisionnels qu'à un processus gaussien.

Forêt d'arbres décisionnels SMAC s'appuie sur une forêt d'arbres décisionnels, aussi appelée Random Forest (RF) pour son modèle de substitution. Le modèle probabiliste choisit par SMAC est radicalement différent des modèles plus classiquement utilisés comme, par exemple, le modèle de processus Gaussien. C'est ce choix atypique qui permet à SMAC de supporter les paramètres continus, discrets et qualitatifs. RF [START_REF] Breiman | Random forests[END_REF] est une méthode ensembliste combinant le résultats de plusieurs arbres décisionnels pour résoudre des problèmes de classification ou bien de régression. Concernant cette dernière classe de problème, les arbres décisionnels prennent au niveau de leurs feuilles des valeurs continues plutôt que des labels, et sont communément appelés des arbres de régression. SMAC estime la performance (ici la probabilité de faute) moyenne µ θ et la variance σ 2 θ pour une nouvelle configuration θ, en calculant la moyenne et la variance empirique de la probabilité de faute estimée avec chaque arbre de régression de la forêt. Chaque arbre de régression de la forêt est généré à partir d'un sous ensemble des observations précédentes R. Cette étape, aussi appelée bagging, consiste à tirer aléatoirement n observations avec remise directement dans l'ensemble des résultats précédent R. Ensuite, pour chaque noeud, m critères (e.g. les paramètres d'injection de fautes), sont sélectionnés aléatoirement à partir des critères initiaux, et celui qui (parmi ceux déjà sélectionnés) minimise la somme des carrés des résidus est choisi pour séparer le noeud en deux branches. Le processus général est résumé à la figure 6.2. Amélioration Attendue La fonction d'acquisition de SMAC est l'Amélioration Attendue, aussi appelée Expected Improvement (EI), une fonction que l'on retrouve couramment en optimisation bayésienne. Cette fonction est utilisée pour quantifier à quel point une nouvelle configuration θ pourrait améliorer la performance (la probabilité de faute) par rapport à la meilleure configuration connue θ inc pour le moment. Comme la fonction-objectif est inconnue, EI est calculé en utilisant la distribution de probabilité a posteriori de θ connaissant la performance moyenne µ θ et la variance σ 2 θ prédites par le modèle probabiliste (RF pour SMAC) et la performance moyenne empirique de la meilleure configuration connue θ inc . Pour plus d'information sur l'amélioration attendue et son implémentation dans SMAC, se référer aux travaux de Hutter et al. [START_REF] Hutter | Sequential modelbased optimization for general algorithm configuration[END_REF][START_REF] Hutter | An experimental investigation of model-based parameter optimisation : Spo and beyond[END_REF]. Finalement, les configurations maximisant l'Amélioration Attendue sont sélectionnées pour être évaluées expérimentalement. La figure 6.3 illustre un exemple où l'amélioration attendue permet de sélectionner les prochaines configurations à évaluer à l'aide d'un modèle de processus gaussien. 

SMAC dans le contexte de l'injection de fautes

Si SMAC est un outil de configuration automatique très puissant ayant déjà fait ses preuves pour optimiser des solveurs complexes de programmation par contraintes [START_REF] Hutter | Sequential modelbased optimization for general algorithm configuration[END_REF], une des limitations principales de SMAC est que les conditions initiales affectent grandement les performances en termes de vitesse de convergence. Par conditions initiales, nous faisons référence au sous-ensemble de configurations initiales ⃗ Θ init , qui sont, par défaut, tirées aléatoirement à partir de l'espace des paramètres d'injection de fautes Θ.

Lorsque le microcontrôleur ciblé est difficile à fauter, et qu'aucune faute n'est obtenue, par exemple dans le cas de microcontrôleurs sécurisés, SMAC va peiner à explorer rapidement et correctement l'espace des paramètres d'injection de fautes. Cela s'explique du fait que, n'ayant pas de référentiel sur l'objectif à accomplir (toutes les configurations ont une probabilité de faute nulle), SMAC n'arrivera pas à adapter le modèle, et encore moins à sélectionner des configurations pertinentes. Pour combler cette limitation, nous avons rajouté une procédure préliminaire en deux étapes, pour être sûr d'avoir réussi à fauter au moins une fois le composant :

• Exploration pure : des configurations θ ∈ Θ sont tirées aléatoirement et évaluée expérimentalement jusqu'à ce que 1) au moins k min configurations induisant des fautes soient trouvées, et 2) n min fautes ont été injectées. Par défaut, k min = 1 et n min = 1000.

• Mutation : le sous-ensemble de configurations initiales ⃗ Θ init , contenant au moins k min configurations identifiées pendant l'étape d'exploration pure, est complété avec des 
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Technique d'optimisation alternatives

HyperBand

HyperBand est un algorithme qui se base sur plusieurs itérations successives de l'algorithme SHA présenté précédemment. HyperBand propose de résoudre le problème principal du SHA, à savoir le dimensionnement du nombre n de configurations initiales et d'essai r, en les allouant dynamiquement à chaque itération. Pour cela, le budget total alloué est divisé équitablement sur plusieurs itérations de SHA, appelé bracket. À la fin de chaque itération de SHA, les meilleures configurations sont passées à l'itération suivante.

Les données du tableau 6.1 proviennent d'un exemple du papier original présentant Hy-perBand [LJD + 17]. On retrouve pour chaque bracket s = i max d'HyperBand le nombre de configurations testées n i et d'essais r i en fonction du tour i.

Les brackets sont de moins en moins agressifs après chaque itération. Autrement dit, le premier bracket s = 4 favorise l'exploration en sélectionnant après seulement un essai, tandis que le dernier s = 0 favorise l'exploitation en testant seulement 5 configurations. Si l'idée proposée par HyperBand est intéressante, on peut se demander si ce dernier est significativement meilleur qu'un SHA classique, présenté précédemment. 

Tree-structured Parzen Estimator

L'optimisation bayésienne basée sur la méthode d'estimation par noyau Parzen-Rosenblatt (BO-TPE), proposée par Bergstra et al [START_REF] Bergstra | Algorithms for hyper-parameter optimization[END_REF], partage de nombreuses similitudes avec SMAC. Cependant,la principale différence entre SMAC et BO-TPE est l'approche choisie pour modéliser la fonction-objectif.

Si SMAC modélise P (o|θ), c'est-à-dire l'estimation de la probabilité de faute o qui sera observée sachant la configuration d'équipement θ utilisée, BO-TPE, quant à lui, modélise P (θ|o) et P (o). Plus précisément, BO-TPE modélise la probabilité des configurations suivant qu'elles améliorent ou non la probabilité de faute, selon un quantile o * fixé. En effet, BO-TPE partitionne les probabilités de faute observées en deux groupes L et G, selon qu'elles soient inférieures ou supérieures au quantile o * respectivement (figure 6.5). Les fonctions de densité l(θ) et g(θ) associées aux groupes L et G sont ensuite estimées via la méthode Parzen-Rosenblatt. Enfin, l'Amélioration Attendue est adaptée aux spécificités de BO-TPE [START_REF] Bergstra | Algorithms for hyper-parameter optimization[END_REF] : les prochaines configurations sélectionnées sont celles maximisant EI = g (θ) l(θ) . Comme pour SMAC, BO-TPE supporte tous types de paramètres, y compris continus, discrets et qualitatifs, ainsi que les processus non-déterministes. Par conséquent, si Hyper-Band nous a laissé sur notre faim, BO-TPE est sans doute une piste très intéressante qui mériterait d'être creusée. Pour information, une implémentation de BO-TPE est proposée dans la librairie HyperOpt [BYC + 13].

P (θ|o) =    l(θ) si o < o * g(θ) si o ≥ o *
Après cette courte parenthèse sur les techniques d'optimisation alternatives à celles proposées, nous nous intéresserons, dans la partie suivante, aux performances en pratique des techniques d'optimisation SMAC et SHA.

Évaluation des techniques d'optimisation en pratique

Dans cette section, nous allons optimiser notre GLITCH STATION pour trois microcontrôleurs 32-bit différents, en utilisant SMAC, SHA, GA et RS. Nous allons montrer que les techniques d'optimisation présentées précédemment, à savoir SHA et SMAC, permettent d'identifier plus rapidement les meilleures configurations que les techniques habituellement utilisées. Après avoir présenté les microcontrôleurs cibles et leurs principales caractéristiques, nous détaillerons le protocole expérimental. Enfin, nous comparons la performance (probabilité de faute et vitesse de convergence) de SMAC et SHA avec les techniques plus communément utilisées, GA et RS.

Microcontrôleurs cibles

Nous avons sélectionné pour cette expérience trois microcontrôleurs 32-bit différents, basés sur différents coeurs ARM Cortex-M. L'architecture et les caractéristiques de ces com-posants varient selon le modèle considéré, et par conséquent ces microcontrôleurs ne réagiront pas de la même manière aux injections de faute par perturbation de la tension d'alimentation. Les microcontrôleurs sélectionnés sont :

• µC-M0 est un microcontrôleur faible consommation basé sur le coeur ARM Cortex-M0+ cadencé à 24Mhz, reposant sur une architecture Von Neumann ARMv6-M avec un pipeline de deux étages (chargement et exécution).

• µC-M3 est un microcontrôleur populaire reposant sur le coeur ARM Cortex-M3 également cadencé à 24Mhz, implémentant une architecture Harvard ARMv7-M avec un pipeline de trois étages (chargement, décodage, exécution).

• µC-M4 est un microcontrôleur ultra basse consommation basé sur un coeur ARM Cortex-M4 cadencé à 72Mhz, reposant sur une architecture Harvard ARMv7E-M avec un pipeline de trois étages (chargement, décodage, exécution) et prédiction de branchement. plusieurs configurations. En effet, SMAC et SHA augmentent progressivement le nombre d'essais pour chaque configuration testée, de manière à approximer plus précisément la probabilité de faute afin de sélectionner la meilleure, alors que RS et GA évaluent toujours chaque configuration le même nombre de fois, et ainsi, plusieurs configurations peuvent avoir la même probabilité de faute. Par conséquence, pour comparer équitablement l'évolution de la probabilité de faute au cours du temps des configurations trouvées avec SMAC, SHA, GA et RS, plusieurs considérations doivent être prises en compte :

Protocole Expérimental

• SMAC : de part sa conception, SMAC met à jour automatiquement la meilleure configuration connue pour le moment pendant l'exécution, et donc aucun post-traitement n'est requis.

• RS : contrairement à SMAC, un post-traitement sur les résultats est requis. Toutes les 5000 injections de fautes, nous injectons 1000 de plus pour évaluer la probabilité de faute de la meilleure configuration trouvée pour le moment.

• GA : Le même post-traitement sur les résultats que RS est requis.

• SHA Nous évaluons la probabilité de faute moyenne des configurations restantes après chaque réduction successive de moitié.

Pour chaque microcontrôleur considéré, nous optimisons notre GLITCH STATION en utilisant SMAC, SHA, GA et RS et nous comparons l'évolution de probabilité de faute des meilleures configurations trouvées au cours du temps. La meilleure technique d'optimisation 

Résultats

Les résultats des expériences sont résumés à la figure 6.6 et au tableau 6.3. Dans la figure 6.6, nous comparons l'évolution de la probabilité de faute sur 50.000 injections de fautes, de manière à visualiser la vitesse de convergence de chaque technique d'optimisation (rapide ou lente). Le tableau 6.3 présente la probabilité de faute des meilleures configurations trouvées avec chaque technique. Avant d'aborder les résultats de SMAC et SHA, notez que les résultats de la recherche aléatoire peuvent fortement varier et même décroitre, en particulier pour µC-M3 et µC-M4. La recherche aléatoire nécessite plus d'injections de faute (>50.000) pour se stabiliser.

Pour chaque microcontrôleur, SMAC est significativement plus rapide que n'importe quelle technique d'optimisation pour identifier la configuration avec la probabilité de faute la plus élevée. En particulier, en moins de 10.000 injections de fautes, SMAC identifie systématiquement des configurations avec des probabilités de fautes plus élevées que GA, SHA et RS. Par conséquent, SMAC peut être utilisé pour optimiser un équipement d'injection de faute plus rapidement qu'avec les techniques d'optimisation traditionnelles, et donc, économiser du temps précieux pendant les évaluations de sécurité. D'autre part, SHA converge lentement vers la meilleure configuration. Cependant, après les 50.000 injections de fautes, SHA trouve la configuration avec la probabilité de faute la plus élevée pour µC-M0 et µC-M3. Cela s'explique du fait de la conception de SHA. En effet SHA alloue entièrement le budget fixé T (le nombre d'injections de faute), et n'enlève que progressivement les pires configurations à chaque réduction de moitié, ce qui explique la vitesse de convergente lente par rapport aux autres techniques d'optimisation.

Néanmoins, nous trouvons que SHA évalue trop de configurations avec des probabilités de fautes faible, en particulier lors des premiers tours et sur le microcontrôleur µC-M0. Nous pensons que la procédure additionnelle proposée pour SMAC, décrite dans à la soussection 6.4.3 peut aider SHA à sélectionner les configurations initiales ⃗ Θ 0 , de manière à réduire le temps passé sur des configurations peu performantes. Mais cela ne permettra sans doute pas de résoudre le problème déjà évoqué à la sous-section 6.4.2 à savoir, lorsque à l'itération k, aucune configuration ne permet de fauter le microcontrôleur, la sélection des configurations pour l'itération suivante k + 1 se fera aléatoirement, sans consulter les résultats de l'itération k -1. Pour résumer, le véritable problème du SHA, c'est qu'il ne tient pas compte des résultats précédents. C'est pourquoi SMAC semble plus pertinent pour notre problème d'optimisation.

Bien que nous n'avons pas évalué SMAC ou SHA avec d'autres techniques d'injection de fautes, nous pensons que ces techniques d'optimisation devraient être adaptables pour optimiser des équipements d'injection EM et Laser. Pour terminer, au vu des résultats obtenus, SMAC est plus efficace que GS, SHA et RS, particulièrement pour optimiser rapidement un équipement d'injection de faute pour un microcontrôleur donné. C'est pourquoi, dans la section suivante, nous verrons que SMAC peut être utilisé pour exploiter des vulnérabilités plus rapidement qu'avec GA.

SMAC pour contourner des mécanismes de protection de code

Dans cette section, nous appliquons notre méthodologie en boîte noire avec SMAC dans le but de contourner un mécanisme de protection de code d'un microcontrôleur 32-bit, en utilisant notre GLTICH STATION. L'attaque présentée est une attaque connue, permettant d'abaisser le niveau de sécurité de la cible, de manière à extraire l'application embarquée [START_REF] Bozzato | Shaping the glitch : optimizing voltage fault injection attacks[END_REF]. Nous verrons que SMAC est meilleur que GA à identifier les meilleures configurations en un nombre limité d'injections de faute, et ainsi montrer que SMAC permet de gagner un temps conséquent lors d'évaluations de sécurité.

STM32F103RB

Le microcontrôleur 32-bit STM32F103RB est basé sur un coeur ARM Cortex-M3 cadencé à 24Mhz. Le microcontrôleur STM32F103RB offre des mécanismes de protection permettant de bloquer la lecture ou l'écriture en mémoire utilisateur avec le bootloader. En pratique, une fois le mécanisme de protection de lecture activé (ReaDout Protection, RDP), le bootloader identifiée avec SMAC. Notez qu'avec un plus grand nombre d'injections de faute lors de l'étape de caractérisation, il est aussi possible de réussir l'attaque avec GA. Par exemple, avec deux fois plus d'injections de faute pendant l'étape de caractérisation (i.e. 12.000 au lieu de 6.000), GA identifie des configurations d'équipement permettant de fauter le STM32F103RB et de contourner le mécanisme RDP, comme présenté au tableau 6.4. Cependant, même avec deux fois plus d'injections de fautes, les configurations identifiées avec GA ont une probabilité de faute plus faible que SMAC.

Conclusion

Dans ce chapitre, nous avons proposé d'appliquer deux techniques d'optimisation récentes pour identifier les meilleurs paramètres de notre GLITCH STATION, sur plusieurs microcontrôleurs 32-bit différents. Bien que ces techniques ont déjà été utilisées avec succès en apprentissage automatique ou dans la résolution de problèmes combinatoires difficiles, c'est la première fois qu'elles sont utilisées pour optimiser l'injection de faute. L'optimisation bayésienne (SMAC) ou les algorithmes de bandit (SHA) permettent d'explorer rapidement l'espace des paramètres afin de maximiser les fautes exploitables sur différents microcontrôleurs.

Si SHA est un algorithme simple et facilement adaptable à notre problème d'optimisa-tion, identifiant sous certaines conditions les meilleures configurations, c'est bien SMAC qui a retenu notre attention. Ce configurateur automatique permet de trouver les meilleurs paramètres d'équipement tout en étant bien plus rapide que les algorithmes métaheuristiques. De plus, pour simplifier et accélérer l'identification et l'exploration, nous proposons de séparer l'optimisation en deux étapes, à savoir la caractérisation et l'exploitation. Tout d'abord, nous optimisons avec SMAC ou SHA les paramètres d'équipement indépendamment de l'application cible en utilisant un test de caractérisation de faute. Une fois les meilleures configurations identifiées, une recherche par quadrillage permet d'identifier les délais d'injection de fautes pour exploiter les vulnérabilités sur l'application cible.

En particulier, avec SMAC et notre approche, nous arrivons à contourner le mécanisme de protection en lecture implémenté dans le bootloader préchargé du microcontrôleur STM32F103RB, deux fois plus rapidement qu'avec un GA. 

Bilan

Synthèse Générale Les vulnérabilités à l'injection de faute sont complexes à étudier car, en plus des connaissances matérielles et logicielles requises pour analyser l'architecture du microcontrôleur ciblé et l'application embarquée dans celui-ci, il faut aussi maitriser l'art subtil de la calibration des paramètres d'équipement, avant de réussir à générer des fautes sur la cible. Dans ce contexte, l'objectif de cette thèse était de proposer de nouvelles méthodes, techniques et outils pour optimiser l'identification et l'exploitation de ces vulnérabilités, soit en comblant l'écart entre simulation et expérimentation, soit en utilisant de nouvelles approches pour identifier plus efficacement les paramètres induisant des fautes sur les microcontrôleurs. Si la volonté de mieux comprendre les fautes sur les systèmes embarqués nous a conduit à développer plusieurs solutions différentes, de nombreuses pistes de recherche pour de futurs travaux restent ouvertes. La suite de cette section résume les travaux développés dans ce manuscrit.

Dans un premier temps, au chapitre 2, nous avons présenté les différents moyens et techniques existants pour injecter des fautes ainsi que les attaques récentes sur des microcontrôleurs non sécurisés. Nous avons aussi dressé un état de l'art des techniques d'optimisation des paramètres d'équipement et du délai d'injection. En particulier, nous avons constaté l'écart entre les techniques utilisées en injection de faute et celles utilisées dans d'autres domaines comme l'apprentissage automatique, plus récentes et plus efficaces. Nous avons aussi présenté l'état de l'art de la caractérisation de faute, et en particulier des tests de caractérisation de fautes. Pour ces derniers, nous avons observé l'absence de métriques et de critères pour les comparer objectivement. Enfin, nous avons constaté que les vulnérabilités aux fautes multiples n'étaient pas prises en compte dans les méthodologies proposées récemment, et que même si les modèles spécifiques à la cible sont de plus en plus utilisés pour simuler les fautes, la transition de la simulation vers l'expérimentation n'est pas abordée.

Comme l'identification et l'exploitation de vulnérabilités à l'injection de faute passent par l'usage d'outils performants, au chapitre 3 nous avons détaillé les outils développés et utilisés pendant cette thèse, CELTIC et la GLITCH STATION. CELTIC fut l'objet d'une refonte complète et d'un travail d'ingénierie important avec l'ajout en particulier du multithreading et de la précompilation du jeu d'instructions cible pour accélérer la simulation d'injection de faute. La GLITCH STATION est un nouvel outil low cost entièrement développé pendant cette thèse permettant de générer des power glitches très précis. À l'aide d'un convertisseur numérique-analogique, la GLITCH STATION peut ajuster finement la forme de la perturbation, permettant d'injecter des fautes sur une grande variété de microcontrôleurs.

Au chapitre 4, nous avons proposé une méthodologie visant à faciliter l'identification et l'exploitation de vulnérabilités à l'injection de fautes multiples. La simulation de faute est limitée uniquement aux modèles de faute spécifiques à la cible identifiés au préalable avec une caractérisation, à l'aide de CELTIC. Cela permet de limiter l'explosion combinatoire du nombre de chemins d'attaque avec le nombre de fautes indépendantes injectées, et de détecter uniquement des vulnérabilités réalistes, dont les paramètres d'équipement associés sont automatiquement générées pour faciliter l'exploitation de ces dernières. En moyenne, en se basant sur cinq expériences avec plusieurs cibles et différentes techniques d'injection, nous avons exploité 10 fois plus rapidement des vulnérabilités par injection de fautes multiples avec notre approche bout-en-bout qu'avec une caractérisation de faute classique. Nous avons aussi discuté des possibles limitations de notre approche et proposé plusieurs pistes pour l'améliorer.

En particulier, nos efforts se sont concentrés sur l'optimisation de l'étape de caractérisation, cruciale pour le reste de notre méthodologie. C'est pourquoi, au chapitre 5, nous avons formalisé deux propriétés essentielles pour les tests de caractérisation, la propagation et la discrimination des fautes, qui furent ensuite dérivées en plusieurs métriques de performance. À partir de ces métriques, nous avons étudié et comparé plusieurs tests de la littérature pour identifier les critères les plus importants selon les modèles de faute considérés. Finalement, à partir de ces recommandations, nous avons proposé un ensemble de tests optimaux qui furent utilisés avec la GLITCH STATION pour identifier rapidement les modèles de fautes les plus probables sur un Cortex-M4 32-bit.

Toujours pour améliorer la caractérisation de faute, au chapitre 6, nous avons proposé de nouvelles techniques d'optimisation pour accélérer l'identification des meilleurs paramètres d'équipement en fonction du microcontrôleur ciblé. Nous avons montré expérimentalement que les algorithmes SHA et SMAC permettent d'identifier plus rapidement les paramètres de la GLTICH STATION que les algorithmes métaheuristiques. En particulier, nous avons exploité une vulnérabilité connue sur un STM32F103RB avec SMAC 2 fois plus rapidement qu'avec un algorithme génétique. Aussi, au lieu d'optimiser l'équipement directement sur l'application ciblée, nous avons proposé une optimisation indirecte de l'équipement via des tests de caractérisation, ce qui permet déterminer les paramètres d'équipement indépendamment du délai d'injection, et ainsi réduire l'espace de recherche.

Perspectives

Les travaux conduits pendant cette thèse permettent d'ouvrir plusieurs axes de recherche afin d'améliorer la sécurité des systèmes embarqués. Dans les paragraphes suivants, nous détaillons plusieurs pistes potentielles que nous avons identifié, toujours dans le but faciliter la détection de vulnérabilités à l'injection de faute.

Combinaison des solutions proposées Tout d'abord, pour conclure ces travaux, et confirmer la pertinence de l'ensemble de tests optimaux proposé ainsi que des nouvelles techniques d'optimisation comme SMAC, il faudrait réinjecter ces améliorations dans notre méthodologie bout-en-bout présentée au chapitre 4. Il serait alors intéressant de comparer la couverture de fautes avec et sans ces améliorations, en particulier pour les microcontrôleurs moins sensibles aux fautes, et de vérifier si elles permettent d'améliorer l'inférence de modèle de faute. Amélioration des modèles de fautes À plus long terme, il faudrait réfléchir sur l'implémentation de certaines pistes d'améliorations décrites à la fin du chapitre 4 comme l'extension de la base de donnée de modèles de faute avec des combinaisons de ces derniers dans le but de former de nouveaux modèles plus complexes pour couvrir plus de fautes, similairement aux travaux de Alshaer et al. [ACD + 21]. En moyenne, notre approche permet de couvrir 76% des fautes, et nous pensons que l'utilisation de modèles plus complexes permettrait de se rapprocher de la couverture idéale de 100%. De plus, comme les modèles de faute sont aussi essentiels lors du développement de contremesures logicielles [Mor14], il est donc capital de continuer à améliorer la précision de ces derniers.

Émulation du pipeline avec CELTIC Il serait aussi intéressant d'améliorer le niveau de fidélité de CELTIC, en intégrant l'émulation complète du pipeline, similairement aux travaux de Yuce [Yuc18] qui utilise un simulateur de faute basé sur l'émulateur modulaire open source GEM5 [BBB + 11] pour émuler la microarchitecture ciblée. De cette manière, il est possible de suivre très précisément la propagation de fautes dans le système et de gagner en fidélité sur les vulnérabilités identifiées. Cependant, cela se ferait au détriment de la rapidité de l'outil, ce qui peut s'avérer être contre productif pour la simulation d'injection de fautes multiples.

Microcontrôleurs sécurisés L'autre point à intéressant à aborder dans de futurs travaux serait d'utiliser la GLITCH STATION avec SMAC pour évaluer un microcontrôleur sécurisé, dans le but d'analyser la robustesse de contre-mesures matérielles. Cela permettrait de vérifier s'il est possible de contourner les détecteurs de power glitches [START_REF] Vosoughi | Leveraging on-chip voltage regulators against fault injection attacks[END_REF] en ajustant très précisément la forme de la perturbation avec la GLITCH STATION. De manière générale, nous souhaitons prochainement évaluer de nouveaux microcontrôleurs avec SMAC en utilisant des techniques d'injection de faute différentes. En particulier, l'injection de faute par impulsions électromagnétiques, réputée pour être difficile à maitriser, fait partie des candidats prioritaires. Contrairement à une recherche par quadrillage, où les déplacement spatiaux se font à intervalles réguliers, sollicitant donc peu les moteurs pas à pas, SMAC explore l'espace d'une manière plus dynamique, ce qui exerce plus de pression sur ces derniers, pouvant conduire, dans certains cas, à des secousses si le banc est mal calibré (similairement aux imprimantes 3D). Cependant, mis à part ce problème d'ingénierie, SMAC devrait sans doute pouvoir optimiser la recherche des meilleurs paramètres d'équipement, y compris pour l'injection EM.

Injection de faute et Fuzzing Enfin à titre personnel, j'ai un intérêt tout particulier pour la sécurisation des systèmes embarqués, et plus précisément, des bootloaders. Le bootloader est une application particulièrement critique pour la sécurité du microcontrôleur et nous avons vu au chapitre 2 qu'il existe de nombreuses vulnérabilités connues sur plusieurs références utilisées encore aujourd'hui. En parallèle, le fuzzing, qui est une technique consistant à tester un grand nombre de données aléatoires dans un système, dans le but d'identifier des vulnérabilités, et de plus en plus utilisé en embarqué [CGS + 20]. Cependant, l'utilisation du fuzzing en combinaison avec de l'injection de faute n'est à ma connaissance, pas référencée dans la littérature, et pourtant pourrait permettre d'identifier de nouveaux chemins d'attaque exotiques. C'est pourquoi, mes futurs travaux porteront vraisemblablement sur le développement d'un outil combinant fuzzing et injections de faute, tout en se basant sur les résultats obtenus pendant cette thèse pour optimiser l'identification et l'exploitation de vulnérabilités à l'injection de faute.

Annexes

# On initialise un nouveau Project avec le fichier de description d'architecture GISL # et le binaire à évaluer HEX. Le Project contient les propriétés de l'architecture ciblée # et permet de créer divers objets, via la factory, comme l'état initial entry_state, # ou encore le simulateur sim_engine. prj = pyceltic.Project(GISL,HEX) # Justemment avec la factory, on initialise l'état initial entry_state, et on ajoute # des watch variables permettant de suivre facilement la valeur de variables globales # en mémoire. entry = prj.factory.entry_state() entry.variables.add(pyceltic.MemoryView("g_countermeasure", 0x2000001c, 1)) entry.variables.add(pyceltic.MemoryView("g_authenticated", 0x2000001e, 1)) # Toujours avec la factory, on instancie un sim_engine pour exécuter le binaire jusqu'à # la fonction VerifyPin à l'adresse 0x080002d4. On sauvegarde l'état courant avec clone(). engine = prj.factory.sim_engine(entry) engine.step_until(0x080002d4) verifypin_entry = engine.state.clone() # La fonction end_procedure définit la fin de l'exécution. 
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 2 Figure 2.1 -Vue schématique de la relation entre faute, erreur et défaillance

Figure 2

 2 Figure 2.4 -(a) Plaque chauffante avec deux capteurs PT100 mesurant la température arrière et avant d'un ATmega162 [HS13] (b) Sonde d'injection électromagnétique au-dessus d'un microcontrôleur décapsulé [DDRT12].
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 2 Figure 2.5 -(a) Équipement d'injection de faute par lumière focalisée [Sko10] (b) La ligne de lumière de tomographie ID16B de l'ESRF utilisée pour induire des fautes par Rayon X sur un ATmega1284P [ABC + 17].
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 2 Figure 2.6 -(a) Trezor One [AGH19] (b) Equipement d'injection de power glitch dans le but d'attaquer le Trezor One [Kra20].

Figure 2

 2 Figure 2.8 -Exploration d'un espace de deux paramètres, dont l'un a peu d'effet sur le microcontrôleur, avec a) une recherche par quadrillage versus b) une recherche aléatoire [BB12].
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 2 Figure 2.9 -Vue schématique des étapes principales d'un algorithme génétique.
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 2 Figure 2.10 -Sélection par tirage à la roulette avec r tiré aléatoirement entre 0 et le total F des valeurs sélectives de la population. Dans cet exemple, l'individu B est sélectionné [Hat07].
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 2 Figure 2.11 -(a) Image optique (grossissement 500×) et (b) balayage OBIC d'un microcontrôleur PIC16F84A [Sko05].
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 2 Figure 2.13 -(a) Un port SWD [Sty13] et (b) une sonde de débogage [Seg06].
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 2 Figure 2.16 -(a) Modélisation au niveau transistor de bit-set et bit-reset par perturbation laser [CBD + 15] (b) Extraction et analyse des bascules fautées [PTH + 15]
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 217 Figure 2.17 -Approche proposée par Alshaer et al. [ACD + 21]
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 218 Figure 2.18 -Le bootloader peut être réactivé avec deux fautes : la première permet de tromper le programme en faisant croire que la mémoire Flash utilisateur est vide (chk_empty), la deuxième contourne le mécanisme de CRP (chk_crp) [VdHOGT21].
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 3 Figure 3.1 -Vue globale de l'architecture de CELTIC.
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 3233 Figure 3.2 -Compilation du fichier de description d'architecture GISL.
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 335 Figure 3.4 -Affichage de l'état courant dans CELTIC.
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 37 Figure 3.7 -Le modèle 4CacheCorruption provoque le rejeu des quatre dernières instructions exécutées à la place des quatre suivantes.
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 3 Figure 3.8 -(a) Utilisation d'un transitor N-MOSFET pour générer des power glitches sur le µC en court-circuitant brièvement l'alimentation avec la masse, et (b) le glitch obtenu [BFP19].
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  'injection de faute par perturbation de la tension d'alimentation fait partie des premières techniques utilisées pour compromettre la sécurité d'un système [AK97]. Même si cette technique est relativement simple, en comparaison avec les perturbations par lumière focalisée, Timmers et al. [TSW16] ont montré qu'il était possible de générer des effets intéressants du point de vue d'un attaquant, comme notamment contrôler la valeur du compteur ordinal. Cependant, des limitations intrinsèques à cette technique nous ont motivé à concevoir la GLITCH STATION pendant cette thèse.
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 3 Figure 3.11 -(a) La NUCLEO-H743ZI2 et (b) la carte électronique chargé de la génération et de l'amplification du glitch.
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 312 Figure 3.12 -Schéma de la carte électronique chargée de la génération du gltich. On distingue les trois blocs principaux, le DAC R2-R, la conversion du signal unipolaire en signal bipolaire et le montage additionneur.
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Figure 4

 4 Figure 4.1 -Vue globale de notre approche.

Figure 4 . 2 -

 42 Figure 4.2 -Vue globale de la première étape d'inférence de modèles de faute. Cette étape se divise en trois sous-étapes, (A) la caractérisation de fautes, (B) la simulation d'injection de faute et (C) l'identification des modèles spécifiques.

  La caractérisation de fautes permet, d'une part, d'identifier les configurations d'équipement permettant de maximiser le nombre de résultats fautés, et d'autre part, de comprendre le comportement du microcontrôleur en réponse aux injections de fautes. Comme l'application cible ne permet généralement pas d'identifier facilement et distinctement les effets des fautes, des tests de caractérisation de fautes sont utilisés à la place pour propager les effets des fautes sur le microcontrôleur.Ces tests, déjà présentés dans le chapitre 2, sont le plus souvent constitués d'une suite d'instructions arithmétique et logique [RNR + 15, PHM + 19, CMD + 18, DRPR19] ou d'instructions load et store [TSW16, DPdC + 15]. L'influence des tests sur la propagation des fautes sera abordée au chapitre 5. La partie A de la figure 4.2 détaille le processus de la caractérisation de fautes. Tout d'abord, différents paramètres d'injection de faute sont testés (1) sur le microcontrôleur pendant l'exécution du test de caractérisation de fautes, en prenant soin de conserver les résultats fautés (2). Une table liant les résultats fautés avec les paramètres d'injection de faute sera ensuite générée (3). Notez que différentes techniques d'optimisation, détaillées dans le chapitre 2, peuvent être utilisées pour explorer efficacement l'espace des paramètres d'injection de faute. Par ailleurs, de nouvelles techniques d'optimisation seront détaillées au chapitre 6.
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 43 Figure 4.3 -Vue globale de la deuxième étape d'identification des vulnérabilités par simulation. Cette étape se divise en deux sous-étapes, (A) les modèles les probables sont filtrés, et (B) les attaques par fautes multiples sont identifiées

Figure 4

 4 Figure 4.4 -Génération d'une trace d'exécution fautée X ′ avec CELTIC à partir d'une trace de référence X.
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 45 Figure 4.5 -Combinaison des résultats précédents.

Figure 4

 4 Figure 4.6 -Conversion des cycles en délai d'injection.

Figure 4

 4 Figure 4.7 -Vue arrière du coeur ARM Cortex-M4 du µC1, avec la partie logique de la mémoire flash mis en évidence en rouge, ainsi qu'une vue agrandie des positions ciblées les plus intéressantes. La carte thermique détaille la probabilité d'induire des résultats fautés pour chacune de ces positions.
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 48 Figure 4.8 -Exemple de couple de positions contournant l'authentification de hVP5. Le premier laser vise une position liée au modèle 48InstructionSkip tandis que le le deuxième laser vise une position liée au modèle 32InstructionSkip.

Figure 4

 4 Figure 4.9 -Exemple d'une forme de glitch générée avec la GLITCH STATION.

Figure 4 .

 4 Figure 4.10 -Section critique du test d'authentification du hVP5CFI. Avec le modèle 4CacheCorruption, il est possible d'empêcher la mise à jour l'état de la B et passer le test d'authentification.
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 411 Figure 4.11 -Exemple de double glitch contournant l'authentification du hVP5CFI.
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 412 Figure 4.12 -Le meilleur scenario possible. Notre approche a détecté 100% des vulnérabilités d'injection multi-fautes identifiées avec l'approche basée sur la caractérisation pour le microcontrôleur µC3 et l'application hVP5CFI.
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 413 Figure 4.13 -Le pire scenario possible. Notre approche a détecté 17% des vulnérabilités d'injection multi-fautes identifiées avec l'approche basée sur la caractérisation pour le microcontrôleur µC2 et l'application hVP5CFI.
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 414 Figure 4.14 -Les points critiques de notre approche sujet à amélioration.

Definition 1 (

 1 Propagation) Soit s ⋆ I l'état final référence de I, c'est-à-dire l'état final pour une exécution de I sans faute. Soit S m I l'ensemble des états finaux des exécutions de I fautées selon le modèle de faute m. I assure une propriété de propagation vis-à-vis d'un ensemble de modèles de faute M si : ∀m ∈ M, s ⋆ I ̸ ∈ S m I Definition 2 (Discrimination) Soit S m I l'ensemble des états finaux des exécutions de I fautées selon le modèle de faute m. I assure une propriété de discrimination vis-à-vis d'un ensemble de modèles de faute M si :

Definition 3 (

 3 Taux de propagation) Le taux de propagation d'un test de caractérisation de fautes, selon l'ensemble des modèles M et la séquence I, se définit comme : P R M,I = #{Résultats fautés} #{Fautes injectées} Definition 4 (Taux de discrimination) Le taux de discrimination d'un test de caractérisation de fautes, selon l'ensemble des modèles M et la séquence I, se définit comme : DR M,I = 1 -#{Résultats fautés communs à plusieurs modèles} #{Résultats fautés} Definition 5 (Taux de couverture) Le taux de couverture d'un test de caractérisation de fautes, selon l'ensemble des modèles M et la séquence I, se définit comme :CR M,I = #{Modèles couverts} #{Modèles}Comme nous voulons que les tests de caractérisation propagent, discriminent, couvrent un maximum de fautes, P R, DR et CR doivent être maximisés. Nous pouvons rapidement comparer la performance de deux tests de caractérisation de fautes différents avec le produit de P R, DR et CR. Dans ce qui suit, nous expliquerons comment les choix de conception des tests de caractérisation de fautes influencent P R, DR et CR, en se basant sur une étude des tests les plus fréquemment utilisés. sur la valeur de la cellule mémoire lueF7Bit-resets sur la valeur de la cellule mémoire lue

Figure 5 . 1 -

 51 Figure 5.1 -Comparaison de P R * DR * CR des tests idempotents avec les tests nonidempotents.

Figure 5 . 3 -Figure 5 . 4 -Figure 5 . 5 -

 535455 Figure 5.3 -Comparaison de P R * DR * CR en fonction de la variété des instructions.

Figure 5 . 6 -

 56 Figure 5.6 -Encodage de l'instruction ARMv7-M ADDW<c> <Rd>, <Rn>, #<imm12>.

Figure 5

 5 Figure 5.7 -Évolution de la probabilité de faute sur les 100 premières générations (25.000 fautes) avec les tests IC, RC et MC, en utilisant notre GLITCH STATION. Les lignes rouges sont des moyennes glissantes sur 10 générations.

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

  La fonction-objectif n'est pas convexe, et plusieurs paramètres d'équipement d'injection de faute peuvent être localement optimaux. Cela peut conduire à une convergence prématurée vers une solution sous-optimale.Pas de parallélisationIl est difficilement possible de paralléliser le problème, car cela nécessiterait plusieurs bancs de test pour conduire les expérimentations en parallèle.Coût d'évaluationSi tester une nouvelle configuration d'équipement est rapide, il y a toujours un risque de détériorer le microcontrôleur cible pendant les expérimentations, sachant que la préparation d'une cible peut aller de quelques heures à quelques jours en fonction de la technique d'injection de faute utilisée. D'autre part, l'espace des paramètres d'équipement est généralement trop grand pour une recherche exhaustive. La recherche par quadrillage et la recherche aléatoire, bien que souvent utilisées, ne sont pas optimales pour explorer efficacement l'espace (chapitre 2). Ainsi, nous nous sommes int éressés à d'autres techniques d'optimisation adaptées aux particularités de notre problème, et en particulier, Successive Halving Algorithm (SHA) et Sequential Model-Based Algorithm Configuration (SMAC).

  Introduction au problème des bandits manchotsL'algorithme de réduction de moitié successive, en anglais Successive Halving Algorithm (SHA) a été proposé pour la première fois par Karnin et al.[START_REF] Karnin | Almost optimal exploration in multi-armed bandits[END_REF] en 2013 pour résoudre le problème des bandits manchots.

Algorithme 4 :

 4 Optimisation séquentielle basée sur un modèle Input : Budget total fixé T , l'espace de paramètre d'injection de faute Θ, les configurations initiales ⃗ Θ init ⊂ Θ Output : La meilleure configuration θ inc R, θ inc ← Initialize( ⃗ Θ init ); repeat /* Fit the model M based on results R */ M ← FitModel(R); /* Select promising configurations ⃗ Θ new */ ⃗ Θ new ← SelectConfigurations(M, Θ); /* Find the best configuration θ inc */ R, θ inc ← Intensify(θ inc , ⃗ Θ new ); until total budget T is exhausted; return θ inc ;

Figure 6 . 3 -

 63 Figure 6.3 -Sélection du prochain point à tester pour l'itération suivante via l'Amélioration Attendue (EI), en fonction de la distribution a posteriori (modèle) construite à partir des observations.

D

  'autres techniques que SMAC ou SHA pourraient potentiellement être utilisées pour optimiser les paramètres d'équipements, et n'ont pas été évaluées pour le moment en pratique. Nous présentons brièvement deux d'entre elles, HyperBand et Tree-structured Parzen Estimator.

Figure 6

 6 Figure 6.4 -Performance des brackets individuels et HyperBand [LJD + 17].

Figure 6

 6 Figure 6.5 -BO-TPE partitionne les probabilités de faute observées en deux groupes L et G selon le quantile o * .

Figure 6 . 9 -

 69 Figure 6.9 -Les traces de l'oscilloscope au moment de l'injection de faute pour contourner le mécanisme RDP du STM32F103RB.

  De plus, SMAC et SHA ont systématiquement identifié de meilleures configurations que les algorithmes métaheuristiques. Trouver plus facilement les paramètres d'équipement avec une probabilité de faute élevée va permettre d'améliorer notre méthodologie d'injection de fautes multiples (chapitre 4), en réduisant la difficulté de l'exploitation d'attaques multifautes complexes. Par la suite, il pourrait être pertinent d'évaluer d'autres techniques d'optimisation alternatives telles que HyperBand ou BO-TPE. De plus, il serait intéressant d'évaluer les performances de SMAC et SHA avec d'autres techniques d'injection de fautes, telles que l'injection EM ou Laser. Enfin, il faudrait étudier les applications directes de SMAC ou SHA sur des microcontrôleurs sécurisés, comme l'identification de formes de glitch exotiques avec SMAC pouvant potentiellement contourner des contre-mesures matérielles comme des détecteurs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

  Figure 2.2 -Perturbation de la tension d'alimentation. La tension nominale V dd est abaissée à une tension V glitch pendant une durée T glitch .

		V dd	T glitch
	Voltage	V glitch	
			Time
		T	T glitch	T T glitch
			Time

Figure 2.3 -Perturbation du signal d'horloge. La période nominale T du signal d'horloge est raccourcie d'une période T glitch .

  Table 2.1 -Comparaison des techniques d'injection de faute par perturbation selon la précision et le contrôle sur les fautes induites, l'expertise technique et le coût de l'équipement.

	Technique	Précision &	Expertise	Coût
	d'Injection	Contrôle	Technique	Équipement
	Température	Très Faible Très Faible Très Faible
	Power Glitch	Faible	Faible	Faible
	Clock Glitch	Faible	Faible	Faible
	Impulsion électromagnétique	Modéré	Modérée	Modéré
	Lumière Focalisée	Élevé	Modérée	Élevé
	Rayon X	Très Élevé Très Élevée Très Élevé

Table 2 .

 2 2 -Les paramètres d'un équipement d'injection Laser. d'exploiter un buffer overflow dans le but d'exécuter un code tiers afin d'extraire le contenu de la mémoire système de la PlayStation Vita. Une partie importante du travail réalisé pour mener à bien cette attaque consiste à trouver les bons paramètres de l'équipement d'injection de faute. C'est ce que nous allons voir dans la prochaine section.

  Courbon et al. [CLMFT14] détecte les régions de la puce qui seront les plus sensibles aux perturbations laser. Il est aussi possible de mesurer le courant induit par faisceau optique, aussi appelé Optical beam-induced current (OBIC), en s'en servant comme technique d'imagerie, ce qui permet ensuite d'identifier les zones actives du microcontrôleur (figure 2.11), et réduire considérablement les zones à cibler avec le laser [Sko05, SFR + 15]. Madau et al.

R0 = 36 État final de référence Exécution de référence Exécutions fautées État finaux fautés

  

	ADD R0, 0x01 ADD R0, 0x03 ADD R0, 0x08 ...	R0 = 45	faute? Effet de la
	ADD R0, 0x09		
	ADD R0, 0x01 ADD R0, 0x03 ... ADD R0, 0x08 ADD R0, 0x09 ADD R0, 0x01 ADD R0, 0x03 ... ADD R0, 0x08 ADD R0, 0x09 ADD R0, 0x01 ADD R0, 0x03 ... ADD R0, 0x08 ADD R0, 0x09 ADD R0, 0x01 ADD R0, 0x03 ADD R0, 0x01 ADD R0, 0x03 ... ... ADD R0, 0x08 ADD R0, 0x08 ADD R0, 0x09 ADD R0, 0x09	R0 = 42 R0 = 41 R0 = 44 R0 = 40	
	Figure 2.12 -Vue schématique du processus de caractérisation de fautes.
	l'injection de faute, comment distinguer une faute sur le bus de donnée d'une faute sur
	le bus d'instruction (figure 2.12) ? Pour cela, il est nécessaire de croiser plusieurs résultats
	fautés différents avant de confirmer une hypothèse.	
	Le choix des instructions dans la partie Cible dépend de l'effet de faute que l'on souhaite
	analyser. Par exemple, le tableau 2.4 détaille les instructions I de la Cible et l'initialisation
	des variables V du Prologue des tests T1 et T2. Ces tests sont inspirés de travaux récents
	([CMD		
	• Cible Une séquence d'instruction I où les fautes seront injectées. Dans la littérature,
	le nombre et le choix des instructions varient d'un test à un autre. Nous reviendrons
	sur ce point plus en détail au chapitre 5.	
	• Épilogue À la fin de la cible, l'état interne final du microcontrôleur, c'est-à-dire les
	valeurs finales de V , est sauvegardé.	
	Noter que les tests de caractérisation de fautes sont généralement instrumentés, au niveau
	des parties Prologue ou Épilogue, pour initialiser l'état interne, récupérer l'état final du
	microcontrôleur ou encore faciliter la synchronisation du délai d'injection.
	En comparant l'état final de référence (sans faute) et celui fauté, on peut émettre des
	hypothèses sur l'effet des fautes sur le microcontrôleur. Cependant, plusieurs hypothèses
	différentes peuvent souvent expliquer le même résultat fauté ! Par exemple, si la Cible du
	test consiste à additionner les nombres de 1 à 9, soit 45, et que nous obtenons 42 après

+ 18, PHM + 19, TBC19]) pour mettre en évidence des corruptions d'instruction. Nous reviendrons plus en détail sur ces tests au chapitre 5. En particulier, nous étudierons l'in- fluence des instructions de la partie Cible sur la propagation des effets de faute.

  

		Test de Caractérisation de fautes T1 Test de Caractérisation de fautes T2
		adds r0, #2		mov r0, r0	
		adds r1, #3		mov r1, r1	
		adds r2, #5		mov r2, r2	
	I	adds r3, #7 adds r4, #11	Repeat n times	mov r3, r3 mov r4, r4	Repeat n times
		adds r5, #13		mov r5, r5	
		adds r6, #17		mov r6, r6	
		adds r7, #19		mov r7, r7	
		R0 0x00000000 R1 0x11111111 R0 0x00000000 R1 0x11111111
	V	R2 0x22222222 R3 0x33333333 R2 0x22222222 R3 0x33333333 R4 0x44444444 R5 0x55555555 R4 0x44444444 R5 0x55555555
		R6 0x66666666 R7 0x77777777 R6 0x66666666 R7 0x77777777
		Table 2.4 -Tests de caractérisation de fautes T1 and T2
	comprendre un peu plus les effets des fautes sur le microcontrôleur cible. Par exemple,
	l'architecture ARMv7-M peut générer les exceptions suivantes ([Kei17]) :
	Si ces tests, fréquemment utilisés, ont permis de mieux comprendre les effets des fautes
	sur les microcontrôleurs, ce n'est pas sans limitations. Notamment, cela suppose que les
	effets des fautes injectées dans la partie Cible seront observables à la partie Épilogue ce qui
	n'est pas nécessairement le cas. En particulier, nous verrons dans le chapitre 5 qu'en fonction
	des choix de conception de la Cible (nombre d'instruction, type d'instruction, etc.) certains
	effets peuvent être masqués. De plus, en cas d'une interruption inopinée du microcontrôleur,
	il ne sera pas possible d'observer l'état interne de ce dernier. Cependant, il est possible, dans
	certains cas, de récupérer des informations supplémentaires grâce aux exceptions matérielles.
	2.4.1.2 Exception matérielle		
	Lorsqu'une faute conduit au chargement d'une instruction non définie ou à un accès
	mémoire non aligné, certaines architectures génèrent des exceptions matérielles. En analysant
	ces exceptions matérielles, cela permet de récupérer des informations supplémentaires pour

Niveau Logique Niveau Circuit

  

					int verify (S,P) {		
					int r;					
					if (S = P) {			
	Niveau					r = 1;					
	Applicatif				else						
						r = 0;					
					return r;				
					}								
			Instruction Set Architecture	Logiciel Matériel
			Instruction Fetch		Instruction Decode Register Fetch	Execute Address Calc.	Memory Access		Write Back
			IF			ID			EX	MEM		WB
											Next PC		
			Adder		RS1 Next SEQ PC		Next SEQ PC	MUX		
					RS2	Register			Zero?	Branch taken			
						File							
	Niveau µArchitecture	PC	Memory	IR	IF / ID	Sign	Imm	ID / EX	MUX	ALU	EX / MEM	MEM / WB	MUX
						Extend			MUX		Memory		
													WB Data

2.5.1.2 Niveau Logique Malgré la fidélité des modèles de faute au niveau circuit, le niveau d'analyse circuit reste limité en termes de praticité et

  

		Praticité			
	Extensibilité	Circuit Logique µArchitecture Applicatif	Fidélité	
	Figure 2.15 -Comparaison des niveaux d'analyse en terme de vitesse, précision et facilité
	d'utilisation.				
	Par exemple, les travaux de Roscian et al. [RSDT13] sur l'effet des perturbations par
	lumière focalisée confirment les modèles de bit-set et bit-reset sur des cellules mémoires
	SRAM (finesse de gravure 0.25 µm) mais réfutent le modèle bit-flip. Cependant, en fonction
	de la finesse de gravure, le modèle de bit-flip n'est pas à écarter totalement, comme le
	montre Dutertre et al. [DBC + 18] sur une technologie de 28 nm. Plus récemment, les travaux
	de Dumont et al. [DLM20] théorisent le modèle d'échantillonnage, propre aux perturbations
	électromagnétiques. D'après ce modèle, les ondes EM introduisent une perturbation de la
	tension d'alimentation, conduisant les bascules du circuit à échantillonner la mauvaise valeur,
	confirmant les modèles de bit-set, bit-reset et bit-flip au niveau logique.
	Horloge	Tension	Temperature	EM	Laser
	d'extensibilité et, par conséquent, n'est jamais utilisé dans
	le contexte d'évaluation de sécurité.				
	Une analyse au niveau logique permet de passer à l'échelle tout en conservant une fidélité
	de simulation proche du niveau circuit. Au lieu de s'intéresser aux interactions physiques
	Figure 2.14 -Illustration du cycle de vie d'une faute [YSW18]. Au niveau circuit, une per-entre les transistors du circuit, l'accent est mis sur les transferts de données et les opérations
	turbation physique fait commuter l'état d'un ou plusieurs transistors. Ces transistors fautés, logiques entre les bascules du circuit. En particulier, Papadimitriou et al. [PTH + 15] proposent
	au niveau logique, font partie d'un additionneur qui génère, à son tour, un bit-set sur le une méthodologie pour extraire les bascules localement touchées par une perturbation laser
	résultat de l'addition. Au niveau de la microarchitecture, le compteur ordinal, mis-à-jour par (figure 2.16b). Simuler des bit-set, bit-reset et bit-flip au niveau des bascules permet de
	l'additionneur fauté, pointe alors vers la mauvaise instruction. Le chargement et l'exécution mettre en évidence de nouveaux modèles au niveau microarchitecture [LBD + 18].
	de la mauvaise instruction, au niveau ISA, conduit à ne pas mettre à jour le registre d'état.
	Finalement, au niveau applicatif, le test de vérification est inversé et l'utilisateur est authen-
	tifié sans connaissance du secret.				

Table 3
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	Catégorie	Famille de modèles de faute	Description
		F0	Corruption du cache d'instruction
	Corruption	F1	Saut d'instructions
	d'Instruction	F2	Bit-sets sur l'instruction décodée
		F3	Bit-resets sur l'instruction décodée
	Corruption	F4	Bit-sets sur la valeur du registre lue
	de Registre	F5	Bit-resets sur la valeur du registre lue
	Corruption	F6	Bit-sets sur la valeur de la cellule mémoire lue
	de mémoire	F7	Bit-resets sur la valeur de la cellule mémoire lue

.1 -Modèles de fautes considérés.

au chapitre 4 que CELTIC prend en compte l'injection de fautes multiples. Cependant, CELTIC n'implémente pas d'heuristique particulière pour accélérer l'injection de fautes multiples, il n'y a donc pas de différences techniques majeures entre la simulation d'une et plusieurs fautes.

  -Le modèle 16InstructionSkip provoque le saut de six instructions 16-bit et d'une instruction 32-bit.

			80002fa:	2204	movs	r2, #4
			80002fc:	490f	ldr	r1, [pc, #60]	; (800033c <verifyPIN+0x68>)
		SKIP	80002fe:	4810	ldr	r0, [pc, #64]	; (8000340 <verifyPIN+0x6c>)
		SKIP	8000300:	f7ff ffb3	bl	800026a <byteArrayCompare>
	16InstructionSkip PC = PC + 16	SKIP SKIP SKIP	8000304: 8000306: 8000308:	4603 2baa d111	mov cmp bne.n	r3, r0 r3, #170 800032e <verifyPIN+0x5a> ; 0xaa
		SKIP	800030a:	2204	movs	r2, #4
		SKIP	800030c:	490c	ldr	r1, [pc, #48]	; (8000340 <verifyPIN+0x6c>)
		NEXT	800030e:	480b	ldr	r0, [pc, #44]	; (800033c <verifyPIN+0x68>)
			8000310:	f7ff ffab	bl	800026a <byteArrayCompare>
			8000314:	4603	mov	r3, r0
	Figure 3.6 Instruction Flow		Resulting Flow
			. . . i n-5	Fetch Cache	

• Modèles de corruption du cache d'instruction Ces modèles, inspirés des travaux de Rivière et al. [RNR + 15], simulent une mauvaise mise à jour du cache d'instruction en rejouant les k dernières instructions exécutées à la place d'exécuter les k instructions suivantes. • Modèles de saut d'instruction Ces modèles simulent des sauts d'une ou plusieurs instructions, comme observé expérimentalement par Dutertre et al. [DRPR19]. • Modèles de bit-sets (bit-resets) sur l'instruction décodée Ces modèles simulent un ou plusieurs bit-sets (bit-resets) dans l'instruction décodée, similairement aux effets observés par Colombier et al. [CMD + 18]. • Modèles de bit-sets (bit-resets) sur la valeur du registre lue Ces modèles simulent un ou plusieurs bit-sets (bit-resets) sur la valeur du registre, similairement aux effets observés par Korak et al. [KH14]. • Modèles de bit-sets (bit-resets) sur la valeur de la cellule mémoire lue Ces modèles simulent un ou plusieurs bit-sets (bit-resets) sur la valeur de la cellule mémoire lue, comme observé expérimentalement par Dureuil et al. [DPdC + 15].

  .8). Cette approche est utilisée dans des équipements d'injection de faute comme ChipWhisperer[START_REF] Flynn | Chipwhisperer : An open-source platform for hardware embedded security research[END_REF].Pour rappel, au chapitre 2, nous avons déjà présenté les power glitches, et en particulier l'espace des paramètres associé à cette technique à la figure 2.2. Les deux paramètres principaux sont l'amplitude V glitch et la durée T glitch de la perturbation. La principale limitation de la génération de glitches avec un montage MOSFET est le manque de contrôle sur ces paramètres. Il est difficile de prédire et de contrôler la forme de glitch générée, car cette dernière dépend du MOSFET utilisé et du microcontrôleur ciblé. Pour résumer, le montage MOSFET permet de générer des perturbations de la tension d'alimentation, à bas coût, mais au détriment du contrôle de l'amplitude et de la durée de cette dernière. Table 3.2 -Comparaison des outils existants en fonction du prix et du contrôle du glitch.turber la tension d'alimentation. Un convertisseur numérique-analogique, appelé plus communément DAC, est un composant électronique permettant de transformer une valeur numérique (codée sur plusieurs bits) en une valeur analogique (une tension). Ce type de dispositif est notamment utilisé dans les cartes son. Dans notre contexte, le DAC permet de convertir la forme de la perturbation encodée numériquement vers une chute brève et brutale de la tension. Contrairement au montage MOSFET, le DAC permet de contrôler finement l'amplitude et la durée de la perturbation. Notez que si GIAnT est un outil communautaire, VC GLITCHER est un produit commercialisé par Riscure.

	Outils Existants	Contrôle	Prix	Technique
	ChipWhisperer [OC14]	Faible	250 €	MOSFET
	GiANT [Osw16]	Moyen	500 €	FPGA DAC
	VC GLITCHER [Ris17]	Moyen	> 1000 €	FPGA DAC
	Shapping the Glitch [BFP19] Élevé Prix du AWG + 100 €	AWG
	Glitch Station	Élevé	100 €	R2-R DAC

D'autres outils, comme GIAnT [Osw16] ou VC GLITCHER [Ris17], se basent sur un FPGA (Field-Programmable Gate Array), et plus précisément le DAC intégré au FPGA, pour per-

• Le DAC par montage R2-R En

  

	0 et 3.3V, vers un
	signal compris entre -6V et 6V. Le montage se base sur un amplificateur opérationnel
	THS3491 (slew rate 8000 V/µs, bandwidth 900 MHz).

utilisant un réseau de résistances, on peut facilement et de manière économique convertir un signal numérique en un signal analogique [Ken00]. Le signal numérique provient de 8 ports entrées-sorties de la NUCLEO-H743ZI2, par transfert DMA (Direct Memory Access). Le signal analogique obtenu est compris entre 0 et 3.3V. Ce montage permet d'atteindre ≈ 30Msps, c'est-à-dire que la GLITCH STATION peut générer des glitches d'une durée au plus courte de ≈ 30 ns.

• Le convertisseur unipolaire vers bipolaire Le convertisseur unipolaire vers bipolaire permet de transformer le signal de sortie du DAC, compris entre • Le montage additionneur et suiveur Enfin la tension d'alimentation du microcontrôleur ciblé V cc est additionnée au signal en sortie du convertisseur unipolaire vers bipolaire. Le signal final est donc compris entre -6V + V cc et 6V + V cc . La GLITCH UNIT permet donc à la fois d'alimenter en continu la cible et de générer le glitch au moment opportun.
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	Rivière et al. [RPL + 14]	Code Source Matériel	✓	✗	✗	✗
	Dureuil et al. [DPdC + 15]	Binaire Matériel	✗	✓ ✗	✗
	Given et al. [GWJL18]	Code Source Matériel	✗	✓ ✗	✗
	Laurent et al. [LDPPB21]	Code Source RTL	✗	✓ ✗	✗
		Code Source				
	Alshaer et al. [ACD + 21]	RTL	✗	✓ ✗	✗
		Matériel				

.1 -Comparaison des méthodologies existantes selon les défis D1, D2 et D3. Alshaer et al. [ACD + 21] étend la méthodologie de

  table des paramètres d'attaque (figure 4.5) est obtenue par jointure à gauche sur les modèles de faute de la table de l'inférence de modèles de faute avec la table des attaques réussies simulées avec CELTIC. Table 4.2 -Description du microcontrôleur, de l'application et de la technique d'injection de faute pour chaque expérience.

	Expérience	µC	Fabricant	Application	Technique d'Injection
	1	µC 1 Fabricant A	hVP5	Laser
	2 3	µC 2 Fabricant A	hVP5 hVP5CFI Power Glitch Power Glitch
	4 5	µC 3 Fabricant B	hVP5 hVP5CFI Power Glitch Power Glitch

  (Listing 4.1) se base sur une boucle qui permet de vérifier si le code PIN à 4 chiffres entré par l'évaluateur est correct. Le principe de l'attaque sélectionnée est Table 4.3 -Vue d'ensemble des résultats d'inférence de modèle pour l'expérience 1.

		Total	100% 67872
		Erreurs Fatales	75% 51172
		Résultats Normaux	7%	4576
		Résultats Fautés	18% 12124
		Résultats Fautés non Couvert 25%	3173
		Résultats Fautés Couvert	75% 8951
		16InstructionSkip	50%	4497
		48InstructionSkip	34%	3025
		32InstructionSkip	10%	887
		Autres Modèles	6%	542
	Listing 4.1 Boucle de verification du code PIN de hVP5	
	1:	BOOL diff = BOOL_FALSE ;	

2:

  Du fait de la contremesure de double appel, il est important pour réussir l'attaque de sauter une deuxième fois la boucle de vérification.Pour résumer, cette attaque simulée avec CELTIC, consistant à contourner deux fois la boucle de vérification, peut se faire avec le modèle 32InstructionSkip, ou bien le modèle 48InstructionSkip, ou encore une combinaison des deux. Si l'option de combiner deux modèles de faute est rarement considérée pendant les évaluations de sécurité, sous prétexte d'être difficilement réalisable en pratique, l'utilisation de plusieurs sauts d'instructions différents a été étudiée théoriquement par Penau et al.[START_REF] Péneau | Nop-oriented programming : Should we care ?[END_REF] pour réaliser des attaques complexes. Nous allons montrer que notre approche permet de facilement et rapidement réaliser expérimentalement ces attaques complexes. Table 4.4 -Table des paramètres d'attaque générés pour le banc laser double spot d'essai.

		Laser 1 (48InstructionSkip)		Laser 2 (32InstructionSkip)	
		Position (µm)	Délai d'Injection (ns)	P (m|c)	Position (µm)	Délai d'Injection (ns)	P (m|c)
	#0 x=1050, y=1270 4468 ± 700	0.74 x=1060, y=1240 9143 ± 700	0.68
	#1	...	...	...	...	...	...
	11:						

}

extrêmement simple. Tout d'abord, il faut sauter au moins 32 octets pour complétement contourner cette boucle, de la ligne 3 à la ligne 11. Cela permet de laisser le booléen diff à l'état faux (ligne 1), indiquant qu'il n'y pas de différence entre le code PIN de référence, et celui entré par l'évaluateur, autrement dit que le code PIN entré par l'évaluateur est correct (alors que ce n'est pas le cas).
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	Total	100% 185517
	Erreurs Fatales	62% 115011
	Résultats Normaux	1%	2046
	Résultats Fautés	37%	68460
	Résultats Fautés non Couvert 10%	6604
	Résultats Fautés Couvert	90% 61846
	4CacheCorruption	99%	61818
	Autres Modèles	1%	38

.5 -Vue d'ensemble des résultats d'inférence de modèle pour l'expérience 5. mécanisme d'authentification de hVP5CFI. En particulier, une attaque, que nous détaillerons, a retenu notre attention en exploitant une faiblesse dans la contre-mesure d'intégrité de flot de contrôle automatique de l'outil CFI-C

[START_REF] Heydemann | Formally verified software countermeasures for control-flow integrity of smart card c code[END_REF]

.

Une des sections les plus critiques (figure

  Pour résumer, pour forcer l'authentification, il faut réussir à prendre la branche THEN tout en s'assurant de la cohérence avec la variable B. Cependant, un lecteur attentif aura sans doute remarqué que la variable B de l'expression (1) n'est pas testée correctement, et que n'importe quelle valeur, hormis 0, est valide. De plus, la variable B est par défaut initialisée à vraie (B = 1).Avec ces éléments, deux chemins d'attaque sont identifiés avec CELTIC pour contourner le mécanisme d'intégrité de flot de contrôle, au niveau de la macro INCR_COND (figure 4.10) :• Sans rentrer dans les détails, le registre R3 est critique dans la macro INCR_COND.

	THEN_COUNTER == x && ELSE_COUNTER == 0 && B	(1)

• La macro CHECK_END_IF_ELSE détecte les incohérences entre le chemin pris et celui attendu, notamment grâce à la variable B. Par exemple si la branche THEN est prise alors que la variable B est fausse (B = 0), et donc que l'expression logique (1) de la macro CHECK_END_IF_ELSE est fausse, une contre-mesure désactivant le microcontrôleur est activée. En forçant le registre R3 à une valeur différente de zéro, cela permet de s'authentifier sans déclencher une contre-mesure.
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 4 Table 4.6 -Table des paramètres d'attaque générés pour la GLITCH STATION.

		1 er Glitch (4CacheCorruption)		2 ème Glitch (4CacheCorruption)
		Niveaux de Tension (V)	Durée (ns)	Délai d'Injection (ns)	P (m|c)	Niveaux de Tension (V)		Durée (ns)	Délai d'Injection (ns)	P (m|c)
	#0	[3.8, 5.5, 0.8, 0.8, 1.0, 2.3, 1.0, 2.5]	390	13280 ± 500	0.89	[3.4, 5.2, 0.9, 0.8 1.0, 1.4, 1.3, 3.9]	420	25635 ± 500	0.91
	#1	...	...	...	...	...		...	...	...
			µC	Technique d'Injection	Modèle Représentatif	Taux de Couverture	
			µC 1	Laser	16InstructionSkip		75%	
			µC 2 Power Glitch 8InstructionSkip		64%	
			µC 3 Power Glitch 4CacheCorruption		90%	

.7 -Le taux de couverture et le modèle le plus représentatif selon le microcontrôleur évalué et la technique d'injection de faute.
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 4 8 -Taux de détection de vulnérabilité en fonction de l'application et du microcontrôleur évalués. rité. Concernant l'évaluation de la détection de vulnérabilité, l'objectif est de vérifier si les résultats simulés avec CELTIC, en se basant sur les modèles de fautes inférés, permettent d'identifier toutes les vulnérabilités réelles sur le microcontrôleur. Quand à l'évaluation de la vitesse d'exploitation, le but est de s'assurer que notre méthodologie permet de réussir une attaque sur le banc plus rapidement qu'avec une approche plus classique. Ainsi, les deux approches évaluées sont les suivantes :

1 st step Device Only 2 nd step Application Only 3 rd step Device & Application

  4 ème limitation, CELTIC n'émule pas tous les mécanismes de la microarchitecture ciblée. Il existe toujours un compromis, lors de la conception d'un émulateur, entre contrôle, rapidité et précision. CELTIC prioritise le contrôle et la rapidité au détriment de la précision[START_REF] Dureuil | Analyse de code et processus d'évaluation des composants sécurisés contre l'injection de faute[END_REF]. CELTIC suppose que les instructions durent le même nombre de cycle, ne fait pas de prédiction de branchement et n'émule pas le fonctionnement du pipeline du microcontrôleur ciblé. Toutes ces approximations vont se répercuter lors du calcul des délais d'injection.

	Attacker Equipment	Fault Models Inference	Device Fault Characterization Tests
	Fault Models	Equipment Parameters
	Application		
	Vulnerabilities Identification		Oracle
	Injection Delays		
			Attack Parameters
	Attacker Equipment		Vulnerabilities Exploitation	Device Application
			Successful Attacks
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.2 -Présentation des 8 tests de caractérisation de fautes utilisés dans des travaux récents en fonction de plusieurs critères.

  -Comparaison de P R * DR * CR en fonction du nombre d'instruction. De plus, expérimentalement, il est plus difficile de cibler la séquence I avec un nombre d'instructions faible. Dans ce cas, si un état final fauté est observé, il est facile de se tromper sur l'effet de la faute car la faute a pu se produire en dehors de la séquence I. Par conséquent, il n'y pas de raison particulière à utiliser un nombre d'instructions faible, et nous conseillons fortement d'utiliser un nombre d'instructions élevé.

	1.0	0.92 Low Variety 1.0		1.0				F1 F1			F2 F2					F3 F3				F1,F2,F3 F1,F2,F3	F4 Medium Variety F5 0.93 1.0 F4 F5				F4,F5 F4,F5				F6 F6				F7 F7			F6,F7 F6,F7				High Variety
	0.8																																																														
	0.0 0.2 0.6 PR * DR * CR 0.4	0.56	0.04	0.33	0.44 T5 0.29 0.02	0.0	0.0	0.0 0.0	0.49	0.22	0.5	0.03 T1 0.62 0.46 0.31	0.0	0.0	0.34 0.0	0.0	0.2	0.14	5 0.03	0.46 T2 0.64 0.44 0.27	0.0	0.0	0.0 0.0	0.1	0.47	0.23	0.03 0.23	0.44 T3 0.62 0.44 0.29	0.0	0.0	0.0 0.0	0.49	0.19	0.44 0.44	T4 0.02	0.3 0.3	0.0	0.0	0.0 0.0	0.07	0.14	0.14	0.33 0.1	0.29 T6 0.12 0.0 0.03	0.62	0.15	0.0 0.34	0.0	0.08	0.07	0.43 0.02	0.19 T8 0.23 0.16 0.1	0.6	0.3	0.0 0.44	0.7	0.38	0.34	0.02 0.43	0.16 T7 0.38 0.26 0.19	0.0	0.0	0.44 0.0
	Figure 5.2 Idempotence Le fait d'utiliser des instructions ne modifiant pas l'état courant du
	programme est souvent encouragé pour observer et comprendre les effets des fautes
	[TBC19, CMD Variété d'instructions Si la majorité des tests évalués contiennent entre 7 et 8 instruc-
	tions différentes dans la séquence I (variété moyenne), le test T5 ne contient qu'une seule
	instruction (variété faible) tandis que le test T7 utilise 80 instructions différentes (variété éle-
	vée). En regardant les résultats du taux de couverture (figure A.VI en annexe), en particulier
	les modèles de faute de corruption instruction (F1-F3) et de corruption de registre (F4, F5),
	Le test T7 est meilleur que le reste du benchmark. Au contraire, le taux de discrimination

+ 

18] (e.g. test T2). Comme les instructions de la séquence I sont idempotentes pour ces tests, les valeurs finales V attendues sont identiques aux valeurs initiales. Parmi les avantages, le post-traitement des résultats est facilité car l'effet de la faute peut se comprendre manuellement, sans outil de simulation ; car l'effet est observable (s'il se propage) directement en comparant les valeurs V finales et initiales. Cependant, d'après les résultats de la figure
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.1, les tests idempotents (T2 et T8) sont moins performants que leurs homologues non-idempotents. Tout particulièrement pour les modèles de saut d'instruction(s) (F1), les tests idempotents ne propagent pas une seule faute. La seule situation où les tests idempotents peuvent être utilisés est lorsque les modèles de faute supposés affectent seulement les données, registre ou mémoire (F4-F7). Par conséquent, les tests idempotents sont fortement déconseillés pour les modèles de fautes de corruption d'instruction (F1, F2 et F3).

Nombre d'instructions

Le nombre d'instructions dans la séquence I des tests est un autre facteur important à prendre en compte. Les tests T3 et T6 contiennent entre 8 et 7 instructions dans I tandis que les autres tests évalués contiennent autour de 80 instructions. D'après les résultats de la figure 5.2, les taux de propagation et de couverture sont plus élevés pour les tests avec un nombre d'instructions élevés, en particulier pour les modèles de faute de saut d'instruction(s) (F1).

  Table5.3 -Critères de conception les plus importants en fonction des modèles du tableau 5.1.

	Catégorie	Famille	Critères Importants
			Instructions arithmétiques et logiques
	Corruption d'Instruction	F1 F2,F3	Non-idempotence Nombre d'instructions élevé Instructions arithmétiques et logiques Non-idempotence
	Corruption de Registre	F4,F5	Instruction arithmétiques et logiques Idempotence Valeurs Initiales de V
	Corruption de mémoire	F6,F7	Instructions Load et Store Idempotence Valeurs Initiales de V

  While max is below the maximum P R at hamming distance d */

	while max < 1 -d/size do
	j ← 0;
	/* While number of bits already set (reset) are less or equal to d */
	while Count(E[j]) <= d do

/* Get operand bits of encoding E[j] */ B ← GetOperandBits(E[j]); /* Init op init of encoding E[j] with all operand bits reset (set) */ op init ← InitAllOperandBits(E[j]); /* Generate all bit-sets (bit-resets) on B, up to d, minus bits already set (reset) */ C ← Combinations(B, d-Count(E[j])); foreach c ∈ C do /* Init op test with operand bits set (reset) w.r.t c */ op test ← GenOperandBits(op init , c); /* Repeat opcode 2 times, prevent idempotent solutions */ test ← [op test ] * 2; stats ← SimulateFI(test, m); P R, DR ← GetRates(stats); if P R * DR > max then max ← P R * DR; op best ← op test ; j ← j + 1; d ← d + 1; return op best ;
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	Modèle	Instruction ARMv7-M 32-bit Optimale
		Opcode	Mnémonique	PR DR
	F2	f1400001	adc r0, r0, #1	0.67 0.90
	F3	f57777ff sbcs r7, r7, #0x1fe 0.70 0.94

.10 -Instructions optimales 32-bit du jeu d'instruction ARMv7-M trouvées avec l' Algorithme 2.

  Table 5.14 -P R, DR, et CR pour le test IC, RC et MC et comparaison avec le meilleur test des travaux existants. nous pouvons identifier la catégorie de modèles de faute la plus probable sur la cible. Également, en fonction du test utilisé, nous verrons que nous pouvons obtenir des paramètres d'équipement générant des fautes différentes.

	Test	Famille	P R	DR	CR	P R * DR * CR	Référence P R * DR * CR
	Corruption d'instruction	F1,F2,F3 0.66 0.93 0.88	0.54	0.50 (T1)
	Corruption de registre	F4,F5	0.50 1.00 1.00	0.50	0.46 (T1)
	Corruption de mémoire	F6,F7	0.50 1.00 1.00	0.50	0.44 (T8)

5.6.1 Protocole expérimental

Cible utilisée Les tests de caractérisation de fautes IC, RC et MC ont été évalués dans les mêmes conditions sur la même cible, à savoir un microcontrôleur 32-bit. Ce dernier embarque un coeur ARM Cortex-M4 cadencé à 72Mhz, reposant sur une architecture Harvard ARMv7E-M avec un pipeline de trois étages (chargement, décodage, exécution) et prédiction de branchement. Protocole Nous avons utilisé notre GLITCH STATION pour évaluer la cible à l'aide des tests IC, RC et MC. La technique d'optimisation des paramètres d'équipement retenue est basée sur un algorithme génétique (chapitre 2). En particulier, nous avons injecté 150.000 fautes, sur une période d'environ 12 heures, pour évaluer chacun des tests IC, RC et MC.

  Figure 6.2 -Création d'une forêt d'arbres de régression via bagging et génération du modèle probabiliste de la fonction-objectif. À partir des résultats précédents (Dataset), on sélectionne n observations avec remise. Ensuite, B arbres de régression sont formés. À chaque noeud, on sélectionne m paramètres. Le paramètre qui minimise la somme des carrés des résidus est choisi pour séparer le noeud en deux branches. La performance d'une nouvelle configuration θ est estimée en prenant la moyenne des prédictions des arbres de la forêt.

									Parameters		Fault Probability
								X 1	X 2	X 3	X 4	Y	
								168	81	107	150	0.22	
	Dataset							158 ...	125 ...	110 ...	121 ...	0.45 ...	
								96	155	99	100	0.61	
								94	142	159	156	0.32	
				m										m
			X 1	X 2	X 3		X 4	Y		X 1	X 2	X 3	X 4	Y
	Bagging	n	158 ...	125 ...	110 ...	121 ...	0.45 ...	...	168 ...	81 ...	107 ...	150 ...	0.22 ...
			158	125	110	121	0.45		96	155	99	100	0.61
	Regression Trees				0.33	X 1 > 100	X4 < 89		...		X 2 > 109	X 3 < 156	0.64
						0.55			0.21		0.48	0.13
	Individual Tree					0.55		...		0.48
	Prediction for θ												
									μ θ	= 0.52		
	Forest												
	Prediction for θ								2 θ σ	= 0.03		
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 6 1 -Détail des brackets alloués par HyperBand [LJD + 17]. configurations additionnelles, générées en utilisant un operateur de mutation gaussien [BS02] à partir des configurations existantes, et ce jusqu'à atteindre | ⃗ Θ init | = k init configurations. Par défaut, k init = 100. En fonction du microcontrôleur cible, k min , n min et k init doivent être ajustés. Par exemple, dans le cas d'un microcontrôleur peu sensible aux fautes, étendre la phase d'exploration pure (i.e. k min > 1 et n min > 1000) peut aider significativement SMAC en lui donnant grossièrement les zones de l'espace à explorer en priorité.
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 6 Pour SHA, GA et RS, nous n'avons pas utilisé de libraire externe, ces algorithmes étant moins complexes. Pour SHA, comme décrit précédemment, nous avons utilisé la paramétrisation T = nlog 2 (n), avec n = 4096. Pour GA, chaque individu de la population représente une configuration valide de l'équipement d'injection de fautes considéré. Nous avons entrainé une population de 50 individus sur 200 générations, où chaque individu a été testé 5 fois. Après les essais, on compte le nombre de résultats fautés obtenus avec la configuration testée, puis on estime la valeur sélective de la configuration avec #{résultats fautés} #{essais} . De plus, nous avons utilisé un opérateur de mutation gaussien[START_REF] Beyer | Evolution strategies-a comprehensive introduction[END_REF], une sélection par tirage à la roulette avec acceptation stochastique (roulette-wheel selection via stochastic acceptance)[START_REF] Lipowski | Roulette-wheel selection via stochastic acceptance[END_REF], et la valeur sélective (fitness) d'un individu (configuration) est déterminée par sa probabilité de faute. Pour RS, nous évaluons 10.000 configurations, où chaque configuration est testée cinq fois. Les paramétrisations des techniques d'optimisation évaluées sont résumées au tableau 6.2.Protocole Les résultats de l'optimisation de l'équipement d'injection de fautes avec SMAC, SHA, GA et RS sont hétérogènes. Tandis que SMAC et SHA, de par leur conception, retournent seulement une seule configuration (la meilleure trouvée), RS et GA retournent 2 -Paramétrisation des techniques d'optimisation évaluées.

		Paramétrisation
	RS	10.000 configurations testées 5 essais par configuration
		200 générations
		50 configurations par génération
	GA	5 essais par configuration Opérateur de mutation gaussien
		Tirage à la roulette avec acceptation stochastique
		Valeur sélective d'une configuration ≡ #{résultats fautés} #{essais}
	SHA	T = nlog 2 (n) n = 4096
		T = 50000
	SMAC	k min = 1 n min = 1000
		k init = 100

Information Générale À l'étape de caractérisation, nous avons utilisé notre ensemble minimal de test, et plus particulièrement le test de caractérisation de fautes IC détaillé à la table (tableau 5.12). Ce test a été conçu de manière à maximiser la propagation des bit-set ou des bit-reset sur l'instruction chargée, mais aussi le saut d'instruction, comme détaillé au chapitre 5. Les autres tests (RC et MC) propagent significativement moins de fautes pour les microcontrôleurs évalués et n'ont pas été retenus. Pour chaque technique d'optimisation (SMAC, SHA, GA et RS), nous avons injecté 50.000 fautes (≈ 6 heures). Pour SMAC, nous avons utilisé la libraire Python SMACv3 [LEF

+ 17]

, et plus précisément la classe SMAC4HPO.

  Figure6.7 -Déroulement de l'attaque. Le but est de générer le glitch lors de la vérification du niveau de protection RDP pour forcer la lecture en mémoire Flash. retourne une réponse négative (NACK) lorsque la commande Read Memory est émise, empêchant un utilisateur malveillant d'extraire le code en mémoire Flash. Pour désactiver RDP, la mémoire Flash doit être complétement effacée.Attaque L'attaque connue pour contourner ce mécanisme consiste à injecter une faute pendant l'exécution de la commande Read Memory[START_REF] Bozzato | Shaping the glitch : optimizing voltage fault injection attacks[END_REF]. En effet, lorsque le bootloader reçoit la commande Read Memory, il vérifie la valeur de l'octet contenant le niveau de protection RDP, et retourne la réponse ACK ou NACK, selon si RDP est désactivé ou activé, respectivement. En injectant une faute pendant l'étape de vérification de la valeur de l'octet RDP, un attaquant peut tromper le mécanisme de protection en lecture et récupérer le contenu du bloc mémoire sélectionné (figure 6.7).Caractérisation Nous avons utilisé les techniques d'optimisation SMAC et GA pour identifier les meilleurs réglages pour fauter le STM32F103RB avec notre GLTICH STATION. Pour chaque technique d'optimisation, 6000 fautes ont été injectées (soit 24 générations pour le GA) pendant l'étape de caractérisation (<10min), avec les paramètres par défaut (tableau 6.2) et le test de caractérisation de faute IC (tableau 5.12). La figure 6.8 présente la probabilité de faute des meilleures configurations trouvées avec SMAC et GA en fonction du nombre d'injections de faute. On constate que SMAC est significativement plus rapide à identifier les meilleures configurations que GA. Non seulement SMAC converge plus rapidement que GA, mais SMAC identifie également des configurations avec des probabilités de fautes deux fois plus élevées qu'avec GA, comme présenté au tableau 6.4.

	Host Side	Device Side
	Send Read Memory		Receive Read
	Command		Memory Command
	Generate Gltich		RDP active ?
			NO	YES
	Wait for ACK	
	or NACK	
			Send ACK byte	Send NACK byte
	ACK	NACK
	Success, read Flash	Fail, retry

Table A .

 A Elle prend en entrée un état state et # retourne en sortie un booléen. def end_procedure(state): return state.pc == 0x08000264 # La fonction timeout permet de signaler à CELTIC de génère une intérruption pour cause de boucle # infinie. Elle prend en entrée un état state et retourne en sortie un booléen. def timeout(state): return state.cycle > 500 # La fonction oracle permet de définir les conditions pour réussir une attaque. Ici, le but est # d'être authentifié sans déclencher une contre-mesure. Elle prend en entrée un état state et # retourne en sortie un booléen. def oracle(state): return state.variables["g_authenticated"] == 0xaa and state.variables["g_countermeasure"] != 1 # On instancie un modèle de saut 16InstrSkipModel. m1 = pyceltic.InstrSkipModel([16], prj.properties) # Encore avec la factory, on instancie le simulateur d'injection de faute attack_engine. Il faut # renseigner l'état intial à partir duquel injecter des fautes state, la liste de modèles à simuler # models, le nombe de faute multiple à injecter n, et les fonctions end_procedure, oracle et timeout. # On identifie les meilleurs paramètres d'équipement best avec la technique d'optimisation smac best = smac.optimize() # On récupère les points x0...x7 et la durée duration optimisés avec SMAC On génère la forme de glitch waveform avec une interpolation entre les n_points points x0...x7 # La forme est tronquée (lower_bound, upper_bound) pour ne pas griller le circuit. n_points = 8 lower_bound = 80 upper_bound = 180 x = np.linspace(0, n_points, num=n_points, endpoint=True) f = interpolate.interp1d(x, points, kind="cubic") x_ = np.linspace(0, n_points, num=duration, endpoint=True) waveform = [min(max(int(i), lower_bound), upper_bound) for i in f(x_)] try: # On envoie à la GLITCHUNIT la forme waveforme et la durée duration station.config_DMA(waveform, duration) # On configure le délai d'injection delay... station.config_delay(delay) # ... et la référence pour le délai d'injection, ici c'est le port d'entrées-sorties # gs.GlitchUnitTrigger.GPIO_PIN_11. station.launch(gs.GlitchUnitTrigger.GPIO_PIN_11)Figure A.II -Exemple de script Python d'utilisation de la GLITCHSTATION. II Test de Caractérisation de fautes T1 Test de Caractérisation de fautes T2 I -Tests de caractérisation de fautes T1 and T2 Test de Caractérisation de fautes T3 Test de Caractérisation de fautes T4

	x0 = best["x0"] Test de Caractérisation de fautes T5	Test de Caractérisation de fautes T6
	x1 = best["x1"] x2 = best["x2"] adds r0, #2 adds r0, #2	mov r0, r0 ldr r0, =array ; [0,1,2,3,...]
	x3 = best["x3"] x4 = best["x4"] adds r1, #3 adds r0, #2	mov r1, r1 ldr r1, [r0]
	x5 = best["x5"] adds r2, #5 adds r0, #2 x6 = best["x6"] x7 = best["x7"] points = [x0,x1,x2,x3,x4,x5,x6,x7] duration = best["size"] adds r7, #19 V R0 0x00000000 R1 0x11111111 R0 0x00000000 R1 0x11111111 mov r2, r2 ldr r2, [r0, #4] mov r7, r7 R2 0x22222222 R3 0x33333333 R2 0x22222222 R3 0x33333333 R4 0x44444444 R5 0x55555555 R4 0x44444444 R5 0x55555555 R6 0x66666666 R7 0x77777777 R6 0x66666666 R7 0x77777777 adds r0, #2 ldr r6, [r0, #20] adds r0, #2 ldr r7, [r0, #24] V R0 0x00000000 R1 0x11111111 R0 0x20005000 R1 0x11111111 R2 0x22222222 R3 0x33333333 R2 0x22222222 R3 0x33333333 R4 0x44444444 R5 0x55555555 R4 0x44444444 R5 0x55555555 R6 0x66666666 R7 0x77777777 R6 0x66666666 R7 0x77777777 # # Enfin on démarre la cible avec normal_boot() I adds r3, #7 mov r3, r3 adds r4, #11 mov r4, r4 adds r5, #13 adds r6, #17 mov r6, r6 adds r0, #2 ldr r5, [r0, #16] mov r5, r5 Repeat n times Repeat n times adds r0, #2 ldr r3, [r0, #8] Repeat I adds r0, #2 ldr r4, [r0, #12] n times
	station.target.normal_boot()
	# On exécute le scénario d'attaque
	...	
	# Lorsque le scénario est terminé, on exécute une routine pour désactiver la GLITCHUNIT terminate() adds r0, #2 adds r0, #2
	# et on éteint la cible avec poweroff(). station.terminate() adds r1, #3	adds r1, #3
	station.target.poweroff() adds r2, #5	adds r2, #5
	except gs.MCUBootloaderException as mbe: # Si une exception est capturée, on reset la GLITCHUNIT avec system_reset() station.system_reset() adds r3, #7 adds r3, #7 I adds r4, #11 adds r4, #11	Repeat n times
		adds r5, #13	adds r5, #13
		adds r6, #17	adds r6, #17
		adds r7, #19	adds r7, #19
	attack_engine = prj.factory.attack_engine(state=verifypin_entry, R0 0x00000000 R1 0x11111111 R0 0x00000000 R1 0x00000000
	V	models=[m1], n=1, end_procedure=end_procedure, oracle=oracle, R2 0x22222222 R3 0x33333333 R2 0x00000000 R3 0x00000000 R4 0x44444444 R5 0x55555555 R4 0x00000000 R5 0x00000000
		timeout=timeout) R6 0x66666666 R7 0x77777777 R6 0x00000000 R7 0x00000000
	# Enfin on peut lancer la simulation d'injection de faute avec run().
	attack_res = attack_engine.run() Table A.II -Tests de caractérisation de fautes T3 and T4
		III

Figure A.I -Exemple de script Python d'utilisation de CELTIC. I
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 A III -Tests de caractérisation de fautes T5 and T6

		Test de Caractérisation de fautes T7	Test de Caractérisation de fautes T8
		sub r7,r5		ldr r0, =array ; [r1,r2,...]
		add r8,r4	n standard	str r1, [r0]	
	I	subs r0, #0xff ...	data-processing instruc-	ldr r1, [r0] ...	Repeat n times
		lsl r1, r5, #8	tions	str r7, [r0, #24]	
		mov r2,r6		ldr r7, [r0, #24]	
		R0 0x00000000 R1 0x11111111 R0 0x20002000 R1 0x11111111
	V	R2 0x22222222 R3 0x33333333 R2 0x22222222 R3 0x33333333
		R4 0x44444444 R5 0x55555555 R4 0x44444444 R5 0x55555555
		R6 0x66666666 R7 0x77777777 R6 0x66666666 R7 0x77777777

Table A .

 A IV -Tests de caractérisation de fautes T7 and T8

Lasers à rayonnement visible (400 à 700 nm de longueur d'onde), et d'une puissance inférieure ou égale à 1 mW. Protection de l'oeil assurée par le réflexe palpébral.

4.3.2.2 Simulation d'injection de fauteUne des difficultés récurrentes lors de la caractérisation de fautes est de diagnostiquer l'effet de la faute à l'origine du résultat fauté, et de généraliser à partir de ces observations des modèles de faute. Cette étape est généralement faite manuellement, ce qui est fastidieux et chronophage, en plus d'être facilement enclin aux erreurs et oublis. Pour résoudre ce problème, une table liant résultats fautés et modèles de faute est automatiquement générée, ce qui permettra, dans un second temps, de trouver rapidement le(s) modèle(s) de faute conduisant à un résultat fauté donné.Plus précisément, notre simulateur d'injection de faute CELTIC est utilisé pour émuler l'architecture du microcontrôleur ciblé et simuler des injections de faute pendant l'exécution du test de caractérisation de fautes. La partie B de la figure4.2 présente une vue générale du processus. Tout d'abord, CELTIC simule des injections de fautes selon un ensemble de modèles de faute (1), et sauvegarde chaque résultat fauté (2). Enfin, une table liant résultats fautés et modèles de faute est générée (3). Par ailleurs, la simulation d'injection de faute peut se faire en parallèle de la caractérisation de fautes pour économiser du temps. L'ensemble de modèles simulés par défaut est détaillé dans le tableau 3.1 du chapitre 3.4.3.2.3 Combinaison des résultatsEn combinant les résultats fautés expérimentaux avec les résultats fautés simulés, il est facile d'inférer les modèles de faute spécifiques au microcontrôleur ciblé. Plus précisément, on génère une table liant les modèles de faute spécifiques au microcontrôleur ciblé avec les configurations d'équipement. La table liant modèles et configurations (figure4.2) est obtenue

Conversion des cycles en délai d'injectionLes cycles d'exécution des instructions à fauter sont convertis en délais d'injection en seconde (figure 4.6) en utilisant une relation linéaire. L'évaluateur relève expérimentalement le début t 0 et la fin t 1 de l'exécution de référence de l'application. Similairement à Dureuil[START_REF] Dureuil | Analyse de code et processus d'évaluation des composants sécurisés contre l'injection de faute[END_REF], l'évaluateur détermine le temps moyen exécution d'une instruction α tel que t 1 -t 0 ≈ αc avec c le nombre d'instructions de la trace d'exécution de référence.Cette approximation suppose que l'exécution de chaque instruction nécessite le même nombre de cycles, ce qui est vrai pour la majorité des instructions arithmétiques et logiques, mais pas forcément pour les instructions avec écriture ou lecture mémoire. Également, selon les applications, il n'est pas toujours facile de relever précisément les temps t 0 et t 1 . Enfin les modèles ISA ne capturent pas toutes les subtilités du phénomène physique, ce qui induit une autre source d'erreur sur le calcul du délai d'injection. C'est pourquoi, une marge d'erreur arbitraire équivalent à 5% du nombre d'instructions de la trace de référence est rajoutée.

Dans ce chapitre, nous avons présenté une nouvelle méthodologie pour identifier et exploiter des vulnérabilités à l'injection de fautes multiples. La particularité de notre méthodologie est d'être versatile, automatisée et de bout-en-bout, ce qui permet à notre approche d'être facilement adaptable aux situations rencontrées lors d'évaluations de sécurité.En particulier, nous avons conduit plusieurs expériences avec différents microcontrôleurs, applications et techniques d'injection de faute. Nous avons constaté que notre méthodologie permet d'exploiter des vulnérabilités 10 fois plus rapidement en moyenne qu'une approche uniquement basée sur une caractérisation.Le coeur de notre méthodologie repose sur une évaluation séparée du microcontrôleur et de l'application. Dans un premier temps, avec le microcontrôleur uniquement, les modèles de fautes spécifiques ainsi que les paramètres d'équipement optimaux sont identifiés en combinant les résultats d'une caractérisation de fautes avec les résultats d'une simulation d'injection de faute. Dans un deuxième temps, avec l'application uniquement, des chemins d'attaque multi-fautes sont identifiés. Malgré l'explosion combinatoire inhérente à l'injection de fautes multiples, cela est rendu possible en limitant la simulation aux modèles spécifiques les plus probables. Enfin, les paramètres d'attaque sont générés automatiquement avec les informations obtenues précédemment, ce qui permet de faciliter l'exploitation des vulnérabilités identifiées.

Comme détaillé dans le chapitre 2, le but principal d'un test de caractérisation de fautes est de récupérer le plus d'informations possibles sur le comportement du microcontrôleur ciblé en présence de fautes. Généralement, seul le résultat final, un instantané de l'état du programme à la fin de l'exécution du test, peut être observé. Par conséquent, un test de caractérisation de fautes doit propager les effets des fautes sur le microcontrôleur jusqu'à la fin de la séquence d'instruction I. L'effet de faute ne doit pas être masqué lors de l'exécution des instructions dans I, sinon les résultats ne seront pas représentatifs du comportement fauté du microcontrôleur. De plus, de manière à comprendre plus facilement les effets des fautes ou de valider des hypothèses de modèles de faute, chaque état final doit être caractéristique d'un effet de faute particulier. Autrement dit, il ne faut pas qu'un état final soit le résultat de plusieurs effets de fautes différents. Nous dirons que le test de caractérisation de faute doit discriminer les différents effets induits par les injections de fautes. Dans ce qui suit, nous formalisons les propriétés de propagation et de discrimination des tests de caractérisation de fautes.

minutes, aucune des configurations trouvées avec GA ne permettent de contourner le mécanisme de protection en lecture du STM32F103RB. Cela montre qu'avec

seulement 6000 injections de fautes lors de l'étape caractérisation, GA sous-performe nettement SMAC pour cet exemple. La figure6.9 présente les traces de l'oscilloscope au moment de l'injection de faute pour contourner le mécanisme RDP du STM32F103RB, avec la meilleure configuration

Remerciements

Méthodes d'optimisation d'hyperparamètres

Cette partie est consacrée à la présentation des techniques d'optimisation, utilisées pour accélérer l'exploration de l'espace des paramètres d'un équipement d'injection faute donné, dans le but de trouver les meilleures configurations d'équipement. Tout d'abord, nous reve-