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Résumé en français

On s’intéresse dans ce manuscrit à divers problèmes d’inférence dans des grands graphes
aléatoires. Sauf mention expresse du contraire, les graphes étudiés sont « creux », c’est-à
dire que le degré moyen d’un sommet du graphe ne dépend pas de la taille du graphe. Ce
régime de faible densité est connu pour sa difficulté d’étude, en raison notamment d’une
proportion non négligeable de sommets isolés et d’une forte variabilité dans les degrés des
sommets.

On s’intéresse dans un premier temps à une variation du problème connu de la clique plan-
tée. Considérons le modèle suivant : étant donné un arbre Γ de taille k et de forme supposée
connue, on insère une copie de Γ dans un graphe d’Erdős-Rényi G(n, λ/n). Les questions
classiques de l’inférence dans les graphes se posent alors : premièrement, est-il possible de
différencier ce modèle d’un graphe d’Erdős-Rényi de mêmes paramètres, et deuxièmement,
est-il possible de retrouver la copie cachée de Γ, ou tout du moins une fraction non néglige-
able d’icelle ? On se pose aussi la question de l’existence d’algorithmes polynômiaux qui
réalisent ces deux tâches, respectivement appelées détection et reconstruction.

Étant donné la difficulté d’obtenir des résultats sur des arbres Γ généraux, ce manuscrit se
restreint à des formes d’arbres spécifiques : un chemin de longueur k, ou un arbre d-régulier
de hauteur h (et donc de taille dh), déjà plus difficile à étudier. Les résultats obtenus diffèrent
fortement du paysage habituel des problèmes d’inférence similaires, comme la clique plantée.

La première particularité est l’absence de phase « difficile » : dès que la détection ou la
reconstruction sont possibles, il existe un algorithme polynômial pour ces tâches. Cela diffère
de beaucoup de problèmes d’inférence étudiés précédemment, qui comportent souvent une
phase où la détection et la reconstruction sont possibles, mais où l’on conjecture qu’aucun
algorithme polynômial n’en est capable.

La seconde différence notable est le « découplage » de la détection et de la reconstruction
: pour un large choix de paramètres, la détection est trivialement possible (via un comptage
d’arêtes), mais il est impossible de reconstruire ne serait-ce qu’une fraction non-négligeable
des sommets de Γ lorsque n tend vers +∞. Là encore, c’est un départ notable du paysage
attendu, puisque dans l’immense majorité des cas la détection implique au moins qu’une
fraction de la structure plantée est retrouvable.

Une explication possible pour ces différences est la notion de « rang » de la structure
plantée, que l’on définit comme le rang de sa matrice d’adjacence : la majorité des problèmes
d’inférence étudiés historiquement concernent des structures de faible rang, ce qui n’est pas
le cas des arbres considérés. Cette supposition est supportée par d’autres travaux récents
sur des problèmes d’inférences de fort rang, qui présentent eux aussi des comportements
inhabituels.

On s’intéresse dans un deuxième chapitre au problème de la détection de communautés
: étant donné un graphe dont on suppose qu’il est partitionné en plusieurs communautés, et
que cette partition a une influence sur la présence ou l’absence de liens, le but est de recon-
struire ces communautés le plus fidèlement possible. Pour l’étude théorique de ce problème,
le modèle le plus classique est le modèle stochastique par blocs : il s’agit d’un graphe aléa-
toire G, dont les sommets sont partitionnés en r communautés de taille comparable, et
telle que la probabilité de présence d’une arête ne dépend que des communautés auxquelles
appartiennent ses extrémités.

Ici encore, on s’intéresse à la version peu dense de ce modèle, où les probabilités de
connexion sont d’ordre 1/n. Dans ce régime, il est impossible de reconstruire intégralement
les communautés, et on s’intéresse donc uniquement à la reconstruction partielle. Plusieurs
classes d’algorithmes ont été proposés pour répondre à ce problème : parmi eux, les algo-
rithmes spectraux, qui consistent à considérer les vecteurs propres d’une matrices associée
à G pour en tirer de l’information sur les communautés. La première contribution de ce
chapitre est la conception, ainsi que la démonstration du bon fonctionnement, d’une nouvelle
méthode spectrale. Celle-ci est basée sur la matrice des distances D(`), dont le coefficient
(x, y) vaut 1 si et seulement si x et y sont à distance exactement `.
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La deuxième question à laquelle on s’intéresse dans ce chapitre est celle de la robustesse
des méthodes : étant donné que le modèle stochastique par blocs ne correspond pas for-
cément aux graphes réels, on étudie l’influence de petites perturbations (ajouts ou retraits
d’arêtes) sur la performance des algorithmes. Les méthodes spectrales sont connues pour
être extrêmement sensibles à ce type de modification, et échouent très rapidement. Par
contraste, on montre que la nouvelle méthode basée sur la matrice D(`) est beaucoup plus
robuste aux perturbations: elle continue de fonctionner malgré l’ajout de jusqu’à nε arêtes,
où ε > 0. Ce résultat n’atteint pas la robustesse des algorithmes dits « semi-définis », mais
notre algorithme a d’autres avantages : il est plus rapide, et peut détecter des communautés
dans une plus large gamme de paramètres.

Les deux derniers chapitres de ce manuscrit portent sur une généralisation du modèle
stochastique par blocs. En effet, celui-ci présente plusieurs limites dans son adéquation avec
les réseaux réels, et de nombreuses variantes ont été développées : rajouter des informations
supplémentaires aux arêtes, corriger la distribution des degrés ou encore travailler sur des
graphes dirigés. Nous introduisons donc dans ce manuscrit un modèle très général de graphe
aléatoire pondéré qui inclut toutes les variations susmentionnées ; les seules conditions im-
posées sont l’indépendance des arêtes, la faible densité du graphe, ainsi que le faible rang
de la matrice d’adjacence, qui sont toutes vérifiées dans les modèles qui nous intéressent.

Dans le cas non dirigé et peu dense (3ème chapitre), il est connu que le spectre de la
matrice d’adjacence ne donne pas d’information sur la structure sous-jacente du graphe : les
vecteurs propres sont localisés autour des sommets de forts degrés. C’est entre autres pour
cette raison que nous avons utilisé des matrices auxiliaires telles que D(`) précédemment. On
étudie dans ce chapitre la matrice « non-backtracking » B, déjà utilisée dans le cadre de la
détection de communautés. En particulier, on montre que son spectre suit un comportement
déjà observé dans le chapitre précédent : ses plus grandes valeurs propres suivent celles de
l’espérance de la matrice d’adjacence A, tandis que le reste du spectre est confiné dans un
cercle de rayon connu. Ce résultat est valide dans une vaste gamme de degrés, y compris
dans des régimes plus denses.

Lorsque les degrés du graphe G sont suffisamment grands, ce résultat sur la matrice B a
une conséquence particulièrement intéressante. En effet, via la formule d’Ihara-Bass reliant
le spectre de B et celui de A, on retrouve des résultats très précis (avec un terme d’erreur
tendant vers 0) sur les valeurs propres de A, ainsi que sur la corrélation entre les vecteurs
propres de A et ceux de son espérance. Ces résultats reflètent une transition de phase connue
sous le nom de Baik-Ben Arous-Péché, l’étendant ainsi des matrices de Wigner aux graphes
aléatoires.

Dans le cas dirigé (4ème chapitre), les efforts des algorithmes de classification se portent
habituellement sur des symmétrisations de la matrice d’adjacence, par exemple sur le calcul
de ses valeurs singulières (qui correspondent aux valeurs propres de A∗A). Par contraste,
ce manuscrit montre que la même méthode que celle utilisée pour la matrice B s’applique
directement à la matrice d’adjacence asymmétrique A ; des simulations numériques semblent
montrer que l’utilisation des vecteurs propres à gauche et à droite de A dans un algorithme
de classification résulte en une performance similaire aux algorithmes de l’état de l’art.

Enfin, dans les deux cas, des expériences numériques semblent montrer que la distribu-
tion empirique des vecteurs propres de A (resp. B) tend vers un mélange de gaussiennes de
paramètres calculables théoriquement. Cela expliquerait l’efficacité des algorithmes dévelop-
pés dans le dernier chapitre, qui sont entre autres basés sur l’estimation de ces mélanges.

ii



Contents

1 Introduction 1
1.1 Inference of planted subgraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 From NP-hard to planted problems . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Hard phase in the planted clique problem . . . . . . . . . . . . . . . . . . 2
1.1.3 The planted tree problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.4 Counting subgraphs in random graphs . . . . . . . . . . . . . . . . . . . . 3
1.1.5 Phase transition landscape of the planted tree problem . . . . . . . . . . . 4

1.2 Spectral algorithms in community detection . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Simulating real-world networks . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Sparse SBM : definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Tree approximation and fundamental limits . . . . . . . . . . . . . . . . . 8
1.2.4 Classifying reconstruction algorithms . . . . . . . . . . . . . . . . . . . . . 9
1.2.5 Spectral algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.6 Robustness of community detection . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Spectra of weighted inhomogeneous random graphs . . . . . . . . . . . . . . . . . 13
1.3.1 Beyond the classical SBM . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.2 A generic random graph model . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.3 Aside : Phase transitions in random matrix theory . . . . . . . . . . . . . 15
1.3.4 Non-backtracking matrix of undirected graphs . . . . . . . . . . . . . . . . 15
1.3.5 Adjacency matrix of directed graphs . . . . . . . . . . . . . . . . . . . . . 17
1.3.6 Perspectives : eigenvector limit distribution . . . . . . . . . . . . . . . . . 18

2 Planting trees in graphs 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Model and main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Proof strategy for planted paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.1 Impossibility of detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.2 Easiness of detection and reconstruction, sparse case . . . . . . . . . . . . 24
2.5.3 Impossibility of reconstruction, dense case . . . . . . . . . . . . . . . . . . 24

2.6 Proof strategy for planted D-ary trees . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6.1 Study of the Galton-Watson process . . . . . . . . . . . . . . . . . . . . . 26
2.6.2 Coupling and application to planted trees . . . . . . . . . . . . . . . . . . 27
2.6.3 Likelihood ratio and detection for h ≤ h . . . . . . . . . . . . . . . . . . . 27
2.6.4 Reconstruction for large h . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7 Proof of preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7.1 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7.2 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

iii



2.7.3 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7.4 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8 Detailed proofs for planted paths . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.8.1 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.8.2 Proof of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.8.3 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.8.4 Proof of Lemma 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.8.5 Proof of Theorem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.8.6 Proof of Lemma 6, Equation (2.8) . . . . . . . . . . . . . . . . . . . . . . 36
2.8.7 Proof of of Lemma 6, Equation (2.9) . . . . . . . . . . . . . . . . . . . . . 38

2.9 Proofs for planted D-ary trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.9.1 Proof of Lemma 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.9.2 Proof of Theorem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.9.3 Proof of Lemma 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.9.4 Proof of Theorem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.9.5 Proof of Lemma 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.9.6 Proof of Theorem 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Robustness of community detection in sparse networks 46
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.1.2 Summary of main results . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.3 Detailed setting and results . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1.4 Notations and outline of the paper . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Spectral structure of B(`) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.1 A theorem on eigenspace perturbation . . . . . . . . . . . . . . . . . . . . 52
3.2.2 Strategy of proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.3 A new reconstruction algorithm . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Study of the matrix D(`) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.1 From B(`) to D(`) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.2 Stability to graph perturbation . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Proof or Propositions 2 and 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.1 Outline of the proof and similarities with [29] . . . . . . . . . . . . . . . . 56
3.4.2 Local structure of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.3 From local neighbourhoods to the matrix B(`) . . . . . . . . . . . . . . . . 57
3.4.4 Ramanujan property of B(`) . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.5 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Proofs for Theorem 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5.1 Proof of Lemma 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5.2 Proof of limit (3.15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5.3 Explicit bounds on K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Proof of Lemma 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.7 Proof of Lemma 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.8 Proof of Proposition 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.9 Proof of Theorem 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

iv



4 Non-backtracking spectrum of inhomogeneous random graphs 71
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Detailed setting and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.2 Defining the convergence parameters . . . . . . . . . . . . . . . . . . . . . 73
4.2.3 Main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.1 Phase transition in random graphs . . . . . . . . . . . . . . . . . . . . . . 75
4.3.2 Community detection in random networks . . . . . . . . . . . . . . . . . . 78
4.3.3 Extension to gaussian weights . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 A Bauer-Fike type bound for almost orthogonal diagonalization . . . . . . . . . . 81
4.4.1 A custom perturbation lemma for almost diagonalizable matrices . . . . . 82
4.4.2 Matrix power perturbation and phase perturbation control . . . . . . . . . 86

4.5 Proof of Theorem 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5.1 Structure of the matrices U and V . . . . . . . . . . . . . . . . . . . . . . 89
4.5.2 Proof of the perturbation bounds . . . . . . . . . . . . . . . . . . . . . . . 90

4.6 Preliminary computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.7 Local study of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.7.1 Setting and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.7.2 Growth properties of trees and graphs . . . . . . . . . . . . . . . . . . . . 96
4.7.3 Local tree-like structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.7.4 Coupling between rooted graphs and trees . . . . . . . . . . . . . . . . . . 98

4.8 Near eigenvectors of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.8.1 Functionals on (T, o) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.8.2 Spatial averaging of graph functionals . . . . . . . . . . . . . . . . . . . . 102
4.8.3 Structure of near eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.9 Proof of Theorem 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.9.1 A telescopic trick: proof of (4.29) . . . . . . . . . . . . . . . . . . . . . . . 105
4.9.2 Bounding ‖B`PH⊥‖ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.10 Trace method: proof of Proposition 21 . . . . . . . . . . . . . . . . . . . . . . . . 109
4.11 Applications of Theorem 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.11.1 Proof of Proposition 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.11.2 Proof of Theorem 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.11.3 Proof of Theorem 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.11.4 Proof of Theorem 25 and Proposition 12 . . . . . . . . . . . . . . . . . . . 117
4.11.5 Proof of Theorem 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.12 Computing functionals on trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.12.1 Study of compound Poisson processes . . . . . . . . . . . . . . . . . . . . 119
4.12.2 Decomposing the tree functionals . . . . . . . . . . . . . . . . . . . . . . . 120
4.12.3 Edge functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.13 Near eigenvectors: computations . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.14 Proofs for Theorem 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.14.1 Proof of (4.26)-(4.28) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.14.2 Bounding ‖B`‖: proof of (4.31) . . . . . . . . . . . . . . . . . . . . . . . . 126
4.14.3 Proof of Lemma 36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.15 Norm bounds: additional proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.15.1 Bound (4.69) on ‖MBk‖ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.15.2 Bound (4.70) on ‖∆(t−1)M̃Bk−t−1‖ . . . . . . . . . . . . . . . . . . . . . . 128
4.15.3 Bound (4.71) on R(`)

t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

v



5 Spectral clustering in directed networks 130
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.2 The Master Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.3 Spectral embeddings of directed SBM . . . . . . . . . . . . . . . . . . . . . . . . 134

5.3.1 Model definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.3.2 SBM with a pathwise structure . . . . . . . . . . . . . . . . . . . . . . . . 135

5.4 Geometric clustering and community detection . . . . . . . . . . . . . . . . . . . 137
5.4.1 Algorithm and measure of performance . . . . . . . . . . . . . . . . . . . . 137
5.4.2 Choice of the clustering algorithm . . . . . . . . . . . . . . . . . . . . . . 138
5.4.3 Numerical validation of our results . . . . . . . . . . . . . . . . . . . . . . 139

5.5 Conclusion and future prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.6 Gaussian Mixture clustering and Gaussian fluctuations . . . . . . . . . . . . . . . 142
5.7 A bird’s eye view on the proof of Theorem 31 . . . . . . . . . . . . . . . . . . . . 145

5.7.1 Warmup: notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.7.2 The Pseudo-Master Theorem: A is nearly diagonalized by pseudo-eigenvectors146
5.7.3 Master Theorem = Pseudo-Master Theorem + perturbation theory . . . . 147

5.8 Proof of the Pseudo-Master Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.8.1 The graph has few short cycles, and small neighbourhood growth . . . . . 148
5.8.2 The graph is locally approximated by trees . . . . . . . . . . . . . . . . . 149
5.8.3 Concentration of linear functionals . . . . . . . . . . . . . . . . . . . . . . 150
5.8.4 Pseudo-eigenvectors on the random tree . . . . . . . . . . . . . . . . . . . 151
5.8.5 The martingale equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.8.6 Proving (5.16)-(5.17)-(5.18) . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.8.7 Proving (5.19): martingale correlations . . . . . . . . . . . . . . . . . . . . 152
5.8.8 The trace method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.9 Master Theorem for the stochastic block model . . . . . . . . . . . . . . . . . . . 157
5.9.1 Spectral decomposition of P . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.9.2 Master Theorem for SBM . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.10 Pathwise SBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.10.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.10.2 Model density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.10.3 Eigendecomposition of tridiagonal Toeplitz matrices. . . . . . . . . . . . 160
5.10.4 Digression: the full threshold . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.10.5 Computations for the two-block case . . . . . . . . . . . . . . . . . . . . . 161
5.10.6 Computations when there are two blocks . . . . . . . . . . . . . . . . . . . 163

5.11 Convergence of eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
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Chapter 1

Introduction

1.1 Inference of planted subgraphs

In this section, we focus on the study of a specific planted subgraph problem, where a tree Γ
with known shape is planted inside a sparse Erdős-Rényi graph with mean degree λ. All results
and proofs are gathered in Chapter 2 of this thesis.

1.1.1 From NP-hard to planted problems

We begin this exposition with a motivation for the study of inference problems as a random
instance of NP-hard problems. Let G = (V,E) be a graph on n vertices; some questions that
we could consider on G are as follows:

• the max-clique problem : find the size of the maximum fully connected subset (or clique)
of V . We can also consider the associated decision problem : given k, find a clique of size
k in G (or determine that there are no such cliques).

• the min-bisection problem : find a partition of V in two subsets of size n/2 with the
minimum number of edges between those subsets. A more general problem asks for a
partition of V in k > 2 parts of equal size with as few edges between the partitions as
possible.

• the Hamiltonian path problem : find a path in G that goes through each vertex of V exactly
once. Again, this can be generalized to finding a spanning tree of G with maximum degree
lower than a constant k, or finding the path of maximum length in G.

All of those problems, and their generalizations, are known to be NP-hard [75, 61], which
means that in the worst case they are very hard to solve. However, we can reasonably expect
that the real-world instances of those problems do not match those worst-case scenarii : if we are
looking for the maximum clique in a real network, it is likely because we assume that there is one
that stands out. Conversely, we may want to know if the found maximum clique is statistically
significant, or if it arises from random noise.

For those reasons, we consider here the planted version of those problems, where a specific
structure (a somewhat large clique, a hamiltonian path, or a partition structure) is “hidden”
inside a random graph. An often convenient assumption is to consider an Erdős-Rényi model
G(n, p), where p = p(n) is adapted to the problem at hand. As an example, for the planted
clique problem the most widely used setting is p = 1/2 independently from n, while in the
planted hamiltonian cycle problem the setting used in [32] is p = d/n for constant d.

The two main tasks we want to perform on our inference models are usually the following:
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• Detection: given a graph G, is there a (preferably polynomial) algorithm that can detect
with high probability whether G was drawn from G(n, p) or whether G contains a planted
structure ?

• Reconstruction: given a graph G drawn from the planted model, is there a (polynomial)
algorithm that can recover the vertices in the planted structure with high probability, or
at least a positive fraction of them ?

An important thing to note, however, is that a problem does not need to be NP-hard to
yield insightful planted variants ; indeed, the planted matching problem [115] has a polynomi-
ally feasible optimization counterpart (the celebrated blossom algorithm [52]), but a rich phase
transition landscape.

1.1.2 Hard phase in the planted clique problem

We now temporarily focus on the planted clique problem, where a clique of size k is randomly
hidden inside a G(n, 1/2) graph; we denote the resulting random model by PC(n, k). In [93],
the author shows that the maximum clique in a G(n, p) graph has size

s(p) = 2
log(n)

log(1/p)
+O(log log(n)).

This implies that whenever k ≥ (1 + ε)s(1/2) = 2(1 + ε) log2(n), w.h.p a graph drawn according
to G(n, 1/2) has no clique of size k, whereas one drawn according to PC(n, k) has (by definition)
at least one. This illustrates a general method for planted subgraph problems: whenever the
underlying random graph contains no copy of the planted subgraph w.h.p, detection is easily
shown to be possible !

In the same regime, for the specific planted clique model, it can be shown that w.h.p. the
only k-clique in G ∼ PC(n, k) is the planted one; as a result we have that reconstruction is
possible as soon as k ≥ (2 + ε) log2(n).

However, the two algorithms outlined above are non-polynomial : finding the planted k-
clique or proving its non-existence requires inspecting nΩ(log(n)) vertices. In fact, no polynomial
algorithms for either detection or reconstruction are known unless k = Ω(n); the state of the art
is a quasi-linear algorithm when k >

√
n/e [49], as well as a "doubling trick" by Alon et al. [10]

that allows any algorithm to be expanded to k > ε
√
n for any ε > 0 at the cost of increasing

the complexity: the resulting algorithm is still polynomial, but with a degree proportional to
log2(ε).

This is the core of what is known as the information-computation gap: when log(n)� k �√
n, there is theoretically enough information to detect and recover the planted clique, but with

no polynomial algorithm known. It is conjectured, and supported by some theoretical evidence
(see for example [72, 15]) that it is impossible to recover the planted clique in polynomial time
when k = o(

√
n). We can therefore pinpoint three regimes of parameters in this problem :

• the impossible phase (k < (1 − ε) log(n)): it is provably impossible to perform either
detection or reconstruction with nontrivial success probability,

• the hard phase (log(n) � k � √n): an exhaustive (and non-polynomial) search is guar-
anteed to find the planted clique with high probability, but no polynomial algorithm is
known to work,

• and the easy phase, where both detection and reconstruction are polynomially feasible.
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This type of phase transition landscape has been observed in several inference problems,
including sparse PCA [24] or community detection [98]. We refer to [31] for a systematic study
of this phenomenon. Notable exceptions include the planted Hamiltonian path [12] or the planted
matching [115] problems ; a possible explanation for this diverging behavior is given at the end
of this section.

1.1.3 The planted tree problem

The focus of this manuscript is on inference problems in sparse random graphs, i.e. graphs where
the expected degree is independent from n. This translates, for homogeneous random graphs, in
an Erdős-Rényi model with parameters n and λ/n for fixed λ. The main reason for this focus is
the structure of real-world networks: as can be seen in Table 1.1, those networks are extremely
sparse, and are thus better modeled by random graphs with lower density.

To match the sparsity of the underlying graph, the planted structures need to be sparser as
well; for this reason, we focus on the case of planted trees. This choice can also be motivated
by a problem in network security: assuming that a population of k malicious agents intend to
coordinate to launch some kind of attack, the most inconspicuous way for them to do so is to
form a minimal number of connections; consequently, their connection network will form a tree.

Without further restrictions, our model is not specific enough (see [105] for the number of
graph on k vertices). In this manuscript, except for a digression on planted stars (which are
related to the degree distribution of a random graph), we focus on a few families of trees:

• a path of length k,

• a complete D-ary tree (with D ≥ 2 fixed) of height h.

Those choices fit the framework of NP-hard relaxations discussed at the beginning of this section:
both the decisions problems of finding a path or a D-ary tree of a given size in a graph are known
to be NP-complete [40].

In order to quantify the performance of our reconstruction algorithms, we use the following
metric: given the set of planted vertices S ⊆ V , we define the overlap of an estimator Ŝ as

ov(Ŝ) =
1

|S| E
[∣∣S ∩ Ŝ∣∣].

This diverges from the usual convention of searching for an estimator Ŝ that achieves re-
construction with high probability, and not in expectation. However, these definitions match
in the regimes that are of interest in this problem: in particular, if ov(Ŝ) = o(1), then it is
straightforward to show that

lim sup
∣∣S ∩ Ŝ∣∣ = o(1) w.h.p.,

and both definitions for the impossibility of reconstruction coincide. The only regime where a
significant difference can occur is that of partial reconstruction, where 0 < ov(Ŝ) < 1, but our
results in this regime can be extended to the high probability case without much effort.

1.1.4 Counting subgraphs in random graphs

In the following, we denote the planted strcture by Γ = Γ(k). The most intuitive method to
study our planted tree model is to simply count the copies of Γ in an Erdős-Rényi graph. As
such, we define the random variable

XΓ(G) = number of copies of Γ in G.
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Network Nodes Edges Average degree
DBLP collaboration 317,080 1,049,866 6.62

arXiv CondMat collaboration 23,133 93,497 8.08
Enron emails 36,692 183,831 10.02

Web graph (Google) 875,513 5,105,039 11.66

Table 1.1: Number of nodes, edges, and average degree of several real-world networks. Data is
taken from the SNAP dataset collection [85]

As we mentioned above, whenever XΓ(G) = 0, then a planted copy of Γ in G is easy to detect,
although not necessarily easy to reconstruct. This yields the following heuristic:

Whenever E(XΓ) = o(1) in an Erdös-Rényi graph, then planted copy of Γ is detectable with
high probability.

The implied detection procedure need not be polynomial, as testing the existence of a copy of
Γ in an arbitrary graph can be complex. It also does not imply anything about reconstruction:
even though there is no copy of Γ in G prior to adding the planted one, this addition may create
many “decoy” copies that prevent reconstruction.

A more surprising fact is that the distribution of XΓ also allows to prove results about the
impossibility of detection! More precisely, the following holds:

Proposition 1. If in an Erdős-Rényi graph G(n, λ) one has

Var(XΓ) = o(E(XΓ)),

then detection is impossible: no algorithm can distinguish from the Erdős-Rényi and planted
subgraph models with nontrivial probability.

Further, if
E(XΓ) = ω(1),

then reconstruction is also impossible: no algorithm can recover a positive fraction of the planted
subgraph’s vertices with nonvanishing probability.

In other words, the study of detection and (sometimes) reconstruction often reduces to
computing the first and second moment of XΓ for some specific Γ. For fixed-size subgraphs, as
n → ∞, this was extensively studied by Bollobás [26]; those methods can be adapted to our
setting when the size of Γ grows slowly enough.

1.1.5 Phase transition landscape of the planted tree problem

The main results achieved in Chapter 2 for the planted path and D-ary tree are summarized
in Figures 1.1 and 1.2. We obtain a near-complete phase transition landscape for the planted
path problem, with the exception of the case where k = Ω(n); for the planted D-ary tree, the
results are less comprehensive, although we provide several conjectures to fill the gaps in the
landscape. Already though, this planted tree problem exhibits some key differences with the
usual landscape of inference problems:

Absence of hard phase A common staple of inference problems, e.g. planted clique or
community detection (see [7] for the latter) is the presence of a so-called hard phase, where
detection and reconstruction are possible but no polynomial algorithm is known. A tentative
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Reconstruction IT Impossible

Detection & Reconstruction
IT impossible

Detection & 
Reconstruction 

Easy

Figure 1.1: Phase transition diagram for the planted path problem, in terms of k and λ.

Detection Unknown
Complete reconstruction impossible

Detection & 
reconstr.

IT impossible

Detection easy
Complete reconstruction impossible

Detection easy
Complete reconstr.

impossible

Figure 1.2: Phase transition diagram for the planted D-ary tree problem (D ≥ 2), in terms of
the height h and λ. The threshold λD corresponds to the emergence of the D-core in G(n, λ/n)
[110, 99].

systematic study of such phenomena can be found in [31], drawing parallels with known NP-
hard problems. By contrast, no such phase exists in the studied planted tree models : as soon
as detection or reconstruction are possible, they can be performed by a polynomial algorithm,
often even pseudo-linear in the number of edges.

Detection without reconstruction Another feature usually observed is the strong depen-
dency between detection and reconstruction. Although ad-hoc counter-examples exist [14], re-
construction is almost always impossible whenever detection is; and conversely, whenever detec-
tion is possible, it is often feasible to recover at least a portion of the planted structure. In the
planted path model, we instead observed a large region, from k = ω(

√
n) to o(n), where detection

was feasible (and polynomially so, per the previous point), but it is impossible to recover more
than a positive fraction of the planted path. The impossibility of complete reconstruction for the
plantd D-ary tree is a more common behavior, encountered for example in sparse community
detection [1].

A possible explanation for those behaviors may be related to the concept of low-rank planted
structure : viewing the graph through its adjacency matrix, in most mentioned inference prob-
lems the planted structure is (up to diagonal terms) a low-rank matrix. As an example, the
adjacency matrix of a clique of size k has rank 1, up to its diagonal terms. To the contrary,
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Figure 1.3: Degree distribution of a real-world (left) and random (right) graph, in log-log space.
To the left is the graph of Google+ frienship circles, whose degree distribution roughly exhibits
a power law, as in [38]. To the contrary, the distribution of an Erdős-Rényi graph with the same
degree (right) is close to a Poisson distribution, which can be seen to be wildly different.

a tree of size k can have rank up to k, which is in particular the case for the planted path.
Other examples of high-rank inference problems include the planted Hamiltonian path in [12],
for which a polynomial algorithm also matches the information-theoretic lower bound up to
negligible factors.

1.2 Spectral algorithms in community detection

In this second section, we move on to community detection and the study of the stochastic block
model. More specifically, we focus on sparse stochastic block models, where as in the last section
the connection probabilities are in O(1/n). All original proofs can be found in chapter 3 of this
thesis.

1.2.1 Simulating real-world networks

Although Erdős-Rényi models are a popular way to simulate real-world networks, they lack
several desirable features. One notable example is the degree distribution, which is known to
be wildly different between the Erdős-Rényi model and many known networks (see Figure 1.3).
Another point of interest, which will be our main focus, is the presence of inhomogeneities: we
expect the presence of underlying communities – geographic circles in social networks, similarity
of function in protein interaction networks – to influence the formation of edges. As such, the
homogeneity of the Erdős-Rényi model, where each edge has the same probability of appearing,
is an obstacle to the accuracy of modeling.

Whenever a network exhibits this sort of community structure, a natural problem to consider
is the possibility, and accuracy, of recovering those latent communities: the design and analysis
of algorithms suited for this task is called community detection. The main obstacle in this
endeavor is the following: except in some rare cases (see e.g. Figure 1.4), real-world networks
with ground truth communities are rare, and thus the performance analysis of such algorithms
is hard to define.

To address this shortcoming, the stochastic block model (or SBM in short) was proposed
in [69]; it first consists in separating the vertex set of a random graph in blocks (modeling the
underlying communities). Given this partition, each edge is then drawn independently from
all others, with a probability of presence depending only on the communities of its endpoints.
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Figure 1.4: A network with ground truth communities : political books written on the 2004
U.S presidential election, classified by partisan leaning : democrat (blue), republican (red) and
neutral (grey). Edges between two books indicate frequent co-purchases.

Usually – in the so-called assortative models – this gives rise to denser groups, with fewer edges
connecting different groups. Several related models have been devised to address other issues,
such as setting an arbitrary degree distribution [76], overlapping communities [9], or a geometric
model to bring it closer to real-world networks [59].

In light of the aforementioned Table 1.1, sparse stochastic block models will be of particular
interest: in those models, the average degrees of the vertices are constant, or grow only very
slightly faster.

1.2.2 Sparse SBM : definitions

During the rest of this section, unless specifically mentioned, all stochastic block models studied
will be sparse. We first elaborate on the SBM definition, as follows. Given a community
assignment σ : [n] → [r], and a symmetric connectivity matrix P of size r × r with positive
entries, we build a random graph G = (V,E) such that V = [n], and each edge (i, j) is present
in E independently from all others, with probability

P((i, j) ∈ E)) =
Pσ(i)σ(j)

n
. (1.1)

A special attention is given to the two-block symmetrical case, with two communities of equal
size n/2 and the connectivity matrix having the form

P =

(
a b
b a

)
.

In the general case, we shall assume that the communities are linear in size, i.e.

|{x ∈ [n] | σ(x) = i}|
n

= πi + o(1), (1.2)

and we define the mean progeny matrix M as

Mij = Pijπj . (1.3)

Informally, the matrix M represents the expected number of neighbours of a vertex with type i
that have type j. Finally, we will assume that the expected degree of each vertex is the same,
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which translates to ∑
j∈[r]

Mij = d for all i ∈ [r]. (1.4)

This condition is actually not a restriction: indeed, if (1.4) does not hold, a simple clustering
on the vertex degrees gives an easy reconstruction procedure. It implies, in particular, that the
Perron eigenvalue of M is the average degree d, with associated eigenvector 1.

In order to measure algorithm performance, we shall need a measure of how close an estimated
community assignment is to the ground truth. The most commonly used metric is the overlap;
given a community assignment σ : [n] → [r] and an estimator σ̂, we can define an unadjusted
overlap as

uov(σ, σ̂) = max
τ∈Sr

1

n

∑
i∈[n]

1σ̂(i)=τ◦σ(i),

where the maximum is taken over all permutations of the communities. This overlap is then
rescaled to set the “naive” estimator (consisting of assigning every vertex to the largest com-
munity) to have an overlap of zero, while still ranging from 0 to 1, which yields the following
definition:

ov(σ, σ̂) =
uov(σ, σ̂)− πmax

1− πmax
,

where πmax is the maximum entry of π. This rescaled version is the one we’ll use in the following.
Our interest lies in the limit n → +∞; we classify the reconstruction performance of an

estimator σ̂ in three categories:

• Exact recovery: P(ov(σ̂, σ) = 1) = 1− o(1),

• Almost exact recovery: P(ov(σ̂, σ) = 1− o(1)) = 1− o(1),

• Partial recovery: P(ov(σ̂, σ) > α) = 1− o(1) for some α > 0.

Due to the presence of a positive proportion of isolated vertices in sparse SBMs, exact and
almost exact recovery are unachievable; as such, our efforts only focus on attaining partial
recovery.

1.2.3 Tree approximation and fundamental limits

It is a well-known fact (see [68]) that when n→∞ a sparse Erdős-Rényi random graph G(n, d/n)
converges, in the sense of Benjamini-Schramm [23], to a Galton-Watson tree with offspring
distribution Poi(d). This result can be extended to the stochastic block model, defining a
multitype Galton-Watson tree as follows:

• the root vertex has a random type drawn according to the probability vector π,

• each vertex of type i has a number Poi(Mij) of children of type j, for all j ∈ [r], where M
is the matrix in (1.1).

Then, the SBM converges (in the same sense) to the random tree defined above [68]. This seems
to indicate a strong relationship between the properties of the two models; and indeed many
papers [103, 91, 29, 102] make use of couplings to translate results from one model to the other.

Of particular interest in the study of such tree processes is the census reconstruction problem:
given only the number of vertices of each type at depth R, is is possible to recover the type of
the root vertex with better accuracy than random chance, when R→∞ ?
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Although not described this way, a paper from Kesten and Stigum [79] provides an affirmative
answer to this question, provided

λ2(M)2 > d (1.5)

where λ2(M) is the second largest (in magnitude) eigenvalue of M . For this reason, equation
(1.5) is often dubbed the Kesten-Stigum (KS) threshold. In the case of the two-blocks symmetric
SBM, this threshold becomes

(a− b)2 > 2(a+ b),

and is known to be sharp: if the other (strict) inequality is true, it is impossible to estimate the
type of the root vertex from the long distance census (see [54]). This complete result for r = 2
is leveraged in [100] (for the negative part) and [91, 102] (for the positive part) to show that
those results translate to the possibility or impossibility of detection and reconstruction in the
symmetric SBM.

For larger values of r, the picture is more complicated: following a conjecture from [47], the
methods in [91] have been extended to more than two communities in [29, 6], when above the KS
threshold. However, a major difference is the possibility of reconstruction below this threshold,
shown in [7], although with non-polynomial algorithms. This is thus another instance of the
information-computation gap mentioned in the previous section. More information, as well as a
survey on denser SBMs, can be found in [1].

1.2.4 Classifying reconstruction algorithms

Algorithms for community detection in the SBM can roughly be classified into three categories:
semi-definite programming relaxations, message passing algorithms, and spectral methods. We
briefly touch on the first two, and will dedicate the rest of this section to the third.

Semi-definite programming In the two-block symmetric case, labelling the groups with
{−1, 1}, finding the maximum likelihood estimator for σ is equivalent to the following:

maximize σ∗Aσ subject to σ ∈ {−1, 1}n,
∑
i

σi = 0, (1.6)

where A is the adjacency matrix of G. This is a reformulation of the min bisection problem
discussed in the previous section, and is therefore NP-hard to solve. This optimization problem
is therefore relaxed into another, more easily tractable one, the main choice being [64, 97]:

maximize
〈
A− d

n
11∗, X

〉
subject to X � 0, Xii = 1 ∀i ∈ [n]

where X � 0 means that X is symmetric positive-semidefinite, d is an estimate of the mean
degree of G, and the scalar product is 〈A,B〉 = Tr(A∗B). One then hopes that the found
maximum is close to X = σσ∗, so that the community labels can be recovered from the argmax
X. This often becomes false when the parameters a, b become close to the KS threshold, and as
a consequence no SDP algorithm is known to work up to the precise threshold, only approaching
it as a+ b diverges [97]. The paper [88] presents a generalization of the SDP method to multiple
communities, but also misses the KS threshold by a (possibly large) constant.

Belief propagation and message-passing Assuming that the community labels are drawn
according to a probability vector π (reminiscent of (1.2)), the probability of a community as-
signment σ is

P(σ |G;P ;π) ∝
∏
i<j

P
Aij
σ(i),σ(j)

(
1−

Pσ(i),σ(j)

n

)1−Aij ∏
i∈[n]

πσ(i). (1.7)
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Disregarding the correlations corresponding to non-edges, Equation (1.7) corresponds to a
Markovian random field; as such, a natural method of inference is the use of belief propaga-
tion (BP) algorithms, whose building block is the sum-product algorithm. Despite promising
numerical evidence [47], no proof of correctness for this algorithm is known to work in the SBM
down to the KS threshold. However, linearized versions of this algorithm, either an adaptation
of the cavity method [95] or the ABP algorithm in [6], have been proven to work down to the KS
threshold. Those proofs usually involve linking the properties of those linearized algorithms to
the spectrum of specific matrices that depend on the graph G, hence an important connection
with the spectral algorithms discussed later.

Even without proof of its correctness, the classic BP algorithm has another use: it allows to
amplify the signal found by other algorithms, often up to the optimal overlap; this improvement
is especially discussed in [101], for the two-block case, and [6] in the general setting.

1.2.5 Spectral algorithms

The third class of algorithms, and the one studied in this thesis, are spectral algorithms. They
hinge on a simple observation: the non-zero eigenvalues of the expected adjacency matrix E[A]
are the same as those of M , with associated eigenvectors constant on the clusters. Writing

A = E[A] + (A−E[A]),

we could expect that using arguments from perturbation theory we are able to show that those
eigenvalues are reflected within the spectrum of A as well, so that clustering on e.g. the second
eigenvector of A yields non-trivial reconstruction. This ansatz has been verified incrementally
for a wide regime of degrees (see [1] and references therein), and [55, 19] shows that the spectrum
of A retains information from the one of E[A] up to the regime

d�
√

log(n)

log log(n)
.

Unfortunately, this property fails to hold when d is below this threshold. The reason for this
failure is that for very sparse random graphs, the support of the eigenvectors of A associated with
the highest eigenvalues concentrate around the vertices with high degrees, instead of capturing
the community structure (see Figure 1.5 for an example of this phenomenon). Special care
therefore has to be taken to limit the influence of those vertices.

The first efforts in this direction were done in [39], by trimming those vertices from the graph;
however, this algorithm does not achieve positive overlap down to the KS threshold. The most
successful approaches involve replacing the adjacency matrix A by another matrix that depends
on G, but is less influenced by vertex degrees. Examples include:

• the self-avoiding matrix B(`), such that B(`)
ij counts the number of self-avoiding paths

between i and j. This matrix was the first to reach the KS threshold in [91], and was
extended to the case of multiple communities in [117] (see Chapter 3),

• the non-backtracking matrix B, indexed by the oriented edges of G, such that

B(x,y),(z,t) = 1y=z1x 6=t;

powers of B thus count the number of paths between oriented edges that do not backtrack
in successive steps. This matrix was suggested in [47], stemming from a linearization of
the BP algorithm. Its spectral properties were then studied in [29], which showed the
possibility of reconstruction above the KS threshold upon a small spectral condition on
M .
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Figure 1.5: Eigenvalue histogram (left) and plot of the second eigenvector (right) of the adjacency
matrix of a somewhat dense two-block SBM (n = 2000, d = 40, top), and a sparser one (n =
6000, d = 1.7, bottom). In the dense case, eigenvalues of E[A] are reflected in the spectrum
of A (red arrows), and the associated eigenvector separates the communities. To the contrary,
the sparse case has no outlier, and the top eigenvectors are not correlated with the community
structure.

The non-backtracking matrix is of particular interest, for many reasons: it doesn’t require
tuning a path length parameter ` (even though the proof in [29] actually considers the matrix
B`), and the non-backtracking operator has importance in other areas of graph theory, such as
Ramanujan graphs [87] or the graph zeta function [66].

We also introduce in [117] another matrix suited for spectral community detection: the
distance matrix D(`), such that

D
(`)
ij = 1d(i,j)=`

where d(i, j) is the usual graph distance between i and j. While very close (and thus having
similar properties) as the matrix B(`) defined above in the typical SBM-generated graph, it is
more robust to edge addition, as we will see below.

1.2.6 Robustness of community detection

The problem of robustness draws its root in the inaccuracies of the SBM to model real-world
networks. More precisely, graphs generated according to a sparse SBM are known to be locally
tree-like, with very few cycles and no cliques of size greater than four. In contrast, real-world
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Figure 1.6: Eigenvalues and eigenvector plot of the self-avoiding (top) and non-backtracking
(bottom) matrices of a sparse two-block SBM (n = 2000, d = 4). Since the non-backtracking
matrix is not symmetric, its eigenvalues are complex; however, the outlier eigenvalues (as well
as the associated eigenvectors) are real. Notice that the communities are less separated in the
eigenvector plots than in Figure 1.5, a result of the model sparsity.

networks often contain cliques or denser subgraphs of moderate size, such as friend groups in
social network graphs. As a result, several adaptations have been proposed to rectify the SBM,
the two major ones being:

• the geometric block models, where each vertex u is assigned a position Xu in Rk (or some
subset thereof), and then two vertices u and v are connected iff their distance ‖Xu −Xv‖
is less than a predetermined threshold. Typically, either the position Xu (in [3]) or the
thresholds (in [59]) will depend on the community memberships.

• a perturbation of the classical SBM, where m edges are added either randomly or adver-
sarially to a graph G drawn according to a sparse SBM. Generally, the adversarial version
is preferred, or a “mixed” model where small cliques are added randomly (see [71] for such
an example).

Unfortunately, classical spectral and message-passing algorithms do not fare well in those
settings: they often rely on fragile properties of the SBM (such as the local tree approximation),
which are quickly lost. On the other hand, SDP algorithms, while slower and not working up
to the KS threshold, are very robust: they guarantee reconstruction even in the presence of a
perturbation of up to o(n) edges. By comparison, the spectrum of B(`) or B can be greatly
perturbed by the addition of a clique of size o(log(n)).
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We show in [117] that the aforementioned distance matrix D(`) fares much better than other
spectral methods: it can sustain a perturbation affecting at most O(nε) vertices, where ε is a
small (but nonzero) constant. We also show that this bound is tight in the fully adversarial
context: adding a clique of size nε in a well chosen manner will make the spectral algorithm fail.

Unfortunately, this upper bound does not match the stellar performance of the SDP algo-
rithms, and working out the precise constant ε shows that it is fairly small. However, this is a
first step in showing that the perceived fragility of spectral methods is not a foregone conclusion,
and that an algorithm that combines the best of both worlds is possible.

1.3 Spectra of weighted inhomogeneous random graphs

We now focus on more general community detection problems, including community detection
in directed graphs. In particular, we study the spectrum of the non-backtracking matrix and
directed adjacency matrix of random graphs under a very general model. All proofs and details
are in Chapters 4 and 5 of this manuscript.

1.3.1 Beyond the classical SBM

We first expand on several variants of the stochastic block model, that will be the motivation
for the general graph model introduced later.

Labeled stochastic block model Real-world networks often carry more information than
simply the presence or absence of edges. For this reason, a common adaptation of the SBM
includes edge information: given an array Pi,j of probability distributions on a common label
space L, the classical SBM is augmented by a label `x,y on each edge (x, y) drawn according
to the distribution Pσ(x),σ(y). Such a model was defined in [67], where the authors conjectured
an analogue of the KS threshold in the two-block case, and furthered in [84]. In particular, one
of the proposed reconstruction methods involves choosing a function w : L → R and using it
to transform G into a weighted graph. Note that this model encompasses the popular censored
block model of [2, 113].

Degree-Corrected SBM To remediate the mismatch between the degree distributions of
real-world networks and the SBM (see Figure 1.3) the degree-corrected SBM was proposed in
[46]: it consists in an additional affinity vector θ ∈ Rn, such that the probability of presence of
an edge (i, j) in G is

P((i, j) ∈ E) =
θiPijθj
n

.

Depending on the models, the vector θ can be either deterministic [63, 82] or i.i.d [62]. In the
case where P represents a SBM with constant expected degree, and θ is random, it is easy to see
that the degree distribution of G is a rescaling of the one of the θi, which allows for matching
arbitrary graphs more closely. This model can of course be augmented with labels, in the sense
described above.

Directed SBM Although less studied than its undirected version, community detection in
directed networks is also a topic of research (see [89] for a survey). One obstacle to reconstruction
is that the adjacency matrix of a directed graph is a priori not diagonalizable; as such, commonly
used reconstruction techniques use symmetrizations of the adjacency or Laplacian matrices, e.g.
the singular value decomposition [114, 37].
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The SBM can be readily extended to the directed setting [123]; in this case, the matrix P
need not be symmetric, and we can assign different types σ and σ′ to the start and end vertices
of each edge, so that

P((i, j) ∈ E) =
Pσ(i)σ′(j)

n
.

Assuming that, as in the undirected case,

|{x ∈ [n] | σ(x) = j, σ′(x) = i}|
n

= Πij + o(1)

the mean progeny matrix M defined in Equation (1.3) has the form

M = PΠ,

and we assume that this matrix is diagonalizable. As with the undirected version, the directed
SBM can be extended with label or degree corrections.

1.3.2 A generic random graph model

Although specific adaptations exist when the affinity vector θ is i.i.d (see [62]), in the general
DCSBM case the expected adjacency matrix is not constant by blocks. We therefore need a
much more general model, outlined below.

Given an n× n matrix P with entries in [0, 1] and a random matrix W , we define a random
graph G as follows : each edge (i, j) is present in G with probability Pij , and holds a weight
Wij . Depending on the model (directed or undirected), the matrices P and W may be required
to be symmetric. It is also very likely that the results of this manuscript can be extended to
an interpolating model, where the presence of an edge between (i, j) and (j, i) is correlated, but
where the resulting graph is not necessarily undirected.

The expectation of the adjacency matrix Q := E[A] has a simple expression:

Q = P ◦E[W ],

where ◦ is the elementwise (or Hadamard) product. The matrix Q therefore serves as the signal
matrix, that we want to recover from the observation of G.

Given the application scope of our model, we make several assumptions on Q and W :

• the graph G is sparse: Pxy ≤ d/n for all x, y,

• Q has low rank r,

• the eigenvectors of Q are delocalized, in the sense that ‖ϕ‖∞ ≤ b
√
n for any normed

eigenvector ϕ,

• the entries of W are uniformly bounded by a constant L.

Note that those restrictions are actually fairly lax: our analysis allows for r, b = no(1), and
d, L = exp

(
o
(√

log(n)
))

.
Note that this random model encompasses more than simply the SBM variants discussed

above: as an example, it can be used as a model for very sparse (noisy) matrix completion – see
[28] for an excellent account on this topic.
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1.3.3 Aside : Phase transitions in random matrix theory

We temporarily place ourselves in the undirected case, where A and Q are symmetric. Writing
the adjacency matrix of G as

A = Q+ (A−Q),

where the second term has an expected value of zero, we can rephrase the problem of character-
izing the spectrum of G into a problem of random matrix theory. The usual questions that we
would like to answer are the following:

(i) what is the relationship between the spectrum of A and the one of E[A] ?

(ii) what is the limiting spectral distribution of A ?

Those questions have a rich history in random matrix theory, especially when (as in the
examples discussed above) the matrix Q has low rank. A celebrated result in this topic is
the Baik-Ben Arous-Péché (BBP) phase transition [13], on the largest eigenvalue of empirical
covariance matrices of Gaussian vectors. It was the first example of a widespread phenomenon
on random matrix models, that can be summarized as follows:

• if the largest eigenvalue µ1 of E[M ] is below some threshold ϑ, then the largest eigenvalue
of M is equal to ρ+ o(1), where both ϑ and ρ depend on the model,

• if, on the other hand, the largest eigenvalue µ1 of E[M ] satisfies µ1 > ϑ, then the largest
value of M is of the form f(µ1) + o(1), with f a deterministic function.

Such phase transitions are called BBP phase transitions, and have been proven to occur in
various models, e.g. Wigner [107] matrices; more recently, [21] has expanded this result to a
larger class of random matrices, as well as to eigenvalues beyond the first.

In this manuscript, we show that part of this phase transition occurs in our weighted random
graph model, assuming the weighted degrees

dx =
∑
y∼x

W 2
xy (1.8)

concentrate around a common value d0 independent from x. Under this condition, if µ is an
eigenvalue of Q such that µ >

√
d0, then there is an eigenvalue λ of the adjacency matrix A

such that
λ = µ+

d0

µ
+ o(1).

This matches the theoretical results for Wigner matrices in [107, 21], which is in accordance
with other results on the limit distribution of A [51]. We also obtain asymptotic results on the
scalar products between the eigenvectors of Q and those of A, again matching [21]. However,
the concentration hypothesis (1.8) is quite restrictive: in the unweighted case, it requires the
common average degree d to be at least ω(log(n)).

1.3.4 Non-backtracking matrix of undirected graphs

The fact that degree concentration is needed for the spectral properties of A observed in the
previous paragraph is not a proof artefact: as with the more specific community detection, in the
undirected case, the spectrum of A is very sensitive to sparsity. In the case of unweighted graphs
with d � log(n), the behaviour of the largest eigenvalues has been studied in [19]; the authors
showed that the largest eigenvalues of A only correspond to vertices of highest degrees, with
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Figure 1.7: (Left) Spectrum of the non-backtracking matrix B of a weighted random graph, and
(Right) Embedding of the second eigenvector of B in n-dimensional space. The underlying graph
is a symmetric labeled two-block SBM (n = 1000, a = 8.4, b = 3.6); we generate spins according
to the censored block model in [113] (ε = 0.3), and assign weights according to equation (4.13)
in Chapter 4. The parameters have been chosen so that reconstruction is impossible using only
either the unweighted edges or the spins, but possible with a combination of both. Note that
the shape of the spectrum inside the bulk is very distinct from the unweighted case (Figure 1.6).
The embedding used to generate the right figure is the one in Equation (1.9).

associated eigenvectors concentrated around those vertices. The more precise phase transition
around d ∼ log(n) has also been studied in [11], this time on a uniform weighted Erdős-Rényi
graph. The spectrum of A also has a shape that is far from that of a Wigner matrix: in
particular, it has an atom (of known mass) at zero (see [41] for details).

The solution developed in this manuscript follows the lines of [29], and uses the weighted
non-backtracking matrix B defined as

B(x,y),(z,t) = Wzt1y=z1x 6=t.

It enjoys similar desirable properties as its non-weighted counterpart, namely:

• it squashes the contribution of high-degree vertices,

• it does not require tuning a length parameter `,

• it allows to recover information about the adjacency matrix A through the Ihara-Bass
formula [17, 124].

This relative stability allows us to obtain results similar to those of [29]: all eigenvalues of
Q above a certain threshold ϑ are reflected in the spectrum of B, with the other eigenvalues of
B being enclosed in a circle of radius ϑ(1 + o(1)). This holds for a large range of parameters:
the rank of Q can be up to no(1), and the max edge probability ‖P‖∞ up to exp

(
o(
√

log(n))
)
.

To perform reconstruction on the various inference models mentioned in this section, we need
a vector of length n instead of | ~E|. This is done through local averages: for an eigenvector χ of
B, we define the associated embedded vector ϕ as

ξ(x) =
∑
e:e2=x

χ(e). (1.9)

The main drawback of clustering using the non-backtracking matrix is its size: instead of
clustering on a n× n matrix, we have to compute the eigendecomposition of a dn× dn matrix,
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Figure 1.8: Left: Eigenvalues of the adjacency matrix A of a real-world network: the political
blogs dataset [8]. While the bulk is less circular than in stochastic networks, the outlier eigen-
values are clearly visible – and real. Right: Scatter plot of the first two eigenvectors of A, with
the true labels (blue for Democrat and red for Republican) revealed. The clusters are clearly
visible.

where d is the mean degree of the graph. This can incur a large computational cost whenever
the mean degree of the graph diverges (slowly). An alternative to the non-backtracking matrix
that does not suffer from this issue is the Bethe Hessian matrix, defined as

H(r) = (r2 − 1)I− rA+D

where D is the diagonal matrix of vertex degrees. Several heuristics for the choice of r have
been proposed [112, 45], which empirically provide good results. The Bethe Hessian is closely
related to the non-backtracking matrix ; in particular, the eigenvector of B associated to an
eigenvalue λ corresponds to a singular vector of H(λ) via the transformation (1.9). Studying
the non-backtracking matrix thus also yields insights about the behavior of the Bethe Hessian,
as evidenced in [43].

1.3.5 Adjacency matrix of directed graphs

As previously mentioned, most community detection methods in the directed case make use of
symmetrized versions of common matrices: a symmetric laplacian [37], singular values of A [128],
or even hermitian matrices [44]. In contrast, following a line of work on the use of asymmetric
matrices in inference problems started in [36], we show that using the unprocessed adjacency
matrix already yields a plethora of useful information, at least in the directed SBM and its
variants.

In particular, we show the exact same results as in the undirected case, with the non-
backtracking matrix B being replaced by the adjacency matrix of G: the eigenvalues of Q above
a certain threshold ϑ are reflected in the spectrum of A, with the other eigenvalues confined in a
bulk of radius ρ. Such a similarity between the adjacency and non-backtracking is no coincidence
; defining the V × E start and terminal matrices S and T as

Sx,e = 1e1=x and Tx,e = 1e2=x,

the matrices A and B satisfy the relationships

A = ST ∗ and B = T ∗S − J,
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where J is the edge reversal operator:

J(e1, e2) = (e2, e1).

In the sparsity regimes we consider, the matrix J is extremely sparse, so that we can write
B ≈ T ∗S and the spectra of A and B are nearly identical.

The main strong point of our spectral analysis is that it encompasses various models inside
a single algorithm: simply compute the spectrum of the non-backtracking matrix B (resp. the
adjacency matrix A for directed graphs), and cluster on the eigenvectors that are outside the
bulk. This generality allows us to apply this algorithm to most real-world graphs and expect
decent results (see Figure 1.8). The optimal clustering algorithm is discussed in Chapter 5.

1.3.6 Perspectives : eigenvector limit distribution

0.0 1.0 2.0 3.0 4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

Figure 1.9: Eigenvector plots of a sparse (Left, d ≈ 4.7) and denser (Right, d = 20) directed
stochastic block model. Overlayed are the corresponding Gaussian mixture distributions with
matching model parameters.

The results of the empirical determination of the best clustering procedure yields a very
interesting insight: gaussian mixture models seem to perform better than the much more widely
used k-means algorithm.

We present in this manuscript a possible explanation for this behavior: when the mean
degree of G goes to infinity, the eigenvectors of B (resp. A) seem to behave exactly like gaussian
mixtures.

As can be seen in Figure 1.9, the empirical distribution matches quite closely the theoretical
gaussian mixture, even for fairly low degrees (d = 20). We prove in Chapter 5 that the empirical
distribution of the i-th eigenvector of A converges as n → ∞ to a mixture of random variables
Xij with known mean and variance, that are obtained as limits of martingale processes on a
multitype Galton-Watson tree. In particular, for the directed Erdős-Rényi model, the limit
variable X = X11 satisfies the recursion

X =
1

d

N∑
i=1

Zi,

where N is a Poi(d) random variable and the Zi are i.i.d with the same distribution as X.
This is reminiscent of a random version of the central limit theorem, and provides an intuitive
justification for the observed convergence.
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Chapter 2

Planting trees in graphs

This chapter is based on the paper [92], a joint work with L. Massoulié and D. Towsley.

2.1 Introduction

This paper is concerned with the detection of additional structures planted in a graph initially
without structure (such as an Erdős-Rényi graph) and, in case such a structure is detected, with
the reconstruction of the corresponding structure. We focus on planted structures that consist
in a superimposed graph, and more specifically on superimposed trees.

A first motivation for this focus stems from the following application scenario. Assume that
the original graph without planted structure represents normal communications among agents,
while the superimposed graph represents communications among a subset of attackers who,
when active, connect directly among themselves to coordinate their activity. Detection then
amounts to estimating whether an attack occurs, while reconstruction amounts to identifying
the attackers in case of an attack.

A second motivation is theoretical: previous work reviewed in Section 2.2 has shown that de-
tection and reconstruction of planted structures in graphs displays rich and intriguing behaviour,
with phases where the task is either impossible, computationally hard, or easy. It is important
to understand what causes such phases, and whether phases for detection always coincide with
the corresponding phase for reconstruction. Our present study sheds light on these questions,
by showing that in the cases of planted tree structures we consider, no hard phase occurs, while
feasibility phases of detection and reconstruction differ widely. In contrast, the latter property
does not hold for previously studied low rank planted structures.

More specifically, our contributions are as follows. In the particular case of planted line
graphs, we determine the complete phase diagram for detection and reconstruction: In a low
density region where the average degree λ of the original graph is below some critical value λc,
both detection and reconstruction go from impossible to easy as the line length K crosses some
critical value K∗ = f(λ) ln(n), where n is the number of nodes in the graph. In a high density
region where λ > λc, detection goes from impossible to easy as K goes from o(

√
n) to ω(

√
n).

In contrast, reconstruction remains impossible so long as K = o(n).
We then consider the case of D-ary trees for fixed D > 1, of height h. For these our

results provide a similar picture with significant differences. Specifically, there exists a limit
height h∗ = ln ln(D) + O(1) such that detection is impossible if h < h∗ − ln(h∗), and easy for
h > h∗ + Ω(1). In that latter case, non-trivial reconstruction is feasible, but it must fail on a
non-vanishing fraction of the K attack nodes. In a high-density region λ > λD, we have again
that detection is easy for K = ω(

√
n), and that reconstruction must fail at least on a fraction

of nodes.
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The paper is organized as follows. We review related work in Section 2.2. We describe our
model and main results in Section 2.3. The proofs for planted lines and planted D-ary trees are
in Sections 2.5 and 2.6 respectively, with detailed proofs of auxiliary results in the Appendix.

2.2 Related work

Planted clique detection and reconstruction has been the object of many works, see e.g. [48],
[49], [15] for recent results and surveys. A central result in that context is that detection appears
hard (i.e. no algorithm is known to succeed at detection in polynomial time) for cliques of size
o(
√
n) planted in G(n, 1/2). IT thresholds for planted dense subgraph detection are developed

in [121].
Computational hardness of planted clique is used in reduction arguments to show that other

planted structure detection problems are hard, eg sparse PCA [24], and dense subgraph detection
[65]. The latter also displays IT-impossible phases, hard phases and easy phases. A systematic
development of such reductions between problems with planted structure is initiated in [31].

Community detection and reconstruction has also been thoroughly studied, the seminal
article [47] introducing several conjectures on feasibility of detection and reconstruction for the
stochastic block model. Almost all conjectures in [47] have been verified in subsequent works,
in particular [100, 91, 102, 7]. It is particularly relevant for the present article that these works
identify regimes where both detection and reconstruction are jointly either impossible, possible
but computationally hard, or computationally easy.

Presence of specific subgraphs in random graphs has been thoroughly studied, see e.g. [70].
We leverage the corresponding techniques in our study of low density regions, for which detection
feasibility corresponds to absence of copies of the planted graph structure in the original random
graph.

Most planted structures considered so far were typically of “low rank” (e.g. planted dense
graph’s expected adjacency matrix is, up to diagonal terms, a rank one perturbation); in contrast,
adjacency matrices of trees and lines are not close to a low rank matrix. One notable exception
is the planted Hamiltonian cycle reconstruction addressed in [12]. Interestingly, for that problem
too there is no hard phase for reconstruction; but in contrast to our scenario, no large parameter
region is identified where detection is easy while reconstruction is impossible.

2.3 Model and main results

A total population of n agents interconnects according to one of the following two modalities.
Under the null hypothesis H0 the interconnection does not display any specific structure. We
assume that the corresponding graph G is an Erdős-Rényi G(n, p) graph, with edge probability
p ∈ [0, 1] taken equal to λ/n for some fixed λ > 0. We thus focus on sparse random graphs with
average degree O(1). Under the alternative hypothesis H1, the graph G is the union of a base
graph G0 distributed according to G(n, p), with another graph G′ connecting a distinguished
subset K of nodes. Specifically, for a fixed graph Γ on node set [K] with edge set E , and an
injective map σ : [K] → [n] chosen uniformly at random and independently of G0, G′ consists
of the nodes K = {σ(i), i ∈ [K]} and edges {(σ(i), σ(j)), (i, j) ∈ E}.

We shall mostly focus on tree graphs Γ, and more specifically on D-ary trees, i.e. trees with
a distinguished root, or depth-0 node, and for each ` ∈ [h−1], D` depth-` nodes being connected
to one parent at depth ` − 1 and D children at depth ` + 1. The two exteme cases are a line
graph for D = 1 and a star for D = K − 1.

We are interested in answering, on the basis of an observed graph G, the following questions:
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Q1 (Detection): For a given planted graph shape Γ (e.g. line, star, D-ary tree,. . .), under
what parameter regimes specified by λ and K is there a test that distinguishes H0 from H1

with error probabilities of both kinds going to zero as n→∞? This is an information-theoretic
property characterized by the likelihood ratio P1(G)

P0(G) , where Pi denotes the distribution of G uner
Hi, i = {0, 1}. Indeed by the Neyman-Pearson lemma, among tests with given probability of
correctly decidingH1, there is one which minimizes probability of erroneously rejectingH0 which
decides H1 if and only if the likelihood ratio L(G) := P1(G)

P0(G) is larger than some threshold τ . We
can ask the same question as Q1 when we restrict ourselves to tests that can be implemented
in polynomial time. This then corresponds to a computational property, and it is of interest to
identify whether the two thresholds (informational and computational) coincide or not.

Q2 (Reconstruction): Can one reconstruct the planted structure G′, or at least a subset of
its constituent nodes? Several metrics of reconstruction accuracy are possible. We shall focus
on the following overlap metric, which we now define for estimation procedures that produce a
set K̂ of K nodes in [n], aimed to estimate at best the actual set K of K nodes involved in the
attack.

Definition 1. The overlap of a set K̂ estimating the actual ground truth K is by definition the
expected size of their intersection, i.e.

ov(K̂) :=
∑
i∈[n]

P(i ∈ K̂ ∩ K).

We say that a particular reconstruction K̂ of size K fails if ov(K̂) = o(K), succeeds if ov(K̂) =
K(1− o(1)), and partially succeeds if ov(K̂) = cK(1− o(1)) for some c ∈ (0, 1).

Reconstruction (respectively, partial reconstruction) is then deemed feasible if there exists
an estimator K̂ that is successful (respectively, partially successful). These properties are of
an information-theoretic nature. Indeed the best possible overlap is achieved by the so-called
Maximum a Posteriori (MAP) estimation procedure, and these properties are therefore deter-
mined by the overlap of the MAP estimator. One can, as for detection, consider a computational
version of reconstruction: reconstruction (respectively, partial reconstruction) is easy when it
can be achieved by an estimator K̂ that is efficiently computable.

Before stating our results for planted lines and D-ary trees, we first consider planted star
graphs, for which a simpler picture holds:

Theorem 1. For any fixed λ > 0, a planted star of size K = ln(n)/ ln(ln(n))[1−ω(1/ ln(ln(n)))]
is not detectable, while both detection and reconstruction of a planted star of sizeK = ln(n)/ ln(ln(n))[1+
ω(1/ ln(ln(n)))] are easy.

The result for line graphs, summarized in Table 2.1, is

Theorem 2 (Line graphs). In the low-density region λ < λc = 1, detection and reconstruction
are impossible if K = ln(n)/ ln(1/λ)− ω(ln(ln(n))), while both detection and reconstruction are
easy if K = ln(n)/ ln(1/λ) + ω(1) and K = o(n/ ln(n)).

In the high-density region λ > λc = 1, detection and reconstruction are impossible if K =
o(
√
n), detection is easy if K = ω(

√
n), while reconstruction is impossible for K = o(n).

For D-ary trees, the results are similar. However the critical parameter λD defined in (2.11)
is the threshold for emergence of the D-core (see [99]), and only partial reconstruction is possible
in the subcritical regime λ < λD. We consider D-ary trees Γ of depth h with corresponding size
K = Dh+1−1

D−1 ; the main results (in terms of h) are summarized in Table 2.2.
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K < ln(n)/ ln(1/λ) ln(n)/ ln(1/λ) < K � n/ ln(n)

Detection & reconstruction
IT impossible

Detection & reconstruction
easy

(a) Subcritical regime : λ < 1

K � √n √
n� K � n

Detection & reconstruction
IT impossible

Detection easy
reconstruction IT impossible

(b) Supercritical regime : λ > 1

Table 2.1: Summary of results for planted line graph

h < logD logD(n) logD logD(n) < h < logD(n)

Detection & reconstruction
IT impossible

Detection easy
complete reconstruction impossible

(a) Subcritical regime : λ < λD

h < logD(n)/2 logD(n)/2 < h < logD(n)

Detection unknown
complete reconstruction impossible

Detection easy
complete reconstruction impossible

(b) Supercritical regime : λ > λD

Table 2.2: Summary of results for planted D-ary tree

Theorem 3 (D-ary trees). In the low-density region λ < λD, there exist two parameters h and
h̄ such that the following holds.

h̄ = ln ln(n)/ ln(D) + Θ(1), and h = h̄− 1 for almost all λ.
When h ≤ h−O(ln(h)), both detection and reconstruction are impossible with high probability.
Detection is easy whenever h ≥ h̄+O(1).

For any λ > 0, hence in both low-density and high-density regions, detection is easy whenever
K = ω(

√
n) while complete reconstruction is impossible for K = o(n).

2.4 Preliminary results

We now state three results that hold for arbitrary planted structures, and that will be used
extensively. The first is a characterization of the likelihood ratio P1

P0
:

Lemma 1. The likelihood ratio L(G) = P1(G)
P0(G) is given by L(G) = XΓ

E0(XΓ) , where XΓ denotes the
number of copies of Γ in G.

The second gives a generic detection process that succeeds forK large enough, and all planted
graph structures Γ that are connected.

Theorem 4. Assume that λ > 0, K = ω(
√
n), and the hidden graph is any connected subgraph

on K nodes, not necessarily a line. Then the total variation distance |P1−P0|var between P0 and
P1 goes to 1 as n→∞.
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Let Ai, i ∈ {1, 2, 3} denote the number of size i-connected components in G, λ̂ = (nA3)/(A1A2),
and k̂ = n−eλ̂A1. The test that decides H1 if k̂ ≥ tn :=

√
K
√
n, and H0 otherwise is polynomial-

time computable and distinguishes with high probability graphs sampled from P1 or P0.

Remark. When λ is known, a simpler test based on the number of edges in the graph also
succeeds. The test in Theorem 4 still applies even when λ is unknown. The proof further implies
that under P1, G can be distinguished from G(n, λ′/n) for any λ′ not necessarily equal to λ.

Finally, it is important to note that, as evidenced in [14], impossibility of detection does not
imply immediately that of reconstruction. Fortunately, in our setting, the following result will
imply the latter as soon as the former is proved :

Theorem 5. Assume that K = o(
√
n) that E0 (XΓ) = ω(1) and that E0

(
L2
)

= 1 + o(1). Then,
for every estimator K̂ of the planted set K, we have

ov(K̂) = o(K),

that is, reconstruction fails as well.

2.5 Proof strategy for planted paths

We say that the ordered set {i1, . . . , iK} of K distinct nodes in [n] is a K-path in G if and only
if the edges (i`, i`+1) are present in G for all ` = 1, . . . ,K − 1. The previous Lemma 1 yields, in
the case where Γ is the line graph, the following result, whose proof is in the appendix:

Lemma 2. For planted K-path, the likelihood ratio reads

L(G) :=
P1(G)

P0(G)
=

1

n(n− 1) · · · (n−K + 1)
|{K-paths in G}|

(
λ

n

)−K+1

· (2.1)

Moreover one has
E0(L2) = E0(xS), (2.2)

where x = n/λ, and S is a random variable counting the number of edges common to the
K-path (1 − 2 − · · · − K) and a random K-path π chosen uniformly at random among the
n(n− 1) · · · (n−K + 1) possible ones on node set [n].

2.5.1 Impossibility of detection

We have the following

Theorem 6. Assume that λ > 1 and K = o(
√
n), or alternatively that λ < 1 and K =

ln(n)/ ln(1/λ)− ω(ln(ln(n))). Then the total variation distance |P1 − P0|var between P0 and P1

goes to zero as n→∞. Thus for any arbitrary test T (G) ∈ {0, 1}, P1(T (G) = 1)− P0(T (G) =
1)→ 0 as n→∞.

By a standard argument, the variation distance |P1−P0|var is upper-bounded by
√

E0(L2)− 1,
and thus the Theorem is a direct consequence of the following

Lemma 3. Assume that λ > 1 and K = o(
√
n), or alternatively that λ < 1 and K =

ln(n)/ ln(1/λ)− ω(ln(ln(n))). Then limn→∞E0(L2) = 1.
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The proof of Lemma 3 (details in the Appendix) is based on an analysis of expression (2.2).
Set Zt = 1 if edge (It, It+1) is part of path (1 · · ·K), Zt = 0 if it is not part of that path, but
It+1 ∈ [K], and finally Zt = −1 if It+1 /∈ [K], so that

E0(L2) = E0(x
∑K−1
t=1 Z+

t ) (2.3)

In order to upper-bound this expression, a key step is the following Lemma, which exhibits a
tractable upper bound involving a Markov chain:

Lemma 4. Let n′ := n − K. The Markov chain {Z ′t}t≥1 taking values in {−1, 0, 1} with
transition probability matrix

P :=

 1−K/n′ K/n′ 0
1−K/n′ (K − 2)/n′ 2/n′

1−K/n′ (K − 1)/n′ 1/n′

 (2.4)

can be constructed jointly with process {Zt}t≥1 so that, for all m ≥ 1, one has

E0(x
∑m
t=1 Z

+
t ) ≤ E0(x

∑m
t=1 Z

′+
t ). (2.5)

Its proof is in the appendix, together with the analysis of the right-hand side of (2.5). The
latter relies on spectral analysis of a matrix derived from P in (2.4), which leverages perturbation
arguments as K/n→ 0. It concludes the proof of Lemma 3 by showing that E0(L2) = 1 + o(1)
under the Lemma’s assumptions.

2.5.2 Easiness of detection and reconstruction, sparse case

Assume λ < 1 and K = ln(n)/ ln(1/λ) + ω(1). Detection is then easy: under P0, the expected
number of K-paths in the graph is o(1). A test which decides P1 if there is a K-path and P0

otherwise thus discriminates the two hypotheses with high probability. Presence of a K-path
can moreover be determined in polynomial time by running depth-first searches from each node
in G.

For reconstruction, we need the following

Lemma 5. For λ < 1, K = ln(n)/ ln(1/λ) + ω(1) and K = o(n/ ln(n)), let C be the connected
component of the graph containing the longest path. Apply

√
K times a peeling operation to

C, which consists in removing all degree one nodes, to obtain set C ′. Under P1, set C ′ and its
intersection with the planted path both have with high probability size K ± o(K).

The Lemma readily implies a polynomial-time algorithm for reconstruction that achieves
overlap K − o(K): set C ′ can be obtained in polynomial time. By adding / removing o(K)
nodes to it one obtains a set of size K with overlap K − o(K).

2.5.3 Impossibility of reconstruction, dense case

We assume λ > 1 and K = ω(
√
n). We have seen that with high probability, observation of G

allows to determine whether or not an attack has taken place. We now assume that an attack
has indeed happened. We have the following result, showing the impossibility of efficient planted
structure reconstruction:

Theorem 7. Given λ > 1, K = ω(
√
n), K = o(n), and a realization G of the graph under P1,

any estimator K̂ of the ground truth achieves negligible overlap, i.e. ov(K̂) = o(K).
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Its proof structure is as follows. Fix an arbitrary integer τ ≥ 1. We shall establish that
necessarily

ov(K) ≤ K/(τ + 1) + o(K). (2.6)

Fix
L = C ln(n) for some suitable constant C, D � L and D2 � n

ln(n)
. (2.7)

Condition on the event the attack path is precisely k1, . . . , kK =: kK1 . Chop the attack path into
K/(L+D) contiguous segments, each of length M := L+D.

Consider the `-th segment {k(`−1)M+1, . . . , k`M}. We shall construct, for some I(`) ∈ [(` −
1)M + 1, (`− 1)M + L], τ random paths of edges in the graph G of the form

kI(`), I2(t, `), I3(t, `), . . . , ID(t, `), kI(`)+D

for t ∈ [τ ] such that the nodes I2(t, `), . . . , ID(t, `) are all distinct, none of them belongs to
the attack path, and such that the paths (k1, . . . , kK) =: kK1 and k

I(`)
1 , ID2 (t, `), kKI(`)+D are

statistically indistinguishable. More precisely, we have the following:

Lemma 6. There is a construction, for any ` ∈ [K/M ], of τ random paths

kI(`), I2(t, `), I3(t, `), . . . , ID(t, `), kI(`)+D, t ∈ [τ ],

such that for any i ∈ [(`− 1)M + 1, (`− 1)M +L], any τ disjoint ordered sets of D− 1 distinct
nodes iD2 (t), t ∈ [τ ] in [n] \ kK1 , we have

dvar(P1(G ∈ ·|K = kK1 , I(`) = i, (ID2 (t, `))t = (iD2 (t))t),P0(G ∈ ·|kK1 ∈ G, (ki, iD2 (t), ki+D)t ∈ G)) = ε = o(1).
(2.8)

This construction moreover verifies the following property. There is an event E such that P1(E) =
1−o(1), and such that, denoting |(∪t∈[τ ]I

D
2 (t, `))∩(∪t∈[τ ]I

D
2 (t, `′))| the number of common points

between the node sets ∪t∈[τ ]I
D
2 (t, `) and ∪t∈[τ ]I

D
2 (t, `′), one has:

∀` 6= `′ ∈ [K/M ], E1

(
|(∪t∈[τ ]I

D
2 (t, `)) ∩ (∪t∈[τ ]I

D
2 (t, `′))|1E

)
= O

(
D2

n

)
. (2.9)

The Lemma’s proof idea is as follows. The τ non-overlapping alternative path segments,
that we refer to as a τ -path, are obtained by selecting uniformly at random one such τ -path
among all present in the graph. Then (2.8) is established by showing that the number of τ -
paths concentrates. In turn, this concentration is established by bounding the variance of the
number of τ -paths. This is done using the Markov chain bounding technique used in Lemma 4.
The second part of the Lemma, (2.9), requires further concentration results on the numbers of
τ -paths, that follow from applying Janson’s inequality ([30], p. 205, Theorem 6.31).

The proof idea of Theorem 7 (detailed in the appendix) is then as follows. The τ -paths of
Lemma 6 provide τ alternative K-paths to the actual planted path. These are “lures” for the
optimal MAP reconstruction algorithm, that must return on average as many points of each of
these lure paths as of the planted path. Since all these τ +1 paths have intersection of negligible
size, the overlap achieved by MAP must necessarily be at most K/(τ + 1).

2.6 Proof strategy for planted D-ary trees

We assume here that Γ is a complete D-ary tree of size K and depth h, with D > 1 a fixed
constant.
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Under P0, the neighbourhood of a given vertex in G is close to a Galton-Watson process
with offspring law Poi(λ). The probability of the existence of an infinite D-ary subtree in this
process is the largest non-negative root p∗(D,λ) of the equation

p = ψD(λp), (2.10)

where
ψD(µ) := P(Poi(µ) ≥ D), µ ≥ 0.

The behavior of the random graph differs based on whether the above probability is zero or not.
We define the critical threshold λD as

λD = sup
{
λ > 0

∣∣ p∗(D,λ) = 0
}

(2.11)

In the following, we focus on subcritical λ, that is whenever λ < λD.

2.6.1 Study of the Galton-Watson process

Let (T, o) be a rooted Galton-Watson tree with offspring law Poi(λ), with λ < λD. The following
Theorem characterizes the distribution of the maximum height of a D-ary tree rooted in o.

Theorem 8. Let (T, o) be a Galton-Watson tree as above, and n > 0. Let ph be the probability
that a D-ary tree of height h rooted in o is contained in T . Then, for almost all λ, there exists
h∗ such that

ph∗+1 = o

(
1

n

)
(2.12)

ph∗ = Ω(n−c) for some c < 1 (2.13)

Moreover, as n→∞ one has h∗ = ln ln(n)
ln(D) +O(1).

Thus h∗ depends on λ only through terms of lower (constant) order. The Theorem’s proof,
detailed in the appendix, relies on the following

Lemma 7. The sequence ph satisfies the recurrence relation

p1 = 1

ph+1 = ψD(λph) for all h ≥ 1.

Necessarily 0 ≤ ph+1 ≤ ph for all h (since a tree of height h+ 1 contains a tree of height h),
and therefore by continuity of ψD, ph converges as h → ∞ to the largest fixed point of (2.10).
By definition of λD, the only solution of this equation is p∞ = 0, and thus

lim
h→∞

ph = 0 (2.14)

Now, ψD(x) ∼ xD

D! as x→ 0, which implies that for h large enough, ph+1 ' C pDh , and thus
ph ' C εD

h for some small ε > 0. A more rigorous version of this argument, as well as its use in
the proof of Theorem 8, is presented in the Appendix.
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2.6.2 Coupling and application to planted trees

Following the insights from the previous section, we define the two thresholds h and h by :

h = inf

{
h > 0

∣∣∣ ph < 1

n

}
, h = sup

{
h > 0

∣∣∣ ph > ln(n)

n

}
·

Theorem 8 implies that h ∼ ln ln(n)
ln(D) , and that for almost all λ, h = h+1, and otherwise h = h+2.

Also, ph = o( 1
n) and ph = Ω(n−c) for some c > 1. The following Theorem connects the study

from section 2.6.1 to our planted tree problem:

Theorem 9. Let G be a graph drawn according to P0, and h > 0. Then with high probability:
1. For h ≤ h, there are ω(1) D-ary trees of height h in G.
2. For h ≥ h + C, where C is a large enough constant, there are no D-trees of height h in

G.

The second part of this theorem yields an easy detection algorithm whenever h ≥ h+ Ω(1).

Corollary 1. Assume that Γ is a complete D-ary tree of height h, with h ≥ h + Ω(1). Then
w.h.p under P0, XΓ = 0, and therefore the test T (G) = 1 iff XΓ > 0 discriminates between H0

and H1 correctly with high probability.

The two statements of Theorem 9 are a consequence of the following coupling lemma, whose
proof, as well as the full proof of the theorem, is deferred to the appendix :

Lemma 8. For a graph G and a vertex v in G, denote by (G, v)` the `-neighbourhood of v in G.
Similarly, let (T, o)` be the `-neighbourhood of o in the Galton-Watson process described above.

Then, under P0, assuming that ` = o(log(n)), the total distance variation between the law of
(G, v)` and that of (T, o)` goes to 0 as a negative power of n when n→∞.

Furthermore, for λ′ > λ, and (T ′, o′) a GW process with parameter λ′, then, provided the
`-neighbourhood of v is cycle-free, there exists a coupling between (G, v)` and (T ′, o′)` such that
(G, v)` ⊆ (T ′, o′)` with probability 1.

There is therefore a sharp cutoff in the probability of presence of tree of height h in G, and
we have already seen in Corollary 1 that it can be leveraged to obtain a detection algorithm
when h ≤ h. It remains however to study two aspects of the problem: reconstruction for h ≥ h,
as well as the possibility (or lack thereof) of detection when h ≤ h.

2.6.3 Likelihood ratio and detection for h ≤ h

We conjecture, as is the case when D = 1, that when h = h − ω(1), then the total variation
distance |P1 − P0|var goes to 0 when n → ∞. However, the Markov chain bounds used for
lines cannot be easily adapted to the current setting, and we only prove this result for h ≤
h− Ω(ln ln ln(n)) :

Theorem 10. Assume that Γ is a D-ary tree of height h, with D > 1 and

h ≤ h− ln(h)

ln(D)
+

ln
(
1− 1

D

)
ln(D)

.

Then, the total variation distance |P1 − P0|var goes to zero as n → ∞. Thus, for any test
T (G) ∈ {0, 1}, P1(T (G) = 1)− P0(T (G) = 1)→ 0 as n→∞.

As before this is deduced from the following Lemma, shown in the Appendix:
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Lemma 9. Under the same assumptions as Theorem 10, E0(L2)→ 1 as n→∞.

We believe the following stronger version of the Theorem to hold:

Conjecture 1. The result of Theorem 10 holds true for all h ≤ h.

If true, this conjecture would complete the bottom left part of the phase diagram for D-ary
tree, with a sharp threshold between undetectability and detection/reconstruction.

2.6.4 Reconstruction for large h

When λ < λD and h ≥ h, we have shown that under P0 there is w.h.p no copy of Γ in G. One
could therefore expect to be able to reconstruct Γ with overlap 1 − o(1) ; however, this is not
the case :

Theorem 11. Given λ > 0, h ≥ h such that K = o(n), and a realization G of the graph under
P1, the overlap achieved by any estimator K̂ of the attack is bounded above, i.e ov(K̂) ≤ (1−δ)K
for some δ > 0.

The proof is based on the fact that when D > 1, the leaves make up a positive proportion
of Γ, and they are hard to reconstruct with high precision. On the other hand, since there is no
copy of Γ in G w.h.p, one can still reasonably expect to achieve a partial reconstuction. This is
the heuristic behind our second conjecture :

Conjecture 2. For all h ≥ h, there exists a δ > 0 and an estimator (possibly random) K̂ such
that w.h.p ov(K̂) ≥ δK.

2.7 Proof of preliminary results

2.7.1 Proof of Lemma 1

Let Γ1, . . . ,Γm be the copies of Γ in Kn the complete graph on [n], where, denoting Aut(Γ) the

automorphism group of Γ, m =

(
n

K

)
K!

|Aut(Γ)| . Then, by Bayes’ formula, letting e(G) denote the

number of edges in graph G, one has for any graph g:

P1(G = g) =
1

m

m∑
i=1

P0(G = g |Γi ∈ G) =
1

m

m∑
i=1

1Γi∈g

(
λ

n

)e(g)−e(Γi)(
1− λ

n

)(n
2

)
−e(g)

=
1

m

(
λ

n

)−e(Γ) m∑
i=1

1Γi∈g P0(G = g)

=
XΓ

E0[XΓ]
P0(G),

which completes the proof of Lemma 1.

2.7.2 Proof of Theorem 1

We first prove that planted stars of size K = ln(n)/ ln(ln(n))[1 − ω(1/ ln(ln(n)))] are unde-
tectable. The number X of K-stars verifies

E0(X) = n

(
n− 1

K

)(
λ

n

)K
∼ nλ

K

K!
·
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We will have undetectability if E0(L2) ∼ 1, or equivalently by symmetry arguments, if

E0(X|Γ1 ∈ G) ∼ E0(X),

where Γ1 is an arbitrary K-star, e.g. that made of edges (i,K + 1), i ∈ [K]. We decompose
E0(X|Γ1 ∈ G) into three terms M1, M2 and M3, the expected numbers of K-stars centered
respectively: at node K + 1, at some node i ∈ [K], and finally at some node i ∈ [n] \ [K + 1].
Since M3 is upper-bounded by E0(X), it suffices to show that M1 and M2 are o(E0(X)). One
has:

M2 = K
((

n−2
K−1

) (
λ
n

)K−1
+
(
n−2
K

) (
λ
n

)K−1
)

≤ 2K2

n E0(X)
� E0(X).

Also,
M1 =

∑K
`=0

(
K
`

)(
n−K−1
K−`

) (
λ
n

)K−`
≤∑K

`=0

(
K
`

)
λ`

`!
≤ (1 + λ)K .

The desired result M1 � E0(X) will follow if

ln(n) +K ln(λ)− ln(K!)−K ln(1 + λ)→ +∞.

The terms in K are of order at most ln(n)/ ln(ln(n)). By Stirling’s formula, this will therefore
hold provided ln(n)−K ln(K) = ω(ln(n)/ ln(ln(n))). By assumption,

K ln(K) ≤ ln(n)

ln(ln(n))
(1− ω(1/ ln(ln(n)))) ln(ln(n)) = ln(n)− ω(ln(n)/ ln(ln(n))),

hence the undetectability result.
Similarly for detectability, the assumption that K = ln(n)/ ln(ln(n))[1 + ω(1/ ln(ln(n)))]

entails that
ln(E0(X)) = K ln(λ) + ln(n)− ln(K!) = −ω(1).

Thus a test which decides H1 if and only if there is a node in G with degree at least K succeeds
with high probability. Moreover, with high probability, only the centre of the planted star has
degree at least K. The reconstruction method which consists in choosing, besides the highest
degree node, K of its neighbours chosen uniformly at random, achieves an overlap of K − o(K):
indeed, conditional on the planted star’s centre having initially Y neighbors in the original graph,
the expected number of nodes in the reconstructed set will be

1 +
K2

Y +K
≥ 1 +K(1− Y/K) = 1 +K − Y.

Its expectation is lower-bounded by K + 1− λ, and is thus K − o(K).

2.7.3 Proof of Theorem 4

Let k denote the size of the hidden connected component, with k = 0 under P0 and k = K under
P1. Let A1 count the number of isolated nodes in G, A2 the number of connected pairs (i, j)
that form an isolated component, and A3 the number of triplets (i, j, k) that form a connected
component.
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These quantities satisfy with high probability

A1 = e−λ(n− k) +O(
√
n), A2 =

(n− k)2

2

λ

n
e−2λ +O(

√
n), A3 =

(n− k)3

2

λ2

n2
e−3λ +O(

√
n).

(2.15)
Indeed, only the n − k nodes that are not part of the hidden connected graph can contribute
to counts of connected components of size 1, 2 or 3. (2.15) then follows from evaluation of the
expectation and variance of these quantities.

Set λ̂ = (nA3)/(A1A2). By (2.15), λ̂ = λ + O(n−1/2). Now form k̂ = n − eλ̂A1. Again
by (2.15), k̂ = n − (1 − O(n−1/2))(n − k) + O(

√
n) = k + O(

√
n). Our test then decides H1

if k̂ ≥ tn and H0 otherwise where tn is such that
√
n � tn � K, which is indeed satisfied for

tn =
√
K
√
n). This ensures that the test discriminates correctly between the two hypotheses

with high probability. Necessarily then, the variation distance |P0 − P1|var goes to 1 as n→∞.

2.7.4 Proof of Theorem 5

We first begin by a simple lemma, using the concentration of XΓ :

Lemma 10. Let IΓ be the proportion of pairs copies of Γ in G whose intersection is nonempty
:

IΓ =
1

X2
Γ

∑
Γ′,Γ′′∈G

1Γ′∩Γ′′ 6=∅,

where Γ′ and Γ′′ range over all copies of Γ in G.
Then E0(IΓ) = o(1).

Proof. (of Lemma 10). As in the proof of Lemma 1, let Γ1, . . . ,Γm be the copies of Γ in Kn,
and let Xi = 1Γi∈G. Write

E0

(
X2

Γ

)
=
∑
i,j

E0 (XiXj) = E′ + E′′, (2.16)

where E′ is the sum over Γi,Γj having disjoint vertex sets.
We can easily compute E′ :

E′ =

(
n

K

)(
n−K
K

)(
K!

|Aut(Γ)|

)2

p2K−2 ∼ n2Kp2K−2

|Aut(Γ)|2 ∼ E0 (XΓ)2

Since E0

(
L2
)

= 1 + o(1), it follows that

E′′

E0

(
X2

Γ

) = o(1). (2.17)

Now, it is straightforward to see that∑
Γ′,Γ′′∈G

1Γ′∩Γ′′ 6=∅ =
∑

Γi∩Γj 6=∅

XiXj .

Recall that L = XΓ/E0(XΓ) ; we can decompose IΓ as follows :

IΓ = IΓ1L2>1/2 + IΓ1L2<1/2

=

∑
Γi∩Γj 6=∅XiXj

E0

(
X2

Γ

) · 1

L2
· 1L2>1/2 + IΓ1L<1/

√
2
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We can now bound each term separately. The first one is straightforward since 1/L2 < 2
whenever the indicator variable is nonzero ; for the second one, notice that IΓ ≤ 1 and thus

E0(IΓ) ≤ E′′

E0

(
X2

Γ

) · 2 + P0

(
L <

1√
2

)
=

E′′

E0

(
X2

Γ

) · 2 + o(1),

having used the Bienaymé-Chebychev inequality to bound the second term.
Using (2.17) then completes the proof.

We can now move on to the proof of Theorem 5 ; we first transform the expression of ov(K̂)
to better suit our needs :

ov(K̂) =
∑
G

∑
K

P1(G,K)
∣∣∣K̂ ∩ K∣∣∣

=
∑
G

P1(G)
∑
K

P1(K |G)
∣∣∣K̂ ∩ K∣∣∣

where K ranges over all K-subsets of [n] and G over all graphs on n vertices.
The second sum can be transformed as in the proof of Lemma 1 into :

ov(K̂) =
∑
G

P1(G)
∑
Γ′∈G

|K̂ ∩ Γ′|
XΓ

=
∑
G

P0(G)
∑
Γ′∈G

|K̂ ∩ Γ′|
XΓ

+ o(K),

since the conditions in Theorem 5 imply that |P1−P0|var = o(1) (see the remark after Theorem 6).
The sum now ranges over all copies of Γ in G.

This can now be expressed as an expectation :

ov(K̂) = E0

[∑
Γ′∈G

|K̂ ∩ Γ′|
XΓ

]
+ o(K)

=
∑
i∈[n]

E0

[
1i∈K̂

∑
Γ′∈G

1i∈Γ′

XΓ

]
+ o(K).

We can now finally use Lemma 10 : indeed,(∑
Γ′∈G

1i∈Γ′

XΓ

)2

=
1

X2
Γ

∑
Γ′,Γ′′∈G

1i∈Γ′1i∈Γ′′

≤ 1

X2
Γ

∑
Γ′,Γ′′∈G

1Γ′∩Γ′′ 6=∅

= IΓ.
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Therefore,

ov(K̂) ≤
∑
i∈[n]

E0

[
1i∈K̂

√
IΓ

]
+ o(K)

= KE0

[√
IΓ

]
+ o(K)

= o(K),

using Jensen’s inequality as well as Lemma 10. This completes the proof of Theorem 2.17.

2.8 Detailed proofs for planted paths

2.8.1 Proof of Lemma 2

Expression (2.1) follows directly from Lemma 1. In the display below, by
∑

(i1···iK) we mean
summation over all the n(n − 1) · · · (n − K + 1) oriented paths (i1, . . . , iK) of length K over
nodes in [n]. Write:

E0(L2) =
∑

(i1···iK)

∑
(j1···jK)

(
(n/λ)K−1

n···(n−K+1)

)2
P0(paths (i1 · · · iK) and (j1 · · · jK) present in G)

=
∑

(i1···iK)

(
(n/λ)2(K−1)

n···(n−K+1)

)
P0(paths (i1 · · · iK) and (1 · · ·K) present in G)

=
(
n
λ

)K−1 P0( path π = (I1 · · · IK) present in G| path (1 · · ·K) present in G),

where π = (I1 · · · IK) is a candidate path chosen uniformly at random from the n(n−1) . . . (n−K)
possible length-K paths. In the above we used symmetry to consider a single path (1 · · ·K)
instead of all paths (j1 · · · jK).

Note that conditionally on the event that path (1 · · ·K) be present in G and on the path π,
the probability that path π is also present in G is given by (λ/n)K−1−S , where S is the number
of edges in common between the two paths π and (1 · · ·K). This yields expression (2.2).

2.8.2 Proof of Lemma 4

Let Ft = σ(I1, . . . It). Recall that n′ = n − K. It is easily verified that we have the following
inequalities for all t = 2, . . . ,K − 1:

P(Zt = 1|Ft) ≤


1
n′ if Zt−1 = 1,
2
n′ if Zt−1 = 0,
0 if Zt−1 = −1.

Similarly we have

P(Zt ≥ 0|Ft) ≤
K

n′
·

Moreover it is easily seen that P(Z1 = 1) ≤ (K/n′)(2/n′), and P(Z1 ≥ 0) ≤ K/n′.
As in Lemma 4, we introduce the Markov chain {Z ′t}t≥1 on state space {−1, 0, 1} specified

by the initial distribution P(Z ′1 = 1) = (K/n′)(2/n′), P(Z ′1 ≥ 0) = K/n′ and by the transition
probability matrix P in (2.4), that we recall for convenience:

P =

 1−K/n′ K/n′ 0
1−K/n′ (K − 2)/n′ 2/n′

1−K/n′ (K − 1)/n′ 1/n′
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The previous inequalities ensure that we can construct by induction over t a coupled version of
the two processes {Zt} and {Z ′t} such that Z1 ≤ Z ′1, and for t ≥ 1, if Z ′t = −1 then Zt = −1,
and furthermore we have the following implications:

Zt = −1 ⇒ Zt+1 ≤ Z ′t+1,
Zt = Z ′t ⇒ Zt+1 ≤ Z ′t+1,
(Zt, Z

′
t) = (1, 0) ⇒ Zt+1 ≤ Z ′t+1.

Thus the only situation when we can have Zt+1 > Z ′t+1 is when (Zt, Z
′
t) = (0, 1). That is to say,

for each time t+ 1 when process Z hits 1 while chain Z ′ does not, then at time t chain Z ′ hits
1 while process Z does not.

Because of this, the number of times t at which process Z hits 1 is upper-bounded by the
number of times t at which chain Z ′ does. Thus (2.5) holds, concluding the proof of Lemma 4.

2.8.3 Proof of Lemma 3

By (2.5) and (2.3), E0(L2) is upper bounded by

E0(L2) ≤ E0x
∑K−1
s=1 Z′+s . (2.18)

To evaluate this term, introduce the row vector F (t) := {fz(t)}z∈{−1,0,1} where

fz(t) := E0

[
x
∑t
s=1 Z

′+
s 1Z′t=z

]
.

We then have

F (1) = (P(Z ′1 = −1),P(Z ′1 = 0), xP(Z ′1 = 1)) = (1−K/n′,K/n′(1− 2/n′), x(K/n′)(2/n′)),
(2.19)

together with the recurrence relation

F (t+ 1) = F (t)M, (2.20)

where

M =

 1−K/n′ K/n′ 0
1−K/n′ K/n′ − 2/n′ x2/n′

1−K/n′ K/n′ − 1/n′ x/n′


Recall now that x = n/λ and n′ = n −K, so that x/n′ is asymptotic to 1/λ. Thus the above
matrix M reads

M = M0 + (K/n)M1,

where

M0 =

 1 0 0
1 0 2/λ
1 0 1/λ

 , (2.21)

and the entries of matrixM1 are O(1). Note thatM0 admits eigenvalues 0, 1/λ, 1 with respective
left eigenvectors

u0 := (1, 1,−2),
u1/λ := (−λ/(λ− 1), 0, 1),

u1 := (1, 0, 0).

We shall denote (µr, vr) the (eigenvalue,eigenvector) pair of M obtained by perturbation of the
eigenpair (r, ur) of M0, with r ∈ {0, 1/λ, 1}. By the Bauer-Fike theorem (see [25], Theorem
VI.25.1), |µr − r| = O(K/n) for all r.
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Moreover Eq. (1.16), p. 67 in [77] implies that a normed left (resp., right) eigenvector of M
associated to an eigenvalue µr of M differs in norm from a normed left (resp., right) eigenvector
of M0 associated to eigenvalue r by O(K/n). We can thus chose vr = ur +O(K/n).

Let the decomposition of vector F (1) in the basis provided by the eigenvectors {vr} be given
by:

F (1) =
∑

r∈{0,1/λ,1}

αrvr.

Denote by e the all-ones 3× 1 column vector. The upper bound (2.18) on E0(L2) then gives

E0(L2) ≤ F (K − 1)e
= F (1)MK−2e
=

∑
r∈{0,1/λ,1} αrvrµ

K−2
r e.

(2.22)

By our choice of eigenvectors vr such that |vr − ur| = O(K/n), and the fact that

F (1) = (1 +O(K/n))u1 +O(K/n)u1/λ +O(K/n)u0,

corresponding weights αr verify α1 = 1 +O(K/n), α1/λ = O(K/n), α0 = O(K/n).
In the case where λ > 1 and K = o(

√
n), (2.22) yields

E0(L2) ≤ o(1) + (1 + o(1))µK−2
1 = (1 + o(1))(1 +O(K/n))K−2 ≤ (1 + o(1))eO(K2/n).

The assumption that K = o(
√
n) then allows to conclude.

For λ < 1 and K = ln(n)/ ln(1/λ)− ω(ln(ln(n))), (2.22) yields

E0(L2) ≤ (1 + o(1)) (1 +O(K/n))K−2 +O(K/n) (1/λ+O(K/n))K−2 .

The first term is 1 + o(1)) since K2/n = o(1). The second term’s logarithm is equivalent to

ln(K)− ln(n) + (K − 2) ln(1/λ) ≤ ln(ln(n))− ln(ln(1/λ))− ω(ln(ln(n))),

and goes to −∞ by assumption.

2.8.4 Proof of Lemma 5

We place ourselves under P1 and condition on the fact that the K-path planted in the original
Erdős-Rényi graph G0 is kK1 . Denote for each i ∈ [K] by Ci the connected component of node
ki in G0. Denote by Ei the event that Ci ∩ {∪j 6=iCj} 6= ∅ and by E ′i the event that Ci contains
a cycle.

A standard construction of connected components based on a random walk exploration
implies the existence of a constant c > 0 such that for all ` ≥ 0,

P(E ′i, |Ci| = `) ≤ λ`2

n P(|Ci| = `) ≤ λ`2

n e
−c`,

P(Ei, |Ci| = `) ≤ `K
n e
−c`,

P(|Ci| ≥ `) ≤ e−c`.
(2.23)

The first evaluation implies that with high probability, no Ci contains a cycle (i.e. no E ′i occurs)
when K = o(n). The second evaluation implies that the expected number of i ∈ [K] such that
Ei occurs and |Ci| ≥ ` is upper bounded, for some constant c′ > 0, by∑

i∈[K]

P(Ei, |Ci| ≥ `) ≤
K2

n
e−c

′`.
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If K2 = o(n), then this implies that with high probability, no Ei occurs. Thus with high
probability, there is no cycle in the connected component C. Moreover, the third evaluation in
(2.23) ensures that ∑

i∈K
P(Ci ≥

√
K) ≤ Ke−c

√
K = o(1).

Thus the peeling process applied
√
K times to C returns exactly the planted K-path, except for√

K nodes at each of its ends.
If on the other hand, K2 > o(n), we choose `∗ = θ ln(n) and deduce from (2.23) that with

probability 1 − O(n−2), say, there is no i ∈ [K] such that both Ei and |Ci| ≥ θ ln(n) hold.
The peeling process applied

√
K times to C then returns the planted path, shortened by no

more than
√
K nodes at each end, plus parts of the neighborhoods Ci for which Ei occurs. The

expected number of nodes returned that do not belong to the planted path is therefore no more
than

KP(Ei)`∗ = O(
K2

n
)θ ln(n).

This is o(K) under the assumption that K = o(n/ ln(n)). The conclusion of the Lemma follows.

2.8.5 Proof of Theorem 7

We show that Lemma 6 implies (2.6). First, the optimal overlap is achieved by the Maximum
A Posteriori (MAP) inference procedure, i.e. by putting in K̂ the K nodes with the highest
probability, conditional on the observed graph G, of being in K. The probability that node j
belongs to K conditional on G is proportional to the number of K-paths in G to which j belongs.
We denote by K∗ the corresponding set.

Second, when under the alternative distribution P2 := P0(G ∈ ·|kK1 ∈ G, (ki, iD2 , ki+D) ∈ G))
in (2.8), the joint distribution of the numbers of K-paths going through the nodes kK1 or through
the nodes in ki1, iD2 , kKi+D are statistically indistinguishable. Thus, letting N` (respectively N ′`)
denote the number of points of k`M(`−1)M+1 (respectively, ki(`−1)M+1, i

D
2 , k

`M
i+D) that the MAP

estimate selects, one has:
E2(N`) = E2(N ′`).

Let alsoN ′t,` denote the number of points that the MAP estimate selects in kI(t,`)
(`−1)M+1, I

D
2 (t, `), k`MI(t,`)+D.

Since each of these variables is bounded byM = L+D, the variation distance bound (2.8) implies

E1(N`) ≤ E1(N ′t,`) + εM.

Summing these inequalities over ` ∈ [K/M ] and t ∈ [τ ] yields

τ

K/M∑
`=1

E1(N`) = τ ov(K∗) ≤
τ∑
t=1

K/M∑
`=1

E1(N ′t,`) + ετK. (2.24)

However, it holds that:
K∑
i=1

1ki∈K∗ +
∑

j∈∪t,`ID2 (t,`)

1j∈K∗ ≤ K.

This entails (using e.g. Bonferroni’s inequality):

K∑
i=1

1ki∈K∗ +

K/M∑
`=1

D∑
r=2

∑
t∈[τ ]

1Ir(t,`)∈K∗ −
∑

`6=`′,`,`′∈[K/M ]

|(∪t∈[τ ]I
D
2 (`)) ∩ (∪t∈[τ ]I

D
2 (`′))| ≤ K.
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Taking expectations and using the last statement (2.9) of the Lemma yields, separating evalua-
tions on event E and on its complementary set E :

ov(K∗) +

∑
t∈[τ ]

K/M∑
`=1

E1(N ′t,`)

− τL(K/M)− (K/M)2O(D2/n)− τKP1(E) ≤ K.

Summed with the previous equation (2.24), this gives:

(τ + 1) ov(K∗) ≤ K +Kτ
(
ε+ (L/M) + (K/n)(D/M)2 + P1(E)

)
.

The announced result follows from ε� 1, L� D, K = o(n) and P1(E) = o(1).

2.8.6 Proof of Lemma 6, Equation (2.8)

We let πi denote the set of τ candidate paths (ki, i
D
2 (t, `), ki+D)t∈[τ ] of the graph, where for fixed

`, the {iD2 (t, `)}t∈[τ ] are distinct and in [n] \ kK1 . For i ∈ [(`− 1)M + 1, `− 1)M + L] these can
all be used to construct the set of τ alternative paths in the `-th segment of kK1 . We denote by

π(`) = ∪i∈[(`−1)M+1,`−1)M+L]πi

the corresponding collection. Our construction simply amounts to choosing a set of τ paths
(that we shall call for short a τ -path) uniformly at random from π(`) in order to construct the
alternative τ -path for the `-th segment, and this independently for each segment.

Denote Zi = |πi|. Then

E1(Zi) = (n−K)(n−K − 1) · · · (n−K − τ(D − 1) + 1)

(
λ

n

)τD
∼ 1

nτ
λτD,

since we assumed in (2.7) that D ∼ C ln(n). Also, by symmetry,

E1Z
2
i =

∑
iD2 (t),jD2 (t) P1(∀t ∈ [τ ], (ki, i

D
2 (t), ki +D) ∈ G, (ki, jD2 (t), ki+D) ∈ G)

= E1(Zi)
∑

jD2 (t) P1(∀t ∈ [τ ], (ki, j
D
2 (t), ki+D) ∈ G|∀t ∈ [τ ], (ki, i

D
2 (t), ki+D) ∈ G),

where in the last expression we fixed an arbitrary choice (iD2 (t))t∈[τ ]. It follows that:

E1Z
2
i = (E1(Zi))

2E1((n/λ)S),

where S is the number of common edges between the fixed τ -path (ki, i
D
2 (t), ki+D)t∈[τ ] and the

τ -path (ki, J
D
2 (t), ki+D)t∈[τ ] where (JD2 (t))t∈[τ ] is chosen uniformly at random among (τ(D−1))

sequences in [n] \ kK1 .
To control this second moment, we will condition on the number of common edges between

each path JD2 (t) in the randomly selected τ -path at its beginning and end with the beginning
and end of some of the fixed paths iD2 (t′), that we shall denote by Xt and Yt. These satisfy the
constraints Xt, Yt ≥ 0, Xt + Yt ≤ D. For Xt + Yt < D, this forces the choice of Xt + Yt nodes
among the D− 1 to be chosen for path JD2 (t); for Xt +Yt = D, this forces all the D− 1 choices.
Moreover, conditionally on (Xt, Yt)t∈[τ ], the expectation of the variable (n/λ)S verifies

E1((n/λ)S |(Xt, Yt)t∈[τ ]) ≤ (n/λ)
∑
t∈[τ ]Xt+Yt(1 +O(D/n))τD,
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by the Markov chain bounds in Lemma 4. By assumption, D � √n so that (1 + O(D/n))D =
1 + o(1). Thus, accounits for the τ !)2 choices of path correspondences between the beginnings
and ends of the planted and random paths:

E1Z
2
i ≤ (E1(Zi))

2(τ !)2
[
(n/λ)DnD−1 +

∑
x,y≥0,x+y<D(n/λ)x+yn−(x+y)(1 + o(1))

]τ
≤ (E1(Zi))

2(1 + o(1))(τ !)2[nλ−D + (
∑

x≥0 λ
−x)2]2

≤ (E1(Zi))
2(1 + o(1))(τ !)2

(
λ
λ−1

)2τ
,

where we used that nλ−D = o(1).
We now evaluate E1(ZiZj) for i 6= j. The Markov chain bounding technique of Lemma 4

directly applies to give:
E1(ZiZj) ≤ (E(Zi))

2(1 + o(1)).

Finally we obtain:

Var(|π(`)|) = LVar(Zi) + L(L− 1)Cov(Zi, Zj)

≤ E1(Zi)
2

[
L(1 + o(1))(τ !)2

(
λ
λ−1

)2τ
+ L2o(1)

]
≤ E1(|π(`)|)2

[
O(1)
L + o(1)

]
.

Since by assumption L � 1, Tchebitchev’s inequality implies that the random variable |π(`)|
concentrates: for some suitable ε = o(1), one has

P1

(∣∣∣∣ |π(`)|
E1|π(`)| − 1

∣∣∣∣ ≥ ε) ≤ ε.
Denote by A the event A := {| |π(`)|

E1|π(`)|−1| ≤ ε}. It thus has probability at least 1−ε. Consider a
bounded function f of the graph G. This concentration result allows us to establish the variation
distance bound (2.8) as follows. For some arbitrary candidate τ -path (i, iD2 (t))t∈[τ ], omitting for
brevity the argument t below, write:

E1(f(G)|A,K = kK1 , I(`) = i, ID2 (`) = iD2 ) =
E1[f(G)1A1(ki,iD2 ,ki+D)∈G

1
|π(`)| ]

E1(1A1(ki,iD2 ,ki+D)∈G
1
|π(`)|)

.

On A one has
1

E1|π(`)|
1

1 + ε
≤ 1

|π(`)| ≤
1

E1|π(`)|
1

1− ε .

This yields:

1− ε
1 + ε

E1[f(G)1A1(ki,iD2 ,ki+D)∈G]

P1((ki, iD2 , ki+D) ∈ G)
≤ E1(f(G)|A,K = kK1 , I(`) = i, ID2 (`) = iD2 ) ≤ 1 + ε

1− ε
E1[f(G)1(ki,iD2 ,ki+D)∈G]

P1(A ∩ (ki, iD2 , ki+D) ∈ G)
.

By symmetry over all τ -paths in π(`), denoting by Z the total number of possible such τ -paths
in it (Z ∼ Lnτ(D−1)), one has

P1(A ∩ (ki, i
D
2 , ki+D) ∈ G) =

1

Z
E1(|π(`)|1A).

However by definition of A this is no smaller than
1

Z
(1− ε)E1|π(`)|P1(A) ≥ (1− ε)2P1((ki, i

D
2 , ki+D) ∈ G).

Finally we obtain:
1−ε
1+ε

[
E1[f(G)|(ki, iD2 , ki+D) ∈ G]− ||f ||∞ε

]
≤ E1(f(G)|A,K = kK1 , I(`) = i, ID2 (`) = iD2 ) ≤ · · ·

· · · ≤ 1+ε
(1−ε)3E1[f(G)|(ki, iD2 , ki+D) ∈ G].

The result of Equation (2.8) follows.
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2.8.7 Proof of of Lemma 6, Equation (2.9)

We define the event E as, for some suitable constant α = Ω(1):

E := ∩`∈[K/M ]E`, where E` := {|π(`)| ≥ αE1|π(`)|}. (2.25)

In the below display we let ID2 (`) = ∪t∈[τ ]I
D
2 (t, `), and ID2 (`) ∩ ID2 (`′) the intersection of the two

corresponding sets of nodes. We then have for arbitrary ` 6= `′ ∈ [K/M ]:

E1(|ID2 (`) ∩ ID2 (`′)|1E) =
∑
i

∑
j

E1

 1

|π(`)| · |π(`′)|
∑
iD2 ∈πi

∑
jD2 ∈πj

|iD2 ∩ jD2 |1E


where the first summations are over i ∈ [M(` − 1) + 1,M(` − 1) + L] and j ∈ [M(`′ − 1) +
1,M(`′−1)+L]. The expectation in the right-hand side does not depend on i and j, by symmetry.
Moreover, on E we can upper bound the fraction in the expectation by 1/(αE1|π(`)|)2. Thus
fixing some arbitrary i 6= j:

E1(|ID2 (`) ∩ ID2 (`′)|1E) ≤ L2

(αE1|π(`)|)2E1

(∑
iD2 ∈πi

∑
jD2 ∈πj

|iD2 ∩ jD2 |
)

≤ L2

(αE1|π(`)|)2

∑
iD2 ,j

D
2
E1

(
1(ki,iD2 ,ki+D)∈G1(kj ,jD2 ,kj+D)∈G|iD2 ∩ jD2 |

)
,

where summation is over all pairs of lists iD2 and jD2 of τ(D − 2) distinct elements in [n] \ kK1 .
Denote by JD2 one such list selected uniformly at random, and by iD2 a fixed, arbitrary choice
of one such list. One then has, recalling the expression of E1|π(`)| = L(λ/n)τD(n−K) · · · (n−
K − τ(D − 1) + 1):

E1(|ID2 (`) ∩ ID2 (`′)|1E) ≤
1

α2
E1

((n
λ

)S
|iD2 ∩ JD2 |

)
, (2.26)

where S denotes the number of edges in common between the two τ -paths iD2 and JD2 .
As in Lemma 4, we now define the Markov chain {Z ′t}t≥0 on the three states {−1, 0, 1}, with

transition probabilities given by the matrix

P :=

 1−D/n′ D/n′ 0
1−D/n′ (D − 2)/n′ 2/n′

1−D/n′ (D − 1)/n′ 1/n′

 ,

where n′ = n − K − D, and with initial condition Z ′0 = −1. These states are interpreted as
follows: Z ′t = −1 if Jt+1 /∈ iD2 , Z ′t = 0 if Jt /∈ iD2 and Jt+1 ∈ iD2 , and Z ′t = 1 if Jt, Jt+1 ∈ iD2 .
The same coupling argument as for Lemma 4 implies, letting x = n/λ, the following, where the
subscript in the second expectation specifies the initial state of the Markov chain {Z ′t}:

E1

((n
λ

)S
|iD2 ∩ JD2 |

)
≤ E−1

x∑τ(D−1)
i=1 Z′+i

τ(D−1)∑
j=1

1Z′j≥0

 .

We introduce the notation Fz(t) = (Fz,−1(t), Fz,0(t), Fz,1(t)), where

Fz,y(t) := Ez

(
x
∑t
s=1 Z

′+
s 1Z′t=y

)
.

It readily follows that
Fz(t) = (1z=−1,1z=0,1z=1)M t,
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where

M :=

 1−D/n′ D/n′ 0
1−D/n′ (D − 2)/n′ x ∗ (2/n′)
1−D/n′ (D − 1)/n′ x/n′

 .

This matrix M reads, as previously, M0 +O(D/n) where M0 is given by (2.21).
Write then, using Markov’s property:

E−1

x∑τ(D−1)
i=1 Z′+i

τ(D−1)∑
j=1

1Z′j≥0

 =

τ(D−1)∑
j=1

∑
z∈{0,1}

E−1

(
x
∑j
i=1 Z

′+
i 1Z′j=z

)
Ez

(
x
∑τ(D−1)−j
i=1 Z′+i

)
=

τ(D−1)∑
j=1

∑
z∈{0,1}

F−1,z(j)
∑

y=−1,0,1

Fz,y(τ(D − 1)− j).

Previously given perturbation results give the existence of coefficients [βz,r]z∈{−1,0,1},r∈{0,1/λ,1}
all in O(1) such that

Fz(0) =
∑

r∈{0,1/λ,1}

βz,rvr.

It follows that
Fz(τ(D − 1)− j) =

∑
r∈{0,1/λ,1}

βz,rµ
τ(D−1)−j
r vr = O(1),

since |µr| ≤ 1 +O(D/n) and D2 � n. It follows that

E−1

(
x
∑τ(D−1)
i=1 Z′+i

∑τ(D−1)
j=1 1Z′j≥0

)
=

τ(D−1)∑
j=1

F−1(j)

 0
1
1

×O(1)

=

τ(D−1)∑
j=1

∑
r∈{0,1/λ,1}

β−1,rµ
j
rvr

 0
1
1

×O(1).

Since F−1(0) = u1, it holds that β−1,1 = 1 +O(D/n), and β−1,r = O(D/n) for r = 0, 1/λ. The
terms with r = 0, 1/λ in the previous expression thus contribute at most O(D2/n). The terms
with r = 1 give

τ(D−1)∑
j=1

β−1,rµ
j
1v1

 0
1
1

×O(1) = O(D2/n),

by using the fact that v1 = (1, 0, 0) +O(D/n).
It remains to prove that the event E defined in (2.25) is such that P1(E) = 1− o(1). It will

suffice to prove that for all ` ∈ [K/M ], P1(E`) ≥ 1 − o(M/K). To show this we shall leverage
Janson’s inequality, as described in [30], p.205, Theorem 6.31. Applied to the random variable
|π(`)|, it guarantees that for all 0 ≤ t ≤ E|π(`)| one has

P1(|π(`)| ≤ E|π(`)| − t) ≤ e−t2/(2δ), (2.27)

where δ is the expected number of ordered pairs of τ -paths (P,Q) in π(`) that share at least an
edge. Paralleling our previous bound on the variance of |π(`)|, we distinguish the pairs of τ -paths
(P,Q) according to whether they share the same starting point i ∈ [(`− 1)M + 1, (`− 1)M +L]
or not to write δ = δ1 + δ2, and obtain:

δ1 ≤ Lλ
2Dτ

n2τ (1 + o(1))(τ !)2
(

λ
λ−1

)2τ2
,

δ2 ≤ L2 λ2Dτ

n2τ O
(
D2

n

)
.
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We moreover have that E|π(`)| ∼ LλDτnτ , so that

(E|π(`)|)2

δ
≥ Ω(1)

1
L + D2

n

·

By our choices (2.7) for L and D, this lower bound is also Ω(1)L = CΩ(1) ln(n). Taking
t = (1− α)E|π(`)| for some α ∈ (0, 1) in (2.27), we obtain

P1 (|π(`)| ≤ αE|π(`)|) ≤ exp(−α2CΩ(1) ln(n)/2).

It readily follows that, for sufficiently large C, this probability can be made o(n−3) (say), which
suffices to conclude the proof of the Lemma.

2.9 Proofs for planted D-ary trees

2.9.1 Proof of Lemma 7

Proof. The property p1 = 1 is trivial. For h ≥ 1, let Z Poi(λ) be the number of children of the
root o. Each of the Z children has independently a probability ph of being the root of a D-ary
tree of height h. Therefore, if we define Zh to be the number of such children, we have

L(Zh |Z) ∼ Bin(Z, ph).

By the splitting property of Poisson random variables, Zh follows the distribtution Poi(λph).
But T contains a D-ary tree of height h rooted in o if and only if Zh ≥ D, and the lemma
follows.

2.9.2 Proof of Theorem 8

Proof. Let h0 > 0 to be fixed later on ; there exists κ > 0 such that

(λx)D

D!
≤ ψD(λx) ≤ eκ(D−1)ph0

(λx)D

D!
(2.28)

for all x ≤ ε. Therefore, for h ≥ h0, one has

D ln(ph) + (D − 1)cλ,D ≤ ln(ph+1) ≤ D ln(ph) + (D − 1)(cλ,D + κ ph0). (2.29)

Iterating inequality (2.29), we get that for all h ≥ 0 :

Dh (ln(ph0) + cλ,D)− cλ,D ≤ ln(ph+h0) ≤ Dh (ln(ph0) + cλ,D + κ ph0)− cλ,D − κ ph0 (2.30)

Choose h0 such that α := −(ln(ph0) + cλ,D + κ ph0) > 0, and let

h∗ =

 ln
(

ln(n)
α

)
ln(D)

+ h0

Then h∗ + 1 =
ln
(

ln(n)
α

)
ln(D) + h0 + δ for some δ > 0. Thus, using (2.30), we find

ln(ph∗+1) ≤ −Dδ ln(n)− cλ,D − κ ph0

which yields that ph∗+1 = o
(

1
n

)
as required.
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On the other hand, for almost all λ there is a choice of h0 such that

h∗ <
ln
(

ln(n)
α

)
ln(D)

+ h0 − ln

(
α

ln(ph0) + cλ,D

)
by continuity of the right-hand side. Then, for some δ′ > 0, we have

ln(ph∗) ≥ −D−δ
′
ln(n)− cλ,D

which implies the second result of Theorem 8.

2.9.3 Proof of Lemma 8

This lemma is a classical result in sparse random graph theory (see e.g. [29]) ; we reproduce it
here for the sake of self-containedness. First, a result on the size of neighbourhoods in G :

Lemma 11 (Lemma 29 in [29]). For a vertex v in G, let St(v) denote the size of the t-
neighbourhood of v. Then there exists a constant C such that with high probability, for every
vertex v ∈ G and t ≥ 0 :

St(v) ≤ C ln(n)αt

We’ll also use a bound on the number of vertices whose neighbourhood contains a cycle ; its
proof, as well as the preceding lemma, can be found in [29].

Lemma 12 (Lemma 30 in [29]). Assume that ` = o(ln(n)). Then w.h.p there are at most
ln(n)λ2` vertices whose `-neighbourhood contains a cycle. Moreover, with high probability the
graph G is ` tangle-free, i.e. no vertex has more than one cycle in its `-neighbourhood.

We can now prove the first part of our lemma : consider the classical breadth-first exploration
process which starts with A0 = {v} and at step t ≤ 0, considers (if possible) a vertex vt ∈ At at
minimal distance from v and reveals its neighbors Nt+1 in [n] \⋃tAt. It then updates At+1 as
At ∪Nt+1 and repeats the process. We denote by Ft the filtration generated by A0, . . . , At.

Proof. (First part of Lemma 8). Let τ be the stopping time at which (G, v)` has been revealed.By
the two previous lemmas, with probability at least 1 − cλ2`/n, the neighbourhood (G, v)` is a
tree. Therefore, we can mirror the discovery process in (T, o), where at each step we discover
the children of vt. To establish the desired coupling result, we then only need to focus on the
number of children of each node.

Given Ft, the number of discovered neighbors yt+1 of the node vt has distribution Bin(nt, λ/n),
where

nt = n−
t∑

s=0

ys

Therefore, given Ft, the total variation distance between the number of children of vt in
(G, v)` and in (T, o)` is ∣∣∣∣Bin(nt,

λ

n
)− Poi(λ)

∣∣∣∣
var

The Stein-Chen method (see for example [16]) yields that∣∣∣∣Bin(nt,
λ

n
)− Poi

(
λ
nt
n

)∣∣∣∣
var

≤ λ

n
,
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and a classical bound for Poisson law (see again [16]) that∣∣∣Poi
(
λ
nt
n

)
− Poi(λ)

∣∣∣
var
≤ λ

(
1− nt

n

)
From Lemma 11, we find that nt ≥ n−C ln(n)λ` with probability greater than 1− 1/n, and

thus

|Pt+1 −Qt+1|var ≤
λ

n
+ λ

C ln(n)λ`

n
,

where Pt+1 is the distribution of yt+1 given Ft and Qt+1 is a Poi(λ) random variable inde-
pendent of Ft. This finishes the proof of the first part of the lemma.

For the second part, note that there exists a coupling (X,X ′) such that X ∼ Poi(λ), X ′ ∼
Poi(λ′) and X ′ > X a.s. (take for example X ′ = X + Z where Z ∼ Poi(λ′ − λ)).

The proof is then straightforward : for every vertex v, we produce a coupling between the
exploration process of (G, v)` and (T ′, o′)` such that at each step t, the number of neighbors yt
of vt in G is less than in T ′.

2.9.4 Proof of Theorem 9

Proof. We first apply the first part of Lemma 8 to ` = h = O(ln ln(n)). Then, for at least
n−O(ln(n)α) vertices v (for some α > 0), there is a coupling between (T, o)h and (G, v)h. Since
in (T, o)h, there is a copy of Γ in (T, o)h with probability Ω(n−c). It follows that w.h.p there is
ω(1) copies of Γ in G.

Now, assume that h = h+ C, where C is large enough such that for some λ′ > λ, there are
no trees of height h in (T ′, o′) with probability 1− o(1/n).

For every v ∈ G such that the h-neighbourhood of v is a tree, we can produce a coupling of
(G, v)h and (T ′, o′)h such that (G, v)h ⊆ (T ′, o′)h with probability 1. Thus, with high probability,
no vertex whose h-neighbourhood is a tree contains a copy of Γ in said neighbourhood.

Assume now that there is one cycle in the h-neighbourhood of v. With high probability,
there is only one cycle going through v in the neighbourhood. Thus, there are only two vertices
in the neighbors of v whose offspring contains a cycle. With probability 1 − O(n−c), no other
neighbour of v is the root of a D-ary tree of height h− 1. If D > 2, then there is no copy of Γ
rooted in v ; if D = 2, then both neighbors of v in the cycle must be roots of disjoints binary
trees of size h− 1, in which case the cycle edge does not help.

To summarize, the probability of presence of a copy of Γ rooted at v is upper bounded by
o(1/n) if the h-neighbourhood of v is cycle-free, and by O(n−c) if it is not. Since there are
O(ln(n)α) such vertices, w.h.p there is no copy of Γ in G.

2.9.5 Proof of Lemma 9

Proof. In view of Lemma 1, we aim to bound the ratio

E0(L2) =
E0(X2

Γ)

E0(XΓ)2

. As before, let Γ1, . . . ,Γm be the copies of Γ in the complete graph Kn, and let Xi = 1Γi∈G.
We follow the proof sketch from [27] : write

E0

(
X2

Γ

)
=
∑
i,j

E0 (XiXj) = E′ + E′′, (2.31)
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where E′ is the sum over Γi,Γj having disjoint vertex sets.
We can easily compute E′ :

E′ =

(
n

K

)(
n−K
K

)(
K!

|Aut(Γ)|

)2

p2K−2 ∼ n2Kp2K−2

|Aut(Γ)|2 ∼ E0 (XΓ)2

We therefore need to show that E′′ = o
(
E0 (XΓ)2

)
; to this end, note that if Γi and Γj are

such that v(Γi ∪ Γj) = s, then e(Γi ∩ Γj) ≤ 2K − s− 1 (since Γi ∩ Γj is a forest of size 2K − s)
and therefore e(Γi ∪ Γj) ≥ s− 1.

Grouping the terms of E′′ by the size of Γi ∪ Γj , we get

E′′ ≤
2K−1∑
s=K

(
n

s

)(
s

s−K, s−K, 2K − s

)(
K!

|Aut(Γ)|

)2(λ
n

)s−1

=
n

λ|Aut(Γ)|2
2K−1∑
s=K

ns λs

ns
K!2

(s−K)! 2(2K − s)!

=
n

λ|Aut(Γ)|2
2K−1∑
s=K

λs
K!2

(s−K)! 2(2K − s)!

(
1 +O

(
K2

n

))

≤ nλK−1(1 + o(1))

|Aut(Γ)|2
K−1∑
u=0

λu
K!2

u!2(K − u)!
,

where we made the change of variables u = s−K. Now, write

K!2

u!2(K − u)!
=

(
K

u

)
K!

u!
≤
(
K

u

)
KK−u,

and we get

E′′ ≤ nλK−1KK

|Aut(Γ)|2 (1 + o(1))
K−1∑
u=0

(
K

u

)(
λ

K

)u
≤ nλK−1KK

|Aut(Γ)|2 (1 + o(1))

(
1 +

λ

K

)K
≤ nλK−1KKeλ

|Aut(Γ)|2 (1 + o(1))

= O

(
E0(XΓ)2 × KK

nλK

)
When K ≤ ln(n)

ln ln(n) , we find that E′′ = o
(
E0[XΓ]2

)
, as requested. But K = Dh+1−1

D−1 ≤ ln(n)
ln ln(n)

whenever

h ≤ h− ln(h)

ln(D)
+

ln
(
1− 1

D

)
ln(D)

,

which is the condition mentioned in Theorem 10.
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2.9.6 Proof of Theorem 11

Proof. For 0 ≤ p ≤ h, let Lp be the set of vertices at depth p of Γ, and Tp the set of vertices at
depth ≤ p.

The strategy of proof is as follows : we aim to prove that there exists a universal constant δ
such that given G and

T := σ(Th−1) ⊂ G,
the location of the first h− 1 rows of Γ, we have with high probability on G

P1

(
(ov(K̂) ≤ (1− δ)K

∣∣∣ G, T ) = 1− o(1) (2.32)

In what follows, we will consider T to be fixed, and G drawn under P1.

Let ε > 0 to be adapted later, and consider two cases :

• |K̂ ∩ T | ≤ (1− ε)|T | : in this case, we easily get

ov(K̂) ≤ Dh + (1− ε)D
h − 1

D − 1

= K − εD
h − 1

D − 1

= K − εK − 1

D

= (1− ε

D
)K + o(K),

from which equation (2.32) follows since ε is independent from G and T .

• if |K̂ ∩ T | > (1− ε)|T |, we need the following lemma :

Lemma 13. Let σ(Lh−1) = {i1, . . . iDh−1}, and define nk = |N (ik)| and mk = |K̂ ∩ N (ik)|.
Then

E1

(
|K̂ ∩ σ(Lh)|

∣∣∣ G, T ) = D
∑
k

mk

nk

Proof. (of lemma 13). Given T , all vertices that are neighbours of a vertex in σ(Lh−1) are
equally likely to belong to Γ, since all D-ary trees in G have the same probability of generating
G.

Therefore, given G, σ(Lh−1) = {i1, . . . iDh−1}, the random variable Nk = |K̂ ∩ K ∩ N (ik)|
follows a hypergeometric law of parameters (nk, D,mk). If follows that

E1(Nk) = D
mk

nk

Now, with high probability the neighbourhoods N (ik) are disjoint and the variables Nk are
thus independent. Since |K̂ ∩ σ(Lh)| =

∑
kNk whenever the N (ik) are disjoint, the lemma

follows.

We can now prove our main theorem : notice that |N (ik)| ∼ D + Poi(λ) since K = o(n),
so w.h.p a proportion α (for a universal constant α) of the ik are such that |N (ik)| ≥ D + 1.
Moreover,

S :=
∑
k

mk = K − |K̂ ∩ T | < Dh + ε|T | = (1 +
ε

D − 1
)Dh + o(Dh)
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Thus, S ≤ (1 + ε′)Dh for some ε′ > 0.
Let I1 be the set of indices such that nk = D ; we have∑

k

mk

nk
=
∑
k∈I1

mk

nk
+
∑
k/∈I1

mk

nk

≤
∑
k∈I1

mk

D
+
∑
k/∈I1

mk

D + 1

Let S1 =
∑

k∈I1
mk ; we know that

S1 ≤ D|I1| ≤ D(1− α)Dh−1,

since mk ≤ nk = D on I1, which yields∑
k

mk

nk
≤ S1

D
+
S − S1

D + 1

=
S

D + 1
+

S1

D(D + 1)

≤ Dh−1

(
(1 + ε)

D

D + 1
+ (1− α)

1

D + 1

)
≤ Dh−1

(
1− α−Dε

D + 1

)
Choosing ε such that α−Dε > 0, we eventually find

E1

(
|K̂ ∩ Lh|

∣∣∣ G, T ) ≤ (1− γ)Dh (2.33)

for some γ > 0.
Finally, we can bound K̂ ∩ K :

E1

(
|K̂ ∩ K|

∣∣∣ G, T ) ≤ |T |+ E1

(
|K̂ ∩ Lh|

∣∣∣ G, T )
≤ (1− γ)Dh + |T |
≤ K − γDh + o(Dh)

≤ (1− γD − 1

D
)K + o(K),

which completes the proof of Theorem 11.
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Chapter 3

Robustness of community detection in
sparse networks

This chapter is based on the paper [117], a joint work with L. Massoulié.

3.1 Introduction

3.1.1 Background

Community detection is the task of finding large groups of similar items inside a large relationship
graph, where it is expected that related items are (in the assortative case) more likely to be
linked together. The Stochastic Block Model (abbreviated in SBM) has been designed by [69]
to analyze the performance of algorithms for this task; it consists in a random graph G whose
edge probabilities depend only on the community membership of their endpoints. Since then, a
large number of articles have been devoted to the study of this model; a survey of these results
can be found in [1], or in [57] for a more general view on community detection.

The sparse case, when edge probabilities are in O(1/n), is known to be much harder to study
than denser models; the existence of a positive portion of isolated vertices makes complete recon-
struction impossible, and studies usually focus on partial recovery of the community structure.
Insights on this topic often stem from statistical physics; in the two-community case, [47] con-
jectured the existence of a threshold for reconstruction, as well as its exact value; this conjecture
was then proved in [100] for the first part, [91] and [102] for the converse part. Similarly, in
the general case, a method was first presented in [80] and then proven to work in [29] – bar a
technical condition – and [6].

The main issue in the sparse setting is that the usual method relying on the eigenvectors of
the adjacency matrix of G fails due to the lack of separation of the eigenvalues. Consequently,
a wide array of alternative spectral methods have been designed, relying on the spectrum of a
matrix associated to G. More precisely, the eigenvectors associated to the highest eigenvalues of
those matrices will often carry some information about the community structure of G, enough
for partial reconstruction. Examples include the path expansion matrix used in [91], or the
non-backtracking matrix in [80].

Additionally, other types of methods can be used in this setting: for example, the semi-
definite programming (or SDP) algorithm relaxes the problem into a convex optimization one,
which can then be approximately solved (see for example [97]).

An important feature of real-life networks that is missing from the SBM is the existence of
small-scale regions of higher density, that arise from phenomena unrelated to the community
structure. For this reason, a common variant of the SBM is the addition of small cliques to
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the generated random graph. Commonly-used spectral methods, for example those relying on
the non-backtracking matrix in [29], are known to fail in this setting, due to the apparition
of localized eigenvectors, with no ties to the community structure, and corresponding to large
eigenvalues – see [127] for a comparison of those methods, as well as a proposed heuristic to
deal with those localized vectors by lowering their associated eigenvalues. SDP methods are
the most studied for this problem, due to their natural stability; in particular, [88] show a
reconstruction algorithm that is robust to the adversarial addition of o(n) edges, in the case of
an arbitrary number of communities; this was also shown independently by [96]. However, all
the SDP methods mentioned here fail to reach the KS threshold by at least a large constant,
with only [97] approaching it as the average degree increases.

After completing this work we became aware of the article of [3]. It establishes results
akin to ours on robustness (although with a different definition thereof) of spectral methods
for detection in SBM. We use however a slightly different matrix, and our results apply to an
arbitrary number of blocks, whereas they only consider SBM with two blocks.

3.1.2 Summary of main results

This article focuses on the Stochastic Block Model, as defined in [69]; we recall here a succinct
definition:

Definition 2. Let r ∈ N be fixed, W be a r× r symmetric matrix with nonnegative entries, and
π a probability vector on [r]. A random graph G = (V,E) with |V | = n is said to be distributed
according to the Stochastic Block Model (or SBM) with r blocks and parameters (W,π) if:

(i) each vertex v ∈ V is assigned a type σ(v) sampled independently from π,

(ii) any two vertices u, v in V are joined with an edge randomly and independently from every
other edge, with probability

min(
Wσ(u),σ(v)

n
, 1).

Given a random graphG sampled according to the above model (with the types of each vertex
hidden), the aim is to estimate the type assignment σ from the observation of G only. However,
since there is a positive proportion of isolated vertices, perfect reconstruction is theoretically
impossible; we will thus only focus on retrieving only a positive proportion of the types. Our
metric for reconstruction will be the following:

Definition 3. Let σ be the true type estimation, and σ̂ a type estimate of σ; the empirical
overlap between σ and σ̂ is defined as:

ov(σ, σ̂) = max
τ∈Sr

1

n

n∑
v=1

1σ̂(v)=τ(σ(v)) −max
k∈[r]

πk, (3.1)

where Sr is the set of permutations of [r]. For a given algorithm leading to estimates σ̂ for all
n, we say that this algorithm achieves partial reconstruction if

lim inf
n→∞

ov(σ, σ̂) > 0 w.h.p. (3.2)

Spectral methods in denser settings (with average degrees of about log(n)) usually consist
in clustering the eigenvectors of the adjacency matrix of G; however those methods are known
to fail in sparser graphs (see [1]. As a result, different (and more complex) matrices are needed:
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Definition 4. Let G be any graph, and ` be a positive integer. We define two matrices associated
with G:

(i) the path expansion matrix B(`) (studied in [91]), whose (i, j) coefficient counts the number
of self-avoiding paths (that is, paths that do not go through the same vertex twice) of length
` between i and j,

(ii) the distance matrix D(`), defined by D
(`)
ij = 1 if d(i, j) = ` and 0 otherwise, where d

denotes the usual graph distance.

We are now ready to state our first result:

Theorem 12. Assume that π ≡ 1/r, W is a stochastic positive regular matrix, and that the two
highest eigenvalues µ1, µ2 of W satisfy the condition:

µ2
2 > µ1.

Then there exists an algorithm, based only on an eigenvector of B(`) associated with its second
highest eigenvalue, that achieves partial reconstruction whenever ` ∼ δ log(n) for small enough
δ.

The same algorithm also achieves partial reconstruction when applied to D(`) instead of B(`),
with the same conditions on `.

Regardless of the change of matrices, this is already an improvement on [29]; indeed, we
managed to remove a technical asymmetry condition on W (namely, the existence of a simple
eigenvector associated with a high eigenvalue).

We now move on to study the stability of our algorithm; as opposed to most papers that
classify the difficulty of an adversary according to the number of altered edges, ours considers
the number of affected vertices.

Definition 5. Let γ := γ(n) be a positive integer, and G any graph on n vertices. The adversary
of strength γ is allowed to arbitrarily add and remove edges at will, as long as the number of
vertices affected (i.e. vertices that are endpoints of altered edges) is at most γ.

Our main result on stability is then the following:

Theorem 13. Under the same assumptions as Theorem 12, let G a graph generated via SBM,
and G̃γ a graph obtained when perturbed by an adversary of strength γ.
Then, assuming

γ = o

(
(µ2

2/µ1)`/2

log(n)

)
,

the algorithm of Theorem 12 still achieves partial reconstruction on G̃γ.
The above result on γ is the best possible, up to a factor of log(n).

Compared to the spectral algorithm in [29], this is a substantial improvement: their algorithm
is known (see e.g. [127]) to be highly unstable w.r.t edge addition. In contrast, the above result
reaches a perturbation of size a small power of n (since ` is of order log(n)). This is sharp,
and thus still far from the o(n) bound achieved by various SDP methods (notably [88, 97]); this
discrepancy is likely a result of delicate graph properties involved in spectral algorithms that
make them more sensitive to perturbations.

However, our result still has several advantages compared to the other cited methods, namely:
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(i) the threshold for partial reconstruction in our method is exactly the KS threshold, whereas
SDP-based methods require a slightly stronger condition, especially when the mean degree
of G is low.

(ii) as will be proved later, the running time of our algorithm is at most O(n13/12), which is
much faster that the usual methods for SDP algorithms.

(iii) Finally, all the SDP methods mentioned throughout this paper only consider the symmetric
case even in the case of multiple communities.

3.1.3 Detailed setting and results

Stochastic block model

Consider the SBM as defined above; following [29], we introduce Π = diag(π1, . . . , πr) and define
the mean progeny matrix M = ΠW ; the eigenvalues ofM are the same as those of the symmetric
matrix S = Π1/2WΠ1/2 and in particular are real. We denote them by

µ1 ≥ |µ2| ≥ . . . ≥ |µr|.

We shall make the following regularity assumptions: first,

µ1 > 1 and M is positive regular, (3.3)

i.e. the coefficients of M t are all positive for some t. Secondly, each type of vertex has the same
asymptotic average degree, that is

r∑
i=1

Mij =
r∑
i=1

πiWij = α for all j ∈ [r]. (3.4)

In this case, the matrix M∗ = M/α is a stochastic matrix and therefore

µ1 = α > 1. (3.5)

Since M = Π−1/2SΠ1/2, M is diagonalizable; let (φ1, . . . , φr) be a basis of normed left
eigenvectors for M , that is

φ>i M = µiφ
>
i for all i ∈ [r]. (3.6)

Condition (3.4) implies that φ1 = 1/
√
r, where 1 is the all-ones vector.

It has been shown in [29] and [6] that polynomial-time algorithms achieve partial reconstruc-
tion when the following condition, called the Kesten-Stigum threshold, is verified:

τ := µ2
2/µ1 > 1. (3.7)

The quantity τ is commonly referred to as the signal-to-noise ratio.
Alternatively, we define r0 such that

µ2
r0+1 ≤ µ1 < µ2

r0 . (3.8)

Therefore, the condition (3.7) is equivalent to r0 > 1.
In the two-community case, the above condition is equivalent to the possibility of reconstruc-

tion (see [91], [100]). However, in the general setting (r > 4), non-polynomial algorithms can
achieve partial reconstruction even below this threshold. This was originally conjectured in [47],
and more recently proven in [6].
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Path expansion matrix

In [91], an algorithm for partial reconstruction in the two-community case makes use of the path
expansion matrix B(`). Our first aim is to extend the result from this paper to the general case;
we first define for all k ∈ [r] the vectors χk and ϕk by

χk(v) = φk(σ(v)) and ϕk =
B(`)χk
‖B(`)χk‖

. (3.9)

Let λ1(B(`)) ≥ |λ2(B(`))| ≥ |λn(B(`))| be the eigenvalues of B(`) ordered by absolute value;
our first theorem is an extension of Theorem 2.1 in [91]:

Theorem 14. Consider a graph G generated as above, and let ` ∼ κ logα(n), with κ < 1/12.
Then, with probability going to 1 as n goes to +∞:

(i) λk(B(`)) = Θ(µ`k) for k ∈ [r0],

(ii) For k > r0, λk(B(`)) = O(log(n)c α`/2) for some constant c > 0.

Furthermore, consider µ such that µ2 > α and µ is an eigenvalue of multiplicity d of M. Let
φ(1), . . . , φ(d) be an orthonormal basis of eigenvectors of M associated to µ, and ϕ(1), . . . , ϕ(d)

the vectors defined as in (3.9).
There exist orthogonal vectors ξ(1), . . . , ξ(d) in Rn such that the following holds:

(i) for all i, ξ(i) is an eigenvector of B(`), with associated eigenvalue Θ(µ`)

(ii) there exists an orthogonal matrix Q ∈ O(d) such that

‖ϕQ− ξ‖2 = O
(
α`/2µ−`

)
,

where ϕ (resp. ξ) is the n× d matrix whose columns are the ϕ(i) (resp. the ξ(i)).

The above theorem does not yield immediately an algorithm for community reconstruction;
however, adapting the one found in [29], we designed the following:

Algorithm 15. Let ξ be an eigenvector of B(`) associated to the eigenvalue λ2(B(`)), normalized
such that ‖ξ‖2 = n, and K an arbitrary large constant. First, partition V in two sets (I+, I−)
via the following procedure: put v in I+ with probability

P(v ∈ I+ | ξ) =
1

2
+

1

2K
ξ(v)1|ξ(v)|≤K

Then, assign the label 1 to every vertex in I+ and label 2 to every vertex in I−.

We then have the following theorem:

Theorem 16. Assume that π ≡ 1/r, and that r0 > 1, i.e. that we are above the Kesten-Stigum
threshold. Then Algorithm 15 yields an asymptotically positive overlap when n → ∞ for some
choice of K.

Note that we don’t need the asymmetry condition from [29] anymore; our algorithm can
deal with multiple eigenvalues as well. Additionally, an explicit value for K is derived in the
appendix, which makes our algorithm easy to implement and eliminates the need for “magic”
constants, such as the ones in [127] or [6].

A crucial feature of this algorithm is that it depends only on the second eigenvalue of B(`); for
any perturbation that leaves the r0 highest eigenvalues – or even the second highest – unchanged,
the result from Theorem 16 will hold.
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The distance matrix

We introduce now the distance matrix D(`), defined by D(`)
ij = 1 if and only if d(i, j) = `, where

d is the distance in G. This matrix, while sparser than B(`), retains much of the desired spectral
properties. In particular, we have the following theorem:

Theorem 17. Assume that condition (3.7) holds, and set ` such that ` ∼ κ logα(n), where κ
is a constant such that κ < 1/12. Then the results of Theorem 14 hold with the matrix B(`)

replaced by D(`).

As a result, Algorithm 15 will still succeed when applied to the matrix D(`).

Graph perturbation

As mentioned in the introduction, community detection algorithms have to be resilient to the
presence of small cliques (or denser subgraphs) to be useful in practice, since this kind of pattern
is often present in real-life networks. We chose to focus here on adversarial perturbations, as
defined in the summary, whereas other papers (mainly [3]) focus instead on other random graph
models, more prone to small loops and cliques.

As shown in [127], the usual spectral methods do not fare well against adversarial (or even
random) perturbation, especially when the added subgraph contains several cliques. This is
especially the case for the non-backtracking matrix in [29], but also the path expansion matrix
in [91].

However, the distance matrix is more stable to clique addition, since it does not count the
number of paths between two vertices – which is affected significantly by small perturbations.
We can therefore allow a perturbation of size up to a small power of n, as stated in the following
theorem:

Theorem 18. Let G be an SBM as above, with πi ≡ 1/r. Assume that r0 > 1, and recall that
τ = µ2

2/µ1 > 1 is the signal-to-noise ratio.
Then, if γ = o(τ `/ log(n)), then Algorithm 15 based on the distance matrix recovers the

original communities with asymptotically positive overlap, even after a perturbation affecting at
most γ vertices.

The controls in the above theorem can be shown to be sharp, up to a factor of log(n):

Theorem 19. With the same assumptions as above, let D(`) be the distance matrix of G and
D̃(`) the one of the graph after the adversarial perturbation.

If γ = Ω(τ `), then there exists a perturbation of size at most γ such that D̃(`) has an eigen-
value of size Ω(µ`2), with associated eigenvector asymptotically perpendicular to the first r0 ones
of D(`).

Therefore, we cannot guarantee the stability of the eigenvectors ofD(`) when the perturbation
affects too many vertices. This means that the best bound we can get on the size of allowed
perturbations of the matrix D(`) is τ `, which we can rewrite as

τ ` = nκ logα(τ).

The spectral method on the distance matrix is thus robust to perturbations of size at most
nε, with ε = κ logα(τ) going to zero as we approach the KS threshold.
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3.1.4 Notations and outline of the paper

Throughout this paper, we will make use of the following notation: for two functions f, g, we
say that f = Õ(g) if there exists a constant c such that f = O (log(n)c · g). We similarly define
the notations Θ̃ and Ω̃.

The next Section is devoted to the study of the spectral structure of B(`); we also state there
an important theorem on spectral perturbation that will be useful for the study of matrix D(`)

as well. In Section 3, we study the distance matrix D(`) and introduce a method to deal with
perturbations of this matrix. We then leverage this method to obtain bounds on the size of
allowed perturbations.

3.2 Spectral structure of B(`)

3.2.1 A theorem on eigenspace perturbation

In the following, we’ll need a way to link the operator norm of a matrix perturbation to the
consequent perturbation of its eigenvectors. This is provided by the following variant of the
Davis-Kahan sin θ theorem ([126], Theorem 2):

Theorem 20. Let Σ, Σ̂ be symmetric n × n matrices, with eigenvalues λ1 ≥ . . . ≥ λn and
λ̂1 ≥ . . . ≥ λ̂n respectively. Fix 1 ≤ r ≤ s ≤ n and assume that min(λr−1 − λr, λs − λs+1) > 0,
where we define λ0 = +∞ and λn+1 = −∞.

Let d = s − r + 1, and let V = (vr, . . . , vs) and V̂ = (v̂r, . . . , v̂s) have orthonormal columns
satisfying Σvj = λjvj and Σ̂v̂j = λ̂j v̂j for j ∈ {r, . . . , s}.

Then there exists an orthogonal matrix Q ∈ O(d) such that

‖V Q− V̂ ‖F ≤
2
√

2d‖Σ̂− Σ‖op

min(λr−1 − λr, λs − λs+1)
· (3.10)

3.2.2 Strategy of proof

We present here the main ideas of the proof, and defer its full version to the appendix. The first
step is an adaptation of Proposition 19 from [29]:

Proposition 2. Let ` ∼ κ logα(n) with κ < 1/12. Define, for k ∈ [r],

θk = ‖B(`)ϕk‖ and ζk =
B(`)ϕk
θk

, (3.11)

with ϕk as in (3.9).
Then, with high probability, we have the following estimations for every γ < 1/2:

(i) θk = Θ(µ`k) for k ∈ [r0],

(ii) |〈ϕj , ϕk〉| = Õ(α3`/2n−γ/2) for j 6= k ∈ [r0],

(iii) |〈ζj , ϕk〉| = Õ(α2`n−γ/2) for j 6= k ∈ [r0].

Now, let (z1, . . . , zr0) be the Gram-Schmidt orthonormalization of (ϕ1, . . . , ϕr0), and define

D =

r0∑
k=1

θkzkz
>
k .

The non-zero eigenvalues of D are thus the θk, with corresponding eigenvectors zk. Then,
using the asymptotic orthogonality properties of Proposition 2, we prove the following:
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Proposition 3. For all k ∈ [r0], zk is asymptotically parallel to ϕk.
Furthermore,

‖B(`) −D‖op = Õ(α`/2). (3.12)

Theorem 14 then results from a simple application of the Weyl inequality ([125]) and Theorem 20:

Proof. (of Theorem 14): let θk = 0 for k > r0; the eigenvalues of D are then exactly the θi for
i ≤ n.

By Weyl’s inequality, we have for all i ∈ [n]

|λi(B(`))− θi| = Õ(α`/2).

Since θk = Θ(µ`k) for k ∈ [r0], this implies the statements (i) and (ii) of the Theorem.
We now define z(1), . . . , z(d) as the zi associated to ϕ(1), . . . , ϕ(d), and z as in Theorem 14.

Applying inequality (3.10) to B(`) and D yields the existence of an orthogonal matrix Q ∈ O(d)
such that

‖zQ− ξ‖ = O
(
α`/2µ−`

)
,

and the proof of Proposition 3 shows that ‖z(i) − ϕ(i)‖ = O
(
α`/2µ−`

)
for all i. Using the

triangular inequality (and the fact thatQ preserves the norm) completes the proof of Theorem 14.

3.2.3 A new reconstruction algorithm

We now sketch the proof for Theorem 16; it hinges on one key lemma, whose proof (adapted
from [29]) is in the appendix:

Lemma 14. Let ξ be as in Algorithm 15. For all i ∈ [r], there exists a random variable Xi such
that for every K > 0 that is a continuity point of Xi, in probability,

1

n

∑
v∈V

1σ(v)=i ξ(v)1|ξ(v)|≤K → π(i)E[Xi1|Xi|≤K ],

where the convergence is independent from ξ.
Furthermore, we have ∑

i∈[r]

E[Xi] = 0 and
∑
i∈[r]

E[Xi]
2 > c (3.13)

for some absolute constant c > 0, and for all ε > 0 there exists a choice of M (independent from
the chosen eigenvector ξ) such that∣∣E[Xi1|Xi|≤K ]−E[Xi]

∣∣ < ε (3.14)

In particular, Lemma 14 implies that there exist i and j such that |E[Xi]−E[Xj ]| >
√
c.

We then use a concentration bound to show that for all i, in probability,

1

n

∑
v∈V

1σ(v)=i 1v∈I+ → π(i)

(
E[Xi1|Xi|≤K ]

2K
+ 1/2

)
:= π(i)p̃i (3.15)

where the convergence is independent from ξ.
Assume now that π ≡ 1/r; from Lemma 14, for a large enough M there exists a δ > 0 such

that p̃i > p̃j + δ. Assign label 1 to I+ and 2 to I−, and let τ be a permutation such that τ(i) = 1
and τ(j) = 2. The overlap achieved by τ is thus

1

n

∑
v∈V

1σ(v)=i 1v∈I+ +
1

n

∑
v∈V

1σ(v)=j 1v∈I− −
1

r
=

1

r
(p̃i + 1− p̃j)−

1

r
>
δ

r
, (3.16)

which completes the proof of Theorem 16.
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3.3 Study of the matrix D(`)

3.3.1 From B(`) to D(`)

The first aim of this section is to prove Theorem 17, i.e. that we can replace matrix B(`) by
D(`) in the algorithm from Theorem 16. Directly proving this theorem is hard, because of the
lack of a decomposition such as the one in Lemma 17 for D(`). However, in view of the proof of
Theorem 14 above, it is sufficient to prove the following proposition:

Proposition 4. Let G be a SBM as above, and ` ∼ κ logα(n) with κ < 1/12. Let B(`) be the
path expansion matrix of G, and D(`) its distance matrix. Then, with high probability:

ρ(B(`) −D(`)) = Õ(α`/2), (3.17)

where ρ is the spectral radius of a matrix.

For ease of notation, let δ(`) = B(`) −D(`); we first notice that δ(`) is a 0− 1 matrix:

Lemma 15. Let ` ∼ κ logα(n) with κ < 1/12. For all vertices i, j ∈ {1, . . . , n},

0 ≤ δ(`)
ij ≤ 1. (3.18)

Furthermore, if δ(`)
ij = 1, then there exists a cycle C such that:

d(i, C) + d(j, C) ≤ `. (3.19)

Define now a matrix P (`) by P (`)
ij = 1 if there is a cycle C such that d(i, C) + d(j, C) ≤ `. By

the previous lemma, we have δ(`)
ij ≤ P

(`)
ij for all (i, j), and the Perron-Frobenius theorem implies:

ρ(δ(`)) ≤ ρ(P (`)). (3.20)

It remains then to bound the spectral radius of P (`); the key lemma is the following:

Lemma 16. For a given cycle C, let P (`)
C be the matrix defined by P (`)

C,ij = 1 if d(i, C)+d(j, C) ≤ `,
and VC the set of vertices such that d(i, C) ≤ `. Then:

(i) P (`)
C is zero outside of VC × VC,

(ii) ρ(P (`)) = maxC ρ(P
(`)
C ).

By part (ii) of the above lemma, it is sufficient to bound ρ(P
(`)
C ) for a given cycle C in G;

using part (i) of the above lemma, we can restrict our study to the subspace spanned by the
vertices in VC .

Let v be a normed vector of size |VC | corresponding to the highest eigenvalue of P (`)
C ; as

the coefficient (i, j) of P (`)
C only depends on the distance of i and j to C, we likewise group the

coefficients of v by their distance t to C, and write

v = (vtj) 0≤t≤`
1≤j≤St(C)

.

We then have:

v>PCv =
∑
t+u≤`

∑
i,j

vti vuj =
∑
t+u≤`

(∑
i

vti

)∑
j

vuj

.
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By the Perron-Frobenius theorem, the coefficients of v are non-negative. For a given t, the
coefficients vti are necessarily equal; otherwise, we could increase

∑
vti while leaving

∑
v2
ti fixed,

which leads to increasing v>P (`)
C v while keeping ‖v‖2 constant: this contradicts the definition

of v.
Writing vti = vt for all 1 ≤ i ≤ St(C); we get:

v>PCv =
∑
t+u≤`

St(C)Su(C)vtvu and ‖v‖2 =
∑
t

St(C)v2
t . (3.21)

Let w be the size ` vector defined by wt =
√
St(C)vt. Rewriting the above expression in

terms of w yields
v>PCv =

∑
t+u≤`

√
StSuwtwu and ‖v‖2 = ‖w‖2, (3.22)

where we omit the dependency of St in C.
As a result, the spectral radius of PC is equal to that of the `× ` matrix QC defined by:

QC =


S0

√
S0S1 · · ·

√
S0S`−1

√
S0S`√

S0S1 S1 · · ·
√
S1S`−1 0

...
... . .

. ...
...√

S0S`−1

√
S1S`−1 · · · 0 0√

S0S` 0 · · · 0 0

 .

We now finally use the row sum bound to get:

ρ(P
(`)
C ) = ρ(QC) ≤ max

t

∑
u≤`−t

√
StSu (3.23)

≤ max
t

∑
u≤`−t

log(n)α
t+u

2 via lemma 25 (3.24)

= O(log(n)α`/2). (3.25)

Combining the above inequality with Lemma 16 and inequality (3.20) eventually leads to

ρ(δ(`)) = Õ(α`/2), (3.26)

which completes the proof of Proposition 4.

3.3.2 Stability to graph perturbation

In this subsection, we sketch the proofs for Theorems 18 and 19.

A note about computational complexity In the original algorithm, the computation of
B(`) in polynomial time relies on the almost tree-like, tangle-free structure of the random graph
G; this structure may be lost when we add cliques, and increase the algorithm complexity. As
we want to devise polynomial algorithms in every case, this may be a hindrance.

Conversely, the computation of the distance matrix D(`) can be done in polynomial time (for
example breadth-first search of the `-neighbourhood of each vertex in G yields an algorithm in
O(n1+κ) = O(n13/12) in the case of SBM, O(n2) in general) for any graph, which makes it all
the more adapted to the problem at hand.
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In order to prove Theorem 18, we need a less restrictive version of Proposition 4; indeed,
bounding the spectral radius of the perturbation by O(α`/2) not only preserves the highest
eigenvalues, but also bounds the remaining eigenvalues of D(`) by

√
λ1(D(`)). This bound is

commonly referred to as a Ramanujan-like property of G.
This property, although interesting on its own, is not specifically needed for the reconstruc-

tion algorithm to work; rather, we only need one eigenvector associated to the second highest
eigenvalue µ2 to remain unchanged.

We’ll therefore only need the following proposition:

Proposition 5. We consider the same setting as Theorem 18. Let D(`) be the distance matrix
of G, and G̃ and D̃(`) be the perturbed versions (after adding adversarial noise) of G and D(`),
respectively.

Then
ρ(D̃(`) −D(`)) = o(µ`2). (3.27)

The proof relies on a bound similar to the one in Theorem 17, replacing matrices PC and QC
by matrices PK and QK also depending only on the distance to the perturbed vertex set K. The
details can be found in the appendix.

3.4 Proof or Propositions 2 and 3

3.4.1 Outline of the proof and similarities with [29]

The main arguments of the proof rely on the study of three quantities:

(i) a multi-type branching process Zt,

(ii) a similar process based on exploring the neighbourhood of a vertex v in G, named Yt(v),

(iii) the actual vectors we’re aiming to study, B(`)χk.

When the `-neighbourhood of v is cycle-free, we have that B(`)χk = 〈φk, Yt(v)〉 for k ∈ [r0];
and there is a coupling between the laws of Zt and Yt(v) for almost every v, which allows us to
translate results on Zt to results on B(`)χk.

The proof in [29] studies the matrixB`, whereB is the non-backtracking matrix; B`
ij therefore

counts the number of non-backtracking walks between i and j. When the `-neighbourhood of
i is tree-like, (B(`)χk)i = (B`χ̄k)i, where χ̄k is a similarly defined vector; most of the results
from [29] can therefore be applied to this setting without further work. We will simply lay out
the main steps of the proof, highlighting the main differences with [29] when necessary.

3.4.2 Local structure of G

For an integer t ≥ 0, we introduce the vector Yt(v) = (Yt(v)(i))i∈[r], where

Yt(v)(i) = |{w ∈ V | d(v, w) = t, σ(w) = i}| .

The proof of our first proposition, although quite lengthy, is completely identical to its
equivalent in [29]; we therefore omit it.

Proposition 6. Let ` ∼ κ logα(n) with κ < 1/8; then, for all γ < 1/2:

(i) for any k ∈ [r0], there exists ρk > 0 such that in probability,

1

n

∑
v∈V

〈φk, Y`(v)〉2
µ2`
k

→ ρk.
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(ii) for any j 6= k ∈ [r],

E

∣∣∣∣∣ 1n∑
v∈V
〈φj , Y`(v)〉〈φk, Y`(v)〉

∣∣∣∣∣ = O
(
α5`/2n−γ/2(log(n))5/2

)
.

(iii) for any j 6= k ∈ [r],

E

∣∣∣∣∣ 1n∑
v∈V
〈φj , Y2`(v)〉〈φk, Y`(v)〉

∣∣∣∣∣ = O
(
α7`/2n−γ/2(log(n))5/2

)
.

For t ≥ 0, define Yt(v) = {w ∈ V | d(v, w) = t}; for k ∈ [r], we set

Pk,`(v) =
`−1∑
t=0

∑
w∈Yt(v)

Lk(w),

where

Lk(w) =
∑

(x,y)∈Y1(w)\Yt(v),x 6=y

〈φk, Ỹt(x)〉S̃`−t−1(y),

Ỹt(x) is the equivalent of Yt(x) when all vertices in (G, v)t (i.e. vertices at distance at most
t from v) are removed and S̃`−t−1(y) = ‖Ỹ`−t−1(y)‖1.

It can be seen from [29] that when (G, v)2` is a tree, then

(B(`)B(`)χk)v = Pk,`(v) + χk(v)S`(v) + 〈φk, Y2`(v)〉.

One main difference with the proof in [29] is the presence of the last term in the above sum,
as well as the fact that dealing with B(`)B(`)χk is a little more difficult. The next proposition
is an adaptation of Proposition 38 from [29], with an identical – and thus omitted – proof:

Proposition 7. Let ` ∼ κ logα(n) with κ < 1/10. Then, for all γ < 1/2:

(i) for all k ∈ [r0], there exists ρ′k such that w.h.p

1

n

∑
v∈V

(Pk,`(v) + 〈φk, Y2`(v)〉)2

µ4`
k

→ ρ′k.

(ii) for any j 6= k ∈ [r], for some c > 0:

1

n

∑
v∈V

Pk,`(v)〈φj , Y`(v)〉 = O
(
α7`/2n−γ/2(log(n))c

)
.

3.4.3 From local neighbourhoods to the matrix B(`)

For ease of notation, we define Nk,`(v) = 〈φk, Y`(v)〉; using the same methods as in [29], we have
the following estimates:

Proposition 8. Let ` ∼ κ logα(n) with κ < 1/4. Then w.h.p:

‖B(`)χk −Nk,l‖ = o(α`/2
√
n) and ‖B(`)B(`)χk − Pk,` −Nk,2`‖ = O(α`

√
n).
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It then remains to follow the proof of Proposition 19 from [29]; we simply highlight the proof
for estimation (iii) of Proposition 2, since it is the only difference:

Proof. (Proposition 2-(iii)): We have by definition

〈ϕj , ζk〉 =
〈B(`)χj , B

(`)B(`)χk〉
‖B(`)χj‖‖B(`)B(`)χk‖

.

But ‖B(`)χj‖ = Θ(
√
nµ`k), ‖B(`)B(`)χk‖ = ‖B(`)χk‖θk = Θ(

√
nµ2`

k ) and:∣∣∣〈B(`)χj , B
(`)B(`)χk〉 − 〈Nj,`, Pk,` +Nk,2`〉

∣∣∣ ≤ ‖Nj,`‖‖B(`)B(`)χk − Pk,` −Nk,2`‖

+ ‖B(`)B(`)χk‖‖B(`)χj −Nj,`‖
= Õ(α4`√n).

Furthermore, from Propositions 6 and 7, we get

〈Nj,`, Pk,` +Nk,2`〉 = Õ(α7`/2n1−γ/2).

This gives the desired result.

3.4.4 Ramanujan property of B(`)

In order to complete the proof of Theorem 14, we need a control on the other eigenvalues of
B(`). This is covered by the following proposition:

Proposition 9. Let H = 〈ϕ1, . . . , ϕr0〉, and ` ∼ κ logα(n) with κ < 1/12. Then with high
probability

sup
x∈H⊥,‖x‖=1

‖B(`)x‖ = Õ(α`/2). (3.28)

The proof of this result relies on the following decomposition of B(`), whose proof can be
found in [91]:

Lemma 17. Matrix B(`) verifies the identity

B(`) = δ(`) +
∑̀
m=1

δ(`−m)ĀB(m−1) −
∑̀
m=0

Γ`,m, (3.29)

for matrices δ(j),Γ`,m such that for ` = O(log(n)) and with high probability, for all ε > 0,

ρ(δ(j)) = Õ(αj), j = 1, . . . , `, (3.30)

ρ(Γ`,m) = nε−1α(`+m)/2,m = 1, . . . , `. (3.31)

Here, Ā refers to the expected value of the adjacency matrix A of G.

The next step is therefore to control B(m−1)x for x ∈ H⊥; in what follows γ will be any
constant below 1/2. We begin with the following proposition from [29]:

Proposition 10. Let ` ∼ κ logα(n) with κ < γ/2. There exists a subset B ⊂ V , constants C
and c such that w.h.p the following holds:
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(i) for all i ∈ V \ B, 0 ≤ m ≤ `,

|(B(m)χk)i − µt−`k (B(`)χk)i| ≤ C log(n)cαm/2 if k ∈ [r0],

|(B(m)χk)i| ≤ C log(n)cαm/2 if k ∈ [r] \ [r0].

(ii) for all i ∈ B, 0 ≤ m ≤ ` and k ∈ [r],

|(B(`)χk)i| ≤ C log(n)cαm.

(iii) |B| = Õ(α`n1−γ).

From this, we get the following corollary:

Corollary 2. Let ` ∼ κ logα(n) with κ < γ/2; then, with high probability, for 0 ≤ m ≤ ` − 1
and k ∈ [r0]:

sup
x⊥B(`)χk,‖x‖=1

〈B(m)χk, x〉 = Õ(
√
nαm/2).

Additionally, for k ∈ [r] \ [r0],

‖B(m)χk‖ = Õ(
√
nαm/2).

Proof. Write
〈B(m)χk, x〉 =

∑
i∈B

xi(B
(m)χk)i +

∑
i/∈B

xi(B
(m)χk)i = s1 + s2.

Using the Cauchy-Schwarz inequality, the first sum is bounded by

|s1| ≤ log(n)cαm
√
|B| ≤ log(n)dαmα`/2n(1−γ)/2 = o(

√
nαm/2),

while the second can be treated using Proposition 10 and the fact that 〈B(`)χk, x〉 = 0:

|s2| ≤ µt−`k

∑
i∈B
|xi||(B(`)χk)i|+

∑
i/∈B

|xi||(B(m)χk)i − µt−`k (B(`)χk)i|

≤ log(n)cαt−`α`α`/2n(1−γ)/2 + log(n)c
√
nαt/2

= Õ(
√
nαm/2),

where we used again the Cauchy-Schwarz inequality as before.
Let now k ∈ [r] \ [r0]; as before, we write

‖B(m)χk‖2 =
∑
i∈B

(B(m)χk)
2
i +

∑
i/∈B

(B(m)χk)
2
i

≤ |B| log(n)cα2m + n log(n)cαm

= n log(n)c(αl+2mn−γ + αm)

= Õ(nαm),

and the result follows.

We are now ready to prove Proposition 9:
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Proof. Let x ∈ H⊥ such that ‖x‖ = 1 and the supremum in (3.28) is reached; using the
decomposition from Lemma 17, we have

‖B(`)x‖ ≤ ρ(δ(`)) +
∑̀
m=1

ρ(δ(`−m))‖ĀB(m−1)x‖+
∑̀
m=1

ρ(Γ`,m).

The first and third terms are bounded by Õ(α`/2). For the second term, we notice that
defining the matrix P by

P =
1

n

r∑
k=1

µkχkχ
>
k ,

we have Ā = P − diag(P ) since W =
∑
µkφkφ

>
k .

Therefore, for fixed 1 ≤ m ≤ `, we have:

‖ĀB(m−1)x‖ =

∥∥∥∥∥
r∑

k=1

µkχkχ
>
k B

(m−1)x− diag(P )B(m−1)x

∥∥∥∥∥
≤ supiWii

n
‖B(m−1)x‖+

∑
k∈[r0]

µk
n
‖χkχ>k B(m−1)x‖+

∑
k∈[r]\[r0]

µk
n
‖χkχ>k B(m−1)x‖

= I + J +K.

Notice first that B(`)
ij ≤ 2 for all i, j by the tangle-free property, so I = O(1). Now, for

k ∈ [r0], we have

‖χkχ>k B(m−1)x‖ = ‖χk‖〈B(m−1)χk, x〉
≤ Õ(

√
n×√nαm/2).

Therefore, J = Õ(αm/2); finally, using the Cauchy-Schwarz inequality, we have for k ∈
[r] \ [r0]

‖χkχ>k B(m−1)x‖ ≤ ‖χk‖‖B(m−1)χk‖‖x‖
= Õ(

√
n×√nαm/2 × 1).

Putting this all together, we find that for 1 ≤ m ≤ `

‖ĀB(m−1)x‖ = Õ(αm/2).

Since ρ(δ(`−m)) = Õ(α(`−m)/2), we get ‖B(`)x‖ = Õ(α`/2), which proves the desired result.

3.4.5 Proof of Proposition 3

Using Proposition 9, we are now able to prove our last result. Note that if κ < 1/12, there exists
a γ < 1/2 such that κ < γ/6.

Let zk be the Gram-Schmidt orthonormalization of ϕk; using Lemma 9 from [29], we know
that

‖ϕk − zk‖ = Õ(α3`/2n−γ/2),

and thus zk is asymptotically parallel to ϕk.
We only need a final lemma to complete our proof:

60



Lemma 18. Assume that ` ∼ κ logα(n) with κ < γ/6. Then

‖ζk − zk‖ = Õ(θ−1
k α`/2).

Proof. Write
ζk =

∑
j∈[r0]

〈ζk, zj〉zj + x,

where x ∈ H⊥.
We have, for j 6= k, 〈ζk, zj〉 = Õ(α2`n−γ/2) by the above bound of ‖ϕj − zj‖; furthermore,

‖x‖2 = 〈ζk, x〉
= θ−1

k 〈B(`)ϕk, x〉
≤ θ−1

k ‖B(`)x‖
= Õ(θ−1

k α`/2)× ‖x‖.

Therefore, we can write

1 = ‖ζk‖2 = 〈ζk, zk〉2 +
∑
j 6=k
〈ζk, zj〉2 + ‖x‖2

= 〈ζk, zk〉2 + Õ(α2`n−γ/2) + Õ(θ−2
k α`)

= 〈ζk, zk〉2 + Õ(θ−2
k α`),

since κ < γ/6.
Then,

‖zk − ζk‖2 = 2(1− 〈ζk, zk〉) = Õ(θ−2
k α`),

which yields the desired result.

Proof. (of Proposition 3): We first bound ‖B(`)zk −Dzk‖ for k ∈ [r0]. Notice that Dzk = θkzk;
this gives

‖B(`)zk −Dzk‖ ≤ ‖B(`)zk −B(`)ϕk‖+ ‖B(`)ϕk − θkzk‖
≤ ρ(B(`))‖zk − ϕk‖+ θk‖ζk − zk‖
= O(α`)× Õ(α3`/2n−γ/2) + Õ(α`/2)

= Õ(α`/2).

Consider now x ∈ RV such that ‖x‖ = 1. Decomposing x as
∑
xkzk + x′ where x′ ∈ H⊥,

we have:

‖B(`)x−Dx‖ ≤
∑
k∈[r0]

xk‖B(`)zk −Dzk‖+ ‖B(`)x′ −Dx′‖

≤ Õ(α`/2) + ‖B(`)x′‖
= Õ(α`/2),

which completes the proof.
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3.5 Proofs for Theorem 16

3.5.1 Proof of Lemma 14

We first recall a result from Kesten and Stigum: consider a multitype Galton-Watson process,
where the type of the root node is distributed according to arbitrary probability vector ν, and
a particle of type j ∈ [r] has a Poi(Mij) number of children of type i. Let Zt be the vector
of population at time t, and Ft the natural filtration associated to Zt; we have the following
statement:

Lemma 19. For each µ eigenvalue of M such that µ2 > α, and each eigenvector φ associated
to µ,

t 7→ X(φ, ν, t) = µ−tk 〈φk, Zt〉 (3.32)

is an Ft-martingale converging a.s. and in L2 to a random variable with finite variance and
expected value 〈φk, ν〉.

Let µ 6= α be an eigenvalue of M of multiplicity d such that µ2 > α, and φ(1), . . . , φ(d) an
orthonormal basis of eigenvectors associated to d. We define for all i ∈ [d], j ∈ [r], X(i)

j the limit
variable of martingale (3.32), applied to φ = φ(i) and ν = δj . Similarly to previous notations,
let φ(i) (resp. X(i)) be the vector

(
φ

(i)
j

)
j∈[r]

(resp.
(
X

(i)
j

)
j∈[r]

), and φ (resp. X) the (random)

matrix whose columns are the φ(i) (resp. the X(i)). Recall that from Lemma 19, the expected
value of X(i)

j is φ(i)
j for all i, j.

Now, let ξ be an eigenvector of B(`), normalized so that ‖ξ‖2 = n, with associated eigenvalue
Θ(µ`); as shown in the proof of Theorem 14, there exists a vector u ∈ Rd such that

‖ξ − (〈φu, Y`(v)〉)v∈V ‖ = o(1).

We let
φ(ξ) = φu and X(ξ) = Xu.

From Proposition 6, u has norm Θ(1), and since µ−t〈φ,Zt〉 (with ν = δj) converges to X
(i)
j

in L1, µ−t〈φ(ξ), Zt〉 converges to X(ξ)
j in L1 independently of ξ.

Using proposition 36 from [29], we have the following:

Lemma 20. For all i ∈ [r], we have the following convergence in L1:

1

n

∑
v∈V

1σ(v)=i ξ(v)1|ξ(v)|≤K → π(i)E
[
X(ξ)1|X(ξ)|≤K

]
,

for all K that is a continuity point of the distribution of Xi, and independently of ξ.

Proof. We first recall the aforementioned proposition from [29]: we say that a function τ that
takes a graph and a distinguished vertex as an argument is `-local if τ(G, v) depends only on the
`-neighbourhood of v in G. Denote by T the multitype Galton-Watson tree discussed earlier,
rooted at o, where o has the distribution π.
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Lemma 21. Assume that τ, ψ are two `-local functions such that |τ | ≤ ψ and ψ is non-decreasing
by the addition of edges. Then, if ` ∼ κ logα(n) with κ < 1/2, we have, for γ < 1/2:

E

[∣∣∣∣∣ 1n∑
v∈V

τ(G, v)−E[τ(T, o)]

∣∣∣∣∣
]

≤ cα
`/2
√

log(n)

nγ/2

((
E[max

v∈V
ψ4(G, v)]

)1/4

∨
(
E
[
ψ2(T, o)

])1/2)

We now apply this lemma with τ(G, v) = 1σ(v)=i 〈φ(ξ), Y`(v)〉1|〈φ(ξ),Y`(v)〉|≤K where Y` is
defined in Proposition 6.
We can set ψ(G, v) = K, and by Lemma 19 and the subsequent analysis, we have

E[τ(T, o)]→ π(i)E
[
X

(ξ)
i 1|X(ξ)

i |≤K

]
independently of ξ.

Now, by definition, we have ‖ξ −
(
〈φ(ξ), Y`(v)〉

)
v∈V ‖ = o(1) (again independently of ξ). By

the Cauchy-Schwarz inequality, we deduce that

1

n

∑
v∈V

∣∣∣ξ(v)− 〈φ(ξ), Y`(v)〉
∣∣∣ = o(1)

as well, and the lemma follows if K is a continuity point of X(ξ)
i .

It now remains to prove the desired properties of the X(ξ)
i ; first, since µ 6= α, then φ(ξ) is

orthogonal to the all-one vector and as such∑
i∈[r]

E[Xi] =
∑
i∈[r]

φ
(ξ)
i = 0

Moreover, ‖φ(ξ)‖2 = ‖u‖2 = Θ(1), which proves the second assertion.
Finally, let η > 0; since the X(i)

j all have finite variance, there exists a constant K > 0 such

that P(|X(i)
j | ≤ K ′) ≥ 1− η for all i, j and thus

P
(
‖X‖∞ ≤ K ′

)
≥ 1− drη.

Using the equivalence of norms, we find

P
(
∀i, ‖X(i)‖22 ≤ rK ′2

)
≥ 1− drη

which implies (since X(ξ) = Xu)

P
(
‖X(ξ)‖22 ≤ r‖u‖22K ′2

)
≥ 1− drη.

Using again norm equivalence yields finally, for K =
√
r‖u‖K ′,

P
(
‖X(ξ)‖∞ ≤ K

)
≥ 1− drη. (3.33)
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Now, we have, for all i,∣∣∣E[X
(ξ)
i 1|X(ξ)

i |≤K
]−E[X

(ξ)
i ]
∣∣∣ = E

[
X(ξ)i1|X(ξ)

i |>K

]
≤
√
E
[
(X

(ξ)
i )2

]
P
(
|X(ξ)

i | ≥ K
)

≤
√
E
[
(X

(ξ)
i )2

]
·
√
drη

But by Doob’s Theorem, E
[
(X

(ξ)
i )2

]
is finite so choosing η accordingly yields the last in-

equality of Lemma 14.

3.5.2 Proof of limit (3.15)

For each v ∈ V , we define Iv to be the random variable equal to 1 if v is assigned to I+, and 0
otherwise. Conditionnally to ξ, it is straightforward to see that

Iv ∼ Ber(qv) with qv =
1

2
+

1

2K
ξ(v)1|ξ(v)|≤K

Now, let Pi = (|{v ∈ I+ | σ(v) = i}|) /n; by definition,

Pi =
1

n

∑
v∈V

1σ(v)=i Iv

.
We therefore have

E[Pi | ξ] =
1

n

∑
v∈V

1σ(v)=i

(
1

2
+

1

2K
ξ(v)1|ξ(v)|≤M

)
, Var(Pi) ≤

1

4n

and thus with high probability, independently of ξ,

Pi = E[Pi | ξ] + n−1/3 (3.34)

→ π(i)

(
1

2
+

1

2K
E[X

(ξ)
i 1|X(ξ)

i |≤M
]

)
= π(i) p̃i (3.35)

where the convergence speed is independent from ξ.

3.5.3 Explicit bounds on K

In this section, the goal is to perform a more precise analysis of the limit variables X(ξ)
i , and to

leverage this analysis to obtain an explicit value for K in Algorithm 15. For simplicity, we will
assume that π ≡ 1/r throughout this section, although most of the results hold for general π.
We begin with a small lemma:

Lemma 22. Let φ be a normed eigenvector of M associated to an eigenvalue α > µ >
√
α, and

denote by X(φ)
i the limit random variables of Lemma 19. Let c(φ),j (resp. m(φ),j) the vector of

the j-th cumulants (resp. moments) of the X(φ)
i . We then have the following relation, for all

j ∈ N:

c(φ),j =
M

µj
m(φ),j

64



By definition, we have c(φ),1 = m(φ),1 = φ, and we have the following corollary for c(φ),2 and
m(φ),2:

Corollary 3. We denote by φ2 the vector whose coordinates are the φ2
i . Then

c(φ),2 =

(
I− M

µ2

)−1 M

µ2
φ2 and m(φ),2 =

(
I− M

µ2

)−1

φ2.

As a result, we have∑
i∈[r]

Var(X
(φ)
i ) =

1

τ − 1
and

∑
i∈[r]

E[(X
(φ)
i )2] =

τ

τ − 1
,

where τ = µ2
2/α.

Proof. (of Corollary 3). The first part is an easy calculation, observing that c(φ),2 = m(φ),2−φ2.
For the second part, since the all-one vector e is an eigenvector of M associated to the

eigenvalue α, we have: ∑
i∈[r]

Var(X
(φ)
i ) = 〈e, c(φ),2〉

= e>
(

I− M

µ2

)−1 M

µ2
φ2

=
α/µ2

1− α/µ2
e> φ2

=
1

τ − 1
,

and a similar calculation yields the second identity.

It now remains to prove Lemma 22:

Proof. (of Lemma 22). Using the Galton-Watson tree definition (and going one step down into
the tree), we have the following characterization for the variables X(φ)

i :

X
(φ)
i =

1

µ

∑
j∈[r]

Poi(Mij)∑
k=1

X
(φ)
j,k ,

where theX(φ)
j,k are independent copies ofX(φ)

j for all k. Applying the Laplace transform (denoted

by ψ(φ)
i ) and taking the logarithm on both sides, we find that for all t ∈ R,

log(ψ
(φ)
i (t)) =

∑
j∈[r]

Mij

(
ψ

(φ)
j

(
t

µ

)
− 1

)

Now, the k-th Taylor coefficient of the LHS is c(φ),k
i /k!, and the one on the RHS is

∑
j∈[r]

Mij

m
(φ),k
j

k!µk
=

1

µk k!

[
Mm(φ),k

]
i
,

which completes the proof.
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We now can prove our first result on the vector u defined before:

Lemma 23. Let µ, ξ and u be defined as in the proof of Lemma 14. Then we have

‖u‖2 = r(τ − 1) + o(1)

Proof. From Lemma 6, we know that for each i ∈ [d],∥∥∥(〈φ(i), Y`(v)〉
)
v∈V

∥∥∥2
= n(ρ(i) + o(1)) where ρ(i) =

∑
i∈[r]

π(i)E
[
(X(i))2

]
But since π ≡ 1/r, we know from Corollary 3 that

ρ(i) = ρ :=
1

r(τ − 1)

But the vectors
(
〈φ(i), Y`(v)〉

)
v∈V are asymptotically orthogonal, and thus

n = ‖ξ‖2 = (‖v‖2 + o(1)) · n · (ρ+ o(1)),

which yields the desired result.

Now, we are ready to prove some bounds for K; the main step is the following Markov bound
on (X(i))2:

Lemma 24. Let η > 0; then, for all i ∈ [d], j ∈ [r],

P

(
|X(i)

j | ≤
√

τ

η(τ − 1)

)
≥ 1− η

Proof. For all C > 0, we have by Markov’s inequality

P
(
|X(i)

j | ≥ C
)
≤

E[(X
(i)
j )2]

C2
≤ τ

C2(τ − 1)
,

where we bounded E[(X
(i)
j )2] by the sum of all E[(X

(i)
k )2]. The lemma then follows easily.

Now, we have to unravel the calculations done in the proof for Lemma 14; let ε < 0. By the
same bound as above (as well as the fact that the φ(i) are orthogonal), we have

E
[
(X

(ξ)
i )2

]
≤ ‖u‖2 τ

τ − 1
= rτ + o(1)

Therefore, an asymptotically good choice of η is

η =
ε2

r2 d τ
,

which yields a value for K ′ of

K ′ =

√
τ

η(τ − 1)
=
r τ

ε

√
d

τ − 1

Finally, the bound for K becomes

K =
√
r‖u‖K ′ = r τ

ε

√
r d τ
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We thus need to find a sufficient value for ε; recall that∑
i∈[r]

E
[
X

(ξ)
i

]2
= ‖u‖2 = r(τ − 1) + o(1) and

∑
i∈[r]

E
[
X

(ξ)
i

]
= 0,

and therefore there exists some values for i, j such that∣∣∣∣E[X(ξ)
i

]2
−E

[
X

(ξ)
j

]2
∣∣∣∣ ≥√r(τ − 1) + o(1).

A sufficient choice of ε is thus
√
r(τ − 1)/4, which yields an explicit value for K:

K =
r τ

ε

√
r d τ = r τ

√
d

τ

τ − 1

3.6 Proof of Lemma 15

We first recall some results about the neighbourhoods of vertices, whose proofs can be found
in [29]:

Lemma 25. For a vertex i, define St(i) as the number of vertices at distance t of i.
Then there exist constants C and ε > 0 such that with probability 1 − O(n−ε), for all i ∈

{1, . . . n} and ` = O(log(n)):

St(i) ≤ C · log(n) · αt, t ∈ {1, . . . , `}. (3.36)

On the other hand, with high probability, when ` = κ logα(n) with κ < 1/2:
n∑
i=1

S`(i)
2 = Θ(nα2`). (3.37)

Additionnally, a result about the almost tree-like structure of vertex neighbourhoods:

Lemma 26. Assume ` = κ log(n), with κ log(α) < 1/4. Then with high probability no node i
has more than one edge cycle in its `-neighbourhood; we say that G is `-tangle-free.

Using those results, we are now able to prove Lemma 15:

Proof. From Lemma 26, we can deduce that if d(i, j) ≤ `, there are at most two distinct paths
between i and j. Therefore, B(`)

ij ≤ 2 for all i, j.

Additionally, if D(`)
ij = 1, then there is a self-avoiding path of length ` between i and j, and

thus B(`)
ij = 1, so δ(`)

ij ≥ 0 for all i, j.

Finally, assume that there exists a pair i, j such that D(`)
ij = 0 and B(`)

ij = 2; then there are
two paths of length ` between i and j and d(i, j) < ` so there is also a path of length less than
`. This contradicts Lemma 26.

Consider now two vertices i and j such that δ(`)
ij = 1, there are two possibilities:

(i) D(`)
ij = 0 and B(`)

ij > 0: then d(i, j) < ` and there is a path of length < ` and at least a
path of length ` between i and j.

(ii) D(`)
ij = 1 and B(`)

ij > 1: then there are at least two paths of length ` between i and j.

In both cases, there are at least two paths of length at most ` connecting i and j, which
implies the statement of the lemma.
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3.7 Proof of Lemma 16

Proof. (i) is obvious since d(i, C) + d(j, C) ≤ ` implies d(i, C) ≤ `.
For (ii), note first that VC and VC′ are disjoint for C 6= C′: if i ∈ VC ∩ VC′ , then C and C′ are

in the `-neighbourhood of i, which contradicts Lemma 26.
Let πC be the projection on VC for all C; the πC are mutually orthogonal and for a vector v,

we have:

v>P (`)v =
∑
C
v>πCP

(`)πCv =
∑
C

(πCv)>P
(`)
C (πCv) (3.38)

≤
∑
C
ρ(P

(`)
C ) · ‖πCv‖2 (3.39)

≤ max
C

ρ(P
(`)
C ) ·

∑
C
‖πCv‖2. (3.40)

On the other hand,
‖v‖2 ≥

∑
C
‖πCv‖2. (3.41)

Combining inequalities (3.40) and (3.41) yields ρ(P (`)) ≤ maxC ρ(P
(`)
C ); the reverse inequality

comes from the decomposition P (`) =
∑
P

(`)
C .

3.8 Proof of Proposition 5

In the same vein as Lemma 25, for a vertex set X , define St(X ) as the number of vertices at
distance t of X . By taking the union on all vertices of X , we easily get the following corollary:

Corollary 4. For the same constants C and ε as above, with probability 1 − O(n−ε), we have
for all vertex subsets X ∈ P({1, . . . , n}) and ` = O(log(n)):

St(X ) ≤ C · |X | log(n) · αt, t ∈ {1, . . . , `}.

We are now able to prove Proposition 5:

Proof. Let K be the modified vertex set, and consider vertices i and j such that D(`)
ij 6= D̃

(`)
ij .

Then we have one of four possibilities:

(i) d̃(i, j) = ` and d(i, j) < `

(ii) d̃(i, j) > ` and d(i, j) = `

(iii) d̃(i, j) = ` and d(i, j) > `

(iv) d̃(i, j) < ` and d(i, j) = `

In cases (i) and (ii), there is a path between i and j in G through K of length at most `, and
in cases (iii) and (iv) there is a path between i and j in G̃ through K. Therefore, in all cases,
we have that

d(i,K) + d(j,K) ≤ `.
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Write |D̃(`) − D(`)| for the matrix whose (i, j) coefficient is |D̃(`)
ij − D

(`)
ij |, and PK for the

matrix such that PK,ij = 1d(i,K) + d(j,K) ≤ `; the previous analysis and the Perron-Frobenius
theorem imply that

ρ(D̃(`) −D(`)) ≤ ρ(|D̃(`) −D(`)|) ≤ ρ(PK). (3.42)

We can then perform the same analysis as in the proof of Proposition 4 to find that the
spectral radius of PK is the same as that of

QK =


S0

√
S0S1 · · ·

√
S0S`−1

√
S0S`√

S0S1 S1 · · ·
√
S1S`−1 0

...
... . .

. ...
...√

S0S`−1

√
S1S`−1 · · · 0 0√

S0S` 0 · · · 0 0

 ,

where we write St instead of St(K) for ease of notation.
Corollary 4 then gives St(K) = O(αt log(n)|K|) = o(αtτ `/2), and the same calculation as in

Proposition 4 yields:
ρ(QK) = o(α`/2τ `/2) = o(µ`2), (3.43)

and the theorem follows.

3.9 Proof of Theorem 19

In order to prove Theorem 19, we need to show that the controls in the proof of Theorem 18
are actually sharp. We begin with the following lemma, which comes from the fact that `-
neighbourhoods of the vertices of G are roughly of the same size:

Lemma 27. Assume that γ = Θ(τ `/2). Then there exists a set of vertices K of size γ such that:

S`(K) = Ω(α` · γ). (3.44)

Proof. Let ε > 0 to be determined later, S be the set consisting of the n1−ε vertices i with the
largest values S`(i); we first show that, for all i ∈ S

S`(i) = Θ(α`). (3.45)

Indeed, from Lemma 25, we have the folowing inequalities:

Knα2` ≤
n∑
i=1

S`(i)
2 ≤ nmin

i∈S
Sl(i)

2 + |S|(C log(n)α`)2, (3.46)

and the second term is negligible before the two others, which implies (3.45).
We then build a set K of size γ as follows: begin with any member of S, and at each step

add a vertex x such that d(x,K) > 2`. This is possible as long as the 2`-neighbourhood of K
does not cover S, i.e. as long as:

γ · C log(n)α2` < n1−ε. (3.47)

But the LHS of this inequality is bounded by C log(n)n3/4, so this condition is satisfied as
long as ε < 1/4.

By this construction, the vertices of K have `-neighbourhoods that are pairwise disjoint, so
by equation (27) we have:

S`(K) = Ω(α` × γ). (3.48)
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Consider now the vector v such that:

vi =


γ−1/2 if i ∈ K
S`(K)−1/2 if d(i,K) = `

0 otherwise .
(3.49)

The aim is to show the following equalities:

v>D(`)v

‖v‖2 = Ω(µ`2) and 〈v,B(`)χk〉 = o(‖v‖‖B(`)χk‖) ∀k ∈ [r0] (3.50)

Indeed, Theorem 19 will then follow from a simple application of Courant-Fisher’s Theorem.

Proof. (of Eq. (3.50). We notice that ‖v‖2 = 2; furthermore:

v>D(`)v =
∑
i,j

viD
(`)
ij vj

≥ 2
∑

i∈S`(K)

∑
j∈K

vivj

= 2γS`(K)γ−1/2S`(K)−1/2

= 2
√
γS`(K)

= Ω(µ`2),

which proves the first inequality.
It remains then to prove that v is asymptotically orthogonal to B(`)χk for k ∈ [r0]: noticing

that vi ≤ 1 for all i and ‖v‖0 = γ + S`(K), we find, using Corollary 4:

〈v,B(`)χk〉 ≤ (γ + S`(K)) · ‖B(`)χk‖∞
≤ (γ + S`(K)) · Õ(α`)

= Õ(γα2`)

= o(
√
nµ`k) since κ < 1/4

= o(‖v‖‖B(`)χk‖),

where we used part (ii) of proposition 10 to bound ‖B(`)χk‖∞.
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Chapter 4

Non-backtracking spectrum of
inhomogeneous random graphs

This chapter is based on the paper [116].

4.1 Introduction

Let P ∈Mn(R) be a symmetric n×n matrix with entries in [0, 1], and W a (symmetric) weight
matrix with independent random entries. We define the inhomogeneous undirected random
graph G = (V,E) associated with the couple (P,W ) as follows: the vertex set is simply V = [n],
and each edge {u, v} is present in E independently with probability Puv, and holds weight Wuv.

The entrywise expected value and variance of the weighted adjacency matrix of G are

EA = P ◦EW and Var(A) := P ◦E[W ◦W ]− P ◦ P ◦EW ◦EW, (4.1)

where ◦ denotes the Hadamard product. When the entries of P are small, the second term of
Var(A) is negligible and the variance can be well approximated by the entrywise second moment;
we thus define

Q := P ◦EW and K := P ◦E[W ◦W ]. (4.2)

A natural question, arising from matrix perturbation theory, is then as follows:

What is the relationship between the eigendecomposition of A and the one of Q?

Unfortunately, at least in the unweighted case, when the mean degree of G is low (o(log(n))),
it is known that the largest eigenvalues (and associated eigenvectors) of A are determined by
the large degree vertices; see [19] for a complete description of this phenomenon. To extract
meaningful information on the spectrum ofQ, another matrix has shown better performance: the
non-backtracking matrix, whose application to community detection has been studied in [80, 29].

Given a weighted graph G, we define its associated non-backtracking matrix B as follows:
B is a 2|E| × 2|E| matrix indexed by the oriented edges of G, whose coefficients are

Bef = Wf1{e→ f} = Wf1{e2 = f1}1{e1 6= f2},

where e = (e1, e2) and f = (f1, f2). The above question rephrases in our setting as

What is the relationship between the eigendecomposition of B and the one of Q?
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and the main focus of this article is to provide an answer as precise as possible to this problem.
To this end, let

Q =
r∑
i=1

µiϕiϕ
>
i with |µ1| ≥ |µ2| ≥ · · · ≥ |µr|

be the eigendecomposition of Q, and ρ = ρ(K) the largest eigenvalue (in absolute value) of K.
Note that by definition, Q and K are symmetric and therefore all eigenvalues defined above are
real.
We shall assume that there exists some deterministic bound L (possibly depending on n) such
that max |Wij | ≤ L. We can then state our main theorem, without detailing the needed hy-
potheses for now:

Theorem 21 (informal statement). Assume the following conditions:

(i) r = no(1),

(ii) the graph G is sparse enough,

(iii) the eigenvectors of Q are sufficiently delocalized.

Let r0 be the number of eigenvalues of Q whose absolute value is larger than both √ρ and L:

µk >
√
ρ ∨ L for all k ∈ [r0] and µr0+1 ≤

√
ρ ∨ L (4.3)

Then, for i ≤ r0, the i-th largest eigenvalue of B is asymptotically (as n goes to infinity) equal
to µi, and all the other eigenvalues of B are constrained in a circle of center 0 and radius
max(

√
ρ, L). Further, if i ≤ r0 is such that µi is a sufficiently isolated eigenvalue of Q, then the

eigenvector associated with the i-th eigenvalue of B is correlated to a lifted version of ϕi.

Next section consists in the detailed statement of this theorem (with precise hypotheses and
bounds given).

4.2 Detailed setting and results

4.2.1 Notations

General notations: Throughout this paper, we use the following notations:

• for integer n, [n] denotes the set {1, . . . , n}.

• for x ∈ Rn, we shall denote by xi or x(i) the i-th coordinate of x, whichever is most
convenient. ‖x‖ is the 2-norm of x, and ‖x‖∞ the infinity norm of x.

• the operator norm of a matrix M is noted ‖M‖; it is the maximal singular value of M .
Its Frobenius norm is noted ‖M‖F and its infinity norm ‖M‖∞ = supi,j |Mij |.

• 1 denotes the all-one vector, and 1{·} is the indicator function of an event.

• the group of permutations on r elements is noted Sr.

• the max (resp. min) of two numbers a, b is noted a ∨ b (resp. a ∧ b).

• the letter c denotes any absolute constant, whose value should be assumed to be the
maximum of any such constant encountered so far. To improve the readability of our
computations, we use numbered constants ci during proofs.
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Graph theoretic notations: For a graph g = (V,E), let ~E be the set of oriented edges in
E, and

~E(V ) = {(u, v) | u 6= v ∈ V }
be the set of all directed edges of the complete graph on V . If t is an integer, g = (V,E) is a
graph and x ∈ V , then the ball (g, x)t is the subgraph induced by all edges at distance at most
t from x, and ∂(g, x)t is the boundary of the ball, i.e. the set of vertices at distance exactly t
from x. Finally, the set of all non-backtracking paths of length t starting with x will be denoted
Pg(x, t).

Non-backtracking matrix: Since we are interested in the spectrum of the non-backtracking
matrix B, we need to be able to translate “vertex” quantities such as the vectors ϕi into “edge”
quantities. Recall that V = [n], and identify ~E with the set [2m]; we define the 2m × n start
and terminal matrices S and T as

∀e ∈ ~E, i ∈ [n], Sei = 1{e1 = i} and Tei = 1{e2 = i}.

For a vector φ ∈ Rn, this implies that [Tφ](e) = φ(e2) for every edge e ∈ ~E. We then define the
“lifted” eigenvectors χi = Tϕi for i ∈ [r].

We also define the reverse operator J such that Je = ē := (e2, e1), and the diagonal matrix
DW such that DW (e, e) = We; from the definition of B and symmetry ofW it is straightforward
to see that JDW = DWJ and for all t ≥ 0

JDWB
t = (B∗)tDWJ, (4.4)

which is known in mathematical physics as parity-time invariance. For any vector x ∈ R ~E , we
denote the vector Jx by x̌.

Building upon the sketch in the introduction, we now expand on the model definition. Recall
that the expectation and variance matrices were defined as

Q = P ◦EW and K = P ◦E[W ◦W ].

4.2.2 Defining the convergence parameters

In full generality, with no assumptions on P and W , we do not expect meaningful results to
hold; however, we are still able to provide interesting properties on a large class of matrices. We
define in the following the parameters that will govern the convergence behavior :

(i) the rank
r = max

(
rank(Q),

√
rank(K)

)
;

note that in most practical applications (such as the unweighted case), we shall have
r = rank(Q), but we also treat cases where r � rank(Q).

(ii) the sparsity parameter
d = n max

i,j∈[n]
Pij ;

(iii) the eigenvector delocalization parameter

b =
√
n max
i≤rank(Q)

‖ϕi‖∞;
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(iv) the signal-to-noise ratio
τ = max

µ2
i>µ1

µ1

µ2
i

;

(v) and finally the almost sure probability bound

‖W‖∞ = L;

our results hold trivially whenever L = +∞ so we shall restrict ourselves to the case where
L is finite, and the Wij are almost surely bounded. While Theorem 22 below requires an
almost sure bound, techniques for dealing with high probability bounds are discussed in
Theorem 26.

The average degree of a vertex i will be noted by

di =
∑
j∈[n]

Pij ≤ d,

which corresponds to the entries of the vector P1. To ensure that G is connected enough for
spectral properties to hold, we make the (common) assumption that di ≥ 1 for all i ∈ [n]. The
entries of K1 can be viewed as an extension of the average degrees in the weighted case (see [11]
or [20] for examples), and for the same reason as above we require that K1 is bounded away
from zero by a constant.

4.2.3 Main theorem

In the following, G = G(P,W ) is the random graph defined in the introduction, B is the non-
backtracking matrix associated with G, and |λ1| ≥ · · · ≥ |λ2m| are its eigenvalues.

In its most general form, our main result is as follows:

Theorem 22. Let n ≥ 0 and (P,W ) be a couple of n× n matrices defining a random graph G.
Define ρ = ρ(K), r0 as in (4.3), and r, b, d, τ, L as in Subsection 4.2.2.

Let
` =

1− ε
4

log(n)

log(d5(1 ∨ L̃)
2
)
,

for arbitrary ε > 0, and where L̃ = L/µ1. There exist numbers n0 and C0, all depending on n
and the convergence parameters, such that the following holds:

(i) C0 is smaller than

c

(
rbdL̃ log(n)

1− τ

)25

,

and n0 is smaller than

exp

cmax
{

log(r), log(b), log (d)2, log (L̃)
2
, log(log(n))

}
log(τ−1)

 .

(ii) If n ≥ n0, define
σ := C0µ1τ

`/2. (4.5)
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Then the following holds with probability at least 1− c/ log(n)there exists a permutation s
of [r0] such that

max
i∈[r0]

∣∣λi − µs(i)∣∣ ≤ σ, (4.6)

and all the remaining eigenvalues of B are less than C1/`
0

(√
ρ ∨ L

)
.

(iii) For any i ∈ [r0], if
δi := max

j 6=s(i)
|µs(i) − µj | ≥ 2σ, (4.7)

then there exists a normed eigenvector ξ associated with λi such that

〈ξ, ξi〉 ≥
√

1− rd2L̃2
ρ

µ2
i

+O

(
σ

δi − σ

)
where ξi =

Tϕi
‖Tϕi‖

.

In order to get an applicable and useful result, we need n ≥ n0 when n is sufficiently large,
and C

1
`
0 goes to 1 as n goes to infinity. Both conditions are verified in particular when

1− τ = Ω(1), r, b = no(1) and log (d)2 = o(log(n)).

By definition of L̃, whenever L̃ > 1 we have µ1 < L and thus r0 = 0. We can therefore safely
assume L̃ ≤ 1 in applications and not focus on any bound for L.

The proof of this theorem follows the same method as in many spectral proofs, from [91] to
more recent papers such as [28]. It consists of the following:

• show that the neighbourhood of any vertex v is close to a suitably defined random tree,

• study a family of graph functionals that give rise to approximate eigenvectors of the random
tree,

• use a concentration argument to transpose those tree eigenvectors to pseudo-eigenvectors
of the non-backtracking matrix,

• bound the remaining eigenvalues using a variant of the trace method in [58],

• conclude by a matrix perturbation argument.

A large portion of the remainder of this paper is dedicated to implementing this method; however,
we first provide several applications of our result to the fields of random matrix theory and
random graph theory.

4.3 Applications

4.3.1 Phase transition in random graphs

Matrix perturbation theory focuses on finding the eigenvalues and eigenvectors of matrices of
the form X + δ, where X is a known matrix and δ is a perturbation assumed “small” in a
sense. Celebrated results in this field include the Bauer-Fike theorem [18] for asymmetric ma-
trices, and the Weyl [125] and Davis-Kahan [126] theorems for symmetric ones; incidentally the
present paper makes use of those results in its proofs. Finding sharp general theorems without
additional assumptions is known to be hard, since the eigenvalues and eigenvectors depend on
the interactions between the eigenspaces of X and δ.

In the last two decades, growing attention has been paid to problems of the following form:
finding the eigenvectors of Xn + Pn (or, in its multiplicative form, Xn(In + Pn)), where Pn
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is an n × n matrix with low rank r � n (usually fixed) and known eigenvalues, and Xn is a
random matrix with known distribution. Examples of this setting are the spiked covariance
model [13, 73] and additive perturbations of Wigner matrices [107, 56, 34]. A more systematic
study has been performed in [21, 22] on orthogonally invariant random matrices.

A staple of those results is the existence of a so-called BBP phase transition (named after
Baik-Ben Arous-Péché, from the seminal article [13]): in the limit n→∞, each eigenvalue of Pn
that is above a certain threshold gets reflected (albeit perturbed) in the spectrum of Xn + Pn,
with the associated eigenvector correlated to the one of Pn.

Phase transition for the adjacency matrix The adjacency matrix A of our random graph
G can be viewed as a perturbation model by writing

A = EA+ (A−EA) = Q− diag(Q) + (A−EA).

The term diag(Q) being negligible with respect to the others, we can see A as the sum of a
deterministic low-rank matrix and a random noise matrix with i.i.d centered entries. Further,
the entrywise variance of A is equal (up to a negligible term) to K, so the parameter ρ can be
seen as an equivalent to the variance in the Wigner model. We thus expect, whenever √ρ� L
(so that √ρ is the actual threshold in Theorem 22), to find a phase transition akin to the one
in [21]; and indeed the following theorem holds:

Theorem 23. Let (P,W ) be a matrix couple of size n × n and r, b, d, τ, L as above. Assume
further that:

(i) the Perron-Frobenius eigenvector of K is 1; that is K1 = ρ1,

(ii) the above eigenvector equation concentrates, i.e. with high probability there exists ε ≤ 1/2
such that for all i ∈ [n], ∣∣∣∣∣∣

∑
j∼i

W 2
ij − ρ

∣∣∣∣∣∣ ≤ ερ (4.8)

Then, if i ∈ [r0] is such that µ2
i ≥ 2L2, there exists an eigenvalue νi of A that verifies

νi = µi +
ρ

µi
+

ρ

µi
·O
(
L

µi
+
L2

µ2
i

+ ε

)
. (4.9)

Further, if the mean degree dj for all j is equal to d0 > 1, and i is such that δi ≥ 2σ (with σ and
δi defined in (4.5) and (4.7)), then there exists a normed eigenvector ζ of A with corresponfing
eigenvalue νi such that

〈ζ, ϕi〉 =

√
1− ρ

µ2
i

+O

[
1

δi − σ

(
Lρ

µ2
i

+
L2ρ

µ3
i

+ ε
ρ

µi

)]
. (4.10)

Whenever ρ � L2, and ε goes to zero as n → ∞, then the condition µ2
i ≥ 2L2 is always

verified and the O(·) term in (4.9) vanishes, and the obtained expansion is therefore asymptoti-
cally correct. The presence of δi renders a similar result on the scalar product harder to obtain;
however, assuming δi = Θ(

√
ρ) (that is, the eigenvalues of Q are somewhat regularly spaced)

implies similarly that the O(·) term in (4.10) vanishes.
The obtained expression for νi, as well as the scalar product expansion, are identical to the

ones in [21], for low-rank additive perturbations of Gaussian Wigner matrices. Our result is
thus a direct extension of [21], for a larger class of matrices upon a sparsity and concentration
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condition. Such an extension isn’t unexpected, in view of results concerning the universality of
the semicircle law for Bernoulli random matrices, such as [53].

An especially interesting particular case of Theorem 23 is the unweighted random graph
setting, where Wij = 1 for all i, j. In this case, we have K = P so the eigenvector equation
K1 = ρ1 is equivalent to all the average degrees being equal, i.e. di = d0 = ρ for i ∈ [n].
It is a well known fact (see for example [55]) that for unweighted random graphs the degree
concentration property holds with ε = 2

√
log(n)/d0. A slight modification of the proof of

Theorem 23 further removes several error terms, and the following corollary ensues:

Corollary 5. Let P be a n × n matrix and r, b, d, τ as above, with W = 1∗1. Assume further
that for all i ∈ [n], ∑

j∈[n]

Pij = d0 > 16 log(n).

Then for all i ∈ [r0], there exists an eigenvalue νi of A that verifies

νi = µi +
d0

µi
+O

√ log(n)

d0

d0

µi

 ,

and if i is such that δi > 2σ, there exists a normed eigenvector of A such that

〈ζ, ϕi〉 =

√
1− d0

µ2
i

+O

 1

δi − σ

√
log(n)

d0

d0

µi

 .

In particular we have

ν1 = d0 + 1 +O

√ log(n)

d0


This is an improvement on the results of [20], which only give νi = µi + O(

√
d0). The

condition d0 > 16 log(n) ensures that the degrees of G concentrate. Since our result is really
only meaningful whenever d0 � log(n), so that the error term is negligible before d0/µi, we
do not perform the same detailed analysis as in [11]. However, a more precise phase transition
around d0 � log(n) is not excluded.

Theorem 23 is derived from Theorem 22 through an adaptation of the Ihara-Bass formula [17],
obtained by expanding arguments from [19, 124]:

Proposition 11. Let x be an eigenvector of the matrix B with associated eigenvalue λ, such
that λ2 6= W 2

ij for every i, j. Define the weighted adjacency matrix Ã(λ) and the diagonal degree
matrix D̃(λ) by

Ã(λ)ij = 1{i ∼ j} λWij

λ2 −W 2
ij

and D̃(λ)ii =
∑
j∼i

W 2
ij

λ2 −W 2
ij

Then the vector y = S∗DWx is a null vector of the laplacian matrix

δ(λ) = I− Ã(λ) + D̃(λ).

The details and computations are left to the appendix.

77



4.3.2 Community detection in random networks

Community detection is a clustering problem that aims to identify large subgroups (or commu-
nities) with similar characteristics inside a large population, with the only data available being
the pairwise interactions between individuals. Starting from its introductory paper [69], the
stochastic block model has been a popular generative model for algorithm design; it consists
of a random graph G where vertices are partitioned randomly in communities, and edges are
present independently with probability depending only on the community membership of their
endpoints. Popular algorithms for recovering communities include semi-definite programming
methods [97], belief propagation [7], and spectral methods [82, 91]; a comprehensive review of
algorithms and results can be found in [1].

Unlabeled stochastic block model In a general form, we can define the stochastic block
model SBM(n, r, θ,M), where θ ∈ [r]n and M ∈ [0, 1]r×r as follows:

• the vertex set is V = [n],

• each vertex i ∈ [n] has a community label θi in [r],

• for any pair of vertices (i, j), an edge is present between i and j independently from the
others with probability Mθiθj .

It is common to assumeM = α
nM0, whereM0 does not depend on n and α is a scaling parameter.

It is easy to see that up to diagonal terms, the expected adjacency matrix has the form

P = ΘMΘ∗,

where Θ is a n × r matrix such that Θij = 1 if θi = j, and 0 otherwise. We shall assume that
for any k ∈ [r],

#{i ∈ [n] | θi = k}
n

= πk > 0, (4.11)

where π is a deterministic probability vector. Let µ1 ≥ · · · ≥ |µr| the eigenvalues of diag(π)M0,
with α chosen such that |µ1| = 1, and φ1, . . . , φr the associated eigenvectors. Then the non-zero
eigenvalues of P are easily found to be the αµi, with associated eigenvectors Θφi.

A common assumption is that each vertex type has the same average degree, i.e.

P1 = α1,

otherwise a simple clustering based on vertex degree correlates with the underlying communities.
Making this additional assumption, the following theorem holds:

Theorem 24. Assume that r is constant, and α = no(1). Let r0 be defined as follows :

• if α ≥ 1 is constant, r0 is the only integer in [r] such that

αµ2
k > 1 for i ∈ r0, αµ2

r0+1 ≤ 1.

• if α = ω(1), r0 = r.

Then, for any n larger than an absolute constant and all i ∈ [r0] one has

|λi − µi| ≤ c(α log(n))a(αµr0)−κ logα(n) := σ
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for some positive constants c, a, κ, and all other eigenvalues of B are confined in a circle with
radius (1 + o(1))

√
α. Further, if µi is an isolated eigenvalue of diag(π)M0, then there exists an

eigenvector ξ of the non-backtracking matrix B associated with λi such that

〈ξ, ξi〉 ≥
√

1− 1

αµ2
i

+O(σ′) where ξi =
TΘφi
‖TΘφi‖

.

This theorem is essentially a corollary of Theorem 22, with some simplifications due to
Q = K = P and P1 = α1; the error bound σ is the same as in the main theorem. It is a
direct generalization of Theorem 4 in [29], for a diverging degree sequence; further, the property
〈ξ, ξi〉 = 1−o(1) as soon as α� 1 suggests that a clustering algorithm such as k-means performed
on the eigenvectors of B recovers all but a vanishing fraction of the community memberships in
this regime, which would provide an alternative to the Sphere-comparison algorithm presented
in [5].

Conjecture 3. In the SBM defined as above, as soon as α = ω(1), running an approximate
k-means algorithm on the top r eigenvectors of B allows to recover the community memberships
of every vertex but a vanishing fraction as n→∞.

Proving this conjecture would require a more careful eigenspace analysis for eigenvalues with
multiplicity more than one, such as the one performed in [117], as well as an error bound on
the clustering step similar to the one in [82]. Note that in this setting the theoretical covariance
matrices defined in (4.24) are diagonal, and the eigenvectors of B are therefore asymptotically
orthogonal, which can greatly simplify the perturbation analysis of Section 4.4.

Labeled block models In real-world networks, pairwise interactions often carry more infor-
mation than just a binary one. A popular variant of the stochastic block model is thus a model
with added edge labels, as follows: let L be a label space, and consider a SBM drawn under the
model described above. We assign to an edge (i, j) a label Lij ∈ L, drawn independently from
a distribution Pθiθj . Such classes of models have been investigated in full generality in [67, 84],
and a variant with the underlying graph being an Erdős-Rényi model in [113].

We shall focus here on the symmetric two-community SBM, with

π =

(
1

2
,
1

2

)
, M =

(
a b
b a

)
, P11 = P22 = P and P12 = P21 = Q, (4.12)

and assume that both measures are absolutely continuous with respect to another measure m
(note that we can take m = P + Q), with Radon-Nikodym derivatives f and g. Let w : L → R
a bounded weight function, such that w(`) ≤ L for any ` ∈ L; and define the weight matrix
Wij = w(Lij) and the associated weighted non-backtracking matrix B. Then, an application of
Theorem 22 yields the following result:

Theorem 25. Define the parameter τ by

τ = 2
(aEP[w2] + bEQ[w2]) ∨ L

(aEP[w]− bEQ[w])2

Then, whenever τ < 1, let ξ be a normed eigenvector corresponding to the second eigenvalue of
B. There exists a parameter

σ ≤ (a log(n))25τκ loga(n)

for some constant κ such that

〈ξ, ξ0〉 =
√

1− τ +O(σ) where ξ0 =

Θ

(
1

−1

)
√
n
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Whenever this result holds, a proof identical to the one in [91] implies that recovering a
positive fraction of the community memberships is possible.

In order to maximize the region in which reconstruction is possible, we need to choose the
weights w(`) such that τ is minimized. This optimization step is performed in the appendix,
and leads to the following:

Proposition 12. Define the weight function w and signal-to-noise ratio β as

w(`) =
af(`)− bg(`)

af(`) + bg(`)
and β =

1

2

∫
(af − bg)2

af + bg
dm, (4.13)

where a, f, b, g and m are defined in Equation (4.12) and below. Then, whenever β > 1, a
spectral algorithm based on the matrix B is able to recover a positive fraction of the community
memberships when n→∞.

This settles a conjecture of [67], generalizing the setting from finite to arbitrary label space.
Whenever we allow for a higher number of communities, as well as arbitrary choices for the
connectivity matrix Q and distributions Pij , the problem proves to be harder; an analog to
Theorem 25 does hold, but the optimization problem required to minimize the ratio τ looks to
be untractable. In the symmetric SBM case, where

π =
1

k
, M = a1{i = j}+ b1{i 6= j} and Pij = P1{i = j}+ Q1{i 6= j},

we make the following conjecture:

Conjecture 4. In the labeled symmetric SBM, partial reconstruction is possible as soon as
β > 1, where

β =
1

k

∫
(af − bg)2

af + (k − 1)bg
dm,

and a spectral algorithm based on the non-backtracking matrix with weight function

w(`) =
af(`)− bg(`)

af(`) + (k − 1)bg(`)

recovers a positive fraction of the community memberships in polynomial time.

As with Theorem 24, whenever the mean degree α of the graph grows to infinity, we have
〈ξ, ξ0〉 = 1− o(1), which brings us our second conjecture:

Conjecture 5. If we have a = αa0, b = αb0 with α = ω(1), a0, b0 fixed, then as n → ∞ a
clustering algorithm based on the second eigenvector of the weighted non-backtracking matrix B
with the weight function defined in (4.13) recovers all but a vanishing fraction of the community
memberships.

As a final remark, note that the optimal weight function assumes perfect knowledge of all
model parameters, especially the exact label distribution for each community pair. However,
in some cases, this weight function is a rescaling of a more agnostic one; as an example, in the
censored block model [2] we find that w(`) = c` (with ` = ±1), and thus the spectral algorithm
mentioned here is the same as in [113].
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4.3.3 Extension to gaussian weights

In the form presented in Theorem 22, our result is only meaningful with almost surely bounded
random variables (i.e. with L <∞). With a more careful analysis of the error bounds, this can
be extended to

L = sup
i,j∈[n]

sup
k

E[W k
ij ]

1/k; (4.14)

however, we determined the class of distributions satisfying (4.14) was not different enough from
the bounded case to warrant increasing the complexity of the proof.

To the contrary, the setting where the Wij are gaussian random variables is of independent
interest; it can be seen as a special case of noisy matrix completion as described in [33, 78]. In
this case, the moment condition of (4.14) is far from satisfied, and at least at first glance our
proof cannot be adapted readily. Still, we show the following:

Theorem 26. Assume that the Wij ∼ N (mij , s
2
ij) are independent Gaussian random variables,

and let
m =

∑
i,j

mij and s = sup
i,j

sij .

Then the conclusions of Theorem 22 apply with

L = m+ 2s
√

log(n)

The loss of a
√

log(n) factor comes from the use of a concentration bound for theWij ; details
can be found in the appendix.

To the best of our knowledge, there isn’t much litterature to compare with on the topic of
eigenvalue reconstruction for noisy matrix completion, the works cited above being focused on
reconstructing the whole matrix. However, results on gaussian matrix perturbation such as [21]
seem to indicate that the

√
log(n) factor is superfluous and can be improved upon with other

methods.

4.4 A Bauer-Fike type bound for almost orthogonal diagonaliza-
tion

One important tool in tying together the local analysis of G is a matrix perturbation theorem,
derived from the Bauer-Fike theorem. It mostly consists in a simplification and adaptation
of Theorem 8.2 in [28], tailored to our needs. We begin by recalling the original Bauer-Fike
Theorem:

Theorem 27 (Bauer-Fike Theorem [18]). Let D be a diagonalizable matrix, such that D =
V −1ΛV for some invertible matrix V and Λ = diag(λ1, . . . , λn). Let E be any matrix of size
n× n. Then, any eigenvalue µ of D + E satisfies

|µ− λi| ≤ ‖E‖κ(V ), (4.15)

for some i ∈ [n], where κ(V ) = ‖V ‖‖V −1‖ is the condition number of V .
Let R be the RHS of (4.15), and Ci := B(λi, R) the ball centered at λi with radius R (in C).

Let I ⊆ [n] be a set of indices such that(⋃
i∈I

Ci

)
∩
(⋃
i/∈I

Ci

)
= ∅.

Then the number of eigenvalues of D + E in
⋃
i∈I Ci is exactly |I|.
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4.4.1 A custom perturbation lemma for almost diagonalizable matrices

Building on this theorem, we now expose this section’s first result. Let U = (u1, . . . , ur) and
V = (v1, . . . , vr) be n × r matrices; our nearly diagonalizable matrix shall be S = UΣV ∗ with
Σ = diag(θ1, . . . , θr). We shall assume that the θi are in decreasing order of modulus:

|θr| ≤ |θr−1| ≤ · · · ≤ |θ1| = 1.

Now, let A be a n × n matrix, not necessarily diagonalizable. The assumptions needed for
our results are as follows:

(i) For some small constant ε > 0,
‖A− S‖ ≤ ε.

(ii) The matrices U and V are well-conditioned: both U∗U and V ∗V are nonsingular, and
there exist two constants α, β > 1 such that

‖U∗U‖ ≤ α, ‖V ∗V ‖ ≤ α,
‖(U∗U)−1‖ ≤ β, ‖(V ∗V )−1‖ ≤ β.

(iii) There exists another constant 0 < δ < 1 such that

‖U∗V − Ir‖∞ ≤ δ.

(iv) The θi are well-separated from 0, in the sense that

|θr| > 2σ := 2× 84r2α7/2β(ε+ 5rα2βδ). (4.16)

This definition may seem obscure, but shall happen naturally in the proof of the theorem.

Then the following result, whose statement and proof (regarding the eigenvalue perturbation)
are adapted from [28], holds:

Theorem 28. Let A be a matrix satisfying assumptions (i)-(iv) above, and let |λ1| ≥ |λ2| ≥
· · · ≥ |λr| be the r eigenvalues of A with greater modulus. There exists a permutation π such
that for all i ∈ [r]

|λπ(i) − θi| ≤ r × σ = 84r3α7/2β(ε+ 5rα2βδ),

and the other n− r eigenvalues of A all have modulus at most σ. Additionally, if i is such that

B(θi, σ) ∩

⋃
j 6=i

B(θj , σ)

 = ∅, (4.17)

then there exists a normed eigenvector ξ associated with λπ(i) such that∥∥∥∥ξ − ui
‖ui‖

∥∥∥∥ ≤ 3σ

δi − σ
,

where δi is the minimum distance from θi to another eigenvalue:

δi = min
j 6=i
|θj − θi| ≥ 2σ.
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Proof. We begin with defining an alternative matrix Ū such that Ū∗V = Ir. Let Hi be the
subspace of Rn such that

Hi = vect(vj | j 6= i),

and consider the vectors ũi and ūi defined as

ũi = ui − PHi(ui) and ūi =
ũi

〈ũi, vi〉

with PHi the projection onHi, and Ũ , Ū the associated n×r matrices. Then it is straightforward
to see that

〈ūi, vi〉 = 1 and 〈ūi, vj〉 = 0,

for all j 6= i, which shows that Ū∗V = Ir. Now, if we let Vi be the matrix V with the i-th
column and line deleted,

PHi = Vi(V
∗
i Vi)

−1V ∗i ,

and
‖V ∗i ui‖2 =

∑
j 6=i
〈vj , ui〉2 ≤ rδ2,

hence we can compute ‖ui − ũi‖:

‖ui − ũi‖ = ‖PHi(ui)‖ ≤ ‖Vi‖‖(V ∗i Vi)−1‖‖V ∗i ui‖,

and by the interlacing theorem ‖Vi‖ ≤
√
α and ‖(V ∗i Vi)−1‖ ≤ β since Vi is a principal submatrix

of V . Using the fact that ‖M‖ ≤ ‖M‖F for any matrix M , we find

‖U − Ũ‖ ≤ r2√αβδ.

For the second part, note that by the Cauchy-Schwarz inequality,

|〈ũi, vi〉 − 1| ≤ |〈ui, vi〉 − 1|+ ‖ui − ũi‖ · ‖vi‖
≤ δ(1 + rαβ),

with the (generous) inequality ‖vi‖ ≤ ‖V ‖ used in the last line. Whenever δ is small enough,
we can use the inequality

∣∣∣(1− t)−1 − 1
∣∣∣ ≤ 2t which is valid for t ≤ 1/2:∣∣∣∣ 1

〈ũi, vi〉
− 1

∣∣∣∣ ≤ 2δ(1 + rαβ).

As a result,

‖ūi − ũi‖ = ‖ũi‖
∣∣∣∣ 1

〈ũi, vi〉
− 1

∣∣∣∣
≤ 2δ

√
α(1 + rαβ)

≤ 4rα3/2βδ.

Using again the norm equivalence bound and the triangular inequality,

‖Ū − U‖ ≤ 5r2α3/2βδ, (4.18)

which ends the preliminary part of the proof.
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We now set accordingly S̄ = ŪΣV ∗, and claim that S is now a truly diagonalizable matrix.
Indeed, any ūi is an eigenvector of S̄ with associated eigenvalue θi, and a basis of im (V )⊥

provides a family of eigenvectors of Σ with eigenvalue 0. We consequently set

Π =
(
Ū Y

)
,

where Y is an orthonormal basis of im (V )⊥; Π is the matrix of an eigenvector basis for S.
Further, we have

‖S̄ − S‖ ≤ ‖U − Ū‖‖Σ‖‖V ‖ ≤ 5r2α2βδ := ε′.

The above bound implies that the matrices A and S̄ are still close:

‖A− S̄‖ ≤ ‖A− S‖+ ‖S − S̄‖ ≤ ε+ ε′, (4.19)

and we can apply the Bauer-Fike theorem to A and S̄; the eigenvalues of A are contained in the
union of the balls B(θi, ε

′′) and B(0, ε′′), where

ε′′ = (ε+ ε′)κ(Π).

The computation of κ(Π) being cumbersome, we defer the following lemma to later:

Lemma 28. Let X be a n × r matrix with rank r, and X such that X∗X ′ = Ir. Let Y be a
matrix for an orthonormal basis of im (X ′)⊥ = ker((X ′)∗), and P = (X,Y ). Then, if ‖X‖ ≥ 1
and ‖X ′‖ ≥ 1,

‖Π‖ ≤
√

2‖X‖ and ‖Π−1‖ ≤
√

2(1 + ‖X‖‖X ′‖)
Applying this to X = Ū and X ′ = V gives the bound

κ(Π) ≤ 2
(
‖Ū‖+ ‖Ū‖2‖V ‖

)
,

and we use the triangular inequality to bound ‖Ū‖:

‖Ū‖ ≤ ‖U‖+ ‖Ū − U‖ ≤ 6r2α3/2β,

a very loose but sufficient bound, that entails

κ(Π) ≤ 84r2α7/2β.

The corresponding bound on ε′′ reads

ε′′ ≤ 84r2α7/2β(ε+ 5rα2βδ) = σ,

enlightening the definition in (4.16). Going back to the Bauer-Fike application, the separation
condition (4.16) implies that B(0, σ) is disjoint from B(θi, σ) for i ∈ [r] and we can apply the
second part of the theorem: there are exactly r eigenvalues of A inside the region

Ω =
⋃
i∈[r]

B(θi, σ),

and all other eigenvalues of A have modulus less than σ. Further, all connected components of
Ω have the same number of eigenvalues of A and B. As a result, there exists a permutation π
such that for all i ∈ [r], we have∣∣λπ(i) − θi

∣∣ ≤ sup
Ω′⊆Ω

diam(Ω′) ≤ 2rσ,

84



where the supremum is taken over all connected subsets of Ω.
We now move on to the eigenvector perturbation bound; let ξ be a normed eigenvector of A

associated with the eigenvalue λπ(i). We write ξ = Πx with Π the matrix defined before, and
use (4.15): ∥∥∥∥∥∥λπ(i)Πx−

r∑
j=1

θjxj ūj

∥∥∥∥∥∥ =
∥∥(A− S̄)x∥∥ ≤ ε+ ε′,

which we rewrite as ∥∥∥∥∥∥Π

λπ(i)x−
∑
j∈[r]

θjxjej

∥∥∥∥∥∥ ≤ ε+ ε′,

with (e1, . . . , en) the usual orthonormal basis of Rn. Using the inequality ‖v‖ ≤ ‖P−1‖‖Pv‖
holding for any vector v, ∥∥∥∥∥∥λπ(i)x−

∑
j∈[r]

θjxjej

∥∥∥∥∥∥ ≤ ‖Π−1‖(ε+ ε′).

We introduce the notation θr+1 = · · · = θn = 0; whenever the ball B(θi, σ) is disjoint from all
other such balls, we have |λπ(i) − θi| ≤ σ, and thus for j 6= i

|λπ(i) − θj | ≥ |θj − θi| − |λπ(i) − θi| ≥ δi − σ,

so that

‖x− xiei‖ =

∥∥∥∥∥∥
∑
j 6=i

xjej

∥∥∥∥∥∥ ≤ 1

δj − σ

∥∥∥∥∥∥
∑
j 6=i

(λπ(i) − θj)xjej

∥∥∥∥∥∥ ≤ ‖Π
−1‖(ε+ ε′)

δj − σ
.

We now apply Π inside the norm the LHS, and use the fact that κ(Π)(ε+ ε′) ≤ σ:

‖ξ − xiūi‖ ≤
σ

δi − σ
.

Now, for any vectors w,w′ ∈ Rn, we have∥∥∥∥ w

‖w‖ −
w′

‖w′‖

∥∥∥∥ ≤ 2‖w − w′‖
‖w‖ , (4.20)

and all that remains is to write∥∥∥∥ξ − ui
‖ui‖

∥∥∥∥ ≤ ‖ξ − ūi
‖ūi‖
‖+

∥∥∥∥ ui
‖ui‖

− ūi
‖ūi‖

∥∥∥∥
≤ 2σ

δi − σ
+ 2‖ui − ūi‖

≤ 3σ

δi − σ
,

having used (4.20) twice and 2‖ui − ūi‖ ≤ σ. This ends the proof.

As announced, we now prove the aforementioned Lemma 28 on the condition number of P :
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Proof. Let z ∈ Rn be a unit vector, and write z =
(
x
y

)
with x of size r and y of size n− r. Then,

using that ‖Y ‖ = 1,

‖Πz‖ = ‖Xx+ Y y‖ ≤ ‖X‖ · ‖x‖+ ‖Y ‖ · ‖y‖
≤ (1 ∨ ‖X‖) (‖x‖+ ‖y‖)
≤
√

2‖X‖,

which proves the first inequality. The second one relies on the following explicit formula for Π−1:

Π−1 =

(
(X ′)∗

−Y ∗X(X ′)∗ + Y ∗

)
.

Indeed, using the relations Y ∗Y = In−r and (X ′)∗Y = 0:(
(X ′)∗

−Y ∗X(X ′)∗ + Y ∗

)
P =

(
(X ′)∗

−Y ∗X(X ′)∗ + Y ∗

)
(X Y )

=

(
(X ′)∗X (X ′)∗Y

−Y ∗X(X ′)∗X + Y ∗X −Y ∗X(X ′)∗Y + Y ∗Y

)
=

(
Ir 0

−Y ∗X + Y ∗X Y ∗Y

)
=

(
Ir 0
0 In−r

)
= In.

Furthermore, we have

‖−Y ∗X(X ′)
∗

+ Y ∗‖ ≤ ‖Y ‖‖In −X(X ′)
∗‖ ≤ 1 + ‖X‖‖X ′‖,

and the exact same argument as in the first inequality yields

‖P−1‖ ≤
√

2
(
1 + ‖X‖‖X ′‖

)

4.4.2 Matrix power perturbation and phase perturbation control

We aim in the following section to apply Theorem 28 to powers of the matrix B; however,
such a process introduces uncertainty on the phase of the eigenvalues of B. The next theorem,
adapted from [28] and [29], develops a method to control such uncertainty. As before, let
Σ = diag(θ1, . . . , θr) with

1 = |θ1| ≥ · · · ≥ |θr|,
and U,U ′, V, V ′ four n× r matrices. We set

S = UΣ`V ∗ and S′ = U ′Σ`′(V ′)
∗
,

for two integers `, `′.

Theorem 29. Assume the following:

(i) the integers `, `′ are relatively prime,

(ii) the matrices U,U ′, V, V ′ are well-conditioned:
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• they all are of rank r,

• for some α, β ≥ 1, for X in {U, V, U ′, V ′},

‖X∗X‖ ≤ α and ‖(X∗X)−1‖ ≤ β,

• for some small δ < 1,

‖U∗V − Ir‖ ≤ δ and ‖(U ′)∗V ′ − Ir‖ ≤ δ,

(iii) there exists a small constant ε > 0 such that

‖A` − S‖ ≤ ε and ‖A`′ − S′‖ ≤ ε,

(iv) if we let
σ0 := 84r3α7/2β(ε+ 5rα2βδ),

then
σ0 < ` |θr|` and σ0 < `′ |θr|`

′
. (4.21)

Assume without loss of generality that ` is odd, and let

σ :=
σ0

`|θr|`
.

Then, the r largest eigenvalues of A are close to the θi in the following sense: there exists a
permutation π of [r] such that for i ∈ [r],∣∣λπ(i) − θi

∣∣ ≤ 4σ,

and all other eigenvalues of A are less that σ1/`
0 . Additionally, if i is such that

B(θi, σ) ∩

⋃
j 6=i

B(θj , σ)

 = ∅, (4.22)

then there exists a normed eigenvector ξ associated to λπ(i) such that∥∥∥∥ξ − ui
‖ui‖

∥∥∥∥ ≤ 3σ

δi − σ
,

with δi defined as in Theorem 28.

Proof. We apply Theorem 28 to A`, S and A`′ , S′; for any i ∈ [r],∣∣∣λ`π(i) − θi
∣∣∣ ≤ σ0 and

∣∣∣λ`′π′(i) − θi∣∣∣ ≤ σ0. (4.23)

Examining the proof of Theorem 28, we notice that we can take π = π′ since taking the `-th
power does not change the ordering. We fix i ∈ [r] and let λ = λπ(i) = |λ|eiω and θ = θi for
now; then ∣∣∣∣λ`θ` − 1

∣∣∣∣ ≤ ν :=
σ0

|θ|` .

The argument of (λ/θ)` is thus between −ξ and ξ, with

ξ = |2 arcsin(ν/2)| ≤ π/2ν,
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and the same holds for `′ (with ν ′ defined accordingly). Thus, there exists two integers p, p′ and
two numbers s, s′ with absolute value less than π/2ν (resp. π/2ν ′), such that

`ω = pπ + s and `′ω = p′π + s′.

This implies

p`′ − p′` =
s′`− s`′

π

The LHS of this inequality is an integer, and using condition (4.21) both terms in the RHS have
a magnitude strictly lower than 1/2, so both sides are 0. As ` and `′ are relatively prime, `
divides p and `′ divides p′, so that

ω = kπ +
s

`
.

Whenever θi is positive, k is even and we can take ω = s/`, and when k is odd we choose
ω = π + s/`.

We now come back to (4.23), and write

λ`i = θ`i (1 + z)

with |z| ≤ ν. Taking the modulus on both sides we find |λi| = |θi||1 + z| 1` and we use the
inequality ||1 + z| 1` − 1| ≤ 2|z|/` (valid for |z| ≤ 1/2) to find

||λi| − |θi|| ≤
2σ0

`|θi|`
.

We can now prove the lemma: whether θ is positive or negative, a case analysis yields

|λi − θi| ≤ ||λi| − |θi||+ |θi|
∣∣∣eis/` − 1

∣∣∣
≤ 2σ0

`|θi|`
+ |θi|

|s|
`

≤ 4σ0

`|θi|`
,

the desired bound. Now, assuming that ` is odd, we have by the mean value theorem

|θ`i − θ`j | ≥ `(|θi| ∧ |θj |)`−1|θi − θj | ≥ `|θr|`|θi − θj |,

so that condition (4.22) implies the separation condition (4.17) applied to A`. We can then
apply the same proof as in Theorem 28 and get∥∥∥∥ξ − ui

‖ui‖

∥∥∥∥ ≤ 3σ0

`|θr|`δi − σ0
,

which is equivalent to the theorem bound.

4.5 Proof of Theorem 22

We prove in this section the main result on the spectral properties of B. We shall use the same
notations as in Theorem 22; since the statement of the theorem is invariant upon multiplying
the entries of W by a common constant, we shall assume in the rest of the paper that µ1 = 1.
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Our candidates for the singular vectors of B` are the vectors (u1, . . . , ur0) and (v1, . . . , vr0),
where for i ∈ [r0]

ui =
B`χi

µ`i
and vi =

(B∗)`DW χ̌i

µ`+1
i

,

with associated eigenvalue µ`i . We let U (resp. V ) be the n× r matrix whose columns are the ui
(resp vi), and D = diag(µ1, . . . , µr0). Finally, we’ll need an approximation of the Gram matrix
of the vectors u (and v); we define for every t ≥ 0 the covariance matrices Γ

(t)
U and Γ

(t)
V such

that for i, j ∈ [r0],

Γ
(`)
U,ij =

∑̀
s=0

〈P1,Ksϕi,j〉
(µiµj)

s and Γ
(`)
V,ij =

∑̀
s=0

〈K1,Ksϕi,j〉
(µiµj)

s+1 , (4.24)

where ϕi,j = ϕi ◦ ϕj .

4.5.1 Structure of the matrices U and V

Following from the subsequent local analysis of G, as well as a trace bound argument, we gather
the following relations between matrices B`, D` and U . We define the following parameter

ω = d5(1 ∨ L)2,

which is an upper bound on the exponential scaling of our error terms.

Theorem 30. Let r, d, b, τ, L be parameters as above, such that a ≤ n1/4, and (P,W ) be any
matrices in C(r, d, b, τ, L). Let ` be any integer such that

` ≤ 1− ε
4

log(n)

log(ω)
, (4.25)

for some ε > 0, where ω is the parameter defined above. Then there exists an event with
probability at least 1− c/ log(n) and a parameter N0 ≤ a12L6 such that if n ≥ N0

‖U∗U − Γ
(`)
U ‖ ≤ C × η, (4.26)

‖V ∗V − Γ
(`)
V ‖ ≤ C × η, (4.27)

‖U∗V − Ir0‖∞ ≤ C × η, (4.28)

‖B`U − UD`‖ ≤ C ′(√ρ ∨ L)`, (4.29)

‖B`PH⊥‖ ≤ C ′(
√
ρ ∨ L)`, (4.30)

where η, C and C ′ satisfy

C ≤ crd4b2L, C ′ ≤ cr2d6b2L2 log (n)20 and η ≤ n−1/4 ∧√ρ` ∧ L`.

Furthermore, on this same event, we have the following bound:

‖B`‖ ≤ c log(n)n1/4L`. (4.31)

The proof of this theorem will occupy the next few pages of this article; we first show how
it implies the statement of Theorem 22.
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4.5.2 Proof of the perturbation bounds

The goal here is to apply Theorem 29 to B`, U and V : we choose ` equal to the upper bound
in (4.25) (with arbitrary ε, say 0.01) and `′ = `+ 1, and let

S = UD`V ∗ and S′ = U ′D`′V ′∗,

where U ′, V ′ are defined identically to U and V replacing ` by `′. We now check all the conditions
of Theorem 29:

Condition (i) Since `′ = `+ 1, ` and `′ are relatively prime.

Condition (ii) We shall need a small lemma on the spectral properties of the covariance
matrices, which will be proven in a subsequent section:

Lemma 29. For all t ≥ 1; the matrix Γ
(t)
U (resp. Γ

(t)
V ) is a positive definite matrix, with all its

eigenvalues greater than 1 (resp. c−1
0 ) and such that

1 ≤ ‖Γ(t)
U ‖ ≤

r2d3L2

1− τ and c−1
0 ≤ ‖Γ(t)

V ‖ ≤
r2d2L2

1− τ .

Then, the minimum eigenvalue of V ∗V is at least c−1
0 − Cn−1/4, which is more than c−1

0 /2
as soon as

n ≥ c1r
4a4d16b8L4,

and we can take β = 2c0 whenever this holds. On the other hand,

‖V ∗V ‖ ≤ rd2L2

1− τ +
rb2d4L

n1/4
≤ 2rb2d4L2

1− τ .

Performing the same computations on U∗U leads us to the choice

α =
2rb2d4L2

1− τ .

Finally, equation (4.28) allows us to take

δ = Cη.

Condition (iii) This condition requires some additional computations. Define as before the
orthogonal projection PH on H = im(V ), and PH⊥ = In − PH ; we have the formula

PH = V (V ∗V )−1V ∗.

Noticing that SPH = S, we can bound ‖B` − S‖ as follows:

‖B` − S‖ ≤ ‖B`PH − SPH‖+ ‖SPH⊥‖+ ‖B`PH⊥‖
≤ ‖B`PH − S‖+ ‖B`PH⊥‖
≤ ‖B`V (V ∗V )−1 − UD‖‖V ∗‖+ ‖B`PH⊥‖.

To apply (4.29), we let

U = PHU + PH⊥U = V (V ∗V )−1 + Ũ + PH⊥U .
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The second term is equal to V (V ∗V )−1(V ∗U − Ir0), and be can thus use (4.28):

‖Ũ‖ ≤ ‖V ‖‖(V ∗V )−1‖‖V ∗U − Ir0‖ ≤ r
√
αβδ.

Going back to the above inequality, we find

‖B` − S‖ ≤ ‖B`U − UD`‖+ ‖B`‖‖Ũ‖+ ‖B`PH⊥‖‖U‖+ ‖B`PH⊥‖,

and the bounds in Theorem 30 readily imply that all terms in the above inequality are bounded
above by ε := C ′′(

√
ρ ∨ L)`, with

C ′′ ≤ c3r
3ad8b3L3 log (n)20

1− τ .

Condition (iv) Using all the bounds proven in the above computations, we find that

σ0 ≤ C0(
√
ρ ∨ L)` with C0 ≤

c4 a
2r11d25b13L12 log (n)20

(1− τ)6 .

The bound we have to check is therefore

C0(
√
ρ ∨ L)` ≤ `|µr0 |` ⇐⇒ C0τ

` ≤ `,

which happens as soon as

log(n) ≥ 5 log(C0) log(ω)

log(τ−1)
.

The same proof holds for `′, with the same constants.

Having checked all assumptions of Theorem 29, we can now apply it to B`; this implies the
existence of a permutation π ∈ Sr0 (possibly depending on n) such that for i ∈ [r0],∣∣λi − µπ(i)

∣∣ ≤ σ := C0τ
`,

and all the other eigenvalues of B satisfy

|λ| ≤ C
1
`
0 (
√
ρ ∨ L).

Now, assume that for some i ∈ [r0], δi ≥ 2σ. Then, applying the last part of Theorem 29,
there exists an eigenvector of B associated with λi such that∥∥∥∥ξ − ui

‖ui‖

∥∥∥∥ ≤ 3σ

δi − σ
.

We define in the following
γi = 〈P1,

(
In − µ−2

i K
)−1

ϕi,i〉.

If we rewrite the definition of Γ
(t)
U,ii as

Γ
(t)
U,ii =

〈
P1,

t∑
s=0

(µi)
−2sKsϕi,j

〉
,
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the matrix sum converges as t→∞ since ρ(K) < µ2
i , and using Lemma 30 below we have

∣∣∣Γ(`)
U,ii − γi

∣∣∣ =

∞∑
t=`+1

µ−2t
i 〈P1,Ktϕi,j〉

≤
∞∑

t=`+1

rd3L2ρtµ−2t
i

≤ σ,

and combined with (4.26) yields ∣∣‖ui‖2 − γi∣∣ ≤ 2σ.

On the other hand, we shall prove the following inequality in the following sections (equa-
tion (4.58)): for all t ≤ 2`, ∣∣〈Btχi, χi〉 − µti〈P1, ϕi,i〉

∣∣ ≤ σµti.
Setting t = 0 and t = ` in this inequality yields at the same time∣∣‖χi‖2 − 〈P1, ϕi,i〉∣∣ ≤ σ and

∣∣〈ui, χi〉 − 〈P1, ϕi,i〉∣∣ ≤ σ.
We now have, using the Cauchy-Schwarz inequality,∣∣∣∣∣∣〈ξ, ξi〉 −

√
〈P1, ϕi,i〉

γi

∣∣∣∣∣∣ ≤
∥∥∥∥ξ − ui

‖ui‖

∥∥∥∥+

∣∣∣∣∣∣
〈

ui
‖ui‖

,
χi
‖χi‖

〉
−
√
〈P1, ϕi,i〉

γi

∣∣∣∣∣∣
≤ 3σ

δi − σ
+ c5 σ

≤ c6 σ

δi − σ
.

Finally, notice that

γi = 〈P1, ϕi,i〉+

〈
P1,

∞∑
s=1

(µi)
−2sKsϕi,j

〉
≤ 〈P1, ϕi,i〉+ rd2L2 ρ/µ2

i

1− ρ/µ2
i

.

Using that rd2L2 ≥ 1 and 〈P1, ϕi,i〉 ≥ 1, we find

〈P1, ϕi,i〉
γi

≥ 1− rd2L2 ρ

µ2
i

.

4.6 Preliminary computations

We begin the proof of Theorem 30 with some elementary computations on the entries of K and
Γ(t), which will be of use in the later parts of the proof. Most of the results from this section
are adapted from [28], although sometimes improved and adapted to our setting.

Bounding ρ and L from below We begin with a simple bound on ρ = ρ(K); by the
Courant-Fisher theorem, ρ ≥ 〈w,Kw〉 for every unit vector w, and applying it to w = 1/

√
n
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yields

ρ ≥ 〈w,Kw〉
n

=
1

n

∑
i,j∈[n]

PijE
[
W 2
ij

]
=

1

d

∑
i,j∈[n]

P 2
ijE[Wij ]

2

=
‖Q‖2F
d

,

where we used that Pij ≤ d/n and the Jensen inequality. The Frobenius norm of Q is then
greater than µ2

1 = 1, which in turns implies

ρ ≥ 1

d
, (4.32)

so that ρ is bounded away from zero. In order to prove a similar bound on L, we write for
x ∈ [n]

ϕ1(x) =
∑
y∈[n]

Qxyϕ1(y) ≤
√∑

y

Q2
xy ≤

dL√
n
.

Squaring and summing those inequalities over x gives

1 = ‖ϕ1‖2 ≤ d2L2,

so that as with ρ,

L ≥ 1

d
. (4.33)

A scalar product lemma Our second step is an important lemma for the following proof,
leveraging the entrywise bounds on W :

Lemma 30. Let ϕ,ϕ′ ∈ Rn be any unit vectors. Then, for any t ≥ 0,

〈1,Ktϕ ◦ ϕ′〉 ≤ rd2L2ρt

Proof. We write the eigendecomposition of K as

K =
s∑

k=1

νkψkψ
∗
k,

with ν1 = ρ the Perron-Frobenius eigenvalue of K and s ≤ r2 its rank. Then, for all i ∈ [n],

s∑
k=1

ν2
kψk(i)

2 = (K2)ii =
∑
j∈[n]

K2
ij

=
∑
j∈[n]

P 2
ijE
[
W 2
ij

]2
≤
∑
j∈[n]

(
d

n

)2

L4

≤ d2L4

n
.
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This is akin to a delocalization property on the eigenvectors of K.
We can now prove the above lemma:

〈1,Ktϕ ◦ ϕ′〉 =
s∑

k=1

νtk〈1, ψk〉〈ψk, ϕ ◦ ϕ′〉

≤ ρt−1
s∑

k=1

‖ψk‖‖1‖ · |νk|
∣∣〈ψk, ϕ ◦ ϕ′〉∣∣

≤ ρt−1√n
∑
i∈[n]

|ϕ(i)||ϕ′(i)|
s∑

k=1

|νk||ψk(i)|

≤ ρtd√n
∑
i∈[n]

|ϕ(i)||ϕ′(i)|√s

√√√√ s∑
k=1

ν2
kψk(i)

2

≤ ρta√n√sdL
2

√
n

∑
i

|ϕ(i)||ϕ′(i)|

≤ rd2L2ρt,

where we extensively used the Cauchy-Schwarz inequality, as well as the bound ρ−1 ≤ d
from (4.32).

Entrywise bounds for Kt For a more precise estimation of entrywise bounds, we define the
scale-invariant delocalization parameter

Ψ =
dL2

ρ
.

Using the same proof technique as in (4.33), as well as (4.32), we have

1 ≤ Ψ ≤ d2L2

for any i, j ∈ [n]. Recall that, as shown in the proof of Lemma 30, for all i ∈ [n]

(K2)ii ≤
d2L4

n
=

Ψ2

n
ρ2.

Now, for t ≥ 0 and i, j ∈ [n],

(Kt)ij =
∑
k∈[s]

νtkψk(i)ψk(j)

≤ ρt−2
∑
k

ν2
k |ψk(i)| |ψk(j)|

≤ ρt−2
√

(K2)ii(K
2)jj ,

where we again used the Cauchy-Schwarz inequality at the last line. This yields

(Kt)ij ≤
Ψ2

n
ρt (4.34)

for any t ≥ 1 and i, j ∈ [n].
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The covariance matrices Recall that we defined the matrices Γ
(t)
U and Γ

(t)
V as

Γ
(`)
U,ij =

∑̀
s=0

〈P1,Ksϕi,j〉
(µiµj)

s and Γ
(`)
V,ij =

∑̀
s=0

〈K1,Ksϕi,j〉
(µiµj)

s+1

for i, j ∈ [r0]. Our aim is to prove the following lemma:

Lemma 31. For all t ≥ 1; the matrix Γ
(t)
U (resp. Γ

(t)
V ) is a positive definite matrix, with all its

eigenvalues greater than 1 (resp. c−1) and such that

1 ≤ ‖Γ(t)
U ‖ ≤

r2d3L2

1− τ and c−1 ≤ ‖Γ(t)
V ‖ ≤

r2d2L2

1− τ .

Proof. We first prove the bounds for Γ
(t)
V . Let C(s) be the r0 × r0 matrix with

C
(s)
ij =

〈K1,Ksϕi,j〉
(µiµj)

s+1 .

Then for every w ∈ Rr0 we have

w∗C(s)w =
∑

i,j∈[r0]

wiwj

(µiµj)
s+1

∑
x∈[n]

[Ks+11](x)ϕi(x)ϕj(x)

=
∑
x∈[n]

[Ks+11](x)

∑
i∈[r0]

wiϕi(x)

µ
s+1/2
i

2

≥ 0,

hence every matrix C(s) is positive semi-definite. Further, we have

C(0) = D−1Φ∗ diag(K1)ΦD−1,

where Φ is the n × r matrix whose columns are the ϕi. Using µi ≤ 1 for any i ∈ [r0], the
eigenvalues of C(0) are all greater than minx[K1](x) ≥ c−1 by our initial assumptions. This
settles the positive definite property, as well as the minimum eigenvalue of Γ

(t)
V .

Now, applying Lemma 30 to ϕi and ϕj , for all i, j ∈ [r0] one has

Γ
(t)
V,ij ≤

t∑
t=0

rd2L2ρs+1

(µiµj)
s+1

≤ rd2L2
∞∑
s=0

(
ρ

µiµj

)s
.

By definition of τ , the summand above is less than τ s, whose sum converges since τ < 1. As a
result,

‖Γ(t)
V ‖∞ ≤

rd2L2

1− τ ,

and the classic bound ‖Γ(t)
V ‖ ≤ r0‖Γ(t)

V ‖∞ implies the upper bound.
The proof for Γ

(t)
U is very similar; the upper bound simply ensues from the fact that dx ≤ d

for any x ∈ [n]. For the lower bound, if we let as above

C
′(s)
ij =

〈P1,Ksϕi,j〉
(µiµj)

s ,
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then
C ′(0) = Φ∗ diag(P1)Φ,

and the minimum of P1 is at least 1. This implies that the eigenvalues of C ′(0) are larger than
one, and we conclude as before.

4.7 Local study of G

It is a well-known fact (see for example [29]) that when the mean degree is low enough (d = no(1)),
the graph G is locally tree-like — that is, vertex neighbourhoods behave almost like random
trees. The goal of this section is to establish rigorously this result, as well as provide bounds on
neighbourhood sizes.

4.7.1 Setting and definitions

Labeled rooted graphs A labeled rooted graph is a triplet g∗ = (g, o, ι) consisting of a graph
g = (V,E), a root o ∈ V , and a mark function ι : V → N with finite support. We shall denote by
G∗ the set of labeled rooted graphs with V = N, and will often write g∗ = (g, o) for an element of
G∗, dropping the mark function. Notions of subgraphs, induced subgraphs and distance extend
naturally from regular graphs to this setting.

Labeling trees and graphs We recall that G is the inhomogeneous random graph defined
earlier. For each vertex x ∈ V , we can define the associated element of G∗ as follows: the root
is set to x, each vertex y ∈ [n] is given a mark ι(y) = y, and we let ι(z) = 0 for all z ∈ N \ [n].
The resulting triple (G, x, ι) is a random element of G∗.

Now, let o ∈ [n]; we define the inhomogeneous random tree as follows: first, the root is given
a mark ι(o) = o. Then, for each vertex x already labeled, we draw the number of children of x
according to Poi(dι(x)), where we recall that

dι(x) =
∑
j

Pι(x),j ≤ d.

Each child y of x receives a label drawn independently at random from the distribution

πι(x) =

(
Pι(x),1

dι(x)
, . . . ,

Pι(x),n

dι(x)

)
, (4.35)

which sums to 1 by definition. The resulting tree is a random element of G∗, denoted by (T, o).

4.7.2 Growth properties of trees and graphs

A number of growth properties for neighbourhoods in T andG are needed to ensure the successful
couplings below. By definition of d, G (resp. (T, o)) is dominated by an Erdős-Rényi graph
G(n, d/n) (resp. a Galton-Watson tree with offspring distribution Poi(d)); we are thus able to
direcly lift properties from [29], Sections 8 and 9.

Lemma 32. Let v be an arbitrary vertex in G; then, there exist absolute constants c0, c1 > 0
such that for every s > 0, we have

P
(
∀t ≥ 1, |∂(G, v)t| ≤ sdt

)
≥ 1− c0e

−c1s. (4.36)

The same result holds when replacing (G, v) with the tree (T, o) defined above.
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Taking s = c−1
1 log(c0n

2) in the above inequality, one gets

P
(
∀t ≥ 1, ∀v ∈ V, |∂(G, v)t| ≤ c3 log(n)dt

)
≥ 1− 1

n
, (4.37)

for any n ≥ 3. Summing these inequalities for 1 ≤ t ≤ ` yields a similar bound for the whole
ball: with probability at least 1− 1

n , we have

|(G, v)t| ≤ c4 log(n)dt (4.38)

for all v ∈ V and t ≥ 1. In particular, this implies the following useful bound: for any v ∈ V ,

deg(v) ≤ c4d log(n).

Another consequence of (4.36) is the following useful lemma:

Lemma 33. For every p ≥ 2, there is a constant cp such that

E

[
max
v∈V

sup
t≥1

( |∂(G, v)t|
dt

)p ]
≤ cp log (n)p (4.39)

Similarly to the proof of (4.38), we have

max
v∈V
|(G, v)t|p ≤ dtptp max

x∈V
sup
s≤t

|∂(G, v)t|p
dsp

,

which yields

E

[
max
v∈V
|(G, v)t|p

]
≤ cptp log (n)pdtp (4.40)

An important note is that the above results apply to any collection of n random variables
satisfying an inequality like (4.36); in particular, it also applies to an i.i.d collection of inhomo-
geneous random trees of size n.

4.7.3 Local tree-like structure

We first check that the random graph G is tree-like. We say that a graph g is `-tangle-free if
there is at most one cycle in the `-neighbourhood of every vertex in the graph. As mentioned
before, the random graph G is dominated by an Erdős-Rényi graph G(n, d/n); we can therefore
lift the desired properties from [29].

Lemma 34. Let ` ≤ n be any integer parameter.

(i) the random graph G is `-tangle-free with probability at least 1− ca2d4`/n

(ii) the probability that a given vertex v has a cycle in its `-neighbourhood is at most cad2`/n.

We shall assume in the following that the 2`-tangle-free property happens with probability
at least 1− cn−ε for some ε > 0, which happens whenever

` ≤ 1− ε
10

logd(n) ≤ c3 log(n). (4.41)

We now gather all the result of the current section into one proposition, for ease of reading.
The bound ` ≤ c log(n) assumed above is used to simplify the inequalities below.
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Proposition 13. Let G be an inhomogeneous random graph, and (Tx, x)x∈[n] a family of random
trees as defined above. Let ` be small enough so that (4.41) holds. Then there exists an event E
with probability at least 1− 1

log(n) , under which:

(i) the graph G is 2`-tangle-free,

(ii) for all v ∈ G, t ≤ 2`, we have

|(G, x)t| ≤ c log(n)dt, (4.42)

(iii) for any t ≤ 2`, the number of vertices in G whose t-neighbourhood contains a cycle is at
most c log (n)2dt+1

Furthermore, for any t ≤ 2` and p ≥ 1, we have

E

[
max
v∈V
|(G, v)t|p

] 1
p

≤ c log (n)2dt, (4.43)

and the same holds for the family (Tx, x)x∈[n].

4.7.4 Coupling between rooted graphs and trees

We now turn onto the main argument of this proof: we bound the variation distance between
the neighbourhoods of (G, x) and (T, x) up to size `.

First, recall some definitions: if P1,P2 are two probability measures on the space (Ω,F),
their total variation distance is defined as

dTV(P1,P2) = sup
A∈F
|P1(A)− P2(A)|.

The following two characterizations of the total variation distance shall be useful: first, whenever
Ω is countable, we have

dTV(P1,P2) =
1

2
‖P1 − P2‖1 =

1

2

∑
ω∈Ω

|P1(ω)− P2(ω)|. (4.44)

Additionally,
dTV(P1,P2) = min

P∈π(X1,X2)
P(X1 6= X2), (4.45)

where π(X1, X2) denotes the set of all couplings between P1 and P2, i.e. probability measures
on (Ω2,F ⊗ F) such that the marginal distributions are P1 and P2.

Denoting by L(X) the probability distribution of a variable X, the aim of this section is to
prove the following:

Proposition 14. Let ` ≤ c0 log(n) for some constant c0 > 0. Then, for every vertex v ∈ V ,

dTV(L((G, v)`),L((T, v)`)) ≤
c log (n)2d2`+2

n
. (4.46)
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A total variation distance lemma for sampling processes

For an integer n, denote by S(n) the set of all multisets with elements in [n], and by P(n) ⊂ S(n)
the powerset of [n]. Let p1, . . . , pn ∈ [0, 1/2], with

∑
pi = λ and

∑
p2
i = α, and consider the

two probability laws on S(n):

• P1: each element i of [n] is picked with probability pi,

• P2: the size of the multiset S is drawn according to a Poi(λ) distribution, and each element
of S has an i.i.d label with distribution (p1/λ, . . . , pn/λ).

Note that P1 is actually supported on P(n).

Proposition 15. Let P1,P2 be defined as above. Then

dTV(P1,P2) ≤ α+
e2α − 1

2
.

Proof. Using characterization (4.44), we have

2 dTV(P1,P2) =
∑

S∈P(n)

|P1(S)− P2(S)|+ P2(S /∈ P(n)). (4.47)

We shall treat those two terms separately. First, notice that for S ∈ P(n), we have

P1(S) =
∏
i∈S

pi
∏
i/∈S

(1− pi) (4.48)

P2(S) =
e−λλ|S|

|S|! × |S|!
∏
i∈S

pi
λ

= e−λ
∏
i∈S

pi, (4.49)

and thus by summing over all sets S,

P2(S ∈ P(n)) = e−λ
n∏
i=1

(1 + pi).

Using the classical inequality log(1 +x) ≥ x−x2/2, we can bound the second member of (4.47)
as follows:

P2(S /∈ P(n)) = 1− e−λ
n∏
i=1

(1 + pi)

≤ 1− e−λeλ−α/2
≤ α/2.

On the other hand, using again (4.48) and (4.49), the first term reduces to

∑
S∈P(n)

|P1(S)− P2(S)| =
∑

S∈P(n)

∏
i∈S

pi

∣∣∣∣∣∏
i/∈S

(1− pi)− e−λ
∣∣∣∣∣

≤
∑

S∈P(n)

∏
i∈S

pi

(∣∣∣∣∣e−λ −
n∏
i=1

(1− pi)
∣∣∣∣∣+

∣∣∣∣∣∏
i/∈S

(1− pi)−
n∏
i=1

(1− pi)
∣∣∣∣∣
)
.
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Both absolute values above can be removed since the expressions inside are nonnegative;
further, for 0 ≤ p ≤ 1/2, we have log(1− x) ≥ −x− x2. Combining all those estimates, we find∑

S∈P(n)

|P1(S)− P2(S)|

≤ e−λ(1− e−α)
∑

S∈P(n)

∏
i∈S

pi +

n∏
i=1

(1− pi)
∑

S∈P(n)

∏
i∈S

pi

(∏
i∈S

1

1− pi
− 1

)

≤ αe−λ
n∏
i=1

(1 + pi) + e−λ

(
n∏
i=1

(
1 +

pi
1− pi

)
−

n∏
i=1

(1 + pi)

)

≤ α+ e−λ exp

(
n∑
i=1

pi
1− pi

)
− e−α2 ,

where we again used the logarithm inequalities extensively. Finally, for 0 ≤ p ≤ 1/2, we have
p/(1− p) ≤ p+ 2p2, which allows us to finish the computation:∑

S∈P(n)

|P1(S)− P2(S)| ≤ 3

2
α+ e2α − 1. (4.50)

Combining (4.50) with (4.47) easily implies the lemma.

We introduce now a family of probability laws on S(n); for a subset S ⊆ [n], let PS be the
measure corresponding to picking each element i of S with probability pi.

The variation distance between those laws and P1 = P[n] is then easier to bound:

Lemma 35. For any S ⊆ [n], we have:

dTV(P1,PS) ≤
∑
i/∈S

pi.

Proof. Consider the following coupling: we take a realization X of P1, and set Y = X∩S. Then,
Y ∼ PS , and we find

P(X 6= Y ) = P1(X ∩ Sc 6= ∅) ≤ E[|X ∩ Sc|] =
∑
i/∈S

pi

This ends the proof, since (4.45) ensures that dTV(P1,PS) ≤ P(X 6= Y ).

Proof of Proposition 14

Gathering all the previous results, we are now ready to prove Proposition 14:

Proof. Define the classical breadth-first exploration process on the neighbourhood of a vertex v
as follows : start with A0 = {v} and at stage t ≥ 0, if At is not empty, take a vertex vt ∈ At at
minimal distance from v, reveal its neighbours Nt in V \At, and update At+1 = (At∪Nt)\{vt}.
We denote by (Ft)t≥0 the filtration generated by the (At)t≥0, and by Dt =

⋃
s≤tAs the set of

vertices already visited at time t, and τ the first time at which all vertices in (G, v)` have been
revealed.

We perform the same exploration process in parallel on (T, v), which corresponds to a
breadth-first search of the tree. At step t, we denote by Pt the distribution of Nt given Ft,
and Qt the distribution of the offspring of vt in T (no conditioning is needed there).
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Let E` denote the event that (G, v)` is a tree and contains no more than c1 log(n)d` vertices;
from (4.38) and Lemma 34, we can choose c1 such that E` has probability at least 1− c2d

2`+1/n
for some absolute constant c2. By iteration, it suffices to show that if E` holds, there exists a
constant c3 > 0 such that

dTV(Pt,Qt) ≤
c3 log(n)d`+2

n
for all t ≤ τ. (4.51)

Given Ft, the probability measure Pt is as follows: each element i of V \At is selected with
probability pi = Pvti. Let P′t denote the same probability measure, but where the selection is
made over all of V . Using Lemma 35, we first find that

dTV(Pt,P′t) ≤
∑
i∈At

Pvti ≤ c1 log(n)d` · d
n
.

On the other hand, Proposition 15 yields

dTV(P′t,Qt) ≤ c4

n∑
i=1

P 2
vti ≤ c5

d2

n
.

Equation (4.51) then results from a straightforward application of the triangle inequality.

4.8 Near eigenvectors of G

4.8.1 Functionals on (T, o)

Vertex functionals on trees

Similarly to [29], quantities of interest in the study of B will be tied to functionals on the random
inhomogeneous tree defined above. Define a functional fϕ,t on the set of labeled rooted trees
T∗ ⊂ G∗ by

fϕ,t(T, o) =
∑

xt∈∂(T,o)t

Wι(o),ι(x1) . . .Wι(xt−1),ι(xt)ϕ(ι(xt)),

where (o, x1, . . . , xt) is the unique path of length t between o and xt. Then the following
proposition holds:

Proposition 16. Let t ≥ 0 be an integer. For any i, j ∈ [r], the following identities are true:

E[fϕi,t(T, x)] = µti ϕi(x), (4.52)

E
[
fϕi,t(T, x)fϕj ,t(T, x)

]
= (µiµj)

t
t∑

s=0

[Ksϕi,j ](x)

(µiµj)
s , (4.53)

E
[
(fϕi,t+1(T, x)− µifϕi,t(T, x))2

]
= [Kt+1ϕi,i](x). (4.54)

where we recall that ϕi,j = ϕi � ϕj.

Adapting functionals to non-backtracking paths

The matrix B considered here acts on (directed) edges, whereas the functionals considered so
far are defined on vertices. Consequently, we define the following transformation: for a function
f : G∗ → R, and a random vector w ∈ RV with expected value w̄, let

~∂wf(g, o) =
∑
e:e2=o

we1f(ge, o),
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where ge denotes the graph g with the edge e1, e2 removed.
The expectations from Proposition 16 are then adapted as follows:

Proposition 17. Let t ≥ 0 be an integer. For any i, j ∈ [r], and φ ∈ ker(P ), the following
identities are true:

E
[
~∂wfϕi,t(Tx, x)

]
= [Pw̄](x) ·E[fϕi,t(Tx, x)], (4.55)

E
[
~∂w(fϕi,t · fϕj ,t)(Tx, x)

]
= [Pw̄](x) ·E

[
fϕi,t(Tx, x)fϕj ,t(Tx, x)

]
, (4.56)

E
[
~∂w[(fϕi,t+1 − µifϕi,t)2](Tx, x)

]
= [Pw̄](x) ·E

[
(fϕi,t+1(Tx, x)− µifϕi,t(Tx, x))2

]
. (4.57)

The proof for those results makes use of properties specific to moments of Poisson random
variables; as with the preceding results, it is deferred to a later section.

4.8.2 Spatial averaging of graph functionals

In this section, we leverage the coupling obtained above to provide bounds on quantities of
the form 1

n

∑
x∈V f(G, x), for local functions f . The tools and results used in this section are

essentially identical to those in [29], with a few improvements and clarifications added when
necessary.

We begin with a result that encodes the fact that the t-neighbourhoods in G are approxi-
mately independent. We say that a function f from G∗ to R is t-local if f(g, o) is only function
of (g, o)t.

Proposition 18. Let t ≤ c0 log(n) for some constant c0 > 0. Let f, ψ : G∗ → R be two t-local
functions such that |f(g, o)| ≤ ψ(g, o) for all (g, o) ∈ G∗ and ψ is non decreasing by the addition
of edges. Then

Var

(∑
o∈V

f(G, o)

)
≤ c log (n)4nd2t ·

√
E

[
max
o∈V

ψ(G, o)4

]
.

Proof. For x ∈ V , denote by Ex the set {{u, x} ∈ E | u ≤ x}; the vector (E1, . . . , En) is an
independent vector, and we have

Y :=
∑
v∈V

f(G, v) = F (E1, . . . , En).

for some measurable function F .
Define now Gx the graph with vertex set V and edge set

⋃
y 6=xEy, and set

Yx =
∑
v∈V

f(Gx, v).

The random variable Yx is
⋃
y 6=xEy-measurable, so the Efron-Stein inequality applies:

Var(Y ) ≤
∑
x∈[n]

E
[
(Y − Yx)2

]
.
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For a given x ∈ V , the difference f(G, o)− f(Gx, o) is always zero except if x ∈ (G, o)t, due to
the locality property; consequently,

|Y − Yx| ≤
∑
o∈V
|f(G, o)− f(Gx, o)|

≤
∑

o∈(G,x)t

ψ(G, o) + ψ(Gx, o)

≤ 2 max
x∈[n]

|(G, x)t| ·max
o∈V

ψ(G, o),

where we used the non-decreasing property of ψ in the last line. By the Cauchy-Schwarz in-
equality and equation (4.40), we can write

E
[
(Y − Yx)2

]
≤ 4

√√√√E

[∣∣∣∣max
x∈[n]

(G, x)t

∣∣∣∣4
]
·
√

E

[
max
o∈V

ψ(G, o)4

]

≤ c1t
2 log (n)2d2t ·

√
E

[
max
o∈V

ψ(G, o)4

]
.

Using that t ≤ c0 log(n), and the linearity of expectation, yields the desired bound.

We now use our previous coupling results to provide a concentration bound between a func-
tional on graphs and its expectation on trees:

Proposition 19. Let t ∈ N and f, ψ : G∗ → R be as in the previous proposition. Then, with
probability at least 1− 1

r2 log (n)2 , the following inequality holds:∣∣∣∣∣∣
∑
v∈V

f(G, v)−E

∑
x∈[n]

f(Tx, x)

∣∣∣∣∣∣ ≤ c r log (n)3dt+1√n‖ψ‖?,

where ‖ψ‖? is defined as

‖ψ‖? =

(
E

[
max
v∈V

ψ(G, v)4

]) 1
4

∨
(

max
x∈[n]

E
[
ψ(Tx, x)2

]) 1
2

.

Proof. Using the Chebyshev inequality and the variance bound from the preceding proposition,
we have with probability at least 1− 1

r2 log (n)2∣∣∣∣∣∑
v∈V

f(G, v)−E

[∑
v∈V

f(G, v)

]∣∣∣∣∣ ≤ c1 r log (n)3dt
√
n‖ψ‖?.

It then remains to bound the difference between the expectation term and its counterpart on
trees. For x ∈ V , let Ex denote the event that the coupling bewteen (G, x)t and (Tx, x)t fails; by
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the locality property, f(G, x) = f(Tx, x) on Ex. Therefore, using the Cauchy-Schwarz inequality,∣∣∣∣∣∣
∑
x∈[n]

E[f(G, x)− f(Tx, x)]

∣∣∣∣∣∣ ≤
∑
x∈[n]

E[|f(G, x)|1Ex + |f(Tx, x)|1Ex ]

≤
∑
x∈[n]

√
P(Ex)

(√
E
[
ψ(G, x)2

]
+

√
E
[
ψ(Tx, x)2

])

≤

√
c2 log (n)2d2t+2

n
·
∑
x∈[n]

(
E
[
ψ(G, x)4

] 1
4

+

√
E
[
ψ(Tx, x)2

])
≤ c3 log(n)adt+1√n ‖ψ‖?.

It is then straightforward to check that both obtained bounds are less than the RHS in the
proposition, upon adjusting c.

4.8.3 Structure of near eigenvectors

In the following, the aim is to obtain bounds on the norms and scalar product of the near
eigenvectors defined previously. Recall that for i ∈ [r], we set ui and vi as

ui =
B`χi

µ`i
and vi =

(B∗)`DW χ̌i

µ`+1
i

.

The main result of this section is as follows:

Proposition 20. Let ` be small enough so that (4.41) holds. On an event with probability
1− c1/ log(n), the following inequalities hold for all i, j ∈ [r], t ≤ 2` and some absolute constant
c > 0: ∣∣〈Btχi, χj〉 − µti〈ϕi, DPϕj〉

∣∣ ≤ c rb2d2 log (n)6d2tLt√
n

, (4.58)

∣∣〈Btχi, DW χ̌j〉 − µt+1
i δij

∣∣ ≤ c rb2d3L log (n)6d2tLt√
n

, (4.59)∣∣∣〈Btχi, B
tχj〉 − µtiµtjΓ(t)

U,ij

∣∣∣ ≤ c rb2d2 log (n)7d3tL2t

√
n

, (4.60)∣∣∣〈(B∗)tDW χ̌i, (B
∗)tDW χ̌j〉 − µt+1

i µt+1
j Γ

(t+1)
ij

∣∣∣ ≤ c rb2d2L2 log (n)6d3tL2t

√
n

, (4.61)

∥∥Bt+1χi − µiBtχi
∥∥2 ≤ rd3L2ρt+1 +

crb2d3 log (n)7d3tL2t

√
n

. (4.62)

Proof. The proof of those inequalities relies on careful applications of Proposition 19 to previ-
ously considered functionals. We aim to prove that each of those inequalities hold with proba-
bility 1− c2/r log(n); we fix in the following an integer t ≤ 2` and i, j ∈ [r]. Let Vt be the set of
vertices such that (G, v)t is not a tree; we place ourselves in the event described in Proposition 13
and as a consequence

Vt ≤ c3 log (n)2dt+1.

We first prove (4.58); let

f(g, o) = 1(g,o)t has no cycles ϕj(o)~∂1fϕi,t(g, o).
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The function f is clearly t-local, and

|f(g, o)| ≤ ‖ϕi‖∞‖ϕj‖∞ deg(o) |∂(g, o)t|Lt

≤ b2

n
deg(o) |(g, o)t|Lt := ψ(g, o).

The function ψ thus defined is non-decreasing by the addition of edges. When v /∈ Vt, we notice
that

f(G, v) = ϕj(v) · [T ∗Btχi](v),

hence, ∣∣∣∣∣〈Btχi, χj〉 −
∑
v∈V

f(G, v)

∣∣∣∣∣ =

∣∣∣∣∣∑
v∈Vt

ϕi(v)T ∗Btχj

∣∣∣∣∣ ≤ 2|Vt|max
v
ψ(G, v),

since by the tangle-free property there are at most two paths from v to any vertex in (G, v)t.
Furthermore, using the results in Subsection 4.7.2, we find that with probability at least 1−1/n

max
v
ψ(G, v) ≤ c4 b

2 log (n)2dt+1Lt

n
and ‖ψ‖? ≤

c4 b
2 log (n)3dt+1Lt

n
.

Finally, a direct computation shows that∑
x∈[x]

E[f(Tx, x)] =
∑
x∈[n]

ϕj(x) · dxµtiϕi(x) = µti〈ϕj , DPϕi〉.

Applying Proposition 19 to f and ψ, and using the triangle inequality:

∣∣〈Btχi, χj〉 − µti〈ϕj , DPϕi〉
∣∣ ≤ c5 b

2 log (n)4d2t+2Lt

n
+
c6 rb

2 log (n)6d2t+2Lt√
n

≤ c7 rb
2d2 log (n)6d2tLt√

n
.

The proof of the other inequalities is very similar, applying Proposition 19 to other functionals
from Subsection 4.8.1. To avoid clutter, it is deferred to the appendix.

4.9 Proof of Theorem 30

Having shown Proposition 20, all that remains is simply to gather the preceding bounds, and
simplify them to get an easy-to-read summary. Bounds (4.26)-(4.28), as well as (4.31), being
straightforward computations, they are deferred to the appendix.

4.9.1 A telescopic trick: proof of (4.29)

Notice that for for a r0 × r0 matrix M , we have

‖M‖ ≤ r0 max
i
‖Mi‖. (4.63)

where Mi are the columns (or lines) of M . To apply this inequality, we write

‖B`ui − µ`iui‖ ≤
`−1∑
t=0

µ`−t−1
i ‖Bt+1ui − µiBtui‖, (4.64)
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and (4.62) yields

‖Bt+1ui − µiBtui‖2 ≤ µ−2`
i ‖Bt+`+1χi − µiBt+`χi‖2

≤ µ−2`
i

(
rd3L2ρt+`+1 +

crb2d3 log (n)7d3(t+`)L2(t+`)

√
n

)
.

Since i ≤ r0, the bounds µ2
i ≥ ρ ≥ 1/d apply, so that

‖Bt+1ui − µiBtui‖2 ≤ rd3L2ρt+`+1µ−2`
i +

crb2d3 log (n)7d3t+5`L2(t+`)

√
n

. (4.65)

We now use the (very crude) inequality
√
x+ y ≤ √x+

√
y inside (4.65):

‖B`ui − µ`iui‖ ≤
`−1∑
t=0

[
µ`−t−1
i

√
rd3/2Lρ

t+`+1
2 µ−`i +

c1 bd
3/2 log (n)7/2d

3t+5`
2 Lt+`

n1/4

]

≤ √rd3/2Lρ`/2
`−1∑
t=0

(√
ρ

µi

)t+1

+ c2 bd
2 log (n)9/2 (Ld4)

`

n1/4
L`.

The terms in the sum are all less than 1 since i ≤ r0, and ` < c3 log(n) implies

‖B`ui − µ`iui‖ ≤ c3

√
rd3/2L log(n)ρ`/2 + c2bd

2 log (n)9/2 (aLd3)
`

n1/4
L`.

The bound (Ld4)
` ≤ n1/4 holds by definition of `, and (4.29) ensues via (4.63).

4.9.2 Bounding ‖B`PH⊥‖
Having established the candidates and error bounds for the upper eigenvalues of B`, it remains
to bound the remaining eigenvalues (also called the bulk) of the matrix. This is done using a
method first employed in [91], and leveraged again in a similar setting in [29, 28]. Our approach
will be based on the latter two, adapting the non-backtracking method to the weighted case.

Our first preliminary step is the following lemma:

Lemma 36. On an event with probability at least 1− 1/ log(n), for any t ≤ `, any unit vector
w ∈ H⊥ and i ∈ [r0], one has

∣∣〈(B∗)tDW χ̌i, w〉
∣∣ ≤ √rd3/2L2ρt/2 +

c4 bd
3/2 log (n)9/2d2`L`

n1/4
.

Proving this bound is done through the same telescopic sum trick as above, and is done in
the appendix.

Tangle-free decomposition of B`

We adapt here the decomposition first used in [29] to our setting. Through the remainder of
this section, we shall consider B as an operator on ~E(V ) instead of ~E, setting Bef = 0 whenever
e /∈ ~E or f /∈ ~E. This yields a matrix with B as a principal submatrix and zeros everywhere
else, thus the non-zero spectrum stays identical.
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For e, f ∈ ~E(V ), and t ≥ 0, we define Γkef the set of non-backtracking paths of length k from
e to f ; further, for an edge e we define Xe the indicator variable of e ∈ ~E, and Ae = XeWe, so
that A is the (weighted) adjacency matrix of G.

We then have that

(Bk)ef =
∑

γ∈Γk+1
ef

Xe

k∏
s=1

Aγsγs+1 .

Define F kef the set of `-tangle-free paths (i.e. the set of paths γ such that the subgraph induced
by γ is tangle-free). Then, whenever the graph G is tangle-free, for all k ≤ ` the matrix Bk is
equal to B(k), with

(B(k))ef =
∑

γ∈Fk+1
ef

Xe

k∏
s=1

Aγsγs+1 .

Define now the “centered” versions of the weighted and unweighted adjacency matrices A and
X by

Aij = Aij −Qij and Xij = Xij − Pij
for every i 6= j, and its centered non-backtracking counterpart as

(δ(k))ef =
∑

γ∈Fk+1
ef

Xij

k∏
s=1

Aγsγs+1
,

with the convention that the product over an empty set is equal to 1.

Recall that for any two sets of real numbers (xi), (yi), we have the following:

∏̀
s=0

xs =
∏̀
s=0

ys +
∑̀
t=0

t−1∏
s=0

ys(xt − yt)
∏̀
s=t+1

xs.

Applying this formula to the above definitions, and separating the case t = 0 in the sum yields

B
(`)
ef = δ

(`)
ef +

∑
γ∈F `+1

ef

Qe
∏̀
s=1

Aγsγs+1

+
∑̀
t=1

∑
γ∈F `+1

ef

Xe

t−1∏
s=1

Aγsγs+1
Qγtγt+1

∏̀
s=t+1

Aγsγs+1 . (4.66)

Define now F `+1
t,ef ⊂ Γ`+1

ef the set of non-backtracking tangled paths γ such that (γ0, . . . γt) ∈
F teg, (γt+1, . . . , γ`+1) ∈ F `−tg′f for some edges g, g′ ∈ ~E(V ). As an edge case, F `+1

0,ef is the set of
tangled paths γ such that (γ0, γ1) = e1 and (γ1, . . . , γ`+1) ∈ F `g′f for some g′ ∈ ~E(V ) (note that
necessarily e2 = g′1), and similarly for F`,ef . Finally, we introduce the two matrices M and M (2)

as
Mef = 1{e→ f}Qe and M

(2)
ef = 1(e

2−→ f)Qe2f1

for e, f ∈ ~E(V ), where e 2−→ f means that there exists a non-backtracking path of length two
between e and f . Then, equation (4.66) can be rewritten as

B(`) = δ(`) +MDWB
(`−1) +

`−1∑
t=1

δ(t−1)M (2)DWB
(`−t−1) + δ(`−1)M −

∑̀
t=0

R
(`)
t , (4.67)
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where

(R
(`)
t )ef =

∑
γ∈F `+1

t,ef

Xe

t−1∏
s=1

Aγsγs+1
Qγtγt+1

∏̀
s=t+1

Aγsγs+1

(R
(`)
0 )ef =

∑
γ∈F `+1

t,ef

Qe
∏̀
s=1

Aγsγs+1 .

Note that M (2) is pretty close to a modified version of Q; more specifically, we make the
decomposition

M (2) = TQT ∗ + M̃ =
r∑

k=1

µkχkχ̌
∗
k + M̃.

Then, the following decomposition holds:

B(`) = δ(`) +MDWB
(`−1) +

`−1∑
t=1

r∑
k=1

µkδ
(t−1)χkχ̌

∗
kDWB

(`−t−1)

+
`−1∑
t=1

δ(t−1)M̃B(`−t−1) + δ(`−1)M −
∑̀
t=0

R
(`)
t .

Noticing that ‖M‖ ≤ d and ‖χk‖ ≤ d log(n), the following lemma ensues:

Lemma 37. On an event with probability at least 1 − 1/ log(n), the following inequality holds
for any normed vector x ∈ R ~E(V ):

‖B`x‖ ≤ ‖δ(`)‖+ L‖MB`−1‖+ d log(n)
`−1∑
t=1

‖δ(t−1)‖
r∑

k=1

∣∣∣〈DW χ̌k, B
`−t−1x〉

∣∣∣
+

`−1∑
t=1

‖δ(t−1)M̃B`−t−1‖+ d‖δ(`−1)‖ −
∑̀
t=0

‖R(`)
t ‖.

Norm bounds

It then remains to bound the different quantities in the lemma above; this is done in another
section, using a trace bound method. The results are as follows:

Proposition 21. On an event with probability 1−c0/ log(n), for any k ≤ c1 log(n), the following
bounds hold with probability at least 1− 1/ ln (n)2:

‖δ(k−1)‖ ≤ cd3 log (n)17(
√
ρ ∨ L)k, (4.68)

‖MBk−1‖ ≤ cd7/2L log (n)7dkLk√
n

, (4.69)

‖δ(t−1)M̃Bk−t−1‖ ≤ cd13/2L log (n)24dk
(√
ρ ∨ L

)k
√
n

, (4.70)

‖R(k)
t ‖ ≤

cd2 log (n)22dkLk

n
. (4.71)

Using these bounds, we are now finally able to prove (4.30):
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Proof. By definition of `, d` ≤ n1/4 so most of the summands in Lemma 37 are negligible with
respect to the others. More precisely, we have

‖B`x‖ ≤ c1

(
‖δ`‖+ d log(n)

`−1∑
t=1

‖δ(t−1)‖
r∑

k=1

∣∣∣〈DW χ̌k, B
`−t−1x〉

∣∣∣) . (4.72)

When k ∈ [r0], Lemma 36 implies that

∣∣∣〈DW χ̌k, B
`−t−1x〉

∣∣∣ ≤ √rd3/2L2ρt/2 +
c4 bd

3/2 log (n)9/2d2`L`

n1/4
,

and by definition of `, d2`L` ≤
(
1 ∧√ρ

)` so the second term is bounded above by the first. On
the other hand, for k ∈ [r] \ [r0], we can use equation (4.61) as follows:

‖(B∗)tDW χ̌i‖2 ≤ µ2t+2
i Γ

(t+1)
V,ii +

c rb2d4L2 log (n)6d3tL2t

√
n

.

We now apply Lemma 30:

Γ
(t+1)
V,ii ≤

t+1∑
s=0

rd2L2ρs

µ2s
i

≤ crd2 log(n)L2ρt+1µ−2t−2
i ,

since µ2
i < ρ; the second term being negligible before the first,∣∣∣〈DW χ̌k, B

`−t−1x〉
∣∣∣ ≤ ∥∥∥(B∗)`−t−1DW χ̌i

∥∥∥ ≤ crd log(n)Lρ
`−t
2 .

We can now apply the above bounds on the scalar product as well as those of Proposition 21
to equation (4.72), and we get

‖B`x‖ ≤ c2d
5/2L log (n)17(

√
ρ ∨ L)` + c3r

2d6L2 log (n)20(
√
ρ ∨ L)`

+ c4d
4 log (n)17(

√
ρ ∨ L)`

≤ cr2d6L2 log (n)20(
√
ρ ∨ L)`,

which ends the proof of (4.30).

4.10 Trace method: proof of Proposition 21

The aim of this section is to prove the bounds in Proposition 21; we leverage here the powerful
trace method introduced by Füredi and Komlòs [58], and already used with success in [29]
and [28]. We only prove (4.68) in this section, all other bounds being proven in the appendix.

Let m be a parameter to be fixed later. We start with the classical bound

‖δ(k−1)‖2m = ‖δ(k−1)δ(k−1)∗‖m

= ‖(δ(k−1)δ(k−1)∗)
m‖

≤ Tr((δ(k−1)δ(k−1)∗)
m

).
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Expanding the trace above gives

‖δ(k−1)‖2m ≤
∑

(e1,...,e2m)

m∏
i=1

(δ(k−1))e2i−1,e2i
(δ(k−1))e2i+1,e2i

=
∑

γ∈Wk,m

2m∏
i=1

Xγi,0γi,1

k∏
s=2

Aγi,s−1γi,s , (4.73)

where Wk,m is the set of sequences of paths (γ1, . . . , γ2m) such that γi = (γi,0, . . . , γi,k) is non-
backtracking tangle-free of length k, and with boundary conditions that for all i ∈ [m],

(γ2i,k−1, γ2i,k) = (γ2i−1,k−1, γ2i−1,k) and (γ2i+1,0, γ2i+1,1) = (γ2i,0, γ2i,1), (4.74)

with the convention γ2m+1 = γ1. All the random variables in the expression above are centered
and independent as soon as they are supported by distinct edges, so the expectation of each term
in the sum is zero except when each (unoriented) edge is visited at least twice. We let W ′k,m be
the set of all such sequences of paths. To γ ∈ W ′k,m, we associate the graph Gγ = (Vγ , Eγ) of
visited vertices and edges, and let

vγ = |Vγ | and eγ = |Eγ |.

For an unoriented edge e ∈ Eγ , we define its multiplicity me as the number of times e is visited
in γ; we also let Sγ be the set of starting edges in γ, that is

Sγ = {(γi,0, γi,1) | i ∈ [2m]}.

Using these definitions, we can bound the expectation as follows:

E
[
‖δ(k−1)‖2m

]
≤

∑
γ∈W ′k,m

∏
e∈Sγ

E
[
|Xe| · |Ae|me−1

] ∏
e/∈Sγ

E[|Ae|me ].

We now bound the two terms in the products above: let e be an edge, and p ≥ 2 be any
multiplicity. Then conditioning on Xe,

E[|Ae|me ] = PeE[|We − PeE[We]|p] + (1− Pe)P peE[We]
p

≤ PeLp−2

(
1 +

d

n

)p−2

E
[
(We − PeE[We])

2
]

+

(
dL

n

)p−2dPe
n

E[We]
2

≤ PeLp−2

(
1 +

d

n

)p−2

E
[
W 2
e

]
+ PeL

p−2E
[
W 2
e

](d
n

)p−2

≤ KeL
p−2

(
1 +

d

n

)p
.

The other product is trickier; whenever p ≥ 3, a similar computation yields

E
[
|Xe| · |Ae|p−1

]
≤ KeL

p−3

(
1 +

d

n

)p
.

On the other hand if p = 2,

E[|Xe| · |Ae|] ≤
d

n
L

(
1 +

d

n

)2

.
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As a consequence, for γ ∈W ′k,m, we define S′γ ⊆ Sγ the set of starting edges with multiplicity 2.
Then

E
[
‖δ(k−1)‖2m

]
≤

∑
γ∈W ′k,m

(
1 +

d

n

)2km(d
n

)|S′γ |
d2mL2km−2eγ

∏
e/∈S′γ

Ke,

where we used L−1 ≤ d and Sγ = 2m.
We now partition the paths in W ′k,m as follows: we say that γ ∼ γ′ if there exists a permu-

tation σ ∈ Sn such that γi,t = σ(γ′i,t) for all i, t ∈ [2m]× [k]. Clearly, all parameters such as vγ ,
eγ and |S′γ | are constant on any equivalence class; therefore it makes sense to define Wk,m(v, e)
the set of equivalence classes of W ′(k,m) such that vγ = v and eγ = e. Then, a path counting
argument performed in [29] yields the following estimation:

Lemma 38. Let v, e be integers such that e− v + 1 ≥ 0. Then

Wk,m(v, e) ≤ k2m(2km)6m(e−v+1). (4.75)

All that remains to bound the sum above is to control the contribution of a single equivalence
class; this is done through this lemma:

Lemma 39. Let γ ∈W ′k,m such that vγ = v, eγ = e and |S′γ | = s. We have∑
γ′∼γ

∏
f /∈S′

γ′

Kf ≤ d2mnv−e+sρe(Ψ2)
3(e−v)+8m

. (4.76)

Proof. For a sequence of paths γ ∈ W ′k,m, denote by E′γ the set Eγ \ S′γ .Then, due to the
boundary conditions in (4.74), the graph G′γ induced by E′γ is connected. We let vj (resp. v≥j)
be the number of vertices with degree j (resp. at least j) in G′γ . Again, by (4.74), removing an
edge in S′γ does not create a vertex of degree 1; therefore we have

v1 ≤ 4m,

since a vertex of Gγ can only be of degree 1 if it is an endpoint of γi for some i ∈ [2m].
Additionally, edge and vertex counting yields

v1 + v2 + v≥3 ≥ v − s and v1 + 2v2 + 3v≥3 ≤ 2(e− s),

since removing an edge in S′γ removes at most one vertex from Gγ . Combining those inequalities
gives

v≥3 + v1 ≤ 2(e− s)− 2(v − s) + 2v1 ≤ 2(e− v) + 8m; (4.77)

this inequality encodes the fact that in a union of paths most vertices are of degree 2. We now
reduce G′γ into a multigraph Ĝγ = (V̂γ , Êγ) as follows: V̂γ is the set of vertices in G′γ with degree
different from 2, and we add an edge between two vertices x1 and x2 of V̂γ for each path between
x1 and x2 in G′γ . For f̂ ∈ Êγ , we annotate f̂ with the length qf̂ of its corresponding path in G′γ .

We let v̂ and ê be the number of vertices and edges of Ĝγ ; a sequence γ′ ∼ γ is uniquely
determined by an embedding of V̂γ in [n] and for each edge f̂ ∈ Êγ , an embedding of f̂ as a
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path of length qf̂ . As a result, we have

∑
γ′∼γ

∏
f /∈S′

γ′

Qf ≤
∑

y1,...,yv̂∈[n]v̂

∏
f̂=(yi,yj)∈Êγ

∑
x1,...,xq

f̂
−1∈[n]

qf̂∏
t=1

Kxt−1,xt

=
∑

y1,...,yv̂∈[n]v̂

∏
f̂=(yi,yj)∈Êγ

(Kqf̂ )yi,yj

≤
∑

y1,...,yv̂∈[n]v̂

∏
f̂∈Êγ

(
Ψ2

n
ρqf̂
)
,

using (4.34) and recalling that Ψ = L2/ρ. Now, notice that∑
f̂∈Êγ

qf̂ = |E′γ | = e− s and ê− v̂ = |E′γ | − |V ′γ | ≥ e− v − s;

further ê ≤ v̂ + e− v − s ≤ 3(e− v) + 8m− s using (4.77) and the inequality above. We finally
find ∑

γ′∼γ

∏
f /∈S′

γ′

Qf ≤ nv̂−ê(Ψ2)
ê
ρe−s

≤ nv−e+sρe−s(Ψ2)
3(e−v)+8m−s

,

which ends the proof of Lemma 39, since Ψ2 ≥ 1 and ρ−1 ≤ a.

We now are able to conclude; the contribution of one equivalence class in Wk,m(v, e) is less
than

Cγ =

(
1 +

d

n

)2km(d
n

)|S′γ |
d2mL2km−2e

∑
γ′∼γ

∏
e/∈S′

γ′

Ke

≤ c2m
1 d6mn−|S

′
γ |L2km−2env−e+|S

′
γ |ρe(Ψ2)

3(e−v)+8m

≤ c2m
1 d6mnv−e(ρΨ)km−eρe(Ψ2)

3(e−v)+8m

≤ c2m
1 d6mρkm

(
Ψ

d

)km−e
n1−g(Ψ2)

3g+8m
,

with g = e− v + 1 and we used that L =
√
ρΨ/d and the bound(

1 +
d

n

)k
≤ exp

(
dk

n

)
≤ c1.

Summing over all equivalence classes now gives

E
[
‖δ(k−1)‖2m

]
≤

km∑
e=1

e+1∑
v=1

|Wk,m(v, e)| max
[γ]∈Wk,m(v,e)

Cγ

≤
km∑
e=1

e+1∑
v=1

k2m(2km)6m(e−v+1)c2m
1 d6mρkm

(
Ψ

d

)km−e
n1−g(Ψ2)

3g+8m

≤ n(c1d
3k)

2m
ρkm

km∑
e=1

(
Ψ

d

)km−e ∞∑
g=0

(
Ψ6(2km)6m

n

)g
. (4.78)
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We set the parameter m to

m =

⌈
log
(
n

Ψ6

)
12 log(log(n))

⌉
;

when n ≥ c2Ψ6 for some absolute constant c2, we have

Ψ6(2km)6m

n
<

1

2
and n

1
2m ≤ log (n)12.

The infinite sum inside (4.78) thus converges, and

E
[
‖δ(k−1)‖2m

] 1
2m ≤ c3d

3 log (n)14√ρk
(

1 ∨
√

Ψ

d

)k
.

Finally, from the definition of Ψ, √ρ
(

1 ∨
√

Ψ/d
)

=
√
ρ ∨ L, hence (4.68) by a Markov bound.
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4.11 Applications of Theorem 22

4.11.1 Proof of Proposition 11

Let x be an eigenvector of B associated with the eigenvalue λ; the eigenvalue equation for x
reads

λxe =
∑
e→f

Wfxf . (4.79)

On the other hand, the definition y = S∗DWx expands to

yi =
∑
e:e1=i

Wexe.

Applying equation (4.79) to e and e−1 yields

λxe = ye2 −Wexe−1 and λxe−1 = ye1 −Wexe,

and as a result
λ2xe = λye2 − λWexe−1 = λye2 −We(ye1 −Wexe).

Rearranging the terms, we find an expression for xe:

xe =
λye2 −Weye1
λ2 −W 2

e

; (4.80)

in particular y 6= 0 if x 6= 0. Plugging (4.80) into the eigenvalue equation (4.79), we get for
i, j ∈ [n]

λ2yi − λWijyj
λ2 −W 2

ij

=
∑
k∼i
k 6=j

Wik
λyk −Wikyi
λ2 −W 2

ik

,

and we rearrange to find

λ2yi
λ2 −W 2

ij

−
W 2
ijyi

λ2 −Wij2
=
∑
k∼i

λWik

λ2 −W 2
ik

yk −
∑
k∼i

W 2
ik

λ2 −W 2
ik

yi.

The fraction on the LHS cancels out, and writing the RHS as a matrix product

y = Ã(λ)y − D̃(λ)y,

the desired result.

4.11.2 Proof of Theorem 23

Our first step is to show that the matrices involved in Proposition 11 approximate the matrices
A and ρI. If λ2 ≥ 2L2, we have

∣∣∣λÃij(λ)−Aij
∣∣∣ = 1{i ∼ j}

∣∣∣∣∣∣ Wij

1− W 2
ij

λ2

−Wij

∣∣∣∣∣∣ ≤ 1(i ∼ j)
2LW 2

ij

λ2
,

which implies using the Gershgorin circle theorem∥∥∥λÃij(λ)−Aij
∥∥∥ ≤ 2L

λ2
max
i

∑
j∼i

W 2
ij ≤

4Lρ

λ2
. (4.81)
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Similarly,

∣∣∣λ2D̃ii(λ)− ρ
∣∣∣ ≤ 2L2

λ2

∑
j∼i

W 2
ij +

∣∣∣∣∣∣
∑
j∼i

W 2
ij − ρ

∣∣∣∣∣∣
≤
(

4L2

λ2
+ ε

)
· ρ. (4.82)

We now take λ = λi with i ∈ [r0]; then there is a vector y that is a singular value of

−λiδ(λi) = A− (λi +
ρ

λi
)I + (λÃ(λi)−A)− λ−1

i (λ2D̃(λ)− ρI).

We can thus apply Weyl’s inequality [125] to find that there exists an eigenvalue νi of A such
that ∣∣∣∣νi − (λi +

ρ

λi

)∣∣∣∣ ≤ 4Lρ

λ2
i

+

(
4L2

λ2
i

+ ε

)
· ρ
λi
.

Now, we use Theorem 22 to find that |λi − µi| ≤ σ, and we have σ = o(ρ) whenever n is large
enough by virtue of (4.32). Since

|λi − µi| ≤ σ and
∣∣∣∣ ρλi − ρ

µi

∣∣∣∣ ≤ ρ

λiµi
σ ≤ c0σ,

equation (4.9) ensues by noticing that λi > c1µi for some constant c1 and σ is negligible before
the other error terms.

Assume now that δi ≥ 2σ; examining the proof of Theorem 22, we have the existence of an
eigenvector ξ of B associated with λi such that

‖ξ − ui‖ ≤
3σ‖ui‖
δi − σ

.

Proposition 11 implies that the vector y = S∗DW ξ is a null vector of the deformed laplacian
δ(λ) = I− Ã(λ) + D̃(λ). Notice that the matrix S∗D2

WS is a diagonal matrix such that

[S∗D2
WS]ii =

∑
j∼i

W 2
ij ≤ 2ρ,

from which we have
‖y − S∗DWui‖ ≤

6σ
√
ρ‖ui‖

δi − σ
.

We now follow the line of proof of Theorem 22; we first find

〈S∗DWui, ϕi〉 = µ−`i 〈B`χi, DW χ̌i〉,

and combine it with (4.59) to obtain

|〈S∗DWui, ϕi〉 − µi| ≤ σ. (4.83)

Computing ‖S∗DWui‖ is trickier; we find

〈S∗DWui, S
∗DWui〉 = µ−2`

i 〈S∗DWB
`χi, S

∗DWB
`χi〉

= µ−2`
i 〈S∗DWB

`χi, T
∗JDWB

`χi〉
= µ−2`

i 〈TS∗DWB
`χi, (B

∗)`DW χ̌i〉.
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Writing the coefficients of TS∗DW explicitly, we have

[TS∗DW ]ef = Wf

∑
i∈[n]

1{e2 = i}1{f1 = i} = Bef + [JDW ]ef ,

which yields

〈S∗DWui, S
∗DWui〉 = µ−2`

i

(
〈B2`+1χi, DW χ̌i〉+ 〈B`DW χ̌i, B

`DW χ̌i〉
)
.

Those scalar products correspond to equations (4.59) and (4.61), respectively, and we thus get∣∣∣‖S∗DWui‖2 − µ2
i (1 + Γ

(`)
V,ii)

∣∣∣ ≤ 2σ.

The hypothesis K1 = ρ1 allows us to approximate Γ
(`)
V,ii efficiently:

Γ
(`)
V,ii =

∑̀
t=0

〈1,Kt+1ϕi,i〉
µ2t+2
i

=
∑̀
t=0

(
ρ

µ2
i

)t+1

since ‖ϕi‖ = 1, and we have as in the proof of Theorem 22∣∣∣∣Γ(`)
V,ii −

ρ/µ2
i

1− ρ/µ2
i

∣∣∣∣ ≤ σ.
Gathering the previous bounds, we eventually arrive at∣∣∣∣‖S∗DWui‖2 −

µ2
i

1− ρ/µ2
i

∣∣∣∣ ≤ 3σ. (4.84)

The exact same computations imply that

‖ui‖2 ≤
d

1− ρ/µ2
i

+ c5σ,

and thus noticing that µi ≥ √ρ∥∥∥∥ y

‖y‖ −
S∗DWui
‖S∗DWui‖

∥∥∥∥ ≤ c6 σ
√
d

δi − σ
.

Combining this error bound with (4.83) and (4.84), we find the following result:∣∣∣∣〈 y

‖y‖ , ϕi
〉
−
√

1− ρ

µ2
i

∣∣∣∣ ≤ c7 σ
√
d

δi − σ
.

The final step is to use the Davis-Kahan theorem [126] as follows: there exists an eigenvector
ζ of A with associated eigenvalue νi, and such that∥∥∥∥ζ − y

‖y‖

∥∥∥∥ ≤ c8

(
4Lρ
λ2
i

+
(

4L2

λ2
i

+ ε
)
· ρλi
)

δi
.

This error term dominates all the other ones found above, hence the bound in Theorem 23.

The proof of Corollary 5 follows along the same lines; however, we have directly

Ã(λ) =
λA

λ2 − 1
and D̃(λ) =

d0

λ2 − 1
I,

and thus the approximation bounds (4.81) and (4.82) become superfluous.
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4.11.3 Proof of Theorem 24

We first link the SBM setting to the one of Theorem 22. In the unweighted case, we have
Q = K = P , and the eigenvector equation P1 = α1 yields ρ = α. It is easy to check that
whenever n is large enough, the r0 defined in Theorem 24 satisfies the assumptions of Theorem 22,
with τ = 1/(αµ2

r0) < 1. Equation (4.11) ensures that ‖ϕi‖∞ ≤ c/
√
n for some absolute constant

c > 0, therefore b = O(1). Finally, since τ−1 = αµr0 , we have

C0 ≤ cα log (n)25 and n0 ≤ exp(c log(d) log(log(n))).

An application of Theorem 22 thus directly yields the bound on the eigenvalues of B; re-
garding the eigenvectors, notice that as in the proof of Theorem 23

‖ui‖2 =
α

1− 1/(αµ2
i )

+O(σ) and ‖Tϕi‖ = α+O(σ),

which gives

〈ξ, ξi〉 =

√
1− 1

αµ2
i

+O(σ).

4.11.4 Proof of Theorem 25 and Proposition 12

Letting again Θ be the n× 2 group membership matrix, we find as in the proof of Theorem 24
that we have Q = ΘQ̃Θ∗ and K = ΘK̃Θ∗, with

Q̃ =
1

2

(
aEP[w] bEQ[w]
bEQ[w] aEP[w]

)
and K̃ =

1

2

(
aEP[w2] bEQ[w2]
bEQ[w2] aEP[w2]

)
.

This implies first that

ρ =
aEP[w2] + bEQ[w2]

2
,

and that the vector Θ

(
1

−1

)
is an eigenvector of Q associated with the eigenvalue

µ2 =
aEP[w]− bEQ[w]

2
.

All other hypotheses of Theorem 22 are easy to check, and we find that the announced results
hold as soon as µ2

2 > ρ ∨ L, or

(aEP[w2] + bEQ[w2]) ∨ L
(aEP[w]− bEQ[w])2 < 1.

Now, let us disregard for a moment the condition on L, and compute ρ:

ρ =
1

2

∫
L

(af(`) + bg(`))w(`)2 dm(`)

Define a scalar product on `∞(L), the set of all bounded functions from L to R, as

〈h1, h2〉L =

∫
L

(af(`) + bg(`))h1(`)h2(`) dm(`);
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then ρ = ‖w‖2L, and applying the Cauchy-Schwarz theorem

ρ ·
∥∥∥∥af − bgaf + bg

∥∥∥∥2

L
≥
〈
w,
af − bg
af + bg

〉2

L
= µ2

2.

This implies that the signal-to-noise ratio µ2
2/ρ is maximized whenever

w(`) =
af(`)− bg(`)

af(`) + bg(`)
,

and in this case

β =
µ2

2

ρ
=

1

2

∫
L

(af(`)− bg(`))2

af(`) + bg(`)
dm(`)

In particular, we have µ2 = ρ = β, so β > 1 implies µ2 > 1. It remains to notice that w(`) ≤ 1
for any `, so the condition µ2 ≥ L is redundant as assumed.

4.11.5 Proof of Theorem 26

For i, j ∈ [n], we noteWij = mij+sijZij with Z ∼ N (0, 1) a standard gaussian random variable.
Let L̃ = 2

√
log(n); a well known tail bound for gaussians reads

P(|Zij | ≥ L̃) ≤ 2

L̃
e−L̃/2 ≤ 1

n2
√

log(n)
. (4.85)

We now define the modified matrix W̃ with

W̃ij = mij + sijZij1{|Zij | ≤ L̃},

with Q̃ and K̃ the associated expected and variance matrices. It is readily seen that Q̃ = Q,
and that the variables W̃ij are bounded by

L = sup
i,j
|mij |+ L̃ sup

i,j
sij .

By a union bound, we have

P(W̃ 6= W ) = P(Zij > L̃ for some i ∈ [n]) ≤
(
n

2

)
1

n2
√

log(n)
≤ 1

2
√

log(n)
,

and whenever W̃ = W , then the modified non-backtracking matrix coincides with the original
one. Finally, notice that for i, j ∈ [n]

Var(Zij1{|Zij | ≤ L̃}) ≤ 1,

which implies using the Perron-Frobenius theorem that ρ(K̃) ≤ ρ(K). Theorem 22 then applies
to the modified couple (P, W̃ ) and the announced result follows.

4.12 Computing functionals on trees

We prove in this section the martingale estimates of Proposition 16 and Proposition 17.
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4.12.1 Study of compound Poisson processes

Many proofs in this section rely on computations of Poisson compound processes, i.e. Poisson
sums of random variables. For convenience, we gather them all in the following lemma:

Lemma 40. Let N be a Poi(d) random variable, and (Xi), (Yi), (Zi) three iid sequences of
random variables, independent from N , such that Xi and Yj (resp. Yi and Zj, or Zi and Xj)
are independent whenever i 6= j. Denote by A,B the random variables

A =
N∑
i=1

Xi and B =
N∑
i=1

Yi,

Then the following identities hold:

E[A] = dE[X], E[B] = dE[Y ], (4.86)

E[AB] = dE[XY ] + d2E[X]E[Y ] = dE[XY ] + E[A]E[B], (4.87)

E

 N∑
i=1

Zi

∑
j 6=i

Xj

 = dE[A]E[Z], (4.88)

E

 N∑
i=1

Zi

∑
j 6=i

Xj

∑
k 6=i

Yk

 = dE[AB]E[Z]. (4.89)

Although the first two identities are well-known, we provide a full proof of this lemma:

Proof. The sequence (Xi) being independent from N , we immediately find that

E[A |N ] = NE[X],

from which eq. (4.86) is derived. We then write

AB =

(
N∑
i=1

Xi

)(
N∑
i=1

Yi

)
=

N∑
i=1

XiYi +
∑
i 6=j

XiYj ,

and using the independence property of (Xi)i and (Yi)i yields

E[AB |N ] = NE[XY ] +N(N − 1)E[X]E[Y ].

Since N is a Poisson random variable, E[N(N − 1)] = d2, hence (4.87).

We now move onto the third equation; rearranging terms gives

N∑
i=1

Zi

∑
j 6=i

Xj

 =
∑
i 6=j

ZiXj ,

and therefore the conditional expectation given N is N(N − 1)E[X]E[Z]. Using again that
E[N(N − 1)] = d2 brings (4.88).

Similarly, we can rearrange

N∑
i=1

Zi

∑
j 6=i

Xj

∑
k 6=i

Yk

 =
∑
j 6=i

XjYjZi +
∑
i 6=j 6=k

XiYjZj ,
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and take conditional expectations on both sides to arrive at

E

 N∑
i=1

Zi

∑
j 6=i

Xj

∑
k 6=i

Yk

 ∣∣∣∣∣∣N


= N(N − 1)E[XY ]E[Z] +N(N − 1)(N − 2)E[X]E[Y ]E[Z].

Again, the expected value of N(N − 1)(N − 2) is d3, and we finally find

E

 N∑
i=1

Zi

∑
j 6=i

Xj

∑
k 6=i

Yk

 = d2E[XY ]E[Z] + d3E[X]E[Y ]E[Z]

= dE[AB]E[Z],

which ends the proof.

4.12.2 Decomposing the tree functionals

We now fix t ≥ 1, x ∈ [n] and two vectors ϕ,ϕ′ ∈ Rn for the rest of the section. Let N be
the number of children of the root of T , and (Tk, Ik)k≤N the subtrees at depth 1. We further
introduce the following first moment notations:

gϕ(t, x) = E[fϕ,t(Tx, x)] and hϕ,ϕ′(t, x) = E
[
fϕ,t(Tx, x)fϕ′,t(Tx, x)

]
.

We begin by a small elementary computation: let φ ∈ Rn be any vector. Then,

E[WxIkφ(Ik)] =
∑
y∈[n]

Pxy
dx

E[Wxy]φ(y) =
[Qφ](x)

dx
. (4.90)

Now, by linearity, we have

fϕ,t(Tx, x) =
N∑
k=1

WxIkfϕ,t−1(Tk, Ik). (4.91)

By definition of the Galton-Watson tree, the random variables Xk = WxIkfϕ,t−1(Tk, Ik) and
Yk = WxIkfϕ′,t−1(Tk, Ik) satisfy the assumptions of Lemma 40. Furthermore, conditioning on
the value of Ik, we can compute EXk:

E[WxIkfϕ,t−1(Tk, Ik)] = E[WxIkgϕ(t− 1, Ik)]

=
[Qgϕ(t− 1, ·)](x)

dx
.

Applying (4.86), and from the definition of gϕ, we come to the following recurrence relation:

gϕ(t, x) = [Qg(t− 1, ·)](x).

Solving this recurrence is straightforward, and we find

gϕ(t, ·) = Qtgϕ(0, ·) = Qtϕ,

which implies (4.52).
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Using now equation (4.87) from Lemma 40, we derive

hϕ,ϕ′(t, x) = dxE
[
W 2
xIk
hϕ,ϕ′(t− 1, Ik)

]
+ gϕ(t, x)gϕ′(t, x)

= [Khϕ,ϕ′(t, ·)](x) + gϕ(t, x)gϕ′(t, x),
(4.92)

from which we can solve for hϕ,ϕ′ :

hϕ,ϕ′(t, ·) = Khϕ,ϕ′(t− 1, ·) + (Qtϕ)� (Qtϕ′)

=
t∑

s=0

Ks[(Qt−sϕ)� (Qt−sϕ′)].

The eigenvector equations for ϕi and ϕj then imply (4.53).

Consider now the funtion Fi,t(Tx, x) = fϕi,t+1(Tx, x)− µifϕi,t(Tx, x), and its associated first
moment functions

G(t, x) = E[Fi,t(Tx, x)] and H(t, x) = E
[
Fi,t(Tx, x)2

]
.

The linearity of fϕi,t implies that Fi,t also verifies equation (4.91), and therefore

G(t, ·) = QtG(0, ·) = 0

for all t ≥ 0. Equation (4.92) thus reduces to

H(t, ·) = KtH(0, ·)
= Kt

(
hϕi,ϕi(1, ·)− µ2

iϕ
i,i
)

= Kt
(
µ2
iϕ

i,i +Kϕi,i − µ2
iϕ

i,i
)

= Kt+1ϕi,i,

which ends the proof.

4.12.3 Edge functionals

Most of the handiwork needed to prove Proposition 17 was done in Lemma 40; indeed, in the
tree (Tx, x), the edge transformation on fϕ,t can be written as

~∂wfϕ,t(Tx, x) =

N∑
j=1

wIj

∑
k 6=j

WxIkfϕ,t−1(T (k), Ik).

We define accordingly the random variables

Xk = WxIkfϕ,t−1(T (k), Ik), Yk = WxIkfϕ′,t−1(T (k), Ik) and Zk = wIk ,

that verify the assumptions of Lemma 40. Computing E[Z] is straightforward:

E[Z] =
∑
y∈[n]

Pxy
dx

E[wy] = [Pw̄](x).
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Hence, we can apply equation (4.88) to those variables, to deduce (4.55). Similarly, the product
transformation has the form

~∂w(fϕ,t · fϕ′,t)(Tx, x) =
N∑
j=1

wIj

∑
k 6=j

WxIkfϕ,t−1(T (k), Ik)


×

∑
k 6=j

WxIkfϕ′,t−1(T (k), Ik)

 ,

which using (4.89) implies (4.56). Finally, equation (4.57) is proved with the exact same tech-
nique, considering Fi,t(Tx, x) instead of fϕ,t(Tx, x).

4.13 Near eigenvectors: computations

We finish here the proof of Proposition 20. First, let

f(g, o) = 1(g,o)t+1 has no cycles ϕj(o)fϕ,t+1(g, o).

Then f is (t+ 1)-local, and we have

|f(g, o)| ≤ ‖ϕi‖∞‖ϕj‖∞
∣∣∂(g, o)t+1

∣∣Lt+1

≤ b2

n
|(g, o)|t+1L

t+1 := ψ(g, o).

On the other hand, the scalar product 〈Btχi, DW χ̌j〉 can be written as

〈Btχi, DW χ̌j〉 =
∑
e∈ ~E

Weϕj(e1)
∑
γ

t∏
s=1

Wγsγs+1ϕi(γt+1)

=
∑
e∈ ~E

ϕj(e1)
∑
γ

t∏
s=0

Wγsγs+1ϕi(γt+1),

where the sum ranges over all non-backtracking paths γ = (γ0, . . . , γt+1) such that (γ0, γ1) = e.
It follows that ∣∣∣∣∣〈Btχi, DW χ̌j〉 −

∑
v∈V

f(G, v)

∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑

e:e1 /∈Vt+1

[Btχi](e)[DW χ̌j ](e)

∣∣∣∣∣∣
≤ 2|Vt+1|max

v
ψ(G, v),

using the tangle-free property as before. This time, the results from Subsection 4.7.2 yield

max
v
ψ(G, v) ≤ c1 b

2 log (n)2dt+1Lt+1

n
and ‖ψ‖? ≤

c1 b
2 log (n)3dt+1Lt+1

n
,

and the expected value on the tree is∑
x∈[n]

E[f(Tx, x)] =
∑
x

ϕj(x)µt+1
i ϕi(x) = µt+1

i δij .
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Concluding,

∣∣〈Btχi, DW χ̌j〉 − µt+1
i δij

∣∣ ≤ c2 b
2 log (n)4d2t+3Lt+1

n
+
c3 rb

2 log (n)6d2t+3Lt+1

√
n

≤ c4 rb
2d3L log (n)6d2tLt√

n
,

which proves (4.59).

Now, let
f(g, o) = 1(g,o)t has no cycles

~∂1[fϕi,t · fϕj ,t](g, o).
Again, f is t-local, and we have

|f(g, o)| ≤ ‖ϕi‖∞‖ϕj‖∞ deg(o) |∂(g, o)t|2 L2t

≤ b2

n
deg(o) |(g, o)t|2 L2t := ψ(g, o)

By definition of the ~∂ operator, we have, for v ∈ V ,

f(g, v) =
∑
e:e2=v

[Btχi](e)[B
tχj ](e).

Hence, ∣∣∣∣∣〈Btχi, B
tχj〉 −

∑
v∈V

f(G, v)

∣∣∣∣∣ =

∣∣∣∣∣∣
∑

e:e2 /∈Vt

[Btχi](e)[B
tχj ](e)

∣∣∣∣∣∣
≤ 2|Vt|max

v
ψ(G, v),

using the tangle-free property as before. This time, the results from Subsection 4.7.2 yield

max
v
ψ(G, v) ≤ c5 b

2 log (n)3d2t+1L2t

n
and ‖ψ‖? ≤

c5 b
2 log (n)4d2t+1L2t

n
,

and we can compute the expected value on the tree:

∑
x∈[n]

E[f(Tx, x)] =
∑
x

[P1](x)µtiµ
t
j

t∑
s=0

[Ksϕi,j ](x)

(µiµj)
s

= (µiµj)
t

t∑
s=0

〈P1,Ksϕi,j〉
(µiµj)

s

= (µiµj)
tΓ

(t)
U,ij .

Gathering those estimates, we find∣∣∣〈Btχi, B
tχj〉 − (µiµj)

tΓ
(t)
U,ij

∣∣∣ ≤ c6 b
2 log (n)5d3t+2L2t

n
+
c7 rb

2 log (n)7d3t+2L2t

√
n

≤ c8 rb
2d2 log (n)7d3tL2t

√
n

,

which proves (4.60).
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Next is (4.61); we first notice that the parity-time equation (4.4) implies that

〈(B∗)tDW χ̌i, (B
∗)tDW χ̌j〉 = 〈DWB

tχi, DWB
tχj〉.

Similarly to the previous computation, we therefore let wo = (W 2
1o, . . . ,W

2
no), and

f(g, o) = 1(g,o)t has no cycles
~∂wo [fϕi,tfϕj ,t](g, o).

We have similarly

|f(g, o)| ≤ b2

n
|(g, o)t|2L2t+2 := ψ(g, o),

Now,

max
v
ψ(G, v) ≤ c9 b

2 log (n)2d2tL2t+2

n
,

‖ψ‖? ≤
c10 b

2 log (n)3d2tL2t+2

n
,

and as above

∑
x∈[n]

E[f(Tx, x)] =
∑
x

[Pwx](x)µtiµ
t
j

t∑
s=0

[Ksϕi,j ](x)

(µiµj)
s

=
∑
x

[K1](x)µtiµ
t
j

t∑
s=0

[Ksϕi,j ](x)

(µiµj)
s

= Γ
(t)
V,ij .

Equation (4.61) is then derived as we did earlier.

Our final inequality to prove is (4.62); we consider now the function

Ft(g, o) = 1(g,o)t+1 has no cycles
~∂1[F 2

i,t](g, o)

For all t ≥ 0, the function Ft is t+ 1-local, and

|Ft(g, o)| ≤ deg(o)
(
2‖ϕi‖∞

∣∣(g, o)t+1

∣∣)2L2t

≤ 4 deg(o)
b2

n

∣∣(g, o)t+1

∣∣2 L2t := ψt(g, o).

Whenever v /∈ Vt,

Ft(G, v) =
∑
e:e2=v

(
[Bt+1χi](v)− µi[Btχi](v)

)2
The same computations as in the other equations then imply that∣∣∣∣∣∣∥∥Bt+1χi − µiBtχi

∥∥2 −
∑
x∈[x]

Ft(G, v)

∣∣∣∣∣∣ ≤ 2|Vt|max
v
ψ(G, v),

and

max
v
ψ(G, v) ≤ c5 b

2 log (n)3d2t+1L2t

n
and ‖ψ‖? ≤

c5 b
2 log (n)4d2t+1L2t

n
.
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Furthermore,∑
x∈[n]

E[Ft(Tx, x)] =
∑
x∈[n]

[P1](x)[Kt+1ϕi,i](x) = 〈P1,Kt+1ϕi,i〉,

and we can apply Lemma 30 to find∣∣∣∣∣∣
∑
x∈[n]

E[Ft(Tx, x)]

∣∣∣∣∣∣ ≤ rd3L2ρt+1.

Concluding as above,∥∥Bt+1χi − µiBtχi
∥∥2 ≤ rd3L2ρt+1 +

c11 b
2 log (n)5d3t+3L2t

n

+
c12 rb

2 log (n)7d3t+3L2t

√
n

≤ rd3L2ρt+1 +
c13rb

2d3 log (n)7d3tL2t

√
n

.

4.14 Proofs for Theorem 30

4.14.1 Proof of (4.26)-(4.28)

We shall make use of the following classical bound: for a r0 × r0 matrix M , we have

‖M‖ ≤ r0‖M‖∞. (4.93)

First, the (i, j) entry of matrix U∗U is 〈ui, uj〉, and using (4.60) we find

|〈ui, uj〉 − Γ
(`)
U,ij | ≤

c rb2d2 log (n)7d3`L2`

(µiµj)
`√n

.

Since i, j ≤ r0, we have µiµj ≥ ρ ≥ 1/d by definition of τ , and inequality (4.32). Plugging this
inequality into the one above yields

|〈ui, uj〉 − Γ
(`)
ij | ≤

c rb2d2 log (n)7(d4L2)
`

√
n

.

By definition of ω and `, the three following inequalities hold simultaneously:

(d4L2)
` ≤ n1/4, (d4L)

` ≤ √n and
(
d4L2

ρ

)`
≤ (d5L2)

` ≤ √n.

Via (4.93), these imply, respectively, that ‖U∗U − Γ
(`)
U ‖ is less than Cn−1/4, CL` and Cρ`,

the desired result. The derivation of (4.27) is identical, the bound from Proposition 20 being
essentially the same for both cases.

We now move onto the proof of (4.28); we write the scalar product 〈B`χi, (B
∗)`DW χ̌j〉 as

〈B2`χi, DW χ̌j〉 and use (4.59) to find

|〈ui, vj〉 − δij | ≤
c rb2d3L log (n)6d4`L2`

µ2`+1
i

√
n

≤ c rb2d7/2L log (n)6d5`L2`

√
n

.
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The bounds we now need are

(d5L2)
` ≤ n1/4, (d5L) ≤ √n and (d6L2)

` ≤ √n,

which are true by choice of ω and `, and we conclude as above.

4.14.2 Bounding ‖B`‖: proof of (4.31)

Let w be any unit vector in R ~E , and assume that we are in the event described in Proposition 13.
Then

‖Btw‖2 =
∑
e∈ ~E

 ∑
(e0,...,et)∈P(e,t)

t−1∏
i=0

Weiei+1w(et)

2

≤ L2`
∑
e∈ ~E

|P(e, t)|
∑

(e0,...,et)∈P(e,t)

w(et)
2.

by the Cauchy-Schwarz inequality. Under the good event from Proposition 13, we have

|P(e, t)| ≤ 2|(G, e)t| ≤ c1 log(n)d`.

Additionally, note that the factor w(et)
2 appears for each path of length t ending at et, or

equivalently (reversing edge orientation) for each path in P(e−1
t , t). Hence,

‖Btw‖2 ≤ c1 log(n)d`L2`
∑
e∈ ~E

w(e)2|P(e−1, t)|

≤ c2 log (n)2d2`L2`,

and the definition of ` ensures (generously) that d2` <
√
n.

4.14.3 Proof of Lemma 36

Note first that for all t ≥ 0, the parity-time equation (4.4) allows the simplification

〈(B∗)tDWχi, w〉 = 〈Btχi, DWJw〉.

and we have ‖DWJw‖ ≤ L. Further, the assumption w ∈ H⊥ implies

µ−ti 〈(B∗)tDWχi, w〉 = µ−ti 〈(B∗)tDWχi, w〉 − µ−`i 〈(B∗)`DWχi, w〉;

combining the two above arguments and using a telescopic sum as in the proof of (4.29) gives

∣∣µ−ti 〈(B∗)tDWχi, w〉
∣∣ =

∣∣∣∣∣
`−1∑
s=t

µ−si 〈Bsχi, DWJw〉 − µ−(s+1)
i 〈Bs+1χi, DWJw〉

∣∣∣∣∣
≤

`−1∑
s=t

µ
−(s+1)
i

∣∣〈Bs+1χi, DWJw〉 − µi〈Bsχi, DWJw〉
∣∣

≤ L
`−1∑
s=t

µ
−(s+1)
i ‖Bs+1χi − µiBsχi‖,
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where we used the Cauchy-Schwarz inequality at the last line. Now, we can apply equation (4.62):

‖Bs+1χi − µiBsχi‖2 ≤ rd3L2ρs+1 +
crb2d3 log (n)7d3sL2s

√
n

,

and still following the proof of (4.29) we find

‖Bs+1χi − µiBsχi‖ ≤
√
rd3/2Lρ

s+1
2 +

c2bd
3/2 log (n)7/2d3s/2Ls

n1/4
.

Summing these inequalities (and using ` ≤ c3 log(n)) yields

∣∣〈(B∗)tDW χ̌i, w〉
∣∣ ≤ √rd3/2L2µti

`−1∑
s=t

(√
ρ

µi

)s+1

+ µ−`i
c4bd

3/2 log (n)9/2d3`/2L`

n1/4
.

Since i ≤ r0, we have µi >
√
ρ. As a result, all terms in the sum are bounded by the one for

s = t− 1, and µ−`i ≤ d`/2. We finally get

∣∣〈(B∗)tDW χ̌i, w〉
∣∣ ≤ √rd3/2L2ρt/2 +

c4 bd
3/2 log (n)9/2d2`L`

n1/4
,

as desired.

4.15 Norm bounds: additional proofs

4.15.1 Bound (4.69) on ‖MBk‖
Since ‖M‖ is of order 1, we notice that (4.69) improves by a factor of

√
n on the crude bound

‖KBk‖ ≤ ‖K‖‖Bk‖. We use the same trace method as above; we have

‖MBk−2‖2m ≤ Tr
[(
MBk−2(B∗)k−2M∗

)m]
≤
(
d

n

)2m ∑
γ∈Wk,m

m∏
i=1

Xγ2i−1,1γ2i−1,2

k∏
s=3

Aγ2i−1,s−1γ2i−1,s

×
k−2∏
s=1

Aγ2i,s−1γ2i,sXγ2i,k−2γ2i,k−1

where Wk,m is the set of sequences of paths defined just below equation (4.73). The set of edges
of the form (γ2i−1,0, γ2i−1,1) or (γ2i,k−1, γ2i,k), which support no random variable, has cardinality
at most m by the boundary conditions, hence the bound for any γ ∈Wk,m:

m∏
i=1

Xγ2i−1,1γ2i−1,2

k∏
s=3

Aγ2i−1,s−1γ2i−1,s

k−2∏
s=1

Aγ2i,s−1γ2i,sXγ2i,k−2γ2i,k−1

≤
(
d

n

)eγ−m
L2(k−2)m.
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Using bound (4.75) on Wk,m(v, e) and the fact that each equivalence class contains at most nv

elements, we get

‖MBk−2‖2m ≤
(
d

n

)m 2km∑
e=1

e+1∑
v=1

k2m(2km)6m(e−v+1)nv
(
d

n

)e
L2(k−2)m

≤ n−md5mL2kmk2m
2km∑
e=1

e+1∑
v=1

(2km)6m(e−v+1)denv−e

≤ n−m+1d5mL2kmk2m(2km)d2km
∞∑
g=0

(
(2km)6m

n

)g
. (4.94)

The choice of parameter

m =

⌈
log(n)

12 log(log(n))

⌉
ensures that the infinite sum in (4.94) converges for n larger than an absolute constant, which
yields (4.69).

4.15.2 Bound (4.70) on ‖∆(t−1)M̃Bk−t−1‖

First, notice that M (2)
ef is equal to (TQT ∗)ef except when 1{e 2−→ f} = 0, which happens only

when e = f , e→ f , e→ f−1 of f−1 → e. Therefore, we can write

|Lef | ≤
d

n
(M̃1 + M̃2 + M̃3 + M̃4),

where each entry of the matrix Mi is one whenever the i-th condition mentioned above is true.
Then, for each i we can write

‖δ(t−1)M̃iB
k−t−1‖ ≤ ‖δ(t−1)‖‖M̃iB

k−t−1‖,

and a straightforward adaptation of the proof of bound (4.69) gives

d

n
‖M̃iB

k−t−1‖ ≤ cd7/2L ln (n)7dk−tLk−t√
n

.

Combining the above bound with (4.68) easily implies (4.70).

4.15.3 Bound (4.71) on R
(`)
t

The proof of (4.71) is very similar to those above, as well as the one in [29]; we only highlight
the main differences. Let t ≥ 1 (the case t = 0 is almost identical), and k ≤ log(n). The same
trace argument gives

‖R(k−1)
t ‖2m ≤ Tr

[(
R

(k−1)
t R

(k−1)∗

t

)m]
=

∑
γ∈Tk,m,t

2m∏
i=1

Xγi,0γi,1

t∏
s=2

Aγi,s−1γi,sQγi,t,γi,t+1

k∏
s=t+2

Aγi,s−1γi,s ,

where Tk,m,t is the set of sequences of paths (γ1, . . . , γ2m) such that for all i, γ1
i = (γi,0, . . . , γi,t)

and γ2
i = (γi,t+1, . . . , γi,k) are tangle-free and γi is tangled, with similar boundary conditions as

in (4.74).
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We define Gγ as the union of the Gγzi for z ∈ [2m], j ∈ {1, 2}. Since we remove an edge to
each path, Gγ need not be connected; however, since γi is tangled, each connected component
in Gγi contains a cycle, and the same holds for G. It follows that

vγ ≤ eγ

for all γ ∈ Tk,m,t. As before, we define the equivalence relation ∼ and Tk,m,t(v, e) the set of
equivalence classes with vγ = v and eγ = e. Then, the following lemma from [29] holds:

Lemma 41. Let v, e be any integers such that v ≤ e. Then

|Tk,m,t(v, e)| ≤ (4km)12m(e−v+1)+8m.

As for bounding the contribution of a single path, the computations already performed in
bounding (4.68) work similarly:

2m∏
i=1

Xγi,0γi,1

t∏
s=2

Aγi,s−1γi,sQγi,t,γi,t+1

k∏
s=t+2

Aγi,s−1γi,s

≤
(a
n

)eγ+2m
(

1 +
d

n

)2km

d2mL2km,

using Qij ≤ dL/n for all i, j. Finally, for [γ] ∈ Tk,m,t(v, e), there are at most nv sequences γ′

such that γ′ ∼ γ. This yields

E
[
‖R(k−1)

t ‖2m
]
≤ c2m

1 d2mL2km

(
d

n

)2m

(4km)20m
2km∑
e=1

(4km)12m(e−v)
e∑

v=1

denv−e

≤ c2m
2 d4mL2kmn−2m log (n)40m(2km)d2km

∞∑
g=0

(
(4km)12m

n

)g
,

using preemptively the bound m ≤ log(n) and the change of variables g = e − v. This time,
choosing

m =

⌈
log(n)

24 log(log(n))

⌉
yields a convergent sum, and (4.71) follows.
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Chapter 5

Spectral clustering in directed networks

This chapter is based on the paper [42], a joint work with S. Coste.

5.1 Introduction

The proverbial effectiveness of spectral clustering (“good, bad, and spectral”, said [74]), observed
for long by practitioners, begins to be well-understood from a theoretical point of view. More and
more problem-specific spectral algoritms are periodically designed, with better computational
performance and accuracy. Most of the theoretical studies used to be concentrated on symmetric
interactions and undirected networks, but over the last decade a flurry of works has tackled the
directed case: the 2013 survey [89] gave an account of the richness of directed network clustering,
but since then the field expanded in various directions.

In directed networks, the directionality of interactions is taken into account. This is more
realistic from a modeling point of view, but at the cost of intricate technicalities in the analysis.
In this context, the aim of this paper is to take a step back at spectral algorithms and convince
the readers of a simple, yet largely unnoticed truth: when clustering directed networks, directly
using eigenvalues and eigenvectors (as opposed to SVD) of the untouched adjacency matrix (as
opposed to symmetrized and/or regularized versions), works very well, especially in harder and
sparser regimes. This statement was hinted in some works, but remained essentially ignored and
not backed by theoretical results. In this paper, our goal is to rigorously prove and illustrate
this statement.

Spectral clustering of directed networks: overview and related work As well-summarized
in [122], spectral algorithms often consist of three steps: (1) a matrix representation of the data,
(2) a spectral truncation procedure, and (3) a geometric clustering method on the eigen/singular
vectors.

The matrix representation depends on the nature of the data and interaction measurements.
Early works were focused on symmetric interactions: the interaction Ax,y between two nodes
u, v was considered undirected, ie Ax,y = Ax,y. The matrix of interactions A is then hermitian.
But in many applications, the interaction are intrinsically directional, with Ax,y and Ay,x not
necessarily equal, or, equivalently, the network is directed. This covers a wider range of models:
buyer/seller networks, ecologic systems with predator-prey interactions, citations in scientific
papers, etc.

Forerunners in digraph clustering avoided using the interaction matrix A; one reason for that
is the lack of an orthogonal decomposition for non-normal matrices. Instead, they represented
their data with naive symmetrizations of A, such as A + A∗ or the so-called co-citation and
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bibliometric symmetrizations AA∗ and A∗A (which reduces to studying the SVD of A), see
[114] for an overview. Variants of the graph Laplacian were then introduced ([37]); they were
hermitian but incorporated in some way the directionality of edges and were provable relaxations
of normalized-cut problems (see [83] and references in [89, §4.2-4.3]); others used random-walks
approaches similar to PageRank ([35], [109]). It is quite striking that in the survey [89], the
authors classify the clustering methods (Chap. 4 therein) without mentioning the use of the
adjacency matrix of directed networks. Implicit in these early works was the belief that directed
networks need to be transformed or symmetrized. More recently, [44] and [81] cleverly introduced
C-valued Hermitian matrices.

The use of adjacency matrices was advocated later, notably in [86], and several more theo-
retical works, among them [90, 128, 120]. These works can roughly be split in two categories.
On one side, the authors of many papers seemed reluctant to use eigenvalues of non-symmetric
matrices, and favored the SVD instead, whose theoretical analysis is tractable in some cases.
This is notably the case for [118, 90, 128]. However, as we’ll see later, the SVD for non-hermitian
matrices suffers the same problem as the eigendecomposition of hermitian matrices: it is sensi-
tive to heterogeneity, and thus less powerful in sparse regimes. On the other side, [86, 120, 36]
are closer in spirit to our work. They explicitly advocate the use of eigenvalues of non-symmetric
matrices as a better option for inference problems. The theoretical analysis performed in [86, 120]
allows them to guarantee performance in very specific cases, where the underlying graphs have
a strong and dense structure (upper-triangular , cyclic or purely acyclic). In a different context
(matrix completion), the paper [36] was one of the first to prove the efficiency of eigenvalues of
non-hermitian matrices in high-dimensional problems.

Spectral decompositions of network matrices are generally known to reflect some of the
underlying interaction structure between the nodes; this non-rigorous statement has now been
mathematically understood in a variety of ways, many of them based on a mathematical model
for community networks called the stochastic block-model ([69, 1]). Any clustering algorithm
can be tested on synthetic data from the SBM to evaluate the reconstruction accuracy, that is,
the number of nodes which have been correctly assigned to their community by the algorithm.
In this work, we deal with a vast generalization of SBMs, the weighted, inhomogeneous, directed
Erdős-Rényi random graph.

Definition 6. Let P,W be two real n × n matrices, with P having entries in [0, 1]. A random
weighted graph is defined as follows: the edge set is V = [n]; each one of the n2 potential edges
(x, y) ⊂ V × V is present in the graph with probability Px,y and independently of the others; if
present, its weight is Wx,y. The resulting directed graph will be noted G = (V,E) and its weighted
adjacency matrix A is defined by Ax,y := Wx,y1(x,y)∈E.

This allows for virtually any structure: classical block-models (assortative or disassortative),
cyclic structures ([120]), path-wise structures ([81]), overlapping communities ([50]), bipartite
clustering when both sides have the same size ([128, 129]), contextual information on the edges...

In SBMs, a key parameter is the density d, the number of edges divided by the size n. For
inference problems, a lower density means a sparser information. Analyzing the performance of
spectral clustering methods can be done using classical perturbation results in regimes where
d is large, often of order n (the ‘dense’ regime), see [111] for instance. However, many real-
world networks lie in sparser regimes d � n, like d . log(n), d → ∞ (the ‘semi-sparse regime’)
or even d = O(1) (the ‘sparse regime’), a radically difficult regime in which node degrees are
extremely heterogeneous and the graph is not even connected. This behaviour has an impact
on spectral quantities when they satisfy Fisher-Courant-Weyl inequalities, like eigenvalues of
normal matrices or SVD of non-normal ones, deeply reducing their performance, see [19]. This
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is why most theoretical works (for both directed and undirected models) were concentrated on
d ∼ log(n) regimes ([4] among others). In the sparse undirected regime, the celebrated Kesten-
Stigum threshold ([29]) gives a spectral condition for the emergence of a second eigenvalue λ2,
beyond the Perron one, in the spectrum of the non-backtracking matrix. The entries of its
eigenvector are correlated with the block structure when there are two blocks. In this paper,
we describe a general theory of directed Kesten-Stigum-like thresholds for every directed sparse
SBM, irregardless of the number of blocks, their size, etc.

Contributions. We prove a Master Theorem describing the sharp asymptotics of eigenvalues
and eigenvectors of sparse non-symmetric matrices with independent entries, like adjacency
matrices of inhomogeneous directed Erdős-Rényi graphs. This is of independent interest in
the field of random matrices. We show how to apply this theorem to the directed SBM and
we introduce an elementary community-detection algorithm based on the adjacency matrix.
We show why using both left and right eigenvectors is mandatory in sparse regimes. We give
numerical and heuristic evidence for why Gaussian Mixture clustering is much more adapted than
the popular k-means algorithm. Finally, we illustrate the strength of our method on synthetic
data1.

Notations. We use the standard Landau notations o(·), O(·),∼; for k integer, [k] stands for
{1, . . . , k}. The letters u, v, w will be kept for vectors, the letters x, y, z will be kept for elements
of [n] (nodes). We see vectors in Cn as functions from [n] to C, that is u = (u(1), . . . , u(n)). The
notation |u|p stands for the p-norm of a vector, |u|pp = |u(1)|p + . . .+ |u(n)|p. We drop the index
p iff p = 2 (euclidean norm). If M is a matrix, ‖M‖ = sup|u|=1 |Mx| and ‖M‖∞ = maxM .
The Hadamard product of two matrices A,B with the same shape is defined as the entrywise
product: (A�B)x,y = Ax,yBx,y. The Frobenius norm is ‖M‖F =

√∑
x,y |Mx,y|2.

5.2 The Master Theorem

Let P,W be two real n×nmatrices, with P having entries in [0, 1]. The weighted, inhomogeneous
directed Erdős-Rényi model was defined in Definition 6. The weighted adjacency matrix will
be noted A. We focus on the n → ∞ limit and we suppose in the assumptions thereafter that
the graph is sparse, the weights are bounded and the spectral decomposition of E[A] is not
degenerate. Let Q = E[A] and K = E[A�A] be the first and second entrywise-moments of A,
given by

Q = P �W and K = P �W �W, (5.1)

in other words Qx,y = Px,yWx,y and Kx,y = Px,y|Wx,y|2. Our assumptions are as follows:

(i) ‖P‖∞ = O(1/n) and ‖W‖∞ = O(1).

(ii) The matrix Q has rank r = O(1), is real diagonalizable, and its r eigenvalues µi are
well-separated in the sense that there is a constant c > 0 such that |µi − µj | > c, |µj | > c.

(iii) the right (resp. left) unit eigenvectors ϕi and ξi associated with µi are delocalized, in that

|ϕi|∞, |ξi|∞ = O

(
1√
n

)
(5.2)

1The Python software used for the numerical experiments in this paper will be available on a public repository.
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Figure 5.1: Spectra of inhomogeneous Erdős-Rényi graphs, with no weights, n = 1000 nodes.
The underlying connectivity matrix P is a block-matrix; the inset of each picture shows a
colorplot of P , with darker colors indicating higher values. The points are the eigenvalues of
A. The brown lines indicate the non-zero eigenvalues µi of Q. The beige circle behind the
eigenvalues has radius ϑ. The outliers close to µi for i ∈ [r0] are visible for each picture.

These assumptions will be commented later. We note ρ = ‖K‖. The detection threshold is

ϑ = max (
√
ρ, ‖W‖∞)

and we note r0 the number of eigenvalues of Q with modulus strictly greater than ϑ.

Definition 7. Let µi be an eigenvalue of Q with left and right unit eigenvectors ϕi, ξi. If |µi| > ϑ,
the (left and right) eigendefects of µi are defined by

Ri = |(K − µ2
i I)
−1ϕ2

i |1 Li = |(K∗ − µ2
i I)
−1ξ2

i |1 (5.3)

where ϕ2
i , ξ

2
i are the entrywise squares of ϕi, ξi.

These novel quantities will play a role of paramount importance in all this paper and will be
commented later. Let us first state our main result, after which we will give some intuition on
(5.3).

Theorem 31 (Master Theorem). Under the above hypotheses, the following holds with prob-
ability going to 1 when n → ∞. The r0 eigenvalues of A with highest modulus, λ1, . . . , λr0,
are asymptotically equal to the r0 eigenvalues of Q with highest modulus: |λi − µi| = o(1). All
the other n − r0 eigenvalues of A are asymptotically smaller than ϑ. Moreover, if ui, vi is a
left/right pair of unit eigenvectors of A associated with λi, and if ϕi, ξi is a left/right pair of unit
eigenvectors of Q associated with µi, then∣∣∣∣|〈ui, ϕj〉| − |〈ϕi, ϕj〉||µi|

√
Ri

∣∣∣∣ = o(1) and
∣∣∣∣|〈vi, ξj〉| − |〈ξi, ξj〉||µi|

√
Li

∣∣∣∣ = o(1). (5.4)

The eigendefects in Definition 7 measure how much the eigenequations of Q can be ‘entrywise
squared’. For instance, let µ be an eigenvalue of Q with eigenvector ϕ. Then, (Q− µiI)ϕi = 0.
But is ϕ2

i an eigenvector of K with eigenvalue µ2
i ? If i ∈ [r0], the answer is obviously no since

µ2
i > ‖K‖; then, the quantity 1/|(K−µ2

i )
−1ϕ2

i |1 appearing in the theorem above is a measure of
how far ϕ2

i is from being a µ2
i -eigenvector of K. The theorem says that when µi is gives rise to

an outlier λi in the spectrum of A, then the overlap 〈ui, ϕi〉 between the real eigenvector and the
sample eigenvector is higher when ϕ2

i is far from being an eigenvector of K. At a high level, this
surprising and new phenomenon comes from an elementary formula regarding the covariance of
Poisson sums (see Lemma 47 in Appendix 5.7), and we conjecture that a similar phenomenon
will hold for every random matrix model which is asymptotically Poisson.
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Figure 5.2: Bottom: An illustration of the ‘right eigenvector part’ of the Master Theorem, for
the two-block SBM described in Theorem 32 with parameters s = 10 and η ranging from 0.5 to
1. For each η the results are averaged over 50 samples (coloured zone is for standard errors).
The thin darker lines are 〈ui, ϕj〉 for i, j ∈ {1, 2}. The thick lighter lines are our theoretical
predictions 〈ϕi, ϕj〉/µi

√
Ri. The second eigenvector begins to be informative as soon as the

second eigenvalue reaches ϑ, which happens at around 0.979 in agreement with our predictions.

Remark (Comments on the hypotheses. ). Under Hypothesis 1, if ‖P‖∞ 6 C/n, then the
expected degree of x ∈ [n] is dx = Px,1 + · · ·+ Px,n 6 C so the average density d is smaller than
C (sparse regime). Our proof holds in the semi-sparse regime d→∞, d = no(1), but it is not our
primary motivation. In this semi-sparse regime is can be proved that |µi|

√
Ri goes to 1, resulting

in perfect alignment 〈ui, ϕi〉 → 1.
Real diagonalizability in Hypothesis 2 is here to simplify the proof but the Master Theorem

will hold for complex eigendecompositions. The low-rank assumption is standard in the littera-
ture; it can be relaxed by replacing the rank with the effective rank, as in [28]. The separation
assumption is not necessary for eigenvalue asymptotics, but strong separation is necessary for
eigenvector overlaps.

Note that every bound in the hypotheses (such as the bound on W , the rank or the delocal-
ization) can be extended to no(1) at virtually no cost.

Theorem 31 follows the line of research initiated in [91, 29] and continued by different works,
among which [116, 28, 106]. We give an overview of the proof of Theorem 31 in Appendix 5.7.

5.3 Spectral embeddings of directed SBM

5.3.1 Model definition

A powerful aspect of our Master Theorem lies in its application to clustering in directed stochastic
blockmodels. In the following, we fix a number of clusters r, and a number of vertices n,
understood to be large. Let σg, σd : [n] 7→ [r] be the left and right cluster assignments; that is,
a vertex x is said to be in the i-th left (resp. right) cluster if σg(x) = i (resp. σd(x) = i). Let
F be an arbitrary r × r matrix with positive entries; the directed SBM is then a random graph
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G = ([n], E) with vertex set [n] and such that for each directed edge (i, j), we have

P((i, j) ∈ E) =
Fσg(i),σd(j)

n
.

The aim is then to recover the left (or right) cluster memberships, given an observation of G.
Note that, for ease of exposition, we did not include weights: W is thus the all-one matrix,
and in this setting we have Q = P = E[A]. It is relatively simple to compute the spectral
decomposition of Q in this setting:

Proposition 22. Let A be the adjacency matrix of G. The non-zero eigenvalues of P = E[A]
are exactly those of the modularity matrix FΠ, where

Πij =

∣∣σ−1
g (j) ∩ σ−1

d (i)
∣∣

n
.

Additionnally, the associated left eigenvectors of P are constant on the right clusters, while the
right eigenvectors are constant on the left clusters.

Therefore, as per our main theore, the left/right eigenvectors of the adjacency matrix of
G are close to their expectation, which is constant on the right/left clusters. We thus expect
a clustering algorithm on those eigenvectors to be able to recover at least a fraction of the
community memberships. We refer to Appendix 5.9 for a more complete spectral analysis of the
matrix P , as well as a formulation of Theorem 31 suited to the SBM setting.

Remark. Whenever σg = σd, as is often the case, both left and right eigenvectors are constant
on the clusters; this effectively doubles the signal to recover σd.

An important question to ask is the following: how many eigenvectors of A do we need to be
able to reconstruct the clusters ? It is often assumed that r eigenvectors are needed to recover
the memberships (see e.g. [122]). However, in our DSBM setting, we propose the following
heuristic:

Partial cluster recovery is possible as soon as the first r0 eigenvectors of E[A]
are sufficient to recover the clusters.

Here, r0 is the same as in Theorem 31, and denotes the number of eigenvalues of E[A] that get
reflected in the spectrum of A. Since we showed that the eigenvectors of E[A] are constant on the
clusters, this is equivalent to the function k 7→ (ψ1(k), . . . , ψr0(k)) being injective, where the ψi
are the right (resp. left) eigenvectors of FΠ (resp. ΠF ). This can happen when r0 � r, and even
in some cases when r0 = 1, which is a huge improvement on the threshold for reconstruction.
Additional eigenvectors may of course increase the recovery accuracy; however, in some cases,
the additional information they bring is nullified by the increase in dimensions for the clustering
algorithms.

5.3.2 SBM with a pathwise structure

General case. We restrict to the classical SBM described earlier, with a specific shape known
as pathwise structure, and notably studied in [81]. It is a good model for flow data. In this model,
we have σd = σg, and the clusters partition [n] in r parts of equal size. The underlying r × r
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connectivity F is given by

F = s



1/2 η
1− η 1/2 η

. . .
. . .

. . .

1− η 1/2 η
1− η 1/2


(5.5)

where s > 1 is the density parameter and η ∈ [1/2, 1]. The modularity matrix is therefore given
by F/r. The matrix F shown in (5.5) is a tridiagonal Toeplitz matrix; such matrices have been
extensively studied and their eigendecomposition is known (see Appendix 5.10.3): as a result,
cluster recovery is possible as soon as the top eigenvalue of F/r is at least one. This happens in
particular whenever s ≥ 2r.

Two blocks: explicit computations. In the case of two blocks r = 2 with the same size
n/2, the connectivity matrix F is equal to

F =

(
s/2 sη

s(1− η) s/2

)
(5.6)

Define the parameter θ = 2
√
η(1− η). The spectral structure of F is described in the following

lemma:

Lemma 42. The two eigenvalues of F are υ1 = s1+θ
2 and υ2 = s1−θ

2 , with corresponding unit
right eigenvectors fi and unit left eigenvectors fi given by

f1 = (
√
η,
√

1− η), g1 = (
√

1− η,√η),

f2 = (
√
η,−

√
1− η), g2 = (

√
1− η,−√η).

The eigenvectors of P thus verify

ϕi(x) ∝ fi(σ(x)) and ξi(x) ∝ gi(σ(x)),

and Theorem 31 applies in this setting:

Theorem 32. Under the above assumptions, with high probability the following holds.

1) If s < 4(1 + θ)/(1 − θ)2, then r0 = 1. The Perron eigenvalue of A, namely λ1, is
asymptotically equal to υ1/2, and all the other eigenvalues have modulus asymptotically smaller
than

√
υ1/2. Moreover, if u1, v1 is a left/right pair of unit eigenvectors associated with λ1, then

limn→∞ |〈u1, ϕ1〉| = limn→∞ |〈v1, ξ1〉| = a1,1 where a1,1 is a completely explicit function of s, η
that satisfies

a1,1 = 1− 2

s
· 1 + θ2

(1 + θ)2
+O

(
1

s2

)

2) If instead s < 4(1 + θ)/(1− θ)2, then r0 = 2. The Perron eigenvalue of A, namely λ1, is
asymptotically equal to sυ1/2, the second eigenvalue λ2 is asymptotically equal to υ2/2 and all
the other eigenvalues have modulus asymptotically smaller than

√
υ1/2.

136



Algorithm 1 Spectral clustering of n nodes, based on the adjacency matrix A.
1: Data: a n× n adjacency matrix A; a number of clusters k; a rank r0.
2: Compute the r0 largest eigenvalues of M and their unit left and right eigenvectors ui, vi.
3: Define the spectral embedding XA = {XAx : x ∈ [n]} as in (5.7).
4: Apply a GMM-clustering method on the cloud XM .
5: return The partition of [n] based on the output of GMM-clustering.

Moreover, if ui, vi is a left/right pair of unit eigenvectors associated with λi for i = 1, 2, then
limn→∞ |〈u1, ϕ1〉| = limn→∞ |〈v1, ξ1〉| = a1,1 as above, and additionnally limn→∞ |〈u2, ϕ2〉| =
limn→∞ |〈v2, ξ2〉| = a2,2 with a2,2 a completely explicit function of s, η that satifies

a2,2 = 1− 2

s
· 1 + θ2

(1− θ)2
+O

(
1

s2

)
.

The threshold s > 4(1 + θ)/(1− θ)2 can also be rewritten as η > η(s), where η is an explicit
function of s (see equation (5.48) in the Appendix). This will be the preferred formulation
through the rest of the paper. Note that η(s) decreases to 1/2 quite slowly: as an example, we
have η(10) ≈ 0.979 and η(50) ≈ 0.885, and it can be shown that η(s) ∼ cs−1/4.

5.4 Geometric clustering and community detection

Our Master Theorem describes the information given by the spectral embedding X on the
underlying model. Most spectral clustering pipelines then perform geometric clustering based
on X .

5.4.1 Algorithm and measure of performance

Our algorithm computes the left and right eigenvectors xi, yi associated with the r0 largest
eigenvalues of M , then defines an embedding of the nodes of [n] in R2k by setting

XA(x) = (u1(x), . . . , ur0(x), v1(x), . . . , vr0(x)). (5.7)

Then, we cluster these n points using the Gaussian Mixture Model for clustering ([94]). We
insist on the fact that no data preprocessing is needed: no high-degree trimming, no pruning,
no normalization. The complexity of our algorithm is similar to all the spectral clustering
procedures: it needs the computation of at most 2r left/right eigenvectors where r is generally
O(log(n)c), and then doing a clustering method with at most r clusters on a n×2r0 embedding.

Remark. The number r0 is a priori problem-dependent. However, since r0 6 r and r is low in
most problems, one can loop over r0 at a minor cost. The Master Theorem allows for a more
reasonnable possibility, which is to directly estimate r0 from the data as the number of isolated
eigenvalues outside the bulk of the spectrum. This can easily be done either by visual inspection
(see Figure 5.1) or by some ad hoc statistical rule and it does not require a priori knowledge of
r — unlike many methods in the litterature.

In the stochastic block-model, we have a notion of ground-truth clustering σ : V → [k],
where σ(x) = i denotes the membership of node x to the i-th cluster. If our procedure outputs
a clustering σ̂, the performance of this clustering is measured through the overlap, also called
Rand Index: it is the proportion of pairs of nodes on which σ and σ̂ agree on membership, that
is

ov(σ, σ̂) =
1(
n
2

) ∑
{x,y}

1{σ and σ̂ agree on the edge {x, y}}, (5.8)
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where ‘agree’ means that either σ(x) = σ(y) and σ̂(x) = σ̂(y), or σ(x) 6= σ(y) and σ̂(x) 6= σ̂(y).
Without any information on σ, a blind guess for σ(x) is to randomly assign x to one of the k
clusters. This is called a dummy label, σ̂dummy. The adjusted overlap is often preferred to the
former:

aov(σ, σ̂) =
ov(σ, σ̂)−E[ov(σ, σ̂dummy)]

1−E[ov(σ, σ̂dummy)]
. (5.9)

An adjusted overlap of 1 indicates a perfect recovery of σ (up to permutation), while an overlap
of 0 indicates that σ̂ is not better than a dummy guess at recovering σ. In the litterature this
is often called Adjusted Rand Index. It will be our measure of performance in our numerical
experiments.

Remark (notions of consistency). Strong consistency of a procedure corresponds to aov = 1,
that is: all the labels are correctly guessed. Weak consistency is when lim aov = 1 when n→∞.
Partial consistency is when lim inf aov > 0, meaning that the algorithm does strictly better
than random guess, a task called detection. In the undirected setting, strong consistency is
feasible in the regime d/ log(n) → ∞ ([4] and weak consistency as long as d → ∞ ([60] and
the survey section therein). Note that in the sparse regime with d constant (this paper), even
weak consistency is not achievable because of a constant proportion of isolated nodes. Partial
consistency in the undirected case was achieved in [29, 100] under a spectral condition on the
modularity matrix. We expect similar results to the ones above to hold in the undirected case.

5.4.2 Choice of the clustering algorithm

When it comes to the last step of spectral clustering, i.e. geometric clustering on the spectral
embedding, the overwhelming choice of algorithm is the k-means (see for example [120, 128]).
It is very simple to implement, and its tractability allows for explicit performance bounds for
spectral clustering [44, Theorem 2]. However, our numerical experiments (see Appendix 5.6)
show an interesting phenomenon: the addition of a second informative eigenvector appears to
decrease the algorithm’s performance ! Our assumption is that the increase in dimensions for
clustering caused by the introduction of the second eigenvector nullifies the additional informa-
tion it brings. To the contrary, our experiments showed a significative increase in performance
when using GMMs, although very little is known in terms of their theoretical footing. A mix of
theoretical and empirical results allow us to present a simple explanation: the eigenvectors of G
are indeed close to a mixture of Gaussian distributions.

Theorem 33. Consider the SBM as described in Section 5.3, with σd = σg. Assume that µi is
an isolated informative eigenvalue of P , and let ui be a right eigenvector of the adjacency matrix
of G such that |ui| =

√
n. Then we have the following convergence in distribution: for all j ∈ [r],

1

Card(σ−1(j))

∑
σ(x)=j

δui(x)
d−−−−−→

n→+∞
L(Zi,j),

where Zij is a random variable with known mean µij and variance σ2
ij (see equation (5.52) in

the Appendix). Similar results hold for the right eigenvector vi.

In the above theorem, δ denotes the Dirac delta; the LHS is therefore simply the discrete
measure on the entries of ui on the j-th community. The proof of this theorem, as well as an
explicit derivation of µij and σij, can be found in the Appendix. It implies, in particular, that
the distribution of ui can be seen as a mixture of r different distributions.

We do not claim (and it is indeed false, see Remark 5.6) that Zi,j ∼ N (µij , σ
2
ij); however,

numerical experiments performed in Figure 5.5 appear to show that, at least when the mean
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degree of the graph is large, the distribution of ui behaves as a mixture of Gaussian distributions.
This brings us to the conjecture:

Conjecture 6. When the top eigenvalue of P goes to infinity, the distribution of Zij approaches
that of a normal random variable with same mean and variance.

If proven true, this conjecture would give theoretical footing to the performance of GMMs,
whose edge over other algorithms is only observed empirically for now.

5.4.3 Numerical validation of our results

Tested methods. We compare our Algorithm 1 with two other methods for digraph clustering.
Both methods end with a k-means clustering on a spectral embedding. The first method uses the
k left and k right top singular vectors of the adjacency matrix, where k is the number of blocks.
The second one is SimpleHerm: we define a complex Hermitian matrix by Hx,y = ωAx,y +ωAv,u
where ω is the d2πke-th root of unity.We then use the eigenvector of the smallest eigenvalue λ1

of L = I−D−1/2HD−1/2 with D the diagonal degree matrix (Dx,x = d+
x + d−x ); since its entries

are complex, it is viewed as an embedding on R2. This method was introduced in [81], and was
convincingly shown to outperform other classical methods in semi-sparse regimes.

SVD and our method are agnostic to problem structure, but SimpleHerm is well-fitted to
flow networks. The performance guarantees of our method relies on the probabilistic properties
of the SBM, while SimpleHerm satisfies deterministic Cheeger-like inequalities (see [81]). It
would be interesting to test these methods on more general models of directed networks.

Setting. For 50 values of η equally spread between 0.5 and 1 we sampled 20 directed SBMs
with connectivity matrix F as in (5.5) and with n = 2500 nodes. The parameters are k, the
number of blocks and equal to 2, 4, 6 (the blocks have the same size n/k). For the parameter s,
we chose the unique s(d, k) so that the the mean degree of our model with k blocks (given in the
formula (5.42)) is equal to d = 2, 3 or 4, see Table 5.1 at page 160 and discussion therein. We
insist on the fact that the mean degree in our model is extremely low, and in particular stays
under the log(n) = log(2500) ≈ 7.82 barrier. Our performance measure is the adjusted overlap
(5.9), between the labelling output by the tested method, and the true labelling.

Results. The results of our experiments2 are in Figure 5.3. With extremely low degrees
(d = 2), our method (red curve) is the only one to catch a signal, the two other ones are unable
to detect any community structure. For slightly higher d = 3, 4, our method seems to globally
compare with SimpleHerm and be superior to SVD. When the asymmetry is closer to 1/2 (hard
regime), our method performs better, see for instance the very neat advantage for k = 6 blocks,
where our method reaches more than 20% overlap for η ≈ 1/2, against no detection at all for
the other methods. When η approaches 1, the performance of our method collapses back to
low overlaps, while SimpleHerm has very high performances. We expect this phenomenon to
be caused by the fact that when η → 1, the eigenvectors of F all align with (1, 0, . . . , 0). On a
side note, we remark that our method has a better precision, with the standard error (coloured
zones) being generally smaller.

5.5 Conclusion and future prospects

We rigorously described the behaviour of a simple spectral embeddings, using the eigenvectors of
non-symmetric matrices, and we numerically show that our algorithm using Gaussian Mixture

2In a preliminary version of this paper, the method SimpleHerm was incorrectly implemented.
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Figure 5.3: Averages of labels reconstruction scores (adjusted overlaps), averaged over 20 runs
for 50 values of η ranging from 0.5 to 1, and for different mean degree d. The number of nodes is
n = 2500. Coloured zones are for standard errors of the corresponding method. The parameter
s corresponding to the various values d are given in Table 5.1 page 160).
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clustering has suprisingly good results against state-of-the art methods in digraph clustering,
especially in the difficult regime where the model density is O(1). The main weakness of our
theory is that it does not apply to rectangular matrices directly, but the randomsplit-squaring
strategy as in [28] is directly applicable here. Since our theory is new, we chose to keep the
exposition as simple and general as possible, but many new directions seem to be promising:
among them is the possibility to use the distance-matrix A(`)

x,y = 1d+(x,y)6` instead of A, which
should result in a method which is more robust to adversarial perturbations, as in [3, 117].
Regarding the gaussianity of the model, we conjecture that the fluctuations of the eigenvalues
are Gaussian in the sparse regime; as mentioned, the fluctuations of the eigenvector entries will
not be Gaussian, but we now explore a proof of the convergence of these fluctuations when the
density of the model increases.
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Score = 0.13

kmeans

Score = 0.13

spectral clust.

Score = 0.56

GMM

Figure 5.4: Top. Here n = 2000, s = 10 and η = .99 > η(10) =, thus r0 = 2. The Score is the
adjusted overlap in (5.9).
Middle. For the two-block model with η ∈ [0.5, 1] we plotted the average Adjusted overlap over
100 runs of several clustering methods on spectral embeddings using either the embedding with
the Perron vector x 7→ (u1(x), 0) (solid lines) or the embedding with two dominant eigenvectors
x 7→ (u1(x), u2(x)) (dashdot lines). In the inset we see that the performance of GMM is not
reduced by the addition of the second informative eigenvector at the critical point η(10).

5.6 Gaussian Mixture clustering and Gaussian fluctuations

In Figure 5.4, we performed some experiments regarding which clustering method to use on the
spectral embedding. We simply used three popular methods, implemented in Python’s Sklearn
library ([108]):

• k-means, the most popular method in graph clustering,

• Spectral-Clustering, which solves a norm-cut problem on the singular vectors of a distance
matrix, a method known to be powerful when the clusters are non-convex,

• Gaussian Mixture clustering, which fits the parameters of a mixture of gaussians to the
data using the E-M algorithm.

The first panel in Figure 5.4 is only a visual illustration of what spectral embeddings on a
two-block SBM looks like. Here, the parameters are η = 0.99 and s = 10; our theory shows that
there are two outliers in the spectrum of A. Our spectral embedding X in (5.7) has thus four
dimensions (we use the left and right eigenvectors). For better visualization, we simply took the
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two right eigenvectors. Each point in the figure is thus (u1(x), u2(x)) for some node x and the
colors are the labels given by each clustering method.

The second panel in 5.4 shows the performance of these clustering methods, for η between
1/2 and 1. We also compared the use of only one eigenvector with the use of two eigenvectors,
even when there is only one informative eigenvector (r0 = 1).

(i) When there is only one outlier (η < η(s)), clustering based on the Perron eigenvectors
(solid lines) yields good results, while adding a second uninformative eigenvector (dashdot
lines) deeply reduces the performance of any clustering method.

(ii) When crossing η(s), a second informative eigenvector appears; the performance of cluster-
ing methods based on the Perron eigenvector are reduced, in accordance with the corre-
lation decrease of |〈u1, ϕ1〉| predicted by Theorem 32 (see the golden line in Fig 5.1, first
panel).

(iii) But, when η > η(s), the performance of kmeans and spectral-clustering based on the
two informative eigenvectors u1, u2 first decreases, since these algorithms seem to struggle
exploiting the extra information given by the second eigenvector (Figure 5.4, top panel).
Only the Gaussian mixture model incorporates this extra information efficiently: it is the
only method for which clustering based on two informative vectors is better than with only
one (the two orange lines cross short after η(s)).

We did not try other clustering methods — these experiments are only indicative of a seem-
ingly high performance for gaussian clustering. In Theorem 33, we showed that the spectral
embeddings have a limiting distribution, accessible through the Zi,j . If Zi,j was Gaussian, the
performance of GMM would be completely understood, but as mentioned before Conjecture 6,
in the sparse regime, the limiting distributions Zi,j (or equivalently, the spectral embeddings)
are not Gaussian. The following remark explains why.

Remark. Zi,j has a positive atom at 0 (and possibly many other atoms): indeed, following the
notations of the very last subsection, it is easily seen that the limit Zi,j is equal zero when the
Galton-Watson tree Tj is empty, which happens with strictly positive probability so P(Zi,j >
0) > 0; but clearly, the extinction probability of Tj goes to zero when ν1, the highest modularity
eigenvalue, goes to infinity. Note that the atom at zero is visible in Figure 5.5-(a).

The shapes of the random variables Zi,j are visible in Figure 5.5. In this figure, we plotted
the histograms of the entries of ui in two different 5000-nodes blockmodels, with connectivies
F1 (top) and F2 (bottom) given by:

F1 =

(
6 4
5 3

)
F2 =

(
48 6
12 24

)
(5.10)

with two clusters of size p1 = 2/3, p2 = 1/3 — the same size on the left and on the right. In the
first model, there is only one outlier; in the second, there are two.

Note that the Theorem implies that for i ∈ [r0], the densities of the discrete distributions

1

n

∑
x∈[n]

δui(x)

converge in distribution to p1Zi,1 + p2Zi,2. The plots are the histograms of the ui(x) over 10
samples. In the figure, the grey lines are the densities of the gaussian mixtures

Ni = p1N (µi,1, σ
2
i,1) + p2N (µi,2, σ

2
i,2), (5.11)
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(a): r0 = 1. Histogram of the entries of u1.
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(b) r0 = 2. Histogram of u1 in pink, and u2 in blue.

Figure 5.5: An illustration of Theorem 33, for the two-block SBM with connectivities as in (5.5)
and clusters sizes p1 = 2/3, p2 = 1/3. Here, n = 5000 and there are 10 samples in each picture.
The grey lines are the densities of the gaussian mixtures in (5.11).

where i ∈ {1, 2} and µi,j , σ
2
i,j are the means and variances of the limiting random variables

Zi,j . It is clearly seen that in the first plot, the limit of u1 is not Gaussian; in the second plot,
the degrees of the graph are much higher (we are already on the semi-sparse regime), and the
Gaussian approximations for both eigenvectors are strikingly convincing.
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5.7 A bird’s eye view on the proof of Theorem 31

The proof of Theorem 31 follows the celebrated high-trace method, introduced in [91, 29]. Con-
siderable advances and simplifications have recently been made; on one hand, [116] performed
this method on the non-backtracking matrix of weighted, inhomogeneous undirected graphs; on
the other hand, [28] performed this method on the adjacency matrix of weighted, homogeneous
directed graphs. In both of these papers, the underlying matrices P and W were Hermitian,
which is no longer the case here. Our Master Theorem bridges the gap, and considers the
adjacency matrix of weighted, inhomogeneous directed graphs with general P,W .

We hereby sketch the main ideas at a high level, and when needed we link our proof with
the formerly cited papers. We emphasize that the proofs of theorems like Theorem 31 are often
very technical. In this appendix, we tried to be as elementary as possible, to hide the technical
details already written in other papers, and to give a short, accessible summary of the proof
ideas — at the cost of completeness.

5.7.1 Warmup: notations

Probabilistic domination. For readability, we introduce notations regarding the asymptotic
order of real random variables. Let

X = (Xn : n ∈ N) Y = (Yn : n ∈ N)

be two families of real random variables. We write X � Y if there is a constant D such that for
every constant c > 0, for n large enough,

P(|Xn| > log(n)D|Yn|) 6 log(n)−c,

in other words, |Xn| is smaller than |Yn| up to logarithmic terms, with probability smaller than
every polylogarithm (typically, nδ for small δ). Finally, we write X � Y if for every constants
c,D > 0, for n large enough,

P(|Xn| > log(n)−D|Yn|) 6 log(n)−c.

In other words, |Xn|/|Yn| goes to zero faster than every polylogarithm. With this handy device,
it is easily seen that Xn � Yn and Yn � Zn imply Xn � Zn. These notations are common in the
field of random matrix theory, and they truly simplify the exposition compared with [116, 28].

Spectral decomposition. Before starting, we write the spectral decomposition of Q = E[A]:

Q =
r∑
i=1

µiϕiψ
∗
i .

The µi are the r nonzero eigenvalues; we order them by decreasing modulus, |µ1| > · · · > |µr|.
The ϕi are the corresponding unit right eigenvectors; they do not always an orthonormal basis,
because Q has not been supposed normal. The ψi are the unique (up to a sign) left eigenvectors
satisfying 〈ϕi, ψj〉 = δi,j , and in general they do not have unit-length. In the statement of the
Master Theorem, the unit left eigenvectors ξi are thus ψi/|ψi|.
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Thresholds, spectral gap. We recall that r0 is the number of eigenvalues of Q with modulus
greater than ϑ = max(‖W‖∞,√ρ) where ρ =

√
‖K‖ and we introduce Φ = (ϕ1, . . . , ϕr0),Ψ =

(ψ1, . . . , ψr0) and Σ = diag(µ1, . . . , µr0). The spectral gap of our model is defined as

τ =

√
ϑ

|µr0 |
.

It is very important to note that τ < 1. The closer to 1, the harder the problem; the bounds of
Theorem 31 are actually of the form |λi − µi| � τ `, where ` is a carefully chosen parameter that
grows logarithmically with n.

Covariance functionals, eigendefects and cross-defects We will first need a notation for
the Hadamard products of vectors in Rn:

ϕi,j = ϕi � ϕj and ψi,j = ψi � ψj , (5.12)

so that in the statement of the Master Theorem, ϕ2
i is equal to ϕi,i. In the proof we will only

use the ϕi,i notation.
We introduce two functions Γ,Γ∗ : C× Cn → C by

Γ(z, ξ) =
∞∑
t=0

〈1,Ktξ〉
zt

and Γ∗(z, ξ) =

∞∑
t=0

〈1, (K∗)tξ〉
zt

. (5.13)

Let us recall that the norm of K is ρ; consequently, the sums above are convergent when |z| is
strictly greater than ρ, and in particular when z = µ2

i with i ∈ [r0]. In this case, one has

Γ(µ2
i , ϕ

i,i) = µ2
i

√
Ri and Γ∗(µ2

i , ψ
i,i) = µ2

i

√
Li. (5.14)

Proof. Let ξ = ϕi,i. We have Γ(µ2
i , ξ) =

∑∞
t=0

〈1,Ktξ〉
µ2t
i

= 〈1, (∑∞t=0(K/µ2
i )
t)ξ〉. The Neumann

summation formula shows that since ‖K/µ2
i ‖ < 1, the matrix sum in this expression is nothing

but (I −K/µ2
i )
−1 = µ2

i (µ
2
i I −K)−1, and that this matrix has all entries nonnegative. Since ξ

also has nonnegative entries, |(µ2
i I −K)−1ξ|1 = 〈1, (µ2

i I −K)−1ξ〉, and we recognize the right
eigendefects.

Since we’ll also need ‘cross defects’ like Γ(µiµj , ϕ
i,j), we introduce the notations Γleft,Γright

for two matrices of size r0 × r0 defined by

(Γleft)i,j = Γ(µiµj , ϕ
i,j) and (Γright)i,j = Γ∗(µiµj , ψ

i,j).

5.7.2 The Pseudo-Master Theorem: A is nearly diagonalized by pseudo-
eigenvectors

The tools for studying matrix A are the pseudo-eigenvectors. Consider the eigenvalue µi of Q.
We define two vectors Ui = A`ϕi/µ

`
i and Vi = (A∗)`ψi/µ

`
i , where

` = bκ log(n)c (5.15)

and κ is a positive constant to be chosen later. To put it in matrix form, these vectors are the
columns of the n× r0 matrices

U = A`ΦΣ−` and V = (A∗)`ΨΣ−`.

The key aspects of U and V are summarized in the following list of statements, which is
a pseudo-version of the Master Theorem. We recall that the symbols �,� where rigorously
defined in the preceding subsection.
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Theorem 34 (Pseudo-Master Theorem). For a sufficiently small choice of κ, the following
holds.

(i) U and V are nearly inverses:
‖U∗V − I‖ � 1 (5.16)

(ii) U and Ψ are nearly inverses, and V and Φ are nearly inverses:

‖Ψ∗U − I‖ � 1 ‖Φ∗V − I‖ � 1 (5.17)

(iii) V and U nearly diagonalize A`:

‖V ∗A`U − Σ`‖ � 1 (5.18)

(iv) Γleft is nearly the Gram matrix of U , and the same for Γright and V :

‖U∗U − Γleft‖ � 1 ‖V ∗V − Γright‖ � 1 (5.19)

(v) A` is negligible outside of the vector spaces spanned by the pseudo-eigenvectors:

‖A`Projim(V )⊥‖ � ϑ`, ‖Projim(U)⊥A
`‖ � ϑ`, (5.20)

where ProjC⊥ denotes the projection matrix on the orthocomplement of the subspace C.

A crucial point in this theorem is that the error scale (up to polylog factors) is ϑ: only the
last bound, (5.20), is actually sharp. The other error terms are meant to be negligible.

Proving the Pseudo-Master Theorem (PMT) is really the core of the proof, and where lie
most of the difficulties. From the PMT, it is only a matter of linear algebra and perturbation
theory to prove the Master Theorem: we simply summarize the spirit in the next subsection,
and we quickly jump to the proof of the PMT.

5.7.3 Master Theorem = Pseudo-Master Theorem + perturbation theory

Given the statements in the preceding subsection, the main theorem follows from a standard
algebraic analysis, which builds on detailed quantitative variants of the Bauer-Fike theorem.
We refer the reader to the comprehensive studies in [91, Section 4] or [28, Section 8], which are
technical, but can be applied directly without any further modification. In this short paragraph,
we simply explain the ideas.

The main trick is to define a matrix S = UΣ`V ∗. If we had V ∗U = I, this matrix would be
exactly diagonalizable with eigenvalues µ`i ; but V

∗U is only close to I. Fortunately, it is easily
seen that if U, V are well-conditioned, then S is diagonalizable, with eigenvalues close to the µ`i
and eigenvectors close to the Ui, Vj . The fact that U, V are well-conditioned follows from (5.19):
by continuity, their condition number is close to the condition number of Γright,Γleft, who in
turn are bounded:

Lemma 43. The condition numbers of the matrices Γright,Γleft, U, V are all � 1.

Proof. Note πs(x) =
√

(K∗)s1(x) and Πs = diag(πs). It is easily seen that 〈1,Ksϕi,j〉 =
(Φ∗Π2

sΦ)i,j . The matrix Γleft is thus a sum of semi-definite positive matrices, with first term I0,
so its smallest eigenvalue is > 1 and its condition number is smaller than ‖Γleft‖. On the other
hand, note that |〈1,Ksϕi,j〉| 6 |1||ϕi,j |ρs. Thanks to (5.2), we have |ϕi,j | 6 c

√
1/n for some

c; consequently, (Γleft)i,j 6 c
∑
ρs/(µiµj)

s 6 c/(1 − τ) � 1. Finally, since the size r0 is also
� 1, we have ‖Γleft‖ � 1 and the condition number is � 1. By the Weyl inequalities and (5.19),
|cond(U)− cond(Γleft)| 6 ‖UU∗ − Γleft‖ � 1 and cond(U) � 1.
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The smallest eigenvalue νr0 of S is close to µ`r0 , and since τ > 1 independently of n and
` = bκ log(n)c, we get |µ`r0 | � ϑ`. But we can write A` as a perturbation of S,

A` = S + (A` − S),

and, crucially, statements (5.18)-(5.20) can be bootstraped to show that ‖A` − S‖ � 1. The
Bauer-Fike theorem applies, and roughly says that the eigenvalues of A` are within distance
� ϑ` of the eigenvalues of S: consequently, A` has r0 eigenvalues ϑ`-close to µ`1, . . . , µ`r0 , and the
eigenvalue 0 of S gives rise to n− r0 eigenvalues of A` with modulus � ϑ`. A similar statement
holds for the eigenvectors; extra work needs to be done for getting results on the eigenvalues of
A, since there might be some phase effects.

The results on eigenvectors follow in the same way, with a Davis-Kahan-like custom theorem
proved in [116]. To ensure performant bounds, we must assume that the eigenvalues µi are
well-separated, which the reason why we suppose that |µi − µj | > c for some c > 0 in the
Hypotheses before the Master Theorem. Since ‖A` − S‖ � 1 and the condition numbers of
the matrices of interest are all � 1, the Davis-Kahan theorem yields a bound of the form
|ui − Ui/|Ui|| � ‖A` − S‖/c, which is � 1:∣∣∣∣ui − Ui

|Ui|

∣∣∣∣� 1. (5.21)

The ‘eigenvector part’ of the Master Theorem then easily follows, by the continuity of u 7→ 〈u, ϕ〉
and the limits in the Pseudo-Master Theorem.

5.8 Proof of the Pseudo-Master Theorem

This section is devoted to the proof of the Pseudo-Master Theorem.
The first two sections gather some results on local approximations of random graphs: to a

large extent, they are classical and well-known. We state them for completeness and because
they give a good intuition on the following parts, but these statements can be retrieved using
routine methods from random graph theory. Subsection 5.8.3 states a powerful concentration
result on random graphs, proved in [28].

We use these results as a computational toolbox: in Subsections 5.8.4 to 5.8.7, we perform all
the necessary calculations on our pseudo-eigenvectors, and we rely on an elegant generalization of
Kesten martingales on inhomogeneous Galton-Watson trees. These sections differ from previous
works in the sense that we had to adapt the computations to the general setting of our Master
Theorem, with full inhomogeneity and non-symmetry.

Finally, the main ideas of previous works on trace methods are summarized in Subsection
5.8.8, as they apply without modifications to our setting.

5.8.1 The graph has few short cycles, and small neighbourhood growth

Sparse random graphs, that is, random graphs where the mean degree of vertices is O(1), have
been known for long to be locally-tree like, in the sense they have very few short cycles. In
our model, we supposed that Px,y 6 d/n for some d. As a consequence, the expected degree
of a vertex x is dx = Px,1 + · · · + Px,n, and is smaller than d, and the graph is stochastically
dominated by a directed homogeneous Erdős-Rényi random graph with connectivity d/n. In
turn, many random variables (cycle counts, edge number) are stochastically dominated by the
undirected Erdős-Rényi graph of degree 2d/n. Most properties on the local structure directly
follow from classical results: absolutely no problem-specific work is needed here. We simply
gather the results we will tacitly use in the sequel.

148



We note (G, x)t the forward neighbourhood of radius t around x in G, that is: the subgraph
spanned by vertices y, for which there is a directed path with length smaller than t from x to y.
The crucial choice will be the depth ` at which we look into the graph. We recall

` = bκ log(n)c

where κ is an explicit constant depending on d. With such a choice, we have the crucial property
that shallow neighborhoods are nearly trees. We say that a graph is t-tangle-free if for every
vertex x, the subgraph (G, x)t has no more than one directed cycle.

Lemma 44. There is a constant c = c(d) such that G is 2`-tangle-free with probability > 1−n−c.
Moreover, if N is the number of vertices x such that (G, x)2` contains a cycle, then N � 1.

The proof Lemma 44 follow from the choice of the constant κ in (5.8.1). We refer to [29] for
the details.

5.8.2 The graph is locally approximated by trees

Let x be a vertex in G, and N (x) the set of its neighbours (in the forward sense: y is a neighbor
or x if (x, y) ∈ E, not necessarily when (y, x) ∈ E). Then N (x) has the following distribution :
each vertex y 6= x is present in N (x) with probability Px,y, independently from all other vertices.
It is a well-known fact that whenever the Px,y are small, the law of |N (x)| is well approximated
by Poi(dx) (the so-called ‘rare events theorem’). Moreover, conditionnally on {N (x) 6= ∅}, the
distribution of a random element in N (x) is equal to πx, where

(πx)z = Px,z/dx. (5.22)

That being said, the distribution of k elements in N (x) is not the product distribution (πx)⊗k

because the elements have dependencies (they cannot be chosen multiple times, for instance),
but these dependencies are nearly nonexistent. In fact, let us introduce a new distribution Qx

on random multi-sets.

• The number of elements of the random multiset M(x) under Qx is a Poisson random
variable with mean dx;

• Conditionnally on |M(x)| = k, each of these k element is sampled independently on [n]
with probability distribution πx.

The following proposition is a rigorous formulation of the intuitions given above. We set
σx = P 2

x,1 + · · ·+ P 2
x,n; in our regime, σx = O(1/n) = o(1).

Proposition 23. [116, Lemma 8] We have

dTV(Px,Qx) 6 2σx. (5.23)

Building from those remarks, we define a random tree Tx as follows :

• the root (at depth 0) is a single vertex labeled x,

• for each vertex i at depth t with label xi, the children of i at depth t+ 1 with their labels
have the joint distributionM(xi), independently from all other vertices at depth 6 t.

With this definition, the tree Tx is formally undirected, but we can view it as a directed tree
with directions flowing out of the root. Proposition 23 then implies that the neighbourhood
distributions in Tx and G are similar, as summarized in the following result:
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Lemma 45. Whenever ` = bκ log(n)c with κ small enough, we have

dTV((G, x)2`, (Tx, x)2`)� 1. (5.24)

This lemma will not directly be used in our proof; it is only a step in the proof of Proposition
24 thereafter. We stated it anyways because it gives a rigorous meaning to the fact that G is well-
approximated locally by trees, and it intuitively gives a justification for our tree computations
in subsequent parts of the proofs.

Note that we formulated this section only with forward neighborhoods; the propositions are
also true with backward neighborhoods, and in this case we only have to see Tx as a directed
tree, with edges oriented towards the root.

5.8.3 Concentration of linear functionals

The graph G (or the matrix A) is a collection of n2 independent random variables: it is thus
natural that if F (G, x) is a function which depends only on a small neighborhood of the graph,
then its space average

1

n

∑
x∈[n]

F (G, x) (5.25)

should be concentrated around its mean. This is the case, and a stronger statement actually
holds: we saw in (5.24) that (G, x) and (Tx, x) nearly have the same distribution, and it is
actually known that the functional in (5.25) is indeed concentrated around the expectation of
the same functional applied on the trees (Tx, x).

To formalize this, we say that a function f : G × N 7→ R, where G denotes the set of all
graphs, is `-local if f(H,x) only depends on the `-neighbourhood of x in H. Let (Tx, x) be the
family of independent random rooted trees as in (5.24). Then the following lemma is true as
long as the constant κ in ` is small enough (κ < 0.01/ log(2d) will be sufficient).

Proposition 24. Let F be a family of functions f : G × N 7→ R, with less than � 1 elements.
We suppose that each f ∈ F is a 2`-local function, that for all graphs H and node x one has
supf∈F f(H,x) 6 |(H,x)2`|2 × (cn/n), for some cn > 0. Then

sup
f∈F

∣∣∣∣∣∣
∑
x∈G

f(G, x)−
∑
x∈[n]

E [f(Tx, x)]

∣∣∣∣∣∣ � cn
n0.1

.

Proof. This is a restatement of Theorem 12.5 in [28], with β = 2 and α = cn/n. The bound
therein is cnn−1/2+2κ. A sufficiently small κ leads to our statement. Note that if f(H,x) 6
|(H,x)2`|, then f also satisfies f(H,x) 6 |(H,x)2`|2, which is the reason why we chose to keep
the exponent 2.

A crucial point in the proof of the Pseudo-Master Theorem is that the pseudo-eigenvectors
Ui and Vi are `-local functions of G, and thus so are their scalar products with one another. As
such, all computations in (5.16)-(5.18) reduce to computing expectations on the random trees
defined in the preceding subsection. We can apply Lemma 24 to G and the family (Tx)x; the
problem was reduced to computing the expectations of our functionals on the trees Tx.
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5.8.4 Pseudo-eigenvectors on the random tree

Let us take a quick look at the entries of U and V , and pick one vertex x ∈ [n] and some index
i. By definition,

Ui(x) = µ−`i (A`ϕi)(x)

= µ−`i
∑

x1,...,x`

Wx,x1Wx1,x2 · · ·Wx`−1,x`ϕi(x`), (5.26)

where the sum runs over all the paths in the graph G, ie sequences of vertices such that the
edges (xs, xs+1) are present in the graph.

This is, by definition, an `-local function ; its counterpart on the tree can thus be defined as

Ũi(x) = µ−`i
∑

x1,...,x`∈Tx

Wx,ι(x1)Wι(x1),ι(x2) · · ·Wι(x`−1),ι(x`)ϕi(ι(x`)), (5.27)

where the sum ranges over the vertices x` at depth ` in Tx and the unique path x, . . . , x`
connecting x to x`, and ι(xi) is the label of xi.

5.8.5 The martingale equation

Let E`−1 denote the conditional expectation with respect to the first ` − 1 generations of Tx.
Write

E`−1[Ũi(x)] = µ−`i
∑

x1,...,x`−1

Wx,ι(x1) · · ·Wι(x`−2),ι(x`−1)E`−1

[∑
x`

Wι(x`−1),ι(x`)ϕi(ι(x`))

]
.

Let us note y = ι(x`−1); the inner expectation reads

E`−1

[∑
x`

Wι(x`−1),ι(x`)ϕi(ι(x`))

]
= E

 ∑
z∈M(y)

Wy,zϕi(z)


This is a sum of a Poi(dy) number of independent random variables with distribution πy, so

E

 ∑
z∈M(y)

Wy,zϕi(z)

 = dy ×
∑
z∈[n]

Py,z
dy

Wy,zϕi(z)

=
∑
y∈[n]

Py,zWy,zϕi(z)

=
∑
y∈[n]

Qy,zϕi(z)

= (Qϕi)(y)

= µiϕi(y)

where, in the last line, we used the fact the ϕi is an eigenvector of Q. Recalling that y = ι(x`−1),
we have

E`−1[Ũi(x)] = µ−`+1
i

∑
x1,...,x`−1

Wx,ι(x1) · · ·Wι(x`−2),ι(x`−1)ϕi(ι(x`−1)).

In fact, defining Ũi(x, t) by replacing ` by t in the definition of Ũi(x), we showed that

The random process t 7→ Ũi(x, t) is a martingale. (5.28)

The common expectation is easily seen to be E[Ũi(x, 0)] = ϕi(x).
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5.8.6 Proving (5.16)-(5.17)-(5.18)

We only give the argument for (5.16), the others are done in a similar fashion. The (i, j)
coefficient of U∗V is 〈Ui, Vj〉, which can be rewritten as

〈Ui, Vj〉 = (µiµj)
−`〈A`ϕi, (A∗)`ψj〉 = (µiµj)

−`〈A2`ϕi, ψj〉

Let f(x) = fi,j(x) = ψj(x)[A2`ϕi](x); it is easily seen that 〈Ui, Vi〉 =
∑

x∈[n] f(G, x), and we are
ready to apply the concentration property in Proposition 24 to the family {fi,j}.

Lemma 46 (correlations between pseudo-eigenvectors are concentrated).

sup
i,j

∣∣∣∣∣∣〈Ui, Vj〉 − µ−`i µ−`j
∑
x∈[n]

ψj(x)E[Ũi(x, 2`)]

∣∣∣∣∣∣� 1 (5.29)

Proof. The delocalization properties of the ϕi (Hypothesis (5.2)), the tangle-free property (there
is no more than one cycle in (G, x)) and the fact that |Wx,y| 6 ‖W‖∞ all together imply that

f(G, x) 6
c‖W‖`∞

n
|(G, x)2`|,

for some universal constant c. But since ‖W‖∞ < c′ for some c′, any choice for κ sufficiently
small will give (for instance) ‖W‖`∞ � n0.01. Proposition 24 straightforwardly leads to a � n−ε
error for some small ε. With our notations, this is � 1.

We are now in a position to use property (5.28): E[Ũi(x, 2`)] = ϕi(x), and the orthogonality
property of the left and right eigenvectors yields |〈Ui, Vj〉 − δij | � 1. It is then straightforward
to go from this elementwise bound to (5.16): for any r0× r0 matrix M , one has ‖M‖ 6 r‖M‖∞.
Since we also have r � 1, we obtain ‖U∗V − I‖ � ‖U∗V − I‖∞ � 1.

The same proof works for V , with the subtle difference that these left-pseudo-eigenvectors Vi
are backward-looking: Vi(x) is a local function of (G, x)−` , where the − superscript denotes the
backward ball. But the proof is the same: Lemma 24 is true for backward functionals and the
couplings in Subsection 5.8.2 are the same, but with the Tx oriented towards the root; everything
works exactly the same.

5.8.7 Proving (5.19): martingale correlations

Statements in (5.19) are trickier: even if Lemma 24 still allows approximating 〈Ui, Uj〉 with
a tree computation, there are some strong dependencies between Ũi(x, t) and Ũj(x, t) that we
cannot neglect.

Rewriting the correlation term. Proceeding as before with f(G, x) = [A`ϕi](x) · [A`ϕj ](x),
we have

sup
i,j

∣∣∣∣∣∣〈Ui, Uj〉 −
∑
x∈[n]

E
[
Ũi(x)Ũj(x)

]∣∣∣∣∣∣� 1. (5.30)

We recognize a covariance term between two martingales; let us then introduce the increments

δt = Et−1

[
(Ũi(x, t)− Ũi(x, t− 1))(Ũj(x, t)− Ũj(x, t− 1))

]
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A classical use of the martingale property implies that

E
[
Ũi(x)Ũj(x)

]
= ϕi(x)ϕj(x) + E[δ1 + · · ·+ δ`]

The increment δt has an explicit expression:

δt = µ−ti µ
−t
j

∑
x1,...,xt−1

x′1,...,x
′
t−1

t−1∏
s=1

Wι(xs−1),ι(xs)Wι(x′s−1),ι(x′s)
×

Et−1

 ∑
xt−1→xt
x′t−1→x′t

Wι(xt−1),ι(xt)Wι(x′t−1),ι(x′t)
ϕi(ι(xt))ϕj(ι(x

′
t))− µiµjϕi(ι(xt−1))ϕj(ι(x

′
t−1))

 .
(5.31)

Covariance of Poisson sums. In the sum above, the only nonzero terms are when xt−1 =
x′t−1: otherwise, the inner sum becomes a product of two independent random variables of
respective expectations µiϕi(xt−1) and µjϕj(x′t−1). Writing again y = ι(xt−1), the conditional
expectation becomes

Cy : = E

 ∑
z,z′∈M(y)

Wy,zWy,z′ϕi(z)ϕj(z
′)− µiµjϕi(y)ϕj(y)


= Cov

 ∑
z∈M(y)

Wy,zϕi(z),
∑

z∈M(y)

Wy,zϕj(z)

 .

(5.32)

We then make use of the following elementary lemma:

Lemma 47. If N is a Poisson random variable and (A1, B1), (A2, B2), . . . are iid copies of a
couple of random variable (A,B), then

Cov

(
N∑
k=1

Ak,

N∑
k=1

Bk

)
= E[N ]E[AB]. (5.33)

In (5.32), N = |M(y)| is a Poi(dy) random variable, and the couple (A,B) is simply

A = Wy,Zϕi(Z) and B = Wy,Zϕj(Z),

where Z is a random index on [n] with distribution πy. Computing Cy is now straightforward:

Cy = dyE[Wy,Zϕi(Z)Wy,Zϕj(Z)]

= dy
∑
z∈[n]

Pyz
dy

W 2
yzϕi(z)ϕj(z)

= (Kϕi,j)(y).

Let us now come back to (5.31). We know that we can remove every term with xt−1 6= x′t−1,
and the computations above further reduce it to

δt = (µiµj)
−t

∑
x1,...,xt−1

t−1∏
s=1

W 2
ι(xs−1,ι(xs))

(Kϕi,j)(ι(xt−1))
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We recognize an expression similar to the definition of Ũi in (5.27). Using the same methods,
we are able to show that

E[δt] =
[Ktϕi,j(x)]

(µiµj)t
.

Finally, summing the increments, we get

E[Ũi(x)Ũj(x)] = ϕi(x)ϕj(x) +
∑̀
t=1

Ktϕi,j(x)

=
∑̀
t=0

Ktϕi,j(x)

µtiµ
t
j

. (5.34)

The expression for 〈Ui, Uj〉 is obtained by summing (5.34) over all values of x and plugging this
into (5.19), thus obtaining:

sup
i,j

∣∣∣∣∣〈Ui, Uj〉 − ∑̀
t=0

〈1,Ktϕi,j〉
(µiµj)t

∣∣∣∣∣� ϑ`. (5.35)

Statement (5.35) is pretty close to (5.19), at the sole difference of the summation index, which
is stopped at `. Also, note that (5.35) is valid for every i, j in [r], not just in [r0]. However,
whenever i, j ∈ [r0], we have by definition

√
ρ 6
√
τµi and

√
ρ 6
√
τµj ,

and the spectral radius of the matrix K/(µiµj) is thus at most τ . Since the entries of ϕi,j are
of order O(n−1), we have the bound

sup
i,j

∣∣∣∣∣
∞∑

t=`+1

〈1,Ktϕi,j〉
(µiµj)t

∣∣∣∣∣ 6 Cτ ` � 1.

Combined with (5.35), this finally ends the proof of (5.19).

5.8.8 The trace method

All that remains now is to prove equation (5.20); that is, once we showed that the first r0

eigenvalues of A` are close to the µ`i , it remains to show that the n− r0 eigenvalues are confined
in a circle of radius ϑ`. This is done in three parts:

(i) a tangle-free decomposition, expressing A` as a product involving its expectation Q, the
powers At for t 6 ` and some additional random matrices A(t), which can be understood
as the centered versions of At.

(ii) a trace method on the aforementioned centered matrices, inspired by [58], to bound their
spectral radius;

(iii) finally, a scalar product bound to control the whole sum whenever x ∈ H⊥.
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Tangle-free decomposition. We showed in Lemma 44 that with high probability the graph
G is 2`-tangle-free; as a result, for all vertices u, v and t 6 ` we have

Atuv =
∑
γ∈F (t)

uv

t∏
s=1

Aγs−1γs ,

where the sum ranges over all tangle-free paths (i.e. paths whose induced graph is tangle-free)
of length t in the complete graph Kn. The centered matrices A(t) are thus similarly defined as

A(t)
uv =

∑
γ∈F (t)

uv

t∏
s=1

Aγs−1γs ,

where A = A−Q is the centered version of A.
To decompose At in terms of the latter matrices, we make use of the following equality, valid

for any (ai), (bi):
t∏

s=1

as =

t∏
s=1

bs +

t∑
k=1

(
k−1∏
s=1

bs

)
(ak − bk)

(
t∏

s=k+1

as

)
Applying this to the two above equations yields

A`uv = A(`)
uv +

∑̀
k=1

∑
γ∈F (`)

uv

(
k−1∏
s=1

Aγs−1γs

)
(Qγk−1γk)

( ∏̀
s=k+1

Aγs−1γs

)

Each term in the sum above is close to [A(k−1)QA`−k−1]uv, with the following caveat : the con-
catenation of a path in F (k−1)

uv and one in F (`−k−1)
wx is not necessarily tangle-free ! Nevertheless,

we write

[A(k−1)QA`−k−1]uv =
∑
γ∈F (`)

uv

(
k−1∏
s=1

Aγs−1γs

)
(Qγk−1γk)

( ∏̀
s=k+1

Aγs−1γs

)
+ [R

(`)
k ]uv,

so that we finally get

A` = A(`) +
∑̀
k=1

A(k−1)QA`−k−1 −
∑̀
k=1

R
(`)
k (5.36)

Bounding ‖A(k)‖. The trace method gets its name from its leverage of the following inequality:∥∥∥A(k)
∥∥∥ =

∥∥∥(A(k)A(k)∗
)m∥∥∥ 1

2m
6 tr

[(
A(k)A(k)∗

)m] 1
2m
.

The above trace can be expanded as

tr
[(
A(k)A(k)∗

)m]
=
∑
γ

2m∏
i=1

k∏
t=1

Aγi,t−1γi,t , (5.37)

where the sum ranges over all concatenations of 2m k-paths γ = (γ1, . . . , γ2m) such that γi is
tangle-free for all i, and with adequate boundary conditions.

The goal is now to use a Markov bound, and thus to compute the expectation in (5.37); the
key argument is the following:
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Each term in the sum (5.37) has expectation zero unless γ visits each of its edges at least twice.

We now classify the subgraphs γ by their number of vertices v(γ) and edges e(γ), and we say
that γ and γ′ are equivalent if there exists a permutation σ ∈ Sn such that σ(γi,t) = γ′i,t for all
i, t. All that remains is to bound the number of such equivalence classes and their contributions
to the overall expectation; this is done in [28, 116] and yields the following results:

Lemma 48. The number N (v, e) of equivalence classes of subgraphs γ with v vertices and e
edges such that each edge is visited at least twice satisfies

N (v, e) 6 (2km)6m(e−v+1)+2m, (5.38)

and for each γ̃ ∈ N (v, e), the contribution W(γ̃) of the equivalence class to the trace expectation
is bounded above:

W(γ̃) 6W(v, e) := nv−eρe
(
dL2

ρ

)3(e−v)+8m

Now, all that remains is to sum the terms N (v, e)W(v, e) over all possible choices of v and
e, to find the following bound: ∥∥∥A(k)

∥∥∥ � ϑk.

The operator norm of R(`)
k is bounded using similar arguments.

A scalar product bound. Let w ∈ Rn; with the previously established bounds, we have

∥∥∥A`w∥∥∥ � ϑ` +
∑̀
k=1

ϑk
∥∥∥QA`−k−1w

∥∥∥
It remains to bound the rightmost norm whenever w is orthogonal to the A`ψi. First, we use
the eigendecomposition of Q:

∥∥∥QA`−k−1w
∥∥∥ =

∥∥∥∥∥∥
∑
i∈[r]

µiϕiψ
∗
iA

`−k−1w

∥∥∥∥∥∥
6 µ1

∑
i∈[r]

〈(A∗)`−k−1ψi, w〉

Since 〈w, (A∗)`ψi〉 = 0 by assumption, we can use Cauchy-Schwarz and a telescopic sum to
bound the scalar product:

〈(A∗)`−k−1ψi, w〉 6 |µi|`−k−1
`−1∑

t=`−k−1

|µi|−t
∥∥(A∗)tψi − µ−1

i (A∗)t+1ψi
∥∥

The final bound thus stems from the following lemma [28]:

Lemma 49. For every t 6 ` and i ∈ [r0] we have∥∥Atϕi − µ−1
i At+1ϕi

∥∥2 � ϑ2t,

and the same holds for A∗ and ψi.
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Indeed, adopting again the notations from 5.8.4, we have to compute the expectation on the
tree of the t+ 1-local function

f(T, x) = (Ũi(x, t)− µ−1
i Ũi(x, t+ 1))2,

which can be understood as the increment variance of the martingale Ũi(x, t). Subsequently, we
can use the same arguments as in 5.8.7 with i = j, which shows

E[f(T, x)] = [Kt+1ϕi,i](x) � ϑ2t

n
.

Summing this for x ∈ [n] and applying Proposition 24, we are done.

5.9 Master Theorem for the stochastic block model

We recall the definition of P : given the cluster membership functions σg, σd : [n] → [r] and a
connectivity matrix F of size r × r, the entries of P are given by

Px,y =
Fσg(x),σd(y)

n
.

We introduce the probability vectors p, q, which are equal to the relative clusters sizes, as well
as the ‘cluster intersection’ matrix Π:

(p)i =
Card(σ−1

g (i))

n
, (q)i =

Card(σ−1
d (i))

n
and Πi,j =

Card(σ−1
g (j) ∩ σ−1

d (i))

n
.

The cluster membership matrices Σg,Σd are matrices of size n× r, defined by

(Σg)x,i = 1σg(x)=i and (Σd)x,i = 1σd(x)=i.

With these notations, the following identities hold:

p =
1

n
Σg1, diag(p) =

1

n
(Σg)

∗Σg, P =
1

n
ΣgF (Σd)

∗;

q =
1

n
Σd1 diag(q) =

1

n
(Σd)

∗Σd, Π =
1

n
(Σd)

∗Σg

(5.39)

5.9.1 Spectral decomposition of P

We prove in this section a slightly refined version of Proposition 22.

Proposition 25. The non-zero eigenvalues of P are exactly those of the modularity matrix FΠ,
with the same multiplicities. Further, each right eigenvector of P is of the form Σgf , where f
is a right eigenvector of FΠ, while each left eigenvector of P is of the form Σdg with g a left
eigenvector of ΠF .

The proof of this proposition relies on the following elementary lemma, a consequence of the
Sylvester identity det(z −XY ) = det(z − Y X).

Lemma 50. Let X be a n ×m matrix and Y a m × n matrix. Then the non-zero eigenvalues
of XY are the same as those of Y X, with identical multiplicities.
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of Proposition 25. We apply the above lemma to X = Σg and Y = 1
nF (Σd)

∗; the identities in
(5.39) show that XY = P and Y X = FΠ, which directly gives the desired result. Now, let f
be a right eigenvector of FΠ, with associated eigenvalue λ, and define ϕ = Σgf . Then

Pϕ =
1

n
ΣgF (Σd)

∗Σgf = ΣgFΠf = λΣgf = λϕ.

Combined with the previous result, this implies that all right eigenvectors of P with non-zero
eigenvalues are of the form Σgf for an eigenvector f of FΠ. In particular, they are constant on
the left clusters. The result on left eigenvectors is proved similarly.

Let f1, . . . , fr (resp. g1, . . . , gr) be a basis of right (resp. left) eigenvectors of FΠ (resp. ΠF ),
not necessarily normalized. We define the entrywise products f i,j and gi,j as in equation (5.12).
The following statement describes the unit eigenvectors of P in terms of fi, gj .

Lemma 51. Let (ϕi) (resp. (ξi)) be a basis of normed right (resp. left) eigenvectors of P . Then

ϕi =
Σgfi√
n〈p, f i,i〉

and ξi =
Σdgi

n
√
n〈q, gi,i〉

.

Proof. In light of Proposition 25, we only have to compute the norms of Σgfi and Σdgi:

|Σgfi|2 = f∗i (Σg)
∗Σgfi = nf∗i diag(p)fi = n〈p, f i,i〉.

The first equality follows, and the second is proved in identical fashion.

5.9.2 Master Theorem for SBM

We are now ready to prove the version of the Master Theorem, adapted to the directed SBM.

Theorem 35. Let r0 be the number of eigenvalues νi such that ν2
i > ν1. Then, with high

probability the following holds: the r0 highest eigenvalues λ1, . . . , λr0 of A satisfy

|λi − νi| = o(1),

and all other eigenvalues of A are asymptotically smaller that
√
ν1. Further, if vi, ui are a pair

of left/right unit eigenvectors of A associated with λi, then

|〈ui, ϕj〉| = ai,j + o(1) and |〈vi, ξj〉| = bi,j + o(1),

where ai,j and bi,j are defined as

ai,j =

∣∣〈p, f i,j〉∣∣√
〈p, f j,j〉

〈
p, (I− ν−2

i FΠ)−1f i,i
〉 (5.40)

bi,j =

∣∣〈q, gi,j〉∣∣√
〈q, gj,j〉

〈
q, (I− ν−2

i (ΠF )∗)−1gi,i
〉 (5.41)

The first part of this theorem is an application of Theorem 31, by means of Proposition 25.
It remains to compute the ai,j and bi,j as a function of the SBM parameters. We recall that the
definition of Γ and Γ∗ are in (5.13).

Lemma 52. Let z ∈ C, and h ∈ Rr. Then

Γ(z,Σgh) = n
〈
p, (I− z−1FΠ)−1h

〉
and Γ∗(z,Σdh) = n

〈
q, (I− z−1(ΠF )∗)−1h

〉
.
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Proof. Since the graph is unweighted, we have K = P . By an immediate recursion, we have

P tΣgh = Σg(FΠ)th,

so that using the first identity of (5.39)

〈1, P tΣgh〉 = n〈p, (FΠ)th〉.

Summing over all t and using the Von Neumann summation implies the first equality, and the
second is alike.

As a result,

ν2
i Ri = Γ(ν2

i , ϕ
i,i) = Γ(ν2

i ,Σgf
i,i) = n

〈
p, (I− ν−2

i FΠ)−1f i,i
〉
,

where we used the previous lemma, and similarly

ν2
i Li = n

〈
q, (I− ν−2

i (ΠF )∗)−1gi,i
〉
.

of Theorem 35. Using the expressions in Theorem 31, we have

ai,j =
|〈ϕi, ϕj〉|
|νi|
√
Ri

and bi,j =
|〈ξi, ξj〉|
|νi|
√
Li
.

Computing the numerators is straightworward using Lemma 51:

〈ϕi, ϕj〉 =
〈Σgfi,Σgfj〉

n
√
〈p, f i,i〉〈p, f j,j〉

=
〈p, f i,j〉√

〈p, f i,i〉〈p, f j,j〉
.

On the other hand, for the denominator, we have

ν2
i Ri = Γ(ν2

i , ϕ
i,i) =

Γ(ν2
i ,Σgf

i,i)

n〈p, f i,i〉 ,

and using Lemma 52 we find

ν2
i Ri =

〈
p, (I− ν−2

i FΠ)−1f i,i
〉

〈p, f i,i〉

It simply remains to simplify the expressions to prove the formula for ai,j , and the exact
same method works for bi,j as well.

5.10 Pathwise SBM

In this section, we derive the thresholds shown in Subsection 5.3.2. Let us first give some
motivation on this model.
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5.10.1 Motivation

Stochastic block-models with a pathwise structure as in (5.5) are well suited for modeling flow
data: the intra-block connectivity is the same s/2 in any blocks; connections can only happen
between adjacent blocks and the rate depends on the flow order: edges have a higher chance of
appearing from one block Vi to the following Vi+1, than between one block Vi and the preceding
one Vi−1 (η versus 1 − η). The model in [81] is a small variant of this one: in their model,
undirected edges appear between adjacent blocks, and then one direction is chosen uniformly at
random with probability η for edges between adjacent blocks, and with probability 1/2 for edges
inside the same block. Our model allows the appearance of a double edge (x, y), (y, x), which is
not the case in their model. However, in the sparse regime where s does not depend on n, the
two models are contiguous and our results can be shown to hold for both.

Remark. The works [119, 120] are close in spirit to ours, although they do not approach sparse
regimes. We chose to perform the computations for the specific F above, but the same com-
putations can be done for other models. In particular, it would be interesting to perform these
computations for the matrix given in [119], p. 73 and to recover the shape observed by the author
in Figs 2.23-24.

5.10.2 Model density

Let us compute the mean degree d in this model, when there are k blocks and the asymmetry
parameter is η. All the blocks have the same size n/k, hence they have (n/k)2 entries; on the k
diagonal blocks, the mean degree is s/2, on the k − 1 upper-diagonal blocks it is s(1 − η) and
on the k − 1 lower diagonals they are sη, so

d =
1

n2

[
k
s

2

n2

k2
+ (k − 1)s(1− η)

n2

k2
+ (k − 1)sη

n2

k2

]
=
s

k

(
3

2
− 1

k2

)
. (5.42)

For each k, the unique parameter s such that the model has mean degree d is given by s(k, d) =
kd(3/2− k−2)−1. Table 5.1 gives the values of s used in our simulations in Figure 5.3.

requested mean degree d 2 3 4
number of blocks k = 2 3.2 4.8 6.4

k = 4 5.5 8.3 11.1
k = 6 8.1 12.2 16.3

Table 5.1: Value of s = s(k, d) such that, for the given number of blocks k, the mean degree of
the model is equal to d.

5.10.3 Eigendecomposition of tridiagonal Toeplitz matrices.

Since the blocks on the right and on the left are identical and have the same size n/r, the
formulas in Theorem 35 are really easy to use.

Let F be the tridiagonal k × k Toeplitz matrix defined in (5.5). We extract the following
formulas from [104] (see (4) for eigenvalues and (7)-(8) for eigenvectors). The k eigenvalues are

ν̃k =
s

2
+ 2s cos

(
πk

r + 1

)√
η(1− η) (1 6 k 6 r). (5.43)

and the corresponding right-eigenvectors fi and left-eigenvectors gi are

fi(j) ∝
(

1− η
η

)j/2
sin

(
ijπ

r + 1

)
gi(j) ∝

(
η

1− η

)j/2
sin

(
ijπ

r + 1

)
(5.44)
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Figure 5.6: Top: A plot of the shape of the RHS of (5.45) as a function of η, for different values
of r ranging from 2 to 25, with a log-scale on the y-axis. The red zone represent the set of degree
parameters s that lie below the threshold s(η, r) in (5.45): they are the values for which our
method does not yield full reconstruction guarantees, since at least one eigenvalue/eigenvector
couple is ‘lost in the bulk’ of the spectrum of A.
Bottom left: Here s = 10 and r = 30. The absolute values of the eigenvalues νk = s(1/2+ckθ)
are plotted in grey, while the threshold ρ =

√
ν1 is in bold black.

Bottom right: the shape of η 7→ η(s).

5.10.4 Digression: the full threshold

We hereby state an auxiliary result that might be of potential interest, which simply consists in
an application of Theorem 35.

Proposition 26. In the pathwise SBM as in (5.5) with r blocks, degree parameter s > 1 and
asymmetry parameter 1/2 6 η 6 1, the r distinct eigenvectors can be detected if

s

r
>

1/2 + c1θ

mink∈[r](1/2 + ckθ)2
(5.45)

where θ = 2
√
η(1− η) and ck = cos(kπ/(r + 1)).

We plotted the threshold for several values of r in Figure 5.6. It is interesting to note that
for specific values of θ, the threshold for s is +∞; this corresponds to cases where θ = −2ck,
and one eigenvalue is zero. This is a good illustration of the principle discussed earlier : r0 = 1
suffices to recover cluster information (since the top eigenvector is nonconstant), even though
it’s completely impossible to recover as many informative eigenvectors as there are clusters.

5.10.5 Computations for the two-block case

We place ourselves in the setting of Theorem 35; recall that

F =

[
s/2 sη

s(1− η) s/2

]
, FΠ = ΠF =

[
s/4 sη/2

s(1− η)/2 s/4

]
=: M. (5.46)

161



Define θ = 2
√
η(1− η); as in (5.43), the eigenvalues of M are

ν1 =
s(1 + θ)

4
and ν2 =

s(1− θ)
4

,

with associated right and left eigenvectors

f1 =
(√

η,
√

1− η
)

f2 =
(√

η,−
√

1− η
)

g1 =
(√

1− η,√η
)

g2 =
(√

1− η,−√η
)
.

Applying Theorem 35, we have r0 = 2 whenever ν2
2 > ν1, which simplifies to

s >
4(1 + θ)

(1− θ)2
,

which settles the first part of Theorem 32. Now, simplifying (5.40) whenever i = j, we have

ai,i =

√
〈p, f i,i〉〈

p, (I− ν−2
i M)−1f i,i

〉 ,
and since p = (1/2, 1/2) and the fi have unit length, this simplifies further to

ai,i =
1√〈

1, (I− ν−2
i M)−1f i,i

〉 . (5.47)

The standard adjoint formula yields, whenever α < 1/ν1,

(I− αM)−1 =
1

4(1− αν1)(1− αν2)

(
4− αs 2αsη

2αs(1− η) 4− αs,

)
and since f1,1 = f2,2 = (η, 1− η), we have〈

1, (I− αM)−1f i,i
〉−1

=
4(1− αν1)(1− αν2)

4− αs+ αsθ2

=
4− 2αs+ α2s2 1−θ2

4

4− αs+ αsθ2

=: γ(αs).

Since we will choose α = ν−2
i , we have αs− > 0 and

γ(x) =
(

1− x

2

)(
1 +

(1− θ2)x

4

)
+O(x2)

= 1− 1 + θ2

4
x+O(x2).

Substituting α = ν−2
i and taking the square root, we find

ai,i = 1− 1 + θ2

8

s

ν2
i

+O

(
1

s2

)
= 1− 2

s

1 + θ2

(1± θ)2
+O

(
1

s2

)
,

which are the expressions in Theorem 32.
Note that it is possible to continue the computations and find explicit expressions for the

ai,i in terms of η and s, but the resulting expressions are too complex to give any more insight
than the asymptotic expressions.
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5.10.6 Computations when there are two blocks

We defined η(s) as the unique number in [0, 1] such that

s >
4(1 + θ)

(1− θ)2
⇐⇒ η > η(s),

with θ(η) = 2
√
η(1− η) (see also Figure 5.6). The inverse θ−1 : [0, 1]→ [1/2, 1] is given by

θ−1(t) =
1 +
√

1− t2
2

.

Now, the solution x of the equation

s =
4(1 + x)

(1− x)2

is the solution of the quadratic sx2− (2s+4)x+s−4 = 0. The discriminant is δ(s) = 16(2s+1)
and the unique solution in [0, 1] is

x(s) = 1 +
2− 2

√
2s+ 1

s
.

Finally, the smallest η(s) for which (5.45) is satisfied is η(s) = θ−1(x(s)), that is,

η(s) =
1 +

√
1− x(s)2

2
=

1 +

√
1−

(
1 + 2−2

√
2s+1
s

)2

2
. (5.48)

It is possible to expand the term inside the square root, but with no meaningful gain. The
function η(s) has the series expansion

η(s) =
1

2
+

4

√
2

s
+O(s−3/4),

but the convergence is very slow: the truncated RHS is less than one only whenever s ≥ 32.

5.11 Convergence of eigenvectors

The goal of this section is to prove Theorem 33. We place ourselves in the stochastic block
model setting as in Section 5.3, with σg = σd = σ and q = p. We assume that F and p are
constant with n, so that the modularity matrix M doesn’t depend on n.

5.11.1 Convergence of Ũi(x)

We consider the multitype Galton-Watson trees (Tj , o) as defined in [29]: the root o has type
σ(o) = j, and afterwards, each vertex with type i has Poi(Mi,k) children of type k. Unlike our
initial trees Tx, which are heavily n-dependent with node labels in [n] and edge probabilities
Px,y, the tree Tj does not depend on n, and its labels are in [r]. We define on those trees the
random processes

Ui(j, t) = ν−ti

r∑
k=1

Nk(Tj , t)fi(k),

where Nk(Tj , t) counts the number of vertices of type k at depth t in Tj . Assume that we have
chosen the fi such that φi = Σdfi has unit norm; we recall that the processes Ũi(x, t) were
defined in (5.27)-(5.28).
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Lemma 53. Let x ∈ [n], and define j = σ(x). Then the processes Ũi(x, t) and Ui(j, t) have the
same distribution.

Proof. Let σ(Tx) be the tree where a vertex with label y is mapped to a vertex with label σ(y).
Then the root of σ(Tx) has label σ(x) = j. Take a vertex in Tx with label y, and let σ(y) = i;
the number of children of y with type k has distribution Poi(M̃yk), with

M̃y,k = dy
∑

σ(z)=k

Pyz
dy

.

Using the definition of P for the SBM, we have

M̃y,k =
∑

σ(z)=k

Fσ(y),σ(z)

n
= Fi,kpk = Mi,k.

Therefore, the laws of σ(Tx) and Tj coincide. Now, since there are no weights the product in
(5.27) is equal to 1 and we have

Ũi(x, t) =
∑
xt

ϕi(ι(xt));

replacing ϕ by its definition in terms of fi,

Ũi(x, t) = ν−ti
∑
xt

fi(σ(ι(xt))) = ν−ti

r∑
k=1

Nk(σ(Tx), t)fi(k),

which ends the proof.

This lemma allows us to translate results back and forth between the Tx and the Tσ(x); we
thus know from the expectation/correlation computations in Subsections 5.8.5-5.8.7 that Ui(j, t)
(with j = σ(x)) is a martingale with

E[Ui(j, t)] = fi(j) and E[Ui(j, t)2] 6 Γright(i, i).

By the Doob martingale convergence theorem, this implies that Ui(j, t) converges in L2 as
t→∞ towards a random variable Zi,j . Since we have convergence in L2, it entails

E[Zi,j ] = lim
t→+∞

E[Ui(j, t)] = fi(j)

E[Z2
i,j ] = lim

t→+∞
E[Ui(j, t)2] =

[
(I− ν−2

i M)−1f i,i
]

(j).

In the last line, we used computations from Appendix 5.9 to determine the limit.
Another important fact is that the law of Ui(j, t) does not depend on n whatsoever. This

implies that Ui(j, `) converges to Zi,j as n→ +∞, which in turn yields the following proposition.

Proposition 27. Let Zi,j be the limit of the random process Ui(j, t). Then,

Ũi(x)
L2

−−−→
n→∞

Zi,σ(x). (5.49)
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5.11.2 Convergence of the pseudo-eigenvectors

Now that we showed convergence on the random tree, we shall use the concentration proposition
24 to translate it on the graph. Let h : R→ R be a bounded continuous function, and define

f(G, x) =
1

pjn
1σ(x)=j h(Ui(x)).

The function f satisfies the hypotheses of Proposition 24 since h is bounded, and we have

f(Tx, x) =
1

pjn
1σ(x)=j h(Ũi(x))

Using Proposition 27, and the fact that L2 convergence implies convergence in distribution,

E[1σ(x)=j h(Ũi(x))]→ 1σ(x)=jE[h(Zi,j)]

uniformly in x, so that summing over all vertices

lim
n→+∞

1

pjn

∑
σ(x)=j

h(Ui(x)) = E[h(Zi,j)]. (5.50)

The above equation implies immediately that the discrete distribution of the Ui(x) with σ(x) = j
converges weakly to Zi,j ; in other words,

1

pjn

∑
σ(x)=j

δUi(x)
d−−−→

n→∞
Zi,j . (5.51)

5.11.3 Convergence of the eigenvector

Define the normalized pseudo eigenvectors:

Ūi =

√
nUi
|Ui|

,

then thanks to (5.19) we have |Ui| −
√
nγ � 1, where

γ =
√〈

p, (I− ν−2
i M)−1f i,i

〉
from the computations in Appendix 5.9. A consequence of our notation � is that

√
n/|Ui|

converges in probability towards γ > 0. Thanks to (5.51) and Slutsky’s lemma,

1

pjn

∑
σ(x)=j

δŪi(x)
d−−−−−→

n→∞
Zi,j :=

Zi,j
γ
,

and consequently Zi,j has mean and variance

µi,j =
fi(j)√〈

p, (I− ν−2
i M)−1f i,i

〉 and σ2
i,j =

[
(I− ν−2

i M)−1f i,i
]

(j)〈
p, (I− ν−2

i M)−1f i,i
〉 . (5.52)

Now comes the last step of our proof; let ūi be a right eigenvector of A such that |ūi| =
√
n

(one can take ūi =
√
nui). Then, (5.21) implies that∣∣ūi − Ūi∣∣� √n. (5.53)
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We want to show convergence for ūi; using the Portmanteau lemma, it suffices to show bounds
like (5.50) for Lipschitz functions. Let h be a bounded function with Lipschitz constant C; we
write ∣∣∣∣∣∣ 1

pjn

∑
σ(x)=i

[h(ūi(x))− h(Ūi(x))]

∣∣∣∣∣∣ 6 1

pjn

∑
σ(x)=i

∣∣h(ūi(x))− h(Ūi(x))
∣∣

6
C

pjn

∑
σ(x)=i

∣∣ūi(x)− Ūi(x)
∣∣

6
C

pjn

√
pjn

∣∣ūi − Ūi∣∣ ,
using the Cauchy-Schwarz inequality. Using (5.53), we are done.
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