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1. Introduction

1.1 General context

This thesis is realized in the Hubert Curien Laboratory, supported by China Scholarship

Council (Grant number, 201708070009).

In the field of deep learning, neural networks such as convolution neural networks

(CNNs) and recurrent neural networks (RNNs) are widely used in computer vision, speech

recognition, natural language processing, and other fields [25].

Since 2010, ImageNet ILSVRC Challenge[3] has been held annually to evaluate neural

network algorithms for object detection and classification. Each participating group

used a large-scale image data set to test the algorithm’s performance in processing image

classification, target positioning, target detection, and other applications. In 2012, the

CNN algorithm achieved a historic breakthrough, where AlexNet[80] achieved a top-5

error of 15.3%, more than 10.8 % lower than that of others participating. CNN’s take this

breakthrough as an opportunity to promote the development of the current deep learning

boom.

The rapid development of neural network algorithms has led to neural network archi-

tectures with more calculations and deeper structures. In addition, with the deepening

of neural network, the execution of network on the CPU/GPU faces the problem of en-

ergy efficiency. Due to Moore’s Law, the transistor scale of chips has reached its limit,

resulting in slower growth in processor performance[118]. At the same time, because the

CPU/GPU consumes too much energy (85W and 200W, respectively) [39], it is not feasible

to increase the number of processors to improve execution capabilities. Therefore, the

current problem is to reduce energy consumption while maintaining the high efficiency

of network execution.

In this case, Field Programmable Gate Array (FPGA) has become another option

for implementing neural network algorithms because of its lower energy consumption

compared to CPU/GPU [4]. In addition, FPGA has the advantage of being reconfigurable

and can be flexibly configured according to the characteristics of the neural network

algorithm to meet diverse needs. Finally, FPGA supports multiple granular parallelisms,

which means multi-core or many-core can be used to obtain coarse-grained parallelism

for neural network acceleration. Therefore, it is possible to select the flexible data bit

width of the arithmetic unit for neural network inference without wasting resources.

Meanwhile, cloud computing is considered a technology that can provide end-users
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1.2. Objective

with high-speed, cost-effective, and scalable computing [104]. In the cloud computing

scenario, users upload data to a cloud server and send task requests via the Internet.

The cloud server processes the user data and returns the result. This calculation method

improves the utilization of computing resources and reduces the maintenance cost of

software and hardware resources for individual users.

Due to the advantages of cloud computing, many companies are working hard to

deploy CPUs/GPUs in the cloud to improve computing power [66, 48, 13]. In 2002,

Amazon introduced the Amazon Web Service [16], which allows individual users to access

the computation resources in the cloud. In 2010, Microsoft launched the Azure [21]

project to provide the facilities of the computing resources and services, which the users

can dynamically use according to the application demands. However, deploying FPGAs

in the cloud has less success than GPUs because the use of FPGAs in the cloud requires

the user’s hardware expertise and low-level cognition, which cannot be mastered in a

short time. Therefore, only a few companies have put effort into deploying FPGAs in the

cloud, such as Amazon AWS [1], HUAWEI cloud [2].

Porting FPGAs as the calculation resource in cloud computing benefits the following

advantages: 1)calculation acceleration, the performance, and power benefits are achieved

by designing custom calculations of data paths tailored to the application; 2) cloud

security, allowing data to be stored and manipulated remotely in an encrypted form,

effectively preventing the server from accessing the processed information; 3) lower

energy consumption, using FPGAs as a calculation node and realize accelerators based on

the FPGA in the cloud.

Therefore, this thesis aims to provide cloud users with an FPGA-based infrastructure to

execute their CNN applications in various use cases (for example, CNN model exploration,

network parameterization, etc.), not just perform CNN inference.

1.2 Objective

The objective of the thesis is to provide a cloud computing infrastructure in which there

are several FPGAs of different families and types. These FPGAs communicate with each

other and are made available to the machine learning engineer to execute CNNs.

This Cloud FPGA is dedicated to machine learning engineers when they wish to

"execute" CNNs, that is to say, to perform training or inference on different CNN models

3



1. Introduction

with image databases and without hardware expertise. The Cloud platform can generate

different CNNs architectures and deploy these architectures in the appropriate FPGAs.

Additionally, machine learning engineers can exploit these FPGAs by exploring the CNN

model and available FPGAs in the cloud.

Figure 1.1 - Cloud computing-type platform for CNNs inference on the FPGA.

1.3 Contributions

The contribution of this thesis is to propose a cloud computing type platform for ma-

chine learning engineers to perform general CNN inference on FPGA. Furthermore, the

proposed platform can analyze the user needs of different use cases, deploy the CNN

hardware architecture on the appropriate FPGA, and implement optimization techniques

when necessary.

Two types of generic CNN IPs are defined and developed for generating CNN hard-

ware architectures on the FPGA. These IPs are adapted to several CNNs algorithms by

configuring the different CNN parameters. The CNN IPs are tested and integrated by the

test vehicle on the FPGA SoC. A communication prototype between Programme logic (PL)

and Process system (PS) of the FPGA is achieved in the design.

The platform involves several mathematical models, which estimate the resource usage

of the two IPs developed. This estimation can help allocate FPGA resources well in the

cloud. A quantization tool is developed to compress the network size on the FPGA. Then,

a life cycle of the cloud platform is designed to show the process of executing CNN
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1.4. Organization of manuscript

inference. This life cycle includes different stages to clarify the execution process of

multi-user CNN development.

1.4 Organization of manuscript

This manuscript first starts by presenting the general context and objectives of the thesis.

Chapter 2 provides a comprehensive introduction to CNN and FPGA and implementa-

tion methods and related challenges.

Chapter 3 conducts in-depth research of the technologies and the evolution of CNN

accelerators, from a single CNN in the local to multiple CNNs IN the cloud, enhancing

the current understanding of the evolution of FPGA-based CNN accelerators.

Chapter 4 presents the realization of different CNN hardware architectures and the

completion of quantification tools and optimization methods.

Chapter 5 proposes a novel platform with a lifecycle for multiple users to execute CNN

on FPGA in the cloud.

Chapter 6 concludes this manuscript and presents the future directions of the work.
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2. CNNs on FPGA

This thesis proposes a cloud computing type platform for machine learning engineers

to perform general CNN usages on FPGA. Therefore, the first step of this platform is to

implement CNNs on the FPGA.

The development of CNNs, which involves hundreds of millions of learnable param-

eters, puts a higher demand on hardware performance. Therefore, how to implement

high-performance CNNs on the FPGA-based device has been a new challenge. Besides,

under the condition of ensuring performance, how to reduce the calculation and data

workload is also an important aspect.

This chapter is organized as the following:

• Section 2.1 gives an introduction to CNN, including the explanation of CNN opera-

tion, as well as the training and inference phase in CNN;

• Section 2.2 presents the FPGA devices with the internal architecture and resources;

• Section 2.3 summaries the FPGA design flow, which comprises of several different

steps or phases to finally execute an application;

• Section 2.4 lists several significant challenges for CNN’s implementation on the

FPGAs.

2.1 Convolutional Neural Network

Convolutional Neural Network (CNN) is a famous neural network structure in the field

of deep learning. Nowadays, many visual image applications apply the CNNs because

multi-layer convolution has an impact on the feature extraction of three-dimensional

images (RGB) [68, 130, 105].

Figure 2.1 - Structure of a convolution neural network[6].
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2.1. Convolutional Neural Network

In general, a standard convolutional neural network has four elements: convolution

kernel, pool sampling, activation function, and full-connection. The convolution kernel

is applied to extract higher-level abstraction of the input image, namely the feature map.

Pooling sampling aims at reducing the feature map size. The activation function is to

provide nonlinearity in the neural network classification. The fully connected layer is

used as the classification output to predict the final results. Finally, the backpropagation

algorithm is applied in a CNN to train the entire neural network. A structure of a

convolution neural network is shown in the figure2.1.

2.1.1 Network layers

2.1.1.1 Convolution (Conv)

The convolution usually implements an operation similar to filtering. It applies a K x K

size convolution kernel to the input feature map to perform vector point multiplication

shown in the figure 2.2.

Figure 2.2 - Example of the convolution operation.

The heavy computation of CNN is almost the convolution operation[109], we thus

make a deep study to explain the process of the convolution clearly. Table 2.1.1.1 lists

all necessary parameters in a convolution operation. The convolution input is an input

feature map with W_in x H_in x C_in and the kernel with K x K x C_in x C_out. The

convolution output is the feature map with the dimension W_out x H_out x C_in x C_out.

The convolution operation is essentially accumulable multiple and addition. After filling

the input feature maps with the parameter P, the convolution operation firstly intercepts

the feature map with K x K x C_in dimension on the filled input feature map. This feature
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2. CNNs on FPGA

map will be multiplied and accumulated with the three-dimensional convolution kernel

of the same size to obtain a pixel of the output feature map. Secondly, the operation will

traverse the input feature maps according to the stride S to obtain a two-dimension W_out

x H_out result. Repeating these two steps in the C_out channel, a final feature map with

W_out x H_out x C_out can be conducted. Finally, a bias is addded. The expression of the

output O is 2.1:

O[n][x][y] = B[n] +
C_in−1∑
k=0

W _in−1∑
i=0

H_in−1∑
j=0

I [k][Sx+ i][Sy + j]×W [n][k][i][j]

0 ≤ n < C_out,0 ≤ x < W _out,0 ≤ y < H_out

(2.1)

Parameter Detail

W/H_in Width and height of the input image

W/H_out Width and height of the output image (feature map)

C_in Number of input channels

C_out Number of output channels

K Kernel size

S Stride of the convolution

P Padding of the convolution

2.1.1.2 Sampling (Pool)

Sampling is a process of downsampling, aiming to reduce image size and computation

while keeping necessary information. Two types of sampling have been used in the CNN

execution: maximum pooling and average pooling. During the sampling, the number

of the channel remains unchanged. Taking max-pooling operation as an example, the

feature map is usually divided into multiple large and small rectangular areas. Then, the

maximum value in each sub-area is selected for output. For example, the expression of

max-pooling 3x3 output O can be described as 2.2:

O[n][x][y] = max(I [k][Sx][Sy],I [k][Sx][Sy + 1],I [k][Sx][Sy + 2],I [k][Sx+ 1][Sy],
I [k][Sx+ 1][Sy + 1],I [k][Sx+ 1][Sy + 2]I [k][Sx+ 2][Sy],

I [k][Sx+ 2][Sy + 1],I [k][Sx+ 2][Sy + 2]),
0 ≤ n < C_out,0 ≤ x < W _out,0 ≤ y < H_out

(2.2)
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2.1. Convolutional Neural Network

2.1.1.3 Activation

The activation function constructs a key part of CNN, which provides the nonlinear factor

in the neural network to solve the linear indivisible problems in CNN. There are some

common-used activation functions:

• Sigmoid: Sigmoid is a widely used funtion. The value range of output is [0,1], since it

is often used as an output function, and the output value is expressed as a probability.

The expression is:

f (u) =
1

1 + e−u
(2.3)

• ReLU: ReLU is the abbreviation of Rectified Linear Unit, and its characteristics are

close to biological nerve, its expression is:

f (u) =max(0,u) (2.4)

• tanh: Tanh is a traditional activation function, which is obtained by dividing the

hyperbolic sine sinh and the hyperbolic cosine cosh. It can also be regarded as a

variant of the Sigmoid function, with a value range of [-1,1] between. Its expression

is:

f (u) = tanh(u) (2.5)

2.1.1.4 Fully-connected (FC)

The fully connected are stacked behind the convolutional layer to finally extract the

results. All the inputs from the previous layers are connected to every activation unit

of the next layer. A fully connected layer applies a filter to the input feature map like a

convolutional layer, while the kernel size is the same as the input feature map. Therefore,

let W_in = K, W_out = 1, and S = 1 in the equation 2.6, we can obtain the equation of the

fully-connected:

O[n] = B[n] +
C_in−1∑
k=0

W _in−1∑
i=0

H_in−1∑
j=0

I [k][i][j]×W [n][k][i][j]

0 ≤ n < C_out

(2.6)

2.1.2 Inference and training

CNN requires training and inference. First, a set of data is collected and labeled as

a training data set to train CNN in the context of supervised training. Then, when
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2. CNNs on FPGA

the training gradually converges with the expected results, we can use the data set for

inference to obtain the accuracy.

2.1.2.1 Training

Training is a process of learning to find weights in convolution and fully connected layers,

which can minimize differences between output predictions and given ground-truth

labels on a training dataset [159] through several epochs. To train a neural network, we

should define some hyperparameters to control the training process, such as learning rate,

mini-batch size, number of epochs, momentum.

Figure 2.3 - Example of the training process

In training, most of the training of the neural network is based on the backpropagation

algorithm. Then, the weight and bias are updated by a gradient descent optimization

algorithm.

The backpropagation consists of the following steps:

• Forward the network model to get the activation of each layer including the output

layer;

• Calculate the derivative of the activation function and residual of each layer;

• Calculate the partial derivatives of the cost function concerning the weights W and

the biases b respectively;

• Update the W and b.

If the dataset of the network is m, then the cost function J(W,b) of an l-layer network

can be expressed as:
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sl represents the number of activation of the l-th layer. Likewise, nl represents the

number of layers of the network model.

The gradient descent method can be used in training to continuously adjust the weight

W and the bias b according to a particular learning rate α, and obtain the optimal solution

of W and b.
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The partial derivatives of the cost function for w and b can be expressed as:
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The residual δ(l)
i can be expressed as:
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Therefore, the derivation formula of the cost function expressed by the residual error

concerning the parameters W and b can be described as:
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2.1.2.2 Inference

The inference applies a pre-trained model from a training phase to infer the results of

the dataset. When a dataset is sent to the pre-trained network, it outputs a prediction
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2. CNNs on FPGA

based on the predictive accuracy of the neural network. Differs from the training phase,

inference will not update the weights and biases of layers according to the predicted

result if the results have errors.

2.2 Field programmable devices

Field Programmable Gate Array (FPGA) is a programmable logic array that can be re-

configured after production. The basic structure of FPGA includes programmable input

and output units (IOBs), configurable logic blocks (CLBs), digital clock management

modules, embedded block RAM, wiring resources, embedded dedicated hard cores, etc.

Moreover, it consists of several Digital Signal Processor (DSP) which can process the

special high-precision operation under maximum 500MHz[82]. FPGA logics are realized

by loading programming data into the internal static storage unit. The value stored in the

storage unit determines the function of the logic unit. It also determines the connection

between the modules and the connection between the modules and I/O.

Later, a system-on-chip (SoC) FPGA with an integrated processor appeared, such as

the Xilinx Zynq-7000 series [155]. The processing system (PS) side is usually dual-core,

and the runtime control logic is executed on the Linux operating system or bare system.

On the other hand, the programmable logic (PL) side has traditional FPGA resources such

as DSP and LUT and can be configured for various applications. The communication

between PS and PL is realized through different intellectual property (IP) and AMBA AXI.

2.3 Design flow of application of FPGA

The FPGA design flow can be described as the following figure 2.5, from specifying the

design with constraints to finally implementing the design on FPGA.

2.3.1 System specification

"System specification" describes the specifications and constraints of the system, such as

FPGA type, system function, required clock frequency, etc. In this step, the hardware

designer determines the software and hardware parts for Intellectual Property (IP) design

and the interconnection standards between the IP and the processor. At the same time,

hardware designers can determine the necessary hardware resources to respond to previ-

ously defined constraints. You can also decide whether you need to design a verification

process to ensure that the system is working correctly.
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2.3. Design flow of application of FPGA

Figure 2.4 - Xilinx Zynq-7000 block diagram[155].

2.3.2 IP design

"IP design" is to realize the functions of IP. Once the characteristics of IP have been

identified in the step "System specification", the hardware designer can choose several

methods to describe the design.

The traditional method uses hardware description language (HDL) such as VHDL

and Verilog to generate register transfer level (RTL), which requires solid hardware

acknowledges. The high-level synthesis (HLS) approach has come into being, allowing the

bitstream or the RTL code from the software language, such as C++/C. This approach is

more productive with less implementation time but at the cost of efficiency. For example,

[107] proves that Key-value Store (KVS) implementation time in HSL has been reduced

by 20% compared to HDL language flow.

It is also possible to use open source IPs or commercial IPs provided by the FPGA

companies (e.g., Xilinx, Altera) or IP providers in this step.

2.3.3 IP integration

"IP integration" is to interconnect all the IPs to achieve a complete system on the FPGA.

It is possible to apply some data transfer protocols among the IPs. The most popular
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2. CNNs on FPGA

Figure 2.5 - FPGA design flow.

standard is AMBA Advanced eXtensible Interface 4 (AXI4), which is supported by Xilinx

[154] and Altera [15]. However, Altera also has its standard, Avalon [14]. In addition, it

also exists several open-source standards, such as Wishbone [7]. These standards have

several types of interconnections, which are summarised in the table 2.1. The type of the

interconnection are following:

• Point-to-point type, usually used for the pipeline;

• Bus type, which allows one or more master devices to be connected to multiple

masters to multiple slaves;

• Network on chip (NoC), which allows multiple IPs to be connected for parallel

communication.

Table 2.1 - Standards and interconnections between IPs.

Standard Point to point Bus Others

AMBA AXI streaming AXI MM, AXI lite, AHB,APB

Avalon Avalon-ST Avalon-MM Avalon conduit, Avalon-TC

Wishbone Point to point Shared bus, crossbar

In our work, we use the standard AXI4 for the IP interacting with the processor of the

FPGA. There exist three types of AXI4: AXI4-full, AXI4-lite, AXI4-stream.
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2.3. Design flow of application of FPGA

The AXI4-full is a high-performance memory-mapped data and address interface that

contributes to burst access to memory-mapped devices. The AXI4-lite is a subtype of

AXI4, which has a more straightforward interface compared to AXI4-full. However, AXI-

lite has not the burst access capability, which is suitable for a lightweight data transfer.

The AXI4-Stream protocol is usually used for data-centric applications or the data flow

paradigm, in which the address of data is not necessary for the design. Each AXI4-Stream

acts as a single unidirectional channel for the handshake data stream [152]. Table 2.2 lists

several features of the AXI standard.

Table 2.2 - Difference between AXI4-full, AXI4-lite, AXI4-streaming.

Interface Features Data type

AXI4
Traditional memory mapped

address/data interface
Data burst
supported

AXI4-Lite
Traditional memory mapped

address/data interface
Single data cycle

only

AXI4-Stream Only data-interface Data-only burst

2.3.4 Synthesis

"Synthesis" is to convert the hardware architecture written in VHDL or Verilog into a

netlist, which is a netlist representing electrical diagrams. This step can reveal some errors

that were not detected during the functional simulation process, for example, timing

closure issues that would lead to functional degradation in the system.

The synthesis can be carried out with the tools of the FPGA supplier or by third-party

software. It is necessary to simulate the system after the synthesis. This simulation-based

on the netlist is more precise than the functional simulation carried out before synthesis.

2.3.5 Placement & routing

"Placement & routing" is to implement the architecture on a specific FPGA. During

the implementation step, the netlist is attached to a particular FPGA. Next, the netlist

components are placed on the internal structures of the FPGA, such as BRAMs, IOs, and

registers. Then, these resources are routed while respecting the constraints of the FPGA.

It is possible to add placement and timing constraints when performing this step. A

timing analysis file is available and is generated. This file makes it possible to make a

simulation integrating the propagation times. In addition, it makes it possible to analyze

the causes of non-compliance with the design constraints.

17



2. CNNs on FPGA

2.3.6 Programming FPGA

"Programing FPGA" is to download the bitstream generated in the design to the FPGA.

Bitstream is a binary file that can configure FPGA. After obtaining the binary file, you

can configure the FPGA again to change the design. You can also generate a binary file in

the EEPROM so that the FPGA configuration information will not be lost after the power

is turned off.

In this step, if the design has some bugs, you can use several debugging tools provided

by FPGA manufacturers. For example, Xilinx offers an integrated logic analyzer (ILA), an

oscilloscope that allows the observation of signals inside the FPGA. In addition, to debug

the soft code of the CPU, Xilinx provides software called Xilinx SDK to verify the function

of the CPU code. In addition, you can check the bus (AXI4) function to verify the data

conversion between PS and PL. For example, Xilinx has AXI Verification IP (AXI-VIP),

written in SystemVerilog, and uses Universal Verification Method (UVM) to implement

software/hardware co-simulation.

2.4 Challenges of CNNs on FPGAs

Figure 2.6 exhibits a general method of performing CNN training and inference phases.

Under the condition of resources and bandwidth, the research on accelerating CNN

inference on the FPGA has attracted more and more attention. Due to the complexity of

the backpropagation algorithm and the need for high-precision data, the training phase is

usually completed in a CPU- or GPU-based software platform. First, the network model

with configurations is used on software and hardware platforms. Then, the training phase

is based on the collected floating-pointed training dataset and test dataset. In several

training iterations, the network will output the pre-training floating-pointed weights and

biases. Finally, these floating-pointed data will be quantized into the fixed point format

on the CPU- or GPU-based platform for the inference stage.

In the inference stage, as shown in figure 2.6, the FPGA platform has a network

generation. Network generation completes several calculations in CNN or the entire CNN.

The generator obtains the network configuration from the training phase, reads the input

data from the outside, and generates approximate output for the CNN. In the process of

execution, the network generation may be used multiple times.

The increasing scale and the innovating structures of CNN’s bring challenges to realize
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Figure 2.6 - General method for the CNN.

the CNN implementations on the FPGA. For the power consumption, the high-speed

data flow inside the system, such as the data flow between the storage and the network

computation block occupies a part of power consumption. For the throughput perfor-

mance, the hardware resources and memory bandwidth are the key elements that limit

the performance of the FPGA-based acceleration module factors. Based on the structures

of the CNNs, how to improve performance and efficiency in the FPGA-based accelerators,

reducing resource and power consumption, are needs to be further explored.

The challenges can be expanded as follows:

• Resource and bandwidth limitations: The most advanced neural networks usually

have a large number of deep layers of computational operations, such as AlexNet (8

layers, 724M MAC) [81], GoogleNet (22 layers, 1.6G MAC)) [60] and ResNet (layer

152, 11.3G MAC)[60], which may cause insufficient resources for CNN deployment

on the FPGA. Besides, in traditional CNNs, the convolution layer takes up a large

percentage of computation and the data transmission (for example, AlexNet and

VGG-16 accounts for 90% of the total computation [58]), which increase the off-chip

bandwidth demand from weight transfer for large CNNs.

• Network generality: CNN structure has different convolutional layers and kernel

sizes. General hardware modules that can adapt to other network structures should

be designed to promote the deployment of CNN on FPGAs. Moreover, frameworks

that automatically accomplish the CNN structure generation and implementation

process are also desired.
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3. Accelerating CNNs from local to virtualized FPGA in the Cloud:A survey of trends

Field-programmable gate arrays (FPGAs) are widely used locally to speed up neural

network algorithms (e.g., CNN) with high computational throughput and energy efficiency.

Virtualizing FPGA and deploying FPGAs in the cloud are becoming increasingly attractive

methods for network acceleration because they can enhance the computing ability to

achieve on-demand acceleration across multiple users. In the past five years, researchers

have extensively investigated various directions of FPGA-based CNN accelerators, such as

algorithm optimization, architecture exploration, capacity improvement, resource sharing,

and cloud construction. However, previous CNN accelerator surveys mainly focused on

optimizing the CNN performance on a local FPGA, ignoring the trend of placing CNN

accelerators in the cloud’s FPGA.

In this chapter, we conducted an in-depth investigation of the technologies used

in FPGA-based CNN accelerators, including but not limited to architectural design,

optimization strategies, virtualization technologies, and cloud services. Additionally,

we studied the evolution of CNN accelerators, e.g., from a single CNN to framework-

generated CNNs, from physical to virtualized FPGAs, from local to the cloud, and from

single-user to multi-tenant. We also identified significant obstacles for CNN acceleration

in the cloud. This chapter enhances the current understanding of the evolution of FPGA-

based CNN accelerators.

3.1 Introduction

Neural networks have become a cutting-edge research topic owing to their excellent

performance in image classification, detection, segmentation, and data prediction. Owing

to the remarkable prediction capacity of datasets in a wide range of complex applica-

tions, researchers have proposed myriad networks, such as AlexNet [81], VGG16 [127],

ResNet152 [61], Transformers [139], General Adversarial Networks (GANs) [47], and

Variational Autoencoder (VAE) [78]. The success of CNNs has also attracted attention in

the development of industrial platforms, such as Google Deepmind [106], Facebook AI

[59], Amazon Alexa [89].

Traditionally, in academia and industry, graphics processing units (GPUs) are used to

train CNNs, as they provide a high degree of parallelism to process these algorithms [130,

105]. However, the execution of CNNs on GPU-based platforms encounters energy/power

and throughput bottlenecks. In 2016, a tensor processing unit (TPU) was announced

by Google [74], which runs CNNs 15 to 30 times faster than contemporary GPUs using
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similar technologies [73], and the energy efficiency is increased by a factor of 30–80.

Despite its speedup and energy efficiency, the TPU has a high production cost, lacks

reconfigurability, and cannot be adapted to the emergence of new network models with

complex structures.

Field-programmable gate arrays (FPGAs) can achieve energy efficiency and high perfor-

mance in the face of rapidly innovating CNN models and computational characteristics,

as reported by Venieris et al [144]. FPGAs can achieve up to 20 tera multiply accumulates

per second (TMACs), and the power consumption does not exceed 25 W, incurring a

less than 10% overhead in the overall power consumption [4]. Moreover, FPGAs can

provide a flexible hardware architecture with a fine granularity and massive pipeline

level. Therefore, FPGAs have become an alternative method for accelerating CNNs.

Early CNN accelerators (e.g., [183, 132, 117, 37]) are typically implemented on a

single local FPGA fabric. As the number of learnable parameters and operations in

CNNs increases, the resources of a single FPGA may be insufficient for the entire CNN

deployment. The challenges of designing CNNs on a single local FPGA are described

below.

• Productivity: Owing to the complexity of CNN design, mapping a CNN onto an

FPGA requires specific hardware expertise in hardware description language pro-

gramming and performance optimization, which have long learning curves. Ac-

cording to the complexity of the CNN algorithm, deploying the CNN on the FPGA

may be time-consuming and may increase the programming burden of designers.

In recent years, productivity has improved owing to the emergence of compilation

frameworks that automatically map CNNs onto the FPGA.

• Scalability: CNNs are computation- and data-intensive applications that require

enormous computational resources. For example, VGG-16 has up to 39 billion

operations and more than 500 million parameters for 224 × 224 image classifica-

tion [83]. In deeper CNNs, the resource requirements may exceed the available

resources in a single FPGA, limiting the scalability of the CNN architecture. Even

if technologies and strategies are adopted to optimize the CNN architecture, when

a large-scale CNN is deployed in a single local FPGA, the resource bottleneck can

easily be reached.

• Elasticity: The solution of deploying CNN accelerators on local FPGAs lacks re-
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Figure 3.1 - Characteristics of deploying FPGAs in the cloud and FPGA virtualization for CNN deployment.

source elasticity because it assumes that CNN resource allocation must be fixed

throughout the deployment lifecycle. Because different CNN algorithms require

different computing resources, memory bandwidths, and storage resources [175],

these solutions cannot flexibly provide and deprovision resources at runtime and

hence fail to match different workloads of the CNN.

• Portability: The deployment of most CNN accelerators directly depends on the

characteristics of the FPGA platform and is therefore restricted to a specific FPGA

vendor. Owing to the lack of an abstraction layer that isolates CNN accelerators

from specific FPGA platforms, these accelerators may face portability issues of CNN

structures. They cannot adapt quickly to the current changing CNN algorithms.

• Multi-tasks: Generally, the execution mode of a CNN on a local FPGA is limited to

a single user executing a single CNN within a given time. It remains difficult for a

single local FPGA to support multiple users by executing execute multiple CNNs in

parallel and satisfy each user’s time, cost, and quality of service (QoS) requirements.

Some frameworks (for example, [33]) successfully solve the problem of multiple

CNN scheduling but can only execute CNNs sequentially in the form of time slices

in a single-task environment.

Deploying FPGAs in the cloud and/or virtualizing FPGAs can resolve the aforemen-

tioned challenges, as shown in Figure 3.1. The cloud paradigm enhances the computing

capability of FPGAs with high throughput and low latency. It enables the sharing of single

or multiple FPGA resources across multiple users, thereby efficiently scaling and acceler-

ating on-demand CNNs. Virtualizing FPGAs abstracts low-level physical resources and
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hides hardware design and compilation flow from the software designers’ view, providing

a high-level application-dependent architecture. Owing to FPGA virtualization, software

designers can deploy CNN accelerators according to different requirements (e.g., through-

put, execution time, and accuracy) without relying on a specific FPGA platform. The

collaboration between FPGA virtualization and the FPGA cloud can satisfy the resource

requirement, thereby taking advantage of the "unlimited" cloud capability to flexibly

scale CNN accelerators.

While exploring techniques to accelerate CNNs on local physical FPGAs, researchers

have also attempted to adopt FPGA virtualization and the FPGA cloud to facilitate the

implementation of multiple CNNs at a large scale and achieve flexible deployment in

a multi-user environment. Although the FPGA cloud and virtualization have brought

breakthroughs to the deployment of CNNs, previous surveys (e.g., [101, 53, 22, 87, 23,

103, 36]) have mainly focused on CNN optimization and the design of local FPGAs (e.g.,

architecture design, simplification, optimization strategies). These surveys ignore the

trend of CNN implementation on the timeline, that is, from local to virtual FPGA in

the cloud. Moreover, no in-depth analysis or comparison of the challenges faced by the

CNN accelerators at different stages of deployment was conducted. Relying on previous

surveys, we aim to

• Provide an overview of the main techniques of FPGA-based CNN accelerators. These

techniques were initially proposed to optimize the performance of CNN accelerators

in a local FPGA, but they can also be applied to the FPGA cloud environment.

• Present the evolution of CNN accelerator deployment from local to virtualized

FPGAs through an in-depth introduction of virtualization techniques and the FPGA

cloud.

• Perform an in-depth analysis and comparison of the challenges faced by the CNN

accelerators at each stage.

The chapter is organised as follows: Section 3.2 provides an FPGA cloud definition and

a general overview of FPGA virtualization. Section 3.3 discusses the crucial approaches

for accelerating CNNs on the FPGA, which is also applicable to the FPGA cloud. Section

3.4 describes the use of virtualization technology in local CNNs and cloud-based CNNs.

Section 3.5 highlights the trends and evolution of the FPGA-based CNN and compares
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the characteristics of these accelerators. Section 3.6 discusses the unresolved challenges of

accelerating CNNs in the FPGA cloud and presents other directions for CNN acceleration.

Section 3.7 gives the conclusion of the survey.

3.2 Background

This section presents an overview of the FPGA cloud and the available services in the

cloud and introduces the FPGA virtualization technology from the viewpoints of the

abstraction level and system architecture.

3.2.1 FPGA cloud

Deploying FPGAs in the cloud involves leasing a bundle of specific software tools, plat-

forms, or FPGA resources remotely in a cost-effective manner. Such an FPGA-enabled

cloud maintains the advantages of FPGAs (e.g., low power consumption and programma-

bility) and establishes scalability, elasticity, and multi-tenancy.

Provisioning FPGA resources is similar to provisioning traditional central processing

unit (CPU)- and GPU-based clouds. Regarding the service categories in traditional cloud

computing, FPGA cloud providers offer FPGAs as infrastructure as a service (IaaS) or

software as a service (SaaS) [116]. Figure 3.2 presents an example of hierarchical mapping

in the FPGA cloud. There is no standard definition or classification for FPGA clouds, and

the hierarchical mapping may change over time.

3.2.1.1 FPGA in IaaS

The FPGA in IaaS provides access to the FPGA computing resource pool and memory

storage in the cloud. This paradigm divides the FPGA into multiple independent virtual

instances and supports high-bandwidth communication to collaborate between each

resource instance. Per-FPGA or multiple-FPGA granularity can be supported in the

IaaS for application deployment. Cloud users must manually map their applications to

resources if their applications are deployed across multiple FPGAs.

As a commercial example, the Amazon F1 instance offers a collection of eight FPGA

devices with a high bandwidth. Enabling FPGA in IaaS has also attracted attention in

the academic field. Byma et al. [26] abstracted FPGAs into virtual regions and managed

resources across multiple FPGAs through OpenStack. Asiatici et al. [19] provided a
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Figure 3.2 - IaaS and SaaS FPGA cloud. ”Vendor manage (optional)” and ”User manage (optional)” indicate
that this hierarchy does not always exist in the FPGA cloud, and it is customised by each FPGA cloud vendor
or user.

runtime management framework to map FPGA resources for different applications with

limited overhead.

3.2.1.2 FPGA in SaaS

The FPGA in SaaS offers acceleration services for cloud users to execute applications and

process data. Technical processes have been hidden in the cloud background, and cloud

users do not need to be responsible for the hardware design flow and FPGA resource

management. For example, Microsoft released the Catapult project [108], which puts

Altera Stratix vFPGA per CPU in the cloud to accelerate the Bing web search engine, with

a 95% improvement throughout. Moreover, Microsoft released the BrainWare project,

where FPGAs are used to accelerate state-of-the-art CNNs in major services such as Bing

and Azure [30].

3.2.2 FPGA virtualization

The objectives of FPGA virtualization are to 1) provide a virtual abstraction of resources

and underly the low-level hardware design from users; 2) support FPGA sharing in the

time and space domains to serve multiple tasks; and 3) facilitate the hardware design

process and accelerate the program compilation [67, 138, 145, 128]. We review FPGA

virtualization according to the abstraction level [137] and system architecture [111]. The

definition of FPGA virtualization has changed over time in different scenarios.
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3.2.2.1 Abstraction level

According to the scale of resource computing, FPGA virtualization can be divided into

three abstraction levels: resource, node, and multi-node levels.

• Resource level: The resource level contains reconfigurable resources (e.g., logic)

and non-reconfigurable resources (e.g., Input/Output blocks). Several uniform

architectures, such as coarse-grained overlays, have been proposed to support the

portability of this level between different types of FPGAs [79, 148].

• Node level: The node level considers a single FPGA as a node. Resource allocation

and scheduling are concerned with a single FPGA at this level. Currently, time-

division multiplexing (TDM) and space-division multiplexing (SDM) are the two

principal methods for sharing a single FPGA resource [85, 168].

• Multi-node level: The multi-node level is designed to assign resources in multiple

FPGAs to multiple applications or multiple users. However, mainstream compilation

tools only support application deployments on a single FPGA [157]. Therefore,

application mapping across FPGAs requires specific frameworks to solve hardware

problems, such as intercommunication, resource partitioning, and traversing the

physical boundary.

3.2.2.2 System architecture

The system architecture refers to a structural view at the abstraction level. It usually

covers the hardware, software stack, and overlay [129] but may be different at each level

of abstraction. Here, we introduce the system architecture in a node-level abstract form,

as shown in Figure 3.3, which can also be applied to other levels of abstraction.

• Hardware stack: The hardware stack can vary in the host interface, shell, and role.

– Host interfaces: 1) on-chip host inside the FPGA, which can be a soft core

formed by programmable logic (PL) or a hard core in the processing system

(PS) of a system-on-a-chip (SoC) FPGA; 2) local host, local CPU host, connected

via high-bandwidth links (e.g., PCIe); 3) remote host placed remotely via the

network.

– Shell: The shell is a static region, usually comprising a system memory controller

(e.g., DRAM adapter), interface controller (e.g., DMA controller), and network

28



3.2. Background

Figure 3.3 - Overall architecture of the FPGA-based CNN accelerators in the IaaS cloud. (a) Different levels
of abstraction in the FPGA virtualization technique. (b) Example of the system architecture in node-level
virtualization.

interface controller (e.g., Ethernet core). For instance, the shell in [91] includes

the user PCIe, management PCIe, card management system, and DDR access

channel.

– Role: The role is a dynamic region in the FPGA, which can be regarded as a

reserved region for deploying CNNs in our context. It runs independently of

the shell and can be reconfigured every time for each application to satisfy user

requirements.

• Software stack: The software stack runs on a host, provides users with an application

programming interface, and enables the communication between the host and the

FPGA. [111] introduces three types of software stacks: 1) Operating systems (e.g.,

LeapFPGA OS [38], Recon OS [11]), which are conceived to support multiple threads

for runtime resource management. 2) The host application, which is written in

OpenCL and C++, provides simultaneous access to a shared FPGA for multiple users.

3) Software frameworks (e.g., OpenStack), which can be used to share resources

across multiple users and distribute several partial reconfigurations to one FPGA.

• Overlay: The overlay provides an intermediate layer between the hardware stack

and the software stack to achieve program portability. It is considered a virtual

reconfigurable architecture on top of a physical FPGA. Fine-grained granularity and

coarse-grained granularity in overlays are used in various applications [28, 86].

29



3. Accelerating CNNs from local to virtualized FPGA in the Cloud:A survey of trends

Figure 3.4 - Example of accelerating CNNs using the streaming architecture.

3.3 CNN implementation techniques

To enhance the performance of CNNs on the FPGA locally and in the cloud, several tech-

niques have been extensively studied. This section presents implementation techniques

that have been recently investigated.

3.3.1 Hardware architecture design

The widely used hardware architecture are streaming and single computation engine

architectures.

• Streaming architecture: The streaming architecture (Figure 3.4) implements an

entire CNN on the side of the Programmable logic (PL) of the FPGA from the first

convolutional layer to the final fully connected layer. On the PL side, it deploys

a chain of sequential CNN intellectual property (IP) to process the dataset in the

pipeline mode. The intermediate results (CNN feature maps) are stored on the

chip on the PL side. This architecture enables an efficient data stream without

frequent data exchange with external memory, significantly reducing the latency

and obtaining throughput at a high frequency. A specific CNN model using a

streaming architecture must be defined before generating the bitstream. Whenever

the CNN model changes, architecture re-compilation and bitstream regeneration

are inevitable. According to the selected CNN algorithm, the re-compilation of this

architecture may be time- and resource-consuming.

• Single Computation Engine: Single computation engine (Figure 3.5) implements a
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Figure 3.5 - Example of accelerating CNNs using the single computation engine accelerator architecture.

part or a layer of the CNN on the PL side. It is a universal fixed template, usually

in the representation of a systolic array or multiple processing elements that can

be configured as CNN layers of different scales [143, 110]. The execution of the

entire CNN is achieved sequentially by configuring this template in the program on

the PS side. The intermediate results (CNN feature maps) are stored off the chip.

The architecture significantly reduces resource usage and introduces possibilities to

scale accelerators. It has been widely used in accelerators to enrich CNN diversity.

However, because the CNN blocks are executed sequentially on the FPGA, the

execution time is extended significantly. Each time the CNN architectures changes,

it is necessary to reload a complete bitstream to realize the novel CNN deployment

on the FPGA.

Table 3.1 presents the major features of streaming and single computing engine ar-

chitectures according to their performance (e.g., flexibility, reconfiguration, resource

consumption).

3.3.2 Network compression

The increasing amounts of learnable parameters and arithmetic operations of CNNs

lead to a computational burden and additional resource consumption of hardware de-

vices. Network compression makes CNNs more compact when the data width is limited,

assisting in striking a balance between resource usage and accuracy. Thus far, quantiza-

tion, pruning, and in-parallel pruning quantization have been successfully employed for
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Table 3.1 - Comparison of streaming and single computation architectures for CNN acceleration.

Streaming Single computation

Network implementation Entire network Function unit
Structure Pipeline Recurrent

Optimization mode Layer-independent One-optimization-fit-all
Recompilation time Long Short

Reconfiguration
Bitstream-level
reconfiguration

Processor control
configuration

Flexibility Low High
Resource usage High Low

Speedup Fast Low

network compression.

• Quantization: Network quantization converts floating-point data to fixed-point data

with a selectable data width. Quantization includes uniform quantization with

the same width for all network layers or dynamic quantization of each layer based

on the layer characteristics. Researchers have widely adopted 16-bit fixed-point

quantization (for example, [50, 150]), and 4- and 8-bit uniform quantization [56, 90]

have already achieved good accuracy. Therefore, uniform quantization of a small

width is promising owing to its ease of implementation on FPGA while maintaining

accuracy.

• Pruning: Network pruning removes nonsignificant neurons to avoid overfitting.

This is an efficient method, particularly in embedded systems, for reducing the

network size and saving computing resources to fit the network to the memory

size [102]. In [176], the authors compressed a trained CNN model and performed

reverse pruning and peak pruning with fewer weights. Compared with the GPU, the

compressed AlexNet on FPGA achieved 182.3× and 1.1× improvements in latency

and throughput, respectively.

3.3.3 Optimization strategy

The scale of complex CNN structures introduces resource challenges. Moreover, the

data (e.g., weights) stored in the external memory require enormous energy and latency.

Because CNNs are composed of massive repeated loop operations, unrolling and tiling can

be used to weaken off-chip communication and deal with parallel computation problems.

A more detailed optimization was presented in [101].

• Loop unrolling: Unrolling executes a network or multiple layers in parallel—particularly
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convolutional layers. The network can be fully expanded to achieve massively paral-

lel processing or apply appropriate unrolling factors (iterations in the loop) across

different layers for partial unrolling in the for-loop to optimize the datapath and

maximise the throughput [52, 96]. Ma et al. [94] adopted four types of loop unrolling

in kernel maps and feature maps to determine the parallelism scheme and maximise

data reuse. In an experiment involving VGG-16 on an Arria 10 FPGA, a throughput

of 645.25 GOPS was achieved.

• Loop tiling: Constrained by limited on-chip memories, the data to be processed are

tiled into multiple tiles and stored in on-chip buffers. Selecting a suitable tiling

size factor can determine the trade-off between resources and the required external

memory bandwidth. For example, Yu et al. [93] designed an auto-compilation

process based on RTL, which uses intra-block and inter-block strategies to divide

the layer execution into multiple sequential tiles. The process designed in [146]

supports both unrolling and tiling of input and output feature maps on binarised

networks. A 2× area efficiency improvement was achieved compared with existing

binarised networks.

3.4 Accelerating CNNs from local to virtualized FPGAs in the cloud

The work of accelerating CNNs on FPGAs in our surveys covers local to the cloud and in-

tegrates the virtualization technique. The metrics used to evaluate these methods usually

include throughput, power, and accuracy. Additionally, the adoption of virtualization

techniques introduces additional characteristics such as portability and productivity, and

in the cloud environment, QoS and isolation are regarded as new characteristics.

3.4.1 CNNs on local FPGA

Early studies (e.g., [84, 10, 35]) were dedicated to manually mapping a CNN model to

a local FPGA with a streaming architecture. These studies take full advantage of CNNs

parallelism and apply layer-independent optimization strategies to fit the entire network

into the FPGA.

Benefiting from the well-defined structure of modern CNNs, which contain similar lay-

ers with repetitive operations, researchers have proposed frameworks with a single-engine

computation structure [96, 174, 50, 123, 123, 158, 65], as shown in Figure 3.6. These

frameworks take advantage of both software programmability and flexible hardware
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Figure 3.6 - Generic frameworks for CNN accelerators.

Figure 3.7 - Generic compiler-inspired frameworks for CNN accelerators.

structures, making CNN implementation more diversified and achieving high perfor-

mance with reduced resource consumption. More frameworks that automatically map

single CNNs to local FPGAs were presented in [143]. Another new type of framework is a

toolchain that includes a compiler [52, 156, 9]. The compiler is a CNN architecture-aware

tool that can map a wide range of CNN applications to the instruction set architecture

(ISA) and control signals [52]. Figure 3.7 presents an example of a compiler-inspired

toolchain. Wang et al. [156] proposed a compiler that transforms a CNN deployment into

a graph-level problem. The compiler first takes the software description as input and

then transforms the description into directed acyclic graphs of computational operations.

The networks generated by the compiler on Xilinx ZU9 reach throughputs of 2.82 TOPs/s

(VGG), 1.38 TOPs/s (ResNet50), and 1.41 TOPs/s (GoogleNet).

More works are presented in Table 3.2.
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Table 3.2 - Several examples of manual mapping and frameworks on the local FPGA.

Works Year Models Device
Data

format
Architecture Strategy

Perform.
(GOPs)

Man-
ual

[171] 2015
Costum

CNN
Xilinx Virtex

vc707
32-bit

FP*
Single
engine

Unrolling 61.62

[54] 2015 CIFAR10
Xilinx

Kintex 325 T
16-bit

Single
engine

Quantization 260

[110] 2016 VGG-16
Xilinx Zynq

XC7Z045
16-bit

Single
engine

Unrolling,tilling 137.3

[112] 2016 AlexNet Xilinx vc707
32-bit

FP*
Single
engine

Unrolling,tilling 75.16

[84] 2016 AlexNet xilinx vc709 16-bit Streaming
Quantizaton,

ping-pong
buffer,batching

565.94

[179] 2017 LRCN Xilinx vc710 16-bit
Single
engine

Pruning,
quantization,

unrolling, tilling
75.5

Frame-
work

[52] 2017
VGG16 Xilinx

Zynq
xc7z020

8-bit Single enginePer-layer quantization
84.3

YOLO 62.9

[140] 2016

LeNet-5

Xilinx
Zynq

xc7z02
32-bit FP* Streaming Pipeline

185.81

MPCNN 100.23

CNP 150.91

CFF 159.22

[136] 2017

BNN-SFC
Xilinx
Zynq

ZC706
1-bit Streaming

Pipeline, binarized
network

8265

BNN-LFC 908

BNN-CNV 246

[50] 2017

VGG-19
Altera

StratixV
SGSMD5

16-bit Single engineTilling, batching

364.36

LSTM-LM 315.85

REsNet-
152

226.47

[46] 2017

AlexNet
Xilinx
Zynq

XC7Z045
16-bit Single engine

Quantization, loop
removal,

rearrangement

120.3

GoogLeNet 116

ResNet-50 122.3

[174] 2018

AlexNet
Xilinx

UltraScale
KU060

16-bit Single engineUnrolling, pipeline

163

VGG16

Xilinx Virtex
vc709

354

Xilinx
UltraScale

KU060
266

[96] 2018
AlexNet Altera

Stratix V
GXA7

8-bit Single engine Unrolling
114.5

NiN 117.3

[156] 2019

VGG

Xilinx ZU2 8-bit Streaming Quantization, tilling

334

ResNet50 228.7

GoogLeNet 231.5

* FP = Floating point format.

35



3. Accelerating CNNs from local to virtualized FPGA in the Cloud:A survey of trends

Figure 3.8 - (a)CNN deployment without virtualization. (b) Example of FPGA virtualization at the node level
for deploying one CNN on a local FPGA. (c) Example of FPGA virtualization at the node level for deploying
several CNNs in the cloud environment.

3.4.2 CNNs on local virtualized FPGA

FPGA virtualization bridges the gap between the hardware stack and the software stack

with the abstraction layer, enhancing the productivity and portability of CNN applica-

tions. Virtualization also enables resource sharing among multiple FPGAs with flexible

resource management to support a wide range of CNNs. Figure 3.8 shows an example of

virtualization at the node level.

At the resource level of virtualization, Tong et al. [44] propose a coarse-grained

overlay-based framework for quantising and accelerating a CNN with any data width

on an FPGA. The coarse-grained array comprises a reconfigurable NoC, a scheduler,

and network computation components and is configured as CNN models according to

instructions generated by the compiler of the framework. Such an overlay is independent

of FPGA features and can be flexibly adapted to FPGAs provided by different vendors.

To satisfy the metrics in virtualization, e.g., reducing the time and complexity of CNN

reconfiguration, this framework reconfigures the coarse-grained array from the rightmost

column to the leftmost column. The results indicate that the inference of AlexNet and

VGG-16 on Xilinx UltraScale+ VCU118 takes only 0.13 and 2.63 ms, respectively.
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Table 3.3 - Comparison of coarse- and fine-grained overlays on FPGAs for CNN acceleration

Coarse-grained overlay Fine-grained overlay

Logic level RT level Gate level
Data width Up to 32bit 1 bit

Example logic CNN function unit (e.g., Conv) Control instruction (e.g., Load)
Goals Opitimise CNN datapath switch Enable CNN variability

Advantage Area-efficiency Higher flexibility

Similarly, Struharik et al. [131] designed a coarse-grained overlay-based accelerator

consisting of a set of processing blocks, which enabled on-the-fly reconfiguration for

different CNNs. The accelerator can implement mainstream CNN families, such as VGG,

Inception, ResNet, MobileNet, and NASNet, with a frame rate up to 6.05 times higher

than that of Nullhop [12]. Other methods [57, 18] also employ a coarse-grained overlay

on top of the FPGA to enable dynamic datapath reconfiguration of CNN applications at

runtime.

In contrast to previous studies where CNNs were deployed on FPGAs using the coarse-

grained overlay, several researchers adopted a fine-grained overlay as an abstraction level

to achieve higher flexibility. Venieris et al. [142] proposed an automated framework for

implementing multiple CNNs on a target FPGA platform with fast space exploration.

The framework adopts a streaming architecture to allocate resources at a fine-grained

granularity for exploring a wide range of resource and bandwidth allocations. The

authors tested their framework in a multi-CNN system (ZFNet, VGG16, SceneLabelCNN)

on Xilinx ZC706, and the results indicated that the framework achieved an improvement

of up to 6.8× in performance/W over Nvidia Tegra X1. Table 3.3 presents the features of

the overlays used in the previous studies.

In node-level virtualization, the resource of a single FPGA can be allocated to a

single CNN application or multiple CNN applications in TDM or SDM [92]. Zhang

et al. [180] developed an end-to-end framework called a DNN builder to build CNNs

with high performance using a design space exploration strategy. The DNN builder

enables virtualization on a single physical FPGA by allocating resources to several small

accelerating engines. The resource allocator can generate parallel schemes and data

buffering guidelines for each layer. The tool deploys AlexNet, ZF, VGG16, and YOLO

on Xilinx XC7Z045 and KU115 and achieves up to 5.15× better performance than that

reported in [166].

At a multi-node level, allocating resources from multiple FPGAs to the CNN appli-
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cation may result in performance degradation owing to insufficient off-chip bandwidth.

Therefore, it is essential to employ optimized resource mapping and efficient communica-

tion for this virtualization level. Zhang et al. [177] enabled large-scale CNN application

implementation across up to 16 FPGAs with resource- and bandwidth-aware mapping

methods. Taking the FPGA topology, resource conditions, and neural-network speci-

fications as the inputs, this method can partition the CNN application to each FPGA

depending on the statuses of the FPGAs (busy or free) and the estimation throughput

of layer mapping. Results indicated that ResNet-152 on a multi-FPGA architecture out-

performed a single-FPGA deployment by a factor of 16.4. Geng et al. [42] developed a

framework that adopts a pipelined architecture to train CNNs on multiple FPGAs with

a one-dimensional topology. The pipelined architecture with the fine-grained inter-and

intra-layer methodology minimises the time required for storing the feature map in the

memory during training. The authors evaluated their framework by training AlexNet

on 10 Xilinx VC709 Connectivity Kits. The results indicated that compared with other

frameworks [175], the throughput obtained by this framework was increased by a factor

of 5; compared with Titan X, the energy efficiency of the framework was up to 7.6 times

higher. Moreover, the framework exhibits good scalability, as it can scale up to 60 FPGAs

to accelerate CNNs.

However, such multiple-FPGA platforms adopting pipeline models gain high through-

put while sacrificing latency. Jiang et al. [71] developed a general framework called

Super-LIP to support concurrent processing for both single- and multi-layer deployment

on FPGAs. To achieve communication between two FPGAs, the authors employ a novel

methodology in Super-LIP to achieve linear speedup by balancing computation workloads

and distributing the shared data across FPGAs to avoid traffic heaviness on the FPGA

memory bus. Compared with the existing single-FPGA design [171], this method achieved

a 3.48× speedup of AlexNet, VGG, and YOLO on two Xilinx ZCU102 kits.

3.4.3 CNNs on virtualized FPGA in the cloud

Zeng et al. [168] proposed a framework using FPGA virtualization, which is applicable to

any CNN accelerator based on the ISA in a cloud environment. This principle divides a

large resource pool into multiple virtualized cores to share FPGA resources at the node

level. By introducing a novel two-level instruction (dispatch module and tiling-based

instruction package design), virtualized multi-core resources can be dynamically allocated
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to each block in one CNN (single-task mode) or each CNN for multiple users (multi-task

mode) at runtime. Compared with previous methods, this technique solves physical

resource isolation and performance among multiple users by sharing FPGA resources

in the SDM method. Experiments on VGG-16, ResNet50, Inception V3, and MobileNet

indicated that compared with a single non-virtualized core design, the throughput of the

proposed virtualization method with multiple cores was 1.07–1.69 times higher overall.

A similar method called ViTAL was developed by Zha et al. [169] to enable FPGA vir-

tualization in a cloud environment for deploying CNNs. This method supports resource

sharing at both the node and multi-node levels. ViTAL provides an abstraction layer be-

tween CNN applications and physical resources, which abstracts heterogeneous resources

into homogeneous resources and provides a view of virtual blocks. The abstraction layer

divides a CNN application into virtual blocks and then maps these virtual blocks to an

FPGA or multiple FPGAs without impacting other running CNNs. By using a latency-

insensitive interface, virtual blocks can be mapped across FPGAs at the multi-node level

to achieve timing closure and match communication delays. Additionally, isolation in

the cloud environment is achieved by avoiding the sharing of physical resources among

different virtual blocks. The authors evaluated ViTAL by implementing LeNet, AlexNet,

and VGG-16 on a Xilinx UltraScale+ FPGA. The experimental results indicated that ViTAL

achieved good CNN mapping quality with a short compilation time (1.6% of the total).

Furthermore, ViTAL can dynamically relocate the CNNs to different positions in the

FPGA. The experimental results also indicated that with FPGA virtualization methods,

ViTAL significantly shortened the response time (by 82%) in the cloud environment.

Fowers et al. [40] proposed a full-system architecture with virtualization at a multi-

node level to serve CNN inferences in a cloud environment. The critical feature of the

architecture is the dedicated neural processing units (NPUs), which implement an SIMD

ISA containing a matrix-vector multiplier. This CNN-specific ISA offers a high-level

abstraction between the underlying FPGA infrastructure and DNN software development,

thereby simplifying FPGA programming for software developers. The authors validated

the architecture by running RNNs and compared it with the NVIDIA Titan GPU, and

it gained more than 36 effective teraflops (10 instances NPU). Moreover, the authors

evaluated ResNet-50 on the Arria 10 GX 1150, which achieved 559 inferences per second

(IPS), whereas ResNet-50 on the Nvidia P40 GPU achieved only 461 IPS.
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3.4.4 CNN deployment in commercial cloud

In recent years, companies such as Amazon F1 [1], Tentent [133], Huawei FACs [2], and

Microsoft [5] have launched cloud projects that provide FPGA IaaS for users to rent FPGA

resources. Researchers have begun to accelerate CNN workloads in these commercial

clouds to improve performance. The framework of deploying CNNs on FPGAs with a

commercial cloud as the backend is similar to local deployment, but virtualization and

physical connections of FPGAs are often charged by cloud vendors and hidden in the

backend.

Several frameworks [113, 27, 135] have been proposed to implement CNNs on a

single physical FPGA in the cloud with Caffe and TensorFlow as a frontend. Later, the

research focus of CNN deployments moved from per-FPGA granularity to multiple FPGAs.

Because the mainstream compilation tools do not support application implementation

among multiple FPGASs, particular mapping algorithms or customized tools designed

by the researchers are needed. Shan et al. [121] proposed an effective solution for

implementing CNNs among multiple FPGAs in an AWS instance. The solution, which

is based on the characteristics of FPGAs in the AWS, uses a heuristic method to find the

global execution throughput between the CPU and the connected FPGA and then uses an

allocation algorithm (including group kernel allocation and individual kernel allocation)

to assign CNN workloads to various FPGAs with resource constraints. It is suitable

for deploying any CNN to the AWS F1. Compared with the traditional mixed-integer

nonlinear programming solution, this solution achieved faster CNN implementations on

multiple FPGAs: 16-bit fixed-point AlexNet on two FPGAs, 32-bit floating-point AlexNet

on four FPGAs, 16-bit fixed-point VGG-16 on four or six FPGAs, and ResNet on five

FPGAs.

Table 3.4 presents studies on virtualization technology and the cloud environment.

3.5 Trends of CNN accelerators

As shown in Figure 3.9, the first stage in the evolution of CNN accelerators involved

manually mapping a single CNN to a single local FPGA with low energy consumption.

CNN accelerators were designed for implementation on specific FPGA families. The

optimization strategies are customised for a particular CNN and are not compatible with

other networks. Therefore, CNN deployment has disadvantages, such as poor portability,

40



3.5. Trends of CNN accelerators

Table 3.4 - Several examples of CNNs based on local virtualized FPGAs and CNNs in the cloud.

Works Years
CNN

Model
Abstra-
ction Host Shell Cloud

Multi-
tenent

Task and
rsc. Con-

troller

FPGA
Device Num.

[175] 2016
AlexNet,
VGG-16

Multi-
node
level

RH

AXI,
Net-

work
access

N/A N/A
system

con-
troller

Xilinx
Virtex
VC709

6

[30] 2018
LSTM,
RNN

Multi-
node
level

RH

Network
commu-
nication,

PCIe
con-

troller

N/A N/A

Model
paral-
lelism,

On-chip
pinning

Altera
Stratix
10 280

1

[42] 2018 AlexNet
Multi-
node
level

LH

Communi-
cation,

I/O
compo-

nent

N/A N/A

Partitioning,
Memory
subsys-

tem

Xilinx
Virtex
VC709

10

[72] 2018

VGG-16,
AlexNet,
SqueezeNet,

YOLO

Multi-
node
level

LH

Communi-
cation,
PCIe,

Aurora

N/A N/A

Mixed
integer
linear

program-
ming

Xlinx
XC7Z015
/XC7Z045

/X-
CZU9EG

1

[149] 2019

AlexNet,
Disp-
Net,

ResNet,
GoogLe-

Net

Resource
level OC

AXI,
Memory

con-
troller

N/A N/A
Tuning

algo-
rithm

Xilinx
ZC706,

ZCU102
1

[71] 2019

AlexNet,
Squeeze-

Net,
YOLO,

VGG-16

Multi-
node
level

OC

Host
commu-
nication,

clock
genera-

tor

N/A N/A Hypervisor
Xilinx

ZCU102 2

[177] 2019
ResNet-

152

Multi-
Node
level

RH
Network
commu-
nication

N/A N/A
Dynamic
partition-

ing

Xilinx Ul-
traScale 16

[125] 2019
Custom-
ized 3D

CNN

Multi-
Node
level

LH

Network
inter-
face,
PCIe
con-

troller

N/A N/A

Hardware
monitor,
mapping

table

Xilinx
VCU118 4

[62] 2019

Squeeze-
Net,

GoogLe-
Net,

VGG-16

Resource
level LH

DDR
con-

troller,
Global

memory
inter-

connec-
tion

N/A N/A

Partial
reconfig-
uration

man-
anger

Intel
Stratix
10 SX
SoC

1

Continued on the next table
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Continued from previous table

Works Years
CNN

Model
Abstra-
ction Host Shell Cloud

Multi-
tenent

Task and
rsc. Con-

troller

FPGA
Device Num.

[44] 2020
VGG-16,
AlexNet

Resource
level OC

DDR
con-

troller
N/A N/A

Croase-
grained
NoC, Pa-
rameter
sched-
uler

Xilinx
VCU118 1

[75] 2018
DNN

Weaver
Node
level LH

PCIe
con-

troller,
DMA,
MMIO

Cloud
environ-

ment
N/M

Zone
manager
on host

CPU

Altera
Stratix V

GS,
Xilinx Ul-
trascale+

1

[30] 2018
LSTM,
RNN

Multi-
node
level

RH

Network
commu-
nication,

PCIe
con-

troller

Cloud
environ-

ment

SM,
TM

Resource
runtime
manager

Altera
Stratix
10 280

1

[134] 2020
CIFAR-

Net
Node
level OC

Memory
con-

troller,
AXI

Cloud
environ-

ment

SM,
TM

Runtime
task

manager,
schdul-

ing
decision

Xilinx
ZCU104 1

[169] 2020

NiN,
AlexNet,

Over-
Feat,

Vgg-16

Multi-
node
level

RH

Latency-
intensive

inter-
face,

address
transla-

tion

Cloud
environ-

ment
TM

Hypervisor
and

system
con-

troller

Xilinx
Ultra-
Scale+

4

[168] 2020

ResNet-
50,

Incep-
tion V3,

Mo-
bileNet

Node
level LH

Virtuali-
zation

infrastruc-
ture

Cloud
environ-

ment
SM

Multi-
level

instruc-
tions,

virtual-
ization

manager

Xilinx
Alveo
U200

1

[50] 2017

VGG-19,
ResNet-

152,
LSTM

N/M, Charged by cloud vendors
IaaS
(Per-

FPGA)
N/A

Symbolic
compiler Catapult 1

[24] 2018

MLP,
YOLO,

DoReFa-
Net

N/M, Charged by cloud vendors
IaaS
(Per-

FPGA)
N/A

Data
Flow Bal-

ancing
algo-
rithm

AWS F1 1

[113] 2018
LeNet,

VGG-16 N/M, Charged by cloud vendors
IaaS
(Per-

FPGA)
N/A

Datamover,
system

con-
troller

AWS F1 1

Continued on the next table
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Continued from previous table

Works Years
CNN

Model
Abstra-
ction Host Shell Cloud

Multi-
tenent

Task and
rsc. Con-

troller

FPGA
Device Num.

[27] 2019

AlexNet,
VGG-16,
ResNet-

50

N/M, Charged by cloud vendors
IaaS
(Per-

FPGA)
N/A

Model
split,

task allo-
cation

manager

AWS F1 1

[120] 2020
AlexNet,
VGG-16 N/M, Charged by cloud vendors

IaaS
(multi-
FPGAs)

N/A
MINLP
Solver

AWS F1
and F2 1

[21] 2015

DenseNet-
121,

ResNet-
152, etc

N/M
SaaS
(Per-

FPGA)

SM,
TM

Web
service

API
Arria10

1,
2, 4

N/A = Not applied; N/M = Not mentioned; SM = Spatial multiplexing; TM = Time multiplexing.

time-consuming deployment, complex optimization, and inflexibility. Efforts have been

made to automatically generate CNN hardware structures according to the requirements

of different FPGA families.

Figure 3.9 - Evolution of CNN accelerators at each time node: from manual mapping to frameworks, from a
single node to a cluster, from physical to virtual resources, and from local to cloud.

Therefore, researchers have proposed several frameworks to support a generic CNN

accelerator and to offer customised CNN implementations by analysing requirements

and platform-specific constraints. These frameworks are usually integrated with an

RTL compiler with full exploitation of low-level structures to achieve high performance.

Moreover, instruction-driven compiler frameworks have been developed in recent years

to simplify the control flow of CNNs.
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Despite enjoying energy efficiency and acceleration, CNN deployment on FPGAs faces

complexity, resulting in reduced productivity. The framework of the previous stage

mainly reduces the programmable complexity at the single-FPGA level without multiple

tasks, and researchers have not yet determined how to improve the productivity of CNN

implementation at the multiple-FPGA or resource level. Accordingly, CNN accelerators

with virtualization techniques are being developed. Resource-level virtualization provides

portability of CNN deployment for various families of FPGAs from different vendors.

Node-level and multi-node-level virtualization enables resource sharing among FPGAs.

Multi-node level virtualization exhibits the advantages of scaling up CNNs and training

CNNs.

Subsequently, several works proposed cloud-based accelerators for deploying CNNs

on-demand. These studies can be divided into two categories. The first category involves

building an end-to-end cloud environment for CNN acceleration. These works not

only require the development of a framework or a solution for CNN deployment but

are also responsible for providing FPGA devices, virtualizing FPGAs, managing FPGA

resources, scheduling tasks, and supporting multi-tenant scenarios with resources and

data isolation. However, these works are still in their infancy and face obstacles, such

as runtime overhead. Few researchers have performed studies in this area, but it will be

an appealing field owing to the growing focus on cloud computing. The other category

involves using the commercial FPGA cloud as a backend to develop CNN frameworks

or solutions. These frameworks usually cannot consider multi-tenant solutions and

cannot support CNN deployment at runtime. Additionally, FPGA management and

virtualization are handled by the cloud provider and hidden in the background. Studies

have mainly focused on deploying CNNs at per-FPGA granularity because this does not

require resource-mapping algorithms or compilation tools across multiple FPGAs. CNN

development can only be completed by using cloud integrators provided by cloud vendors

and mainstream compilation tools.

At each stage, CNN deployment exhibits various characteristics, as shown in Figure

3.10. Most CNN implementations are based on streaming or a single computation engine,

along with the compression and optimization strategies mentioned in Section 3.3. Com-

pared with a single computation engine, the streaming architecture gains efficiency by

pipelining the network and activating concurrent executions between layers. However,

this efficiency leads to a resource burden and a long recompilation time because obtaining
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Figure 3.10 - Comparison of related methods with different characteristics.

a new CNN model requires regenerating the bitstream. According to the different require-

ments (e.g., resource constraints or speedup), researchers can choose different hardware

structures in both the local and cloud FPGAs.

3.6 Discussion

In the history of deploying CNNs on FPGAs, new requirements have been proposed at

different stages, which has led to different challenges. With the development of a novel

generation of platforms, technologies, and concepts, challenges have been resolved.

3.6.1 Unresolved challenges

Some challenges of using FPGAs in the cloud have not been fully resolved owing to their

complexity. Here, we describe two major challenges: isolation and diversity.

3.6.1.1 Isolation

With the increasing efforts to provide a cloud environment for multiple tenants to deploy

CNNs on the shared FPGAs, resources and performance isolation have become a concern

in the cloud.

CNN accelerators on the FPGA usually run under full hardware access and may share

resources. Therefore, malicious code can attack the entire platform for other tenancies [45,

162]. Additionally, dataset collection can be time-consuming and expensive—particularly

in industrial cases where datasets are of significant commercial value. Providing strict
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data and resource isolation for multiple tenants can prevent unauthorised access to the

dataset and avoid data leakage [160, 119].

Additionally, a CNN application may affect the performance of other CNN applications

during concurrent execution [45, 64], which causes unreliable performance. However,

few works [169, 168] discuss performance isolation problems, and their isolation remains

underexplored.

3.6.1.2 Diversity

Diversity of CNN functions: Owing to resource limitations and development difficulties,

the networks reported in the literature are standard (such as AlexNet and VGG) with

common functions (such as convolution and pooling). With the continuous emergence of

CNNs, the current CNN functions that can be implemented on FPGAs lack consistency

with the development of CNN algorithms. However, the cloud environment provides

more possibilities for exploring the deployment of CNNs with a rich set of functions on

FPGAs by providing more resources and abstraction layers and can promote the diversity

of CNN IP development.

Diversity of CNN usage: Training is a difficult phase to be performed on the FPGA,

because all the features must be stored in memory until the corresponding errors are

backpropagated, which requires more storage than inference. Existing works mainly focus

on performing CNN inferences with relatively simple functions on the FPGA. Benefiting

from the “unlimited” capacity and resources provided by the FPGA cloud, CNN training,

fine-tuning, transfer learning, and the support of new functions in CNNs will be more

feasible.

3.6.2 Industrial solution

To keep pace with the development of CNN accelerator design, novel platforms have been

used in industry to enhance the hardware computing power. In 2019, Xilinx proposed

a new SoC family called Versal, which is based on an adaptive compute acceleration

platform, for accelerating applications such as CNNs. Versal tightly integrates software-

programmable accelerators through the NoC structure, making accelerators scalable

with flexible connections and achieving a high level of software abstraction for the rapid

development of accelerators.

Xilinx also proposed a novel framework called Vitis AI [8]. The framework can be
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interfaced with Caffe and TensorFlow and provides a unified solution, e.g., quantization,

optimization, and pruning. Moreover, it allows the deployment of CNNs based on the

ISA and can compile the latest CNNs into deep-learning processor unit instruction codes.

Vitis AI can enhance the productivity and portability of CNN deployment, allowing

software engineers to deploy CNNs without hardware expertise.

3.6.3 Roadblocks of FPGA Cloud

Solutions of FPGA-based accelerators in the cloud have been proposed for several years

[2, 1]. Nevertheless, FPGAs have achieved less success compared to GPU and TPU

architectures in the cloud. Deploying FPGA devices as easy-to-use resources in the cloud

faces the following major roadblocks.

First, FPGA programming requires cloud users to have extensive hardware skills and

expertise to deploy their applications in the cloud, which is a considerable challenge for

software engineers and data scientists. Cloud providers must provide well-developed

virtualization techniques for abstracting FPGAs [69]. As discussed in Section 3.5, virtual-

izing FPGAs in the cloud for artificial-intelligence applications still has issues, such as

runtime overhead, multi-user support, user isolation, and data privacy. Additionally, the

FPGA cloud provides users with high permissions to access the resources, where users

can upload their bitstreams for application deployment, leading to malicious attacks and

security problems [98]. Such problems hinder the success of FPGAs in cloud computing.

3.7 Conclusion

This paper summarizes several techniques to promote CNN deployments on FPGAs,

including architectural design and optimization strategies. We reviewed related works

based on FPGA virtualization and cloud deployment. Our study involved an in-depth

analysis of the evolution of CNN deployment on FPGAs, from local FPGAs to virtualized

FPGAs in the cloud. This topic was ignored by previous surveys.

With the rising concern regarding the adoption of FPGAs at the edge and in the cloud,

porting CNNs onto FPGAs in cloud services will continue to attract attention in the years

to come.

47





Chapter 4

Accelerating CNNs on FPGA platform

Contents
4.1 Principle of the platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Streaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 IP Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.2 Mathematical model of resource utilization . . . . . . . . . . . . . . . . . 59
4.2.3 Latency results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Single Engine Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.1 IP design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.2 Generic CNN parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.1 Our quantization tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

49



4. Accelerating CNNs on FPGA platform

The objective is to propose a platform that can overcome IP design and validation

challenges. As a result, machine learning engineers can infer any CNN model with their

database without hardware expertise.

The platform has two main parts: The test vehicle and CNN IP.

The test vehicle is a specific module named by STMicroelectronics®, accommodating

various CNN IPs on FPGA devices. The responsibility of the test vehicle is to exchange

data between external memory and a user-defined IP (in our context, CNN IP). The test

vehicle is a fixed module, but it can be applied to different CNN IPs. Therefore, it is

possible to partially synthesize the test vehicle and then lay it out in a fixed area in the

placement & routing steps for the further implementation.

Figure 4.1 - Architecture of our platform.

The CNN IP is a general module referring to realize a part of CNN (single-engine IP)

or the entire CNN (streaming IP). This IP can be seen as a black box and is synthesized

independently of the platform. The CNN IP is designed to meet the different requirements

and metrics of machine learning engineers. The machine learning engineers’ requirements

may be:

• A rapid execution on the CNN inference;

• Resource utilization as few as possible;

• Or, a trade off between execution time and resource usages.

Facing such a difference between requirements, the CNN IP in the platform thus
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involves two types of hardware structures: streaming and single-engine computation.

The streaming structure gains high throughput with a pipeline structure. In contrast, the

single-engine structure is more friendly to large-scale CNN and consumes fewer resources

than the streaming architecture.

The conception flow of the platform is shown in the figure 4.2. The test vehicle is

synthesized to obtain the RTL schematic and resource utilization on the FPGA device,

while the remaining available FPGA resources are reserved for CNN IP. At the same

time, the parameters of the IP are selected (details of the parameters in the section

4.2.1.2). According to the given parameters and related mathematical models, the resource

utilization of the IP is estimated. In the process of resource verification, if the remaining

resources are insufficient to meet the resource requirements of the streaming IP, the

machine learning engineers should either determine a new set of parameters or change

the FPGA device. Otherwise, the streaming IP can enter the CNN integration process.

Finally, the test vehicle and CNN IP are connected to generate the platform before the

implementation.

In this chapter, the proposed platform aims at performing the inference of a general-

purpose CNN. However, the platform is also designed for usages in other scenarios,

presented in detail in chapter 5.

4.1 Principle of the platform

The proposed platform consists of an integrated processing system (PS) and programmable

logic (PL) to achieve the flexible implementation of each CNN IP. The data transmission

of the CNN includes the transfer between FPGA and external DDR and the internal data

transmission inside FPGA. The AXI4 protocol is applied for the transfers between FPGA

and external DDR. Meanwhile, several types of transfer have been developed for internal

transfer inside FPGA.

As shown in the figure 4.3, the PS part controls operations performed by the PL side in

the classic system-on-chip application. PS also manages external communications (with

DDR external memory and the ethernet link). The PS part:

• Gets back the results of the inference when available;

• Sends results to the machine learning engineer.
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Figure 4.2 - Conception flow of our platform.

The control operations are done by a BareMetal application code executed on the ARM

processor. This solution is faster than a full operating system.

The PL part is the CNN model itself. Using the SoC’s PL side increases the system

performance, reduces power, and delivers predictable latency for inference. As inputs and

the output of any CNN model are unchanged, the CNN can be considered as a black box

from the system point of view. It is connected to the machine learning engineer through

the FPGA test vehicle.

Considering CNN as a black box, the synthesis tool turns this IP block off and creates a

black box for inserting any CNN after the synthesis step. Thus, it enables configuring any

52



4.2. Streaming

Figure 4.3 - The global structure of the FPGA-based platform.

CNN after implementing the FPGA test vehicle as long as the number of FPGA resources

can handle the new model. The black box CNN has the following inputs and output:

• The input coefficients: weights and bias stored in the CNN before performing

inference;

• The input data: corresponds to the pixels of the image being processed by the CNN

(input for the inference);

• The output data: refers to the accuracy obtained at the output of the CNN (results of

the inference).

4.2 Streaming

The streaming IP usually consists of a complete CNN. The streaming IP implements a

series of CNN functions, from the first convolutional layer to the last fully connected layer.

This IP can generate a generic CNN architecture by defining the network parameters

before generating the bitstream. The streaming IP should be modified to re-generate the

appropriate CNN architectures if the CNN model changes.

4.2.1 IP Design

As shown in the figure 4.4, the streaming IP consists of several generic CNN operations,

such as convolution, pooling, and fully connected blocks. The convolution block applies a

line buffer to achieve efficient data transfer and computation. In addition, these blocks are

interconnected with particular methods, which will be presented in the section 4.2.1.1.
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Figure 4.4 - Streaming CNN IP with AXI4-Streaming.

The streaming IP is interfaced by AXI4 protocol, consisting of two main interfaces to

exchange data or results with the external memory:

• An AXI4 stream slave interface. It is designed for receiving data (input images) from

the external memory;

• An AXI4 stream master interface. It is designed for sending data (processed results)

to the external memory.

The final implementation of streaming-IP-based CNN is achieved in Xilinx ®Vivado

Design Suite Block Design Tool shown in figure 4.5. The module CNN_0 is the AXI4

interfaced streaming IP, which processes the computation of the whole neural network.

The module processing_system7_0 is the processor of the FPGA SoC, which controls the

data flow and configure the module AXI Direct Memory Access (DMA) and the module

CNN_0.
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Here, we added the AXI DMA module in the design to provides high-bandwidth

direct memory access between the AXI4 Memory-mapped and AXI4-interfaced CNN

IP without the processor[151]. The AXI4 DMA connects the input of the CNN IP by

the Memory-mapped to Stream (MM2S) and the output of the CNN IP by the Stream

to memory-mapped (S2MM), taking full advantage of the burst transmission mode.

In addition, AXI DMA connects the processor in the PS side by S_AXI_Lite port for

initialization or registers configuration.

4.2.1.1 Data transfer flow inside the streaming IP

Three communication structures are proposed to transmits pixels and coefficients inside

the CNN architecture to efficiently accelerate the CNN operation. The line buffer structure

is designed to calculate the convolution kernel, while the point-to-point and serial links

are intended for the transmission of the data in the entire network.

• Line buffer: The sliding window with line buffer shown in the figure 4.6 contains a

window K x K, where K is the convolution size. This sliding window uses a chain

of shift registers to store the previous pixels. The later come pixel is transmitted

to the first register and pushes the previous pixel forward in the line buffer. Given

the image size of I x I, the minimum required registers are I x (K-1). The (I-1) x

(K-1) clock cycle is required to output the first valid convolution result from the

first pixel into the line buffer. From this moment on, the line buffer will generate a

new convolution result per clock cycle. We also apply a pixel counter to identify the

valid output results among all outputs in this structure. Such a structure effectively

reuses the same convolution kernel and stores part of the feature map in the buffer,

greatly reducing the external memory’s access requirement.

Figure 4.6 - Data flow of extract neighborhood pixels in with line buffer.
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• Point-to-point communication: The data structure is a point-to-point connection

between blocks shown in the figure 4.7. This structure fully unrolls the succession

of the layers and applies a straightforward implementation. This structure allows

streamlining communications between each neuron layer by layer. Such a structure

with pipeline mode can make full exploration of layer parallelism of CNN structure

and accelerate execution time of CNN. However, the layers are unfolded in full

parallel, which causes insufficient hardware resources problems.

Figure 4.7 - Data flow of loading pixels in point-to-point mode.

• Serial link: The structure for loading coefficients inside the CNN is a serial link

that goes through all Convolution blocks, from the 1st layer to the last layer shown

in the figure 4.8. The input coefficient of the next block is connected to the output

coefficient of the previous block, and its function is similar to first-in-first-out.

Therefore, the coefficients of the fully connected layer should be loaded into the

block first to ensure the correctness of the calculation. Such a structure brings an

overhead but does not require direct external access to the system address and data

buses. Thus, FPGA resources and interconnect are minimized to be fully used by the

IPs and the data flow structure.

The coefficients which are sent to the blocks by a serial link are detailed in the figure

4.9: The first coefficients are those of the last layer, weights, and bias, must be sent

first until the last ones (coefficients of the first layer). A tool is also developed in this

part to order these coefficients extracted from the Tensorflow framework.

4.2.1.2 Generic network parameters

The streaming architecture can be configured through the following generic parameters.

These parameters aim at generating flexible CNN structures from the fixed template.
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Figure 4.8 - Data flow of loading coefficients in serial link.

Figure 4.9 - Principle of weights and bias ordering.

The parameters are defined in the VHDL package, which can only be updated before

generating the bitstream.

• D: Data width (number of the bit) of the image. This parameter can be divided into

the integer part Dint and the decimal part Ddec;

• C: Data width (number of the bit) of the weights and bias. This parameter can be

divided into the integer part Cint and the decimal part Cdec;

• L1, L2 and L3: Channel size of the first, second, and third convolution layers;

• F1, F2: Channel size of the first and second fully-connected layers;

• K*K : Convolution filter size. This parameter can be configured to any size;

• P*P : Pooling operation size. This parameter can be configured to any size;

• I*I: Input image size. This parameter can be configured to any size.
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4.2.2 Mathematical model of resource utilization

This section aims to predict the IP resource utilization for a given set of network parame-

ters. In more detail, we first select specific network parameters to obtain the synthesis

results of streaming IP (especially the resource utilization results). Then, several mathe-

matical models are extracted, which describe the relationship between parameters and

resources utilization. As a result, we reache the goal of predicting resource usage when

entering any network parameters.

The synthesis time of the CNN IP by a synthesis tool (e.g., Xilinx Vivado synthesis tool)

takes long times according to different configurations. For example, it takes one hour

to synthesize a standard LeNet5 with 16-bit data width in Vivado 2018.3. Therefore, it

is not practical to launch many synthesis once the configuration changes. However, the

prediction of the resources utilization can help find a suitable configuration in different

use cases proposed in chapter 5 without going through the synthesis process.

The process can be described as shown in figure 4.10:

Figure 4.10 - Method for constructing the mathematical models
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• Step 1 Structure definition: In this step, we first choose a network structure as the

input of the streaming IP (e.g., data width, layer number, network channel). The

streaming IP is written in VHDL, and the streaming IP can configure all CNNs with

standard functions. Then, we determine the varying parameters of the network.

• Step 2 Synthesis data collection: In this step, the data refers to the resource utilization

regarding different network parameters provided in step 1. The data is extracted

from the synthesis reports produced by Xilinx Vivado 2018.3. The data may change

due to different tool versions or FPGA devices, but always have the same types: Lut,

Block ram, DSP, and Flipflop. To facilitate and automatize the synthesis process, we

used a script developed in the laboratory. This script can continuously take a set of

network configurations as IP’s input and automatically launch the synthesis process

in Xilinx Vivado. Finally, the script can extract all synthesis reports and re-organize

the synthesis results in excel for the following step data analysis.

• Step 3 Synthesis data analysis and modeling: In this step, we will conduct the relation

between resources utilization and network parameters and examine whether the

mathematical models can be extracted and integrated into the platform.

First, the correlations of these data calculated by Rstudio software are evaluated.

Then, if the correlation exists between two data, we will find the network parameters

that have a significant impact on the use of resources and extract the mathematical

model. Finally, given the same network parameters, we compare the resources

predicted by the mathematical model with the synthesized results to verify the

correctness of the extracted mathematical model.

The experiments use about 800 configurations to evaluate the resources. I, K, and P

are considered constants.

4.2.2.1 Resource utilization based on data width

As quantization is commonly used to optimize FPGA resources and speed up the inference

time, the first evaluation is based on varying the data width on a CNN architecture.

The experiment of varying the data width (data width represents pixel size + weight

size) is conducted from 8 bit to 32 bits, with L1, L2, L3, FC1, and FC2 being the constant.

Figure 4.11 shows the evaluation of the resources of DSPs and logic LUT. We can observe

that:
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• The use of LUT as logic and DSP is mutually constrained. For the same network

generated by our framework, DSP use will significantly reduce the use of LUT and

inversely.

• Data width has a significant impact on the use of DSPs due to the DSP hardwired

in FPGAs. In our experiment, the synthesis tools will implement DSP blocks with

data higher than 16-bits. Therefore, below this value, the tools only use Logic LUTs

instead.

• With the default synthesis settings, the threshold of using DSP depends on the data

width in hardwired DSP blocks integrated into the FPGA. Taking Xilinx Virtex7

VC707 as an example, data width over 22-bit will use DSP to perform convolution

operations, while data width less than 22-bits use only LUTs in our framework.

While using Xilinx Zynq UltraScale as the platform, our framework deploys the

convolution in logic LUTs when the data width is less than 16-bits.

Figure 4.11 - Effect of data width on Logic LUT and DSP.

4.2.2.2 Resource utilization based on other network parameters

In this part, we study the impact of CNN parameters (L1, L2, L3, FC1, and FC2) change on

FPGA resource usage. The mathematical models are extracted based on these parameters.

Since [41] proves that CNN with a small data width provides high accuracy, the pixel and

weight widths in this section are all below 16 bits. DSP is ignored in this section because

the default setting of the synthesis tool is not to use DSP to realize the implementation.
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The primary goal of the L1-L2-L3 layer is to detect the local features of the previous

layer, FC1-FC2 is used for label prediction. Therefore, the resource utilization analysis of

neural networks is divided into two parts accordingly.

The first part deals with the correlation between Layer1/Layer2/Layer3 and FPGA

resources. The data width is constant (Pixel width = 4bits, weight width=4bits), while

layers L1, L2, and L3 vary. The objective is to mathematically model the relation between

the CNN input parameters and material resources used without going into the synthesis

process.

Table 4.1 - Pearson’s correlation (>0.7) extracted from R.

Logic LUT Memory LUT Flipflop

Layer1 − 0.88 −
Layer2 0.75 − 0.76

Layer3 0.75 − 0.75

Table 4.1 presents Pearson’s correlation extracted from R. When the Pearson’s correla-

tion is higher than 0.7, the closer the points are located to another one on the line. Thus, a

correlation higher than 0.7 indicates that it is possible to obtain some linear mathematical

models to evaluate FPGA resources based on CNN parameters.

By analyzing similarities between groups in the table 4.1, we can conclude that the

changing parameter of Layer1 has an essential effect on the utilization of Memory LUTs.

In contrast, the utilization of Logic LUT and Flipflop mainly depends on Layer2 and

Layer3. The impact is summarized as follows:

• NumberMemoryLUT = f (Layer1),

• NumberLogicLUT = f (Layer2,Layer3),

• NumberFlipf lop = f (Layer2,Layer3).

According to Pearson’s correlations, we draw the figures of 4.12, 4.13,4.14, 4.15 and

4.16 (X-X-X-X-X represents the value of Layer1-Layer2-Layer3-FC1-FC2).

The figure 4.12 first indicates that the utilization of Memory LUT increases linearly

with the increase of Layer1 since Pearson’s correlation is 0.88 between Memory LUT and

Layer1. Afterward, it does not affect the Memory LUT utilization when Layer3, FC1, and

FC2 are halved. Only changes in Layer2 will cause a proportional change in resource
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utilization. The equation of the resource utilization depending on different Layer1 can be

identified as follows:

NumberMemoryLUT = 275.45 ∗Layer1 + 64.326
(Layer2 = 16) (4.1)

NumberMemoryLUT = 147.22 ∗Layer1 + 32.663
(Layer2 = 8) (4.2)

Figure 4.12 - Mathematic models of LUT Memory used in terms of Layer1

The figure 4.13 and 4.14 first show that the utilization of Logic LUT and flipflop

increase linearly as the number of Layer2 increases. Next, we can observe that although

Layer1 and F1 are halved, the utilization of Logic LUT and Flipflop remain unchanged.

However, the utilization of Logic LUT and Flipflop are halved if Layer3 is halved. The

equations can be summarized as follows:

NumberLogicLUT = 36493 ∗Layer2 + 128934
NumberFlipf lop = 27433 ∗Layer2 + 93230

(Layer1 = 12,Layer3 = 120,FC1 = 84,FC2 = 10)
(4.3)

NumberLogicLUT = 34791 ∗Layer2 + 126229
NumberFlipf lop = 26020 ∗Layer2 + 91130

(Layer1 = 6,Layer3 = 120,FC1 = 84,FC2 = 10)
(4.4)

NumberLogicLUT = 34703 ∗Layer2 + 61604
NumberFlipf lop = 26020 ∗Layer2 + 44964

(Layer1 = 6,Layer3 = 120,FC1 = 40,FC2 = 10)
(4.5)

NumberLogicLUT = 18255 ∗Layer2 + 71728
NumberFlipf lop = 13741 ∗Layer2 + 50411

(Layer1 = 6,Layer3 = 120,FC1 = 84,FC2 = 10)
(4.6)
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Figure 4.13 - mathematic models of LUT Logic Used in terms of Layer2

Figure 4.14 - Mathematic models of flipflop Used in terms of Layer2

The figure 4.15 and 4.16 show similar results. The resource utilization of Layer 3

increases proportionally. In addition, in the case of a given value of Layer3, Layer2 has

the most critical impact on the utilization of logic LUTs and flip-flops. The equations can

be summarized as follows:

NumberLogicLUT = 5332.9 ∗Layer3 + 46014
NumberFlipf lop = 3944.7 ∗Layer3 + 33684

(Layer1 = 6,Layer2 = 16,FC1 = 84,FC2 = 10)
(4.7)

NumberLogicLUT = 4822.5 ∗Layer3 + 40025
NumberFlipf lop = 3591.8 ∗Layer3 + 29880

(Layer1 = 6,Layer2 = 16,FC1 = 40,FC2 = 10)
(4.8)
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NumberLogicLUT = 5309.9 ∗Layer3 + 79203
NumberFlipf lop = 3944.4 ∗Layer3 + 58469

(Layer1 = 12,Layer2 = 16,FC1 = 84,FC2 = 10)
(4.9)

NumberLogicLUT = 3129.7 ∗Layer3 + 30745
NumberFlipf lop = 2310.6 ∗Layer3 + 21560

(Layer1 = 6,Layer2 = 8,FC1 = 84,FC2 = 10)
(4.10)

Figure 4.15 - Mathematic models of Logic LUT in terms of Layer3.

Figure 4.16 - Mathematic models of Flipflop in terms of Layer3.

The second part extracts the models between fully connected and FPGA resources.

Again, Pearson’s correlation is above 0.70, indicating a linear relationship between fully

connected layers and FPGA resources. The impact is summarized as follows:

• NumberMemoryLUT = constant,
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• NumberLogicLUT = f (FC1,FC2),

• NumberFlipf lop = f (FC1,FC2).

The equations of the resources utilization are described as follows:

NumberLogicLUT = 1487.8 ∗FC1 + 558089
NumberFlipf lop = 1050.5 ∗FC1 + 418777

(Layer1 = 6,Layer2 = 8,Layer3 = 120,FC2 = 10)
(4.11)

NumberLogicLUT = 1388.2 ∗FC2 + 669744
NumberFlipf lop = 680.05 ∗FC2 + 500199

(Layer1 = 6,Layer2 = 8,Layer3 = 120,FC1 = 84)
(4.12)

Figure 4.17 - Mathematic models of FPGA resources in terms of FC1.

The above mathematical models use Layer1/2/3 and FC1/2 as individual variables

to explore the relationship with FPGA resources used. These models are accurate as the

coefficient of determination that evaluates the regression model is R=1. Thus, machine

learning engineers can use the mathematical model to quickly determine or adjust CNN

parameters under the resources of available FPGAs.

4.2.3 Latency results

Each CNN model requires N clock cycles to load N coefficients. N depends on CNN

configuration. Based on the three configurations in Table4.2, Table4.3 lists the timing

evaluation of loading coefficients and performing inference in each CNN model. The

working frequency is 150 MHz.
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Figure 4.18 - mathematic models of FPGA resourceS in terms of FC2

Table 4.2 - Configuration of each CNN

Config Dint Ddec Cint Cdec L1 L2 L3 F1 F2

1 4 2 2 2 6 16 120 84 10

2 4 2 2 2 6 16 60 40 20

3 4 2 2 2 12 8 60 84 10

Table 4.3 - Timing evaluation of loading coefficients and performing inference.

Loading Coefficients Performing Inference

Config Clock cycles time (µ s) clock cycles time(µ s)

1 13788 92 3175 21.1

2 7883 52 1190 7.9

3 8560 56 1291 8.5

These CNN models only take a few microseconds to perform inference on one image

and load coefficients. The estimated times depend on the CNN structures. Generally,

the test set for the inference includes 1000 to 100000 images, so it takes a few seconds

to a few minutes to execute the inference for the dataset. In our estimation, the time

to load images to DDR is not considered depending on the communication protocol.

Nevertheless, pipeline technology can efficiently accelerate the global inference process.
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4.3 Single Engine Computation

Due to the large number of layers and computational complexity of the standard CNN,

it is difficult to map each layer of the entire CNN structure inside the FPGA. Therefore,

the current mainstream method is to adopt the acceleration layer by layer, namely single-

engine computation IP. This method sequentially executes the layers of the entire CNN

on the FPGA, and restores the output data of the current layer to the external memory.

When calculating the next layer, the output result of the previous layer will be read back

to the single engine calculation for the calculation of the current layer.

4.3.1 IP design

As shown in the figure 4.19, the single engine computation IP consists of convolution and

pooling operation. The convolution operation can be configured as the fully-connected

operation by changing the software code inside the FPGA PS.

Figure 4.19 - Single engine CNN IP with AXI4-full standard.

The single-engine computation is interfaced by AXI4 protocol, basing on the burst

transmission mode and uses a two-way handshake mechanism. When the valid and ready

signals are high at the same time, the data transmission starts. Data bandwidth between

PL and PS is 32-bit for the single-engine IP. It consists of two principal interfaces to

exchange data or results with the external memory:

• An AXI4-full master interface. It is designed for receiving data (input feature images)

from the external memory to convolution or pooling operation, and sending data

(processed results) to the external memory;

• An AXI4-lite slave interface. It is designed for configure the convolution and pooling

operations (e.g., kernel size, padding or not padding).
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The final implementation of single-engine IP-based CNN is achieved in Xilinx®Vivado

Design Suite Block Design Tool shown in the figure 4.20. The module pooling_0 is

the AXI4-interfaced IP, which is responsible for the pooling operation in each layer.

The module conv_0 is the AXI4-interfaced IP, aiming at process the convolution and

fully-connected operations in the each layer. These two IPs are written in C language

in the Xilinx ®Vivado HLS. The module processing_system7_0 is the processor of the

FPGA SoC, which controls the data flow and configure the module pooling_0 and conv_0

with different network parameters. The processor is also responsible for configuring the

module conv_0 to operate convolution or full connection.
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4.3. Single Engine Computation

4.3.2 Generic CNN parameters

The single-engine architecture can be configured through the following general param-

eters. These parameters are designed to generate flexible CNN functions (convolution,

pooling, and full connection) from a fixed template. The parameters of the function are

determined in the software code, even after the code stream is generated, the parameters

can be updated multiple times in the software code.

• D: Data width (number of the bit) of the image. This parameter can be divided into

the integer partDint and the decimal part Ddec;

• C: Data width (number of the bit) of the weights and bias. This parameter can be

divided into the integer part Cint and the decimal part Cdec;

• C_in: Number of input feature map channels;

• C_out: Number of output feature map channels;

• S : Stride of the convolution. This parameter can be configured to any size;

• Padding: Padding or not. This parameter can be configured to 0 (without padding)

or 1 (with padding);

• K*K : Convolution kernel size. This parameter can be configured to any size;

• P*P : Pooling operation size. This parameter can be configured to any size;

• I*I: Input image size. This parameter can be configured to any size.

4.3.3 Optimization

Vivado HLS provides the annotation of the C code with the #pragma directives to obtain

several optimizations or implementation. The directives can be classed into:

• Interface (e.g., function-level interface, port-level interface, AXI4 interface) to specify

how RTL ports are created from the function definition during interface synthesis

[153];

• Data and control flow (e.g., loop unrolling, dependence, pipleline, inlining, in-

stantiation) to change the data flow to improve resource utilization or execution

time;
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• Storage allocation (e.g., memory type) to choose the correct infered circuit (Block

RAM, Distributed RAM, Shift Register).

The data and control flow directives are usually placed in a loop or if-else branch to

change the synthesis results of the algorithm. From the pseudo code of the convolution

operation, we can observe three different levels of loops. To optimize these loops, we

apply the method pipeline and unroll based on [172]. The detail of these two directives

can be concluded as follows:

• Pragma pipeline, which enables concurrent execution of the loop, thereby reducing

overall latency of the loop. Moreover, it provides the initiation interval (II) between

the pipelined in case of facing dependencies or hardware resource constraints issues.

We apply the pipeline strategy inside each convolution kernel to pipeline the reading

pixels process. As a result, the pixel can be processed each clock cycle.

• Pragma unroll, which unrolls the loop and creates independent operations, thereby

increasing the throughput of operations. In addition, it provides an expansion factor

to perform functions in multiple iterations. However, unroll can only be applied to

tasks that have no dependencies between loop iterations.

We use a factor to apply the expansion strategy to the input and output channels.

This strategy obtains parallel computations of a set of input images, thereby avoiding

spending a lot of time processing each image sequentially.

Besides, we apply Pragma array partition to the input and output arrays. By default,

the input and output arrays will be mapped to BRAM by Vivado HLS. However, BRAM

can only be expanded to two ports for reading and writing, limiting the throughput.

Using directive array partition can split the input and output into sub-arrays and then

execute them simultaneously, thereby increasing the parallelism of the convolution.

The final optimization can be explained the listing 4.1:

Listing 4.1 - Convolution operation with different directives.

#Pragma HLS a r r a y _ p a r t i t i o n v a r i a b l e=din complete dim=1
#Pragma HLS a r r a y _ p a r t i t i o n v a r i a b l e=dout complete dim=1

for ( co =0; co<C_out ; co=co +1) // loop of output channel C_out
#Pragma HLS unrol l

fo r ( h=0; h<H_out ; h=h+1) // loop of the output heigh H_out
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fo r (w=0; w<W_out ; w=w+1) // loop of the output width W_out
{

new sum=0;

for ( c i =0; c i <C_in ; c i=c i +1) // loop of the input channel C_in
#Pragma HLS unrol l

for ( r =0; r<K; r=r +1) // loop of kernel heigh K

for ( s =0; s<K; s=s +1) // loop of kernel width K
#Pragma HLS pipe l ine I I =1

sum+=din [ h*S−P+r ] [w*S−P+s ] [ c ] *wt [ r ] [ s ] [ c ] [ co ] ;

dout [ h ] [w] [ k ] =sum ;
}

The synthesis result is carried out by Vivado HLS 2018.3 on Xilinx zynq 702. The

working frequency is about 100Mhz. The table 4.4 shows the latency results in terms of

different directives, where C_in=10, C_out=8,W_out=H_out=6, K=5.

Table 4.4 - Comparison of latency results (clock cycle) under different directives.

Directive Defaut Unroll Pipeline & Unroll

Latency 995441 275221 52831

Pipeline II - - 5

4.4 Quantization

Several methods are proposed to compress the network size based on the sharing of

weights, network pruning, network quantification, etc. Quantization is a powerful solu-

tion that efficiently reduces memory bandwidth, power consumption, and computation

time. Related works on quantization are divided into two categories in the figure 4.21:

1. Post-training quantization in which a pre-trained floating-point model on GPU/CPU

is converted to a fixed-point model;

2. Quantization with aware-of- training in which a pre-trained floating-point model on

GPU/CPU is converted to a fixed-point model with fine-tuning on GPU.

Post-training quantization is simple and easy to realize in real-world applications

and can quickly quantify the network. In the absence of a dataset, the works applying

post-training quantization typically aim at minimizing some surrogate errors introduced

during the quantization process (e.g., round-off errors) to the end-to-end loss. In 2016,
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Figure 4.21 - Different quantization methods.

Lin D et al.[88] apply an optimal 16-bit quantization on ciffar-10 based on signal-to-

quantization-noise-ratio (SQNR). The experiments prove that the naïve method of quan-

tizing networks (e.g., Uniform quantization) results in a subpar performance in error

rates relative to the SQNR method. In 2017, a new SDK proposed by Nvidia, named

TensorRT[100], has proved the feasibility of an 8-bit quantization of forward pass. Migacz

proposes to utilize Kullback-Leibler(KL) divergence in determining the linear range to

apply layer quantization. As quantizing weights and biases under 8-bit precision without

retraining introduce a significant loss in accuracy, Choukroun. Y et al[29] calculate the

clipping values using Minimum mean squared error (MMSE) in 2019. The method is

kernel-wise for weights and channel-wise for activation. First, they address 4-bit linear

quantization problems for the state-of-art networks (e.g., Alexnet, Resnet50, inception

V3, DenseNet). In 2019, Ron. B et al. [20] introduce an analytical clipping for the integer

quantization approach, which reduced the local error introduced during the quantization

process. Combined with layer-wise bit allocation proposed by Sajid, they successfully

compress VGG, inception v3, res18 into 4-bit precision with just a few percent less than

baseline inaccuracy. More works have a focus on optimizing the quantization performance

without training. In 2018, Kim.D et al.[76] proposed generalized gamma distribution

(GGD) to obtain the optimal quantization steps. In 2019, Meller.E et al.[99] exploit the

scale equivariance of network function to rescale weights channel and quantize ResNet-50,

inception V3 by weight factorization.

Quantization with fine-tuning is a powerful approach to compensate for quantization-

induced errors using a complete dataset, extremely low-bit quantization. In 2015, Sajid

Anwar et al.[17] proposed a layer-wise sensitivity analysis for non-uniform weights
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quantization for Most and Ciffar-10. L2 error minimization is applied to find the optimum

quantization level for each layer. In every iteration, they quantized weights of only one

layer to low precision and calculated the network output. Other layers are kept in high

accuracy to compensate for the quantization error. The computed change in quantized

weights is added to high precision weights. In 2016, a fast and automated framework

improved quantification method was proposed by Philipp Gysel et al.[55]. They quantized

not only layer weights but also activations for CaffeNet and SqueezeNet with a maximum

error tolerance of 1 %. Later on, other works have been invested in training the network

with lower precision, including but not limited to BinaryNet[31], Xnor-Net[115],DOREFA-

Net[182], which achieve promising results. BNN successfully quantizes the weights

and activations constrained to +1 or -1. Xnor-Net reduces the computation replacing

32-bit floating-point multiply accumulations by 1-bit xnor-popcnt operations. The above

three articles still face a huge hurdle to put these methods in practice due to the limited

accuracy on large-scale datasets such as ImageNet. In 2017, zhou A et al.[181] improved

the method with weights partition, groupe-wise quantization and achieved significant

success in 5-bit quantization of AlexNet, VGG-16, GoogleNET. This approach employs

weights that are either 0 or powers of 2, which allow multiplication to be implemented by

bit shifts. In 2018, Benoit.J et al. [70] propose that an inference quantization scheme relies

only on 8-bit integer arithmetic to approximate the floating-point calculation. This work

is oriented on ARM NEON et reduce 4x of the model size without a drop of accuracy.

To conclude, the quantization error can’t be ignored when quantizing the network into

an extremely low bit (e.g., 2-bit or binary). The quantization noise in previous layers may

be amplified to the next layer. However, quantization with Fine-tune/retraining demands

added storage burden for complete datasets, which is not always feasible for the small

hardware device. In contrast, quantization without training needs only a small set of

calibration data.

4.4.1 Our quantization tool

A quantization tool is developed with a post-training method to quantize and organize

the coefficient order before executing CNN inference as shown in figure 4.22.

The tool’s inputs are floating-point coefficients extracted from any pre-trained model

(*.h5) in the TensorFlow lib and ordered by the kernel. Since machine learning engineers

know the impact of data width on resource usage by applying mathematical models, they
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can determine the total data width. The tool searches the maximum integer part and

then calculates the decimal amount. After quantization, these coefficients are sent to

the CNN parameterized IP thru the serial link in the order of "bias followed by weight"

and "full connected followed by convolution layer." The format of the input image in the

inference still maintains a 16-bit fixed-point. The design flow of our quantization tool

can be described as the following:

Figure 4.22 - Flow for quantifying and ordering coefficients of the CNN.

1. Coefficients analysis: This stage aims to find an adaptive fixed-point representation

based on coefficients amplitude. The floating-point format assures a much larger

dynamic range which is especially important when processing extensive data sets. In

contrast, fixed-point representation has limitations when presenting a large range of

data. Since weights and biases are represented in 32-bit floating-point in TensorFlow,

hence coefficient analysis tool analyzes the amplitude of all coefficients for each layer

to find an adequate range representation for the fixed-point formats.

2. Bit-Width Reduction: Quantization tool condenses the coefficients of a network

to fixed-point format layer by layer. Given a network that contains a total of
N
2

convolution and fully-connected layers with a combination of Q quantitative results

(e.g., 16-bit, 14-bit, 12-bit), it takes up
N
2

weights and
N
2

biases. The computational
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complexity is calculated by equation (4.13).

O(combination) =QN (4.13)

After coefficient analysis, there are several methods to quantify these coefficients

according to the data distribution. For example:

• Per-layer quantization, which means that the quantization is applied layer by

layer, and each layer has a fixed-point representation;

• Network quantization, which means that the quantization is applied for the

whole network, and each layer has the same fixed-pointed representation;

• Layer-regroup quantization, which means that the quantization is applied for

the group of layers, and each group has a fixed-pointed representation.

We regroup convolution and fully-connected layers respectively according to their

functionality in the networks, considering the computation complexity. Figure

4.23(a) presents the network quantization without regrouping, and Figure 4.23(b)

shows a possible type of regrouping, both for LeNet-4. Table 4.5 lists two possible

quantization sets for various sizes of fixed-point coefficients, from 6-bit to 16-bit.

Figure 4.23 - Examples of no-regrouping (a) and a possible regrouping (b) in LeNet-4.

Table 4.5 - Number of combinations of regrouping and no-regrouping situations for LeNet-2 and LeNet-4.

CNN model LeNet-2 LeNet-4

Quantization (bits) [16,14,12,10,8,6] [16,8,6] [16,14,12,10,8,6] [16,8,6]

Complexity
of Fig 4.23(a) 68 38 612 312

Complexity
of Fig 4.23(b) 64 34 64 34
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Regrouping coefficients can significantly decrease the number of combinations to

test. The number of regrouping combinations is reduced by the factor of 38 compared

to no-regrouping one in terms of a set of [16,8,6] for LeNet-4.

3. Test the Accuracy: All quantized weights and biases are updated in Tensorflow to

execute the inference phase. The inference phase returns all accuracies for each

quantization setting. All accuracies that exceed the given limited error tolerance

will be ignored in the following stages.

4. Sizing data for CNNs blocks: The hardware library provides three basic hardware

modules for CNNs: Convolution module, Pooling module, and fully-connected

module described in VHDL. These generic modules can be used to automatically

generate any CNN’s structure with variable inputs: the input image size, the kernel

size, the weight data width, and bias data width.

Consider a general signed fixed-point format with one signed bit for all modules: fx

m.n, where m and n respectively refer to integer bits and fractional bits. Its range

is[−2m−1,2m−1 − 2−n] with the numerical resolution 2n. Given a set of coefficients in

regrouped layers, the quantization rule of fixed bits is :

a) One bit is allocated to the sign;

b) The minimum number of bits is allocated to the integer part according to the

maximum coefficient extracted by the tool;

c) The remaining bits are quantized for the decimal part. a) and b) are defined by

Data quantization tool and c) can be specified by users with a different number

of bits.

An example of 8-bit quantization can be found in the following figure:

Figure 4.24 - Example of the 8-bit quantization.
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5. FPGA resources analysis: Since the size of the network will be practically bounded

by available memory, having an approximate value of Kbits required in a network

is the prime task. This estimation is appropriate for all platforms(e.g., CPU, GPU,

FPGA).

Sizing data tool developed in Python can evaluate FPGA resources used according

to different quantization sizes of coefficients obtained in the previous stages as well

as the type of CNNs implemented on FPGA.

4.4.2 Experimental results

This section investigates the effect of reduced bit-width for accuracy and resources in both

convolution and fully connected layers. The proposed quantization sets are experimented

on LeNet-2 using MNIST dataset and on LeNet-4 using CIFAR10 dataset.

4.4.2.1 Coefficient Analysis

Figure 4.25 enumerated weights and biases amplitudes of convolution layers and fully

connected layers in LeNet4. As observed, the data amplitudes vary widely between -1

and 1 regarding different layers, which require a different number of bits to quantize each

layer.

Figure 4.25 - Amplitudes of biases and weights of convolution layers and fully-connected layers in LeNet4

4.4.2.2 Test the accuracy

To explore the relationship between quantization bits and network performance, we

experiment on regrouped layers in LeNet-2 and LeNet-4 with a set of [4,6,8,10,12,14,16]

bits. A strong correlation is observed between the quantization number of convolution

weights and accuracy in LeNet-4 (figure 4.26). This correlation analysis was repeated on
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LeNet-2, and the quantization number of fully connected weights has a significant impact

on the accuracy. Moreover, a further study on the impact of quantization number on

Figure 4.26 - Dendrogram of similarity among the variables of LeNet-4

accuracy was realized. Table 4.6 illustrates the result of quantized 32-bit floating-point

LeNet-2 on the MNIST data set. The accuracy drops to 10% if Fully-Connected layer

weights are represented with 4bit. In contrast, 4-bit quantization is optional for other

coefficients while keeping high accuracy.

Table 4.6 - Accuracy of a quantization set for conv.biases, conv.weight, fc.biases, fc.weight.

Parameters Quantized bits

Convolution.weight X1 X 4 X X

Convolution.biases X X X 4 X

Fully-connected.weight 4 X X X X
Fully-connected.biases X 4 X X X

Accuracy 10%
98% -

98.84%
93% -
96% >98% >98.5%

1X represents a quantization bit from a set of 6,8,10,12,14,16 bit.

The possible quantization combinations with an accuracy higher than 80% on LeNet-4

are in the table 4.7. As indicated in the table, 6-bit for Conv. weight, Conv. bias and

FC.weight and 8-bit for Conv. weight lead to a drop in accuracy (below 80%).

4.4.2.3 FPGA Resources Analysis

Figure 4.27 illustrates all quantization combinations of LeNet-2 located in memory con-

sumption - accuracy axis. We can conclude that memory consumption varies widely on

similar accuracy. It is possible to optimize memory space without losing accuracy. Besides,

we evaluated the number of FPGA resources used by the CNN on Xilinx XC7V485T –
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Table 4.7 - Number of quantizations in LeNet-4 with the accuracy more than 80%.

Eligible quantityQuantization
parameters Conv.weight Conv. biases Fully-connected. weight Fully-connected. biases

16-bit 97 96 101 71

14-bit 97 96 101 71

12-bit 111 96 105 72

10-bit 114 102 106 74

8-bit 0 29 6 67

6-bit 0 0 0 64

Figure 4.27 - Memory - accuracy for All quantization combinations for LeNet-2

Vivado 2017.2. Consider a quantization set format: X-X-X-X bit where each X corresponds

to the quantized bit for convolution weight, convolution biases, fully-connected weight,

fully-connected biases. Table 4.8 lists the number of FPGA resources in LeNet-2. This

Table 4.8 - Approximate estimation of resources utilization in LeNet-2.

LeNet-2

Quantization Look Up Table Flip-flop DSP

8-4-8-4 309016 3627704 202416

14-12-10-8 382426 3755584 202416

16-16-16-16 609184 3960024 202416

analysis provides important insights into the association between quantization bit and

FPGA resources. The quantized model with 8-4-8-4 bit and 14-12-10-8 bit combina-

tions, which achieve higher than 98% accuracy, has greatly economized FPGA resources

compared to resources used in 16-bit format network.
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4.5 Conclusion

This chapter introduces the generation process of an FPGA-based general platform for

deploying CNN. The platform is specially designed for machine learning engineers. From

the perspective of machine learning engineers, all necessary IPs have been designed and

verified. As a result, the CNN can be deployed on FPGA by machine learning engineers

without hardware expertise. The machine learning engineers only need to define neural

network parameters when generating the platform. Then, this chapter gives a detail of

the required IP in the general platform. This chapter also proposes the optimization

strategies and tools to obtain a well-performance platform.

In this chapter, we mainly introduce the usage of this platform to perform inference

locally. However, with the rising attention of cloud computing, it has become a trend

to place FPGAs in the cloud to enhance the computing power and resources capability.

Therefore, in the following chapters, we propose a scenario for integrating the platform

into a cloud environment. In this scenario, our platform can not only perform the

inference but also involves more other usages.
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Proposal of a FPGA-based Cloud platform
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This chapter aims at designing an FPGA-based Cloud platform for executing DNN

applications.

As early as 2014, many works such as [172][95] have investigated CNN implementa-

tions with diverse structures on FPGA. The millions of learnable parameters and billions

of arithmetic operations lead to insufficient hardware resources compared to available

FPGA resources. Several optimization techniques have been proposed to optimize the ex-

ecution time or the number of resources, such as network quantization, network pruning,

data path optimization. Two mainstream structures have been proposed: (i) streaming

with a high pipeline, allowing concurrent executions, thereby achieving high throughput.

However, as the deployed network is fully unrolling, numerous FPGA resources are

exhausted for deeper networks, even if optimization strategies are adopted. Therefore,

(ii) a single computation engine structure appears, which greatly economizes the FPGA

resources but sacrifices the overall throughput.

With the increasing number of novel CNN models in the field of image classification,

detection domain, many researchers (e.g.[173][51]) begin to develop frameworks that can

automatically generate high-level synthesis or Register Transfer Level (RTL) architecture

for diverse CNNs on the local FPGA. Due to the popularity of the FPGA Cloud, these

frameworks have progressively become tools oriented to deploy CNN in FPGA Cloud. It

makes excellent use of FPGAs in terms of available resources and performance and pro-

vides CNN implementation diversity. For example, [114] uses Xilinx SDAccel integrator

and AWS integrator as backend and develops a framework that generates and integrates

CNN architecture in the Cloud. [164] shapes DSPs as supertile units and are reused to

accelerate CNNs, thus applying FPGA resources-as-service in the Cloud.

From these works, we can conclude that developing an FPGA-based CNN application

has become crucial for their success. However, the design structure, the metrics, and

techniques during the lifecycle are different according to various requirements of CNN

applications. Meanwhile, it is unclear in the previous works what kinds of challenges and

difficulties are faced in developing a CNN application on the FPGA. Therefore, it is vital

to understand the software engineering practices of developing CNN applications on the

FPGA to build valuable and effective techniques during the development. Unfortunately,

little research has been conducted to summarize the critical point, the necessary elements,

and expectations for developing an FPGA-based CNN application from the software

engineering perspective.
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In this chapter, we provide an overview to understand each phase of the FPGA-based

CNN application during the lifecycle by making an in-deep analysis of the current works

of CNN deployments on the FPGA. The main contributions are the following:

• We provide an overview of the FPGA-based application life cycle from the software

engineering perspective. Also, the challenges and difficulties have been identified in

all phases of the FPGA-based CNN application.

• We propose a novel architecture for the FPGA-based CNN platform, which aims at

better covering all phases of this life cycle. Moreover, our platform provides more

usages of CNN applications, which is not involved in the existing platforms.

• We also provide a method to construct a dedicated framework to achieve the multiple

usages of CNN applications mentioned above in our platform. A special usage will

be valided by this method in our paper to verify the feasibility of our proposed

method.

The organization of the chapter is as follows: Section 5.1 presents the lifecycle of the

FPGA-based CNN applications. In this section, we identify each phase and the necessary

elements in the lifecycle. We also recognize the evaluation criteria for existing works in

this section. Section 5.2 summarizes the characteristics of the existing frameworks and

discusses the inconveniences and lacks these frameworks. Then, section 5.3 propose a

novel architecture, which solves the problems in the existing frameworks. In addition,

additional usage of the FPGA-based CNN applications has been submitted to meet the

industrial and academic requirements. Finally, Section 5.4 shows the implementation

results of our platform based on a particular problem.

5.1 Overview of CNN-based application lifecycle

The CNN application framework provides a complete integration flow for the users to

deploy several CNNs on the various FPGAs without hardware expertise. Furthermore,

this framework is implemented in a cloud environment, aiming at sharing FPGA resources

among multiple users to accelerate their CNN applications.

The lifecycle involves comprehensive and explicit steps to produce a CNN application

that meets users’ expectations within times and cost estimation. The lifecycle can give a

defined view of the entire framework and verify the execution of each step in the frame-
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work. The lifecycle consists of the detailed steps as shown in Figure 5.1: Requirement

Analysis, Data Preparation, CNN Design, CNN Deployment, Evaluation, and Production.

Each stage corresponds to a role or responsibility that the framework must understand,

manage, and optimize to realize the CNN deployment in a cloud environment. The most

crucial step is the CNN design through the entire lifecycle, as it involves selecting the

hardware structure and the FPGA.

Figure 5.1 - Lifecycle of CNN-based application on the FPGA.

5.1.1 Requirement analysis

Requirement analysis is the process of collecting and analyzing the user’s goals and

correctly transforming problems into the requirements that the CNN-based application

framework can handle. Requirement analysis is considered the essential stage in the

86



5.1. Overview of CNN-based application lifecycle

CNN-based application lifecycle since all decisions in subsequent stages highly depend

on these requirements. The information extracted in the requirement analysis defines the

usage scenarios of the CNN applications, thereby affecting the choice of CNN hardware

structure or targeted FPGA in the following steps. In the CNN application process, a

reasonable requirement analysis reduces risks of project abortion or delays and adds value

to the analysis and design process. Therefore, the user’s needs and conditions should be

classified and identified to avoiding ambiguous requirements.

During the requirement analysis, the Usage of FPGA depends on the users’ require-

ments. In the life cycle we proposed, we involved multiple usages in the requirements

analysis to give a complete view of various requirements. To complete these usages, the

user should specify a limited time, called Deadline. In the system’s point, the Deadline

refers to the time from the user’s request submitted to the system until the system finally

returns the desired result for the user. The waiting time in the system is busy processing

other users’ requests is also involved in the Deadline. Therefore, the response to the

user’s Deadline can be used as an indicator to measure the performance of the CNN-based

application system.

Then, the user should identify several elements as the system’s input that the system

can process. Firstly, the user should declare the Network type (e.g., AlexNet, LeNet,

LSTM). The system should support the selected network types by the user. The network

type is an important element as it gives the complexity and the difficulty on the choice of

the FPGAs and the hardware structure.

FPGA specifying is an optional element for users. According to different cases, users

can select or not specify an FPGA device. The first case is that the user can specify a

particular FPGA to complete the CNN execution. The second case is that the user can

only describe the FPGA budget and FPGA family (e.g., ultra-scale), and the system will

list all qualified FPGAs according to the user’s needs. The last case is that the user does

not specify any FPGA, and the system will choose with FPGA.

5.1.2 Data Preparation

Data preparation is the process of preparing datasets and coefficients for the training or

inference and converting these data into a format that the framework can process. Data

preparation is the essentiel since network learning or prediction is based on these data.

Getting the correct data and data format can efficiently reduce the data loading workload.
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Using poor quality data or poorly preparing data will result in unreliable output.

During the data preparation, it is necessary to identify the requirement for the dataset.

For example, the user can locate the required bit data width to quantize the dataset and

coefficients. Alternatively, the user can specify the batch size of the dataset.

5.1.3 CNN design

CNN design is the process of creating the CNN hardware model based on the hardware

structures provided by the system. Therefore, CNN design relies on the requirement

specifications produced in the first phase. Moreover, if the CNN application evaluation is

invalid, the CNN design can also be re-produced to meet the evaluation requirements.

During the CNN design process, the hardware structure can be streaming structure or

single-engine computing. The streaming structure has a pipeline structure, improving

execution speed but consuming more hardware resources. Therefore, every time the

requirements of the CNN change, the streaming structure should be recompiled to

generate a new CNN design. On the other hand, single-engine computing is a fixed

template and uses fewer hardware resources, increasing network execution time. In

addition, if the CNN requirements change, single-engine calculations can implement a

new CNN without hardware recompilation. These hardware structures can be described

by Programming model, referring to the language or tool used to describe the hardware

structure (e.g., HDL). In addition, optimization methods can be applied to optimize

data paths and computing storage of CNNs, to adjust the CNN hardware model under

resources or communication bound.

5.1.4 CNN deployment

CNN deployment is the process of implementing the generated CNN model in the CNN

design process on the appropriate FPGAs. Furthermore, the CNN deployment translates

the network requirements and data into physical components to meet the quality-of-

service requirements. Therefore, the CNN deployment process depends not only on a

solution proposed in the CNN design but also on performance and quality of service

required.

During the CNN deployment, deployment type will be first determined by the user

or the system according to the requirements. The deployment type refers to the number

of CNN deployed on specific FPGAs, 1-CNN-to-n-FPGAs, n-CNNs-to-1-FPGA, n-CNN-

88



5.1. Overview of CNN-based application lifecycle

to-n-FPGA, or 1-CNN-to-1-FPGA. For example, the n-to-n mode is applied for the cloud

environment, and n-to-1 can be used for the FPGA virtualization. Afterward, the system

will select the appropriate FPGAs among all available FPGAs, in this context, namely

target FPGA. The target FPGA(s) usually has enough resources to deploy CNN(s) and

idle. According to the different situations, the selection of the FPGA varies:

• If the user initially specifies the FPGA device, the system will select the specified

FPGA. If this FPGA is not accessible, the system will notify the user.

• If the user does not specify an FPGA device, the system will select several FPGAs

to deploy the generated CNN model. Finally, the system returns a report with all

possible results to the user.

The CNN deployment will be accomplished based on the optimization condition,

which refers to the conditions under which the system stops optimizing the CNN hardware

structure. For example, the system will control optimization if the system optimizes the

hardware structure to meet resource requirements or throughput requirements.

5.1.5 Evaluation

Evaluation is a process of inferring an image or a small batch, estimating whether the

result meets the requirements, and determining the subsequent process. The Evalua-

tion is carried out in terms of the first process of the CNN-based application lifecycle:

requirements analysis.

During the Evaluation, the processed results are compared to the initial requirements.

In addition, the evaluation method contains several metrics, such as accuracy, throughput,

to measure the functionality and effectiveness of the CNN-based applications. The

metrics can help make decisions about the actions of re-designing CNNs or making

designs into production. Moreover, Aide-decision including other conditions can help in

understanding the limitations and drawbacks of the CNN application during the lifecycle

and give a scope of the generated results.

5.1.6 Production

Production is the process of performing the inference on the complete dataset, processing

the final results of the CNN application, and building out the CNN deployment in a
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production environment. During the Production, the system will be evaluated by several

criteria.

With the increasing efforts to provide a cloud environment for multiple tenancies to

deploy CNNs on the shared FPGAs, resources, and performance isolation have become a

concern in the cloud. CNN accelerators on the FPGA usually run under full hardware

access and may share the same resources. Therefore, a malicious code can bring the

attack on the whole platform for other tenancies [45, 163]. Also, dataset collection can

be time-consuming and costly, especially in industrial cases where datasets are of great

commercial value. Therefore, providing strict data and resource isolation for multi-

tenants can prevent unauthorized access to the dataset and avoid data leakage [161].

Besides, a CNN application may make an impact on the performance of other CNNs

applications during concurrent execution[45, 63], which causes unreliable performance.

However, only a few works[170, 167] discuss the performance isolation problems, and

the isolation is still under-explored.

Due to the complexity of CNN design, mapping CNN on FPGA requires specific

hardware expertise, which is a long learning curve in a hardware description language

(HDL) programming and performance optimization. Therefore, productivity has become

a critical element in the design. Although high-level synthesis (HLS) provides the ease

of designing CNNs for software engineers, it still requires basic low-level hardware

knowledge to achieve good performance. Furthermore, according to the complexity of

the CNN algorithm, deploying the CNN on the FPGA may be very time-consuming and

may increase the programming burden of engineers.

Generally, the execution mode of CNN on the local FPGA is limited to a single user

executing a single CNN within a given time. As a result, it remains difficult for a single

local FPGA to support multiple-tennacies to perform numerous CNNs in parallel and

meet each user’s time, cost, and quality of service (QoS). Some frameworks (for example,

[34]) successfully solve the problem of multiple CNNs scheduling but can only execute

CNNs sequentially in the form of time slices in a single-task environment.

5.1.7 Maintenance

Assuming that the application has a problem in the production phase, maintenance is a

process of upgrading, repairing the application, and fixing the problems. For complete

coverage of the life cycle, we would have had to address the maintenance phase. The
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maintenance stage requires that the application be evaluated to ensure that it does not

become obsolete. Changes are made to the initial application by going back to a previous

process. Maintenance enables an analysis of the software’s performance and correctly

resolving the issues that arise.

5.1.8 Withdrawal

We can assume two possibilities:

• the application progress successfully during the production phase, or

• the application had a problem in the production phase but was solved during

the maintenance phase. Afterward, the application can successfully finish the

production phase,

In these situations, withdrawal is the process of releasing occupied/reserved resources.

Since these resources are large scale from lots of FPGA devices and with dynamical

allocation during runtime, it is vital to release the resources as soon as possible to be

allocated to other applications. Particularly, during the withdrawal phase, a resource

scheduler should adjust the resources allocation or release to deploy new applications in

the platform.

5.2 Reviewing CNN deployment tools in FPGA clouds.

This section aims to analyze the tools for deploying CNNs on FPGA clouds structured

and systematic. We studied several works to identify the problems and challenges of

developing a CNN application-based platform.

5.2.1 Identified tools

This part focuses on two types of tools: those that require local access to an FPGA and

those that allow working with multiple FPGAs in the cloud environment.

In the local environment, [43] developed a framework for mapping the training on the

FPGA cluster. The framework adopts a pipelined architecture with a one-dimensional

topology. The authors evaluated their framework by training AlexNet on 10 Xilinx

VC709 Connectivity Kits. [178] proposed a mapping method for implementing large-

scale CNN applications across up to 16 FPGAs with resource and bandwidth limitations.
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The method can partition the CNN application to each FPGA depending on the status

of the FPGAs (busy or free). The estimation throughput of layer mapping depends

on the FPGA topology, resource conditions, and neural network specifications. [173]

proposed a hardware/software co-design framework to accelerate CNNs on the FPGA

platform. The framework comprises a uniformed mathematical representation and a

reconfigurable computation engine, which can generate different types of CNNs. The

experiments are carried out on AlexNet and VGG16. The deployed VGG16 on the Xilinx

VC709 and Xilinx KU060 can achieve 636 GOPS and 365 GOPs, respectively. [141]

presents a domain-specific framework to automatically mapping CNNs into the FPGA

platforms. The framework first translates a CNN description into the directed acyclic

graph (DAG) and model the hardware platform with the specifications. Then, several

transformations, such as graph partitioning, coarse- and fine-grained, are employed to

optimize the design space efficiently. The experiments show that the framework can

map LeNet-5, MPCNN, CNP while keeping high accuracy. Finally, [156] proposed an

infrastructure based on the end-to-end compiler to optimize the CNN deployment on the

FPGA. First, the infrastructure transforms a CNN architecture into a graph-level problem

with the software description as input. Then, the infrastructure converts the description

into directed acyclic graphs of computational operations.

In the cloud environment, [170] proposed a full-stack solution to virtualizing FPGA

resources in a cloud for deploying CNNs. This solution supports resource sharing at both

the node and multi-node levels. Furthermore, virtual blocks can be mapped across FPGAs

to achieve timing closure and match communication delays by using a latency-insensitive

interface. [167] proposed a framework aiming at providing isolation, sharing resources

for the CNN task. The framework is applicable for any CNN accelerator in a cloud

environment. Compared with previous methods, this technique solves physical resource

isolation and performance among multiple users by sharing FPGA resources in the SDM

method.

5.2.2 Analysis of the tools according to the CNN application lifecycle

We analyzed the characteristics of the reviewed tools in section 5.2.1 according to the

stages of the lifecycle of CNN-based applications on the FPGA. The summary is as follows:

• Requirement analysis: The supported networks are usually CNN, which involves

standard network operations like convolution, pooling, and fully connected. Other
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networks such as RNN are generally not supported in these works as it requires a

more complexe design. Most of the usage of these works is "inference" and only one

work supports the usage of "training" because these CNNs are applied for image

processing, which contains the "training" and "inference" phases. The "training" is

less achieved than the "inference" because it requires high precision for complicated

mathematical operations. The listed works focus on deploying CNN on Xilinx FPGAs

because Xilinx is the leader in FPGA manufacturing.

• Data Preparation: A few works have integrated quantification tools that can dy-

namically quantify the data width online in terms of data preparation. Without

the quantization tool, the pre-trained coefficients always remain in floating-point

format, which is impossible to adapt to any fixed-pointed form. Furthermore, the

supported data width is usually 8 bit and 16 bit in the existing works since 8-bit or

16-bit will not significantly lose accuracy compared to the 4 bit or 2-bit quantization.

• CNN design: The works adopt two mainstream structures, single-engine, and stream-

ing, to generate CNN hardware architectures. All other structures are derived from

these two structures. The programming models are mostly high-level synthesis as

it gains efficiency in development and is friendly for network optimization. We

find that almost all works provide optimization strategies (e.g., looping and tilling)

to economize resources usage. Without the optimization strategy, it is impossible

to implement a whole network on the FPGA under the resources and bandwidth

constraints.

• CNN deployment: All experimented FPGAs are usually the development boards

that provides rich peripherals in the CNN deployment. Only a few works men-

tioned optimization conditions, that is, at which time, the tools finish design space

exploration. Works concentrate on deploying one CNN/CNN to one or more FPGAs

because multiple CNN/CNN deployments need to solve complex issues such as

FPGA partial configuration or FPGA resource partition.

• Evaluation: In the evaluation, the metric "accuracy" is used to evaluate whether

the deployed FPGA-based neural network maintains the same precision compared

to the software-based network. If the accuracy drops a lot, we should modify the

quantization strategy in the data preparation. “Throughput” is a standard metric to

measure the instructional performance of the FPGA-based network, which is used
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in all works. "Energy" is a metric to evaluate the energy consumption compared to

GPU/CPU-based neural networks, and several works apply this metric to make an

energy comparison of their deployed CNN. Finally, the aid-support focuses on the

resources and bandwidth limitation as they are the two principal elements that limit

the design deployment on the FPGA.

• Production: The listed works cover the "production" step to perform the CNN

inference on the produced hardware architecture finally. However, these works

mostly ignore the crucial evaluations, such as "isolation", "productivity", and "multi-

tenancies".

The works identified in the literature are still experimental. This lack of maturity of

the tools means that most downstream life cycle stages are not discussed. Therefore, we

find none of the existing works cover the entire life cycle described in section 5.1.

5.2.3 Challenges

Improved coverage of the use case: The mentioned works only provide the inference

and training. From a more general perspective, machine learning engineers may have

other purposes when using the platform. To achieve these purposes with maximizing

QoS criteria (e.g., execution time, energy consumption, and financial costs), machine

learning engineers can select functions provided in the framework. Then, the framework

will return different results according to the selected functions. We summary three use

cases that can describe functions used for different purposes in the framework: Image

processing, Network parameterization, or Model exploration shown in the figure 5.2.

• Image processing: This use case refers to infer CNN on the dataset provided by

the Machine learning engineer. ML engineers must provide the network model(or

network configurations), network data parameters(specific bit width), and pre-

trained coefficients.

• Network parameterization: The ML engineer knows the CNN model but cannot

determine the network data parameters (bit width). Our framework will explore

various bit widths so that ML engineers can study the impact of data bit width on

classification accuracy and select appropriate parameters.

• Models exploration: The ML engineer only has the data set to be trained or tested. He

does not know the network model to be used and related network data parameters.
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5. Proposal of a FPGA-based Cloud platform

Figure 5.2 - Use cases and main use cases (marked in blue) in the framework

Therefore, the framework will use the provided data set to explore different CNN

models and define the most suitable CNN architecture on the FPGA.

Completed lifecycle for CNN applications: These works did not discuss the complete

process from generating CNN architecture to selecting the appropriate FPGA to finally

executing the use case in the cloud.

Moreover, the platform’s lifecycle proposed by these works is not complete. There is a

lack of "maintenance" and "withdrawal" steps to ensure the execution of the application

on the platform. Finally, the metrics of these works are not discussed, which are the

crucial part of evaluating the platform’s performance.

The maintenance and withdrawal phases should be addressed for complete coverage of

the life cycle. The maintenance stage requires that the application be evaluated to ensure

that it does not become obsolete. Changes can be made to the initial application, which

translates into the life cycle by going back to a previous stage. The withdrawal phase is

also critical for a complex system. The framework manages the dynamical deployment of
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the applications on FPGA clusters, and resources can be added and removed at runtime

through the withdrawal step.

Without hardware expertise: Several reviewed works require the hardware expertise

for machine learning engineers to implement CNN on FPGAs (from converting CNN

algorithms to hardware descriptions and finally implementing CNN on FPGA devices).

In order to solve the problem of machine learning engineers deploying CNN without

hardware expertise, it is necessary first to develop several hardware IPs that can be

used to generate different CNN structures proposed by machine learning engineers.

Then, a method for modeling these IPs based on the resource conditions of different

FPGA devices should be proposed. Finally, a framework that integrates different agents

should be developed to manage and control all the necessary processes during the CNN

deployment.

5.3 A framework for FPGA-based CNN deployment platform

This section proposes a framework whose usage is based upon a new type of FPGA Cloud

dedicated to machine Learning engineers who have no hardware expertise in FPGA design,

IP design, and FPGA implementation. Furthermore, our framework integrates multiple

managers, combined with mapping the CNN model on appropriate FPGAs in the Cloud.

Inspired by the works [77, 147], we proposed an overall system architecture of our plat-

form, which is essentially composed of six server-side managers and necessary modules

to construct the platform as shown in the figure.
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5.3. A framework for FPGA-based CNN deployment platform

5.3.1 Contract manager

The contract manager performs the contract’s life cycle management, from the submission

of the contract (e.g., data, QoS, network configuration) to the completion of the network

execution within the deadline. It also provides an interface for the ML engineer to interact

with the framework. In our context, the contract guarantees the requirements (QoS) of

the ML engineer in the "client" use case mentioned in the previous section.

A coordination mechanism is also provided for contract managers to avoid conflicts

between submitted contracts. If the contract manager encounters difficulties during

contract execution, the contract manager can negotiate a coordination mechanism with

other contract managers. For example, suppose other contracts already occupy the

appropriate FPGA selected in agreement A for a period P. In that case, the contract A

manager will negotiate with other contract managers. Then, the contract A manager

jumps in the queue to use these FPGAs or divides period P into several periods and then

deals with other managers again.

The contract manager also manages the quantization tool that converts data from

floating-point to fixed-point and offers the data size configurations: integer part Dint,

fractional part Ddec, total bit width D. Thus, the machine learning engineer can specify

the integer and decimal parts of coefficients or select the total number of bits. The integer

and fractional parts are automatically decided.

5.3.2 Architecture manager

The architecture manager mainly uses the mathematical models to select the appropriate

CNN architecture and generates a bitstream of the CNN hardware architecture (including

the test vehicle). Then, the bitstream is downloaded on the FPGA, decided by the resource

manager towards the machine learning use cases.

The architecture manager copes with the available CNN IPs and the test vehicle. The

CNN IPs are two types of templates that can generate CNN architectures are presented in

the Cloud framework.

• Streaming: This is a CNN data flow through a chain of sequential CNN IPs. It is a

general-purpose structure that can be configured into several networks according

to the hardware description language (HDL) package parameters. The streaming

architecture is generated according to the model and parameters provided by the
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machine learning engineer. The CNN architecture is developed for each contract

using CNN streaming IPs available in the IP library. The framework generates the

CNN architecture with the associated test vehicle, evaluates the required resources

of the final architecture using mathematical models, and then selects the FPGA

used to download the bitstream. Several mathematical models depend on the FPGA

families and providers, which evaluate FPGA resource usage under a given network

configuration and model. This structure is mainly used to infer the machine learning

engineer’s database on a parameterized CNN model (Use Case presented in the

previous section).

• Single computation engine: This is a fixed structure with a high degree of recon-

figurability that has already been implemented on FPGA devices. This structure is

mainly used for the use cases of Model exploration and Network parameterization.

In addition, it can develop part of the functions of CNN functions, such as convolu-

tion, softmax, LSTM. The processor in CPU-FPGA heterogeneous architecture sends

instructions to configure and reuse this computation engine multiple times to deploy

a large and complex network in the cloud.

• Test vehicle: The CNN IPs are connected to this test vehicle inside the FPGA. The

test vehicle is considered an IP defined by STMicroelectronics, which is used to

transmit data from FPGA and extract data from CNN IPs. More precisely, the CNN

coefficients and datasets stored in the cloud are sent by the storage manager to

the external memory of the FPGA and then sent to the CNN IP through the test

vehicle. Finally, the execution results are sent back from CNN IPs to the memory

using the test vehicle. Thus, the test vehicle integrates multiple communication

infrastructures to achieve the required bandwidth. In our framework, figure 5.4

and figure 5.5 describe both types of test vehicles used for the single-engine and

streaming structure.

5.3.3 Monitoring manager

The monitoring manager splits datasets into multiple batches according to the task queue

and maintains queues of images waiting to be processed. It also supervises and controls

the execution of CNNs on FPGAs. If an error or a failure occurs in the framework, it can

notify the machine learning engineers through an early warning mechanism. The moni-

toring manager keeps the execution of the application on track, and they can dynamically
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Figure 5.4 - Streaming (including the data flow) mounted on the test vehicle

Figure 5.5 - Single computation engine (including the data flow) mounted on the test vehicle

adjust the state according to the current situation. For example, if the execution time of

the current application is longer than expected, the monitoring manager will notify the

contract manager to negotiate with other contract managers.

5.3.4 Resource manager

The resource manager is basically in charge of all FPGAs’ scheduling and usage, including

a real-time list of all unused or unreserved FPGAs and selecting a suitable FPGA among

all these FPGAs to meet the requirements in the contract. The FPGA selection includes

but is not limited to the number of resources available on the FPGA, the family of the

FPGA, the state of the FPGA (e.g., the occupied state after the period P1, the idle state, or
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the idle state).

The resource manager manages the mathematical models. The framework can automat-

ically generate the hardware architectures from CNN IPs. This automatic generation relies

on the FPGA resource usage model, which estimates the FPGA resource usage of a CNN

hardware architecture without synthesis and place & route steps for the architecture and

resources managers. The mathematical models also provide optimal mapping strategies

under restricted FPGA resources.

This mathematical model can maximize the use of resources inside the FPGA and

freely constraints the type of resource used. Thus, it is possible to deploy a part of the

computationally intensive operation from DSP resources to LUT to accommodate deeper

layers and efficiently use the available FPGA resources.

5.3.5 Storage manager

The storage manager ensures that the data can be completely and safely stored for a period

P2 in the stock without a lack of information. In addition, it provides an interface for the

monitoring manager and contract manager, which can efficiently and flexibly access large

amounts of data.

The storage manager stores network configurations, which are used for the machine

learning engineer to describe CNNs, including filter size K, stride size S, padding size Ps,

pooling size P, input and output feature maps size Fi and Fo, number of layers N_layer,

with or without activation function Valid_A, with or without pooling function Valid_P.

The storage manager also stores the CNN dataset and processed results. The processed

results can be:

• The accuracy of the CNN. This result is obtained in the use case "Image processing";

• A report of resources utilization for the application. This report is obtained in the use

case "Network parameterization". The machine learning engineer will parameterize

the CNN structure with different data widths. Therefore, the framework returns a

report of resource utilization about these data widths;

• A report of the feasibility. This report is obtained in the use case "Model exploration".

The machine learning engineers will test several CNN structures under the FPGA

resources conditions. So the framework will return a report to identify the feasibility

of each CNN design.
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5.4 Study case

In this part, we demonstrate the manager’s workflow based on the use case "image

processing". Once the machine learning provides the network model and QoS to the cloud

framework, the contract manager will request other managers to undertake their tasks.

These managers communicate and collaborate to complete a manager-based scheduling

mechanism. Finally, the framework can use this mechanism to automatically complete

the deployment of CNN on FPGA in the cloud.

The figure 5.6 illustrates a sequence diagram of the use case. The details can be

explained as follows:

• Precondition of the use case:

The Machine Learning Engineer knows:

1. The CNN model he wants to implement;

2. The CNN parameters he sized on his model;

3. The coefficients of the model;

4. The dataset;

5. At least one FPGA exists in the framework.

• Steps of the use case:

1. The machine learning engineer logs in by giving the identification information;

2. The system authorizes the connection;

3. The machine learning engineer selects the CNN model;

4. It specifies the values of the parameters of the model;

5. It specifies the values of the parameter coefficients of the model;

6. It specifies QoS criteria (due date, criteria hierarchy);

7. The system determines the structure of the streaming / single-engine model;

8. The system generates the hardware architecture of CNN;

9. The system determines the FPGAs that can contain the CNN hardware architec-

ture from among the FPGAs (i.g., the appropriate FPGAs);

10. The system elects the FPGA from the appropriate FPGAs and immediately

available;
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11. The system implements the CNN on the elected FPGA;

12. The system informs the Machine Learning Engineer that the CNN has been

installed on the FPGA;

13. The machine learning engineer sends images;

14. The system makes inference based on images;

15. The system produces the result of processing its image database (classified

images) and an execution report (accuracy, CNN parameters, coefficients) to the

machine learning engineer;

16. The system notifies the Machine Learning engineer the result;

17. The system releases the FPGA.

• Postcondition of the use case:

The results (all classified images or CNN details) have been produced.

• Exception of the use case: No suitable FPGA:

The scenario starts at step 9;

The system replaces steps 6-10 with:

7. The system cannot find a suitable FPGA;

8. The system generates an alert for the platform manager;

9. The system informs the machine learning engineer that the CNN cannot be

installed on the FPGA;

10. End of the exceptional scenario.

• Alternative 1 of the use case: Delay after the FPGA reservation deadline

In step 10, there is no FPGA available that meets the deadline.

The system adds a step:

10. The system informs the machine learning engineer that no suitable FPGA can

meet the deadline;

11. The system asks the user to enter a new deadline Return to step 6 of the nominal

scenario.

• Alternative 2 of the use case: Reservation of an FPGA available not immediately but

for a sufficient period before expiry.

In step 10, no immediately available FPGA meets the deadline.

The system adds a step:
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11. The system reserves an FPGA on date d for a sufficient period for processing.

12. The system informs the user of the date on which the result will be available

Return to step 6 of the nominal scenario.

105



5. Proposal of a FPGA-based Cloud platform

Fi
gu

re
5.

6
-T

he
se

qu
en

ce
d

ia
gr

am
of

th
e

"I
m

ag
e

p
ro

ce
ss

in
g"

u
se

ca
se

106



5.5. Conclusion

5.5 Conclusion

Since IP design and implementation on the FPGA remains a primary challenge for the

machine learning engineer, we provide a methodology to address this problem.

We first provide the life cycle of FPGA-based DNN applications and identify the main

difficulties during CNN deployment. Then, we proposed a framework designed to provide

machine learning engineers with various functions under different QoS. The proposed

framework puts CNN IP design, quantization tools, and FPGA resources in the cloud

and integrates multiple managers to generate a suitable CNN architecture and select

FPGA. With such a framework, machine learning designers can infer and explore CNN

without any hardware expertise. Finally, this chapter explains the workflow of a use case

to demonstrate the feasibility of our proposed framework.
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6. Conclusion and Perspectives

This chapter concludes this thesis with, first, a synthesis of the work carried out and

the results obtained. Then in a second step, a list of proposals for improvements and

further research is proposed.

6.1 Conclusion

In this thesis, we first give an insight into the technology used by the FPGA-based platform

for CNN deployment and extract the trend of such an FPGA-based platform from local to

the cloud. At the same time, we identify the challenges of this local-to-cloud evolution,

which motivates us to propose a new platform suitable for the cloud environment.

The proposed platform is dedicated to machine learning engineers executing neural

networks on FPGA Cloud without hardware expertise. The platform integrates two types

of CNN hardware IP, generating different types of networks according to resource usage

and execution time requirements. The platform also includes a quantization tool for data

width optimization. In addition, the integrated mathematical model in the platform can

estimate the resource utilization of the generated network. Therefore, machine learning

engineers can select and design networks to be executed on FPGAs without synthesis

tools.

To integrate the platform into the cloud environment, we proposed the life cycle of an

FPGA-based CNN application, which contains all the necessary steps. At the same time,

we have also identified the challenges and difficulties of each step in the life cycle. Finally,

based on the refined life cycle, we have added more use cases that can be executed for

machine learning engineers and provided a way to build special tools to achieve multiple

uses of the CNN mentioned above applications in our platform.

6.2 Perspectives

The Network on Chip (NoC) is a communication infrastructure whose goal is to facilitate

the interconnection between IPs. Integrating CNN IP on Noc has the following advantages:

• Scalability as CNN IPs can be flexibly connected to the bus;

• Shared communication path between CNN IPs which efficiently reduces resources

usage;

• Independence between data processing and communication.
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Putting the DNN IP in the NoC will not reduce the performance of the implementation

because it handles the problem of a large number of fan_out existing in point-to-point

connections, and a large number of fan_out will seriously reduce the results (resources

and time) of the implemented DNN.
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Conception d’une plate-forme multi-FPGA dans le
cloud pour les applications de réseaux de neurones

Résumé

L’évolution rapide des réseaux de neurones a conduit à des architectures de réseaux
nécessitant des capacités de calculs importantes avec des structures de réseau de
plus en plus profondes. Le déploiement des réseaux de neurones sur des composants
CPU/GPU fait face aux défis de la consommation énergétique. Pour faire face à
ce problème de consommation énergétique, l’utilisation de circuits reconfigurables,
comme les FPGA (Field Programmable Gate Array) est devenu une alternative de
plus en plus envisagée. Cependant, le déploiement de réseaux sur des FPGA nécessite
des outils de conception matérielle spécifiques et une solide expertise matérielle pour
mener à bien leur conception jusqu’à l’implémentation finale sur FPGA.

L’objectif de la thèse est de fournir une infrastructure de cloud computing basée
sur des FPGAs dédiés aux ingénieurs en Machine Learning pour exécuter différents
modèles de CNN (Convolutional Neural Network) sur diverses plateformes FPGA
sans connaissance matérielle. L’infrastructure offre plusieurs IPs de CNN matériels,
qui ont soit une structure haut débit via des mise en œuvre de pipeline, soit opti-
misent les ressources matérielles, ou ont une structure apportant un compromis entre
les ressources et le temps de calcul. Ces IP sont conçus pour générer différentes archi-
tectures matérielles de CNN sur des FPGAs en fonction des exigences des ingénieurs
en Machine Learning. L’infrastructure intègre également des modèles mathématiques,
qui estiment les ressources nécessaires des IPs en fonction de leurs paramètres et
sans passer par l’étape de synthèse (qui est très couteuse en temps). Cette estimation
peut aider à allouer aux mieux les ressources FPGAs dans le cloud et choisir le ou les
FPGAs appropriés. Enfin, un outil de quantification est conçu pour compresser la
taille du réseau en diminuant la taille des données des CNN sur FPGA.

Afin de compléter la fonctionnalité de l’infrastructure, plusieurs cas d’utilisation
sont également développés pour couvrir tous les cas d’usages des applications as-
sociées aux réseaux de neurones. Cette thèse présente également le cycle de vie
de cette infrastructure afin de mener une analyse approfondie du fonctionnement
de l’infrastructure pour différents ingénieurs en Machine Learning dans divers cas
d’utilisation. L’infrastructure proposée peut analyser les besoins des utilisateurs
pour d’autres cas d’utilisation que l’inférence, déployer l’architecture matérielle du
CNN sur le FPGA approprié et mettre en œuvre des techniques d’optimisations si
nécessaire.

Mots clés: Réseau Neuron Convolutif, FPGA, Accélérateur, Informatique en nuage.
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Design of multi-FPGAs platform in the cloud for neural
network applications

Abstract

The rapid innovation of neural network algorithms has led to neural network archi-
tectures with more calculations and deeper structures. However, the neural network
deployment on traditional devices such as CPU/GPU faces energy consumption
challenges. In this case, Field Programmable Gate Array (FPGA) has become an
alternative to realizing neural networks because of its efficient energy and reconfig-
urability. However, the deployment of neural network engineers on FPGAs requires
specific hardware design tools and solid hardware knowledge to complete the design
to the final implementation.

The objective of the thesis is to provide an FPGA-based Cloud computing infras-
tructure dedicated to machine learning engineers to perform different CNN models
on various FPGA platforms without hardware acknowledges. The infrastructure
offers multiple CNN hardware IPs, which have a high-throughput structure through
pipelines, or save hardware resource consumption, or have a structure that strikes a
balance between the two. These IPs are designed to generate different CNN hardware
architectures on FPGAs according to the requirements of machine learning engineers.
The infrastructure also involves several mathematical models, which estimate the
resource usage of the two IPs developed. This estimation can help allocate FPGA
resources well in the cloud. Finally, a quantization tool is designed to compress the
network size with any bit width for the implementation on the FPGA.

In order to complete the functionality of the infrastructure, several use cases are also
developed to achieve the multiple usages of the neural network applications. This
thesis also provides an overview of the life cycle for this infrastructure to conduct
an in-deep analysis of how the infrastructure works for different machine learning
engineers in various use cases. The proposed infrastructure can analyze the user
needs of other use cases, deploy the CNN hardware architecture on the appropriate
FPGA, and implement optimization techniques when necessary.

Key words: Convolution Neural Network, FPGA, Accelerator, Cloud computing.
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