
HAL Id: tel-03720617
https://theses.hal.science/tel-03720617

Submitted on 12 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Counting and Randomising in Automata Theory
Nathanaël Fijalkow

To cite this version:
Nathanaël Fijalkow. Counting and Randomising in Automata Theory. Computer Science and Game
Theory [cs.GT]. Université Paris Diderot - Paris 7; Université de Varsovie (Pologne), 2015. English.
�NNT : �. �tel-03720617�

https://theses.hal.science/tel-03720617
https://hal.archives-ouvertes.fr


Université Paris Diderot - Paris 7
École doctorale de Sciences Mathématiques de Paris Centre
Laboratoire d’Informatique Algorithmique : Fondements et Applications

University of Warsaw
Faculty of Mathematics, Informatics and Mechanics

Institute of Informatics

PhD

Counting and Randomising
in Automata Theory

Compteurs et Aléas
en Théorie des Automates

Liczenie i Losowość
w Teorii Automatów

Nathanaël Fijalkow

Defense held on October 16th 2015

Nathalie Bertrand, Chercheuse à l’INRIA Examiner
Mikołaj Bojańczyk, Profesor Nadzwyczajny na Uniwersytecie Warszawskim PhD Advisor
Thomas Colcombet, Directeur de Recherche au CNRS PhD Advisor
Anuj Dawar, Professor at the University of Cambridge Examiner
Antonin Kučera, Professor at Masaryk University Referee
Damian Niwiński, Profesor Zwyczajny na Uniwersytecie Warszawskim Examiner
Jean-Éric Pin, Directeur de Recherche au CNRS President
Wolfgang Thomas, Professor at RWTH University Referee
Paweł Urzyczyn, Profesor Zwyczajny na Uniwersytecie Warszawskim Examiner





Exercises in
Acknowledgment Style

1



2 Acknowledgments

Following [Que47], the same story (or part of it) is told several times, using different styles.
Here is the story:

I would like to thank here a number of individuals, who helped me in one way or an-
other with my PhD: my advisors, Mikołaj Bojańczyk and Thomas Colcombet, my referees,
Antonin Kučera and Wolfgang Thomas, the members of my jury, Nathalie Bertrand, Anuj
Dawar, Damian Niwiński, Jean-Éric Pin and Paweł Urzyczyn, my coauthors, colleagues,
family members and friends.

Obséquieux : No words are good enough to grasp the immense admiration that I have
for Mikołaj Bojańczyk and Thomas Colcombet; this sentence barely scratches the sur-
face of my gratitude. Could there exist greater pride than having Antonin Kučera and
Wolfgang Thomas as referees? Receiving comments and appreciation from them is a huge
honour. Presenting my work in front of such an audience of distinguished and leading
experts is a formidable chance, which I owe to the highly esteemed president of this jury,
Jean-Éric Pin.

Synchyse1: Ma rencontre avec Florian Horn, au cours d’un stage de recherche à Am-
sterdam dont le rocambolesque déroulement m’amena à Vienne, avant d’opter deux ans
plus tard pour une thèse entre Paris et Varsovie, où je rencontrais Krishnendu Chatterjee,
toujours encadré par Florian Horn, ville où j’entrepris par la suite un deuxième stage de
recherche, se prolongea par un autre stage (l’année d’après, donc), pendant lequel je fis
la connaissance, ou plutôt pourrait-on dire j’ai eu le plaisir de rencontrer, entre autres,
Thomas Colcombet, Hugo Gimbert et Olivier Serre, fut déterminante.

Révérencieux : Research is a craft, that I have been lucky to learn from influential
individuals; this PhD owes a lot to them. The pleasure of sitting at a coffee table to
exchange intuitions, sketch a few convincing potatoes on a napkin and argue about the
indisputable truth that it conveys, waving hands if this overwhelming proof eludes the ones
listening, is the bread and butter of research. I am most grateful to all the researchers who
taught me this surprising mode of communication, and indulged in it with me. The most
trusted potato drawers and hand wavers are Mikołaj Bojańczyk and Thomas Colcombet,
who made conjectures a daily routine: “a conjecture a day keeps the students away”.

The word “advisor” is a perfect match for both Mikołaj Bojańczyk and Thomas Col-
combet; their conjectures, ideas, motivations and conceptions have been the main source
of inspiration I had all along these three years.

Research is not only about drawing potatoes; I thank the researchers that besides
discussing research also always lent me a sympathetic ear. I could make my way into the
research community thanks to the guidance of Florian Horn, the help of Olivier Serre,
and the support and trust of Jean-Éric Pin.

Irrévérencieux : Research is a craft, that I have learned by myself; this PhD owes
nothing, to no one. The boredom of sitting at a coffee table to listen to mere sketches
of ideas and the indisputable poor understanding it conveys of the actual problem is a
chienlit. I am not grateful to the researchers who made trustworthy, thought through and
mature ideas scarce as hen’s teeth, hoping to get away from a student by issueing random
statements turned into conjectures.

1Une synchyse est une phrase, rendue difficile à comprendre par l’inversion, ou parfois seulement le
mélange, et c’est là qu’il faut de la créativité (comme en mathématiques me direz-vous), de certaines
parties, simple.



Acknowledgments 3

Polonophone: Gdy przyjechałem do Warszawy po raz pierwszy trzy lata temu jako
student studiów magisterskich, nie wiedziałem czego oczekiwać. Byłem zarówno pełen
obaw jak i nadziei. Podjęcie studiów doktoranckich w Polsce stanowiło wyzwanie również
ze względu na otwarcie na zupełnie nową kulturę. Jestem bardzo wdzięczny wszystkim
członkom polskiej grupy automatów. Dzięki nim moje trzy lata w Polsce stanowiły ws-
paniałe doświadczenie na wielu poziomach. Nauczyłem się wiele, zarówno z naukowego
jak i osobistego punktu widzenia. Dziękuję Wam za to.

Factuel : It took me 3 years to write this PhD, which as everyone knows is 26297.4
hours. The life of a researcher is split between four activities taking an equal amount of
time: solving problems, writing solutions, presenting them, and sleeping. This gets us to
the logical conclusion that I worked 5712 hours. The mathematical content of this PhD
is 136 pages long, so on average 42 hours spent to produce one page of this document.
This could not be achieved without the efforts of my coauthors; I owe you all this great
ratio!

Floral : Marc-Antoine, lorsque tu m’as anonymement envoyé au bureau ce bouquet de
fleurs, tu espérais faire germer d’invasives rumeurs, cultiver de bourgeonnantes intrigues
et créer un terreau propice à de plantureuses ramifications. Mais ce que tu as semé, et
que tu récoltes, ne sont que les graines d’éthérées amours.

Double-négation: In order not to forget to mention someone I may not have not worked
with, I will not avoid making no lists of names. I do not want not to make any unnecessary
attempt to not remembering not having enjoyed the time spent with a number of my fellow
researcher friends. For all these reasons and not for any others I will not recall not having
missed the great atmosphere of shared experiences with the FREC PhD students, and
this should not be mistaken for a non-exhaustive list of people I am not unhappy to have
worked with, as it is indeed non-exhaustive.

Ensembliste:

tx | I ran with xuXtx | I wrote research papers with xuXtx | I climbed with xu “ tDenisu

Réaliste: Si je ne devais remercier qu’une personne, pour tout ce qu’elle a fait pour
moi, ce serait évidemment Virginie. Merci pour tout.





Introduction

5





1. The origins 7

1 The origins

In the beginning was logic. A perfect match between automata and logics was dis-
covered, leading to the notion of regularity. Automata theory expanded, and further
investigations led to new theoretical tools; games is one of them. Among the various
natural extensions of automata theory, adding quantitative aspects is a prominent one.
We put a focus on one such quantitative aspect, namely boundedness questions. In this
section, we discuss these three concepts: regularity, games, and quantitative extensions.

1.1 The Notion of Regularity in Automata Theory

Automata theory takes its roots in the early fifties, with two main ideas: rational
expressions, introduced by Kleene [Kle56], and non-determinism, introduced by My-
hill [Myh57]. In both cases, the results are about two formalisms being expressively
equivalent: rational expressions, deterministic automata and non-deterministic automata.
Later, Büchi and Elgot (together [BE58], and separately [Büc60; Elg61]), and indepen-
dently Trakhtenbrot [Tra62] added a logical perspective, showing that monadic second-
order logic and automata define the same class of languages. A fourth equivalence, due
to Schützenberger [Sch56], laid the foundations of the algebraic approach for automata
theory, stating that the languages recognizable by monoids are exactly the regular lan-
guages.

Thus started automata theory, based on the “virtuous circle”, i.e. the equivalence
between different formalisms to define regular languages over finite words : automata,
rational expressions, monoids and logic. Thanks to this diversity, automata theory has
developed in various directions, for instance it has been extended to more complicated
structures. This culminates with the works of Rabin [Rab69] defining regular languages
over infinite trees, implying the decidability of monadic-second order logic.

Today, automata theory can be thought of as a toolbox for solving various problems.
Most importantly, “automata theory is a tool to make logics effective” [VW08]. Indeed,
the effective translations from logics to automata allow to use the latter to algorithmically
solve problems on the former. A canonical example of this principle is the research area
called Model Checking, a branch of automata theory interested in constructing powerful
algorithms and specification languages for the verification of programs.



8 Introduction

1.2 The Ubiquity of Games

A milestone in the development of automata theory is Church’s problem [Chu57],
also known as the circuit synthesis problem. The main conceptual novelty is due to
McNaughton [McN65], who advocated setting this problem in the context of games. This
idea is been picked up by Landweber, leading to what is today known as the Büchi-
Landweber theorem [BL69].

An instance of Church’s problem is given by a specification, described for instance by
a logical formula, and asks for the construction of a system satisfying this specification.
The idea of McNaughton is to cast this as a game, in which two players have antagonistic
goals. The game is played over a graph, called an arena, which represents the system; the
first player, we call her Eve, represents the controller of the system, and her opponent,
we call him Adam, represents the environment. The specification gives rise to a winning
condition that Eve tries to ensure. Thus, the Church problem is equivalent to determining
whether Eve has a winning strategy in the game, and to construct such a winning strategy.

In other words, an important conceptual contribution of McNaughton is to advocate
the use of games as algorithmic back-ends to solve computational problems, such as
Church’s problem.

A second observation motivates the study of games for its applications to automata
theory, this time not as an algorithmic back-end but as a theoretical tool. Indeed, studying
the existence and shape of winning strategies gives a deep combinatorial insight into
automata-theoretic problems.

The first achievement in this direction is the long list of simplifications of the complex
and celebrated Rabin’s Theorem [Rab69], stating the decidability of monadic second-order
logic over infinite trees.

The use of determinacy for automata constructions was first noticed by Büchi [Büc77];
Gurevich and Harrington [GH82] went further by proving finite-state determinacy, that
they called “forgetful determinacy”. Emerson and Jutla found a strong relation between
the parity conditions and the modal µ-calculus, allowing to a give a simple proof of
the positionality of parity games [EJ88; EJ91]. Muller and Schupp gave a conceptually
different proof of this result, which in particular gives a new proof of the determinisation
for automata over infinite words [MS87; MS95].

An important contribution of these works is to pinpoint the use of positional deter-
minacy of parity games in the proof of Rabin’s theorem. This result states the existence
of positional winning strategies: if there exists a winning strategy, then there exists a
very simple one, namely a positional winning strategy. We say that parity conditions
are positionally determined; this type of results, called positionality results, or more
generally finite-memory determinacy results, is central in many automata-theoretic con-
structions that came later, for instance for the equivalence between two-way and one-way
automata [Var98], or for solving pushdown games [Wal01].



1. The origins 9

1.3 Boundedness Questions

The central object in automata theory is languages, i.e. qualitative properties: a
structure (a word, a tree) is either in the language, or not. In order to extend the toolbox
to a quantitative setting, different attempts have been made, to give automata the ability
– for instance – to count or to randomise.

A general and widely studied approach is given by weighted automata as defined by
Schützenberger [Sch61]. In this framework fits a number of important classes of quanti-
tative models of automata, such as probabilistic automata (introduced independently by
Rabin [Rab63]) and distance automata.

The literature on quantitative extensions of automata theory is vast and still growing;
We will now focus on one branch of this research area, specifically boundedness questions.

About ten years ago, Bojańczyk introduced the logic MSO ` U [Boj04], to capture
boundedness questions. A typical example of a boundedness question is: given a regular
language L Ď ta, bu˚, does there exist a bound N such that all words from L contain at
most N occurrences of a?

The motivations for studying boundedness questions gets back to the 80s, when
Hashiguchi, and then later Leung, Simon and Kirsten solved the star-height problem by
reducing it to boundedness questions [Has90; Sim94; Leu91; Kir05].

Over the last ten years, a lot of results have been obtained about the logic MSO` U
and its close parent cost-MSO, introduced as part of the theory of regular cost functions
by Colcombet [Col09; Col13b].

The results of this line of work come in two flavours: the first is reducing various
problems to boundedness questions, and the second is obtaining decidability results for
boundedness questions as formulated by variants of the logics MSO` U and cost-MSO.

For the first point, many problems have been reduced to boundedness questions. The
first example is the star-height problem over words [Has90; Sim94; Leu91; Kir05] and
over trees [CL08a]. A year later, Kirsten solved the finite substitution problem [Kir06].
When Bojańczyk introduced MSO ` U, one of his motivation was for solving the finite
satisfiability of the modal µ-calculus with backward modalities. Recently, the boundedness
question for fixed points of monadic formulae over finite and infinite words and trees have
been cast as boundedness problems by Blumensath, Otto and Weyer [BOW14]. Last but
not least, the most important problem that has been reduced is to a boundedness problem
is to decide the Mostowski hierarchy for infinite trees [CL08b]. The decidability of this
problem remains open, as the corresponding boundedness question, namely boundedness
of B-parity automata over infinite trees, is not known to be decidable.

For the second point, we review some of the most important results. The first paper
by Bojańczyk introduces MSO ` U and solves a fragment over infinite trees, not closed
under negations [Boj04]. Two years later, Bojańczyk and Colcombet show the decidability
of a bigger fragment closed under negations, over infinite words [BC06]. From there, two
paths emerge: the study of the weak variant of MSO ` U led by Bojańczyk on one side,
and the theory of regular cost functions and cost-MSO led by Colcombet on the other.

The logic weak MSO`U has been shown decidable over infinite words [Boj11], infinite
trees [BT12], and even with path quantifiers [Boj14]. Quite recently, the non weak version



10 Introduction

had a tragic end, when Bojańczyk, Toruńczyk and Parys proved the undecidability of
MSO` U over infinite words [BPT15].

The theory of regular cost functions, built around the logic cost-MSO, has been suc-
cessfully developed over finite words [Col09; Col13b] and finite trees [CL10], yielding
notions of regular expressions, automata, monoids and logics that all have the same ex-
pressive power, and that extend the standard notions. This led to decidability results for
boundedness questions over finite words and trees.



2. Memory in Quantitative Games 11

2 Memory in Quantitative Games

The study of games in automata theory is motivated by two different objectives:
the first is to use games as algorithmic back-ends, constructing powerful algorithms to
determine the winner and synthesise winning strategies, the second is to use games as
proof objects, proving the existence of positional or finite-memory winning strategies.

They are often related; in the first chapter of this document, we will focus on the second
objective, namely finite-memory determinacy issues, and study the class of quantitative
games given by boundedness games. We discuss on this section these two lines of work:
first, results characterising memory requirements, and second, the study of quantitative
games.

This leads us to the LoCo conjecture, which is the main motivation for the first chapter
of this document.

2.1 Characterising Memory Requirements

As explained in the previous section, the first to notice the use of games for automata-
theoretic constructions were Gurevich and Harrington [GH82], followed by Muller and
Schupp [MS87; MS95], and by Emerson and Jutla [EJ88; EJ91].

This set of results motivated further investigations: what are the general techniques
to prove positionality or finite-memory determinacy results, and can we characterise the
memory requirements of a given winning condition?

A very elegant result by Dziembowski, Jurdziński and Walukiewicz characterised the
memory requirements of Muller conditions [DJW97], relying on the structure of Zielonka
trees [Zie98]. The literature on characterising memory requirements is very large; for
instance, two PhD theses focussed on finding necessary and sufficient conditions for
a condition to be half-positionally determined, first by Gimbert [Gim07], and later by
Kopczyński [Kop09].



12 Introduction

2.2 Quantitative Games

There are two ways to make games quantitative:

• the first is to add quantitative features to the arenas, for instance randomised edges,
inducing stochastic arenas,

• the second is to consider quantitative conditions, for which a play is not winning or
losing, but is assigned a value, that one player tries to minimise or maximise.

For the first approach, we just mention one interesting example. Stochastic games
were introduced by Shapley [Sha53]; Condon investigated the case of stochastic reach-
ability games and proved several properties about them, in particular their positional
determinacy [Con92]. Later, Zwick and Paterson considered mean-payoff and discounted
games: the arenas are deterministic (they do not have randomised edges), but the con-
ditions are quantitative, as they assign to a play the limit (or discounted limit) of the
average weights along the play. Zwick and Paterson showed that both types of games are
positionally determined, and used this result to reduce them to the stochastic games of
Condon [ZP96].

This is an interesting example where one approach reduces to the other: considering
quantitative conditions can be reduced to qualitative conditions over stochastic arenas.

The second approach, considering quantitative conditions, has been quite popular
recently. We distinguish two aims: either the quantitative aspect is used to refine a quali-
tative specification, or the quantitative aspect is used to specify a quantitative behaviour,
combined with an independent qualitative specification.

We give an example of the first aim. Linear temporal logic is a powerful formalism to
express qualitative specifications; for instance, one can specify that a request is eventu-
ally granted. Three quantitative counterparts have been introduced to further specify the
existence of a time bound between requests and their grants. The first are the finitary
conditions introduced by Alur and Henzinger [AH98], then parametric linear temporal
logic, defined by Alur, Etessami, La Torre and Peled [AELP01], and its fragment prompt
linear temporal logic, introduced by Kupferman and Vardi [KPV09]. In these three ap-
proaches, the quantitative aspect aims at giving a numerical account of “how well” is the
specification satisfied.

Games with finitary conditions have been studied by Henzinger, Chatterjee and Horn,
leading to surprisingly effective algorithms [CHH09]. The PhD thesis of Zimmermann
studies games with parametric linear temporal logic conditions [Zim12], both by proving
finite-memory determinacy and by constructing algorithms to determine the winner.

There are several examples of conditions combining an independent qualitative as-
pect and a quantitative aspect in the literature. We mention for instance energy parity
games [CD12] and mean-payoff parity games [CDGO14]. In these two examples, the
parity condition serves as an abstraction for a qualitative specification, and either the
mean-payoff or the energy condition serves an abstraction for a quantitative specification.



2. Memory in Quantitative Games 13

2.3 The LoCo Conjecture

The theory of regular cost functions has been successfully developed for finite and
infinite words, and for finite trees, leading to decidability results for the logic cost-MSO
over these structures.

However, extending this theory to infinite trees in order to prove the decidability of
the logic cost-MSO seems to be much harder. One motivation for this extension is a result
of Colcombet and Löding, which reduces the index problem of the Mostowski hierarchy
to the decidability of cost-MSO over infinite trees [CL08b]. This problem is open for over
forty years; the deterministic case was solved, and recently extended to the case of game
automata [FMS13]. The approach through regular cost functions allowed to solve the
special case of weak definability for Büchi languages [CKLV13].

Colcombet and Löding pointed out that the only missing point to obtain the decidabil-
ity of cost-MSO over infinite trees is a finite-memory determinacy result for boundedness
games. Boundedness games are quantitative games involving a finite set of counters;
their conditions are conjunctions of a parity condition and a condition requiring that the
counter values remain bounded along the play.

Colcombet and Löding conjectured that there exists a trade-off between the size of
the memory and the bound achieved on the counters [Col13a], which we call the LoCo
conjecture.

So far, this conjecture resisted both proofs and refutations, and the only non-trivial
positive case known is due to Vanden Boom [Van11], which implied the decidability of the
weak variant of cost-MSO over infinite trees, later generalised to quasi-weak cost-MSO
in [BCKPV14]. Unfortunately, quasi-weak cost-MSO is strictly weaker than cost-MSO,
and this leaves open the question whether cost-MSO is decidable.

The first chapter of this document, “Finite-memory Determinacy for Boundedness
Games”, investigates further the LoCo conjecture.





3. Probabilistic Automata 15

3 Probabilistic Automata

Probabilistic automata have been introduced by Rabin [Rab63], as a very simple ran-
domised computation model. It has been broadly studied for both its theoretical and
practical values; in particular, it is used in various fields such as computational biology,
linguistics and image processing.

In this section, we are interested in the algorithmic properties of probabilistic au-
tomata: given a probabilistic automaton, what can be said about its behaviour, in an
effective way?

We first discuss some algorithmic questions that appeared in the seminal paper of
Rabin. These are quantitative problems: they ask for the behaviours of a given proba-
bilistic automaton, comparing the acceptance probabilities to numerical thresholds. This
set of questions led to several developments over the last forty years, which unfortunately
are almost all undecidability results, supporting the claim that quantitative problems for
probabilistic automata are undecidable.

Hence we take a different path and discuss a recent work of Gimbert and Oualhadj,
who considered a qualitative problem, the value 1 problem. The second chapter of this
document continues this line of work, aiming at a better understanding of the value 1
problem.

3.1 Algorithmic Properties for Probabilistic Automata

The first result about algorithmic properties of probabilistic automata precedes the in-
troduction of probabilistic automata. Indeed, while studying weighted automata, Schützen-
berger proved that the equivalence between two weighted automata is decidable, provided
the underlying semiring is a field [Sch61]. This applies to probabilistic automata, as the
underlying semiring is the reals with addition and multiplication. Later, a different poly-
nomial time algorithm was given by Tzeng [Tze92]. Recently, this problem has been
further analysed, leading to very efficient randomised algorithms, with applications to
software verification [KMOWW11; KMOWW12; KMOWW13].

When Rabin introduced probabilistic automata, he showed how they can be used to
define languages: a probabilistic automaton defines the language consisting of the set of
words accepted with probability at least one half. The threshold one half is not special,



16 Introduction

any rational threshold between 0 and 1 leads to an equivalent notion of probabilistic
languages. This motivated the first algorithmic question:

(1) can we decide if a probabilistic language is empty, i.e. if there exists a word
accepted with probability at least one half?

Rabin first observed that probabilistic languages strictly subsume regular languages,
and gave a sufficient condition for a probabilistic automaton to define a regular language,
using the notion of isolated thresholds.

The threshold one half is said isolated if there exists an interval around it such that for
all words, their probability to be accepted lie outside this interval. In other words, Rabin
showed that if no complicated convergence phenomenon occurs around the threshold one
half, then the language is regular. This motivated the second and third algorithmic
questions:

(2) can we decide if a probabilistic automaton defines a regular language?

(3) can we decide if for a probabilistic automaton, the threshold one half is isolated,
i.e. if there exists a sequence of words accepted with probability arbitrarily close to
one half?

3.2 Undecidability of Quantitative Problems

The first question was answered by Paz: the emptiness problem for probabilistic lan-
guages is undecidable [Paz71].

This undecidability result says that asking to precisely compare to a threshold is too
much to ask. A probabilistic automaton may exhibit complicated behaviours that happen
very close to the threshold, and this implies the undecidability.

Bertoni answered the second question, using a similar reduction: the regularity prob-
lem is undecidable [Ber74a].

The third question asks whether there is a convergence phenomenon towards the
threshold, without trying to determine whether it goes beyond the threshold. Unfortu-
nately, Bertoni showed that the isolation problem is also undecidable [Ber74b; BMT77],
answering the third question. This means that not only determining if a word exceeds
the threshold is undecidable, but also determining whether it is approached at all is also
undecidable.

A simpler question is the following bounded-error emptiness problem, which asks for
the construction of an algorithm with the following behaviour; given a probabilistic au-
tomaton as input:

• if there exists a word accepted with probability at least two thirds, then accept,

• if all words are accepted with probability at most one third, then reject,

• in any other case, any answer is fine, including no answer at all.



3. Probabilistic Automata 17

In this problem, there is no convergence phenomena involved: what happens between the
thresholds one third and two thirds is not relevant. Condon and Lipton gave the coup de
grâce: there exists no algorithm solving the bounded-error emptiness problem [CL89].

We comment on the term quantitative problem: it refers here to the idea that the
emptiness problem, the isolation problem and the bounded-error emptiness problem all
involve numerical thresholds, like one half, one third or two thirds, and comparisons with
these thresholds. A priori, an algorithm solving a quantitative problem needs to deal with
numerical values, and maybe approximations of them, which may be intrinsically hard.

The bounded-error emptiness seems to be the “easiest” quantitative problem, and its
undecidability hints at the sad conclusion that all quantitative problems for probabilistic
automata are undecidable.

On the opposite, a qualitative problem does not involve any numerical thresholds.
Following the above intuition, qualitative problems should be easier than quantitative
problems.

3.3 The Value 1 Problem

Gimbert and Oualhadj considered in 2010 the following qualitative problem, which
they called the value 1 problem: given a probabilistic automaton, does there exist a
sequence of words accepted with probability arbitrarily close to 1? (Similar problems
have been considered for stochastic games, see for instance [AH00], where it is called “limit
winning”.) Their first contribution was to prove that this problem is undecidable [GO10].

There are several reasons that make this problem interesting and worth further inves-
tigations.

First of all, it is very simple, and asks about a convergence phenomenon in a qualitative
way: it does not involve comparisons with any precise threshold other than 1. As such,
it is a good stepping stone to construct partial algorithms to determine properties of
probabilistic automata. Indeed, the undecidability proof involves probabilistic automata
with a complex structure, leaving some hope that these behaviours are rare and that it is
possible to construct algorithms that solve the value 1 problem in most cases.

As it turned out later, the value 1 problem appeared in a different context, as the
emptiness of probabilistic Büchi automata with positive semantics [BBG12]. The two
problems are Turing-equivalent [CSV13].

Besides proving that the value 1 problem is undecidable, Gimbert and Oualhadj also
constructed a subclass of probabilistic automata, called 7-acyclic, and showed that the
value 1 problem is decidable when restricted to this subclass.

This led to further developments, and in particular to the second chapter of this
document, “The Value 1 Problem for Probabilistic Automata”. This question has also been
considered for more expressive models, such as probabilistic timed automata [BBG14].

Last but not least, the value 1 problem can be cast as an (un)boundedness question
for probabilistic automata; this informal observation is the missing link between the two
chapters of this document.





Contributions

19



20 Contributions

This thesis is a contribution to the study of quantitative models of automata, and more
specifically of automata with counters and probabilistic automata. They have been inde-
pendently studied for decades, leading to deep theoretical insights of practical value.

We investigate here two seemingly unrelated questions, the first about finite-memory
determinacy for boundedness games, and the second about the value 1 problem for prob-
abilistic automata. Some of the results are obtained by transferring techniques and ideas
from one model to the other, revealing some similarities between them.

The first part of this document investigates finite-memory determinacy for bound-
edness games, which is motivated by, and belongs to, a research program launched ten
years ago by Bojańczyk and Colcombet, aiming at understanding boundedness logics; the
so-called MSO` U and cost-MSO. These two logics induce two related models of games
with counters, which we call uniform and non-uniform boundedness games.

We first consider non-uniform boundedness games, which appear in the study of
MSO ` U, and present results aiming at characterising the memory requirements of a
given condition, first for special cases of boundedness conditions, and then for general
conditions under topological assumptions.

We then consider uniform boundedness games, which appear in the study of cost-MSO.
In 2010, Colcombet and Löding stated a conjecture about finite-memory determinacy for
such games, that we call the LoCo conjecture. They proved that this conjecture implies
the decidability of cost-MSO over infinite trees, which is the main open problem of this
research program. We show that unfortunately the LoCo conjecture does not hold. On
the positive side, we show a weaker statement: the LoCo conjecture holds for all thin tree
arenas.

The second part of this document is about the value 1 problem for probabilistic au-
tomata. The starting point is the undecidability of this problem, which was proved in
2010 by Gimbert and Oualhadj. The aim of the results presented here is to understand to
what extent is the value 1 problem decidable, by constructing an algorithm that partially
solves it and arguing that it is in some sense optimal.

The first step is the construction of the Markov Monoid algorithm, inspired by the
notion of stabilisation monoids as introduced by Colcombet in the study of cost-MSO.
We first prove that it is correct for a subclass of probabilistic automata that we define,
called leaktight automata, relying on the notion of factorisation trees as developed by Imre
Simon. We then show that all subclasses for which the value 1 problem was shown to be
decidable are leaktight, implying that this algorithm is so far the best known algorithm.

The second step aims at better understanding the Markov Monoid algorithm, using
a new framework that we introduce, called the prostochastic theory. The prostochastic
theory is a topological approach for probabilistic automata inspired by the profinite the-
ory as developed by Almeida, Pin, Weil and others for classical automata, and used by
Toruńczyk for the study of MSO`U. In this context, the value 1 problem reformulates at
an emptiness problem, providing theoretical foundations for reasoning about the Markov
Monoid algorithm. Our main result is to give a characterisation of the Markov Monoid
algorithm using the prostochastic theory. It says that the Markov Monoid algorithm cap-
tures exactly all polynomial behaviours; the undecidability result shows that combining
polynomial and exponential behaviours leads to undecidability. The combination of these
two results supports the claim that the Markov Monoid algorithm is optimal.



Chapter 1

Finite-memory Determinacy for
Boundedness Games

21



Contents
1 Boundedness Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.1 Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2 Boundedness Games . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.3 Uniform and Non-Uniform . . . . . . . . . . . . . . . . . . . . . 29

1.4 From Non-Uniform to Uniform for Pushdown Arenas . . . . . . 30

2 Finite-Memory Determinacy . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1 Finite-Memory Strategies . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Some results for Non-Uniform Boundedness Games . . . . . . . . 37

2.3 Memory for Topologically Closed Conditions . . . . . . . . . . . 39

3 The LoCo Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1 A First Statement of the Conjecture . . . . . . . . . . . . . . . . 47

3.2 Applications to the Theory of Regular Cost Functions . . . . . . 51

3.3 Refined Statement: Structural Properties of the Arenas . . . . . 54

4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 The B games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 The Boundedness Games over Finite Arenas . . . . . . . . . . . 58

4.3 The Temporal Boundedness Games . . . . . . . . . . . . . . . . 59

4.4 The B-Reachability Games . . . . . . . . . . . . . . . . . . . . . 59

4.5 The B-Büchi Games . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6 The B-CoBüchi Games . . . . . . . . . . . . . . . . . . . . . . . 62

4.7 Application of the Slicing Technique for Stochastic Games . . . . 64

5 Counter Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 A first lower bound of 3 . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 General lower bound . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Corollary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Thin Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1 Existence of a trade-off for word arenas . . . . . . . . . . . . . . 74

6.2 Extending to thin tree arenas . . . . . . . . . . . . . . . . . . . . 79

7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



Finite-memory Determinacy for Boundedness Games 23

This first chapter deals with boundedness games, which are games with counters
equipped with conditions requiring that the values of the counters remain bounded. The
problem we tackle here is the finite-memory determinacy for such games:

“Does there exist finite-memory winning strategies for boundedness games?”

This question comes in several variants, depending on the conditions and the structural
properties of the underlying arenas. In 2010, Colcombet and Löding stated a conjecture,
that we call the LoCo conjecture, asserting the existence of finite-memory strategies in
uniform boundedness games, and proved that this conjecture implies the decidability of
cost-MSO over infinite trees. This conjecture has been the main motivation for all the
results presented in this chapter.

In Section 1, we define boundedness games, which can be uniform and non-uniform.
The non-uniform variant originates from the study of MSO`U, and the uniform variant
from the study of cost-MSO. We discuss further the relation between the two definitions:
we show that for games played over pushdown arenas, both definitions are equivalent, a
result obtained in collaboration with Krishnendu Chatterjee in [CF13].

We define finite-memory strategies in Section 2, and state finite-memory determinacy
questions for boundedness games. We present in this section two sets of results about
these questions.

In the first set of results, we take as a starting point the finitary parity games studied
by Chatterjee, Henzinger and Horn [CHH09], which are a special case of non-uniform
boundedness games. We extend their results in two directions: first by considering the
cost-parity games, which generalise at the same time parity games and finitary parity
games, in collaboration with Martin Zimmermann [FZ12; FZ14], and second by consid-
ering finitary parity games played over infinite arenas, in collaboration with Krishnendu
Chatterjee in [CF13].

The second set of results is a characterisation of the memory requirements for topolog-
ically closed conditions, obtained in collaboration with Thomas Colcombet and Florian
Horn [CFH14]. This allows to obtain tight memory bounds for several conditions, and in
particular applies to a special case of uniform boundedness conditions.

We state the LoCo conjecture in Section 3. We show that it implies the equivalence
between alternating and non-deterministic B-parity automata, as introduced in the theory
of regular cost functions by Colcombet [Col09; Col13b]. A closer analysis at how the LoCo
conjecture is used to prove this result allows to state a refined LoCo conjecture taking
into account the structural properties of the arenas.

In Section 4, we give a state of the art on this conjecture and show new examples. We
then explain how the slicing technique developed by Vanden Boom in [Van11] to prove a
special case of the LoCo conjecture allowed to obtain a positionality for stochastic games,
which was the main contribution of [FPS13], in collaboration with Sophie Pinchinat and
Olivier Serre.

In Section 5, we show that the LoCo conjecture does not hold, by constructing a
counter example. The counter example is defined over a sequence of finite arenas, and is
extended to show that non-uniform boundedness games are not finite-memory determined.
On the positive side, we show in Section 6 that the LoCo conjecture holds for games played



24 Finite-memory Determinacy for Boundedness Games

over thin tree arenas. The proof involves structural decompositions of thin tree and word
arenas.

Both the counter example and the case of thin tree arenas are joint work with Florian
Horn, Denis Kuperberg and Michał Skrzypczak [FHKS15].

We conclude in Section 7.



1. Boundedness Games 25

1 Boundedness Games

This section gives the definitions used throughout this chapter. We define games in
Subsection 1.1, and boundedness conditions in Subsection 1.2.

As we will see, a fine point in this definition is whether the bound on these counters
is uniform over all plays, as in the study of cost-MSO, or non-uniform, as it is the case
for MSO` U. We discuss this further in Subsection 1.3.

We then report on our first contribution in Subsection 1.4, which an equivalence result
between the uniform and non-uniform variants for games played over pushdown arenas,
obtained in collaboration with Krishnendu Chatterjee and published in [CF13].

1.1 Games

The model of games we consider is closely connected to the study of automata. Most
of our definitions are standard, and taken from the book [GTW02].

The games are played by two players, Eve and Adam, over potentially infinite graphs
called arenas.

Definition 1 (Arena)

An arena G is given by a directed graph pV,Eq whose vertex set is divided into vertices
controlled by Eve (VE) and vertices controlled by Adam (VA), and a colouring function
c : E Ñ A, where A is a finite alphabet.

The colouring function c : E Ñ A will be used by the winning condition. Note that
sometimes, the colouring function is c : V Ñ A. When the arena is given without the
colouring function, we talk about the underlying graph.

In Figure 1 we present a finite arena. The vertices controlled by Eve are drawn as
circles, the vertices controlled by Adam are drawn as squares.

For the following definitions, fix an arena G.
A token is initially placed on a given initial vertex v0, and the player who controls this

vertex pushes the token along an edge, reaching a new vertex; the player who controls
this new vertex takes over, and this interaction goes on forever, describing an infinite path



26 Finite-memory Determinacy for Boundedness Games

Figure 1: A finite arena (without any colouring function).

called a play. We assume that the arenas contain no dead ends: for every vertex v P V ,
there exists at least one edge pv, v1q P E.

Definition 2 (Play)

A play is a finite or infinite path, seen as a sequence of edges.

Plays are typically denoted π. Note that plays are sequences of edges, but sometimes
it is technically convenient to consider only the induced sequences of vertices. As a
convention, a play denoted π “ e0 ¨ e1 ¨ ¨ ¨ is a sequence of edges, and a play denoted
π “ v0 ¨ v1 ¨ ¨ ¨ is a sequence of vertices.

Definition 3 (Strategy)

A strategy for Eve is a mapping σ : E˚ ¨ VE Ñ E.

A strategy takes as input the history played so far and the current vertex, and outputs
the next edge. We say that a play π “ e0¨e1 . . . is consistent with σ if en`1 “ σpe0 ¨ ¨ ¨ en¨vnq
for every n with vn P VE.

From now on, the definitions that we give of winning conditions and games are qual-
itative, i.e. a play is either won or lost by Eve. In the next subsection, we will define
quantitative winning conditions and games.

Informally speaking, a winning condition (or simply: condition) is a set of plays. The
plays in the condition are called the winning plays for Eve, the other plays are winning
for Adam. A strategy is winning for a condition, or ensures this condition, if all plays
consistent with the strategy belong to the condition. The formal definition is slightly
more complicated, in order to reason about conditions abstractly.



1. Boundedness Games 27

Definition 4 (Winning condition)

A condition over an alphabet A is a subset W Ď Aω.

Given an arena G and a condition W , we define the following set of plays:

tπ “ e0 ¨ e1 ¨ ¨ ¨ | cpe0q ¨ cpe1q ¨ ¨ ¨ P W u,

to be the set of winning plays for Eve.
Although conditions are not formally sets of plays, we will often abuse notations

and say that a play π “ e0 ¨ e1 ¨ ¨ ¨ satisfies a condition W Ď Aω, meaning that cpe0q ¨
cpe1q ¨ ¨ ¨ P W .

Definition 5 (Game)

A game is given by an arena G and a condition W . Such a game is denoted pG,W q.

For a game pG,W q, we denote WinEpG,W q the winning region of Eve, i.e. the set of
vertices from which Eve has a winning strategy. When G is clear from the context, we
write WinEpW q.

All these definitions can be transposed for Adam. A strategy for Adam is usually
denoted τ , and WinApG,W q is the winning region of Adam.

Note that WinEpG,W q XWinApG,W q “ H. If WinEpG,W q YWinApG,W q “ V , we
say that the game is determined: from any vertex, either Eve has a winning strategy,
or Adam has a winning strategy. All the games we will consider in this document are
determined, as we will only consider Borel conditions [Mar75]. When stating results about
general conditions, we will always (implicitly) assume that the condition is Borel, to use
the fact that the underlying games are determined.

We now define the classical ω-regular conditions.

Definition 6 (ω-regular condition)

• The parity condition with d ` 1 colors is defined over the alphabet A “ t0, . . . , du,
by:

Parity “ tc0 ¨ c1 ¨ c2 ¨ ¨ ¨ | maxpinftci | i P Nuq is evenu,
in words, it requires that the maximum color seen infinitely often is even.

• The Büchi condition is the special case of the parity condition over the alphabet
A “ t1, 2u, denoted Büchi.

• The CoBüchi condition is the special case of the parity condition over the alphabet
A “ t0, 1u, denoted CoBüchi.

• The reachability condition is defined over the alphabet A “ t0, 1u, by:

Reach “ tc0 ¨ c1 ¨ c2 ¨ ¨ ¨ | Di P N, ci “ 1u.

• The safety condition is defined over the alphabet A “ t0, 1u, by:

Safe “ tc0 ¨ c1 ¨ c2 ¨ ¨ ¨ | @i P N, ci “ 0u.



28 Finite-memory Determinacy for Boundedness Games

As a convention, the colouring function of the parity condition is denoted Ω : V Ñ

t0, . . . , du. We will sometimes use partial colouring functions for the parity condition;
what matters is that every infinite play contains infinitely many coloured vertices, which
will always be the case.

For a Büchi condition, we define F “ tv P V | cpvq “ 2u, and call F the set of Büchi
vertices; the Büchi condition requires to see F infinitely many times. Similarly, for a
CoBüchi condition, we define F “ tv P V | cpvq “ 1u, and call F the set of CoBüchi
vertices; the Büchi condition requires to see F finitely many times.

For both reachability and safety conditions, we define F “ tv P V | cpvq “ 1u. The
reachability condition requires to see F at least once, and the safety condition never to
see F at all.

1.2 Boundedness Games

We now introduce counters and the boundedness conditions, which are quantitative
conditions, i.e. functions f : Aω Ñ NY t8u.

Definition 7 (B and B-parity conditions)

The quantitative B condition with k counters is defined over the alphabet A “

tε, i, ruk. The counters take integer values, initialized at 0. The actions are:

• increment by 1, denoted i,

• reset to 0, denoted r,

• leave unchanged, denoted ε.

The function B : Aω Ñ N Y t8u assigns to a sequence s the supremum of the values of
all counters along the sequence.

The quantitative B-parity condition with d ` 1 colors and k counters is defined over
the alphabet A “ t0, . . . , du ˆ tε, i, ruk. The function B XParity : Aω Ñ NY t8u assigns
to a sequence s “ pc0, a0q ¨ pc1, a1q ¨ pc2, a2q ¨ ¨ ¨ :

#

8 if c1 ¨ c2 ¨ ¨ ¨ R Parity
Bpa0 ¨ a1 ¨ a2 ¨ ¨ ¨ q otherwise.

A quantitative condition f : Aω Ñ NY t8u gives rise to two conditions:

• the uniform condition W pNq “ ts P Aω | fpsq ď Nu,

• the non-uniform condition W “ ts P Aω | fpsq ă 8u.

We say that the conditionW pNq is uniform, because a strategy ensuring this condition
ensures the same bound N for all plays. On the opposite, the conditionW is non-uniform,
because a strategy ensuring this condition ensures a different bound for each play.



1. Boundedness Games 29

The two conditions induced by the quantitative B-parity conditions are denoted
BpNq X Parity (uniform) and B X Parity (non-uniform).

We consider particular cases of B-parity conditions, as for instance B-Büchi condi-
tions or B-CoBüchi conditions. In the special case of B-reachability conditions, denoted
B Until Reach, we assume that the game stops when it reaches F .

A colouring function for the B-parity condition is usually given by two functions
Ω : V Ñ t0, . . . , du and c : E Ñ tε, i, ruk.

Definition 8 (Boundedness game)

The B-parity games are called boundedness games .

Boundedness games have been given a lot of different names: the uniform variants
have been called cost-games, cost-parity games, B-parity games or B games, and the
non-uniform variants ωB-games.

1.3 Uniform and Non-Uniform

We explain in this subsection the distinction between uniform and non-uniform bounds,
which comes from the study of MSO`U and cost-MSO. We here define both logics over
infinite trees, but the definition also applies to infinite words, and to finite or infinite trees
for cost-MSO.

We fix an alphabet A. An A-labelled (complete binary) tree is a function t : t0, 1u˚ Ñ
A. The elements of t are called nodes : for n P t0, 1u˚, the node n ¨ ` is a child of n if
` P t0, 1u, and a descendant of n if ` P t0, 1u˚.

The logic MSO ` U was introduced by Bojańczyk in 2004 [Boj04]. It is an extension
of MSO, with a B quantifier (we will define B rather than U, which is equivalent as they
are dual); we assume the reader to be familiar with MSO, see for instance [GTW02].

Consider φpXq an MSO formula using a free second-order variable X, ranging over
sets of nodes. We define the syntactic construction BpXq φpXq, whose semantics is as
follows:

BpXq φpXq “ DN P N, @X,φpXq ùñ |X| ď N .

In words, the formula BpXq φpXq holds for a tree t if there exists a bound N P N such
that if t satisfies φpXq, then X has size at most N .

A typical example is the formula

BpXq
"

@x, y, z, x ă y ă z ^ x P X ^ z P X ùñ y P X
^ @x, apxq.

Here the symbol ă is interpreted as the descendant relation in the tree, so x ă y holds
if y is a descendant of x. This formula states that there exists a bound N , such that all
connected sets X that contain only a’s have size at most N .

The semantics is Boolean: a tree t either satisfies or does not satisfy a given MSO`U
formula. Hence the following decision problem:



30 Finite-memory Determinacy for Boundedness Games

Problem 1 (Satisfiability of MSO` U)

Given an MSO` U formula φ, does there exist a tree t that satisfies φ?

Note that a formula in MSO`U can using several nestings of this B quantifier, together
with first- and second-order quantifications. Consider for instance a formula of the form
@X, BpY q φpX, Y q. Unravelling the semantics, we obtain:

@X, DN P N, @Y, φpX, Y q ùñ |Y | ď N .

Here, if a tree t satisfies this formula, the bound N (a priori) depends on X: for every X,
there exists a different N . This non-uniform behaviour makes the problem very hard.

Bojańczyk conjectured in 2004 that the satisfiability problem for MSO`U was decid-
able, even over infinite trees [Boj04]. Quite recently (February 2015), this conjecture has
been disproved by Bojańczyk, Parys and Toruńczyk:

Theorem 1 (Undecidability of MSO` U over infinite words [BPT15])

The satisfiability problem for MSO` U over infinite words is undecidable.

The logic cost-MSO was introduced by Colcombet in 2009 [Col09]. It also extends
MSO, with the syntactic construction |X| ď N.

The atomic formula |X| ď N can appear in different places in a cost-MSO formula,
but always positively, i.e. under the scope of an even number of negations, and with the
same variable N.

The semantics of a cost-MSO formula assigns a value in N Y t8u to a tree, which is
the smallest N P N such that t satisfies φ where the variable N is substituted by the value
N . So instead of defining a language, as MSO and MSO`U, a cost-MSO formula defines
a function from the set of trees to NY t8u.

The main decision problem for cost-MSO is the boundedness problem:

Problem 2 (Boundedness of cost-MSO)

Given a cost-MSO formula φ, does there exist N P N such that all trees t satisfy φ
with the value N?

Unlike MSO ` U, the same bound N applies to all trees. This uniform behaviour
makes the problem easier. In particular, the undecidability result mentioned above does
not imply anything for cost-MSO.

1.4 From Non-Uniform to Uniform for Pushdown Arenas

This subsection reports on a result obtained in collaboration with Krishnendu Chatter-
jee, published in [CF13]. The aim is to understand when are the uniform and non-uniform
B-parity conditions equivalent.



1. Boundedness Games 31

We have:

Bp0q X Parity Ď Bp1q X Parity Ď Bp2q X Parity Ď ¨ ¨ ¨ Ď B X Parity.

Consider an arena G with the colouring function given as two functions Ω : V Ñ t0, . . . , du
and c : E Ñ tε, i, ruk. Denoting WinEpNq for WinEpG, BpNq X Parityq and WinE for
WinEpG, Bq X Parityq, it follows that:

WinEp0q Ď WinEp1q Ď WinEp2q Ď ¨ ¨ ¨ Ď WinE.

Hence the question: does there exist N such that WinEpNq “ WinE, i.e. does this
hierarchy collapse?

We denote limBpNq the condition requiring that a suffix of the play satisfies the
condition BpNq. The complement of limBpNq is closed under suffixes, which implies
interesting properties for strategies ensuring this condition.

Lemma 1 (Winning regions of suffix-closed conditions are traps)

Consider a game pG,W q where W is closed under suffixes: for π a finite play and π1
an infinite play, if π ¨ π1 P W , then π1 P W .

Let σ be a winning strategy, then all plays consistent with σ remain in WinEpG,W q.

Proof. Assume towards contradiction that there exists a strategy σ ensuring W , and a
play consistent with this strategy that at some point leaves WinEpG,W q, and reaches a
vertex v P V zWinEpG,W q “ WinApG,W q. Denote by π this finite play. By definition,
there exists a strategy τ of Adam that from v ensures that W is not satisfied. Consider
the play from there consistent with both σ and τ , denote it π1. Since σ is winning, we
have π ¨π1 P W , and since τ ensures the complement of W , we have π1 R W , contradicting
that W is closed under suffixes.

We first consider the case of finite arenas.

Theorem 2 (Collapse over finite arenas)

For all boundedness games played over a finite arena, for all initial vertices, the fol-
lowing are equivalent:

• Dσ strategy for Eve, @π plays, DN P N, π P BpNq X Parity,

• Dσ strategy for Eve, DN P N, @π plays, π P limBpNq X Parity.

Proof. We argue that the following two properties hold:

1. there exists N such that WinEpNq “ WinEpN ` 1q “ ¨ ¨ ¨ ,

2. for such N , we have WinApNq Ď WinA, hence WinE “ WinEpNq.



32 Finite-memory Determinacy for Boundedness Games

The first property follows from the observation that pWinEpNqqnPN is a non-decreasing
family of finite sets.

We now argue that the second property holds. Observe that limBpNqXParity is closed
under prefixes, or equivalently its complement is closed under suffixes. From WinApNq,
Adam has a strategy τN that ensures that either the parity condition is not satisfied, or
that some counter value exceeds N . It follows from Lemma 1 that all plays consistent
with this strategy remain in WinApNq.

We construct a strategy from WinApNq that ensures the complement ofBXParity. The
argument above yields a sequence of strategies pτN 1qN 1ěN . The strategy simulates those
strategies in turn, switching from the strategy τN 1 to the strategy τN 1`1 if some counter
value exceeds N 1. Note that since each strategy τN 1 ensures to remain in WinApN

1q “

WinApNq, the general strategy can indeed switch from one strategy to the next. It follows
that WinApNq Ď WinA, implying WinE “ WinEpNq.

Remark 1. The above proof does not give a bound on N ; the sequence pWinEpNqqNPN
is ultimately constant, but the index from which it is constant can be a priori arbitrarily
large.

Indeed, it is not true that WinEpNq “ WinEpN ` 1q implies that WinEpN ` 1q “
WinEpN ` 2q, so this sequence might be constant (say, equal to the empty set) for N up
to a very large value, and then contain all vertices for N larger than this value.

The main contribution of [CF13] is to extend this collapse result to pushdown games.
Such games are played over arenas that are induced by a pushdown process; they are in
general infinite.

A pushdown process is a finite-state machine which features a stack: it is given by a
finite set of control states Q, a stack alphabet Γ and a transition relation ∆. There is a
special stack symbol denoted K which does not belong to Γ; we denote by ΓK the alphabet
Γ Y tKu. A configuration is a pair pq, uKq (the top stack symbol is the leftmost symbol
of u). There are three kinds of transitions in ∆:

• pp, a, pushpbq, qq: allowed if the top stack element is a P ΓK, the symbol b P Γ is
pushed onto the stack.

• pp, poppaq, qq: allowed if the top stack element is a P Γ, the top stack symbol a is
popped from the stack.

• pp, a, skip, qq: allowed if the top stack element is a P ΓK, the stack remains un-
changed.

The symbol K is never pushed onto, nor popped from the stack.

Definition 9 (Pushdown graph)

A pushdown process and two subsets QE, QA such that Q “ QE Z QA induce a
pushdown graph, whose set of vertices is Q ˆ Γ˚K, and set of edges is E induced by the
transition relation ∆.

For instance, if pp, a, pushpbq, qq P ∆, then ppp, awKq, pq, bawKqq P E, for all words w
in Γ˚.



1. Boundedness Games 33

A colouring function for a pushdown arena is given by c : ∆ Ñ A, and naturally
extended to c : E Ñ A.

Following our convention, a colouring function for the B-parity condition over a push-
down graph is given by two functions Ω : QÑ t0, . . . , du and c : ∆ Ñ tε, i, ruk.

We give an example of a game played over a pushdown arena in Figure 2.

F

F

Fpush(a)

push(b)
pop(b)

i

pop(a) ⊥

Figure 2: A B-Büchi game over a pushdown arena where Eve wins the non-uniform
condition but no uniform ones.

Example 1 (Stack as credit in a boundedness game played over a pushdown arena)

Figure 2 presents a B-Büchi game played over a pushdown arena where Eve wins for
the non-uniform condition B, but for no uniform condition BpNq.

Let us first look at the two bottom states: in the left-hand state at the bottom, Adam
can push as many b’s as he wishes, and moves the token to the state to its right, where
all those b’s are popped one at a time, incrementing the counter each time. In other
words, each visit of the two bottom states allows Adam to announce a number N and to
increment the counter by N .

We now look at the states on the top line: the initial state is the leftmost one, where
Adam can push an arbitrary number of a’s. We see those a’s as credits: from the central
state, Adam can use one credit (i.e pop an a) to pay a visit to the two bottom states.
When he runs out of credit, which will eventually happen, he moves the token to the
rightmost state, where nothing happens anymore.

The following theorem is the main contribution of [CF13]. It was called the “forgetful
property”, following the intuition that even if a configuration carries an unbounded amount
of information (since the stack may be arbitrarily large), this information cannot be forever
transmitted along a play. Indeed, to increase the counter values significantly, Adam has
to use the stack, consuming or forgetting its original information.

Theorem 3 (Collapse over pushdown arenas)

For all boundedness games played over a pushdown arena, for all initial configurations,
the following are equivalent:

• Dσ strategy for Eve, @π plays, DN P N, π P BpNq X Parity,

• Dσ strategy for Eve, DN P N, @π plays, π P limBpNq X Parity.



34 Finite-memory Determinacy for Boundedness Games

This result is in some sense maximal: it is easy to construct an example of a game
played over a higher order pushdown system of level 2, where the above equivalence does
not hold.

The proof follows the same lines as for the case of finite arenas, except that for the
case of pushdown arenas, the sequence pWinEpNqqNPN now consists of infinite sets of
configurations. To prove that this sequence is ultimately constant, we show that these sets
are regular of bounded size, relying on general results for pushdown games due to [Ser03;
Ser06].

We will use alternating P-automata to recognize sets of configurations: an alternating
P-automaton B for a given pushdown process is a classical alternating automaton over
finite words: it has a finite set of control states S, a transition function δ : SˆΓ Ñ B`pSq
(the notation B`pSq denotes the set of positive boolean formulae over S) and a subset F of
S of final states. We assume that the set of states S contains Q. A configuration pq, uKq is
accepted by B if it is accepted with q P Q Ď S as initial state and the classical alternating
semantics. A set of configurations is called regular if it is accepted by an alternating
P-automaton. The size of an alternating P-automaton is its number of states.

Theorem 4 (Regularity of winning regions [Ser06])

For all prefix-independent winning conditions W Ď A for all games played over a
pushdown arena, the set WinEpW q is a regular set of configurations recognized by an
alternating P-automaton of size |Q|.

Relying on Theorem 4, it is easy to see that the sequence pWinEpNqqNPN is ultimately
constant, so the proof of Theorem 2 can be repeated to prove Theorem 3.

As a corollary of the forgetful property, we obtain the following decidability result,
relying on decidability results obtained in the theory of regular cost functions [BCKPV14].

Corollary 1 (Decidability of boundedness games played over pushdown arenas)

Determining the winner in a non-uniform boundedness game played over a pushdown
arena is decidable.

Indeed, it is easy and classical to reduce the problem of determining the winner in a
game played over a pushdown arena to the membership problem of a given regular tree
by a corresponding two-way automaton [KV00]. This problem was shown decidable for
two-way cost-automata in [BCKPV14].



2. Finite-Memory Determinacy 35

2 Finite-Memory Determinacy

In this section, we define finite-memory strategies, and investigate finite-memory de-
terminacy questions: roughly speaking, is it true that if Eve has a winning strategy, then
she has a finite-memory winning strategy?

In Subsection 2.1 we introduce finite- and bounded-memory determinacy, and state
four questions about finite-memory determinacy for boundedness games.

We then present some results we obtained in this direction.
In Subsection 2.2, we discuss the results obtained in collaboration with Krishnendu

Chatterjee, published in [CF13], and with Martin Zimmermann, published in [FZ12;
FZ14]. These results are about finite-memory determinacy for special classes of non-
uniform boundedness games, and specifically extensions of finitary conditions. For the
sake of keeping this document to a reasonable length, we do not detail the proofs, which
can be found in the corresponding papers.

In Subsection 2.3, we report on results obtained in collaboration with Thomas Col-
combet and Florian Horn, published in [CFH14]. In this work, we focus on topologically
closed conditions, and give an exact characterisation of the memory requirements.

2.1 Finite-Memory Strategies

Definition 10 (Memory structure)

A memory structure for the arena G consists of a set M of memory states, an initial
memory state m0 PM and an update function µ : M ˆ E ÑM .

The update function takes as input the current memory state and the chosen edge to
compute the next memory state, in a deterministic way. It can be extended to a function
µ : E˚ ¨ V ÑM by defining µ˚pvq “ m0 and µ˚pπ ¨ pv, v1qq “ µpµ˚pπ ¨ vq, pv, v1qq.

A strategy using the memory structure M is induced by a next-move function σ :
VE ˆM Ñ E, by σpπ ¨ vq “ σpv, µ˚pπ ¨ vqq. Note that we denote both the next-move
function and the induced strategy σ. The size of such a strategy is the cardinal of M
and denoted mempσq. A strategy is memoryless, or positional if M is a singleton: it only



36 Finite-memory Determinacy for Boundedness Games

depends on the current vertex. Note that a memoryless strategy can be described as a
function σ : VE Ñ E.

An arena G and a memory structureM for G induce the expanded graph GˆM where
the memory state is computed online: the vertex set is V ˆM , the edge set is E ˆ µ,
defined by: ppv,mq, pv1,m1qq P E 1 if pv, v1q P E and µpm, pv, v1qq “ m1. There is a natural
one-to-one correspondence between memoryless strategies in G ˆM and strategies in G
using M as memory structure, and similarly between strategies in G ˆM using M1 as
memory structure and strategies in G using M ˆM1 as memory structure. We often
implicitly reason in the expanded graph G ˆM when consider a strategy using M as
memory structure.

Definition 11 (Positional and finite-memory determinacy)

Consider a condition W Ď Aω.

• We say that W is positionally determined if the following holds: for all games with
condition W , for all initial vertices, if Eve has a winning strategy, then she has a
positional winning strategy.

• We say that W is finite-memory determined if the following holds: for all games
with condition W , for all initial vertices, if Eve has a winning strategy, then she has
a finite-memory winning strategy.

• We say that W is bounded-memory determined if the following holds: there exists
a bound mem P N such that for all games with condition W , for all initial vertices,
if Eve has a winning strategy, then she has a finite-memory winning strategy using
mem memory states.

Note that here, we only consider the case of Eve, so the classical terminology talks
about half -positionally determined conditions in this case, see for instance [Gim07; Kop09].
As we will be only interested in the case of Eve, we use “positionally determined” for “half-
positionally determined”.

The following positionality result has far reaching consequences in automata theory.

Theorem 5 (Positionality of parity games [EJ88])

Parity games are positionally determined.

Problem 3 (Finite- and bounded-memory determinacy for boundedness games)

Are uniform and non-uniform boundedness games finite-memory determined?
Bounded-memory determined?

We instantiate the definitions of finite- and bounded-memory determinacy for bound-
edness games.

For a boundedness game and v0 an initial vertex, we denote valpv0q the smallest N
such that Eve has a strategy ensuring BpNq X Parity.



2. Finite-Memory Determinacy 37

(i) Bounded-memory determinacy for uniform boundedness games

For all k, d P N, there exists mem P N such that for all boundedness games with
k counters, d ` 1 colors and initial vertices v0, there exists a strategy using mem
memory states ensuring Bpvalpv0qq X Parity.

(ii) Finite-memory determinacy for uniform boundedness games

For all k, d P N, for all boundedness games with k counters, d ` 1 colors and
initial vertices v0, there exists a strategy using finitely many memory states ensuring
Bpvalpv0qq X Parity.

(iii) Bounded-memory determinacy for non-uniform boundedness games

For all k, d P N, there exists mem P N such that for all boundedness games with k
counters, d` 1 colors and initial vertices, if Eve has a strategy ensuring BXParity,
then she has one using mem memory states.

(iv) Finite-memory determinacy for non-uniform boundedness games

For all k, d P N, for all boundedness games with k counters, d` 1 colors and initial
vertices, if Eve has a strategy ensuring B X Parity, then she has one using finite
memory.

We will answer those four questions:

• we show in Subsection 3.1 that (ii) holds and (i) does not hold,

• we show in Section 5 that (iii) and (iv) do not hold.

As we will see, the LoCo conjecture introduces another dimension to these questions: it
allows distortion of the value, see Section 3.

2.2 Some results for Non-Uniform Boundedness Games

This subsection discusses the results obtained in collaboration with Krishnendu Chat-
terjee [CF13] and Martin Zimmermann [FZ12; FZ14].

Both papers are related to the finitary conditions, which have been introduced in verifi-
cation by Alur and Henzinger [AH98] as a strengthening of liveness conditions. Intuitively,
a liveness condition requires that some event occurs eventually, its finitary counterpart
strengthens this by requiring an overall bound on the waiting time.

We now define the finitary parity condition with d ` 1 colors over the alphabet A “
t0, . . . , du. Given a sequence s “ c0 ¨ c1 ¨ ¨ ¨ and k P N, we define:

distkpsq “ inftk1 ´ k | k1 ě k, ck1 is even and ck1 ď cku;

i.e distkpsq is the “waiting time” by means of number of transitions followed from the kth

position before reaching a preferable color (that is, even and lower or equal than in the
kth position). The finitary parity condition was defined as follows in [CHH09]:

FinParity “ ts | lim sup
k

distkpsq ă 8u;



38 Finite-memory Determinacy for Boundedness Games

i.e, it requires that the supremum limit of the distance sequence is bounded.
The finitary parity condition can be seen up to encoding as a special case of the non-

uniform B-parity condition. The specificity here is that the counters are used to quantify
how well is the parity condition satisfied. This makes the situation very different from
the general case of B-parity conditions, where the parity condition and the counters are
completely independent.

Chatterjee, Henzinger and Horn introduced and studied games with finitary parity
conditions [CHH09]. Their main result is that determining the winner in a finitary parity
game can be achieved in cubic time, which should be contrasted with the situation for
parity games, where determining the winner is not known to be doable in polynomial
time. Furthermore, they showed that finitary parity games over finite arenas are, as
parity games, positionally determined:

Theorem 6 (Positionality of finitary parity games over finite arenas [CHH09])

Finitary parity games over finite arenas are positionally determined.

Inspired by these results, we introduced in collaboration with Martin Zimmermann
a condition called cost-parity condition, generalizing both parity conditions and finitary
parity conditions. We proved that the corresponding games, called parity games with
costs, have the best expected properties, i.e. that they do not get worse than any of the
two conditions they generalise:

Theorem 7 (Parity games with costs)

• Parity games with costs played over finite arenas are positionally determined.

• Given an algorithm that solves parity games played over finite arenas in time
T pn,m, dq, there is an algorithm that solves parity games with costs played over
finite arenas in time Opn ¨ T pdn, dm, d ` 2qq, where n is the number of vertices, m
is the number of edges and d the number of colors.

We refer to [FZ14] for the definitions and proofs.
The second generalization we considered was to extend the positionality result for

finitary parity conditions to infinite arenas. Relying on different ideas and techniques to
tackle infinite arenas, we proved the following result in collaboration with Krishnendu
Chatterjee [CF13]:

Theorem 8 (Bounded-memory determinacy of finitary parity games)

Finitary parity games with d`1 colors are bounded-memory determined, with strate-
gies using d{2 memory states.

We refer to [CF13] for the proof.
A natural question is whether this result can be extended to the general case of non-

uniform boundedness games. The answer is no, as we will show in Section 5 that non-
uniform boundedness games are not bounded-memory determined.



2. Finite-Memory Determinacy 39

2.3 Memory for Topologically Closed Conditions

This subsection reports on some results obtained in collaboration with Thomas Col-
combet and Florian Horn, published in [CFH14].

The initial observation is the following simple positionality result:

Fact 1 (Positionality of uniform B games with one counter)

Uniform B games with one counter are positionally determined, i.e. for all B games
with one counter and initial vertices v0, Eve has a positional strategy ensuring Bpvalpv0qq.

Proof. Consider a B game pG, Bq with one counter, and a strategy σ ensuring Bpvalpv0qq.
Denote N “ valpv0q. Observe that the condition BpNq is closed under suffix, as defined in
Lemma 1, hence all plays consistent with σ remain in WinEpG, BpNqq. For every vertex
v P WinEpG, BpNqq, there exists a maximal value Npvq ď N such that σ ensures BpNq
from v, starting with Npvq as counter value.

Informally speaking, this value Npvq is the worst-case scenario from v, so in this case
the strategy σ has to produce its best move. Indeed, the strategy can play some non-
optimal moves as long as the counter value remains small, and start playing optimal moves
when the situation gets dangerous, i.e. if the counter value gets closer to N . Looking at
the move that σ prescribes from v with counter value Npvq guarantees the best outcome.
Formally, this means that the strategy σ ensures that the chosen edge leads to a vertex
v1 with a counter value N 1 such that σ ensures BpNq from v1, starting with N 1 as counter
value. Consequently, N 1 ď Npv1q.

We construct a positional strategy σ1 ensuring BpNq by playing from v as σ would
have played from v with counter value Npvq. The reasoning above ensures that this
strategy ensures to remain forever in the winning region WinEpG, BpNqq, implying that
the strategy σ1 is winning.

Our objective is to generalise this reasoning. The key observation here is that the
condition BpNq is topologically closed, as we will define now. We will show that the
reasoning sketched above extends to all topologically closed conditions.

Problem 4 (Characterising memory requirement)

Given W Ď Aω, characterise the following quantity:

mempW q “ sup
pG,W q game

inf
σ winning
strategy

mempσq.

In words, mempW q is the necessary and sufficient number of memory states for con-
structing a winning strategy in games with condition W . Equivalently:

• upper bound: for all games pG,W q, for all initial vertices, if Eve has a winning
strategy, then she has a winning strategy using at most mempW q memory states,



40 Finite-memory Determinacy for Boundedness Games

• lower bound: there exists a game pG,W q and an initial vertex such that Eve has a
winning strategy, but no winning strategy using less than mempW q memory states.

The quantity mempW q has been considered in two different works before. First,
Dziembowski, Jurdziński and Walukiewicz characterised mempW q for all Muller condi-
tions W , i.e. for Boolean combinations of the conditions “color c appears infinitely many
times” [DJW97].

In this subsection, we characterise mempW q for all conditions W that are closed (with
respect to the Cantor topology over infinite words). We will use the following property
as a definition: a condition W over an alphabet A is closed if, and only if, it is given by
a subset P Ď A˚ of forbidden prefixes of colors, inducing the condition

W “ tc0 ¨ c1 ¨ ¨ ¨ | @i P N, c0 ¨ c1 ¨ ¨ ¨ ci R P u.

Note that closed conditions are incomparable with ω-regular conditions, so our results
are incomparable with [DJW97; Kop06; Kop09].

For the remainder of this section, we fix a closed condition W induced by P Ď A˚.

Remark 2. We restrict ourselves to arenas with finite out-degree: for every vertex v P V ,
the set tv1 | pv, v1q P Eu is finite. In particular, in the definition of mempW q, the supremum
ranges over all arenas of finite out-degree. This assumption will be used only in the proof
of Lemma 6, but we will show that the result fails without this assumption.

A First Upper Bound
We first give an upper bound on mempW q. Let w P A˚, define its left quotient as:

w´1W “ ts P Aω | w ¨ s P W u.

We denote RespW q the set of left quotients of W :

RespW q “ tw´1W | w P A˚u.

We mention some special left quotients: the initial one, ε´1W (equal to W ), and the
empty one, obtained as w´1W for any w P P . Recall that RespW q is finite if, and only if,
W is regular, and in such case it can be used to describe the set of states of the minimal
deterministic automaton recognizing W .

This remark allows to reduce games with closed conditions W to safety games, and to
use the following folklore result:

Lemma 2 (Positionality of safety games)

Safety games are positionally determined.

We will often use a slightly more general result in this chapter:



2. Finite-Memory Determinacy 41

Lemma 3 (Positionality of safety games, take 2)

Consider a condition W Ď A, an arena G equipped with a colouring function c : E Ñ
Aˆ t0, 1u, i.e. by two colouring functions cA : E Ñ A and cS : E Ñ t0, 1u, and an initial
vertex. This gives rise to the game pG,W X Safeq, where W uses the colouring function
cA and Safe the colouring function cS.

If there exists a winning strategy in pG,W X Safeq using mem memory states, then
there exists a winning strategy in pG,W q using mem memory states.

The following lemma reduces games with closed conditions to safety games, and con-
structs the most important tool in the proofs to follow:

Lemma 4 (First upper bound)

For all games pG,W q with a closed condition W , for all initial vertices, if Eve has a
winning strategy, then she has a winning strategy using at most |RespW q| memory states.

Consequently,
mempW q ď |RespW q| .

Proof. We construct a memory structure M, as follows: the set of memory states is
RespW q, the initial memory state isW and the update function is µ, where µpw´1W,aq “
pw ¨ aq´1W . (It is easy to check that this is well defined, i.e. independent of the repre-
sentant w chosen).

At any point in the game, the memory state computed by M is the current left
quotient.

Let G be an arena with a colouring function c : E Ñ A. We construct the expanded
arena G ˆM equipped with the colouring function c1 : E ˆ RespW q Ñ t0, 1u defined by:

c1p_, w´1W q “

#

1 if w´1W “ H (equivalently, w P P ),
0 otherwise.

We equip G ˆM with the safety condition, giving rise to the game pG ˆM, Safeq.
First observe that by construction, the plays in G ˆM are of the form pe0, cpe0q

´1W q ¨
pe1, cpe0 ¨ e1q

´1W q ¨ ¨ ¨ pek, cpe0 ¨ e1 ¨ ¨ ¨ ekq
´1W q, so by definition of c1 a play is winning in

pGˆM, Safeq if, and only if, its projection (on the first component) is winning in pG,W q.
It follows that a winning strategy for Eve in pG,W q from v0 induces a winning strategy

in pGˆM, Safeq from pv0,W q. Now, thanks to Lemma 2, since Eve wins in pGˆM, Safeq,
she has a positional winning strategy. This induces a winning strategy in pG,W q using
M as memory structure, concluding the proof of Lemma 4.

The game pGˆM, Safeq defined above will be an important tool in the proofs to follow.
We will also rely on the following remark: assume we want to prove that a strategy σ
is winning. Then it is enough to show that for all plays π consistent with σ, for all k,
cpπkq

´1W ‰ H, where πk is the prefix of π of length k. This simple observation follows
from the definition of safety conditions.



42 Finite-memory Determinacy for Boundedness Games

A Tighter Upper Bound
The memory structureM is not optimal. A first remark is that the empty left quotient

(which exists if W ‰ Aω) can be removed from the memory states as the game is lost.
From now on by “left quotient” we mean “non-empty left quotient ofW ”, and in particular
RespW q denotes the set of non-empty left quotients.

The second remark is the following: let L1 and L2 two left quotients, such that L1 Ď L2.
With the same notations as above, consider a vertex v in the arena G. If Eve wins from
pv, L1q in pG ˆM, Safeq, then she also wins from pv, L2q: indeed, she can play as she
would have played from pv, L1q. Since this ensures from v that all plays are winning for
L1, then a fortiori they are winning for L2.

This suggests to restrict the memory states only to minimally winning left quotients
with respect to inclusion. Two issues arise:

• which left quotients are winning depends on the current vertex, so the semantics of
a memory state can no longer be one left quotient, but rather a left quotient for
each possible vertex,

• there may not exist minimally winning left quotients.

For the sake of presentation, we first show how to deal with the first issue, assuming
the second issue does not appear. Specifically, in the following lemma, we assume that
RespW q is finite (i.e. W is regular), implying the existence of minimally winning left
quotients. We will later drop this assumption.

We define the width of a (partially) ordered set pE,ďq as the cardinal of the max-
imal antichain of E with respect to ď, i.e. the cardinal of the largest set of pairwise
incomparable elements.

Lemma 5 (Upper bound in the regular case)

Assume that RespW q is finite.
For all games pG,W q with a closed condition W , for all initial vertices, if Eve has a

winning strategy, then she has a winning strategy using at most K memory states, where
K is the width of pRespW q,Ďq.

Proof. We use the same notations as for the proof of Lemma 4, and construct a smaller
memory structure together with a winning strategy using this memory structure. In this
proof, by winning we mean winning in the game pG ˆM, Safeq.

Let K be the cardinal of the maximal antichain of left quotients of W . We construct
the memory structureM˚ whose set of memory sates is t1, . . . , Ku initial memory state
is 1 and update function is µ, and the next-move function σ inducing the strategy also
denoted σ.

Let v be a vertex in G. We consider the set of minimal left quotients L such that pv, Lq
is winning. (Here we use the finiteness of RespW q to guarantee the existence of such left
quotients.) This is an antichain, so there are at most K of them, we denote them by
L1pvq, . . . , Lppvq, for some p ď K. The key property is that for every left quotient L such
that pv, Lq is winning, there exists i such that Lipvq Ď L. Furthermore, we choose L1pv0q
such that L1pv0q Ď W . (Indeed, by assumption pv0,W q is winning.)



2. Finite-Memory Determinacy 43

We define the update function: µpi, pv, v1qq is a j such that Ljpv1q Ď Lipvq ¨ cpv, v
1q.

Note that in general, such a j may not exist; it does exist if pv1, Lipvq ¨ cpv, v1qq is winning,
and we will prove that this will always be the case when playing the strategy σ.

We define the next-move function σ. Let v P VE, and consider pv, Lipvqq: since Eve
wins from there, there exists an edge pv, v1q P E such that pv1, Lipvq ¨ cpv, v1qq is winning.
Define σpv, iq to be this v1.

We show that the strategy σ is winning. Consider a play π “ pv0, v1q ¨ pv1, v2q ¨ ¨ ¨
consistent with σ, and i0 ¨ i1 ¨ ¨ ¨ the sequence of memory states assumed along this play.
Denote πk the prefix of π of length k, we prove that for all k, Likpvkq Ď cpπkq

´1W . Note
that by definition, pvk, Likpvkqq is winning, so Likpvkq ‰ H, implying that cpπkq´1W ‰ H.

We proceed by induction. For k “ 0, it follows from L1pv0q Ď W . Let k ą 0, the
induction hypothesis is Lik´1

pvk´1q Ď cpπk´1q
´1W . We distinguish two cases.

• Either vk´1 belongs to Eve, then by construction of σ we have that pvk, Lik´1
pvk´1q ¨

cpvk´1, vkqq is winning. It follows that the update function is well defined, and
Likpvkq Ď Lik´1

pvk´1q ¨ cpvk´1, vkq, which together with the induction hypothesis
implies Likpvkq Ď cpπkq

´1W .

• Or vk´1 belongs to Adam. Since Adam cannot escape WinEpG ˆM, Safeq, we have
that pvk, Lik´1

pvk´1q ¨ cpvk´1, vkqq is winning, and the same reasoning concludes.

It follows that the strategy σ is winning, concluding the proof of Lemma 5.

We now get rid of the regularity assumption. This means that for a vertex v, there may
not be a minimal left quotient L such that pv, Lq is winning. To get around this difficulty,
the semantics of a memory state is a not anymore a left quotient for each vertex, but
rather a decreasing sequence of left quotients for each vertex.

In the following proof of Lemma 6, we will use the assumption that the out-degree of
every vertex is finite, i.e. for every vertex v P V , the set tv1 | pv, v1q P Eu is finite.

Lemma 6 (Upper bound)

For all games pG,W q with a closed condition W over an arena with finite out-degree,
for all initial vertices, if Eve has a winning strategy, then she has a winning strategy using
at most K memory states, where K is the width of pRespW q,Ďq.

Consequently, mempW q is smaller than or equal to the width of pRespW q,Ďq.

Proof. We use the same notations as for the proof of Lemma 5, and construct a memory
structure together with a winning strategy using this memory structure.

Let K be the cardinal of the maximal antichain of left quotients of W . We construct
the memory structureM˚ whose set of memory states is t1, . . . , Ku initial memory state
is 1 and update function is µ, and the next-move function σ inducing the strategy also
denoted σ.

Let v be a vertex in G. We consider the set Winpvq of left quotients L such that pv, Lq
is winning. We split Winpvq into maximal decreasing (finite or infinite) sequences of left
quotients, denoted `1pvq, . . . , `ppvq, for some p ď K. Furthermore, we choose `1pv0q such
that W P `1pv0q. (Indeed, by assumption pv0,W q is winning.)

We say that pv, `q is winning if for all L P `, we have that pv, Lq is winning. For ` a
sequence of left quotients and a P A, we define ` ¨ a component-wise. Note that even if `
is infinite, it may be that ` ¨ a is finite.



44 Finite-memory Determinacy for Boundedness Games

We define the update function: µpi, pv, v1qq is a j as follows.

• If `ipvq ¨ cpv, v1q is finite, denote L ¨ cpv, v1q its last element. Choose j such that
L ¨ cpv, v1q P `jpv

1q. Note that in general, such a j may not exist; it does exist if
pv1, `ipvq ¨ cpv, v

1qq is winning, and we will prove that this will always be the case
when playing the strategy σ.

• If `ipvq ¨ cpv, v1q is infinite, then choose j such that `jpv1q has an infinite intersection
with `ipvq ¨ cpv, v1q. Such a j exists without any assumption.

We define the next-move function σ. Let v P VE, and consider pv, `ipvqq. Let L P `ipvq,
Eve wins from pv, Lq, so there exists an edge pv, v1q P E such that pv1, L¨cpv, v1qq is winning,
we say that pv, v1q P E is good for L. Since Winpv1q is upward closed, if pv, v1q P E is
good for L, then it is good for every L1 such that L Ď L1. We argue that there exists an
edge pv, v1q P E that is good for all L P `ipvq, i.e. such that pv1, `ipvq ¨ cpv, v1qq is winning;
define µpv, iq to be this v1. There are two cases:

• Either `ipvq is finite, denote L its last element. Since `ipvq is decreasing, an edge
good for L is good for all L1 P `ipvq.

• Or `ipvq is infinite. The vertex v has finite degree, so there exists an edge which
is good for infinitely many L P `ipvq. Since `ipvq is decreasing, it is good for all
L1 P `ipvq.

We show that the strategy σ is winning. Consider a play π “ pv0, v1q ¨ pv1, v2q ¨ ¨ ¨
consistent with σ, and i0 ¨ i1 ¨ ¨ ¨ the sequence of memory states assumed along this play.
Denote πk the prefix of π of length k, we prove that for all k, there exists L P `ikpvkq such
that L Ď cpπkq

´1W . Note that by definition, pvk, `ikpvkqq is winning, so cpπkq´1W ‰ H.
We proceed by induction. For k “ 0, it follows from W P `1pv0q. Let k ą 0, the

induction hypothesis implies the existence of L P `ik´1
pvk´1q such that L Ď cpπk´1q

´1W .
We distinguish two cases, and denote ck “ cpvk´1, vkq.

• Either vk´1 belongs to Eve, then by construction of σ we have that pvk, `ik´1
pvk´1q¨ckq

is winning. It follows that the update function is well defined, and:

1. If `ik´1
pvk´1q ¨ ck is finite, denote L1 ¨ ck its last element, we have L1 ¨ ck P `ikpvkq.

Since L1 ¨ ck is the last element of `ik´1
pvk´1q ¨ ck, it follows that L1 Ď L. We

have thus L1 ¨ ck Ď L ¨ ck, so L1 Ď cpπkq
´1W , and L1 ¨ ck P `ikpvkq.

2. If `ik´1
pvk´1q¨ck is infinite, `ikpvkq has an infinite intersection with `ik´1

pvk´1q¨ck.
So there exists L1 Ď L with L1 P `ik´1

pvk´1q such that L1¨ck is in this intersection.
We have L1 ¨ ck P `ikpvkq and L1 Ď cpπkq

´1W .

• Or vk´1 belongs to Adam. Since Adam cannot escape WinEpG ˆM, Safeq, we have
that pvk, `ik´1

pvk´1q ¨ ckq is winning, and the same reasoning concludes.

It follows that the strategy σ is winning, concluding the proof of Lemma 6.

A Matching Lower Bound



2. Finite-Memory Determinacy 45

v0 v′0

v1

vi

vK

w1

w2

wK−1

wK

...

ui,1

ui,2

ui,K−1

ui,K

...

. . .

. . .

Figure 3: The lower bound.

Lemma 7 (Lower bound)

For all closed conditionsW , there exists a game pG,W q and an initial vertex such that
Eve has a winning strategy, but no winning strategy using less than K memory states
where K is the width of pRespW q,Ďq.

Consequently, mempW q is greater than or equal to the width of pRespW q,Ďq.

Proof. Consider tw´11 W, . . . , w´1K W u an antichain of left quotients of W . For i ‰ j, there
exists ui,j P Aω such that ui,j P w´1i W and ui,j R w´1j W .

We describe the game, illustrated in Figure 3. A play consists in three steps:

1. From v0 to v10: Adam chooses a word in tw1, . . . , wKu;

2. Eve chooses between K options;

3. say Eve chose the ith option, then Adam chooses between the K ´ 1 words ui,j for
j ‰ i.

We first show that Eve has a winning strategy from v0, using K memory states. It consists
in choosing the ith option whenever Adam chooses the word ui: whatever Adam chooses
at the third step, wi ¨ ui,j P W .

We now show that there exists no winning strategy using less than K memory states.
Indeed, such a strategy will not comply with the above strategy and for some i ‰ j, choose
the jth option if Adam chooses wi. Then Adam wins by playing ui,j, since wi ¨ ui,j R W .

Tight Bounds
Putting together upper and lower bounds, we proved the following result:

Theorem 9 (Memory for closed conditions)

For all closed conditions W , mempW q is the width of pRespW q,Ďq.

Theorem 9 allows to uniformly derive memory requirements for different conditions,
such as the BpNq-condition with one counter, which was the original motivation, but also
the generalised reachability condition, that we introduced and studied in collaboration



46 Finite-memory Determinacy for Boundedness Games

with Florian Horn [FH13], and the energy condition, see [CFH14] for more details about
these applications.

We conclude by giving an example showing that the result would fail without the finite
out-degree assumption.

c

ε a a2 a3 a4 a5

b ab a2b a3b a4b a5b

· · ·

· · ·

c

a a a a a

b b b b b b

b
b b b b b

b

Figure 4: The outbidding condition: more b’s
than a’s.

v0 v′0

v1

v2

v3

vn

a

a

b

b2

b3

bn

c

c

c

c

...

...

Figure 5: An outbidding game with in-
finite out-degree where Eve needs infi-
nite memory to win.

Let A “ ta, b, cu and W “ tan ¨ bp ¨ cω | n ď pu Y taωu Y a˚ ¨ bω. It is a non-regular
closed condition, called the outbidding condition. Figure 4 represents the partial order
pRespW q,Ďq: the solid edges represent inclusions of left quotients, and the dashed edges
figure the minimal (yet infinite) deterministic automaton recognizing W . Its width is 3:
there are two incomparable infinite increasing sequences of left quotients, ppanq´1W qnPN
and ppan ¨ bq´1W qnPN, and c´1W .

Hence thanks to Theorem 9, mempW q “ 3. However, there exists an outbidding game
where Eve wins but needs infinite memory for this. This does not contradict Theorem 9,
as this game, represented in Figure 5, has a vertex of infinite out-degree. It goes as follows:
first Adam picks a number n, and then Eve takes over: she has to pick a number p, higher
than or equal to n. A strategy using finitely many memory states can only choose from
finitely many options, hence cannot win against all strategies of Adam.



3. The LoCo Conjecture 47

3 The LoCo Conjecture

In this section, we state the LoCo conjecture.
We give a first statement of the conjecture in Subsection 3.1, and show what it implies

in the theory of regular cost functions in Subsection 3.2. We then refine the conjecture
by considering structural properties of the arenas in Subsection 3.3.

3.1 A First Statement of the Conjecture

The LoCo conjecture is a bounded-memory determinacy statement, that introduces a
trade-off between memory and bounds:

Conjecture 1 (LoCo conjecture)

For all k, d P N, there exists mem P N and α : N Ñ N such that for all boundedness
games with k counters, d` 1 colors and initial vertices v0, there exists a strategy σ using
mem memory states ensuring Bpαpvalpv0qqq X Parity.

The function α is called a trade-off function: at the price of increasing the bound from
valpv0q to αpvalpv0qq, one can use a bounded-memory strategy.

Note that we state the LoCo conjecture here only for Eve. Throughout this chapter,
we will only consider strategies for Eve. As we will see in Subsection 3.2, this allows to
prove the equivalence between alternating and non-deterministic B-parity automata over
infinite trees. To obtain the corresponding equivalence for S-parity automata, and the
decidability of cost-MSO over infinite trees, one needs to also prove the LoCo conjecture
for Adam. We do not consider this here.

To get a better understanding of this conjecture, we make a series of observations.

1. We show the implications between the LoCo conjecture and finite- and bounded-
memory determinacy for boundedness games, as illustrated in Figure 6.

2. We show that the uniform boundedness games are not bounded-memory determined.

3. We show that the non-uniform boundedness games are finite-memory determined.



48 Finite-memory Determinacy for Boundedness Games

bounded
uniform

finite
uniform

LoCo
bounded

non-uniform

finite
non-uniform

fixpoint

Figure 6: Implications.

We start by the implications illustrated in Figure 6. Three of them are simple logical
implications, so we focus on the last one, overlined “fixpoint”.

Lemma 8 (Fixpoint)

Consider a prefix-independent condition W , i.e. closed under prefixes and suffixes:
for π a finite play and π1 an infinite play, π ¨ π1 P W if, and only if, π1 P W .

Assume that there exists mem P N such that for all games pG,W q, if WinEpG,W q is
non-empty, then there exists a vertex v0 such that Eve has a winning strategy from v0
using mem memory states. Then W is bounded-memory determined.

Before proving this lemma, let us see how it helps to show the implication from Fig-
ure 6. Assume that the LoCo conjecture holds, we prove that non-uniform boundedness
games are bounded-memory determined.

Let pG, B X Parityq be a non-uniform boundedness game. We show that the assump-
tions of Lemma 8 hold; first of all the condition B X Parity is prefix-independent. We
argue that the following holds:

If WinEpG, B X Parityq is non-empty, then there exists N P N such that
WinEpG, BpNq X Parityq is non-empty.

We show the contrapositive. Assume that for all N P N, WinEpG, BpNqXParityq is empty,
it means that Adam has a strategy τN ensuring the complement of BpNq X Parity: in a
play consistent with τN , either at some point some counter reaches value N ` 1, or the
infinite play does not satisfy the parity condition. We construct a strategy τ for Adam
that ensures the complement of B X Parity, implying that WinEpG, BpNq X Parityq is
empty. The strategy τ simulates the strategies pτNqNPN, starting from τ1 and switching
from τN to τN`1 if at some point some counter reaches value N ` 1.

Let v0 P WinEpG, BpNq X Parityq, thanks to the LoCo conjecture (which we assume
here holds), this yields a strategy ensuring BpαpNqq X Parity using mem memory states.
A fortiori, this strategy ensures B X Parity.

It follows from Lemma 8 that under the assumption that the LoCo conjecture holds,
the non-uniform condition B X Parity is bounded-memory determined. As we will see in
Section 5, the LoCo conjecture does not hold.

We now prove Lemma 8. It is a rather classical technique, which was for instance
heavily used in [Kop06; Kop09; CF13]. To prove it, we need the following lemma, which



3. The LoCo Conjecture 49

raises the question of uniformity for winning strategies. So far, all finite-memory deter-
minacy statements were for a given initial vertex. A stronger finite-memory determinacy
statement is obtained by asserting the existence of one strategy, which would be winning
from all vertices of the winning region; such a strategy is called uniform. Note that this
notion of uniformity is not related at all to the uniformity in boundedness games.

Lemma 9 (Uniform strategies)

Consider a condition W closed under suffixes: for π a finite play and π1 an infinite
play, if π ¨ π1 P W , then π1 P W .

Let Y be a subset of vertices, and for all vertices v P Y , a strategy σv using mem
memory states winning from v. Then there exists a uniform strategy using mem memory
states, winning from Y .

Proof. Without loss of generality, we assume that the strategies σv use the same memory
structureM. We construct a uniform strategy σ using the memory structureM, which
is winning from all vertices of Y .

Consider ĺ a well order on V (the existence of such a well order is a consequence of
the axiom of choice). For a vertex v P V and a memory state m P M , we define σpv,mq
as σv0pv,mq, where v0 is the least element with respect to the well-order ĺ such that
σv0pv,mq is defined (i.e. there exists a play from pv0,m0q to pv,mq).

We argue that σ is winning. Consider a play consistent with σ from some vertex of
Y . By definition, it is ultimately consistent with some strategy σv, so a suffix of the play
belongs to W . By closure under suffixes, this implies that the play itself belongs to W .

We can now proceed to the proof of Lemma 8.

Proof. Consider a game pG,W q. We define the following sequences indexed by ordinals:
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

X0 “ H

Y0 “

"

v P V

ˇ

ˇ

ˇ

ˇ

Eve has a winning strategy in G from v
using mem memory states

*

Xα`1 “ Xα Y Yα

Yα`1 “

"

v P V

ˇ

ˇ

ˇ

ˇ

Eve has a winning strategy in GrV zXα`1s from v
using mem memory states

*

Xβ “
Ť

αăβXα Y Yα

Yβ “

"

v P V

ˇ

ˇ

ˇ

ˇ

Eve has a winning strategy in GrV zXβs from v
using mem memory states

*

Here β denotes a limit ordinal, and GrXs is the arena induced by the subset of vertices X.
By assumption

Ť

αXα “ WinEpG,W q. Thanks to Lemma 9, for every ordinal α there
exists a strategy σα using mem memory states which is winning from Yα. The same
reasoning as in Lemma 1 shows that all plays consistent with σα in GrV zXαs remain in
Yα. However, this is not true anymore when considering plays consistent with σα in G: a
play can go from Yα to Yβ for β ă α.



50 Finite-memory Determinacy for Boundedness Games

Consider the strategy σ which is the disjoint sum of the strategies σα. It uses mem
memory states. The above observation implies that all plays consistent with σ are ulti-
mately consistent with one σα, so a suffix of the play belongs to W . By closure under
suffixes, this implies that the play itself belongs toW , and σ is winning from WinEpG,W q,
which concludes.

We now show that the uniform boundedness games are not bounded-memory deter-
mined:

Lemma 10 (Uniform boundedness games are not bounded-memory determined)

For all N P N, there exists a B-reachability game and an initial vertex v0 such that:

• valpv0q “ N , so Eve has a strategy ensuring BpNq Until Reach using N `1 memory
states,

• no strategy using less than N ` 1 memory states ensures BpNq Until Reach.

v0 v

uN

uN−1 . . . u2

u1

F
iN iN

r iN−1

i

r

iN−2
iN−2 r

i
iN−1

r

Figure 7: Eve needs N`1 memory states to ensure BpNq Until Reach, but has a positional
strategy for Bp2Nq Until Reach.

Proof. The game is represented in Figure 7. It involves one counter and the condition
B Until Reach. Starting from v0, the game moves to v and sets the value of the counter
to N . The objective of Eve is to take the edge to the right to F . However, this costs N
increments, so if she wants the counter value to remain smaller than N she has to set its
value to 0 before taking this edge. She has N options: for ` P t1, . . . , Nu, the `th option
consists in going to u`, involving the following actions:

• first, take N ´ ` increments,

• then, reset the counter,

• then, take `´ 1 increments, setting the value to `´ 1.

It follows that there is a strategy for Eve to ensure BpNq Until Reach, which consists
in going successively through uN , uN´1, and so on, until u1, and finally to F . Hence to
ensure that the bound is always smaller than N , Eve needs N ` 1 memory states.



3. The LoCo Conjecture 51

Observe that in Figure 7, if we consider the bound 2N rather than N , then Eve has a
very simple strategy, which consists in going directly to F , using no memory at all. This
is a simple example of a trade-off: to ensure the bound N , Eve needs N ` 1 memory
states, but to ensure the worse bound 2N , she has a positional strategy.

We conclude by showing that the uniform boundedness games are finite-memory de-
termined.

Lemma 11 (Finite-memory determinacy for uniform boundedness games)

For all k P N, for all boundedness games with k counters and initial vertices v0, there
exists a strategy σ ensuring Bpvalpv0qq X Parity using pvalpv0q ` 1qk memory states.

Proof. Denote N “ valpv0q, and consider the memory structureM which keeps track of
the counter values: the set of memory states isM “ t0, . . . , NukYtKu, the initial memory
state 0k, and the update function µ mimics the counter actions. If a counter value exceeds
N , the memory state is updated to K. We construct the arena G ˆM equipped with the
colouring function c : E ˆM Ñ t0, 1u defined by:

cp_,mq “

#

1 if m “ K,

0 otherwise.

The condition BpNq XParity in G is equivalent to the condition SafeXParity in G ˆM.
Since parity games are positionally determined and thanks to Lemma 3 (to handle the
additional safety condition), there exists a positional winning strategy in pG ˆM, SafeX
Parityq, which induces a winning strategy in pG, BpNq X Parityq using M as memory
structure. Note that since this strategy is winning, it does not make use of the memory
state K, so it uses pN ` 1qk memory states. This concludes.

3.2 Applications to the Theory of Regular Cost Functions

In this section, we show that the LoCo conjecture is the key property for proving that
alternating and non-deterministic B-parity automata over infinite trees are equivalent.

We first recall the classical construction for alternating automata without counters,
which from an alternating automaton constructs an equivalent non-deterministic automa-
ton. This construction is due to Muller and Schupp [MS87; MS95].

Then, we explain how to extend this construction to the case of alternating B-
automata, i.e. when adding counters. The LoCo conjecture was introduced to make
this construction work.

Recall that a (complete binary) A-labelled tree is a function t : t0, 1u˚ Ñ A. A branch
of t is an infinite word π P t0, 1uω.



52 Finite-memory Determinacy for Boundedness Games

Definition 12 (Alternating automaton over infinite trees)

An alternating (parity tree) automaton A is given by a finite set of statesQ divided into
existential states (QE) and universal state pQAq, a transition function ∆ Ď QˆAˆQˆQ,
an initial state q0 and a colouring function Ω : QÑ t0, . . . , du.

We define the semantics of alternating automata using games. An alternating automa-
ton A and an A-labelled tree t induce the parity game pGA,t,Parityq, that we define now,
and we say that t is accepted by A if, and only if, Eve has a winning strategy in GA,t.

In the acceptance game pGA,t,Parityq, Eve is trying to prove that t is accepted, and
Adam tries to disprove her. She is in charge of the existential states, and Adam in charge
of the universal states. Together, they build a run of the automaton, which can be seen
as a Q-labelled tree. In addition, Adam also chooses the directions; this corresponds to
the fact that a run is accepting if all its branches are accepting. Here the acceptance
condition is given by a parity condition.

Formally:

V “

"

VE “ tpq, nq | q P QE, n P t0, 1u
˚u

VA “ tpq, nq | q P QA, n P t0, 1u
˚u Y tpq0, q1, nq | q0, q1 P Q, n P t0, 1u

˚u

E “

"

pq, nq ÝÑ pq0, q1, nq pq, tpnq, q0, q1q P ∆
pq0, q1, nq ÝÑ pq`, n ¨ `q n P t0, 1u˚, ` P t0, 1u

Ωpq, nq “ Ωpqq.

The definition of non-deterministic automata can be obtained as the special case of
alternating automata where all states are existential. Note that in this case, the games
semantics given above reduces to the following: a tree is accepted if there exists a run
over this tree such that all branches of the run are accepting.

Theorem 10 (Alternating and non-deterministic automata [MS87; MS95])

For every alternating automaton, there exists an equivalent non-deterministic automa-
ton, i.e. accepting the same set of trees.

We sketch the proof of this theorem.
Since parity games are positionally determined, a tree t is accepted by A if, and only

if, Eve has a positional winning strategy in GA,t. Observe that a positional strategy is a
function σ : Qˆ t0, 1u˚ Ñ ∆, so it can be seen as a pQˆ∆q-labelled tree. We construct
a non-deterministic automaton C that accepts pAˆQˆ∆q-labelled trees; a tree pt, σq is
accepted by C if, and only if, σ is a winning strategy in GA,t.

This set of infinite trees has a special property: it is branch-wise, i.e. it is the form
tt | for all branches π, trπs P Lu, for some set L of infinite words, where trπs is the infinite
word obtained by restricting the tree t to the branch π.

In the present case, the language L is ω-regular, so it recognized by some deterministic
automaton over infinite words. This allows to construct C as a deterministic automaton
over infinite trees.

Finally, we construct B as the projection of C on the second component: a tree t is
accepted by B if, and only if, there exists a tree pt, σq accepted by C. The automaton B
makes at every transition non-deterministic guesses about the second component σ.



3. The LoCo Conjecture 53

To summarise, the key properties used in the above construction are:

• parity games are positionally determined,

• every ω-regular language is recognized by a deterministic automaton, allowing to
construct a deterministic automaton for the branch-wise language over infinite trees.

We now consider B-parity automata, as introduced by Colcombet in the theory of reg-
ular cost functions [Col09; Col13b]. An alternating B-parity automaton is an alternating
automaton additionally equipped with a set of counters, which are manipulated through
the colouring function c : ∆ Ñ tε, i, ruk.

The semantics of a B-parity automaton is given as before through an acceptance
game; an alternating B-parity automaton A and a tree t induce the boundedness game
pGA,t, B X Parityq, which is defined as before, extended with the colouring function c for
the counters. It follows that A defines a function from the set of trees to NYt8u: rAs ptq
is the smallest N such that Eve wins has a strategy in GA,t ensuring BpNq X Parity.

Recall that the theory of regular cost functions aims at defining boundedness prop-
erties; hence functions f, g from the set of trees to N Y t8u are considered up to an
equivalence relation, which only preserves boundedness properties:

f « g if for all sets of trees X, fpXq is bounded ðñ gpXq is bounded.

Equivalently, f « g if there exists a non-decreasing function α : NÑ N such that f ď αpgq
and g ď αpfq.

We say that two B-parity automata A,B are equivalent if rAs « rBs.

Theorem 11 (The LoCo conjecture and alternating B-parity automata [Col13a])

If the LoCo conjecture holds, then for every alternating B-parity automaton, there
exists an equivalent non-deterministic B-parity automaton.

In [Col13a], Colcombet explained how to extend the above construction to B-parity
automata:

• the positionality of parity games is replaced by the LoCo conjecture,

• the determinisation over infinite words is replaced by history-deterministic automata.

Note that in this document we only consider the LoCo conjecture for Eve. A similar
conjecture can be made for Adam, and a similar construction implies that alternating
and non-deterministic S-parity automata are equivalent. Under the assumption that
both results are true, this implies that for every cost-MSO formula, there exists an equiv-
alent non-deterministic S-parity automaton, implying the decidability of the boundedness
problem for cost-MSO. As shown in [CL08b], this would imply the decidability of the
Rabin-Mostowski hierarchy, a long-standing open problem in automata theory.



54 Finite-memory Determinacy for Boundedness Games

3.3 Refined Statement: Structural Properties of the Arenas

In the previous subsection, we showed the motivations for introducing the LoCo con-
jecture. A closer inspection reveals that the LoCo conjecture is not used for general
arenas, but only for arenas underlying the acceptance game of a tree by an alternating
automaton.

In this subsection, we refine the LoCo conjecture by taking this remark into account.
First of all, the arenas underlying acceptance games are chronological:

Definition 13 (Chronological arena)

An arena is chronological if there exists a function r : V Ñ N which increases by one
on every edge: for all pv, v1q P E, rpv1q “ rpvq ` 1.

One can be even more precise. The arenas underlying acceptance games for alternating
automata over infinite words are word arenas:

Definition 14 (Word arena)

An arena is a word arena of width W if it is chronological, and for all i P N, the set
tv P V | rpvq “ iu has cardinal at most W .

In the previous subsection, we defined complete labelled trees. We here consider partial
unlabeled trees, which are given by T Ď t0, 1u˚, where T is prefix-closed and non-empty.

A (finite or infinite) branch π is a word in t0, 1u˚ or t0, 1uω. We say that π is a branch
of the tree T if π Ď T (or every prefix of π belongs to T when π is infinite) and π is
maximal satisfying this property.

Definition 15 (Thin tree [BIS13])

A tree is called thin if it has only countably many branches. Equivalently, a tree is
thin if, and only if, there exists a ranking function rank associating a countable ordinal
to every node, such that:

1. if n1 is a child of n, then rankpn1q ď rankpnq,

2. the set of nodes having the same rank is either a single node or an infinite branch
of the tree.

The arenas underlying acceptance games for alternating automata over infinite trees
are tree arenas:

Definition 16 (Tree and thin tree arena)

An arena is a tree arena of width W if there exists a function R : V Ñ t0, 1u˚ such
that:



3. The LoCo Conjecture 55

1. for all n P t0, 1u˚, the set tv P V | Rpvq “ nu has cardinal at most W .

2. for all pv, v1q P E, we have Rpv1q “ Rpvq ¨ ` for some ` P t0, 1u.

It is a thin tree arena if RpV q is a thin tree.

To avoid a possible confusion: in a tree arena, “vertices” refers to the arena and “nodes”
to RpV q, so if the arena has width W , then a node is a bundle of at most W vertices.

Observe that in both word and tree arenas, the width corresponds to the size of the
automaton. The following refined statement of the LoCo conjecture says that both the
trade-off function and the number of memory states can depend on the width of the arena.

Conjecture 2 (LoCo conjecture over tree arenas)

For all k, d,W P N, there exists mem P N and α : NÑ N such that for all boundedness
games with k counters, d` 1 colors and initial vertex v0 played over a tree arena of width
W , there exists a strategy σ using mem memory states ensuring Bpαpvalpv0qqq X Parity.

Note that both functions mem and α depend on k, d and W . In Section 6, we will
make this dependence explicit, by considering mem : N2 Ñ N and α : N4 Ñ N.





4. Examples 57

4 Examples

In this section, we consider special cases of the LoCo conjecture, and gather results
from the literature, new results and simple examples.

We start with B games in Subsection 4.1. We then consider two restrictions that make
the LoCo conjecture much simpler: finite arenas in Subsection 4.2, and temporal arenas
in Subsection 4.3.

We continue with B-reachability games in Subsection 4.4, then B-Büchi games in
Subsection 4.5. This case has been solved by Vanden Boom in [Van11] using a slicing
technique, and is crucial in the decidability proofs of both weak cost-MSO [Van11] and
quasi weak cost-MSO [BCKPV14].

The next step is B-CoBüchi games, considered in Subsection 4.6.
To conclude, we present in Subsection 4.7 a result obtained in collaboration with

Sophie Pinchinat and Olivier Serre and published in [FPS13], where we used ideas from
the slicing technique to obtain a positionality result for stochastic games over infinite
arenas.

4.1 The B games

The case of B games, with only counters, is well understood:

Theorem 12 (The LoCo conjecture for B games [CL08a; Col13a])

For all B games with k counters and initial vertex v0, Eve has a strategy ensuring
Bpkk ¨ valpv0q

2kq using k! memory states.

This result is obtained as the combination of two ideas:

• an adaptation of the Latest Appearance Record (LAR), reducing k counters into k
hierarchical counters [Col13a],

• a reduction from k hierarchical counter into one [CL08a],



58 Finite-memory Determinacy for Boundedness Games

The LAR construction implies a blow-up of k! memory states, and the bounds the value by
k ¨valpv0q

k. The second construction also implies a distortion of the value, from k ¨valpv0q
k

to kk ¨ valpv0q
2k.

The LAR construction extends to B-parity conditions mutatis mutandis, allowing to
assume without loss of generality that the counters are hierarchical. The second construc-
tion also has a general flavour, and extends to many cases. This is why when considering
examples and counter-examples, we usually have only one counter instead of k: the in-
teractions between the counters are not where the difficulty lies. Indeed, the difficulty
in understanding boundedness games is in the interactions between the counters and the
parity condition.

4.2 The Boundedness Games over Finite Arenas

The case of boundedness games over finite arenas is the very special, as in this setting
boundedness games are somehow equivalent to ω-regular games.

Theorem 13 (The LoCo conjecture for boundedness games over finite arenas)

For all boundedness games with k counters played over a finite arena, Eve has a
strategy ensuring Bpn ¨ 2kq X Parity with 2k memory states, where n “ |V |.

Furthermore, if valpv0q ă 8, then valpv0q ď n ¨ 2k.

We sketch the proof. The idea is to approximate the condition B by the following
ω-regular condition: for every counter, if it is incremented infinitely many times, then it
is reset infinitely many times.

This is an over-approximation: if the condition B is satisfied, then the latter is satisfied
as well. Furthermore, ω-regular games are bounded-memory determined; more specifically
here, there exists a strategy using 2k memory states, as the condition approximating BX
Parity is a conjunction of a Streett condition with k pairs together with a parity condition.
A simple pumping argument shows that this strategy also ensures Bpn ¨ 2kq X Parity.

Note that in this result, the trade-off function depends on the number of vertices in
the arena. We will see in Section 5 that this cannot be improved, as the LoCo conjecture
does not hold, even over finite arenas.

The same proof yields the following result for the non-uniform case:

Theorem 14 (Non-uniform boundedness games over finite arenas)

Non-uniform boundedness games over finite arenas are bounded-memory determined.



4. Examples 59

4.3 The Temporal Boundedness Games

The case of temporal boundedness games is a folklore result in the regular cost function
community. The temporal regular cost functions have been introduced in [CKL10], and
correspond to boundedness games where the counters can be incremented and reset, but
not left unchanged.

Formally, in a temporal boundedness game the colouring function for the counter
actions is c : E Ñ ti, ruk.

Theorem 15 (The LoCo conjecture for temporal boundedness games)

For all temporal boundedness games played over a chronological arena, Eve has a
strategy ensuring Bp2 ¨ valpv0qq X Parity using 2k memory states.

We sketch the proof. Let N “ valpv0q. The idea is to approximate the condition BpNq
by a safety condition; using the fact that the arena is chronological, we slice the arena
every N steps, and compose the arena with a memory structure of size 2k checking for
each counter whether it has been reset in the current slice.

Consider the following ω-regular condition: each counter is reset in each slice, and the
parity condition is satisfied. Observe that it is positionally determined, as a conjunction
of a safety and a parity condition. A strategy ensuring BpNq X Parity also ensures this
condition. Conversely, a strategy ensuring this condition ensures Bp2Nq X Parity.

This idea of slicing does not extend to the general case where counters can be left
unchanged. However, the slicing technique has a similar flavour, see Subsection 4.5.

4.4 The B-Reachability Games

v0 v

uN

uN−1 . . . u2

u1

v′0 v′

u′
N

u′
N−1

. . . u′
2

u′
1

F
iN iN iN

r iN−1

i

r

iN−2
iN−2 r

i
iN−1

r

r iN−1

i

r

iN−2
iN−2 r

i
iN−1

r

Figure 8: Eve has a 2 memory states strategy ensuring Bp2Nq Until Reach, but no
positional strategy for this.

For all N P N, we construct a B-reachability game, which is a variant of the one
presented in Figure 7 in Subsection 3.1. Recall that in the original game:

• valpv0q “ N , so Eve has a strategy ensuring BpNq Until Reach using N `1 memory
states,



60 Finite-memory Determinacy for Boundedness Games

• Eve has a positional strategy ensuring Bp2Nq Until Reach, which consists in going
directly to F .

The present game repeats the original game twice; it is represented in Figure 8. In this
game, the positional strategy cannot be repeated, as it would ensure Bp3Nq Until Reach.
Hence a second memory state is necessary to reset the value. The wisest choice is then to
pick the option uN{2.

• valpv0q “ N , so Eve has a strategy ensuring BpNq Until Reach using N `1 memory
states,

• Eve has a strategy ensuring Bp2Nq Until Reach using 2 memory states,

• no positional strategy ensures Bp2Nq Until Reach.

The bound 3N can be deemed acceptable; a simple extension of this example consists
in repeating K times the original game, yielding a game where:

• valpv0q “ N , so Eve has a strategy ensuring BpNq Until Reach using N `1 memory
states,

• Eve has a strategy ensuring Bp2Nq Until Reach using 2 memory states,

• no positional strategy ensures BpK ¨Nq Until Reach.

We can go further, and repeat the original game infinitely many time, yielding the B-Büchi
game described in the next subsection.

4.5 The B-Büchi Games

We consider now the case of B-Büchi games. The LoCo conjecture holds for B-Büchi
games over chronological arenas, and this is so far the best result known about the LoCo
conjecture over chronological arenas.

We start with the game represented in Figure 9, which is a variant of Figure 7 in
Subsection 3.1. In this game:

• Eve has a strategy ensuring BpNqXBüchi using N ` 1 memory states, which is the
diligent strategy that goes through each option uN , . . . , u1 in between each visit to
a Büchi vertex,

• Eve has a strategy ensuring Bp2Nq X Büchi using 2 memory states, which is the
careless strategy that alternates between uN{2 and the Büchi vertex,

• no positional strategy ensures B X Büchi.

The following result uses an interesting slicing technique, which is reminiscent of the
breakpoint construction of Miyano and Hayashi [MH84].



4. Examples 61

v

uN

uN−1 . . . u2

u1

F

iN

r iN−1

i

r

iN−2
iN−2 r

i
iN−1

r

Figure 9: Eve has a 2 memory states strategy ensuring Bp2NqXBüchi, but no positional
strategy for B X Büchi.

Theorem 16 (The LoCo for B-Büchi games over chronological arenas [Van11])

For all B-Büchi games over a chronological arena with k counter and initial vertices
v0, Eve has a strategy ensuring Bpkkvalpv0q

2kq X Büchi using 2k! memory states.

We illustrate the slicing technique on an example; the proof ideas will be slightly
generalised later, in the proof of the LoCo conjecture for boundedness games over word
arenas, to remove the least important color when it is odd, see Subsection 6.1.

v0

. . . . . .uN uN−1 u2 u1

F

v1...

iN

r

iN−1

i

r

iN−1

iN−2

r

i

iN−1

r

Figure 10: Eve has a 2 memory states strategy ensuring BpNq X Büchi.

Consider the game represented in Figure 10, which is yet another variant of Figure 7 in
Subsection 3.1. On a first approximation, it is just an unravelling of the game presented
in Figure 9: Eve tries to see infinitely many times Büchi vertices, but each time she does
so she has to pay N increments. To keep the counter value below the value N , she can
use one of the N options uN , . . . , u1; the `th option is available to her only if the counter
value is at most `, and sets the value to `´ 1.

The new feature of this game is that when Eve chooses such an option, Adam can
decide not to grant it, and instead to go directly to the Büchi vertex, without any action



62 Finite-memory Determinacy for Boundedness Games

on the counter. Although this is fine for Eve as she visits a Büchi vertex, she has to take
into account that the counter value has not been decremented.

As before, there is a diligent strategy ensuring BpNq X Büchi using N ` 1 memory
states, and a simple strategy ensuring Bp2Nq X Büchi using 2 memory states, which
chooses either uN{2 or the Büchi vertex. More surprisingly so, there is a strategy ensuring
BpNq X Büchi using 2 memory states, which is constructed by the slicing technique, and
that we describe now.

Fix a strategy ensuring BpNq XBüchi, let us say the diligent one. The slicing decom-
poses the arena horizontally; the slices are chosen so that the strategy ensures to reach a
Büchi vertex in each slice. In our case, the slices consist in N ` 1 consecutive steps, since
the diligent strategy chooses in turn uN , uN´1, ¨ ¨ ¨ , u1, the Büchi vertex, and then starts
over, so it visits a Büchi vertex every N ` 1 steps.

The slicing techniques constructs two positional strategies for playing in each slice:

• the first is the waiting strategy, that always plays uN ,

• the second is the active strategy, that plays uN , uN´1, ¨ ¨ ¨ , u1 and the Büchi vertex.
Note that since each slice contains N ` 1 steps, if the active strategy starts at the
beginning of a slice, it will visit a Büchi vertex before the next slice.

The 2 memory states strategy constructed by the slicing technique alternates between the
waiting and the active strategy, as follows:

• when reaching a new slice, it switches to the active strategy,

• if at some point Adam does not grant an action and imposes a visit to the Büchi
vertex, then it switches to the waiting strategy until a new slice.

This strategy ensures BpNq X Büchi using 2 memory states.

4.6 The B-CoBüchi Games

The case of B-CoBüchi games is the first case for which we do not know whether the
LoCo conjecture holds over chronological arenas, or even tree arenas. Here we give two
examples:

• A B-CoBüchi game over a word arena where Eve has no bounded-memory strategy
to ensure Bpvalpv0qq X CoBüchi,

• A B-CoBüchi game over a tree arena where Eve has no positional strategy to ensure
B X CoBüchi.

In other words, the first example shows that a trade-off function is necessary for B-
CoBüchi games over word arenas, and the second example shows that 2 memory states is
necessary for B-CoBüchi games over tree arenas.

We start with the game represented in Figure 11. In this game:



4. Examples 63

F

. . . . . .uN uN−1 u2 u1

w1

F

ℓ1

ℓ2

iN

iN

v1

v2

... ...

...

iN

iNr

iN−1

i

r

iN−1

iN−2

r

i

iN−1

r

Figure 11: Eve has a 2 memory states strategy ensuring Bp2Nq X CoBüchipF q, but no
strategy using less than N ` 1 memory states ensures BpNq X CoBüchipF q.

• valpv0q “ N , so Eve has a strategy ensuring BpNq XCoBüchi using N ` 1 memory
states,

• Eve has a positional strategy ensuring Bp2 ¨Nq X CoBüchi,

• no strategy using less than N ` 1 memory states ensures BpNq X CoBüchi.

At a very high level, this game is again a variant of Figure 7 in Subsection 3.1: the
counter value is initialized at N , and Eve has to go through the N options uN , uN´1, . . . , u1
to decrease its value one by one, until the value reaches 0 and she can pay N increments
to go to the left, where nothing happens anymore.

The implementation of this idea is different, as it here uses a CoBüchi condition
instead of the Büchi condition in the previous section. Note that although it has not been
presented this way, one can construct a word arena simulating Figure 11, of constant
width (namely, 5).

We now look at the following game, played over a tree arena. First, Adam chooses a
value n and goes to the tree arena tn. The tree arena tn`1 is represented in Figure 12;
it leads to tn. In the tree arena t0, the play stops. Although this is again not clear from
the representation in Figure 12, one can construct a tree arena simulating Figure 12, of
constant width (namely, 3).

For the sake of explanation, we refer to Figure 13, which is behaviourally equivalent to
Figure 12. What happens between tn`1 and tn is pretty simple: Eve pays N increments.
From un, she can loop and reset the value, and proceeds to tn.

The reasonable strategy is of course to first reset, and then proceeds; this requires 2
memory states. A positional strategy would either reset forever, or never, in which case
the counter value would grow unbounded.

To summarise:

• valpv0q “ N , and Eve has a strategy ensuring BpNq X CoBüchi using 2 memory
states,



64 Finite-memory Determinacy for Boundedness Games

tn+1 F

F

F

F

F

tn

tn

tn

tn

tn

iN

iN

iN

iN

iN

r

r

r

r

... ... ...
Figure 12: Eve has a 2 memory states strategy ensuring BpNqXCoBüchi, but no positional
strategy ensures B X CoBüchi.

tn+1 F tn
iN

r

Figure 13: A behaviourally equivalent arena.

• no positional strategy ensures B X CoBüchi.

4.7 Application of the Slicing Technique for Stochastic Games

In this subsection, we report on a result obtained in collaboration with Sophie Pinchi-
nat and Olivier Serre and published in [FPS13]. Note that the paper [FPS13] actually
deals with emptiness checking of alternating automata, and in particular introduces the
class of alternating qualitative automata; the corollary of the positionality result that we
present here is the decidability of the emptiness problem for alternating qualitative Büchi
automata.

We do not develop this further, and focus on the positionality result, as it makes use
of the slicing technique, discussed in Subsection 4.5.

Before stating the result, we define stochastic games:

Definition 17 (Stochastic game)

A stochastic arena is an arena whose vertex set is divided into three subsets: vertices
controlled by Eve pVEq, vertices controlled by Adam pVAq, and random vertices pVRq. It
additionally features a probabilistic transition ∆ : VR Ñ DpV q, where DpV q is the set of
distributions over V (see Subsection 1.1 for the definition of distributions).



4. Examples 65

By convention, the set E of edges is such that for every v P VR and v1 P V , we have
pv, v1q P E if, and only if, ∆pvqpv1q ą 0.

A pair of strategies σ for Eve and τ for Adam induces a set of infinite plays, which
is equipped with the appropriate probability measure. For a measurable event W , we
denote Pσ,τ pW q its probability.

A strategy σ for Eve is said almost-surely winning for the condition W if for all
strategies τ of Adam, we have Pσ,τ pW q “ 1.

Note that we did not extend the definition of strategies to include randomized strate-
gies, which are strategies σ : E˚ ¨ VE Ñ DpEq. Since here pure strategies are sufficient,
i.e. strategies σ : E˚ ¨ VE Ñ E, we will consider only them.

Theorem 17 (Positionality for Stochastic Büchi Games with Almost-Sure Semantics)

For all stochastic Büchi games played over a chronological arena with finite out-degree,
for all initial vertices, if Eve has an almost-surely winning strategy, then she has a posi-
tional almost-surely winning strategy.

We will use the following result for finite arenas. We state it here in a rather weak form
(with the chronological assumption), as it can be easily proved by a backward induction,
whereas the proof for general finite arenas is more involved. We refer to [Con92] for the
original proof, and to [Kuc̆11] for a nice survey.

Lemma 12 (Positionality for Stochastic Reachability Games over Finite Arenas)

For all stochastic reachability games played over a chronological and finite arena, if
for every vertex v0 in a given subset X of vertices Eve has strategy ensuring to win with
probability at least 1

2
from v0, then she has a uniform positional strategy ensuring to win

with probability at least 1
2
from X.

We first sketch the proof. The main idea is to note that if Eve can ensure to reach
a Büchi vertex with probability 1 from some initial vertex, then there exists a bound k
such that she can ensure to reach a Büchi vertex with probability at least 1

2
within k steps

against any strategy of Adam.
This allows to “slice” the arena into infinitely many disjoint finite arenas: in each slice

Eve plays to reach a Büchi vertex with probability at least 1
2
. Since each slice forms a

finite subarena, Eve can use positional strategies there thanks to Lemma 12.
The resulting strategy consists in playing in turns the above positional strategies; since

each slice gives a probability to reach a Büchi vertex of at least 1
2
before proceeding to

the next, the probability to reach infinitely many Büchi vertices is 1.

Proof. We fix an initial vertex and an almost-surely winning strategy σ from there. Note
that σ is almost-surely winning from all reachable vertices; from now on we restrict to
such vertices.



66 Finite-memory Determinacy for Boundedness Games

We first claim that for every vertex v, there exists k P N such that for all strategies τ
of Adam we have Pσ,τ pV ďk ¨ F ¨ V ωq ě 1

2
from v, i.e. σ ensures to reach a Büchi vertex

within k steps with probability at least 1
2
from v.

Towards contradiction, assume that such a k does not exist. Hence, for each k there
exists a strategy τk such that Pσ,τkpV ďk ¨ F ¨ V ωq ă 1

2
. From the sequence pτkqkPN we

extract a strategy τ8 that is consistent, for any k P N, with infinitely many τh on its k
first moves. Note that this is possible since the arena has finite out-degree.

Consider the pair of strategies σ and τ8. For k P N, there exists h ě k such that

Pσ,τ8pV
ďk
¨ F ¨ V ω

q “ Pσ,τhpV
ďk
¨ F ¨ V ω

q ď Pσ,τhpV
ďh
¨ F ¨ V ω

q ď
1

2
.

Since V ˚ ¨F ¨V ω “
Ť

kPN V
ďk ¨F ¨V ω, and the sequence pV ďk ¨F ¨V ωqkPN is increasing for

set inclusion, this implies that Pσ,τ8pV ˚ ¨ F ¨ V ωq “ limk Pσ,τ8pV
ďk ¨ F ¨ V ωq ď 1

2
, which

leads a contradiction with σ being almost-surely winning. This proves the claim.

For k ă k1, define Grk,k1s the arena induced by G restricted to vertices of rank in rk, k1s.
Since G has finite out-degree, there are finitely many vertices of rank in rk, k1s, hence
Grk,k1s is finite.

We define inductively a sequence of ranks pkiqiPN together with a sequence of strategies
pσrki,ki`1rqiPN such that for all i P N, σrki,ki`1r is a positional strategy, defined on all vertices
of rank rki, ki`1r, such that from all vertices of rank ki, for all strategies τ of Adam, we
have Pσrki,ki`1r

,τ pV
ď` ¨ F ¨ V ωq ě 1

2
, where ` “ ki`1 ´ ki.

Set k0 “ 0. Assume the first i ranks and strategies are defined. For each vertex
of rank ki, the above claim implies the existence of a bound; since there are finitely
many such vertices, we can consider the maximum of those bounds, and denote it by
ki`1. By construction, from all vertices of rank ki, for all strategies τ of Adam, we have
Pσrki,ki`1r

,τ pV
ď` ¨ F ¨ V ωq ě 1

2
, where ` “ ki`1 ´ ki. In other words, Eve has a strategy in

the reachability game played over the chronological and finite arena Grki,ki`1s ensuring to
win with probability at least 1

2
, so thanks to Lemma 12 there exists a uniform positional

strategy ensuring to reach a Büchi vertex with probability at least 1
2
, denote it σrki,ki`1r.

This concludes the inductive construction.
The arenas Grki,ki`1s are called slices.
Now define σ8 as the disjoint union of the strategies σrki,ki`1r. This is a positional

strategy; we argue that it is almost-surely winning. Indeed, since σ8 ensures that go-
ing through any slice, a Büchi vertex will be visited with probability at least 1

2
, the

Borel-Cantelli Lemma implies that infinitely many Büchi vertices will be visited with
probability 1.



5. Counter Examples 67

5 Counter Examples

In this section, we show that the LoCo conjecture does not hold, even for finite arenas.
This is a joint work with Florian Horn, Denis Kuperberg and Michał Skrzypczak [FHKS15].

Theorem 18 (The LoCo conjecture does not hold)

For all K, for all N , there exists a B-reachability game played over a finite arena with
one counter and an initial vertex such that:

• there exists a 3K memory states strategy ensuring BpKpK ` 3qq Until Reach,

• no K ` 1 memory states strategy ensures BpNq Until Reach.

We proceed in two steps. The first is an example giving a lower bound of 3 explained
in Subsection 5.1, and the second is a nesting of this first example, given in Subsection 5.2.

We then show how to adapt the example to prove that non-uniform boundedness
games are not finite-memory determined, in Subsection 5.3.

5.1 A first lower bound of 3

We start with a first lower bound of 3. The arena G1 is represented in Figure 14. The
condition is B Until Reach. In this game, Eve is torn between going to the right to reach
F , which implies incrementing the counter, and going to the left, to reset the counter.
The actions of Eve from the vertex un are:

• increment, and go one step to the right, to vn´1,

• reset, and go two steps to the left, to vn`2.

The actions of Adam from the vertex vn are:

• play, and go down to un,

• skip, and go to vn´1.



68 Finite-memory Determinacy for Boundedness Games

v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 F

u9 u8 u7 u6 u5 u4 u3 u2 u1 u0

i i i i i i i i i i

r r r r r r r r

Figure 14: Part of the game pG1, B Until Reachq, where Eve needs 3 memory states.

Formally (note that the colouring functions c : E Ñ tε, i, ru and c : V Ñ t0, 1u are
definitely together with the graph here):

V “

"

VE “ tun | n P Nu Y tF u
VA “ tvn | n P Nu

E “

$

’

’

&

’

’

%

tvn`1 ÝÑ vn | n P Nu
Y tvn ÝÑ un | n P Nu
Y tun`1

i
ÝÑ vn | n P Nu Y tu0

i
ÝÑ F u

Y tun
r
ÝÝÑ vn`2 | n P Nu

Proposition 1 (A lower bound of 3)

In pG1, B Until Reachq:

• Eve has a 4 memory states strategy ensuring Bp3q Until Reach,

• Eve has a 3 memory states strategy ensuring Bp4q Until Reach,

• For all N , no 2 memory states strategy ensures BpNq Until Reach from vN .

Proof. The first item follows from Lemma 11. However, to illustrate the properties
of the game G1 we will provide a concrete strategy with 4 memory states that en-
sures Bp3q Until Reach. The memory states are i1, i2, i3 and r, linearly ordered by
i1 ă i2 ă i3 ă r. With the memory states i1, i2 and i3, the strategy chooses to in-
crement, and updates its memory state to the next memory state. With the memory
state r, the strategy chooses to reset, and updates its memory state to i1. This strategy
satisfies a simple invariant: it always resets to the right of the previous reset, if any.

v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 F

u9 u8 u7 u6 u5 u4 u3 u2 u1 u0

i i i i i i i i i i

r r r r r r r r

Figure 15: Illustration of the 3 memory states strategy in G1.

We show how to save one memory state, at the price of increasing the bound by
one: we construct a 3 memory states strategy ensuring Bp4q Until Reach. The idea, as



5. Counter Examples 69

represented in Figure 15, is to color every second vertex and to use this information to
track progress. The 3 memory states are called i, j and r. The update is as follows: the
memory state is unchanged in uncoloured (white) states, and switches from i and j and
from j to r on gray states. The strategy is as follows: in the two memory states i and j,
Eve chooses to increment, and in r she chooses to reset. As for the previous strategy, this
strategy ensures that it always resets to the right of the previous reset, if any.

We now show that 2 memory states is not enough. Assume towards contradiction that
there exists a 2 memory states strategy ensuring BpNq Until Reach from v2N , for some
N , using the memory structureM.

We first argue that without loss of generality we can assume that the strategy σ is
normalized, i.e. satisfies the following three properties:

1. for all n ď 2N , there is at least one memory state that chooses increment from un,

2. for all n ď 2N but at most N of them, there is at least one memory state that
chooses reset from un,

3. no play from pv2N ,m0q consistent with σ comes back to v2N .

Indeed:

1. Assume towards contradiction that this is not the case, then there exists n such
that Eve resets from un with both memory states; Adam can loop around this un,
contradicting that σ ensures to reach F .

2. Assume towards contradiction that there are at least N ` 1 vertices un from which
Eve increments from un with both memory states; Adam can force N`1 increments
without a reset, contradicting that σ ensures BpNq.

3. For m and m1 two memory states, we say that m ă m1 if there exists a play from
pv2N ,m

1q consistent with σ which reaches pv2N ,mq. Since σ ensures to reach F , the
graph induced by ă is acyclic. We can take as initial memory state from v2N the
smallest memory state which is smaller than or equal to m0.

We fix the strategy of Adam which skips if, and only if, both memory states of σ
choose to increment. Consider the play from v2N consistent with σ and this strategy of
Adam. This means that for all vertices un that are reached, there is one memory state that
resets, and one that increments. Since σ ensures BpNq and there are at most N positions
skipped, at some point Eve chooses to reset. From there two scenarios are possible:

• Either Eve keeps resetting until she reaches v2N , contradicting that σ is normalized,

• Or she starts incrementing again, which means that she uses the same memory state
than she did before the reset, implying that there is a loop, contradicting that σ
ensures to reach F .



70 Finite-memory Determinacy for Boundedness Games

5.2 General lower bound

We now push the example above further.
A first approach is to modify G1 by increasing the length of the resets, going ` steps to

the left rather than only 2. However, this does not give a better lower bound: there exists
a 3 memory states strategy in this modified game that ensures twice the value, following
the same ideas as presented above.

v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 F

u1,9 u1,8 u1,7 u1,6 u1,5 u1,4 u1,3 u1,2 u1,1 u1,0

u2,10 u2,8 u2,6 u2,4 u2,2 u2,0

i i i i i i i i i i

i i i i i i

r r r r r r r r

r r r

Figure 16: The game with two levels.

We construct GK,N , a nesting of G1 withK levels. Unlike G1, it is finite, as we only keep
a long enough “suffix”. In Figure 16, we represented the interaction between two levels.
Roughly speaking, the two levels are independent, so we play both games at the same
time. Those two games use different timelines. For instance, in Figure 16, the bottom
level is based on p`1,´2q (an increment goes one step to the right, a reset two steps to
the left), and the top level is based on p`2,´4q. This difference in timeline ensures that
a strategy for Eve needs to take care somehow independently of each level, ensuring that
the number of memory states depends on the number of levels.

To give the formal definition of GK,N , we need two functions, dpK,Nq “ pN ` 1qK´1

and

npK ` 1, Nq “

#

2N if K “ 0,

pN ` 1qK`1 ` pN ` 1q ¨ npK,Nq otherwise.

We now define GK,N (note that the colouring functions c : E Ñ tε, i, ru and c : V Ñ
t0, 1u are definitely together with the graph here):

V “

"

VE “ tup,n | p P t1, . . . , Ku, n P t0, . . . , npK,Nquu Y tF u
VA “ tvn | n P t0, . . . , npK,Nquu

E “

$

’

’

’

’

’

&

’

’

’

’

’

%

tvn`1 ÝÑ vn | nu
Y tvn ÝÑ up,n | p, nu

Y tup,n`dpp,Nq
i
ÝÑ vn | p, nu

Y tup,0
i
ÝÑ F | pu

Y tup,n
r
ÝÝÑ vn`pp`1q¨dpp,Nq | p, nu

Observe that G1,N is the “suffix” of length np1, Nq of G1, for all N .



5. Counter Examples 71

Proposition 2 (General lower bound)

In pGK,N , B Until Reachq:

• Eve has a 3K memory states strategy ensuring BpKpK ` 3qq Until Reach,

• No K ` 1 memory states strategy ensures BpNq Until Reach from vnpK,Nq.

Proof. We start by constructing a strategy with 3K memory states ensuring BpKpK `

3qq Until Reach. To this end, we construct for the pth level a strategy with 3 memory
states ensuring Bp2pp ` 1qq Until Reach, using the same ideas as for G1, colouring every
pp`1q¨dpp,Nq vertices. Now we construct the general strategy by playing independently in
each copy, except that when a reset is taken, all memory structures update to the (initial)
memory state i. This way, it ensures that it always resets to the right of the previous
reset, if any. It uses 3K memory states, and ensures Bp

řK
p“1 2 ¨ pp` 1qq Until Reach, i.e.

BpKpK ` 3qq Until Reach.

We now show that K ` 1 memory states is not enough. We proceed by induction on
K. The case K “ 1 follows from Proposition 1.

Consider a strategy ensuring BpNq Until Reach from vnpK`1,Nq in GK`1,N , for some N ,
using the memory structureM. We will prove that it has at least K ` 2 memory states.
To this end, we will show that it induces a strategy ensuring BpNq Until Reach in GK,N ,
which uses one less memory state. The induction hypothesis will conclude.

First of all, for the sake of readability we will use nK`1 “ npK ` 1, Nq, nK “ npK,Nq
and d “ dpK ` 1, Nq.

Consider the N ` 1 plays, for k P t0, . . . , Nu, where from vnK`1´k¨pnK`dq Adam skips
nK times and then plays:

vnK`1´k¨pnK`dq
skip
ÝÝÑ vnK`1´k¨pnK`dq´nK

play
ÝÝÑ uK`1,nK`1´k¨pnK`dq´nK .

(Note that this is well defined because by definition, nK`1 ´ pN ` 1q ¨ pnK ` dq “ 0.) We
argue that there exists k P t0, . . . , Nu and a memory state m P M such that if σ starts
the kth play with the memory state m, then σ resets in uK`1,nK`1´k¨pnK`dq´nK . Assume
towards contradiction that this is not the case, then by concatenating all plays with the
matching memory state we get a play starting from vnK`1

with the memory state m0,
which is consistent with σ and contains N ` 1 increments without resets, contradicting
that σ ensures BpNq.

Let k P t0, . . . , Nu and m P M satisfying the above property: denote n “ nK`1 ´ k ¨
pnK ` dq, in the play from pvn,mq where Adam skips nK times and then plays, leading
to uK`1,n´nK , the strategy σ resets. Up to renaming, we can assume that the memory
state assumed along this play is always the same, denoted m. Observe that resetting from
uK`1,n´nK leads to the left of vn, since by definition pK ` 2q ¨ d ě nK .

Consider the memory state assumed when starting from pvnK`1
,m0q, Adam skips until

he reaches vn; denote it m0 as well, by assumption σ ensures BpNq Until Reach from
pvn,m0q. Furthermore, without loss of generality we can assume that no play from pvn,m0q

consistent with σ comes back to vn, following the same proof as for G1. This implies that
no plays from pvn,m0q consistent with σ reach pvn1 ,mq for some n1 P tn ´ nK , . . . , nu, as
from there Adam would lead to uK`1,n´nK where σ would reset, leading to the left of vn,
from where Adam would lead to vn by skipping an appropriate number of times.



72 Finite-memory Determinacy for Boundedness Games

The strategy σ induces a strategy σ1 using one less memory state, which ensures
BpNq Until Reach1 from vn, where F 1 “ tvn1 | n1 ă n´ nKu. The strategy σ1 can be seen
as a strategy in GK,N from vnK , so the induction hypothesis concludes.

5.3 Corollary

Theorem 19 (Non-uniform boundedness games are not finite-memory determined)

There exists a B-Büchi game and an initial vertex such that:

• Eve has a strategy ensuring B X Büchi,

• no finite-memory strategy ensures B X Büchi.

Proof. We construct a B-Büchi game, relying on the arenas GK,N from Theorem 18. In
this game:

• first, Adam chooses a value K, that will be fixed for the whole play,

• then the game proceeds by rounds (possibly infinitely many). In a round, Adam
chooses a value N and the game continues in GK,N ; upon reaching F the round ends
and the counter is reset.

The condition is B X Büchi; the Büchi condition is equivalent to playing infinitely many
rounds.

We first show that Eve has a winning strategy. Thanks to Theorem 18 she has a
strategy ensuring BpKpK ` 3qq Until Reach in GK,N ; note that the strategy is different
for different values of N , but the bound is independent of N . Playing this strategy ensures
B X Büchi.

We now show that there is no finite-memory winning strategy. Assume towards con-
tradiction that there is such a winning strategy, using mem memory states. Consider
the strategy of Adam which consists in first choosing K “ mem, and then an un-
bounded sequence for N . Thanks to Theorem 18, the strategy in GK,N does not ensure
BpNq Until Reach, so either F is never reached or the counter value exceeds N . It follows
that either the Büchi condition is not satisfied, or the counter values are unbounded,
leading to a contradiction.



6. Thin Trees 73

6 Thin Trees

In this section, we prove that the LoCo conjecture holds for the special case of
thin tree arenas. This is a joint work with Florian Horn, Denis Kuperberg and Michał
Skrzypczak [FHKS15].

Theorem 20 (The LoCo conjecture for thin tree arenas)

There exist two functions mem : N2 Ñ N and α : N4 Ñ N such that for all boundedness
games with k counters and d ` 1 colors over thin tree arenas of width W , for all initial
vertices v0, Eve has a strategy to ensure Bpkk ¨ valpv0q

2k ¨αpd, k,W ` 2, valpv0qqqXParity,
with W ¨ 3k ¨ 2k! ¨mempd, kq memory states.

The functions α and mem are defined inductively. Since the proof will work by induc-
tion on the number of colors, removing the least important color, we define four functions:

• α0 and mem0 when the least important color is 0, so the set of colors is t0, . . . , du,

• α1 and mem1 when the least important color is 1, so the set of colors is t1, . . . , du:

α0pd, k,W,Nq “ α1pd´ 1, k ` 1, 3W,W ¨ pN ` 1qkq,

α1pd, k,W,Nq “

#

kk ¨N2k if d “ 2,

α0pd, k, 2W,Nq otherwise,

mem0pd, kq “ 2 ¨mem1pd´ 1, k ` 1q,

mem1pd, kq “

#

2 ¨ k! if d “ 1,

2 ¨mem0pd, kq otherwise.

Define α “ α0 and mem “ mem0.
As an intermediate result, in Subsection 6.1 we will prove that the conjecture holds

for the special case of word arenas.



74 Finite-memory Determinacy for Boundedness Games

6.1 Existence of a trade-off for word arenas

This subsection is devoted to proving the following result:

Proposition 3 (The LoCo conjecture over word arenas)

There exists two functions mem : N2 Ñ N and α : N4 Ñ N such that for all B-parity
games over word arenas of width W with initial vertex v0, Eve has a strategy to ensure
Bpαpd,W, k, valpv0qqq X Parity, with mempd, kq memory states.

We prove Proposition 3 by induction on the colors in the parity condition. Consider
a B-parity game G. We examine two cases, depending whether the least important color
(i.e the smallest) that appears is odd or even:

• if the set of colors is t1, . . . , du, then we construct a B-parity game G 1 using t2, . . . , du
as colors,

• if the set of colors is t0, . . . , du, then we construct a B-parity game G 1 using t1, . . . , du
as colors.

In both cases, we obtain from the induction hypothesis a winning strategy using few
memory states in G 1, which we use to construct a winning strategy using few memory
states in G. The base case is given by Büchi conditions, and follows from Theorem 16.

Let k be the number of counters, W the width of the word arena G, and v0 the initial
vertex. The ranking function is denoted r : V Ñ N, and the two colouring functions
c : E Ñ tε, i, ruk and Ω : V Ñ t0, . . . , du (or t1, . . . , du). Denote N “ valpv0q.

6.1.1 Removing the least important color: the odd case
The first case we consider is when the least important color is 1. The proof that

follows is an extension of the slicing technique developed by Vanden Boom [Van11] and
illustrated in Subsection 4.5. Note that if 1 is the only color in the arena, then Eve cannot
win and the result is true; we now assume that the color 2 also appears in the arena.

Let σ be a strategy ensuring BpNq X Parity from v0. Without loss of generality we
restrict ourselves to vertices reachable with σ from v0.

Consider a vertex v and Tv the tree of plays consistent with σ. The strategy σ ensures
the parity condition, so in particular every branch in Tv contains a vertex of color greater
than 1. We prune the tree Tv by cutting paths when they first meet a vertex of color
greater than 1. Since the arena has finite out-degree, so is Tv and by König’s Lemma the
tree obtained is finite. Thus, to every vertex v, we can associate a rank rv such that the
strategy σ ensures that all paths from v contain a vertex of color greater than 1 before
reaching the rank rv.

For k ă k1, define Grk,k1s the arena induced by G restricted to vertices of rank in rk, k1s.
Since G has finite out-degree, there are finitely many vertices of rank in rk, k1s, hence
Grk,k1s is finite.

We define inductively a sequence of ranks pkiqiPN, such that for all i P N, the strategy
σ ensures that from all vertices of rank ki, a vertex of color greater than 1 is seen before



6. Thin Trees 75

reaching the rank ki`1. We first set k0 “ rv0 . Assume ki has been defined, we define ki`1
as maxvPV trv | rpvq “ kiu.

The arenas Grki,ki`1s are called slices.
Now we equip G with a memory structureM of size 3 which keeps track whether or

not a vertex of color greater than 1 has been reached in the current slice. Formally, M
has three memory states:

• the memory state @1 means that all vertices visited in the current slice have color 1,

• the memory state Dą1 means that some vertex visited in the current slice has color
greater than 1,

• the memory state K means that a whole slice has been crossed visiting only vertices
of color 1.

The initial state is @1 if Ωpv0q “ 1, and Dą1 otherwise. The update function is defined as
follows:

µpm, pv, v1qq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Dą1 if Ωpv1q ą 1,

Dą1 if m “ Dą1 and rpv1q R tki | i P Nu,
@1 if Ωpv1q “ 1,m “ @1 and rpv1q R tki | i P Nu,
@1 if Ωpv1q “ 1 and rpv1q P tki | i P Nu,
K otherwise.

We construct the expanded arena G ˆM equipped with the colouring function given
by the three colouring functions c1 : E ˆM Ñ tε, i, ruk, Ω1 : V ˆM Ñ t2, . . . , du and
cS : V ˆM Ñ t0, 1u defined by:

c1pe,_q “ cpeq.

Ω1pv,_q “

#

Ωpvq if Ωpvq ‰ 1,

2 otherwise.

cSp_,mq “

#

1 if m “ K,

0 otherwise.

We equip G ˆM with the condition B X Parity X Safe, where B uses the colouring
function c, Parity uses the colouring function Ω1, and Safe uses the colouring function cS.

The correctness of the construction is stated in the following lemma:

Lemma 13 (Correctness of the construction)

1. There exists a strategy σ1 in G ˆM ensuring BpNq X ParityX Safe.

2. Assume there exists a strategy σ1 in G ˆM ensuring BpN 1q X Parity X Safe using
K memory states, then there exists a strategy σ in G ensuring BpN 1qXParity using
2K memory states.

Proof.



76 Finite-memory Determinacy for Boundedness Games

1. The strategy σ1 that simulates σ, ignoring the memory structureM, ensures BpNqX
ParityX Safe by construction.

2. Let σ1 be a strategy in G ˆM ensuring BpN 1qXParityX Safe usingM1 as memory
structure. This induces σ using M ˆM1 as memory structure. Since plays of σ
and of σ1 are in one-to-one correspondence, σ ensures BpN 1q X Parity. Further, the
safety condition satisfied by σ1 ensures that infinitely often a vertex of color greater
than 1 is seen (specifically, in each slices), so σ satisfies Parity.

Note that since σ is winning, it does not make use of the memory state K, so it uses
only 2K memory states.

We conclude thanks to the induction hypothesis and Lemma 3 (to handle the additional
safety condition).

6.1.2 Removing the least important color: the even case

The second case we consider is when the least important color is 0.
We explain the intuition for the case of CoBüchi conditions, i.e if there are only colors

0 and 1. Recall that F “ tv | Ωpvq “ 1u. Define S0 “ A0 “ H, and for i ě 1:

"

Si`1 “ tv P V | there exists σ that ensures not to visit F before Ai from v, if at allu
Ai`1 “ tv P V | there exists σ that ensures to reach Si`1 from vu.

We have
Ť

iPN Si “ WinEpCoBüchiq. A winning strategy based on these sets has two
aims: in Si it avoids F (“Safe” mode) and in Ai it attracts to the next Si (“Attractor”
mode). The key property is that since the arena is a word arena of width W where Eve
can bound the counters by N , she only needs to alternate between modes a number of
times bounded by a function of N and W . In other words, the sequence pYiqiPN stabilises
after a number of steps bounded by a function of N and W . (A remote variant of this
bounded-alternation fact can be found in [KV01].) Hence the CoBüchi condition can be
checked using a new counter and a Büchi condition, as follows.

There are two modes: “Safe” and “Attractor”. The Büchi condition ensures that the
“Safe” mode is visited infinitely often. In the “Safe” mode, only vertices of colors 0 are
accepted; visiting a vertex of color 1 leads to the “Attractor” mode and increments the
new counter. At any time, she can reset the mode to “Safe”. The counter is never reset,
so to ensure that it is bounded, Eve must change modes finitely often. Furthermore, the
Büchi condition ensures that the final mode is “Safe”, implying that the CoBüchi condition
is satisfied.

For the more general case of parity conditions, the same idea is used, but as soon as
a vertex of color greater than 1 is visited, then the counter is reset.

Define G 1:

V 1 “

#

V 1E “ VE ˆ tA, Su Y V

V 1A “ VA ˆ tA, Su.



6. Thin Trees 77

After each edge followed, Eve is left the choice to set the mode to S. The set of choice
vertices is denoted V . We define E 1 together with c1 : E Ñ tε, i, ruk`1:

E 1 “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

pv,Aq
cpv,v1q,ε
ÝÝÝÝÝÝÑ v1 if pv, v1q P E,

pv, Sq
cpv,v1q,ε
ÝÝÝÝÝÝÑ pv1, Sq if pv, v1q P E and Ωpv1q “ 0,

pv, Sq
cpv,v1q,i
ÝÝÝÝÝÝÑ pv1, Aq if pv, v1q P E and Ωpv1q “ 1,

pv, Sq
cpv,v1q,r
ÝÝÝÝÝÝÑ pv1, Sq if pv, v1q P E and Ωpv1q ą 1,

v
ε
ÝÝÑ pv,Aq and v ε

ÝÝÑ pv, Sq

Equip the arena G 1 with the colouring function Ω1 defined by

Ω1pv,mq “

$

’

&

’

%

1 if m “ A,

2 if Ωpvq “ 0 and m “ S,

Ωpvq otherwise.

Before stating and proving the equivalence between G and G 1, we formalise the property
mentioned above, that in word arenas Eve does not need to alternate an unbounded
number of times between the modes “Safe” and “Attractor”.

Lemma 14 (Bounded alternation in word arenas)

Let G be a word arena of width W , and a subset F of vertices such that every path
in G contains finitely many vertices in F . Define the following sequence of subsets of
vertices: X0 “ H, and for i ě 0:

$

’

&

’

%

X2i`1 “

"

v

ˇ

ˇ

ˇ

ˇ

all paths from v contain no vertices in F
before the first vertex in X2i, if any

*

,

X2i`2 “
 

v
ˇ

ˇ all paths from v are finite or lead to X2i`1

(

.

We have X0 Ď X1 Ď X2 Ď ¨ ¨ ¨ , and X2W covers the whole arena.

Proof. We first argue that the following property, denoted p:q, holds: “for all i ě 0, if
X2i does not cover the whole arena, then X2i`1zX2i´1 contains an infinite path”. (For
technical convenience X´1 “ H.)

Let v R X2i. We consider Gv where v is the initial vertex, and prune it by removing the
vertices from X2i´1, as well as vertices which do not have an infinite path after removing
X2i´1; denote by G 1v the arena we get. Note that for any u R X2i, the vertex u belongs
to G 1v, so G 1v contains an infinite path. We claim that there exists a vertex v1 in G 1v such
that all paths from v1 contain no vertices F . Indeed, assume towards contradiction that
from every node in G 1v, there exists a path to a vertex in F . Then there exists a path that
visits infinitely many vertices in F , contradicting the assumption on G. Any infinite path
from v1 is included into X2i`1zX2i´1, hence the latter contains an infinite path.

We conclude using p:q: assume towards contradiction that X2W does not cover the
whole arena. Then G contains W ` 1 pairwise disjoint paths, contradicting that it has
width W .



78 Finite-memory Determinacy for Boundedness Games

The correctness of the construction is stated in the following lemma:

Lemma 15 (Correctness of the construction)

1. There exists a strategy σ1 in G 1 that ensures BpW ¨ pN ` 1qkq X Parity.

2. Assume there exists a strategy σ1 in G 1 ensuring BpN 1q X Parity using K memory
states, then there exists a strategy σ in G ensuring BpN 1qXParity using 2K memory
states.

Proof.

1. Thanks to Lemma 11, there exists a strategy σ in G ensuring BpNqXParity using a
memory structureM of size pN ` 1qk. We construct a strategy σ1 in G 1 simulating
σ. We now explain when does σ1 chooses to set the “Safe” mode.

We consider the arena GˆM, it is a word arena of width W ¨ pN ` 1qk, and restrict
it to the moves prescribed by σ, obtaining the word arena Gσ of width W ¨ pN ` 1qk.
Without loss of generality we restrict Gσ to vertices reachable with σ from the
initial vertex pv0, 0q. Consider a vertex v of color 0 or 1, and Gvσ the word arena
obtained by considering v as initial vertex and pruned by cutting paths when they
first meet a vertex of color greater than 1. Since the strategy σ ensures that the
parity condition is satisfied, every infinite path in Gvσ contains finitely many vertices
of color 1. Relying on Lemma 14 for the word arena Gv

σ and F the set of vertices
of color 1, we associate to each vertex v1 in Gvσ a rank with respect to v, which is a
number between 1 and 2W ¨ pN ` 1qk, the minimal i such that v1 P XipGvσq.
Now consider a play consistent with σ, and a suffix of this play starting in a vertex
v of color 0 or 1. By definition, from this position on, the rank (with respect to v) is
non-increasing until a vertex of color greater than 1 is visited, if any. Furthermore,
if the rank is even then no vertices of color 1 are visited, and the rank does not
remain forever odd.

The strategy σ1 in G 1 simulates σ, and at any point of a play remembers the first
vertex v that has not been followed by a vertex of color greater than 1. As observed
above, the rank with respect to v is non-increasing; the strategy σ1 switches to the
“Safe” mode when the rank goes from even to odd. By definition, the new counter
is incremented only when the rank goes from odd to even, which happens at most
W ¨ pN ` 1qk times, and it is reset when a vertex of color greater than 1 is visited,
so σ1 ensure that it remains bounded by W ¨ pN ` 1qk.

Also, since σ ensures to bound the counter values by N , then so does σ1. For the
parity condition, there are two cases. Consider a play consistent with σ1. Either
from some point onwards the only colors seen are 0 and 1 (with respect to Ω),
then the new counter is not reset after this point, but it is incremented only when
the rank decreases from odd to even, which corresponds to switches of mode from
“Safe” to “Attractor”. Since this counter is bounded, the mode stabilises, which by
definition of the ranks imply that the stabilised rank is odd, so the mode is “Safe”,
and from there on only vertices of color 0 (with respect to Ω) are visited, hence



6. Thin Trees 79

Parity is satisfied. Or infinitely many vertices of color greater than 1 are seen (with
respect to Ω), but since they coincide for Ω and Ω1, the condition Parity is satisfied.
It follows that σ1 ensures BpW ¨ pN ` 1qkq X Parity.

2. Let σ1 be a strategy in G 1 ensuring BpN 1qXParity usingM1 as memory structure of
size K. We construct σ that simulates σ1; to this end, we need a memory structure
which simulates bothM1 and the mode alternation, of size 2K. By definition, plays
of σ and plays of σ1 are in one-to-one correspondence, so σ ensures BpN 1q. For the
parity condition, there are two cases. Consider a play consistent with σ1. Either
from some point onwards the only colors seen are 0 and 1 (with respect to Ω), then
the new counter is not reset after this point, but it is incremented each time the
mode switches from “Safe” to “Attractor”; since this counter is bounded, the mode
stabilises, and since the play in G 1 satisfies Parity, the stabilised mode is “Safe”,
implying that from there on only vertices of color 0 (with respect to Ω) are visited,
hence satisfy Parity. Or infinitely many vertices of color greater than 1 are seen
(with respect to Ω), but since they coincide for Ω and Ω1, the condition Parity is
satisfied.

The induction hypothesis concludes.

6.2 Extending to thin tree arenas

In this subsection, we extend the results for word arenas to thin tree arenas, proving
Theorem 20.

Consider a B-parity game G. Define N “ valpv0q. Let R : V Ñ t0, 1u˚ witnessing
that G is a thin tree arena. Let σ be a strategy ensuring BpNq XParity from v0. We rely
on the decomposition of the thin tree RpV q to locally replace σ by strategies using small
memory given by Proposition 3.

It follows from Fact 15 that along a play, the rank is non-increasing and decreases
only finitely many times. Since the parity condition is prefix-independent, if for each rank
Eve plays a strategy ensuring the parity condition, then the resulting strategy ensures the
parity condition; however, a closer attention to the counters is required.

We summarise counter actions as follows: let w P ptε, i, rukq˚, its summary sumpwq P
tε, i, ruk is, for each counter, r if the counter is reset in w, i if the counter is incremented
by not reset in w, and ε otherwise.

Fact 2 (Summary)

Consider w “ w1w2 ¨ ¨ ¨wnw8, where w1, . . . , wn P ptε, i, ru
kq˚ and w8 P ptε, i, ru

kqω.
Denote u “ sumpw1qsumpw2q ¨ ¨ ¨ sumpwnqsumpw8q, then:

1. valpuq ď valpwq,

2. if for all i P t1, . . . , n,8u we have valpwiq ď N 1 and valpuq ď N , then valpwq ď N ¨N 1.



80 Finite-memory Determinacy for Boundedness Games

We define a B game G 1, where the plays that remain in vertices of the same rank are
summarised in one step. It has k counters. Let rankpV q denote the set of ranks (subset
of the countable ordinals), and S the set of all strategies in G ensuring BpNq X Parity.
We define the set of vertices of G 1:

V 1 “

"

V 1E “ rankpV q ˆ t1, . . . ,W u ˆ tε, i, ruk
V 1A “ rankpV q ˆ t1, . . . ,W u ˆ S

We explain how a couple pν, `q P rankpV qˆt1, . . . ,W u uniquely determines a vertex in G.
First, the rank ν corresponds in R either to a node or to an infinite branch, in the second
case we consider the first node in this branch. Second, the component ` identifies a vertex
in this node.

We say that pν, `1, aq is an outcome of pµ, `, σq if there exists a play from the vertex
corresponding to pµ, `q consistent with σ ending in the vertex corresponding to pν, `1q
whose summarised counter actions are a. We define the set of edges of G 1, together with
the counter actions c1 : E 1 Ñ tε, i, ruk:

E 1 “

#

tppν, `, aq
a
ÝÝÑ pν, `, σqq | `, ν, σu

tppµ, `, σq
ε
ÝÝÑ pν, `1, aqq | if pν, `1, aq is an outcome of pµ, `, σqu.

Lemma 16 (Correctness of the construction)

1. There exists a strategy σ1 in G 1 ensuring BpNq.

2. Assume there exists a strategy σ1 in G 1 ensuring BpN 1q using K memory states,
then there exists a strategy σ in G ensuring BpN 1 ¨αpd,W ` 2, k,NqqXParity using
W ¨ 3k ¨K ¨mempd, kq memory states.

Proof.

1. We argue that the strategy σ induces a strategy σ1 in G 1 ensuring BpNq. A play
consistent with σ1 is of the form u “ sumpw1qsumpw2q ¨ ¨ ¨ sumpwnqsumpw8q, where
w “ w1w2 ¨ ¨ ¨wnw8 is a play consistent with σ, following the notations of Fact 2.
This fact, item 1., implies that valpuq ď valpwq, so valpuq ď N . Hence the strategy
σ1 ensures BpNq.

2. Assume there exists a strategy σ1 in G 1 ensuring BpN 1q and using a memory structure
M of sizeK. We construct a strategy in G ensuring BpN 1 ¨αpd,W`2, k,NqqXParity
using W ¨ 3k ¨K ¨mempd, kq memory states. The memory structure is the product
of four memory structures:

• a memory structure that keeps track of the ` P t1, . . . ,W u used when entering
the current rank, of size W ,

• a memory structure that keeps track of the summary since entering the current
rank, of size 3k,

• the memory structureM, of size K,



6. Thin Trees 81

• a memory structure of size mempd, kq, which is used to simulate the strategies
obtained from Proposition 3.

Consider ν P rankpV q that corresponds to an infinite branch of RpV q. For every
` P t1, . . . ,W u and m PM , the strategy σ1 picks a strategy σ1pν, `,mq to play in this
infinite branch, ensuring BpNq X Parity. When playing this strategy, two scenarios
are possible: either the play stays forever in the infinite branch, or an outcome is
selected and the game continues from there.

We define an arena Gν,` obtained from G as follows: the set of vertices is the vertices
belonging to the infinite branch corresponding to ν, and the initial vertex is the one
corresponding to pν, `q. We add two vertices, corresponding to the good and the bad
outcomes; an outcome is good if it is consistent with σ1pν, `,mq, and bad otherwise.
It is a word arena of width W ` 2 with d` 1 colors and k counters. The colouring
function is given by three colouring functions: c1 and Ω1 induced by c and Ω, and
cS which gives color 0 to all vertices, except the bad outcome coloured 1.

We equip Gν,` with the condition BpNqXParityXSafe, where Safe uses the colouring
function cS. The strategy σ1pν, `,mq induces a winning strategy in this game; thanks
to Proposition 3 (combined with Lemma 3 to handle the safety condition), there
exists a strategy σpν, `,mq ensuring Bpαpd,W ` 2, k,Nqq X Parity X Safe using
mempd, kq memory states.

The strategy σ simulates the strategies σpν, `,mq in the corresponding parts of the
game. Observe that this requires to keep track of both the value ` and the summary
of the current rank, which is done by the memory structure.

We argue that σ ensures BpN 1 ¨αpd,W, k,Nqq XParity. A play consistent with this
strategy is of the form w “ w1w2 ¨ ¨ ¨wnw8, where for all i P t1, . . . , n,8u, we have
valpwiq ď αpd,W ` 2, k,Nq. Denote u “ sumpw1qsumpw2q ¨ ¨ ¨ sumpwnqsumpw8q, we
have valpuq ď N 1, since it corresponds to a play consistent with σ1. It follows from
Fact 2, item 2., that valpwq ď N 1 ¨ αpd,W ` 2, k,Nq. Hence the strategy σ ensures
BpN 1 ¨ αpd,W ` 2, k,Nqq X Parity and uses W ¨ 3k ¨K ¨mempd, kq memory states.

We conclude using Lemma 16. Thanks to Theorem 12, there exists a strategy σ1 in
G 1 ensuring Bpkk ¨ N2kq and using a memory structure M of size 2k!. It follows that
there exists a strategy σ in G ensuring Bpkk ¨ N2k ¨ αpd,W ` 2, k,Nqq X Parityq using
W ¨ 3k ¨ 2k! ¨mempd, kq memory states.





7. Conclusions 83

7 Conclusions

We recall some of the results of this chapter, presented under three angles, asking
further questions:

• Characterisation of the memory requirements for a given condition. In Subsec-
tion 2.3, we characterised the memory requirement mempW q for all topologically
closed conditions W . Roughly speaking, these conditions depend on prefixes of the
plays, and specify what happens in the finite. A similar result is known for Muller
conditions, by Dziembowski, Jurdziński and Walukiewicz [DJW97]. The Muller
conditions, at the opposite of topologically closed conditions, are the ω-regular con-
ditions that specify only the infinite behaviours of plays. Hence the natural contin-
uation and joint generalisation of these two results is to characterise mempW q for
all ω-regular conditions W .

Kopczyński made a step in this direction, proving that the chromatic memory re-
quirement is computable for all ω-regular conditions [Kop06; Kop09]. The chromatic
memory requirement of a condition W is a priori different from mempW q, as it does
not consider all strategies, but only chromatic strategies (which depend only the
colors). Kopczyński conjectured that the two quantities coincide for ω-regular con-
ditions.

• Finite-memory determinacy for non-uniform boundedness games over infinite are-
nas. We obtained two results: on the negative side, Section 5 shows that B-Büchi
games are not finite-memory determined; on the positive side, Subsection 2.2 states
that finitary parity games are bounded-memory determined. This leaves some space
in between: for instance, are cost-parity games, as introduced in [FZ12; FZ14],
bounded-memory determined? Can we characterise the boundedness conditions
that are bounded-memory determined?

• The LoCo conjecture over tree arenas. We obtained two results: on the negative
side, Section 5 shows that the LoCo conjecture does not hold, even over finite arenas;
on the positive side, Section 6 shows that the LoCo conjecture holds for thin tree
arenas. The negative result can be interpreted as the need for a better understanding
of the structural properties of tree arenas. The positive result is a promising step
towards this goal, as it strongly relies on the decomposition of thin trees.

The LoCo conjecture over tree arenas remains an appealing conjecture to tackle.





Chapter 2

The Value 1 Problem for
Probabilistic Automata

85



Contents
1 Probabilistic Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

1.1 Probabilistic Automata . . . . . . . . . . . . . . . . . . . . . . . 89

1.2 Probabilistic Languages . . . . . . . . . . . . . . . . . . . . . . . 90

1.3 The Value of a Probabilistic Automaton . . . . . . . . . . . . . . 91

1.4 Undecidability Results . . . . . . . . . . . . . . . . . . . . . . . . 93

1.5 Undecidability of the Regularity Problem . . . . . . . . . . . . . 94

2 The Prostochastic Theory . . . . . . . . . . . . . . . . . . . . . . . . . 97

2.1 The Free Prostochastic Monoid . . . . . . . . . . . . . . . . . . . 97

2.2 Reformulation of the Value 1 Problem . . . . . . . . . . . . . . . 101

2.3 Fast and Polynomial Prostochastic Words . . . . . . . . . . . . . 101

2.4 Powers of a Stochastic Matrix . . . . . . . . . . . . . . . . . . . 105

3 The Markov Monoid Algorithm . . . . . . . . . . . . . . . . . . . . . . 109

3.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.2 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.4 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.5 No Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4 Leaktight Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.1 The Extended Markov Monoid Algorithm . . . . . . . . . . . . . 117

4.2 Completeness for Leaktight Automata . . . . . . . . . . . . . . . 120

4.3 Complexity of the Value 1 Problem for Leaktight Automata . . . 125

4.4 Comparisons with the Other Classes . . . . . . . . . . . . . . . . 131

5 Undecidability Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.1 Undecidability of the Two-tier Value 1 Problem . . . . . . . . . . 135

5.2 Undecidability of the Numberless Value 1 Problems . . . . . . . 138

5.3 Undecidability of the Robustness Problems . . . . . . . . . . . . 146

6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.1 Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150



The Value 1 Problem for Probabilistic Automata 87

This second chapter deals with probabilistic automata over finite words, and focuses on
a decision problem called the value 1 problem. This problem has been shown undecidable
in 2010 by Hugo Gimbert and Youssouf Oualhadj [GO10]; the objective of this chapter is
to answer the following question:

“To what extent is the value 1 problem decidable?”

To answer this question, we will construct an algorithm, called the Markov Monoid algo-
rithm, prove that it is often correct, show that it is the most correct algorithm from the
literature, and finally argue that it is in some sense optimal.

The basic definitions are given in Section 1. In particular, we define probabilistic
languages and the value of a probabilistic automaton, state some of the most important
undecidability results, and give a simple proof that the regularity problem is undecidable:
given a probabilistic language, determine whether it is regular, obtained in collaboration
with Michał Skrzypczak [FS15].

Section 2 develops a profinite theory for probabilistic automata, called prostochastic
theory. This gives a topological account of the value 1 problem, which naturally refor-
mulates as an emptiness problem in this new framework. The material presented in this
section is taken from [Fij16].

We introduce the Markov Monoid algorithm in Section 3, which is an algebraic al-
gorithm meant to partially solve the value 1 problem. We use the prostochastic theory
developed in the previous section to prove some properties of this algorithm, and in
particular obtain a characterisation: the Markov Monoid algorithm determines, given a
probabilistic automaton, whether it accepts a polynomial prostochastic word.

Section 4 shows that this algorithm indeed solves the value 1 problem for the subclass
of leaktight automata, that we introduce, and further studies this subclass of probabilistic
automata. In particular, we compare our subclass to the other subclasses introduced in the
literature to partially solve the value 1 problem, and prove that the subclass of leaktight
automata strictly contains all the other classes.

The results presented in these two sections originate from [FGO12] (conference ver-
sion), which is co-authored with Hugo Gimbert and Youssouf Oualhadj, and [FGKO15]
(journal version), with the same co-authors plus Edon Kelmendi.

The previous section shows that the Markov Monoid algorithm subsumes all previous
algorithms. The natural question is of course: how far, and how long can this be pushed?
To answer this question, we consider undecidability results in Section 5. We give two
results.

The first one is the undecidability of the two-tier value 1 problem, which is a simpler
variant of the value 1 problem. The reduction proving this result is similar to the one
proving the undecidability of the value 1 problem by Gimbert and Oualhadj in [GO10],
but we give here a finer analysis, which exhibits the role of convergence speeds in the
undecidability.

The second one is the undecidability of the numberless value 1 problems. This shows
that the undecidability remains even when the numerical values of the transition prob-
abilities are not specified, which was the topic of the paper [FGHO14] co-authored with
Hugo Gimbert, Florian Horn and Youssouf Oualhadj.



88 The Value 1 Problem for Probabilistic Automata

The undecidability results we obtain for numberless problems are then applied to
robustness problems. In a robustness problem, the input is a probabilistic automaton,
subject to small perturbations of its probabilistic transitions. We show that unfortu-
nately, the robustness variants of both the value 1 problem and the emptiness problem
are undecidable.

Section 6 gathers and relates the results obtained in the previous sections, to argue
that the Markov Monoid algorithm is in some sense optimal. We then discuss perspectives
and extensions.



1. Probabilistic Automata 89

1 Probabilistic Automata

This section is devoted to basic definitions: probabilistic automata in Subsection 1.1,
probabilistic languages in Subsection 1.2, and the value of a probabilistic automaton in
Subsection 1.3. We state some of the most important undecidability results in Subsec-
tion 1.4.

To make things a bit more concrete and interesting, we construct two examples:

• a universally non-regular probabilistic automaton,

• a probabilistic automaton which has value 1 or not, depending on the numerical
values of the probabilistic transitions.

The first example is the key ingredient in the undecidability proof of the regularity
problem, that we give in Subsection 1.5. The second example is the key ingredient in the
undecidability proof of the (two-tier) value 1 problem, that we give in Subsection 5.1.

1.1 Probabilistic Automata

Let Q be a finite set of states.
A distribution over Q is a function δ : QÑ r0, 1s such that

ř

qPQ δpqq “ 1. We denote
DpQq the set of distributions over Q, which we often consider as vectors indexed by Q.
We denote by 1

3
¨ q ` 2

3
¨ q1 the distribution that picks q with probability 1

3
and q1 with

probability 2
3
, and by q the trivial distribution picking q with probability 1.

For E Ď R, we denote MQˆQpEq the set of (square) matrices indexed by Q over E.
A matrix M PMQˆQpRq is stochastic if each line is a distribution over Q; the restriction
to stochastic matrices is denoted SQˆQpEq. We denote I the identity matrix.

Definition 18 (Probabilistic automaton)

A probabilistic automaton A is given by a finite set of states Q, a transition function
φ : A Ñ SQˆQpQq, a distribution of initial states δI P DpQq and a set of final states
F Ď Q.



90 The Value 1 Problem for Probabilistic Automata

This simple and natural definition was given by Rabin in [Rab63]. Observe that it gen-
eralises the definition for classical deterministic automata, in which transitions functions
are φ : AÑ SQˆQpt0, 1uq.

Sometimes, mostly for undecidability proofs, we restrict ourselves to probabilistic au-
tomata whose probabilistic transitions have values 0, 1

2
or 1, i.e. φ : AÑ SQˆQpt0, 12 , 1uq.

Recall that a dyadic number is a number of the form a
2b

for a, b in N. For the same rea-
sons, it is sometimes more convenient to use as initial distribution a unique state, which
will then be denoted q0. We call the probabilistic automata satisfying both assumptions
simple.

A transition function φ : A Ñ SQˆQpQq naturally induces a morphism φ : A˚ Ñ
SQˆQpQq. We sometimes give φ as a function Qˆ AÑ DpQq, which is equivalent.

We denote PAps
w
ÝÑ tq the probability to go from state s to state t reading w on the

automaton A, i.e. φpwqps, tq.
The acceptance probability of a word w P A˚ by A is δI ¨ φpwq ¨ F , which we denote

PApwq. Note that here, we consider δI as a row vector and F as a Boolean column vector
over Q. It is equal to

ÿ

sPQ

ÿ

tPF

δIpsq ¨ φpwqps, tq.

In words, it is the probability that a run starting from the initial distribution δI ends in
a final state (i.e. a state in F ).

Throughout this chapter, we will only consider finite words. The situation for infinite
words is addressed at the end of this chapter.

1.2 Probabilistic Languages

How does a probabilistic automaton define a language? The following threshold se-
mantics was introduced by Rabin [Rab63]:

Definition 19 (Probabilistic language)

Let A be a probabilistic automaton and x P p0, 1q. This induces the probabilistic
language

LąxpAq “ tw P A˚ | PApwq ą xu.

This simple definition initiated the study of the class of probabilistic languages. Since
deterministic automata are a special case of probabilistic automata, this class contains
the class of regular languages. To prove that this inclusion is strict, it would be enough
to construct a probabilistic automaton C such that LąxpCq is non-regular for some x. We
prove a stronger result, constructing a probabilistic automaton such that for every number
x in p0, 1q, the language LąxpCq is non-regular. We will use this in Subsection 1.5.

In the original paper introducing probabilistic automata, Rabin [Rab63] gave an ex-
ample of a probabilistic automaton A such that LąxpAq is non-regular, for all irrational
numbers x. The automaton A computes the binary decomposition function denoted bin,



1. Probabilistic Automata 91

q0 q1

1, 1
2

0, 1
2

♯

1, 1
2 1

0 0, 1
2

Figure 17: A universally non-regular probabilistic automaton.

i.e. PApuq “ binpuq, defined by binpa1 ¨ ¨ ¨ anq “
a1
2n
` ¨ ¨ ¨ ` an

21
. We show that adding one

letter and one transition to this probabilistic automaton makes it universally non-regular.

Example 2 (Universally non-regular probabilistic automaton)

The automaton C is represented in Figure 17. The alphabet is C “ t0, 1, 7u. The
only difference between the automaton A proposed by Rabin [Rab63] and this one is the
letter 7. As observed by Rabin, a simple induction shows that for u in t0, 1u˚, we have
PCpuq “ binpuq.

We show that for all numbers x in p0, 1q, the language LąxpCq is non-regular. Let u, v
in t0, 1u˚, observe that PCpu ¨ 7 ¨ vq “ binpuq ¨ binpvq.

Fix x in p0, 1q. For every u, v in t0, 1u˚ such that binpuq ă binpvq ă x, there exists w
in t0, 1u˚ such that u ¨ 7 ¨w R LąxpCq and v ¨ 7 ¨w P LąxpCq; it suffices to choose w such that
binpwq is in

´

x
binpvq

, x
binpuq

¯

. It follows that the left quotients u´1 ¨LąxpCq and v´1 ¨LąxpCq
are distinct, so LąxpCq has an infinite number of pairwise distinct left quotients, hence it
is not regular.

1.3 The Value of a Probabilistic Automaton

The notion of value for a probabilistic automaton comes from game theory.

Definition 20 (Value of a probabilistic automaton)

The value of a probabilistic automaton A, denoted valpAq, is the supremum over all
words of their acceptance probability:

valpAq “ sup
wPA˚

PApwq.

In this chapter, we will be interested in the following decision problem:



92 The Value 1 Problem for Probabilistic Automata

Problem 5 (Value 1 problem)

Given a probabilistic automaton A, determine whether valpAq “ 1.

An equivalent formulation of the value 1 problem is as follows: given a probabilistic
automaton A, is it true that for all ε ą 0, there exists a word w such that PApwq ě 1´ ε?
In other words, is there a sequence of words punqnPN such that limn PApunq “ 1?

The value 1 problem can also be reformulated using the notion of isolated cut-point
introduced by Michael O. Rabin in his seminal paper [Rab63]: an automaton has value 1
if, and only if, the cut-point 1 is not isolated.

Yet another formulation of the value 1 problem is by considering probabilistic au-
tomata over infinite words, as studied in [BG05; BBG12; BBG08; BBG09]: the value 1
problem is Turing-equivalent to the emptiness problem for probabilistic Büchi automata
with probable semantics.

A first (very simple) reduction has been given in [BBG12]: from a probabilistic au-
tomaton A over finite words, one can construct a probabilistic Büchi automaton A1 of
linear size, such that valpAq “ 1 if, and only if, A1 is non-empty for the probable seman-
tics. The converse reduction is more involved, and follows from [CSV13], but here the
constructed automaton is of exponential size.

0

L1

L2

R1

R2
a

b, 1
2

a, 1 − xb

a, x

a, b

b, 1
2

a, x b

a, 1 − x

a, b

Figure 18: A probabilistic automaton which has value 1 if, and only if, x ą 1
2
.

Example 3 (Convergence speeds and the value 1 problem)

We construct a probabilistic automaton, depicted on Figure 18, such that the answer to
the value 1 problem depends quantitatively on the transition probabilities. This example
was introduced in [GO10]. It has value 1 if, and only if, x ą 1

2
. The input alphabet is

A “ ta, bu, the initial state is the central state 0 and the unique final state is L2.
We describe its behaviour. After reading one b, the distribution is uniform over L1, R1.

To reach L2, one needs to read a b from the state L1, but on the right-hand side this leads
to the non-accepting absorbing state R2. In order to maximize the probability to reach
L2, one tries to “tip the scales” to the left. If x ď 1

2
, there is no hope to achieve this:

reading a letter a gives more chance to stay in R1 than in L1 thus all words are accepted
with probability at most 1

2
, and valpAq “ 1

2
. However, if x ą 1

2
then we show that A has

value 1.



1. Probabilistic Automata 93

We have:

PAp0
ban
ÝÝÑ L1q “

1

2
¨ xn and PAp0

ban
ÝÝÑ R1q “

1

2
¨ p1´ xqn.

We fix an integer N and analyse the action of reading pbanqN : there are N “rounds”,
each of them corresponding to reading ban from 0. In a round, there are three outcomes:
winning (that is, remaining in L1) with probability pn “ 1

2
¨ xn, losing (that is, remaining

in R2) with probability qn “ 1
2
¨ p1 ´ xqn, or going to the next round (that is, reaching

0) with probability 1 ´ ppn ` qnq. If a round is won or lost, then the next b leads to an
accepting or rejecting sink; otherwise it goes on to the next round, for N rounds. Hence:

PAppbanqNq “
řN´1
k“1 p1´ ppn ` qnqq

k´1 ¨ pn

“ pn ¨
1´p1´ppn`qnqqN´1

1´p1´ppn`qnqq

“ 1
1` qn

pn

¨
`

1´ p1´ ppn ` qnqq
N´1

˘

We now set N “ 2n and assume x ą 1
2
. A simple calculation shows that the sequence

pp1 ´ ppn ` qnqq
2n´1qnPN converges to 0 as n goes to infinity. Furthermore, 1´x

x
ă 1, so

qn
pn
“
`

1´x
x

˘n converges to 0 as n goes to infinity. It follows that the acceptance probability
converges to 1 as n goes to infinity. Consequently:

lim
n
PAppba

n
q
2n
q “ 1.

This example witnesses two interesting phenomena:

• the value is discontinuous with respect to the transition probabilities, as for x “ 1
2

the value is 1
2
, and for x ą 1

2
the value is 1;

• the sequence of words ppbanq2nqnPN witnessing the value 1 involves two convergence
“speeds”: indeed, the words anb are repeated an exponential number of times, namely
2n. We will call such sequences two-tier sequences in Subsection 5.1. One can show
that repeating only n times does not lead to words accepted with arbitrarily high
probability.

1.4 Undecidability Results

The first and most natural problem for probabilistic automata is the emptiness problem
for probabilistic languages.

Problem 6 (Emptiness problem)

Given a probabilistic automaton A, determine whether Lą
1
2 pAq is empty, i.e. whether

there exists a word w such that PApwq ą
1
2
.



94 The Value 1 Problem for Probabilistic Automata

Note that it is equivalent to asking whether valpAq ą 1
2
. Unfortunately:

Theorem 21 (Undecidability of the emptiness problem [Paz71])

The emptiness problem is undecidable for simple probabilistic automata.

A nice and simple undecidability proof was given by Gimbert and Oualhadj in [GO10].
This negative result says that the value cannot be computed precisely. One can still

try to approximate it. Unfortunately, a second result shows that this is not possible either:

Theorem 22 (Inapproximability of the value [CL89])

There exists no algorithm with the following behaviour.
Given a probabilistic automaton A:

• if valpAq ą 2
3
, then the algorithm answers “YES”,

• if valpAq ă 1
3
, then the algorithm answers “NO”,

• otherwise, the algorithm can do anything, including not terminating.

An interpretation of this result is that the value cannot be approximated, even up to a
constant. In [GO10], Gimbert and Oualhadj introduced the value 1 problem. It is a priori
simpler, as it does not ask to compare the value to a given threshold. Unfortunately:

Theorem 23 (Undecidability of the value 1 problem [GO10])

The value 1 problem is undecidable for simple probabilistic automata.

This result is the starting point of this chapter, which aims at understanding to what
extent is the value 1 problem decidable.

Note that in Subsection 5.1, we revisit the undecidability proof of [GO10], and obtain
a stronger undecidability result, for the two-tier value 1 problem.

1.5 Undecidability of the Regularity Problem

Problem 7 (Regularity problem)

Given a probabilistic automaton A, determine whether Lą
1
2 pAq is regular.

We give here a very simple proof, obtained in collaboration with Michał Skrzypczak [FS15].
This result was known [Ber74a].



1. Probabilistic Automata 95

Theorem 24 (Undecidability of the regularity problem)

The regularity problem is undecidable for simple probabilistic automata.

Roughly speaking, the idea is to use the universally non-regular automaton given in
Example 2 to “amplify” an irregular behaviour.

Proof. We construct a reduction from the emptiness problem to the regularity problem.
Let A be a probabilistic automaton over the alphabet A. We construct a probabilistic
automaton B such that:

Lą
1
2 pAq is empty if, and only if, Lą

1
2 pBq is regular.

The automaton B is over the alphabet B “ A Z C where C “ t0, 1, 7u, and uses the
automaton C from Section 1.2. It is obtained as the sequential composition of A and C:
it starts in A and from every final state of A moves by 7 to the initial state of C. The
initial state of B is the initial state of A, the only final state of B is the final state of C.

For u P A˚ and v P C˚, we have PBpu ¨ 7 ¨ vq “ PApuq ¨ PCpvq. A word which is not in
A˚ ¨ 7 ¨ C˚ has no accepting run, so is accepted with probability 0.

• Assume that Lą
1
2 pAq is empty. Thanks to the above observation we have that

Lą
1
2 pBq is empty, so in particular it is regular.

• Conversely, assume that Lą
1
2 pAq is non-empty. Let u be a word such that PApuq ą

1
2
.

Observe that Lą
1
2 pBq X pu ¨ 7 ¨Cq˚ “ u ¨ 7 ¨LąxpCq, where x “ 1

2¨PApuq
is in p0, 1q. By

construction of C, the language LąxpCq is non-regular, implying that Lą
1
2 pBq is also

non-regular.





2. The Prostochastic Theory 97

2 The Prostochastic Theory

In this section, we introduce the prostochastic theory, which is a profinite theory for
probabilistic automata. We construct the free prostochastic monoid in Subsection 2.1.

The aim of this theory is to give a topological account of the value 1 problem; we will
show in Subsection 2.2 that the value 1 problem naturally reformulates as an emptiness
problem for prostochastic words.

In Subsection 2.3 we show how to construct non-trivial prostochastic words. We will
use this material in Section 3 to prove some properties of the Markov Monoid algorithm.
Subsection 2.4 is devoted to proving a technical result about powers of a stochastic matrix.

All the material presented here is taken from [Fij16].

2.1 The Free Prostochastic Monoid

We consider the norm || ¨ || defined onMQˆQpRq by

||M || “ max
sPQ

ÿ

tPQ

|Mps, tq|.

The following classical properties will be useful:

Fact 3 (Topology of the stochastic matrices)

• For every matrix M P SQˆQpRq, we have ||M || “ 1,

• For every matrices M,M 1 PMQˆQpRq, we have ||M ¨M 1|| ď ||M || ¨ ||M 1||,

• The monoid SQˆQpRq is compact.

The purpose of the prostochastic theory is to construct a compact monoid PA˚ to-
gether with a continuous injective morphism ι : A˚ Ñ PA˚, called the free prostochastic
monoid, satisfying the following universal property:



98 The Value 1 Problem for Probabilistic Automata

“Every morphism φ : A˚ Ñ SQˆQpRq extends uniquely
to a continuous morphism pφ : PA˚ Ñ SQˆQpRq.”

Here, by “ pφ extends φ” we mean φ “ pφ ˝ ι.
We give two statements about PA˚, the first will be weaker but enough for our pur-

poses in this paper, and the second more precise, and justifying the name “free pros-
tochastic monoid”. The reason for giving two statements is that the first avoids a number
of technical points that will not play any further role, so the reader interested in the
applications to the Markov Monoid algorithm may skip this second statement.

Theorem 25 (Existence of the free prostochastic monoid – weaker statement)

For every finite alphabet A, there exists a compact monoid PA˚ and a continuous
injective morphism ι : A˚ Ñ PA˚ such that every morphism φ : A˚ Ñ SQˆQpRq extends
uniquely to a continuous morphism pφ : PA˚ Ñ SQˆQpRq.

We construct PA˚ and ι. Consider X “
ś

φ:A˚ÑSQˆQpRq SQˆQpRq, the product of
SQˆQpRq, with one copy for each morphism φ : A˚ Ñ SQˆQpRq. An element m of X is
denoted pmpφqqφ:A˚ÑSQˆQpRq.

We define the product norm on X by ||m|| “ supt||mpφq|| | φ : A˚ Ñ SQˆQpRqu,
inducing the product topology on X, implying thanks to Tychonoff’s theorem that the
monoid X is compact.

Consider the map ι : A Ñ X defined by ιpaq “ pφpaqqφ:AÑP , it induces a continuous
injective morphism ι : A˚ Ñ X. To simplify notations, we sometimes assume that A Ď X
and denote a for ιpaq.

Denote PA˚ “ A˚, the closure of A˚ Ď X. Note that it is a compact monoid: the
compactness follows from the fact that it is closed in X.

By definition, an element u of PA˚, called a prostochastic word, is obtained as the
limit in PA˚ of a sequence u of finite words. In this case we write limu “ u and say that
u induces u.

Note that by definition of the product topology on X, a sequence of finite words u
converges in X if, and only if, for every morphism φ : A˚ Ñ SQˆQpRq, the sequence of
stochastic matrices φpuq converges.

We say that two converging sequences of finite words u and v are equivalent if they
induce the same prostochastic word, i.e. if limu “ limv. Observe that two converging
sequences of finite words u and v are equivalent if, and only if, for every morphism
φ : A˚ Ñ SQˆQpRq, we have limφpuq “ limφpvq.

Proof. We prove that PA˚ satisfies the universal property. Consider a morphism φ : A˚ Ñ
SQˆQpRq, and define pφ : PA˚ Ñ SQˆQpRq by pφpuq “ limφpuq, where u is some sequence
of finite words inducing u. This is well defined and extends φ. Indeed, consider two
equivalent sequences of finite words u and v inducing u. By definition, for all ψ : A˚ Ñ
SQˆQpRq, we have limψpuq “ limψpvq, so in particular for φ this implies limφpuq “

limφpvq, and pφ is well defined. Both continuity and uniqueness are clear.
We prove that pφ is a morphism. Consider

D “ tpu, vq P PA˚ ˆ PA˚ | pφpu ¨ vq “ pφpuq ¨ pφpvqu.



2. The Prostochastic Theory 99

To prove that pφ is a morphism, we prove that D “ PA˚ˆPA˚. First of all, A˚ˆA˚ Ď D.
Since A˚ ˆ A˚ is dense in PA˚ ˆ PA˚, it suffices to show that D is closed. This follows
from the continuity of both product functions in PA˚ and in SQˆQpRq as well as of pφ.

We give a second, stronger statement about PA˚, which in particular justifies the
name “free prostochastic monoid”.

From now on, by “monoid” we mean “compact topological monoids”. Note that com-
pact also includes Hausdorff: distinct points have disjoint neighbourhoods. The term
topological means that the product function is continuous:

"

P ˆ P Ñ P
ps, tq ÞÑ s ¨ t

A monoid is profinite if any two elements can be distinguished by a morphism into
a finite monoid, i.e. by a finite automaton. (Formally speaking, this is the definition
of residually finite monoids, which coincide with profinite monoids for compact monoids,
see [Alm05].)

To define prostochastic monoids, we use a stronger distinguishing feature, namely
probabilistic automata. Probabilistic automata correspond to stochastic matrices over
the rationals; here we use stochastic matrices over the reals, since SQˆQpRq is compact,
while SQˆQpQq is not.

Definition 21 (Prostochastic monoid)

A monoid P is prostochastic if for every elements s ‰ t in P , there exists a continuous
morphism ψ : P Ñ SQˆQpRq such that ψpsq ‰ ψptq.

There are much more prostochastic monoids than profinite monoids. Indeed, SQˆQpRq
is prostochastic, but not profinite in general.

The following theorem extends Theorem 25. The statement is the same as in the
profinite theory, replacing “profinite monoid” by “prostochastic monoid”.

Theorem 26 (Existence of the free prostochastic monoid – stronger statement)

For every finite alphabet A,

1. There exists a prostochastic monoid PA˚ and a continuous injective morphism ι :
A˚ Ñ PA˚ such that every morphism φ : A˚ Ñ P , where P is a prostochastic
monoid, extends uniquely to a continuous morphism pφ : PA˚ Ñ P .

2. All prostochastic monoids satisfying this universal property are homeomorphic.

The unique prostochastic monoid satisfying the universal property stated in item 1. is
called the free prostochastic monoid, and denoted PA˚.

Proof. We prove that PA˚ satisfies the stronger universal property, along the same lines
as for the weaker one. Consider a morphism φ : A˚ Ñ P , and define pφ : PA˚ Ñ P by
pφpuq “ limφpuq, where u is some sequence of finite words inducing u.

To see that this is well defined, we use the fact that P is prostochastic. Consider
two equivalent sequences of finite words u and v inducing u. Consider a continuous



100 The Value 1 Problem for Probabilistic Automata

morphism ψ : P Ñ SQˆQpRq, the composition ψ ˝φ is a continuous morphism from A˚ to
SQˆQpRq, so since u and v are equivalent it follows that limpψ˝φqpuq “ limpψ˝φqpvq, i.e.
limψpφpuqq “ limψpφpvqq. Since ψ is continuous, this implies ψplimφpuqq “ ψplimφpvqq.
We proved that for all continuous morphisms ψ : P Ñ SQˆQpRq, we have ψplimφpuqq “

ψplimφpvqq; since P is prostochastic, it follows that limφpuq “ limφpvq, and pφ is well
defined.

Clearly pφ extends φ. Both continuity and uniqueness are clear. We prove that pφ is a
morphism. Consider

D “ tpu, vq P PA˚ ˆ PA˚ | pφpu ¨ vq “ pφpuq ¨ pφpvqu.

To prove that pφ is a morphism, we prove that D “ PA˚ˆPA˚. First of all, A˚ˆA˚ Ď D.
Since A˚ ˆ A˚ is dense in PA˚ ˆ PA˚, it suffices to show that D is closed. This follows
from the continuity of both product functions in PA˚ and in P as well as of pφ.

We prove that PA˚ is prostochastic. Let u ‰ v in PA˚. Consider two sequences of
finite words u and v inducing respectively u and v, there exists a morphism φ : A˚ Ñ
SQˆQpRq such that limφpuq ‰ limφpvq. Thanks to the universal property proved in
the first point, this induces a continuous morphism pφ : PA˚ Ñ SQˆQpRq such that
pφpuq ‰ pφpvq, finishing the proof.

We now prove that there is a unique prostochastic monoid satisfying the universal
property, up to homeomorphism. Let P1 and P2 two prostochastic monoids satisfying the
universal property, together with two continuous injective morphisms ι1 : A˚ Ñ P1 and
ι2 : A˚ Ñ P2. Thanks to the universal property, ι1 and ι2 are extended to continuous
morphisms pι1 : P2 Ñ P1 and pι2 : P1 Ñ P2, and pι1˝ι2 “ ι1 and pι2˝ι1 “ ι2. This implies that
pι1 ˝ pι2 ˝ ι1 “ ι1; thanks to the universal property again, there exists a unique continuous
morphism θ such that θ ˝ ι1 “ ι1, and since both pι1 ˝ pι2 and the identity morphism on P1

satisfy this equality, it follows that they are equal. Similarly, pι2 ˝ pι1 is equal to the identity
morphism on P2. It follows that pι1 and pι2 are mutually inverse homeomorphisms between
P1 and P2.

Remark 3. The free prostochastic monoid PA˚ contains the free profinite monoid xA˚.
To see this, we start by recalling the definition of xA˚, which is the set of converging
sequences up to equivalence, where:

• a sequence of finite words u is converging if for every deterministic automaton A,
the sequence is either ultimately accepted by A or ultimately rejected by A, i.e. there
exists N P N such that either for all n ě N , the word un is accepted by A, or for all
n ě N , the word un is rejected by A,

• two sequences of finite words u and v are equivalent if for every deterministic au-
tomaton A, either both sequences are ultimately accepted by A, or both sequences
are ultimately rejected by A.

Clearly:

• if a sequence of finite words is converging with respect to PA˚, then it is converg-
ing with respect to xA˚, as deterministic automata form a subclass of probabilistic
automata,



2. The Prostochastic Theory 101

• if two sequences of finite words are equivalent with respect to PA˚, then they are
equivalent with respect to xA˚.

Every profinite word induces at least one prostochastic word: by compactness of PA˚,
every sequence of finite words u contains a converging subsequence with respect to PA˚.
This defines an injection from xA˚ into PA˚. In particular, this implies that PA˚ is
uncountable.

2.2 Reformulation of the Value 1 Problem

The aim of this subsection is to reformulate the value 1 problem, which talks about
sequences of finite words, into an emptiness problem over prostochastic words.

Definition 22 (Prostochastic language of a probabilistic automaton)

Let A be a probabilistic automaton. The prostochastic language of A is:

LpAq “ tu | pφpuqpq0, F q “ 1u.

We say that A accepts a prostochastic word u if u P LpAq.

Theorem 27 (Reformulation of the value 1 problem)

Let A be a probabilistic automaton. The following are equivalent:

• valpAq “ 1,

• LpAq is non-empty.

Proof. Assume valpAq “ 1, then there exists a sequence of words u such that limPApuq “
1. We see u as a sequence of prostochastic words. By compactness of PA˚ it contains a
converging subsequence. The prostochastic word induced by this subsequence belongs to
LpAq.

Conversely, let u in LpAq, i.e. such that pφpuqpq0, F q “ 1. Consider a sequence of
finite words u inducing u. By definition, we have limφpuqpq0, F q “ 1, i.e. limPApuq “ 1,
implying that valpAq “ 1.

2.3 Fast and Polynomial Prostochastic Words

We show in this subsection how to construct non-trivial prostochastic words. To
this end, we need to better understand convergence speeds phenomena: different limit
behaviours can occur, depending on how fast the underlying Markov chains converge.



102 The Value 1 Problem for Probabilistic Automata

We define a limit operator ω. Consider the function f : NÑ N defined by fpnq “ k!,
where k is maximal such that k! ď n. The function f grows linearly: roughly, fpnq „ n.
The choice of n is arbitrary; one could replace n by any polynomial, or even by any
subexponential function, see Remark 4.

The operator ω takes as input a sequence of finite words, and outputs a sequence of
finite words. Formally, let u be a sequence of finite words, define:

uω “ pufpnqn qnPN.

It is not true in general that if u converges, then uω converges. We will show that a
sufficient condition is that u is fast.

We say that a sequence pMnqnPN converges exponentially fast to M if there exists a
constant C ą 1 such that for all n large enough, we have ||Mn ´M || ď C´n.

Definition 23 (Fast sequence)

A sequence of finite words u is fast if it converges (we denote u the prostochastic
word it induces), and for every morphism φ : A˚ Ñ SQˆQpRq, the sequence pφpunqqnPN
converges exponentially fast.

A prostochastic word is fast if it is induced by some fast sequence. We denote by PA˚f
the set of fast prostochastic words. Note that a priori, not all prostochastic words are
induced by some fast sequence.

We first prove that PA˚f is a submonoid of PA˚.

Lemma 17 (The concatenation of two fast sequences is fast)

Let u,v be two fast sequences.
The sequence u ¨ v “ pun ¨ vnqnPN is fast.

Proof. Consider a morphism φ : A˚ Ñ SQˆQpRq and n P N.

||φpun ¨ vnq ´ pφpu ¨ vq||

“ ||φpunq ¨ φpvnq ´ pφpuq ¨ pφpvq||

“ ||φpunq ¨ pφpvnq ´ pφpvqq ´ ppφpuq ´ φpunqq ¨ pφpvq||

ď ||φpunq|| ¨ ||φpvnq ´ pφpvq|| ` ||pφpuq ´ φpunq|| ¨ ||pφpvq||

“ ||φpvnq ´ pφpvq|| ` ||pφpuq ´ φpunq||.

Since u and v are fast, the previous inequality implies that u ¨ v is fast.

Let u and v be two fast prostochastic words, thanks to Lemma 17, the prostochastic
word u ¨ v is fast.

The remainder of this subsection is devoted to proving that ω is an operator PA˚f Ñ
PA˚f .

We start by a few definitions. As a convention, M denotes a matrix in SQˆQpRq, and
m a Boolean matrix.



2. The Prostochastic Theory 103

Definition 24 (Idempotent Boolean matrix, recurrent and transient state)

Consider a matrix M P SQˆQpRq, its Boolean projection πpMq is the Boolean matrix
such that πpMqps, tq “ 1 if Mps, tq ą 0, and πpMqps, tq “ 0 otherwise.

Let m be a Boolean matrix. It is idempotent if m ¨m “ m.
Assume m is idempotent. We say that:

• the state s P Q is m-recurrent if for all t P Q, if mps, tq “ 1, then mpt, sq “ 1,

• the m-recurrent states s, t P Q belong to the same recurrence class if mps, tq “ 1,

• the state s P Q is m-transient if it is not m-recurrent.

The main technical tool is the following theorem, stating the exponentially fast con-
vergence of the powers of a stochastic matrix.

Theorem 28 (Powers of a stochastic matrix)

Let M P SQˆQpRq. Denote P “M |Q|. Then the sequence pP nqnPN converges exponen-
tially fast to a matrix Mω, satisfying:

πpMω
qps, tq “

#

1 if πpP qps, tq “ 1 and t is πpP q-recurrent,
0 otherwise.

The proof of Theorem 28 is given in Subsection 2.4.

Lemma 18 (Limit operator for fast sequences)

Let u,v be two equivalent fast sequences, inducing the fast prostochastic word u.
Then the sequences uω and vω are fast and equivalent, inducing the fast prostochastic
word denoted uω.

Furthermore, for every φ : AÑ SQˆQpRq, we have pφpuωq “ pφpuqω.

Proof. Let φ : AÑ SQˆQpRq.
Observe that the sequence ppφpuqfpnqqnPN is a subsequence of ppφpuq|Q|¨nqnPN, so Theo-

rem 28 implies that it converges exponentially fast to pφpuqω. It follows that there exists
a constant C1 ą 1 such that for all n large enough, we have ||pφpuqfpnq ´ pφpuqω|| ď C

´fpnq
1 .

We proceed in two steps, using the following inequality, which holds for every n:

||φpufpnqn q ´ pφpuqω|| ď ||φpunq
fpnq

´ pφpuqfpnq|| ` ||pφpuqfpnq ´ pφpuqω||.

For the left part, we rely on the following equality, where x and y may not commute:

xN ´ yN “
N´1
ÿ

k“0

xN´k´1 ¨ px´ yq ¨ yk.



104 The Value 1 Problem for Probabilistic Automata

Let N “ fpnq, this gives:

||φpunq
N
´ pφpuqN ||

“ ||

N´1
ÿ

k“0

φpunq
N´k´1

¨ pφpunq ´ pφpuqq ¨ pφpuqk||

ď

N´1
ÿ

k“0

||φpunq
N´k´1

|| ¨ ||φpunq ´ pφpuq|| ¨ ||pφpuqk||

ď

N´1
ÿ

k“0

||φpunq||
N´k´1

looooooomooooooon

“1

¨||φpunq ´ pφpuq|| ¨ ||pφpuq||k
looomooon

“1

“ N ¨ ||φpunq ´ pφpuq||.

Since u is fast, there exists a constant C2 ą 1 such that ||φpunq´pφpuq|| ď C´n2 . Altogether,
we have

||φpufpnqn q ´ pφpuqω|| ď fpnq ¨ C´n2 ` C
´fpnq
1 .

To conclude, observe that for all n large enough, we have n
logpnq

ď fpnq ď n. It follows

that the sequence uω is fast, and that φpuωq converges to pφpuqω.

Furthermore, since u and v are equivalent, we have limφpuq “ limφpvq, i.e. pφpuq “
pφpvq, so pφpuqω “ pφpvqω, i.e. limφpuωq “ limφpvωq, This implies that uω and vω are
equivalent.

We can now define polynomial prostochastic words.
First, ω-expressions are described by the following grammar:

E ÝÑ a | E ¨ E | Eω.

We define an interpretation ¨ of ω-expressions into fast prostochastic words:

• a is prostochastic word induced by the constant sequence of the one letter word a,

• E1 ¨ E2 “ E1 ¨ E2,

• Eω “ E
ω.

Definition 25 (Polynomial prostochastic word)

The set of polynomial prostochastic words is tE | E is an ω-expressionu.

Remark 4. Why the term polynomial?
Consider an ω-expression E, say paωbqω, and the prostochastic word paωbqω, which is

induced by the sequence of finite words ppafpnqbqfpnqqnPN. Roughly speaking fpnq „ n, so
this sequence represents a polynomial behaviour. Furthermore, the proofs above yield the
following robustness property: all converging sequences of finite words ppagpnqbqhpnqqnPN,
where g, h : NÑ N are subexponential functions, are equivalent, so they induce the same
polynomial prostochastic word paωbqω. We say that a function g : NÑ N is subexponential
if for all constants C ą 1 we have limn gpnq ¨ C

´n “ 0; all polynomial functions are
subexponential.

This justifies the terminology; we say that the polynomial prostochastic words represent
all polynomial behaviours.



2. The Prostochastic Theory 105

2.4 Powers of a Stochastic Matrix

In this subsection, we prove Theorem 28.
Let M P SQˆQpRq, consider P “ M |Q|. It is easy to see that πpP q is idempotent. We

decompose P as illustrated in Figure 19, by indexing states in the following way:

• first, πpP q-transient states,

• then, πpP q-recurrent states, grouped by recurrence class.







Q R

0
J

J1

J2
. . .

Jr

0

0

Figure 19: Decomposition of P .

In this decomposition, we have the following properties:

• for all m-transient states s P Q, we have
ř

t m-transientQps, tq ă 1, so ||Q|| ă 1,

• the matrices Ji are irreducible: for all states s, t P Q corresponding to the same Ji,
we have Jips, tq ą 0.

The power P n of P is represented in Figure 20.
This decomposition allows to treat separately the three blocks:

1. the block Qn: thanks to the observation above ||Q|| ă 1, which combined with
||Qn|| ď ||Q||n implies that pQnqnPN converges to 0 exponentially fast,

2. the block
řn´1
k“0 Q

k ¨R ¨ Jn´1´k,

3. the block Jn: it is handled by Lemma 19.

We first focus on item 3., and show that the sequence pJnqnPN converges exponentially
fast. Each block Ji is handled separately by the following lemma.



106 The Value 1 Problem for Probabilistic Automata







Qn ∑n−1
k=0 Q

k ·R · Jn−1−k

0
Jn

Jn
1

Jn
2

. . .
Jn
r

0

0

Figure 20: Decomposition of P n.

Lemma 19 (Powers of an irreducible stochastic matrix)

Let J P SQˆQpRq irreducible: for all states s, t P Q, we have Jps, tq ą 0. Then the
sequence pJnqnPN converges exponentially fast to a matrix J8.

Furthermore, J8 is irreducible.

This lemma is a classical result from Markov chain theory, sometimes called “the
Convergence Theorem”; see for instance [LPW08].

We now consider item 2., and show that the sequence p
řn´1
k“0 Q

k ¨ R ¨ Jn´1´kqnPN con-
verges exponentially fast. Observe that since ||Q|| ă 1, the matrix I ´ Q is invertible;
denote N “ pI ´Qq´1, it is equal to

ř

kě0Q
k. Denote J8 “ limn J

n, which exists thanks
to Lemma 19.

We have:

||

n´1
ÿ

k“0

Qk
¨R ¨ Jn´1´k ´N ¨R ¨ J8||

“ ||

n´1
ÿ

k“0

“

Qk
¨R ¨

`

Jn´1´k ´ J8
˘

`Qk
¨R ¨ J8

‰

´N ¨R ¨ J8||

“ ||

n´1
ÿ

k“0

Qk
¨R ¨

`

Jn´1´k ´ J8
˘

`

˜

n´1
ÿ

k“0

Qk
´N

¸

¨R ¨ J8||

ď ||

n´1
ÿ

k“0

Qk
¨R ¨

`

Jn´1´k ´ J8
˘

|| ` ||

˜

n´1
ÿ

k“0

Qk
´N

¸

¨R ¨ J8||.



2. The Prostochastic Theory 107

We first consider the right term:

||

˜

n´1
ÿ

k“0

Qk
´N

¸

¨R ¨ J8||

“ ||

˜

ÿ

kěn

Qk

¸

¨R ¨ J8||

ď ||
ÿ

kěn

Qk
|| ¨ ||R||

loomoon

ď1

¨ ||J8||
loomoon

“1

“ ||Qn
¨N ||

ď ||N || ¨ ||Q||n.

Thus, this term converges exponentially fast to 0.
We then consider the left term. Thanks to Lemma 19, there exists a constant C ą 1

such that for all p P N, we have ||Jp ´ J8|| ď C´p.

||

n´1
ÿ

k“0

Qk
¨R ¨

`

Jn´1´k ´ J8
˘

||

ď

n´1
ÿ

k“0

||Q||k ¨ ||R||
loomoon

ď1

¨||Jn´1´k ´ J8||

ď

n´1
ÿ

k“0

||Q||k ¨ ||Jn´1´k ´ J8||

“

n{2
ÿ

k“0

||Q||k
loomoon

ď1

¨||Jn´1´k ´ J8|| `
n´1
ÿ

k“n{2`1

||Q||k ¨ ||Jn´1´k ´ J8||
loooooooomoooooooon

ď2

ď
C´pn{2`1q ´ C´n

1´ C
` 2 ¨

||Q||n{2`1 ´ ||Q||n

1´ ||Q||

ď 2 ¨

ˆ

C´pn{2`1q

1´ C
`
||Q||n{2`1

1´ ||Q||

˙

.

Thus, this term converges exponentially fast to 0.
We proved that pP nqnPN converges exponentially fast to a matrix Mω. We conclude

the proof of Theorem 28 by observing that:

πpMω
qps, tq “

#

1 if πpP qps, tq “ 1 and t is πpP q-recurrent,
0 otherwise.

Assume first that πpMωqps, tq “ 1, i.e. Mωps, tq ą 0. It already implies that t is
πpP q-recurrent, looking at the decomposition of P n. Since Mω “ limn P

n, it follows that
for n large enough, we have P nps, tq ą 0. The matrix πpP q is idempotent, so we have for
all n P N the equality πpP nq “ πpP q, implying that P ps, tq ą 0, i.e. πpP qps, tq “ 1.

Conversely, assume that πpP qps, tq “ 1 and t is πpP q-recurrent. Observe that for all
n P N we have P n`1ps, tq ě P ps, tq¨P npt, tq. For n converging towards infinity, this implies
Mωps, tq ě P ps, tq ¨Mωpt, tq. Note that P ps, tq ą 0, and Mωpt, tq ą 0 since t is πpP q-
recurrent and thanks to Lemma 19. It follows that Mωps, tq ą 0, i.e. πpMωqps, tq “ 1.





3. The Markov Monoid Algorithm 109

3 The Markov Monoid Algorithm

In this section, we introduce the Markov Monoid algorithm, which first appeared
in [FGO12], in collaboration with Hugo Gimbert and Youssouf Oualhadj.

The definition of the algorithm is given in Subsection 3.1, and an example in Subsec-
tion 3.2. Informally speaking, the Markov Monoid algorithm abstracts the behaviour of a
probabilistic automaton by a finite stabilisation monoid called the Markov Monoid. We
define two properties in Subsection 3.3.

• consistency, which states that all behaviours predicted by the Markov Monoid cor-
respond to behaviours of the probabilistic automaton,

• completeness, which states that all behaviours of the probabilistic automaton cor-
respond to behaviours of the Markov Monoid.

We show that the consistency property holds, without any further assumption, for all
probabilistic automata, in Subsection 3.4. This gives a characterisation of the Markov
Monoid algorithm, which is the main result of [Fij16].

The combination of both consistency and completeness would imply that the Markov
Monoid algorithm solves the value 1 problem; since this problem is undecidable, the
completeness fails in general. We discuss this further in Subsection 3.5.

3.1 The Algorithm

Consider A a probabilistic automaton, the Markov Monoid algorithm consists in com-
puting, through a saturation process, the Markov Monoid of A.

It is a monoid of Boolean matrices: all numerical values are projected away to Boolean
values. So instead of considering M P SQˆQpRq, we are interested in πpMq. Hence to
define the Markov Monoid, one can consider the underlying non-deterministic automaton
πpAq instead of the probabilistic automaton A.

The Markov Monoid of πpAq contains the transition monoid of πpAq, which is the
monoid generated by tπpφpaqq | a P Au and closed under (Boolean matrix) products.
Informally speaking, the transition monoid accounts for the Boolean action of every finite
word. Formally, for a word w P A˚, the element xwy of the transition monoid of πpAq



110 The Value 1 Problem for Probabilistic Automata

satisfies the following: xwyps, tq “ 1 if, and only if, there exists a run from s to t reading
w on πpAq.

The Markov Monoid generalises the transition monoid by introducing a new operator,
the stabilisation. On the intuitive level first: let M P SQˆQpRq, it can be interpreted as a
Markov chain; its Boolean projection πpMq gives the structural properties of this Markov
chain. The stabilisation πpMq7 accounts for limnM

n, i.e. the behaviour of the Markov
chain M in the limit. The formal definition of the stabilisation operator is as follows:

Definition 26 (Stabilisation)

Let m be a Boolean idempotent matrix.
The stabilisation of m is denoted m7 and defined by:

m7
ps, tq “

#

1 if mps, tq “ 1 and t is m-recurrent,
0 otherwise.

The definition of the stabilisation matches the intuition that in the Markov chain
limnM

n, the probability to be in non-recurrent states converges to 0.

Definition 27 (Markov Monoid)

The Markov Monoid of A is the smallest set of Boolean matrices containing tπpφpaqq |
a P Au and closed under product and stabilisation of idempotents.

ALGORITHM 1: The Markov Monoid algorithm.
Data: A probabilistic automaton.
MÐ tπpφpaqq | a P Au Y tIu.
repeat

if there is m,m1 PM such that m ¨m1 RM then
add m ¨m1 toM

end
if there is m PM such that m is idempotent and m7 RM then

add m7 toM
end

until there is nothing to add ;
if there is a value 1 witness in M then

return YES;
else

return NO;
end

In proofs and examples, we will often see Boolean matrices as graphs over the set Q;
such a graph has an edge between two states s, t P Q if mps, tq “ 1.

The Boolean matrices m handled by the Markov Monoid algorithm have a special
property: for all states s P Q, there exists a state t P Q such that mps, tq “ 1. From now
on, we only consider Boolean matrices having this property.



3. The Markov Monoid Algorithm 111

On an intuitive level, a Boolean matrix in the Markov Monoid reflects the asymptotic
effect of a sequence of finite words.

The Markov Monoid algorithm, detailed in Algorithm 1 computes the Markov Monoid,
and looks for value 1 witnesses :

Definition 28 (Value 1 witness)

A Boolean matrix m is a value 1 witness if: for all states s, t P Q, if δIpsq ą 0 and
mps, tq “ 1, then t P F .

The Markov Monoid algorithm answers “YES” if there exists a value 1 witness in the
Markov Monoid, and “NO” otherwise.

For proof purposes, we give an equivalent presentation of the Markov Monoid through
ω-expressions. Given a probabilistic automaton A, we define an interpretation x¨y of
ω-expressions into Boolean matrices:

• xay is πpφpaqq,

• xE1 ¨ E2y is xE1y ¨ xE2y,

• xEωy is xEy7, only defined if xEy is idempotent.

Then the Markov Monoid of A is txEy | E an ω-expressionu.

3.2 An Example

We apply the Markov Monoid algorithm on an example. As explained, the Markov
Monoid does not take into account the numerical values of the probabilistic transition,
so as input we can consider the underlying non-deterministic automaton of a probabilis-
tic automaton. This is what we do in Figure 21: the non-deterministic automaton is
represented at the top.

We do not represent here all elements of its Markov Monoid; the tool ACME computed
it [FK14], it contains 42 elements. We chose to represent here only 5 elements:

• The first two correspond to the letters a and b.

• The third one is xaωy, its represents the behaviour of panqnPN. Indeed, when reading
a from the state 0, two events happen with positive probability: looping around the
state 0 and going to state 1. So, reading the word an from 0 gives a probability
to remain in the state 0 converging to 0 when n goes to infinity. Formally, this is
reflected by the fact that the state 0 is not xay-recurrent.

• The fourth one is xaω ¨by, it illustrates the concatenation between xaωy and xby. Note
that it is not a value 1 witness: from the only initial state 0, we have xaω ¨byp0, 0q “ 1,
and 0 is not final.



112 The Value 1 Problem for Probabilistic Automata

• The fifth one is xpaω ¨bqωy, it illustrates that stabilisation can be nested. Observe that
it is a value 1 witness. This matches the calculation showing that limnPAppan¨bqnq “
1, implying that A has value 1.

0 1 F⊥

a a

a, b
b

a

b

b

〈a〉 0 1 F⊥

〈b〉 0 1 F⊥

〈aω〉 0 1 F⊥

〈aω · b〉 0 1 F⊥

〈(aω · b)ω〉 0 1 F⊥

Figure 21: A non-deterministic automaton and part of its Markov Monoid.

3.3 Properties

Two key properties, consistency and completeness, state that the Markov monoid
reflect exactly every possible asymptotic effect of a sequence of words.

Definition 29 (Reification)

A sequence punqnPN of words reifies a Boolean matrix m if for all states s, t P Q, the
sequence pPAps

un
ÝÑ tqqnPN converges and:

mps, tq “ 1 ðñ lim
n
PAps

un
ÝÑ tq ą 0.

Note that if punqnPN reifies m, then any subsequence of punqnPN also does. We will use
this simple observation several times.



3. The Markov Monoid Algorithm 113

Definition 30 (Consistency and completeness)

A set of Boolean matricesM is:

• consistent with A if for every Boolean matrix m P M, there exists a sequence of
words punqnPN which reifies m.

• complete for A if for every sequence of words punqnPN , there exists m PM such that
for all states s, t P Q:

lim sup
n

PAps
un
ÝÑ tq “ 0 ùñ mps, tq “ 0.

Thanks to value 1 witnesses, the answer to the value 1 problem can be read in a
consistent and complete set of Boolean matrices:

Lemma 20 (A criterion for value 1)

IfM is consistent with A and complete for A, then A has value 1 if, and only if,M
contains a value 1 witness.

Specifically:

• IfM is consistent with A and contains a value 1 witness, then A has value 1,

• IfM is complete for A and A has value 1, then A contains a value 1 witness.

Proof. We prove the first item. Assume thatM is consistent with A and contains a value
1 witness m. SinceM is consistent, there exists a sequence punqnPN reifying m. It follows
that for s P Q and t R F , we have limn δIpsq ¨ PAps

un
ÝÑ tq “ 0. Since for all n P N, we

have
ř

sPQ

ř

tPQ δIpsq ¨ PAps
un
ÝÑ tq “ 1, this implies limn PApunq “

ř

sPQ

ř

tPF limn δIpsq ¨

PAps
un
ÝÑ tq “ 1, so A has value 1.

We now prove the second item. Assume that M is complete for A and that A has
value 1. Then there exists a sequence of words punqnPN such that limn PApunq “ 1, i.e.
limn

ř

sPQ

ř

tPF δIpsq ¨ PAps
un
ÝÑ tq “ 1. Since for all n P N, we have

ř

sPQ

ř

tPQ δIpsq ¨

PAps
un
ÝÑ tq “ 1, then for s P Q such that δIpsq ą 0 and t R F , it implies that

lim supn PAps
un
ÝÑ tq “ 0.

Since M is complete, there exists a Boolean matrix m P M such that for all states
s, t P Q:

lim sup
n

PAps
un
ÝÑ tq “ 0 ùñ mps, tq “ 0.

Then m is a value 1 witness: let s P Q such that δIpsq ą 0 and t P Q such that mps, tq “ 1,
then lim supn PAps

un
ÝÑ tq ą 0, hence t P F .



114 The Value 1 Problem for Probabilistic Automata

3.4 Consistency

The aim of this section is to prove that the Markov Monoid algorithm is consistent, i.e.
that for every probabilistic automaton A, the Markov Monoid of A is consistent with A.

Fix a probabilistic automatonA. Unravelling the definitions, this amounts to associate
to every ω-expression E, inducing the element xEy of the Markov Monoid, a sequence of
words that reifies xEy. We show here that any sequence of finite words inducing the
polynomial prostochastic word E reifies xEy.

It follows that for every ω-expression E, the element xEy of the Markov Monoid of A
is a value 1 witness if, and only if, the polynomial prostochastic word E is accepted by A.
This implies the following characterisation of the Markov Monoid algorithm:

Theorem 29 (Consistency and characterisation of the Markov Monoid algorithm)

For every probabilistic automaton A, the Markov Monoid of A is consistent with A.

The Markov Monoid algorithm answers “YES” on input A if, and only if, there exists
a polynomial prostochastic word accepted by A.

A direct corollary of the consistency is the absence of false negatives:

Corollary 2 (No false negatives for the Markov Monoid algorithm)

If the Markov Monoid algorithm answers “YES” on input A, then A has value 1.

Theorem 29 follows from the following proposition.

Proposition 4 (Characterisation of the Markov Monoid algorithm)

For every ω-expression E, for every φ : AÑ SQˆQpRq, we have

πppφpEqq “ xEy.

Consequently, for every probabilistic automaton A:

• any sequence inducing the polynomial prostochastic word E reifies xEy,

• the element xEy of the Markov Monoid is a value 1 witness if, and only if, the
polynomial prostochastic word E is accepted by A.

Proof. We prove the first part of Proposition 4 by induction on the ω-expression E, which
essentially amounts to gather the results from Section 2.

The base case is a P A, clear.
The product case: let E “ E1 ¨ E2, and φ : AÑ SQˆQpRq.



3. The Markov Monoid Algorithm 115

We prove that πppφpEqq “ xEy. By definition E “ E1 ¨ E2, so pφpEq “ pφpE1q ¨
pφpE2q

because pφ is a morphism, and πppφpEqq “ πppφpE1qq ¨πppφpE2qq. Also by definition, we have
xEy “ xE1y ¨ xE2y, so the conclusion follows from the induction hypothesis.

The iteration case: let E “ F ω, and φ : AÑ SQˆQpRq.
We prove that πppφpEqq “ xEy. By definition, E “ F

ω, so pφpEq “ pφpF
ω
q, which is

equal to pφpF qω thanks to Lemma 18. Now, πppφpF qωq “ πppφpF qq7 thanks to Theorem 28.
By induction hypothesis, πppφpF qq “ xF y, which concludes.

Consider a sequence u inducing the polynomial prostochastic word E. Thanks to the
first item, πppφpEqq “ xEy, so πplimφpuqq “ xEy, which means that u reifies E.

Assume that xEy is a value 1 witness, i.e. for all states s, t P Q, if δIpsq ą 0 and
xEyps, tq “ 1, then t P F . Then if δIpsq ą 0 and t R F , we have limφpuqps, tq “ 0.
Since for all s P Q, we have

ř

tPQ limφpuqps, tq “ 1, it follows that if δIpsq ą 0, we have
ř

tPF limφpuqps, tq “ 1. Since
ř

sPQ δIpsq “ 1, this implies
ř

sPQ δIpsq
ř

tPF limφpuqps, tq “

1, i.e. limPApuq “ 1, so the polynomial prostochastic word E induced by u is accepted
by A.

Conversely, assume that the polynomial prostochastic word E is accepted by A. Since
it is induced by u, it follows that δI ¨limφpuq¨F “ 1. Consider two states s, t P Q such that
δIpsq ą 0 and xEyps, tq “ 1. It follows that πplimφpuqqps, tq “ 1, so limφpuqps, tq ą 0.
The combination of δIpsq ą 0, limφpuqps, tq ą 0 and δI ¨ limφpuq ¨ F “ 1 implies that
t P F , hence xEy is a value 1 witness.

3.5 No Completeness

In this subsection, we explain why the Markov Monoid algorithm cannot be complete:

• we asserted in Lemma 20 that if the Markov Monoid algorithm is consistent and
complete, then it is correct, i.e. solves the value 1 problem,

• we asserted in Theorem 29 that the Markov Monoid algorithm is consistent,

• the value 1 problem has been shown to be undecidable in [GO10] (we will revisit
the undecidability proof in Subsection 5.1).

The logical implication of these three statements is that the Markov Monoid algorithm is
not complete.

A concrete example of a probabilistic automaton A for which the Markov Monoid is
not complete is given by Example 3 from Subsection 1.3. We make three observations
about the Markov Monoid of A.

• We showed that A has value 1 if, and only if, x ą 1
2
. Since the Markov Monoid does

not depend on the numerical values of the probabilistic transitions, and in particular
on x, it cannot detect this, thus it is not complete.

• The Markov Monoid of A does not contain any value 1 witness. Indeed, the under-
lying non-deterministic automaton consists of two symmetric parts, left and right.



116 The Value 1 Problem for Probabilistic Automata

Nothing distinguishes those two parts, except for the numerical values of the prob-
abilistic transitions. It follows that all elements m of the Markov Monoid of A are
also symmetric, and in particular, mp0, L2q “ mp0, R2q, implying that m is not a
value 1 witness.

• The sequence of words witnessing that A has value 1 for x ą 1
2
is ppbanq2nqnPN. This

sequence is not fast, and induces no polynomial prostochastic words. We will call in
Subsection 5.1 such a sequence a two-tier sequence, and show that such sequences
are enough to imply the undecidability of the value 1 problem.



4. Leaktight Automata 117

4 Leaktight Automata

In this section, we define the class of leaktight automata, which was introduced
in [FGO12] with Hugo Gimbert and Youssouf Oualhadj.

The main result of [FGO12] is that the value 1 problem is decidable and PSPACE-
complete for leaktight automata. More specifically, the class of leaktight automata is
defined by a structural property on the Markov Monoid, which implies that the Markov
Monoid algorithm is complete for this class.

We define the extended Markov Monoid algorithm in Subsection 4.1, and the class of
leaktight automata in Subsection 4.2, where we prove that the extended Markov Monoid
algorithm solves the value 1 problem for leaktight automata. In Subsection 4.3, we show
that this problem is actually PSPACE-complete.

In the journal version [FGKO15], which features Edon Kelmendi as a third co-author,
we investigate the properties of the class of leaktight automata. In particular, we show
that the class of leaktight automata strictly contains hierarchical, 7-acyclic and simple
automata, implying that it is the largest class of probabilistic automata for which the
value 1 problem is known to be decidable. We report on these results in Subsection 4.4.

4.1 The Extended Markov Monoid Algorithm

The undecidability of the value 1 problem comes from the necessity to track down
vanishing probabilities. One of the phenomena that makes tracking vanishing probabilities
difficult are leaks. A leak occurs in an automaton when a sequence of words turns a set
of states C Ď Q into a recurrence class C on the long run, but on the short run, some of
the probability of the recurrence class is “leaking” to a different recurrence class.

Such leaks occur in the automaton depicted in the left hand side of Figure 22 with the
sequence of words panbqnPN. As n grows large, the probability to reach L2 from L1 while
reading the word anb vanishes, thus the sets tL1u and tL2u are two different recurrence
classes on the long run (i.e. asymptotically), however on the short run remains a small
yet positive probability to reach L2 from L1.

The right hand side of Figure 22 shows the asymptotic behaviour of panbqnPN.

The automaton in Example 3 from Subsection 1.3 contains two symmetric parts iden-
tical to Figure 22, it features one leak on the left hand side and another in the right hand



118 The Value 1 Problem for Probabilistic Automata

L1

L2

0

b

a

b

a

a, b

a an · b

L1

L2

0

ε

Figure 22: pan ¨ bqnPN is a leak from L1 to L2.

side. As a consequence, the real asymptotic behaviour is complex and depends on the
compared speeds of these leaks.

To formalize the notion of leak, we will extend the Markov Monoid, and consider
matrices over a three valued semiring, denoted Bε, instead of the Boolean semiring. The
three values are the two Boolean values 0 and 1, plus a third value ε. The operations _
and ^ are defined by:

_ 0 ε 1
0 0 ε 1
ε ε ε 1
1 1 1 1

^ 0 ε 1
0 0 0 0
ε 0 ε ε
1 0 ε 1

The matrices over Bε are called extended Boolean matrices, and usually denoted m.
As for Boolean matrices, an extended Boolean matrixm can be seen as graphs over the set
Q; such a graph has two different kinds of edges, an edge ps, tq is “normal” if mps, tq “ 1,
and a ε-edge if mps, tq “ ε.

On an intuitive level, the value ε is used for vanishing probabilities.
The semiring structure of Bε induces a monoid structure forMQˆQpBεq. The notion

of m-recurrent states is defined as for the Boolean case: a state q P Q is m-recurrent if
for all states t P Q, if mps, tq “ 1, then mpt, sq “ 1. We define the stabilisation operator
as follows:

Definition 31 (Stabilisation)

Let m be an extended Boolean idempotent matrix.
The stabilisation of m is denoted m7 and defined by:

m7
ps, tq “

$

’

’

’

&

’

’

’

%

1 if mps, tq “ 1 and t is m-recurrent,
ε if mps, tq “ 1 and t is m-transient,
ε if mps, tq “ ε,

0 otherwise.



4. Leaktight Automata 119

Definition 32 (Extended Markov Monoid)

The extended Markov Monoid of A is the smallest set of extended Boolean matrices
containing tπpφpaqq | a P Au and closed under product and stabilisation of idempotents.

Note that initially, the extended Boolean matrices only contain values 0 or 1; the value
ε is introduced by the stabilisation operator.

As for the Markov Monoid, for every m in the extended Markov Monoid of a proba-
bilistic automaton, for all states s P Q, there exists a state t P Q such that mps, tq “ 1.
From now on, we only consider extended Boolean matrices having this property. This will
be crucial in the proof of Lemma 22.

Definition 33 (Value 1 witness)

An extended Boolean matrixm is a value 1 witness if: for all states s, t P Q, if δIpsq ą 0
and mps, tq “ 1, then t P F .

Algorithm 2 computes the extended Markov monoid, and looks for value 1 witnesses.
If there is a value 1 witness, then the algorithm answers “YES”: indeed, in such case

the automaton has value 1. Otherwise, the algorithm looks for leaks1:

• if there are no leaks, then algorithm answers “NO”; indeed, the automaton is leak-
tight, and it does not have value 1 thanks to Theorem 30,

• if there is a leak, the algorithm answers “FAIL”; indeed, the automaton is not leak-
tight, and nothing can be said.

Recall that the Markov Monoid of A is txEy | E an ω-expressionu. Similarly, the
extended Markov Monoid of A is txEyε | E an ω-expressionu, where x¨yε is defined using
multiplication and stabilisation in Bε.

Lemma 21 (Relation between the extended and the classical Markov Monoid)

For every ω-expression E, the Boolean matrix xEy is obtained from the extended
Boolean matrix xEyε by replacing ε by 0 in all entries.

In particular, xEy is a value 1 witness if, and only if, xEyε is a value 1 witness.

This lemma is easily proved by induction on ω-expressions. It follows that both algo-
rithms give the same answer. Consequently, if the extended Markov Monoid algorithm
answers “YES” on input A, then A has value 1.

We extend the definition of completeness for the extended Markov Monoid algorithm.

1Leaks are special elements of the extended Markov Monoid, see the definition of leaks and leaktight
automata in Subsection 4.2.



120 The Value 1 Problem for Probabilistic Automata

ALGORITHM 2: The extended Markov Monoid algorithm.
Data: A probabilistic automaton.
Mε Ð tπpφpaqq | a P Au Y tIu.
repeat

if there is m,m1 PMε such that m ¨m1 RMε then
add m ¨m1 toMε

end
if there is m PMε such that m is idempotent and m7 RMε then

add m7 toMε

end
until there is nothing to add ;
if there is a value 1 witness in Mε then

return YES;
else

if there is no leak in Mε then
return NO;

else
return FAIL: the automaton is not leaktight;

end
end

Definition 34 (Completeness for the extended Markov Monoid algorithm)

A set of extended Boolean matricesM is complete for A if for each sequence of words
punqnPN , there exists m PM such that for all states s, t P Q:

lim sup
n

PAps
un
ÝÑ tq “ 0 ùñ mps, tq ‰ 1.

The same proof as for Lemma 20 shows that ifM is complete for A and A has value 1,
then A contains a value 1 witness. Together with the observation above, this implies that
ifM is complete for A, then the extended Markov Monoid algorithm correctly determines
whether A has value 1.

4.2 Completeness for Leaktight Automata

In this subsection, we define leaktight automata, and show that the extended Markov
Monoid algorithm is complete for leaktight automata.

Definition 35 (Leak)

An extended Boolean idempotent matrix m is a leak from the state s P Q to the state
t P Q if:

1. s and t are m-recurrent,



4. Leaktight Automata 121

2. mps, tq “ ε.

Definition 36 (Leaktight automata)

A probabilistic automaton A is leaktight if its extended Markov Monoid does not
contain any leak.

We establish our main result:

Theorem 30 (Completeness for leaktight automata)

For every probabilistic leaktight automaton A, the extended Markov Monoid of A is
complete for A.

Consequently, the extended Markov Monoid algorithm is correct for leaktight au-
tomata, implying that the value 1 problem is decidable for leaktight automata.

The remainder of this section is devoted to the proof of Theorem 30. The technical
core of the proof relies on an algebraic argument based on the existence of 7-factorisation
trees of bounded height.

Factorisation trees for monoids have been introduced by Simon [Sim90]. Roughly
speaking, Simon’s factorisation theorem states that given a morphism φ : A˚ Ñ M from
the set of finite words over A into a finite monoid M , the following holds: for all words u,
the computation of φpuq can be factorised in a tree whose depth is bounded independently
of the length of the word.

Simon later developed the notion of decomposition trees to solve the limitedness prob-
lem for distance automata [Sim94]. To this end, he defined a stabilisation operator for
monoids of matrices over the tropical semiring pNYt8u,min,`q. Then Kirsten extended
this technique to desert automata and nested distance desert automata [Kir05]. After him,
Colcombet generalised this approach by defining stabilisation monoids [Col09; Col13b],
which are monoids equipped with a stabilisation operator, and proved the existence of
7-factorisation trees of bounded depth. The formal definition is as follows:

Definition 37 (Stabilisation monoid)

A stabilisation monoid pM, ¨, 7q is a finite monoid pM, ¨q equipped with a stabilisation
operator 7 : EpMq Ñ EpMq, where EpMq is the set of idempotents of M , such that:

pm ¨m1q7 ¨m “ m ¨ pm1 ¨mq7 for m ¨m1 P EpMq and m1 ¨m P EpMq,
pm7q7 “ m7 for m P EpMq,
m7 ¨m “ m7 for m P EpMq.



122 The Value 1 Problem for Probabilistic Automata

Lemma 22 (The Markov Monoid is a stabilisation monoid)

The extended Markov Monoid of a probabilistic automaton is a stabilisation monoid.

Proof. First of all, the extended Markov monoid is a monoid for the multiplication: the
identity matrix I is the neutral element, and the multiplication is associative.

Now, let us prove the three properties required for the stabilisation operator 7.

First property. Let m,m1 such that m ¨m1 and m1 ¨m are idempotent. Let s, t P Q,
we have the following equivalence:

`

pm ¨m1q7 ¨m
˘

ps, tq “ 1 if, and only if, there exist two
states r, q P Q such that mps, rq “ 1, m1pr, qq “ 1, q is pm ¨m1q-recurrent and mpq, tq “ 1.
Similarly,

`

m ¨ pm1 ¨mq7
˘

ps, tq “ 1 if, and only if, there exist two states r, q P Q such that
mps, rq “ 1, m1pr, qq “ 1, mpq, tq “ 1 and t is pm1 ¨mq-recurrent.

We show that those two statements are equivalent. Assume that the first holds, and
prove that t is pm1 ¨mq-recurrent. Consider a state p P Q such that pm1 ¨mqpt, pq “ 1. There
exists a state ` P Q such that m1pp, `q “ 1. Observe that mpq, tq “ 1, pm1 ¨mqpt, pq “ 1 and
m1pp, `q “ 1, so pm¨m1q2pq, `q “ 1. Sincem¨m1 is idempotent, this implies pm¨m1qpq, `q “ 1.
Recall that q is pm ¨ m1q-recurrent, so pm ¨ m1qp`, qq “ 1. Altogether, m1pp, `q “ 1,
pm ¨ m1qp`, qq “ 1 and mpq, tq “ 1 imply that pm1 ¨ mq2pp, tq “ 1. Since m1 ¨ m is
idempotent, this implies pm1 ¨mqpp, tq “ 1, so t is pm1 ¨mq-recurrent, and we proved that
the first statement implies the second. The converse, showing that the second statement
implies the first, is very similar and omitted.

Second property. The equality pm7q7 “ m7 follows from the observation that the
notions of m-recurrence and m7-recurrence coincide.

Third property. The equality m7 ¨ m “ m7 follows from the observation that given
two states r, t P Q, if r is m-recurrent and mpr, tq “ 1, then t is m-recurrent (under the
assumption that m is idempotent).

Definition 38 (7-factorisation tree)

Consider a stabilisation monoid pM, ¨, 7q and a monoid morphism ψ : A˚ ÑM .
A 7-factorisation tree of a word u P A˚ is a finite unranked ordered tree, whose nodes

have labels in A˚ ˆM and such that:

i) the root is labelled by pu,mq, for some m PM ,

ii) every internal node with two children (called multiplication nodes) labelled by
pu1,m1q and pu2,m2q is labelled by pu1 ¨ u2,m1 ¨m2q,

iii) every internal node with three or more children (called stabilisation nodes) is la-
belled by pu1 . . . un,m7q for some m P EpMq, and its children are labelled by
pu1,mq, . . . , pun,mq.

iv) every leaf is labelled by pa, ψpaqq where a is a letter, or pε, ψpεqq.

Note that in a factorisation tree, the second label is not always the image of the first
component under ψ; indeed, it is an element of the stabilisation monoid pM, ¨, 7q whereas
the image of a finite word under ψ is an element of the monoid pM, ¨q. However, the



4. Leaktight Automata 123

projection of second label into this submonoid (which consists in ignoring the operator 7)
is indeed the image of the first component under ψ.

The following theorem was stated for the tropical semiring in [Sim94], and generalised
in [Col09]. A simple proof can be found in [Tor11].

Theorem 31 (Existence of 7-factorisation trees of bounded depth)

Consider a stabilisation monoid pM, ¨, 7q and a monoid morphism ψ : A˚ ÑM .
Every word u P A˚ has a 7-factorisation tree whose depth is less than 3 ¨ |M |.

In the proof of completeness of the extended Markov Monoid algorithm for leaktight
automata, the following lemma, called the Lower bound lemma, is instrumental. It asso-
ciates to every word a 7-factorisation tree of bounded depth and propagates bounds on
the probabilities by induction on the levels of this tree.

Lemma 23 (Lower bound lemma)

Let A be a leaktight automaton, and pmin the smallest non-zero transition probability
of A. Then for all words u P A˚, there exists m in the extended Markov monoid such
that, for all states s, t P Q:

mps, tq ‰ 0 ðñ PAps
u
ÝÑ tq ą 0,

mps, tq “ 1 ùñ PAps
u
ÝÑ tq ě p2

3|Q|
2`1

min .

Proof. Consider a finite word u P A˚; by Theorem 31 applied to the extended Markov
MonoidMε of A, which is a stabilisation monoid thanks to Lemma 22, and the morphism
ψ : AÑM defined by ψpaq “ πpφpaqq, there exists a 7-factorisation tree of depth at most
3 ¨ |Mε|, whose root is labelled by pu,mq for some extended Boolean matrix m ofMε.

The depth of a node in this tree is defined in a bottom-up fashion: the leaves have
depth zero, and a node has depth one plus the maximum of the depths of its children.

We prove by a bottom-up induction on h that for every node pu,mq of this tree at
depth h, for all states s, t P Q:

mps, tq ‰ 0 ðñ PAps
u
ÝÑ tq ą 0, (2.1)

mps, tq “ 1 ùñ PAps
u
ÝÑ tq ě p2

h

min. (2.2)

The case h “ 0 is for leaves. Here, either u is a letter a and m “ πpφpaqq, or u is the
empty word ε and m “ I. Then both (2.1) and (2.2) hold.

Assume h ą 0, there are two cases.

First case: a multiplication node labelled by pu,mq with two children labelled by
pu1,m1q and pu2,m2q. By definition u “ u1 ¨ u2 and m “ m1 ¨m2.

We first prove that (2.1) holds. Indeed, for two states s, t P Q, we have pm1 ¨m2qps, tq ‰
0 if, and only if, there exists a state r P Q such that m1ps, rq ‰ 0 and m2pr, tq ‰ 0. On
the other side, since:

PAps
u
ÝÑ tq “

ÿ

rPQ

PAps
u1
ÝÑ rq ¨ PApr

u2
ÝÑ tq,



124 The Value 1 Problem for Probabilistic Automata

then PAps
u
ÝÑ tq ą 0 if, and only if, there exists a state r P Q such that PAps

u1
ÝÑ

rq ¨ PApr
u2
ÝÑ tq ą 0, which is equivalent to PAps

u1
ÝÑ rq ą 0 and PApr

u2
ÝÑ tq ą 0. We

conclude with the induction hypothesis.
Now we prove that (2.2) holds. Consider two states s, t P Q such that mps, tq “ 1.

Then there exists a state r P Q such that m1ps, rq “ 1 and m2pr, tq “ 1. So:

PAps
u
ÝÑ tq ě PAps

u1
ÝÑ rq ¨ PApr

u2
ÝÑ tq ě p2

h

min ¨ p
2h

min “ p2
h`1

min ,

where the second inequality is by induction hypothesis. This completes the proof of (2.2).

Second case: a stabilisation node labelled by pu,m7q with k sons labelled by
pu1,mq, . . . , puk,mq. By definition, u “ u1 ¨ ¨ ¨uk, and m is idempotent.

The proof that (2.1) holds is similar to the concatenation node case.
Now we prove that (2.2) holds. Consider two states s, t P Q such that m7ps, tq “ 1.

Since k ě 3:

PAps
u
ÝÑ tq ě PAps

u1
ÝÑ tq ¨

ÿ

qPQ

PApt
u2¨¨¨uk´1
ÝÝÝÝÝÑ qq ¨ PApq

uk
ÝÑ tq.

To establish (2.2) we prove that PAps
u1
ÝÑ tq ě p2

h

min and for all states q P Q, we have
PApt

u2¨¨¨uk´1
ÝÝÝÝÝÑ qq ą 0 ùñ PApq

uk
ÝÑ tq ě p2

h

min.
Since m7ps, tq “ 1, by definition mps, tq “ 1 and t is m-recurrent. The induction

hypothesis for the node pu1,mq implies that PAps
u1
ÝÑ tq ě p2

h

min.
Consider a state q P Q such that PApt

u2¨¨¨uk´1
ÝÝÝÝÝÑ qq ą 0, we prove that PApq

uk
ÝÑ tq ě

p2
h

min. For that we use the hypothesis thatm is not a leak. By induction hypothesis for each
child, (2.1) implies that mk´2pt, qq ‰ 0. Since m is idempotent, mpt, qq ‰ 0. We argue
that mpq, tq “ 1. Let ` P Q an m-recurrent state such that mpq, `q “ 1. Then mpt, `q ‰ 0,
and t, ` are m-recurrent. Since m is not a leak, and in particular not a leak from t to `, it
follows that mpt, `q “ 1, which implies that mp`, tq “ 1 since t is m-recurrent. Together
with mpq, `q “ 1, this implies mpq, tq “ 1. Thus, by induction hypothesis and according
to (2.2), PApq

uk
ÝÑ tq ě p2

h

min.
Now, putting all inequalities together:

PAps
u
ÝÑ tq ě PAps

u1
ÝÑ tq ¨

ÿ

qPQ

PApt
u2¨¨¨uk´1
ÝÝÝÝÝÑ qq ¨ PApq

uk
ÝÑ tq

ě p2
h

min ¨
ÿ

qPQ

PApt
u2¨¨¨uk´1
ÝÝÝÝÝÑ qq ¨ p2

h

min

“ p2
h`1

min ,

where the last equality holds because
ř

qPQ PApt
u2¨¨¨uk´1
ÝÝÝÝÝÑ qq “ 1. This completes the

proof of (2.2).
To conclude, note thatMε has less than 3|Q|

2 elements.

Relying on the lower bound lemma (Lemma 23), we prove the completeness of the
extended Markov monoid for leaktight automata.

Let A be a leaktight automaton, and punqnPN a sequence of finite words. By Lemma 23,
for each word un there exists an extended Boolean matrix mn in the extended Markov
monoid such that for all states s, t P Q:

mnps, tq “ 1 ùñ PAps
un
ÝÑ tq ě p2

3|Q|
2`1

min .



4. Leaktight Automata 125

Since the set of extended Boolean matrices is finite, there exists N P N such that tn P N |
mN “ mnu is infinite. To complete the proof, we prove that mN satisfies, for all states
s, t P Q:

lim supPAps
un
ÝÑ tq “ 0 ùñ mNps, tq “ 0.

Assume lim supPAps
un
ÝÑ tq “ 0, then PAps

un
ÝÑ tq ă p2

3|Q|
2`1

min for n sufficiently large. Since
mN “ mn for infinitely many n P N, this implies mNps, tq ‰ 1, which completes the proof
of Theorem 30.

4.3 Complexity of the Value 1 Problem for Leaktight Au-

tomata

In this section, we show two results:

• the value 1 problem for leaktight automaton is PSPACE-hard,

• the extended Markov Monoid can be computed in polynomial space.

As a corollary, we obtain that the value 1 problem for leaktight automata is PSPACE-
complete.

4.3.1 PSPACE-hardness
We start with the PSPACE-hardness of the value 1 problem for leaktight automata.

To this end, we give a reduction from the emptiness problem of n deterministic automata.
To prove that the reduction indeed constructs leaktight automata, we need to show that
deterministic automata are leaktight, and the closure under parallel composition.

Lemma 24 (Deterministic automata are leaktight)

Deterministic automata are leaktight.

Proof. For every extended Boolean matrixm P tπpφpaqq | a P AuYtIu, for all states s P Q,
there exists a unique state t P Q such that mps, tq “ 1. In particular, each recurrence class
is formed of only one state with a self-loop. This property is preserved by multiplication,
and implies that the stabilisation operator is trivial, i.e. m7 “ m. Consequently, all
extended Boolean matrices m in the extended Markov Monoid have entries 0 or 1, which
implies that there are no leaks.

Definition 39 (Parallel composition)

Let A and B two probabilistic automata over the disjoint set of states QA and QB,
with the same alphabet A.



126 The Value 1 Problem for Probabilistic Automata

The parallel composition A||B of A and B is the probabilistic automaton over the set
of states QA Y QB, whose initial distribution is δI “ 1

2
¨ δAI `

1
2
¨ δBI , set of final states is

F “ FA Y FB, and transition function is

φpq, aq “

#

φApq, aq if q P QA,

φBpq, aq if q P QB.

By definition, for u P A˚, we have PA||Bpuq “
1
2
¨ PApuq `

1
2
¨ PBpuq.

Lemma 25 (Stability of the leaktight class by parallel composition)

The class is leaktight automata is stable by parallel composition.

Proof. The extended Markov MonoidMA||B
ε of the parallel composition embeds into the

direct productMA
ε ˆMB

ε of the extended Markov Monoids of each automaton.
Note that for m P MA||B

ε and two states s, t P QA Y QB, if mps, tq “ 1, then either
s, t P QA or s, t P QB. Relying on this, we map m PMA||B

ε to pmrAs,mrBsq, where mrAs
is the restriction to QA and similarly for B. An easy induction shows that this map is an
embedding intoMA

ε ˆMB
ε .

Consequently, if none of the extended Markov Monoids of A and B contain a leak,
then neither does the extended Markov Monoid of their parallel composition.

Now that we proved that deterministic automata are leaktight, and the closure under
parallel composition, the PSPACE-hardness of the value 1 problem for leaktight automata
is easy.

Proposition 5 (PSPACE-hardness of the value 1 problem for leaktight automata)

The value 1 problem for leaktight automaton is PSPACE-hard.

Proof. We give a reduction from the following problem: given n deterministic automata
over finite words, decide whether the intersection of the languages they accept is empty.
This problem is PSPACE-hard.

The reduction is as follows: given n deterministic automata, we construct the parallel
composition of the n automata, where each copy is reached with probability 1

n
. This

automaton has value 1 if, and only if, the intersection of the languages is not empty, and
is leaktight by Lemma 24 and Lemma 25.

4.3.2 Bounding the 7-height in the extended Markov Monoid
We now consider the running complexity of the extended Markov Monoid algorithm.

A naïve argument shows that it terminates in less than 3|Q|
2 stabilisations, since each

stabilisation adds a new extended Boolean matrix in the monoid and there are at most
3|Q|

2 different Boolean matrices. This gives an EXPTIME upper bound.
A better complexity can be achieved by looking for a value 1 witness or a leak in

a non-deterministic way. The algorithm guesses the witness by its decomposition into



4. Leaktight Automata 127

multiplications and stabilisations. The key observation, made by Daniel Kirsten [Kir05]
in the context of distance desert automata, is that the 7-height, that is the number of
nested applications of the stabilisation operator, can be restricted to at most |Q|.

We fix a probabilistic automaton A, and define the 7-hierarchy inside the extended
Markov MonoidMε of A as follows:

S0 “ tπpφpaqq | a P Au
˚,

Sp`1 “ pSp Y tm
7
| m P EpSpquq

˚,

where T ˚ is the set of extended Boolean matrices obtained as multiplications of extended
Boolean matrices in T .

Clearly:
S0 Ď S1 Ď S2 Ď ¨ ¨ ¨ ĎMε

Definition 40 (7-height of a Boolean matrix)

The 7-height of an extended Boolean matrix m PMε is the minimal p P N such that
m P Sp.

Theorem 32 (Linear bound on the 7-height)

Every extended Boolean matrix m PMε has 7-height at most |Q|, i.e. S|Q|´1 “Mε.
We say that the 7-hierarchy collapses at level |Q| ´ 1.

In the following, we adapt Daniel Kirsten’s proof from [Kir05] to the setting of proba-
bilistic automata. Roughly speaking, the proof consists in associating a quantity to each
idempotent element of the extended Markov Monoid, and to show the following:

• the quantity is bounded above by |Q| and below by 1,

• the quantity strictly decreases when stabilising an unstable element (i.e. such that
m7 ‰ m),

• the quantity does not increase when concatenating.

Let m be an extended Boolean idempotent matrix, we define „m the relation over Q
by s „m t if mps, tq “ 1 and mpt, sq “ 1. The relation „m is symmetric, and since m is
idempotent, it is transitive. If for some state s P Q there exists a state t P Q such that
s „m t, then s „m s since m is idempotent. Consequently, the restriction of „m to the
set

Zm “ ts P Q | s „m su

is reflexive, i.e. „m is an equivalence relation on Zm. From now on by equivalence class of
„m we mean an equivalence class of „m on Zm. We denote by rssm the equivalence class
of s, and by Clpmq the set of equivalence classes of „m. The quantity associated with
m is |Clpmq|, the number of equivalence classes of „m, that is the number of non-trivial
connected components in the underlying graph of m. Note that 1 ď |Clpmq| ď |Q|.



128 The Value 1 Problem for Probabilistic Automata

The following lemma gives two useful observations. We order the three values 0, ε and
1 by 0 ă ε ă 1. Observe that for m,m1 two extended Boolean matrices and two states
s, t P Q, we have:

pm ¨m1
qps, tq “ max

rPQ
minpmps, rq,m1

pr, tqq.

Lemma 26 (Facts about multiplication)

• Let m,m1 be two extended Boolean matrices and three states s, t, r P Q. Then
pm ¨m1qps, tq ě mps, rq ¨m1pr, tq.

• Let m be an idempotent extended Boolean matrix and two states s, t P Q. Then
there exists a state r P Q such that mps, tq “ mps, rq ¨mpr, rq ¨mpr, tq.

Proof. The first item follows from the equality above.
Consider now the second item. For all states r P Q, since m is idempotent we have:

mps, tq “ m3
ps, tq “

ÿ

p,qPQ

mps, pq ¨mpp, qq ¨mpq, tq ě mps, rq ¨mpr, rq ¨mpr, tq.

Since m is idempotent, we have m “ m|Q|`2, so there exist r0 “ s, . . . , r|Q|`2 “ t such that
mps, tq “ mpr0, r1q ¨mpr1, r2q ¨ ¨ ¨mpr|Q|`1, r|Q|`2q. By a counting argument, there exist i, j
such that 1 ď i ă j ď |Q| ` 1 and ri “ rj, denote it by r. We have:

mps, rq “ mi
ps, rq ě mpr0, r1q ¨ ¨ ¨mpri´1, riq,

mpr, rq “ mj´i
pr, rq ě mpri, ri`1q ¨ ¨ ¨mprj´1, rjq,

mpr, tq “ m|Q|`2´j
pr, tq ě mprj, rj`1q ¨ ¨ ¨mpr|Q|`1, r|Q|`2q.

Hence, mps, rq ¨mpr, rq ¨mpr, tq ě mpr0, r1q ¨mpr1, r2q ¨ ¨ ¨mpr|Q|`1, r|Q|`2q “ mps, tq, and
the second item follows.

The following lemma shows that the quantity |Clpmq| strictly decreases when stabil-
ising an unstable extended Boolean matrix.

Lemma 27 (|Clp¨q| decreases with stabilisation)

Let m be an extended Boolean idempotent matrix.

• Clpm7q Ď Clpmq,

• if m7 ‰ m, then Clpm7q ‰ Clpmq.

Proof. We prove the first item. Let s P Zm7 , we show that rssm7 “ rssm. For all states
t P Q such that s „m7 t, we have s „m t, so rssm7 Ď rssm. Conversely, let t P rssm; we
have mps, tq “ 1 and mpt, sq “ 1. Since s „m7 s, we have m7ps, sq “ 1, so in particular
s is m-recurrent. It follows from mps, tq “ 1 that t is also m-recurrent, so m7ps, tq “ 1,
and similarly m7pt, sq “ 1. Thus s „m7 t, i.e. t P rssm7 , which implies the equality



4. Leaktight Automata 129

rssm7 “ rssm. In other words, the equivalence classes for m7 are also equivalence classes
for m, so Clpm7q Ď Clpmq.

We now prove the second item. Assume m ‰ m7; it implies that there exist two states
s, t P Q such thatm7ps, tq “ ε,mps, tq “ 1 and t ism-transient. By Lemma 26, there exists
r such that mps, tq “ mps, rq ¨mpr, rq ¨mpr, tq, so mps, rq “ mpr, rq “ mpr, tq “ 1. Note
that r is m-transient, as mpr, tq “ 1 would imply that t is m-recurrent. So m7pr, rq “ ε.
Thus, r P Zm but r R Zm7 . Hence, there is a class rrsm in Clpmq, but there is no class
rrsm7 in Clpm7q.

The following lemma shows that the quantity |Clpmq| is common to all idempotents
in the same J -class. The notion of J -class is a classical notion for the theory of monoids,
derived from one of the four Green’s relations called the J -preorder (for details about
Green’s relations and its applications to automata theory see [Col11]).

Definem ďJ m1 if there exist two extended Boolean matrices n, n1 such that n¨m1 ¨n1 “
m, and mJm1, i.e. m and m1 are in the same J -class, if m ďJ m1 and m1 ďJ m.

Lemma 28 (|Clp¨q| decreases with multiplication)

Consider two extended Boolean idempotent matrices m,m1. If m ďJ m1, then
|Clpmq| ď |Clpm1q|.

Proof. Let n, n1 be two extended Boolean idempotent matrices such that m ďJ m1; con-
sider two extended Boolean matrices n, n1 such that n ¨m1 ¨ n1 “ m. First, without loss
of generality we assume that n ¨m1 “ n and m1 ¨ n1 “ n1. Indeed, if n or n1 do not satisfy
these conditions, then we consider n “ n ¨m1 and n1 “ m1 ¨ n1.

We construct a partial surjective mapping β : Clpm1q Ñ Clpmq, which depends on the
choice of n and n1. For all states s P Zm1 and t P Zm satisfying npt, sq ¨m1ps, sq ¨n1ps, tq “ 1
we set βprssm1q “ rtsm. To complete the proof, we have to show that β is well defined and
that β is indeed surjective.

We show that β is well defined. Let s, s1 P Zm1 and t, t1 P Zm, and assume npt, sq ¨
m1ps, sq ¨ n1ps, tq “ 1 and npt1, s1q ¨m1ps1, s1q ¨ n1ps1, t1q “ 1. By definition βprssm1q “ rtsm
and βprs1sm1q “ rt1sm. To show that β is well defined, we have to show that if rssm1 “
rs1sm1 , then rtsm “ rt1sm. Assume rssm1 “ rs1sm1 , i.e., s „m1 s1, so m1ps, s1q “ 1. Since
npt, sq ¨m1ps, sq ¨ n1ps, tq “ 1, we have npt, sq “ n1ps, tq “ 1. Similarly, npt1, s1q ¨m1ps1, s1q ¨
n1ps1, t1q “ 1, so npt1, s1q “ n1ps1, t1q “ 1. Consequently, npt, sq ¨ m1ps, s1q ¨ n1ps1, t1q “ 1,
so mpt, t1q “ pn ¨ m1 ¨ n1qpt, t1q “ 1. Symmetrically, npt1, s1q ¨ m1ps1, sq ¨ n1ps, tq “ 1, so
mpt1, tq “ 1, implying t „m t1, i.e. rtsm “ rt1sm.

We show that β is surjective. Let t P Zm. We exhibit some state s P Q such that
βprssm1q “ rtsm. Since mpt, tq “ 1 and m “ n ¨ m1 ¨ n1, there exist two states p, q P Q
such that npt, pq “ m1pp, qq “ n1pq, tq “ 1. By Lemma 26, there exists a state s P Q
such that m1pp, sq ¨m1ps, sq ¨m1ps, qq “ m1pp, qq “ 1, so m1pp, sq “ m1ps, sq “ m1ps, qq “ 1,
implying s P Zm1 . We have npt, sq “ pn ¨m1qpt, sq ě npt, pq ¨m1pp, sq “ 1, and n1ps, tq “
pm1 ¨ n1qps, tq ě m1ps, qq ¨ n1pq, tq “ 1. To sum up, npt, sq ¨m1ps, sq ¨ n1ps, tq “ 1, and hence,
βprssm1q “ rtsm.

The following lemma wraps up the previous two lemma. For technical convenience,
we set S´1 “ H.



130 The Value 1 Problem for Probabilistic Automata

Lemma 29 (|Clp¨q| decreases with the 7-height)

Let m be an extended Boolean idempotent matrix and p ě 0. If m P SpzSp´1, then
|Clpmq| ď |Q| ´ p.

Proof. We proceed by induction on p. For p “ 0, the assertion is obvious. Let p ě 0, we
show the claim for p ` 1. Let m be an extended Boolean idempotent matrix such that
m P Sp`1zSp. By definition, m “ m1

1 ¨ ¨ ¨m
1
k where for all i, either m1

i P Sp or m1
i “ m7

i for
mi P Sp and m1

i R Sp.
If for all i, m1

i P Sp, then m “ m1
1 ¨ ¨ ¨m

1
k P Sp, which is a contradiction. Consequently,

there exists i such thatm1
i “ m7

i formi P Sp andm1
i R Sp. Sincemi P Sp andm1

i “ m7

i R Sp,
we have m7

i ‰ mi. Towards contradiction, assume mi P Sp´1, then p ě 1, and this implies
m7

i P Sp, which is a contradiction. Hence, mi P SpzSp´1.
By induction, we have |Clpmiq| ď |Q| ´ p. Since m7

i ‰ mi, by Lemma 27 we have
|Clpm7

iq| ă |Clpmiq|. Since m ďJ m7

i, by Lemma 28 we have |Clpmq| ď |Clpm7

iq|.
Altogether, it follows |Clpmq| ď |Q| ´ pp` 1q.

It follows from Lemma 29 that S|Q|´1 “ S|Q| “Mε, i.e. the 7-hierarchy collapses at
level |Q| ´ 1, proving Theorem 32.

The bound is almost tight, as shown in Figure 23. The only value 1 witness of this
automaton is p¨ ¨ ¨ ppa70 a1q7 a2q7 a3q7 ¨ ¨ ¨ an´1q7, whose 7-height is n “ |Q| ´ 2. This

0 1 2 n − 1 n

⊥

a0
(ai)i≤n−1

(ai)i≤0 (ai)i≤1 (ai)i≤n−2

(ai)i≥0

a0

a1 a1

a2

a2

an−1

an−1

(ai)i≥1

(ai)i≥2
(ai)i≥3

Figure 23: A leaktight automaton with value 1 and 7-height |Q| ´ 2.

automaton is leaktight, so the extended Markov Monoid algorithm will find the value 1
witness and correctly answers that it has value 1.

We derive from Theorem 32 the following complexity result, improving over the naïve
approach to implement the extended Markov Monoid algorithm.



4. Leaktight Automata 131

Theorem 33 (The extended Markov Monoid algorithm in polynomial space)

There exists an algorithm which checks in polynomial space whether an automaton is
leaktight and whether in such case it has value 1.

Following Theorem 30, checking whether a leaktight automaton has value 1 boils down
to finding a value 1 witness in the extended Markov Monoid. Similarly, checking whether
an automaton is not leaktight boils down to finding a leak in the extended Markov Monoid.
Note that in both cases, checking whether a given extended Boolean matrix is a witness
is easily done in polynomial time.

Since we aim at proving that those two tasks can be computed in PSPACE, which is
closed under complementation, it suffices to show how to find a witness in the extended
Markov Monoid.

We describe an algorithm to guess a witness in the extended Markov Monoid. The
key property given by Theorem 32 is that we can restrict ourselves to at most |Q| nested
stabilisations.

As the corresponding property was proved by Daniel Kirsten [Kir05] in the context of
distance automata, also to obtain a PSPACE algorithm, the following algorithm is also an
adaptation of [Kir05]. Rather than a formal proof, we here give an intuitive description
of the algorithm.

A witness can be described as a tree whose nodes are labelled by extended Boolean
matrices, of depth at most 2 ¨ |Q| ` 1, as follows:

• a leaf is labelled either by πpφpaqq for a P A or by I,

• an internal node can be a multiplication node, then it is labelled by m “ m1 ¨ ¨ ¨mk

for k ď 3|Q|
2 and has k children, labelled by m1, . . . ,mk,

• an internal node can be a stabilisation node, then it is labelled by m7 and has one
child labelled m.

We describe an algorithm that guesses such a tree. It starts from the root, and travels
over nodes in a depth-first way: from top to bottom (and up again) and from left to right.
In a node, the algorithm stores the branch that leads to this node, and for each node in
the branch the extended Boolean matrix obtained by multiplying all the left siblings of
this node. From a node, the algorithm guesses an extended Boolean matrix, and whether
it will be a leaf, a multiplication node or an stabilisation node. In the first case, it goes
up and checks the consistency of this guess. In the two other cases, it updates the value
of this node by multiplying the new guess with the previous value and goes down.

Although the tree is of exponential size, in each step the algorithm only stores 2¨|Q|`1
extended Boolean matrices at most, so it runs in polynomial space.

4.4 Comparisons with the Other Classes

In this section, we report on the results obtained in the journal version [FGKO15], in
collaboration with Hugo Gimbert, Edon Kelmendi and Youssouf Oualhadj. In addition
to the results of the conference version [FGO12], the aim of this journal version is to
compare the class of leaktight automata to other subclasses.



132 The Value 1 Problem for Probabilistic Automata

Two subclasses of probabilistic automata were constructed in order to decide the value
1 problem on such instances. The first class was the 7-acyclic automata by Hugo Gimbert
and Youssouf Oualhadj [GO10]. Later but concurrently, two different works have been
published in the very same conference. The first one introduces simple automata and
structurally simple automata, by Krishnendu Chatterjee and Mathieu Tracol [CT12],
and the second is ours (in collaboration with Hugo Gimbert and Youssouf Oualhadj),
introducing leaktight automata [FGO12].

Although geared towards the same goal (deciding the value 1 problem), the two classes
came from different perspectives. The paper of Krishnendu Chatterjee and Mathieu Tracol
relies on a theorem from Probability Theory, called the jet decompositions of (infinite)
Markov Chains. Ours relies on Simon’s theorem and comes from Algebra.

Theorem 34 (Inclusion of the different subclasses)

The class of 7-acyclic, simple and structurally simple automata are all strictly included
in the class of leaktight automata.

We do not give here more details, and refer to [FGKO15] for both definitions and
proofs. The content of Theorem 34 is made a bit more precise in Figure 24.

leaktight

simple

structurally

simple

]-acyclic

deterministic

Figure 24: Inclusion of the different subclasses.

Another subclass of probabilistic automata, called hierarchical automata, has been
defined in [CSV11]. The main result is that hierarchical automata recognize exactly the
class of ω-regular languages. Unfortunately, the emptiness problem, which is undecid-
able for the general class of probabilistic automata, is still undecidable for hierarchical
automata.



4. Leaktight Automata 133

Theorem 35 (Inclusion of the hierarchical automata)

The class of hierarchical automata is strictly included in the class of leaktight au-
tomata.

Consequently, the value 1 problem is decidable for hierarchical automata, and the
emptiness problem is undecidable for leaktight automata.





5. Undecidability Results 135

5 Undecidability Results

In this section, we give three undecidability results:

• the first is the undecidability of the two-tier value 1 problem,

• the second is the undecidability of the numberless value 1 problems, as proved
in [FGHO14].

• the third is the undecidability of the robustness variants of the value 1 and the
emptiness problem.

These results aim at better understanding the limits of what can be done about the
value 1 problem, i.e. to what extend is this problem undecidable.

The proof of the first result is different from the original proof from [GO10]. It shows
that the undecidability appears when considering different convergence speeds.

The second result departs from the other undecidability results as it does not con-
sider probabilistic automata, but their numberless counterparts, i.e. the underlying non-
deterministic automata. In other words, this result shows that even abstracting away the
numerical values of the probabilistic transitions does not lead to decidability.

We then introduce robustness problems, in which a probabilistic automaton is given,
but its probabilistic transitions can be modified up to a small perturbation. A decision
problem for probabilistic automaton induces a robustness variant, where perturbations
are allowed. We obtain as a corollary of the undecidability of the numberless problems
that robustness problems are also undecidable.

5.1 Undecidability of the Two-tier Value 1 Problem

In this subsection, we revisit the undecidability proof of the value 1 problem. The
undecidability result, stated as Theorem 23 in Subsection 1.4, is due to Gimbert and
Oualhadj [GO10]. We give here an a finer analysis of the reduction, which yields the
undecidability of a simpler variant, called the two-tier value 1 problem. We will further
discuss this undecidability result in Section 6.



136 The Value 1 Problem for Probabilistic Automata

Theorem 36 (Undecidability of the two-tier value 1 problem)

The following problem is undecidable: given a simple probabilistic automaton A,
determine whether there exist two finite words u, v such that limn PAppu ¨ vnq2

n
q “ 1.

Note that the two-tier value 1 problem is a priori much easier than the value 1 problem,
as it restricts the set of sequences of finite words to very simple sequences. We call such
sequences two-tier, because they exhibit two different behaviours: the word v is repeated
a linear number of times, namely n, while the word u ¨ vn is repeated an exponential
number of times, namely 2n.

p0q0, LA
F

qF

q0, R A
F

⊥

check, 1
2

check

∗
end

end

check, 1
2

check

∗

end

end

Figure 25: Reduction.

The reduction uses the probabilistic automaton described in Example 3 from Sub-
section 1.3; the calculations made in the proof to follow and in this example are very
similar.

Proof. We construct a reduction from the emptiness problem for simple probabilistic
automata to the two-tier value 1 problem. Let A be a simple probabilistic automaton.
We construct a simple probabilistic automaton B such that the following holds:

Lą
1
2 pAq is non-empty if, and only if,

there exist two finite words u, v such that limn PBppu ¨ vnq2
n
q “ 1.

Without loss of generality we assume that the initial state q0 has no ingoing transitions.
The alphabet of B is B “ A Z tcheck, endu, its set of states is QB “ Q ˆ tL,Ru Z

tp0,K, qF u, its transition function is φ1, the only initial state is p0 and the only final state



5. Undecidability Results 137

is qF . We describe φ1 as a function φ1 : QB ˆB Ñ DpQBq:
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

φ1pp0, checkq “ 1
2
¨ pq0, Lq `

1
2
¨ pq0, Rq

φ1ppq, dq, aq “ pφpq, aq, dq for a P A and d P tL,Ru
φ1ppq0, Lq, checkq “ qF

φ1ppq, Lq, endq “ q0 if q P F
φ1ppq, Lq, endq “ p0 if q R F
φ1ppq0, Rq, checkq “ K

φ1ppq, Rq, endq “ p0 if q P F
φ1ppq, Rq, endq “ q0 if q R F
φ1pqF , ˚q “ qF

where as a convention, if a transition is not defined, it leads to K.
Assume that there exists a finite word w such that PApwq ą

1
2
, then we claim that

limn PBppcheck ¨ pw ¨ endqnq2
n
q “ 1. Denote x “ PApwq.

We have
PApp0

check¨pw¨endqn
ÝÝÝÝÝÝÝÝÑ pq0, Lqq “

1

2
¨ xn,

and
PApp0

check¨pw¨endqn
ÝÝÝÝÝÝÝÝÑ pq0, Rqq “

1

2
¨ p1´ xqn.

We fix an integer N and analyse the action of reading pcheck ¨ pw ¨ endqnqN : there
are N “rounds”, each of them corresponding to reading check ¨ pw ¨ endqn from p0. In a
round, there are three outcomes: winning (that is, remaining in pq0, Lq) with probability
pn “

1
2
¨ xn, losing (that is, remaining in pq0, Rq) with probability qn “ 1

2
¨ p1 ´ xqn, or

going to the next round (that is, reaching p0) with probability 1´ppn` qnq. If a round is
won or lost, then the next check leads to an accepting or rejecting sink; otherwise it goes
on to the next round, for N rounds. Hence:

PAppcheck ¨ pw ¨ endqnqNq

“

N´1
ÿ

i“1

p1´ ppn ` qnqq
i´1
¨ pn

“ pn ¨
1´ p1´ ppn ` qnqq

N´1

1´ p1´ ppn ` qnqq

“
1

1` qn
pn

¨
`

1´ p1´ ppn ` qnqq
N´1

˘

We now set N “ 2n. A simple calculation shows that the sequence pp1 ´ ppn `
qnqq

N´1qnPN converges to 0 as n goes to infinity. Furthermore, qn
pn
“ p1´x

x
qn, which con-

verges to 0 as n goes to infinity since x ą 1
2
. It follows that the acceptance probability

converges to 1 as n goes to infinity. Consequently:

lim
n
PAppcheck ¨ pw ¨ endqnq2

n

q “ 1.

Conversely, assume that for all finite words w, we have PApwq ď
1
2
. We claim that

every finite word in B˚ is accepted by B with probability at most 1
2
. First of all, using



138 The Value 1 Problem for Probabilistic Automata

simple observations we restrict ourselves to words of the form

w “ check ¨ w1 ¨ end ¨ w2 ¨ end ¨ ¨ ¨ wn ¨ end ¨ w1,

with wi P A˚ and w1 P B˚. Since PApwiq ď
1
2
for every i, it follows that in B, after reading

the last letter end in w before w1, the probability to be in pq0, Lq is smaller or equal than
the probability to be in pq0, Rq. This implies the claim. It follows that the value of B is
not 1, and in particular for two finite words u, v, we have limn PBppu ¨ vnq2

n
q ă 1.

5.2 Undecidability of the Numberless Value 1 Problems

In this subsection, we report on results obtained in collaboration with Hugo Gimbert,
Florian Horn and Youssouf Oualhadj, published in [FGHO14].

The main contribution is an undecidability result for numberless probabilistic au-
tomata, which are probabilistic automata where the numerical values of the probabilistic
transitions are not specified. The motivation for introducing this model was to obtain a
decidable variant of the value 1 problem, as the undecidability proof seemed to strongly
rely on numerical manipulations. The negative result presented here shows that these
numerical manipulations can be encoded in the structure of the automaton.

Definition 41 (Numberless probabilistic automaton)

A numberless probabilistic automaton is given by a finite set of states Q, a numberless
transition function T Ď QˆAˆQ, an initial state q0 P Q and a set of final states F Ď Q.

The numberless transition function T is an abstraction of transition functions. We say
that a transition function φ : A Ñ SQˆQpQq is consistent with T if for all letters a P A
and states s, t P Q, we have φpaqps, tq ą 0 if, and only if, ps, a, tq P T .

A numberless probabilistic automaton M together with a transition function φ con-
sistent with T defines a probabilistic automatonMrφs. We say thatMrφs is an instance
ofM. Conversely, a probabilistic automaton A induces an underlying numberless prob-
abilistic automaton rAs, where T is defined by pq, a, pq P T if φpaqpq, pq ą 0.

We consider two variants of the value 1 problem for numberless probabilistic automata:

Problem 8 (Numberless value 1 problem)

• The existential value 1 problem: given a numberless probabilistic automaton
M, determine whether there exists φ such that valpMrφsq “ 1.

• The universal value 1 problem: given a numberless probabilistic automatonM,
determine whether for all φ, we have valpMrφsq “ 1.

There exists a numberless probabilistic automatonM such that:



5. Undecidability Results 139

• there exists φ such that valpMrφsq “ 1,

• there exists φ1 such that valpMrφ1sq ă 1.

Indeed, an example is given by Example 3 from Subsection 1.3: we proved that for x ą 1
2
,

it has value 1, but not for x ď 1
2
.

The main contribution of [FGHO14] is the following undecidability result.

Theorem 37 (Recursive Inseparability of the numberless value 1 problems)

There exists no algorithm with the following behaviour.
Given a numberless probabilistic automatonM:

• if all instances have value 1, then the algorithm answers “YES”,

• if no instance has value 1, then the algorithm answers “NO”,

• otherwise, the algorithm can do anything, including not terminating.

The remainder of this subsection is devoted to proving this result. Note that it in
particular implies that both the universal and the existential value 1 problems are unde-
cidable.

5.2.1 Overall construction

Proposition 6 (Construction)

There exists an effective construction which takes as input a simple probabilistic au-
tomaton A and constructs a numberless probabilistic automatonM such that

valpAq “ 1 ðñ @φ, valpMrφsq “ 1 ðñ Dφ, valpMrφsq “ 1.

We first explain how Proposition 6 implies Theorem 37. Assume towards contradiction
that there exists an algorithm A as described in the statement of the theorem. We show
using Proposition 6 that this would imply that the value 1 problem is decidable for
probabilistic automata. Indeed, let A be a simple probabilistic automaton, applying the
construction yields a numberless probabilistic automatonM such that

valpAq “ 1 ðñ @φ, valpMrφsq “ 1 ðñ Dφ, valpMrφsq “ 1.

In particular, either all instances ofM have value 1, or no instance ofM has value 1. So
the algorithm A on inputM terminates, and:

• if it answers “YES” then valpAq “ 1,

• if it answers “NO” then valpAq ă 1,



140 The Value 1 Problem for Probabilistic Automata

allowing to determine whether A has value 1 or not.

We now give a high level description of the construction; it follows two steps.
The first step is to build from A a family of probabilistic automata Bλ such that for

all 0 ă λ ă 1:

• the transition function of Bλ is φλ : AÑ SQˆQpt0, λ, 1´ λ, 1uq,

• valpBλq “ valpAq.

The second step is to build from the Bλ’s a numberless probabilistic automaton M
such that, for each probabilistic transition function φ, there exists λ such thatMrφs has
value 1 if, and only if, Bλ has value 1.

It follows that:

Dφ, valpMrφsq “ 1 ùñ Dλ, valpBλq “ 1
ùñ valpAq “ 1
ùñ @λ, valpBλq “ 1
ùñ @φ, valpMrφsq “ 1.

5.2.2 The fair coin construction
Let A be a simple probabilistic automaton over the alphabet A. We construct a

family of probabilistic automata Bλ for 0 ă λ ă 1 over the alphabet B “ AY t7u, whose
transition function is φλ : AÑ SQˆQpt0, λ, 1´ λ, 1uq.

The automaton Bλ is a copy of A where every probabilistic transition of A is replaced
by the gadget illustrated in Figure 26. The initial and final states are the same in A and
in Bλ.

The left hand side shows part of automaton A: a probabilistic transition from q
reading a, leading to r or s each with probability half. The right hand side shows how
this behaviour is simulated by Bλ: the letter a leads to an intermediate state qa, from
which we can read a new letter 7. Each time a pair of 7’s is read, the automaton Bλ goes
to r with probability λ ¨ p1´λq, goes to s with probability p1´λq ¨λ, and stays in qa with
probability λ2 ` p1´ λq2. Reading a letter other than 7 while the automata is still in one
of the new states leads to a rejecting sink state K. Thus, the probability of going to r is
equal to the probability of going to s, and we can make the probability of a simulation
failure as low as we want by increasing the number of 7’s between two successive letters
from A.

q

r

s

a, 1
2

a, 1
2

q qa

qa, L

qa, R

r

s

♯

a

♯, λ

♯, λ

♯, 1 − λ

♯, 1 − λ

♯, 1 − λ

♯, λ

♯

♯

Figure 26: The fair coin gadget.



5. Undecidability Results 141

Let u be a word of A˚. We denote by rusk the word of B˚ where each letter a P A of u
is replaced by a ¨ 72k. Conversely, if w is a word of B˚, we denote by w̃ the word obtained
from w by removing all occurrences of the letter 7.

Intuitively, a run of A on the word u is simulated by a run of Bλ on the word rusk.
Whenever there is a transition in A, Bλ makes k attempts to simulate it through the
gadget of Figure 26, and each attempt succeeds with probability p1´ 2λ ¨ p1´ λqq, so
each transition fails with probability:

Aλ,k “ 1´ p1´ 2λ ¨ p1´ λqqk .

Lemma 30 (Correctness of the fair coin construction)

The probabilistic automaton Bλ satisfies, for all states q, r P Q and k P N:

1. for every letter a P A, we have PBλpq
rask

ÝÝÑ rq “ Aλ,k ¨ PApq
a
ÝÑ rq,

2. for all words u P A˚, we have PBλpq
rusk

ÝÝÑ rq “ A
|u|
λ,k ¨ PApq

u
ÝÑ rq,

3. for all words w P B˚, we have PBλpq
w
ÝÑ rq ď PApq

w̃
ÝÑ rq.

Proof. We prove the first item. Denote φApq, aq “
1
2
¨ r ` 1

2
¨ s. First, we have PBλpq

rask

ÝÝÑ

rq “ PBλpqa
72k

ÝÝÑ rqq. Reading two letters 7 from qa is interpreted as a round, with
three possible outcomes: reaching r with probability λp1´λq, reaching s with probability
λp1´ λq, or coming back to qa with probability 1´ 2 ¨ λp1´ λq. Then

PBλpqa
72k

ÝÝÑ rq “
k
ÿ

i“1

p1´ 2 ¨ λp1´ λqqi´1 ¨ λp1´ λq “
Aλ,k

2
.

The second item follows from the first item by induction.
The third item is by construction.

Proposition 7 (Fair coin construction)

For all 0 ă λ ă 1, we have valpBλq “ valpAq.

Proof. Consider punqnPN a sequence of words in A˚. Denote kn “ maxp|un|, nq and consider
the sequence pwnqnPN defined by wn “ runskn . Thanks to the second item of Lemma 30,
we have

PBλpwnq “ A
|un|
λ,kn

¨ PApunq.

The sequence
´

A
|un|
λ,kn

¯

nPN
converges to 1, so limn PBλpwnq “ limn PApunq. Thus valpAq ď

valpBλq.
The third item of Lemma 30 implies that valpBλq ď valpAq.



142 The Value 1 Problem for Probabilistic Automata

p

q qR

s0

s1

p

p0

p1

next transition

check(b, q)

$, λ

$, 1 − λ

apply(b, q)

apply(b, q)

Figure 27: Naive fusion of the probabilistic transitions.

5.2.3 The simulation construction
All the Bλ’s induce the same numberless probabilistic automaton, that we denote

by B. Observe that there are many other instances of B, as illustrated in Figure 26, the
transitions from the states pqa, Lq and pqa, Rq to the state qa add up to 1, which is not
true for all instances of B.

We construct a numberless probabilistic automatonM over an extended alphabet C
whose instances simulate all the Bλ’s, but only them. The idea is that the new numberless
probabilistic automaton will only have one probabilistic transition. An instance of this
probabilistic transition translates to a value for λ. Figure 27 describes a first attempt at
this (notice that our convention is that a non-drawn transition means a loop, rather than
a transition to a sink state).

In this automaton, that we call M1, a single shared probabilistic transition qR
$
ÝÑ

λ ¨ s0 ` p1 ´ λq ¨ s1 is used for all probabilistic transitions. In order to make all the
probabilistic transitions of B happen in qR, we use new letters to detect where the runs
come from before the probabilistic transition, and where it should go afterwards.

For each letter b in B and state q in Q, we introduce two new letters checkpb, qq and
applypb, qq. We also introduce a new letter next_transition. Reading a b in B corresponds
to reading pb inM1, defined by:

pb “ checkpb, q0q ¨ $ ¨ applypb, q0q ¨ ¨ ¨ checkpb, qn´1q ¨ $ ¨ applypb, qn´1q ¨ next_transition,

where tq0, q1, . . . , qn´1u is the set of states of B. The function p_ extends to a morphism.
There are two copies of the set of states, which are the light gray boxes on the left

and on the right of Figure 27. We illustrate the action of checkpb, qq ¨ $ ¨ applypb, qq, which
aims at simulating the transition from q reading b:

• the letter checkpb, qq leads from the left copy of q to qR

• the letter 7 leads to λ ¨ s0 ` p1´ λq ¨ s1,

• the letter applypb, qq leads from s0 to the λ-valued successor of pq, bq in Bλ, and from
s1 to the p1´ λq-valued successor of pq, bq in Bλ.

Note that reading checkpb, qq¨$¨applypb, qq leaves everything else unchanged, as the actions
of the letters on the other states are just self-loops. Once the transitions from every state
have been simulated, the new letter next_transition sends the run back to the left part.



5. Undecidability Results 143

D

p

q0

q

q′ ∈ F

q′′ /∈ F

wait

s

qR

s0

s1

p

p0

p1

⊥ qD0

next transition

check(b, q)

next word

next word

$, λ · θ

$, (1 − λ) · θ

$, (1 − θ)

apply(b, q)

apply(b, q)

apply(b, q)

Figure 28: The numberless probabilistic automatonM.

We get for any word u P B˚, PBλpuq “ PB1λppuq.

The problem with the automaton M1 is that one can “cheat”, either by not testing
an unwelcome state, or by changing state and letter between a check and the subsequent
apply. For instance, the word checkpb, qq ¨ $ ¨ applypa, pq does not correspond to any
behaviour of B. We say that a word is fair if it is of the form pu for u P B˚.

The idea is to simulate a word u in B˚ by ppu ¨ next_wordqn, for a large n, where
next_word is a new letter. Each time pu is read, the run of the new automaton is split
in two parts: a proportion of the run is for the simulation itself, as described above, and
the rest goes to a wait state, waiting for the next word. Once the word pu is read, the new
letter next_word has the following effect:

• the proportion of the run that simulated u and is accepting goes to the initial state
of the fairness checker D,

• the proportion of the run that simulated u and is not accepting goes to the non-
accepting sink state K,

• the proportion of the run that ended up in the wait state goes back to the initial
state q0, for the next simulation.

The fairness checker D is a deterministic automaton recognizing the regular language
tpu ¨ next_word | u P B˚u˚.

The resulting automaton, denotedM is described in Figure 28. The structure of the
automaton of Figure 27 is still there, but it has been augmented with an extra layer of
scrutiny: each time we use the probabilistic transition, there is now a positive probability
p1´ θq to go to a new wait state. The final state of D is the only final state in all ofM.



144 The Value 1 Problem for Probabilistic Automata

Following Figure 28, we denote Mrλ, θs an instance of M. The alphabet of M is
denoted C.

Consider the action of reading ppu ¨ next_wordqn. The probability to be in the fairness
checker increases each time a letter next_word is read, by a proportion of the acceptance
probability of pu. If at some point an unfair word is read, then the probability to remain
in the fairness checker drops to 0, hence cheating is punished. A run can still cheat before
the first next_word letter, but the benefits of doing so are limited: the probability that
Mrλ, θs accepts a word at that point is at most θ (except if the empty word is accepting,
but that case is trivial).

A more formal proof follows.

Lemma 31 (Correctness of the simulation construction)

1. Let u be a word of B˚ of length k and w a word of pCztnext_worduq˚. We have

PMrλ,θsppu ¨ next_word ¨ wq “ θk ¨ PBλpuq `
`

1´ θk
˘

¨ PMrλ,θspwq.

2. Let u be a word in B˚ of length k and ` ě 1. We have

PMrλ,θspppu ¨ next_wordq`q “ p1´ p1´ θkq`q ¨ PBλpuq.

3. Let w be a word of pCztnext_worduq˚ and w1 a word of C˚. We have

PMrλ,θspw ¨ next_word ¨ w1q ď θ ` p1´ θq ¨ PMrλ,θspw
1
q.

4. Let w1, . . . , wk be k words of pCztnext_worduq˚ and w be the word w1 ¨

next_word ¨ ¨ ¨wk ¨ next_word. Then, for any 1 ď i ď k, if wi R xB˚, we have

PMrλ,θspwq ď PMrλ,θspwi ¨ next_word ¨ ¨ ¨wk ¨ next_wordq.

5. Let w be a word in C˚ such that PMrλ,θspwq ą θ. Then there exists a word u P B˚
such that

PBλpuq ě
PMrλ,θspwq ´ θ

1´ θ
.

Proof.

1. This follows from the observation that after reading pu ¨ next_word, the distribution
is

p1´ θkq ¨ q0 ` θk ¨ PBλpuq ¨ q
D
0 ` θk ¨ p1´ PBλpuqq ¨ K.

2. This follows from the first item by induction on `.

3. This follows from the observation that after reading w ¨next_word, the run is in one
of the following three states: q0 with probability at most 1´ θ, qD0 with probability
at most θ, and K.



5. Undecidability Results 145

4. After reading wăi “ w1 ¨ next_word ¨ ¨ ¨wi´1 ¨ next_word, the run is in one of the
following three states: q0, qD0 , and K. As wi R xB˚, reading wi from qD0 leads to K.
Thus,

PMrλ,θspwq “ PMrλ,θspq0
wăi
ÝÝÑ q0q ¨ PMrλ,θspwi ¨ next_word ¨ ¨ ¨wk ¨ next_wordq,

which concludes.

5. Denote w “ w1 ¨next_word ¨ ¨ ¨wp ¨next_word with w1, . . . , wp P pCztnext_worduq˚.
Thanks to the third item, p ą 1, and thank to the fourth item, we can assume
without loss of generality that w2, . . . , wp belong to xB˚. Let u2, . . . , up be the words
of B˚ such that wi “ pui. Denote w1 “ pu1 ¨ next_word ¨ . . . ¨ pup ¨ next_word, thanks
to the third item we have PMrλ,θspwq ď θ ` p1 ´ θq ¨ PMrλ,θspw

1q. It follows that
PMrλ,θspw

1q ě
PMrλ,θspwq´θ

1´θ
.

Denote w2 “ pu2 ¨ next_word ¨ . . . ¨ pup ¨ next_word. Without loss of generality, we
assume that PMrλ,θspw

2q ď PMrλ,θspw
1q. Denote k the length of u1, thanks to the

first item we have

PMrλ,θspw
1
q “ θk ¨ PBλpu1q `

`

1´ θk
˘

¨ PMrλ,θspw
2
q.

It follows that PBλpu1q ě PMrλ,θspw
1q, which concludes.

Proposition 8 (Simulation construction)

For all 0 ă λ ă 1 and 0 ă θ ă 1, we have valpBλq “ 1 if, and only if, valpMrλ, θsq “ 1.

Proof. Let punqnPN a sequence of words in B˚ such that limn PBλpunq “ 1. Denote kn “
maxp2|un|, nq and consider the sequence pwnqnPN defined by wn “ pxun ¨ next_wordqkn .

Thanks to the second item of Lemma 31, we have

PMrλ,θspwnq “ p1´ p1´ θ
|un|q

knq ¨ PBλpunq.

A closer look at the sequence pp1 ´ θ|un|qknqnPN shows that it converges to 0. It follows
that limn PMrλ,θspwnq “ 1, so valpMrλ, θsq “ 1.

Conversely, let pwnqnPN be a sequence of words in C˚ such that limn PMrλ,θspwnq “ 1.
Without loss of generality we can assume that for all n P N, we have PMrλ,θspwnq ą 1´θw.
It follows from the fifth item of Lemma 31 that there exists a sequence punqnPN of words
in B˚ such that for all n P N, we have PBλpunq ě

PMrλ,θspwnq´θ

1´θ
. Thus limn PBλpunq “ 1, so

valpBλq “ 1.

Proposition 6 is a direct corollary of Proposition 7 and Proposition 8.



146 The Value 1 Problem for Probabilistic Automata

5.3 Undecidability of the Robustness Problems

In this subsection, we consider robustness problems: rather than giving as input a
probabilistic automaton, we look at a probabilistic automaton up to small modifications of
its probabilistic transitions. This question appears naturally in practice: the probabilistic
transitions may not be known with absolute precision, and may be subject to small
perturbations.

In his original paper, Rabin [Rab63] considered the influence of small perturbations
of the probabilistic transitions on the languages defined by the automaton. He showed
that for the class of probabilistic automaton called actual automata, in which there is
always a positive probability to go from any state to any other, the language is robust,
i.e. is not affected by small perturbations. This result motivated our investigations of the
robustness problems.

Here we prove the undecidability of three robustness problems, relying on the unde-
cidability of the numberless problems.

Consider a probabilistic automaton A and ε ą 0. We say that the transition function
φ1 : AÑ SQˆQpQq is ε-close to A if for all letters a P A and states s, t P Q, we have:

• |φpaqps, tq ´ φ1paqps, tq| ă ε, and

• φpaqps, tq ą 0 if, and only if, φ1paqps, tq ą 0.

Problem 9 (Robustness problems)

• The existential robustness value 1 problem: given a probabilistic automaton
A and ε ą 0, determine whether there exists φ1 which is ε-close to A such that
valpArφ1sq “ 1.

• The universal robustness value 1 problem: given a probabilistic automaton A
and ε ą 0, determine whether for all φ1 which are ε-close to A we have valpArφ1sq “
1.

• The universal robustness emptiness problem: given a probabilistic automa-
ton A and ε ą 0, determine whether for all φ1 which are ε-close to A we have
valpArφ1sq ě 1

2
.

The existential robustness emptiness problem is missing from this definition; indeed,
it is trivial, and reduces to a simple reachability question.

The undecidability of the numberless value 1 problems easily imply the undecidability
of the three robustness problems:

Theorem 38 (Undecidability of the robustness problems)

The three robustness problems are undecidable.



5. Undecidability Results 147

p0

p1

p2

⊥ M∗

ε, x

ε, 1 − x

a
b

b
a

Figure 29: Reduction.

Proof. The undecidability of both robustness value 1 problems is obtained using Propo-
sition 6, using the same reasoning as given there to prove Theorem 37.

To show that the universal robustness emptiness problem is undecidable, we construct
a reduction from the universal robustness value 1 problem.

For the sake of explanation, we give a reduction from the universal numberless value
1 problem to the universal numberless emptiness problem, and later explain how this
induces a similar reduction for robustness problems instead of numberless problems.

Let M be a numberless probabilistic automaton. We construct M1 a numberless
probabilistic automaton such that:

@φM, valpMrφMsq “ 1 ðñ @φM1 , valpM1
rφM1sq ě

1

2
.

The reduction is illustrated in Figure 29. Let a, b two new letters (not in A). The
automatonM1 contains a copy ofM, and four new states: p0, p1, p2 and a sink state K.
The state p0 is initial, and leads non-deterministically to p1 or p2 with an ε-transition.
The state p1 leads to the initial state ofM with a and to K with b, and vice-versa for p2.
Observe that a transition function φ1M forM1 is given by a transition function φM forM
and a value x for the ε-transition from p0. Also, remark that for w P A˚ and φ1M extending
φM, we have PM1rφM1 spa ¨ wq “ x ¨ PMrφMspwq and PM1rφM1 spb ¨ wq “ p1´ xq ¨ PMrφMspwq.

We prove the equivalence:

• Assume that for all φM, we have valpMrφMsq “ 1. Fix φM, and consider x, inducing
φM1 . Let ε ą 0, there exists a word w such that PMrφMspwq ě 1´ ε. If x ě 1

2
, then

PM1rφM1 spa ¨ wq ě
1´ε
2
, and if x ă 1

2
then PM1rφM1 spb ¨ wq ě

1´ε
2
. In both cases there

exists a word accepted with probability at least 1´ε
2
, so valpM1rφM1sq ě 1

2
.

• Assume that for all φM1 , we have valpM1rφ1Msq ě
1
2
. Let φM, and denote by φ1M

its extension with x “ 1
2
. Let ε ą 0, there exists a word w such that PM1rφM1 spwq ě

1
2
´ ε. Consider w1 the word obtained from w by removing its first letter, then

PMrφMspw
1q ě 1´ 2 ¨ ε. It follows that valpMrφMsq “ 1.

This proves the correctness of the reduction. To obtain a reduction for robustness
problems, we follow the same construction and set x to be 1

2
. The same proof as above

concludes.





6. Conclusions 149

6 Conclusions

At the end of the day, how did we answer the initial question: “to what extent is
the value 1 problem decidable”? This section gathers the different elements of answers in
Subsection 6.1, supporting the claim that the Markov Monoid algorithm is optimal.

Subsection 6.2 opens perspectives for future research.

6.1 Optimality

The first observation is that probabilistic automata may exhibit complicated conver-
gence phenomena with different convergence speeds, as witnessed by Example 3 from
Subsection 1.3.

We construct in Section 3 an algebraic structure, extending the classical notion of
transition monoid of a non-deterministic automaton, called the Markov Monoid. In addi-
tion to concatenation, the Markov Monoid additionally features a stabilisation operator,
which accounts for some limit behaviours. This gives rise to an algorithm, called the
Markov Monoid algorithm, which aims at partially solving the value 1 problem.

Using the prostochastic theory developed in Section 2, we give a characterisation
of the Markov Monoid algorithm. Roughly speaking, it says that the Markov Monoid
algorithm captures exactly all polynomial behaviours, which are described by polynomial
prostochastic words.

We show in Section 4 that the Markov Monoid algorithm subsumes all previous known
algorithms to solve the value 1. Indeed, we prove that it is correct for the subclass of
leaktight automata, and that the class of leaktight automata strictly contains all subclasses
for which the value 1 problem has been shown to be decidable.

At this point, the Markov Monoid algorithm is the best algorithm so far. But can we
go further? Section 5 gives two arguments supporting the claim that the Markov Monoid
algorithm is in some sense optimal.

We first discuss the undecidability of the numberless value 1 problems, proved in
Subsection 5.2. Since the Markov Monoid does not take into account the numerical
values of the probabilistic transitions, it is natural to ask whether loosely specifying these
numerical values makes the problem easier. To formalize this, we consider numberless
probabilistic automata, which can be instantiated as probabilistic automata by specifying



150 The Value 1 Problem for Probabilistic Automata

numerical values for the probabilistic transitions. We give a construction that takes as
input a probabilistic automaton A, and outputs a numberless probabilistic automaton C
such that the following are equivalent:

• A has value 1,

• there exists an instance of C that has value 1,

• all instances of C have value 1.

Consequently, the numerical values attached to C do not matter, and whether C has value
1 or not does not depend on them. Besides the undecidability result that follows, this
also shows that abstracting away the numerical values, as the Markov Monoid does, does
not make the problem easier.

We now discuss the undecidability of the two-tier value 1 problem, proved in Subsec-
tion 5.1. A two-tier sequence of finite words is a sequence of the form ppu ¨ vnq2

n
qnPN,

for u, v two finite words. Intuitively, they combine two different behaviours. The first is
linear, it consists in repeating n times the word v. The second is exponential, it consists
in repeating 2n times the word u ¨ vn. Our interpretation is that the undecidability of
the value 1 problem arises when polynomial and exponential behaviours are combined.
Since the Markov Monoid captures exactly all polynomial behaviours, it is in this sense
optimal.

..Polynomial
Prostochastic

.

Two-tier
Sequences

.
Markov
Monoid

algorithm

.

Undecidable

.ε.
a

.
b

.

aa

.

ab

.

ba

.

bb

.

aωP

.

bωP

.

(aωP b)ωP

.

(baωP )ωP

.

(abωP )ωP aωP b

.

(a(ba)n)2
n

.

(abn)2
n

.

(ban)2
n

Figure 30: Optimality of the Markov Monoid algorithm.

6.2 Perspectives

This chapter focuses on

the value 1
loomoon

p1q

problem for probabilistic automata
looooooooooooomooooooooooooon

p2q

over finite words
looooomooooon

p3q

.



6. Conclusions 151

There are at least three natural follow-up questions:

(1) What about other values, such that 1
2
, i.e. the emptiness problem?

(2) What about generalisations of probabilistic automata, such as partially observable
Markov decision processes?

(3) What about infinite words, or trees?

The other natural and burning question is:

(4) What is the practical value of the Markov Monoid algorithm?

We discuss these four points further.
The emptiness problem. There are both positive and negative results:

• the emptiness problem is undecidable for acyclic probabilistic automata (only self-
loops are allowed), which is a quite severe structural restriction,

• different subclasses of probabilistic automata have been defined for which this prob-
lem has been shown decidable. For instance, the class of one-level hierarchical
automata have been introduced very recently in [CSVB15], and shown to have a
decidable emptiness problem while recognizing non-regular languages.

The general question we ask is:

“To what extent is the emptiness problem decidable?”

In particular, can we find an algorithm that is often correct? Can we quantify how often?
Can we argue that it is optimal? We hope that the prostochastic theory may help in
answering these questions.

Several variants of the emptiness problem have been proposed. For instance, adding
approximation may lead to decidable problems; a promising step was done in this direction
recently in [AAGT15].

Partially observable Markov decision processes. Extending subclasses of probabilistic
automata to partially observable Markov decision processes to decide the value 1 problem
has already started: this has been done for the class of 7-acyclic automata [GO14]. No
extensions of the class of leaktight automata have been defined so far.

Beyond finite words. We investigated the setting of infinite words in [FGKO15], and
proved a generic result allowing to reduce the value 1 problem from infinite words to finite
words. Note that this is different from the equivalence between the value 1 problem for
finite words and the emptiness problem for probabilistic Büchi automata with positive
semantics, as discussed in Subsection 1.3.

Defining probabilistic automata over infinite trees is not obvious. An interesting and
well behaved definition was proved by Carayol, Haddad in Serre in [CHS11; CHS14], called
qualitative automata. We extended the definition to alternating qualitative automata
in [FPS13]. A lot of open questions remain about this class of languages over infinite
trees.

Practical value of the Markov Monoid algorithm. Together with Denis Kuperberg, we
implemented the Markov Monoid algorithm in the tool ACME, providing benchmarks,



152 The Value 1 Problem for Probabilistic Automata

examples and inspiration to go forward. The experiments on ACME have been reported
in [FK14], co-authored with Denis Kuperberg. We pushed this further, and more specif-
ically faster; together with Hugo Gimbert, Edon Kelmendi and Denis Kuperberg, we
created the tool ACME`` with the same purpose as ACME, but faster by several orders
of magnitude.



Conclusion

153



154 Conclusion

What is the relation between the two chapters, i.e. between finite-memory determinacy
for boundedness games and the value 1 problem for probabilistic automata?

The short answer is “none”. We give a more constructive answer, arguing that a
contribution of this document is to show that some techniques used in one context can
be used in the other.

A first very rough approximation is that both chapters are about quantitative exten-
sions of automata theory, the first automata with counters and the second probabilistic
automata. A second closer inspection reveals that the two chapters are technically unre-
lated; the definitions, notions, theorems and results are completely independent. However,
one can see the influence of the first over the second at a higher level. Indeed, we de-
veloped here tools for probabilistic automata and expand on ideas that have successfully
been applied to automata with (and also without) counters.

The first example is the algebraic notion of stabilisation monoids, which has been
introduced by Colcombet in the theory of regular cost functions [Col09], together with its
analysis using Green’s relations [Kir05; Col11].

The introduction of the Markov Monoid algorithm was motivated by defining a sta-
bilisation monoid for probabilistic automata.

The second example is the algebraic and combinatorial notion of factorisation forests of
bounded height, which has been introduced by Simon in the study of distance automata,
and later developed by Colcombet and Toruńczyk for similar purposes [Sim94; Col10;
Tor11].

The class of leaktight automata, and more specifically the proof that the Markov
Monoid is complete for leaktight automata, is based on the notion of factorisation forests.

The third example is the topological notion of profinite words for regular languages
and regular cost functions [Pin09; Tor11].

The prostochastic theory for probabilistic automata is an extension of the profinite
theory for classical automata. The idea of using a profinite theory for probabilistic au-
tomata was inspired (although technically unrelated) by the treatment of MSO`U using
profinite techniques by Toruńczyk.



Bibliography

155



156 Bibliography

Personal references cited in this document

[CF13] Krishnendu Chatterjee and Nathanaël Fijalkow. “Infinite-state Games
with Finitary Conditions”. In: CSL. 2013, pp. 181–196. doi: 10.4230/
LIPIcs.CSL.2013.181. url: http://dx.doi.org/10.4230/LIPIcs.
CSL.2013.181 (cited on pp. 23, 25, 30, 32, 33, 35, 37, 38, 48).

[CFH14] Thomas Colcombet, Nathanaël Fijalkow, and Florian Horn. “Playing Safe”.
In: FSTTCS. 2014, pp. 379–390. doi: 10.4230/LIPIcs.FSTTCS.2014.
379. url: http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.379
(cited on pp. 23, 35, 39, 46).

[Fij16] Nathanaël Fijalkow. “Characterisation of an Algebraic Algorithm for Prob-
abilistic Automata”. In: STACS. (to appear). 2016 (cited on pp. 87, 97,
109).

[FGHO14] Nathanaël Fijalkow, Hugo Gimbert, Florian Horn, and Youssouf Oual-
hadj. “Two Recursively Inseparable Problems for Probabilistic Automata”.
In: MFCS. 2014, pp. 267–278. doi: 10.1007/978-3-662-44522-8_23.
url: http://dx.doi.org/10.1007/978-3-662-44522-8_23 (cited on
pp. 87, 135, 138, 139).

[FGKO15] Nathanaël Fijalkow, Hugo Gimbert, Edon Kelmendi, and Youssouf Oual-
hadj. “Deciding the value 1 Problem for Probabilistic Leaktight Automata”.
In: Logical Methods in Computer Science 11.1 (2015). doi: 10.2168/
LMCS-10(2:14)2014. url: http://dx.doi.org/10.2168/LMCS-10(2:
14)2014 (cited on pp. 87, 117, 131, 132, 151).

[FGO12] Nathanaël Fijalkow, Hugo Gimbert, and Youssouf Oualhadj. “Deciding
the Value 1 Problem for Probabilistic Leaktight Automata”. In: LICS.
2012, pp. 295–304. doi: 10.1109/LICS.2012.40. url: http://dx.doi.
org/10.1109/LICS.2012.40 (cited on pp. 87, 109, 117, 131, 132).

[FH13] Nathanaël Fijalkow and Florian Horn. “Les Jeux d’accessibilité général-
isée”. In: Technique et Science Informatiques 32.9-10 (2013), pp. 931–949.
doi: 10.3166/tsi.32.931-949. url: http://dx.doi.org/10.3166/
tsi.32.931-949 (cited on p. 46).

[FHKS15] Nathanaël Fijalkow, Florian Horn, Denis Kuperberg, and Michał Skrzypczak.
“Trading Bounds for Memory in Games with Counters”. In: ICALP (2).
2015, pp. 197–208. doi: 10.1007/978-3-662-47666-6_16. url: http:
//dx.doi.org/10.1007/978-3-662-47666-6_16 (cited on pp. 24, 67,
73).

[FK14] Nathanaël Fijalkow and Denis Kuperberg. “ACME: Automata with Coun-
ters, Monoids and Equivalence”. In: ATVA. 2014, pp. 163–167. doi: 10.
1007/978-3-319-11936-6_12. url: http://dx.doi.org/10.1007/
978-3-319-11936-6_12 (cited on pp. 111, 152).

[FPS13] Nathanaël Fijalkow, Sophie Pinchinat, and Olivier Serre. “Emptiness Of
Alternating Tree Automata Using Games With Imperfect Information”.
In: FSTTCS. 2013, pp. 299–311. doi: 10.4230/LIPIcs.FSTTCS.2013.
299. url: http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.299
(cited on pp. 23, 57, 64, 151).

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.181
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.181
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.181
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.181
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.379
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.379
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.379
http://dx.doi.org/10.1007/978-3-662-44522-8_23
http://dx.doi.org/10.1007/978-3-662-44522-8_23
http://dx.doi.org/10.2168/LMCS-10(2:14)2014
http://dx.doi.org/10.2168/LMCS-10(2:14)2014
http://dx.doi.org/10.2168/LMCS-10(2:14)2014
http://dx.doi.org/10.2168/LMCS-10(2:14)2014
http://dx.doi.org/10.1109/LICS.2012.40
http://dx.doi.org/10.1109/LICS.2012.40
http://dx.doi.org/10.1109/LICS.2012.40
http://dx.doi.org/10.3166/tsi.32.931-949
http://dx.doi.org/10.3166/tsi.32.931-949
http://dx.doi.org/10.3166/tsi.32.931-949
http://dx.doi.org/10.1007/978-3-662-47666-6_16
http://dx.doi.org/10.1007/978-3-662-47666-6_16
http://dx.doi.org/10.1007/978-3-662-47666-6_16
http://dx.doi.org/10.1007/978-3-319-11936-6_12
http://dx.doi.org/10.1007/978-3-319-11936-6_12
http://dx.doi.org/10.1007/978-3-319-11936-6_12
http://dx.doi.org/10.1007/978-3-319-11936-6_12
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.299
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.299
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.299


Bibliography 157

[FS15] Nathanaël Fijalkow and Michał Skrzypczak. “Irregular Behaviours for
Probabilistic Automata”. In: RP. 2015, pp. 33–36. doi: 10.1007/978-
3-319-24537-9_4. url: http://dx.doi.org/10.1007/978-3-319-
24537-9_4 (cited on pp. 87, 94).

[FZ12] Nathanaël Fijalkow and Martin Zimmermann. “Cost-Parity and Cost-
Streett Games”. In: FSTTCS. 2012, pp. 124–135. doi: 10.4230/LIPIcs.
FSTTCS.2012.124. url: http://dx.doi.org/10.4230/LIPIcs.FSTTCS.
2012.124 (cited on pp. 23, 35, 37, 83).

[FZ14] Nathanaël Fijalkow and Martin Zimmermann. “Cost-Parity and Cost-
Streett Games”. In: Logical Methods in Computer Science 10.2 (2014).
doi: 10.2168/LMCS-10(2:14)2014. url: http://dx.doi.org/10.
2168/LMCS-10(2:14)2014 (cited on pp. 23, 35, 37, 38, 83).

Personal references not cited in this document

[CF11a] Krishnendu Chatterjee and Nathanaël Fijalkow. “A Reduction from Par-
ity Games to Simple Stochastic Games”. In: GandALF. 2011, pp. 74–86.
doi: 10.4204/EPTCS.54.6. url: http://dx.doi.org/10.4204/EPTCS.
54.6.

[CF11b] Krishnendu Chatterjee and Nathanaël Fijalkow. “Finitary Languages”.
In: LATA. 2011, pp. 216–226. doi: 10.1007/978-3-642-21254-3_16.
url: http://dx.doi.org/10.1007/978-3-642-21254-3_16.

[FP14] Nathanaël Fijalkow and Charles Paperman. “Monadic Second-Order Logic
with Arbitrary Monadic Predicates”. In: MFCS. 2014, pp. 279–290. doi:
10.1007/978-3-662-44522-8_24. url: http://dx.doi.org/10.1007/
978-3-662-44522-8_24.

Other references cited in this document

[AAGT15] Manindra Agrawal, S. Akshay, Blaise Genest, and P. S. Thiagarajan.
“Approximate Verification of the Symbolic Dynamics of Markov Chains”.
In: Journal of the ACM 62.1 (2015), p. 2. doi: 10.1145/2629417. url:
http://doi.acm.org/10.1145/2629417 (cited on p. 151).

[AH00] Luca de Alfaro and Thomas A. Henzinger. “Concurrent Omega-Regular
Games”. In: LICS. 2000, pp. 141–154. doi: 10.1109/LICS.2000.855763.
url: http://dx.doi.org/10.1109/LICS.2000.855763 (cited on p. 17).

[Alm05] Jorge Almeida. “Profinite Semigroups and Applications”. In: Structural
Theory of Automata, Semigroups, and Universal Algebra 207 (2005), pp. 1–
45 (cited on p. 99).

http://dx.doi.org/10.1007/978-3-319-24537-9_4
http://dx.doi.org/10.1007/978-3-319-24537-9_4
http://dx.doi.org/10.1007/978-3-319-24537-9_4
http://dx.doi.org/10.1007/978-3-319-24537-9_4
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.124
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.124
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.124
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.124
http://dx.doi.org/10.2168/LMCS-10(2:14)2014
http://dx.doi.org/10.2168/LMCS-10(2:14)2014
http://dx.doi.org/10.2168/LMCS-10(2:14)2014
http://dx.doi.org/10.4204/EPTCS.54.6
http://dx.doi.org/10.4204/EPTCS.54.6
http://dx.doi.org/10.4204/EPTCS.54.6
http://dx.doi.org/10.1007/978-3-642-21254-3_16
http://dx.doi.org/10.1007/978-3-642-21254-3_16
http://dx.doi.org/10.1007/978-3-662-44522-8_24
http://dx.doi.org/10.1007/978-3-662-44522-8_24
http://dx.doi.org/10.1007/978-3-662-44522-8_24
http://dx.doi.org/10.1145/2629417
http://doi.acm.org/10.1145/2629417
http://dx.doi.org/10.1109/LICS.2000.855763
http://dx.doi.org/10.1109/LICS.2000.855763


158 Bibliography

[AELP01] Rajeev Alur, Kousha Etessami, Salvatore La Torre, and Doron Peled.
“Parametric Temporal Logic for Model Measuring”. In: ACM Transac-
tions on Computational Logics 2.3 (2001), pp. 388–407. doi: 10.1145/
377978.377990. url: http://doi.acm.org/10.1145/377978.377990
(cited on p. 12).

[AH98] Rajeev Alur and Thomas A. Henzinger. “Finitary Fairness”. In: ACM
Transactions on Programming Languages and Systems 20.6 (1998), pp. 1171–
1194 (cited on pp. 12, 37).

[BBG08] Christel Baier, Nathalie Bertrand, and Marcus Größer. “On Decision
Problems for Probabilistic Büchi Automata”. In: FoSSaCS. 2008, pp. 287–
301 (cited on p. 92).

[BBG09] Christel Baier, Nathalie Bertrand, and Marcus Größer. “Probabilistic Ac-
ceptors for Languages over Infinite Words”. In: SOFSEM. 2009, pp. 19–33
(cited on p. 92).

[BBG12] Christel Baier, Nathalie Bertrand, and Marcus Größer. “Probabilistic ω-
automata”. In: Journal of the ACM 59.1 (2012), p. 1 (cited on pp. 17,
92).

[BG05] Christel Baier and Marcus Größer. “Recognizing omega-regular Languages
with Probabilistic Automata”. In: LICS. 2005, pp. 137–146 (cited on
p. 92).

[Ber74a] Alberto Bertoni. “Mathematical Methods of the Theory of Stochastic Au-
tomata”. In: MFCS. 1974, pp. 9–22. doi: 10.1007/3-540-07162-8_662.
url: http://dx.doi.org/10.1007/3-540-07162-8_662 (cited on
pp. 16, 94).

[Ber74b] Alberto Bertoni. “The Solution of Problems Relative to Probabilistic Au-
tomata in the Frame of the Formal Languages Theory”. In: GI Jahresta-
gung. 1974, pp. 107–112 (cited on p. 16).

[BMT77] Alberto Bertoni, Giancarlo Mauri, and Mauro Torelli. “Some Recursive
Unsolvable Problems Relating to Isolated Cutpoints in Probabilistic Au-
tomata”. In: ICALP. 1977, pp. 87–94 (cited on p. 16).

[BBG14] Nathalie Bertrand, Thomas Brihaye, and Blaise Genest. “Deciding the
Value 1 Problem for Reachability in 1-Clock Decision Stochastic Timed
Automata”. In: QEST. 2014, pp. 313–328. doi: 10.1007/978-3-319-
10696-0_25. url: http://dx.doi.org/10.1007/978-3-319-10696-
0_25 (cited on p. 17).

[BCKPV14] Achim Blumensath, Thomas Colcombet, Denis Kuperberg, Paweł Parys,
and Michael Vanden Boom. “Two-Way Cost Automata and Cost Logics
over Infinite Trees”. In: CSL-LICS. 2014, p. 16. doi: 10.1145/2603088.
2603104. url: http://doi.acm.org/10.1145/2603088.2603104 (cited
on pp. 13, 34, 57).

[BOW14] Achim Blumensath, Martin Otto, and Mark Weyer. “Decidability Results
for the Boundedness Problem”. In: Logical Methods in Computer Science
10.3 (2014). doi: 10.2168/LMCS-10(3:2)2014. url: http://dx.doi.
org/10.2168/LMCS-10(3:2)2014 (cited on p. 9).

http://dx.doi.org/10.1145/377978.377990
http://dx.doi.org/10.1145/377978.377990
http://doi.acm.org/10.1145/377978.377990
http://dx.doi.org/10.1007/3-540-07162-8_662
http://dx.doi.org/10.1007/3-540-07162-8_662
http://dx.doi.org/10.1007/978-3-319-10696-0_25
http://dx.doi.org/10.1007/978-3-319-10696-0_25
http://dx.doi.org/10.1007/978-3-319-10696-0_25
http://dx.doi.org/10.1007/978-3-319-10696-0_25
http://dx.doi.org/10.1145/2603088.2603104
http://dx.doi.org/10.1145/2603088.2603104
http://doi.acm.org/10.1145/2603088.2603104
http://dx.doi.org/10.2168/LMCS-10(3:2)2014
http://dx.doi.org/10.2168/LMCS-10(3:2)2014
http://dx.doi.org/10.2168/LMCS-10(3:2)2014


Bibliography 159

[Boj04] Mikołaj Bojańczyk. “A Bounding Quantifier”. In: CSL. 2004, pp. 41–55
(cited on pp. 9, 29, 30).

[Boj11] Mikołaj Bojańczyk. “Weak MSO with the Unbounding Quantifier”. In:
Theory of Computing Systems 48.3 (2011), pp. 554–576. doi: 10.1007/
s00224-010-9279-2. url: http://dx.doi.org/10.1007/s00224-010-
9279-2 (cited on p. 9).

[Boj14] Mikołaj Bojańczyk. “Weak MSO+U with Path Quantifiers over Infinite
Trees”. In: ICALP. 2014, pp. 38–49. doi: 10.1007/978-3-662-43951-
7_4. url: http://dx.doi.org/10.1007/978-3-662-43951-7_4 (cited
on p. 9).

[BC06] Mikołaj Bojańczyk and Thomas Colcombet. “Bounds in ω-Regularity”.
In: LICS. 2006, pp. 285–296 (cited on p. 9).

[BIS13] Mikołaj Bojańczyk, Tomasz Idziaszek, and Michał Skrzypczak. “Regular
Languages of Thin Trees”. In: STACS. 2013, pp. 562–573. doi: 10.4230/
LIPIcs.STACS.2013.562. url: http://dx.doi.org/10.4230/LIPIcs.
STACS.2013.562 (cited on p. 54).

[BPT15] Mikołaj Bojańczyk, Paweł Parys, and Szymon Toruńczyk. “The MSO+U
theory of (N, <) is Undecidable”. In: CoRR abs/1502.04578 (2015). url:
http://arxiv.org/abs/1502.04578 (cited on pp. 10, 30).

[BT12] Mikołaj Bojańczyk and Szymon Toruńczyk. “Weak MSO+U over Infinite
Trees”. In: STACS. 2012, pp. 648–660 (cited on p. 9).

[Büc77] J. Richard Büchi. “Using Determinancy of Games to Eliminate Quanti-
fiers”. In: FCT. 1977, pp. 367–378. doi: 10.1007/3-540-08442-8_104.
url: http://dx.doi.org/10.1007/3-540-08442-8_104 (cited on p. 8).

[Büc60] J. Richard Büchi. “Weak second-order arithmetic and finite automata”.
In: Mathematical Logic Quarterly 6 (1960), pp. 66–92 (cited on p. 7).

[BE58] J. Richard Büchi and Calvin C. Elgot. “Decision problems of weak second-
order arithmetics and finite automata”. In: Notices of the AMS 5 (1958)
(cited on p. 7).

[BL69] J. Richard Büchi and Lawrence H. Landweber. “Definability in the Monadic
Second-Order Theory of Successor”. In: Journal of Symbolic Logic 34.2
(1969), pp. 166–170 (cited on p. 8).

[CHS11] Arnaud Carayol, Axel Haddad, and Olivier Serre. “Qualitative Tree Lan-
guages”. In: LICS. 2011, pp. 13–22. doi: 10.1109/LICS.2011.28. url:
http://dx.doi.org/10.1109/LICS.2011.28 (cited on p. 151).

[CHS14] Arnaud Carayol, Axel Haddad, and Olivier Serre. “Randomization in Au-
tomata on Infinite Trees”. In: ACM Transactions on Computational Logic
15.3 (2014), p. 24. doi: 10.1145/2629336. url: http://doi.acm.org/
10.1145/2629336 (cited on p. 151).

[CSV11] Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan. “Power of
Randomization in Automata on Infinite Strings”. In: Logical Methods in
Computer Science 7.3 (2011) (cited on p. 132).

http://dx.doi.org/10.1007/s00224-010-9279-2
http://dx.doi.org/10.1007/s00224-010-9279-2
http://dx.doi.org/10.1007/s00224-010-9279-2
http://dx.doi.org/10.1007/s00224-010-9279-2
http://dx.doi.org/10.1007/978-3-662-43951-7_4
http://dx.doi.org/10.1007/978-3-662-43951-7_4
http://dx.doi.org/10.1007/978-3-662-43951-7_4
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.562
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.562
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.562
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.562
http://arxiv.org/abs/1502.04578
http://dx.doi.org/10.1007/3-540-08442-8_104
http://dx.doi.org/10.1007/3-540-08442-8_104
http://dx.doi.org/10.1109/LICS.2011.28
http://dx.doi.org/10.1109/LICS.2011.28
http://dx.doi.org/10.1145/2629336
http://doi.acm.org/10.1145/2629336
http://doi.acm.org/10.1145/2629336


160 Bibliography

[CSV13] Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan. “Probabilistic
Automata with Isolated Cut-Points”. In: MFCS. 2013, pp. 254–265 (cited
on pp. 17, 92).

[CSVB15] Rohit Chadha, A. Prasad Sistla, Mahesh Viswanathan, and Yue Ben. “De-
cidable and Expressive classes of Probabilistic Automata”. In: FOSSACS.
2015, pp. 254–265 (cited on p. 151).

[CD12] Krishnendu Chatterjee and Laurent Doyen. “Energy Parity Games”. In:
Theoretical Computer Science 458 (2012), pp. 49–60. doi: 10.1016/j.
tcs.2012.07.038. url: http://dx.doi.org/10.1016/j.tcs.2012.
07.038 (cited on p. 12).

[CDGO14] Krishnendu Chatterjee, Laurent Doyen, Hugo Gimbert, and Youssouf
Oualhadj. “Perfect-Information Stochastic Mean-Payoff Parity Games”.
In: FOSSACS. 2014, pp. 210–225. doi: 10.1007/978-3-642-54830-
7_14. url: http://dx.doi.org/10.1007/978-3-642-54830-7_14
(cited on p. 12).

[CHH09] Krishnendu Chatterjee, Thomas A. Henzinger, and Florian Horn. “Fini-
tary Winning in omega-regular Games”. In: ACM Transactions on Com-
putational Logics 11.1 (2009) (cited on pp. 12, 23, 37, 38).

[CT12] Krishnendu Chatterjee and Mathieu Tracol. “Decidable Problems for Prob-
abilistic Automata on Infinite Words”. In: LICS. 2012, pp. 185–194 (cited
on p. 132).

[Chu57] Alonzo Church. “Applications of recursive arithmetic to the problem of
circuit synthesis”. In: 1 (1957), pp. 3–50 (cited on p. 8).

[Col10] Thomas Colcombet. “Factorization Forests for Infinite Words and Appli-
cations to Countable Scattered Linear Orderings”. In: Theoretical Com-
puter Science 411.4-5 (2010), pp. 751–764. doi: 10.1016/j.tcs.2009.
10.013. url: http://dx.doi.org/10.1016/j.tcs.2009.10.013 (cited
on p. 154).

[Col13a] Thomas Colcombet. “Fonctions Régulières de Coût”. Habilitation Thesis.
2013 (cited on pp. 13, 53, 57).

[Col11] Thomas Colcombet. “Green’s Relations and Their Use in Automata The-
ory”. In: LATA. 2011, pp. 1–21 (cited on pp. 129, 154).

[Col13b] Thomas Colcombet. “Regular Cost Functions, Part I: Logic and Algebra
over Words”. In: Logical Methods in Computer Science 9.3 (2013). doi:
10.2168/LMCS-9(3:3)2013. url: http://dx.doi.org/10.2168/LMCS-
9(3:3)2013 (cited on pp. 9, 10, 23, 53, 121).

[Col09] Thomas Colcombet. “The Theory of Stabilisation Monoids and Regular
Cost Functions”. In: ICALP (2). 2009, pp. 139–150 (cited on pp. 9, 10,
23, 30, 53, 121, 123, 154).

[CKLV13] Thomas Colcombet, Denis Kuperberg, Christof Löding, and Michael Van-
den Boom. “Deciding the weak definability of Büchi definable tree lan-
guages”. In: CSL. 2013, pp. 215–230. doi: 10.4230/LIPIcs.CSL.2013.
215. url: http://dx.doi.org/10.4230/LIPIcs.CSL.2013.215 (cited
on p. 13).

http://dx.doi.org/10.1016/j.tcs.2012.07.038
http://dx.doi.org/10.1016/j.tcs.2012.07.038
http://dx.doi.org/10.1016/j.tcs.2012.07.038
http://dx.doi.org/10.1016/j.tcs.2012.07.038
http://dx.doi.org/10.1007/978-3-642-54830-7_14
http://dx.doi.org/10.1007/978-3-642-54830-7_14
http://dx.doi.org/10.1007/978-3-642-54830-7_14
http://dx.doi.org/10.1016/j.tcs.2009.10.013
http://dx.doi.org/10.1016/j.tcs.2009.10.013
http://dx.doi.org/10.1016/j.tcs.2009.10.013
http://dx.doi.org/10.2168/LMCS-9(3:3)2013
http://dx.doi.org/10.2168/LMCS-9(3:3)2013
http://dx.doi.org/10.2168/LMCS-9(3:3)2013
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.215
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.215
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.215


Bibliography 161

[CKL10] Thomas Colcombet, Denis Kuperberg, and Sylvain Lombardy. “Regular
Temporal Cost Functions”. In: ICALP (2). 2010, pp. 563–574 (cited on
p. 59).

[CL10] Thomas Colcombet and Christof Löding. “Regular Cost Functions over
Finite Trees”. In: LICS. 2010, pp. 70–79 (cited on p. 10).

[CL08a] Thomas Colcombet and Christof Löding. “The Nesting-Depth of Disjunc-
tive µ-Calculus for Tree Languages and the Limitedness Problem”. In:
CSL. 2008, pp. 416–430. doi: 10.1007/978-3-540-87531-4_30. url:
http://dx.doi.org/10.1007/978-3-540-87531-4_30 (cited on pp. 9,
57).

[CL08b] Thomas Colcombet and Christof Löding. “The Non-deterministic Mostowski
Hierarchy and Distance-Parity Automata”. In: ICALP (2). 2008, pp. 398–
409 (cited on pp. 9, 13, 53).

[Con92] Anne Condon. “The Complexity of Stochastic Games”. In: Information
and Computation 96.2 (1992), pp. 203–224. doi: 10.1016/0890-5401(92)
90048-K. url: http://dx.doi.org/10.1016/0890-5401(92)90048-K
(cited on pp. 12, 65).

[CL89] Anne Condon and Richard J. Lipton. “On the Complexity of Space Bounded
Interactive Proofs (Extended Abstract)”. In: FOCS. 1989, pp. 462–467.
doi: 10.1109/SFCS.1989.63519. url: http://dx.doi.org/10.1109/
SFCS.1989.63519 (cited on pp. 17, 94).

[DJW97] Stefan Dziembowski, Marcin Jurdziński, and Igor Walukiewicz. “How
Much Memory is Needed to Win Infinite Games?” In: LICS. 1997, pp. 99–
110. doi: 10.1109/LICS.1997.614939. url: http://dx.doi.org/10.
1109/LICS.1997.614939 (cited on pp. 11, 40, 83).

[Elg61] Calvin C. Elgot. “Decision problems of finite automata design and related
arithmetics”. In: Transactions of the AMS 98 (1961), pp. 21–51 (cited on
p. 7).

[EJ88] E. Allen Emerson and Charanjit S. Jutla. “The Complexity of Tree Au-
tomata and Logics of Programs (Extended Abstract)”. In: FOCS. 1988,
pp. 328–337 (cited on pp. 8, 11, 36).

[EJ91] E. Allen Emerson and Charanjit S. Jutla. “Tree Automata, Mu-Calculus
and Determinacy (Extended Abstract)”. In: FOCS. 1991, pp. 368–377
(cited on pp. 8, 11).

[FMS13] Alessandro Facchini, Filip Murlak, and Michal Skrzypczak. “Rabin-Mostowski
Index Problem: A Step beyond Deterministic Automata”. In: LICS. 2013,
pp. 499–508. doi: 10.1109/LICS.2013.56. url: http://dx.doi.org/
10.1109/LICS.2013.56 (cited on p. 13).

[Gim07] Hugo Gimbert. “Jeux Positionnels”. PhD thesis. Université Paris 7, 2007
(cited on pp. 11, 36).

[GO14] Hugo Gimbert and Youssouf Oualhadj. “Deciding the Value 1 Problem
for sharp-acyclic Partially Observable Markov Decision Processes”. In:
SOFSEM. 2014, pp. 281–292. doi: 10.1007/978-3-319-04298-5_25.
url: http://dx.doi.org/10.1007/978-3-319-04298-5_25 (cited on
p. 151).

http://dx.doi.org/10.1007/978-3-540-87531-4_30
http://dx.doi.org/10.1007/978-3-540-87531-4_30
http://dx.doi.org/10.1016/0890-5401(92)90048-K
http://dx.doi.org/10.1016/0890-5401(92)90048-K
http://dx.doi.org/10.1016/0890-5401(92)90048-K
http://dx.doi.org/10.1109/SFCS.1989.63519
http://dx.doi.org/10.1109/SFCS.1989.63519
http://dx.doi.org/10.1109/SFCS.1989.63519
http://dx.doi.org/10.1109/LICS.1997.614939
http://dx.doi.org/10.1109/LICS.1997.614939
http://dx.doi.org/10.1109/LICS.1997.614939
http://dx.doi.org/10.1109/LICS.2013.56
http://dx.doi.org/10.1109/LICS.2013.56
http://dx.doi.org/10.1109/LICS.2013.56
http://dx.doi.org/10.1007/978-3-319-04298-5_25
http://dx.doi.org/10.1007/978-3-319-04298-5_25


162 Bibliography

[GO10] Hugo Gimbert and Youssouf Oualhadj. “Probabilistic Automata on Fi-
nite Words: Decidable and Undecidable Problems”. In: ICALP (2). 2010,
pp. 527–538 (cited on pp. 17, 87, 92, 94, 115, 132, 135).

[GTW02] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, eds. Automata, Log-
ics, and Infinite Games: A Guide to Current Research [outcome of a
Dagstuhl seminar, February 2001]. Vol. 2500. Lecture Notes in Computer
Science. Springer, 2002. isbn: 3-540-00388-6 (cited on pp. 25, 29).

[GH82] Yuri Gurevich and Leo Harrington. “Trees, Automata, and Games”. In:
STOC. 1982, pp. 60–65 (cited on pp. 8, 11).

[Has90] Kosaburo Hashiguchi. “Improved Limitedness Theorems on Finite Au-
tomata with Distance Functions”. In: Theoretical Computer Science 72.1
(1990), pp. 27–38 (cited on p. 9).

[KMOWW11] Stefan Kiefer, Andrzej S. Murawski, Joël Ouaknine, Björn Wachter, and
James Worrell. “Language Equivalence for Probabilistic Automata”. In:
CAV. 2011, pp. 526–540. doi: 10.1007/978-3-642-22110-1_42. url:
http://dx.doi.org/10.1007/978-3-642-22110-1_42 (cited on p. 15).

[KMOWW13] Stefan Kiefer, Andrzej S. Murawski, Joël Ouaknine, Björn Wachter, and
James Worrell. “On the Complexity of Equivalence and Minimisation
for Q-weighted Automata”. In: Logical Methods in Computer Science 9.1
(2013). doi: 10.2168/LMCS-9(1:8)2013. url: http://dx.doi.org/10.
2168/LMCS-9(1:8)2013 (cited on p. 15).

[KMOWW12] Stefan Kiefer, Andrzej S. Murawski, Joël Ouaknine, Björn Wachter, and
James Worrell. “On the Complexity of the Equivalence Problem for Prob-
abilistic Automata”. In: FOSSACS. 2012. doi: 10.1007/978-3-642-
28729-9_31. url: http://dx.doi.org/10.1007/978-3-642-28729-
9_31 (cited on p. 15).

[Kir06] Daniel Kirsten. “A Burnside Approach to the Finite Substitution Prob-
lem”. In: Theory of Computing Systems 39.1 (2006), pp. 15–50. doi: 10.
1007/s00224- 005- 1255- x. url: http://dx.doi.org/10.1007/
s00224-005-1255-x (cited on p. 9).

[Kir05] Daniel Kirsten. “Distance Desert Automata and the Star-Height Prob-
lem”. In: ITA 39.3 (2005), pp. 455–509 (cited on pp. 9, 121, 127, 131,
154).

[Kle56] Stephen Cole Kleene. “Representation of Events in Nerve Nets and Finite
Automata”. In: Annals of Mathematical Studies 34 (1956), pp. 3–41 (cited
on p. 7).

[Kop06] Eryk Kopczyński. “Half-Positional Determinacy of Infinite Games”. In:
ICALP (2). 2006, pp. 336–347 (cited on pp. 40, 48, 83).

[Kop09] Eryk Kopczyński. “Half-Positional Determinacy of Infinite Games”. PhD
thesis. University of Warsaw, 2009 (cited on pp. 11, 36, 40, 48, 83).

[Kuc̆11] A. Kuc̆era. Turn-Based Stochastic Games. Lectures in Game Theory for
Computer Scientists. Cambridge University Press, 2011 (cited on p. 65).

http://dx.doi.org/10.1007/978-3-642-22110-1_42
http://dx.doi.org/10.1007/978-3-642-22110-1_42
http://dx.doi.org/10.2168/LMCS-9(1:8)2013
http://dx.doi.org/10.2168/LMCS-9(1:8)2013
http://dx.doi.org/10.2168/LMCS-9(1:8)2013
http://dx.doi.org/10.1007/978-3-642-28729-9_31
http://dx.doi.org/10.1007/978-3-642-28729-9_31
http://dx.doi.org/10.1007/978-3-642-28729-9_31
http://dx.doi.org/10.1007/978-3-642-28729-9_31
http://dx.doi.org/10.1007/s00224-005-1255-x
http://dx.doi.org/10.1007/s00224-005-1255-x
http://dx.doi.org/10.1007/s00224-005-1255-x
http://dx.doi.org/10.1007/s00224-005-1255-x


Bibliography 163

[KPV09] Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. “From Liveness to
Promptness”. In: Formal Methods in System Design 34.2 (2009), pp. 83–
103. doi: 10.1007/s10703-009-0067-z. url: http://dx.doi.org/10.
1007/s10703-009-0067-z (cited on p. 12).

[KV00] Orna Kupferman and Moshe Y. Vardi. “An Automata-Theoretic Ap-
proach to Reasoning about Infinite-State Systems”. In: CAV. 2000, pp. 36–
52. doi: 10.1007/10722167_7. url: http://dx.doi.org/10.1007/
10722167_7 (cited on p. 34).

[KV01] Orna Kupferman and Moshe Y. Vardi. “Weak Alternating Automata
are not that Weak”. In: ACM Transactions on Computational Logic 2.3
(2001), pp. 408–429. doi: 10.1145/377978.377993. url: http://doi.
acm.org/10.1145/377978.377993 (cited on p. 76).

[Leu91] Hing Leung. “Limitedness Theorem on Finite Automata with Distance
Functions: An Algebraic Proof”. In: Theoretical Computer Science 81.1
(1991), pp. 137–145 (cited on p. 9).

[LPW08] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov Chains
and Mixing Times. American Mathematical Society, 2008 (cited on p. 106).

[Mar75] Donald A. Martin. “Borel determinacy”. In: Annals of Mathematics 102(2)
(1975), pp. 363–371 (cited on p. 27).

[McN65] Robert McNaughton. “Finite-state infinite games”. In: MAC Technical
Report (1965) (cited on p. 8).

[MH84] Satoru Miyano and Takeshi Hayashi. “Alternating Finite Automata on
omega-Words”. In: Theoretical Computer Science 32 (1984), pp. 321–330.
doi: 10.1016/0304-3975(84)90049-5. url: http://dx.doi.org/10.
1016/0304-3975(84)90049-5 (cited on p. 60).

[MS87] David E. Muller and Paul E. Schupp. “Alternating Automata on Infinite
Trees”. In: Theoretical Computer Science 54 (1987), pp. 267–276. doi:
10.1016/0304-3975(87)90133-2. url: http://dx.doi.org/10.1016/
0304-3975(87)90133-2 (cited on pp. 8, 11, 51, 52).

[MS95] David E. Muller and Paul E. Schupp. “Simulating Alternating Tree Au-
tomata by Nondeterministic Automata: New Results and New Proofs
of the Theorems of Rabin, McNaughton and Safra”. In: Theoretical Com-
puter Science 141.1&2 (1995), pp. 69–107. doi: 10.1016/0304-3975(94)
00214-4. url: http://dx.doi.org/10.1016/0304-3975(94)00214-4
(cited on pp. 8, 11, 51, 52).

[Myh57] John J. Myhill. “Finite automata and the representation of events”. In:
WADD TR 57-624, Wright Air Development Division, USA (1957) (cited
on p. 7).

[Paz71] Azaria Paz. Introduction to Probabilistic Automata. Academic Press, 1971
(cited on pp. 16, 94).

[Pin09] Jean-Éric Pin. “Profinite Methods in Automata Theory”. In: STACS.
2009, pp. 31–50. doi: 10.4230/LIPIcs.STACS.2009.1856. url: http:
//dx.doi.org/10.4230/LIPIcs.STACS.2009.1856 (cited on p. 154).

[Que47] Raymond Queneau. Exercices de style. Gallimard, 1947 (cited on p. 2).

http://dx.doi.org/10.1007/s10703-009-0067-z
http://dx.doi.org/10.1007/s10703-009-0067-z
http://dx.doi.org/10.1007/s10703-009-0067-z
http://dx.doi.org/10.1007/10722167_7
http://dx.doi.org/10.1007/10722167_7
http://dx.doi.org/10.1007/10722167_7
http://dx.doi.org/10.1145/377978.377993
http://doi.acm.org/10.1145/377978.377993
http://doi.acm.org/10.1145/377978.377993
http://dx.doi.org/10.1016/0304-3975(84)90049-5
http://dx.doi.org/10.1016/0304-3975(84)90049-5
http://dx.doi.org/10.1016/0304-3975(84)90049-5
http://dx.doi.org/10.1016/0304-3975(87)90133-2
http://dx.doi.org/10.1016/0304-3975(87)90133-2
http://dx.doi.org/10.1016/0304-3975(87)90133-2
http://dx.doi.org/10.1016/0304-3975(94)00214-4
http://dx.doi.org/10.1016/0304-3975(94)00214-4
http://dx.doi.org/10.1016/0304-3975(94)00214-4
http://dx.doi.org/10.4230/LIPIcs.STACS.2009.1856
http://dx.doi.org/10.4230/LIPIcs.STACS.2009.1856
http://dx.doi.org/10.4230/LIPIcs.STACS.2009.1856


164 Bibliography

[Rab69] Michael O. Rabin. “Decidability of Second-Order Theories and Automata
on Infinite Trees”. In: Transactions of the AMS 141 (1969), pp. 1–23 (cited
on pp. 7, 8).

[Rab63] Michael O. Rabin. “Probabilistic Automata”. In: Information and Control
6.3 (1963), pp. 230–245. doi: 10.1016/S0019-9958(63)90290-0. url:
http://dx.doi.org/10.1016/S0019-9958(63)90290-0 (cited on pp. 9,
15, 90–92, 146).

[Sch61] Marcel-Paul Schützenberger. “On the Definition of a Family of Automata”.
In: Information and Control 4.2-3 (1961), pp. 245–270 (cited on pp. 9,
15).

[Sch56] Marcel-Paul Schützenberger. “Une Théorie Algébrique du Codage”. In:
Séminaire Dubreil-Pisot (1956) (cited on p. 7).

[Ser06] Olivier Serre. “Contribution à l’Étude des Jeux sur des Graphes de Pro-
cessus à Pile”. PhD thesis. Université Paris 7 - Denis Diderot, 2006, pp. 1–
253 (cited on p. 34).

[Ser03] Olivier Serre. “Note on Winning Positions on Pushdown Games with ω-
regular Conditions”. In: Inf. Process. Lett. 85.6 (2003), pp. 285–291 (cited
on p. 34).

[Sha53] Lloyd S. Shapley. “Stochastic Games”. In: National Academy of Science
USA 39 (1953), pp. 1095–1100 (cited on p. 12).

[Sim90] Imre Simon. “Factorization Forests of Finite Height”. In: Theoretical Com-
puter Science 72.1 (1990), pp. 65–94 (cited on p. 121).

[Sim94] Imre Simon. “On Semigroups of Matrices over the Tropical Semiring”. In:
ITA 28.3-4 (1994), pp. 277–294 (cited on pp. 9, 121, 123, 154).

[Tor11] Szymon Toruńczyk. “Languages of Profinite Words and the Limitedness
Problem”. PhD thesis. University of Warsaw, 2011 (cited on pp. 123, 154).

[Tra62] Boris A. Trakhtenbrot. “Finite Automata and Monadic Second-Order
Logic (in Russian)”. In: Siberian Mathematical Journal 3 (1962), pp. 103–
131 (cited on p. 7).

[Tze92] Wen-Guey Tzeng. “A Polynomial-Time Algorithm for the Equivalence of
Probabilistic Automata”. In: SIAM Journal of Computation 21.2 (1992),
pp. 216–227 (cited on p. 15).

[Van11] Michael Vanden Boom. “Weak Cost Monadic Logic over Infinite Trees”.
In: MFCS. 2011, pp. 580–591. doi: 10.1007/978-3-642-22993-0_52.
url: http://dx.doi.org/10.1007/978-3-642-22993-0_52 (cited on
pp. 13, 23, 57, 61, 74).

[Var98] Moshe Y. Vardi. “Reasoning about The Past with Two-Way Automata”.
In: ICALP. 1998, pp. 628–641 (cited on p. 8).

[VW08] Moshe Y. Vardi and Thomas Wilke. “Automata: from logics to algo-
rithms”. In: Logic and Automata: History and Perspectives [in Honor of
Wolfgang Thomas]. 2008, pp. 629–736 (cited on p. 7).

[Wal01] Igor Walukiewicz. “Pushdown Processes: Games and Model-Checking”.
In: Information and Computation 164.2 (2001), pp. 234–263 (cited on
p. 8).

http://dx.doi.org/10.1016/S0019-9958(63)90290-0
http://dx.doi.org/10.1016/S0019-9958(63)90290-0
http://dx.doi.org/10.1007/978-3-642-22993-0_52
http://dx.doi.org/10.1007/978-3-642-22993-0_52


Bibliography 165

[Zie98] Wiesław Zielonka. “Infinite Games on Finitely Coloured Graphs with Ap-
plications to Automata on Infinite Trees”. In: Theor. Comput. Sci. 200.1-2
(1998), pp. 135–183 (cited on p. 11).

[Zim12] Martin Zimmermann. “Solving Infinite Games with Bounds”. PhD thesis.
RWTH Aachen University, 2012 (cited on p. 12).

[ZP96] Uri Zwick and Mike Paterson. “The Complexity of Mean-Payoff Games
on Graphs”. In: Theoretical Computer Science 158.1&2 (1996), pp. 343–
359. doi: 10.1016/0304-3975(95)00188-3. url: http://dx.doi.org/
10.1016/0304-3975(95)00188-3 (cited on p. 12).

http://dx.doi.org/10.1016/0304-3975(95)00188-3
http://dx.doi.org/10.1016/0304-3975(95)00188-3
http://dx.doi.org/10.1016/0304-3975(95)00188-3



	The origins
	The Notion of Regularity in Automata Theory
	The Ubiquity of Games
	Boundedness Questions

	Memory in Quantitative Games
	Characterising Memory Requirements
	Quantitative Games
	The LoCo Conjecture

	Probabilistic Automata
	Algorithmic Properties for Probabilistic Automata
	Undecidability of Quantitative Problems
	The Value 1 Problem

	Finite-memory Determinacy for Boundedness Games
	Boundedness Games
	Games
	Boundedness Games
	Uniform and Non-Uniform
	From Non-Uniform to Uniform for Pushdown Arenas

	Finite-Memory Determinacy
	Finite-Memory Strategies
	Some results for Non-Uniform Boundedness Games
	Memory for Topologically Closed Conditions

	The LoCo Conjecture
	A First Statement of the Conjecture
	Applications to the Theory of Regular Cost Functions
	Refined Statement: Structural Properties of the Arenas

	Examples
	The B games
	The Boundedness Games over Finite Arenas
	The Temporal Boundedness Games
	The B-Reachability Games
	The B-Büchi Games
	The B-CoBüchi Games
	Application of the Slicing Technique for Stochastic Games

	Counter Examples
	A first lower bound of 3
	General lower bound
	Corollary

	Thin Trees
	Existence of a trade-off for word arenas
	Removing the least important color: the odd case
	Removing the least important color: the even case

	Extending to thin tree arenas

	Conclusions

	The Value 1 Problem for Probabilistic Automata
	Probabilistic Automata
	Probabilistic Automata
	Probabilistic Languages
	The Value of a Probabilistic Automaton
	Undecidability Results
	Undecidability of the Regularity Problem

	The Prostochastic Theory
	The Free Prostochastic Monoid
	Reformulation of the Value 1 Problem
	Fast and Polynomial Prostochastic Words
	Powers of a Stochastic Matrix

	The Markov Monoid Algorithm
	The Algorithm
	An Example
	Properties
	Consistency
	No Completeness

	Leaktight Automata
	The Extended Markov Monoid Algorithm
	Completeness for Leaktight Automata
	Complexity of the Value 1 Problem for Leaktight Automata
	PSPACE-hardness
	Bounding the -height in the extended Markov Monoid

	Comparisons with the Other Classes

	Undecidability Results
	Undecidability of the Two-tier Value 1 Problem
	Undecidability of the Numberless Value 1 Problems
	Overall construction
	The fair coin construction
	The simulation construction

	Undecidability of the Robustness Problems

	Conclusions
	Optimality
	Perspectives


	Bibliography
	Personal References Used in This Document
	Personal References Not Used in This Document
	Other References Used in This Document


