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sono calcolati e le caratteristiche geometriche dell'incendio quali posizione, velocità di propagazione, altezza,

v Résumé -Les travaux menés dans cette thèse concernent le développement d'un dispositif de mesure des caractéristiques géométriques de feux de végétation en utilisant un système de stéréovision multimodale porté par drone. A partir d'images stéréoscopiques aériennes acquises dans les domaines du visible et de l'infrarouge, les points 3D de feux sont calculés et les caractéristiques géométriques tels que sa position au sol, vitesse de propagation, hauteur, longueur, largeur, inclinaison de flamme et surface sont estimées.

La première contribution importante de cette thèse est le développement d'un système de stéréovision multimodale portable par drone. Ce dispositif intègre des caméras travaillant dans les domaines du visible et de l'infrarouge, un ordinateur Raspberry Pi, des batteries éléctriques, des récépteurs GPS et une carte inertielle. Il permet d'obtenir des images stéréoscopiques multimodales géoréférencées.

La seconde contribution importante de cette thèse est la méthode d'estimation des caractéristiques géométriques de feux à partir d'images stéréoscopiques aériennes.

Le dispositif d'estimation de caractéristiques géométriques a été évalué en utilisant une voiture de dimensions connues et les résultats obtenus confirment la bonne précision du système. Il a été également testé avec succès sur un feu extérieur ne se propageant pas. Les résultats obtenus pour des feux de végétation se propageant sur un terrain de pente variable sont présentés en détail.

Mots clés: Feux de végétation, mesure, caractéristiques géométriques, stéréovision, multimodale, drone volant vi Riassuntu -Questu travagliu presenta l'usu di un drone arricatu di a sistema di visione stereoscopica multimodale (RGB è IR) per misurà e caratteristiche geometriche di u focu è geolocate questi dati in una mappa. Le caratteristiche geometriche stimate sò a posizione, larghezza, lunghezza, altezza, profondità, angulu d'inclinazione di a fiamma, a superficie di a basa, i fili di u fronti, di l'angule lucale è di u a velocità locale trà duie righe di u frontale, a velocità media, l'inclinazione di a terra è u volumu di a forma frontali.

U drone hà una carta IMU è sensori cume GPS è compass. Tutte e immagini è l'infurmazioni correlate di l'IMU, di GPS è di bussole sò conservate localmente in un computer di bordu. Quest'informazione pò esse poi trasferita à un computer di terra per algoritmi post-elaborazione.

U posttrattamentu hè fattu in un computer cù Matlab per fà una forma di u focu è u su misure chì ponu esse integrate in una mappa GIS (o una carta DEM ottenuta da u drone).

U miglioramentu di più in questu travagliu hè di creà una piattaforma di sensori in aereo per monitorà è ottene dati di furesta in a so propagazione, aduprendu un sistema stereoscopicu multimodale (1 metru di basa), chì pò esse equipagiatu dinò cù telecamere miniaturizzate è economiche, per monitorà e spazii relativamente grandi (stu tipu di drone ùn esiste micca ancora nant'à u mercatu), è l'altra questione impurtante è di misurà e caratteristiche geometriche di u focu cù l'immagini scattate da sta piattaforma. U scopu era ancu di sviluppà un carregu di prototipu per u drone chì cattura immagini di quattru telecamere per creà un sistema di acquisizione cun una banda di 400 à 900 nm (nano-metru), cù tutti immagini sincronizate nantu à un sistema di posizionamentu per posizzioni u focu cù una precisione di 1 metru in una mappa cù un sistema KML (Keyhole Markup Language), per esempio Google Map.

Hè pussibule di migliorà stu prughjettu implementendu un modem per mandà un flussu di dati in una stazione di centrali in terra, in modo da ch'elli operiscenu in una modalità in temps reale, chì puderebbe aduprà cume parametri di input di un mudellu di predicazione di cumportamentu di u focu.

Stu dispositiu hè statu valutatu in duie fasi: prima, l'acquisizione di una vittura di dimensioni cunnoscute è cun marcu specificu hè stata fatta per avè una confermazione di a precisione di l'acquistamentu, dopu à un test di focu staticu (senza propagazione) hè stata fatta per confermà tuttu u prucessu automatica. Infine, i risultati riguardanti un focu di propagazione cù una inclinazione differente di a terra sò presentati. 
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Introduction

Forest fires represents a major risk to many countries around the world [START_REF] Alexander | Proposed revision of fire danger class criteria for forest and rural areas in New Zealand[END_REF]. They cause environmental damages (deforestation, desertification, air pollution CO 2 emissions, heavy metals and radionuclide recirculation) and human and financial losses (destruction of housing and other buildings, destruction of equipment of struggle). Globally, more than 350 million hectares (ha) of vegetation are estimated to be affected by fires each year [START_REF]Enlisting communities in wildfire prevention[END_REF].

In Canada 9% of the total amount of fire in the world destroy 2.5 million of hectares each year with a cost about $500 million to $1 billion of dollars annually [START_REF]Forest-fires[END_REF]. In Europe, up to 1 thousand ha of vegetation are burned annually [4] and in the Mediterranean area between 700 000 and 1 million ha of vegetation are destroyed each year [START_REF]Enlisting communities in wildfire prevention[END_REF], numerous studies have been conducted to identify the conditions that lead to these "dangerous" phenomena [START_REF] Lahaye | What are the drivers of dangerous fires in Mediterranean France?[END_REF].

France is extremely impacted by this phenomenon and particularly the region of Corsica: large fires occur and in recent years an average area of 2 625 ha is burned annually [START_REF]Prométhée : Liste des incendies[END_REF].

The events of 2018 and 2019 provide an example of the extend of this scourge. During the year 2018, in the United States, fires destroyed 1.8 million ha of vegetation and 25% of them was in California during November. The fire of the 8 th November was the biggest fire since 2003 [START_REF]California state wildfire map[END_REF][START_REF]He tried to plug a wasp nest. He ended up sparking California's biggest wildfire[END_REF][START_REF] Wootson | The deadliest, most destructive wildfire in California's history has finally been contained[END_REF][START_REF]List of wildfires.I n :Wikipedia[END_REF][START_REF]2018 was California's worst year of fire ever, federal report confirms[END_REF]. California is often hit by fires and from long since some procedures have been implemented [START_REF] Folkman | evaluation of an experimental program[END_REF], but in 2018, 6 841 fires caused more than one hundred deaths, about 22 000 structures were destroyed and 62 053 hectares were burned. The year 2018 was also a dramatic year for Europe and shown that the fires now affect also the northern regions. Sweden had 5 times the usual number of fires and 25 000 hectares of forest destroyed [START_REF]Sweden battles forest fires north of Stockholm -BBC News[END_REF][START_REF]Sweden's 'chaotic' response to historic wildfires criticized -The Local[END_REF][START_REF]Wildfire risk in Sweden as spring returns -The Local[END_REF]. The largest forest fire ever recorded in the modern history occurred in Norway destroying 3 000 ha of vegetation [START_REF]Scandinavie: les premiers feux de forêt font craindre un nouvel été de cendres[END_REF]. In August in Portugal, 1 150 firefighters battled the blaze over one thousand hectares of vegetation, 25 people were injured and other one hundred were evacuated from villages [START_REF]Portugal fires: wildfire rages as Portugal deals with 46C heat[END_REF]. Greece had the worst fire disaster from a decade causing more than 74 deaths and more than 300 homes and shops were destroyed or seriously damaged [START_REF]Wildfires kill dozens on Greek coast[END_REF]. In January, a fire destroyed in Corsica 2 000 ha of vegetation, it caused injuries in at least three people, caused the destruction of dwellings within a village and a sheepfold, leaving no chance for the herd of goats found calcined. In 2019, a record-setting heatwave occurred in parts of Europe. Record temperatures for the month of June were reached in Germany, the Czech Republic and Poland. France set an all-time record on Friday 28 th of 45.9 ¶ Ci nt h e town of Gallargues-le-Montueux near the Mediterranean Sea [START_REF]France Hit by fires in south as heatwave reaches peak[END_REF]. In the Gard department of southern France, fires fueled by wind and dry brush destroyed 11 houses and scorched 620 hectares. In Corsica, fires appeared also during the winter and in February 33 fire departures were recorded in two days and 1 500 ha of vegetation were burned mobilizing more than 150 firefighters and 3 Canadair planes [START_REF]Carelessness' blamed for Corsica's winter wildfires[END_REF].

With global warming, there will be an extension of wildfire-sensitive areas [START_REF] Rigolot | Impact du changement climatique sur les feux de forêt[END_REF][START_REF] Chatry | Changement climatique et extension des zones sensibles aux feux de forêts[END_REF]23] and Introduction these numbers will increase if efficient fire-fighting and land-use tools are not developed and used.

In order to fight effectively a wildfire, it is important to anticipate its behavior in particular the positioning of firefighters and the quantity of water to drop in such a way that people are in a safe place and their actions reduce the fire propagation.

For more than twenty years, researchers of the University of Corsica have been working on the problem of forest fires to understand the phenomena involved during their spread, to model them and to be able to predict and integrate them into simulators.

A behavior model has been developed by members of the "Fire" project of the joint unit 6134 Sciences For Environment CNRS -University of Corsica [START_REF] Balbi | A 3D physical real-time model of surface fires across fuel beds[END_REF][START_REF] Balbi | Physical modeling of surface fire under nonparallel wind and slope conditions[END_REF][START_REF] Rossi | An analytical model based on radiative heating for the determination of safety distances for wildland fires[END_REF][START_REF] Balbi | Modelling of eruptive fire occurrence and behaviour[END_REF][START_REF] Chatelon | A convective model for laboratory fires with well-ordered verticallyoriented fuel beds[END_REF].

There are other models such as those presented in the publications [START_REF] Mcarthur | Weather and grassland fire behavior[END_REF][START_REF] Albini | A model for fire spread in wildland fuels by-radiation[END_REF][START_REF] Fernandes | Shrubland fire behaviour modelling with microplot data[END_REF][START_REF] Rothermel | A mathematical model for predicting fire spread in wildland fuels[END_REF][START_REF] Grishin | Mathematical modeling of forest fires and new methods of fighting them[END_REF][START_REF] Mendes-Lopes | Flame characteristics, temperature-time curves, and rate of spread in fires propagating in a bed of pinus pinaster needles[END_REF][START_REF] Pastor | Mathematical models and calculation systems for the study of wildland fire behaviour[END_REF][START_REF] Viegas | On the existence of a steady state regime for slope and wind driven fires[END_REF][START_REF] Sneeuwjagt | Behavior of experimental grass fires vs. predictions based on Rothermel's fire model[END_REF].

The experimental studies of the fire spread across vegetable fuels are of great interest for understanding and modelling fire behaviour. Parameters such as the fire front geometrical properties are of particular interest during a spreading fire experiment, because they influence the propagation and the heat transfer of the fire [START_REF] Cheney | The influence of fuel, weather and fire shape variables on fire-spread in grasslands[END_REF][START_REF] Cheney | Fire growth in grassland fuels[END_REF]. However, their estimation is difficult given the distances travelled, the dangerousness of the phenomenon and the impossibility to predict the trajectory of the fire for outdoor experiments with wind.

In the last ten years, frameworks using visual and infrared cameras have been developed in order to be used as complementary metrological instruments in fire spread experiments. The first frameworks were proposed for fires at laboratory scale on different kind of fires [START_REF] Ng | Stereoscopic imaging and reconstruction of the 3D geometry of flame surfaces[END_REF][START_REF] Martinez-De Dios | Laboratory fire spread analysis using visual and infrared images[END_REF][START_REF] Rossi | Estimating the surface and volume of laboratory-scale wildfire fuel using computer vision[END_REF][START_REF] Verstockt | FireCube: a multi-view localization framework for 3D fire analysis[END_REF][START_REF] Mendes-Lopes | Flame characteristics, temperature-time curves, and rate of spread in fires propagating in a bed of pinus pinaster needles[END_REF][START_REF] Pastor | Computing the rate of spread of linear flame fronts by thermal image processing[END_REF][START_REF] Mason | Estimating Thermal Radiation Fields from 3D Flame Reconstruction[END_REF][START_REF] Pinto | Fire whirls in forest fires: An experimental analysis[END_REF][START_REF] Johnston | Flame-Front Rate of Spread Estimates for Moderate Scale Experimental Fires Are Strongly Influenced by Measurement Approach[END_REF]. However, these methods can't be used for outdoor fires mainly due to their dimensions, the range of distances travelled, the presence of smoke and the uncontrolled background. More recently, frameworks were developed in order to measure fire geometrical characteristics during outdoor experiments [START_REF] Rossi | Advanced stereovision system for fire spreading study[END_REF][START_REF] Martinez-De Dios | Computer vision techniques for forest fire perception[END_REF][START_REF] Clements | Measuring fire behavior with photography[END_REF][START_REF] Martinez-De Dios | Automatic forest-fire measuring using ground stations and unmanned aerial systems[END_REF][START_REF] Merino | Cooperative unmanned aerial systems for fire detection, monitoring, and extinguishing[END_REF][START_REF] Rossi | On the use of stereovision to develop a novel instrumentation system to extract geometric fire fronts characteristics[END_REF][START_REF] Toulouse | A multimodal 3D framework for fire characteristics estimation[END_REF].

Measuring fires in outdoor scenarios is a challenging task and it is important that the designed framework and associated systems are easily deployable on an unstructured environment which is unknown for each new experiment of fire propagation. For this reason it will be only presented works about outdoor fires tests, as this thesis is focused mostly on large fires. This thesis presents the work that was conducted for the measurement of wildland fires by drone.

This report is organized into 8 chapters whose details are as follow:

The first chapter is dedicated to the presentation of the state of the art of the measurement by vision of wildfires. It describes, in a first part, the techniques using ground vision systems. In a second part, methods employing hybrid frameworks composed by ground and aerial vision devices are presented. A third part is dedicated to the use of Unmanned Aircraft Vehicles (UAV) for the measurement of some fire geometrical characteristics. It concludes with the statement of scientific difficulties to be solved in order to achieve the objective of this thesis.

The second chapter describes the analysis that was conducted to determine the most appropriate vision equipment and the method for the measurement of the geometric characteristics of the vegetation fires by drone.

The third chapter focuses on the theoretical principles of stereovision, in particular this chapter presents the geometrical model of a camera and of a stereovision system, the intrinsic and estrinsec parameter estimation, and the reconstruction of 3D points of matching points.

The fourth chapter explains the procedure used for fire pixel from visible and long wave infrared images, and the transformations applied to the 3D fire points in order to calculate the fire geometrical characteristics.

The fifth chapter describes two experiences carried out in order to evaluate the measure uncertainly of the proposed framework. One was done using a car as target, the other was carried out with a pseudo-static fire

The sixth chapter is dedicated to the presentation of the results of a fire propagation of 10 m long on a slope with variable inclination. The temporal and spatial evolution of the geometric characteristics of a fire during its propagation are presented.

The seventh chapter presents the conclusions and improvements applicable to this thesis work.

The eighth chapter presents a summary of this document in French language. 

Introduction

During these last decades, around the world there has been an increased activity in the research community to measure wildfires in order to better understand, model and predict them. Help by the development of electronics, computer science, and digital camera technologies, several methods has been developed, based on computer vision in order to measure the geometrical characteristics of a wildfire in propagation.

Three families of vision frameworks for detection and measurement of wildfires has been developed: systems composed only by cameras positioned on the ground, hybrid system composed by ground systems and aerial platforms, and frameworks composed only by manned or unmanned aerial systems (UAS). 
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Flame height corresponds to the length of the segment between the top of the flame and the orthogonal projection of this point on the top of the fuel layer [START_REF] Alexander | Calculating and interpreting forest fire intensities[END_REF]. Flame length can be defined in several ways [START_REF] Anderson | Evaluating models to estimate flame characteristics for free-burning fires using laboratory and field data[END_REF]. This thesis work use the one that defines it as the distance between the top of the flame and the most advanced point of the fire front line. The front line and the back line are composed respectively of the most forward and backward ground points of the fire. The union of these lines delimits the contour of the fire base from which its perimeter and the area of fuel which is burning are computed. Width is the dimension of the fire base computed with the two horizontal extreme points and depth is the dimension of the fire base computed with the two vertical extreme points. Flame inclination angle is the angle between the length segment and the normal of the ground.

There are also others important fire parameters that are not represented in Fig. 1.1.

Rate of spread (ROS) defines the propagation velocity of the fire and allows to compute the distance traveled by fire for a specific period of time. It expresses the behaviour of fire regarding external condition as wind, fuel and topography of the terrain. 3D information are as complete as can be expected. Thus, for example, the ROS of all the points of a fire front reflects the deformation of the front lines.

In addition to the geometrical characteristics specific to the front of the fire, the researchers working on the modeling of the behavior of fire are interested by: the speed of each point of the front associated with its local angle, the position, the flame surface and volume.

The energy transferred from a fire to a target depends on the distance between the target and the fire and the orientation of the fire surface in relation with the position of the target [START_REF] Howell | Thermal radiation heat transfer[END_REF]. Obtaining the three-dimensional shape of a fire and having at each instant the distance fire-target and the surface of the flame that is oriented toward the target allows to estimate this energy.

Fire surface and volume because they intervene into the behavior of a spreading fire [START_REF] Rossi | Fire Intensity". In: Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires[END_REF].

Fire measurements with ground vision systems

In this section, it is presented frameworks using images obtained from several ground points of view to measure fire geometric characteristics. 3D information are computed from visible and infrared images and geometrical characteristics are estimated. Sensor fusion techniques involving telemetry sensors and GPS are applied.

Computer vision techniques for forest fires using simple cameras

Martinez-de Dios et al. [START_REF] Martinez-De Dios | Computer vision techniques for forest fire perception[END_REF] Visual cameras are used to estimate measure such as flame length, flame height, flame inclination angle, and fire front line; although they present many problems in case of smoke presence that occludes fire areas. With infrared camera the smoke is transparent [START_REF] Breejen | Infrared measurements of energy release and flame temperatures of forest fires[END_REF], and is a good solution for the estimation of the parameters of the base: position, ROS, and fire width.

The methodology to measure characteristics like fire front location, fire height, and flame inclination angle proposed by the authors is composed of several steps. The first operation is the segmentation of fire pixels in the images. The second step is to take measure in pixel over the segmented image. The third step is the geo localization on the terrain, and finally, in the fourth step measure like fire front location, flame height, flame inclination angle and fire width in meters are computed. This methodology obtains a perception model of fire and not a real 3D model, but a study of the techniques used were useful to compute some of the parameters as presented in Sec. 2.1.

The segmentation algorithms chosen by the authors are different for visual and IR images. For visual images two algorithms are tested, one based on a iterative threshold on red component [START_REF] Ridler | Picture Thresholding Using an Iterative Selection Method[END_REF], and a second is a training-based described in [START_REF] Phillips | Flame recognition in video[END_REF]. This second method uses a look-up table for the RGB colour space. For each triple (R,G,B) the look-up table is built creating a Boolean mask of the same size of the image where for each position of the mask the TRUE value corresponding to the presence of fire in the corresponding pixel of the image, and FALSE value otherwise. The learning phase builds the look-up table from several pairs of image, where each pair is formed by the RGB image andthe Boolean mask. Thus an RGB histogram is created accumulating Gaussian distribution when the triple correspond to a fire pixel and substrating Gaussian distribution otherwise, finally the RGB histogram is thresholded. The training algorithm proved a more robustness and it is the algorithm chosen by [START_REF] Martinez-De Dios | Computer vision techniques for forest fire perception[END_REF] for the final framework.

The IR camera can see the intensity of the heat radiation in a scene and it is then possible to discriminate a fire from the scene background analyzing the intensity values. Knowing that in medium infrared band the radiation intensity of the flame is lower than the radiation intensity of the base, it is possible to use this kind of cameras to differentiate flame and fire base. In [START_REF] Martinez-De Dios | A Multiresolution Threshold Selection Method Based on Training[END_REF][START_REF] Martinez-De Dios | A Multiresolution-Fuzzy Method for Robust Threshold Selection in Image Segmentation[END_REF] a fuzzy multi resolution algorithm is used to segment fires into IR images, this method finds a threshold intensity with a coarse-to-fine search analysis.

The results of this process are binaries images where 1 represent fire pixels and 0 background pixel. When the fire is segmented into the IR and visible images, a contour detection function is applied to find the edges of the segmented regions.

To identify the fire base, given the supposition that the base fire pixels change slower than the fire pixels of the flame, it is considered a set of n consecutive frames taken at 1 frame per second and an image containing the pixels that have no changed over these frames is obtained by using the binary AND operator ¢:

I i = I i≠n ¢ I i≠n+1 ¢•••¢I i . (1.1)
where I i is the binary image at the frame i. The edges of the fire region in I i represents the fire contour of the base that includes pixels of backward fire line and pixels of forward fire line:

C b i fi C f i = {p b ik , k =1,...,N i }fi{p f ik , k =1,...,N i } (1.2)
being C b i the set of the pixels for the backward base contour and C f i the set of the pixels for the forward base contour.

To differentiate between pixels of the backward and pixels of the forward the algorithm considers the velocity vector v b i of the centroid of C f i fi C b i , and to get a robust estimation of v b i it considers an average of 3 frames. Tracing the normal line of the vector v b i passing through the centroind of C f i fi C b i , it is possible to discriminate the points of the backward line and the points of the forward line. For each point of the backward line, a line with the same direction of v b i identifies an intersection point on the line of the forward points. Thus, for each point of the backward line, it is possible to compute the euclidean distance with its correspondence point on the forward line, and the median of these distances gives a depth value in pixel coordinates, as shown in Fig. 1.3. The geolocalization of the information is made using data from GPS and IMU sensors. This operation is necessary when several images are acquired, because in this step all the measures for each fire can be merged to create an evolution.

Two field configurations are considered: one with a planar field and the other with a full 3D field.

If fire is situated on planar field, it is possible to approximate the terrain to a plane Z =0; in this way the pixels coordinate p and the world coordinate P are related by:

s S W W U u v 1 T X X V = H j S W W W W U X Y Z 1 T X X X X V (1.4)
where s is the scale factor, p = [uv1 ] T are the pixel homogeneous coordinates, P = [XYZ1 ] T are the world homogeneous coordinates, and H j is the homography matrix of the image j computed as

H j = A j Ë r 1,j r 2,j t j È (1.5)
with A j is the intrinsic matrix composed by the physical parameters of the lens: focal length, distortion factor, and coordinates of the central pixel in the image. [r 1 ,r 2,j ,t j ] contains the rotation and translation vectors to relate the world coordinate system to the camera system, as shown in Fig. 1.6. Figure 1.6: Relation between real world and camera reference [START_REF] Martinez-De Dios | Computer vision techniques for forest fire perception[END_REF].

In planar propagation tests only four correspondences between the pixels coordinates and theirs world coordinates are needed to calibrate the cameras. The homography matrix H is invertible, so it is possible to compute any world coordinates given the pixel coordinates in the image. However this kind of field configuration is not very interesting to study because is a condition too limiting.

If the terrain is a full 3D field more correspondences between pixels on the image plane and points on the 3D world coordinates are needed to calibrate the camera.

s S W W U u v 1 T X X V = A j Ë r 1,j r 2,j r 3,j t j È S W W W W U X Y Z 1 T X X X X V
.

(1.6)

The translation t is computed using the position of the camera read from GPS, and for the rotation an IMU board that gives roll, pitch and yaw measures is used. To compute the homography matrix firstly the values of roll, pitch and focal length are set to initial values, and the initial matrix H 0 j is computed. This matrix is used to compute the 3D coordinates of some landmarks positioned over the terrain. If the real GPS position of the landmark is known, it is possible to use the inverse matrix H 0 -1 j to project the landmark position on the image plane. The error between the projection of the landmark position on the image plane and the real pixel coordinate on the image is computed, and a non-linear least square interior-reflective Newton method is applied to minimize this error to obtain a new homography matrix. This method will be iterate for k step and the last matrix H k j at step k is considered [START_REF] Conn | Large-scale Nonlinear Constrained Optimization: a Current Survey[END_REF][START_REF] Coleman | An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds[END_REF].

Once the cameras are calibrated it is possible to obtain measures of fires in geographical coordinates. Each camera computes a measure m with a confidence index Ê related to the camera resolution (pixel/meter), and an heuristic information related to the camera j.T h e 
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Computer vision techniques for outdoor experimental fires using stereovision

The use of stereoscopic vision techniques makes possible to estimate depth information of a target with two or one moving camera. The principles of the stereovision will be discussed in details in the Chap. 3.

Methodology to estimate fire geometrical characteristics using stereovision system

A first solution was proposed by Rossi et al. [START_REF] Rossi | On the use of stereovision to develop a novel instrumentation system to extract geometric fire fronts characteristics[END_REF][START_REF] Rossi | A 3D vision system for the measurement of the rate of spread and the height of fire fronts[END_REF] for small outdoor fires. The methodology is composed by five steps. The first step is the detection in the images of fire pixels; the authors [START_REF] Rossi | Dynamic fire 3D modeling using a real-time stereovision system[END_REF] uses information from YUV and RGB color spaces. In the second step, points of interest are detected on the contours of the fire zones in the images. A third step makes it possible to match the pixels of fire between the stereoscopic images. In a fourth step, the 3D points of fire are obtained by triangulation of the paired points. Finally, from the three-dimensional points, the geometric characteristics of the fire are calculated. From 3D fire points, parameters like front position, rate of spread, flame length, flame height, flame tilt angle, surface and volume are estimated, on a field with with no a priori knowledge about the slope of the ground. The detection algorithm of fire pixels proposed by the authors [START_REF] Rossi | Dynamic fire 3D modeling using a real-time stereovision system[END_REF]u s e s a combination of the information from the RGB and YUV color spaces. Once the zones of fire have been detected, features are searched on the fire area contour, then the matching of these points is carried out and finally the obtaining of the point cloud of 3D coordinates by a triangulation algorithm [START_REF] Trucco | Introductory techniques for 3-D computer vision[END_REF].

The authors in [START_REF] Rossi | Measurement of the geometric characteristics of a fire front by stereovision techniques on field experiments[END_REF] describe the estimation of fire geometrical characteristics by using two devices positioned in the rear and lateral places of the assumed fire direction. In this research, the authors didn't use GPS and IMU sensors to find position and orientation of each camera. A procedure especially created for the registration of cameras at field scale has been developed. It is based on the use of a 1 m diameter balloon put successively at several positions on the field and visible by the different stereovision systems. For each stereovision system, the 3D position of the centre of gravity of the feature put at different places is compared with a theoretical network of positions generated by computer and put at a given place in space. The place which minimizes the distance between the 3D positions of the feature and the theoretical network of positions gives the real pose (translation and rotation) of the features in the camera frame An example of 3D points is shown in Fig. 1.13; from this points all the characteristics previously discussed can be computed. The method needs at each instant to know the equation of the plane where the fire is in order to compute geometrical characteristics such as height and length without including in the estimated values the elevation difference given by the topology of the ground. To compute this plan, the lower 3D points of successive fire fronts (corresponding to an advance of 3 m) which are at ground level are considered. From them, a plane equation is computed using a least square techniques [START_REF] Conn | Large-scale Nonlinear Constrained Optimization: a Current Survey[END_REF][START_REF] Coleman | An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds[END_REF] To compute the fire perimeter a convex hull algorithm only on the XZ coordinates of the 3D points is applied [START_REF] Barber | The quickhull algorithm for convex hulls[END_REF], where X and Z correspond to the width and depth axes, respectively. For ROS computation several two pair-temporal front lines previously computed are taken into account. Firstly the algorithm selects for the first line a set of equidistant points and for each point the corresponding point in the second line is chosen as the intersection between the orthogonal line that passes by the first point and the second line (Fig. 1.16).

Figure 1.17: Height estimation [START_REF] Rossi | A 3D vision system for the measurement of the rate of spread and the height of fire fronts[END_REF].

The volume estimation is made from the convex hull shape of the 3D points described in Fig. 1.13 [START_REF] Rossi | On the use of stereovision to develop a novel instrumentation system to extract geometric fire fronts characteristics[END_REF]. The framework is based on the use of a visible pre-calibrated stereo camera in order to compute 3D information without the need for artificial beacons or natural marks.

Toulouse et al. [START_REF] Toulouse | A multimodal 3D framework for fire characteristics estimation[END_REF] improve the use of stereovision to estimate outdoors fire characteristics including the volume by developing a multimodal (visible and near infrared) stereovision framework. In Fig. 1.18 the general scheme is presented. The first step is a fire pixel extraction conducted in both the visible and NIR spectrum. It is followed by a feature detection procedure used in a stereo matching. From the corresponding points, a triangulation procedure permits their 3D reconstruction. An ultimate step is carried out from the 3D points in order to estimate the fire geometrical characteristics. Two multispectral cameras JAI AD-080GE [START_REF]JAI industrial 2-sensor prism-based color/NIR area scan camera[END_REF] that work simultaneously in near infrared band (750-900 nm) and visible band (1024x758 resolution pixel) are used. These cameras are positioned to 1 m apart on a rigid axis. A camera inter-distance (baseline) of 1 m was chosen in such a way to produce with the camera focal length a theoretical depth error lower of 30 cm at 12 m. The target considered is a fire with a supposed width of 10 m and 2 m of height. The left camera of each stereovision system was equipped with an IMU sensor to obtain the orientation of the devices and their position was obtained with a centimeter-precision GPS system. A synchronization system remotely controlled allowed to take simultaneous pictures from all the cameras; the acquisition time was fixed by the authors to 1 image per second. Each stereovision system was calibrated using a checkboard of known dimensions positioned in several points on the terrain at about 12 m. In Fig. 1.19 it is possible to see a stereovision system composed by two cameras, the box containing the IMU sensor and the remotely activated trigger with its antenna. In [START_REF] Toulouse | A multimodal 3D framework for fire characteristics estimation[END_REF] the authors gets a new approach to detect fire pixels. Two method are used, one is an histogram based method descripted in [START_REF] Phillips | Flame recognition in video[END_REF], to obtain a detection of fire pixel in visual images, and a threshold based method on the near infrared image. For each pixel a probability to be a fire pixel is computed as:

P x = p 1 (x 1 )+p 2 (x 2 ) 2 (1.10)
where x is the pixel in the multimodal image, x 1 the intensity value in the infrared image, x 2 the RGB triplet in the visual image. p 1 is the probability that the pixel x correspond to a fire pixel into the infrared image:

p 1 (x 1 )= Y ] [ x 1 ≠t 2t + 1 2 if x 1 AE t x 1 ≠t 2(255≠t) + 1 2 otherwise (1.11) t = Y ] [ µ +2 ‡µ +2 ‡ AE t 255 otherwise (1.12)
µ, ‡ are the intensity average, the standard deviation of the infrared image, and t is the threshold used for p 1 . p 2 is the probability that the pixel x correspond to a fire in the visual image. The RGB triplet x 2 associated to the pixel x which correspond p 1 (x 2 ) > 0.5 are used as learning pixel. The learning pixels computed are used as input for an histogram based method and p 2 is computed. Finally x is a fire pixel if P x > 0.5.

To extract points of interest an algorithm based on a multi-scale oriented patch technique
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is used [START_REF] Brown | Multi-image matching using multi-scale oriented patches[END_REF] applied on visual images. From each system a set of 3D points is computed through triangulation method.

The techniques described previously produce two sets of 3D points, relative to their local reference frame (stereovision system frame). The registration allows them to be merged into one model. There is no obligation on the positions of the two stereovision devices, but to get the complete shape of a fire the best positions are in front and behind the fire front. For each new configuration of stereovision systems, the position given by the GPS and the IMU values associated to the devices. Knowing these measures from each system a matrix transformation is computed and used to project all the points in a unique reference frame.

Once a merged point cloud is obtained, the framework computes all the geometrical characteristics of fire [START_REF] Toulouse | A multimodal 3D framework for fire characteristics estimation[END_REF][START_REF] Rossi | Estimation of spreading fire geometrical characteristics using near infrared stereovision[END_REF] described in Sec. 1.1. The geometric characteristics of fire are expressed in relation to a basic plane which is the surface of the ground; this base plane is determined from the low 3D points of fire obtained from the rear view of the fire. The base plan is calculated from successive images (the images are taken with 1 fps). The authors used 300 images (corresponding to 5 minutes of propagation) and renewed by slice of 120 images (corresponding to 2 minutes of propagation). From each image a low pixels searching algorithm is performed divided the image in column. For each column selects the detected pixel which higher row index. To refine this selection, for example because some pixel points can be the lowest of their column but are not situated on the base plane, the average µ p and the standard deviation ‡ p of the row indices v p are computed and the points located over a certain distance from the average are eliminated. The 3D fire points identified as being on the ground are accumulate and used to estimate the equation of the plane that better fit them. Once the plane is known a new refinement is computed eliminating the 3D fire points located more than 30 cm from the ground. The lowest points of the fire are those on the ground and therefore correspond to the base of the fire. Depending on the direction of fire spread, the base has a front line and a rear line. A fire front line and a rear line are computed using the device positioned in front and behind the fire, respectively. From two fire lines, the rate of spread computed with the method described in the methodology presented by Rossi et al. previously discussed. The principal direction taken by a fire during its propagation corresponds to the average axis according to which it propagates. This direction is estimated by the average direction of the segments which connect each point of the first line and its equivalent in the second line. In particular, the Bezier curves are considered two by two and on each of them one hundred equidistributed points are numbered. All the vectors connecting the points of the same number of the curve pairs are then calculated and the average of these vectors gives the main direction of propagation. The fire direction previously computed is important to estimate the height, depth, width and flame inclination angle. All the 3D points are rotated to align the Z-axis to the fire direction vector. Fire height is defined as the y-coordinates of the highest point. Fire width is the difference of X-coordinates of the two extreme points of the fire line. Fire length is the euclidean distance between the most advanced point of the front line and the highest point. Fire inclination angle is computed as the angle between the normal of the base plane and the line used for the fire length estimation. All of these estimations are shown in Fig. 1.20.

Fire measurements with hybrid device composed by ground vision systems and aerial vision systems

Martinez de Dios [START_REF] Martinez-De Dios | Automatic forest-fire measuring using ground stations and unmanned aerial systems[END_REF] proposed a framework for automatic fire measuring using an hybrid system composed by cameras on the ground and cameras mounted on unmanned aerial vehicles (UAV).

The obtained measures are the fire location, maximal fire height, fire width, flame tilt inclination, flame length, and rate of spread. The proposed framework is an extension of [START_REF] Martinez-De Dios | Computer vision techniques for forest fire perception[END_REF] previously discussed, with an improvement of the fire location.

Knowing that the change of direction of fires creates problem with fixed system, Martinez The entire deployment is composed by three different combinations of infrared-visual cameras on the ground, and two pairs infrared-visual cameras mounted on UAV. In particular the cameras used are a mid-infrared ground camera with 24 ¶ of HFOV, a mid-infrared ground camera with two lenses and HFOV of 10 ¶ and 20 ¶ , a far-infrared ground camera with three lenses and HFOV of 12 ¶ , 24 ¶ , 45 ¶ , a micro far-infrared drone camera with 24 ¶ of HFOV, and a camera on the ground and mounted on UAV with 752X582 of pixel resolution and a focal length adjustable from 15 to 90 nm. Aerial images were used to compute the fire shape, fire position, and fire width. The proposed method estimates in a first step the fire characteristics in the same way that the one described in [START_REF] Martinez-De Dios | Computer vision techniques for forest fire perception[END_REF] and improves the fire location using a filter associated with a propagation model. The filter used is a Recursive Bayesian Filter associated to a one-update fire model, this model do a short-term prediction of the fire. The state of the [START_REF] Ononye | Automated extraction of fire line parameters from multispectral infrared images[END_REF] a method to determine fire perimeter, fire line, and fire propagation direction using as input multi and hyper spectral images from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), MODIS Airborne Simulator (MAS) and Wildfire Airborne Sensor Program(WASP).

AVIRIS is an optical sensor developed by NASA that contains calibrated images of the spectral radiance in 224 contiguous spectral bands between 400 to 2500 nm. It was tested by NASA on two altitudes, 20 km and 4 km over the ground level. MAS is an airborne scanning spectrometer that acquires high spatial resolution imagery of surface features. WASP is a multispectral camera system that can discriminate fire from solar reflection by measuring relative brightness into the band 0,4-15 µm. It is associated with an IMU sensor and it was tested by NASA with an altitude of 1,5 km.

To estimate the line of the fire front, the authors uses a gradient operation on each spectral band and calculate the edge curve from the contours obtained. The fire direction is computed for several points of the front of fire. To estimate the orientation at certain points of the front line, the normal of the fire front curve at these points is calculated. The obtained fire front line separates the burning vegetation zone from the area that has not yet been burned, and this information can help to determine the propagation direction (Fig. 1.24). Only the information about fire line are estimated. to study vegetation fire behavior and collect data from airbone platforms. The authors propose an approach based on the automated detection of a set of fixed thermal "ground control points," coupled with the use of a linear transformation matrix for warping the raw IR imagery to a fixed coordinate system. In this way, it is possible to georeference the thermal images obtained from a camera pointing at nadir or off-nadir station positions (tripod mounted, high platform, portable mode from a helicopter). In this study, the front lines of a fire propagating on a plot of nine hundred and forty-five square meters are referenced in the same reference system. From a set of front fire lines and their distances the rate of spread and the direction of propagation are estimated using methods similar to those presented in [START_REF] Ononye | Automated extraction of fire line parameters from multispectral infrared images[END_REF]. This method does not make it possible to estimate geometrical characteristics such as the flame height or the surface of the front face.

Unmanned Aerial Vehicle systems

Unmanned Aerial Vehicles have less autonomy and are much less resistant to wind and turbulence, but are cheaper and faster than traditional airborne vehicles. It is possible to fly to monitor and detect forest fires passing over fire many times compared to a classical air system. These are the reasons that today UAVs equipped with optical systems have a great potential for forest fires detection and monitoring. In the article [START_REF] Yuan | A survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniques[END_REF]i ti sp r e s e n t e da review of different architectures of UAVs and its capacities: fixed wing, rotatory wing, airship. Each of these systems presents a variety of technological issues and practices. Methods to detect and monitor fires using single or cooperative UAVs are briefly discussed. A part entitled "Vision-based technologies for automatic forest fire diagnosis and prognosis" presents all the points to consider when using cameras mounted on drones.

The use of multiple UAVs for surveillance, detection, localization, and measurement of forest fires is described in several articles [START_REF] Matinez-De-Dios | Multi-UAV experiments: application to forest fires[END_REF][START_REF] Ollero | Unmanned aerial vehicles as tools for forest-fire fighting[END_REF][START_REF] Merino | Cooperative unmanned aerial systems for fire detection, monitoring, and extinguishing[END_REF]. The basic elements of a general UAVbased system of surveillance of forest fires are a team of UAVs, with different kind of sensors, and a ground control station, as it show in Fig. 1.25. Martinez-de Dios et al. in [START_REF] Matinez-De-Dios | Multi-UAV experiments: application to forest fires[END_REF] use 2 helicopter UAVs and 1 airship UAV for a precise estimate of the location of the fires. With the use of several drones it is possible to increase the position accuracy of the fire. In step 1, each UAV computes the fire position using its sensors. This position is affected by noise sensors and an uncertainty is computed taking into account the sensors sensibility. In step 2, the entire fleet is sent to the GPS position of the fire previously computed (that is also the center of gravity of the uncertainty region) and each UAV makes its measure of fire position with its uncertainty region. In step 3, the regions are intersected and the barycenter of the intersection corresponds to the new position of the fire. Being an intersection, the new region is smaller than the previous region, and this mean that the accuracy is increased. It is possible to iterate this procedure using the final position computed as input for the step 2. In Fig. 1.26 are represented the positions and uncertainties obtained at each step of the procedure.
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Fire segmentation and fire contours detection are obtained with the procedure described in Sec. 1.2.1, in order to compute the fire front detection as discussed in [START_REF] Martinez-De Dios | Computer vision techniques for forest fire perception[END_REF]. In Fig. 1.28 are shown fire fronts detected into UAV images.

Figure 1.28: Fire observation using UAV images: fire front line (green) and flame contour (red ) [START_REF] Matinez-De-Dios | Multi-UAV experiments: application to forest fires[END_REF].

The method presented in the article [START_REF] Matinez-De-Dios | Multi-UAV experiments: application to forest fires[END_REF] is interesting because it shows the use of several drones to improve the accuracy of position measurement of a fire. However, as no information concerning the position of the drones and their distance from the fire and experimental data are given, it is difficult to evaluate the real effectiveness of the method.

Conclusion

In this chapter was presented the work of literature that is close to the problematic of this thesis. Methods for the estimation of fire geometrical characteristics like fire front location, fire height, flame inclination angle and fire width using image processing and computer vision with 2D and 3D data were described. The images are acquired from ground stations, hybrid systems composed by ground stations and UAVs, and aerial vehicles. The various solutions use visible and/or infrared cameras (in different spectral IR bands).

In the first part, were presented the geometrical characteristics needed by the researchers working on fire behaviour. In the second part, were discussed the methods using ground systems, composed by monocameras or sterevision devices. In the third part, was presented a solution using ground cameras and on-board cameras carried by drone. Finally in the last part were presented methods using only cameras carried by manned or unmanned aerial vehicle.

Conclusion

Concerning the solutions using ground-based cameras methods using monocameras on the ground from multiple viewpoints (in general frontal and lateral views) were presented. These methods, that synthesize the data in subsequent steps, fail to have fire depth information and are limited in estimating geometric characteristics. This kind of results is not complete to characterize the fire in all of its parts. Methods that do not use stereovision require bacons and landmarks which make these techniques difficult to use on natural terrain. A framework based on the use of ground stereovision devices has also been described. This system that couples pair of cameras and that is capable to compute the depth of each point of a fire was presented and discussed. Frameworks based on the used of stereovision solutions provides three-dimensional fire information and methods have been successfully developed for small outdoor fires. Solutions using ground-based cameras only can not be used on hard-to-reach terrain and there is a decrease of accuracy of measurements when the distance camera-fire increases what could be the case when the fire is moving away.

Manned air vehicles can fly with an altitude that provides good point of view and they are able to follow the the possible changes of direction of fire. Usually their dimension doesn't allow to go close to the fire. Moreover the planes are expensive to use and can not be supported by all research teams during their many experimental burnings carried out in unstructured environments. The use of drones allows to stay close to fire throughout its evolution. Drones and cameras have now accessible prices and it is now possible to develop platforms for the detection, monitoring and measurement of fires. Finally with UAVs there aren't any risks for humans.

This chapter has presented the basics of the works in relation to the topic of this thesis. It allowed to show the main ideas that have been published to overcome the problem of the measurement of fires by vision as well as the limits of the existing methods. It shown the principal works on the using of drone for fire position measurements. This work will serve to justify the solutions chosen for the development of new framework for fire geometrical characteristics estimation. 

Introduction

For this thesis, a work on a multimodal stereovision system was developed. This device can be fixed on a drone and it is capable to acquire and store georeferenced images.

This chapter presents the study that was conducted to determine the architecture of the proposed solution to measure experimental fires geometrical characteristics (position, rate of spread, height, length, flame tilt inclination and surface) by drone. This solution is composed by an hardware architecture and a framework software. This chapter is dedicated, in a first part, to a bibliographic study on wavelength emissions of fires and spectral bands suitable for their observation. In a second part, the developed stereovision system fixable to a drone is presented. In a third part, the UAV platform used to carry the vision system is discussed. Finally, the main principle of the framework for the 3D point computation is presented. The method developed in order to compute the geometrical characteristics from the fire 3D points is independent of the developed stereovision system and will be presented in the next chapter.

Chapter 2. System overview

Spectral bands selected for the observation of wildfire

Each object with a temperature higher than 0 K emits electromagnetic waves which are its characteristic and which constitute its spectral signature. The emission spectrum of an element is the set of electromagnetic radiation wavelengths emitted by the electrons of its atoms when they make a transition from a higher energy state to a lower energy one.

Electromagnetic radiations from wildfire fires

A forest fire is a combustion process that can generate temperatures from 400 ¶ C to 1500 ¶ C, the glowing combustion of coal is between 500 ¶ C and 600 ¶ C and the flames reach temperatures of 1000 ¶ C [START_REF] Robinson | Fire from space: Global fire evaluation using infrared remote sensing[END_REF]. In a combustion process the species that irradiate the most are soot and gases (for example CO, CO 2 and H 2 O), with the contribution of soot that can exceed the combustion gases [START_REF] Billaud | Determination of woody fuel flame properties by means of emission spectroscopy using a genetic algorithm[END_REF]. These solids emit in all wavelengths [START_REF] Maoult | Fire detection: a new approach based on a low cost CCD camera in the near infrared[END_REF][START_REF] Briz | Reduction of false alarm rate in automatic forest fire infrared surveillance systems[END_REF]. In case of vegetation fires more than 90% of the gas mass emitted is composed by H 2 O and CO 2 . In general the wildfire spectra are always composed of emission lines linked to carbon dioxide (4,3 µm) and to water vapor (2,7 µm and between 5 µm and 10 µm) more or less distinguishable according to soot emissions. The carbon dioxide emissions are particularly visible in the case of dry vegetation fires, while the water vapor emission are more important for wet vegetation. In Fig. 2.1,i t is shown the spectral emission of fire with several flame widths (from 0,5 m to 4 m), where it is possible to note that there are different signatures mainly due to soot emissions which increase with the area of the fuel [START_REF] Billaud | Determination of woody fuel flame properties by means of emission spectroscopy using a genetic algorithm[END_REF]. 

Spectral bands for fire observation

The atmospheric transmittance of a wave is the ratio between its incident intensity flux and its transmitted intensity flux, and it is a dimensionless quantity. In general, the atmosphere absorbs all the waves whose wavelengths are those of the gases that compose it. This consists of several gases such as nitrogen (N 2 ), oxygen (O 2 ), argon (Ar), water vapor (H 2 O), carbon dioxide (CO 2 ), methane (CH 4 ), carbon monoxide (CO), nitrous oxide (N 2 O), chlorofluorocarbons (CFCs) or ozone (O 3 ). Each of these gases absorbs the radiation passing through it corresponding to that of its emission, which produces many absorption bands. The broadest absorption bands are in the infrared (from 0,75 µm to 1 nm) and are due to the molecules of carbon dioxide and water. Fig. 2.2 shows the atmospheric transmittance in the different spectral bands of the infrared. Infrared wavelengths are classified in near infrared or NIR (from 0,75 µm to 1,4 µm), short-wave infrared or SWIR (from 1,4 µmt o3µm), medium-wave infrared or MWIR (from 3 µmt o8µm), long-wave infrared or LWIR (from 8 µm to 15 µm), and far infrared or FIR (from 15 µmt o1m m ) [ 85]. 

Comparison of fire images in visible and infrared spectral bands

A fire emits radiations more than the human eye can see; in human eyes only the visible spectrum can be detected; for this reason and given the very affordable price of visible cameras and their simple use, the community of researchers working on the problem of wildfire keeps the field of visible as a reference domain. Fire areas can be difficult to segment in visible images due to the fire texture and colors that can be very varied. Smoke generated by fire can also make difficult the segmentation of fire zones in image by masking them (Fig. 2.3). The infrared band can be used to overcome this difficulty. Thermal images (NIR, MWIR, LWIR or FIR) can make appear flame areas with a high contrast of intensity with the environment and whose shapes are an over-envelope of those obtained in visible images.

Toulouse et al. [START_REF] Toulouse | A multimodal 3D framework for fire characteristics estimation[END_REF][START_REF] Toulouse | Estimation par stéréovision multimodale de caractéristiques géométriques d'un feu de végétation en propagation[END_REF] did a study on small vegetation fire images taken at about ten meters away from the camera and found that, in comparison with other spectral bands, the near infrared obtains images whose fire zones are closest to those obtained in visible images (Fig. 2.4). It should be noted that no test was performed for camera-fire distances greater than 10 m and that in the presence of a large quantity of soot fire zones may be masked. It can be seen in the LWIR image that the fire area is easily distinguishable. This zone is larger that the corresponding one which appears in the visible image and it has no texture. To conclude, the images of distant fires obtained in the LWIR range show areas of flames with a high contrast of intensity with the environment and with shapes that are an over-envelope of fire zones obtained in visible images. The fusion of the information obtained in the visible and LWIR images should make it possible to detect fire pixels in the visible images efficiently.

Materials composing the vision device 2.3.1 Choice of a vision system and its characteristics

Measuring objects outdoors from an image can be a very complex operation because it requires to position in the camera's field of view landmarks whose positions are known. This is very complicated on non-planed, difficult to access or with dense vegetation lands. Stereovision is a process that provides depth information from two simultaneous and scaled images of the same scene. This method was chosen to obtain 3D points of fires and for measuring their geometrical characteristics. In a stereovision system, it is possible to compute the theoretical depth measurement precision ∆z, given the focal length f of the cameras, the average distance camera-target z,t h e baseline length between the two cameras B, and the imprecision disparity ∆d. The relation is expressed by:

∆z = - - - - - z 2 Bf - - - - - ∆d (2.1)
where z, ∆z and B are expressed in meters and f and ∆d in pixels.

From this equation it can be seen that the error in z is proportional to the square distance camera-target, so it is important that z be as small as possible. Thus, it was decided to carry the vision system by drone in order to follow the fire throughout its spread maintaining a good view and a minimum (but safe) camera-fire distance. For this reason, part of the choice of vision devices took into account their weight and shape so as not to interfere with the drone's capabilities. Equation 2.1 shows also that for z, f and ∆d constant, the greater the inter-camera distance and the smaller the error on the estimated distance z. The cameras of the stereovision system considered in this work being fixed on an axis, the inter-camera distance is the length of that axis which is carried by the drone. It was established by a professional drone pilot that for a DJI S1000 drone the maximum length of this axis is 1 m. With this value for B, an imprecision disparity equal to 1 pixel, and considering the visible cameras used, the theoretical error in z is less than 20 cm for a fire-camera distance equal to 15 m. The reference spectrum for researchers working on the issue of wildland fires is the visible one. Fire areas appear texured which allows to have features and 3D points by stereovision over the entire zone of fire. However, it is difficult to detect fire pixels in visual images due to the various color and texture of flame and possible presence of smoke. The images of fires obtained in the infrared spectrum show areas of fire with a strong contrast of intensity with the environment. It was decided to use multimodal information from infrared and visible images to segment fire areas in visible images. It has been chosen the LWIR spectrum which is suitable for obtaining information (base and flame) from distant fires and in the presence of smoke, besides the fact that it is possible to find LWIR cameras for drones with an affordable price and small dimensions.

Proposed solution

This section presents the stereovision system portable by drone, that has been developed for the measurement by vision of geometric characteristics of wildfires.

The device is composed by two different stereovision modules, one working with visible cameras and the other with infrared cameras. The IR camera needs a voltage of 5 V and has a maximum consumption of 7,8 W. A power supply is added for the vision device in order to power them. This battery is added on the drone to don't influence the balance of the vision system.

Stereovision visible module

To synchronize the two IR cameras, a Raspberry computer is used to generate the PWM signal required for their external trig. From its GPIO port, a cable is connected and split in two elements, each one connecting a camera. A particular attention was paid in order that the cable lengths are very close (difference less than 1 mm) and that the welds on the cables are as homogeneous as possible and very light. 
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Given that the barometer sensor has a precision of 10 cm, and the altitude returned by the GPS sensors has a precision of 2,5 m, to obtain the vertical distance of the device from the sea level (altitude), the barometer sensor is preferred to the GPS sensors.

The orientation of the vision device is given by the IMU board and by the compass sensor. The IMU board is used to obtain the roll and pitch angles that indicate the inclination angles stereovision system, the compass sensor is used to obtain the heading angle of the device (Fig. 2.17).

Figure 2.17: Roll, pitch and heading angles of the camera.

Roll, pitch and heading angles are all equal to zero when the stereovision device is horizontal and points to North. Roll angle is positive if the device is rotating to the right, and it is negative if the device is rotating to the left. Pitch angle is negative if the device is pointing down (the condition of the device that is pointing up it is not considered because the cameras are always higher than the fire). Heading angle is positive if the device is pointing to East, negative if the device is pointing to West. Figure 2.18 presents the physical connections of all the elements of the multimodal stereovision system. Load balancing tests were carried out to find the best position to fix the stereoscopic system on the drone landing gear.
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them (estimated in the order of the microsecond). The accelerometer, GPS/Compass and barometer data are sent to the Raspberry computer via a second USB cable using a MAVlink protocol [START_REF]MAVLink Developer Guide[END_REF].

The Raspberry, the Arduino board and the battery have been added taking into account the balance of the axis. The total payload for the complete multimodal stereovision system is 3,2 kg. Fig. 2.19 shows the complete vision framework before a flight. 

Vision modules synchronization and data storage

The synchronization between the visible cameras module and the IR cameras module is obtained via software. On the Raspberry computer, an Ubuntu base operating system is mounted, with only the kernel modules useful for the operation of the developed device installed (this choice is made to keep electricity and computational consumption low). A proxy system is implemented in order that the computer becomes a server. The Arduino board and the ISP card act are its clients. With a frequency of 1/4 Hz, the Raspberry computer performs three main operations: store the value of roll, pitch, yaw, heading, GPS, and altitude given by Arduino; send the PWM signal to the IR cameras; and load the current image from the channel connected to the ISP.

A code stores into the computer internal memory the visible images whose names contained the inclination, position and orientation data; the IR images are stored directly into a memory card installed in each IR camera. The "Start" step represents the boot of the Raspberry computer; in this step the ISP board and the Arduino board are power on.

The "Init Video Stream" step initializes the video stream channel associated to the port where the ISP board is connected. The "Connect position sensors board" step opens a serial communication channel with a MAVlink protocol on the port where the Arduino is connected, with a bit rate of 115 200 bits/s.

If the previous steps are terminated without errors, the code enters into an infinite loop indicated in the scheme with "Update loop"; in this loop each 4 seconds two pair of stereoscopic images (visible and IR) will be produced. This loop is stopped manually.

In the "Read data from position sensors" step, the data are read from the Arduino. The Arduino board sends a continuous stream via a MAVlink message containing the status of the sensors to which it is connected. The state of the sensors represents the measurements: the accelerations on three axes in m/s (these measurements are converted directly into the Arduino in roll, pitch and yaw angles in radiant), the GPS position in decimal degrees, the orientation in centigrade degrees, and the pressure recorded by the barometer (the pressure is converted into the Arduino in altitude expressed in mm). These data may be influenced by error or noise, and these errors may appear as rapid signal fluctuations with respect to the real value.

In the "Refine position data" step, refining is applied to the sensor signals. This action is carried out during the pause between two pairs of stereoscopic images, and it is used to collect the position data coming from the Arduino. Using these data, a new value between the new received data and all the previous values is computed. The weight of the readings is chosen to be high for older value readings and small for newer value readings. With the assumption that the drone moves very slowly to maintain a good image stabilization, it is assumed a slight variation between two successive positions of drone and images. The last value read is multiplied by a very small factor. The characterization of the refining used is that of considering 95% of the previously calculated value, and 5% of the new value.

m i = m i≠1 ú 0.95 + m i ú 0.05; m 0 =0. (2.2)
where m i is the average position at the instant i, m i≠1 is the average position at the instant i-1, m i is the new read data at the instant i. The initial value of the average m 0 is set to 0.

For the roll, pitch, and yaw angles the chosen threshold is 15 ¶ , for the heading angle it is 45 ¶ , for the altitude measurement it is 5 m, and for the GPS position it is 4 m. The threshold values were chosen for heuristics. As mentioned above, a moving average filter is characterized by good stability but a slow response speed. Avoiding to insert values with a high probability of error in the average calculation increases the speed to get a good estimation of the analyzed value. At the end of the pause state the position values are estimated to their averages.

In the "Launch PWM signal" step, a signal PWM generated by the Raspberry computer is sent to the IR cameras. Experimentally, it has been found that there is a delay between the instant when the PWM signal instruction is executed by the computer and the instant when the IR images are acquired. An oscilloscope was used to calculate this delay. First, the oscilloscope was synchronized with the Raspberry clock and the signal coming out of the GPIO port to compute the time that elapses between the instant time of the launch of the instruction code and the instant time in which the PWM signal is emitted. In a second step, it was synchronized with the IR camera clock to calculate the instant time between the signal reception and the instant time when the IR camera takes the picture. Even for visible cameras, there is a delay between the instant time when the instruction to read the video channel is executed and the instant time when the picture is received by the Raspberry. This time was measured using the reading of the clock timestamp of the Raspberry and will be subtract to the delay previously computed, and the final delay was found. Taking into account this time shifting, the system has been configured to read visible images from the ISP 6 ms after launching the instruction to generate the PWM signal through the Raspberry computer"

In the Fig. 2.20, the "Wait" step corresponds to the stage during which the code is stationary for 6 ms.

In the "Stop PWM signal" step the PWM signal is reset. This step is useful to recreate the signal transition for the next "Update loop" to be captured by the IR cameras. To reset the PWM signal, its duty cycle is set to 10 ms. This multimodal stereovision system has as weak points a GPS sensor with a medium level accuracy and a synchronisation of IR and visible images in the order of ms.

Drone navigation system

The drone used to carry the developed multimodal stereovision system is the DJI Spring Wing octocopter S1000 [START_REF] Leader | mondial des drones civils et de la technologie d'imagerie aérienne[END_REF] with a wing extension of 1 m It was chosen because it can carry a total weight of 11 kg in the air and has a flight time of 15 minutes. Moreover, its frame allows to install additional components. A navigation system integrating an IMU card, a barometer, a GPS/Compass sensor and a radio receiver for manual control has been add to the UAV. Particular attention was paid to position these elements on the drone to optimize its flight. In Fig. 2.21 is presented the drone adapted with the material required to carry out the operations that this thesis project proposes. The controller acquires a value as input from a process and compares it with a reference value. The difference, the so-called error signal, is then used to determine the value of the controller output variable. The PID regulates the output based on the value of the error signal (proportional action), the passed values of the error signal (integral action) and how quickly the error signal changes (derivative action).

The three actions of a PID are calculated separately and added algebraically:

u = u P + u I + u D .
(2.

3)

The proportional action is obtained by multiplying the error signal "e" with an appropriate constant:

u P = K P ú e.

(2.4)

The integral action is proportional to the integral in time of the error signal "e", multiplied by the constant K I :

u I = K I ⁄ e(t)dt (2.5)
The derivative action is used to improve controller performance:

u D = K D de dt (2.6)
The Ziegler-Nichols method [START_REF] Akhloufi | Multiple spectrum vision for wildland fires[END_REF] was used to configure the PID regulator values that control the motors. It is an algorithm for finding the called "critical gain", from which the other PID parameters are be derived. First the process is controlled by an exclusively proportional controller (K I and K D are set to zero), next the gain of the proportional controller is gradually increased. The critical gain K U is the value of the gain whereby the controlled variable has sustained oscillations that do not disappear after a transient: this is a measure of the effect of delays and process dynamics. Next the critical period P U of the sustained fluctuations is recorded. Finally the constants for the PID controller are determined in the following way:

K P =0.6K U ; (2.7 
)

K I = P U /2;
(2.8)

K D = P U /8.
(2.9)

The input of the PID regulator are the GPS position, the IMU values, the compass and the signal coming from the radio. The output are the PWM values to be assigned to the eight motors, and the new position values.

The regulator is composed of three rings, where each ring is a PID regulator used to control one navigation variable: the position (first ring), the speed (second ring), and the acceleration (third ring).

In order to place the drone in such a way to acquire stereovision images of the entire fire front, a frontal HD camera was added to the axe (Fig. 2.23). This camera is connected to a signal transmitter received on the ground. The signal is sent to a field monitor using analog transmission with a different frequency than the radio (5,2 GHz for the video return and 2,4 GHz for the radio).

Description of the image processing process

This subsection describes the proposed process for estimating the fire geometric characteristics from stereoscopic images acquired by drone. Figure 2. [START_REF] Balbi | A 3D physical real-time model of surface fires across fuel beds[END_REF] The first step is a pixel fire detection processing in the images by the multimodal stereovision system carried by drone.

The second step is a procedure for matching points of interest detected in visible stereoscopic images.

The third step allows the calculation of three-dimensional coordinates of points from the paired fire pixels.

The fourth step corresponds to a process of projection of 3D points obtained for different positions of the stereovision system in a common frame.

Finally, the last stage of the process is the estimation of the geometric characteristics of the fire. This chapter presented the solution proposed in this thesis for the estimation of the geometric characteristics of a propagating fire by drone. The presented device consists of a multimodal stereovision system carried by drone. The cameras were choosen after a bibliographic study on vision fire in the different spectral bands and taking into account their dimensions, weight and possibility of triggering by an external signal. Visible and infrared cameras are synchronised in order to obtain simultaneous images. The overall process of processing stereoscopic images for the estimation of geometric fire characteristics was also presented. In the continuation of this report the developing of each stage will be explained. 

Chapter 3

Theoretical principles of stereovision

Introduction

This section describes the theoretical principles of the stereovision to reconstruct an object in 3D form from several shifted views of this object. One of the reference works in the field of 3D vision is the book by Hartley and Zisserman [START_REF] Hartley | Multiple view geometry in computer vision[END_REF] and this section is largely inspired by it. In the first part, a geometric model of a camera is described. A second part is devoted to the calculations of the parameters of this model. In a third part, the geometric model of a stereovision system is presented. A fourth part is dedicated to the calculations of the parameters of this system. Finally, one last part is devoted to calculations allowing to obtain three-dimensional points from coordinates of the matched fire pixels.
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according to the equation:

S W W U u v 1 T X X V = S W W U f c /s u "u 0 0 0 f c /s v v 0 0 00 1 0 T X X V S W W W W U x c y c z c 1 T X X X X V , ( 3.1) 
A pixel has an horizontal dimension along the u direction (s u ) and a vertical dimension along the v direction (s v ). f c /s u and f c /s v represent the focal length expressed in pixels, on the direction u and v,r e s p e c t i v e l y . " represents the skew coefficient between the axis u and v of the image plane.

The projection matrix is defined as:

I m = S W W U -u "u 0 0 0 -v v 0 0 001 0 T X X V , ( 3.2) 
with:

-u = f c /s u -v = f c /s v . ( 3.3) 
This matrix contains the intrinsic parameters of the camera which define its geometric model, and it is given by:

K c = S W W U f c /s u "u 0 0 f c /s v v 0 00 1 T X X V (3.4)
The second transformation is a rigid transformation consisting of a rotation and a translation, in homogeneous coordinates; it links the camera frame to the scene frame. The parameters of this transformation are called extrinsic camera parameters. Considering that the point P of coordinate (x, y, z) in the coordinate system of the scene is transformed in a point with coordinate (x c , y c , z c ) in the camera frame, the following relation can be written:

S W W U x c y c z c T X X V = Ë R È S W W U x y z T X X V + t. (3.5)
where t is the translation vector between the origin of the scene frame and the origin of the camera frame, and R is the rotation matrix that allows to have the camera frame and the scene frame oriented in the same manner. In homogeneous coordinates the Eq. 3.5 becomes:

S W W W W U x c y c z c 1 T X X X X V = Ë R È S W W W W U x y z 1 T X X X X V + t = S W W W W U r 11 r 12 r 13 t x r 21 r 22 r 23 t y r 31 r 32 r 33 t z 0001 T X X X X V S W W W W U x y z 1 T X X X X V = Ë T 4◊4 È S W W W W U x y z 1 T X X X X V , ( 3.6) 
The composition of the Eq. 3.1 and 3.6 creates the complete equation of the camera model, defined as:

S W W U u v 1 T X X V = I m T S W W W W U x y z 1 T X X X X V , ( 3.7) 
that relates the coordinates of the point P in the scene frame to that of its representative in the image.

Finally, the camera model is described by 5 intrinsic parameters (u ,v , ", u 0 , v 0 ), 3 extrinsic parameters for the rotation, expressed in instantaneous rotation vectors (the 3 columns of the matrix R), and 3 extrinsic parameters for the translation (the 3 elements of the vector t).

Nonlinear intrinsic parameters such as lens distortion are also important, but they cannot be included in the linear camera model described by the intrinsic parameter matrix. The distortion parameters are computed using a calibration algorithm and the distortion effect is removed using the parametric approach defined in [START_REF] Fryer | Lens distortion for close-range photogrammetry[END_REF]. This approach consists in modeling the distortion by enriching the camera model with additional terms (the model then becomes non-linear). The most important deviation is due to radial distortion phenomena ("curvature" of the lenses). Secondary effects are introduced by tangential distortions ("decentralization" of the components of a lens system and production defects). Thus the model is improved by adding corrective terms corresponding to these two types of distortions, radial and tangential.

Starting from the camera model, the effects of distortions can be modeled by a third transformation, noted D, connecting the "ideal" image coordinates (u, v) to the "real" image coordinates (u r ,v r ):

(u r ,v r )=D(u, v)=(u, v)+∆(u, v)=(u, v)+∆ r (u, v)+∆ t (u, v) (3.8)
where ∆ r and ∆ t are the radial distortion and the tangential distortion, respectively.

The distortion transformation D is defined as:

C u r v r D = C u v D (1 + r 1 (u 2 + v 2 )+r 2 (u 2 + v 2 ) 2 + r 3 (u 2 + v 2 ) 3 + C d 1 (3u 2 + v 2 )+d 2 uv 2d 1 uv + d 2 (u 2 +3v 2 ) D (3.9)
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where r 1 , r 2 and r 3 are the 3 radial parameters, d 1 and d 2 are the 2 tangential parameters of the distortion function. These coefficients for the correction of the distortion expand and complete the set of intrinsic parameters of the standard model of a camera. Optical distortion is usually modeled as a transformation that occurs after the 3D coordinates are projected onto the image plane. After that, the intrinsic matrix applies a transformation similar to the image, translating physical coordinates on the image plane into pixel coordinates.

Given P, a point of the scene with (x, y, z) as coordinates, the camera model can be written as a non-linear vector function F : (u r ,v r )=F (I m ,T,D,P).

(3.10)

Due to the non-linearity of D, the function F is not invertible, and it is necessary to use a non parametric method to estimate the function D(u, v).

Estimation of the intrinsic parameters of a camera

The intrinsic parameters of a camera are estimated from established correspondences between the 3D coordinates of points on the plane P i , with coordinates (x i , y i , z i ) and the pixel coordinates of their projections in the camera image (u i , v i ). This is achieved using a test pattern consisting of squares whose geometric characteristics and positions are precisely known. The parameters are obtained by determining the H c homography as:

H c =min Hc - - - - - - S W W U u i v i 1 T X X V ≠ H c S W W W W U x i y i z i 1 T X X X X V - - - - - - 2 . ( 3.11) 
To do this, several steps are necessary. A normalization of the coordinates P i and (u i , v i )i s made in a first step. This standardization consists in applying a similarity transformation S 1 to the points (u i , v i ) and a transformation S 2 to the points P i . Each similarity transformation consists of a translation, which moves the points so that their origin corresponds to their barycenter, and a scaling procedure which acts so that the average distance from the points to the origin is equal to Ô 2. This scaling, called "isotropic" scaling, has the particularity of generating a mean point of coordinates (1, 1, 1) T . By setting: h ab is the element of the matrix Hc where a is the index of row and b is the index of column (standardized projection matrix). H is therefore a column matrix composed of all the elements of Hc . The estimation of H makes it possible to estimate Hc .

(ũ i , ṽi , wi )=S 1 (u i ,v i ) (3.
From Eq. 3.14, applied to a minimum of twelve matches, it is possible to determine the elements of the matrix Hc . To optimize the performance of the estimation, a constraint on Hc can be added such as the following [START_REF] Hartley | Multiple view geometry in computer vision[END_REF]:

Î Hc Î =1. (3.16)
By fixing this constraint, a solution of the Eq. 3.14 can be obtained by decomposing the matrix A in singular values; this method is called singular value decomposition (SVD), as presented in [START_REF] Tsai | Uniqueness and estimation of three-dimensional motion parameters of rigid objects with curved surfaces[END_REF]. Thus if the matrix A can be written as:

A = UDV T , ( 3.17) 
with D a diagonal matrix whose elements are arranged in descending order, then H corresponds to the last column of V.

The obtained solution is an estimation of Hc which must be improved by reducing the geometric error, i.e. by reducing the quadratic deviation s i between the points (u i , v i ) and their estimation (ũ, ṽ)= Hc P i , (

given by:

s i = ÿ i Î(u i ,v i ) ≠ (ũ i , ṽi )Î 2 (3.19)
The iterative technique of Levenberg-Marquardt presented in [START_REF] Marquardt | An algorithm for least-squares estimation of nonlinear parameters[END_REF] is used with as initial value the estimation of Hc obtained through H. The matrix Hc is that which verifies the following equation:

Hc =min Hc ÿ i Î(ũ i , ṽi ) ≠ Hc P i Î 2 . (3.20)
The matrix Hc is then denormalized and generates the matrix H c according to the formula:

H c = S ≠1 1 Hc S 2 . (3.21)
The matrix H c is written in the form:

H c = Ë h 1 c h 2 c h 3 c È , ( 3.22) 
and it is possible to write [START_REF] Zhang | A flexible new technique for camera calibration[END_REF]:

Ë h 1 c h 2 c h 3 c È = ⁄K c T, (3.23) 
where h 1 c is the column i of the matrix Hc , ⁄ is a scale factor, K c is the intrinsic matrix. T is the matrix defined from extrinsic camera parameters, as:

T = S W W U r 11 r 12 t x r 21 r 22 t y r 31 r 32 t z T X X V (3.24)
It is not necessary to estimate the matrix T to calculate the intrinsic parameters contained in the matrix K c . As the first two columns of T are two columns of a rotation matrix, they are orthogonal. This property allows to get the following constraints from Eq. 3.23:

h 1 T c K ≠1 T c K ≠1 c h 2 T c =0 (3.25) h 1 T c K ≠1 T c K ≠1 c h 1 T c = h 2 T c K ≠1 T c K ≠1 c h 2 T c (3.26)
To estimate the intrinsic parameters that constitute the calibration matrix K c from the matrix H c , a new matrix B is introduced as follows: With these notations of b, it is possible to write the following equation:

B = K ≠1 T c K ≠1 c . ( 3 
h i T c Bh j T c = w T ij b 'i, j oe [1; 3], (3.29) 
where w ij is equal to:

w ij = Ë h i1 h j1 h i1 h j2 + h i2 h j1 h i2 h j2 h i3 h j1 + h i1 h j3 h i3 h j2 + h i2 h j3 h i3 h j3 È T (3.30)
Thanks to this writing, the Eq. 3.25 and 3.26 can be written in the form of a matrix relationship:

C w T 12 (w 12 ≠ w 22 ) T D b = W b =0 (3.31)
The values of the 6 intrinsic parameters (u 0 , v 0 ,u ,v , ", ⁄) are determined by solving the Eq. 3.31. In order to obtain at least 6 different equations, it is necessary to carry out point correspondences {(u, v) i … P i } on at least 3 images of the test pattern taken from the same camera.

A solution to vector b is then obtained in the same way as for the estimation of H thanks to the decomposition of the matrix W into singular values (SVD). The computed vector obtained allows to obtain the matrix B to a ⁄ scale factor. It is possible to estimate the intrinsic parameters located in the matrix K c from the matrix B using the following relationships [START_REF] Zhang | A flexible new technique for camera calibration[END_REF]: 

v 0 = B 12 B
-u = Û ⁄ B 11 (3.34) -v = Û ⁄B 11 B 11 B 22 ≠ B 2 12 (3.35) " = ≠ B 12 -2 u -v ⁄ (3.36) u 0 = "v 0 -v ≠ B 13 -2 u ⁄ (3.37)
In this document the skew coefficient " is equal to 1 (means that the principal plane directions are perpendicular to each other), and the pixels in the image are squared of dimension 1, so:

" =1, (3.38 
)

s u = s v =1, (3.39 
)

-u = f c /s u = f c /s v = -v = f c . (3.40)
Using the estimation of the homographs, Zhang's method [START_REF] Zhang | A flexible new technique for camera calibration[END_REF] estimates the distortion coefficients r 1 , r 2 , r 3 , d 1 , and d 2 . Expanding the Eq. 3.9 it is obtained the following system:

Y ] [ u r = u + r 1 (u 2 + v 2 )u + r 2 (u 2 + v 2 ) 2 u + r 3 (u 2 + v 2 ) 3 u + d 1 (3u 2 + v 2 )+d 2 uv v r = u + r 1 (u 2 + v 2 )v + r 2 (u 2 + v 2 ) 2 v + r 3 (u 2 + v 2 ) 3 v +2d 1 uv + d 2 (u 2 +3v 2 ) (3.41)
where the unknown are the distortion coefficients. Having m points in n images, a linear system of 2mn equations in 5 unknowns can be set, which can be solved with the least squares method.
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The antisymmetric matrix of t s is defined by:

[t s ] ◊ = S W W U 0 ≠t 3 t 2 t 3 0 ≠t 1 ≠t 2 t 1 0 T X X V (3.44)
K L is the intrinsic matrix of the left camera, T L is the transformation matrix to express the 3D point P in the left camera frame, K R is the intrinsic matrix of the right camera frame, and T R is the transformation matrix to express the 3D point P in the right camera frame. In this phase, the cameras are considered without any distortion parameter.

The Eq. 3.7 can be expressed for the left camera and the right camera for any point P in space as:

P L = T L P, ( 3.45 
)

P R = T R P. (3.46)
Using the Eq. 3.42 the relationship between P R and P L is:

P R = T s P L . (3.47)
Epipolar geometry is a mathematical model of geometry that describes the geometrical relationships of a stereoscopic pair of images (Fig. 3.3). The fundamental matrix, noted F, contains the necessary information of this geometry. It relates the coordinates (x L , y L , z L ) of P L , in the left camera frame, to the coordinates (x R , y R , z R ) of P R , in the right camera frame, using the relation called "epipolar constraint" which is expressed as:

S W W U x R y R z R T X X V T F S W W U x L y L z L T X X V =0. (3.48) 
By considering the calibration matrices K L and K R of the left and right cameras, the fundamental matrix is in the form as:

F = K ≠1 T R [t s ] ◊ R s K ≠1 L (3.49)
Moreover, at any point on the left image, with the coordinates (u L , v L ), corresponds a set of possibilities of projection in the right image (u R i , v R i ). This set is represented by the points of a straight line called epipolar line. The epipolar line is the straight line that passing through the point (u L i , v R i ) and the epipolar point.

The epipolar line l L of a point (u L , v L ) in the left image is defined as:

l L = F T S W W U u R v R 1 T X X V (3.54)
Considering the relationships as presented in [START_REF] Hartley | Multiple view geometry in computer vision[END_REF]:

S W W U x R y R z R T X X V T K T R FK L S W W U x L y L z L T X X V =0 (3.55)
The epipolar constraint is simplified as:

S W W U u R v R 1 T X X V T E S W W U u L v L 1 T X X V =0, (3.56) 
where:

E =[t s ] ◊ Rs (3.57)
is the essential matrix.

Finally, the calibration of a stereovision system makes it possible to estimate the matrix R s and the vector t s from which the essential matrix E is constructed. This matrix relates the image coordinates of the two pixels from the same point in space P and located in the two images of the stereovision system.

Estimation of the essential matrix

The estimation of the essential matrix is done mainly by two methods. The first one, developed by Longuet-Higgins in [START_REF] Longuet-Higgins | A computer algorithm for reconstructing a scene from two projections[END_REF] computes this matrix from 8 matches of points in stereoscopic images. The second method, developed by Nistér in [START_REF] Nistér | An efficient solution to the five-point relative pose problem[END_REF], allows to estimate the essential matrix from only 5 matches. This part describes the solution proposed by Nistér. Eq. 3.56 is rewritten as:

xT Ẽ =0,

where x and Ẽ are equal to: From the five pairs of matched points, five vectors x are constructed and concatenated to create a matrix of dimension 5 ◊ 9. This matrix is decomposed into the form of the product of an orthogonal matrix and a superior triangular matrix (QR decomposition). The last 4 lines of the orthogonal matrix are reshaped into 4 matrices X 1 , X 2 , X 3 and X 4 of dimension 3 ◊ 3.

x = Ë u L u R v L u R u R u L v R v L v R v R u L v L 1 È T , ( 3 
The essential matrix can be expressed from these 4 matrices as:

E = x 1 X 1 + x 2 X 2 + x 3 X 3 + X 4 , (3.61) 
where x 1 , x 2 and x 3 are the scalars to be determined.

Considering the following constraints [START_REF] Hartley | Multiple view geometry in computer vision[END_REF][START_REF] Stefanovic | Relative orientation-a new approach[END_REF]:

det(E)=0, (3.62) EE T E = 1 2 tr(EE T )E =0. (3.63)
Using the Eq. 3.61, and performing a Gauss-Jordan elimination, it is obtained a system of 10 equations in x 1 , x 2 and x 3 . The rearrangement of these equations needs to obtain a matrix B of dimension 3 ◊ 3 containing polynomials in x 3 . As the vector

Ë xy1
È T is a null vector of B, the values that produce the determinant of B equal to 0 (which is a polynomial of 10 degrees) are estimated. It is noted:

<n>© det(B) (3.64)
After a normalization of <n> so that n 10 =1 , the roots are obtained by searching the eigenvalues of the following canonical matrix:

S W W W W W U ≠n 9 ≠n 8 ... ≠n 0 1 . . . 1 T X X X X X V (3.65)
For each x 3 root, the variables x 1 and x 3 can be obtained using the equation system defined by B. The essential matrix is then obtained from Eq.3.61.

From the matrix E, it is then possible to determine R s and t s by considering the theorem presented in [START_REF] Hartley | Multiple view geometry in computer vision[END_REF][START_REF] Tsai | Uniqueness and estimation of three-dimensional motion parameters of rigid objects with curved surfaces[END_REF] and presented below:

Theorem 3.1 Let E be a matrix decomposed into singular values and

E = Udiag(1, 1, 0)V T (3.66)
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with U and V matrices chosen so that their determinant is strictly positive, then

t s = ± Ë u 13 u 23 u 33 È (3.67) and R s = UDV T . = UD T V T (3.68)
where:

D = S W W U 01 0 ≠100 00 1 T X X V (3.69)
The matrix T s defined in Eq. 3.42 has 4 possible solutions which satisfy the epipolar constraint of the Eq. 3.56, and one of these solutions corresponds to the real matrix T s .T h e scene points must be in front of the cameras to find the correct estimation of T s . A single point match is sufficient to determine the solution. It only needs to calculate the three-dimensional triangulation of the point P using each of the 4 possible solutions and checking that P is in the field of view of the two cameras. This method computes the essential matrix from 5 matching points. This same computation can be done with a larger number of points so to improve the precision of the estimation of the matrix E.

Correspondence between points

3D points are obtained by stereovision using information of points matched in the left and right stereoscopic images.

The simplest method for the matching of points is called 2D search (or sparse search). This method searches for each point of interest into an image (for example the left image), its correspondence in any position of the other image (the right image). This search can take a long process time and generate false matches. One solution to this problem is to do a 1D type search. In this type of research, it is assumed that two corresponding points are located on the same line in the two stereoscopic images.

If the right camera is only offset horizontally compared to the left camera, and not rotated, then each pair of pixels that match are at the same vertical position in the two images. In general, even with high-precision equipment, it may be impractical to maintain perfect coplanarity between cameras.

Image rectification is a transformation process used to project images onto a common image plane. All the epipolar lines are then parallel to the horizontal axis and corresponding points have identical vertical coordinates. Any point must lie on the same horizontal line in each image plane, that allows to search matching points only in 1D.

Rectification process

In rectified images two corresponding points have identical vertical coordinates. In order to transform the original image pair into a rectified image pair, it is necessary to find a projective transformation H that constrains the epipolar lines to be parallel with the horizontal axis. After this transformation the epipole points e L and e R are mapped to the infinite points e L∞ and e R∞ , respectively (Fig. 3.4). The transformation H is computed as composition of two elementary transformations, H 1 and H 2 . H 1 is the transformation that rotates both images to look perpendicular to the line joining their collective optical centers. H 2 is the transformation that twists the optical axes so the horizontal axis of each image plane directs to the other image's optical center. It is assumed that the left camera frame is the reference world frame, so the transformation matrix T L of the left camera frame is equal to:

T L = C I 3◊3 0 3◊1 0 1◊3 1 D , ( 3.70) 
The epipole points e L∞ is computed as:

e L∞ = I m L T L C O R 1 D , (3.71)
where the origin of the right camera frame O R is expressed in the left camera frame by the Chapter 3. Theoretical principles of stereovision combination of the rotation matrix R S and the translation vector t S of the Eq. 3.42:

O R = R S t S . (3.72)
Using the Eq. 3.70 and 3.72,t h eE q . 3.71 becomes:

e L∞ = I m L T L C R S t S 1 D = I m L R S t S , (3.73) 
The epipole point e R∞ is computed by:

e R∞ = I m R T R C O L 1 D , ( 3.74) 
Substituting T L as the Eq. 3.95,t h eE q . 3.75 becomes:

e R∞ = I m R T R S W W W W U 0 0 0 1 T X X X X V = I m R S W W W W U t 1 R t 2 R t 3 R 1 T X X X X V , ( 3.75) 
Szeliski in [START_REF] Szeliski | Computer vision: algorithms and applications[END_REF] presents a method to compute H 1 and H 2 using the epipolar line left and right as computed in the Eq. 3.50 and 3.51, the epipolar points e L∞ and e R∞ , and the origin points O L and O R of the camera frames.

The left rectified epipolar line is the line parallel to the horizontal line and passing through the points e L∞ . The horizontal line is the line passing thought the points O L and O R .K n o w i n g all the points, it is possible to compute the director parameters of these lines. Using these director parameters, it is possible to find the rotation matrix to rotate the left image plane to be superposed to the left rectified image plane. Through an equivalent operation, it is possible to find the matrix H' that rectifies the right image. Figure 3.5 shows two original images (Fig.

?? and ??), and the corresponding rectified images (Fig. ?? and ??); it is possible to note that the vertical position of the checkboard in the original images is different, while in the rectified images is in the same vertical coordinates. points of interest in an image; the best known are [START_REF] Gales | Mise en correspondance de pixels pour la stéréovision binoculaire par propagation d'appariements de points d'intérêt et sondage de régions[END_REF] the Harris method [START_REF] Harris | A combined corner and edge detector[END_REF], the FAST algorithm (Feature from Accelerated Segment Test) [START_REF] Rosten | Machine learning for high-speed corner detection[END_REF], the SURF algorithm (Speeded Up Robust Features) [START_REF] Bay | Surf: Speeded up robust features[END_REF], the MSER algorithm (Maximally Stable Extremal Regions) [START_REF] Matas | Robust wide-baseline stereo from maximally stable extremal regions[END_REF], and the detection by the minimum eigenvalue method [START_REF] Shi | Good features to track[END_REF].

The Harris method calculates the second order matrix obtained from the neighboring pixels of the pixel considered. The FAST algorithm is based on the comparison between the gray level of the current point and that of certain points close to the treated point The SURF algorithm uses an integer approximation of the determinant of Hessian, and it is based on the sum of the Haar wavelet response around the point of interest. The MSER algorithm extracts from an image a number of co-variant regions, defined by a stable connected component of some gray-level sets of the image. The detection by the minimum eigenvalue method calculates the minimum of the eigenvalues of the Harris matrix.

In [START_REF] Ali | A comparison of FAST, SURF, Eigen, Harris, and MSER features[END_REF] all these methods are compared, the result is that the SURF method is the fastest method, but the number of detected points is small. The methods that detect a significant number of points are the Harris method and the Eigen method, with the Harris algorithm faster than the Eigen algorithm.

Harris, FAST, SURF, MSER, and Eigen methods were tested alone and by combination on the wildfire images used in this thesis. The best result was achieved by performing a detection of Harris, followed by the SURF method. This procedure is simple and fast. matrix, and allows the corners to appear by autocorrelation independently of the direction. This matrix, denoted H x , is defined for each pixel x of the image I as follows:

H x = ‡ 2 d C I a (x) I c (x) I c (x) I b (x) D (3.76)
with the images I a , I b and I c calculated by:

I a = g ‡ i A ˆg ‡ i I ˆl 2 B
(3.77)

I b = g ‡ i A ˆg ‡ i I ˆc 2 B
(3.78)

I c = g ‡ i (I a I b ) (3.79)
g ‡ d and g ‡ i are the Gaussian standard deviations of ‡ d and ‡ i , ˆ/ˆl the derivative of an image on the rows and ˆ/ˆc the derivative of an image on the columns. As in [START_REF] Brown | Multi-image matching using multi-scale oriented patches[END_REF], ‡ d is fixed equal to 1 and ‡ i is fixed equal to 1,5.

The force function of the points of interest f H is then defined as the ratio of the determinant of the Harris matrix on its trace [START_REF] Noble | Finding corners[END_REF]:

f H l (x)= det H l (x) trH l (x) = ⁄ 1 ⁄ 2 ⁄ 1 + ⁄ 2 (3.80)
with ⁄ 1 and ⁄ 2 the eigenvalues of the matrix H x .

The points of interest x of an image have a value f H l (x) greater than that of the other pixels of its environment. For each pixel of the image, a neighborhood block of size n ◊ n pixels is considered and if the pixel corresponds to the local maximum of this neighborhood then it is considered as a point of interest.

SURF method

This approach uses a very basic Hessian matrix approximation, applied on the "integral image". The integral image is used as a quick and effective way of calculating the sum of values (pixel values) in a given image, or a rectangular subset of a grid of the given image. The entry of an integral image I Σ (x) at a location x =(u, v) T represents the sum of all pixels in the input image I within a rectangular region formed by the origin and x.

I Σ (x)= iAEu ÿ i=0 jAEv ÿ j=0 I(i, j) (3.81)
With I Σ calculated, the algorithm only takes four additions to compute the sum of the intensities over any upright, rectangular area, independent of its size.

SURF uses the Hessian matrix because of its good performance in computation time and accuracy. Rather than using a different measure for selecting the location and the scale (Hessian-Laplace detector), SURF relies on the determinant of the Hessian matrix for both. Given a pixel, the Hessian of this pixel is:

H(f (u, v)) = S W W U ˆ2f ˆx2 ˆ2f ˆxˆv ˆ2f ˆxˆv ˆ2f ˆv2 T X X V .
(3.82)

To adapt to any scale, SURF filters the image by a Gaussian kernel; so given a point x =(u, v), the Hessian matrix H(x, ‡) in x at scale ‡ is defined as:

H(x, ‡)= C L uu (x, ‡) L uv (x, ‡) L uv (x, ‡) L vv (x, ‡) D , (3.83)
where L uu (x, ‡) is the convolution of the Gaussian second order derivative with the image I in x along the horizontal direction, L vv (x, ‡) is the convolution of the Gaussian second order derivative along the vertical direction and L uv (x, ‡) is the convolution of the Gaussian second order derivative along the diagonal direction. Gaussian second order derivative are optimal for scale-space analysis but in practice, they have to be discretized and cropped. This leads to a loss in repeatability under image rotations around odd multiples of fi/4. This weakness holds for Hessian-based detectors in general. Nevertheless, the detectors still perform well, and the slight decrease in performance does not outweigh the advantage of fast convolutions brought by the discretization and cropping.

In order to calculate the determinant of the Hessian matrix, it is applied a convolution with an approximation of the Gaussian kernel of the second order derivative, that can be evaluated at a very low computational cost using integral images and independently of size (this makes SURF a fast algorithm). D uu is the approximation of the Gaussian second order derivative along the horizontal direction, and similarly for D vv and D uv , as:

D uu (u, v)=G(u ≠ 1,v, ‡)+G(u +1,v, ‡) ≠ 2G(u, v, ‡) (3.84) D vv (u, v)=G(u, v ≠ 1, ‡)+G(u, v +1, ‡) ≠ 2G(u, v, ‡) (3.85) D uv (u, v)=G(u ≠ 1,v≠ 1, ‡)+G(u +1,v+1, ‡) ≠ 2G(u, v, ‡) ≠[G(u ≠ 1,v+1, ‡)+G(u +1,v≠ 1, ‡) ≠ 2G(u, v, ‡)] (3.86)
Figure 3.9 shows these approximations for a box filter 9 ◊ 9. The approximated determinant of the Hessian is:

det H approx = D uu D vv ≠ (wD uv ) 2 (3.87)
with w =0.9 [START_REF] Bay | Surf: Speeded up robust features[END_REF].

The method works on the images in scale spaces, implementing the image as an image pyramids. The images are repeatedly smoothed with a Gaussian and subsequently sub-sampled in order to achieve a higher level of the pyramid. Due to the use of box filters and integral images, SURF does not have to iteratively apply the same filter to the output of a previously filtered layer but instead can apply such filters of any size at exactly the same speed directly on the original image, and even in parallel. Therefore, the scale space is analyzed by up-scaling the filter size (9 ◊ 9, 15 ◊ 15, 21 ◊ 21, 27 ◊ 27, etc) rather than iteratively reducing the image size. The filter size increases is doubled simultaneously the sampling intervals for the extraction of the interest points x can be doubled as well which allow the up-scaling of the filter at constant cost (Fig. 3.10). A point is compared with 26 points around it. These points are found into a 3 ◊ 3 ◊ 3 neighborhood matrix, corresponding to the 3 ◊ 3 box of the neighbors, for 3 scales. A detected point corresponds to an extreme point and has its determinant of Hessian matrix higher than a threshold.

Points of interest descriptors

This step consists in describing the pixels surrounding the points of interest. Generally the descriptors are invariant to geometric and light transformations. Many descriptor extraction techniques were proposed in the literature: Scale-Invariant Feature Transform method (SIFT) [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF], Gradient Location Orientation Histogram method (GLOH) [START_REF] Mikolajczyk | Scale & affine invariant interest point detectors[END_REF], descriptor method based on filters [START_REF] Schaffalitzky | Multi-view matching for unordered image sets, or "How do I organize my holiday snaps?[END_REF], Linear Discriminant Analysis Hashing method (LDAHash) [START_REF] Strecha | LDAHash: Improved matching with smaller descriptors[END_REF] or descriptors based on color [START_REF] Van De Weijer | Coloring local feature extraction[END_REF]. In this thesis, a simple form of descriptors proposed by Brown et al. [START_REF] Brown | Multi-image matching using multi-scale oriented patches[END_REF]i su s e d . These descriptors are in the form of 8 ◊ 8 matrices obtained from the intensity of the pixels located into a window where the point of interest is the top left corner. Each matrix is obtained by first considering an area of 41 ◊ 41 pixels, and then by sampling it in order to work on a grouping of 8 ◊ 8 pixels. This sampling is equivalent to leaving four pixels between each selected pixel. To avoid aliasing effects, the pixels are sampled by interpolation, that is to say by making a weighted average of the neighboring pixels. In order to be robust to changes in brightness between the images containing the points to be matched, the block of 8 ◊ 8 pixels named B is normalized as follows:

x j = x j ≠ µ B ‡ B (3.88)
With x j a pixel belonging to the block of pixels B, µ B and ‡ B the mean and the standard deviation of the pixels intensity of the block B. 
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3D reconstruction of matching points

The three-dimensional reconstruction of matching points is carried out by a so-called triangulation method as presented in [START_REF] Hartley | Multiple view geometry in computer vision[END_REF].

Definition 3.1

Let M L be the projection matrix of the left camera and M R the projection matrix of the right camera, defined as the Eq. 3.7:

M L = I m L T L , (3.90) M R = I m R T R , (3.91)
then 'P oe R 3 of coordinates (x p , y p , z p ):

S W W U u L v L 1 T X X V = M L S W W W W U x p y p z p 1 T X X X X V (3.92) S W W U u R v R 1 T X X V = M R S W W W W U x p y p z p 1 T X X X X V (3.93) 
Expressing the matrix T L and T R as:

T L = S W W W W U r 11 L r 12 L r 13 L t 1 L r 21 L r 22 L r 23 L t 2 L r 31 L r 32 L r 33 L t 3 L 0001 T X X X X V , (3.94) T R = S W W W W U r 11 R r 12 R r 13 R t 1 R r 21 R r 22 R r 23 R t 2 R r 31 R r 32 R r 33 R t 3 R 0001 T X X X X V , ( 3.95) 
the Eq. 3.92 and 3.93 can be rewrited as a system of four equation in three unknown:

Y _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [ u L = f L r 11 L X+r 12 L Y +r 13 L Z+t 1 L r 31 L X+r 32 L Y +r 33 L Z+t 3 L + c x L v L = f L r 21 L X+r 22 L Y +r 23 L Z+t 2 L r 31 L X+r 32 L Y +r 33 L Z+t 3 L + c y L u R = f R r 11 R X+r 12 R Y +r 13 R Z+t 1 R r 31 R X+r 32 R Y +r 33 R Z+t 3 R + c x R v R = f R r 21 R X+r 22 R Y +r 23 R Z+t 2 R r 31 R X+r 32 R Y +r 33 R Z+t 3 R + c y R (3.96)
where f L is the focal length of the left camera, (c x L , c y L ) is the principal point of the left camera, f R is the focal length of the right camera, and (c x R , c y R ) is the principal point of the right camera.

The equations presented in 3.96 give a system of 4 equations. If (u L , v L ), (u R , v R ), M L and M R are known, the three-dimensional coordinates (x p , y p , z p ) of the point P are obtained by the resolution of the overdetermined equation system (3 unknowns in 4 equations).

In this thesis, the intrinsic and extrinsic parameters of the stereovision system are estimated by calibration. The three-dimensional coordinates of P in the left camera frame, (x L , y L , z L ), can be computed using the Eq. 3.92-3.93 where M L and M R are equal to:

M L = I m L (3.97) M R = I m R T s (3.98)
where I m L and I m R are the calibration matrices of the left and right cameras and T s is the transformation matrix from the right camera frame to the left camera frame.

When the cameras are not calibrated, it is possible to compute the projection matrices from the fundamental matrix F as it is described in [START_REF] Hartley | Multiple view geometry in computer vision[END_REF]:

M L = Ë Id 3◊3 0 3◊1 È (3.99) M R = Ë [e R ] ◊ Fe R È (3.100)
where I d is the identity matrix, e R is the epipole of the right image, and [e R ] ◊ is the antisymmetric matrix of e R . an LWIR image. This modified checkboard was made by hand, and leads to a less accurate estimate of camera parameters than the one of the visible cameras. As the 3D fire points are obtained from features identified in the visible images, it was chosen to use the modified checkboard only to calibrate the LWIR cameras. The problems encountered to detect fire pixels into visible images do not occur in fire images acquired in the infrared domain. However, as mentioned in the chapter 2, the fire areas that appear in infrared images are not identical to those that can be identified in the visible images because the elements emitting in the infrared domain are not the same as those radiating in the visible spectrum. Thus, the use of infrared images alone cannot be considered for measuring the geometric characteristics of fire.

It was chosen in this thesis to use a multimodal pixel detection algorithm.

At each instant, visible stereoscopic images and LWIR stereoscopic images are acquired simultaneously. The images kept by the adjacent visible and LWIR cameras are processed by pair in a multimodal fire pixel procedure. The detection method is carried out in two steps, using the images of the cameras situated at the same side of the stereovision system: first the LWIR image is processed in order to localize a pre-selected fire area. Then, in the visible image, only the pixels that are at the same position that the one pre-selected are taken into account to detect fire pixels.

A modified Matlab toolbox's code is used to produce superimposed images [START_REF]Stereo Camera Calibration under Different Resolution[END_REF]. The proposed method is a modification of the calibration method used in Matlab toolbox to allow a calibration of cameras with different resolution and focal. The intrinsic parameters of the single cameras are that obtained in the Par. 3.3. Theoretically, without knowing the depth The Otsu method [START_REF] Otsu | A threshold selection method from gray-level histograms[END_REF] is one of the most used threshold search methods in image processing. This technique makes it possible to choose a threshold that minimizes the variance of the pixel intensities between two classes of pixels and which maximizes the difference of the means intensity of these two classes. In this case, the two classes are fire and background. The images are considered to have 256 gray levels. Let h the histogram of an image, composed by 256 classes. p k is the probability of distribution of level k,d e fi n e db y :

p k = h(k) N , (4.3) 
where N is the total number of pixels in the image.

The weighted inter-class variance is defined by:

‡ 2 Ê (s)=Ê 1 (s) ‡ 2 1 (s)+Ê 2 (s) ‡ 2 2 (s), (4.4) 
with s the separation threshold of the two classes; Ê 1 and Ê 2 are defined as:

Ê 1 (s)= s ÿ k=1 p k (4.5) Ê 2 (s)= 256 ÿ k=s+1 p k =1≠ Ê 1 (s) (4.6 
) ‡ 1 and ‡ 2 are defined by the following equations:

‡ 2 1 (s)= s ÿ k=1 (k ≠ µ 1 (s)) 2 p k Ê 1 (s) (4.7) ‡ 2 2 (s)= 256 ÿ k=s+1 (k ≠ µ 2 (s)) 2 p k Ê 2 (s) . ( 4 
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The means of the classes, µ 1 and µ 2 , are defined as:

µ 1 (s)= s ÿ k=1 kp k Ê 1 (s) (4.9) µ 2 (s)= 256 ÿ k=s+1 kp k Ê 2 (s) . ( 4.10) 
Otsu's algorithm consists of finding the threshold s which minimizes ‡ 2 Ê (s). This algorithm was used in the "fire" pixel detection methods developed by Gouverneur et al. [START_REF] Gouverneur | Archeological treasures protection based on early forest wildfire multi-band imaging detection system[END_REF], Verstockt et al. [START_REF] Verstockt | Multi-sensor fire detection by fusing visual and non-visual flame features[END_REF] and Martínez-de-Dios et al. [START_REF] Martinez-De Dios | Wavelet applications to forest-fire monitoring and measurement[END_REF].

Let's I i,j the intensity value of the pixel of position (i,j), p i,j . In this detection, all the pixels of the infrared image whose the intensity is greater or equal than the threshold s are selected.

fire pixels = {p i,j | I i,j Ø s} (4.11)

These selected zones contain all the pixels relative to the fire.

Detection of fire pixels in the visible image

The detection of fire pixels in the visible image is the second step of the detection method of this thesis. Only the pixels situated in the visible image at the same position as those selected in the LWIR image are considered to detect fire pixels.

As discussed above, the performance of the eleven state-of-art fire colour segmentation algorithms are dependant on fire characteristics such as color, texture, presence of smoke and luminosity of the background. To overcome this problem, it has been decided to use, for each experiment, the algorithm among the eleven ones considered which visually gets the best pixel detection on the first image of the image sequence. The method developed by Rossi et al [START_REF] Rossi | On the use of stereovision to develop a novel instrumentation system to extract geometric fire fronts characteristics[END_REF] was adapted in order to use only the second step of this method (the first step corresponding to a pixel pre-selection procedure). A graphical interface associated to the work described in [START_REF] Toulouse | Benchmarking of wildland fire color segmentation algorithms[END_REF] and developed by Tom Toulouse (Fig. 4.13). For all the experimental fire image sequences acquired for this PhD thesis, the adapted Rossi's method gives mostly the best detection results. As the experiments were carried using the same fuel, on the same field, and practically at the same period of the day and the year, this could be explained by the repetitive production of the same type of fire whose characteristics are favourable to the Rossi's method.

In this algorithm, a 3D Gaussian model is used to represent the pixels present within the fire zone. A pixel is identified as fire pixel if the values of the three RGB channels are close to the triple reference RGB of the distribution.

Defined: m =(m r ,m g ,m b ) (4.12) 
color means of extracted area's channels,

‡ = max( ‡ r , ‡ g , ‡ b ) (4.13) 
the highest standard deviation of extracted area's channels, and

p =(p r ,p g ,p b ) (4.14) 
the RGB color value of one pixel of the RGB image; the pixel p is considered a fire pixel fire or not using the following condition: 

3D reconstruction of fire points

The 3D fire points are obtained from the matched points using the Eq. 3.96.

Outliers points are eliminated by a a two-stage refining process. In the first step, are eliminated the isolated points. A 3D point is an isolated point if the mean distance between it and its 4 neighbors is too great. In the second step, are eliminated the 3D points too distant to the camera frame origin.

All the points that are located far from the principal 3D point cloud are considered as outliers. If one of the two conditions presented in the Eq. 4.16 is true, a point is identified as outlier and eliminate.

|d 1 ≠ µ d1 |Ø3 ‡ d1 , |d 2 ≠ µ d2 |Ø3 ‡ d2 , (4.16) 
where µ d1 , ‡ d1 are respectively the mean and standard deviation of the distance d 1 between this point and its four neighbors; µ d2 , ‡ d2 are respectively the mean and standard deviation of the distance d 2 between this point and the camera frame origin. 

Inputs/outputs of the transformation method

The inputs of the method are the position, the altitude and the orientation of the stereovision device at each instant.

The position is expressed by the latitude and longitude angles in degree; latitude is an angle between -90 ¶ and 90 ¶ , longitude is an angle between 0 ¶ and 180 ¶ . These angles are expressed with seven decimals. The measure of the altitude is expressed in mm as an entire scalar between 1 and 1 000 000 (1 km of maximal altitude). The orientation is composed by three values, two returned by the IMU board and one returned by the compass sensor. The values returned by the IMU board are the roll and pitch of the camera, expressed in radiant with fourteen decimals, between ≠fi and fi. The value returned by the compass is an integer whose value is between 0 ¶ and 360 ¶ . It is in degree and corresponds to the heading angle of the camera.

The outputs of the method are the 3D points expressed into several reference frames. The first reference frame is positioned in the back of the burning area and it is used to obtain the evolution of the fire characteristics. The second one has its orientation that changes over time depending on the local slope of the spreading area. This frame is used to compute geometrical characteristics of the fire such as height. The third one is obtained from the second one applying a rotation in such a way that the longitudinal axis follows the instantaneous main direction of the fire. This frame is used to estimate the fire width and depth, for example.

Determination of the transformation matrix from the "Camera frame" to the "Global frame"

The 3D fire points obtained from the stereoscopic images are expressed in a frame attached to the stereovision system. The origin O C of this frame is the optical center of the left visible camera, the X C x-axis corresponds to the axis going from the left camera towards the right camera, the Z C z-axis is perpendicular to X C and directed forward the cameras, the Y C y-axis is the axis perpendicular to the others two such that the resulting triad is right-handed, as it can been seen in Fig. 4.20. stereoscopic images acquired by drone

Determination of the transformation matrix from the Drone frame to the Local frame

The coordinates of O C in the Drone frame are:

S W W U Ox D C Oy D C Oz D C T X X V = S W W U ≠70 0 0 T X X V (4.17) 
Due that the X D , Y D and Z D axis of the Drone frame are respectively colinear to the X C , Y C and Z C axis of the Camera frame, the matrix M 0 that transforms the Drone frame to the Camera frame is:

M 0 = S W W W W U I 3◊3 Ox D C Oy D C Oz D C 0 (1◊3) 1 T X X X X V . ( 4.18) 
Taken into account the Eq. 4.18, the coordinates of a 3D point expressed in the Drone frame (x D i , y D i , z D i ) can be considered to obtain the coordinates of this point in the Camera frame (x C i , y C i , z C i ) by using the following formula:

S W W W W U x C i y C i z C i 1 T X X X X V = M 0 S W W W W U x D i y D i z D i 1 T X X X X V . ( 4.19) 
The y-axis of the Camera frame is perpendicular to the z-axis and directs downwards the cameras (Fig. 4.22a). In order that all the fire geometrical characteristics are expressed with positive values, a transformation is made on the Camera frame so that the y-axis is increasing upwards. The Camera frame is therefore rotated of 180 ¶ along the x-axis to obtain a new frame (Fig. 4.22b), called "Intermediate frame". In this frame, the Z Õ C z-axis is directed to the rear of the cameras device. In order to express the depth with positive values an z-axis inversion is applied to the intermediate frame to obtain a new frame called "L frame" (Fig.

4.22c). stereoscopic images acquired by drone

The vector

O G O L = Ë u, v, w È T represents the euclidean distance from O L to O G in the
ECEF system, and is defined by: u = x i ≠ x 0 , (4.28)

v = y i ≠ y 0 , (4.29 
)

w = z i ≠ z 0 . (4.30)
This vector is used to find the coordinates of O L in the Global frame.

The standard reference system used to compute the distance between two points of the Earth is the ENU frame (East,North,Up). In this frame, the origin can be any point on the Earth. In this thesis, it is positioned at the reference point O G .T h eX enu x-axis is directed towards East, the Y enu y-axis is directed towards North, and the Z enu z-axis is directed upwards (Fig. ??). In this thesis, the ENU frame is used as an intermediate frame to obtain the transformation matrix from the Local frame to the Global frame (Fig. 

Determination of the transformation matrix from the Local frame to the ENU frame

Using the LLA coordinates of O L (Ï i , ⁄ i , h i ) and the coordinates of the vector

O G O L expressed in the ECEF frame Ë u, v, w È T , the Cartesian coordinates of O L in the ENU frame centered in O G (O Lx ,O Ly ,O Lz ) are obtained with the relation: S W W U O Lx O Ly O Lz T X X V = S W W U ≠sin(⁄ i ) cos(⁄ i )0 ≠sin(Ï i )cos(⁄ i ) ≠sin(Ï i )sin(⁄ i ) cos(Ï i ) cos(Ï i )cos(⁄ i ) cos(Ï i )sin(⁄ i ) sin(Ï i ) T X X V ¸˚˙T ransfomation matrix from ECEF to ENU S W W U u v w T X X V . ( 4 
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The rotation matrix R L is obtained by the successive application of the rotation R -, R -and R " , applied with the angle ≠-, -, and ", respectively, as: Due that the Local frame is a left-handed system and the ENU frame is a right-handed system, it is necessary to swap the Y L and Z L axis, applying a transformation whose matrix is:

R L = R -(≠-) ú R -(-) ú R " (").
M 2 = S W W W W U 1000 0010 0100 0001 T X X X X V . ( 4.36) 
The roto-translation matrix M 3 that allows the transformation from the Local frame to the ENU frame centered in O G is:

M 3 = S W W W W U R L3◊3 O Lx O Ly O Lz 0 (1◊3) 1 T X X X X V M 2 . (4.37)
The ENU frame is obtained from the Local frame using the relation:

S W W W W U X enu Y enu Z enu 1 T X X X X V = M 3 S W W W W U X L Y L Z L 1 T X X X X V (4.38)
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Determination of the transformation matrix from the ENU frame to the Global frame

The same procedure as the one described in 4.5.2.2 is used to obtain the transformation matrix from the ENU frame to the Global frame. Due that -0 , -0 and " 0 are the angles between the axis of the Global frame and the axis of the ENU frame, the transformation matrix to pass from the ENU frame to the Global frame has to use the opposite angles --0 ,--0 and -" 0 .

The rotation matrix is obtained by the successive application of the rotation R " , R -and R -applied with the -" 0 ,--0 and -0 angles is noted M 4 , and is equal to:

M 4 = C (R " (≠" 0 ) ú R -(≠-0 ) ú R -(-0 )) 3◊3 0 (3◊1) 0 (1◊3) 1 D . (4.39)
The Global frame is obtained from the ENU frame using the relation: The procedure is carried out at each acquisition instant, and it is done in two steps. Firstly, the equation of the fire base plane is obtained from the selected 3D fire point that are on the ground. From this equation, the lateral and longitudinal angles of the plane are obtained. Secondly, taken into account this information, a refining procedure is done using a rotation of all the 3D fire points obtained at the corresponding instant and a second estimation of the base plane equation.

S W W W W U X G Y G Z G 1 T X X X X V = M 4 ú M 2 S W W W W U X enu Y enu Z enu 1 T X X X X V . ( 4 
To start the procedure, the left image obtained at the corresponding acquisition instant is processed in order to identify the fire pixels that are on the ground. These pixels correspond to the ones that are on the back front line of the fire. To identify them, a sort is carried out on the detected fire pixels in such a way to process them by increasing column value. For each column, the pixel that has the highest value is selected. Spurious points corresponding to pixels having a v value very different from the others are eliminate using a Gauss function on the average of the v, with a standard deviation of 3 ‡. The RANSAC (RANdom SAmple Consensus) method [START_REF] Bolles | A RANSAC-Based Approach to Model Fitting and Its Application to Finding Cylinders in Range Data[END_REF] is used to obtain the Cartesian A procedure for selecting the 3D lowest fire points is performed a second time. Points that are not more than 30 cm above the new average 3D point are used to obtain the refined fire base plane equation by using a RANSAC algorithm (Fig. A procedure is then carried out taking into account the base plane information obtained over time. At each image acquisition instant, it is estimated 3D fire points and part of them are used to compute the equation of the base plane (which angles are ' and ◊) corresponding to the ground plane. A procedure is carried out to improve the estimation of this information by considering 3D points obtained at successive times when it is possible. To initiate the algorithm, at the instant 0, a base plane of reference with its angles equal to 0 ¶ and with an empty set of 3D fire base points is considered. These reference angles are called ' r and ◊ r . At each image acquisition instant i, the difference, in absolute terms, between the angle ' i of the estimated base plane and the angle ' r of the reference plane, and the difference in absolute terms between the angle ◊ i of the base plane and the angle ◊ r of the reference plane are computed.

If the two calculated values are less than 3 ¶ , the 3D fire base points of the acquisition i are added to the set of 3D fire base points of the reference plane.

|' r ≠ ' i |AE3 ¶ and |◊ r ≠ ◊ i |AE3 ¶ (4.46)
For each successive image acquisition i, until it is found a base plane whose angles satisfy the equation 4.46, the reference angles ' r and ◊ r doesn't change and the 3D fire base points are accumulated.

When it is found a base plane whose the angle differences are greater than 3 ¶ , two angles named ' and ◊ are computed considering all the set of base points previously accumulated starting from the instant of the reference plane (initially the instant 0). The angles of the current base plane become the new reference angles for the subsequent base planes. stereoscopic images acquired by drone

The number of instants considered to accumulate the 3D points, used to compute a base plane, is variable and depends on the instantaneous base plane angles. Considering n point clouds, obtained at n successive acquisition instants, the process gives as result a set of m AE n averages planes, where each one is identified by the mean angles values ' and ◊ and by the list of indices of the local planes that are part of it. By construction, these average planes are successive to each other and with inclination angles that differ from the ones of the previous average plane more than the threshold chosen, equal to 3 ¶ . Figure 4.42 shows with an example the successive estimation of base planes. Figure 4.42b presents two successive base planes with similar inclination. Figure 4.42c shows a third local plane, with an inclination variation greater than 3 ¶ . From the first two local planes an average plane is computed, and the third plane becomes the new reference plane for the subsequent planes (Fig. 4.42d). Figure 4.43 shows the result of the ground inclination method. 
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of the S frame. The Slope frame is obtained from the Global frame by performing a frame transformation whose equation is:

S W W W W U x S i y S i z S i 1 T X X X X V = M 5 S W W W W U x G i y G i z G i 1 T X X X X V . ( 4.47) 
where the matrix M 5 is:

M 5 = C (R ' ú R ◊ ) 3◊3 0 (3◊1) 0 (1◊3) 1 D (4.48)
with the matrix R ' and R ◊ defined by:

R ' = S W W U 10 0 0 cos(') ≠sin(') 0 sin(') cos(') T X X V (4.49) R ◊ = S W W U cos(◊) ≠sin(◊)0 sin(◊) cos(◊)0 00 1 T X X V , (4.50) 
This transformation is applied to the 3D points coordinates obtained at a given time i expressed in the G frame (x G i , y G i , z G i ) to obtain the 3D points of coordinates (x i ,y i ,z i ) in the S frame.

The Eq. 4.47 produces as results the fire points rotated as if the ground was flat (Fig. 

Description of the experiment

The drone flew at a height of 10 m, keeping at a distance of 15 m from the fire zone. The inclination of the stereovision system was set to -3 ¶ downwards in such a way to obtain the best shooting angle at 15 m from the fire. The fire was set along the short side of the rectangle to produce propagation over the entire length of the fuel area along the long side of the rectangle (Fig. 6.2).

Temporal evolution of fire geometrical characteristics 165

about 80 seconds the depth grows faster, a sign that the line of the advanced points and the line of the backward points of the fire ground progress with different speed. Figure 6.12 presents the flame inclination angle. The average inclination is about 25 ¶ .A t about 45 seconds and 110 seconds there was a gust of wind, and the flame was inclined at 70 ¶ and 80 ¶ , respectively. At about 50 seconds the wind went down and the inclination of the flame was 5 ¶ . Figure 6.13 shows the surface of the base participating in the combustion. The surface grows steadily starting from 20 seconds, until it reaches its maximum peak at about 80 seconds. 80 seconds is also the instant the line of advanced points and the line of backward points begin to be spaced. Figure 6.14 shows the rate of spread during the propagation. The average speed is about 0.08 m/s, with a peak at 0.18 at 80 seconds. During the first regime (between 0 and 28 seconds), the average speed is 0.05 m/s. During the second regime (between 36 and 72 seconds) the average speed is 0.07 m/s. During the third regime (between 76 and 116 seconds) the average speed is 0.12 m/s. The reason why at 80 seconds the line of advanced points and the line of backward points move away is in fact due to an increase in the ROS of the fire front. Overall, the estimated data are consistent with what might be expected for this type of experiment. 

Conclusion

The estimation of fire geometric characteristic is important for the researches working in the field of forest fires. The danger, the dimensions and the distances covered by the fires make difficult to measure its characteristics. A way to solve this is to use the computer vision.

As presented in Ch. 1, the vast majority vision devices used to measure wildland fires work with 2D information. In order to obtain the estimation of the geometric characteristics with these systems, it is necessary to have reference marks on the ground, fixed and easily recognizable; marks which cannot be added during a real fire, or that may be not completely visible. In addition, it is impossible to obtain detailed information such as the exact shape of the front, or the orientation of the flame towards a target. A solution, composed of several multimodal stereovision systems, allows to obtain 3D information and to estimate the geometric characteristics of fires without reference marks. However, this solution uses systems fixed on the ground, and it is difficult to consider it with large fires, spreading over large distances, or for fires occurring into inaccessible areas. The use of drones allows to obtain measurements with the same precision throughout the fire spread choose at each instant the best point of view, and in addition to and carry vision system in areas difficult to access on foot. The solution proposed in this thesis consists in the use of a multimodal stereovision module mounted on a drone. The vision system is composed of a pair of cameras in the visible spectrum and a pair of cameras in the long wave infrared spectrum. The cameras are all synchronized through the use of a Raspberry computer and the images are merged with the information of the navigation sensors (IMU, GPS, compass, and barometer). The architecture of this solution is presented in Ch. 2. This chapter describes also the study on the 168 Chapter 7. Conclusion and perspectives wavelengths of the radiation emitted by a fire, which justifies the choice of the used spectral bands. Chapter 3 presents the theoretical aspects of stereovision, and the methodology used for the estimation of the intrinsic and extrinsic parameters of the cameras.

In Ch. 4, is described the developed methodology to estimate fire geometrical characteristics during propagation. In the first part, the fire pixel detection procedure is presented. In this method, a pre-selection fire area is obtained from infrared images selecting the fire pixels using the Otsu method. Considering only the position of the pixels pre-selected in the IR band, pixels are detected in the visible image using a performance competition between 11 state-of-the-art fire detection algorithm. From the fire detected pixels, features are selected and after the use of a matching procedure and a triangulation method, 3D fire points are obtained. This chapter presents also the methods employed to transform the 3D points in order to estimate the fire geometrical characteristics. Several frames are used. The first frame is unique for all acquisitions and positioned in front of the fire area; it is employed to obtain the temporal evolution of the fire position and the rate of spread of the fire front. The second frame has an orientation that is parallel to the orientation of the local base plan and can change during the propagation. This frame is used to obtain an estimation of the fire height and the inclination of the terrain. The third frame has an orientation that follows the instantaneous direction of the fire front during propagation. This frame is used to obtain measures such as the width, the depth, the length, the inclination angle, the base perimeter, the combustion surface, the view factor and volume.

Chapter 5 presents two experiences used to study the reliability and the accuracy of the measurements provided by the system. In the first experience are computed the measures of a motionless car, and compared with the real values. In the second experience, it is used as target a pseudo-static fire, without propagation. The images are obtained from different positions of the drone around the fire. Ch. 6 presents the fire geometrical characteristics obtained for a fire propagating on a plane of 50 m 2 and having different slopes.

Perspectives

The vision device and the methods proposed in this thesis satisfy the need of systems able to estimate fire geometrical characteristics in order to understand and model the fire behaviour. In the context of this thesis work several experiences were carried out, to reproduce a fire propagation of about 10 m over different slope. Each of these experiences required several hours of preparation, as well as a large number of people involved. For logistical problems it was not possible to use the system for a large-scale fire and in real firefighter operation.

A first improvement of this framework could be the improving of the accuracy in the position of the drone, for example using a Real-time kinematic GPS sensor. This sensor was not initially considered given its price, but in recent years low-cost RTK-GPS sensors with good performance have been developed. A second improvement could be the possibility of using a second drone, to obtain two complementary views of the fire at the same time. This could be useful to obtain an estimation of the entire volume of a fire. In addition, for wildfires with great depth, by positioning two drones, one in front of the fire front and another in front of the back fire, it could be possible to monitor the two propagation lines the front fire propagation and the backfire propagation simultaneously. Finally, an ultimate improvement could be to make the system able to obtain the results in "real-time", unlike now that the results are produced in "post-processing". This improvement is possible, for example, by equipping the drone with a more performing on-board computer, capable of performing the calculations currently carried out by the computer on the ground, and sending the results directly to a ground station, for example via 4G connection. 

Introduction

Les feux de forêt causent chaque année des pertes écologiques, économiques et humaines dans le monde entier. Annuellement, plus de 340 millions d'hectares de végétation sont détruits sur notre planète par ce phénomène [139]. Avec le réchauffement climatique, il y a une extension des zones sensibles aux feux et globalement les incendies de forêt sont de plus en plus meurtriers et destructeurs [START_REF] Chatry | Changement climatique et extension des zones sensibles aux feux de forêts[END_REF][START_REF] Doerr | Global trends in wildfire and its impacts: perceptions versus realities in a changing world[END_REF]. Pour combattre ce risque majeur, des mesures de gestion, de prévention et de lutte sont prises. L'efficacité de ces actions dépend de la connaissance des phénomènes qui ont lieu lors du démarrage et de la propagation des feux. Depuis plus de cinquante ans, des recherches sur les incendies de végétation sont menées pour comprendre ces phénomènes, développer des modèles de propagation et de comportement et prédire l'évolution des incendies [START_REF] Mcarthur | Weather and grassland fire behavior[END_REF][START_REF] Rothermel | A mathematical model for predicting fire spread in wildland fuels[END_REF][START_REF] Morvan | Modeling the propagation of a wildfire through a Mediterranean shrub using the multiphase formulation[END_REF][START_REF] Balbi | Physical modeling of surface fire under nonparallel wind and slope conditions[END_REF][START_REF] Balbi | Modelling of eruptive fire occurrence and behaviour[END_REF], le transfert de chaleur [START_REF] Sacadura | Radiative heat transfer in fire safety science[END_REF][START_REF] Rossi | Simplified flame models and prediction of the thermal radiation emitted by a flame front in an outdoor fire[END_REF][START_REF] Chatelon | A convective model for laboratory fires with well-ordered verticallyoriented fuel beds[END_REF] et créer des outils d'aide à la décision pour la lutte incendie et l'aménagement du territoire [START_REF] Finney | FARSITE: Fire area simulator-model development and evaluation[END_REF][START_REF] Linn | Studying wildfire behavior using FIRETEC[END_REF][START_REF] Tymstra | Development and structure of Prometheus: the Canadian wildland fire growth simulation Model[END_REF][START_REF] Bisgambiglia | DIMZAL: a software tool to compute acceptable safety distance[END_REF][START_REF] Rossi | Fire Intensity". In: Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires[END_REF].

Des données expérimentales obtenues lors de la propagation de feux de végétation en laboratoire et en extérieur sont nécessaires pour mieux comprendre les phénomènes et améliorer et/ou valider les modèles. Les caractéristiques d'un front de feu comme sa position, sa vitesse de propagation, sa hauteur, sa longueur, sa largeur, sa profondeur, son angle d'inclinaison, sa forme, sa surface et son volume sont importantes. Les informations tridimensionnelles donnent 172 Chapter 8. French Version plus de possibilité d'analyse que les informations 2D. Ainsi, par exemple, tous les points d'un front de feu non linéaire sont intéressants à suivre car leur vitesse traduit la déformation du front de feu qui peut être due à la topologie du terrain, le vent ou la végétation. Egalement, l'énergie transférée d'un feu vers une cible dépend de la distance entre la cible et le feu et de l'orientation de la surface du feu par rapport à la position de la cible [START_REF] Siegel | Thermal Radiation Heat Transfer[END_REF]. L'obtention d'une forme tridimensionnelle de feu, de la distance feu-cible et de la surface de flamme orientée en direction de la cible permet de calculer cette énergie.

Au cours de ces dernières décennies, il y a eu un intérêt croissant dans la communauté de recherche sur les incendies pour développer des méthodes basées sur la vision par ordinateur afin de mesurer les caractéristiques géométriques d'un feu lors de sa propagation. L'étape de détection des pixels de feu dans une image est essentielle dans le processus de mesure du feu par vision car elle détermine la précision avec laquelle les caractéristiques du phénomène peuvent être estimées. Le domaine du visible est le spectre de référence pour les chercheurs travaillant sur les feux de forêt en raison de l'utilisation plus simple des caméras de ce spectre et de leur prix très abordable. Cependant, la détection des pixels de feu dans les images couleur est difficile et, dans [START_REF] Toulouse | Benchmarking of wildland fire color segmentation algorithms[END_REF], il apparaît que la performance des onze algorithmes de segmentation couleur de réference dans la littérature [START_REF] Phillips | Flame recognition in video[END_REF][START_REF] Chen | An early fire-detection method based on image processing[END_REF][START_REF] Horng | A new image-based real-time flame detection method using color analysis[END_REF][START_REF] Celik | Fire detection using statistical color model in video sequences[END_REF][START_REF] Ko | Fire detection based on vision sensor and support vector machines[END_REF][START_REF] Celik | Fire detection in video sequences using a generic color model[END_REF][START_REF] Celik | Fast and efficient method for fire detection using image processing[END_REF][START_REF] Chitade | Colour based image segmentation using k-means clustering[END_REF][START_REF] Collumeau | Fire scene segmentations for forest fire characterization: A comparative study[END_REF][START_REF] Rossi | On the use of stereovision to develop a novel instrumentation system to extract geometric fire fronts characteristics[END_REF][START_REF] Rudz | Investigation of a novel image segmentation method dedicated to forest fire applications[END_REF] (évalués sur une base de données d'images contenant plus de 500 images de feux de végétation) sont dépendants de caractéristiques de feu telles que la couleur, sa texture, la présence de fumée et la luminosité de l'environnement. L'utilisation des images du spectre infrarouge permet de dépasser le problème des zones de feu masquées par la fumée. De nombreux travaux ont été développés en relation avec l'utilisation d'images de l'infrarouge pour la détection et la mesure des feux de végétation. Gouverneur et al. dans [START_REF] Gouverneur | Archeological treasures protection based on early forest wildfire multi-band imaging detection system[END_REF] présente une étude dans laquelle il apparaît que les meilleures bandes pour la détection des feux (dans le cas d'une longue distance entre le feu et la caméra) sont l'infrarouge à courtes longueurs d'onde (en anglais, Short Wave Infra-Red : SWIR 1,4 µm -3µm), l'infrarouge à longueurs d'onde moyenne (en anglais, Middle Wavelength Infrared : MWIR 3 µm-5µm) et l'infrarouge à longues longueurs d'onde (en anglais,le Long Wavelength Infrared : LWIR 8 µm -15 µm). Toutefois, il est important de noter que compte tenu du fait que le feu émet dans différentes bandes spectrales de manière non uniforme, les zones de feu obtenues dans les images des différents spectres ne se superposent pas parfaitement. Ceci est dû notamment à des zones de gaz chauds qui ne sont pas visibles dans les images du visible [START_REF] Gouverneur | Archeological treasures protection based on early forest wildfire multi-band imaging detection system[END_REF][START_REF] Billaud | Determination of woody fuel flame properties by means of emission spectroscopy using a genetic algorithm[END_REF]. De ce fait, les images de l'infrarouge ne peuvent pas être utilisées seules pour la mesure des caractéristiques géométriques de feu.

Des systèmes utilisant plusieurs modalités ont été proposés : dans [START_REF] Verstockt | Multi-sensor fire detection by fusing visual and non-visual flame features[END_REF], Verstockt et al. présente l'utilisation d'un système qui combine des capteurs travaillant dans le visible et le LWIR et dans [START_REF] Verstockt | A multimodal video analysis approach for car park fire detection[END_REF] est décrit un système utilisant la technologie TOF (Time of flight) et des capteurs travaillant dans le visible. Il est à noter que dans ces deux études, les expériences ont été limitées à des environnements contrôlés. De plus, du fait de la faible résolution des caméras travaillant dans ces modalités, les systèmes ne sont pas adaptés à de la métrologie pour les feux.

Deux familles de dispositifs ont été développées pour la mesure par vision des feux. La première utilise des caméras positionnées de sorte à obtenir des vues complémentaires du feu. Ces travaux ont été menés en intérieur [START_REF] Clements | Measuring fire behavior with photography[END_REF][START_REF] Pastor | Computing the rate of spread of linear flame fronts by thermal image processing[END_REF][START_REF] Martinez-De Dios | Laboratory fire spread analysis using visual and infrared images[END_REF][START_REF] Verstockt | FireCube: a multi-view localization framework for 3D fire analysis[END_REF] et ne sont pas applicables dans un environnement non contrôlé. Martínez-de-Dios et al. [START_REF] Martinez-De Dios | Computer vision techniques for forest fire perception[END_REF] a développé un système travaillant à l'échelle du terrain qui utilise des caméras fixes positionnées à deux points de vue afin d'obtenir des visions complémentaires du feu (vues frontale et latérale). Les images frontales permettent l'estimation de la position du front de feu et de la vitesse du point le plus avancé. Les caméras latérales sont utilisées pour extraire la hauteur maximale de flamme, son inclinaison et la largeur de la base du feu. Une caméra infrarouge est également déployée en position latérale afin d'obtenir la position du feu et la largeur du feu dans le cas où de la fumée masque les zones de feu dans les images du visible. Les valeurs exprimées dans un repère monde des caractéristiques de feux sont calculées en calibrant les caméras à partir d'un modèle de terrain, de la position des caméras et de repères naturels ou artificiels posés dans la scène. Le système développé est utilisé pour estimer la position du point le plus avancé du front de feu et sa largeur. Un modèle 3D du feu est généré en utilisant les mesures calculées. Dans [START_REF] Martinez-De Dios | Automatic forest-fire measuring using ground stations and unmanned aerial systems[END_REF]l e s auteurs proposent une amélioration de cette méthode en utilisant des caméras du visible et de l'infrarouge fixées au sol ou montées sur un drone muni d'un GPS et d'une carte inertielle ainsi que des techniques de fusion de données pour intégrer les résultats issus de toutes les caméras. Le dispositif peut estimer la position du front de feu, sa vitesse et la hauteur maximale de flamme en temps réel. Une forme 3D de feu est obtenue par concaténation de triangles, chacun étant caractérisé par les paramètres estimés. Ce système estime une partie des caractéristiques géométriques requises par les chercheurs travaillant sur la propagation des incendies de forêt et la modélisation du comportement. Cependant, en utilisant des informations 2D, les informations de profondeur 3D ne peuvent pas être obtenues pour tous les points d'un front de feu et par conséquent certaines caractéristiques ne peuvent pas être estimées. De plus, son déploiement peut être difficile dans les zones d'accès difficile.

La deuxième famille de systèmes est basée sur l'utilisation de la stéréovision pour calculer l'information 3D [START_REF] Hartley | Multiple view geometry in computer vision[END_REF]. Cette méthode permet d'obtenir des informations de profondeur à partir de deux images simultanées et décalées de la même scène sans avoir besoin de repères ou de balises artificielles. Elle a été appliquée à l'échelle du laboratoire pour mesurer les caractéristiques géométriques d'un front de feu [START_REF] Ng | Stereoscopic imaging and reconstruction of the 3D geometry of flame surfaces[END_REF][START_REF] Rossi | Estimation of spreading fire geometrical characteristics using near infrared stereovision[END_REF]. Un système a également été développé afin de travailler à l'échelle du semi-terrain [START_REF] Toulouse | A multimodal 3D framework for fire characteristics estimation[END_REF]. Le dispositif prend en charge l'utilisation de plusieurs systèmes de stéréovision positionnés de manière à capturer des vues complémentaires du front de feu pendant sa propagation. Des paires de caméras multimodales fonctionnant à la fois dans les bandes spectrales du visible et du proche infrarouge sont employées. Chacune des caméras formant la paire de stéréovision est fixée rigidement sur une barre métallique avec une distance inter-caméra d'un mètre. Un recalage des points 3D estimés depuis les différentes vues est effectué afin d'obtenir une reconstruction 3D complète du front de feu. Ceci est effectué en utilisant les données visuelles, les positions GPS et les données inertielles. Ce dispositif permet d'obtenir l'évolution temporelle des caractéristiques géométriques d'un incendie se propageant sur une dizaine de mètres : position, vitesse, largeur de la base du feu, profondeur, périmètre, hauteur, longueur, angle d'inclinaison, forme 3D, surface, facteur de vue et volume. Cependant, il a des limites : d'abord, il faut anticiper la trajectoire du feu pour positionner de manière optimale les caméras. Deuxièmement, comme la précision théorique de la mesure de profondeur augmente proportionnellement au carré de la distance caméra-objet [START_REF] Trucco | Introductory techniques for 3-D computer vision[END_REF], il y a une perte de précision lorsque le feu s'éloigne des caméras.

Cette thèse présente l'estimation de caractéristiques géométriques d'un feu se propagaeant sans limitation de distance à partir d'un système de stéréovision multimodale porté par drone. Un dispositif de vision, fixable sur drone, composé de deux caméras fonctionnant simultanément dans le visible et l'infrarouge et capable de produire des images stéréoscopiques multimodales géoréférencées a été développé. Le dispositif proposé permet d'estimer une forme 3D du front de feu, sa position au sol, sa vitesse, sa surface, son épaisseur, sa hauteur et son angle d'inclinaison pour toute configuration de terrain et sans utiliser de modèle numérique de terrain. Pour évaluer la performance du système, des essais ont été réalisés avec des incendies expérimentaux se propageant sur plusieurs dizaines de mètres sur des terrains à pente variable.

Matériels

La stéréovision a été choisie dans cette thèse pour obtenir des points 3D de feu à partir desquels les caractéristiques de l'incendie sont estimées.

Dans un système de stéréovision, il est possible de calculer la précision théorique de la mesure de profondeur ∆z, étant donnée la longueur focale f des caméras, la distance moyenne entre la caméra et la cible z, la longueur inter-caméras B, et l'imprécision de disparité ∆d. La relation s'exprime par :

∆z = - - - - - z 2 Bf - - - - - ∆d (8.1)
où z, ∆z et B sont exprimés en mètres et f et ∆d en pixels.

A partir de cette équation, il peut être vu que l'erreur dans ∆z est proportionnelle au carré de la distance caméra-cible ; il est donc important que z soit aussi petit que possible. Aussi, il a été décidé de transporter le système de vision par drone afin de suivre le feu tout au long de sa propagation en maintenant un bon point de vue et une distance minimale (mais sécuritaire) caméra-feu. L'équation 8.1 montre également que pour z, f et ∆d constants, plus la distance intercaméras est grande et plus petite est l'erreur sur la distance estimée z. Les caméras du système de stéréovision considérées dans ce travail étant fixées sur un axe, la distance inter-caméra est la longueur de cet axe qui est porté par le drone. Il a été établi par un pilote de drone professionnel que pour un drone DJI S1000 la longueur maximale de cet axe est de 1 m. Avec cette valeur pour B, une imprécision de disparité égale à 1 pixel, et en considérant les caméras du visible utilisées, l'erreur théorique dans z est inférieure à 20 cm pour une distance Dans ce système, le processeur est utilisé pour fusionner les deux flux vidéos provenant de chaque caméra à 30 Hz et pour créer une seule image contenant les deux images l'une à côté de l'autre. Les caractéristiques de la caméra utilisée sont une focale de 2,8 mm, une taille de pixel de 2 µm, un champ de vision horizontal de 98 ¶ , un capteur CMOS de 1/3", et un filtre IR avec une fréquence de coupure à 650 nm. La résolution de l'image est réglée sur 2208◊1242 pixels. Les caméras et le processeur sont alimentés par un câble USB3 avec une tension de 5 V et le courant requis est de 296 mA. Le poids des deux objectifs et le processeur est de 30 gr.

Les caméras sont montées sur un axe avec une distance inter-caméra de 0,9 m. Le support est un bois contreplaqué composé d'une structure fibreuse et composite qui limite ses déformations. Des trous ont été faits afin de réduire son poids. Une barre d'aluminium a été ajoutée sur le côté supérieur afin de rigidifier le système (Fig. 8.2). Les angles de roulis, de tangage et de lacet sont tous égaux à zéro lorsque le dispositif de stéréovision est horizontal et pointe vers le Nord. L'angle de roulis est positif si le dispositif tourne vers la droite, et il est négatif si le dispositif tourne vers la gauche. L'angle de tangage est négatif si l'appareil pointe vers le bas (l'état de l'appareil qui pointe vers le haut n'est pas pris en compte parce que les caméras sont toujours plus élevées que le feu). L'angle de cap est positif si le dispositif pointe vers l'est, négatif si le dispositif pointe vers l'ouest.

La figure 8.12 présente les connexions physiques de tous les éléments du système de stéréovision multimodale.
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trois canaux de communication distincts de la carte Arduino afin de ne pas partager le même bus et prendre trois lectures tout en gardant le temps de latence entre chacun d'eux (estimé dans l'ordre de la microseconde). Les données de l'accéléromètre, du GPS/Compass et du baromètre sont envoyées à l'ordinateur Raspberry via un deuxième câble USB en utilisant un protocole Mavlink [START_REF]MAVLink Developer Guide[END_REF].

L'ordinateur Raspberry, la carte Arduino et la batterie ont été ajoutés en tenant compte de la balance de l'axe. La charge utile totale pour le système de vison complet est de 3,2 kg. La figure 8.13 montre le dispositif de stéréovision multimodale complet avant un vol. 

Méthode

Le diagramme de la méthodologie proposée est présenté dans la figure 8.14. La première étape du processus consiste à détecter les pixels de feu. Elle est menée dans le spectre du visible et du LWIR. Cette étape est suivie par la détection des points d'intérêt dans l'image du visible afin de sélectionner les points les plus importants à utiliser dans l'algorithme de correspondance stéréoscopique. A partir des points correspondants, une procédure de triangulation permet leur reconstruction tridimensionnelle. à chaque instant d'acquisition d'image, l'équation du plan local du terrain sur lequel se situe le feu est estimée à partir des points de feu 3D les plus bas. Les points de feu 3D sont alors projetés dans plusieurs repères afin de produire des résultats exprimés dans des repères de référence et intrinsèques au front de feu. La dernière étape est la reconstruction du modèle de feu 3D et l'estimation des caractéristiques géométriques du feu à partir des points 3D transformés.

Détection multimodale de pixels de feu

Une méthode de détection mutlimodale de pixels de feu a été développée en utilisant des informations obtenues dans les images du spectre LWIR afin de présélectionner les pixels des images du visible à traiter. Les programmes de la toolbox Matlab développée par [START_REF]Stereo Camera Calibration under Different Resolution[END_REF] auxquels ont été apportées de petites modifications ont été utilisés pour produire des images superposées. La procédure multimodale se déroule en deux étapes. Dans un premier temps, l'image du LWIR est traitée avec la méthode de sélection de seuil développée par Otsu [START_REF] Otsu | A threshold selection method from gray-level histograms[END_REF] afin de trouver l'emplacement des pixels d'intensité la plus élevée correspondant aux pixels de feu. Seuls les pixels situés dans l'image du visible à la même position que ceux détectés dans l'image du LWIR seront considérés pour détecter les pixels de feu.

La détection des pixels de feu dans l'image du visible en ne considérant que les pixels de la zone présélectionnée par les informations de l'infrarouge se fait de la manière suivante : une interface graphique permet d'évaluer l'efficacité des onze méthodes de détection de pixels de feu de référence [START_REF] Phillips | Flame recognition in video[END_REF][START_REF] Chen | An early fire-detection method based on image processing[END_REF][START_REF] Horng | A new image-based real-time flame detection method using color analysis[END_REF][START_REF] Celik | Fire detection using statistical color model in video sequences[END_REF][START_REF] Ko | Fire detection based on vision sensor and support vector machines[END_REF][START_REF] Celik | Fire detection in video sequences using a generic color model[END_REF][START_REF] Celik | Fast and efficient method for fire detection using image processing[END_REF][START_REF] Chitade | Colour based image segmentation using k-means clustering[END_REF][START_REF] Collumeau | Fire scene segmentations for forest fire characterization: A comparative study[END_REF][START_REF] Rossi | On the use of stereovision to develop a novel instrumentation system to extract geometric fire fronts characteristics[END_REF][START_REF] Rudz | Investigation of a novel image segmentation method dedicated to forest fire applications[END_REF] à partir des premières images de la séquence d'images associée à la propagation de feu considérée. La méthode décrite dans [START_REF] Rossi | On the use of stereovision to develop a novel instrumentation system to extract geometric fire fronts characteristics[END_REF] a été adaptée afin d'utiliser uniquement la deuxième étape de cette procédure (la première étape correspondant à une procédure de présélection de pixels). La procédure permettant d'obtenir la meilleure détection de pixels est utilisée pour toutes les images de la séquence.

La figure 8.16 montre les pixels de feu détectés dans l'image du visible présentée dans la figure 8.15. 

Détection de points d'intérêt, appariement et triangulation

Les points 3D de feu sont obtenus par triangulation à partir de points d'intérêt de feu appariés entre les images stéréoscopiques. Les points d'intérêt sont détéctés dans les zones de feu des images en utilisant l'algorithme de détection de Harris [START_REF] Harris | A combined corner and edge detector[END_REF] et la procédure SURF [START_REF] Bay | Surf: Speeded up robust features[END_REF]. La première méthode citée est appliquée en considérant des zones de 5 ◊ 5 pixels. La seconde utilise 6 échelles de niveau et les tailles de filtre suivantes : 27◊27, 51◊51, 75◊75, 99◊99, 123◊123 et 147◊147. Les points obtenus par ces deux méthodes sont cumulés et les points doubles sont éliminés.

La figure 8.17 À partir des coordonnées des pixels correspondant et en utilisant les paramètres intrinsèques et extrinsèques du système de stéréovision, les points de feu 3D sont calculés par triangulation comme décrit dans [START_REF] Hartley | Multiple view geometry in computer vision[END_REF]. Leurs coordonnées tridimensionnelles sont données par rapport au centre de la caméra gauche du système de stéréovision. Tous les points situés loin du nuage principal de points 3D sont considérés comme des valeurs aberrantes. Si l'une des deux conditions présentées dans l'équation 8.2 est vraie, un point est identifié comme aberrant et éliminé. 

Estimation des caractéristiques géométriques du feu

A partir des points de feu 3D transformés, on estime les caractéristiques géométriques du feu. Tous les points sont utilisés pour la reconstruction 3D du feu et le calcul de sa surface et du facteur de forme. Seuls les points au sol sont pris en compte pour l'estimation de la position avant, de la surface de la base, de la largeur et de la profondeur. 

Forme et volume

Surface et facteur de forme

Compte tenu de l'ensemble des triangles formant la surface du feu, il est possible de calculer la partie de la surface qui produit le flux de chaleur dirigé face au front du feu ainsi que la fraction de l'énergie totale émise par la surface du feu et reçue par une cible quelle que soit sa position (également appelée facteur de forme).
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Pour calculer la surface du feu, seules les surfaces des triangles qui ne sont pas masquées par d'autres et orientées dans la direction principale du feu sont ajoutées.

Le facteur de forme est estimé en tenant compte de tous les triangles du feu et des coordonnées 3D de la cible. La méthode utilisée est celle décrite dans [START_REF] Rossi | Measurement of the geometric characteristics of a fire front by stereovision techniques on field experiments[END_REF]. Le facteur de forme F S≠ae dT , pour l'irradiation entre la totalité de la surface de la flamme S et la zone cible dT, est défini comme la fraction de l'énergie totale émise par toutes les surfaces élémentaires du triangle dS i et reçue par dT. Soit r i la distance entre la zone de cible et le centre du triangle i-ème dS i . Soit Θ S i et Θ T i , respectivement l'angle entre r i et la normale de la surface du triangle élémentaire et l'angle entre r i et la normale de la surface cible. Ainsi, il est possible d'établir la formule suivante : Pendant la propagation du feu, les lignes bougent et se déforment. Ce phénomène peut être modélisé en considérant la vitesse de chaque point des lignes. Les chercheurs travaillant sur la modélisation de la propagation du feu s'intéressent à la vitesse de propagation de points caractéristiques situés au centre et sur les côtés de la ligne de feu. Cette vitesse est égale au rapport de la distance entre deux points équivalents sur deux lignes successives divisées par l'intervalle de temps entre les deux moments d'acquisition des images à partir desquelles les courbes ont été calculées, comme il est décrit dans [START_REF] Rossi | Measurement of the geometric characteristics of a fire front by stereovision techniques on field experiments[END_REF]. En considérant deux lignes successives et un point donné de la première ligne, un point équivalent est le point d'intersection entre la normale de la première ligne passant par le point donné et la deuxième ligne.

dF S≠ae dT = dT S N ÿ i=1 cos ◊ S i >0 cos ◊ T i >0 cos ◊ S i cos ◊ T i fir 2 i dS i . ( 8 
La profondeur du front de feu est estimée en calculant la distance entre le point moyen obtenu à partir des points les plus avancés et le point moyen obtenu à partir des points les moins avancés.

Surface de combustion

Les chercheurs travaillant sur la modélisation des incendies de forêt considèrent que le combustible sous la flamme est le seul à contribuer à la combustion et font une approximation de la surface de la base du feu par des formes simples [START_REF] Moretti | Modélisation du comportement des feux de forêt pour des outils d'aide à la décision[END_REF]. À partir des points du feu au sol, un polygone est obtenu en utilisant la méthode décrite dans [START_REF] Edelsbrunner | On the shape of a set of points in the plane[END_REF] (Fig. 8.31). Il correspond à la base du feu et à la surface du combustible en combustion. Sa superficie est calculée en additionnant la surface des triangles contenus dans le polygone. 

Largeur, hauteur, longueur et angle d'inclinaison

Le calcul de la largeur, de la hauteur, de la longueur et de l'angle d'inclinaison du feu est effectué à partir des points 3D transformés, de telle sorte que l'axe de profondeur du repère utilisé pour les exprimer correspond à la direction instantanée du feu. L'estimation de la largeur du feu se fait en trois étapes. Dans un premier temps, les deux points qui ont une coordonnée x extrême parmi les points de la base sont identifiés. Dans un deuxième temps, les points dont la coordonnée x se situe au maximum à 15 cm des extrêmes sont utilisés pour calculer deux points moyens. Dans un troisième temps, la largeur est calculée comme la distance euclidienne entre les deux points moyens. 

Résultats

En raison du comportement imprévisible et non reproductible du feu, il est difficile d'évaluer l'incertitude de la solution proposée. Les performances du système ont été évaluées à l'aide de deux expériences : l'une utilisant une voiture et l'autre utilisant un feu pseudo-statique. La première expérience consiste en un tour complet effectué par l'UAV autour d'une voiture garée, pour acquérir des images de chaque côté de la voiture. L'inter-distance drone-voiture est entre 10 m et 15 m. La différence entre la position GPS de la voiture et celle mesurée est de 0,25 m.

La deuxième expérience a été menée sur un feu pseudo-statique extérieur. La laine de bois a été mise en place sur une surface de 3◊5 m. La forme du feu changeait mais pas sa position, avec l'UAV qui se déplaçait en face. La figure 8.36 montre les lignes du front obtenues à trois instants différents. La forme des lignes évolue avec le temps mais reste dans la même position, qui correspond à la réalité. La figure 8.37 présente l'évolution temporelle de la ligne du front du feu, la profondeur, la largeur et la hauteur obtenues lors de la propagation.
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 61 State of the art of vision for wildland fire measurement1.1.1 Fire geometrical characteristicsA fire in propagation is described by several geometrical data such as the height, the length, the flame inclination angle, the position (front line, back line), the width and the depth of the fire front. These characteristics are presented in Fig.1.1.

Figure 1 . 1 :

 11 Figure 1.1: Principal fire geometrical characteristics: flame inclination angle (Θ), flame length (d), flame height (h), fire front width (w), fire front line (dotted blue), fire back line (dotted purple).

  developed a camera system composed by two cameras working in the visible spectrum positioned frontally and laterally in relation to the assumed direction of fire propagation and a medium infrared (3-5 µm) camera situated in front of the fire as shown in Fig.1.2.

Figure 1 . 2 :

 12 Figure 1.2: Cameras displacement [49].

Figure 1 . 5 :

 15 Figure 1.5: Scheme of the parameters used by Martinez et al. [49].

Figure 1 . 8 :

 18 Figure 1.8: Fire geometrical characteristic computed by Martinez et al. [49].

Figure 1 . 9 :

 19 Figure1.9: Fire front line evolution in geographical coordinates[START_REF] Martinez-De Dios | Computer vision techniques for forest fire perception[END_REF].

Figure 1 .

 1 Figure 1.13: 3D point cloud of Fire [53].

  (Fig. 1.14).

Figure 1 . 14 :

 114 Figure 1.14: Estimation of a propagation plan from the low 3D points of a fire [70].

Figure 1 . 15 :

 115 Figure1.15: Fire line points with its related Bezier curve[START_REF] Toulouse | Estimation par stéréovision multimodale de caractéristiques géométriques d'un feu de végétation en propagation[END_REF] 

Figure 1 . 18 :

 118 Figure 1.18: Diagram of the Toulouse et al. framework [54].

Figure 1 . 19 :

 119 Figure 1.19: System developed by Toulouse et al.: two cameras that work in multimodal bands (near infrared and visible), on the left there are the IMU sensors, and in the middle there is the receiver to start the cameras [54].

  et al. propose to use in addition to cameras on the ground, drones equipped with cameras in order to follow the evolution of the fire and to have at every moment the best image possible. (Fig. 1.22).

Figure 1 . 22 :

 122 Figure 1.22: Deployment of the forest-fire measuring system proposed by Martinez et al. [51].

Chapter 1 . 1 . 4 Fire measurements with aerial systems 1 . 4 . 1

 114141 State of the art of vision for wildland fire measurement Airborne systemsOnonye et al. presented in

Figure 1 . 24 : 1 . 4 .

 12414 Figure 1.24: Image of big fire. (a) multi spectral image. (b) segmented burned area (black zone). (c) fire front direction at certain points [76].

Figure 1 .

 1 Figure 1.25: Conceptual UAV-based forest fire detection and diagnosis [78].
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 21 Figure 2.1: Maximum emission spectra from vegetation fires with a width varying from 0,5 m to 4 m.[START_REF] Billaud | Determination of woody fuel flame properties by means of emission spectroscopy using a genetic algorithm[END_REF] 

Figure 2 . 2 :

 22 Figure 2.2: Transmittance of Atmosphere in the infrared spectral band [82].

Figure 2 . 3 :

 23 Figure 2.3: Image of fire acquired in the visible domain.

Figure 2 . 6 :

 26 Figure 2.6: Fire images obtained simultaneously in the visible and LWIR spectra. (a)v i s i b l e image. (b) LWIR image.

Figure 2 . 13 :

 213 Figure 2.13: Support attachment system.

Figure 2 .Figure 2 . 14 :

 2214 Figure 2.14 shows two IR stereoscopic images taken by this device at the same time that the visible images shown in fig. 2.15.

Figure 2 . 19 :

 219 Figure 2.19: Complete vision framework before a flight.

Figure 2 .Figure 2 . 20 :

 2220 Figure 2.20 presents the diagram of the synchronization steps between the visible cameras module and the IR cameras module.

Figure 2 . 21 :

 221 Figure 2.21: Drone mounting the material for power and for video transmission to the ground.

Figure 2 . 22 :

 222 Figure 2.22: Block diagram of a PID.

Figure 2 .

 2 Figure 2.23: Frontal camera to send flying image during navigation.
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 2711 B is a symmetrical matrix, thus a 6 elements vector b, containing the different elements of B, it is used:b = 12 B 22 B 13 B 23 B 33

Figure 3 . 4 :

 34 Figure 3.4: Stereovision model with rectified image planes (the dotted rectangles are the original planes and the black line ones are the rectified image plane).

Figure 3 .

 3 Figure 3.6 shows an example of features detected in an wildfire image by the FAST, Harris, Eigen and SURF algorithms; as the MSER method returns feature regions, is not considered in this work. The input image is smoothed by a Gaussian kernel in a scale-space representation.

Figure 3 .

 3 Figure 3.8 shows a box filter 9 ◊ 9 of the Gaussian second order derivative, with ‡ =1.2 [107].

Figure 3 . 8 :

 38 Figure 3.8: Box filter 9 ◊ 9 constructed with the Gaussian second order partial derivatives, with ‡ =1.2.( a) Horizontal direction of the derivative. (b) Vertical direction of the derivative. (c) Diagonal direction of the derivative.

Figure 3 . 9 :

 39 Figure 3.9: Box filter 9 ◊ 9 constructed with the approximations of the Gaussian second order partial derivatives, with ‡ =1.2.( a) Horizontal direction of the derivative. (b) Vertical direction of the derivative. (c) Diagonal direction of the derivative.

Figure 3 . 10 :

 310 Figure 3.10: Scale-space representation. (a) The image size is iteratively reduced. (b) Integral images that allow the up-scaling of the filter at constant cost.

Figure 3 .

 3 [START_REF]2018 was California's worst year of fire ever, federal report confirms[END_REF] shows an example of feature description.

Figure 4 . 7 :

 47 Figure 4.7: Image of the checkboard modified to be visible by the LWIR cameras.

Figure 4 . 8 :

 48 Figure 4.8: Image of the checkboard acquired using a LWIR camera.

4. 3 .

 3 Obtaining fire pixel points from multimodal stereoscopic images 97 colour segmentation techniques performance is dependant on the image category (lighting, predominant colour, smoke).

Figure 4 . 10 :

 410 Figure 4.10: Example of visible and LWIR images acquired by the vision system used in this work. (a) Image acquired in the visible spectrum. (b) Image acquired in the LWIR spectrum.

Figure 4 . 12 :

 412 Figure 4.12: Fire image acquired in the LWIR domain.

Figure 4 . 13 :

 413 Figure 4.13: Graphical interface developed by Tom Toulouse.

15 )Figure 4 . 18 :

 15418 Figure 4.18: Example of matched points. (a) Left image. (b) Right image.

Figure 4 .

 4 Figure 4.19 shows the 3D fire points obtained from the fire image presented in Fig. 4.10.
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  .25).

Figure 4 . 25 :

 425 Figure 4.25: Local, Global and ENU frames. (a) Local frame (red color) and ENU frame centered in O G (black color). (b) ENU frame (black color) and Global frame (green color).

Figure 4 . 27 :

 427 Figure 4.27: Local frame colinear to the ENU frame.

The " 0

 0 value returned by the compass in position O G is the angle between the Z G and the Y enu axis. The angle between the X G and the X enu axis is equal to -0 (the value of the roll angle in position O G ), and the angle between the Y G and Z enu axis is equal to -0 (the value of the pitch angle in position O G ) (Fig. 4.28).

Figure 4 . 28 :

 428 Figure 4.28: Angles between Global frame (green color) and ENU frame (black color).

. 40 ) 4 . 5 . 3D fire points transformation for the estimation of geometrical characteristics 119 Figure 4 . 33 :

 4045119433 Figure 4.33: Lateral view of 3D fire points obtained at a given acquisition instant (the red points are the points on the ground).

Figure 4 .

 4 [START_REF] Mendes-Lopes | Flame characteristics, temperature-time curves, and rate of spread in fires propagating in a bed of pinus pinaster needles[END_REF] shows an example of pixels (red color) selected by this procedure among the pixels of fire detected at a given moment (a red outline rectangle has been added to the figure to focus the reader's attention on the selected points).

4. 5 .Figure 4 . 35 :

 5435 Figure 4.35: Selected 3D fire points used in the base plane estimation procedure. (a) Lateral view. (b) Frontal view.

4. 5 .Figure 4 . 37 :

 5437 Figure 4.37: Estimation of the base plan from the 3D lowest points of a fire. (a) Lateral view. (b) Global view.

Figure 4 .

 4 [START_REF] Cheney | Fire growth in grassland fuels[END_REF] shows the 3D points presented in the Fig.4.36 after the first rotation.

Figure 4 . 39 :

 439 Figure 4.39: 3D points after the rotation using the angles of the base plane.

  4.40). stereoscopic images acquired by drone

Figure 4 . 40 :

 440 Figure 4.40: Refined estimation of the base plan from the 3D lowest points of a fire. (a) Lateral view. (b) Global view.

Figure ? ?Figure 4 . 41 :

 ?441 Figure ?? shows the base plane obtained after the refinement procedure. The longitudinal inclination line of the fire base plane is refined and improved compared to the inclination line obtained firstly (Fig. ??).

4. 5 .Figure 4 . 42 :

 5442 Figure 4.42: Example of successive estimation of base planes, in yellow are drawn the 3D points used to compute the local planes, in blue are presented the computed planes. (a) First fire base plane. (b) Two successive base planes with close inclination. (c) Three local planes obtained at successive instants, one has an inclination variation higher than more than 3 ¶ . (d) Average plane of the first two local planes.

Figure 4 .Chapter 6 .

 46 Figure 4.45: 3D points positioned as if the ground was flat.

Figure 6 .

 6 Figure 6.15 shows the successive georeferenced fire front lines on a Google map.

Figure 6 . 15 :

 615 Figure 6.15: Successive georeferenced fire front lines.

Figure 8 . 2 :Figure 8 . 8 :

 8288 Figure 8.2: Module de stéréovision composé de caméras du visible monté sur le drone DJI S1000.

Figure 8 . 9 :Figure 8 . 11 :

 89811 Figure 8.9: Images du visible. (a) Image de gauche. (b) Image de droite.

Figure 8 . 13 :

 813 Figure 8.13: Dispositif de stéréovision multimodale complet avant un vol.

  À chaque instant d'acquisition d'image, une image du spectre visible et une image du spectre LWIR sont obtenues par chaque caméra Duo Pro R. La figure 8.15 montre un exemple d'images de feu obtenues simultanément.

Figure 8 . 15 :

 815 Figure 8.15: Exemple d'images de feu obtenues simultanément dans le spectre du visible et du spectre LWIR. (a) Image acquise dans le visible, (b) Image acquise dans le spectre LWIR.

Figure 8 . 16 :

 816 Figure 8.16: Pixels de feu détéctés dans l'image du visible présentée dans la figure 8.15 .

  montre 3 238 points détectés par cette méthode dans l'image présentée en figure 8.16.

Figure 8 . 17 :

 817 Figure 8.17: Points d'intérêt détectés dans l'image présentée en figure 8.16 (par l'algorithme de Harris (cercles rouges) et par l'algorithme SURF (cercles bleus)).

8. 2 .

 2 Matériels 187 La procédure d'appariement est celle dite de "Somme des Distances au Carré Normalisées à moyenne Nulle" (Zero mean Normalised Sum of Squared Differences, ZNSSD) [74]. La figure 8.18 montre les points appariés obtenus à partir des points d'intérêt détectés dans les images stéréoscopiques dont une des images est présentée en figure 8.15.

Figure 8 . 18 :

 818 Figure 8.18: Points appariés obtenus à partir des points d'intérêt présentés en figure 8.15 .

1 ≠

 1 µ d1 |Ø3 ‡ d1 |d 2 ≠ µ d2 |Ø3 ‡ d2 (8.2) où µ d1 et ‡ d1 qui sont respectivement la moyenne et l'écart type de la distance d 1 entre ce point et ses quatre voisins; µ d2 et ‡ d2 qui sont respectivement la moyenne et l'écart type de la distance d 2 entre ce point et l'origine du repère caméra. La figure 8.19 montre les points 3D estimés pour le feu présenté en figure 8.15.

Figure 8 . 20 :

 820 Figure 8.20: Exemple d'un plan local de propagation (couleur bleue) estimé à partir des points les plus bas d'un front de feu.

  La méthode de triangulation de Delaunay, avec un rayon égal à 0,35 est appliquée aux points 3D et fournit un ensemble de tétraèdres. Ceux pour lesquels la projection du centre dans l'image segmentée ne correspond pas aux pixels du feu sont éliminés. La figure8.28 montre la reconstruction 3D du feu illustré dans la figure 8.15.

Figure 8 .

 8 Figure 8.28: Reconstruction 3D du feu avec Delaunay.

. 6 )

 6 Position, vitesse de propagation et profondeurLa figure8.29 montre les points transformés de la base du feu de la figure8.19.

Figure 8 . 29 :

 829 Figure 8.29: Les points 3D de la base du feu.

Figure 8 . 30 :

 830 Figure 8.30: Ligne avant (couleur rouge) et ligne arrière (couleur verte) du feu.

Figure 8 . 31 :

 831 Figure 8.31: Surface du combustible à la base du feu.

Figure 8 . 32 :

 832 Figure 8.32: Les points de la base du feu dans le plan X-Y

Figure 8 . 33 :

 833 Figure 8.33: Longueur et angle d'inclinaison (-)d uf e u .

La figure 8 .

 8 34 montre l'image d'un côté de la voiture prise par le drone.

Figure 8 . 34 :

 834 Figure 8.34: Image d'un côté de la voiture prise par l'UAV.

Figure 8 . 35 :

 835 Figure 8.35: Reconstruction 3D d'une voiture.

Figure 8 . 36 :

 836 Figure 8.36: Lignes du front estimé du feu pseudo-statique, obtenu à trois instants différents.
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1: Atmospheric transmittance each sub-band of the infrared spectrum for an object at 1500 K and situated at a distance of 100 m

[START_REF] Maoult | Fire detection: a new approach based on a low cost CCD camera in the near infrared[END_REF]
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  shows the functional diagram of this process.
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	Figure 2.24: Functional diagram of the proposed system.
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	from Eq. 3.7, the following equation is obtained [95]:
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	3.5. Estimation of the essential matrix		73
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Table 8 .

 8 1: Longueur, largeur et hauteur réelles et estimées, et les erreurs associées.

			1,64	1,5
	Estimated	3,96	1,62	1,48
	Error	2%	0%	0%

Chapter 8. French Versionde systèmes capables d'estimer les caractéristiques géométriques du feu, pour comprendre et modéliser son comportement. Elle contribue également aux recherches sur l'utilisation des drones pour combattre les feux de forêt.
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(a) (b) (c) (d) Figure 8.21: Exemple de l'estimation successive de plans de propagation, en jaune sont dessinés les points 3D utilisés pour calculer les plans de propagation, en bleu sont présents les plans calculés. (a) Premier plan de base. (b) Deux plans de base successifs ayant une inclinaison proche. (c) Trois plans locaux obtenus à différents instants, l'un deux a une variation d'inclinaison supèrieure à 3 ¶ . (d) Plan moyen obtenu à partir des points des deux premiers plans.
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Introduction

This chapter presents the algorithms for the measurement of fire geometrical characteristics from 3D points obtained from the images of a multimodal (visible -LWIR) stereoscopic system carried by a drone. The following data are thus calculated: the position on the ground of the fire, its rate of spread, local direction, width, height, length, inclination angle, 3D shape and surface. In addition, from the fire points that are on the ground, the area of the fuel that burns is estimated.

Section 4.2 describes the calibration procedure used for the estimation of intrinsic and extrinsic parameters of the vision system considered in this thesis. Section 4.3 explains the multimodal fire detection procedure used in this work. Section 4.4 explains the obtaining of the 3D fire points. Section 4.5 describes the method to project the 3D fire points into several frames to simplify the fire geometrical estimation. Section 4.6 presents the methodology to measure the geometrical characteristics from the fire transformed 3D points.

Calibration of the vision system

The intrinsic and extrinsic parameters of the stereovision system are estimated using the methods presented in the previous chapter. Bouguet [START_REF] Bouguet | Camera calibration toolbox for matlab[END_REF] developed a MATLAB toolbox containing the programs for all of these methods. Since its 2014b version, this toolbox is included into the the standard Matlab toolbox called Computer Vision System, to calibrate a vision systems from checkboard images (Fig. 

Introduction

Due the unpredictable and non-reproducible behaviour of the fire, it is difficult to evaluate the uncertainty of the measurements of geometric characteristics of a fire by vision. To obtain this uncertainty, the performance of the vision system was evaluated by carrying two tests. The first one using a car. Only visible images were processed and, such as the method used for fire pixel detection was not usable, the car features were selected by hand in the images. From the 3D car points, the dimensions of the car were computed and compared with the real ones.

A second test was made on a 3 ◊ 5 m pseudo-static fire. The form of the fire was changing but not its position. This second experience allowed to test the entire stereovision system, using images in the LWIR and visible domain, to obtain a beta test of the complete device.

Car test

In this test, the UAV made a complete turn around a parked car, to acquire pictures from each car side, with a inter-distance UAV-car between 10 m and 15 m (Fig. 5.1). The position of the car was measured with a GPS sensor positioned on the roof of the vehicle, at the base of the antenna of the car. 

Introduction

This chapter presents the estimated data obtained during the monitoring of an experimental fire propagation.

The experiment was conducted on the technical platform of the "Unité d'Instruction et d'Intervention de la Sécurité Civile N.5" of Corte. An area of 5 ◊ 10 m consisting of a first flat zone of 2 m and a second zone with slope at 20 ¶ was filled with wood wool (Fig. 6.1). 

Matériels

Direction principale

Le calcul de l'inclinaison, de la largeur et de la longueur d'un feu nécessite des informations sur sa direction principale. Cette direction dépend de paramètres tels que le vent et la pente du sol et peut changer au cours de la propagation. Nous considérons dans ce travail que la direction principale du feu à un instant donné est indiquée par le vecteur dont les extrémités sont le barycentre des deux ensembles successifs de points de feu au sol au moment considéré. Pour calculer cette direction, les ensembles de points de feu au sol de deux acquisitions successives sont considérés. Pour chaque ensemble de points, il est calculé son barycentre. La figure 8.23 montre un exemple de barycentre d'un ensemble de point 3D constituant la base du feu.

Appendix Introduction

This section aims to summarize some results obtained during this thesis work, but not used for the final purpose of the project. These results may be the starting point for new research in the field of fire.

3D points in high resolution

To increase the accuracy of the calculation of the fire geometrical characteristic, an interpolation procedure allowing the increase of the 3D points number is carried out in two steps.

In a first step, a Delaunay triangulation method [START_REF] Delaunay | Sur la sphere vide[END_REF] is applied to the 3D points. Only the tetrahedrons whose radius value of the inscribed sphere is less than 35 cm are kept.