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Résumé

Cette thèse est consacrée à l’étude de la dynamique des prix sur les marchés électron-
iques. Notre premier objectif est de construire un modèle fiable pour les flux d’ordres
qui arrivent aux meilleurs niveaux du carnet d’ordres. La question sous-jacente à laque-
lle nous tentons de répondre est de savoir comment caractériser les interactions entre
les flux d’ordres. L’état du carnet d’ordres influence-t-il également cette interaction ?

Le deuxième sujet de cette thèse est l’analyse de la volatilité multifractale. Nous
étudions tout d’abord les similarités entre les propriétés dinvariance déchelle de deux
classes populaires de modèles de volatilité stochastique, à savoir le modèle de “Rough
Fractional Stochastic Volatility” (RFSV) et le modèle de “Multifractal Random Walk”
(MRW). Les similitudes suggèrent-t-elles des liens plus profonds? Quelle est la meilleure
méthode pour mesurer la rugosité de la volatilité à partir de données empiriques ? Pour
répondre à ces questions, nous commençons par analyser la limite H → 0 dans une
variante du modèle RFSV.

Enfin, nous considérons un sujet plus ambitieux qui consiste à modéliser des dy-
namiques plus complexes comme la covariance des prix avec des processus ponctuels.
Le défi consiste à quantifier la contribution marginale de chaque participant du marché
à la covariance. Existe-t-il un lien entre la contribution de la covariance et les profils
statistiques des participants du marché ?

Tous les modèles décrits dans cette thèse sont examinés avec divers ensembles de
données. Des résultats empiriques sont rapportés, avec quelques faits stylisés commen-
tés.

Le manuscrit est divisé en cinq chapitres. Dans le Chapitre 2, nous introduisons
le modèle Single Queue Reactive Hawkes (SQRH). Nos résultats suggèrent que pour
construire un modèle fiable de flux d’ordres, l’état actuel de LOB ainsi l’effet d’auto-
excitation de flux d’ordres précédents sont importants.

Dans le Chapitre 3, nous étendons le SQRH introduit dans le chapitre précédent sur
les deux meilleures côtés du LOB. Ce modèle permet de révéler la dynamique conjointe
de flux d’ordres arrivant sur les deux côtés du LOB. Nous constatons notamment que
notre variable d’état ainsi définie est fortement liée au déséquilibre des volumes.

Dans le Chapitre 4, nous introduisons une famille de mesures aléatoires log-normales
paramétrées et construisons le modèle dit S-fBM. Ce modèle nous permet de considérer
les deux classes populaires de modèles de volatilité dans le même cadre : le modèle
multifractal (caractérisée par un paramètre de Hurst H = 0) et le modèle volatilité
rugueuse (caractérisée par un paramètre de Hurst H > 0). Nous montrons notam-
ment que l’estimation de ce paramètre à partir des propriétés d’échelle peut conduire
à une forte surestimation. Nous proposons une méthode d’estimation basée sur GMM
qui, lorsqu’elle est appliquée à un large ensemble de données empiriques sur la volatil-
ité, conduit à des valeurs de H très proches du 0 pour les actions tandis que H est
significativement plus grand pour les indices.
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Dans le Chapitre 5, nous introduisons un modèle basé sur les processus de Hawkes
pour reconstruire la covariance des prix à partir des événements du carnet d’ordres. En
introduisant des relations approchées au premier ordre de la norme de la matrice des
noyaux, nous arrivons à quantifier la contribution marginale de chaque participant du
marché à la covariance des prix. Les résultats empiriques suggèrent que la contribution
des participants du marché à la covariance des prix est indépendante des actifs aux
lesquels interviennent ces acteurs. Nous montrons que leur contribution est fortement
liée à leur profil statistique. Ce chapitre ne contient que des travaux préliminaires avec
des résultats illustratifs, qui pourraient être étendus dans les recherches en future.
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Abstract

This thesis is devoted to the study of price dynamics in electronic markets. The first
objective of this thesis is to construct a reliable model for order flows that arrive at the
best levels of the Limit Order Book. The underlying question we try to answer is how
to characterize interactions between order flows? Does the state of the limit order book
influence such interaction?

The second topic of this thesis is the analysis of multifractal volatility. We start by
examining the similarity in the so-called scaling behaviors between two popular classes
of stochastic volatility models, namely the “Rough Fractional Stochastic Volatility”
(RFSV) model, and the “Multifractal Random Walk” (MRW) models. Does such sim-
ilarity suggest more profound links? Also, is there a better method to measure the
roughness of volatility from empirical data? To answer such questions, we proceed by
considering the H → 0 limit in the RFSV model.

Finally, a more ambitious topic consists of modeling complex dynamics, such as
the covariance of prices, with point processes. The challenge is to quantify each market
participant’s marginal contribution to the covariance. Meanwhile, is there a link between
the covariance contribution and the statistical profiles of market participants?

All models outlined in this thesis are examined with various data sets. Empirical
findings are reported, together with some stylized facts commented.

This thesis is divided into five chapters. In the introduction chapter, we define terms
and present preceding works that inspired this thesis. In Chapter 2, we introduce the
Single Queue Reactive Hawkes (SQRH) model. Our results suggest that to construct
a reliable order flow model, both the current state of LOB and the self-exciting effect
between order flows are important.

In Chapter 3, we extend the SQRH introduced in the previous chapter to both the
best ask and best bid side of the LOB. This model reveals the joint dynamics of order
flows on both sides of the LOB. We notably find that our so-defined state variable is
closely linked to the imbalance of volume.

In Chapter 4, we introduce a family of parametrized log-normal random measures
and construct the so-called S-fBM model. This model allows us to consider the two
popular classes of multifractal volatility (features with a Hurst parameter H = 0) and
rough volatility (features with a Hurst parameter H > 0) models within the same
framework. We notably show that estimating the Hurst parameter H from the scaling
properties can lead to strong overestimation. We propose a GMM-based estimation
method that, when applied to a large set of empirical volatility data, leads to values of
H very close to 0.

In Chapter 5, we introduce a multivariate Hawkes process based model to retrieve
covariance of price (as per return) from Limit Order Book events. By introducing
approximate relations to the first order of the kernel norm matrix, we quantified each
market participant’s contribution toward the price variance. Empirical results suggest
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that market participants’ contribution toward covariance is asset-independent. It is
also closely linked with the statistical profile of market participants. This chapter only
contains preliminary works with illustrative results, which could be extended as future
research.
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Chapter 1

Introduction

1.1 Motivations and thesis axis

This thesis was motivated by a desire to analyze the price dynamics in financial mar-
kets. Historically, stochastic calculus has been developed for price modeling and risk
management purposes, where the price of assets is implicitly supposed to be a diffusion
process.

From a practical point of view, such characterizations are no longer realistic when
examined at the scale where the price is formed. At this scale, it is indispensable to
incorporate fundamental structures in financial markets into the modeling, such as the
Limit Order Book and tick size. In the meantime, new mathematical techniques from
statistical inference and signal processing have been developed in the past decades,
which allow one to calibrate and test complicated models against observations of large
volumes.

In this thesis, the objective is to build more realistic models at the price forma-
tion level. Notably, we are interested in quantifying the dynamics of various types
of events in financial markets and describing their interactions. Some of the underly-
ing questions we try to answer are the followings: What is the influence of past
events on the financial market? How to describe the interactions between
order flows? Could the modeling of order flows be extended to quantify
more complicated quantities, such as the volatility and the covariance of the
price? Besides, could statistical inference techniques bring new insights by
revealing connections between known stylized facts?

To answer these questions, the first step is to examine historical data which records
various manifestations of financial markets. We identify and comment on some stylized
facts observed in our empirical data sets. Inspired by some intuitive findings, we proceed
by formalizing these ideas within rigorous frameworks of financial mathematics, which
finally leads to the models presented in this thesis. In fact, these models not only
capture the desired stylized facts but also provide a satisfying interpretation of other
related behaviors observed on the market.

11



12 CHAPTER 1. INTRODUCTION

From the perspective of modeling, ideally, the ultimate model should be able to de-
scribe the dynamics observed across different scales. However, models presented in this
thesis adapt themselves to either a specific time scale where the stylized fact is observed
or to a specific quantity whose behavior is modeled across different time scales. For in-
stance, the order flows models presented in Chapter 2 and Chapter 3 yield satisfactory
results at the tick level, however, the setup of these models is too granular to reproduce
empirical behaviors on a coarser scale. In contrast, a scale-invariant volatility model is
proposed in Chapter 4 to account for recently discovered stylized facts.

In the following, the main motivations behind each chapter are presented. We
comment on our findings and present new insights brought by our models. For a more
detailed presentation of each work, please refer to Section 1.6.

The work presented in Chapter 2 focuses on modeling the stochastic time evolution
of a single queue (best bid queue or best ask queue) of a limit order book. We no-
ticed that the so-called queue-reactive (QR) model presented in [87] properly described
the intuitive idea that the arrival of order flows depends on the current state of the
limit order book. Meanwhile, Hawkes processes offer a good framework to describe
the mutual exciting effect between order flows, see [22] for example. The challenge is,
can we improve the queue reactive model by incorporating the self-exciting
property described by Hawkes processes? Or equivalently, can we bring the
queue-reactive property into previous models based on Hawkes processes?
With this motivation, we introduce the model named “Single Queue Reactive Hawkes”
(SQRH) as a multivariate Hawkes process with an explicit dependency on queue size.
We provide an explicit way to calibrate this model with a Maximum-Likelihood method.
Empirical results show that this model improves the description of the order flow prop-
erties and the shape of the queue distributions. This chapter will be published as an
article in “Market microstructure and liquidity”, co-authored with Marcello Rambaldi,
Emmanuel Bacry and Jean-Francois Muzy.

Chapter 3 is the continuation of the previous chapter. We were driven by the moti-
vation of extending the SQRH model to both the best ask and best bid side of
the Limit Orderbook. Our objective is to reveal the joint dynamics of order
flows on both sides of the LOB. The state dependency is set to queue sizes at both
the best bid and the best ask prices. Empirical results suggest that our so-defined state
variable is closely linked to the imbalance of volume. This chapter is an unpublished
work with Emmanuel Bacry and Jean-Francois Muzy.

In Chapter 4, we turn our attention to the modeling of the volatility of the price.
We are inspired by the scale-invariant properties in multifractal random walk models,
see [20]. By noticing the inspiring similarities between rough volatility models and
multifractal volatility models, we try to address the question of the unification
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of the self-similar multifractal measure defined in [118, 12] with the Rough
Fractional Stochastic Volatility (RFSV) model under the same framework.
Meanwhile, we propose a more reliable approach to calibrate the roughness
of volatility from empirical data. To start, we define a new model named S-fBM
which allows properly defining the H → 0 limit of the RFSV model. We find that
by taking the limit H → 0, we retrieved the celebrated log-normal multifractal ran-
dom measure (MRM), which allows us to consider, the multifractal (H = 0) volatility
models and rough volatility (0 < H < 1/2) models within the same framework. For
estimation issues, we notably show that the direct estimation of H from the so-called
scaling properties can strongly overestimate the value of H. We propose a better GMM
estimation method that is shown to be valid in the high-frequency asymptotic regime.
When applied to a large set of empirical volatility data, empirical evidence suggests that
stock indices have values around H ≃ 0.1. We also bring evidence that the estimation
of the so-called “intermittency coefficient” λ2, which is the product of ν2 (the vari-
ance parameter of the volatility process) and the Hurst exponent H, appears to be far
more reliable, leading to values that seem to be universal for respectively all individual
stocks and all stock indices. This chapter is submitted as an article toward “Physica
A: Statistical mechanics and its applications”, co-authored with Emmanuel Bacry and
Jean-Francois Muzy.

In Chapter 5, we shift to the topic of modeling the correlated price changes at the
order book level. This chapter is motivated by the idea of reconstructing the
joint mid-price changes of a basket of assets from corresponding Limit Order
Book events. We introduced a general framework based on the multivariate Hawkes
process to express correlated price changes as cumulative consequences of order flows
in correlated markets. With some reasonable assumptions, we continue by quantifying
each market participant’s contribution to price covariance as their marginal influence
over the kernel norm matrix of the underlying Hawkes process. Empirical results sug-
gest that our model successfully reproduces the covariance of price. Besides, a detailed
investigation suggests that active market participants adopt multi-asset strategies, and
their contribution toward price correlation is uniform over different pairs of assets. From
the result obtained in this Chapter, some possible improvement includes characterizing
market participants with more various statistical features and establishing quantitative
relations between their covariance contribution and their statistical profile, which re-
mains for future research. This chapter is a preliminary work that is yet unpublished.

Let us now introduce the terms we use and the frameworks we work with throughout
this thesis. First, let us introduce some general background for the topics discussed
in this thesis. In Section 1.2, we present basic concepts of the continuous auction
and several important structures in electronic markets. In Section 1.3, we walk over
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previous works about modeling price dynamics on the microscopic level. We also cover
the basics of multivariate Hawkes processes. In Section 1.4, we present the basics of
stochastic volatility and a brief history of the development of multifractal volatility and
rough volatility models. In Section 1.5, we present the data we use for numerical studies.
In Section 1.6, we present a selection of the main results of this thesis.

1.2 Basics of financial markets

1.2.1 Electronic Markets

A financial market is a place where assets are traded. The nature of assets traded on
financial markets could be roughly categorized as fixed income, equity, or commodity.
Assets traded on financial markets could often be derivatives, which are contracts that
derive their value from the performance of underlying entities. Some common types of
derivatives are futures, swaps, options, and exotic derivatives.

In this thesis, we focus on electronic markets. Electronic markets are virtual markets
based on modern communications networks. Electronic markets make it possible for
market participants in different locations to trade live in the same market. Orders
sent to electronic markets are processed by high-speed computers. Typically market
participants in the electronic market remain anonymous to each other.

In a specific electronic market, market participants announce the quantity and the
desired price they intend to buy or sell. Their offers are known as bid offer and ask
offer. A trade is settled by the two parties if the bid price of one market participant
matches the ask price of another market participant.

If the ask price is lower than the bid price, the way to determine the effective
traded price is specified by market rules, which may differ according to markets. Unless
otherwise specified, the volume traded is usually the smaller amount in the bid offer
and ask offer.

If there is no match between the bid price and the ask price, the maximum bid price
is smaller than the minimum ask price, which is defined respectively as the best bid
price and the best ask price. The difference between the best ask price and the best
bid price is known as the bid-ask spread. In practice, we usually refer to the simple
arithmetic average of the best bid price and the best ask price as the mid-price.

1.2.2 Limit order book

In an electronic market, market participants’ actions are transmitted and processed
electronically. We refer to the organizer of an electronic market as an Exchange, whose
powerful infrastructure allows to process market participants’ operations at a very high
speed.

The order matching process in an electronic market is a continuous auction. In this
process, new arriving orders compete with existing orders simultaneously. The overall
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result of such competition will determine the execution price. The most recent execution
price is known as quote price.

In practice, an Exchange keeps track of details of orders emitted into the market,
which is known as the Incoming queue. Records in the incoming queue contain
the timestamp and specification of orders, such as price, volume and other properties.
Unless fully matched or canceled, incoming events are kept track in the queue for further
processing.

An important structure is the Limit order book (LOB). The limit order book
contains all active orders that could be executed in the forthcoming auction. The limit
order book is monitored and lively updated alongside new events, such as the arrival
of new orders, modification or cancellation of existing orders, etc. LOB contains the
information as the aggregated volume of all bid/ask offers presented at all possible
prices, which is usually made visible to all market participants. LOB also keeps track
of other kinds of information. For example, LOB records the priority of orders emitted
by different market participants at a fixed price.

Cancellation

Market order

Limit order

Spread

Best Bid Best AskTick size Prices

Vo
lu

m
e

Figure 1.1: Illustration of a Limit order book

Tick size In an electronic market, the order sent to the LOB could only be put on a
fixed grid of prices. This grid is usually uniform. The smallest difference between two
consecutive prices is known as tick size.

Tick size plays an important role in the electronic market. On the one hand, since
the bid-ask spread is at least one tick, an overlarge tick size will inhibit potential trades
since the prices on which market participants can trade could largely deviate from their
desired price.

On the other hand, an ultra-thin tick size is also harmful. To avoid a potential loss,
market participants are obliged to frequently adjust the price of their limit orders with
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the flow of new information. Such actions consume considerable electronic resources of
the Exchange. It leads to an unstable limit order book whose state is rapidly changing.

In most markets, the tick size is chosen to adapt to the price of an asset. For example,
stocks traded on the Euronext Exchange with prices smaller than 9.999 have a tick size
of 0.001, while all stocks with prices above 10 have a tick size of 0.005. For stocks with
prices between 50 and 99.99, the tick size is 0.01. Finally, for those above 100, the tick
size is 0.05. Similar rules are also observed in other stock exchanges. Previous studies
such as [49] have proposed different strategies to determine the optimal tick size.

1.2.3 Market participants

Depending on their motivation and the nature of different markets, market partici-
pants adopt various categories of strategies. The heterogeneity between agents is so
widespread that a complete characterisation exceeds the scope of this study. Neverthe-
less, we refer readers to recent literatures as [96], [111], [1], [84], [31], [109] and [75] as
detailed surveys. These studies proposed various statistical indicators to characterise
market participants’ behaviours in different aspects.

Analysis based on these features allows speculating on the nature of market partici-
pants. We roughly identify the following types of market participants according to their
motivation and business focus :

• Market makers Market makers exhibit special importance in the electronic mar-
ket. They place orders at both sides of the LOB with a spread, with the intention of
making a profit by indirectly matching slower buyers and sellers asynchronously.
Market makers provide precious liquidity in the market, which helps orders be
matched in a shorter time and at better prices. For this reason, exchanges could
sometimes reward market makers with a special liquidity provider scheme.

While holding positions, market makers are exposed to risks related to potential
price changes. Price changes are constantly driven by external information that
may move in a favorable or unfavorable direction. Hence, market makers must
react agilely to avoid being taken advantage of by others. For this reason, market
makers usually adopt high-frequency trading techniques. In fact, lots of high-
frequency firms are market makers de facto.

Another striking feature of market makers is that they are not directional traders.
Despite the fact that they place a massive volume of limit orders in the LOB, their
inventory at the end of the day is usually flat. As they avoid holding excessive
positions, they will change the prices of their offers and increase the bid-ask spread
when the price change is not in their favor.

• Hedge fund and proprietary trading firm Hedge funds and proprietary trad-
ing firms are professional investors in the market. They look for arbitrage oppor-
tunities in the market to maximize the return of capital under their management.
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Their strategies could be based on fundamental analysis or based on technical
analysis as well.
Since the nature of these strategies could be different, there does not exist a typi-
cal profile of hedge funds and prop trading firms. As for the presence in the LOB
and trading speed, they could possibly adopt high-frequency trading techniques
but also focus on low- and mid-frequency strategies.
In the late decade, hedge funds exhibit increasing similarity with market mak-
ers on statistical features, as they start to focus on optimal execution and adopt
“counter market-making” techniques, see [73] for a recent summary of optimal
executing strategies.
One of the most distinguished characterisation of hedge funds and proprietary
trading firms is that they hold positions for a relatively longer period than market
makers, which could range from several weeks to decades.

• Investment Banks Banks are big players in the financial industry. They fea-
ture a significant amount of capital and derivatives in their inventory. Since the
financial crisis of 20072008, increasing regulatory demands definitively reshaped
banks’ business lines.
In the last decade, investment banks have been more considered financial service
providers. They make a profit by charging margins in trades settled with other
market participants. Banks offer a wide range of derivative products and usually
play a counter-party role in these trades.
Today, banks are also engaged in market making and brokerage business. Banks
also apply optimal execution and statistical arbitrage strategies as well, which has
become an increasingly important business segment.

• Brokers Brokers are institutions that place orders on behalf of their clients, who
usually don’t have direct access to financial markets. Their clients could be insti-
tutions that are not professionals in finance or individual investors. For example,
a company may seek assistance from a broker to sell stocks in large quantities or
exchange a large amount of money for another currency. Also, individual investors
may use brokers to invest in stocks and other assets.

1.3 Modelling financial markets

1.3.1 Price modeling

Modeling the dynamics of financial markets, especially modeling the evolution of price,
has always been a fundamental challenge for financial mathematics. It not only allows
market participants to maximize their profits but also to mitigate risks of different na-
tures effectively, which is pursued by regulators as well. Failing to identify and regulate
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risky behaviors in the financial market would induce systematic risk, which leads to
chaotic market behaviors and even financial crisis.

According to the scales at which price dynamics are observed and modeled, we
roughly classify existing models into two categories:

Macroscopic level models In the past development of financial mathematics, theo-
ries based on Itô calculus were developed to model dynamic trading in continuous time.
Derivatives are represented as expectations with respect to the risk-neutral probabil-
ity measure of the derivatives discounted payoffs. This setting successfully enables the
computation of no-arbitrage prices and hedging strategies.
In this approach, assets’ prices are considered as continuous semi-martingales. They are
driven by diffusion processes such as Brownian motion or geometric Brownian motion.
Stochastic integration with respect to a Brownian motion and Itô calculus are developed
to model dynamic trading in continuous time.

Microscopic level models In this thesis, we focus on the microscopic level models
as they offer a more realistic description of the price formation mechanism. The micro-
scopic level is the ultimate level where the price (usually taken as the last traded price or
simply the midprice) is determined. Microscopic level models are not necessarily under
the high-frequency context. In practice, the frequency at which the price dynamics are
modeled/sampled could vary from a few microseconds to several minutes.
We mention several streams of literature for microscopic level models. The first stream
of literature focuses on the overall statistical properties of LOBs, like the dynamic
of spread and the distribution of lengths of intervals between consecutive executions.
The earliest work of this stream could be tracked back to [37] and [50], with follow-up
works as [132]. In the works mentioned above, simplified dynamics for the order flow are
assumed to build mathematically tractable models that can reproduce, at least partially,
some of these observed properties.
In the second stream of literature, models developed by the economics community focus
on the behavior of rational agents that act strategically to optimize their utility function
(see [125] for example).
As the last stream of literature, we especially mention the Zero Intelligence model
firstly introduced in the pioneering work [132]. In this model, the order book is seen as
a pure stochastic system with order flows governed by independent Poisson processes,
indicating that market participants send orders without strategies. This is the origin of
its name “Zero Intelligence”.

Although the assumption that order flows are driven by Poisson processes is in-
consistent with empirical observations, the zero-intelligence model quickly became an
influential and successful model. In [56], the authors examined the zero intelligence
model with empirical data and concluded that important statistical properties, such as
the size of the bid-ask spread and even the market impact of orders are satisfactorily
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reproduced. The zero intelligence model quickly became influential due to its simplic-
ity. Relying only on some basic hypotheses, the zero intelligence model usually serves
as a baseline model, which could be further improved to reproduce specific empirical
phenomenons. It also inspires follow-up works that suppose more realistic dynamics of
order flows. My thesis contributes to the latter category and builds itself on previous
works.

This stream of literature features the framework where an asset’s price is purely driven
by limit order book events. These events could be, for example, matched trades be-
tween two market participants or events that emptied all volumes presented at the best
bid/ best ask position. Since these events occur discretely over time, their dynamic is
described by point processes. Prices are discrete values, and they change discretely over
time. This is different from most macroscopic level models, which describe the price as
a continuous diffusion process.

Under this framework, limit order book events are usually simplified into three types.
Events that bring volume into all possible price levels are considered as often collec-
tively classified as Limit orders. The partial or total removal of previously emitted
limit orders is classified as Cancellations (short for cancellation orders). Events that
immediately trigger trades between two market participants are named Market orders.
Usually, market orders consume available volume at the best bid/ best ask prices. Under
this setting, the price is determined by order flows, modeled as birth-death processes
where limit orders bring new volumes, and cancellation/market orders consume existing
volumes.

Continuing along with this stream of literature, the work [45] is one of the first papers
to clearly state the problem of LOB modeling in the context of queuing theory and
Markov chains. By leveraging the properties of Markov chains, the authors successfully
derived conditional probabilities between events, such as the conditional probability that
a market order arrives on the LOB within a specific time interval before the mid-price
changes.

Recently, the authors of [4] kept the same assumption of independent queues driven
by Poisson processes and proved that using the theory of infinitesimal generators and
Lyapunov stability criteria, cancellations are crucial to ensure the stability of the LOB.
They also show that under their model, the process of mid-price converges to a Wiener
Process.

In order to take the strategies practiced by market participants into account, a possible
improvement from the framework based on independent Poisson processes is to model
the order flows as co-dependent point processes. We mention Hewlett in [85], and Large
in [98] as pioneers who firstly describes the arrival of order flows by multivariate Hawkes
processes. In the following section, we present the basics of the multivariate Hawkes
process and discuss microscopic level modeling with the Hawkes process.
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1.3.2 Hawkes process

The multivariate Hawkes process is a family of point processes firstly introduced in
[80] and [81] by A.G Hawkes. The most distinguishing feature of the Hawkes process
compared to the Poisson process is that the arrival rate of events depends explicitly on
past events.

Hawkes processes offer a flexible but robust framework for modeling clustered events.
It is widely used in various disciplines, such as seismology ([122]), Neuroscience ([93]),
and machine learning ([110]). We refer readers to [16] as a general survey written by
A.G Hawkes.

As summarized in a recent survey [82], Hawkes processes are also widely applied
in quantitative finance. One of the major distinctions of the Hawkes process is that,
as a self-exciting process, it successfully captures the empirical fact that current events
(such as transactions) will trigger future events. Its self-exciting property is particularly
pertinent in the context of modeling microscopic level events. In his book [133], Soros
even argues that most orders on the market are merely responses to previous orders
(See also [39]). Without being exhaustive, we list some recent literature: high-frequency
events modeling ([11], [27]), analysis of market impact ([17], [18]), volatility modeling
([127]), modeling of correlated price changes ( [38], [128] ). For limit order book modeling
we invite readers to Chapter 2 and Chapter 3 for more details.

Definition A multivariate Hawkes process of dimension d is a d-dimension counting
process N(t) = (N1(t), N2(t), ..., Nd(t)), for t ≥ 0. Each component N i accounts for the
number of events of the i-th type during the interval [0, t]. We note by Ft the filtration
generated by the process N(t) and P the associated probability measure.

Under reasonable assumptions (see Daley and Vera-Jones book [47]), the counting
process N(t) admits a conditional intensity λ(t) = (λ1(t), λ2(t), ..., λd(t)), for t ≥ 0,
which has the following interpretation:

P(N i jumped in the interval [t, t + dt]|Ft) = λi(t) dt, ∀1 ≤ i ≤ d. (1.3.1)

According to [89], the quantity

Ni(t) −
∫ t

0
λi(s) ds

is a Ft-martingale. The intensity function λ(t) is a combination of realized events,
which takes the form

λi(t) = gi(
d∑

j=1

∫
ϕij(t − s) dN j

s ), ∀1 ≤ i ≤ d, (1.3.2)

where the ϕij(·) are causal functions, i.e. supp ϕij(·) ⊂ R+. In most cases, the linear
form gi(x) = µi + x is considered, with the restriction that µi ≥ 0. The intensity
function λ(t) could be then written in the form:
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λi(t) = µi +
d∑

j=1

∫ t

−∞
ϕij(t − s) dN j

s . (1.3.3)

It is worth mentioning that the Poisson process is the degenerate case where all ϕij = 0.
ϕij are mentioned as self-exciting kernels, or simply kernels. In the following, it is
assumed that all kernels ϕij(t) satisfy

ϕij(s) ≥ 0, ∀t > 0. (1.3.4)

In the rest of this study, we note Φ(t) the matrix of kernel ϕij(t). We note Φij the
integral of ϕij(t):

Φij =
∫ ∞

0
ϕij(s) ds, (1.3.5)

and we note Φ as the matrix of Φij . From [47] and [16], the multivariate Hawkes process
Nt has asymptotically stationary increments and λ(t) is asymptotically stationary if Φ
satisfies the following condition:

Condition 1. (Stationary condition) : For the Hawkes process defined as above to be
stationary, a sufficient condition is that the spectral radius of the matrix Φ is smaller
than 1.

In the following, we assume the condition 1 is always satisfied.

Cluster representation The Hawkes process defined above admits a clustering rep-
resentation, which is also referred to as the branching representation. The Hawkes
process in Eq. (1.3.3) describes the total population in the following immigration-birth
process: the arrival of immigrants is governed by a Poisson process with intensity µ.
From its arrival, each individual (including immigrants and their descendants) starts a
new generation: it gives birth to new individuals at the rate Φ(·). All individuals share
the same fertility function Φ(·). We refer readers to [10] for more details about the
Galton-Watson branching process.

As it describes the arrival of immigrants, the µ in the intensity function Eq. (1.3.3) is
often mentioned as the exogenous intensity. The term with kernel ϕij in Eq. (1.3.3)
governs the new birth brought by existing individuals. For this reason, it is named as
endogenous intensity.

A direct interpretation of Φij is the average number of events of type j that an event
of type i is given birth to. For this reason, the matrix Φ is referred to as the branching
ratio matrix in some literature.

Let’s continue with the interpretation of integrated cumulants of the multivariate
Hawkes process. Consider the convolution of kernels:

R(t) =
∞∑

n=0
Φ∗n(t), (1.3.6)
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where the notation ∗n stands for Φ∗Φ∗ ...Φ with Φ repeating for n times. The operator
∗ stands for convolution between two matrices in the following way: for two square
matrices A(t) and B(t) whose elements are functions, A ∗ B(t) yields a square matrix
whose i, j-th element is:

∫ ∑
k

Aik(s)Bkj(t − s) ds. (1.3.7)

By convention, for n = 0, Φ0(t) = Id. In references [47] and [16] it is pointed out
that the so-defined matrix R(t) is the solution of the following equation:

Φ(t) + R(t) ∗ Φ(t) = R(t). (1.3.8)

Similar to the definition of Φij , if we define

Rij =
∫ ∞

0
Rij(s) ds (1.3.9)

and note R as the matrix of Rij , we have the following relation which links Φ and R:

R = (Id − Φ)−1. (1.3.10)

The Rij defined above is the average number of events of the ith component triggered
(directly or indirectly) by an exogenous event of the jth component. The matrices Φ
and R can be read as Granger causality relationships (see [72]) between different types
of events. Such interpretation allows one to quantify the influence between entangled
flows of events. We refer readers to [8] where a dedicated study about the interpretation
of integrated cumulants of multivariate Hawkes process under the context of Granger
causality is provided.

Simulation and statistical inference of Hawkes process Regarding the simula-
tion and effective calibration of the Hawkes process, we mentioned the earliest works as
[123] by Ogata and [124] by Osaki. In their works, the thinning algorithm is proposed
to effectively simulate point processes. They also discussed the maximum likelihood
estimator for some widely used kernels as exponential kernels and power-law kernels.
For recent works on the effective simulation of Hawkes process, we mention [119], [120]
and [68].

For non-parametric estimation, we mention [23] and [18] where Bacry et al. proposed
a non-parametric estimation method for multivariate Hawkes processes based on second-
order analysis. They are followed by [22] where the non-parametric Hawkes kernel
estimation procedure is improved and carefully examined with empirical data set. We
also give special credit to the open-source statistical referencing library Tick, see [21],
which offers efficient implementation of the algorithms mentioned above.
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1.3.3 The Hawkes model for order flows in LOB

Let’s continue with the thread of modeling limit order book dynamics at the microscopic
level. In the stream of literature following [132], the LOB is seen as a high-dimensional
queuing system with orders arriving randomly, which focuses on the overall statistical
properties of LOBs and assumes certain simplified dynamics for the order flow. We
especially mention two works that inspired our work in Section 2.2. In [3], the authors
drop the assumption of uncorrelated order flow and introduce a memory effect by choos-
ing to model the rates of limit and market order arrivals (respectively λL and λM ) by
a Hawkes process:

λℓ(t) = µℓ +
∑

m∈{L,M}

∫
ϕℓm(t − s)dNm

s , with ℓ ∈ {L, M} . (1.3.11)

In [87], the authors focus instead on the influence of the current state of the LOB on
trading decisions. They propose a simple Markov model, the so-called Queue-Reactive
(QR) model, where the order flow arrival at a given price level is modeled as an inho-
mogeneous Poisson process with an intensity that depends only on the current state of
the order book through the available volume :

λℓ(t) = µℓ(q(t)), (1.3.12)

for any ℓ ∈ {L, M, C}.
Both works have established the conditions under which their model possesses er-

godic properties, making it possible to reproduce the empirical LOB queue size distri-
butions as the invariant distribution of a Markov process. More recently, [102] extends
the model of [87] by allowing the order book dynamics to depend also on the type of
the order that led to a complete depletion of a level (i.e., a market or cancel order)
and also by taking into account the order size. Thus [102] departs slightly from the
pure Markovian framework. Optimal market-making strategies are also discussed, and
performance is assessed on real data.

We mention [114] as an interesting reference as well. This work also describes the
dynamics of LOB by a state-dependent Hawkes process. However, the state of LOB is
determined differently from Chapter 2 and Chapter 3. For other recent works about
LOB modeling via Hawkes process, we refer readers to [4], [136] and [5].

1.4 Rough and multifractal volatility

In this section, we start by recalling basic definitions and properties of stochastic volatil-
ity. Then we enter into the domain of rough volatility and notably introduce two influ-
ential models, namely the Multifractal Random Walk model (MRW in short) and the
Rough Fractional Stochastic Volatility model (RFSV in short). The H → 0 limit of
the RFSV model is carefully examined in this thesis. Under this context, we discuss
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some inspiring similarities between rough and multifractal volatility models under this
context. We also discuss the parallel topic of the reliability of parameter estimation in
rough volatility models. In the end, we refresh readers with the basics of the generalized
method of moments (GMM) estimation.

Notations for volatility process Since the epoch-making work [35] by Black and
[88] by Hull and White, volatility modeling plays a vital role in risk management and
derivative pricing. Let the stochastic process P (t) stand for an asset’s price, and X(t) =
log P (t) stands for the stochastic process of log price. From the moment t to t + τ , the
difference of the log-price X(t) approximates the return of asset:

δτ X(t) = X(t + τ) − X(T ) ≈ δτ P (t)
P (t)

. (1.4.13)

Although it is known since Mandelbrot and Fama [105, 55] that returns exhibit excess
kurtosis, returns are generally considered as i.i.d gaussian distributions, see[9, 78].

We define the squared volatility of price P (t) over the interval [t, t + τ ] as the
quadratic variation of the log-price X(t), which is noted σ2

τ (t) :

σ2
τ (t) = [δτ X(t)]. (1.4.14)

Under certain circumstances, we assume that there exists a random measure M(·) and
σ2

τ (t) is simply the length of interval [t, t + τ ] under M(·):

σ2
τ (t) = M [t, t + τ ]. (1.4.15)

If M(·) further admits a density process denoted as σ2(s), we can further write.

σ2
τ (t) =

∫ t+τ

t
dM(s) =

∫ t+τ

t
σ2(s) ds. (1.4.16)

However, we emphasize that not every random measure M(·) admits a density process,
such as the case with MRM. Under this context, from the stationarity of the return
process, we retrieve

E[σ2
τ (t)] = Ct. (1.4.17)

The equation above is in line with the famous squarerootoftime rule, which states that
when high-frequency volatility is scaled to a lower frequency, it should be multiplied by
the square root of the ratio between time scales. Precisely, we have

E[σ2
T (t)] = T

τ
E[σ2

τ (t)]. (1.4.18)
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1.4.1 Multifractal volatility

Multifractality The term fractal was first introduced by Benoit Mandelbrot in 1974,
see his famous book [106]. The application of multifractality in financial mathematics
started with work [118], [107] and [54]. Since then, the volatility process has been known
to be much less regular than a Brownian motion. Multifractal models have been designed
in order to reproduce this irregular behavior along with the scale-invariant properties,
see [41] by Calvet, [26] by Barral, and [20] by Bacry et al. Generally speaking, a
continuous multifractal function f : R → R is defined by the fact that around any point
x, the local increment f(x + h) − f(x) is described by a local power law:

f(x + δ) − f(x) ∼ δh(x), (1.4.19)

where the exponent h(x) > 0 is called the singularity exponent (or the Hölder
exponent), as it describes the local degree of singularity around the point x. For
h ∈ R+ ∪ {+∞}, we note

Ef (h) := {x|h(x) = h} (1.4.20)

the set of points with the same singularity exponent h. The singularity spectrum of
f , noted D(h), is the mapping from h to the Hausdorff dimension of the set Ef (h).

Often, instead of directly characterizing the singularity spectrum, the multifractal
behavior is introduced by the following definition :

Definition 1.4.1. A process X(t) with stationary increments is scale-invariant if δτ X(t) =
X(t + τ) − X(t) follows a power law:

E[|δτ X(t)|q] ∼ Cqτ ζ(q), when τ → 0. (1.4.21)

We further distinguish the process X(t) as monofractal or multifractal according to the
form of the multifractal exponent ζ(q). The process X(t) is monofractal if ζ(q) is
a linear function of q. If ζ(q) is a nonlinear function of q, the process X(t) is called
multifractal.

The so-called multifractal formalism (see [117], [19], [90] and [91]) established an
exact correspondence between the singularity spectrum D(h) and the multifractal ex-
ponents ζ(q) through a Legendre transform under reasonable assumptions. Such results
paved the way for applying multifractal processes for volatility modeling since in prac-
tice, ζ(q) is much easier to measure.

We mention the fractional Brownian motion as an example of monofractal processes
with ζ(q) = qH. We also refer readers to dedicated studies of multifractal processes as
[97], which further proved the concavity of the multifractal exponent :

Proposition 1. If the scaling law Eq. (1.4.21) holds true when τ → 0, i.e.
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E[|δτ X(t)|q] ∼
τ→0

Cqτ ζ(q), (1.4.22)

then the multifractal scaling component ζ(q) is a concave function of q.

Multifractal random walk The “Multifractal Random Walk” (MRW) was first in-
troduced by Bacry et al. in [118] and [12] as a model for asset prices in order to
account for their multifractal properties, i.e., the fact observed by various authors (see
[67, 66, 104]) that empirical moments of asset return obey non-trivial scaling properties.
The MRW model relies on a multifractal stochastic volatility model, namely the “Mul-
tifractal Random Measure” (MRM) model (see [118, 12]), in which the log-volatility is
provided by a log-correlated Gaussian field. Such a class of processes, also referred to as
Gaussian multiplicative chaos, has been at the heart of many studies in a large variety
of applications [129]. In [115, 20], Gaussian multiplicative chaos and the associated
log-normal random cascades have been extended to any infinitely divisible distribution
by Bacry and Muzy. In the MRW model, the log price XT (t) is :

XT (t) = B(M̃T [0, t]), (1.4.23)

where Bt is a standard Brownian motion and M̃T is a multifractal random measure
(MRM) obtained as the following weak limit :

M̃ℓ,T ( dt) w−−→
ℓ→0

M̃T ( dt), (1.4.24)

where M̃ℓ,T ( dt) is defined by

M̃ℓ,T ( dt) = eωℓ,T (t) dt (1.4.25)

and the notation w−→ stands for the weak convergence. The process ωℓ,T (t) is Gaussian
and stationary with a logarithmic covariance vanishing for lags greater than T , see
Eq. (4.7.75).

Since such a logarithmic decreasing function can be interpreted using random multi-
plicative cascades in the limit when the preferred scale ratio goes to 1, one often refers to
such a model as continuous cascade [14] models. In [115, 20], MRM measures have been
extended from log-normal statistics to any log-infinitely divisible law which satisfies :

E[|δτ MT (t)|q] = E[|MT (t + τ) − MT (t)|q] = Cqτ ζ(q), ∀t < T. (1.4.26)

The MRW model serves as a concise yet powerful stochastic volatility model where the
log volatility is provided by a log-correlated Gaussian field, which is also referred to
as Gaussian multiplicative chaos. The Gaussian multiplicative chaos has been at the
heart of many studies in a large variety of applications, see [129]. The model presented
in Chapter 4 could be regarded as a specific construction of such log-normal infinitely
divisible distribution.
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1.4.2 Rough volatility

The pioneering work [65] by Gatheral et al. introduced a new class of model (rough
volatility model) in which the log volatility is modeled by a fractional Brownian motion
with a small Hurst parameter H, meaning that the log volatility is less regular than a
standard Brownian motion (see also [32, 33]). It is worth mentioning that the multifrac-
tal volatility models (including the MRM model) involve behaviors of the log volatility
that are less regular than any fractional Brownian motion. This point will be further
illustrated in Chapter 4.

The empirical evidence reported in [65] (followed-up by later studies such as [101] and
[62]) suggests that the logarithm of the asset price stochastic variance can be represented
by a fractional Brownian motion (fBM) of Hurst exponent H close to H ≃ 0.1 < 1/2.
More recent studies based either on quasi-likelihood approach [62] or GMM-approach
[36], consistently suggest that H can be close to 0, i.e., H ≲ 0.05 for a large panel of
equity data.

Rough volatility has quickly become a trending topic in the community of quantita-
tive finance. New profound insights on stochastic volatility models have been obtained
in following up studies. We especially mention [61], which argues that volatility has to
be rough to match the power-law form of volatility skew observed in empirical data.
More recent work like [94] further justifies the roughness of volatility as a corollary of
the non-arbitrage principle.

The popularity of rough volatility models is not limited to successfully capturing the
empirical properties of realized volatility. When roughness in volatility is incorporated
into option pricing, a very good fit of option prices, and notably, the power-law behav-
ior of ATM skew close to maturity is obtained, see [101, 29, 61]. Here we give more
references about option pricing with rough volatility. In [86], a toy model is proposed
to price option while supposing the underlying volatility process is rough. Following-up
studies for option pricing under rough volatility are covered in a general survey [95].

Recently, rough volatility has been incorporated into term structure models. This
is an exciting advance because term structure models, such as the Heston model and
Bergomi model, are used as industry standards for pricing Fixed Income Currencies
Commodities (FICC) products. In [29], the rough Bergomi model is firstly introduced.
In a series of recent works [51], [52] and [53] by El Euch et al., a rough version of the
Heston model is introduced.

Literature about rough volatility is not limited to hedging and pricing purposes. In
[69], a trading strategy based on the roughness of the price process is proposed. In
[6], approximation problems of rough volatility models are firstly investigated. In [30]
and [60], strict mathematical tools to analyze regularity structures of rough volatility
models are introduced.
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RFSV model The Rough fractional stochastic volatility(RFSV) model proposed in
[65] by Gatheral et al. assumes that assumes the volatility σ2

τ (t) on a given interval
[t, t + τ ] is provided by integrating a stationary log-normal process:

σ2
τ (t) =

∫ t+τ

t
v(s) ds =

∫ t+τ

t
eoH,T (s) ds, (1.4.27)

where oH,T (t) is a fractional Ornstein-Uhlenbeck (fOU) process that satisfies, for some
0 < H < 1/2, the equation

doH,T (t) = ν dBH
t − α(oH(t) − m) dt. (1.4.28)

In the equation above, BH
· is a fractional Brownian motion with Hurst parameter H.

The parameter T := α−1 accounts for the time scale of mean-reversion. In [65], it is
argued that when T → ∞, oH,T (t) behaves locally as a fractional Brownian motion
BH(t) in the following sense:

E[ sup
t∈[0,t0]

|oH,T (t) − oH,T (0) − νBH
t |] → 0, ∀t0 > 0. (1.4.29)

For τ > 0 small enough, the authors calculate covariance function of oH,T (t) from the
covariance of BH(t):

Cov[oH,T (t), oH,T (t + τ)] ≃ ν2

2

(
T 2HΓ(2H + 1) − τ2H

)
, (1.4.30)

where Γ(·) is the Gamma function.

1.4.3 The H → 0 limit in rough volatility models

Since [65], more recent studies based either on quasi-likelihood approach ([62]) or GMM-
approach ([36]) consistently suggest that the Hurst parameter H is close to 0, with
H ≲ 0.05 measured for a large panel of equity data. Based on empirical evidence,
it is natural to consider the limit H → 0 in the rough process driving the volatility
logarithm. Even if one cannot plug H = 0 in the power-law expression of the fractional
Brownian motion covariance, formally, it corresponds to a logarithmic behavior.

Such behavior is precisely the one that characterizes the so-called continuous random
cascade models introduced two decades ago by Bacry et al. in [118, 12] and presented
in Section 1.4.1. Recovering a multifractal volatility model as the limit H → 0 of a
rough volatility model or, from a more general perspective, defining a meaningful limit
H → 0 of a fractional Brownian motion and one of its variants has been the subject
of various recent studies. In [63], the authors build a H = 0 - fBM by considering a
regularisation from the harmonizable representation of fBM’s while in [121, 74] a H = 0
limiting process is obtained using a peculiar normalisation and centering of the fBM. In
[59]ă(see also [58]), the authors consider the limit H → 0 of the exponential of a rescaled
Riemann-Liouville fBM and its relationship with Gaussian multiplicative chaos. Finally,
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in [28], Bayer et al. propose a new class of rough models that consists in modulating
the Riemann-Liouville fBM power-law kernel by a logarithmic factor. The so-obtained
“super-rough” stochastic volatility remains well-defined as a continuous process when
H = 0.

In this thesis, our goal is to introduce a new version of rough volatility models. The
Hurst parameter H is explicitly specified in this new model. Meanwhile, the new model
should be a stationary replicant of the RFSV model, which is, de facto, driven by non-
stationary fBM processes. This indicates that the covariance function in the new model
should be exactly the one obtained when considering the small-time approximation of
the correlation of the fractional Ornstein-Uhlenbeck process considered in [65]. The
question we want to answer is, in the H → 0 limit, can we extract the exact self-similar
multifractal measure defined in [118, 12] from the new model?

1.4.4 Generalized method of moments (GMM)

In the context of multifractal models, the parameters are related to the moments of the
increments of the volatility or its logarithm. It’s therefore reasonable to consider the
Generalized Method of Moment (GMM) for estimating the parameters.

The GMM was firstly proposed by Hansen in [76], but the basic idea could be traced
back to Sargan’s work [131]. For readers’ reference, here we mention [42, 43] by Calvet
and Fisher, and [15] by Bacry et al. as applications of the GMM in multifractal models.

Consider a multi-dimension stochastic process Yt which is defined by the parameters
set Θ∗ of dimension p. In most cases, the process Yt is supposed to be a weakly stationary
ergodic stochastic process.

Let us now consider a sample Yt composed of n observations. To estimate the pa-
rameter set Θ, GMM consists of choosing a vector-valued function g(Y, Θ) of dimension
q > p therefore the following equation remains true only with the authentic parameter
Θ∗ :

m(Θ0) := E[g(Yt, Θ∗)] = 0. (1.4.31)

Meanwhile, for all other parameters set Θ ̸= Θ∗, m(Θ) should be non-trivial. Eq. (1.4.31)
is known as the moment condition. In practice, m(Θ0) is approximated by its em-
pirical counterpart:

gN (Θ) := 1
n

n∑
k=1

g(Yk, Θ). (1.4.32)

Definition 1.4.2. The GMM estimator Θ̂ of Θ∗ is defined as

Θ̂ = arg min
Θ

(gT
N WN gN ), (1.4.33)

where WN is a series of weighted matrices which converge to W∞ when N → +∞.
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The validity of GMM is based on the following theorem:

Theorem 1.4.3. (Hansen) If
(i) The process Yt is ergodic
(ii) The series {f(YΘ∗ [k], θ)}k satisfies the central limit theorem, i.e:

1√
N

N∑
k=1

f(YΘ∗ [k], θ) → N (0, VΘ) (1.4.34)

where the matrix VΘ is defined by

VΘ = lim
k→+∞

n∑
k=−n

E[f(YΘ∗ [k], Θ)f(YΘ∗ [k], Θ)⊤]. (1.4.35)

(iii) The matrix DgN = ∂gN
∂Θ (which is of dimension r×p) is of rank p. When N → +∞,

it converges to

Df = E
[∂g(YΘ∗[k],Θ)

∂Θ

]
. (1.4.36)

Then, the GMM estimator Θ̂ is consistent and
√

N(Θ̂ − Θ) → N (0, Σ) (1.4.37)

where
Σ = (Df⊤W∞Df)−1Df⊤W∞VΘ∗W∞Df(Df⊤W∞Df)−1. (1.4.38)

We recommend readers to refer to [76] for the complete proof, which also comes with
the following proposition :

Proposition 1.4.4. The GMM estimator is optimal if W∞ equals to V −1
Θ∗ . In this case,

the covariance matrix or the GMM estimator is

Σopt = (Df⊤V −1
Θ∗ Df)−1. (1.4.39)

In practice, since the true parameter set Θ0 is unknown, W∞ couldn’t be chosen as
V −1

Θ∗ a priori. One common solution is the so-called iterated GMM, which consists of
the following recursive procedure :

1. Initialise the matrix WN with arbitrary values, such as WN = Id or any a priori
estimation of Θ∗.

2. Calculate Θ̂ with the current WN as per Eq. (1.4.33).

3. Update WN = V −1
Θ̂ with the estimator Θ̂ obtained in the previous step.

4. Repeat steps 2 and 3 until the series of Θ̂ has sufficiently converged.
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1.5 Data presentation

The reliability of conclusions established in this thesis is supported by empirical results
obtained with various data sets, which record price variations and different types of
limit order book events during the double auction process on electronic markets. Since
these data sets differ in assets and specifications of information recorded, we provide a
separate description for each of them.

Bund future and DAX future
The DAX (Deutscher Aktienindex as the German stock index) is a stock index con-

sisting of the 30 major German companies trading on the Frankfurt Stock Exchange.
The Bund is the sovereign debt instrument issued by Germany’s federal government to
finance outgoing expenditures. In our studies, we exploit futures on the DAX index
(DAX in the following) and futures on German government debt: 10-years Euro-Bund
(Bund in the following).

In finance, a futures contract is a standardized legal agreement to trade an asset at
a predetermined price at a specified future moment. Futures are traded on an exchange.
Similar contracts traded over the counter (OTC) are called forwards, which also allow
for private customizations.

Unlike equities, futures contracts have expiration dates where physical delivery of
the underlying is expected. For the same underlying, futures with different maturities
(usually in different months) are traded over the market. In the context of futures, The
month currently closest to delivery is called nearby month, which is also referred to as
front month or spot month. A future for the nearby month is the shortest contract
that an investor can purchase. Trading is usually most active in the nearby month. For
this reason, the nearby month exhibits the most volatility.

At maturity, market participants need to reposition their portfolios to avoid delivery.
This procedure is called roll-over. It consists of selling the contract that one currently
holds to buy the same contract with deferred maturity (usually the next maturity). Due
to liquidity reasons, the roll-over is performed on the last day or the last week of the
month preceding the delivery. In our studies, we always refer to the future of the nearby
month and the adjusted prices when rolling over takes place.

Our data set contains tick by tick level L1 data of Bund future and DAX index
future traded on the Eurex electronic future market. The data was recorded from
October 1st, 2013 to September 30th, 2014. The dataset consists of events happening
at the first level of the order book, each with a timestamp indicating the record time
with microsecond precision that provides prices and outstanding quantities. This data
set is used in Chapter 2, Chapter 3 and Chapter 5.

Stocks in the CAC40 index
The CAC40 (Cotation Assistée en Continu) is the principal stock index in France.
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The index is composed of the 40 most significant stocks among the 100 largest market
caps on the Euronext Paris (formerly the Paris Bourse), weighted by capital. It is
one of the main European indices alongside Brussels’ BEL20, London’s FTSE100, and
Amsterdam’s AEX index.

The components of the CAC40 originate from companies in different sectors to
reflect the global trend of the economy. Based on recent changes in the capital, the list
of components stocks is regularly updated.

Our data set is provided by EURONEXT Exchange, which records limit order book
events for all stocks in CAC40, spanning from April 2017 to March 2018. During this
period, one stock is removed and then replaced by a new stock in the CAC40 index. This
data set is the raw record of all events arriving on (at least) the first five best levels
of the limit order book. Events’ associated timestamps are recorded at microsecond
precision.

This extremely rich data set makes it possible to calculate statistical profiles for
market participants, such as changes in inventories and presence in the best positions
of the LOB. It is used in Chapter 5.

Oxford-Man realized volatility database
The Oxford-Man realized library contains daily close-to-close returns together with

daily non-parametric measures of realized volatility for a variety of assets. Readers can
refer to [83] and [25] for detailed descriptions of their data cleaning, non-parametric
volatility calculation methodology, together with the complete list of assets covered in
this data set.

The Oxford-Man realized library is of particular interest not only because of its
comprehensive coverage of a wide range of assets. It is also the most common reference
data set in the community rough volatility. In Chapter 4, the Oxford-Man realized
library is exploited as a part of empirical studies.

Yahoo Finance
Yahoo Finance1 provides financial news and historical data, including stock quotes

and financial reports. In Chapter 5, the historical daily open, highest, lowest and close
price time-series of 296 individual stocks are collected from Yahoo Finance. Stocks were
taken from either the S&P 500 index (historical data from 1985-01-01 to 2021-12-31) or
the CAC 40 index from 2000-01-01 to 2021-12-31.

1.6 Résultats de la thèse

Dans cette section, les résultats obtenus dans cette thèse sont résumés à un haut niveau
avec des illustrations, des conclusions et des remarques sélectionnées de chaque travail.

1http://YahooFinance.com
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Dans le chapitre 2, nous introduisons le modèle SQRH (Single Queue Reactive Hawkes).
Nos résultats suggèrent que pour construire un modèle de flux d’ordres fiable, il faut
tenir compte à la fois de l’état actuel de la LOB, de l’effet d’auto-excitation et de
l’excitation croisée de flux de ordres précédents.

Dans le chapitre 3, nous étendons le modèle SQRH introduit dans le chapitre 2 à la
fois à la modélisation de la meilleure demande et de la meilleure offre de la LOB. Ce
modèle nous permet de révéler la dynamique conjointe de flux d’ordres des deux côtés
de la LOB. Nous constatons notamment que notre variable d’état ainsi définie (Voir le
chapitre 3 pour plus de détails) est liée de manière unique au déséquilibre du volume.

Dans le chapitre 4, nous introduisons une famille de mesures aléatoires log-normales
paramétrées et nous construisons le modèle S-fBM. Ce modèle nous permet de consid-
érer les deux classes populaires de modèles de volatilité multifractale et rugueuse dans
le même cadre. Nous montrons notamment que l’estimation directe du paramètre de
Hurst H à partir des propriétés d’échelle peut conduire à une forte surestimation. Nous
proposons une méthode d’estimation basée sur le GMM qui, lorsqu’elle est appliquée à
un large ensemble de données empiriques de volatilité, conduit à des valeurs de H très
proches de 0 pour les prix des actions.

Dans le chapitre 5, nous introduisons un modèle multivarié basé sur le processus de
Hawkes pour extraire la covariance du prix (en fonction du rendement) des événements
du carnet d’ordres à cours limité. En introduisant des relations approximatives au
premier ordre de la matrice de la norme du noyau, nous quantifions la contribution de
chaque participant du marché à la variance du prix. Les résultats empiriques suggèrent
que la contribution des participants du marché à la covariance est uniforme entre les
différents marchés et étroitement liée à leur profil statistique à haute fréquence.

1.6.1 Modèle de Hawkes réactif à file d’attente pour le flux d’ordres

Le premier projet de ma thèse est de construire un modèle fiable pour décrire les flux
d’ordres arrivant dans la LOB. Avant de commencer, nous citons d’abord un modèle
appelé Queue Reactive (QR) proposé dans [87], où le taux d’arrivée de flux d’ordres est
modélisé comme un processus de Poisson inhomogène, dont l’intensité dépend de l’état
actuel du LOB.

Modèle réactif de file d’attente avec processus de Hawkes La notion de réac-
tivité de la file d’attente a été introduite pour la première fois par Huang, Lehalle et
Rosenbaum dans [87]. Comme mentionné ci-dessus, ils ont proposé dans cette étude un
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modèle où l’arrivée du flux d’ordres à un niveau de prix donné est modélisée comme
un processus de Poisson inhomogène, avec une intensité qui ne dépend que de l’état
actuel du carnet d’ordres, c’est-à-dire de la taille des files d’attente. Ils nomment cette
propriété Queue Reactive (QR).

Nous ajoutons un terme de Hawkes au modèle SQR, afin que le nouveau modèle
tienne compte non seulement des dépendances de la taille de la file d’attente mais
aussi des effets de mémoire dans les flux d’ordres. Pour cette raison, nous appelons ce
nouveau modèle le modèle SQRH (Single Queue Reactive Hawkes). Formellement, le
modèle SQRH associe le modèle SQR à un processus de Hawkes multivarié.

Dans la suite, NL
t , NC

t , NM
t , λL(t), λC(t) et λM (t) désigneront les processus de

comptage et leurs intensités associées. Ils représentent respectivement les arrivées
d’ordres limite, d’ordres annulation et d’ordres au marché à la meilleure file d’attente.
Pour ℓ ∈ {L, M, C} (respectivement pour les ordres de limite, de marché et d’annulation),
le modèle SQRH définit λℓ(t) comme :

λℓ(t) =

µℓ(q(t−)) +
∑

m∈{L,M,C}

∫ t

0
ϕℓm(t − s)dNm

s

1(ℓ=L)∨(q(t−)>0) (SQRH),

(1.6.40)
avec chaque fonction noyau de forme somme-exponentielle, ϕℓm(t) = αℓme−βt, et la
taille de la file d’attente q(t) est simplement donnée par q(t) = q(0)+NL

t −NM
t −NC

t et
le facteur 1(ℓ=L)∨(q(t−)>0) garantit qu’aucun ordre de marché ou d’annulation ne peut se
produire si la file d’attente est vide. Les intensités de base {µℓ(q)} dépendent de l’état
de la file d’attente q tandis que les noyaux de Hawkes ϕℓm(t) tiennent compte de l’effet
des ordres passés de type m sur l’intensité actuelle λℓ(t).

Propriété de Markov dans le modèle SQRH

Nous prouvons la propriété de Markov pour le modèle SQRH en considérant un cadre
simplifié, où tous les flux d’ordres entrants ont un volume identique. Sous cette hy-
pothèse, exprimons d’abord la taille de la file d’attente q(t) comme la somme des pro-
cessus de comptage N(·) :

q(t) = NL
t −

∑
ℓ ̸=L

N ℓ
t . (1.6.41)

Considérons ensuite la quantité

oℓmu(t) :=
∫ t

0
αℓm

u e−βu(t−s) dNm
s , (1.6.42)

et en désignant par o⃗(t) le vecteur obtenu par empilement vertical de oℓmu(t) (u ∈
{1, . . . , U}, ℓ, m ∈ {L, M, C}),

( q(t)
−→o (t)

)
est un processus de Markov vectoriel. De plus, si

on suppose qu’il existe deux constantes positives c− et c+ telles que∑
ℓ̸=L

µℓ(q) ≥ c−q ; and ; µL(q) ≤ c+ ; ,
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Bund

L AIC BIC # parameters

SQR 2.046 × 107 −4.093 × 107 −4.092 × 107 450
SQRH 2.055 × 108 −4.110 × 108 −4.110 × 108 477
Hawkes 2.052 × 108 −4.105 × 108 −4.105 × 108 30

DAX

L AIC BIC # parameters

SQR 7.268 × 105 −1.453 × 106 −1.452 × 106 75
SQRH 9.506 × 106 −1.901 × 107 −1.901 × 107 102
Hawkes 9.386 × 106 −1.877 × 107 −1.877 × 107 30

Table 1.1: Valeurs d’log-vraisemblance, AIC et BIC pour les trois modèles considérés
pour les données Bund et DAX.

nous montrons, en annexe 2.5, à l’aide de l’approche des fonctions de Lyapunov selon la
même ligne que dans [4, 3], que le processus

( q(t)
−→o (t)

)
est uniformément ergodique ce qui

signifie notamment que q(t) admet une distribution invariante et que cet équilibre est
atteint exponentiellement vite.

La qualité de l’ajustement En termes de qualité d’ajustement, nous comparons le
modèle SQRH avec le modèle SQR par le critère de vraisemblance. Nous ajoutons le
modèle standard de Hawkes dans la comparaison. Pour tenir compte de la différence
dans le nombre de paramètres, le critère d’information d’Akaike (AIC) et le score du
critère d’information de Schwartz (BIC) sont également rapportés dans le tableau 1.1.
Notre résultat suggère que le modèle SQRH surpasse les modèles concurrents en termes
d’AIC et de BIC.

La distribution invariante Nous donnons d’abord dans la section 2.2.2 un argument
empirique selon lequel, la distribution invariante est atteinte avant que le meilleur prix
d’achat/de vente ne change pour l’actif étudié (Bund future et DAX future).

La distribution empirique de la taille de la file d’attente est mesurée en prenant des
instantanés du carnet toutes les 30 secondes. Pour le modèle SQRH, nous estimons
la distribution invariante de q(t) en effectuant une simulation sur une longue période.
La mesure invariante du modèle SQR peut être directement déduite des estimations de
µℓ(q).

La distribution invariante pour les futures Bund et DAX est présentée dans la fig-
ure 1.2. Nous observons que le modèle SQRH fournit, dans les deux cas, le meilleur
ajustement des données empiriques, notamment dans la région de la queue. Nos résul-
tats montrent que la prise en compte de l’auto-interaction par le processus de Hawkes
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dans un modèle réactif de file d’attente est importante non seulement pour décrire cor-
rectement la dynamique du flux d’ordres mais aussi pour fournir un meilleur modèle
pour les distributions de la taille des files d’attente.
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Figure 1.2: Comparaison des distributions invariantes par le modèle QR et le modèle
QRH avec la distribution empirique. Futur du Bund à gauche, Futur du DAX à droite.

La dépendance à l’égard des États Dans la Figure 2.3 nous présentons les paramètres
estimés µ(q) pour le modèle SQR, tandis que dans la Figure 2.4 nous présentons les
quantités analogues pour le modèle SQRH 1.6.40.

Nous faisons deux remarques générales en comparant ces graphiques. Tout d’abord,
nous constatons que la dépendance à la taille de la file d’attente saisie par les deux
modèles est à peu près concordante, dans la mesure où les fonctions µℓ(q) ont des formes
similaires dans les deux modèles. Nous remarquons également plusieurs différences entre
les résultats du Bund et du DAX, très probablement dues à la dynamique différente du
carnet d’ordres des actifs à grand et petit tick.

Comme dans [87], nous observons un taux décroissant d’arrivées d’ordres de marché
à mesure que la taille de la file d’attente augmente. Cela peut s’expliquer par le fait
que les agents ont tendance à consommer la liquidité plus rapidement lorsque celle-ci
devient rare.

Nous constatons également que lorsque q(t) est suffisamment grand, l’intensité de
l’annulation est une fonction croissante de la taille de la file d’attente. Il s’agit d’une
caractéristique attendue et supposée dans la plupart des anciens modèles LOB (voir par
exemple, [132, 45]) puisque les annulations sont plus susceptibles de se produire lorsqu’il
y a beaucoup d’ordres à cours limité actifs.

Enfin, contrairement au comportement observé dans [87] sur des actions spécifiques,
nous n’observons pas que l’intensité de l’insertion des ordres à cours limité est indépen-
dante de la taille de la file d’attente. Elle est plutôt une fonction décroissante de la taille
de la file d’attente, reflétant probablement une moindre recherche de priorité lorsque q

est grand.
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Figure 1.3: Matrices de normes de noyau pour Bund future (à gauche) et DAX future
(à droite).

L’interprétation de la matrice de Hawkes Dans la figure 1.3, nous présentons
dans une carte thermique les normes du noyau de Hawkes |ϕℓm| =

∫∞
0 ϕℓm(t)dt. Notons

que dans notre cadre, ces quantités sont simplement données par |ϕℓm| =
∑U

u=1 αℓm
u .

Malgré l’ajout du terme dépendant de la file d’attente, nous retrouvons plusieurs des
caractéristiques déjà observées dans les études précédentes, comme la forte composante
diagonale correspondant à l’auto-excitation, résultat probable de la corrélation dans le
flux d’ordres induite par les stratégies de fractionnement des ordres.

Nous confirmons également que les ordres de marché influencent la liquidité beau-
coup plus que l’effet inverse. En particulier, puisque nous étudions ici une interaction
du même côté du carnet, nous constatons qu’en moyenne, les ordres au marché ont un
effet stimulant sur les annulations.

1.6.2 Un modèle de Hawkes réactif en file d’attente pour les meilleures
limites du carnet d’ordres

Ce modèle peut être considéré comme un développement ultérieur du modèle SQRH
présenté au chapitre 2. Le modèle SQRH est limité à une seule (meilleure) file d’attente
afin d’obtenir la propriété d’ergodicité, qui est réinitialisée chaque fois que la position
de cette meilleure limite change. Pour cette raison, SQRH ne tient pas compte de la
dynamique croisée entre les deux meilleures limites (best bid/best ask), ni des change-
ments de leur prix correspondant. Le modèle présenté dans ce chapitre est consacré à
la lutte contre ces inconvénients avec l’ambition de construire un modèle pour la LOB,
où les deux dépendances sur le flux d’ordres passés et l’état de la LOB sont présents.
Ce modèle sera appelé le “Queue Reactive Hawkes” (modèle QRH).

Comme nous l’avons fait pour le modèle SQRH, le modèle QRH implique la combi-
naison d’une composante “Queue Reactive” (comme dans [87]), c’est-à-dire une dépen-
dance aux tailles des deux meilleures de file d’attente à l’instant courant, et d’une com-
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posante Hawkes prenant en compte la dépendance de flux d’ordres passés sur ces deux
files d’attente. De plus, afin de tenir compte de la variation des prix, la réinitialisation
du modèle ne se fera qu’au moment de la clôture du marché.

Dynamique du modèle Nous considérons pour le modèle QRH huit types d’événements
aux files d’attente de la meilleure demande de la meilleure offre d’une LPP, à savoir

P + (P −) pour les événements qui déplacent le midprice 2 vers le haut (vers le bas)
indépendamment de la taille de ce déplacement,

La (Lb) pour les ordres à cours limité au meilleur ask (bid) qui ne modifient pas
le midprice,

Ca (Cb) pour les annulations au meilleur ask (bid) qui ne modifient pas le midprice,

Ma (M b) pour les ordres au marché au meilleur ask (bid) qui ne modifient pas le
midprice.

Pour chaque ℓ ∈ {P +, P −, La, Lb, Ca, Cb, Ma, M b}, définissons N ℓ
t comme le processus

de comptage associé aux événements de type ℓ et λℓ(t) l’intensité conditionnelle associée.
Le modèle QRH correspond à la possibilité la plus simple où la partie exogène

et la partie auto-excitante de la fonction d’intensité partagent la même dépendance
multiplicative sur les états :

λℓ(t) = f ℓ(qa(t), qb(t))
(

µℓ +
∑
m

∫ t

0
ϕℓm(t − s) dNm

s

)+

, (1.6.43)

où l’opérateur (·)+ = max(·, 0), les fonctions f ℓ qui codent la dépendance aux états
du carnet d’ordre, modulent non seulement l’intensité exogène mais aussi le terme de
Hawkes. Nous choisissons une forme paramétrique pour les noyaux ϕℓm et en particulier
nous adoptons la même spécification somme-exponentielle :

ϕℓm(t) =
U∑

u=1
αℓm

u βue−βu(t−s). (1.6.44)

Contrairement au modèle SQRH, le modèle QRH est principalement un modèle pour
le flux d’ordres. Nous ne tenons pas compte de l’influence du flux d’ordres sur la taille
des files d’attente, et nous considérons ces dernières comme des variables exogènes.

Fonction de perte des moindres carrés Le modèle QRH défini dans l’équation
(1.6.43) n’est pas linéaire en les paramètres, donc l’ELM ne s’agit plus d’un problème
convexe. Comme expliqué dans [77], le problème de calibration est bien formé dans un
certain sens lorsque la perte des moindres carrés est adoptée.

2Nous rappelons que le midprice correspond à la moyenne du meilleur cours vendeur avec le meilleur
cours acheteur.
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Signalons également que forcer les noyaux à n’avoir que des valeurs positives (c’est-à-
dire forcer tous les αlm

u à être positifs) conduira a priori à des valeurs fortement biaisées
pour les noyaux à valeurs négatives, puisque l’estimation réalisée est une estimation
conjointe impliquant des relations complexes entre différents types d’événements. Nous
invitons les lecteurs à consulter [127] comme exemple d’estimation par les moindres
carrés avec des noyaux à valeurs négatives, ainsi que [18], qui donne plusieurs exemples
de tels biais.

Nous adoptons donc l’estimation basée sur les moindres carrés au lieu d’utiliser
l’ELM. Les détails de l’estimation par les moindres carrés se trouvent dans l’annexe
2.5.3, qui consiste à minimiser la perte suivante R(θ) :

R(θ) =
D∑

ℓ=1
Rℓ(θ), with Rℓ(θ) =

∫ T

0
λ2

ℓ (t; θ|Ft) dt −
Nℓ∑
k=1

λℓ(tℓ
k; θ|Ftℓ

k
) (1.6.45)

où λℓ est donné par Eq. (1.6.43)3.
Le R(·) ainsi défini est une fonction convexe du αℓm

u (voir Eq. (3.2.3)) et du µℓ.
L’existence d’un optimum global est donc garantie. Comme le montre l’annexe 2.5.3,
cette paramétrisation permet un calcul efficace de la fonction de perte au carré R et de
son gradient.

Valeurs négatives dans la matrice de la norme du noyau Dans la Figure 1.4,
nous montrons les normes de noyau estimées {

∫
ϕℓm(t) dt}ℓm pour le Bund et le DAX. La

matrice fournit des informations sur les interactions entre les différents types d’événements
lorsque la dépendance de la file d’attente n’est pas prise en compte.
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Figure 1.4: Les normes matricielles estimées
∫

ϕlm(t) dt en utilisant l’estimation par les
moindres carrés du modèle QRH. Futur du Bund à gauche et futur du DAX à droite.

Nous retrouvons de nombreuses caractéristiques mises en évidence dans [13], comme
les fortes composantes diagonales pour les ordres à cours limité, les ordres au marché

3ou alternativement par Eq 3.2.6 dans le sens donné dans [77]
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et les ordres d’annulation (une signature du fractionnement des ordres), ainsi que le
fait que les ordres au marché et le mouvement des prix semblent influencer beaucoup
plus les ordres à cours limité et les ordres d’annulation que l’inverse. Nous soutenons
également que le taux d’arrivée de flux d’ordres après un événement de changement de
prix est fortement influencé par la taille du tick de l’actif et donnons une interprétation
raisonnable. Voir le chapitre 3.2.3 pour une discussion complète.

Variable d’état et le déséquilibre de la LOB Nous observons une dépendance
claire des taux d’arrivée des ordres à la fois sur qi

a et qj
b , indiquant que l’état de la LOB

a une influence claire sur les taux d’arrivée des ordres.
A partir du résultat empirique rapporté dans les Figures 3.2 et Figures 3.3, les

observations suivantes sont formulées : premièrement, la variation du déséquilibre sur
le carnet d’ordres capture la plupart des variations des paramètres intensifs f ℓ(qa, qb) ;
ceci est plus évident sur l’actif à grand tick (Bund) pour lequel f peut couvrir presque
trois types de magnitudes (pour P , et M événements) alors que I varie de −1 à +1.
Les variations de f ℓ(qa, qb) sont plus faibles pour l’actif à petit tick (DAX), de sorte que
l’effet du déséquilibre est moins prononcé bien que toujours visible pour les événements
P et, dans une moindre mesure, L. Deuxièmement, les variations d’intensité qui ne
sont pas capturées par le déséquilibre sont principalement situées autour de I = 0 où
les tailles des files d’attente individuelles (qa ou qb, qui sont presque égales) semblent
avoir un impact important. Nous invitons les lecteurs à consulter le chapitre 3 pour des
discussions plus détaillées sur le lien entre f ℓ(qa, qb) et le déséquilibre des tailles de file
d’attente.

1.6.3 De la volatilité rugueuse à la volatilité multifractale

Bien que la construction du modèle RFSV semble assez différente du processus log-
normal MRW, les calculs dans les annexes 4.7.1, 4.7.2 et 4.7.3 suggèrent une similar-
ité assez profonde entre eux. Nous remarquons d’abord que lorsque H ≃ 0 dans la
RFSV, les fonctions d’auto-covariance de la volatilité logarithmique semblent être loga-
rithmiques, c’est-à-dire comme sa contrepartie MRW. Intuitivement, le MRW pourrait
donc être considéré comme le cas “super rugueux” (par exemple, H = 0) dans le modèle
RFSV. C’est le premier sujet que nous examinons dans le chapitre 4.

Retrouver RFSV et MRW à partir de processus S-fBM Dans l’appendice 4.7.1
du chapitre 4, nous construisons une famille de processus aléatoires, que l’on nomme
mouvement brownien fractionnaire stationnaire (S-fBM) à partir d’un champ aléatoire
gaussien. Cette construction peut être rapprochée de l’approche originale proposée
par Takenaka pour construire des champs corrélés, notamment le mouvement brownien
fractionnaire (voir [130] et Appendix 4.7.2). Nous montrons qu’à travers une variation
continue de l’ensemble des paramètres, nous pouvons retrouver à la fois RFSV et MRW
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comme des cas particuliers de processus S-fBM.
Puisque le fOU traité et le logarithme de la fonction de densité impliquée dans le

MRM sont tous deux des processus gaussiens stationnaires, ils sont caractérisés par leur
fonction de covariance. La fonction de covariance des processus S-fBM (notée ωH,T (t)
dans ce qui suit) est :

Cov[ωH,T (t), ωH,T (t + τ)] =


λ2

2H(1−2H) [T 2H − τ2H ] τ < T

0 τ ≥ T.
(1.6.46)

La similarité entre les processus S-fBM et MRW est également révélée par la mesure
stochastique S-fBM, qui est définie comme suit :

MH,T ( dt) = σ2eωH,T (t) dt. (1.6.47)

Nous montrons en annexe 4.7.3, que la mesure MRM peut être récupérée à partir de la
limite du log S-fBm lorsque H → 0. Plus précisément, nous avons

Proposition 1.6.5. Soit MH,T (t) = MH,T ([0, t]) le processus log S-fbm défini à partir
de 4.2.13. Alors, lorsque H → 0, on a

MH,T ( dt) ⇒ M̃T ( dt), (1.6.48)

où ⇒ représente la convergence faible et M̃T est un MRM log-normal avec le même
coefficient d’intermittence et la même échelle intégrale T que MH,T .

La preuve est fournie dans l’annexe 4.7.3, qui indique que le MRM peut être considéré
comme un cas limite d’un log S-fBM et, par conséquent, pourrait être considéré comme
la limite “super rugueuse”.

Validité de l’estimation des paramètres via les propriétés d’échelle Nous
discutons de la fiabilité de l’approche de calibration des paramètres, à savoir H, ν2 et T

à travers la soi-disant “propriété d’échelle” du processus de volatilité. Une telle méthode
est utilisée dans [65], où le paramètre de Hurst H est signalé comme étant autour de
0, 15. Précisément, la calibration de H est basée sur la relation suivante :

E[|δτ ωH,T (t)|q] = Cqτ qH . (1.6.49)

Cependant, comme ωH,T (t) ne peut pas être directement observé, les auteurs considèrent
comme un proxy de E[|δτ ωH,T (t)|q], les moments observables :

m(q, H, τ, ∆) = Cqτ qH . (1.6.50)

où
m(q, H, τ, ∆) = E

(
| ln MH,T,∆(t + τ) − ln MH,T,∆(t)|q

)
(1.6.51)



42 CHAPTER 1. INTRODUCTION

et MH,T,∆(t) est la variance dite intégrée sur un intervalle de taille ∆ :

MH,T,∆(t) = σ2
∫ t+∆

t
eωH,T (s) ds . (1.6.52)

Pour récupérer l’Eq. (1.6.49) à partir de l’Eq. (1.6.50), deux hypothèses sont im-
plicitement faites. Nous soulignons que la première hypothèse est

∫ t+h

t
ωH,T (s) ds ≈ log(

∫ t+h

t
eωH,T (s) ds). (1.6.53)

La deuxième hypothèse est

ωH,T (t) ≈ 1
h

∫ t+h

t
ωH,T (s) ds. (1.6.54)

Bien que ces deux hypothèses semblent raisonnables, elles ne sont jamais justifiées.
Dans le paragraphe suivant, nous montrons que la première hypothèse conduirait à un
biais important dans l’estimation du paramètre de Hurst H.

Expansion de la petite intermittence pour les moments des logarithmes
des measures Nous commençons par justifier l’hypothèse dans l’Eq. (1.6.54), qui
est également mentionnée sous le nom de small intermittency, c’est-à-dire l’expansion
asymptotique avec λ2 ≪ 1 dans [14]. Il est facile de vérifier que toutes les preuves et tous
les résultats établis dans [14] sous la limite λ2 → 0 pour la mesure MRM log-normale
M̃T restent valables pour MH,T,∆ pour H > 0, ce qui conduit au résultat suivant :

Proposition 2. Soient t1, . . . , tn des n temps arbitraires. Les moments généralisés
du logarithme de ∆−1MH,T,∆(t) admettent le développement en série de Taylor suivant
autour de λ2 = 0 :

E
[

ln
(MH,T,∆(t1)

∆

)
· · · ln

(MH,T,∆(tn)
∆

)]
= λn∆−nE

[
ΩH,T,∆(t1) · · · ΩH,T,∆(tn)

]
+o(λn),
(1.6.55)

où ΩH,T,∆(t) est le processus gaussien défini par

ΩH,T,∆(t) = 1
λ

∫ t+∆

t

(
ωH,T (u) − E(ωH,T (u))

)
du. (1.6.56)

A notre connaissance, c’est la première fois que l’Eq. (1.6.54) est strictement justifiée.

L’effet de lissage Pour examiner la validité de l’équation (1.6.53), nous avons calculé
la forme exacte de la variance de ln MH,T,∆(t+τ)−ln MH,T,∆(t), notée V (H, τ, ∆). Pour
τ < T ,

V (H, τ, ∆) = 2Var(Z∆) − 2CZ(∆, τ) (1.6.57)

= λ2

H(1 − 2H)

(
(τ + ∆)2H+2 + |τ − ∆|2H+2 − 2τ2H+2

∆2(2H + 1)(2H + 2)
− 2∆2H+2

∆2(2H + 1)(2H + 2)

)
(1.6.58)

= λ2τ2HgH(∆
τ

) (1.6.59)
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avec
gH (z) = |1 + z|2H+2 + |1 − z|2H+2 − 2|z|2H+2 − 2

z2H(1 − 2H)(2H + 1)(2H + 2)
. (1.6.60)

L’expression finale pour les moments des incréments du logarithme de mesure est la
suivante :

m(q, H, τ, ∆) ν= 2
q
2 π−1/2Γ

(
q + 1

2

)
λqτ qH

[
gH

(∆
τ

)]q/2
(1.6.61)

À cause du terme gH(·), l’estimation de H basée sur l’équation (1.6.49) peut être
biaisée. Une analyse détaillée de ce biais est présentée dans la section 4.4.1.

Estimateurs GMM pour H et λ2 Nous proposons deux estimateurs GMM basés sur
les moments du second ordre du processus log S-fBM MH,T ou de son logarithme en con-
sidérant respectivement CM (∆, τ) la fonction de corrélation de MH,T,∆ et Cln M (∆, τ),
la fonction de covariance de ln MH,T,∆.

Si L désigne la taille globale de l’intervalle où les données empiriques sont disponibles
à l’échelle ∆, on peut mesurer MH,T,∆(k∆) (ou de manière équivalente ln MH,T,∆(k∆))
pour k = 1 . . . N où N = L

∆ et les estimateurs des fonctions de corrélation précédentes
se lisent :

ĈM (∆, k∆) = N−1
N−k∑
j=1

MH,T,∆(j∆)MH,T,∆((j + k)∆), (1.6.62)

Ĉln M (∆, k∆) = N−1
N−k∑
j=1

(
ln MH,T,∆(j∆) − µ̂∆

)(
ln MH,T,∆((j + k)∆) − µ̂∆

)
,(1.6.63)

µ̂∆ = 1
N

N∑
k=1

ln MH,T,∆(k∆). (1.6.64)

Dans la section 4.4.2, nous montrons que dans le régime de haute fréquence, les esti-
mations de T ou de σ2 sont inatteignables. Nous considérons exclusivement le problème
de l’estimation des valeurs des paramètres H et λ2 (ou alternativement ν2) en utilisant
l’un des deux ensembles de moments suivants :

GMMM : M1 =
(
ĈM (1, j1) − C̃M (1, j1), . . . , ĈM (1, jQ) − C̃M (1, jQ)

)
,

GMMln M : M2 =
(
Ĉln M (1, j1) − C̃ln M (1, j1), . . . , Ĉln M (1, jQ) − C̃ln M (1, jQ)

)
où Q est le nombre de moments, j1, j2, . . . , jQ sont différents indices de temps, ĈM et
Ĉln M sont les estimateurs empiriques de respectivement CM et Cln M :

C̃ln M (1, n) = K1 + D̃ln M (n) + V1δn, (1.6.65)

C̃M (1, n) = K2R̃M (n) (1.6.66)

où K1, K2 et V1 sont 3 constantes positives aléatoires et δn représente la fonction de
Kronecker.
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Résultats empiriques Nous appliquons l’estimateur GMMln M pour calibrer l’exposant
de rugosité H et le coefficient d’intermittence λ2 à partir de la volatilité empirique réal-
isée de divers actifs. Notre étude se base sur la bibliothèque réalisée par l’Oxford-Man
Institute of Quantitative Finance (OIQFRL) et la base de données Yahoo-Finance (YF),
qui concernent respectivement les indices boursiers et les actions individuelles.
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Figure 1.5: Estimation de la distribution de densité de probabilité de l’estimation de
l’exposant de Hurst Ĥ pour les 296 actions individuelles (histogramme bleu) de la base
YF et pour les 24 indices boursiers (histogramme orange) de la base OIQFRL.

Les estimations ainsi obtenues pour l’ensemble des 24 indices boursiers de la base de
données OIQFRL et les 296 actions individuelles de la base de données YF sont résumées
dans la Figure. 1.5, où nous avons reporté les histogrammes normalisés de l’estimation
Ĥ pour les exposants de Hurst des indices boursiers et des actions individuelles des deux
ensembles de données.

Les exposants de Hurst des indices boursiers se situent autour de H ≃ 0.13 avec
une dispersion assez importante. La distribution des valeurs H des actions individu-
elles culmine principalement autour d’une très petite valeur moyenne de H ≃ 0, 01.
Il apparaît que la log-volatilité des indices boursiers est beaucoup plus régulière que
la log-volatilité des actions individuelles, qui s’avère être bien décrite par un modèle
multifractal caractérisé par H = 0.

Parallèlement, les résultats des simulations numériques de la section 4.4.4 suggèrent
que le coefficient d’intermittence défini par λ2 = H(1 − 2H)ν2 semble être une quantité
beaucoup plus fiable que la variance ν2 de la log-volatilité. Nous avons reporté dans la
Fig. 1.6(a) les valeurs estimées λ̂2 pour les 296 actions individuelles (points bleus) et les
24 indices boursiers (triangles orange) en fonction du logarithme de l’exposant estimé
Ĥ. Nous pouvons voir que tous les points sont distribués autour de la valeur λ2 ≃ 0.07
pour les actions et λ2 ≃ 0.05 pour les indices. En revanche, si l’on estime le paramètre
de variance ν2, on observe une très grande dispersion de ses valeurs.
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Un tel résultat favorise le coefficient d’intermittence λ2 comme paramètre pertinent
pour rendre compte des fluctuations de la volatilité. Cette quantité semble également
être “presque universelle” avec une valeur λ2 ≃ 0.07 pour les actions et 0.05 pour les
indices.
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Figure 1.6: Estimation des paramètres d’intermittence et de variance en fonction de
l’exposant de Hurst estimé. (a) Coefficient d’intermittence estimé λ̂2 en fonction du
logarithme de l’exposant de Hurst estimé H. La ligne continue représente la valeur con-
stante λ2 = 0, 07 représentant le meilleur ajustement des données des stocks individuels.
(b) Coefficient de variance estimé ν̂2 en fonction du logarithme de l’exposant de Hurst
estimé H. La ligne continue représente l’expression logarithmique S-fBM (4.4.54). Dans
(a) et (b) les points bleus représentent les données des actions individuelles tandis que
les triangles oranges sont associés aux estimations des séries temporelles des indices.

1.6.4 Dissocier les contributions à la covariance des prix entre dif-
férents actifs par des participants au marché

.
Ce chapitre met en évidence la modélisation de la covariance des prix sur les marchés

électroniques. Nous avons présenté un modèle plus élaboré, qui peut être considéré
comme un développement ultérieur de [127]. A notre connaissance, nous proposons
pour la première fois un modèle qui permet de mesurer la contribution marginale de
chaque participant du marché à la covariance des variations de prix de deux actifs.

Un cadre de processus de Hawkes multivarié est introduit pour modéliser les sauts
de prix comme le résultat cumulatif de flux d’ordres. La covariance est reconstruite à
partir de l’intensité moyenne de flux d’ordres. Nous introduisons une relation approxi-
mative avec le premier ordre de la matrice du noyau. Sous des hypothèses raisonnables,
nous tenons compte de la contribution marginale de chaque participant du marché à la
covariance.

Les résultats empiriques obtenus avec les actions composites de l’indice CAC40 sont
présentés. Une méthode d’estimation non paramétrique appelée loi conditionnelle im-
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plémentée dans la bibliothèque Tick (voir [21]) est réalisée. Notre résultat suggère que
notre cadre basé sur le processus de Hawkes est capable de reproduire la covariance du
prix (par rapport au rendement) entre différents actifs. De plus, l’évidence empirique
suggère que la contribution des participants du marché à la covariance ne dépend pas
de l’actif.

Modélisation de la covariance du prix par un processus de Hawkes multivarié
Considérons les flux d’ordres de deux actifs notés S1 et S2, dont les prix moyens sont
notés de manière correspondante P1(t) et P2(t), où la souscription numérique désigne
des actifs différents. On note par N1 tous les types de flux d’ordres de l’actif 1 et N2 tous
les types de flux d’ordres de l’actif 2 avec #{N1} = #{N2} = N . De plus, nous notons
en particulier M1 ⊂ N1 (M2 ⊂ N2 ) les types d’événements qui pourraient changer le
prix moyen de l’actif 1 (correspondant à l’actif 2). Nous supposons que les flux d’ordres
de deux actifs sont régis par un processus de Hawkes multivarié dont l’intensité, pour
le type d’événement i, prend la forme suivante

λi(t) = µi +
2N∑
j=1

∫
ϕij(t − s) dN j

s . (1.6.67)

Nous définissons la covariance entre P1(t) et P2(t) dans l’intervalle [t, t + τ ] comme la
variation corrélée des prix :

Covτ [S1, S2](t) := Cov[∆τ P1(t), ∆τ P2(t)]. (1.6.68)

Pour le processus de Hawkes associé, nous notons sa matrice noyau par Φ et la convolu-
tion de la matrice noyau par R. Sous certaines hypothèses raisonnables, nous montrons
que la covariance des prix peut être représentée à l’aide du vecteur d’intensité moyenne
Λ := E[λ] et de la matrice R :

Cov[S1, S2] =
∑

i∈M1

∑
j∈M2

δiδj

∑
k∈N

ΛkRikRjk

=
∑
k∈N

Λk(
∑

i∈M1

δiRik)(
∑

j∈M2

δjRjk)
(1.6.69)

où δi est le changement du prix moyen résultant d’un événement de type i.

Approximation de premier ordre de la covariance Les preuves empiriques sug-
gèrent que sur les marchés électroniques, la plupart de flux d’ordres sont excités par
les flux d’ordres précédents au sein du même actif. L’effet d’excitation croisée pour les
flux d’ordres entre différents actifs est beaucoup plus faible que l’effet d’auto-excitation.
Avec quelques hypothèses raisonnables, nous élaborons une formule approximative pour
la covariance :
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Cov[S1, S2] =
∑
k∈N

Λk(
∑

i∈M1

δiRik)(
∑

j∈M2

δjRjk)

= Λ1(δ1R1,1)(δ2R2,1) + Λ2(δ1R1,2)(δ2R2,2)

= Λ1(δ1R1,1)(δ2R2,2Φ2,1R1,1) + Λ2(δ1R1,1Φ1,2R2,2)(δ2R2,2).

(1.6.70)

Sous la forme scalaire,

Cov[S1, S2] =
∑

k∈N1

Λk∆R1k
D ∆R2k

I +
∑

k∈N2

Λk∆R2k
D ∆R1k

I

=
∑

k∈N1

Λk∆Rk
1∆Rm

2 ϕm,j
2,1 Rj,k

1 +
∑

k∈N2

Λk∆Rk
2∆Rm

1 ϕm,j
1,2 Rj,k

2 ,
(1.6.71)

où ϕm,j
2,1 (resp. ϕm,j

1,2 ) est le m, j-ème élément de la matrice Φ2,1 (resp. Φ1,2). On définit
∆Rk

1 de la manière suivante : Si nous notons u1 (resp. u2) et d1 (resp. d2) le type
d’événement qui déplace le prix moyen de S1 (resp. S2) vers le haut et vers le bas, alors
nous pouvons écrire

∆Rk
1 = Ru1,k

1 − Rd1,k
1 (1.6.72)

et de la même manière
∆Rk

2 = Ru2,k
2 − Rd2,k

2 . (1.6.73)

À la représentation en cascade du processus de Hawkes multivarié, l’équation (1.6.70)
a une interprétation plutôt spontanée. En prenant le premier terme comme exemple,
un événement de type k ∈ N1 déclenchera des événements de changement de prix de
S1, qui changeront finalement P1 par ∆Rk

1Rj,k
1 . Elle excitera également les flux d’ordres

suivants sur le marché de S2. Si la cascade de flux d’ordres est limitée à la première
génération, tous les flux d’ordres déclenchés par le second effet finiront par modifier le
prix de S2 par ∆Rm

2 ϕm,j
2,1 .

Contribution marginale de covariance par des participants au marché Nous
quantifions la contribution marginale de chaque participant au marché à la covariance
des prix entre une paire d’actifs. La norme de la matrice Φ quantifie la somme des
activités de tous les participants au marché. Comme chaque ordre est généré par un
participant de marché spécifique, pour le participant de marché α, sa contribution à la
covariance est mesurée par la contribution de ses activités à la norme de la matrice Φ,
notée Φα. Nous définissons donc sa contribution à la covariance comme suit

Covα =
∑

k∈N1

Λk∆Rk
1∆Rm

2 ϕ
m(α),j
2,1 Rj,k

1 +
∑

k∈N2

Λk∆Rk
2∆Rm

1 ϕ
m(α),j
1,2 Rj,k

2 (1.6.74)

où le symbole m(α) dans ϕm(α),j désigne les flux d’ordres de type m émis par le partic-
ipant α.
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Figure 1.7: Carte thermique de la contribution de l’agent à la corrélation, en pourcentage

Contribution uniforme de la covariance entre les différents actifs Nous présen-
tons la contribution des participants au marché à la covariance sous la forme de Covα

définie dans l’équation (1.6.74).
Nous notons la volatilité réalisée du stock 1 et du stock 2 comme étant σ2

1 et σ2
2. Nous

notons Cov comme la covariance réalisée et Corr comme le coefficient de corrélation.
La contribution du participant au marché α à la corrélation est définie comme suit :

Corrα := Covα

σ1σ2
= Covα

Cov
Cov
σ1σ2

= Covα

Cov
Corr. (1.6.75)

Selon cette définition, nous n’avons pas nécessairement
∑

α Corrα = Corr. Dans la figure
1.7, nous présentons la contribution à la covariance de chaque participant au marché
sous la forme de Corrα, sous forme de carte thermique.

Les résultats empiriques suggèrent que notre cadre est capable de reproduire la
covariance des prix. En outre, les hypothèses et les approximations que nous avons
faites sont validées par les résultats empiriques. Nous observons que la contribution des
acteurs du marché à la corrélation des prix est uniforme sur différentes paires d’actifs.
De plus, une étude détaillée de la contribution de chaque agent suggère que certains
participants actifs du marché peuvent adopter des stratégies multi-actifs. Enfin, notre
résultat suggère que la contribution des participants au marché à la covariance est
étroitement liée au volume total qu’ils émettent.



Chapter 2

A single queue reactive Hawkes
models for the order flow

2.1 Introduction

Building faithful models for the Limit Order Book (LOB) is a longstanding issue on
which many efforts have been invested in the quantitative finance community. A rich
literature of theoretical and empirical studies of limit order books has emerged in the
last decade (see, e.g., [71] and [2] for a recent review). Modeling the LOB is a challeng-
ing task due to its intricate dependence structure. Indeed, the configuration of the limit
order book is determined by the arrival of multiple types of orders: limit, cancel and
market orders in the simplest setting, and the way these orders arrive on the market is
non-trivial. For example, it is well known that order arrival inter-event times present
strong and persistent autocorrelation (see e.g. [44]), implying that past order flow in-
fluences the current state of the book. At the same time, anecdotal as well as empirical
evidence ([99]) suggest that market participants look at the state of the order book in
order to make their trading decisions.
Models for the LOB can be roughly divided into two main classes. On one side are the
models developed by the economics community where the focus is on the behavior of
rational agents that act strategically to optimize their utility function (see e.g. [125]).
On the other side, a stream of literature, beginning notably with [132], focuses instead
on the overall statistical properties of LOBs and assumes a certain simplified dynamics
for the order flow in order to build mathematically tractable models that can reproduce,
at least partially, some of these observed properties. The present work contributes to
the latter and builds on previous works in this field.
As stated above, in the pioneering work [132], the order book is seen as a purely stochas-
tic system - a so-called zero intelligence model (all orders arrive randomly) - that allows
one to make testable predictions based on measurable input. The work in [45] is one of
the first papers to clearly frame the problem of LOB modeling in the context of queuing

49
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theory and Markov chains. By leveraging the properties of Markov chains, the authors
are able to derive several conditional probabilities such as the likelihood of a mid-price
move or the probability of a limit order execution before a price change. The authors
of [4] keep the same assumption of Poisson-driven independent queues and prove, using
the theory of infinitesimal generators and Lyapunov stability criteria, the importance of
the cancellation structure to ensure the stability of the LOB distribution and also show
that under their model the price process converges to a Wiener Process. Although the
hypothesis made by these models is in disagreement with some major empirical facts,
they present the advantage of being very tractable and allowing the derivation of many
useful quantities analytically. In [3], the authors drop the assumption of uncorrelated
order flow and introduce a memory effect by choosing to model the rates of limit and
market order arrivals (respectively λL and λM ), by a Hawkes process ([79]):

λℓ(t) = µℓ +
∑

m∈{L,M}

∫
ϕℓm(t − s)dNm

s , with ℓ ∈ {L, M} . (2.1.1)

By setting each kernel function to exponential form, ϕℓm(t) = αℓme−βt, the process
(λL, λM , NL, NM ) has the Markov property and thus the authors are able to use a
similar machinery to [4] in order to study the limiting behavior of their model. In [17],
[13] and [126], the authors also use multivariate Hawkes processes to analyze the order
flow interactions at the first level of the order book. Their model is calibrated without
any assumption on the Hawkes kernel shapes using a non-parametric method.
In [87], the authors focus instead on the influence of the current state of the LOB on
trading decisions. They propose a simple Markov model, the so-called Queue-Reactive
(QR) model, where the order flow arrival intensity of limit, market or cancel orders
depends only on the current state of LOB through the available volume :

λℓ(t) = µℓ(q(t)), (2.1.2)

for any ℓ ∈ {L, M, C}. They also establish the conditions under which their model pos-
sesses ergodic properties, making it possible to reproduce the empirical LOB queue size
distributions as the invariant distribution of a Markov process. We also mentioned that
in an earlier work [64] by Garèche et al., explicitly dependence of trading decisions on
the current state of the limit order book is incorporated in a Fokker-Planck framework.
More recently, [102] extends the model of [87] by allowing the order book dynamics to
depend also on the type of the order that led to a complete depletion of a level (i.e. a
market or cancel order) and also by taking into account the order size. [102] thus de-
parts slightly from the pure Markovian framework. Optimal market-making strategies
are also discussed and performance is assessed on real data.
In this paper, we aim at contributing to this stream of literature by building on the
work of [87] on one side, and on [17], [3] and [13] as the other side by presenting a
single best queue (best ask queue or best bid queue) model taking into account both
the dependence on past order flows (through a Hawkes kernel) and the dependence on
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the state of the queue. This can be simply done by combining the Hawkes approach of
(2.1.1), i.e., a Single Queue Hawkes (SQH) model, and the QR approach of (2.1.2), i.e.,
a Single Queue Reactive (SQR) model. This leads to the model we name Single Queue
Reactive Hawkes (SQRH) model:

λℓ(t) = µℓ (q(t)) +
∑

m∈{L,M,C}

∫
ϕℓm (t − s) dNm

s , (2.1.3)

for ℓ ∈ {L, M, C}. Let us notice that the issue of considering both dependencies has
also been considered a few years ago (during the completion of the first version of
the present work) by Morariu-Patrichi and Pakkanen [114]. These authors proposed a
general framework called “state-dependent Hawkes process" where the Hawkes kernels
ϕℓm are functions of some state process X(t) that can take a finite number of values and
that switches from one state to another one when an event of the Hawkes process occurs
and according to a transition rule that depends on the type of this event. The specific
application of this framework to LOB modeling proposed in [114] mainly consists in
considering either the volume imbalance or the spread as the state variable. Let us
mention another very recent and related work in the paper of Daw and Pender [48] that
defined and studied a Markov process constructed a pair of inter-dependent processes
(Nt, Qt), where Nt is a counting process and Qt a queuing process.

By calibrating the model (2.1.3) using high-frequency data from Eurex future markets,
we show that it achieves a significantly better fit of the data than the pure Single
Queue Reactive (SQR) model defined by (2.1.2) (which basically amounts to dropping
the Hawkes kernel term in (2.1.3)) or than a pure Single Queue Hawkes (SQH) model
(which basically amounts in considering a constant exogenous intensity µℓ in (2.1.3)).

This chapter is organized as follows. In Section 2.2 we define precisely the SQRH model
that consists in adding an order flow dependence as provided by a multivariate Hawkes
process to a single queue version (SQR) of the Queue Reactive (QR) model introduced in
[87]. We show how such a model can be calibrated using a maximum likelihood approach
and prove that, very much like the QR model, under some reasonable assumption,
the queue size admits an invariant distribution. We then compare the likelihood of
the SQRH model with both a standard Hawkes model with no state-dependence and
with the SQR model of [87] on real data from the Eurex exchange. Comparisons with
empirical data show that the SQRH model represents an important improvement of the
SQR model not only with respect to the inter-event time statistics but also regarding
the predicted shape of the equilibrium queue size distribution. Concluding remarks
and prospects for future research are provided in Section 2.3. Technical results like
the proof of the ergodicity of the SQRH model and the model calibration issues by
Maximum Likelihood are given in the Appendices.
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2.2 A Single Queue Reactive model with memory

2.2.1 Model and assumptions

As mentioned in the introduction, Huang, Lehalle and Rosenbaum present, in [87], a
model where the order flow arrival at a given price level is modeled as an inhomogeneous
Poisson process with an intensity that depends only on the current state of the order
book, i.e., on the queue sizes. They name this property Queue Reactive (QR). The main
purpose of our paper is not to build a realistic model of the full order book but simply
to show that such a model could be improved greatly by accounting for the correlated
nature of the order flows. For that purpose and for the sake of simplicity, we chose to
focus on only modeling a single best queue (best ask or best bid queue) and not trying
to model the entire LOB.

In [87], the authors define a reference price pref that separates bid and ask sides and
which is equal to the midprice pmid (i.e., the mean value of the best available bid and
best available ask prices with non zero quantities) if the spread is an odd multiple of
the tick size and equal to pmid ± δ

2 , whichever is closer to the previous pref, if the spread
is an even multiple of the tick size. The best queue we consider can be either the queue
corresponding to the best ask price above this reference (i.e., the best ask queue) or the
queue corresponding to the best bid price below this reference (i.e., the best bid queue).
The size of this queue at time t is referred to as q(t) and can be modified by the arrival of
either limit (L), market (M) or cancel (C) orders. Following the QR framework in [87],
we will assume all these orders to be of unitary volume (corresponding to the average
event size), so a limit order adds one unit to the queue, while a market or a cancel order
subtracts one unit. The arrival intensities at time t of respectively limit, market and
cancel orders on the considered queue of size q(t) will be denoted by λL(t), λM (t) and
λC(t).

A single queue version of the QR model defined in [87], referred to as Single Queue
Reactive (SQR) model (not that it is referred to as “model I” in [87]), assumes that
these rates are only functions of the queue size q(t−) just before a potential order arrival
at time t :

λL(t) = µL(q(t−))

λC(t) = µC(q(t−))

λM (t) = µM (q(t−))

(2.2.4)

where the functions {µℓ(q)}ℓ are the parameters of the model. They correspond to the
rates of a birth-death Markov process and can easily be estimated via maximum like-
lihood which, in this case, amounts to the computation of simple conditional empirical
means of intensities. As the labeling of a price level is relative to the reference price,
when pref changes, the level labels also change. Hence, the estimation is performed on
intervals where pref is constant and each period is regarded as an independent realization
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of the process. As shown in [87], the SQR model is an ergodic continuous-time jump
Markov process provided the limit order rate is bounded for large queue sizes, and the
rate at which orders are removed is larger than the rate which increases the queues. In
this respect, the SQR model represents a simple and parsimonious Markov model that
allows one to account for the state-dependent nature of the dynamics on the best queue
of a LOB.
As emphasized above, our goal is to consider an extension of the SQR model that
accounts not only for the queue size dependencies but also for the memory effects in
the order flows. For that purpose, the SQRH model associates the SQR approach with
a multivariate Hawkes process. In the following, NL

t , NC
t , NM

t , λL(t), λC(t) and λM (t)
will denote the counting processes and their associated intensities defined by the arrivals
of respectively limit, cancel and market orders at the best queue. For ℓ ∈ {L, M, C}
(for respectively limit, market and cancel orders), the SQRH model thus defines λℓ(t)
as:

λℓ(t) =

µℓ(q(t−)) +
∑

m∈{L,M,C}

∫ t

0
ϕℓm(t − s)dNm

s

1(ℓ=L)∨(q(t−)>0) (SQRH),

(2.2.5)
where the queue size q(t) is simply given by q(t) = q(0)+NL

t −NM
t −NC

t and the factor
1(ℓ=L)∨(q(t−)>0) ensures that no market or cancel order can occur if the queue size is
empty. The baseline intensities {µℓ(q)} depend on the queue state q while the Hawkes
kernels ϕℓm(t) account for the effect of past orders of type m occurrence on the current
intensity λℓ(t). In full rigor, to complete the model definition, one should specify the
law of the initial queue size q(0). Since, as shown below, we will consider a situation
where the queue process is a component of an ergodic vector Markov process, the choice
of the law of q(0) is not essential and we simply choose q(0) = 0.

Using the same formalism, let us note that the previously introduced SQR model
can be written as

λℓ(t) = µℓ(q(t−))1(ℓ=L)∨(q(t−)>0) . (SQR) (2.2.6)

It can be seen as a special case of the SQRH model with zero kernels ϕℓm = 0. In the
same way, the Single Queue Hawkes (SQH) model can be defined as a SQRH model
with constant exogenous intensities:

λℓ(t) =
(

µℓ +
∑
m∈

∫ t

0
ϕℓm(t − s)dNm

s

)
1(ℓ=L)∨(q(t−)>0) (SQH). (2.2.7)

We proceed as in [87] and we assume that these 3 models (SQR, SQH, SQRH) hold
in periods when the reference price is constant, and furthermore that such periods can
be considered as independent realizations. Note that by doing so, we reset the Hawkes
memory every time there is a change in the reference price. We will discuss this point
below when analyzing the empirical results and the order flows simulated by the SQRH
model.
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The model parameters can be estimated using the maximum likelihood method. The
log-likelihood L of a D-dimensional point process where the components do not share
any parameters has the following general form (see [46], page 21)

L(θ) =
D∑

ℓ=1
Lℓ(θ), with Lℓ(θ) =

∫ T

0
log λℓ(t; θ|Ft)dN ℓ

t −
∫ T

0
λℓ(t; θ|Ft)dt (2.2.8)

where θ denotes the parameter set and λℓ is the intensity function of the ℓ-th component.
To use the method in practice, a parametric form must be specified for the interaction
kernels ϕℓm in Eq. (2.2.5). A standard choice is to consider that ϕℓm can be written as
sum of exponential kernels:

ϕℓm(t) =
U∑

u=1
αℓm

u βue−βu(t−s) (2.2.9)

where αℓm
u are parameters of the model and βu, U are hyper-parameters suitably chosen

using an iterative grid-search as described in Appendix 2.5.3. Expression (3.2.3) also
presents the important advantage that the resulting log-likelihood is a convex function
of the model parameters {αℓm

u }ℓ,m,u and {µℓ}ℓ. To facilitate the notations, we use µ⃗ and
α⃗ to represent all µℓ and αℓm

u . With such parametrization, θ = (µ⃗, α⃗). The log-likelihood
of the SQRH model (2.2.5) thus reads:

L(θ) =
D∑

ℓ∈{L,M,C}

Nℓ∑
k=1

log
(
µℓ(q(tk)) +

∑
m∈{L,M,C}

U∑
u=1

αℓm
u βu

∫ t

0
e−βu(t−s)dNm

s

)

−
∑

ℓ∈{L,M,C}

∫ T

0

(
µℓ(q(s)) +

∑
m∈{L,M,C}

U∑
u=1

αℓm
u βu

∫ s

0
e−βu(s−v)dNm

v

)
ds

(2.2.10)

As we show in Appendix 2.5.2, the specific choice of a sum of exponential functions (Eq.
(3.2.3)) allows for a computationally efficient calculation of the log-likelihood and of its
gradient.
Another important advantage of the parametrization (3.2.3) is that it allows us to work
within the framework of Markov processes. Let us first remark that the queue size q(t)
simply corresponds to:

q(t) = NL
t −

∑
ℓ ̸=L

N ℓ
t . (2.2.11)

If one defines
oℓmu(t) =

∫ t

0
αℓm

u e−βu(t−s)dNm
s , (2.2.12)

and by denoting o⃗(t) the vector obtained by a vertical stacking of oℓmu(t) (u ∈ {1, . . . , U},
ℓ, m ∈ {L, M, C}), then

( q(t)
−→o (t)

)
is a vector Markov process. This property can be proved

exactly along the same lines as in Proposition 2.2 of [92]. Moreover, if one assumes that
there exist two positive constants c− and c+ such that∑

ℓ̸=L

µℓ(q) ≥ c−q and µL(q) ≤ c+ ,
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we show, in Appendix 2.5.1, with the help of Lyapunov functions approach along the
same line as in [4, 3], that the process

( q(t)
−→o (t)

)
is V-uniformly ergodic which notably

means that q(t) admits an invariant distribution and that this equilibrium is reached
exponentially fast.

2.2.2 Calibration results

Data In this study, we use tick-by-tick level L1 data of Bund future and DAX index
future traded on the Eurex electronic future market. The data span the period from
October 1st 2013 to September 30th 2014. The dataset consists of snapshots of the
first level of the order book, each with a timestamp indicating the record time with
microsecond precision, that provides prices and outstanding quantities. Every time a
trade occurs a specific line is added to the dataset, thus allowing to precisely determine
the type of order (i.e. limit order, cancellation, or market order1) that lead to a change
in the LOB. The Eurex future market is open from 8 a.m. to 10 p.m., Frankfurt time,
however, throughout this paper we only consider the time slot from 9 a.m. to 9 p.m.
in order to capture the most active period. In Table 2.1, we report some descriptive
statistics of our datasets. We note that, from the microstructural point of view, the
Bund future can be considered as a large tick asset, with an average spread very close
to one, whereas the DAX has a considerably smaller perceived tick size compared to
the Bund. This difference at the market microstructure level will reflect also in the
queue dynamics and in the result of our model. Indeed, the queues on the Bund are
often large as the midprice stays constant for relatively long periods of time while orders
accumulate at the best quotes. On the other hand, for the DAX the midprice changes
more frequently, resulting in slimmer queues at the best quotes. Further details on the
datasets as well as a more detailed description of the inter-event time distribution can
be found in [126].
Let us remind that our simplified framework considers the order book as a collection of
independent queues with a strict bid-ask symmetry so all the results presented in the
following are obtained by averaging Level I estimations on the bid and ask sides.

Estimation and goodness-of-fit analysis In order to estimate the parameters of
our model, for each day in our sample, we first compute the reference price pref as
specified at the beginning of this section. Then we determine the queue sizes, as in [87],
we assume that the order size for all events is a constant corresponding to the average
event size (AES), defined as the average volume of all types of orders arriving at the
best bid or ask side. We therefore measure the queue size q(t) in units of AES as

q(t) =
⌈ v(t)
AES

⌉
(2.2.13)

1With a slight abuse of language, in this paper we use the term “market order” to denote any order
that immediately gives rise to trade, regardless to whether or not it has a limit price.
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# L # C # M Avg. spread Med. spread AES Med. inter-event time

Bund 5.41 × 107 4.67 × 107 6.29 × 106 1.012 1.0 6.34 4.89 × 10−4

DAX 5.46 × 106 5.62 × 106 6.68 × 105 1.591 2.0 1.30 1.73 × 10−3

Table 2.1: Descriptive statistics of our dataset. Average number of limit, cancel and
market order at the best quotes per day. Average and median spread are measured in
ticks, average order sizes are expressed in contracts while median inter-event times are
in seconds.

where
⌈⌉

is the ceiling function and v(t) is the volume available at time t in the queue.
In Figure 2.1 we show the empirical distribution of the so-defined q(t) for Bund (left
panel) and DAX (right panel). These distributions are obtained by sampling the book
state every 30s over the whole time period. We have kept the same convention as in
[87], that the state q(t) is set to zero if and only if v(t) = 0. At this moment there is
no standing volume on this queue. However, since the midprice is not yet shifted, we
still refer to it as the best bid/ask queue. We observe that the Bund future presents a
broader and smoother distribution as compared to the one of the DAX, which is on the
contrary more concentrated on small queue sizes. This is a direct consequence of the
different perceived tick sizes as observed above.

0 25 50 75 100 125 150
q

0.000

0.005

0.010

0.015

de
ns

ity

0 5 10 15 20 25
q

0.00

0.05

0.10

0.15

0.20

0.25

de
ns

ity

Figure 2.1: Empirical distribution of the queue states (measured in unit of AES) as
defined in Eq. (2.2.13). Left: Bund future. Right: DAX future.

Once pref and q(t) is determined for each side, we divide each day in periods where pref is
constant. Then, each period is considered as an independent sample and we determine
the parameters of our model by numerically optimizing the joint log-likelihood over all
the so-obtained independent samples. Notice that for statistical estimation purposes,
in the results reported below we considered only samples that contain at least a total of
20 events and disregarded the other ones. In total, we have 1, 043, 876 periods for the
Bund and 190, 126 for the DAX under this criteria. 2

2For Bund future, the average number of events per sample is 103.59. The 10% and 90% percentiles
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We observe that, if sk stands for the length of the realization k and kt the index of
the realization located around time t, the quantity

τm = Es2
k

Esk

represents the average length of the realization kt if one chooses t at random (i.e. with a
uniform probability). This quantity is pertinent when performing averages over a fixed
grid of times {tj}j . For the Bund we have τm ≃ 100 s while for the DAX we estimated
τm ≃ 16 s.
As we pointed out above, in order to estimate our model, we need to fix the number of
the exponential decays U as well as the values of the decays β themselves. According
to the methodology described in Appendix 2.5.3, we found that U = 3 with β1 =
60s−1, β2 = 1500s−1 and β3 = 5500s−1 for the Bund and β1 = 40s−1, β2 = 2100s−1,
β3 = 5200s−1 for the DAX, represent a good compromise between the total number of
parameters to estimate (the number of parameters α grows linearly with U) and the
model goodness of fit as measured by (penalised) log-likelihood.
The maximum likelihood allows us to perform a quantitative comparison of the SQR
and SQRH models in terms of goodness of fit, which is one of the central results of this
paper. For the sake of completeness, we also consider a standard Hawkes model, i.e.
with no dependence on the queue state. In Table 2.2 we report the log-likelihood values
for the three models as well as the Akaike Information Criterion (AIC) score

AIC = 2k − 2L (2.2.14)

and the Schwartz information criterion (BIC) score

BIC = k log N − 2L (2.2.15)

where k is the number of parameters, L is the log-likelihood and N is the total sample
size (number of events in our case). These scores allow one to compare nested models
according to their likelihood while taking into account the different number of parame-
ters (a lower score is better). By looking at the values reported in Table 2.2, we observe
that the SQRH model has better scores in terms of AIC and BIC for both assets. We
can also use the likelihood ratio test in order to compare the models. Indeed the SQRH
model reduces to the SQR model when all the α are set to zero. Likewise, the SQRH
model reduces to a standard Hawkes model when, ∀ℓ, µℓ(q) = µℓ, i.e the dependence
on the queue state is dropped. We report the test statistics

LR = 2(L(θ̂1) − L(θ̂0)) (2.2.16)

are respectively 30 and 207 events. For DAX future the average number of events per sample is 31.87
events while 10% and 90% percentiles are 22 and 46 respectively. We have checked, using 100.000
samples of 20 events obtained from numerical simulations of the SQRH model with parameters close to
the ones observed empirically, that our MLE approach provides a reliable estimation of parameters α

and µ.
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Bund

L AIC BIC # parameters

SQR 2.046 × 107 −4.093 × 107 −4.092 × 107 450
SQH 2.052 × 108 −4.105 × 108 −4.105 × 108 30
SQRH 2.055 × 108 −4.110 × 108 −4.110 × 108 477

DAX

L AIC BIC # parameters

SQR 7.268 × 105 −1.453 × 106 −1.452 × 106 75
SQH 9.386 × 106 −1.877 × 107 −1.877 × 107 30
SQRH 9.506 × 106 −1.901 × 107 −1.901 × 107 102

Table 2.2: Log-likelihood, AIC, and BIC values for the three considered models for
Bund and DAX data.

where θ̂1 and θ̂0 are the maximum likelihood estimates for the null and for the alternative
model respectively, and p-values for the likelihood ratio test in Table 2.3. We note that
both the SQR and the SQH model are rejected with a very high degree of significance
when compared to the SQRH model.
To complete the goodness-of-fit comparison of the models, we look at the inter-event
time distribution. In particular, in Figure 2.2 we compare by means of a quantile-
quantile plot the empirical inter-event time’s distribution with the ones produced by
simulations of the calibrated SQR and SQRH models. It is clear from the figure that
the SQRH model reproduces strikingly better the empirical inter-event distribution,
indicating that including the dependence on the past event is crucial in order to build
a good model for the order flow fluctuations.
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Figure 2.2: Log qq-plot of inter-event times. Log of quantiles of inter-events times
simulated by model (horizontal) is plotted against log of empirical quantiles (vertical).
Left: Bund future. Right: DAX future. Note that, since qq-plots of the SQH model
can be hardly distinguished from those of SQRH model, we choose to not display it.
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Bund

Difference of log-likelihood df p-value

H0 = SQR, H1 = SQRH 3.7 · 108 27 < 10−16

H0 = SQH, H1 = SQRH 6.0 · 105 447 < 10−16

DAX

Difference of log-likelihood df p-value

H0 = SQR, H1 = SQRH 1.8 · 107 27 < 10−16

H0 = SQH, H1 = SQRH 2.4 · 105 72 < 10−16

Table 2.3: Likelihood ratio test statistic and p-values for the case where the null hypoth-
esis is the SQR model and for the case where the null hypothesis is a SQH model. The
“Degrees of freedom" (“df") value indicates the difference in the number of parameters
between the two models.

The results presented in this section suggest that both LOB-state (i.e., queue size)
dependence and memory effects due to correlation in the order flow are relevant variables
that need to be taken into account in order to build a faithful model for the order book
dynamics. Crucially, adding an order flow dependence in the form of a Hawkes term
dramatically increases the model likelihood as well as its capability of reproducing the
observed inter-event time distribution.

State dependency and Hawkes matrix empirical estimations In Figure 2.3 we
report the estimated parameters µ(q) for the SQR model, while in Figure 2.4 we plot the
analogous quantities for the SQRH model (2.2.5). Note that since, as shown in Fig. 2.1,
the number of events rapidly drops as the queue size q increases, the calibration results
of µ(q) are not reliable for large q. For that reason, we only show µ(q) estimations over
the first half of the full available range of q. Within this domain, given the observed
number of events, estimation errors can be evaluated from numerical simulations or
using the inverse of the Hessian matrix of the log-likelihood. Both methods provide
a magnitude of the relative estimation error around a few percent. We can make two
general remarks while comparing these plots. First, we note that the dependence on the
queue size captured by the two models is roughly concordant, in that the functions µℓ(q)
have similar shapes in both models. However let us remark that the values estimated
within the SQRH model are much smaller, indicating that a large part of the intensity
is now explained by the self- and cross-exciting Hawkes components (see the discussion
below). As in [87], we observe a decreasing rate of market order arrivals as the queue
size increases. This can be explained by the fact that agents tend to consume liquidity
faster as this liquidity becomes rare. We also find that, when q(t) is large enough, the
rate of cancellation is an increasing function of the queue size. This is an expected
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feature assumed in most former LOB models (see e.g., [132, 45]), since cancellations are
more likely to occur when they are many active limit orders. As shown in Appendix
2.5, this behavior ensures the ergodicity of the queue process. Let us finally notice,
that unlike the observed behavior in [87] on specific stocks, we don’t observe that the
intensity of limit order insertion is almost independent of the queue size. It is rather a
decreasing function of the queue size probably reflecting a lesser quest for priority when
q is large.
It is also interesting to look at the quantity

eℓ(q) = 1 − µℓ(q)
Λℓ(q)

(2.2.17)

where
Λℓ(q) = Eλℓ(t)|q(t−) = q (2.2.18)

is the average intensity in a given state q. eℓ(q) corresponds to the fraction of the total
average intensity explained by the endogenous self- and cross-exciting mechanism as a
function of the queue size q, While Λℓ(q), in the case of the SQR model, is directly
provided by the parameter µℓ(q), for the SQRH model it is given by the contribution
of both the baseline intensity µℓ(q) and the Hawkes interactions. Unlike standard mul-
tivariate Hawkes processes, the SQRH model does not admit a closed form formula of
Λℓ(q) from its parameters. Therefore, while eℓ(q) is trivially zero for the SQR model,
we resort to numerical computation of Λℓ(q) in order to compute eℓ(q) for the SQRH
model.
The result are shown in Figure 2.5, where we have plotted the estimated eℓ(q) for
all types of orders and for both the Bund (top panels) and the DAX (bottom panels)
futures. Overall we see that a large part, from 60% to 80% of the total average intensity,
is explained by the self- and cross-exciting effect. We note that for cancel and market
orders, the intensity is maximally explained by the Hawkes term when the queue is small.
This is likely the result of persistence in the order flow, captured by the self-exciting
term in the Hawkes model, which for market and cancel orders leads to a depletion of
the queue. This explanation is corroborated by the observation that the opposite effect
is found for limit orders, namely a higher endogeneity for higher values of q.
To complete the analysis of the QRH model results, in Figure 2.6 we plot in a color map
the Hawkes kernel norms |ϕℓm| =

∫∞
0 ϕℓm(t)dt. Note that in our setting these quantities

are simply given by |ϕℓm| =
∑U

u=1 αℓm
u . As discussed in [16], these quantities represent

the average direct effect of an event of type m (columns) over the intensity of type ℓ

(rows) events. Hawkes kernel matrices of order book events have been extensively stud-
ied in [13, 126]. Here, we note that despite the addition of the queue-dependent term,
we recover many of the features already observed in previous studies, such as the strong
diagonal component corresponding to self-excitation, likely the result of correlation in
the order flow induced by order splitting strategies. We also confirm that market orders
influence liquidity much more than the opposite effect. In particular, since here we
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Figure 2.3: From left to right: estimated values µq for limit order insertion, limit order
cancellation and market orders, SQR model. Top row: Bund future. Bottom row: DAX
future.

look at interactions on the same side of the book, we note that market orders have on
average an exciting effect on cancellations. As observed in the aforementioned studies,
flows of market orders at a given price signal that the “true” price is closer to that side
and therefore liquidity adapts, with outstanding orders being canceled in order not to
be adversely selected.

Equilibrium and empirical queue size distributions In [87], the authors em-
phasized that the QR model provides a simple framework to account for the observed
queue size distributions in the order book. For that purpose, they have shown that
the model invariant distribution fits quite well the empirical laws notably at the first
bid/ask levels. In Appendix 2.5.1, we show that, under some conditions that appear to
be empirically fulfilled, the SQRH model is also an ergodic process and the queue size
can thus be described by its invariant distribution. Before comparing the performances
of SQR and SQRH models with respect to their prediction of the equilibrium queue
size distribution, let us emphasize that some caution is needed when addressing this
issue. Indeed, this distribution, even if reached exponentially fast, does not necessarily
correspond to the empirically observed queue law since when the queue is empty, the
reference price has a non-vanishing probability to change. This directly implies that for
small values of the queue size, the invariant distribution is not supposed to account for
the observed values from snapshots of the empirical book state. Moreover, since the
initial queue size has no reason to be drawn with the invariant distribution, this law is
pertinent only after a short delay that has to be compared to the length of each realiza-
tion, i.e., the time period between two changes of the reference price. The exponential
rate involved in the ergodic theorem is however hard to estimate. One can use a proxy
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Figure 2.4: From left to right: estimated values µq for limit order insertion, limit order
cancellation and market orders, SQRH model. Top row: Bund future. Bottom row:
DAX future.

as given for example by the exponential decay of empirical queue size autocorrelation
function. That is an alternative measure of a mixing coefficient that can be, under
some conditions, related to the distribution relaxation time [40]. If one assumes that
the decay of autocorrelation of the queue size takes the form ρ(t) = a exp−t/τc , we find
empirically that τc ≃ 15 s for the Bund future and τc ≃ 2 s for the DAX. For both
assets, these correlation characteristic scales have to be compared with the average re-
alization length, namely τm ≃ 100 s for the Bund and τm ≃ 16s for the DAX. Since in
both cases we have τc ≪ τm, it is likely that the invariant distribution is pertinent to
account for the queue size distribution as observed at randomly chosen times.

With previous observations in mind, we now proceed with the comparison of the em-
pirical queue distribution, measured by taking snapshots of the book every 30 s and
the invariant distributions produced by the SQR and SQRH models. Since we do not
have any explicit formula for the SQRH model, we estimate the invariant distribution
of q(t) by performing a simulation over a long time period. The invariant measure of
the SQR model can be directly deduced from the estimations of µℓ(q) in Figure 2.3
using the analytical formula in Sec. 2.3.3 of [87]. The plots the both SQR and SQRH
invariant measures together with the empirical queue size distribution for both Bund
and DAX are reported in Figure 2.7. First of all, we observe that the SQRH model
provides in both cases a better fit of empirical data, notably in the tail region, than the
SQR model. The latter is particularly far from the observed distribution in the large
tick case of the Bund data. Its performance for the smaller tick asset (DAX) is closer to
the results reported in [87] for stock data. Beyond the fact that this striking difference
between large and small tick assets is hard to explain (though the analytical formula in
[87] shows that the overall shape of the distribution can vary quite drastically when on
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Figure 2.5: From left to right: Endogenous fraction for limit order insertion, eℓ(q) as
defined in Eq. (2.2.17)), for limit (ℓ = L), cancellation (ℓ = C) and market (ℓ = M)
orders by SQRH model. Top row: Bund future. Bottom row: DAX future.
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Figure 2.6: Kernel norm matrices for Bund future (left) and DAX future (right).

changes the respective behavior of the µℓ(q) functions) our findings show that account-
ing for the Hawkes self-interaction within a queue reactive model is important not only
to describe correctly the order flow dynamics but also to provide a better model for the
queue size distributions.



64 CHAPTER 2.

0 20 40 60 80 100 120 140
q

0.00

0.01

0.02

0.03

0.04
De

ns
ity

Empirical distribution
SQR model
SQRH model

0 5 10 15 20 25
q

0.00

0.05

0.10

0.15

0.20

0.25

De
ns

ity

Empirical distribution
SQR model
SQRH model

Figure 2.7: Comparison of the invariant distributions of the SQR and SQRH models
with the empirical one. Left: Bund future. Right: DAX future.

We notice furthermore that the distribution of queue size simulated by the SQRH model
deviates from the empirical distribution, especially around states where the queue is
small. As discussed previously, when the queue is empty, the reference price has a large
probability to change and therefore the corresponding empirical sample stops. This
results in a statistical bias with respect to the “theoretical model" where such event
type does not exist since when the queues are empty nothing happens until a new limit
order arrives. The states with low queue values are therefore more likely to be visited
in the model than in empirical observations.

2.3 Summary and prospects

In this paper, we introduced a “Single Queue Reactive Hawkes model" with the ambition
to improve respectively the approach of Huang et al. [87] on the queue reactive nature
of the LOB dynamics and the model of Bacry et al. [13]. We show that such models
can be easily calibrated within a parametric approach. Our empirical findings on two
different future assets from Eurex, namely Bund and DAX order book data, suggest that
both queue reactive and past order flow dependencies are relevant to account for the
occurrence likelihood of future order book events. The SQRH model outperforms a pure
Hawkes model as well as a pure queue-reactive one in terms of goodness of fit. As far as
the SQRH model is concerned, our framework allows one to remain within the framework
of Markov processes that has ergodic properties so, along the same line as in the Huang
et al. approach, we can define and estimate the queue size distribution associated
with the invariant measure of the model. The SQRH also leads us to refine Bacry et
al. findings [13] by accounting for the states of the LOB. Our results suggest that by
putting the queue-dependency property in the intensity function, a better description
of order flows is achieved. Furthermore, the ergodicity property of this model can be
proved under reasonable assumptions, which allows the SQRH model to be adopted
for simulation purposes. Besides considering various applications of these models to
design and optimize high-frequency trading strategies, one fundamental challenge is to
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extend our approach in order to account for several queue interactions and describe the
book dynamics up to a given depth. It could be also interesting to generalize definition
(2.1.3) to cases where both exogenous intensities and Hawkes kernel may depend on
the queue sizes. From a mathematical point of view, a deeper understanding of the
stability and stationarity conditions for queue-dependent Hawkes models remains to be
developed. Meanwhile, some substantial simplifications we made in this study could
also be removed in order to have an even more realistic model such as, for instance,
dropping the assumption of unitary order sizes by adopting a similar approach to [102].
More fundamentally, a clear understanding of the observed shapes of the exogenous and
endogenous intensities and the nature of queue dependency property in terms of the
(rational) behavior of various market participants remain open questions.
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2.5 Appendix

2.5.1 Proof of the existence of invariant distribution

In this section, we prove the existence of the invariant distribution of the SQRH model.
The ergodicity allows for approximating the empirical distribution of queue size by sim-
ulating the SQRH model for a sufficiently long time. The proof is made via constructing
a Lyapunov function. First, we define

oℓmu(t) =
∫ t

0
αℓm

u e−βu(t−s) dNm
s . (2.5.19)

Then by combining (2.2.5) and (3.2.3), the intensity function could be written in
the form

λℓ(t) =

µℓ(q(t−)) +
∑

m∈{L,M,C}

U∑
u=1

oℓmu(t)

1(ℓ=L)∨(q(t−)>0) . (2.5.20)

We take two empirically fulfilled assumption introduced in [4, 3], that there there
exist two positive constants c− and c+ satisfying

∑
ℓ̸=L

µℓ(q) ≥ c−q and µL ≤ c+ .

These assumptions limit the arrival rate of limit order while guaranteeing that ex-
isting volume is consumed at a rate which is at least proportional to queue size. Under
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such assumptions, limt→∞ E[q(t) < ∞]. At moment t, the queue size is determined by
the sum of past order flows:

q(t) =
∑
ℓ=L

Nℓ −
∑
ℓ̸=L

Nℓ. (2.5.21)

We note o⃗(t) be the vector obtained as a vertical stacking of the components oℓmu(t)
for all (ℓ, m, u) ∈ {L, M, C}2 × {1, . . . , U}. Then it is not difficult to verify that the
vector process (q, o⃗)T is Markovian. The rest part is about constructing a Lyapunov
function for (q, o⃗)T . We first construct two Lyapunov functions separately for q and o⃗,
then we construct the Lyapunov functions for (q, o⃗)T by combining the two.

Lyapunov function for o⃗

We first prepare the differential form of o⃗(t):

doℓmu(t) = −βuoℓmu(t)dt + αℓm
u dNm

t . (2.5.22)

For any arbitrary suitable function F which maps R2D+U to R, the infinitesimal
generator is:

LF (o⃗) =
∑
m

λm(F (o⃗ + ∆m(o⃗)) − F (o⃗)) −
∑

ℓ,m,u

βuoℓmu
∂F

∂oℓmu
, (2.5.23)

where λm is the probability for an event to happen in dimension m of the point
process N⃗ , and ∆m(o⃗) is the jump of o⃗ caused by this event. We then define the matrix
A as:

Aℓm =
∑

u

αℓm
u

βu
. (2.5.24)

We further assume that if f(q) is set to constant value, SQRH model corresponds to
a stable Hawkes process, i.e., the maximal eigenvalue κ of A satisfies 0 < κ < 1. Notice
that, according to Perron-Frobenius theorem, the associated eigenvector ϵ⃗ of κ satisfies
∀l, ϵl > 0.

We then note

δℓmu := δℓu = ϵℓ

βu
, (2.5.25)

and we choose function V1 of o⃗ as:

V1(o⃗) =
∑

ℓ,m,u

δℓmuoℓmu. (2.5.26)

With the preparations above, we could verify that LV1(o⃗) is a Lyapunov function
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for o⃗, i.e.

LV1(o⃗) =
∑
m

(µm +
∑
p,q

ompq)1m=0∨q(t)>0
∑
ℓ,u

δℓmuαℓm
u −

∑
ℓ,m,u

βuoℓmuδℓmu

≤
∑
m

(µm +
∑
p,q

ompq)
∑
ℓ,u

δℓmuαℓm
u −

∑
ℓ,m,u

βuoℓmuδℓmu

=
∑

ℓ,m,u

µmδℓmuαℓm
u +

∑
m

(
∑
p,q

ompq)(
∑
ℓ,u

ϵℓ

βu
αℓm

u ) −
∑

ℓ,m,u

βuoℓmuδℓmu

= C1 +
∑
m

(
∑
p,q

ompq)(
∑

ℓ

ϵℓ

∑
u

αℓm
u

βu
) −

∑
ℓ,m,u

βuoℓmuδℓmu

= C1 +
∑
m

(
∑
p,q

ompq)ϵmκ −
∑

ℓ,m,u

ϵℓoℓmu

= C1 − (1 − κ)
∑

ℓ,m,u

ϵℓoℓmu

= C1 − (1 − κ)
∑

ℓ,m,u

βuδℓmuoℓmu

≤ −ρ1V1 + C1,

(2.5.27)

where the constant ρ1 is chosen as

ρ1 = (1 − κ) inf βu. (2.5.28)

Lyapunov function for q

Similarly, we first write the differential form of q(t):

dq(t) =
∑
m∈J

dNm
t −

∑
ℓ∈I

dN ℓ
t . (2.5.29)

We keep the same notation of ∆ as in Eq 2.5.23. For any arbitrary suitable function
F who maps R+ to R, the infinitesimal generator is:

LF (q) =
∑
m

λm(F (q + ∆m(q)) − F (q)). (2.5.30)

Next, it could be easily verified that V2(q) := q is a Lyapunov function for q:

LV2(q) =
∑
m∈J

λm(q) −
∑
ℓ∈I

λℓ(q)

≤
∑
m∈J

µm(q) −
∑
ℓ∈I

µℓ(q) +
∑

ℓ,m,u

oℓmu

≤ cJ − cIq +
∑

ℓ,m,u

oℓmu

≤ −ρ2q + C2.

(2.5.31)

In the equation cI , cJ are previously defined constants, and ρ is taken as ρ2 = cI .
Also, it must be noted that the constant C2 depends on o⃗ as well:

C2 := cJ +
∑

ℓ,m,u

oℓmu. (2.5.32)
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Lyapunov function for (q, o⃗)

The final step is to construct a Lyapunov function V for both q and o⃗. We choose the
following:

V (q, o⃗) = V2(q) + 1
η

V1(o⃗). (2.5.33)

By combining inequalities established for V1 and V2, and the expression 2.5.32 with
C2, direct calculation shows that:

LV (q, o⃗) = LV2(q) + 1
η

LV1(o⃗)

≤ −ρ2V2 + C2 − ρ1
η

V1 + C1
η

≤ −ρ2V2 +
∑

ℓ,m,u

oℓmu − ρ1
η

V1 + C
′

(2.5.34)

Here we can choose C
′ = cJ + C1

η . Notice that since the coefficient δℓmu, oℓmu, and ρ1

are all positive, there must exist an η who satisfies∑
ℓ,m,u

oℓmu <
ρ1
2η

V1(o⃗) (2.5.35)

By substituting the previous inequality into Eq 2.5.34, we can then show that V is a
Lyapunov function for (q, o⃗):

LV (q, o⃗) ≤ −ρ2V2 − ρ1
2η

V1 + C
′

≤ − min(ρ2,
ρ1
2

)V + C
′
.

(2.5.36)

Given the existence of the Lyapunov function and the geometric drift condition
above, together with the assumption that the spectral radius of A is smaller than one,
Theorem 6.1 in [112] guarantees that the process q(t) is ergodic. Also, it converges
exponentially fast towards its unique stationary distribution.

2.5.2 Calculation of the log-likelihood function of SQRH model and
its gradient

For SQRH model, the log-likelihood is a function of µ and α. Let’s note tℓ
k the timestamp

of the kth event of type ℓ, and N ℓ the total number of event of type ℓ. With such
notation, the log-likelihood could be expressed as:

L(α⃗, µ⃗) =
∑

ℓ∈{L,M,C}

N l∑
k=1

log
(
µℓ(q(tℓ,−

k ) +
∑

m∈{L,M,C}

U∑
u=1

αℓm
u βu

∫ tk

0
e−βu(t−s) dNm

s

)

−
∑

ℓ∈{L,M,C}

∫ T

0

(
µℓ(q(t)) +

∑
m∈{L,M,C}

U∑
u=1

αℓm
u βu

∫ s

0
e−βu(s−v) dNm

v

)
ds.

(2.5.37)
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Next, we introduce two auxiliary functions g(t) and G(t), whose value don’t depend
on the parameters µ⃗ and α⃗:

gm
u (t) =

∑
tm
k

<t

βue−βu(t−tm
k ), (2.5.38)

and

Gm
u (t) =

∫ t

0
gm

u (s)ds =
∫ t

0

∫ s

0
βue−βu(s−v) dNm

v ds. (2.5.39)

We note that both g(·) and G(·) only need to be evaluated over a grid of timestamps
{tk}k, when new orders arrived. Their value is calculated using the following recurrence
relation:

gm
u (tk) =

∑
tm
k′ <tk

βue−βu(tk−tm
k′ ) (2.5.40)

=
∑

tm
k′ <tk−1

βue−βu(tk−1−tm
k′ )e−βu(tk−tk−1) +

∑
tk−1≤tm

k′ <tk

βue−βu(tk−tm
k′ ) (2.5.41)

= e−βu(tk−tk−1)gm(tk−1) + βue−βu(tk−tk−1)1type(t+
k−1)=m, (2.5.42)

and

Gm
u (tk) − Gm

u (tk−1) =
∫ tk

tk−1

gm
u (s)ds (2.5.43)

= 1 − e−βu(tk−tk−1)

βu
gm

u (tk−1) +
(
1 − e−βu(tk−tk−1)

)
1type(t+

k−1)=m.

(2.5.44)

Log-likelihood function

With the definition of g and G, the log-likelihood function L could be rewritten in the
following way:

L(α⃗, µ⃗) =
∑

ℓ∈{L,M,C}

Nℓ∑
k=1

log
(
µℓ(q(tℓ,−

k )) +
∑

m∈{L,M,C}

U∑
u=1

αℓm
u gm

u (tk)
)

−
∑

ℓ∈{L,M,C}

N∑
k=1

µℓ(q(t−
k ))(tk − tk−1) −

∑
ℓ∈{L,M,C}

µℓ
q(t+

N )(T − tN )

−
∑

ℓ∈{L,M,C}

N∑
k=1

∑
m∈{L,M,C}

U∑
u=1

αℓm
u (Gm

u (tk) − Gm
u (tk−1)) −

∑
ℓ∈{L,M,C}

∑
m∈{L,M,C}

U∑
u=1

αℓm
u (Gm

u (T ) − Gm
u (tN )).

(2.5.45)
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By deriving the equation above against µ and α, a direct calculation gives:

∂L

∂µℓ(q)
=

Nℓ∑
k=1

1
q(tℓ,−

k
)=q

µℓ(q(tℓ,−
k )) +

∑D
m=1

∑U
u=1 αℓm

u gm
u (tℓ

k)
−

N∑
k=1

1q(t−
k

)=q(tk−tk−1)−1q(t+
N )=q(T−tN ),

(2.5.46)
and

∂L

∂αℓm
u

=
Nℓ∑
k=1

gm
u (tℓ

k)
µℓ(q(tℓ,−

k )) +
∑D

m=1
∑U

u=1 αℓm
u gm

u (tℓ
k)

−
N∑

k=1
(Gm

u (tk)−Gm
u (tk−1))−(Gm

u (T )−Gm
u (tN )).

(2.5.47)

2.5.3 Choice of parameters U and βm

In SQRH model, both U and β = {β1, β2, ...βU } are treated as hyper-parameters. With
pre-determined β, the log-likelihood of the SQRH model is convex and could be hence
optimized. The ideal way to determine the optimal β with U components is to search
over a U -dimensional grid while maximizing the log-likelihood for increasing values
U = 1, 2, 3, . . .. However, a search of this kind could be very costly in computation
time. Therefore, we opted to use the following iterative approach instead:
1. We search β1 over a logarithmic grid to maximize the log-likelihood of the SQRH
model over a given data set and take β = {β1}.
2. While keeping β1 fixed, we search for a second component β2 over a logarithmic grid
and maximise the log-likelihood of SQRH model with β = {β1, β2}.
3. We then fix β2 and adjust β1 again to further maximize the log-likelihood of SQRH
model. Then we iteratively adjust β2 (resp. β1) while keeping other components in β

fixed. The log-likelihood converges after several iterations. Then we take β = {β1, β2}.
4. Similarly, we repeat step 2 and step 3 to add a third component as β3 into β. This
process could be repeated to obtain a β with an arbitrary number of components.

We point out that adding more components in β improves the log-likelihood. How-
ever, it also increases the risk of over-fitting. Meanwhile, computation time increases
dramatically with the number of components. Our numerical experiment suggested that
adopting U = 3 components in β generates sufficiently good performance in terms of
log-likelihood while keeping the calibration time under a reasonable scale.



Chapter 3

A Queue Reactive Hawkes model
for the best limits of the order
book

3.1 Introduction

The model presented in this chapter can be seen as a further development from the
SQRH model presented in Chapter 2, which has been developed with the same ambition:
developing a model for the Limit Order Book (LOB) where dependencies on both past
order flow and the state of the LOB are present. We will not reiterate the motivation to
do so, which would be largely redundant with the introduction of the previous chapter.

Let us recall that in Chapter 2 we introduced a “Single Queue Reactive Hawkes”
(SQRH) model with the ambition to improve respectively the approach of Huang et al.
[87] on the queue reactive nature of the LOB dynamics and the model of Bacry et al.
[13]. We restricted this model to a single (best) queue modeling in order to be able to
prove the existence of an invariant distribution. Like the model in [87], whenever the
price corresponding to this best limit changed, the model was reset. For this reason,
SQRH does not account for the cross dynamic between the two best limits (e.g., the best
bid and the best ask queue), nor does it account for the changes in their corresponding
price. This chapter is devoted to a model that tackles these drawbacks.

In this chapter, we present a more sophisticated model than SQRH. It considers
the order flows on the two best limit queues, their interactions, and the changes in the
prices of the best bid and the best bid queue. This model will be referred to as the
“Queue Reactive Hawkes” (QRH model).

As we did for the SQRH model, the QRH model will involve a combination of a
“Queue Reactive” component (as in [87]), i.e., a dependence on the two best queue sizes
at the current time, and a Hawkes component taking into account the dependency on
the past order flows on these two queues. Moreover, in order to take into account the
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change in prices, the resetting of the model will only occur at market close time.

3.2 The Queue Reactive Hawkes (QRH) model

3.2.1 Introduction to the QRH model

As explained in the introduction, the QRH model is intended to capture the dynamics
of the two best limit queues (best ask and best bid) of the LOB: including both the
dynamics of the queue sizes and the dynamics of the midprice, where the midprice is
defined as the average of the best bid price and the best ask price.

Let us point out that, contrary to the SQRH model presented in the previous chapter
and the QR model in [87], we define the best ask (resp. bid) queue as the queue
corresponding to the lowest (resp. highest) available price (i.e., non-empty queue) on
the ask (resp. bid) side of the LOB. Thus, following this definition, the size of the best
ask (resp. bid) queue can never reach 0. Under this setting, the QRH model does not
make any use of the referenced price pref as defined in the previous chapter or as in
[87]. As presented below, we track the changes in the midprice by monitoring particular
events. Moreover, this model no longer needs to be reset regularly. The resetting only
occurs when the market closes.

For the QRH model, we consider eight event types at the best ask of best bid queues
of a LOB, namely

P + (P −) for events that move the midprice up (down),

La (Lb) for limit orders at the best ask (bid) that do not change the midprice,

Ca (Cb) for cancellations at the best ask (bid) that do not change the midprice,

Ma (M b) for market orders at the best ask (bid) that do not change the midprice.

For each ℓ ∈ {P +, P −, La, Lb, Ca, Cb, Ma, M b}, let us define N ℓ
t as the counting

process associated with events of type ℓ and λℓ(t) the associated conditional intensity.
The authors in [13] consider a multivariate Hawkes model where each event type

can influence, and be influenced by, the others so that the conditional intensities read:

λℓ(t) = µℓ +
∑
m

∫ t

0
ϕℓm(t − s) dNm

s , (3.2.1)

where ℓ and m can take any value in {P +, P −, La, Lb, Ca, Cb, Ma, M b}. In their work,
the kernels ϕℓm are estimated by the non-parametric estimation method first described
in [18]. This model allows the authors to highlight the rich influence structure between
events in a limit order book, including the high-frequency midprice reversion and the
persistent autocorrelation in the order flow determined by order splitting strategies, but
also some more refined market-maker induced dynamics (see [13]).
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In order to add queue-dependency to this Hawkes process based approach, we pro-
ceed in much the same way as we did in the previous chapter, except that the order
book state is no longer represented by a single queue size q (that represented either the
best ask or the best bid quantity) but by both the best bid and the best ask queue
sizes (qa, qb). Let us point out that now the queue sizes qa and qb, by definition, never
reach zero. Moreover, each process dN ℓ encodes the full history of all the events of
type ℓ arriving at the corresponding queue, which is independent of changes in the best
ask/bid prices.

So adding queue-dependency to such a model calls for a mechanism that can mod-
ulate (as a function of the order book state) not only the exogenous intensity µℓ (as
in the previous model) but also the convolutional part of the intensity. To illustrate
this point, we can mention a situation where the Hawkes kernel matrix should explicitly
depend on the state of queues. For instance, P + events are supposed very unlikely to
occur (for a large tick asset) when the size of the ask queue is large, and the size of the
bid queue is small.

The QRH model corresponds to the simplest possibility where both the exogenous
and the self-exciting part of the intensity share the same multiplicative dependence on
the states. We introduce the following model,

λℓ(t) = f ℓ(qa(t), qb(t))
(

µℓ +
∑
m

∫ t

0
ϕℓm(t − s)dNm

s

)
, (QRH) (3.2.2)

where the functions f ℓ that encode the dependence on the order book states, modulate
not only the exogenous intensity but also the Hawkes term. Let us notice that, unlike
the SQRH model, the QRH model is mainly a model for order flows. We disregard
the effect of the order flow on the queue sizes and consider queue sizes as (observable)
exogenous variables.

As for the SQRH model, we choose a parametric form for the kernels ϕℓm and in
particular we adopt the same exponential-sum specification

ϕℓm(t) =
U∑

u=1
αℓm

u βue−βu(t−s) (3.2.3)

where αℓm
u are parameters of the model and βu, U are suitably chosen hyper-parameters.

To facilitate the notation, we use µ⃗ and α⃗ to represent all µℓ and αℓm
u . With such

parametrization, we further note θ = (µ⃗, α⃗).

3.2.2 From log-likelihood estimation to least square estimation

Once the parametric form (3.2.3) for the kernels has been specified, the model can be
estimated using MLE. Although the QRH model differs from the SQRH model, the cal-
culation of its log-likelihood function and its gradients follows the same track presented
in Appendix 3.4.1, with only some trivial modifications. Moreover, thanks to the chosen



74 CHAPTER 3.

parametrization, the log-likelihood is again a convex function of the parameters, thus
guaranteeing the existence of a global optimum.

Since the number of states of the LOB grows quadratically fast with the number of
states considered per side, considering every possible state (i.e., every possible queue
size) is unrealistic. To limit the number of configurations, we consider the limit order
book to be only in one of the states, i.e. (qa, qb) = (i, j) with a limited number of i and
j. This setting leads to a piecewise constant function f ℓ noted by f(qi

a, qj
b). Finally, we

choose the normalization (note that any other normalization would be equivalent up to
a rescaling of the kernels and of the µℓ in Eq. (3.2.2)) that

f ℓ(q1
a, q1

b ) = 1. (3.2.4)

In the following context, we adopt a specified partition scheme for i and j. For both
the ask side and the bid side of the asset, i and j are determined in the same way.
Let’s take ask side for example. First, there are in total N states corresponding to N

intervals, each is of length m. N and m are integers, and they are chosen as power of 2
in a way adapted to asset.

Im =
{

[m ∗ s, (m + 1) ∗ s) 0 ≤ m < N − 1
[m ∗ s, ∞) m = N − 1

(3.2.5)

If the queue size satisfies qa ∈ Im, we take i = m. For Bund future, we choose N = 16
and m = 64. For DAX future, we choose N = 8 and m = 2. It is worth mentioning that
our experiments suggest that finer binning with large N will improve fitting performance
measured by the loss function. However, we are limited by computation resources to
solve such calibration problems.

We calibrate the so-obtained model using MLE with the same dataset used in the
previous section. As shown in Tables 3.1 and 3.2, our model outperforms the pure-
Hawkes model introduced in [13] in terms of goodness of fit. In particular, a likelihood
ratio test rejects the null hypothesis of a pure-Hawkes model with a p-value < 10−16.

Bund

L AIC BIC # parameters

QRH 5.348 × 108 −1.070 × 109 −1.070 × 109 400
Hawkes 5.200 × 108 −1.040 × 109 −1.040 × 109 200

DAX

L AIC BIC # parameters

QRH 4.626 × 108 −9.253 × 108 −9.253 × 108 400
Hawkes 4.488 × 108 −8.976 × 108 −8.976 × 108 200

Table 3.1: Log-likelihood, AIC, and BIC values for the QRH model (defined by
Eq.(3.2.2)) and the Hawkes model (defined in [13]) for Bund and DAX data.
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Bund

LR df p-value

H0 = Hawkes, H1 = QRH 2.9 · 107 200 < 10−16

DAX

LR df p-value

H0 = Hawkes, H1 = QRH 2.8 · 107 200 < 10−16

Table 3.2: Likelihood ratio test statistic and p-values for the case where the null hypoth-
esis is the QRH model (defined by Eq.(3.2.2)) and for the case where the null hypothesis
is the Hawkes model (defined in [13]).
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Figure 3.1: MLE Kernel norm matrices
∫

ϕlm(t) dt for Bund future (left) and DAX
future (right) for the QRH model (defined by Eq.(3.2.2)).

A detailed discussion on the so-obtained MLE results is in Section 3.2.3. For sim-
plicity, let us first put apart the effect of the queue dependency and only look at the
kernel estimation.

Figure 3.1 represents the so-obtained kernel norm matrices {
∫

ϕℓm(t) dt}ℓm given by
our model. This figure has to be compared with the matrix obtained in Figure 4 of
[13] for which the same model (without queue dependency) has been used. Let us point
out that in order to obtain this matrix, [13] performed a non-parametric estimation
which allows negative values for the kernels and consequently negative values for some
elements of the matrix {

∫
ϕℓm(t) dt}ℓm. These negative values account for inhibition

dynamics, i.e., decreasing the intensity of a given type of event. One could show that
negative values for a kernel could lead at a finite time (and with a non zero probability)
to some situation where the sum (3.2.2) is negative leading to a negative intensity which,
of course, does not make any sense. In order to circumvent this difficulty, it is common
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to replace equation (3.2.2) by a non-linear equation of the form

λℓ(t) = f ℓ(qa(t), qb(t))
(

µℓ +
∑
m

∫ t

0
ϕℓm(t − s)dNm

s

)+

, (3.2.6)

where the operator (·)+ = max(·, 0). However, in the framework of this nonlinear
Hawkes model, MLE becomes intractable since it is no longer a convex problem. As
explained in [77], this problem is tractable in some sense when considering the least
square approach (see also [127] as an example of least square estimation with negatively
valued kernels).

Thus, the least square estimations allow negatively valued kernels whereas, in the
MLE framework as presented above, we forced all the kernels (i.e., all the αlm

u ’s in Eq.
(3.2.3)) to be positively valued. This mainly explains the differences found between
Figure 4 in [13] and our Figure 3.1.

For the sake of just naming one striking difference, in [13], the kernel integral
∫

ϕLbP −

(resp.
∫

ϕLaP +) is found to be strongly negative. Actually, as seen in Appendix B.6 in
[13], the kernel itself ϕLbP − (resp. ϕLaP +) is mostly negative at all time scales. This
fact can be seen as a natural dynamic induced by market makers: when the price goes
down, the efficient price is closer to the best bid price; thus, fewer limit orders are placed
on the bid size (the gain is small compared to sending an aggressive order) and more
limit orders are placed on the ask side.

Let us point out that forcing the kernels to have only positive values (i.e., forcing
all the αlm

u to be positive as assumed when performing MLE) will a priori not only
lead to highly biased values for kernels with negative values but is likely also to induce
high bias for kernels with only positive values since the estimation performed is a joint
estimation of all the kernels involving intricate relationships between these kernels (see
[18] for examples of such biases).

Consequently, it appears that one should use least square based estimation rather
than MLE. Details about least square estimation can be found in Appendix 3.4.1. It
consists in minimizing R(θ) as defined by

R(θ) =
D∑

ℓ=1
Rℓ(θ), with Rℓ(θ) =

∫ T

0
λ2

ℓ (t; θ|Ft)dt −
Nℓ∑
k=1

λℓ(tℓ
k; θ|Ftℓ

k
) (3.2.7)

where λℓ is given by Eq. (3.2.2)1. One could easily verify that this problem is convex as
a function of the αℓm

u (see Eq. (3.2.3)) and µℓ. Thus the existence of a global optimum is
guaranteed. As shown in Appendix 2.5.3, this parametrization allows a computationally
efficient calculation of the squares loss function R together with its gradient.

3.2.3 Fitting results and comments

In this section, we present and comment on the results obtained through the least square
estimation of the QRH model as defined by Eq. (3.2.2).

1or alternatively by Eq (3.2.6) in the sense given in [77]
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Estimation of the f ℓ(qa, qb). In our results, we document a clear dependence of
the order arrival rates on both qi

a and qj
b , indicating that the state of the LOB has a

clear influence on the order arrival rates. Let us point out that previous works (e.g.,
[126] and [99]) suggest that this dependence is dependent on the imbalance of the queue
sizes as defined by

I(t) = vb(t) − va(t)
vb(t) + va(t)

= qb(t) − qa(t)
qb(t) + qa(t)

(3.2.8)

where va/b(t) denote the volume available at time t at best ask/bid prices and we have
assumed that orders have a constant volume corresponding to the AES as defined pre-
viously. The imbalance represents the simplest proxy to account for the instantaneous
buying pressure. In this respect, in Figures 3.2 and 3.3, we plot f ℓ(qi

a, qj
b) in logarithmic

scale for each order type ℓ as a function of the imbalance I calculated as the median
imbalance in the state interval associated with quantiles (qi

a, qj
b). Let us note that in

these plots, the dot sizes indicate the sizes of the corresponding qi
b.

By looking at Figures 3.2 and 3.3 we can make the following observations: First,
the variation of the imbalance on the order book captures most of the variations of the
intensive parameters f ℓ(qa, qb), this is more evident on the large tick asset (Bund) for
which f can span almost three order of magnitudes (for P , and M events) as I ranges
from −1 to +1. The variations of f ℓ(qa, qb) are smaller for the small tick asset (DAX),
so the effect of the imbalance is less pronounced albeit still visible for P and, to a lesser
extent, L events. This is in line with the observation that the imbalance is a very good
predictor for midprice changes for large tick assets while its predictive power is less
marked for small tick ones (see, e.g. [70]). One aspect to keep in mind while analyzing
these figures is that, especially for a small tick asset, there is also a considerable amount
of information in the deeper levels of the book that is not taken into account here.

In Figure 3.2 corresponding to the Bund results, we observe that for midprice changes
(P events), there seems to be a kind of threshold effect, in that for imbalance values
below I = −1/2, upwards price increments are dramatically inhibited, while large pos-
itive imbalance only marginally increases the likelihood of upwards price changes. This
is rather natural since an imbalance smaller than −1/2 corresponds to the case the ask
size is at least three times bigger than the bid size, making an upwards movement of
the midprice very unlikely.

More surprisingly, the agents seem to strongly condition their decision to use ag-
gressive orders (M events) on the state of the order book. This hints that agents are
rushing to get the last available liquidity before an upwards midprice move (indeed,
f gets very large for M events when the imbalance is large, i.e., when there is hardly
anything left on the ask size). On the other hand, limit and cancel orders appear to
be much less sensitive to the state of the book. For the DAX, as we already pointed
out, the dependence on the imbalance is much less pronounced (see Figure 3.3) and,
except for the mid-price changes, all factors f ℓ(qa, qb) are weakly varying with I. For
the market (M) and cancel (C) orders, we observe a regime-switching around I = 1/2.
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Figure 3.2: From left to right, upside to downside, log10(f l(qi
a, qj

b)) for l = P +, La, Ca,
Ma of QRH model as a function of the imbalance 3.2.8, Bund future. The quantiles are
the same for bid and ask sides and correspond to q1

a = q1
b =]0, 80], q2

a = q2
b =]80, 165],

q3
a = q3

b =]165, 258], q4
a = q4

b =]258, 386] and q5
a = q5

b =]386, +∞[.

These regimes correspond respectively to extremely large and small ask queue sizes. In
the latter case (that turns out to occur when the spread equals one tick), the occurrence
of the market and cancel orders which do not change the midprice is very unlikely.

Last but not least, let us remark that the intensity variations that are not captured
by the imbalance are mainly located around I = 0 where the individual queue sizes (qa

or qb, which are almost equal) seem to have an important impact. Thus, for instance,
for the Bund, fP +(q, q) seems to increase with q. This can be explained by a more
thorough analysis that shows that the average spread is increasing with q and is very
close to 2 when q is large. The same kind of remarks could be done for market orders.
As this example illustrates, other microstructural variables, notably the spread, should
be considered for an even more complete model. This, however, is outside the scope of
the present work.

Comparison of estimated and empirical intensity. To further validate the QRH
model, we test its ability to reproduce the empirical intensity. The MLE of the averaged
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Figure 3.3: From left to right, upside to downside, log10(f l(qi
a, qj

b)) for l = P +, La, Ca,
Ma of QRH model as a function of the imbalance 3.2.8, DAX index future. The quantiles
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intensity conditioned by the state q = (qa, qb) writes (in a non parametric framework)

Λ̂ℓ(q) = Λ̂(q)

∑
tℓ
k
1q(tl−

k
)=q∑

tk
1q(t−

k
)=q

with Λ̂(q) = mean(tk − tk−1|q(t−
k ) = q)−1,

(3.2.9)

where the operator mean(·) corresponds to the empirical mean. This estimation is
simply based on the observations of the process {N l

t}l. One can compute a corresponding
estimator Λ̂ℓ

QRH(q) using the parametric form of λ̂ℓ
QRH(tℓ,−

k |q), which leads to

Λ̂ℓ
QRH(q) = mean(λ̂ℓ

QRH(tℓ,−
k )|q(tℓ,−

k ) = q). (3.2.10)

In order to synthesize the so-obtained results, we choose not to present the comparison
of Λ̂ℓ

QRH(q) with Λ̂ℓ(q) for all types of orders and for all states q. Instead, for each type
of order, we report the weighted relative error ∆ℓ defined as:

∆ℓ =
∑

q

∣∣∣Λ̂ℓ(q) − Λ̂ℓ
QRH(q)

∣∣∣N ℓ(q)∑
q Λ̂ℓ(q)N ℓ(q)

. (3.2.11)

The weighted relative error for Bund and DAX is presented in Table 3.3. We observe
that ∆ℓ are at the order of 10%, which provides a satisfactory match to the empirically
observed intensity.

P + P − La Lb Ca Cb Ma M b

Bund 14.2% 10.5% 6.7% 6.0% 7.4% 8.1% 4.0% 12.0%
DAX 8.2% 5.9% 0.5% 4.7% 7.1% 1.1% 1.6% 5.9%

Table 3.3: Error of average intensities by order type

Analysis of the kernel norm matrices. Finally, to complete the analysis of our
results, in Figure 3.4 we display the matrices of the estimated norms {

∫
ϕℓm(t)dt}ℓm for

both the Bund and the DAX. These matrices reveal the average interactions between
different event types when queue dependence is disregarded. As such they are the
counterpart of the kernel norm matrices shown in Figure 4 of [13].

We recover a lot of the features highlighted in [13], such as the strong diagonal
components for limit, market, and cancel orders (a signature of order splitting), as well
as the fact that market orders and price movement appear to influence much more limit
and cancel than the other way round.

Notably, for the Bund, when the midprice moves up (resp. down), the rate of limit
orders on the ask (resp. bid) side decreases (resp. increases) since the efficient price is
close to the best ask, and there is no gain to send a limit versus a market. This also
explains why the rate of cancel orders sent on the best ask (resp. bid) side increases
(resp. decreases). The same effect can be seen (but attenuated a lot) on the DAX. It is
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attenuated because the tick size is small on the DAX, so the efficient price argument is
not as strong. Let us point out that the exact same argument can be used to explain
the effects of market orders on the limit and cancel orders. The influence of market
order over price change is mainly because, under our settings, market order consumes
the liquidity at the best prices, which could eventually create a new price. Since DAX
is a small tick asset and queue size at the best prices is smaller than Bund, market
orders are more likely to generate new prices. So the influence of market order over
price change is more visible. We can see that for the DAX future, limit orders and
cancellations also have a stronger influence on price changes for the same reason.
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Figure 3.4: The estimated matrix norms
∫

ϕlm(t)dt using least square estimation QRH
model. Bund future on the left and DAX future on the right.
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Figure 3.5: Empirical frequencies of observed imbalance values right after a P + event
for the Bund (left panel) and the DAX (right panel). Notice the large components for
negative imbalance values in both cases.

One can also see that, apart from the self-exciting effect due to the splitting of orders,
for the Bund, limit orders on one side are coupled with cancellations on the other side.
This can be seen as a simple market-making strategy (rebalancing the position). It does
not show on the DAX because, since the tick size is much smaller, the same rebalancing
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strategy does not affect necessary both best sides. We refer the reader to [13], Section 4
for further details on the interpretation of these features.

Rate of mean-reversion
Bund 0.65
DAX 0.56

Table 3.4: Measure of mean-reversion of price: Empirical probabilities than two succes-
sive midprice change events have opposite directions.

Though when compared in most features, QRH model (Figure 3.4) and the pure
Hawkes model (Figure 4 in [13])) are similar, we can however observe a striking differ-
ence in the P → P and P → T submatrices. We notice that the QRH model indicates
an absence of a strong excitation between P + to P − and P − to P + (top left 2 × 2
submatrices in Figure 3.4), which should be the signature of the high-frequency price
mean reversion (as explained in [13]). For a pure Hawkes processes based model, as in
work [13], the mean-reversion of price is reflected on the strong anti-diagonal terms of
the P → P kernel norms submatrix (i.e., strong P + → P − and P − → P + terms). This
results from the fact that (on average) a P + event will generate more P − events than
P + events and vice versa. As shown in Table 3.4, the actual midprice series are strongly
mean-reverting, so it is likely that within the QRH model, this feature is explained by
the queue-reactive function f(qa, qb). Indeed, as illustrated in Figure 3.5, after a mid-
price change, the evolution of the imbalance is in favor of a price move in the opposite
direction. For instance, an upward price jump P + leads, most of the time, to a negative
imbalance either because of a refill of the best ask queue qa or simply because a single
limit order is sent within the spread. According to Figure 3.2 and Figure 3.3, in such
situations we have fP +(qa, qb) ≪ 1 and fP −(qa, qb) > 1. Conversely, after a downward
price change, P −, we will have fP −(qa, qb) ≪ 1 and fP +(qa, qb) > 1. The 2 × 2 subma-
trix P → P estimated within a pure Hawkes model is then likely to correspond to the
QRH Hawkes submatrix multiplied by a large factor on its anti-diagonal and a small
factor on its diagonal. The same kind of argument based on imbalance impact can be
invoked to explain the high diagonal values of the P → T submatrix while the highest
values in [13] were rather observed on the anti-diagonal.

3.3 Summary and prospects

This chapter is a continuation of Chapter 2, where the “Single Queue Reactive Hawkes
(SQRH) model” is extended to the best limit or both sides of the LOB. It shares the
same ambition to improve respectively the approach of Huang et al. [87] on the queue
reactive nature of the LOB dynamics and the model of Bacry et al. [13].

We show that the QRH model can be calibrated by parametric approaches. We
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extend the loss function from log-likelihood to least square to accommodate negative
values in the convolutional kernel. The QRH model leads us to refine Bacry et al.’s
findings in [13] by accounting for the states of the best bid and best ask queues. Our
results suggest that the imbalance of volume presented on two sides of the LOB allows
us to explain a large part of the queue dependence.

The QRH model could be further improved by accounting for the interactions be-
tween the queue sizes (and thus the imbalance) and the order flow while introducing an
explicit dependence on the spread for small tick assets. Some substantial simplifications
we made could also be removed to obtain an even more realistic model, such as dropping
the assumption of unitary order sizes by adopting a similar setup as in [102].

Besides considering various applications of these models to design and optimize high-
frequency trading strategies, one fundamental challenge is to adapt these models to the
general case of Eq. (2.1.3). That is, setting the queue dependence of the exogenous
and Hawkes part arbitrary, and considering all order book levels up to a given depth
simultaneously. From a mathematical point of view, a deeper understanding of the
stability and stationarity conditions for queue dependent Hawkes model remains to be
developed. More fundamentally, a clear understanding of the observed shapes of the
exogenous intensities and the imbalance of the order flow arrival rates in terms of various
market participants’ (rational) behavior remain open questions.

3.4 Appendix

3.4.1 Calculating the least squares function of QRH model and its
gradient

Let’s note q the state of the LOB by combining the state of both the ask side and the
bide side.

q = qa × qb f(q(t)) := f(qa(t−), qb(t−)). (3.4.12)

Then at time t, the intensity function of dimension ℓ is:

λℓ
t = f ℓ(q(t))

(
µℓ +

∑
m

∑
u

αℓm
u

∫ t

0
βue−βu(t−s) dNm

s

)
. (3.4.13)

Similar to the calculation of the log-likelihood function and its gradients, we first define
some intermediate variables whose value doesn’t depend on µ, α or f . They only need
to be calculated once in the pre-processing stage. Then they could be reused during the
calculation of the least-square loss function and its gradient.

gℓ
u(t) =

∑
tℓ
k

<t

βue−βu(t−tℓ
k), (3.4.14)

Gm
u (q) =

∫ T

0
gm

u (s)1type(q(t))=q dt, (3.4.15)
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Hmm′
uu′ (q) =

∫ T

0
1type(q(t))=qgm

u (t)gm′
u′ (t) dt, (3.4.16)

D(q) =
∫ T

0
1type(q(t))=q dt, (3.4.17)

Cm(q) =
Nm∑
k=1

1type(tm,−
k

)=q. (3.4.18)

Computation of g

gm
u (tk) =

∑
tm
k′ <tk

βue−βu(tk−tm
k′ ) (3.4.19)

=
∑

tm
k′ <tk−1

βue−βu(tk−1−tm
k′ )e−βu(tk−tk−1) +

∑
tk−1≤tm

k′ <tk

βue−βu(tk−tm
k′ ) (3.4.20)

= e−βu(tk−tk−1)gm(tk−1) + βue−βu(tk−tk−1)1type(t−
k

)=m. (3.4.21)

Computation of G

Gm
u (tk) − Gm

u (tk−1) =
∫ tk

tk−1

gm
u (s) ds (3.4.22)

= 1 − e−βu(tk−tk−1)

βu
gm

u (tk−1) +
(
1 − e−βu(tk−tk−1)

)
1type(t+

k−1)=m.

(3.4.23)

Computation of H

Hmm′
uu′ (q) =

∑
k

∫ tk

tk−1

1type(q(t))=qgm
u (t)gm′

u′ (t) dt (3.4.24)

=
∑

k

1type(q(t−
k

))=qgm
u (tk−1)gm′

u′ (tk−1)e−(βu+βu′ )(tk−tk−1). (3.4.25)

Least squares function

With the intermediate variables defined in the previous part, we can rewrite the least
squares function defined in 3.2.7 in a more efficient form for calculation. In dimension
ℓ,

Rℓ(θ) =
∫ T

0
λ2

ℓ (t; θ|Ft) dt − 2
Nℓ∑
k=1

λℓ(tℓ
k; θ|Ftℓ

k
)

=
∫ T

0
f ℓ(q(t))2(

µℓ +
∑
m

∑
u

αℓm
u

∫ t

0
βue−βu(t−s)dNm

s

)2
dt

− 2
Nℓ∑
k=1

f ℓ(q(tℓ
k))
(
µℓ +

∑
m

∑
u

αℓm
u

∫ tℓ
k

0
βue−βu(tm

k −s) dNm
s

)
.

(3.4.26)
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Let’s name the first item and the second item in the formula above term I and term II
separately. We could further decompose term I into new items term I.1, term I.2 and
etc:

term I =
∫ T

0
f ℓ(q(t))2(

µℓ +
∑
m

∑
u

αℓm
u

∫ t

0
βue−βu(t−s)dNm

s

)2
dt

=
∫ T

0
f ℓ(q(t))2

µℓ2 dt

+
∫ T

0
2f ℓ(q(t))2

µℓ
(∑

m

∑
u

αℓm
u

∫ t

0
βue−βu(t−s)dNm

s

)
dt

+
∫ T

0
f ℓ(q(t))2(∑

m

∑
u

αℓm
u

∫ t

0
βue−βu(t−s)dNm

s

)2
dt.

(3.4.27)

For term I.1, it could be calculated from the intermediate variables defined above:∫ T

0
f ℓ(q(t))2

µℓ2 dt = µℓ2∑
q

D(q)f ℓ(q)2. (3.4.28)

For term I.2, ∫ T

0
2f ℓ(q(t))2

µℓ
(∑

m

∑
u

αℓm
u

∫ t

0
βue−βu(t−s)dNm

s

)
dt

=
∫ T

0
2f ℓ(q(t))2

µℓ
(∑

m

∑
u

αℓm
u gm

u (t)
)

dt

= 2µℓ
∑

q

f ℓ(q)2
(∑

m

∑
u

αℓm
u Gm

u (q)
)
.

(3.4.29)

And for term I.3,∫ T

0
f ℓ(q(t))2(∑

m

∑
u

αℓm
u

∫ t

0
βue−βu(t−s)dNm

s

)2
dt

=
∫ T

0
f ℓ(q(t))2(∑

m

∑
m′

∑
u

∑
u′

αℓm
u αℓm′

u′ gm
u (t)gm′

u′ (t)
)

dt

=
∑
m

∑
m′

∑
u

∑
u′

αℓm
u αℓm′

u′

(∑
q

f ℓ(q)2Hmm′
uu′ (q)

)
.

(3.4.30)

For the convenience of notation, we flip the sign of term II. Then we decompose it into
term II.1 and term II.2 :

II =
Nℓ∑
k=1

f ℓ(q(tℓ
k))
(
µℓ +

∑
m

∑
u

αℓm
u

∫ tℓ
k

0
βue−βu(tm

k −s) dNm
s

)

=
Nℓ∑
k=1

f ℓ(q(tℓ
k))µℓ +

Nℓ∑
k=1

f ℓ(q(tℓ
k))
(∑

m

∑
u

αℓm
u

∫ tm
k

0
βue−βu(tm

k −s) dNm
s

)
.

(3.4.31)

For term II.1,
Nℓ∑
k=1

f ℓ(q(tℓ
k))µℓ = µℓ

∑
q

f(q)Cℓ(q). (3.4.32)
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For term II.2,

Nℓ∑
k=1

f ℓ(q(tℓ
k))
(∑

m

∑
u

αℓm
u

∫ tm
k

0
βue−βu(tm

k −s) dNm
s

)
=

Nℓ∑
k=1

f ℓ(q(tℓ
k))
(∑

m

∑
u

αℓm
u gm

u (tℓ
k)
)
.

(3.4.33)
The least-square function defined in 3.2.7 could be obtained by summing up all these
terms.

Gradients

Using the intermediate variables and results presented above, direct calculation shows
that:

∂R

∂µℓ
= 2µℓ

∑
q

D(q)f ℓ(q)2

+ 2
∑

q

f ℓ(q)2
(∑

m

∑
u

αℓm
u Gm

u (q)
)

− 2
∑

q

f(q)Cℓ(q),

(3.4.34)

∂R

∂αℓm
u

= 2µℓ
∑

q

f ℓ(q)2Gm
u (q)

+ 2
∑
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Chapter 4

From Rough to Multifractal
volatility: the log S-fBM model

4.1 Introduction

During the past few years, new insights on stochastic volatility models have been ob-
tained after the observation by Gatheral et al. [65] (see also [32, 33]) that the logarithm
of the realized volatility is rough, i.e., is less regular than a standard Brownian mo-
tion. Rough volatility models have become very popular not only because they allow
one to account for main empirical realized volatility properties but also because, when
they are considered in asset price models, they provide a very good fit of option prices,
and notably, their ATM skew power-law behavior close to maturity [101, 29, 61]. The
first empirical evidence reported in [65] suggests that the logarithm of the asset price
stochastic variance can be represented by a fractional Brownian motion (fBM) of Hurst
exponent H close to H ≃ 0.1 < 1/2. More recent studies based either on quasi-likelihood
approach [62] or GMM-approach [36], consistently suggest the H is even closer to H = 0,
i.e., H ≲ 0.05 for a large panel of equity data. In that respect, it is natural to con-
sider the limit H → 0 in the rough process driving the volatility logarithm. Even if
one cannot plug H = 0 in the power-law expression of the fractional Brownian motion
covariance, formally, it corresponds to a logarithmic behavior.

Such a logarithmic behavior is precisely the one that characterizes the so-called
continuous random cascade models introduced two decades ago by Bacry et al. [118, 12].
Indeed, in 2000, these authors proposed the “Multifractal Random Walk" (MRW) as a
model for asset prices in order to account for their multifractal properties, i.e., the fact
observed by various authors (see e.g. [67, 66, 104]) that asset return empirical moments
obey non-trivial scaling properties. The MRW model relies on a multifractal stochastic
volatility model, namely the “Multifractal Random Measure” (MRM) model [118, 12],
in which the log-volatility is provided by a log-correlated Gaussian field. Such a class
of processes, also referred to as Gaussian multiplicative chaos, has been at the heart
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of many studies in a large variety of applications [129]. Gaussian multiplicative chaos
and the associated log-normal random cascades have been extended to any infinitely
divisible distribution by Bacry and Muzy in [115, 20].

Recovering a multifractal volatility model as the limit H → 0 of a rough volatility
model or, from a more general perspective, defining a meaningful limit H → 0 of a
fractional Brownian motion and one of its variants has been the subject of various recent
studies. In [63], the authors build a H= 0 - fBM by considering a regularisation from
the harmonizable representation of fBM’s while in [121, 74] a H = 0 limiting process is
obtained using a peculiar normalisation and centering of the fBM. In [59]ă(see also [58]),
the authors consider the limit H → 0 of the exponential of a rescaled Riemann-Liouville
fBM and its relationship with Gaussian multiplicative chaos. Finally, in [28], Bayer et
al. propose a new class of rough models that consists in modulating the Riemann-
Liouville fBM power-law kernel by a logarithmic factor. The so-obtained "super-rough"
stochastic volatility remains well-defined as a continuous process when H = 0.

In this paper, our goal is to add a contribution to this problem by introducing a new
version of rough volatility models based on the so-called “stationary” fBM (S-fBM).
S-fBM is a variant of fBM whose covariance function is exactly the one obtained when
considering the small-time approximation of the correlation of the fractional Ornstein-
Uhlenbeck process considered in [65]. We prove that when H → 0, one recovers the
exact self-similar multifractal measure defined in [118, 12]. Our construction is based
on the same approach proposed in [115, 20] where the log-volatility is obtained from the
integration of a 2D Gaussian white noise over a triangular domain in a time-scale plane.
It turns out such an approach corresponds to the same method defined by Takenaka to
build the fractional Brownian motion [130]. Our model, therefore, provides a unified
framework to consider both rough and multifractal stochastic volatility models. Beyond
defining the main statistical properties of the model, we aim at estimating its parameters
on a large panel of market data. For that purpose, we extend the GMM method proposed
in [14] that is based on a “small intermittency" expansion of the moments of the measure
logarithms.

The paper is organized as follows: in section 4.2, after recalling the basic notions
underlying usual rough volatility models and the definition of the multifractal random
measure (MRM), we introduce the log S-fBM random measure MH,T ( dt) as the ex-
ponential of the S-fBM random process which is nothing but a ”stationary” version of
the fractional Brownian motion of Hurst parameter 0 < H < 1. We show that one
recovers the celebrated Mandelbrot-Van Ness fBM when T , the correlation parameter
of our model, tends to infinity. In this section, we also show that the log S-fBM con-
verges, when H → 0, towards a Multifractal Random Measure, consequently leading to
a unified framework for rough volatility models (MH,T ( dt), for H ̸= 0) and multifractal
volatility models (by extension, MH=0,T ( dt)). In section 4.3, we establish, within this
unified framework, analytical expressions for the second-order moments of respectively
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MH,T ([t, t + ∆]) and its logarithm, while in section 4.4 we define two GMM parameter
estimation methods based on these expressions. Our approach is illustrated in various
numerical examples. Application to empirical data, namely the daily volatility of many
individual stocks as well as market indices is provided in section 4.5. Section 4.6 sum-
maries our findings while technical material and mathematical proofs are provided in
Appendices.

4.2 The log Stationary fractional Brownian Motion (log
S-fBM) stochastic volatility model

4.2.1 Multifractal and rough volatility models

Before introducing our new model of stochastic volatility measure (log S-fBM), let us
briefly walk through the two popular former classes of stochastic volatility models it is
notably designed to unify, namely the Rough Fractional Stochastic Volatility (RFSV)
model and the Multifractal Random Walk (MRW) or Multifractal Random Measure
(MRM) models.

The MRM/MRW models The MRW was firstly introduced in 2001 by Bacry et
al. [118, 12] as a model for log-prices X(t) that has exact (log-normal) multifractal
properties, i.e., such that the moment of price returns δτ X(t) = X(t + τ) − X(t) obeys
exact scaling properties:

E[|δτ X(t)|q] = E[|X(t + τ) − X(t)|q] ∼ Cqτ ζ( q
2 ) (4.2.1)

where the multifractal scaling spectrum ζ(q) is a non-linear (namely parabolic) concave
function that only depends on a single positive parameter λ2 (which quantifies the level
of non linearity of ζ(q)) and such that ζ(1) = 1. Let us point out that the parameter
λ2 is generally referred to as the intermittency coefficient since it governs the degree of
multifractality of the model, i.e., the range of the Hölder exponents that characterize
the paths X(t). It consequently controls the degree of appearance of volatility bursts.
When λ = 0, the model is said to be monofractal, X then simply corresponds to a
Brownian motion which is almost everywhere of Hölder regularity H = 1/2.

The MRW model involves a log-normal stochastic volatility, that is a multifractal
random measure (MRM) M̃T , obtained as the weak limit

M̃ℓ,T ( dt) w−−→
ℓ→0

M̃T ( dt), (4.2.2)

where M̃ℓ,T ( dt) is defined by

M̃ℓ,T ( dt) = eωℓ,T (t) dt,

where w−→ stands for the weak convergence and the process ωℓ,T (t) is Gaussian and
stationary with a logarithmic covariance vanishing for lags greater than T (see Eq.
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(4.7.75)). Let us point out that multifractality of the limit process is obtained in the
Gaussian multiplicative chaos context [129] which implies that, at the same time ℓ goes
to 0, the mean (resp. variance) of ωℓ,T has to go to −∞ (resp. +∞). Thus though
the stochastic measure eωℓ,T (t) dt has a weak limit, the Gaussian process ωℓ,T (t) does
not have a limit. We refer the reader to the beginning of Appendix 4.7.3 for detailed
construction of the log-normal MRM.

Since such a logarithmic decreasing covariance can be interpreted using random
multiplicative cascades as the limit case where the scale ratio goes to 1, one often refers
to such a model as “continuous cascade" [14] models. In [115, 20], MRM measures have
been extended from log-normal statistics to any log-infinitely divisible law so that they
obey the exact scaling law:

E[|δτ M̃T (t)|q] = E[|M̃T (t + τ) − M̃T (t)|q] ∼ Cqτ ζ(q), (4.2.3)

where ζq is the cumulant generating index of the infinitely divisible law (let us point
out that it is parabolic only in the Gaussian case).

The MRM process has been used in various works since 2001 for volatility modeling.
Not only does it have stationary increments but it reproduces a lot of volatility stylized
facts (including scale invariance and self-similarity properties). Moreover, it also benefits
from a concise geometric construction, which allows one to easily obtain the auto-
covariance function in the desired form.

The original RFSV model. In 2018, Gatheral et al. [65] introduced a new (but
related) class of models called “rough” fractional stochastic volatility (RFSV) models.
Instead of focusing on the scaling properties of price increments, Gatheral et al. ex-
amined the regularity properties of the log-volatility and observed (as the case for a
multifractal model) that volatility appears to be far less regular than a Brownian mo-
tion. RFSV model quickly became a popular model. Within the RSFV framework,
the volatility measure VH,T ([t, t + τ ]) of some given interval [t, t + τ ] is supposed to be
provided by a density measure v(t) corresponding to a log-normal stationary process:

VH,T ([t, t + τ ]) =
∫ t+τ

t
v(s) ds =

∫ t+τ

t
eoH,T (s) ds, (4.2.4)

where oH,T (t) is a fractional Ornstein-Uhlenbeck (fOU) process that satisfies, for some
0 < H < 1/2, the equation

doH,T (t) = ν dBH
t − α(oH(t) − m) dt, (4.2.5)

where BH
t is a fractional Brownian motion with Hurst parameter H. The parameter

ν2 (resp. m) is the variance (resp. mean) of oH,T (t) and α = 1
T , where T represents

a characteristic correlation time that accounts for the typical mean reversion length of
the process. Indeed, Gatheral et al. show that, for τ > 0 small enough, the covariance
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function of oH,T (t) can be approximated as:

Cov[oH,T (t), oH,T (t + τ)] ≃ ν2

2

(
T 2HΓ(2H + 1) − τ2H

)
, (4.2.6)

where Γ represents the Gamma function. In [65], it is also shown that when T → ∞,
oH,T (t) behaves locally as a fractional Brownian motion BH

t in the sense that, ∀t0:

E[ sup
t∈[0,t0]

|oH,T (t) − oH,T (0) − νBH
t |] → 0. (4.2.7)

This result can be of practical importance for application in finance since empirically it
appears that T is very large and consequently νBH

t can be used as a volatility model
instead of the associated fOU process oH,T (t) as long as t ≪ T .

Let us point out that, since the original work [65], many other versions of RFSV
models have been introduced in the literature, each of them serving some specific pur-
poses (making some explicit computations or estimations simpler) while keeping the
main feature of the original RFSV model, i.e., the "roughness" of the volatility modeled
using an fBM-like process. In the next section, we will introduce a new version that will
enable us to unify in the same framework an RFSV model and the MRM framework.

4.2.2 The log S-fBM random measure : a common framework for
RFSV and MRM models

In this section, we build the main model of this paper. This model allows us to define
a common framework for RFSV and MRM models. It is built in three steps. First
we introduce a stationary version of a fractional Brownian motion, namely the S-fBM
process {ωH,T (t)}t for H > 0. Then using this S-fBM process, we define the log S-
fBM stochastic measure MH,T (H > 0) which can be seen as a new version of a rough
volatility model (RFSV). Finally, we prove that this process converges when H goes to
0 to a measure that we will refer to as M0,T , which is shown to be an MRM.

Step 1/3 : Defining the S-fBM process {ωH,T (t)}t for H > 0
The S-fBM process {ωH,T (t)}t is a stationary Gaussian process and can thus be defined
by its mean and its covariance function. In Appendix 4.7.1, we provide the details of its
construction by following the one proposed by Bacry & Muzy ([115, 20]) for building log-
infinitely divisible Multifractal Random Measures (MRM). Let us point out that such
a construction can also be related to the original approach proposed by Takenaka to
build correlated fields (see [130] and Appendix 4.7.2). Thus, following the construction
detailed in Appendix 4.7.1, the S-fBM process {ωH,T (t)}t is defined for H > 0 as a
stationary Gaussian process whose covariance function is:

Cω(τ) = Cov[ωH,T (t), ωH,T (t + τ)] =


ν2

2 [T 2H − τ2H ], when|τ | < T

0, when|τ | ≥ T
(4.2.8)
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The parameter H is analog to the Hurst parameter of the fBM process since it controls
the “roughness” of the model. The variance parameter ν controls the average amplitude
of the process and the constant T is a large time scale that corresponds to the correlation
scale. Let us point out that the approximated covariance provided by Eq. (4.2.6) of the
fOU process oH,T , involved in the construction of the RFSV model, holds exactly for
the S-fBM ωH,T (up to a rescaling of T ) for lags smaller than τ . Both the S-fBM process
and fOU could then be regarded as stationary versions of an fBM process but, unlike the
fOU process, the correlation function of S-fBM exactly vanishes for lags greater than
T , i.e., the S-fBM values at different timestamps are independent when the distance
between timestamps is large enough (i.e., greater than T ).

It is noteworthy that, when T → ∞, one recovers the original Takenaka construction
of the fBM [130] by proving that ωH,T (t) − ωH,T (0) → BH(t). More precisely, in
Appendix 4.7.2 we show that, when T → ∞, the analog of Eq. (4.2.7) holds for ωH,T :

Proposition 3. There exists BH(t) a fractional Brownian motion of Hurst index H

and unit variance at t = 1 such that, ∀t0 > 0, one has:

lim
T →∞

E[ sup
t∈[0,t0]

|ωH,T (t) − ωH,T (0) − νBH(t)|] = 0 . (4.2.9)

A direct result from the similarity in auto-covariance function is that S-fBM has the
same scaling property as RFSV. According to Appendix 4.7.1, for τ

2 < T ,

δτ ωH,T (t) = ωH,T (t + τ) − ωH,T (t) ∼ N (0, ν2τ2H). (4.2.10)

It leads to the following scaling property of generalized moments, ∀q > 0:

E[|δτ ωH,T (t)|q] = νq 2q/2Γ( q+1
2 )

√
π

τ qH = Cqτ qH . (4.2.11)

This means that log(E[|δτ ωH,T (t)|q]) is linear against log(τ) with slope qH. From Kol-
mogorov continuity theorem it results that the paths of ωH,T are continuous functions.
More precisely, ωH,T (t) is α−Hölder continuous for all regularity exponents α < H. We
especially point out that the calibration of the Hurst parameter H of the log-volatility
process in [65] is based on the obtained scaling behavior (4.2.11).

Step 2/3 : Defining the log S-fBM stochastic measure {MH,T (t)}t for H > 0
The log S-fBM stochastic measure is then defined as:

MH,T ( dt) = eωH,T (t) dt. (4.2.12)

Then for any interval I, one has:

MH,T (I) =
∫

I
eωH,T (t) dt . (4.2.13)

Under this setting, we retrieve the so-called stationarity of volatility process, i.e.:

E[MH,T (I)] = σ2|I| (4.2.14)
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with
σ2 = em+ ν2

2 ,

where m (resp. ν2) is the mean (resp. variance) of ωH,T . The quantity σ2 can be
regarded as the variance of the price fluctuations on a unit-time interval.

Step 3/3 : Convergence of {MH,T (t)}t towards an MRM when H goes to 0
As shown in Appendix 4.7.3, the MRM measure can be recovered from the log S-fBM
by taking the limit H → 0. More precisely, the following proposition holds true:

Proposition 4. Let MH,T (t) = MH,T ([0, t]) be the log S-fbm process defined by (4.2.13)
and define the intermittency coefficient,

λ2 = H(1 − 2H)ν2 . (4.2.15)

Considering both λ2 and the variance of the price fluctuations

σ2 = em+ν2/2

are fixed, then, when H → 0 (and consequently, ν2 → +∞ and m → −∞), one has

MH,T ( dt) w−→ M̃T ( dt) (4.2.16)

where w−→ stands for the weak convergence and M̃T is a log-normal MRM (as defined by
(4.2.2)) with the intermittency coefficient λ2 and integral scale T .

The proof is provided in Appendix 4.7.3. This result indicates that the MRM can
be considered as a limit case of a log S-fBM and therefore could be regarded as an
"extremely rough" case.

Conclusion and notations for the remaining of the paper
For the sake of simplicity, in the following, the MRM M̃T ( dt) will be referred to as
M0,T ( dt). Thus, we can consider that we have built a class of models MH,T ( dt), which
correspond for H > 0 to an RFSV model and for H = 0 to an MRM model.

4.3 Second order properties of MH,T ([0, t]) and its loga-
rithm

In section 4.4, we will consider the problem of estimating the parameters of the S-fBM,
namely H, ν2 (or equivalently λ2) and T through the expression of various “statistical
moments” of the process. Among these moments, the correlation function of MH,T or
of ZH,T = ln MH,T are particularly interesting since, as emphasized below, they can be
approximated by simple analytical expressions.

Let us first remark that in [65], Gatheral et al. proposed to estimate the rough-
ness exponent H of the RFSV model (equivalently H > 0 in the log-SfBM model) by
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considering the scaling of the increments of ωH,T as in Eq. (4.2.11). However, since
ωH,T (t) cannot be directly observable, they consider as a proxy of E[|δτ ωH,T (t)|q], the
observable moments:

m(q, H, τ, ∆) = E
(
| ln MH,T,∆(t + τ) − ln MH,T,∆(t)|q

)
, (4.3.17)

where MH,T,∆(t) is the so-called integrated variance over an interval of size ∆:

MH,T,∆(t) = σ2
∫ t+∆

t
eωH,T (s) ds . (4.3.18)

Thus, the exponent H is measured from the scaling behavior in τ of this proxy of
E[|δτ ωH,T (t)|q] using the Eq. (4.2.11).

However, as emphasized below (see Section 4.4.1), the estimation of H based on
Eq. (4.2.11) can be highly biased. In order to get an unbiased estimation of H in the
framework of an RFSV model, Ref. [36] introduces a totally different framework. The
authors provide a GMM method that is based on the correlation function of MH,T,∆:

CM (∆, τ) = E[MH,T,∆(t)MH,T,∆(t + τ)]. (4.3.19)

More precisely, they show that under peculiar conditions, its asymptotic behavior when
τ ≫ ∆ can be obtained and then a GMM formula can be derived. Within the framework
of various RFSV models (namely the one involving an fBM or its Riemann-Liouville
variant), the authors advocate the use of this GMM method and show that it provides
reliable estimates for both the roughness parameter H and the variance parameter ν2.

Following this latter path, in this work, we aim at defining a GMM method for the
log-SfBM framework, that works for both H > 0 (the RFSV case) and H = 0 (the
MRM case). We thus need to establish exact or good approximations of correlation
function CM (∆, τ) of MH,T,∆. This is the purpose of the next section (Section 4.3.1).

Moreover, as we will see, the process ln MH,T,∆(t) is, in some sense, close to be
a Gaussian process, consequently it is also natural to operate the GMM not on the
process MH,T,∆ itself but on its logarithm ln MH,T,∆(t). We therefore also need to
establish exact or good approximations of the correlation function of ln MH,T,∆, which
is defined by :

Cln M (∆, τ) = Cov[ln MH,T,∆(t), ln MH,T,∆(t + τ)] . (4.3.20)

This is the purpose of Section 4.3.2.

4.3.1 Integrated variance correlation function

In Appendix 4.7.4 we prove the following Proposition that gives an explicit analytic
formula for CM (∆, τ):

Proposition 5. For any τ ≤ T , one has

CM (∆, τ) = K1
(
F (τ + ∆) + F (τ − ∆) − 2F (τ)

)
(4.3.21)
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with

F (z) =

 zK
− 1

2H
2 γ( 1

2H , K2z2H) − K
− 1

H
2 γ( 1

H , K2z2H), when H > 0
z2−λ2

(2−λ2)(1−λ2) , when H = 0
(4.3.22)

where γ(a, z) stands for the (lower) incomplete Gamma function,

γ(a, z) =
∫ z

0
ta−1e−t dt,

and where we have denoted

K1 = σ4eK2T 2H

2H
, if H > 0

= σ4T λ2
, if H = 0

K2 = ν2

2
= λ2

2H(1 − 2H)
.

Let us notice that when τ > T , since MH,T,∆(t) and MH,T,∆(t + τ) are independent,
one has:

CM (∆, τ) = E[M(∆, τ)]2 = σ4∆2 .

Moreover, using the equality:

γ(s, z) = s−1zse−zU(1, s + 1, z),

where U(1, s, z) is the Kummer’s confluent hypergeometric function, the function F (z)
can be simply rewritten as:

F (z) = σ4z2eCω(z)
(

U(1, 1 + 1
2H

, K2z2H) − 1
2

U(1, 1 + 1
H

, K2z2H)
)

, (4.3.23)

where Cω(z) is the covariance of ωH,T provided by Eq. (4.2.8). Since, when |b| → ∞,
U(1, b, z) ≃ 1 + z

b , when H ≪ 1, one finally gets the following approximation for F (z) :

F (z) ≃ σ4z2eCω(z)
(1

2
+ 3H

2
z2H

)
. (4.3.24)

4.3.2 Small λ2 approximation of the logarithm integrated variance mo-
ments

In this section, our goal is to obtain analytical expressions for the moments of ln M([t, t+
∆]) instead of M([t, t + ∆]). In [14] a GMM method to estimate the parameters of the
MRM M̃T has been proposed relying on the expression of such logarithmic moments
that were obtained within a small intermittency, i.e. λ2 ≪ 1, asymptotic behavior.
In fact, it is straightforward to check that all proofs and results established in [14] in
the limit λ2 → 0 for the log-normal MRM measure M̃T remain valid for MH,T,∆ for
H > 0, i.e. in the log S-fBM framework introduced in this paper. Indeed, in particular
by simply checking that all conditions required for MRM also hold for the log S-fBM
measure MH,T,∆, a direct consequence of Proposition 13 in [14] is the following result:
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Proposition 6. Let t1, . . . , tn be n arbitrary times. The generalized moments of the
logarithm of ∆−1MH,T,∆(t) admit the following Taylor series expansion around λ2 = 0:

E
[

ln
(MH,T,∆(t1)

∆

)
· · · ln

(MH,T,∆(tn)
∆

)]
= λn∆−nE

[
ΩH,T,∆(t1) · · · ΩH,T,∆(tn)

]
+o(λn),
(4.3.25)

where ΩH,T,∆(t) is the Gaussian process defined by

ΩH,T,∆(t) = 1
λ

∫ t+∆

t

(
ωH,T (u) − E(ωH,T (u))

)
du. (4.3.26)

Within this approximation, one can directly compute Cln M (∆, τ) the correlation
function of ln MH,T,∆(t) as defined in (4.3.20). From the definition of ΩH,T,∆ and the
expression (4.2.8) for the covariance of ωH,T (t), it results:

Proposition 7. To the first order in λ2 ≪ 1, the covariance function of ln MH,T,∆,
reads:

Cln M (∆, τ) = λ2

2H(1 − 2H)
∆−2

∫ ∆

0
du

∫ τ+∆

τ

(
T 2H − |u − v|2H

)
dv (4.3.27)

= λ2

2H(1 − 2H)

(
T 2H − (τ + ∆)2H+2 + |τ − ∆|2H+2 − 2τ2H+2

∆2(2H + 1)(2H + 2)

)
+ o(λ2).(4.3.28)

Let us first start with two direct consequences of these propositions

• When ∆ → 0 one gets Cln M (∆, τ) ≃ λ2

2H(1−2H)(T 2H − τ2H) which is nothing but
the covariance of ωH,T (t) .

• When H → 0, one recovers the expression in Proposition 10 of [14] in the MRM
case.

• Proposition 6 leads to approximating ln MH,T,∆(t) by a Gaussian process.

Using this last consequence, Proposition 6 can also be used to get an approximation
to the first order in λ2 of the moments defined in (4.3.17). Indeed, if one supposes that
ln MH,T,∆(t + τ) − ln MH,T,∆(t) is a Gaussian random variable of variance V (H, τ, ∆),
then,

m(q, H, τ, ∆) ν= π−1/22
q
2 Γ
(

q + 1
2

)(
V (H, τ, ∆)

) q
2 (4.3.29)

in which ν= indicates that equality holds in the first order of λ2.
From expression (4.3.28), one has when τ < T ,

V (H, τ, ∆) = 2Var(ln MH,T,∆(t)) − 2Cln M (∆, τ)

ν= λ2

H(1 − 2H)

(
(τ + ∆)2H+2 + |τ − ∆|2H+2 − 2τ2H+2

∆2(2H + 1)(2H + 2)
− 2∆2H+2

∆2(2H + 1)(2H + 2)

)
ν= λ2τ2HgH(∆

τ
)
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with
gH (z) = |1 + z|2H+2 + |1 − z|2H+2 − 2|z|2H+2 − 2

z2H(1 − 2H)(2H + 1)(2H + 2)
. (4.3.30)

The final expression for the moments of the increments of the measure logarithm
ln MH,T,∆ reads, in the first oder in λ2,

m(q, H, τ, ∆) ν= 2
q
2 π−1/2Γ

(
q + 1

2

)
λqτ qH

[
gH

(∆
τ

)]q/2
. (4.3.31)

Let us remark that we have the following asymptotic relation:

gH (z) ∼


1

H(1−2H) + O(z2H) when z → 0
z−2

(
(1 + z)2 ln(1 + z) + (1 − z)2 ln(1 − z) − 2z2 ln(z)

)
+ O(H) when H → 0

(4.3.32)
and when H > 0, one recovers that when ∆ → 0 one gets, in the first oder in λ2,

m(q, H, τ, ∆) ν= Cτ qH + O((∆/τ)2H), (4.3.33)

which is the expression used to estimate H in [65] where ln MH,T,∆(t) corresponds to
the logarithm of the (daily) realized volatility.

4.4 Estimation

This section is devoted to the estimation of H in the framework of log-SfBM. We first
show (in Section 4.4.1) that if H is measured from the scaling behavior of E[|δτ ωH,T (t)|q]
against τ using Eq. (4.2.11) (as advocated in [65]), the estimation of H can be highly
biased.

In order to get an unbiased estimation of H, we construct two GMM based estimators
in Sections 4.4.2 and 4.4.3. The first one is based on the use of the moments of the
log-SfBM process itself mainly relying on the explicit covariance formula in Eq. (4.3.21).
The second one is based on the use of moments of the logarithm of the log-SfBM process
and involves the explicit covariance provided by Eq. (4.3.28).

We show that both estimators are expected to be reliable even in the "high-frequency
regime" when data are only available over an interval that is smaller than the overall
correlation scale T , i.e. in a regime when one does not expect any ergodic hypothesis
to hold.

4.4.1 Bias of the moment scaling method proposed in Ref. [65]

In [65], the parameter H is estimated from the scaling behavior of E[|δτ ωH,T (t)|q] against
τ as described in Eq. (4.2.11). More precisely, the unobservable quantity E[|δτ ωH,T (t)|q]
is substituted by its observable proxy m(q, H, τ, ∆) as defined in Eq. (4.3.17), whose
explicit form is worked out in Eq. (4.3.31). Then, a linear regression of ln m(q, H, τ, ∆)
against ln(τ) is performed in order to estimate H.
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We can show see that this approach can lead to a significantly biased estimation of
H. Indeed, by taking logarithm on both sides of Eq. (4.3.31), one has (using again the
notation ν= for equality up to the first order of λ2)

ln(m(q, H, τ, ∆)) ν= C(q, ν) + qH ln(τ) + q

2
ln
(

gH(∆
τ

)
)

. (4.4.34)

where the expression of gH(z) is provided in Eq. (4.3.30). Since the term ln(gH(∆
τ ))

also depends on ln(τ), assuming, on a given range of τ , that

ln(gH(∆
τ

)) ≃ BH ln(τ/∆) + C, (4.4.35)

the measured slope Ĥ in the relation ln mq(H, τ, ∆) against ln(τ) is biased as:

Ĥ = H + BH

2
, (4.4.36)

and the bias depends on both the considered range of τ and the value of H.
Let us illustrate this phenomenon on some numerical simulations. For that purpose,

let us consider an arbitrary value ∆ = 1 and τ ∈ [1, 500]. For the specific value
H = 0.002, Fig. 4.1 plots ln(gH(∆

τ )) as a function of ln( τ
∆)). We note that the behavior

is, to a first approximation, assumed to be linear in the range when τ is sufficiently large
in front of ∆. A linear regression leads to a slope value of B ≃ 0.160 which dominates
the (highly biased) estimation of H : Ĥ ≃ 0.08. Using the same procedure, we checked
that for different values of H in the range [0.0, 0.15], one systematically overestimates
H with a bias that decreases from 0.08 to 0.03. It is noteworthy that the same kind of
bias analysis has been considered by the author of Ref. [65] themselves (see Appendix
C).
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ln( / )

1.0

1.5

2.0

2.5

ln
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Simulation with H=0.002

BH = 0.160

Figure 4.1: Estimation of the bias term B (Eq. (4.4.35)) involved in the estimation
of H using linear regression on Eq. (4.4.34). Following Eq. (4.4.35), ln(gH(∆/τ)) is
displayed against ln(τ/∆) (where ∆ = 1 and τ varies from 1 to 500). BH is estimated
by linear regression on this curve over the range τ ∈ [10, 500]
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4.4.2 Low versus high frequency regime for GMM estimations

As already explained, our purpose is to build two GMM estimators based on the second
order moments of the log-SfBM process MH,T or its logarithm. More precisely, we will
consider respectively CM (∆, τ) the correlation function of MH,T,∆ (using the explicit
covariance formula (4.3.21)) and Cln M (∆, τ), the covariance function of ln MH,T,∆ (using
the explicit covariance formula (4.3.28)). If L denotes the overall size of the interval
where the empirical data are available at scale ∆, one can measure MH,T,∆(k∆) (or
equivalently ln MH,T,∆(k∆)) for k = 1 . . . N where N = L

∆ and the estimators of previous
correlation functions read:

ĈM (∆, k∆) = N−1
N−k∑
j=1

MH,T,∆(j∆)MH,T,∆((j + k)∆) (4.4.37)

Ĉln M (∆, k∆) = N−1
N−k∑
j=1

(
ln MH,T,∆(j∆) − µ̂∆

)(
ln MH,T,∆((j + k)∆) − µ̂∆

)
(4.4.38)

µ̂∆ = 1
N

N∑
k=1

ln MH,T,∆(k∆) (4.4.39)

In general, GMM methods rely on some ergodic hypothesis that ensures the conver-
gence of previous empirical means towards the expected values. As advocated in [14]
or in [36], these approaches allow one to build efficient parameter estimator in the limit
N = L

∆ → ∞, which, when ∆ is kept fixed, corresponds to L → ∞. When L ≫ T

(recall that T is the correlation length of MH,T,∆(t)), this ergodicity assumption can be
proven to hold. We refer to such a situation as the “low-frequency regime”.

However, as first remarked in [14], one can alternatively consider the asymptotic
regime N → ∞ when ∆ → 0, while L = O(T ) is fixed. This is the “high-frequency
regime”. Thus, whereas the low-frequency regime corresponds to ∆ < T ≪ L, the
second one corresponds to ∆ ≪ L = O(T ).

Let us point out that, as emphasized in [14] and motivated by the empirical results
reported in [116] (see also Sec. 4.5 below), in many practical situations and notably
for financial time series, the high-frequency regime appears to fit more precisely the
empirical conditions. Notably, it appears that the correlation scale T of the realized
volatility always seems to be larger than the observation size L. For instance, in Fig.
6(b) of [116], the authors plotted the logarithm of Dow-Jones realized daily volatility
from 1928 to 2011 and observed deviations far from the “mean value” that are lasting for
decades. The same kind of observation can be done in Fig. 4.6(a) below. In [116], it is
also observed that the estimated correlation scale increases linearly with the observation
size L from a few days to several years in agreement with the hypothesis that the true
correlation scale is extremely large. In such a situation, assuming that the low-frequency
regime L ≫ T is reachable and consequently that the ergodic hypothesis holds, is clearly
unrealistic.

These remarks call for developing GMM estimations in the high-frequency regime
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∆ ≪ L ≤ T . Let us first start by noticing that from the expression of the covariance of
ωH,T (Eq. (4.2.8)) one gets that for t ∈ I (where I is any interval such that |I| < L),
one has

{ωH,T (t)}t∈I
L= {Ω + ωH,L(t)}t∈I (4.4.40)

where L= means an equality of all finite dimensional distributions and Ω is a Gaussian
random variable independent of ωH,L and of variance ν2

2 (T 2H − L2H). It thus results
that we have, in any interval I of size |I| < L,

{MH,T,∆}t∈I
L= {eΩMH,L,∆(t)}t∈I and (4.4.41)

{ln MH,T,∆}t∈I
L= {Ω + ln MH,L,∆(t)}t∈I . (4.4.42)

As already discussed in [14] for the case of the MRM measure MH=0,L,∆, these properties
show that one cannot measure the parameters T and σ2 over an interval of size L < T

since by redefining σ2 as σ2eΩ, one can always assume that T = L. It can also be seen
on expression (4.3.22) that, when τ < T , the large correlation scale T can be absorbed
in a redefinition of the variance parameter σ2.

If one seeks to consider correlation function based GMM estimators in the high fre-
quency regime, one thus needs to study the behavior of respectively the estimators,
Ĉln M (∆, n∆), ĈM (∆, n∆) in the limit ∆ → 0. A rigorous study of this problem is
beyond the scope of the present paper, but we can refer to Theorem 10 of [14] where
the authors proved that, in the multifractal case (H = 0), the behavior of Ĉln M (∆, n∆)
can be used to build an asymptotically unbiased and consistent estimator of λ2 in the
high frequency regime. In the present paper, we just give a sketch of proof that one can
build moments functions with vanishing fluctuations in the limit ∆ → 0.

First, let us notice that, without loss of generality, one can always perform an overall
change of scale, ∆ → 1, L → L

∆ , T → T
∆ . This amounts to assume that ∆ = 1 while

the limit ∆ → 0 becomes L, T → ∞ and L = CT with C = O(1).
Then, Appendix 4.7.5 provides an heuristic proof of the following result:

Proposition 8. Suppose that H < 1
2 . Then, for of any nmax < ∞, C ≤ 1, when

L = CT → ∞, then, to the first order in λ2, one has for all n ≤ nmax:

D(n) def= Ĉln M (1, n) − Ĉln M (1, 0) P−→ D̃ln M (n) (4.4.43)

where P−→ means that the convergence holds “in probability” and where

D̃ln M (n) = −ν2 |n + 1|2H+2 + |n − 1|2H+2 − 2n2H+2

2(2H + 1)(2H + 2)
. (4.4.44)

Moreover, numerical experiments (see Fig. 4.2 below) also suggest that an equivalent
result holds for ĈM , i.e.,

R(n)= ĈM (1, n)
ĈM (1, 0)

P−→ R̃M (n) (4.4.45)
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Figure 4.2: Estimation of the correlation functions of MH,T,∆ and ln MH,T,∆ over an
interval of size L such that ∆ = 1 ≪ L < T . (a) ĈM (∆ = 1, n) as estimated from 4 in-
dependent realisations of MH=0.1,T =217,∆=1 (λ2 = 0.03) over an interval of size L = 214.
Each estimation appears to be multiplied by an arbitrary random factor. (b) the ratio
R(n) = ĈM (1,n)

ĈM (1,0)
vs. n. With such normalisation, all curves are superimposed and appear

to be well fitted by the analytical expression R̃(n) represented by the bold black curve.
(c) Ĉln M (∆ = 1, n) as estimated from 4 independent realisations of MH=0.1,T =217,∆=1

(λ2 = 0.08) over an interval of size L = 214. Each estimation appears to be shifted by a
random term. (d) the difference D(n) = Ĉln M (1, n) − Ĉln M (1, 0) vs. n. When shifting
all curves in such a way, they are superimposed and appear to be well fitted by the
analytical expression D̃(n) represented by the bold black curve.

with
R̃M (n) = F (n + 1) + F (n − 1) − 2F (n) (4.4.46)

where F (z) is defined in Eq. (4.3.22).
The consequence of Eqs. (4.4.43), (4.4.45) is that, for L large enough, there exist

two positive random variables K1 and K2 such that, in the first order of λ2):

Ĉln M (1, n) ≃ K1 + D̃ln M (n), (4.4.47)

ĈM (1, n) ≃ K2R̃M (n). (4.4.48)

Numerical illustrations of these relations are given in Figs. 4.2 and 4.3.
In Fig. 4.2, we have displayed the estimated correlation functions ĈM (∆, n∆) and

Ĉln M (∆, n∆) for 2 sets of 4 realisations of MH,T,∆(t) over an interval of size L = 214
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with ∆ = 1, H = 0.1, T = 217 and λ2 = 0.03 (for ĈM ) or λ2 = 0.08 (for Ĉln M ). One
clearly sees in Fig. 4.2(a) that each estimate ĈM seems to differ from the other one by
a significant geometric random factor while estimates of Ĉln M appear to be randomly
shifted in Fig. 4.2(c). In order to check these assertions, we have plotted respectively
the ratios R(n) and the differences D(n) in Figs 4.2(b) and 4.2(d). As expected, all the
curves appear to collapse to a single curve that is well described by analytical expressions
obtained from respectively Eq. (4.4.44) and (4.4.46) (represented by bold curves).

The asymptotic convergence of Proposition 8 is illustrated in Fig. 4.3 where we have
plotted D(n) as defined in Eq. (4.4.43) as obtained from random samples of MH,T,∆

with ∆ = 1, H = 0.1, λ2 = 0.08, T = 2L and L = 212, 214, 216, 218. All the curves
are shifted by an arbitrary small constant for clarity purpose. As predicted by Eq.
(4.4.43), one sees that, as L increases, the empirical curves become less and less noisy
and increasingly close to the analytical expectation (4.4.44) (black curve).
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Figure 4.3: Estimation of the correlation function difference D(n) as defined in Propo-
sition 8. D(n) from observations over intervals of increasing size L = L0, L = 4L0,
L = 16L0 and L = 64L0 with L0 = 212. The remaining parameters are ∆ = 1, H = 0.1,
λ2 = 0.08 and T = 2L. One sees that as L → ∞, the empirical fluctuations become
smaller and smaller and the empirical estimations appear to converge towards to the-
oretical expression (4.4.44) (black bold curve). The curves have been shifted by an
increasing constant for the sake of clarity.
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4.4.3 Defining two GMM estimators for H and λ2

We are now ready for defining two GMM estimators for H based respectively on the
moments of MH,T,∆ or its logarithm in the high-frequency limit. By using the previ-
ously established expressions (4.4.44) and (4.4.46) for the empirical correlation function
Ĉln M (1, n) and ĈM (1, n), one can devise two GMM methods along the same line as the
methods proposed respectively in [14] and [36].

As explained in the previous section (Section 4.4.2), in the high-frequency regime,
estimations of T or σ2 are unreachable. Thus, hereafter, we consider exclusively the
problem of estimating the values of the parameters H and λ2 (or alternatively ν2) using
one of the following two sets of moments:

GMMM : M1 =
(
ĈM (1, j1) − C̃M (1, j1), . . . , ĈM (1, jQ) − C̃M (1, jQ)

)
,

GMMln M : M2 =
(
Ĉln M (1, j1) − C̃ln M (1, j1), . . . , Ĉln M (1, jQ) − C̃ln M (1, jQ)

)
,

where Q is the number of moments, j1, j2, . . . , jQ different time indices, ĈM and Ĉln M

are the empirical estimators of respectively CM and Cln M and C̃M , C̃ln M the following
analytical expressions:

C̃ln M (1, n) = K1 + D̃ln M (n) + V1δn (4.4.49)

C̃M (1, n) = K2R̃M (n) (4.4.50)

where K1, K2 and V1 are 3 random positive constants and δn stands for the Kronecker
function. Notice that the term V1δn allows one to account for the eventual presence of
a white noise (of variance V1 superimposed to ln ML,T,1(t) as described in ref. [36].

4.4.4 Numerical illustrations and empirical performances of the GMM
methods

In order to verify our approach and compare the performances of GMMM and GMMlnM ,
we have carried out various numerical experiments. However, since historical volatility
is not directly observable in financial markets, in order to consider a more realistic
scenario, we decided to run the experiments directly on a price model. We consider
that a “price” Xt is modelled by a Brownian motion whose variance is a log S-fBM
measure dM , i.e.,

dXt = eωH,T (t) dBt = MH,T ( dt)
dt

dBt , (4.4.51)

where MH,T is the log-fBM defined in (4.2.12) while Bt is a Brownian motion inde-
pendent of MH,T . Let us notice that, when H = 0, Xt is precisely the MRW process
introduced in [118, 12].

Alternatively, an equivalent definition of Xt can be obtained using a time-warp of
the Brownian motion:

Xt = B(MH,T (t)) . (4.4.52)
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Figure 4.4: GMM estimations of H and λ2 (a) A sample of length L = 214 of the “log-
volatility", ln M̂H,T,∆(t), with n = 32, ∆ = 1, H = 0.08, λ2 = 0.1 and T = 217. (b) Best
GMM fit of ĈM (τ) as a function of τ . (c) Best GMM fit of Ĉln M (τ) as a function of τ .

Within this framework, MH,T (t) is called the (stochastic) volatility of Xt. If one does
not observe directly MH,T ( dt) but only the process Xt, as emphasized notably in [24], a
proxy of the integrated volatility over an interval of size ∆ is provided by an estimation
of the quadratic variation of X:

M̂H,T,∆(t) =
n∑

i=1

(
Xt+ i∆

n
− X

t+ (i−1)∆
n

)2
. (4.4.53)

As shown in [24] (see also [36]), as n → ∞, under mild conditions, M̂H,T,∆ → MH,T,∆

while even for moderate n, M̂H,T,∆(t) and ln M̂H,T,∆(t) provide excellent approximations
of the integrated volatility and its logarithm. For the purpose of this paper, we have
checked that n = 32 is sufficient to disregard any significant difference between M̂ and
M .

We simulated independent samples of S-fBM processes and the associated processes
Xt with H = 0.02, H = 0.08 and H = 0.15, with 2 different values of λ2, namely 0.02
and 0.1. We chose T = 217, L = 214 and fixed arbitrary σ2 = 1.

For all these parameters we run both GMMM and GMMlnM estimators with Q = 19
and {τk}k=0,...,18 =

⌊√
2k
⌋
. Our GMM implementations closely follow the one detailed

in [36] and notably the error covariance is estimated using the Newey-West HAC type
estimator with a lag L1/3 and the initialization is performed using the scaling estima-
tor provided in [65]. We used the L-BFGS-B minimization algorithm as provided by
scipy.optimize library in Python but we find similar results using alternative methods.
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In Fig. 4.4, are displayed a fit of respectively ĈM (1, n) and Ĉln M (1, n) using ex-
pressions (4.4.44) and (4.4.46) with the estimated GMM parameters for a sample of
length L = 16384 with H = 0.08 and λ2 = 0.02 or λ2 = 0.1. Our estimation results
are summarised in Table 4.1 where we reported the obtained mean values and standard
deviation of estimated H and λ2 for each set of parameters.

λ2 = 0.02 H = 0 H = 0.02 H = 0.08 H = 0.15
Ĥ (GMMM ) 0.010 (0.01) 0.007 (0.015) 0.077 (0.033) 0.146 (0.05)
Ĥ (GMMlnM ) 0.010 (0.01) 0.018 (0.015) 0.082 (0.02) 0.153 (0.02)
λ̂2 (GMMM ) 0.010 (0.01) 0.010 (0.01) 0.018 (0.006) 0.021 (0.005)
λ̂2 (GMMlnM ) 0.019 (0.001) 0.020 (0.001) 0.019 (0.002) 0.020 (0.002)

λ2 = 0.1 H = 0 H = 0.02 H = 0.08 H = 0.15
Ĥ (GMMM ) 0.010 (0.02) 0.018 (0.02) 0.11 (0.22) 0.16 (0.26)
Ĥ (GMMlnM ) 0.010 (0.01) 0.02 (0.01) 0.078 (0.02) 0.16 (0.02)
λ̂2 (GMMM ) 0.08 (0.03) 0.08 (0.02) 0.09 (0.045) 0.08 (0.07)
λ̂2 (GMMlnM ) 0.095 (0.001) 0.10 (0.005) 0.10 (0.008) 0.10 (0.008)

Table 4.1: Summary of GMMM & GMMlnM estimation performances. For each parame-
ter set, we report the mean values and standard deviations as obtained from estimations
realized on 50 independent samples of length L = 214 of log S-fBM stochastic volatility
model.

We clearly see that the GMMlnM method relies on logarithms of integrated volatil-
ities outperforms the GMMM method built on integrated volatilities. This latter ap-
proach appears to have significantly larger bias and variance errors notably for very
small H values. GMMlnM method provides more reliable estimates and in particular
one sees that the errors on λ2 is very small for all sets of parameters though it slightly
depends on λ2 (one has roughly σλ2

λ2 ≃ 10−1) but not on H.
Let us emphasize that the reported estimations were obtained by estimating H and

the variance parameter ν2 from which λ2 is estimated using Eq. (4.2.15). We checked
that estimating directly λ2 instead of deriving it from ν2, provides the same results.
However, we observed that the errors on ν2 are much larger than the errors on λ2.
More precisely, it appears that, for a fixed λ2, the measured bias is strongly related to
Ĥ as precisely expected from :

ν̂2 ≃ λ2

Ĥ(1 − 2Ĥ)
. (4.4.54)

This is illustrated in Fig. 4.5 in which two experiments where run with H = 0.02. For
the first one we chose λ2 = 0.02 and for the other one we chose λ2 = 0.1.

For each sample, we have reported ν̂2 as a function of 1
Ĥ(1−2Ĥ)

estimated by GMMlnM

method. One can easily see that in each case (λ2 = 0.02 or λ2 = 0.1), one gets a very
large dispersion on ν̂2 (whose expected values should be respectively ν2 = 1.04 and
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Figure 4.5: GMMlnM estimation of ν2 as a function of 1
Ĥ(1−2Ĥ)

. Each point corresponds
to one estimation on a sample of length L = 214. The parameters are H = 0.02 and
λ2 = 0.02 (red symbols) or λ2 = 0.1 (blue symbols). The straight lines represent the fit
provided by Eq. (4.4.54).

ν2 = 5.2) that, however, strikingly appears to be proportional to 1
Ĥ(1−2Ĥ)

(which, when
H is very small, has a large dispersion). As shown by the linear fits predicted by Eq
(4.4.54) (continuous line in Fig. 4.5), the proportionality constant is precisely the value
of the intermittency coefficient λ2 for which the estimation is quite accurate. These
observations suggest that while λ2 can be estimated with a very small error, this is not
at all the case of ν2, when H ≪ 1. The intermittency coefficient λ2 appears to be a
much more reliable quantity than the variance ν2 of the log-volatility. This can be easily
explained by the fact that, in order for the S-fBM measure to converge when H → 0
(towards the MRM M̃), one has to choose a variance proportional to 1/H. Therefore,
in the moment estimation method, in order to match the empirical covariance values
when the estimated H is very small, the parameter ν2 must scale as H−1.

Finally, let us mention that, by considering, besides L = 214, various sample lengths
(L = 210, 211, 212, 213), we checked that, as predicted by Prop. 8, the estimation errors
vanishes when L increases. The prediction of Appendix 4.7.5, that the error behaves as
LH−1/2 appears to agree with numerical experiments.
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Figure 4.6: GMMlnM estimation of daily volatility of S&P500 and CAC40 indices from
Oxford-Man dataset (a) log-realized bipower-variation from January 2000 to March
2021. (b) (resp. (c)) : the dots represent the estimations Ĉln M (τ, ∆) of the correspond-
ing correlation function Ĉln M (τ, ∆) for each index as a function of τ (resp. ln τ). The
plain lines correspond to the GMMlnM fits. The so-obtained estimated values of H are
respectively H ≃ 0.14 (for S&P) and H ≃ 0.13 (for CAC40). CAC40 curves in Figures
(a),(b) and (c) have been arbitrary shifted for the sake of clarity.

4.5 Application to realized volatility of asset returns

In this section we consider the application of the estimator of the former section to
characterize the roughness exponent H and the intermittency coefficient λ2 of realized
volatility associated with various assets. Section 4.4 suggests that the GMM estimator
GMMlnM outperforms the other candidate GMMM . This is why we exclusively consider
the GMMlnM applied to various empirical daily volatility data. Our study is based on
2 datasets containing respectively stock market indices and individual stock prices:

Oxford-Man Institute of Quantitative Finance Realized Library (OIQFRL)
The Oxford-Man Institute’s Realized Library1, contains historical records of various

estimators of daily realized volatility of several stock indices. This dataset is widely used
in various empirical studies and in particular, it was used as a benchmark database in
many former studies on rough volatility (see e.g. [65, 36]). So we apply GMMlnM

estimator to analyze the daily volatility time series associated with 24 major stock
market indices considered in [36]. Following this latter work, in the following, we only
report obtained results when using bipower variation volatility estimator but we have

1http://realized.oxford-man.ox.ac.uk/data
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Figure 4.7: GMMlnM estimation of daily volatility of Apple and Bank of America from
Yahoo Finance dataset. (a) log-realized Garman-Klass estimation of volatility [108] from
January 2000 to December 2021. (b) (resp. (c)) : the dots represent the estimations
Ĉln M (τ, ∆) of the corresponding correlation function Ĉln M (∆, τ) for each index as a
function of τ (resp. ln τ . The plain lines correspond to the GMMlnM fits. The so-
obtained estimated values of H are respectively H ≃ 0.01 (for Apple) and H ≃ 0.022
(for Bank of Am.). Apple curves in Figures (a),(b) and (c) have been arbitrary shifted
for the sake of clarity.

checked that the same results are obtained when using realized variance estimators at
scale 5 min or 10 min. Two GMMlnM estimations are illustrated in Fig. 4.6 : one on
CAC40 data and one on S&P500 data. The corresponding daily historical volatilities
(using bipower-variation estimator) are illustrated in Fig. 4.6(a). We observe that over
the 20-years period, the volatilities of S&P 500 and CAC40 are strongly correlated. One
can also notice that some of the correlated departures from the mean value are lasting
several years. This observation seriously questions any ergodic hypothesis that would
result from short-term correlations as assumed in many papers (see, e.g., [65, 36]). Figs
4.6(b) (resp. (c)) displays the corresponding estimated correlation functions Ĉln M (∆, τ)
as a function of τ (resp. ln τ) and their GMMlnM fits. The so-obtained estimations for
H are H ≃ 0.14 (for S&P) and H ≃ 0.13 (for CAC40). For both indices one gets
λ2 ≃ 0.05.

Yahoo Finance database (YF)
We collected historical daily open, high, low close price time-series of 296 individual

stocks (from S&P 500 and CAC 40 indices) from Yahoo Finance2. Stocks were taken
2http://YahooFinance.com
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from either the S&P 500 index (historical data from 1985-01-01 to 2021-12-31) or the
CAC 40 index ((historical data from 2000-01-01 to 2021-12-31). For each stock, we
constructed a proxy of the daily volatility using the Garman-Klass (GK) estimator de-
scribed in [108]. We checked, using Oxford-Man data indices, that such a GK estimator
provides results that are consistent with the intraday estimators of realized volatility.
For all stocks, we performed a GMMln M estimation of H and λ2. In Fig. 4.7, following
the exact same structure as Fig. 4.6, we illustrated such experiments with two exam-
ples, namely Apple and Bank of America realized volatility. Again we observe that stock
volatility fluctuations seem to be long-term correlated. For the selected two stocks, the
estimated values of H are respectively 0.01 and 0.02.

0.00 0.05 0.10 0.15 0.20 0.25

H

0

20

40
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ρ
(H

)

Individual stocks

Stock indices

Figure 4.8: Estimation of the probability density distribution of Hurst exponent esti-
mation Ĥ for the 296 individual stocks (blue histogram) of the YF database and for the
24 stock market indices (orange histogram) of the OIQFRL database.

The so-obtained estimations on all the 24 stock indices of the OIQFRL database and
the 296 individual stocks of the YF database are summarised in Figures 4.8 and 4.9.
In Fig. 4.8, we have reported the normalized histograms of the estimation Ĥ for the
Hurst exponents of the stock indices and the individual stocks of the two datasets. We
can observe that the two distributions are quite different: while the Hurst exponents
of the stock market indices are spread around H ≃ 0.13 with a rather large dispersion
(corresponding to an RMS of 0.03), the distribution of H values of individual stocks is
mainly peaked around a very small average value H ≃ 0.01 (with an RMS of 0.015).
Therefore, it clearly appears that the log-volatility of stock indices is much more regular
than the log-volatility of individual stocks, which is well described by a multifractal
model characterized by H = 0. Moreover, in agreement with the findings of [65] (and
in contrast with the results reported in [36]), Stock indices are confirmed to be well
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Figure 4.9: Estimation of the intermittency and variance parameters as a function of
thee estimated Hurst exponent. (a) Estimated intermittency coefficient λ̂2 as a function
of the logarithm of the estimated Hurst exponent H. The solid line represents the
constant value λ2 = 0.07 representing the best fit of individual stock data. (b) Estimated
variance coefficient ν̂2 as a function of the logarithm of the estimated Hurst exponent
H. The solid line represents the log S-fBM expression (4.4.54). In (a) and (b) blue dots
represent the individual stock data while orange triangle are associated with estimations
from indices times series.

described by a "rough volatility" model with a typical value of the Hurst exponent close
to H = 0.1.

As far as the intermittency coefficient λ2 is concerned, we reported in Fig. 4.9(a)
the estimated values λ̂2 for the 296 individual stocks (blue bullets) and the 24 stock
indices (orange triangles) as a function of the logarithm of the estimated exponent Ĥ.
We can see that all the points are distributed around the value λ2 ≃ 0.07 for stocks
and λ2 ≃ 0.05 for indices. In contrast, if one estimates the variance parameter ν2,
one observes a very large dispersion of its values. Actually, as it can be checked in
Fig. 4.9(b), the data closely follow the curve ν2 = 0.07

H(1−2H) as represented by the solid
line. Whether Ĥ varies because H itself is varying or because of estimation errors, it
appears that ν2 is related to Ĥ through the relationship (4.4.54). This suggests that the
intermittency coefficient λ2 is more likely to be the pertinent parameter to account for
volatility fluctuations. Moreover, this latter quantity appears to be “almost universal”
with a value λ2 ≃ 0.07 for stocks and 0.05 for indices.

4.6 Conclusion

We have introduced the log S-fBM, a class of log-normal “rough” random measures
MH,T ( dt) that converge, when H → 0, to the log-normal multifractal random measure.
This model allows us to consider, within the same framework, the two popular classes of
multifractal (H = 0) and rough volatility (0 < H < 1/2) models. Besides the roughness
exponent H, the model involves 3 supplementary parameters: σ2 = E(MH,T ( dt))

dt that
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provides the mean value of MH,T ([t, t′]), the intermittency coefficient λ2 which is related
to the variance of ln MH,T and the correlation length T (also referred to as the “integral
scale” in the multifractal literature) above which the process values are independent.
The second-order properties are studied and notably, we have computed the correlation
function of ln MH,T to the first order in λ2. By studying the self-similarity properties
of MH,T ( dt) when one changes the correlation length T , it appears that one cannot
estimate T and σ2 in the “high-frequency” estimation regime, i.e., if one observes, at a
small scale ∆ ≪ T , a single sample of MH,T over an interval of length L = O(T ).

We design two efficient GMM estimation methods, GMMM and GMMlnM based on
the expressions of respectively MH,T and ln MH,T correlation functions. We provide
theoretical arguments and numerical evidence showing that very much like the method
introduced in [14], GMMlnM provides an efficient estimation of H and λ2 even in the
high-frequency asymptotic regime.

We illustrate on various numerical examples that, when H < 1/2, the most perti-
nent parameter for accounting for volatility fluctuations is not, as it is always used in
the rough volatility literature [65, 36], the variance parameter ν2 = λ2

H(1−2H) , but the
intermittency parameter λ2. Indeed the estimation of the variance parameter is shown
to fluctuate a lot and to strongly depend on the estimation error on H.

Finally, when calibrating the log S-fBM model on a large set of empirical daily
volatility data, we observe that stock market indices have values around H = 0.1 (close
to a rough volatility behavior) whereas individual stocks are characterized by values of
H that can be very close to 0 (close to a multifractal volatility behavior). Moreover, not
surprisingly, the estimations of the intermittency coefficient λ2 are much more robust
than the ones of the variance parameter ν2, and its value seems to be quite universal and
spread around λ2 = 0.07 for stocks and λ2 = 0.05 for stock market indices in agreement
with the values formerly reported for the multifractal model [14].

4.7 Appendix

4.7.1 Construction of the S-fBM process

In this Appendix, we explain in every details how the S-fBM process ωH,T (t) is defined.
It depends on three parameters :

• the (Hurst) parameter H ∈]0, 1[,

• the decorrelation time scale T > 0

• and the coefficient λ2 > 0 which is linked to the variance parameter ν2 by

ν2 = λ2

H(1 − 2H)
.



112 CHAPTER 4.

This parameter will be referred to as the intermittency parameter since it controls
the intensity of intermittent “bursts” observed in MH,T and it is the name given
to that quantity in the framework of MRM.

Construction of the S-fBM process ωH,T (t)
In the upper half-plane (t, h) ∈ S = R×R⋆, we first consider the area Cℓ,T (t∗) illustrated
in Fig. 4.10 which is defined as:

Cℓ,T (t∗) = {(t, s)|h > ℓ, |t − t∗| <
1
2

min(h, T )}. (4.7.55)

For ℓ = 0, we will use the notation CT (t∗) = C0,T (t∗).
We then consider in S a non homogeneous Gaussian white noise dGH(t, h) of variance:

dpH(t, h) = E
(

dGH(t, h)2
)

= λ2h2H−2 dh dt. (4.7.56)

We will see below that H is the analog of the Hurst parameter of the fBM process.

t *

h = T

h =

h

t

S1

S2

Figure 4.10: Definition of time-scale domain Cℓ,T (t)

We then define the Gaussian process ωH,T (t) as:

ωH,T (t) = µH,T (t) +
∫

CT (t)
dGH , (4.7.57)

where µH,T (t) is a normalising constant such that

E[eωH,T (t)] = 1. (4.7.58)

Covariance function of the S-fBM process ωH,T (t)
As a Gaussian process, the S-fBM is mainly characterized by its covariance function.
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This covariance can be directly calculated as the variance of integral of the random
measure dGH(t, h) on the overlapping area of CT (t1) and CT (t2) displayed in Fig. 4.11:

Cov(ωH,T (t1), ωH,T (t2)) = Var
(∫

Cℓ,T (t1)∩Cℓ,T (t2)
dGH

)
. (4.7.59)

t1 t2

h = T

h =

h

t

S1

S2

Figure 4.11: The overlapping area

Let us assume, without loss of generality, that t2 > t1 and denote τ = t2 − t1. When
τ > T , CT (t1) ∩ CT (t2) = ∅ and thus Cov(ωH,T (t1), ωH,T (t2)) = 0. For τ < T , we have,
using the notations of Fig. 4.11,

Cov(ωH,T (t1), ωH,T (t2)) =
∫

S1∪S2
dpH(h, t)

=
∫

S1
dpH(t, h) +

∫
S2

dpH(h, t).
(4.7.60)

Using (4.7.56), we have for the first term,

∫
S1

dpH(h, t) = λ2
∫ T

t2−t1
h2H−2 dh

∫ t1+h/2

t2−h/2
dt

= λ2
∫ T

τ
h2H−2(h − τ)

= λ2

2H

(
T 2H − τ2H

)
− λ2

2H − 1
τ
(
T 2H−1 − τ2H−1

)
.

(4.7.61)
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For the second term, ∫
S2

p(h, t) dh dt = λ2(T − τ)
∫ ∞

T
h2H−2 dh

= − λ2

2H − 1
(T − τ)T 2H−1.

(4.7.62)

By composing the results above,

Cov(ωH,T (t1), ωH,T (t2)) = λ2

2H(1 − 2H)
[T 2H − τ2H ]. (4.7.63)

Similarly, if we consider a strictly positive ℓ and τ < ℓ, direct calculation shows:

Cov(ωH,T (t1), ωH,T (t2)) = λ2
[

1
2H(1 − 2H)

(T 2H − ℓ2H) + ℓ2H

1 − 2H
(1 − τ

ℓ
)
]

. (4.7.64)

4.7.2 Constructing fBM process from Takenaka field and proof of
Proposition 3

Let us denote by C(t0) the full cone obtained by considering T → ∞ in CT (t):

C(t0) = {(t, h)|h > 0, |t − t∗| <
h

2
} (4.7.65)

and consider the domain:

D(t) = C(t) ∆ C(0) = D+(t) ∪ D−(t), (4.7.66)

where ∆ stands for the symmetric difference between two sets and D+(t), D−(t) are
the two disjoint sets:

D+(t) = C(t) − C(0) and D−(t) = C(0) − C(t).

Along the the same line as definition (4.7.57), let us define the Gaussian processes:

ω±(t) =
∫

D±(t)
dGH and BH(t) = ω+(t) + ω−(t) . (4.7.67)

Notice that ω±(0) = 0 and therefore BH(0) = 0. It is easy to show that, after a little
algebra that, for 0 ≤ t1 ≤ t2:

E [ω−(t1) ω−(t2)] = λ2

2H(1 − 2H)
t2H
1 ,

E [ω+(t1) ω+(t2)] = λ2

2H(1 − 2H)

(
t2H
2 − |t2 − t1|2H

)
,

E [ω±(t1) ω∓(t2)] = 0 .

It directly results that:

γ(t1, t2) = E [BH(t1) BH(t2)] = ν2

2

(
t2H
1 + t2H

2 − |t1 − t2|2H
)

(4.7.68)
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with ν2 = λ2

H(1−2H) . Since BH(0) = 0, we see that BH(t) is nothing but a fractional
Brownian motion. This construction corresponds to the 1D version of Takenaka frac-
tional Brownian fields as discussed in [130].
In order to prove Proposition 3, let us first work out

RT (t, s) = E [(ωH,T (t) − ωH,T (0))BH(s)] .

This amounts to compute the "areas" of the intersections of D±(s) with CT (t) and CT (0)
respectively. After a little algebra, one gets, for any 0 ≤ t, s ≤ T :

RT (t, s) = γ(t, s) + γ′(t, s) with

γ′(t, s) = B

((
T

2

)2H

+
(

|t − s| + T

2

)2H

−
(

t + T

2

)2H

−
(

s + T

2

)2H
)

where B is a positive constant depending on H and λ2. Similarly, if

ST (t, s) = E [(ωH,T (t) − ωH,T (0))(ωH,T (s) − ωH,T (0))] ,

one has if 0 ≤ s, t ≤ T :
ST (t, s) = γ(t, s) . (4.7.69)

Let
ZH,T (t) = ωH,T (t) − ωH,T (0) − BH(t)

and
d(t, s) =

[
E (ZH,T (t) − ZH,T (s))2

]1/2
.

By expanding the square (ZH,T (t) − ZH,T (s))2 one directly obtains:

d(t, s)2 = 2γ(t, t) − 2RT (t, t) + 2γ(s, s) − 2RT (s, s) − 4γ(t, s) + 4RT (t, s)

= −2γ′(t, t) − 2γ′(s, s) + 4γ′(t, s)

= 4B

((
|t − s| + T

2

)2H

−
(

T

2

)2H
)

.

Therefore, ∀t0, t, s < t0, we have when T → ∞:

d(t, s) = CT H− 1
2 |t − s|1/2 + o(T H− 1

2 ) . (4.7.70)

On can consider d(t, s) as a metric and define N(t0, ε) as the number of boxes of d−radius
ε need to cover the set [0, t0]. Let D = supt,s∈[0,t0] d(t, s). Then, according to Dudley
inequality [113], there exists a positive universal constant K such that:

E( sup
t∈[0,t0]

|ZH(t)|) ≤ K

∫ D

0

√
log N(t0, ε) dε. (4.7.71)

From Eq. (4.7.70), one has D ∼ CT H− 1
2 t

1
2
0 . Moreover, one has

N(t0, ε) ≃ 1 +
⌊

t0T 2H−1C2

ε2

⌋
= 1 +

⌊
D2

ε2

⌋
,
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where ⌊x⌋ stands for the largest integer not greater than x. We then have when ε is
small with respect to D:

log N(t0, ε) ≃ 2 ln(D) − 2 ln(ε).

Thus ∫ D

0

√
log N(t0, ε)dε ∼

∫ D

0

√
2 ln(D) − 2 ln(ε))dε =

√
π

2
D,

since for H < 1/2, D → 0 when T → ∞. Proposition 3 follows directly from inequality
(4.7.71).

4.7.3 The case H → 0: Convergence towards the MRM log-normal
measure

We now examine the case H = 0 in the geometric construction above. The definition
of Cℓ,T remains unchanged and we consider the Gaussian random noise when H = 0,
dG0(t, h) of variance:

dp0(t, h) = λ2h−2 dh dt (4.7.72)

Then we define a random process ωℓ,T as previously

ωℓ,T (t) = µℓ,T +
∫

Cℓ,T (t)
dG0. (4.7.73)

As proven in [20], provided µℓ,T is chosen such that Eeωℓ,T (t) = 1, when ℓ → 0 we have

M̃ℓ,T ( dt) = eωℓ,T (t) dt
w−−→

ℓ→0
M̃T (dt), (4.7.74)

where w−→ stands for the weak convergence and where M̃T (dt) is the so-called log-normal
"Multifractal Random Measure" (MRW), a non trivial singular continuous random mea-
sure with exact multifractal properties [115, 20, 14].
In [115, 20], it is also shown that the covariance of ωℓ,T reads (for τ ≥ 0):

Cov(ωℓ,T (t), ωℓ,T (t + τ)) =


λ2 ln

(
T
τ

)
if ℓ ≤ τ ≤ T

λ2
(
ln
(

T
ℓ

)
+ 1 − τ

ℓ

)
if τ ≤ ℓ

0, otherwise

(4.7.75)

We can remark that this expression of the covariance of ωℓ,T in the range τ ≥ ℓ, can be
recovered from Eq. (4.7.63), (4.7.64) when H → 0.

Let us show a strong mean square convergence of S-fBM to MRM when H → 0 as
claimed in Proposition 3.
Since M̃(t) = M̃([0, t]) is regular enough, in order to establish the weak convergence we
just have to prove that ∀t,

lim
H→0

E[(MH,T [0, t] − M̃T [0, t])2] = lim
H→0

lim
ℓ→0

E[(MH,T [0, t] − M̃ℓ,T [0, t])2] = 0. (4.7.76)
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Before starting, it is useful to calculate the covariance between ωH,T = ωℓ=0,H,T and
ωℓ,T = ωℓ,H=0,T . Following similar computation as in Appendix 4.7.1,

Cov(ωH,T (t1), ωℓ,T (t2)) =


λ2

H(1−H)(T H − τH) if ℓ ≤ τ ≤ T

λ2
(

1
H(1−H)(T H − ℓH) + ℓH

1−H (1 − τ
ℓ )
)

if τ < ℓ

0 otherwise
(4.7.77)

By expanding the square in Eq. (4.7.76), one gets:

E[(MH,T [0, t] − M̃ℓ,T [0, t])2] =
∫ t

0

∫ t

0

(
eCov[ωH,T (u),ωH,T (v)] + eCov[ωℓ,T (u),ωℓ,T (v)]

−2eCov[ωH,T (u),ωℓ,T (v)]
)

du dv. (4.7.78)

Since, for a symmetric function f , one has:

∫ t

0

∫ t

0
f(u − v) du dv = 2

∫ t

0
(t − z)f(z) dz.

Then the previous expression becomes:

E[(MH,T [0, t] − M̃ℓ,T [0, t])2] = 2
∫ t

0
dz(t − z)

(
eCov[ωH,T (0),ωH,T (z)]+

eCov[ωℓ,T (0),ωℓ,T (z)] − 2eCov[ωH,T (0),ωℓ,T (z)]
)

. (4.7.79)

Let us split this integral as a sum of two integrals, I1 and I2, according to whether one
considers the integration domains z > ℓ and z ≤ ℓ respectively. In the first case, by
replacing the covariance with their expressions, one gets:

I1 =
∫ t

ℓ
(t − z)

(
e

λ2
2H(1−2H) (T 2H−z2H) +

(
T

z

)λ2

− 2e
λ2

H(1−H) (T H−zH)
)

dz. (4.7.80)

Since λ2 < 1, one can the safely take ℓ → 0 in the lower integral bound and then, thanks
to dominated convergence theorem, observe that I1 converges to 0 when H → 0 since
the expression inside the integral vanishes in this limit. The second integral, when z ≤ ℓ

is:

I2 =
∫ ℓ

0
(t − z)

e
λ2

2H(1−2H) (T 2H−τ2H) + eλ2( T
ℓ

+1− z
ℓ

) − 2e
λ2
(

T H −ℓH

H(1−H) + ℓH

1−H
(1− z

ℓ
)
) dz.

(4.7.81)
For 0 ≤ z ≤ ℓ, the first and last terms inside the integral can be bounded by a constant
that does not depend on ℓ while the second term can be bounded by Cℓ−λ2 . Therefore
we can see that, if λ2 < 1, I2 → 0 when ℓ → 0. This concludes the proof.
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4.7.4 Proof of Eqs. (4.3.21) and (4.3.22)

Let us compute the analytical expression of CM (τ, ∆) = E[MH,T,∆(t)MH,T,∆(t + τ)]
and establish expressions (4.3.21) and (4.3.22). For that purpose, let us first remark
that from the definition (4.3.18) of MH,T,∆(t) and from the expression (4.2.8) of the
covariance of ωH,T (t), we have (when τ < T ):

CM (τ, ∆) = K1

∫ ∆

0
du

∫ τ+∆

τ
dv e−K2|u−v|2H (4.7.82)

with K1 = eK2T 2H and K2 = λ2

2H(1−2H) .
Moreover, let us prove that, if f(z) is a symmetric function, then∫ ∆

0
du

∫ τ+∆

τ
dvf(u − v) =

∫ ∆

0
dz(∆ − z)

(
f(z + τ) + f(z − τ)

)
. (4.7.83)

Indeed, as shown in [127], we have, when τ = 0:∫ ∆

0
du

∫ ∆

0
dvf(u − v) = 2

∫ ∆

0
dz(∆ − z)f(z).

In the l.h.s. of (4.7.83), let us set v′ = v − τ and use respectively symmetry argument
and previous expression to obtain

l.h.s. =
∫ ∆

0
du

∫ ∆

0
dvf(τ + u − v)

=
∫ ∆

0
du

∫ u

0
dvf(τ + |u − v|) +

∫ ∆

0
du

∫ ∆

u
dvf(τ − |u − v|)

= 1
2

(∫ ∆

0
du

∫ ∆

0
dvf(τ + |u − v|) +

∫ ∆

0
du

∫ ∆

0
dvf(τ − |u − v|)

)

=
∫ ∆

0
dz(∆ − z)

(
f(z + τ) + f(z − τ)

)
.

By using (4.7.83) in (4.7.82), we get:

CM (τ, ∆) = K1

∫ ∆

0
dz (∆ − z)

(
e−K2|τ+z|2H

e−K2|τ−z|2H
)

= K1

∫ τ+∆

τ
dz (∆ + τ − z)e−K2|z|2H + K1

∫ τ

τ−∆
dz , (∆ − τ + z)e−K2|z|2H

= F (τ + ∆) + F (τ − ∆) − 2F (τ),

where we have denoted

F (x) = K1
(
x

∫ x

0
dz e−K2|z|2H −

∫ x

0
dz ze−K2|z|2H

)
.

If one considers the lower-incomplete Gamma function γ(a, z),

γ(a, x) =
∫ x

0
ta−1e−t dt
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and makes the change of variable t = K2|z|2H in previous integrals, one obtains the
following exact expression for F (x):

F (x) = K1
2H

( x

K
1

2H
2

γ( 1
2H

, K2x2H) − 1

K
1
H
2

γ( 1
H

, K2x2H)
)
,

which corresponds to Eq. (4.3.22). When H = 0, i.e. for M̃T , one can show that the
former expression reduces to:

F (x) = T λ2

(2 − λ2)(1 − λ2)
x2−λ2

.

4.7.5 Proof of proposition 8

In this section we provide a proof of Proposition 8 based on small intermittency approx-
imation of Proposition 6. Let ∆ = 1 and N = L

∆ = L be the number of samples MH,T,1

in the interval [0, L]. We will suppose that Ł → ∞ with T = CL, so that we are in the
high frequency regime. Let us consider the empirical mean:

µ̂N = 1
N

N∑
k=1

ln MH,T,∆=1(k) (4.7.84)

and define the “centered” random variable:

Z(k) = ln MH,T,1(k) − µ̂N . (4.7.85)

If CZ(k) = Cov [Z(j), Z(j + k)], one has obviously:

CZ(k) = Cln M (1, k) − Var [µ̂N ] . (4.7.86)

One can use Proposition 6 to compute, to the first order in λ2, all terms in Eq. (4.7.86).
Indeed, the expression of Cln M (k) is provided by Proposition 7 (Eq. (4.3.28)) and order
to compute Var

[
µ̂∆,N

]
, one can use Prop. 6 to show that, to the first order in λ2,

Var [µ̂N ] = Var
[
ln MH,T,∆=L

]
and therefore, from expression (4.3.28), one has:

Var
[
µ̂∆,N

]
= λ2

2H(1 − 2H)

(
T 2H − L2H

(2H + 1)(H + 1)

)
. (4.7.87)

It thus results that:

CZ(k) = λ2

2H(1 − 2H)

(
L2H

(1 + 2H)(1 + H)
− |k + 1|2H+2 + |k − 1|2H+2 − 2|k|2H+2

(2H + 1)(2H + 2)

)
.

(4.7.88)
Let us consider the empirical covariance:

Ĉln M (1, k) = N−1
N−k∑
k=1

(
ln MH,T,1(j) − µ̂N

)(
ln MH,T,1((j + k)) − µ̂N

)
, (4.7.89)
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Since one has E [D(n)] = E
[
Ĉln M (1, n) − Ĉln M (1, 0)

]
= CZ(k) − CZ(0) = D̃(n) (as

defined in Eq. (4.4.44)), in order to prove Eq. (4.4.43), it is sufficient to show that

lim
N→∞

Var [D(n)] = 0

To that end, remark that, from the definition of D(n),

Var [D(n)] = N−2
N−n∑
i=1

N−n∑
j=1

Cov [Z(i)Y (i), Z(j)Y (j)] (4.7.90)

= N−2
N−n∑
i=1

Var [Z(i)Y (i)] + 2N−2
N−n∑
i=1

N−n∑
j=i+1

Cov [Z(i)Y (i), Z(j)Y (j)](4.7.91)

where we have denoted
Y (i) = Z(i + n) − Z(i).

From proposition 6, because ΩT,H,∆(t) is a Gaussian process, we have, to the first order
in λ2,

Cov [Z(i)Y (i), Z(j)Y (j)] = Cov (Z(i), Z(j)) Cov (Y (i), Y (j)) + Cov (Z(i), Y (j)) Cov (Z(j), Y (j))

= CZ(j − i)
(
2CZ(j − i) − CZ(i − j + n) − CZ(j − i − n)

)
+

(
CZ(j + n − i) − CZ(j − i)

)(
CZ(j − i − n) − CZ(j − i)

)
.

Thereby, from the expression (4.7.88) of CZ(k), after a little algebra, one can show that
there exists a constant C such that

Cov [Z(i)Y (i), Z(j)Y (j)] ≤ CN2H(1 + |i − j|)2H−2 .

Then, Eq. (4.7.91) gives:

Var [D(n)] ≤ CN2H−1 + 2CN2H−2
N∑

i=1

∫ N

i
x2H−2dx ≤ C ′N2H−1 (4.7.92)

and thus, if H < 1
2 ,

lim
N→∞

Var [D(n)] = 0.

This concludes the proof of Eq. (4.4.43).
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Chapter 5

Disentangling market participants
contributions toward covariance
of price between different assets

5.1 Introduction

Modeling the covariance between price processes of different assets remained an inter-
esting yet practical subject. For example, liquidity providers need to monitor correlated
price changes in different markets and update their offer prices. In this chapter, we
highlight modeling price covariance in electronic markets.

Literature deviating from various origins has appeared over the past ten years, which
could be roughly divided into two categories. From a physics background, a linear
propagator model is proposed in [34]. This model comes with the condition that the
market is free of arbitrage and price manipulation. We also mention [135] and [134],
where the author modeled correlated price changes as responses to previous transactions.

Another stream of literature models correlated price variations as consequences of
limit order book events. We mention [57], where a Hawkes process based framework is
proposed to capture the lead-lag relationship between the order flows of different assets.
The authors argue that it is impossible to capture their so-called lead-lag relationship
at low frequency because such an effect is only visible on the high-frequency scale. A
similar approach is taken in [38], where multivariate Hawkes processes are applied to
model co-jumps of different assets’ prices. The authors argued that there exist a large
number of high-frequency co-jumps which leads to non-trivial covariance between price
processes.

In this chapter, we present a more elaborated model which can be seen as a further
development from [127]. To our best knowledge, we propose for the first time a model
which allows measuring each market participant’s marginal contribution toward the
covariance.
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This chapter is organized as follows. In Section 5.2 we present our multivariate
Hawkes process framework to model price jumps as the cumulative result of order flows,
see Eq. (5.2.20), where the covariance is reconstructed from the average intensity of
order flows. According to the origin of order flows, we further distinguish the price
covariance as exogenous or endogenous in Eq. (5.2.22). In Section 5.2.2, we introduce
an approximate relation to the first order of the norm of the kernel matrix. Under rea-
sonable assumptions, we justify Eq. (5.2.35) and Eq. (5.2.38) in the context of modeling
high-frequency order flows. Finally, we account for each market participant’s marginal
contribution toward the covariance in Eq. (5.2.38).

In Section 5.3, we present our dataset and our metrics of empirical covariance.
We discuss calibration issues and present our method to reduce the dimension of the
calibration problem. We refer readers to [100] as a general survey of measuring realized
volatility, whose method is extended to measure realized covariance in this chapter. We
also mention [103] and [7], which argue that when multivariate Hawkes processes are
applied for estimating order flows, non-parametric fitting is necessary. We apply the
non-parametric estimation approach based on the conditional law, which is elaborated
in [22] and implemented in the library Tick (see [21]).

Empirical results obtained with the composite stocks of the CAC40 index are re-
ported in section 5.3.2. Our result suggests that our Hawkes process based framework
is capable of reproducing the price covariance between different assets. Besides, empir-
ical evidence suggests that market participants’ contribution toward the covariance is
uniform among different pairs of assets.

5.2 Modeling covariance of price by multivariate Hawkes
process

A multivariate Hawkes process of dimension D is a counting processes Nt := {N i
t }D

i=1
whose intensity vector depends on past events. The i-th component of the intensity
vector takes the form

λi(t) = µi +
D∑

j=1

∫
ϕij(t − s) dN j

s . (5.2.1)

The quantity {µi}D
i=1 reads the vector of exogenous intensity. The matrix Φ(t) :=

{ϕij(t)}D
i,j=1 reads the kernel matrix. We then define the matrix R(t) as the sum of

convolution of Φ(t):

R(t) =
∞∑

n=0
Φ∗n(t). (5.2.2)

We have shown in the introduction section, that under reasonable assumptions,

R(t) = (Id − Φ(t))−1. (5.2.3)
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We note Φij and Rij as integrals of Φij(·) and Rij(·) from 0 to ∞, i.e

Φij :=
∫ ∞

0
ϕij(t) dt, (5.2.4)

Rij :=
∫ ∞

0
Rij(t) dt. (5.2.5)

and we note Φ and R as the matrix of Φij and Rij . We now consider order flows of a
single asset. We note P (t) the midprice observed on the LOB at t. We note by N all
types of events that we consider and especially M ⊂ N the types of events that change
the midprice. We suppose that order flows are driven by a multivariate Hawkes process
whose intensity is described by Eq.(5.2.1). According to the introduction chapter, the
average intensity of events of type i could be expressed as:

Λi =
∑
k∈N

Rikµk. (5.2.6)

Considering i and j as event types, the infinitesimal covariance matrix is defined by

Cij(t) dt ds = E[ dN i
s dN j

s+t] − ΛiΛj dt ds, (5.2.7)

and Cij could be obtained from R(t) and Λ:

Cij(t) =
∑
k∈N

Λk
∫

Rik(u)Rjk(t + u) du. (5.2.8)

The price change over the period [t, t + τ ] is determined by all orders flows with type
M:

∆τ P (t) = P (t + τ) − P (t) =
∑
i∈M

δi

∫ t+τ

t
dN i

s, (5.2.9)

where δi is the average amount of mid price change caused by an event of type i. We
further assume the no-trend condition, that for all τ ,

E[∆τ P (t)] = 0. (5.2.10)

Putting this condition into Eq. (5.2.9),∑
i∈M

δiΛi = 0. (5.2.11)

We now consider two assets denoted by S1 and S2. We note their midprice corre-
spondingly as P1(t) and P2(t), where the numerical subscription denotes different assets.
We use similar notations as N1 (resp. N2) and M1(resp. M2) for different types of
event of S1 (resp. S2). Over the period [t, t + τ ], we define the covariance between P1(t)
and P2(t) as the correlated price change :

Covτ [S1, S2](t) := Cov[∆τ P1(t), ∆τ P2(t)]. (5.2.12)
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With the non-arbitrage condition (5.2.10), it leads to

Covτ [S1, S2](t) = E[∆τ P1(t)∆τ P2(t)], (5.2.13)

then

Covτ [S1, S2](t) = E[
∑

i∈M1

∑
j∈M2

∫ t+τ

t
δi dN i

u

∫ t+τ

t
δj dN j

v ]. (5.2.14)

Using (5.2.7), the covariance reads

Covτ [S1, S2](t) =
∑

i∈M1

∑
j∈M2

δiδj

∫ t+τ

t

∫ t+τ

t
(Cij(v − u) + ΛiΛj) dv du, (5.2.15)

then using Eq.(5.2.11),

Covτ [S1, S2](t) =
∑

i∈M1

∑
j∈M2

δiδj

∫ t+τ

t

∫ t+τ

t
Cij(v − u) dv du. (5.2.16)

By the change of variable y = v − u,

Covτ [S1, S2](t) =
∑

i∈M1

∑
j∈M2

δiδj

[ ∫ τ

−τ
(τ − |y|)Cij(y) dy

]
. (5.2.17)

Then by considering the case τ → ∞, we simplify the notation by

Cov[S1, S2] := lim
τ→∞

Covτ [S1, S2]
τ

, (5.2.18)

and by making the assumption that C(y) is decreasing fast enough for large lags (when
y → ±∞) so that yCij(y) ∈ L1 (in fact it is sufficient to have Cij(y) ∼ 1

y2+ϵ ), we get

Cov[S1, S2] =
∑

i∈M1

∑
j∈M2

δiδj

∫ ∞

−∞
Cij(y) dy. (5.2.19)

Replacing Cij by Eq. (5.2.8) leads to

Cov[S1, S2] =
∑

i∈M1

∑
j∈M2

δiδj

∑
k∈N

ΛkRikRjk

=
∑
k∈N

Λk(
∑

i∈M1

δiRik)(
∑

j∈M2

δjRjk).
(5.2.20)

5.2.1 Endogenous covariance and exogenous covariance

Under the framework of multivariate Hawkes processes, the self-excitation and cross-
excitation effect between order flows is described by the kernel matrix Φ(·), which is
assumed to be constant over time. For order flows of different assets, correlated changes
in the exogenous intensity µ could also contribute to Cov[S1, S2], which is independent
of the self-excitation and cross-excitation effect. However, this phenomenon is not well
illustrated by Eq. (5.2.20).



5.2. MODELING COVARIANCE OF PRICE BY MULTIVARIATE HAWKES PROCESS125

In this study, we distinguish two types of covariance: “exogenous” covariance and
“endogenous” covariance. Under the framework of multivariate Hawkes processes, the
exogenous covariance is a direct consequence of the variation of exogenous intensities,
while the endogenous covariance is purely triggered by the self-exciting effect between
order flows. We consider the variation of exogenous intensities varies over a daily scale,
which is noted by the superscript d. For each day d, we suppose that the intensity of
the multivariate Hawkes process takes the form:

λi,d(t) = µi,d +
∑
j∈N

∫ t

0
ϕij(t − s) dN j

s . (5.2.21)

We illustrate the difference between exogenous covariance and endogenous covariance
with the following decomposition:

Cov[S1, S2] = E[∆P1∆P2] − E[∆P1]E[∆P2]

= E[E[∆P1∆P2|d]] − E[∆P1]E[∆P2]

= E[Cov[P1, P2|d]] + E[E[∆P1|d]E[∆P2|d]] − E[∆P1]E[∆P2].

(5.2.22)

The endogenous covariance is defined as

CovEndo := E[Cov[P1, P2|d]] =
∑

k∈N1∪N2

Λk,d(
∑

i∈M1

δiR
ik)(

∑
j∈M2

δjRjk), (5.2.23)

while the exogenous covariance is the remaining part:

CovExo : = Cov[P1, P2] − CovEndo

= E[E[∆P1|d]E[∆P2|d]] − E[∆P1]E[∆P2]

= E[E[∆P1|d]E[∆P2|d]].

(5.2.24)

The exogenous covariance is zero only if and only if the daily variations of two assets
are independent, e.g.

E[∆P1|d] ⊥⊥ E[∆P2|d]. (5.2.25)

5.2.2 Measuring market participants’ marginal contribution toward
the price covariance

This section aims to quantify each market participant’s marginal contribution to the
price covariance between a pair of assets. We consider one pair of assets denoted by
the subscript 1 and 2. We note A1 the set of active market participants who trade S1

and A2 for the set of active market participants who trade S2. In this study, we only
examine market participants who actively engaged in trading both assets, which are
denoted by A = A1 ∩ A2.
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We consider same types of order flows of asset 1 and asset 2, which we note by N1

and N2 with #{N1} = #{N2} = N . We then consider a multivariate Hawkes process
of dimension 2N for all types of orders of both assets. We keep the notation Φ for
the kernel matrix of the so-obtained Hawkes process, and R the convolution of Φ as in
Eq.(5.2.3). Then consider the decomposition of blocks by asset:

R =
(

R1,1 0
0 R2,2

)
+
(

0 R1,2

R2,1 0

)
:= RS + RC (5.2.26)

and

Φ =
(

Φ1,1 0
0 Φ2,2

)
+
(

0 Φ1,2

Φ2,1 0

)
:= ΦS + ΦC , (5.2.27)

where Ri,j and Φi,j are matrix of dimension N × N . The superscript (i, j) indicates
different assets. In the equation above, S (abbreviation for self) stands for the influences
between order flows of the same asset, while C (abbreviation for cross) stands for the
influence of order flows between different assets.

The matrix RC and ΦC characterize the self-exciting and the cross-exciting effect
between different markets. We start by examining the following phenomenon: market
participants observe order flows in one market and respond by emitting order flows
in another market. Since the covariance is a direct result of correlated price change,
market participants’ contribution to covariance could be quantified by their marginal
contribution to the matrix ΦC .

Empirical evidence suggests that in electronic markets, most order flows are excited
by previous order flows within the same asset. The cross-exciting effect for order flows
between different assets is much weaker than the self-exciting effect. We hence consider
limiting the cross-exciting effect between order flows in different markets to the first
level, i.e., in the cascade representation of Hawkes processes, we only consider the first
generation of order flows of one asset triggered by order flows of another asset. This
idea could be transformed into the following condition:

ϵ := ||ΦC ||
||ΦS ||

≪ 1. (5.2.28)

Under this condition, direct calculation shows that

RS = (Id − ΦS)−1 + o(ϵ) (5.2.29)

and
RC = RSΦCRS + o(ϵ). (5.2.30)

Then
R = (Id − Φ)−1 = (Id − ΦS − ΦC)−1

= (Id − RSΦC)−1RS

= RS + RSΦCRS + O(ϵ2).

(5.2.31)
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According to Eq. (5.2.30) and Eq. (5.2.29), we have explicitly:

R1,2 = R1,1Φ1,2R2,2, (5.2.32)

R2,1 = R2,2Φ2,1R1,1. (5.2.33)

We now revisit the expression of covariance in Eq. (5.2.20) while carrying on with
the condition in Eq. (5.2.28). To better illustrate market participant’s contribution
toward the total covariance, we plug R1,2 and R2,1 inside Eq. (5.2.20), which leads to:

Cov[S1, S2] =
∑
k∈N

Λk(
∑

i∈M1

δiRik)(
∑

j∈M2

δjRjk)

= Λ1(δ1R1,1)(δ2R2,1) + Λ2(δ1R1,2)(δ2R2,2)

= Λ1(δ1R1,1)(δ2R2,2Φ2,1R1,1) + Λ2(δ1R1,1Φ1,2R2,2)(δ2R2,2).

(5.2.34)

Or in the scalar form,

Cov[S1, S2] =
∑

k∈N1

Λk∆R1k
D ∆R2k

I +
∑

k∈N2

Λk∆R2k
D ∆R1k

I

=
∑

k∈N1

Λk∆Rk
1∆Rm

2 ϕm,j
2,1 Rj,k

1 +
∑

k∈N2

Λk∆Rk
2∆Rm

1 ϕm,j
1,2 Rj,k

2 ,
(5.2.35)

where ϕm,j
2,1 (resp. ϕm,j

1,2 ) is the m, j-th element of the matrix Φ2,1 (resp. Φ1,2). ∆Rk
1

is defined in the following way: If we note u1 (resp. u2) and d1 (resp. d2) the type of
event that move the mid-price of S1 (resp. S2) up and down, then we can write

∆Rk
1 = Ru1,k

1 − Rd1,k
1 (5.2.36)

and similarly
∆Rk

2 = Ru2,k
2 − Rd2,k

2 . (5.2.37)

From the cascading representation of the multivariate Hawkes process, Eq. (5.2.35)
has a rather spontaneous interpretation. Taking the first term as an example, an event
of type k ∈ N1 will trigger price-changing events of S1, which will eventually change
P1 by ∆Rk

1Rj,k
1 . It will also excite following up order flows in the market of S2. If the

cascade of order flows is limited to the first generation, all triggered order flows by the
second effect will eventually change the price of S2 by ∆Rm

2 ϕm,j
2,1 .

According to this interpretation, covariance originates from the self-exciting and the
cross-exciting effect between order flows between different markets, which is charac-
terized by the ΦC matrix. Market participants could then be considered as “bridges”
between two markets. As the norm of the Φ matrix is the expected number of triggered
events, it is the common result of all market participants’ activities, where each event
could be attributed to a specific market participant. For a specific market participant
α, its covariance contribution could be measured by :
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Covα := Λ1(δ1R1,1)(δ2R2,2Φ2,1
α R1,1) + Λ2(δ1R1,1Φ1,2

α R2,2)(δ2R2,2). (5.2.38)

where Φα is the amount of Φ that is related to its activities. Equivalently, we can write
in the scalar form that

Covα =
∑

k∈N1

Λk∆Rk
1∆Rm

2 ϕ
m(α),j
2,1 Rj,k

1 +
∑

k∈N2

Λk∆Rk
2∆Rm

1 ϕ
m(α),j
1,2 Rj,k

2 (5.2.39)

where the symbol m(α) in ϕm(α),j denotes order flows of type m emitted by market
participant α.

5.3 Empirical results

5.3.1 Calibration approach

Data This study is based on tick level data of composition stocks of the CAC40 index
stocks provided by Quanthouse. This dataset records all events in the limit order book
from April 2017 to March 2018. In this dataset, each LOB event is anonymously labeled
with its creator.

During this period, one stock is removed from the CAC40 index. We consider only
the resting 39 stocks, which have complete records during the whole year. The dataset
is then pre-treated. In this study, we only consider orders that arrive at the best bid/
best ask prices of the LOB. We consider four types of orders at the best limit of both the
bid side and ask side, i.e., N = {P +, P − La, Lb, Ca, Cb, Ma, M b}, representing orders
that move the midprice up/down, followed by limit orders, cancellations, and market
orders.

Methodology of covariance estimation We measure the realized volatility and
the realized covariance over a daily scale. As advocated by [100], we use the average of
5-min realized variance (RV5) and covariance (RCov5) as the proxy of daily volatility
and covariance:

RVk =
√∑

i

(P k
ti

− P k
ti−1)2, (5.3.40)

RCov =
∑

i

(P 1
ti

− P 1
ti−1)(P 2

ti
− P 2

ti−1), (5.3.41)

where k = 1, 2 denotes the asset, ti−ti−1 = 5 minutes, and the starting point t0 is chosen
randomly in the first 5 minutes of the trading day. We specially note that the variation
of price P k

ti
− P k

ti−1 is measured in tick size, hence RV and RCov are dimensionless.
The estimator above may fluctuate with the selection of t0. To mitigate this issue, we

perform 10 times of subsampling of t0 and take the average of estimated price variation
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as RV and RCov. The daily correlation is calculated from the realized covariance and
realized volatility :

RCorr = RCov

RV1RV2
. (5.3.42)

Selection of assets and market participants Another necessary pre-treat is per-
formed on the data set, that we restrained the time range from 10 a.m. to 4 p.m to
avoid the fluctuations at the opening and closing of the market. We also exclude or-
ders emitted with several special schemes provided by the exchange, where orders are
matched independently from the best quotes of the limit order book.

We rank all possible pairings of stock by the measured RCorr. As limited by
the calculation resource, we analyze the 14 most correlated pairs of stocks. Since the
nonparametric estimation requires a minimum number of events, we only select active
market participants (also mentioned as agents in the following context). For a pair of
stocks, we selected agents who sent at least 2000 orders with a minimum of 200 orders
per order type per day for both stocks. For all the 39 stocks presented in the index
during the whole year, a total of 14 active agents over the selected stocks is chosen.

Model calibration In the practice of model calibration, fitting order flows by all
selected agents leads to a significant rise in the dimension of our model. This difficulty
could be mitigated by the following observation: since agents can only observe the
current state of the LOB, the creator of order flows remains anonymous. Therefore, the
influence of other agents’ order flow over the agent α is independent of its creator.

With this simplification, the origin calibration problem with n agents could be bro-
ken down into n calibration problems with smaller scales, each with the agent α and
all other market participants excluding α, whose order flows could be combined. We
note the rest of the market as α⊤. It is worth mentioning that since α⊤ regroups all
other market participants other than α, therefore all order flows on both markets are
included in our model setup.

As an alleviation of notation, we note the intensity of the obtained Hawkes process
as:

λi,α
t = µi,α +

∑
β∈{α,α⊤}

∑
j∈N

∫ t

0
ϕi,α;j,β(s) dN j,β

s , (5.3.43)

and
λi,α⊤

t = µi,α⊤ +
∑

β∈{α,α⊤}

∑
j∈N

∫ t

0
ϕi,α⊤ j,β(s) dN j,β

s . (5.3.44)

This simplification leads to a multivariate Hawkes process of dimension 8 × 2 × 2,
accounting for 8 types of order flows of S1 and S2, emitted by α and α⊤. The so-defined
multivariate Hawkes process is calibrated with a non-parametric estimation described
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in [22]. For other calibration methodologies, we refer readers to [7] and [103], where
parametrical calibration with various forms of kernel is adopted.

We especially point out that due to the limitation of data size, we can not pro-
vide reliable calibration of the exogenous intensity µ for each day. Therefore the µ

is calibrated as a constant vector over the whole time span. Under this setting, the
covariance reproduced by the multivariate Hawkes process is considered as a proxy of
CovEndo. The difference between the realized covariance and CovEndo is then considered
as the exogenous covariance CovExo.

The reliability of our calibration approach is justified by bootstrapping. In Appendix
5.5.1, we provide an illustrative example of the 90% confidential interval of the calibrated
parameters over a selected pair of stocks.

Statistical profile of market participants Before presenting the calibration results
and commenting on market participants’ contribution to the covariance, we first provide
a statistical characterization of the active market participants identified in the previous
context.

Since market participants are engaged in trading for different purposes, their be-
haviors differ in various aspects. Such differences are revealed with statistical features
measuring for example the trading speed, the average inventory held by the end of the
day, and the presence in the best queues of the LOB.

The features listed in Table 5.1 are inspired by [96], [111], [84], [109] and [75]. We
also refer readers to recent works such as [31] and [1] for a summary of frequently
adopted statistical features.

Feature Name Description
Total order flow Total volume provided, including all types of orders

Total traded volume Total traded volumes
Fraction of trade Fraction of trade orders in all orders

Aggressive volume Volume traded by aggressive orders
Passive volume Volume traded by passive orders

Aggressive fraction Number of aggressive trades against the total number of trades
Trade asymmetry Asymmetry caused by market orders
Total asymmetry Asymmetry caused by all types of orders
Order Lifetime Median time between limit order insertion and cancellation/modification.

Inter Event Time Median time between two different orders by the same agent.
Presence in L1 Fraction of time presented on the best quotes

Presence on both sides Fraction of time presenting on both sides of the LOB

Table 5.1: List of statistical features.

Since the value of statistical features presented above may vary significantly over
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different stocks, they can’t be simply averaged. We perform the following normalization
procedure: for each feature, we first calculate the median value of all selected agents
over all considered stocks. Then each agent’s relative deviation from the median value
averaged over stocks is reported. We especially note that features like Total asymmetry
and Trade asymmetry could be negative. For those features, the symbol only indicates
the direction of order flows (i.e. bid and ask). We only account for the use of their
absolute value for normalization. Also, Aggressive fraction Presence in L1 and Presence
in both sides are highly stable over selected stocks. For this reason, we report the average
value of these features over all selected stocks.
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Figure 5.1: Visualisation of normalised features over all selected stocks. Deviations
bigger than ±100% are limited by ±100%.

The normalized features are summarized in Figure 5.1 in the form of a heat map. The
reported statistical features distinguished market participants in various dimensions. In
this study, we particularly focus on features such as the direction of trading, the speed
of trading, and the presence in the best level of the limit order book. These informations
is encoded in features like Total asymmetry, Trade asymmetry, Inter Event Time and
Presence in both sides. By examining these features, we identify agents 3, 6, 7, 11 and
13 as market makers. These agents feature flat closing positions and frequent presence
at the best limit queues.
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5.3.2 Interpretation of numerical results

Covariance reproduction by Hawkes process As a sanity check, we first compare
the empirical volatility measured by RV with the volatility reproduced according to
Eq. (5.2.20) over selected stocks. We point out that this could be seen as a special
case of our model with S1 = S2. The result is presented in Table 5.2. In summary,
our multivariate Hawkes process based covariance model reproduces well the empirical
volatility.

Asset RV Vol_Hawkes Vol_Hawkes/RV

ATOS ORIGIN(IT) 508.945500 470.056430 0.923589
AXA(Finance) 1869.151915 1822.583323 0.971565
BNP PARIBAS(Finance) 6055.273273 4139.952818 0.683622
BOUYGUES(Undefined) 2983.215706 2765.219510 0.926926
CAP GEMINI(IT) 4829.973477 3291.174249 0.681406
CREDIT AGRICOLE(Finance) 778.805576 788.846234 1.012892
DANONE(Food) 2529.891058 2055.162209 0.812352
EADS(Industry) 5472.442949 4648.714742 0.849477
LEGRAND(Electric) 1488.569545 1308.988175 0.879360
LVMH(Fashion) 1260.628091 1246.642910 0.988906
MICHELIN(Car) 573.399182 436.593885 0.761414
OREAL(Chemistry) 655.176545 664.901227 1.014843
PEUGEOT(Car) 1649.808136 1611.593794 0.976837
PPR(Fashion) 2266.783364 2040.326803 0.900098
RENAULT(Car) 5894.956296 5602.597923 0.950242
SAFRAN(Industry) 2947.968773 2644.221831 0.896964
SAINT-GOBAIN(Industry) 5425.193030 4315.534925 0.795462
SCHNEIDER ELECTRIC(Electric) 3018.097545 2192.108071 0.726321
SOCIETE GENERALE(Finance) 9318.011953 8653.800389 0.928717
TECHNIPFMC(Energy) 4223.617701 3269.536862 0.774108
TOTAL(Energy) 6104.395803 4686.902088 0.767791
VALEO(Car) 2752.624727 2409.368392 0.875299
VINCI(Undefined) 3099.234108 2273.032807 0.733418

Table 5.2: Reproduction of realized volatility by Hawkes process. All price variation is
measured in tick size.

Our result suggests that compared to the endogenous volatility, the exogenous
volatility is much smaller. Our findings agree well with the empirical fact that most
order flows are endogenous as a response to previous order flows, rather than a genuine
intention to trade, which leads to a small exogenous fraction in the intensity, which is
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argued in [133] and [39].
Next, we present the empirical covariance and the covariance reproduced by the

multivariate Hawkes process over the same data set in Table.5.3. We report the real-
ized covariance (RCov) measured in tick size and the endogenous covariance defined in
Eq.(5.2.23).

Asset 1 Asset 2 RCov Cov_endo Cov_Endo/RCov

CREDIT AGRICOLE(Finance) SOCIETE GENERALE(Finance) 2050.463595 1866.574294 0.910318
CREDIT AGRICOLE(Finance) BNP PARIBAS(Finance) 1298.020364 1315.751568 1.013660
ATOS ORIGIN(IT) CAP GEMINI(IT) 870.366727 549.732802 0.631611
SAFRAN(Industry) EADS(Industry) 2444.066117 1758.283834 0.719409
TOTAL(Energy) TECHNIPFMC(Energy) 1913.176095 1647.644057 0.861209
BOUYGUES(Undefined) VINCI(Undefined) 1890.806413 1317.765804 0.696933
AXA(Finance) CREDIT AGRICOLE(Finance) 717.189364 700.992632 0.977416
AXA(Finance) SOCIETE GENERALE(Finance) 2605.304516 2129.782377 0.817479
AXA(Finance) BNP PARIBAS(Finance) 1634.497864 1605.125970 0.982030
LVMH(Fashion) PPR(Fashion) 1069.291273 862.890058 0.806974
MICHELIN(Car) PEUGEOT(Car) 391.864545 374.165451 0.954834
MICHELIN(Car) RENAULT(Car) 800.511636 742.314410 0.927300
MICHELIN(Car) VALEO(Car) 562.806364 552.866560 0.982339
PEUGEOT(Car) SOCIETE GENERALE(Finance) 1587.317564 1183.819806 0.745799
PEUGEOT(Car) BNP PARIBAS(Finance) 1105.056409 841.893755 0.761856
PEUGEOT(Car) RENAULT(Car) 2070.644591 1903.019389 0.919047
PEUGEOT(Car) VALEO(Car) 1062.397212 1075.715105 1.012536
SCHNEIDER ELECTRIC(Electric) SAINT-GOBAIN(Industry) 2345.217909 1670.294244 0.712213
SCHNEIDER ELECTRIC(Electric) LEGRAND(Electric) 1245.159182 909.744049 0.730625
SAINT-GOBAIN(Industry) VINCI(Undefined) 2065.217472 1480.337879 0.716795
SOCIETE GENERALE(Finance) BNP PARIBAS(Finance) 4927.157938 4405.775994 0.894182
SOCIETE GENERALE(Finance) RENAULT(Car) 3178.333303 2229.184608 0.701369
RENAULT(Car) VALEO(Car) 1987.905818 1957.767949 0.984839

Table 5.3: Reproduction of covariance by Eq. (5.2.20) and endogenous covariance by
Eq. (5.2.23). Price variation is measured in tick size.

From Table 5.3, we remark that similar to the reproduction of volatility, the majority
of covariance could be explained by the endogenous covariance. However, we also em-
phasize an outstanding observation that for a pair of stocks, the fraction of endogenous
covariance decreases significantly when the business of the two companies overlaps.

Here we give one possible explanation that companies sharing similar businesses
are more likely to be influenced by the same flow of information. For example, in the
sector of finance or energy, stocks of different companies are mutually influenced by
trending news. This effect could be interpreted by a more correlated daily variation of
the exogenous intensity term µd in Eq. (5.2.23).

First order approximation of covariance We examine the validity of Eq. (5.2.35).
We compare the covariance reproduced by Eq. (5.2.20) (noted as the endogenous co-
variance with the covariance reproduced by Eq. (5.2.35) (noted as the 1st order approx-
imated covariance). Their relative difference is reported in Table.5.4.
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Asset1 Asset2 Relative difference, in %

0 RENAULT(Car) VALEO(Car) -10.727614
1 AXA(Finance) SOCIETE GENERALE(Finance) -9.952873
2 OREAL(Chemistry) DANONE(Food) -9.194710
3 SAFRAN(Industry) EADS(Industry) -9.773529
4 MICHELIN(Car) VALEO(Car) -10.942049
5 PEUGEOT(Car) BNP PARIBAS(Finance) -3.372851
6 BOUYGUES(Undefined) VINCI(Undefined) -12.962753
7 SOCIETE GENERALE(Finance) BNP PARIBAS(Finance) -31.120657
8 SOCIETE GENERALE(Finance) RENAULT(Car) -3.079902
9 CREDIT AGRICOLE(Finance) BNP PARIBAS(Finance) -25.913793
10 PEUGEOT(Car) VALEO(Car) -12.181595
11 LVMH(Fashion) PPR(Fashion) -10.288422
12 ATOS ORIGIN(IT) CAP GEMINI(IT) -9.569091
13 CREDIT AGRICOLE(Finance) SOCIETE GENERALE(Finance) -19.452585
14 SAINT-GOBAIN(Industry) VINCI(Undefined) -7.344969
15 SCHNEIDER ELECTRIC(Electric) SAINT-GOBAIN(Industry) -12.098872
16 AXA(Finance) CREDIT AGRICOLE(Finance) -8.202498
17 TOTAL(Energy) TECHNIPFMC(Energy) -6.077109
18 AXA(Finance) BNP PARIBAS(Finance) -11.928216
19 PEUGEOT(Car) RENAULT(Car) -15.668649
20 PEUGEOT(Car) SOCIETE GENERALE(Finance) -2.730582
21 MICHELIN(Car) PEUGEOT(Car) -7.365318
22 SCHNEIDER ELECTRIC(Electric) LEGRAND(Electric) -11.816030
23 MICHELIN(Car) RENAULT(Car) -10.030083

Table 5.4: Relative difference between endogenous covariance and the first order ap-
proximated covariance. Price variation is measured in tick size.

Overall, the covariance approximated by Eq. (5.2.35) reproduces well the endogenous
covariance with a median difference of around 10%. Our result suggests that in the
cascading representation of the multivariate Hawkes process, the majority of self-exciting
and cross-exciting effects between order flows is limited to the first level. We also observe
in Table.5.4 that the relative difference is notably higher when companies share similar
businesses. Especially, a noticeable difference exists for the pair Société Générale - BNP
Paribas, followed by Crédit Agricole - BNP Paribas and then Crédit Agricole - Société
Générale. A similar phenomenon is also observed for companies in other sectors. We
mentioned Renault and Peugeot as an example.

Such evidence suggests that highly correlated assets may be traded as proxies. Mar-
ket participants may adopt multi-asset strategies and trade stocks as proxies for different
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Figure 5.2: Heatmap of the agent’s correlation contribution, in percentage.

purposes, such as hedging or seeking immediate liquidity. In this case, our model still
reproduces the majority of covariance. However, in the cascading representation of
the multivariate Hawkes process, the influence between order flows should not be only
limited to the first level.

Measuring market participants’ covariance contribution As the last piece of
obtained empirical results, we report market participants’ contribution to the covari-
ance measured as Covα in Eq. (5.2.38). To facilitate the comparison between different
pairs of stocks, we first normalize the obtained covariance by the realized volatility of
corresponding stocks.

We note the realized volatility of stock 1 and stock 2 as σ1 and σ2. We note by Cov
as the realized covariance and Corr as the correlation coefficient. Agent α’s contribution
to the correlation is defined as

Corrα := Covα

σ1σ2
= Covα

Cov
Cov
σ1σ2

= Covα

Cov
Corr. (5.3.45)

Under this definition we do not necessarily have have
∑

α Corrα = Corr. In Figure 5.2,
we present agents’ contribution as Corrα in the form of a heat map.

Our first remark is that agents’ contribution to the correlation is rather uniform over
all pairs of assets. Especially several agents showed a strong correlation contribution,
indicating that their order flows led to correlated price changes of different assets.
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We also find that, unlike in [127], no simple relation could be established between
agents’ statistical features as reported in previous sections and agents’ contribution to
correlation. Neither market participants’ contribution to correlation nor the normalized
contribution by volume correlates with the statistical features. Indeed, the mechanism of
the generation of covariance is more complicated than the mechanism of the generation
of volatility. Features measured for single stock fail to capture joint dynamics of order
flows between two assets. Especially, the statistical features we introduced fail to capture
how order flows are propagated to different markets via agents’ activities.

Correlation contribution by order type
We present each agent’s contribution to correlation by event type in Figure 5.3 and

their contribution to correlation per order in Figure 5.4. The following is obtained by
normalizing the covariance contribution in Figure 5.3 with the total number of orders
of each type.
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Figure 5.3: Contribution to correlation by event type. Averaged over all selected pairs,
in percentage.
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Figure 5.4: Contribution to correlation per order by event type. Averaged over all
selected pairs, in percentage.

We start by examining Figure 5.4. First, it is not surprising that price-changing
events and market orders exhibit a larger average correlation contribution than cancel-
lations and limit orders. Secondly, agents 3, 6, 7, 11 and 13 are identified as market
makers in the previous section. They are also agents with strong average correlation
contributions per price-changing order and per market order. We also notice that mar-
ket makers have a positive correlation contribution per cancellation order. One possible
explanation is that cancellations originated by market makers quickly emptied the liq-
uidity, which may lead to further price moves and contributes to correlations. This
could be used as another indicator to identify market makers.

We continue by grouping agents’ contribution to correlation by order type as in
Figure 5.3, where agents’ cumulative contribution to correlation exhibits a noticeable
difference pattern from that of Figure 5.4. For price-changing events and market orders,
the difference between agents should be mainly explained by the difference in the total
volume, since their covariance contribution per event is rather uniform. This is the case
for agents 3, 7 and 13, where large covariance contribution could be explained by the
large volume of price-changing orders they emitted. Another example could be agent 3
and agent 6. Despite that agent 6 has a higher correlation contribution per event for
all types of events, the large volume emitted by agent 3 leads to a larger correlation
contribution. Such observation suggests that the total volume plays an important role in
market participants’ correlation contributions. For cancellations, we notice that market
makers emit a large number of cancellations, which leads to a significant cumulative
correlation contribution. As for limit orders, the situation is similar: the difference in
cumulative correlation contribution is mostly explained by the volume of limit orders
emitted.
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5.4 Summary and prospects

In this chapter, we introduced a general framework based on multivariate Hawkes pro-
cesses to capture price covariance in correlated markets. In this framework, the corre-
lated price change is a natural result of correlated order flows.

We then distinguish the covariance as exogenous and endogenous. The previous type
is due to the fluctuation of exogenous intensity over time, while the second type is due
to the self-exciting and cross-exciting effect between order flows. Due to the limitation
of the data scale, only the endogenous covariance could be calibrated from empirical
data. Under some reasonable assumption, we quantify for the first time each market
participant’s contribution to the covariance measured by their marginal contribution in
the kernel norm matrix.

Empirical results suggest that our framework can reproduce the majority of price
covariance. Besides, the assumption and approximations we made are validated with
empirical results. We observe that market participants’ contribution toward price cor-
relation is uniform over different pairs of assets. Moreover, a detailed investigation
into each agent’s contribution suggests that some active market participants may adopt
multi-asset strategies. Finally, our result suggests that market participants’ covariance
contribution is closely linked to the total volume they emit.

From the result obtained in this chapter, possible future improvements include char-
acterizing market participants with statistical features and establishing quantitative
relations between their covariance contribution and statistical profiles, which remains
open questions.
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5.5 Appendix

5.5.1 Example of calibration error by Bootstrapping

Agent std of estimated Covα, % std of estimated Corrα ,%

Agent 9 0.162358 2.300237
Agent 10 0.167564 0.645140
Agent 13 0.345652 0.426668
Agent 2 0.519005 0.497563
Agent 8 0.416504 0.500643
Agent 12 0.129820 0.488825
Agent 4 0.117903 0.454265
Agent 3 0.790632 0.173280
Agent 5 0.237159 0.309868
Agent 11 8.646219 8.361573
Agent 6 0.642228 0.698290
Agent 7 0.247414 0.063884

Table 5.5: Standard error of correlation contribution (measured as Corrα) by active
agents on the pair Société Générale - BNP Paribas. Calculated from 20 times of boot-
strapping each with 80% of data randomly chosen from the original data set.
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RÉSUMÉ

Cette thèse est consacrée à l’étude de la microstructure du marché et de la dynamique des prix sur le marché élec-

tronique. Nous commençons par construire un modèle de flux d’ordres dans le cadre du processus ponctuel. Nous

combinons le processus de Hawkes avec la propriété dite “queue reactive" introduite pour la première fois dans [87].

Dans notre modèle, l’intensité du taux d’arrivée des commandes dépend explicitement de l’état actuel du carnet de com-

mandes limité et également de flux de commandes passés. Nous prouvons l’ergodicité dans ce modèle, ce qui permet

de l’appliquer à des fins de simulation. La second partie est consacrée à l’analyse de la volatilité rugueuse. A partir d’un

champ aléatoire gaussien, nous construisons une famille de processus aléatoires paramétrés. Notre approche unifie

deux modèles de volatilité rugueuse célèbres, comme le RFSV et la marche aléatoire multifractal (MRW), sous le même

cadre. Nous avons également proposé un estimateur GMM plus fiable pour calibrer le paramètre de Hurst H. La dernière

partie de cette thèse porte sur l’analyse de la covariance des prix. Dans le cadre du processus de Hawkes, nous expri-

mons la covariance du prix comme une conséquence de flux d’ordres arrivant sur le LOB. Cette représentation permet

d’identifier l’influence de chaque participant du marché sur la covariance des prix.
MOTS CLÉS

Microstructure de marché, carnet d’ordres, processus de points, volatilité multifractale

ABSTRACT

This thesis is dedicated to the study of market microstructure and price dynamics in the electronic market. We start by

constructing an order flows model under the framework of point processes. We combine multivariate Hawkes processes

with the so-called “queue reactive" property firstly introduced in [87]. In our model, the intensity of order flows depends

explicitly on the current state of the Limit Order Book and also on past order flows. Ergodicity is proven in this model,

which allows one to apply it for simulation purposes. The second part is dedicated to the analysis of rough volatility. From

the Gaussian random field, we construct a family of parametrized random processes. Our approach unifies two famous

volatility models, the rough fractional stochastic volatility (RFSV) model and the multifractal random walk (MRW), under

the same framework. We also proposed a more reliable GMM estimator to calibrate the Hurst parameter H. The last

part of this thesis highlights the analysis of price covariance. Under the framework of multivariate Hawkes processes,

we express the covariance of price as a consequence of cascading order flows arriving on the LOB. This representation

allows identifying each market participant’s influence over the price covariance.

KEYWORDS

Market microstructure, limit order book, point process, multifractal volatility
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