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Introduction

Housing plays a crucial role in both family assets and local/national economies.

From a consumer or investor's view, housing is an essential asset for a family, thus accurately assessing residential housing values is important for making investment decisions [START_REF] Li | Housing Policies in Hong Kong, China and the People's Re public of China[END_REF]. From a local authority perspective, under standing local housing markets could enable planners to allow land to develop and then promote the local economy [START_REF] Mitchell | Climate resilient urban development: Why responsible land governance is important[END_REF]. For national poli cymakers, housing relates to macroeconomic stability, e.g., economic growth, inflation rates, unemployment [START_REF] Reichert | The impact of interest rates, income, and employment upon regional housing prices[END_REF]. As a complex matter, housing is usually affected by several social and economic factors. Nowadays, with the increasing availability of spatial data and advances in geographical information systems (GIS), more and more economists notice that locational/geographical factors play a crucial role in determining housing prices (Anselin, 2010) and in provoking regional market comovement (Abbott and De Vita, 2012; Holmes et al., 2017a; Holmes et al., 2017b). As spatial econometric techniques took a huge step forward over the past thirty years, it became a useful instru ment in the economists' toolbox that helps economists investigate the loca tional/geographical factor, including spatial dependence and spatial hetero

1 2 1. Introduction geneity.
Corsica is one of the 18 French administrative regions, whose housing market shows some specific phenomena. As a beautiful island in the Mediter ranean Sea, Corsica attracts not only thousands of tourists [START_REF] Torre | Une hausse modérée soutenue par les touristes étrangers[END_REF] but also foreign real estate investors [START_REF] Touzani | Des résidences principales et secondaires en forte crois sance[END_REF]. With the augmentation of the population [START_REF] Bibliography | habitants en Corse au 1er janvier 2016[END_REF], the need for housing has never ceased. Ad ditionally, as an island, land supply is always limited. This probably leads to high housing prices. All suggest that a detailed examination of the Corsican housing market is timely.

Furthermore, only a small number of studies have focused on the issues relating to the Corsican housing market. Kessler and Tafani's monograph [START_REF] Kessler | Le double marché foncier et immobilier en Corse. Itinéraires géographiques[END_REF] contained several chapters investigating the Corsi can housing and land market from economic and geographic perspectives. For example, economists clearly showed that there existed two distinct property markets, i.e. a market for local buyers and a market for external investors.

They also emphasized that the second home phenomenon should be further studied. Recently, new empirical studies (Caudill et al., 2019; Giannoni et al., 2017) on these topics arise with new datasets.

Along with these recent studies, many relevant questions still remain to be answered. Further, the increasing availability of large georeferenced datasets and high resolution maps, as well as novel statistical tools can help economists better analyze these questions. This thesis, therefore, offers a twofold contri bution to the existing literature. The first contribution relates to methodolog ical issues. It is known that real estate and spatial models naturally comple ment each other. The traditional spatial econometric models 1 like spatial fixed effects (dummy variables) models, spatial lag models and spatial error models may experience some limitations if they are used for analyzing crosssectional housing sales data and data collected over multiple periods [START_REF] Dubé | Dealing with spatial data pooled over time in statistical models[END_REF]. To overcome these drawbacks, I propose several new approaches in this thesis, and such approaches adapt to spatial and temporal correlation in housing data and provide accurate predictions of the dependent variable and marginal effect estimates. More importantly, how locational/geographical 1 "…spatial econometrics consists of a subset of econometric methods that is concerned with spatial aspects present in crosssectional and spacetime observations." (Anselin, 2010(Anselin, )[p.1213] ] 1.2. Corsica context 1 3 features (spatial patterns) affect all aspects of the Corsican housing market is the key question throughout this thesis. Additionally, I focus on forecasting

Corsican apartment prices and identifying geographical "hot spots" and "cold spots" in terms of housing prices. I also explore second home phenomena in Corsica. I demonstrate that the "ripple effects" exist in the Corsican sec ond home market. The findings clearly show the county belonging to "hot spots" in terms of second home rates. Lastly, I estimate the implicit price of Mediterranean Sea views with the consideration of the Corsican regional context.

The remainder of this chapter is structured as follows. In Section 2, I detail the Corsican context, in particular the background information about the regional housing market. In Section 3, I briefly introduce relevant literature.

I highlight research gaps in Section 4. Section 5 discusses research questions and the aim of the thesis. Section 6 glances at research approaches, and Section 7 details the thesis organization.

Corsica context

Corsica is an island located in the Mediterranean Sea. It is the fourth largest island in the Mediterranean Sea. It is about 183 km in length (northsouth) and 83 km in width (eastwest). It is located southeast of the French mainland, north of Sardinia and west of the Italian Peninsula.

As "the pearl of Mediterranean", Corsica is famous for its rich tourism re sources [START_REF] Vogiatzakis | Corsica". In: Mediter ranean island landscapes: natural and cultural approaches[END_REF]. A single mountain range crosses the center of the island with alpine landscapes, while beautiful beaches and seaward cliff dominate coastal areas. In particular, Calvi and Porto Vecchio (ID. 73 and ID. 249), located in the northwest and southeast, are famous for their sandy beaches. Corti (ID. 195) with many mountains and historical sites is suited in the center of Corsica.

Corsica is one of the 18 French administrative regions consisted of 360 counties (called "communes"). Bastia and Ajaccio are the two main cities ("communes") located in the north part and the south part of the island, respectively. Other cities include Corti, Calvi, Bonifacio, Porto Vecchio, etc. In contrast, most small villages ("communes") are often hidden in the mountains 4 1. Introduction Due to the particular topography, Corsica owns rural, semiurban and ur ban landscapes and inhabitant activities are widely affected. Along with the growing population over the past four decades, population distribution and densities express significant spatial heterogeneity.

INSEE (National Institute of Statistics and Economic Studies) reported that from 1982 to 2011, Corsican inhabitants increased by 74 000 [START_REF] Tempier | trente ans de démographie en Corse[END_REF].

The corresponding annual growth rate was 0.9%, nearly double the French national level (0.54%). Concerning the geographical distribution of popula tion, most inhabitants lived in the two large urban zones (called "grandes aires urbaines"), the Bastia area and the Ajaccio area. Over the past thirty years, the two zones accounted for about 67% of the additional population, and most additional population was received in the peripheral counties of the two cities, rather than in the city center. Conversely, the population in small rural counties (less than 250 inhabitants) decreased. In 2011, 61.4% of the total inhabitants live the two large urban zones. Other urban areas received 17.4%

of the total population in 2011. These urban areas include PortoVecchio, Calvi, Corti, PentadiCasinca, I'ileRousse, Propriano, Ghisonaccia. The rest population (21.2% of the population) dispersed in rural areas. In addition to the urbanrural distinction in the population distribution, a coastal and in land difference was also observed. In 2011, 79.3% of the population lived in coastal counties, whereas the rest lived in inland counties. The gradual growth of the population continued in Corsica. In 2013, the total population in Cor sica reached 320 200 [START_REF] Bretel | habitants en Corse au 1er janvier 2013[END_REF]. This number rose to 324 200 in 2014, to 327 000 in 2015, and to 330 500 in 2016 (Bretel, 2017a; Bretel, 2017b; Bretel, 2018). Nevertheless, the geographical distribution of the population did not change significantly.

Apart from the continuous population growth, INSEE also highlighted that significant residential migration has emerged in Corsica. In 2013, there were approximately 8 000 immigrants but 4 000 emigrants. The immigration rate defined by immigrants per 1 000 inhabitants was around 25.7, ranking the Corsica (upper Corsica and southern Corsica) 83th out of 99 French depart ments. Moreover, the emigration rate (13.3 emigrants per 1 000 inhabitants approximately) made Corsica the last one among 99 French departments. In 1.2. Corsica context 1 7 contrast to these low rates, with 12.5 net migration rate (12.5 net immigrants per 1 000 inhabitants), Corsica ranked 3rd out of all French departments. It should be note that the negative net migration rate was found for people be tween the ages of 22 and 25. This situation continued for the following years.

In 2016 there were 7 100 immigrants but 4 800 emigrants (Tirroloni, 2017; Luciani, 2020). Corsica ranked the 2nd out of 13 French metropolitan regions in terms of the immigration rate and 5th in terms of the emigration rate. As the net migration rate was positive in 2016, the immigrants of different ages are evenlydistributed. All these immigrants needed housing.

As previously stated, Corsica is wellknown for its rich tourism resources.

Nearly 9.5 million overnight stays were recorded at Corsican hotels in 2015 [START_REF] Luquet | Résidences de tourisme et hôtelières, villages de vacances[END_REF]). The regional tourist office also reported that the overnight stays recorded in the Ajaccio area occupied 24% of the total amount recorded in the region. The overnight stays recorded in the Bastia area, Balagne area and Extreme Sud area occupied 31.4%, 18.8%, and 25.8% respectively. The recorded overnight stays reached 9.7 million [START_REF] Tirroloni | Bilan annuel du tourisme 2016[END_REF]) in 2016, with the proportions being 41.2%, 23.3%, 18.4% and 17.1% for the Ajaccio area, Bastia area, Balagne area and Extreme Sud area, respectively. The increase in overnight stays continued. In 2017, this number was nearly 10.8 million (GenoveseBolleyn and [START_REF] Torre | Une hausse modérée soutenue par les touristes étrangers[END_REF], and the proportion were 42.3%, 23.3%, 16.9%, 17.5%. In a word, a growing number of inhabitants, ceaseless immigration and growing tourists put intense pressure on the local housing market. The strong need for housing remains.

On the other hand, the supply of housing has indeed increased. In 1999, there were 177 460 houses irrespective of housing types. This number reached 222 460 in 2011 and 242 100 in 2015 [START_REF] Pedinielli | Forte progression du nombre de logements[END_REF]Bretel, 2015; Touzani, 2018). From 2011 to 2015, the annual growth in housing supply reached 5 000 units. In response to the population growth, the government planned to boost housing supply. From 2010 to 2030, around 70 000 new houses would be built [START_REF] Balzer | logements à construire d'ici 2030[END_REF]. Nevertheless, a number of houses were bought and converted to second homes. In 2015, Corsica had the highest second home rate among all French regions. This rate equaled 37.2%, while the national second home rate was 9.6%. Additionally, lowrental housing was rare in Corsica. There was no lowrental housing in several counties. At 8 1. Introduction the regional level, the rate of lowrental housing was around 26%, which was much lower than the national level (42.1%) in 2009 (Insee Corse, 2010).

Concerning housing prices in Corsica, the average price of a property in an apartment building was €3 599 per 𝑚 2 in 2015. Such a high price made the Corsica become the fifth most expensive region in terms of housing prices.

Further, housing appreciation has never ceased. The price increased by 5% compared with that in 2014, and the price augmented 3.5% from 2012 to 2013. There was also an intraregional difference. The average price reached €4 024 per 𝑚 2 in Southern Corsica, which was higher than that in Upper Cor sica (€3 152 per 𝑚 2 ).

As is well known, housing prices are often correlated with land prices.

According to an official report (Préfet de Corse, 2017), from 2006 to 2011, Corsican land prices experienced a surge. Within this period, the average land price rose from 30% to 50% depending on areas. The residential land price was around €60 per 𝑚 2 , which was higher than that in other French regions, holding the demographic increase constant.

In a word, after decades of appreciation, housing prices and residential land prices attained a very high level in Corsica. Even though local author ities attempted to boost housing supply, the phenomena such as the rapid growth of second homes and the low rate of lowrental houses remained in the Corsican real estate market.

A glance at the literature

Although the old cliché "location, location, location" has been used in the housing business for a century, it has not been abandoned. The cliché was firstly underpinned by the monocentric model derived from the work of Alonso (1964), [START_REF] Muth | Cities and Housing: The Spatial Pattern of Urban Residential Land Use[END_REF] and [START_REF] Mills | Studies in the Structure of the Urban Economy[END_REF]. In simple, the monocentric model shows how land prices, land types and population density changes relate to the distance to the city center. The development of the monocentric model is also considered as the birth of modern urban economics. More recently, the economic underpinning of the cliché has moved to the polycentric models pro posed by [START_REF] Fujita | Multiple equilibria and structural transition of nonmonocentric urban configurations[END_REF], but the location is still the key determinant of property values. Not surprisingly, within the polycentric framework, the lo 1. [START_REF] Hill | Hedonic price indexes for residential housing: A survey, eval uation and taxonomy[END_REF]. A glance at the literature 1 9 cation is still associated with remunerative economic opportunities, scenic and desirable landscapes and amenities, and transport networks, etc. In a word, virtually every attribute of a house beyond its physical dimensions can be reduced to locations.

After briefly exploring the economic foundation of the location, my interest now moves to assessing the location. The assessment is usually based on the socalled hedonic price method. Proposed by [START_REF] Rosen | Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition[END_REF] in a seminal paper, the hedonic approach has enjoyed a great deal of success in the empirical literature investigating housing markets, e.g., housing appraisals, calculating the implicit price of nonmarket goods.

Hedonic housing price models have evolved alongside the development of spatial econometric models. In the early stages, housing location was of ten represented by accessibility [START_REF] Heyman | How is Location Mea sured in Housing Valuation? A Systematic Review of Accessibility Specifi cations in Hedonic Price Models[END_REF]. The fact is that re searchers considered the location of a house as the geographical position in relation to its neighbours, and accessibility provided a simple and straightfor ward measure of it. More recently, some researchers noticed that although accessibility attributes were taken into account, there were still spatial cor relations in residuals [START_REF] Bibliography Koschinsky | The welfare benefit of a home's location: An empirical comparison of spatial and nonspatial model estimates[END_REF]. This led to the application of spatial econometric models, since spatial econometrics has provided a feasible way to account for spatial effects in models of housing values. Additionally, in the early stages, the computational burden made researchers implement linear regression models, rather than spatial econometric models. The devel opment of the spatial twostage least squares estimator [START_REF] Kelejian | A Generalized Spatial TwoStage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances[END_REF] and the acceptance of maximum likelihood methods hence accelerated the use of spatial econometrics.

To my knowledge, the combination of spatial econometrics and the hedo nic approach may date back to the late 80s and the early 90s. [START_REF] Can | The Measurement of Neighborhood Dynamics in Urban House Prices[END_REF] and Can (1992) published a series of articles discussing the relationship be tween housing price differentials and housing locations. In these articles, traditional hedonic price models were extended to incorporate spatial neigh borhood dynamics, and this led to the use of spatial econometrics. She also discussed the advantages of using these models. After then, empirical ap plications of spatial econometrics and the hedonic approach have increased dramatically. [START_REF] Geoghegan | Spatial landscape in dices in a hedonic framework: an ecological economics analysis using GIS[END_REF] studied the implicit price of landscapes 10 1. Introduction through spatial econometrics within the hedonic price framework. More re cently, [START_REF] Bibliography Anselin | Spatial Hedonic Models[END_REF] published a paper discussing the fusion of spatial econometrics and the hedonic pricing method, namely "spa tial hedonic models". Several scholars (Anselin, 2010; LeSage, 2014) argued that the spatial hedonic model has become the mainstream of quantitative methods in analyzing housing markets. In recent years, due to the diversity and complexity of regional affairs and contexts, traditional spatial econometric models have faced criticism and more and more sophisticated spatial econo metric/statistical models have been developed (Dong andHarris, 2015; Shi and[START_REF] Shi | A spatial panel data model with time varying endogenous weights matrices and common factors[END_REF]. In summary, the monocentric, polycentric model and the hedonic price model lay the microeconomic foundation of housing prices.

Regarding regional housing markets, [START_REF] Meen | Spatial aggregation, spatial dependence and predictability in the UK housing market[END_REF] introduced the socalled "ripple effect", which describes a market phenomenon, where housing price shocks in the Greater London region spread out their influence to neighbour ing regions and eventually to the rest of the country over time. [START_REF] Chiang | Housing Markets in China and Policy Implications: Co movement or Ripple Effect[END_REF] specified the ripple effect as a kind of local housing price comovements. In particular, the ripple effect is presented in a leadlag manner, begins with the spillover of housing prices in a specific region to its neigbhouring regions and it eventually leads to comovement among local housing prices. Meen (1999) also stated that the economic mechanism behind ripple effects was still unclear, but he proposed four factors that may facilitate the ripple effect, including migrations, equity transfer, spatial arbitrage and spatial patterns in the determinants of housing prices. Many scholars (Balcilar et al., 2013; Chi ang, 2014; Kyriazakou and Panagiotidis, 2018; Teye and Ahelegbey, 2017) have provided empirical evidence that the ripple effect exists in the housing market in many different counties and regions.

Research gaps

The existing literature on evaluating housing prices and on investigating re gional housing markets was extensive. However, regarding the Corsican hous ing market, empirical analyses were scarcer. A few economic studies centered on the impact of second dwellings purchased by foreign investors.

For example, Maupertuis et al. In addition to the research gap related to the Corsican housing market, some methodological drawbacks exist in the aforementioned studies and also in the real estate valuing literature. For example, none of the aforementioned studies account for unexplained spatial effects in empirical analyses. To im prove these works, spatial econometrics may provide a feasible way. How ever, as indicated previously, spatial econometrics experiences some criticism and much of it relate to the specification of spatial weighting matrices. Cor rado and Fingleton (2012) argued that in empirical practice, it is common to build a spatial weighting matrix based on a rule of thumb or the prior knowl edge of data. The simplified weighting matrix does reduce computational workloads, but it neglects economic implications. Corrado and Fingleton thus suggested that economic theories, rather than a rule of thumb should serve as a guide to generate an appropriate spatial weighting matrix. McMillen (2012) criticized misspecifying spatial weighting matrices in empirical analy ses, and concluded that spatial econometric models seemed overused. He found that nonparametric models (locally weighted regression) offered accu rate prediction and marginal effect estimates relative to spatial econometric 12 1. Introduction models with misspecified spatial weighting matrices. [START_REF] Brady | Accounting for spatial effects in economic models of land use: Recent developments and challenges ahead[END_REF] argued that spatial econometric models were used in the context, in which the primary interest was to estimate the relationship of neighboring values of the dependent variable to itself. Furthermore, these models were sensitive to the design of weighting matrices. In most hedonic housing applications, the goal was probably not to identify that relationship, but instead accurate parameter estimates that were robust to model misspecification and unob served spatially correlated variables. They also suggested that nonparametric and semiparametric models such as spline regression, Fourier analysis, locally weighted regression, and kernel methods were alternatives of spatial econo metric models in the context, in which spatial weighting matrices were difficult to build or select.

Another methodological gap concerns the temporal dimension of hous ing data. The spatial effects within the hedonic housing price model have been intensively discussed over the past decades, but temporal dimensions have attracted very little attention. In many hedonic price applications, hous ing sales data consist of cross sections pooled over time (known as repeated cross sections), and only a few applications [START_REF] Kiel | Location, location, location: The 3L Approach to house price determination[END_REF] have panel data, i.e., repeated sales data. Additionally, the time dimension is sometimes neglected in applications, where transactions are effected within a short pe riod. Conversely, in the case of fairly long periods, many researchers prefer the time dummy variable approach, which is simple and straightforward. The time dummies are mainly used for capturing temporal heterogeneity. [START_REF] Waltl | A hedonic house price index in continuous time[END_REF] believed that time should be treated as a continuous variable, and the application of time dummies is a compromise between temporal dimensions and model complexity. However, repeated cross sections make things more complicated, since data contain continuousspace information together with continuoustime information. Moreover, the temporal relation generates a unidirectional effect, which usually requires the inclusion of an autoregressive component in models. In general, there are two ways to tackle both spatial and temporal dimensions continuously. [START_REF] Waltl | A hedonic house price index in continuous time[END_REF] modeled the housing price variations by means of two individual nonparametric functions, meaning that there is no interaction between space and time. In other words, housing prices have a common evolving pattern in space, and also a common pat 1.5. Aims of the thesis 1 13 tern in time. The house price variation in spacetime is expected to be much more flexible. [START_REF] Cohen | Local Polynomial Re gressions versus OLS for Generating Location Value Estimates[END_REF] combined the time dimension with the continuousspace through the nonparametric part of local polynomial regres sion, and this allowed the housing price variation across the space to vary over time. Even though this approach can capture the spatiotemporal variation in housing prices, there is a flaw in the sense that continuoustime information is overlooked again. Consequently, it is necessary to propose a spatiotemporal model for filling this research gap.

The last gap in the literature that I would like to highlight is the data type. Generally speaking, economists distinguish three basic types of eco nomic data, i.e., crosssectional data, time series data and Panel data. This classification may seem inappropriate for analyzing housing markets, as hous ing and spatial models complement each other. Housing data could be recog nized in two basic types, the geostatistical (pointreferenced) data and areal data. More precisely, individual housing sales collected over space and time or microdata2 related to housing pertain to geostatistical data. In contrast, data coming in an aggregated form with locational information often pertain to areal data. Different data types thus correspond to different models in terms of tackling spatial effects. For example, simultaneous and conditional autoregressive processes are apt to handle areal data, while Gaussian pro cesses are apt to tackle geostatistical data. For an economist, it is better to recognize the data type before starting statistical modeling.

Aims of the thesis

This thesis makes a twofold contribution to the literature. I attempt to fill the abovementioned methodological gaps. Then, I provide empirical evidence on how dispersal mechanisms impact the Corsican housing market. Towards these goals, a number of issues related to the Corsican housing market are investigated through spatiotemporal Bayesian hierarchical models. These is sues roughly include finding the determinant of housing prices, identifying second home rate growth spatially and temporally, and recognizing the eco nomic benefits of some environmental amenities.

1. Introduction

The subject of the thesis belongs to the housing economics [START_REF] Kingsbury | What Is Housing Economics?[END_REF], and these empirical analyses are rooted in the Corsican context. More precisely, the first empirical analysis mainly looks into apartment price predic tions. In order to assess the apartment prices across the entire region, we need models to predict housing prices, where there are no recorded sales. To address this problem, I focus on the spatial attributes of housing, since the housing location is an important determinant of its price. On the other hand, the spatial autocorrelation usually occurs in apartment prices. Additionally, housing transaction time cannot be ignored either. that that is satisfactory with respect to the goodness of fit, predictive power and computational costs.

In the second empirical, I intend to demonstrate the existence of ripple effects in the Corsican second home rates. In doing so, I investigate spatial patterns for second home rates at the county level in Corsica and how these patterns change over time, after gauging covariate effects that may affect the second home rate. Possible explanations for the ripple effect include that the rapid growth of second home prices could shift the second home demand to the surrounding areas. In addition, second home spillovers from one county to another may coincide with the expectation of housing sellers in surround ing counties. In the context of the high demand for surrounding counties, property developers would like to build new houses for second home buyers and second home buyers may also choose secondhand houses. This, in turn, accelerates the second home rate among the surrounding counties. It is im portant to note that second home rates data come in an aggregated form, which implies that second home counts and total house counts within each county are collected. To handle such data and to demonstrate the existence of ripple effects, a spatiotemporal model within the Bayesian hierarchical frame work is proposed, where spatial patterns are modeled using the conditional autoregressive process.

The previous chapters use pointreferenced data and areal data respec tively. One of the motivations for the third empirical analysis comes from the To summarize, this thesis contains three empirical analyses with different topics about the Corsican housing market. A crucial issue throughout the the sis is how locational/geographical features affect the Corsican housing market, i.e., housing prices, subregional second home rates and the implicit price of some amenities. I also look into the impact of the time dimension. In doing so, several dynamic spatiotemporal models are proposed. Spatial and temporal components are investigated jointly and separately within these models.

Research approaches

Data source

In this thesis, data are obtained from different sources. In the first empirical chapter, I use the "PERVAL" dataset obtained from "Notaire de France". It is important to note that the "PERVAL" dataset registered all the apartment sale contracts. Further, the dataset provides information from housing transaction prices to apartment characteristics. Over 10 000 transactions are registered spanning from 2006 to 2017, and I, therefore, have a repeated crosssectional dataset. From a geostatistician's point of view, these data belong to geosta 1. Introduction tistical (pointreferenced) data [START_REF] Cressie | Statistics for Spatial Data[END_REF].

In the second empirical chapter, data are acquired mostly from open sources, e.g. the website of INSEE and "Banque de France" (see In the third empirical chapter, the abovementioned two datasets are com bined. I, therefore, obtain misalignment spatial data, meaning that the spa tial data at different scales of spatial resolution do not coincide [START_REF] Gelfand | Handbook of spatial statistics[END_REF]. The misaligned dataset contains 6 377 observations from 2006 to 2016.

Statistical models

A classical linear model is inappropriate to model spatial data if spatial effects emerge. Additionally, classical spatial econometric models have some intrin sic properties, which severely limit its use. I, therefore, keep my eyes on the socalled geoadditive models proposed by [START_REF] Kammann | Geoadditive models[END_REF]. Some researchers [START_REF] Fahrmeir | Structured Additive Regression[END_REF] classified the geoadditive model into the latent approach relative to the direct approach such as spatial lag models. To be more specific, in a geoadditive model, the mean and variance of a response variable are functions of both fixed covariate effects and the spatially structured random effects. There are several specifications for cap turing the spatial effects, including Markov random field (MRF) models3 , Gaus sian random field (GRF) models [START_REF] Cressie | Statistics for Spatial Data[END_REF], twodimension (2D) splines [START_REF] Bibliography Toraichi | Twodimensional spline interpolation for image reconstruction[END_REF]. Further, according to [START_REF] Rue | Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approxi mations[END_REF], some geoadditive models can be rewritten into a latent Markov random field (GMRF) and then generates a sparse precision matrix [START_REF] Lindgren | An explicit link between gaus sian fields and gaussian markov random fields: The stochastic partial dif ferential equation approach[END_REF]. The sparsity produces significant computational gains for INLAbased inference.

Bayes inference

All models used in this thesis are fitted by the Integrated Nested Laplace Approximation within the Bayesian paradigm. The change from frequentist approaches to Bayesian approaches is motivated in different ways. Common reasons include accounting for uncertainty from data, processes and parame ters, incorporating prior knowledge, avoiding interpretation of confidence in tervals and pvalues. As such, the Bayesian approach should provide a more reasonable interpretation of parameters and adapt to fit various complex spa tial models. More details about the research approach can be found in Chapter 2.

Thesis organization

This thesis is organized into seven chapters as follows: Chapter 1: General Introduction gives a brief overview of this thesis, including study areas, a short literature review, research gaps, research aims and research approaches.

Chapter 2: Literature review discusses the economic basis of the hedonic price method, housing locations and ripple effects. Literature review on housing analysis

Introduction

As previously stated, housing has attracted the attention of researchers, policy makers, planners, homeowners and investors. Highquality data on housing prices at a disaggregated level can be used to make investment or buying de cisions [START_REF] Jayantha | Buyers' property asset purchase de cisions: an empirical study on the highend residential property market in Hong Kong[END_REF]. For researchers, the availability of such data can help them to build housing indices and to accurately assess nonmarket goods [START_REF] Taylor | The Hedonic Method[END_REF]. On the other hand, analyzing dynamics in a housing market on aggregated levels (e.g., regions, counties, etc.) provides valuable information about the linkage of a regional/subregional housing market to the rest of the country [START_REF] Jansen | The measurement and anal ysis of housing preference and choice[END_REF]. Therefore, I intend to provide an overview of the economic literature associated with housing analysis in this chapter.

I initially point out the importance of housing for both personal finance and the national economy [START_REF] Hill | Hedonic price indexes for residential housing: A survey, eval uation and taxonomy[END_REF]. Further, housing also has some special features (i.e., heterogeneity, spatial fixity and durability) that make it different from other goods [START_REF] Galster | William Grigsby and the analysis of housing submarkets and filtering[END_REF]. Based on these features, I introduce an 2. Literature review on housing analysis analytical framework, that is, the hedonic price method [START_REF] Rosen | Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition[END_REF]. I discuss the application of the hedonic price method and its alternatives in the housing analysis literature. The discussion illustrates that the hedonic price method is advantageous over its alternatives. The economic cornerstone of the hedonic price model is also reviewed.

More importantly, I highlight that the location is an important determinant of housing prices, as well as regional second home markets in the literature.

In the early stages, most scholars considered the location of a dwelling as the geographical position in relation to its surroundings [START_REF] Marcus | Spatial capital[END_REF], and therefore accessibility was a straightforward and feasible way to measure it. The meaning of locations was further developed. Beyond the geographical position, the location is considered the source of spillovers. In the early 90s, Can (1992) demonstrated that for houses, locations were represented not only by accessibility, but also by adjacent effects. Regarding the regional market, Meen (1999) proposed using socalled ripple effects to describe the comovement among certain regions that were spatially close to each other.

Once all of these have been examined, I hope that readers can understand why we use the hedonic price method, the importance of the location for both housing and subregions.

Housing and wealthy

Housing markets are an integral part of an economy. the linkage between housing markets and the rest of the economy is mainly through house price fluctuations. [START_REF] Case | Comparing wealth effects: the stock market versus the housing market[END_REF] indicated that changes in housing prices had a significant impact on household con sumption. [START_REF] Case | How housing booms unwind: income effects, wealth effects, and feedbacks through financial markets[END_REF] noted that the impact of the downturn in housing prices might be reflected via income effects. Moreover, the global financial crisis in 2008 was an obvious example, since the collapse of the U.S. subprime mortgage market followed by the fall in housing prices almost triggered that crisis [START_REF] Shiller | Understanding recent trends in house prices and home ownership[END_REF].

From a microeconomics perspective, much of the housing wealth is spread across households. Households act not only as homeowners but also as con sumers and investors. For example, among homebuyers, housing market prices are usually several times the household's annual income, and a house is typically the largest single item purchased by a household. The purchase of a house possibly represents the largest part of household savings (Good man [START_REF] Goodman | The economics of housing markets[END_REF]. If house prices go up, homebuyers may wait and see.

When homebuyers become homeowners, the house is the major asset in their portfolio. In this context, if house prices increase, they will become better off.

Some homeowners will borrow more to spend on other goods and services.

Conversely, if house prices go down, homeowners risk that their house will be worth less than mortgages. As such, they will probably cut down on spending and will hold off on investments. In short, housing prices have a considerable impact on households' consumption, investment and savings (Case, Quigley,

1 "Households' housing wealth is defined as the value at current market prices of all residential dwellings, including the value of land on which the buildings are built, owned by households." (European Central Bank, 2003)[P. 47] 22 2. Literature review on housing analysis [START_REF] Case | Comparing wealth effects: the stock market versus the housing market[END_REF].

In addition to the abovementioned channels, other channels include: hous ing price fluctuations may impact personal savings ratio (Green and Hadji matheou, 1990); housing price fluctuations are likely to affect the distribution of wealth [START_REF] Giussani | Modeling regional house prices in the United Kingdom[END_REF]; and housing price fluctuations may have impacts on labour mobility among cities or regions (Alun, 1993; Karahan and[START_REF] Karahan | Geographic reallocation and unemployment during the Great Recession: The role of the housing bust[END_REF].

Specific characteristics of housing

Housing is often referred to as a shelter and therefore meets basic human needs. Moreover, in most cases, a house implies a home and is therefore im portant for individuals [START_REF] Bourne | The Geography of Housing[END_REF]. [START_REF] Bourne | The Geography of Housing[END_REF] and Dieleman (1996b) also highlighted that housing brought psychological satisfaction such as com fort, privacy and security. [START_REF] Jansen | The measurement and anal ysis of housing preference and choice[END_REF] mentioned that housing also accompanied with social activities, such as talking to the neighours family, and friends. For economists, housing is a complex, composite good, and it can act not only as a consumer good, but also as a capital good and an invest ment good. Even though housing has triple status, according to economists, housing is often analyzed through conventional market theory. On the other hand, housing is set apart as a special market due to some particular features involving heterogeneity, spatial fixity, and durability (Galster, 1996; Sheppard, 1999). These three features are explained in more detail below.

According to [START_REF] Taylor | The Hedonic Method[END_REF], heterogeneous goods refer to the products with characteristics that are significantly different, even though the products are sold in one market. It is evident that housing is a heterogeneous good (Łaszek, 2013). Its intrinsic characteristics vary across houses, such as types, size, age, building materials, accessibilities, decoration and etc. The degree of heterogeneity also varies among housing units. Housing is a package or a bundle of many features in terms of quality and quantity. The associated value for consumers is the sum of these features weighted by the consumer's preferences.

Spatial fixity or spatially immobile features indicate that housing occupies a fixed place, and that the location is its intrinsic attribute. For homeowners, 2.4. Methods of housing analysis 2 23 regardless of whether they come or leave, the house remains there. More importantly, spatial fixity also generates physical and social externalities. If a household purchases a house, it obtains not only housing structural features, but also the socioeconomic status of the neighbourhood and the accessibility to any desired places, such as central business districts (CBD), private goods or public facilities. These externalities provide additional utility and implicitly improve housing prices. It should be noted that no two houses can occupy the same location, no matter how similar their structural features are. As such, the location also provides evidence that housing is a heterogeneous good. In a word, the location is a crucial determinant of housing quality and household welfare.

Durability means that housing, in general, is a durable good and has a very long lifespan. Unlike singleuse or shortterm consumer goods, housing can serve for many years (Dieleman, 1996a). Moreover, in the market, a large share of dwellings is provided by houses or apartment buildings constructed in the past.

Combining the durability, heterogeneity, and spatial fixity contribute to dif ferences in housing quality and housing prices across locations. Further, be cause of these particular features, housing can be analyzed using the hedonic price method. In the following section, I will examine the major approaches to housing analysis.

Methods of housing analysis

Housing has been extensively studied. [START_REF] Bourne | The Geography of Housing[END_REF] the techniques, they mentioned the hedonic price method. As an analytical method within the neoclassical economics framework, this method is famil iar to economists. The hedonic price method uses information on housing 24 2. Literature review on housing analysis prices and corresponding features, and then provides monetary estimates of the willingness to pay for and equilibrium of alternatives (De Haan and Diew ert, 2013). That is to say, the hedonic price function reveals the maximum amount that buyers would like to pay for a housing attribute. They also stated that the key idea of the hedonic price method was that price differences de pended on a set of features associated with housing. This emphasized the heterogeneous feature of housing.

Malpezzi ( 2008) also pointed out the heterogeneous nature of housing, and therefore the application of the hedonic price method was appropriate.

He stated "The method of hedonic equations is one way that expenditures on housing can be decomposed into measurable prices and quantities, so that rents for different dwellings or for identical dwellings in different places can be predicted and compared." (Malpezzi, 2008)[p. 68] In practice, a hedonic price function is expressed by multiple regression of transaction prices on housing features. Regression coefficients are usually interpreted as the implicit price of the housing features.

It is natural to use the hedonic price method for assessing nonmarket goods2 , since some environmental benefits can be measured via features that are related to housing prices. For instance, if nonenvironmental factors are controlled, any remaining differences in price can be attributed to differences in environmental quality. [START_REF] Taylor | The Hedonic Method[END_REF] stated that the hedonic method could be used for assessing nonmarket goods, and the assessment was based on housing transactions to determine the implicit value of a feature. By observing the difference in prices between two product varieties that have only one distinct feature, researchers can indirectly observe the monetary tradeoffs that agents are willing to make in terms of the difference in that feature.

Since researchers cannot directly observe the value of the feature, but infer that value from transaction information, the hedonic price method thus is an "indirect" valuation method.

A rival to the hedonic price method is the contingent valuation (Ready et al., 1997). The contingent valuation has been used to study the external bene 2 25 fits, such as improved air quality (Belhaj, 2003; Ligus, 2018), newlybuilt local railway systems [START_REF] Utsunomiya | The value of local railways: An approach using the contingent valuation method[END_REF] and increased green space (Chen andQi, 2018; Latinopoulos et al., 2016). As a "direct" valuation method, the contin gent valuation relies on surveys, where individual respondents clearly show their preferences for a hypothetical environmental change. The aggregate in dividual valuations can then help to make inferences about a communitywide valuation for the landscape in question. [START_REF] Bateman | Contingent valuation and hedonic pricing: problems and possibilities[END_REF] concluded that two kinds of questions often appeared in surveys. The first one was about the respondent's willingness to pay to conserve a landscape. That is to say, how much people are willing to pay to prevent welfare losses due to the chang ing landscape. Another one is about the respondent's willingness to pay to improve landscapes. In other words, how much people are willing to pay to achieve welfare gains due to the changing landscape.

Relying on surveys, the contingent valuation can be used for measuring nonuse values3 , whereas the hedonic price method can not. Furthermore, in conducting the survey, three types of bidding formats have been used to elicit the willingness to pay for a nonmarket good [START_REF] Cuccia | Contingent valuation[END_REF]. They are openended, iterative, and dichotomous choices.

The openended bidding implies that people's willingness to pay is induced by open questions. The respondents are asked to make a decision (i.e., he/she is willing to pay for a nonmarket good.) in a hypothetical situation. However, this bidding format has been critiqued. For example, some situations are set to be very hypothetical and dissimilar to realworld market transactions [START_REF] Hoyos | The Contingent and Hedonic Valuation Meth ods: Techniques for Valuing a Community's Resources[END_REF]. Further, some respondents may not be sensitive to the quantity and quality of changes (e.g., landscape changes). As such, the willingness to pay is likely inaccurate [START_REF] Brander | The value of urban open space: Meta analyses of contingent valuation and hedonic pricing results[END_REF].

The iterative bidding means that interviewers directly introduce a starting bid, and then increments or decrements are given. This procedure is re peated several times until an acceptable bid is reached. This iterative bidding may be the most frequently used format in the contingent valuation literature (Mousumi et al., 2007; Hoyos and[START_REF] Hoyos | The Contingent and Hedonic Valuation Meth ods: Techniques for Valuing a Community's Resources[END_REF].

The dichotomouschoice bidding refers to respondents indicating whether 2. Literature review on housing analysis they are willing to pay a specific amount for a nonmarket good on the basis of closed questions. This bidding format is simple and straightforward, but it is affected by many factors, such as payment methods. [START_REF] Bateman | The impacts of chang ing willingness to pay question format in contingent valuation studies: An analysis of openended, iterative bidding and dichotomous choice formats[END_REF] found that changing the payment method from donation to tax almost doubled the willingness to pay. As such, the willingness to pay may be inconsistent.

In summary, as a surveybased method, the contingent valuation has spe cific characteristics, like investigating nonuse values, but it requires complex survey designs, and the associated questions are based on a hypothetical situ ation, rather than on observed economic choices [START_REF] Brander | The value of urban open space: Meta analyses of contingent valuation and hedonic pricing results[END_REF].

Moreover, this method typically required a high budget and long operating time.

In addition to acting as a valid valuation method, the hedonic price method is also a crucial tool in identifying the determinant of housing prices, and further predicting house prices. [START_REF] Bibliography Belke | Fundamental Determinants of Real Estate Prices: A Panel Study of German Regions[END_REF] summarized several commonlyused approaches to identify the determinants of housing prices in empirical studies. These approaches include: the asset pricing approach, the hedonic price method, and the analysis based on aggregate housing price indices.

The asset price approach attempts to demonstrate the relationship be tween housing prices and expected future discounted earnings derived from properties (Himmelberg et al., 2005; Hott and Monnin, 2008; Weeken, 2004).

In particular, [START_REF] Hott | Fundamental real estate prices: an empirical estimation with international data[END_REF] employed a user cost model and showed that housing prices mainly depended on mortgage rates, depreciation, main tenance costs, taxes or capital gains.

The hedonic price method can also be employed to identify the determi nant of housing prices. The fact is that it can measure each structural or neighbourhood feature that has contributed to the overall housing price. Em pirical studies use data on individual housing transactions with corresponding prices and various characteristics. Rich literature can be found in this field, from the early applications (Can, 1992; Freeman, 1979; Li and Brown, 1980; Rothenberg et al., 1991) to the recent studies (Delgado and Wences, 2019; Noh, 2019; Yang et al., 2019).

The last approach refers to some econometric models that directly esti mate the housing price determinants based on some form of aggregate (i.e., 2.4. Methods of housing analysis 2 27 national, regional or local level) housing price indices. In contrast to the he donic price method using individual properties, these models use national, re gional or local level economic variables as determinants. For example, [START_REF] Sutton | Explaining changes in house prices[END_REF] investigated how shocks in incomes, interest rates and equity prices affect housing prices in six OECD countries by means of a vector autoregres sive (VAR) model. The results clearly showed that positive shocks to income or equity prices and negative shocks to interest rates resulted in housing price appreciation.

Thus far, I have looked into various approaches to investigating hous ing price determinants. It should be noted that the application of these ap proaches depends on specific research questions and the availability of data.

Aside from the abovementioned applications, the last application of the hedonic price method that I intend to discuss is building price indices [START_REF] Fik | Modeling Spatial Variation in Housing Prices: A Variable Interaction Approach[END_REF]. In general, there are three types of housing price indices [START_REF] Rappaport | A guide to aggregate house price measures[END_REF], the median index, the repeatsales index and the hedonic index.

As the simplest, straightforward measure, the median index lists the tem poral changes in the median housing price of a region from one period to the next. However, it experiences several drawbacks. First, this index confounds changes in prices with quality differences. As a result, the information pro vided by this index is very noisy, and we cannot distinguish the pure housing price change from the price change due to quality changes. A variation of this median index is the mixadjustment (stratification) index. Even though the mixadjustment index takes an arithmetic or geometric mean for the median index of all subregions, it does not overcome the same issue in constructing a median index [START_REF] Gan | Measuring housing affordability: Looking beyond the median[END_REF].

The repeatsales index is calculated using repeatsales housing data. At tributed to [START_REF] Bailey | A regression method for real estate price index construction[END_REF], this index is then developed and promoted by [START_REF] Case | The Efficiency of the Market for SingleFamily Homes[END_REF]. Nevertheless, this index also experiences some limitations. First, it drops a lot of data, for instance, the property that only sells once has to be removed to build this index. Further, dropping these ob servations may give rise to sample selection biases. Second, the repeatsales index may have the same problem as the median index. If an observation was renovated or extended between two sales, the repeated sales index may also confound changes in prices and quality differences (Prasad and Richards, 28 2. Literature review on housing analysis

2008).

The hedonic index, like the previous hedonic applications, considers hous ing as a bundle of attributes with their implicit prices (Goodman, 1978; Ong et al., 2003). Using regression techniques, the hedonic index can account for the extreme heterogeneity of housing, as well as provides qualityadjusting measures of price changes.

In summary, the hedonic price method has been used in a number of ways in housing contexts. First, as previously stated, it can be used to measure the implicit price of certain nonmarket goods. Second, it is used to identify the determinants of housing prices and corresponding impacts, and also to provide general appraisals of houses. Third, it is used to build housing price indexes.

In these three situations, the hedonic price method often has advantages over its alternatives. For example, it is multitasking and does not restrict data types. Considering the availability of data in the following empirical analyses and research aims, I will look into the economic underpinning of the hedonic price method in the following sections.

Hedonic Price Model (HPM)

As one of the most popular methods, the hedonic price method provides a theoretical basis for many housing studies. In short, the idea of the hedonic price method can be expressed as follows: an entire good can be reduced to its constituent attributes, and the implicit value for these attributes is then cal culated based on market transaction prices. In the following subsections, I will review the evolution of the hedonic price method, followed by an examination of its economic underpinnings.

A brief history

It is widely accepted that Andrew Court is a pioneer in applying the hedo nic price method (Goodman, 1998; Herath and Maier, 2010; Malpezzi, 2008).

Working as an economist in General Motors, Court intended to develop auto mobile price indices in the 1930s. In his paper, he explained the reason to name the method "hedonic" and gave an example of the newlyborn method.

He noted:

2.5. Hedonic Price Model (HPM) 2 29 "Utilitarianism, seeking the good in the greatest happiness of the commu nity as a whole, is the chief hedonistic doctrine. Thus, Hedonic price compar isons are those which recognize the potential contribution of any commodity, a motor car in this instance, to the welfare and happiness of its purchasers and the community... Passenger cars serve so many diverse purposes that such a single, most important specification cannot be found. The simple method is inapplicable, but why not combine several specifications to form a single composite measure?" (Court, 1939)[p. 107] The phrases contain some key ideas of the hedonic price method, including the heterogeneous attributes of products, the heterogeneities of consumers' demands and the composite measurement.

Following Court's study, Lancaster (1966) introduced a new consumer the ory, which provides the underpinning of the hedonic price method. Lancaster's new theory states that utility comes from the intrinsic properties of goods, rather than a good itself. He wrote:

1. The good, per se, does not give utility to the consumer; it possesses characteristics , and these characteristics give rise to utility.

2. In general, a good will possess more than one characteristic, and many characteristics will be shared by more than one good.

3. Goods in combination may possess characteristics different from those pertaining to the goods separately. (Lancaster, 1966)[p. 134] In other words, consumers purchase relevant characteristics of goods rather than goods themselves, the composite goods are heterogeneous due to dif ferent "characteristics". Thus, people purchase goods based on the number of good characteristics and per unit cost of each characteristic. Lancaster's new consumer theory is the microeconomic foundation for analyzing utility bearing characteristics. However, a possible limitation of his theory is that it considers the demand side of the market only.

The complete theoretical foundation of the hedonic price method is laid by [START_REF] Rosen | Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition[END_REF]. Presented in a seminal paper, Rosen overcame the limita tion of Lancaster's theory. Rosen's model integrates the earlier hedonic price model into a neoclassical economics framework 4 . Additionally, the theoretical utility framework links consumers' preferences for characteristics goods and 30 2. Literature review on housing analysis market equilibrium prices. Following Lancaster's theory, Rosen also argued that goods are valued by characteristics. Hence, the total price is a function of the characteristic and the implicit price of a characteristic is the derivative of the total price with respect to the amount of the characteristic 5 . Further, he demonstrated the market equilibrium and concluded that each attribute has a unique implicit price in an equilibrium market, which equals Marshallian willingness to pay (WTP).

Five years later, [START_REF] Freeman | Hedonic Prices, Property Values and Measuring Envi ronmental Benefits: A Survey of the Issues[END_REF] brought a paper named "hedonic prices, property values and measuring environmental benefits: a survey of the is sues". He highly praised Rosen's model. He also underlined that a household's willingness to pay for a unit of each characteristic should equal the housing attribute prices. More precisely, treating the price of a house as a dependent variable and associated housing characteristics as independent variables, re searchers can apply regression techniques. The estimated coefficients are interpreted as implicit marginal prices. Rothenberg et al. (1991) summarized that the hedonic price method has two advantages over other valuing methods in measuring house prices. On the one hand, decomposing different houses into many characteristics makes an adequate simplification and avoids using multicommodity models. On the other hand, housing characteristics can be regarded as the marginal tradeoffs both supplier and demanders made on markets.

Theoretical foundation

In Rosen's theory, the hedonic price model is built on two stages. The first stage analysis is used for estimating the implicit price of characteristics and reflecting consumers' preference for these characteristics through the trans action prices of a differentiated product and its characteristics (Taylor, 2017).

The firststage analysis is widely used for assessing housing prices. A possible explanation is that most regional scientists are interested in the implicit price of characteristics, and it is easy to collect data for the firststage analysis.

Housing characteristics, neighborhood and amenities attributes are usually 5 Rosen wrote: "…a class of differentiated products is completely described by a vector of objectively measured characteristics. Observed product prices and the specific amounts of characteristics associated with each good define a set of implicit prices." (Rosen, 1974)[p. 34] 2.5. Hedonic Price Model (HPM) 2 31 included in an econometric model.

Conversely, few researchers [START_REF] Bajari | Estimating Housing Demand With an Appli cation to Explaining Racial Segregation in Cities[END_REF]Kahn, 2005; Bishop and[START_REF] Bishop | Hedonic prices and implicit markets: Esti mating marginal willingness to pay for differentiated products without in strumental variables[END_REF] discuss the secondstage analysis in terms of estimating inverse de mand functions. This gap in the literature is undoubtedly due to the identifica tion strategy in empirical analyses. Since the prices for calculating the inverse demand function are not actually observed, the estimated implicit prices in the first stage must be put into the secondstage simultaneous estimation. As such, the hedonic price method experiences an endogeneity issue in the sense that the hedonic price function simultaneously determines both the number of characteristics and the marginal price associated with them. Researchers can use instrumental variables to correct this endogeneity issue, but it is very difficult to find a truly exogenous instrument (Bishop and Timmins, 2019).

Regarding housing, as a differentiated product, each housing unit has spe cific characteristics, which result in nonuniform house prices in a perfectly competitive market6 . To be more specific, let 𝑧 𝑗 denotes a bundle of 𝑛 charac teristics associated to the house 𝑗, 𝑧 𝑗 = (𝑧 1 , … , 𝑧 𝑛 ). Following Rosen's theory, the equilibrium price for the house is a function of all characteristics associated with the house,

𝑝 𝑗 = 𝑝 (𝑧 𝑗 ) = 𝑝 𝑗 (𝑧 1 , … , 𝑧 𝑛 ) (2.1)
where 𝑝 𝑗 denotes the market price of house 𝑗. This function is also known as the hedonic price function or the hedonic price schedule. Since buyers in the market own heterogeneous preferences and budgets, they can only affect the price of their chosen house via a selection of attributes, but they can not affect the equilibrium price in the market. For example, the buyer ℎ where 𝑢 ℎ 𝑗 denotes the utility of house 𝑗 for the given household ℎ. 𝑝 𝑗 denotes a buyer's housing expenditure. To find the optimal choice for buyer ℎ, the firstorder condition is applied,

seeks
𝑗 * (ℎ) = argmax 𝑈 ℎ (𝑧 𝑗 , 𝑥) (2.3) 𝜕𝑝(𝑧 * 𝑗 , 𝑥) 𝜕𝑧 𝑗 = 𝜕𝑈 ℎ 𝜕𝑧 𝑗 𝜕𝑈 ℎ 𝜕𝑥 (2.4)
where the lefthand side of Eq.2.4 is the implicate price of 𝑗 𝑡ℎ attribute, and the righthand side of Eq.2.4 represents the marginal rate of substitution between the 𝑗 𝑡ℎ attribute and the numeric nonhousing good 𝑥.

Thus far, I have thoroughly examined the hedonic price method from the associated applications to its economic underpinnings. In the next section, I will look into another specific feature of housing, that is, the spatial fixity.

Location and housing prices

In this section, I provide an overview of the relationship between housing locations and prices from a microeconomic perspective. In particular, spe cial attention has been paid to measuring the impact of locations on housing prices.

Background

Economists have focused on urban structures for a long time. In the "isolated state" model, Von Thünen (1966) assumed that there existed a monocen tric market with concentric circles for agricultural land use. Farmers intend to maximize their profits, which is the market price of farming products mi nus transport and production costs. Consequently, activities with the highest transport costs and the highest revenues were found near the center.

In the middle 20th century, Alonso, Mills, and Muth (Alonso, 1964; Mills, 1972; Muth, 1969) extended Von Thünen's (1966) to the distance to the central business district (Brueckner, 2007; Wheaton, 2004). Many empirical analyses using the AlonsoMillsMuth model investi gate the relationship between distances to the central business district and observed land values. Several researchers have shown that a negative gra dient exists, mostly for residential land [START_REF] Mcmillen | One hundred fifty years of land values in Chicago: A nonparametric approach[END_REF]. That is to say, for residential land, as the distance from the central business district increases, the residential land value decreases.

The simple and analytically elegant monocentric model has dominated the urban economic theory since the middle of the 20th century. As time went by, more and more researchers found that the magnitude of the gradients decreased significantly, and this was widely interpreted as urban decentral ization. Economists, therefore, attempted to explain the emergence of such complex patterns. In the late 20th century, [START_REF] Fujita | Multiple equilibria and structural transition of nonmonocentric urban configurations[END_REF] pro posed the polycentric model, where cities/regions owned multiple centers in cluding the socalled primary urban centers and subcenters. [START_REF] Arribasbel | The validity of the monocentric city model in a polycentric age: US metropolitan areas in 1990, 2000 and 2010[END_REF] showed that some large cityregions in North America had become polycentric, but the monocentric model could still explain the spatial structure of most North American regions. Several researchers (Romero et al., 2014; Lopez and[START_REF] Lopez | Employment descentralisation: poly centric compaction or sprawl? The case of the Barcelona Metropolitan Re gion 19861996[END_REF] pointed out that in Europe, formerly in dependent smaller cities formed larger regional conurbations with polycentric structures. In a polycentric city, the negative house pricing gradients did not maintain. [START_REF] Waddell | Housing price gradients: The intersection of space and built form[END_REF] studied house prices in Dallas, USA and stated "the emergence of new nodes of regional significance has created housing price gradients that far overshadow any residential gradient with respect to the CBD." (Waddell et al., 1993)[p. 15] That is to say, the relative location of residential land is a crucial factor in creating residential gradients. If a new node emerges in a metropolitan region, the old residential gradients will be broken and new gradients will be created.

Blotevogel (1998) noted the same phenomenon in the Rhine Ruhr metropoli tan region, Germany. He showed that in the polycentric metropolitan region, house price gradients are a combination of the previous patterns of formerly 34 2. Literature review on housing analysis independent smaller cities.

How is location measured in housing valuation?

Even though the corresponding economic theory changed from the mono centric model to the polycentric model (Heikkila et al., 1989; McDonald and[START_REF] Mcdonald | Employment subcenters and land val ues in a polycentric urban area: the case of Chicago[END_REF], the location has always been the key impact factor on hous ing prices, and there are a great number of empirical analyses to support this point. [START_REF] Bowen | Theoreti cal and empirical considerations regarding space in hedonic housing price model applications[END_REF] reviewed the theoretical and empirical studies of the hedonic price method from a spatial analysis perspective. They advocated that empirical studies applying the hedonic price method should consider spa tial effects.

After reviewing empirical analyses employing different location character istics, I conclude that location characteristics in empirical work can be classi fied into two broad categories, that is, relative or absolute locations [START_REF] Marcus | Empirical support for a theory of spatial capital: Housing prices in oslo and land values in gothenburg[END_REF]. The notion of the absolute location is derived directly from geography. The geographical position (location) is usually described by co ordinates given longitudes and latitudes. Empirical studies considering the absolute location within the hedonic price framework may date back to the early 1990s. [START_REF] Dubin | Spatial autocorrelation and neighborhood quality[END_REF] proposed applying Kriging 7 [START_REF] Krige | A statistical analysis of some of the borehole values in the Orange Free State goldfield[END_REF]. She highlighted that the Kriging method could account for spatial relationships explicitly, and thus produced a spatial trend map. Clapp and his colleagues developed the socalled local regression model (Clapp, 2003; Clapp et al., 2002). This model contains both a fixed covariate effects component and a nonparametric smoother. The nonparametric smoother relies on local poly nomial regression, which estimates the value of locations using a function of longitude and latitude. [START_REF] Mcmillen | Estimation and hypothesis testing for nonparametric hedonic house price functions[END_REF] developed the socalled locally weighted regression. The locally weighted regression also involves a nonparametric component for computing the value for a given location.

Furthermore, the nonparametric component is allowed to interact with other housing characteristics.

Conversely, the relative location depicts the relationship between locations.

Some scholars (Marcus, 2010; Rérat, 2018) held the view that the relative 7 Kriging is also known as Gaussian process regression [START_REF] Latinopoulos | Valuing the benefits of an urban park project: A contingent valuation study in Thessaloniki, Greece[END_REF], details about Gaussian process regression are found in Sect.3.5.1.

2.6. Location and housing prices 2 35 location was a subset of the absolute location. The fact is that the absolute location also reflects the relative location, but the relative location is merely used to describe the relationship between locations.

However, in the early stages, most studies account for the relative loca tion through accessibility to specific amenities. For example, several scholars (Colwell and Guntermann, 1984; Downes and Zabel, 2002; Dhar and Ross, 2012) two points, and is usually the shortest distance in space. The network dis tance is the distance measured by a network, such as road networks. The travel time, as its name suggests, often accounts for both traveling speed and distance. Lastly, the zone is also a way to specify accessibility.

However, externalities generated by housing imply the relative location. An economist, Can (1992) gave another explanation. Instead of using the acces sibility or the spillover, he used the term "adjacent effects" and "neighborhood effects" to describe some phenomena on housing markets.

For the "neighborhood effects", "The common approach with respect to the measurement of neighbor hood effects is the inclusion of a set of characteristics pertaining to the so cioeconomic and physical makeup of the neighborhood, accessibility to urban amenities, and the level of public services." (Can, 1992)[p. 456] For the "adjacent effects", "Similarity in the prices of nearby houses can be partially explained by ex ternalities due to shared neighborhood characteristics. In addition, however, there will be a set of absolute spatial spillover effects on a given residen tial structure of the physical quality as well as the uses associated with the 36 2. Literature review on housing analysis surrounding neighboring structures." (Can, 1992)[p. 457] In a word, the "adjacent effects" emphasize the role of spillover effects in a housing market, but the "neighborhood effects" do not have this meaning.

Regarding the adjacent effect, externalities generated by a house in a place are capitalized into the nearby house prices. As the distance from that house increases, the strength of the externality decreases. Moreover, houses in the same block, built at the same time and having similar intrinsic characteristics may reinforce such externalities. Moreover, housing buyers and sellers often use similar sales between neighbours as a reference for assessing transac tion prices, which is an efficient way to reduce uncertainties due to lack of information. Further, [START_REF] Páez | Recent research in spatial real estate hedonic analysis[END_REF] noted that in the real estate literature, the adjacent effect was widely accepted to be interpreted as the pattern of sim ilarities observed in housing prices due to locations, after gauging housing structural attributes.

As indicated previously, in practice, the hedonic price method is often car ried out through classical linear regression. If the adjacent effect appears in the housing data, the estimation technique like ordinary least square (OLS)

is not appropriate [START_REF] Pace | Parametric, semiparametric, and nonparametric estimation of characteristic values within mass assessment and hedonic pricing mod els[END_REF]LeSage, 2004; Wilhelmsson, 2009). The fact is that an accurate OLS (i.e., unbiasedness, efficiency and consistency) should follow several assumptions, such as constant variance (homoscedasticity) and no correlations in error terms (iid). Since the adjacent effect often occurs in crosssectional or pooled housing data, these assumptions are seldom fulfilled.

If the adjacent effect is presented, but not modeled, OLS will be biased and will lead to unrealistic inference and prediction. To correct these problems, spatial analysis methods such as spatial statistics and spatial econometrics are required, since they explicitly account for the influence of space, and signifi cantly improve model quality and prediction accuracy [START_REF] Osland | An application of spatial econometrics in relation to he donic house price modeling[END_REF].

This section uncovers one of the determinants of housing, that is, its lo cation. I also give particular attention to the socalled adjacent effect derived from the location. It is important to note that here the observation refers to transacted properties individually, which lead to a micro dataset. In the next section, I move to investigate regional/subregional housing markets based on aggregate data.

2.7. Location and housing analysis: a regional perspective 2 37 2.7. Location and housing analysis: a regional perspective As previously stated, analysing the temporal behaviour of aggregate housing market fluctuations remains the interest of many economists [START_REF] Bibliography Belke | Fundamental Determinants of Real Estate Prices: A Panel Study of German Regions[END_REF]. Further, many scholars [START_REF] Kiel | Location, location, location: The 3L Approach to house price determination[END_REF]Zabel, 2008; Pace and[START_REF] Pace | Spatial Statistics and Real Estate[END_REF] accepted housing to be an inherently spatial phenomenon, so we need to account for the impact from space if we are to investigate aggregate housing market fluctuations. Additionally, the literature on second home analysis often overlooks these spatial and temporal patterns. To fill in this gap, I will focus on the socalled ripple effects.

Ripple effects

In the late 1980s, British researchers [START_REF] Giussani | Modeling regional house prices in the United Kingdom[END_REF]Hadjimatheou, 1991; Meen, 1996) noticed that regional house prices showed a distinct spatial pat tern. For instance, housing price appreciation first occurred in the Greater London region, then gradually spread out to neighbouring regions, and even tually spread out to the rest of the country over time.

To depict this phenomenon, [START_REF] Meen | Spatial aggregation, spatial dependence and predictability in the UK housing market[END_REF] used the term "ripple effects".

Further, the ripple effect occurs in a leadlag manner. That is to say, house price appreciation was first observed in a specific region, and then transmitted to its contiguous regions and then beyond. This also implies that increased comovement in closer, rather than distant, regions is significantly observed (Meen, 1999). This phenomenon has attracted increasing attention and vari ous techniques have been proposed, including cointegration [START_REF] Kyriazakou | A nonlinear pairwise approach for the convergence of UK regional house prices[END_REF] and spatial econometrics [START_REF] Meen | Spatial aggregation, spatial dependence and predictability in the UK housing market[END_REF]. [START_REF] Meen | Spatial aggregation, spatial dependence and predictability in the UK housing market[END_REF] employed the standard spatial econometric framework, and he believed that spatial effects, referring to both spatial autocorrelation (de pendence) and spatial heterogeneity played an important role in capturing the ripple effect. Regarding spatial dependence, the British housing market is probably characterized by a series of interconnected local markets rather than a single national market. On the other hand, spatial heterogeneity shows that the British housing market may exhibit structural differences. More im portantly, spatial dependence cannot properly explain the entire ripple effect. 2. Literature review on housing analysis

The fact is that even though spatial heterogeneity reflects differences in the structure of British housing markets, it is represented by random coefficients exhibiting nonrandom spatial patterns.

He also argued that in the British case, the economic mechanism leading to the ripple effect was still not entirely clear. Possible explanations include migration, equity transfer, spatial arbitrage and spatial patterns in the determi nants of house prices. Although it is hard to demonstrate these explanations, the first two are the most convincing explanations. The migration implies that if average housing prices are higher in a region than those in neighbouring regions, home buyers may be expected to migrate to the neighbouring region benefiting from low housing prices. The equity transfer refers to lagged hous ing prices from neighbouring regions affecting the current house prices in a region.

Second homes

Second homes have attracted researchers' attention for a long time (Cop pock, 1977). Even though second dwellings are an integral part of the overall housing market, they have conventionally been considered to be a particular submarket, which is distinct from primary dwellings (Barke, 2008). As such, topics on second dwellings are dominated by investigating the internal feature of the second home submarket. For example, the socioeconomic profile of the second home owner, the seasonal migration or tourists relating to the sec ond homes, the conflicts between second home buyers and local inhabitants and the locational feature of second homes [START_REF] Paris | Repositioning second homes within housing studies: House hold investment, gentrification, multiple residence, mobility and Hypercon sumption[END_REF].

Much rarer is the consideration of links between second homes and the overall housing market. For example, the fluctuation of second home rates in certain subregions and subsequent ramifications for the rest of the housing market is still unknown in the regional housing market context.

To fill this gap in the literature, I borrow from the idea of the ripple effect.

Second home rates initially rise in a subregion, and then spread out to the rest of the region over time. The upswing in second home rates is probably due to certain landscapes. Furthermore, the ripple effect in terms of second home rates may also imply the migration or the equity transfer. For example, second home buyers seek out certain landscapes, like beaches in a county, and then 2.8. Summary 2 39 the second home rate in the county goes up. As second home supply is limited in a short period, price appreciation occurs. This price appreciation could drive some second home buyers to surrounding counties with fairly low housing prices. Consequently, the second home rates in neigbhouring counties go up.

In addition, second home spillovers from one county to another may coincide with the expectation of housing sellers in surrounding counties. In the context of the upswing demand for surrounding counties, property developers would like to build new houses for second home buyers. Further, second home buyers may also choose secondhand houses. This, in turn, accelerates the second home rate among the surrounding counties.

The existence of the ripple effect will results in some practical issues (e.g., spatial autocorrelation) if classical linear regression is applied. In this context, spatial econometrics or spatial statistics could be applied, as it can gauge the spatial effects properly.

The last two sections uncover the role of locations for both individual hous ing and regional housing markets. I highlight the existence and importance of adjacent effects for properties and ripple effects for subregional second home markets. These two effects are translated into spatial autocorrelation or spatial heterogeneity in the residuals of classical linear regression. As a result, spatial analysis is required, and its associated notions and techniques will be reviewed in the next chapter.

Summary

This chapter is divided into three parts. First, I indicate the considerable im pact on individuals and countries from housing, and the specific characteris tics of housing. Second, I thoroughly review the major approach (the hedonic price method) that is used to analyze housing from different angles. Third, I examine how the location affects housing and regional housing markets.

More precisely, this chapter starts with an emphasis on the role of hous ing. I highlight that housing is important for both the national economy and personal finances. Further, I clearly show that as a good, housing has some special features that most goods do not have. These features include het erogeneity, spatial fixity and durability. Based on these features, several re 40 2. Literature review on housing analysis search topics associated with the hedonic price method are presented, such as assessing nonmarket goods, identifying price determinants and predicting prices, and building price indices. I then thoroughly examine the theoretical underpinnings of the hedonic price method. Regarding the spatial immobile feature of housing, it relates to some economic notions, such as adjacent ef fects. From a regional perspective, I review the socalled ripple effects, and I look into regional second home markets. I also suggest borrowing the idea from the ripple effects to describe the comovement of second home rates within a region. Additionally, I briefly indicate that the adjacent effects and the ripple effects often give rise to series correlation (spatial autocorrelation)

and heteroskedasticity (spatial heterogeneity) in the residuals of classical lin ear regression, and thus leads to the failure of OLS. To overcome these issues, scholars prefer to apply spatial econometrics, which gauges the influence from space explicitly. All these statistical tools will be examined in the next chapter.

In summary, the literature review chapter examines the role of housing in the economy, the cornerstone hedonic price method, and the location that acts as a crucial determinant for housing and regional markets. All of these contribute to the theoretical basis of the following empirical analyses.

Quantitative models for housing analysis

Introduction

Spatial modeling and the Bayesian paradigm are used throughout this thesis.

In this chapter, I initially review some notions and basic models in spatial econometrics, since these methods are often considered a classical way to handle spatial data. On the other hand, I offer an overview of some specific models (i.e. latent Gaussian models) in spatial statistics and the key concepts in the Bayesian paradigm.

This chapter is divided into two parts. In the first part, I give an overview of spatial econometrics, such as spatial lag models and spatial error models.

More importantly, I point out some drawbacks of these models. In the sec ond part, I focus on spatial statistical models, which play an alternative role to spatial econometric models. I start with an introduction to spatial data types.

Then, I investigate the spatial models corresponding to the spatial data types.

Lastly, I give a detailed examination of the integrated nested Laplace approxi mation (INLA), which is a deterministic approximation for Bayesian inference.

Following this organization (data, model and estimation), I hope that readers 3. Quantitative models for housing analysis can understand these datadriven models and INLAbased Bayesian inference, since these methods provide the methodological cornerstone of the following empirical analysis.

Spatial econometrics and housing analysis

In the last chapter, I mention that the spatial dependence of housing charac teristics, prices and subregional second home rates make the bias towards OLS almost inevitable. Ignoring these would result in severe statistical errors, and thus spatial analysis methods would be required. Spatial econometrics 1 explicitly gauges the influence of space in houses, urban areas and regions [START_REF] Pace | Spatial Statistics and Real Estate[END_REF]. The key concepts in spatial analysis are spatial autocorrelation and spatial heterogeneity [START_REF] Anselin | Spatial Econometrics: Methods and Models[END_REF].

Spatial autocorrelation and spatial heterogeneity

According to [START_REF] Bibliography Anselin | Spatial Hedonic Models[END_REF], spatial autocorrelation is a subset of crosssectional dependence, where the structure of the covariance between observations is related to their location termed as spatial ordering.

The spatial ordering is defined by the spatial arrangement of the observations including relative positioning or relative distance. Spatial autocorrelation is derived from Tobler's First Law of Geography whose statement is "everything is related to everything else, but near things are more related than distant things" [START_REF] Tobler | A Computer Movie Simulating Urban Growth in the Detroit Region[END_REF].

For housing, the most straightforward reflection of spatial autocorrelation is the dependence on housing prices, whose strength depends on the rela tive location between properties, and may diminish as the distance between the properties increases. The autocorrelated housing prices, in turn, provide evidence for the need of implementing spatial modelling. Other reasons to implement spatial analysis include omitting spatially correlated variables and misspecifying functional forms [START_REF] Anselin | Spatial Econometrics: Methods and Models[END_REF]LozanoGracia, 2009; Wilhelms son, 2009).

Another key concept in spatial analysis is spatial heterogeneity. Anselin

1 According to [START_REF] Bibliography Anselin | Spatial Hedonic Models[END_REF], spatial econometrics is defined as "a subset of econometric methods that is concerned with spatial aspects present in crosssectional and spacetime observations."

3.2. Spatial econometrics and housing analysis "Spatial heterogeneity is a special instance of structural instability, which can be observed or unobserved. The spatial aspect of this issue is that spa tial structure provides the basis for the specification of the heterogeneity.

This may inform models for spatial structural change (referred to as spatial regimes), heteroskedasticity, or spatially varying and random coefficients." [START_REF] Bibliography Anselin | Spatial Hedonic Models[END_REF])[p.1227p.1228] The housing submarket is a reflection of spatial heterogeneity. The ex istence of housing submarkets may result from spatial arbitrage [START_REF] Grigsby | Housing markets and public policy[END_REF]. For example, ideally, houses within an area can be substituted for each other. However, search costs and information constraints may impose limits on the degree of spatial substitutability. Spatial characteristics like accessibil ity and neighbourhood characteristics also limit spatial substitutability [START_REF] Jones | Intraurban migration and housing submarkets: Theory and evidence[END_REF]. These elements eventually induce some barriers that segment the entire area. If spatial submarkets persist, structural differences should ex ist between local markets, which are reflected by the spatial heterogeneity of implicit prices [START_REF] Bourassa | Do housing submarkets really matter?[END_REF]. Geographically weighted regression (GWR) [START_REF] Brunsdon | Geographically weighted regression[END_REF] is widely used to gauge spatial heterogeneity. Other approaches include classical linear regression combined with submarketspecific dummy variables [START_REF] Goodman | Housing market segmentation and hedonic prediction accuracy[END_REF], multilevel modelling [START_REF] Orford | Modelling spatial structures in local housing market dy namics: A multilevel perspective[END_REF] and finite mixture models [START_REF] Belasco | Using a finite mixture model of heterogeneous households to delineate housing submarkets[END_REF].

Several scholars believed that a mixture of spatial autocorrelation and spa tial heterogeneity was expected to be present in crosssectional housing data.

De Graaff et al. (2001) argued that scholars should tackle both spatial auto correlation and heterogeneity simultaneously for three reasons. First, there might be no significant difference between spatial heterogeneity and auto correlation in some georeferenced datasets. Second, spatial autocorrelation might lead to a particular form of heteroskedasticity. Lastly, in some empir ical studies, it was difficult to distinguish spatial autocorrelation from spatial heterogeneity. More recently, Anselin (2010) argued that both spatial auto correlation and spatial heterogeneity occurred simultaneously, and it was dif ficult to distinguish spatial heterogeneity from spatial autocorrelation in most crosssectional settings. 44 3. Quantitative models for housing analysis

Basic spatial econometric models

Promoted by [START_REF] Anselin | Spatial Econometrics: Methods and Models[END_REF], classical spatial econometric models have two basic specifications, the spatial lag model and the spatial error model.

The spatial lag model 2 explicitly incorporates a lagged dependent vari able on the righthand side. This model is also known as a direct approach [START_REF] Fahrmeir | Bayesian smoothing and regression for longitudinal, 8. Bibliography spatial and event history data[END_REF], in the sense that spatial autocorrelations are assumed to be gauged via a part of the response:

𝑦 = 𝜌𝑊𝑦 + 𝑋𝛽 + 𝜖 (3.1)
where 𝑦 is the dependent variable. 𝑊 is the 𝑛 × 𝑛 spatial weights ma trix, and 𝜌 is the spatial autoregressive coefficient. 𝑋 is an 𝑛 × 𝑘 matrix of independent variables, and 𝛽 is a 𝑘 × 1 vector of coefficients. 𝜖 is the error term.

The spatial weights matrix 𝑊 is a simplification of connection between an object and its neighbours. Considering a contiguitybased spatial weight matrix, the element in the matrix is assigned to 0 or 1 following the rule below:

𝑤 𝑖𝑗 = { 1 sharing boundary or edge 0 otherwise (3.2)
where if observation 𝑖 and 𝑗 are neighbours, the element 𝑤 𝑖𝑗 , which shows the interaction between 𝑖 and 𝑗, will equal 1 and 0 otherwise. Conventionally, diagonal elements are set to 0 since an object can not be its own neighbours.

Rowstandardization is often implemented on 𝑊 in spatial econometrics. The fact is that on one hand, the lagged dependent variable 𝑊𝑦 represents a weighted average of the neighbouring values, given the rowstandardized 𝑊. On the other hand, rowstandardization ensures the largest and small est eigenvalues, which facilitate maximum likelihood estimation or draws of the autocorrelation coefficient 𝜌 (LeSage and [START_REF] Lesage | Introduction to spatial econometrics[END_REF]. The spatial au toregressive coefficient 𝜌 measures the strength of spatial spillovers. Even though many hedonic price applications choose the spatial lag specification, [START_REF] Bibliography Anselin | Spatial Hedonic Models[END_REF] argued that spatial spillovers among hous ing units were difficult to maintain. Therefore, a spatial error model may be 2 Simultaneous autoregressive model on dependent variables.

3.2. Spatial econometrics and housing analysis 3 45 appropriate, since unobserved neighbourhood effects are probably shared by housing units in the same blocks and then result in nonspherical residuals.

By assuming a spatial autoregressive process with coefficient 𝜆 in residuals, we have

𝑦 = 𝑋𝛽 + 𝜖 𝜖 = 𝜆𝑊𝜖 + 𝑢 (3.3)
where 𝜖 is the spatially correlated residual term and the term 𝑢 is identically distributed (iid). The corresponding variancecovariance matrix reads

𝐸 [𝜖𝜖 ′ ] = 𝜎 2 [(𝐼 -𝜆𝑊) (𝐼 -𝜆𝑊 ′ )] -1 . (3.4)
The interpretation of 𝜆 is different from 𝜌 in the spatial lag specification, since the aim of the term 𝜆𝑊𝜖 is to mitigate biases and to produce reliable inference.

Some alternatives

Spatial econometric methods have been criticized, and most criticisms center on spatial weighting matrices 3 .

As shown previously, in a spatial econometric model, spatial effects are assumed to be captured by a predefined spatial weighting matrix (contiguity, nearest neighbours, inverse distance weighting, etc.). This also implies that the nature of the unobserved spatial effects is known a priori.

Several researchers [START_REF] Bibliography Corrado | Where is the economics in spatial econo metrics?[END_REF] argued that building a weighting matrix following the rule of thumb was not appropriate, and eco nomic theories should serve as a guide to predefine that weighting matrix. Others [START_REF] Brady | Accounting for spatial effects in economic models of land use: Recent developments and challenges ahead[END_REF] stated that spatial econometric models were used in the context, in which the primary interest was to estimate the rela tionship of neighboring values of the dependent variable to itself. In most hedonic housing applications, however, the goal was probably not to identify that relationship, but instead accurate parameter estimates that were robust 46 3. Quantitative models for housing analysis to model misspecification and unobserved spatially correlated variables. In some cases, selecting an appropriate spatial weight matrix for unobserved spatial effects is not easy. For example, in a polycentric cityregion, there are complex spatial effects, which cannot be captured by a simplified weighting matrix based on the contiguity or nearest neighbours.

To address the weakness of standard econometric models, several schol ars (Brunauer et al., 2010; Marcelo and Sebastian, 2018; Razen et al., 2015) have proposed using geoadditive models for hedonic house price valuation.

The reason is that geoadditive models do not require any assumptions about the structure of the omitted spatial effects in the housing market, and thus produce more accurate predicted values and marginal effect estimates com pared with spatial econometric models.

Introduced by [START_REF] Kammann | Geoadditive models[END_REF], the geoadditive models family is the mixture of a generalized additive model and a geostatistical compo nent. There are several candidate specifications for the geostatistical compo nent, such as Gaussian random fields, 2dimension thinplate splines and ten sor products of longitude and latitude. These semiparametric/nonparametric components are treated as a hedonic covariate. In this section, I focus mainly on spatial econometrics models, which is the preference of economists. I initially detail the fundamental notions in spatial analysis, referring to spatial autocorrelations and spatial heterogene ity. I describe the basic spatial econometric models that can handle the spatial effects. More importantly, I list the drawbacks of spatial econometrics in han dling housing data, and alternative approaches. From the next section, I will turn to spatial statistical models. This begins with an introduction of spatial data types, since different spatial data types correspond to different spatial statistical models.

Spatial data

Spatial data are data from known locations in space. They are defined as the realization of a stochastic process indexed by space,

𝑌 (s) ≡ {𝑦 (s) , s ∈ D ⊂ ℝ 2 } . (3.6)
According to [START_REF] Cressie | Statistics for Spatial Data[END_REF], spatial data are often classified into three ma jor types: areal data, pointreferenced (geostatistical) data and spatial point patterns. In this thesis, my interest is centered around areal data and point referenced data.

Typically, areal data are built on a given region, which is decomposed into many nonoverlapped subregions with clear boundaries, and observations are grouped according to the subregions. This implies that areal data are composed of a finite number of areal units with welldefined boundaries, irre spective of their regular or irregular shapes. Furthermore, areal data do not provide exact coordinate information on observations, but the observations are assigned to areal units with a specific spatial alignment. Hence, I simply 48 3. Quantitative models for housing analysis identify the 𝑠 distinct areas with their indices, leading to s = {1, … , 𝑛}. The most common example is the census data. For example, a city is divided into many administrative districts due to practical or confidentiality reasons. This implies the discrete nature of areal data.

Concerning pointreferenced (geostatistical) data 𝑌 (s) = {𝑦(𝑠 1 ), … , 𝑦(𝑠 𝑛 )}, 𝑦(𝑠 𝑖 ) is a univariate random variable at location 𝑠 𝑖 , where s = {𝑠 1 , … , 𝑠 𝑛 } de notes the locations on the continuous domain D. Theoretically, the number of locations in D is infinite. More importantly, location information is represented by coordinates 𝑠 𝑖 = (𝑙𝑜𝑛𝑔 𝑖 , 𝑙𝑎𝑡 𝑖 ).

Analysis of lattice data

I start with the discussion of modeling lattice data, because the relevant mod els are straightforward and establish the basis for analyzing geostatistical data.

When data collected in nearby areas are more similar than those further apart due to similar contexts, spatial information can be represented by neigh borhood structures, which leads to a large class of spatial autoregressive models. The two most common spatial autoregressive models are the si multaneous autoregressive and conditional autoregressive models. Promoted by [START_REF] Anselin | Spatial Econometrics: Methods and Models[END_REF], the simultaneous autoregressive model has received much attention from economists, while the conditional autoregressive model [START_REF] Besag | Bayesian image restoration, with two applications in spatial statistics[END_REF] may seem overlooked. Conditional autoregressive models, how ever, offer computational advantages and insight on fully conditional random effects compared to simultaneous autoregressive models within the hierarchi cal modeling framework (Arab et al., 2017; Ver Hoef, Peterson, et al., 2018). On the other hand, conditionals autoregressive models are flexible in terms of handling spatiotemporal data. For these reasons, I focus on conditional au toregressive models, and I attempt to apply these models to analyze economic data indexed over space and time.

Markov random fields

Most spatial models for lattice data are special cases of Markov Random Fields (MRFs) (Tyagi, 2017; Won and[START_REF] Won | Noncausal Markov Random Fields[END_REF]. A Markov random field is based on conditional independence assumptions applying to a random vector. Given where 𝑢 𝑖 is the random effect of the 𝑖 𝑡ℎ area. 𝜕 𝑖 denotes the neighbours of the 𝑖 𝑡ℎ area, and hence 𝑈 -𝜕 𝑖 means the random effects of the complement areas of the neighbours of area 𝑖. This leads to the sparse precision matrix 𝑄 of 𝑈:

𝑄 𝑖𝑗 = { 𝜕 𝑖 if 𝑖 = 𝑗 1 if 𝑗 ∈ 𝜕 𝑖 0 otherwise . (3.8)
More importantly, the sparseness of the precision matrix results in efficient computations [START_REF] Rue | Gaussian Markov random fields : theory and applications[END_REF].

Conditional Autoregressive (CAR) model family

Again, one fundamental property of spatial data is spatial dependence derived from Tobler's first law of geography (Tobler, 2004; Tobler, 1970) [START_REF] Brook | On the distinction between the conditional probability and the joint probability approaches in the specification of nearestneighbour systems[END_REF] and HammersleyClifford theorem [START_REF] Hammersley | Markov fields on finite graphs and lattices[END_REF], [START_REF] Besag | Spatial interaction and the statistical analysis of lattice sys tems (with discussion)[END_REF] proved that the joint distribution for the random vector 𝑈 is multivariate normal with a mean of 0 and a precision matrix 𝑄,

U 𝑃𝐶𝐴𝑅 ∼ 𝑀𝑉𝑁 (0, Q -1 𝑃𝐶𝐴𝑅 ) Q 𝑃𝐶𝐴𝑅 = 𝜏 (𝐷 -𝜌𝑊) (3.10)
where 𝐷 denotes the 𝑛 × 𝑛 diagonal matrix, whose diagonal entries 𝑑 𝑖𝑖 equal the number of neighbours of unit 𝑛 𝑖 and offdiagonal entries are all zero. 𝜏 is the precision parameter, 𝜏 = 1 𝜎 2 . The spatial dependence parameter 𝜌 is between 0 and 1. The term 𝜌 shows the amount of spatial dependence.

On the other hand, the term 𝜌 ensures the positive defined precision matrix.

The log probability density of U 𝑃𝐶𝐴𝑅 reads,

𝜋 (U 𝑃𝐶𝐴𝑅 ) = - 𝑛 2 𝑙𝑜𝑔 (2𝜋) + 1 2 𝑙𝑜𝑔 (det(Q 𝑃𝐶𝐴𝑅 )) - 1 2 U 𝑇 𝑃𝐶𝐴𝑅 Q 𝑃𝐶𝐴𝑅 U 𝑃𝐶𝐴𝑅 ∝ 𝑛 2 𝑙𝑜𝑔 (𝜏) + 1 2 𝑙𝑜𝑔 (det(𝐷 -𝜌𝑊)) - 1 2 U 𝑇 𝑃𝐶𝐴𝑅 𝜏(𝐷 -𝜌𝑊)U 𝑃𝐶𝐴𝑅 (3.11)
where 𝑛 is the number of given areas. However, computing the determi is inversely proportional to the number of the neighbours of unit 𝑖, meaning that areas with few neighbours tend to vary more strongly com paring with units with many neighbours. Thus, Both conditional mean and conditional variance parameters highlight that the intrinsic conditional autore gressive model imposes smoothing over local dependence structure, rather than global dependence structures 8 .

As previously stated, the intrinsic conditional autoregressive model is of ten used as a prior distribution for the areaspecific variables. Two elements should affect the shrinkage of the intrinsic conditional autoregressive prior.

The exogenous element is the sample size. If there is a large dataset and the likelihood dominates the posterior distribution, the intrinsic conditional autoregressive prior plays a minimal role. The intrinsic element relates to the neighbourhood structure, i.e., the number of neighbours of area 𝑖. The de nominator 𝑤 𝑖+ in Eq.3.12 ensures that the more neighbours an area has, the more local smoothing it will receive. Considering an extreme case, where the 52 3. Quantitative models for housing analysis complement areas are all neighbours of area 𝑖, the conditional mean equals the globally weighted average value and the conditional variance tends to be small. This is equivalent to placing a strong prior. If strong, positive spatial autocorrelation occurs, the strong prior works well, because more neighbours mean that more information can be borrowed properly. Nevertheless, if there is weak or no spatial autocorrelation, the "global" neighbours setting should be inappropriate.

Besag, York and Mollie (BYM) model and Leroux's model

Thus far, we have reviewed the conditional autoregressive model family. The key idea of conditional autoregressive models is to impose a spatial depen dence structure on the areaspecific random variables. However, in the pres ence of weak spatial dependence, the intrinsic conditional autoregressive model probably produces oversmoothing issues. Moreover, there are some ele ments of randomness in terms of similarity, e.g., gentrification or spatial mis matches in regional science. To mitigate spatial oversmoothing and the impact of spatial outliers, an additional areaspecific random vector V = {𝑣 1 , … , 𝑣 𝑛 } with an exchangeable prior 𝑀𝑉𝑁 (0, 𝜎 2 𝑉 ) is introduced. V is known as the spatiallyunstructured component in the literature. This results in the socalled BesagYorkMollie (BYM) model [START_REF] Besag | Bayesian image restoration, with two applications in spatial statistics[END_REF],

U 𝐼𝐶𝐴𝑅 + V.
(3.13)

The two additive random effect components in the BYM model are assumed to be independent. Again, the spatiallystructured component is developed for spatial dependence, whereas the spatiallyunstructured component captures spatial heterogeneity [START_REF] Harris | A Simulation Study on Specifying a Regression Model for Spatial Data: Choosing between Autocorrelation and Heterogeneity Ef fects[END_REF].

Some researchers [START_REF] Riebler | An intuitive Bayesian spatial model for disease mapping that accounts for scaling[END_REF] argued that the spatially structured and unstructured components in the BYM model could not be seen indepen dently from each other. The separation of the two components should lead to identifiability issues and make prior definitions challenging. Alternatively, [START_REF] Leroux | Estimation of disease rates in small areas: a new mixed model for spatial dependence[END_REF] proposed the specification (LCAR), where the spatially structured component in the BYM model is replaced by a mixing parameter 𝜌, which leads to the unique joint distribution, Thus far, I have introduced several major models for analyzing lattice data.

𝑈 𝐿𝐶𝐴𝑅 ∼ MVN(0, Q -1 𝑃𝐶𝐴𝑅 ) Q 𝑃𝐶𝐴𝑅 = 𝜏 [𝜌(𝐷 -𝑊) + (1 -𝜌)𝐼] . ( 3 
In subsequent sections, I will move to a model designed specifically for geo statistical data.

Analysis of geostatistical data

As explained earlier, geostatistic data are measurements of a continuously spatial process, which are collected at particular sites. Although I have a finite number of observations, I attempt to estimate the characteristics of the entire spatial process e.g., the mean and variance of the process over the study region. These characteristics are useful for predicting the process at unobserved locations and building a continuous surface.

A typical example is the spatial distribution of housing prices in a region.

In this case, pointreferenced prices data are represented as the partial real ization of a spatial process,

𝑌 (s) ≡ {𝑦 (s) , s ∈ D ⊂ ℝ 2 } , (3.16) 54 
3. Quantitative models for housing analysis where 𝑌 (s) is a collection of housing prices at the location set s, and D denotes the study region. Such a stochastic process is often assumed to follow a Gaussian distribution, and thus 𝑌 (s) is a Gaussian Process (GP) [START_REF] Cressie | Statistics for Spatial Data[END_REF] (a special case of Gaussian random fields (GRFs)), where each collection of housing prices follows a multivariate normal distribution.

Gaussian process

A Gaussian process is often assumed to fulfill two important properties: sta tionarity and isotropy. A Gaussian process 𝑌(⋅) is assumed to be strictly sta tionary under the following conditions:

𝐸[𝑌(s)] = 𝜇, ∀s ∈ 𝐷, (3.17) 
meaning that the Gaussian process has a constant mean. In addition, the covariance matrix of the Gaussian process depends on the difference between locations only,

𝐶𝑜𝑣(𝑌(s), 𝑌(s + h)) = 𝐶(h), ∀s ∈ 𝐷, ∀h ∈ ℝ 2 (3.18)
where h is a shift in space. Furthermore, the Gaussian process 𝑌(⋅) is assumed to be isotropic if the covariance between two observations only de pends on the distance between the two locations regardless of directions.

Otherwise, it is called anisotropic. 

Matérn covariance function

Stochastic partial differential equation approach

To model geostatistical data, the spatial effect component 𝑓 𝑔𝑒𝑜 (𝑠) in latent Gaussian models is specified by a spatially continuous variable underlying the observations and the variable follows a Gaussian random field.

However, fitting the Gaussian random field with a full covariance matrix in latent Gaussian models is computationally expensive when sample size 𝑁 is large (the socalled "big n problem" [START_REF] Banerjee | Hierarchical modeling and analysis for spatial data[END_REF]). More precisely, the Gaussian random field has a dense covariance matrix built on all locations.

Performing factorization on such a large, dense matrix requires 𝑁 3 operations.

One approach to reducing computational complexity is to introduce the 

(𝜅 2 -Δ) 𝛼/2 × 𝜔 (𝑠) = 𝑊 (𝑠) (3.20) 𝛼 = 𝜈 + 𝑑 2 , 𝜅 > 0, 𝜈 > 0, 𝑠 ∈ ℝ 𝑑 (3.21)
where Δ is a Laplace operator. 𝛼 is an integer with a default setting of 2 in RINLA. 𝑑 indicates the dimension of data. 𝑊 (𝑠) stands for the spatial Gaussian white noise process.

To implement the stochastic partial differential equation approach, Lind To summarize, given the discrete approximation and conditional indepen dence, we obtain a considerable computational gain, where the computational complexity dramatically reduces to 𝑁 3/2 flops for Gaussian Markov random fields. Again, INLA takes over the following task.

In this section, I have reviewed the Gaussian process regression for geo statistical data. In particular, I have looked into the Matérn kernel (covari ance) function and the fast calculation method, the SPDE approach. In the next section, these spatial models will be extended to handling spatiotemporal data.

Spatiotemporal extensions

Investigating the spatial effect as described in the previous sections seems in sufficient, temporal variation is also important and interesting The process is also called triangulation and the aggregate of the nonoverlapped triangles is called a mesh.

3.6. Spatiotemporal extensions 3 57 (i.e., we aggregate data over the year) is equivalent to assuming that future observations can influence present and even past observations. This assump tion does not seem to be true if the time dimension is large enough. For these reasons, it is necessary to consider the time dimension in our analyses.

The spatial process introduced in the previous sections can be easily ex tended to spatiotemporal processes with the inclusion of time dimensions, and the data are defined by a process indexed by space and time [START_REF] Gneiting | Continuous Parameter SpatioTemporal Processes[END_REF],

𝑌 (s, 𝑡) ≡ {𝑦 (s, 𝑡) , (s, 𝑡) ∈ D ⊂ ℝ 2 × ℝ} . (3.23)
Here, s has the same definition as in the pure spatial case, but we have 𝑡 = {1, … , 𝑇}.

Again, we start with the areal data model. The simplest and most straight forward way to capture temporal variation is to directly add a temporal com ponent 𝛾 based on the temporal indicator 𝑡, and 𝛾 𝑡 denotes 𝛾 measured in time point 𝑡. That is to say, the spatial effect and the temporal variation are gauged separately.

There are many specifications for the temporal component (Schrödle et al., 2011). In the economics literature, the temporal component is often specified by dummy variables (a kind of fixed effect), and thus estimating the effect of each time point independently from others. Some researchers believe that time dummies are mainly used for capturing temporal heterogeneity [START_REF] Füss | The role of spatial and temporal structure for residential rent predictions[END_REF]. In contrast to more restrictive approaches such as time dummies or linear parametric models (i.e., 𝛾 = 𝛽 × 𝑡), models with fewer restrictions or allowing for flexible shapes in the evolution curve are preferred, especially if there are long periods of time. Most of these models use a structured random effect component, and thus ensuring that adjacent periods are likely to be similar. Examples include firstorder random walks (RW(1)), firstorder autoregressive (AR(1)) processes [START_REF] Held | Modelling risk from a disease in time and space[END_REF], and splines [START_REF] Ugarte | A Pspline ANOVA type model in spacetime disease mapping[END_REF]. A random walk of the first order is defined as,

𝛾 𝑡 -𝛾 𝑡-1 ∼ 𝑁 (0, 𝜎 2 𝛾 ) (3.24)
And the firstorder autoregressive reads, where 𝜃 𝑖 is an areaspecific coefficient. Since 𝜃 𝑖 is spatially structured, neighbouring areas can evolve similarly over time. 𝜃 𝑖 is often interpreted as the deviation from the global trend 𝛽 × 𝑡. 𝜃 𝑖 < 0 implies that some areas evolve slower than the global trend, while 𝜃 𝑖 > 0 implies that some areas evolve more rapidly than the global trend. This specification is simple and straightforward, but the assumption of a linear evolution in time for the area specific component seems too restrictive and inappropriate for modeling long periods.

To overcome these issues, [START_REF] Held | Bayesian modelling of inseparable spacetime variation in disease risk[END_REF] established nonparametric mod els on the basis of the interaction between different spatial and temporal random effects. Applying the Kronecker product on the covariance matrices of different spatial and temporal components10 , Held obtains four possible specifications.

Type I interaction is the product of a spatially unstructured component (i.e., the iid term in the BYM model) and a temporally unstructured component (i.e., a temporal iid term that captures temporal heterogeneity), which can be considered as a random intercept based on all observations. Seen differently, this component represents global spacetime heterogeneity and measures the deviation from the global spatial and temporal effects. It also represents all 3 59 kinds of areaspecific but nonpersistent factors that can give rise to a slight increase or decrease in the dependent variable.

Type II interaction combines a spatially unstructured component with a temporally structured term (i.e., the random walk of the first order). To be more specific, this type of interaction assumes that once the global temporal trend is fixed, each areal unit still follows a random walk temporally, differing from neighbouring units. This does not mean that each area has a tempo ral evolution that differs from its neighbours, since they may share a global temporal effect.

Type III interaction is composed of a spatially structured component (i.e., the ICAR term in the BYM model) and a temporally unstructured component.

As such, there is spatial autocorrelation among units for each period, but no temporal correlation between adjacent periods. This implies that each unit may have a slight deviation from the global spatial trend and that deviation tends to be spatially correlated within the same period. In practice, this in teraction shows the context, in which unobserved areal factors affect an area and its neighbouring areas, but the impact does not persist over time.

Lastly, the Type IV interaction is based on the Kronecker product between a spatially structured component and a temporally structured component. This type of interaction describes that the departures from the global spatial and temporal trends are likely to be correlated with their neighbours both in space and time.

Regarding the application of the abovementioned temporal component and spatiotemporal components, the simplest approach is to use time dummy vari ables or a parametric function of time. Both approaches can be replaced by a more flexible random effect component such as a firstorder random walk or autoregressive process, or a spline. These approaches, however, assume that the temporal parameters are spatially independent. Considering the context in which neighbouring areas may have a similar temporal evolution, spacetime interaction terms are introduced. The complexity increases from Bernardinelli et al.'s (1995) parametric model to [START_REF] Held | Bayesian modelling of inseparable spacetime variation in disease risk[END_REF] interaction model based on random effects.

On the other hand, we need to specify a spatiotemporal covariance func tion [START_REF] Finkenstadt | Statistical Methods for Spatio Temporal Systems[END_REF] for spatiotemporal geostatistical data. Scholars 60 3. Quantitative models for housing analysis [START_REF] Cressie | Statistics for Spatial Data[END_REF]Huang, 1999; Gneiting, 2002) have proposed several valid non separable spatiotemporal covariance functions. A commonlyseen spatiotem poral covariance function reads,

Cov (𝜔 (𝑠 𝑖 , 𝑡) , 𝜔 (𝑠 𝑗 , 𝑡 ′ )) = 𝜎 2 𝜔 𝐶 𝜃 (ℎ, 𝑙) ∀𝑖 ≠ 𝑗, 𝑡 ≠ 𝑡 ′ (3.27)
where 𝜎 2 𝜔 is the constant variance of the spatiotemporal process. 𝐶 𝜃 is the spatiotemporal correlation function parameterized by 𝜃. ℎ = ‖𝑠 𝑖 -𝑠 𝑗 ‖ is the Euclidean distance between location 𝑖 and 𝑗. 𝑙 = ‖𝑡 -𝑡 ′ ‖ denotes the tem poral lag between time knot 𝑡 and 𝑡 ′ . In practice, the estimation of a model employing this spatiotemporal covariance function is computationally expen sive. To reduce the computational complexity, researchers often simplify the correlation function by assuming separability, where 𝐶 𝜃 (⋅) consists of a purely spatial component 𝐶 𝑆 (ℎ) and a purely temporal component 𝐶 𝑇 (𝑙). Through the Kronecker product, we have 𝐶 𝜃 (ℎ, 𝑙) = 𝐶 𝑆 (ℎ) ⊗ 𝐶 𝑇 (𝑙) [START_REF] Gneiting | Nonseparable, Stationary Covariance Functions for Space-Time Data[END_REF].

Another approach is to assume the constant spatial correlation in time when 𝑡 = 𝑡 ′ , and is zero otherwise [START_REF] Harvill | Spatiotemporal processes[END_REF]. This assumption induces the following correlation function,

𝐶 𝜃 (ℎ, 𝑙) = { 0 if 𝑡 ≠ 𝑡 ′ 𝐶 𝜃 (ℎ) if 𝑡 = 𝑡 ′ .
(3.28)

In this case, the temporal evolution can also be considered by assuming the spatial process evolved in time through an autoregressive dynamics, i.e., the firstorder autoregressive process. This is done by applying the Kronecker product of the abovementioned spatial correlation function and the temporal correlation function of the firstorder autoregressive process [START_REF] Sahu | Improved space-time forecasting of next day ozone concentrations in the eastern US[END_REF][START_REF] Sahu | Hierarchical Bayesian autoregressive mod els for large spacetime data with applications to ozone concentration modelling[END_REF].

Thus far, I have reviewed spatial data types, the corresponding spatial models and their spatiotemporal extensions. In the following section, I will look into latent Gaussian models, in which spatial models can be embedded.

Structured additive regression models

Structured Additive Regression (STAR) [START_REF] Fahrmeir | Structured Additive Regression[END_REF] is a uni fied and general framework covering a series of regression models, including 3.7. Structured additive regression models 3 61 generalized additive models (GAM) [START_REF] Hastie | Generalized additive models: some appli cations[END_REF], generalized additive mixed models (GAMM) [START_REF] Lin | Inference in generalized additive mixed mod elsby using smoothing splines[END_REF], geoadditive models [START_REF] Kammann | Geoadditive models[END_REF] and varying coefficient models (VCM) (Hastie and Tibshirani, 1993) Here 𝑄 (𝜃) is the precision matrix (the inverse of the covariance matrix) of the latent Gaussian field.

𝑓 1 (𝑣 1 ) = 𝑓 1 (𝑧 1 ) 𝑣 1 = 𝑧 1 nonlinear effect of 𝑧 1 ; 𝑓 2 (𝑣 2 ) = 𝑓 𝑔𝑒𝑜 (𝑠) 𝑣 2 =

Spatial components in latent Gaussian models

The aforementioned conditional autoregressive component (model) or the Gaussian process component (model) act as the (nonlinear) spatial random effect component, and then is easily embedded in the latent Gaussian model.

As such, the spatial effects can follow the specifications: (i) 𝑓 𝑔𝑒𝑜 (𝑖) = U 𝑃𝐶𝐴𝑅 ; (ii) 𝑓 𝑔𝑒𝑜 (𝑖) = U 𝐼𝐶𝐴𝑅 + V; (iii) 𝑓 𝑔𝑒𝑜 (𝑖) = U Gaussian process .

Thus, a threelevel latent Gaussian model with a Gaussian distributed de pendent variable Y is given by: 

Y ∼ [Y|𝜇, 𝜃 𝑌 ] 𝜖 ∼ 𝑁 (0, 𝜎 2 𝜖 ) 𝜇 = 𝜂 = 𝑋𝛽 + U (⋅) U (⋅) ∼ 𝑀𝑉𝑁(0, Q -1 (⋅) ) Q (⋅) ≡ 𝐹 (𝑊,

Bayesian statistics

After reviewing spatial data and latent Gaussian models, our aim is to esti mate the parameters in the models. There are two predominant schools in the statistic field, the frequentist and the Bayesian [START_REF] Efron | Bayesians, frequentists, and scientists[END_REF]. They hold dif ferent points of view in terms of probability and further inferential procedures (Wagenmakers et al., 2008).

Frequentists, dominating in the 20th century, own a frequency view of probability, meaning that probability is longrun frequencies, where an event occurs in an identical experiment repeated over infinite times. That is to say, the probability is a measurement of uncertainty derived from randomness in a repeated event. Further, frequentist inference is often aimed at provid ing point estimation, the best guess of an unknown parameter, and interval estimation, a range for unknown parameters [START_REF] Samaniego | A comparison of the Bayesian and frequentist ap proaches to estimation[END_REF]. It is im portant to note that frequentists do not allow probability statements about the unknown parameters, therefore unknown parameters as considered as fixed quantities. For example, a 95% confidence interval for a parameter 𝛼 is [0.1, 0.2]. It does not imply that there is a 95% probability that 𝛼 is in [0.1, 0.2]. By contrast, in the context of repeating the same procedure to con struct confidence intervals over infinite times, 95% of the cases would the true 𝛼 drop into the 95% confidence interval. In a word, frequentist infer ence is evaluated under hypothetical repeated sampling of the data. Such a point of view receives criticisms, since it is sometimes infeasible to repeat the same procedure over infinite times for constructing the 95% confidence interval (Baker, 2016; Gelman and[START_REF] Gelman | Some natural solutions to the pvalue com munication problem-and why they won't work[END_REF].

Conversely, Bayesians have a subjective view of probability (subjective probability and thereafter), where individuals give their evaluation to the odds 64 3. Quantitative models for housing analysis that an event will occur or not. Subjective probability also follows the rules of the probability calculus. In contrast to the fixed quantities of parameters in frequentist inference, both the degree of belief and unknown parameters are considered as random variables, and then updated by observed data in Bayesian inference. Therefore, the Bayesian approach is more natural than the traditional frequentist approach, since it allows tackling the uncertainty in the model and its parameters. More precisely, priori degrees of beliefs to an event (prior and thereafter) have an influence on the uncertainty of the model, and the total uncertainty can be represented by a probability distribution. In a word, the Bayesian approach starts with priori knowledge of parameters and data, and subsequently extrapolates backward to the true probability dis tribution of the parameters. In Bayesian statistics, this inversion process is carried out by the socalled Bayes' rule [START_REF] Lambert | A Student's Guide to Bayesian Statistics[END_REF]. Finally and perhaps the most important, the threelevel latent Gaussian model is a good reflec tion of Bayesian thinking, as it contains hyperpriors (prior distributions are imposed to hyperparameters), a latent process model (prior distributions are also imposed to the parameters of latent variables) and a likelihood (i.e. data or observations) 11 .

Bayes' rule

Bayes' rule is naturally derived from conditional probability:

𝑃𝑟 (𝐴|𝐵) = 𝑃𝑟 (𝐴 ∩ 𝐵) 𝑃𝑟 (𝐵) (3.33)
where 𝑃𝑟 (𝐴|𝐵) corresponds to the probability that event A will occur given that event B has already been observed. The numerator of the righthand side equation (𝑃𝑟 (𝐴 ∩ 𝐵)) represents the probability that event A and B occur jointly, while the denominator (𝑃𝑟 (𝐵)) means that the probability of observing event B only. Eq.3.33 can be rewritten as follows: (i) INLA has significantly computational gains for large, complex models under several conditions 13 ; (ii) INLA is carried out by the mature RINLA package [START_REF] Martins | Bayesian com puting with INLA: New features[END_REF] for the R programming language (R Core Team, 2019), which provides a user friendly interface for making Bayesian inference [START_REF] Bakka | Spatial modeling with RINLA: A review[END_REF].

𝑃𝑟 (𝐴 ∩ 𝐵) = 𝑃𝑟 (𝐴|𝐵) × 𝑃𝑟 (𝐵) . ( 3 
Having reviewed the highlights of the INLA approach, I will move on to introduce the INLA computing scheme. Following [START_REF] Rue | Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approxi mations[END_REF], the joint posterior distribution of the latent field x and hyperparameters 𝜃 in Eq.3.31 is written as: 13 E.g., the dimension of hyperparameter vectors requires small and the precision matrix should be sparse. (3.40)

Notably, the size of the hyperparameter vector 𝜃 should be small (less than < 15 empirically), while the dimension of data y and latent Gaussian fields x can be large. The fact is that numerical integration is implemented over the 𝜃 space. Furthermore, the dependence structure of data is usually stored in the precision matrix 𝜃. Since the size of the latent Gaussian field is fairly large (𝑛 = 10 2 -10 5 ), [START_REF] Rue | Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approxi mations[END_REF] impose conditional independent (Markovian) properties. Consequently, the latent Gaussian field x becomes a Gaussian Markov random field (GMRF) with a sparse precision matrix. This step offers additional computational gains, since numerical methods for sparse matrix calculation is much faster than dense matrix calculation [START_REF] Martino | Integrated nested laplace approximations[END_REF].

The joint posterior distribution for the latent Gaussian field and the hy perparameters has been derived. However, in practice, researchers are inter ested in the marginal posterior distributions of the hyperparameter 𝜋 (𝜃 𝑗 |𝑦) and the latent variable 𝜋 (𝑥 𝑖 |𝑦), rather than their joint posterior distribution.

In doing so, integration is applied. =∶ π (𝑥 𝑖 |𝜃, y) .

𝜋 (𝑥

(3.45)

This approach returns very precise estimates, but it is computationally ex pensive. The last approach is a compromise of accuracy and computational costs, namely the simplified Laplace approximation. It addresses the draw back of the Gaussian approximation by implementing a Taylor series expansion up to the third order to both the numerator and the denominator of Eq.3.45. 14 [START_REF] Tierney | Accurate approximations for posterior mo ments and marginal densities[END_REF] proved that this equation is equivalent to the Laplace approximation of a marginal posterior distribution. 

Model assessment

Thus far, we have known the spatial data, the geoadditive model family and the blackbox of INLA. A number of Bayesian criteria for model assessment are also provided in the RINLA package.

The Deviance Information Criterion (DIC) [START_REF] Spiegelhalter | Bayesian measures of model complexity and fit[END_REF] is a wellknown Bayesian model choice criterion for comparing complex hierarchi cal models. This criterion relies on the deviance, 𝐷 (𝑥, 𝜃) = -2𝑙𝑜𝑔𝜋 (𝑦|𝑥, 𝜃) (3.47) where 𝑥, 𝜃 are latent effects and hyperparameters, respectively. (3.49)

Here, the better the model fits the data, the larger the loglikelihood value, but the smaller the posterior expectation of the deviance. 𝑝𝐷 works as a penalty term indicating model complexity, and is defined as the difference between the posterior expectation of the deviance and the deviance evaluated at the posterior expectation of the latent effects and hyperparameters,

𝑝𝐷 = D(𝑥, 𝜃) -𝐷( x, θ), (3.50) 
and a higher 𝑝𝐷 indicates more complex models. Finally, a lower DIC value reflects a better model in terms of fitting data.

An alternative model comparison tool is the conditional predictive ordinate (CPO) [START_REF] Pettit | The conditional predictive ordinate for the normal distribu tion[END_REF]. It is a predictive measure since the calculation of CPO is depended on crossvalidation. For each observation, the conditional predictive ordinate is given by 

𝐶𝑃𝑂 𝑖 = 𝜋 (𝑦 𝑖 |𝑦 -𝑖 ) . ( 3 

Summary

In this chapter, I initially offer an overview of spatial econometrics and rele vant notions. I also list the drawback of these models. To overcome these drawbacks, spatial statistical models are introduced. I review different types of spatial data, areal data models, geostatistical models and their related con cepts. I also look into spatiotemporal processes, and some extensions of the aforementioned spatial models for fitting the spatiotemporal process. As these spatial or spatiotemporal models can be incorporated into the hierar chical modeling framework, it is natural to estimate the parameters via the Bayesian approach. I, therefore, investigate the Bayesian framework and the integrated nested Laplace approximation technique. I also provide several model choice criteria for choosing different Bayesian models. This chapter provides the cornerstone of statistical modeling for this thesis. I will use the aforementioned models in later chapters of this thesis.

Time, space and hedonic prediction accuracy: evidence from Corsican apartment market

Introduction

It is widely agreed that housing locations affect housing prices. To explain this phenomenon, Can (1992) identified two effects: (1) "neighbourhood effects", and (2) "adjacent effects". The first refers to sharing a series of location specific amenities and public goods, whereas the second refers to a sort of spillover.

In addition to the theoretical explanation, economists have attempted to construct appropriate econometric models for evaluating properties. In par ticular, via the hedonic price method (HPM), researchers can evaluate "neigh bourhood effects" and interpret them as the marginal willingness to pay for corresponding attributes, even if these attributes cannot be observed directly 73 74 4. Time, space and hedonic prediction accuracy: evidence from Corsican apartment market on the market. Nowadays, with the help of spatial econometrics (Anselin, 2010), economists can also estimate "adjacent effects".

However, arguments arise since researchers may overlook the impact from a temporal dimension if data are collected over time (Dubé and Legros, 2013a).

Specifically, researchers usually have no information on repeated sales in most cases. As such, housing transactions data pertain to repeated cross sections, meaning that the data are composed of the different observations from given populations following a chronological order. According to Dubé and Legros, "The structure of real estate databases is different from conventional pan els, since the same observation is not necessarily repeated. Instead, real estate data are collections of many crosssectional data pooled over time." (Dubé and Legros, 2013a, p. 5) The most straightforward approach to process such data is to build a large pooled cross section and then apply pooled OLS regression with space or time dummy variables. However, this approach has an explicit limitation. It fails to capture the correlation in space and over time. As such, the estimated coefficients may be biased and prediction may be unrealistic.

Consequently, the aim of this chapter is threefold. I suggest that par ticular attentions should be paid to both spatial and temporal attributes of 

Literature review: research trends in the HPM based property valuation

Half a century ago, [START_REF] Lancaster | A New Approach to Consumer Theory[END_REF] introduced his utility theory. He stated that goods per se did not give utilities, but the involved characteristics provided utilities. As such, the utilities of a good equalled the sum of the utilities of all characteristics. [START_REF] Rosen | Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition[END_REF] integrated Lancaster theory into a market equilibrium framework and developed the hedonic price method.

In the context of house valuation, the hedonic price method ensures that a house buyer's utility is a function of housing characteristics involved in the pur chased house. Moreover, since the house buyer's utility can be expressed by the market equilibrium price of the purchased house [START_REF] Deaton | Economics and consumer behavior[END_REF], the house price is a function of the characteristics associated with the house. Following [START_REF] Malpezzi | Hedonic Pricing Models: A Selective and Applied Review[END_REF] definition , the empirical representation of a house price is given as:

𝑃 = 𝑓 (𝑆, 𝑁, 𝐿, 𝐶, 𝑇, 𝛽)
where 𝑃 is the house price, 𝑆 is the structural characteristics of the house, 𝑁 represents the neighbourhood characteristics, 𝐿 denotes the locational char acteristics, 𝐶 describes the contract conditions and 𝑇 is time. 𝛽 is the vector of the parameters to be estimated.

Although the hedonic price method provides the theoretical basis to in vestigate how housing characteristics affect prices, a crucial challenge is es timation. More specifically, this method merely provides a general analytical We have observed some current trends [START_REF] Sheppard | Hedonic analysis of housing markets[END_REF] in empirical stud ies addressing these issues, e.g., applications of semiparametric or nonpara metric methods and applications of spatial econometrics (Anselin and Lozano Gracia, 2009).

The pioneering application of semiparametric models on property valua Further, it is possible to model spacetime interactions via a threedimensional tensor product smoother [START_REF] Augustin | Modeling spatiotemporal forest health monitoring data[END_REF], and therefore, a model incor porating such tensor product smoother can handle repeated cross sections.

In short, the semiparametric and geoadditive models have advantages such as flexibility, handling repeated cross sections, avoiding model misspec ification and of course, mitigating estimation biases.

Another trend related to widely used spatial econometrics (Anselin, 2010).

Within the hedonic price framework, spatial econometric models were used for measuring locationspecific amenities and spillover effects. However, applying spatial econometric models on repeated cross sections was rarely seen in the 4.2. Literature review: research trends in the HPMbased property valuation 4 77 existing literature, most empirical studies focused on crosssectional or panel data Anselin (2010) and [START_REF] Shi | A spatial panel data model with time varying endogenous weights matrices and common factors[END_REF].

After exploring spatial econometrics literature, I found two outstanding applications. Dubé and Legros (2013a) said that tools for analysing point referenced house transactions data were very limited. Pooling data over time and applying time dummy variables might lead to biased estimates, because the time dummy variables merely captured temporal variability, but neglect temporal correlation [START_REF] Palmquist | Property Value Models[END_REF]. Hence, they initially proposed a so called spatiotemporal autoregressive (STAR) model. Certainly, the spatiotem poral autoregressive model is an extension of a spatial lag model, where the spatial weighting matrix in the spatial lag model is replaced by a spatiotem poral weighting matrix. The author also showed that the spatiotemporal au toregressive model performed better than the spatial lag model in their case.

However, due to its specification, the spatiotemporal autoregressive model may have limited use.

Another approach called unbalanced spatial lag pseudopanel models with nested random effects came from [START_REF] Baltagi | Hedonic Housing Prices in Paris: An Unbalanced Spatial Lag PseudoPanel Model with Nested Random Effects[END_REF]. The authors were also confronted with a pointreferenced house transaction dataset, but they con sidered the hierarchical structure of the data. As a result, the data took the structure of an unbalanced pseudopanel. Regarding the model, the spatial correlation was captured by timevarying spatial weighting matrices and tem poral variability was captured by time fixed dummy variables. Nevertheless, the temporal correlation was not considered in the model. Notably, the abovementioned models are estimated via frequentist ap proaches including maximum likelihood (ML) or restricted maximum likelihood (REML). However, regarding uncertainty and model complexity, Bayesian in ference should be a better choice (Weller, 2016; Browne and Draper, 2006; Mathew et al., 2015). To be more precise, model parameters are random vari ables defined by a probability distribution in the Bayesian approach. Hence, both information in data and prior knowledge are absorbed into the posterior distribution of the model parameter. [START_REF] Weller | Least Squares, Maximum Likelihood, and Bayesian Param eter Estimation[END_REF] The definition implies that the geographical coordinates of properties are stored in the microdata. From a geostatistical perspective, the microdata pertain to geostatistical data. It is a widely held view that such data can be considered as a stochastic process indexed on a continuous plane (Arbia, 1989; Ver Hoef, 2002). Further, regarding a time dimension, the stochastic process can be indexed both in space and time (see Section 3.6).

Hence, I assume that 𝑦 (𝑠 𝑖 , 𝑡) denotes the realization of the stochastic process, which describes the observed logtransformed transaction price of 

Bayesian hierarchical models with spacetime ran dom effects

The proposed Bayesian hierarchical spatiotemporal model is derived from the modified hierarchical autoregressive model [START_REF] Sahu | Hierarchical Bayesian autoregressive mod els for large spacetime data with applications to ozone concentration modelling[END_REF]. The key point is that the underlying spatiotemporal dependence is modelled by first order autoregressive (AR(1)) dynamics with spatially correlated innovations.

This specification is known as an AR(1) group model, where the group refers to the spatial group 𝜔(𝑠 𝑖 ). As such, the dependence in space and the temporal dependence between spatial groups are captured. This proposed model is also formulated in a latent Gaussian model, which is written as,

𝑌 ∼ [𝑌|𝜇, 𝜃 𝑌 ] , (4.1) 
𝑔(𝜇) = 𝜂(𝑠 𝑖 , 𝑡) = 𝑧(𝑠 𝑖 , 𝑡)𝛽 + 𝜉(𝑠 𝑖 , 𝑡), (4.2)

𝜃 = {𝜃 𝑌 , 𝜃 𝜇 } = {𝜎 2 𝜔 , 𝑎, 𝜅, 𝜎 2 𝜖 } . (4.3) 
Here, 𝑧(𝑠 𝑖 , 𝑡) 1 is the vector of covariates referring to the fixed effects. 𝜖(𝑠 𝑖 , 𝑡) is the measurement error following a Gaussian distribution. 𝜉 is the spatiotemporal random component. 𝜉 and 𝛽 consists of the latent Gaussian field x = {𝜉, 𝛽}. More importantly, 𝜉(𝑠 𝑖 , 𝑡) is used for describing spatiotemporal process, which is assumed to be a Gaussian random field evolved over time. Here 𝐶 (‖𝑠 𝑖 -𝑠 𝑗 ‖) denotes the Matérn correlation function, which depends on ‖𝑠 𝑗 -𝑠 𝑖 ‖. 2 ‖𝑠 𝑗 -𝑠 𝑖 ‖ is the Euclidean distance between the observation 𝑖 and 𝑗. Notably, the Matérn correlation function implies that the spatial process is secondstationary and isotropic [START_REF] Cressie | Statistics for Spatial Data[END_REF]. Subsequently, the Matérn covariance function reads:

𝜎 2 𝜔 𝐶 (‖𝑠 𝑖 -𝑠 𝑗 ‖) = 𝜎 2 𝜔 × 2 1-𝜈 Γ (𝜈) × (𝜅 × ‖𝑠 𝑖 -𝑠 𝑗 ‖) 𝜈 × 𝐾 𝜈 (𝜅 × ‖𝑠 𝑖 -𝑠 𝑗 ‖) , (4.6)
where Γ is the gamma function. 𝐾 𝜈 is the modified Bessel function of the second kind with order 𝜈. Generally, the 𝜈 is the smoothness parameter and is a nonnegative number 3 . 𝜅 is the scaling parameter and is also a nonnegative number. Based on the empirically derived definition [START_REF] Lindgren | An explicit link between gaus sian fields and gaussian markov random fields: The stochastic partial dif ferential equation approach[END_REF], the relation among 𝜅, 𝜈 and 𝑟 is expressed as:

𝑟 = √8𝜈 𝜅 ,
where 𝑟 indicates the distance where spatial correlation diminishes to 0.1.

Concerning the former part of Eq. 4.4, 𝑎 is the autoregressive parameter with |𝑎| < 1. More importantly, to implement the model in the RINLA package [START_REF] Martins | Bayesian com puting with INLA: New features[END_REF], we actually add a √1 -𝑎 2 term before 𝜔(𝑠 𝑖 , 𝑡) to ensure the stationary of the AR(1) process. Further, the timedependent Gaussian random field 𝜉(𝑠 𝑖 , 𝑡) has a spacetime separable covariance function, which is characterized by:

∑ 𝜉 = ∑ 𝑇 ⨂ ∑ 𝑆 (4.7)
where ∑ 𝑇 is the covariance function of the temporal process and ∑ 𝑆 is the Matérn covariance function of the spatial process. ⨂ is the Kronecker product. Eq. 4.7 is further written as:

2 𝑖 ≠ 𝑗 3 Based on Eq. 3.20 and Eq. 3.21, we have 𝜈 = 𝛼 -𝑑 2

. In Eq. 4.6, 𝑑 equals 2 and hence 𝜈 = 1.

Spatiotemporal modeling for geostatistical data

4 81 ∑ 𝜉 = Cov ( ∞ ∑ 𝑘=0 𝜌 𝑘 𝜔 (𝑠 𝑖 , 𝑡 -𝑘) , ∞ ∑ 𝑘 ′ =0 𝜌 𝑘 ′ 𝜔 (𝑠 𝑗 , 𝑡 ′ -𝑘)) = ∞ ∑ 𝑘,𝑘 ′ =0 (𝜌 𝑘+𝑘 ′ Cov (𝜔 (𝑠 𝑖 , 𝑡 -𝑘) , 𝜔 (𝑠 𝑗 , 𝑡 ′ -𝑘 ′ ))) = 𝜎 2 𝜔 𝑎 |𝑡-𝑡 ′ | 1 -𝑎 2 ⊗ 𝐶 (‖𝑠 𝑖 -𝑠 𝑗 ‖) . (4.8)
As such, the correlation over space and time is gauged simultaneously.

Lastly, I can assign hyperpriors to the hyperparameter vector 𝜃 in Eq. 4.3.

INLASPDE approach

Fitting the proposed Bayesian hierarchical spatiotemporal model is challeng ing, in particular, the "big n problem" (Banerjee et al., 2014) often occurs.

Several solutions have been proposed to overcome this issue. [START_REF] Bakar | spTimer: Spatiotemporal bayesian modelling using R[END_REF] developed the "spTimer" package, where they employ McMC with a lowrank approximation. A recent solution is to apply INLA coupled with the SPDE approach. Apart from the advantages such as accounting for uncer tainty and low computational costs, this approach can estimate spatial range and other hyperparameters automatically. More precisely, the SPDE approach is devoted to tackling complex spatial dependence. Relying on the Matérn co variance function for the the spatial random component and subsequently introducing Markovian properties, the value at each location is conditional in dependent and then the dense Matérn covariance matrix is substituted by a sparse precision matrix. To conclude, the GRF is approximated by a GMRF to speed up the calculation. Currently, the difficulty becomes how to define that GMRF, which is the best substitution for the GRF, given local neighbourhoods and the sparse precision matrix. Lindgren et al. (2011) proposed using the SPDE approach. The numerical resolution of a stochastic partial differential equation given by the piecewise linear basis functions based on a mesh (the aggregate of a large number of nonoverlapped triangles over the study area is called a mesh) can provide a good approximation to the Matérn covariance.

INLA will take over the following task. 

Model discussion

One objective of this study is to compare the prediction performance of differ ent models that delineate the impacts of space and time in different ways. where the living area is modelled as a nonlinear covariate regarding resid uals and literature (Baltagi et al., 2015; Shimizu et al., 2014. Concerning the nonlinear specification 𝑓 (⋅), the default firstorder random walk (RW1) smoother in the RINLA package is used.

The second model (M1) is the combination of the first model (M0) with the spatial random component (𝜔 (𝑠 𝑖 )). This specification is similar to the geoadditive model proposed by [START_REF] Kammann | Geoadditive models[END_REF]. In this context, I do not consider impacts from time. That is to say, the temporal dimen sion is collapsed to "zero thickness". The corresponding spatial covariance function reads 𝐶𝑜𝑣 (𝜔(𝑠 𝑖 ), 𝜔(𝑠 𝑗 )) = 𝜎 2 𝜔 𝐶 (‖𝑠 𝑖 -𝑠 𝑗 ‖), and 𝐶 (‖𝑠 𝑖 -𝑠 𝑗 ‖) is the aforementioned Matérn covariance function. Regarding the computational complexity of each model, M2 incorporates the purely temporal AR(1) process (see Eq. 4.10), which is assumed to be con stant in space. That is to say, the temporal latent process is built on the tempo ral knots and is unidimensional. However, M3 incorporates an AR(1) structure with spatially correlated but temporally independent innovations (see Eq. 4.4).

This latent process is defined by the number of spatial observations. From a computational perspective, M3 requires more computational resources than M2, even if M2 has an additional parameter (𝜎 2 𝑎𝑟1 ) to estimate. 

Implement details

Before training all candidate models, I highlight two key points, the used mesh and prior distributions. I construct a convex hull mesh, as shown in Figure 4.1. Considering distances among housing locations and Corsican city sizes, I set the maximum triangle length to 10 km in the interior domain, while the length is specified to 50 km in the outer extension to avoid boundary effects 4 .

To reach a compromise between dense housing locations in urban areas and too many tiny triangles, minimum distances among points are specified to 0.1 km. Lastly, I obtain the mesh containing 3 060 vertices of triangles.

One advantage of Bayesian modelling is the inclusion of prior knowledge.

I select penalizedcomplexity priors (PC priors) for all hyperparameters. The list of prior distributions is shown in Table 4.4. > 1) = 0.5 𝑟 for the spatial range of the random field Prob(𝑟 < 20𝑘𝑚) = 0.8 𝜎 𝜔 for the standard deviation of the random field Prob(𝜎 𝜔 > 0.4) = 0.2 𝑎 for the AR(1) parameter in Eq. 4.4

Prob(𝑎 > 0.5) = 0.7 𝜏 𝑎𝑟1 for the precision of AR(1) in Eq. 4.10

Prob(

√ 𝜏 𝑎𝑟1

> 5) = 0.1 𝜌 for the AR(1) parameter in Eq. 4.10 Prob(𝜌 > 0.5) = 0.7

* All priors are PC priors.

Model assessment criteria

In this subsection, I describe how to assess the predictive performance of the models. As previously stated, we are interested in determining which is the most effective model for spatial predicting. In doing so, I consider a set of metrics, including the deviance information criterion (DIC), the crossvalidated logarithmic scores (LCPO), the mean absolute error (MAE) and the root mean square error (RMSE) and the Pearson correlation coefficient (PCC). 

Results and discussion

The posterior statistics, including the mean, 0.025 and 0.975 quantiles of the fixed effect coefficients for the candidate models are displayed in We find that the estimates for the fixed covariate effects are fairly robust with respect to M1, M2 and M3. This finding implies that the introduction of different spatial, temporal and spatiotemporal components does not sig nificantly affect these estimates. More precisely, the posterior mean of the intercept is around 11.7, meaning that the average apartment price is approxi mately €120 571. Moreover, most covariates measuring the structural charac teristics of apartments are significant with the expected signs. As expected, everything else remains the same, an additional room, bathroom, parking, floor and surface area generally improve the price of an apartment. A duplex apartment is likely to be more expensive than a standard apartment, but a studio apartment is likely to be cheaper. The nonlinear relationship between apartment prices and living area in each model is displayed in Figure 4.2. Even though these curves are shown in the graph, we observe overall increasing trends over the whole range, which follow our expectation. That is to say, a positive coefficient for the living area would be expected. A significantly positive coefficient for the proximity to the nearest beach is also observed.

Insignificant relations are found between the distance to the nearest public high school and apartment prices, between the distance to the nearest health facility and apartment prices.

As seen in the lower part of Table 4.5, we find that the majority of the remaining variance is due to the variance of the spatiotemporal process 𝜎 2 𝜔 , rather than the variance of the measurement error, 𝜎 2 𝜖 . In particular, for M1, M2 and M3, the estimate of 𝜎 2 𝜔 is around four times greater than the esti mate of 𝜎 2 𝜖 . Such large variance is derived from the complex spatiotemporal structure, and is useful for explaining variability of the spatiotemporal pro cess5 . Further, we may conclude that the Corsican apartment price is partly determined by the spatiotemporal structure.

The posterior estimates of correlation parameters and spatial ranges are also reported in the lower part of Table 4.5. Regarding M1, the posterior mean estimate of the spatial range is 1.880 km (95% 𝐶𝐼, 1.606; 2.244), meaning that the distance at which mean spatial correlation declines to 0.1 is 1.880 km. For M2, I estimate a range of about 1.881 km (95% 𝐶𝐼, 1.598; 2.196). Further, This implies that the spatial correlation decreases rapidly, and that at 1.741 km there is a very weak correlation. On the other hand, its temporal correlation is strong. The posterior estimate is 0.991 (95% 𝐶𝐼, 0.988; 0.992), indicating that the spatial random effects change quite slowly from quarter to quarter. This result shows that M3 should offer the strongest predictive power among the abovementioned models. The descending order is observed for the MAE and RMSE values, and the ascending order is observed for the PCC coefficients.

Note that compared with M2, M3 shows tiny increments or decrements with respect to the MAE, RMSE and PCC value (Δ 𝑀𝐴𝐸 = -0.002, Δ 𝑅𝑀𝑆𝐸 = -0.001, Δ 𝑃𝐶𝐶 = 0.002), but these increments or decrements cannot be ignored.

Overall, M0 offers the lowest prediction performance, with the largest DIC value, LCPO score, RMSE value and the smallest PCC value. Conversely, M3

should be the best model in terms of the predictive power. M2 seems to have similar predictive power compared with M3, but tiny differences still exist.

In addition to the results of model assessment, the information about the estimation time (in seconds) is displayed in the last column in Table 4. This figure gives us the first impression that the spatial pattern across the island is relatively constant from one quarter to the next. It is thought that the constant spatial pattern is also a reflection of the high posterior mean of the AR(1) parameter. We also observe several clusters. Apartment prices are significantly affected by their location inside these clusters. In general, most clusters are situated on coastal plains. A few clusters are dotted in the junction between the coastal plain and the inland area. More specifically, the cluster in which apartment prices are positively affected by their location is called a "hot spot". If an apartment is located in a hotspot, the location will generate an additional increase in its price. A cluster in warm colour is the "hot spot" in these figures. In contrast to the "hot spot", the cluster in which apartment prices are negatively affected by their location is deemed a "cold spot". The "cold spot" is plotted in cold colours. Spatially, the "cold spots" include the eastern coastline and the whole northern tip of the island, whereas the "hot spots" include the northwestern area and the western coastline.

Furthermore, "cold spots" and "hot spots" near the coast evolve slowly over time. By contrast, "hots pots" located in the inland area evolve relatively fast.

To gain further insight into the impact of location on apartment prices, I take an antilogarithm. Concerning the scale of Figure 4.3, it varies from -0.6 to 0.6 approximately, which means that in some "hot spots", the location may increase the expected apartment price up to 82.21% (𝑒𝑥𝑝 (0.6) -1 = 0.8221).

However, in some "cold spot" zones, the location probably causes a 45.12%

(𝑒𝑥𝑝 (-0.6) -1 = -0.4511) reduction in the expected apartment price. We may conclude that the location can be a crucial factor for apartment prices.

Concluding remarks

In this chapter, I propose a powerful framework to predict apartment prices.

This framework is based on the flexible Bayesian hierarchical models and two novel data fitting techniques, INLA and SPDE.

To illustrate this framework, I investigate the Corsican apartment prices strated with increasing complexity, from a pure spatial process to the sum of a pure spatial process and a pure temporal process, and finally to a spa tial process evolving in time according to an AR(1) specification with spatially correlated innovations. All models are fitted by INLA coupled with the SPDE approach. Fitting these models usually requires large computational resources and long running time, but the INLASPDE approach addresses these prob lems by Laplace approximation, numerical integration and GMRFs. Thus, this approach provides fast and reliable Bayesian inference under affordable com puting power.

The model comparison is based on criteria that account for data fitting, spatial predictive power and computational costs. Moreover, the estimates of the covariates for the candidate models with random effect components are fairly robust as the specification changes. This allows us to compare models solely based on their random effects components. M1 is discarded since it does not take into account the temporal process. M2 requires less computational resources, but its prediction capability is slightly weaker than that of M3. M3 offers the best predictive power. Even though M3 is time consuming, the computational resources are still affordable.

According to our findings, it can be confirmed that most apartment at tributes and the proximity to the nearest beach significantly affect the apart ment price. I also point out the nonlinear relationship between the living area and apartment price. Additionally, regarding the spatial relation, I specify sev eral "hot spots" and "cold spots", where the apartment prices are significantly affected by their locations. Moreover, in general, the location of the "hot spots" and "cold spots" remains stable over time. This phenomenon reflects the high posterior mean value of the AR(1) parameter.

Currently, the INLASPDE approach is not widely seen in hedonic pricing 

Introduction

With the rapid evolution of land cover/land use change in the past decades, many second homes were built in the European countries around the Mediter ranean, e.g., Spain, Italy and France [START_REF] Hof | The linkages between real estate tourism and urban sprawl in Majorca (Balearic Islands, Spain)[END_REF].

Second homes have often been considered as a threat to rural/coastal areas, rather than as an opportunity (Coppock, 1977; Gallent, Mace, et al., 97 98 5. Unveiling spatial and temporal patterns of second home dynamics: a Bayesian spatiotemporal analysis for a Mediterranean island 2017). The impact of such threat spreads from social, environmental aspects to economic aspects (Hall and Müller, 2018). Regional scientists [START_REF] Gallent | Dispelling a myth? Sec ond homes in rural Wales[END_REF] argued that second home development could undermine local culture, languages in rural areas. Others [START_REF] Stettler | Image, truth and illusion in tourism promotion: The problem of the rapid spread of second homes in Switzer land and planning strategies[END_REF] stated that second homes decrease the quality of landscapes around tourist attractions. More importantly, economists [START_REF] Paris | Repositioning second homes within housing studies: House hold investment, gentrification, multiple residence, mobility and Hypercon sumption[END_REF] demonstrated that second homes relate to gentrification and the instability of local housing mar kets. Thus, several scholars [START_REF] Gallent | Second homes and the UK planning system[END_REF]) employed the term "epidemic" or "endemic" to describe the effect of second homes on local communities.

On a European scale, the falling cost of travel, the progressing of informa tion and communications technology and the growing of wealthy households in affluent countries have contributed to the investment in second homes [START_REF] Paris | Repositioning second homes within housing studies: House hold investment, gentrification, multiple residence, mobility and Hypercon sumption[END_REF]. In addition, these purchases are recognized as the external demand for a local housing market [START_REF] Égert | Determinants of house prices in central and eastern Europe[END_REF]Mihaljek, 2007; Wheaton and[START_REF] Wheaton | The 19982005 Housing "Bubble" and the Current "Correction": What's Different This Time?[END_REF]. Following basic economic theories, the housing price should be a function of supply and demand in a perfectly competitive market. If the demand for houses increases but the supply remains, there will be a shortage of houses in the market and therefore house prices will go up.

Despite the Europewide nature of second homes, to my knowledge, no spatiotemporal analysis has been performed on the second home growth yet.

As such, the objective of this study is to investigate second home rates by means of identifying their spatiotemporal patterns at a county level. In the study, second homes in Corsica (a French region) are chosen as a case study. [START_REF] Back | Mapping an invisible population: the un even geography of secondhome tourism[END_REF]Marjavaara, 2017; Barke, 2007). These methods, however, may lead to bi ased results and unrealistic inference due to the presence of spatial and/or temporal dependence in data.

Facing the abovementioned research gaps, this chapter makes two main contributions. Firstly, I attempt to explain the second home dynamics using suitable binomial regression with the inclusion of latent spatial and tempo ral effects. More specifically, the main idea of the proposed spatiotemporal models is that after preserving the fixed covariates effects, the residual is de composed into spatial components, temporal components and a spacetime component. These complex components account for the spatiotemporal de pendency on the second home rate in each Corsican county, since observa tions tend to be similar if they are geographically close [START_REF] Tobler | A Computer Movie Simulating Urban Growth in the Detroit Region[END_REF] or tem porally adjacent. Additionally, the specifications of the components are flexi ble, therefore both a parametric and a nonparametric structure for temporal components are considered. Through borrowing strength from neighboring areas and adjacent periods, the proposed models provide reliable estimates.

Another key point is that the models can be used within a binomial response setting. In this study, they overcome the limitation of a Gaussian response variable in classical spatial econometric models, e.g., the spatial lag model (SAR) and the spatial error model (SEM) [START_REF] Anselin | Spatial Econometrics: Methods and Models[END_REF]. Consequently, I can directly apply the proposed models for count data, such as the number of sec ond homes, rather than implement data transformation to meet the Gaussian response variable.

Incorporating many random effect components significantly increases model complexity. Therefore estimation is carried out by the Integrated Nested Laplace Approximation (INLA) approach [START_REF] Rue | Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approxi mations[END_REF]. This approach takes advantages of numerical integrations and Laplace approxi mations, which could significantly reduce computational time and return the reliable posterior probability distributions of model parameters. Hence, all 100 5. Unveiling spatial and temporal patterns of second home dynamics: a Bayesian spatiotemporal analysis for a Mediterranean island models in this work are fitted by the RINLA package [START_REF] Martins | Bayesian com puting with INLA: New features[END_REF].

The primary objective of this chapter is to reveal the spatiotemporal pat terns of second home rates at the county level in Corsica. I examine potential factors, which may affect the second home rate. Different spatial and tem poral priors are investigated to give accurate estimates. The remainder of this paper is structured as follows. In Section 5.2, an exploratory spatial data analysis is implemented for Corsican second home data. In Section 5. Hence, spacetime interaction terms should be considered for modelling the second home rate.

I employ Moran's I tests [START_REF] Moran | Notes on continuous stochastic phenomena[END_REF] to further investigate the spatial dependence structure in the data. To do so, the adjacency matrix is defined by queen contiguity weights (The visualisation of the spatial weights matrix is shown in Figure 7.2 in Appendix 7.6). The results in Figure 5.4 provide evidence that there is positive spatial dependence in the second home rates with an average of 0.334 (p < 0.05) over the 11 years. Hence, when modelling the Corsican second home rate, I take the spatial dependence into account.

After reviewing second home literature from economic, social and envi ronmental perspectives, I find that there are two key factors affecting second homes, i.e., amenities and socioeconomic factors. Several researchers [START_REF] Hall | Second homes planning, policy and governance[END_REF][START_REF] Hall | Tourism, mobility, and second homes: between elite landscape and common ground[END_REF][START_REF] Müller | Second homes: Curse or blessing? A review 36 years later[END_REF] showed that a key de 102 5. Unveiling spatial and temporal patterns of second home dynamics: a Bayesian spatiotemporal analysis for a Mediterranean island terminant for selecting second home locations was their high amenity value.

Extensive research has focused on the impact of various amenities in different regions. [START_REF] Müller | Second home ownership and sustainable development in Northern Sweden[END_REF] found that more and more second homes were con centrated around coastlines and uplands due to scenic qualities and recreation opportunities in Northern Sweden. [START_REF] Barnett | Central and Eastern Europe: Real estate development within the second and holiday home markets[END_REF] concluded that ideal sec ond home locations should satisfy weather, infrastructure, views, history and nature in Central and Eastern Europe. [START_REF] Norris | Rising second home numbers in rural Ire land: Distribution, drivers and implications[END_REF] indicated that second homes were usually located in the areas with amenityrich land scapes or proximity to sea, rivers, lakes and mountains in Ireland. [START_REF] Kaltenborn | Resident attitudes towards mountain secondhome tourism development in Norway: The effects of environmental attitudes[END_REF] showed that Norwegian second homes in creasingly occurred closely around mountain and coast tourism resorts. Addi tionally, some second homes located in areas with historical or social meaning [START_REF] Kaltenborn | Second home devel opment in the Norwegian mountains: Is it outgrowing the planning capabil ity?[END_REF].

Regarding socialeconomic factors, [START_REF] Norris | Rising second home numbers in rural Ire land: Distribution, drivers and implications[END_REF] concluded that the growth of second homes was likely related to local factors [START_REF] Hall | Second homes planning, policy and governance[END_REF]. According to [START_REF] Norris | Housing affordability in the Republic of Ire land: is planning part of the problem or part of the solution?[END_REF], some local governments passed tax incentive schemes to promote second home development. In addition, [START_REF] Barke | Second Homes in Spain: An analysis of change at the provincial level, 19812001[END_REF] showed that the number of second homes in a given province was related to the provincial population size in Spain, and concluded that depopulation was an important factor to create second homes. Lastly, Dower 1977) showed that high costs of borrowing money could slacken the pace of second home growth because of additional capital demand.

According to the existing literature and data availability, I introduce three types of variables in my study. The first type is the amenity. I consider four variables: the physical landscape counts within a county, e.g., the number of lakes, alpine rocks, estuaries; the cultural landscape counts within a county, e.g., the number of castles, city walls, towers, churches; the coastal county, indicating a county locates on the coast or not; and the mountainous county, indicating a county locates in the mountainous areas or not, where the thresh old of the mountainous area is based on the 500 m elevation. These four variables are timeinvariant, meaning that these variables are mainly used for gauging spatial variation.

The second type of variables are socialeconomic variables. These include the number of households of a county; the annualized interest rate; the coun cil tax; and the unemployment rate. The third type of variables are accessi bility variables. I consider distances to the nearest "gate" of Corsica, and distances to the regional university. The "gates" contain all commercial ports and airports on the island. To avoid the impact of each variable measured in different units, I rescale all continuous variables by means of a logarithm transformation.

I use the number of households of a county as a proxy for county popu lation. The household, council tax and land tax covariate are spatiotemporal, but the interest rate is timevarying only. The unemployment rate is spa tiotemporal, based upon the "zone d'emploi" level. Hence, it captures limited spatial variability. Descriptive statistics for these variables are shown in Table 5.1.

Spatiotemporal modeling for areal data

Spatiotemporal data

Before introducing Bayesian hierarchical spatiotemporal models, we look into data types. As previously stated, second homes data are areal data, which are collected over 360 spatial units (counties) for 11 years. This, however, implies a balanced spatial panel setting.

106 5. Unveiling spatial and temporal patterns of second home dynamics: a Bayesian spatiotemporal analysis for a Mediterranean island To capture all information from the data, the proposed models should handle both count data and latent spatial, temporal and spatiotemporal pro cesses. Therefore, I turn to the Bayesian hierarchical spatiotemporal model again (Banerjee et al., 2014, chap. 6).

Modelling spatial dependence

I apply the LCAR model to gauge spatial dependence among spatial units.

Therefore, the random vector for joint spatial effects (also known as a joint spatial component) reads, Γ = (𝛾 1 , … , 𝛾 𝑆 ), and together with a mixing param eter 𝜆 in the precision matrix. The mixing parameter indicates the joint spatial effect explained by spatially structured and unstructured components, as well as measures the strength of spatial dependence among units. The random vector Γ is assumed to follow a multivariate normal distribution with mean 0 and a designed precision matrix 𝑄 Γ ,

Γ ∼ 𝑀𝑉𝑁 (0, 𝜎 2 Γ 𝑄 -1 Γ ) (5.1) 𝑄 Γ = [𝜆𝑊 * + (1 -𝜆) 𝐼 𝑆 ] .
(5.2)

Here 𝐼 𝑆 denotes the identity matrix of dimension 𝑆. 𝑊 * denotes the variant of a 𝑆 × 𝑆 spatial adjacency matrix. Its diagonal elements 𝑤 * 𝑖𝑖 are equal to the number of neighbours of each unit 𝑛 𝑖+ , the offdiagonal elements 𝑤 * 𝑖𝑗 are equal to -1 if unit 𝑖 and unit 𝑗 are neighbours, and 0 otherwise. The mixing parameter ensures that the precision matrix 𝑄 Γ 𝑖 is a weighted average of the 5.3. Spatiotemporal modeling for areal data 5 107 𝑊 * and 𝐼 𝑆 matrices with 0 ≤ 𝜆 ≤ 1.

Modelling temporal dependence and spatiotemporal variability

In addition to the spatial latent process (dependence), the temporal latent process (dependence) should be taken into account if data are collected over the years. Hence, several temporal and spatiotemporal specifications are pro posed. Further, both parametric and nonparametric smoothing functions of time are considered.

The two prominent specifications for the temporal and spatiotemporal components are the linear trend model proposed by [START_REF] Bernardinelli | Bayesian analysis of spacetime variation in disease risk[END_REF] and the dynamic trend model proposed by [START_REF] Held | Bayesian modelling of inseparable spacetime variation in disease risk[END_REF].

Regarding the linear trend model,

(𝜉 + 𝜑 𝑖 ) ⋅ 𝑡 (5.3) 
where 𝜉 ⋅ 𝑡 denotes a linear function of time representing a global trend in time and 𝜑 𝑖 ⋅ 𝑡 is an areaspecific linear function gauging an areaspecific trend to depart from the global trend. I specify a Gaussian exchangeable prior Normal (0, 𝜎 2 𝜑 ) to 𝜑 𝑖 . This model is a simple, straightforward variant of a random slope model, where the slope (𝜉 + 𝜑 𝑖 ) is spatially varying.

The linearity assumption, however, is restrictive. To relax the linear re striction, I model time as a dynamic nonparametric formulation:

𝜁 𝑡 + 𝛿 𝑖𝑡 (5.4)
where 𝜁 𝑡 (𝑍 = (𝜁 1 … 𝜁 𝑇 )) is the temporally structured random effect (the temporal main effect) and 𝛿 𝑖𝑡 denotes the spacetime interaction term. The parameter 𝜁 𝑡 is usually modelled by a firstorder of random walk 𝜁 𝑡 |𝜁 𝑡-1 ∼ Normal (𝜁 𝑡-1 , 𝜎 2 𝜁 ). For the spacetime interaction component Δ = (𝛿, … , 𝛿 𝑆1 , … , 𝛿 1𝑇 , … , 𝛿 𝑆𝑇 ), a Type I unstructured interaction is used [START_REF] Held | Bayesian modelling of inseparable spacetime variation in disease risk[END_REF]. The Type I interac tion is the Kronecker product of spatially and temporally unstructured com ponents, which can be considered as a random intercept based on all obser vations. Seen differently, this component represents global spacetime het 108 5. Unveiling spatial and temporal patterns of second home dynamics:

a Bayesian spatiotemporal analysis for a Mediterranean island erogeneity and measures the deviation from the spatial and temporal main effects. This component is assigned a multivariate normal distribution Δ ∼ 𝑀𝑉𝑁 (0, 𝜎 2 Δ (𝐼 𝑆 ⊗ 𝐼 𝑇 )).

These spatial and spatiotemporal models can be formulated as latent Gaus sian models [START_REF] Rue | Gaussian Markov random fields : theory and applications[END_REF]. I apply INLA for these models, as it is designed for latent Gaussian models, and hence return fast and accuracy Bayesian inference.

Candidate model specifications

To model the second home data, the LCAR model and its spatiotemporal ex tensions are considered. In this study, I specify five latent processes with increasingly complex representation of space and time. As discussed above, Bayesian spatial and spatiotemporal models can be written as latent Gaussian models. I assume that the observed counts for second homes (𝑦 𝑖𝑗 ), condi tionally on the rate of second homes (𝜋 𝑖𝑡 ) and the total number of houses (𝑛 𝑖𝑡 ), are binomialdistributed [START_REF] Ferrari | A comparison of methods for the analy sis of binomial clustered outcomes in behavioral research[END_REF], 𝑌 𝑖𝑡 ∼ Binomial (𝑛 𝑖𝑡 , 𝜋 𝑖𝑡 ) .

(5.5)

Counties are denoted by 𝑖 = {1, … , 𝑆} (𝑆 = 360 here) and years are la belled as 𝑡 = {1, … , 𝑇} (𝑇 = 11). Housing transactions are not frequent in Corsica, and hence a second home could hardly sell more than once in a year, meaning that an annual housing survey is considered a Bernouilli trial, where the occurrence of a second home is treated a success. Various applications using spatiotemporal Bayesian hierarchical binomial models include modelling disease risks (MacNab, 2003), violent crimes (Zhu et al., 2006), public health intervention [START_REF] Viola | Overweight and obesity: Can we recon 8 189 cile evidence about supermarkets and fast food retailers for public health policy?[END_REF], presidential elections [START_REF] Linzer | Dynamic Bayesian forecasting of presidential elections in the states[END_REF] and pub lic confidence on police [START_REF] Williams | A spatiotem poral Bayesian hierarchical approach to investigating patterns of confi dence in the police at the neighborhood level[END_REF].

In the process model, a logit transformation is applied to 𝜋 𝑖𝑗 , and thus the transformed 𝜋 𝑖𝑡 equals the sum of all structured additive predators. Table 5.2

shows the candidate specifications for the second level. Thus far, we have known the candidate specifications for latent spatial, temporal and spatiotemporal processes. At the third level, I assign hyperprior distributions to all parameters appeared in the previous levels. The used priors are listed below:

𝜆 ∼ Uniform (0, 1), 𝑙𝑜𝑔 ( 1 𝜎 2 𝑥 𝑗𝑡 ) , 𝑙𝑜𝑔 ( 1 𝜎 2 Γ ) , 𝑙𝑜𝑔 ( 1 𝜎 2 𝑍 ) , 𝑙𝑜𝑔 ( 1 𝜎 2 Δ ) , 𝑙𝑜𝑔 ( 1 𝜎 2 𝜑
) ∼ logGamma(1, 0.00005).

(5.12) I maintain the following strategy. Model 0, serves as the benchmark. It 

Empirical results

Model assessment results

DIC, LCPO and RMSE values are displayed in Table 5.3. The DIC score indicates that the classical Binomial model is poorly fit ted. Comparing Model 0 with Model 1, the fit is much improved (Δ 𝐷𝐼𝐶 = -181, 422.27). The marked decrease of the DIC score also provides evidence that the illfitting Model 0 is a result of omitting unobserved spatial patterns.

In poral patterns of the second home rate.

Fixed effects and interpretation

For each covariate, the upper part of Table 5.4 presents the log odds of the second home rate associated with a 1unit or percentage increase and its associated 95% credible interval (𝐶𝐼).

Most covariates are significant except for the council tax, the unemploy ment rate and the distance to the nearest "gates".

The relative log odds of the second home rate (𝜋 𝑖𝑡 ) increases 0.082 (95%𝐶𝐼, 0.030; 0.135) times with a 1unit increase in the physical landscape count, given all else is equal. In contrast, a unit increase in the cultural landscape count decreases 0.047 (95%𝐶𝐼, -0.085; -0.010) times in the log odds of the second home rate. Hence, both landscape variables are informative. The result suggests that second home buyers likely prefer natural scenery to artificial elements.

A possible explanation for this finding is that since cultural landscapes usu ally locate in a town with good accessibility, it may bring overcrowding issues [START_REF] Cheer | Tourism and community re silience in the Anthropocene: accentuating temporal overtourism[END_REF]. Second home buyers often look for an area with beauti ful scenery, silence and low population density, so they probably consider the overcrowding as a disamenity.

There would be a 0.720 (95%𝐶𝐼, 0.506; 0.935) increase in the log odds 112 5. Unveiling spatial and temporal patterns of second home dynamics: a Bayesian spatiotemporal analysis for a Mediterranean island of the second home rate, as an inland county changes to a coastal county.

One possible implication of this is that Corsican second home buyers prefer living near coasts to living in mountainous areas. In addition, the posterior mean coefficient 0.217 (95%𝐶𝐼, 0.054; 0.379) indicates that the log odds of the second home rate increases by 0.217 approximately, as a mountainous county compares with a flat county, given all else equal.

The positive association of the log odds of second home rate with the dis tance to the university is also observed 𝛽 𝑙𝑜𝑔 2 (𝑑𝑖𝑠_𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦) = 0.170 (95%𝐶𝐼, 0.038; 0.308).

Consequently, a county far away from the university tends to have a high sec ond home rate.

After analysing plots of each covariate against the model residuals, a non linear relation between the logged households and the second home rate is detected. Hence, the default firstorder random walk (RW1) smoother in the RINLA package is applied to the logged households. Figure 5.5 displays the nonlinear relation between the base 2 logarithm of households and the sec ond home rate, showing on the log odds scale. We initially observe a down ward trend. The log odds of the second home rate are at their highest in areas with the lowest value of logged households and decrease as the value of the logged households increases. The decrease is nonlinear, with a descent reaches around -0.5, followed by a leap of the slope. The leap occurs when the logged households reaches the interval (11, 13). A possible explanation for the leap is that these midsize counties (around 2 000 to 8 000 households) locate close to the main cities or are the capital of cantons, and some of them are not far from national parks. In a word, these counties are easy to reach and people can find different services and also public facilities. Then, the slope decreases again, but the width of the 95% CI is relatively large because of limit observations.

The coefficient on the base 2 logarithm of interest rates has a posterior mean of -0.161 (95%𝐶𝐼, -0.217; -0.108), meaning that a doubling of interest rates translates to a 19.51% decrement for the odds, given all else equal.

The coefficient reported here appears to support the assumption that a low interest rate will encourage house buyers to enter the market. There is a likely explanation for this result, house buyers are more likely to take out a home loan and the low interest rate means that obtaining home finance is more affordable [START_REF] Paris | Repositioning second homes within housing studies: House hold investment, gentrification, multiple residence, mobility and Hypercon sumption[END_REF].

Spatial and temporal random effects and interpre tation

Once the covariates effects are gauged properly, I can investigate the spatial and temporal random effects, and the spatiotemporal interaction. The spa tial random effect component shows the log odds of the second home rate associating with each county. The temporal random effect component indi cates the overall temporal trend relating to unobserved temporal covariates, and finally the spatiotemporal interaction term captures the idiosyncrasy of a county. Initially, I calculate the proportion of marginal variance explained by each component, given by

𝑝 𝑖 = 𝜎 2 𝑖 / (𝜎 2 Γ + 𝜎 2 𝑍 + 𝜎 2 Δ ) × 100%, 𝑖 = {Γ, 𝑍, Δ} (5.13) 
The corresponding proportions are 98.56%, 0.20%, 1.24%. These re sults suggest that a huge part of the variability is explained by the spatial patterns. According to the posterior distribution of the mixing parameter 𝜆 = 0.2980 (95%𝐶𝐼, 0.1502; 0.4999), the spatially unstructured component 114 5. Unveiling spatial and temporal patterns of second home dynamics: a Bayesian spatiotemporal analysis for a Mediterranean island contributes to the spatial variability most (69.18%), while the spatially struc tured component explains a sizable proportion (29.38%). Differently, the tem poral component explains very little of the variability. Finally, the spacetime interaction term explains a small proportion of the remaining variance, but the proportion is relatively larger than the proportion of the temporal component.

Figure 5.6 reveals the spatial pattern. In general, southeastern, north western and some central counties show a greater second home rate than other counties. Moreover, a county (ID. 281) on the eastern coast presents the highest second home rates. In contrast, the Bastia area, the Ajaccio area and Corti are relatively low in terms of the second home rate. To distinguish the positive and negative contributions, I define "hot spots" and "cold spots".

The "hot spot" means the area for which there is evidence that its location positively contributes to the log odds of the second home rate most, given all covariates. More precisely, five main "hot spots" are Linguizzetta (ID. 281), Lumio (ID. 68), GrossetoPrugna (ID. 51), Lecci (ID. 248) and Quenza (ID.10) county. In contrast, Biguglia (ID. 218), Furiani (ID. 299), Bastia (ID. 360), Alzi (ID.116) and Ambiegna (ID. 213) are marked as "cold spots". [START_REF] Pérez | A Europe of creditor and debtor states: explaining the north/south divide in the Eurozone[END_REF]. We further notice that the scale of the vertical axis of the red line ranges from -0.05 to 0.04 approximately, which suggests a slightly positive increase in the second home rate over the past 11 years.

Investigating the typeI spacetime interaction term provides further in sight into the spatiotemporal pattern of the second home rate, as shown in Figure 5.8. In the first three years, the spatial pattern seemed to stabilize.

From 2009 to 2013, the spatial pattern seemed unstable, and the map grew darker from 2014 to 2017. Moreover, some counties (ID. 8,10,28,34,301) were colored in light red at the beginning of the study period, while these a Bayesian spatiotemporal analysis for a Mediterranean island log 𝜏 ∼ log Gamma(1, 5 × 10 -5 ) log 𝜏 ∼ log Gamma(1, 1 × 10 -4 ) 𝜎 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0, ∞) Temporally Structured component (𝑍) log 𝜏 ∼ log Gamma(1, 5 × 10 -5 ) log 𝜏 ∼ log Gamma(1, 1 × 10 -4 ) 𝜎 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0, ∞)

Spacetime interaction term (Δ) log 𝜏 ∼ log Gamma(1, 5 × 10 -5 ) log 𝜏 ∼ log Gamma(1, 1 × 10 -4 ) 𝜎 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0, ∞) . 190, 191, 328) with light red color from 2011 to 2016.

* 𝜎 = 1 √𝜏

Robustness Check

Concern may arise from three major issues: sensitivity to the priors, necessity of including covariates and endogeneity.

Regarding the prior sensitivity, I test different prior distributions to assess the change in the posterior distribution of all covariates and variance parame ters. The tested priors and the fixed effects are shown in Table 5.5 and Table 5.6 respectively. The posterior distribution of all covariates obtained from the tested priors is almost the same as the posterior distribution of covariates us ing the default prior. In addition, the posterior distribution of the variance parameters is quite similar for the different priors. These results suggest that Model 5 should not be sensitive to priors.

To evaluate the need to include all covariates, I rerun Model 5 without any covariates, named as the convolution model. From Model 5 to the con Some key findings are related to the fixed effects. Most amenity covariates are associated with an increase in the log odds of the second home rate, ex cept the cultural landscape. While, the negative association between the log odds of the second home rate and the households and the interest rate is cur rently detected. Moreover, there is not a significant relationship between the council tax, the unemployment rate and the log odds. Concerning accessibil ity covariates, the distance to the nearest "gate" is not statistically significant, but I find a positive association between the distance to the university and the log odds of the second home rate.

Regarding the random effects, the "hot spot" and "cold spot" areas of sec ond home rates in Corsica are well identified. In addition, the gradual temporal 5.6. Concluding remarks 5 121 tend with two falls for the second home rate is also recognized throughout the 11year study period. The spatiotemporal dynamics of the second home rate are finally described by the spacetime interaction random effect. We gain some further insight into the spatiotemporal dynamics, rather than lose the information. Therefore, the proposed approach can be viewed as a decent tool to analyze second home dynamics, and the findings offer useful insights for formulating effective policies to manage second homes in Corsica, and then to meet the concern of inhabitants.

First, the outcomes of the proposed Bayesian hierarchical model provide convincing evidence that interest rates negatively contribute to Corsican sec ond home rates. This finding justifies a potential policy intervention. The regional governors can propose the central authority to pass a law that forces local inhabitants to declare their properties. According to the deceleration, second home owners are not allowed to negotiate interest rates with their banks, and to benefit any tax incentives. As a result, the loan costs will in crease, and investment purchases should be restrained.

In addition to the financial tool, interventions on second home hot spots may achieve better results than focusing on the financial tool alone. In doing so, all levels of government are advised to prioritize these zones, and there is a great need for coherent interventions to curb the high second home rate and to prevent second home buyers spilling over to adjacent counties. For example, second home purchasing restrictions should be implemented strictly in the hot spot zones and neighbouring counties (E.g., "taxe d'habitation sur les logements vacants" according to French law.). The regional authority may also require to regulate the real estate developers and to provide more low rental houses in the hot spot zones.

While, for other counties, local governments should decide whether to apply the second home purchasing restriction. This enables the local govern ment to be more responsive to the inhabitants' needs. In other words, after recognizing the unique context of each county, a diversified, countyspecific second home regulation is urgently needed. Therefore, upgrading the existing institutional framework for improving coordination between urban planning and housing policies, between the regional government and local government are essential elements to achieve balanced economic development and sus The value of sea views in a

Mediterranean island:

Hedonic analysis with spatial multilevel modelling

Introduction

Environmental amenities usually play an important role in people's residential property choices (Chasco and Le Gallo, 2013; Irwin et al., 2014; Liu, Hu, et al., 2020; Liu, 2020). Recognition of the economic value of these amenities helps policymakers better understand the decisions of homebuyers. This knowledge could also contribute to urban development planning and differentiating com pensation policies (CarriónFlores and Irwin, 2017; Troy and[START_REF] Troy | Assessing the price effects of flood hazard disclosure under the California natural hazard disclosure law (AB 1195)[END_REF].

Corsica is a beautiful island in the Mediterranean Sea, its coastal zones are aes thetically desirable and economically important. For example, roughly 70% of the population lives in shoreadjacent counties. Most cities and tourist at tractions distribute along coasts [START_REF] Vogiatzakis | Corsica". In: Mediter ranean island landscapes: natural and cultural approaches[END_REF]. Even though local 123 124 6. The value of sea views in a Mediterranean island: Hedonic analysis with spatial multilevel modelling researchers [START_REF] Kessler | Le double marché foncier et immobilier en Corse. Itinéraires géographiques[END_REF] have paid attention to the coast for a long time, no studies have been conducted to quantify the value of sea views.

In the existing literature, the main approach to assessing amenities is to an alyze their implicit prices, via the hedonic pricing method [START_REF] Rosen | Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition[END_REF]. In this chapter, I assess the implicit price of sea views on Corsican apartment prices within the hedonic pricing framework.

Scenic amenities, however, are usually perceived through the human eyes.

Views, therefore, are difficult to quantify. Earlier studies attempt to valuate views using dummy variables, categorical variables within the hedonic pricing framework (Benson et al., 1998; Bourassa, Hoesli, and Peng, 2003; Michael et al., 2002). While the utilization of these approaches has some limitations. Nowadays, with the help of geographic information systems (GIS) and point referenced data, recent studies incorporate a more precise and objective mea sure of views (Hindsley et al., 2013; Paterson and Boyle, 2002; Yu et al., 2007).

In addition to the difficulty of measuring view, another important question arises: what is the implicit price of sea views in the presence of spatial ef

fects? To answer this question, spatial econometrics [START_REF] Anselin | Spatial Econometrics: Methods and Models[END_REF] seems to provide a promising way. We have observed a large number of hedonic price applications incorporating spatial econometrics [START_REF] Yoo | A review of the hedonic literatures in envi ronmental amenities from open space: a traditional econometric vs. spa tial econometric model[END_REF], since it became the mainstream in regional science methodology over the last few decades. Further, pointreferenced housing data are sometimes organized hi erarchically (Bivand et al., 2017; Dong, Harris, et al., 2015; Dong and Harris, 2015). For example, individual houses are located in neighborhoods, which are nested within districts, and then are situated in even higher or more aggre gated scales such as municipalities and regions. Such multilevel structures are reinforced if we investigate regional or national data, as higher spatial scales lead to more heterogeneous factors. Ignoring or misspecifying the multilevel structure in a hedonic housing price model is likely to produce biased infer ence, and of course, incorrect estimates of the implicit price for sea views. As such, the question is further specified, what is the implicit price of sea views in the presence of both the spatial effect and the multilevel structure.

To account for the spatial effect and multilevel structure simultaneously, singlelevel regression seems inappropriate. I, therefore, develop a Bayesian 6.2. Literature review 6 125 hierarchical spatial model [START_REF] Arab | Hierarchical Spatial Models[END_REF] containing two Leroux's condi tional autoregressive (LCAR) components [START_REF] Leroux | Estimation of disease rates in small areas: a new mixed model for spatial dependence[END_REF] (spatial mul tilevel models hereafter). The LCAR process is used for modelling spatial effects at both the apartment and the higher scale. More precisely, I consider a context, in which the apartmentlevel spatial effect is probably induced by omitting spatial covariates or misspecifying spatially delineated variables; fur ther, the highlevel spatial effect may be derived from spatial spillovers. The proposed spatial multilevel model allows spatial autocorrelation, heterogene ity and nested structures to be captured simultaneously, and hence offers precise estimates of the implicit price for sea views.

The rest of this chapter is organized as follows. Section 6.2 reviews pre vious hedonic analyses on the economic valuation of views, and examines spatial hedonic models with different spatial scales. Section 6.3 gives a de tailed introduction of statistical models, including the LCAR model, the pro posed spatial multilevel models and their spacetime extensions. Section 6.4

introduces the procedure to generate the variable of interest, followed by the empirical investigation of the value of sea views. Section 6.5 presents the results and policy implications, and I draw conclusions in Section 6.6.

Literature review

What is in a view?

Researchers have recognized the economic benefits of views on property val ues for a long time. [START_REF] Bourassa | Do housing submarkets really matter?[END_REF] believed that the benefit of views came from aesthetic characteristics in the environment. More importantly, it is necessary to distinguish the view from the accessibility to an amenity, since good views usually imply the closeness to an amenity. [START_REF] Bin | Viewscapes and flood hazard: Coastal housing market response to amenities and risk[END_REF] confirmed their and demonstrated that view variables could capture the rest residual amenity values, after controlling for the access to an amenity. [START_REF] Bourassa | What's in a view?[END_REF] (1998) investigated different types and scope of views and found that both ocean and lake views can attract premiums. A poor par tial ocean view attracted the lowest premium of 8%, while a full ocean view commanded the highest premium of 59%. However, mountain views did not affect property values significantly. [START_REF] Tse | Estimating Neighbourhood Effects in House Prices[END_REF] estimated the impact of a sea view on Hong Kong residential properties. Their results demonstrated that the sea view had significantly positive impacts on property values, irrespective of different model specifications. Sea views were found to increase the value by 6% in the selected model, while linear regression omitting spatial effects overestimated positive impacts. Jim and [START_REF] Chen | Value of scenic views: Hedonic assessment of private housing in Hong Kong[END_REF] studied the harbour view of Hong Kong and showed that the harbour view premium was around 3%. Moreover, the mountain view of Hong Kong was found to be insignificant. [START_REF] Sander | The value of views and open space: Estimates from a hedonic pricing model for Ramsey County, Minnesota, USA[END_REF] investigated how a singlefamily house's viewshed affects residential property values. They concluded that properties with larger viewsheds often had higher transaction prices compared with smaller view sheds.

How to measure a view?

Many studies accessing views in housing prices fall into the hedonic pricing model. Thus, views act as an explanatory variable in hedonic pricing regres sion. In the existing literature, researchers have attempted different ways to generate view variables, including discrete measures in the early stages and recent continuous measures. For example, a viewrelated dummy vari able equals 1 if a property has a view of an amenity and 0 otherwise. The dummy variable approach has clear limitations, since it neglects the quality of the view. To address this critique, multiply dummy variables or a polyto mous variable is applied. In the study of [START_REF] Benson | Pricing residential amenities: the value of a view[END_REF], four dummy variables (e.g., a full ocean view dummy, a superior partial ocean view, a good partial ocean view and a poor partial ocean view) are implemented to describe the quality of ocean view. [START_REF] Bourassa | What's in a view?[END_REF] applied a polytomous variable including narrow, medium and wide levels to measure the quality of lake views. However, the polytomous variable approach may experience subjective classification, and fail to properly capture the impact of views.

6.2. Literature review 6 127 Recent advances in GIS allow us to carry out a viewshed analysis, which provides a precise, objective and continuous measurement of views compared with the previous discrete indicators. In simple, the viewshed analysis quan tifies a two/threedimensional view by examining whether each point on the surface is visible from an observation point or not. Advances in GIS have promoted viewshed analyse. [START_REF] Bin | Viewscapes and flood hazard: Coastal housing market response to amenities and risk[END_REF] created an ocean view variable relying on the twodimensional viewshed analysis. Their result showed that homebuyers would like to pay $995 for a onedegree increase in the view of the Atlantic Ocean. [START_REF] Hamilton | Integrating lidar, GIS and hedonic price modeling to measure amenity values in urban beach residential property markets[END_REF] investigated the willingness to pay for ocean views using data from Florida coastal communi ties. The variable was also built on the twodimensional viewshed analysis.

It was found that a onedegree increase in the viewshed would command a $1 228 premium. [START_REF] Hindsley | Gulf views: toward a better understanding of viewshed scope in hedonic property models[END_REF] analyzed the impact of Ocean views on residential property prices using data from Pinellas County, Florida. To capture the impact of ocean view, they generated three continuous, ocean view indicators, e.g., total visibility, maximum visibility and mean visibility. All indicators were statistically significant and the authors concluded that ocean view would command premiums.

Spatial effects at different spatial scales

Standard hedonic regression, however, does not account for spatial effects.

Regional scientists then apply spatial hedonic regression, which often offers satisfying results compared with standard hedonic regression. For example, the abovementioned studies from [START_REF] Bin | Viewscapes and flood hazard: Coastal housing market response to amenities and risk[END_REF] and [START_REF] Hindsley | Gulf views: toward a better understanding of viewshed scope in hedonic property models[END_REF] implemented spatial lag models. More recently, researchers are aware of the importance of the multilevel characteristic of spatial data, since different spatial scales probably induce different spatial interactions.

To the best of my knowledge, few researchers give solutions to account for both multilevel structures and spatial effects [START_REF] Harris | A Simulation Study on Specifying a Regression Model for Spatial Data: Choosing between Autocorrelation and Heterogeneity Ef fects[END_REF]. [START_REF] Glaesener | Neighborhood green and services diversity effects on land prices: Evidence from a multilevel hedonic analysis in Luxembourg[END_REF] assessed the effect of green space amenities and neigh bourhood services on residential land prices in Luxembourg by means of a cross regressive multilevel model containing an additional spatial lag of inde pendent variables [START_REF] Halleck Vega | The SLX model[END_REF]. Dong and Harris (2015) suggested a more sophisticated, spatial multilevel model, namely the Hierar 128 6. The value of sea views in a Mediterranean island: Hedonic analysis with spatial multilevel modelling chical Spatial Autoregressive (HSAR) model. It is designed for the context, in which spatial spillovers appear in both highlevel units and lowlevel units.

Hence, the model incorporates two spatial weighting matrices, one is used for gauging the spatial spillover among all lowlevel units, another is used to as sessing the spatial spillover among the highlevel units. This model is used for investigating the impact of schools on property prices [START_REF] Dong | Schools, land markets and spatial effects[END_REF]. [START_REF] Goldstein | Multilevel statistical models[END_REF].

spatial multilevel models

The LCAR component is often considered as a prior specification in Bayesian paradigms and easily embedded in a hierarchical generalized linear model, whose three levels are: For example, apartments are located at 𝑛 nonoverlapping points 𝑖 = {1, … , 𝑛} and nested into 𝑚 nonoverlapping areas (corresponding to the high level units) labeled as 𝑗 = {1, … , 𝑚}, which are linked to a 𝑛 × 1 vector of responses 𝑌 = (𝑦 1 , … , 𝑦 𝑛 ). The structured additive predictor contains a 𝑛 × 𝑝 housing covariate matrix 𝑋, a 𝑛 × 𝑞 areal covariate matrix 𝑍, an LCAR com ponent for apartments Γ 𝑖 = (𝛾 1 , … , 𝛾 𝑛 ), and an LCAR component for areas Γ 𝑗 = (𝛾 1(1) , … , 𝛾 𝑚(𝑛) ). 𝑚(𝑛) denotes the area 𝑚 to which apartment 𝑛 be longs. For areal covariates, apartments within an area are assigned the same areal covariate value1 . It is worth noting that Γ 𝑖 is a 𝑛 length random vector, while Γ 𝑗 is a 𝑚 length vector with 𝑚 ≪ 𝑛, and Δ is a 𝑛 ×𝑗 block diagonal design matrix linking apartments to areas. The two LCAR components are used for gauging spatial autocorrelation at different levels that remain in the data after the covariate effects have been accounted for. Lastly, 𝛽 and 𝜉 correspond to 𝑝 × 1 and 𝑞 × 1 vectors of unknown coefficients, respectively. (6.2)

Here, 𝑄 Γ (⋅) is the corresponding precision matrix for the LCAR component

Γ (⋅) , 𝑄 Γ (⋅) = [𝜆𝑊 * + (1 -𝜆) 𝐼 𝑆 ] (6.3)
where 𝐼 𝑆 denotes the identity matrix of dimension 𝑆2 . 𝑊 * denotes the vari ant of a 𝑆×𝑆 spatial adjacency matrix 𝑊. The mixing parameter 𝜆 (0 ≤ 𝜆 ≤ 1)

ensures the separation of spatially structured and unstructured variability.

Moreover, 𝜃 𝜇 contains all parameters that appeared in the process model. must be centered around zero to avoid identifiability issues of the models [START_REF] Goicoa | In spatiotemporal disease mapping models, identifiability constraints affect PQL and INLA 8. Bibliography results[END_REF].

Empirical analysis

Generating sea view Index

As previously stated, more and more studies employ continuous metrics to measure view. The most common are variants of viewable areas or view angles based on a radius. For my study, the sea view index relies on an individual property's viewable areas adapted with minor modifications from [START_REF] Hamilton | Integrating lidar, GIS and hedonic price modeling to measure amenity values in urban beach residential property markets[END_REF]. I detail the procedure to create viewable areas into three steps that involved:

(i) Positioning a virtual "observer". To reduce heavy computational loads and to facilitate following calculation, the observer point for each apart ment is set to the centroid of the parcel where an apartment locates. I believe that the centroid of a parcel is a good approximation of apart ment location, because the parcel is the smallest unit of land and usually corresponds to one apartment building in Corsica. Moreover, to deter mine the observer's height, I first calculate the elevation at the centroid of a parcel. Then, a point 1.8meters off the ground is added.

(ii) Creating apartments' potential view areas at a 10km distance from the "observer" point. It is important to note that the view area should not exceed half of the circle given the "observer" point and the 10km radius.

(iii) Summarizing the field, where the view area overlaps with the Mediter ranean Sea. The unit of the view area is in square meters. 

Measuring beach access

In the hedonic analysis, another crucial factor relating to the sea view index is the accessibility of the nearest beach, e.g., actual access distances from each property to the nearest beach, to enable the implicit value of living close to the beach to be quantified [START_REF] Bin | Real estate market response to coastal flood hazards[END_REF]. Previous studies typically used the Euclidean distance from each property to the centroid of the nearest beach [START_REF] Parsons | A value capture property tax for financing beach nourishment projects: an application to Delaware's ocean beaches[END_REF]Noailly, 2004; Pompe, 2008). This simple measurement could be a good proxy of access, but it fails to truly account for the actual access to the nearest beach. Because we believe that beaches are likely to be accessed using road networks, rather than cutting across other places in a roughly asthecrowflies manner. For example, many sandy beaches in Corsica are located on the other side of hills, access is not always easy. People have to follow singed beach access points and drive along crooked roads.

I, therefore, argue that the road distance to the nearest beach from each property should offer a more accurate measurement of beach access than the Euclidean distance. Hence, the road distance to each beach from properties is calculated on the basis of local road networks in a GIS environment. Based on the average driving speed on different types of roads (average driving speeds are identified by a vehicle GPS database provided by Navteq), I further give the driving time to the nearest beach from each apartment. These data with sea view information will be joined back to apartment sales data.

Data

Housing transaction data are obtained from the "PERVAL" dataset used in the Chapter 4, and the data associated with "EPCI" are an aggregation of the Corsican countylevel data used in the Chapter 5. After a combination, the final dataset is made up of 6 377 sales of apartments.

Actual sales prices are available for all apartments in the final dataset with the mean €149 685 and median €138 042 after adjusting for inflation (the base year is 2006). Further, apartment sale prices range from €57 446 to €325 432. This variable is transformed into a logarithmic scale and serves as 134 6. The value of sea views in a Mediterranean island: Hedonic analysis with spatial multilevel modelling the dependent variable.

Housing structure covariates can be found in the dataset directly, while neighbourhood covariates and view variables for each apartment are calcu lated via a geographic information system (GIS). All independent variables are summarized in Table 6.1 along with the expected impact of each variable on apartment sale prices, and In this context, I take the socalled "Etablissement public de cooperation intercommunale" ("EPCI") as the cluster. There are 19 "EPCI" zones in Cor sica. The spatial configuration of Corsica "EPCI" zones are displayed in Figure 6.1 (Table 7.3 in Appendix 7.5 shows the corresponding names). According to an official report [START_REF] Nicolai | Les trois quarts des Corses travaillent dans leur intercom munalité de résidence[END_REF], in 2016, there were 130 200 active em ployees in Corsica, and most of them commuted within the EPCI where they lived. Since apartments are nested into "EPCIs", spatial dependence caused by omitting unobserved neighbourhood effects may occur among apartments that are spatially close within an "EPCI". Further, spatial dependence between "EPCIs" seems to be expected. More precisely, "EPCIs" located further apart should be less similar than "EPCIs" located closer to each other. For example, we may observe the transition from a highly urbanized area to semiurban and even rural areas, if we move from an "EPCI" to its neighbours and then further "EPCIs". As such, LCAR components for the different levels are incorporated in Eq. 6.6, leading to the same specification of Eq. 6.2 (labelled as Model 1).

Lastly, I investigate the impact of sale periods on the basis of the spatial effect and multilevel structures. In the hedonic pricing literature, the tem poral dimension has attracted little attention. In some hedonic applications, sales data are collected over short periods, e.g., one year or two years, and researchers prefer to collapse the few periods to a single time point. In the case of long periods, some scholars intend to capture temporal heterogeneity via time dummies. Following the same logic, I develop Model 2. On the other hand, other researchers attempt to capture temporal trends via a linear or spline function. I extend a linear trend function by incorporating additional "EPCI"specific and unitspecific components to gauge both temporal trend and spatiotemporal variation, like the specifications shown in Section 6.3.3.

These models are labelled as Model 3 and Model 4 respectively. A summary of model specifications are shown in Table 6.3.

Note that different prior distributions are assigned to the hyperparameters 

𝜆 𝑖 , 𝜆 𝑗 ∼ Uniform (0, 1), 𝑙𝑜𝑔 ( 1 𝜎 2 Γ 𝑖 ) , 𝑙𝑜𝑔 ( 1 𝜎 2 Γ 𝑗 ) , 𝑙𝑜𝑔 ( 1 𝜎 2 𝛿 𝑗(𝑖) ) , 𝑙𝑜𝑔 ( 1 𝜎 2 𝛿 𝑖 ) ∼ logGamma(1, 0.00005).
(6.7) 138 6. The value of sea views in a Mediterranean island: Hedonic analysis with spatial multilevel modelling Furthermore, the highlevel spatial adjacency matrix 𝑊 𝐸 is built on the queen contiguity of the 19 "EPCIs". In contrast, an element in the lowlevel spatial adjacency matrix 𝑊 𝐴 is specified as:

𝑤 𝐴 𝑖𝑗 = { 1 𝑑 𝑖𝑗 < 𝑑 0 otherwise, (6.8)
where 𝑑 is the distance threshold. Considering the Corsican context (the 95%𝐶𝐼 for the spatial range is (1.291; 1.698)), this threshold is set to 2.5 km.

𝑑 𝑖𝑗 is the Euclidian distance between apartment 𝑖 and 𝑗. 

Results

Model assessment

Model comparison results for the four models are provided in Table 6.4. and 4 indicates that the dummy variable approach captures more temporal variation compared with the linear temporal trend approach.

Interpreting covariate effects

The estimation results from Model 2 are provided in Table 6.5.

Most structural variables are statistically significant, and their signs are as expected. Several construction periods, including the period 19141947, 19481969, 19701980 and 19811991 are not significant. In contrast, the price of apartments built over the period 19922000, 20012010, 20112017 has a significant increase, compared with the apartment built over the pe riod 18501913. Further, the signs for the apartment type variable are as expected. This result indicates that studio apartments should have lower values compared with normal apartments, while duplex apartments should have higher values, and the associated marginal implicit prices are 0.106 (95%𝐶𝐼, -0.135; -0.077) and 0.047 (95%𝐶𝐼, 0.020; 0.074), respectively.

These results clearly show that most accessibility covariates influence apart ment sale prices, and the corresponding signs are as expected. In general, increasing the distance to the nearest hospital decreases home sale prices, and increasing the distance to the nearest hospital by 1 km produces a 0.3% (95%𝐶𝐼, -0.005; -0.001) decrease in apartment sale prices. Increasing the distance to the nearest primary school by 1 km also suggests an apartment sale price decrease of 0.3% (95%𝐶𝐼, -0.005; -0.002). In contrast, we do not observe a significant impact of the distance from the nearest pharmacy on apartment prices.

Increasing the time to the nearest beach by 1 minute produces a 1.3% (95%𝐶𝐼, -0.015; -0.011) decrease in apartment sale prices. The coefficient for the variable of interest, the sea view, is 0.005 (95%𝐶𝐼, 0.004; 0.005). It means that increasing sea view by 1 𝑚 2 should steam a 0.5% increase in 140 6. The value of sea views in a Mediterranean island: Hedonic analysis with spatial multilevel modelling For the contextual covariates, the coefficient for the population density is negative, but this variable does not significantly impact apartment sales prices, indicating that population density is not a particular consideration for homebuyers. The averaged council tax rate within an "EPCI" has a large negative coefficient, but it is not statistically significant either. On the other hand, the physical landscape counts have a significant impact on apartment prices. The estimated coefficient is 0.013 (95%𝐶𝐼, 0.004; 0.023), meaning that the marginal implicit price for increasing the physical landscape count by 1 evaluated at the mean apartment sale price indicates a 1.3% price increase.

This illustrates the preference of homebuyers for physical landscapes, e.g., lakes, mountains, alpine rocks, estuaries.

Lastly, all time dummies are statistically significant and positive, compared with the baseline year (2006). The evolution of their coefficients is shown in 

Interpreting random effects and visualization

The estimates of random effect components are shown in Table 6.6. 
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143 a huge part of variability, then the spatial pattern at the apartment level also explains a considerable part of variability. Lastly, the Gaussian residual com ponent explains the smallest part of variability.

In addition to the variance components, the spatial mixing parameters at both the apartment level and the "EPCI" level are statistically significant at the 95% credible level. That is to say, the proposed spatial multilevel hedonic model, rather than a standard nonspatial multilevel model, is the most effec tive model. The spatial mixing parameter at the "EPCI" level equals 0.2795 (95%𝐶𝐼, 0.0186; 0.7947), confirming that a considerable part of variability is due to spatial autocorrelation. Regarding 𝜎 2 𝑗 and 𝜆 𝑗 jointly, I can conclude that apartment prices are affected by spatial effects from their own "EPCI" as well as by effects from surrounding "EPCIs".

The spatial mixing parameter at the apartment level is also significant, but its magnitude is fairly low 0.0026 (95%𝐶𝐼, 0.0017; 0.0038). The low value indicates that heterogeneity dominates variability among apartments. These results conform to the motivation of applying the proposed spatial multilevel models. Figure 6.6 maps the estimated posterior means of "EPCI" level random effects from Model 2. Lighter colours represent stronger positive effects and darker colours indicate stronger negative effects. Overall, there is a clear spatial pattern: "EPCIs" with strong negative effects cluster around the north eastern coast (zone 16, 14, 8), and "EPCIs" with strong positive effects are located on the southeastern coast (zones 2, 4). These may be a reflection of the significant and positive spatial mixing parameter. Further, the strongest positive effects are found in zone 17, alongside the "EPCI" (zone 10) with a strong negative effect. I believe that this is a reflection of heterogeneity.

More precisely, the strongest positive random effects found in zone 17 may be related to the presence of the University of Corsica. The strong negative random effects of the northeastern cluster are likely associated with counties dominated by agricultural and industrial activities. Concerning the southeast ern cluster, the high positive random effects are probably related to cities (Porto Vecchio, Bonifacio) and two commercial ports. There are many resi dential communities in this cluster, along with many commercial facilities such as shopping malls and many servicerelated job opportunities. 

Policy implications

As the regional council ("Collectivité Territoriale de Corse") requires local au thorities to release new zoning plans and regulations soon, planners or policy makers will make important decisions about developing or preserving differ ent types of lands in each county. These decisions will determine future land uses. This, in turn, will influence the availability of environmental amenities both locally and regionally.

To formulate relevant planning, a question should be addressed primarily, "what is the implicit price of each amenity?" Once the accurate information on residents' preferences is estimated, the planner can formulate appropriate planning and policies to meet the community expectations and to minimize the negative economic, social, and environmental impacts associated with land use changes. In this study, the estimates serve as a starting point for the investigation of residents' preference and expectation for coastal views, Further, this study suggests that sea views and beach access jointly should be considered as key elements in future planning. Since the beach access sig nificantly affects apartment sale prices, a potential policy intervention is that local authorities should improve the accessibility, e.g., by providing better transportation infrastructure or public transport to beaches. This interven tion seems more attractive for noncoastal counties than for coastal counties.

Concerning the sea view, planners should preserve this amenity, for example, levying council tax in coastal counties and limiting building height. Policy makers could enhance the benefit of the sea view by releasing amenityled growth strategies. Local authorities should also provide more public goods like hospitals and schools.

Lastly, my findings also suggest the regional council to establish differ entiated planning depending on the "EPCI". For example, zone 17 has the strongest positive random effects, which probably relate to the housing de mand from college students. The regional authority should conduct surveys to collect detailed information on this area, so that planners could decide whether to increase land supply or not, e.g., to convert agricultural or industrial lands for residential uses. The first basic problem I focused on in this study is building a sea view index, which can quantify sea views objectively and appropriately. In doing so, I generate a continuous index based on the viewshed analysis. This index can enhance the judgement of planners, as compared with the traditional use of subjective rules of thumb.

Concluding remarks

Subsequently, I apply this index with other covariates to assess the implicit price of sea views via the hedonic price method. The results, like those of previous studies, clearly indicate that a preference exists for living near prime schools, pharmacies. More importantly, I find that the sea view has a small but significant impact on housing prices. My results also confirm that homebuyers are willing to pay a premium for living close to coasts, and that premium consists of both accessibility values and the value of sea views. As such, the value calculated for either the beach access or the sea view does not represent the real values for living near to coasts.

Lastly, I focus on the rationality of the proposed spatial multilevel hedonic 

Main Findings

The first empirical chapter (Chapter 4), "Time, space and hedonic prediction accuracy: evidence from Corsican apartment market" 1 mainly evaluates three Bayesian hierarchical models with different spatial, temporal and spatiotempo ral components. I attempt to select the most effective model that satisfies the goodness of fit, the predictive power and the computational costs. Our results demonstrated that the modified hierarchical autoregressive model [START_REF] Sahu | Hierarchical Bayesian autoregressive mod els for large spacetime data with applications to ozone concentration modelling[END_REF] is the most effective. In particular, this model involves a space time random effect specified by an AR(1) structure with spatially correlated but temporally independent innovations. Based on this particular component, spatial and temporal autocorrelation across housing units is gauged. In other words, an observation directly borrows strength from its neighbours in space and time.

Moreover, I find that most housing structural attributes and accessibility at tributes significantly affect housing prices. More importantly, the spatiotem poral patterns explain a large portion of the variance. I also draw a map

showing housing price gradients. I identify the hot spots and cold spots in terms of housing prices on the map. Some hot spots may lead to price ap preciation by up to 82%, whereas some cold spots may result in a 45% price reduction. Regarding the time dimension, the location of these hot spots and cold spots has not changed dramatically between the first quarter of 2006 and 1 The extracts of Chapter 4 are published in The Annals of Regional Science, 64, 367-388 (2020), https://doi.org/10.1007/s00168019009672. The second empirical chapter (Chapter 5), "Unveiling spatial and temporal patterns of second home dynamics: a Bayesian spatiotemporal analysis for a Mediterranean island"2 demonstrates that the socalled ripple effect exists in the Corsican second home rates. Promoted by [START_REF] Meen | Spatial aggregation, spatial dependence and predictability in the UK housing market[END_REF], the ripple effect is initially used to describing regional/subregional housing prices comovement in the United Kingdom. This comovement happens on both the spatial and temporal scales. I, therefore, intend to study the comovement of Corsican second home rates at the county level.

In Corsica, second homes have been considered a major development is sue, but few empirical studies discuss this issue at an island scale [START_REF] Maupertuis | Les résidents secondaires en Corse: différentes façons de s' ancrer au territoire. L'exemple de la commune de Lumiu[END_REF]. To study the comovement of second home rates, I look into the spatial and temporal dimensions of second home rate changes among Corsican counties. Borrowing ideas from small area estimation, I propose a Bayesian hierarchical model built on the BesagYorkMollie (BYM) model and its variants (i.e. LCAR model [START_REF] Leroux | Estimation of disease rates in small areas: a new mixed model for spatial dependence[END_REF]).

Through model comparison criteria, I demonstrate that the model involving spatial, temporal components (i.e., the LCAR component and the firstorder random walk component) and a spatiotemporal interaction term produces the most precise estimates and the best forecasts compared with other models involving different combinations of spatial and temporal components. This also implies the existence of the comovement of the second home rates in Corsica. In addition to the spatial and temporal components, the spatiotem poral component is used for capturing the deviation beyond the main spatial and temporal trends.

To interpret the spatial comovement, I also identify hot spots and cold spots, where specific counties exhibit higher second home rates or lower sec ond home rates respectively. For instance, the Bastia area (e.g. Biguglia, Furiani, Bastia) is a significant cold spot, whereas some counties in the Bal agne area (e.g., Lumio) and the Southern area (e.g., Lecci) belong to hot spots. The temporal comovement reveals a gradual increase in the second home rate over the past 11 years. Furthermore, the study found that physical landscape counts, coastal counties, and mountainous counties are positively 150 7. Summary and Future works associated with second home rates, while cultural landscape counts, number of households and interest rates show a negative association.

The results of this study should be useful for policy makers. They can in tervene in hot spots to curb the high second home rate and to prevent second home buyers spilling over to adjacent counties. As a result, the inhabitants' needs are met.

The third empirical chapter (Chapter 6), "The value of sea views in a Mediterranean island: Hedonic analysis with the spatial multilevel model" mainly assesses the implicit price of sea views on Corsica apartment prices in the presence of nested spatial data structures. This study is based on the hedonic price method, as it is the main approach for estimating the implicit price of environmental attributes.

As a scenic amenity, views are usually perceived through human eyes and are difficult to measure and quantify for valuation purposes. After reviewing the literature, I find that the viewshed analysis implemented on geographic information systems provides a feasible way to generate an objective, contin uous measurement of views. Then, estimating sea views relies on the hedonic price method. However, I notice that the nested data structure may affect the results if I account for additional contextual variables. To address this is sue, I propose a spatial multilevel model, where spatial effects and the nested structure of data are considered simultaneously. Furthermore, this model is extended by including a temporal component to account for temporal dynam ics.

Our findings demonstrate that after controlling for all covariates, the sea view has a small but statistically significant impact on apartment prices. That is to say, home buyers have a higher marginal willingness to pay for larger sea views, even if the magnitude is small. More importantly, I find that proximity to beaches also produces positive impacts on apartment sale prices as well.

We may conclude that the implicit price of living near to beaches consists of two parts, the implicit price of sea views and the implicit price of proximity to beaches. Further, most apartment characteristics are statistically significant, but variables associated with "EPCIs" are not. I also find that strong spatial spillovers occur at the EPCI scale, but unobserved heterogeneity dominates at the apartment level. The results of this chapter provide valuable information for planners. Based on the estimated implicit prices, planners can prepare appropriate planning to meet the expectations of the inhabitants and to minimize the negative impacts on the economy, society, and environment during the land use changes.

Main contributions

In addition to the abovementioned results, this thesis contributes to the ex isting literature on two broad aspects, the methodological proposition and the empirical findings.

Methodologically, I apply several adhoc geoadditive models combined with the conditional autoregressive and Gaussian processes, and the Bayesian approach to analyze repeated crosssectional and panel data that exhibit clear spatial and temporal dimensions. As alternatives to classical spatial economet rics models, the proposed models are used for analyzing housing markets and land use changes. To my knowledge, these models have not been considered in the existing literature.

It is common knowledge that in a residential property market, if buyers face many unobservable local factors, public amenities and unreasonable ask ing prices of a house from a property agency, they often choose to take a look at the prices of nearby properties. As such, they can obtain some in formation and reduce associated uncertainty. The application of geoadditive models with the conditional autoregressive process and the Gaussian process preserves the idea of spatial spillovers, but the spillovers are shown in an other manner. Both the conditional autoregressive process and the Gaussian process borrow strength from the neighbours of an observation.

Lastly, spatial econometrics does provide a powerful tool for examining spatial patterns across different properties. There has been a significant amount of research on spatial effects over the last few decades, but tempo ral dimensions have received limited attention in empirical analyses of hous ing. Since classical spatial econometrics may not be flexible enough to handle spatiotemporal data, I turn to geoadditive models, which can gauge spatial and temporal dynamics in different ways. I also highlight that the integrated nested Laplace approximation (INLA) technique is used for model fitting and Chapter 6 are addressed via the hedonic price method, since I attempt to investigate the determinants of housing prices and to evaluate nonmarket goods. The adjacent effect is also an important economic underpinning for these two studies. Our findings, such as location being an important de terminant, the sea view and the accessibility to beaches having significant impacts, can provide useful information for planners and policymakers. Re garding Chapter 5, I intend to investigate whether the comovement of second home rates among all Corsican counties exists. This is done by analyzing the spatial and temporal patterns of second home rates. Our results clearly show the existence of the comovement. In addition, I identify the hot spots and cold spots of second home rates, meaning that additional interventions need to be applied to these areas.

Strengths and Weaknesses of Each Model

The proposed model in Chapter 4 has several advantages over classical spatial econometrics models. For example, it does not require a predefined spatial adjacency matrix, but it calculates distance (known as "spatial ranges") where spatial dependence diminishes to the threshold automatically. Moreover, it offers a more flexible way to handle repeated crosssectional data compared 7.4. Future works 7 153 with the spatiotemporal autoregressive model (Dubé and Legros, 2013a) and the pseudopanel model [START_REF] Baltagi | Hedonic Housing Prices in Paris: An Unbalanced Spatial Lag PseudoPanel Model with Nested Random Effects[END_REF].

The spatiotemporal Bayesian binomial regression described in Chapter 5 is a new approach to handling second home rate changes. The model accounts for both potential covariates and spatiotemporal trends, which outperforms classical linear models and original spatiotemporal Bayesian binomial models that do not consider covariate effects. Further, this model contains a Leroux's conditional autoregressive component relying on spatial adjacency matrices.

The selection of an appropriate spatial adjacency matrix is still challenging.

The multilevel spatial model in Chapter 6 is also a new approach to handle pointreferenced housing data. Since the proposed model is different from the spatial multilevel from Dong and Harris (2015), it enriches the spatial econometrics literature. However, from an economic perspective, endogenous variables may exist in the model, i.e., property tax. Moreover, for a multilevel model, prior selection is challenging. An indepth analysis of various prior distributions should be necessary.

Future works

In this thesis, particular attention has been paid to addressing the spatial and/or temporal dimensions in hedonic housing prices models and mapping second home rate dynamics. In this section, we suggest some possible direc tions for future research.

Concerning the models in chapter 4, future studies may focus on the pre dictive power of different spatiotemporal components, including the tensor product approach, thinplate splines and the SPDE approach. Moreover, it is possible to extend the proposed Bayesian hierarchical model to study the bar gaining power associated with both home buyers and sellers in the market.

For example, weak buyers probably pay higher prices for a house, but strong sellers may receive higher prices (Harding, Rosenthal, et al., 2003; Harding, Knight, et al., 2003). In Section 7.3, I have mentioned that the proposed model in Chapter 5 relies on a spatial adjacency matrix, which should be selected prudently. A recent study on conditional autoregressive models focuses on the socalled 154 7. Summary and Future works stochastic spatial adjacency matrix [START_REF] Corpasburgos | On the use of adaptive spatial weight matrices from disease mapping multivariate analyses[END_REF].

This matrix creates an additional level in Bayesian hierarchical models for es timating the elements in the stochastic matrix. For example, [START_REF] Lu | Bayesian areal wombling for geographical bound ary analysis[END_REF] and [START_REF] Lu | Bayesian areal wombling via adjacency modeling[END_REF] proposed a stochastic spatial adjacency matrix approach, where the element in the stochastic matrix is assumed to be a binary stochastic value following a Bernoulli distribution. I would like to extend the model described in Chapter 4 to adapt to this flexible spatial matrix selection approach.

On the other hand, I would also like to compare the model described in

Chapter 5 with spatial lag models with spatiotemporal trends. A few schol ars (Ver Hoef, Hanks, et al., 2018; Wall, 2004) compare conditional autore gressive models and spatial lag models empirically and theoretically. To my knowledge, [START_REF] Simões | A spatial econometric analysis of the calls to the portuguese national health line[END_REF] found that the spatial lag model outperform the conditional autoregressive model when they analyzed Portuguese national health line data. I intend to know, which model performs better in my case.

Concerning Chapter 6, future work may focus on the two aspects.

The first aspect centres on spatial adjacency matrices. Anselin and Arribas Bel (2013) investigated a special case where spatial dependence is group wise, with all observations in the same group as neighbours of each other.

The groupwise setting is very interesting in the multilevel modelling context.

As previously stated, EPCIs may have some impacts on individual units, known as group dependence. Therefore, I intend to know whether a multilevel model with a groupwise adjacency matrix outperforms other multilevel models with traditional adjacency matrices in terms of fitting data.

Another issue is about endogenous variables. [START_REF] Ross | Sorting and voting: A review of the literature on urban public finance[END_REF] indicated that early studies on the relationship between housing prices and property taxes may experience endogeneity of tax rates, therefore the two stages least square method should be used. [START_REF] Sirmans | The history of property tax capitalizationin real estate[END_REF] examined the existing literature on property tax capitalization and pointed out that one third of the examined studies applied the two stages least square method, others used the ordinary least square method, and some researchers applied random coefficients models. I believe that the endogeneity of tax rates should be investigated in the Corsican case as well. Combining the spatial multilevel regression model with the instrumental variable approach should also be in 

Figure 1 . 1 :

 11 Figure 1.1: The location of Corsica (within the red rectangle).

  (2017) looked into Corsican coastal counties 1.4. Research gaps 1 11 and second home buyers who lived there. Taking Lumio as an example, they identified four factors that might explain the purchase, including previous con nection with the county, physical characteristics of the county, local culture and social network, and the relationship between buyer and the local soci ety. Giannoni et al. (2017) proposed using a bargaining framework to analyze foreign investors in the Corsican land/housing market. They clearly showed that there is the socalled nonlocal buyer premium, which drove local buyers away from the market. However, they illustrated this mechanism by analyzing farmland transaction data. Caudill et al. (2019) investigated the segmentation of Corsican housing markets through Harding, Rosenthal, et al.'s (2003) bar gaining model. They finally found that there were two distinct submarkets in the Corsican housing market. In the first submarket, asymmetric bargaining power arose for local French and nonFrench residents. In contrast, similar bargaining power arose for local French, Corsican and nonFrench residents in the second submarket. Although these studies offer some enlightenment about the Corsican housing market, many relevant phenomena remain unex plained and questions remain unanswered.
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 3 Quantitative models for housing analysis provides a detailed examination of different econometric/statistical tools. In particular, I look into the latent Gaussian model with different spatial components and estimation techniques (integrated nested Laplace approximations for Bayesian analysis).Chapter 4 corresponds to the first empirical chapter. A set of Bayesian hierarchical spatiotemporal models coupled with the INLASPDE approach are 18 1. Introduction specified. Our aim is to select the most effective model that accounts for the goodness of fit, the prediction capability and the computational costs. This model is then used to make precise housing price predictions. Moreover, the spatiotempoal random effects are displayed on maps to analyse their impacts on housing prices.Chapter 5 corresponds to the second empirical chapter. A Bayesian gen eralized additive regression model is developed to investigate the spatial and temporal patterns of Corsican second home rates. I identify several coun ties as "hot spots" in terms of second home rates and policymakers should be aware of the second home issue in these counties. Methodologically, I highlight the usefulness of CAR models working as priors.Chapter 6 corresponds to the third empirical chapter. I review the literature on scenic amenities and then generate a subjective, continuous measurement of views. I also proposed a spatial multilevel hedonic model to estimate the implicit price of sea views on Corsican apartment prices in the presence of nested data structures.Chapter 7: Conclusions present overall conclusion remarks. The contri bution of this thesis to the existing literature. I also discuss the limitation of each empirical study and the potential directions for future work.

  concluded several com monly seen topics in housing studies. From the demand side perspective, topics included household location decisions, land use and neighbourhood change, environmental (nonmarket goods) valuation. By contrast, the top ics on the supply side involve investment and capital markets, institutional behavior. More recently, Jansen et al. (2011) provided a summary of ana lytical techniques for measuring housing preferences and choices. Among all

  Geniaux and Napoléone (2008) compared a geoadditive model with a ten sor product of longitude and latitude and a geographically weighted regression model empirically. Their geoadditive model reads, 𝑦 = 𝑋𝛽 + 𝑓 (long, lat) + 𝜖. (3.5) They concluded that geoadditive models had advantages over geograph ically weighted regression since the geoadditive model provides better fits, processes large datasets, and handle nonlinearity. McMillen (2012) demon strated that nonparametric and semiparametric models are generally a prefer able approach for more descriptive spatial analysis. To be more specific, local weighted regression models outperform spatial econometric models in the presence of misspecified weighting matrices. Von Graevenitz and Panduro (2015) presented a geoadditive model with a 2D thinplate splines to gauge the spatial effects. The thin plate spline bases are a series of known poly nomials of increasing complexity based on the longitude and latitude of a clearly showed that the geoadditive model fits better than aspatial models and spatial fixed effects models. These geoadditive models can be estimated either by the frequentist approach, e.g, restricted maximum likelihood (REML) 4 or by the Bayesian approach, e.g. Markov chain Monte Carlo (McMC) simulation.

  3.4. Analysis of lattice data 3 49 my interest in spatial applications, I assume the random vector 𝑈 = (𝑢 1 , … , 𝑢 𝑠 ) of spatial random effects for areas s = {1, … , 𝑠}. The conditional independence assumption relies on neighbourhood structures, where two spatial random ef fects are assumed to be conditionally independent if they are not neighbours.

  3.5. Analysis of geostatistical data 3 53 which shows the compromise between unstructured and structured compo nents. Its full conditional distribution reads, E (𝑢 𝑖 |𝑢 𝑗≠𝑖 )

  .15) If 𝜌 = 1, Leroux's model becomes the intrinsic autoregressive model, whereas Leroux's model turns to an independent and identically distributed component if 𝜌 = 0.

3. 5 .

 5 Analysis of geostatistical data 3 55 𝐾 𝜈 is the modified Bessel function of the second kind, and the order param eter 𝜈 > 0. For the special case of 𝜈 = 1 2 , the Matérn covariance func tion is equivalent to the exponential covariance function (Cov(𝑌(𝑠 𝑖 ), 𝑌(𝑠 𝑗 )) = 𝜎 2 𝑒𝑥𝑝(-𝜅||𝑠 𝑖 -𝑠 𝑗 ||)). The nonnegative parameter 𝜅 has the relationship: 𝜌 = √8𝜈/𝜅, indicating the distance at which the correlation between two lo cations declines to 0.1 (Simpson et al., 2012).

  Markovian property. Hence, random variables at observed locations are con ditionally independent. Based on the conditional independence, the Gaussian random field can be converted to a Gaussian Markov Random Field with a sparse precision matrix. The trick here is called the Stochastic Partial Dif ferential Equation approach (SPDE) introduced by Lindgren et al.(2011) The point of this approach is to use a discretely indexed random process, a Gaus sian Markov random field, approximating the continuously indexed Gaussian random field with the Matérn covariance function. Formally,

  2 ) 𝛾 𝑖 = 𝜌𝛾 𝑡-1 + 𝜖 𝑡 𝜖 𝑡 ∼ 𝑁 (0, 𝜏 𝜖 ) (3.25) Modeling spatial and temporal effects separately has received several cri tiques. Several researchers (Nobre et al., 2005; Sun et al., 2000; Xia and Carlin, 1998) have argued that these approaches do not account for the spatiotemporal interactions. As such, Bernardinelli et al. (1995) developed a parametric model, which was an extension of a random coefficient model (𝛾 + Φ = (𝛽 + 𝜃 𝑖 ) × 𝑡). The spatiotemporal component is written as, Φ = 𝜃 𝑖 × 𝑡 (3.26)

  𝑠 spatial effects of location variable 𝑠; 𝑓 3 (𝑣 3 ) = 𝑓 𝑙𝑜𝑛𝑔,𝑙𝑎𝑡 (𝑠 𝑙𝑜𝑛𝑔 , 𝑠 𝑙𝑎𝑡 ) 𝑣 3 = (𝑠 𝑙𝑜𝑛𝑔 , 𝑠 𝑙𝑎𝑡 ) twodimensional surfaces 𝑠 1𝑜𝑛𝑔 with 𝑠 𝑙𝑎𝑡 ; 𝑓 4 (𝑣 4 ) = 𝛾 𝑖 𝑣 4 = 𝑖 individualspecific random intercept; 𝑓 5 (𝑣 5 ) = 𝛾 𝑖 𝑢 𝑣 5 = (𝑢, 𝑖) individualspecific random slope of 𝑢.

  𝐷, 𝜌, 𝜅, 𝜈, …) (3.32) where [Y|𝜇, 𝜃 Y ] is the data model. It depends on the mean parameter 𝜇, where 𝐸 (𝑌) = 𝜇 and other parameters 𝜃 𝑌 . 𝜖 is a measurement error. Regard ing the process model [𝜇|𝜃 𝜇 ], 𝜂 represents the structured additive predictors. 𝑋 is a design matrix involving all covariates, 𝛽 are unknown coefficients. U (⋅)denotes the latent spatial random vector with the abovementioned condi tional autoregressive specifications. 𝐹 represents a function that describes the relationship between a series parameters and the precision matrix Q (⋅) .

  and 𝜃 Y denotes hyperparameters appeared in the process model and data model respectively. Lastly, I can impose priors on the hyperparameter vector 𝜃 = [𝜃 Y , 𝜃 𝜇 ]. Relying on the three levels, we obtain the posterior distribution of the pro cess and parameters via the Bayesian theorem [𝜇, 𝜃|Y] ∝ [Y|𝜇, 𝜃 Y ] × [𝜇|𝜃 𝜇 ] × [𝜃].

  (𝑦 𝑖 |𝑥 𝑖 , 𝜃))} .
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 3 Quantitative models for housing analysis The Deviance Information criterion incorporate the posterior expectation of deviance ( D()) and an estimate the number of effective parameters (𝑝𝐷) of a model, 𝐷𝐼𝐶 = D(𝑥, 𝜃) + 𝑝𝐷. (3.48) where D() is considered as a Bayesian measure of model fit, and defined as D(𝑥, 𝜃) = 𝐸 𝑥,𝜃|𝑦 [𝐷(𝑥, 𝜃)] = 𝐸 𝑥,𝜃 |𝑦 [-2 log 𝜋(𝑦|𝑥, 𝜃)].

  .51) Here, the conditional predictive ordinate value is defined as the cross validated predictive density 𝜋 (𝑦 𝑖 |𝑦 -𝑖 ) at the observation 𝑦 𝑖 , 𝑦 -𝑖 denotes the excluded observations. A larger value indicates a better fit of the model to the data, whereas smaller values indicate an illfitting model. Roos and Held (2011) suggested calculating the socalled crossvalidated logarithmic score, which is the mean of all CPO values,

  housing sales data. As such, the repeated cross sections belong to spatiotem poral pointreferenced data. Secondly, a Bayesian hierarchical spatiotemporal model is initially introduced. Spatiotemporal correlation is gauged via the la tent random effect component in the model. I illustrate how this model is fitted with two new techniques, namely integrated nested Laplace approximations (INLA)[START_REF] Rue | Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approxi mations[END_REF] and the stochastic partial differential equa tion (SPDE) approach[START_REF] Lindgren | An explicit link between gaus sian fields and gaussian markov random fields: The stochastic partial dif ferential equation approach[END_REF]. INLA relies on direct numerical integration and is designed for latent Gaussian models. In addition, the SPDE approach makes use of Matérn covariance structures and Delaunay triangles to yield a Gaussian Markov random field (GMRF), which is the good approxi mation of a Gaussian random field (GRF). Lastly, a set of Bayesian hierarchical models are used for studying Corsican apartment markets. I compare the data fitting result, the prediction accuracy and the computational complexity of all candidate models, which involve spatial and temporal random components in dividually and jointly. Based on the result of the comparison, I finally illustrate 4.2. Literature review: research trends in the HPMbased property valuation 4 75 the most effective model for prediction. This chapter is structured as follows. In Section 4.2, I briefly review lit erature, in particular, certain new methods to gauge spatial and temporal correlation in property prices. In Section 4.3, I describe Bayesian hierarchical spatiotemporal models and briefly introduce the INLA method and the SPDE approach. In Section 4.4, I detail the used dataset, the model specifications and the results of estimation and prediction in the study. The conclusions are presented in Section 4.5.
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 4 Time, space and hedonic prediction accuracy: evidence from Corsican apartment market framework rather than guidance on a specified case (Moreira de Aguiar et al., 2014). Researchers must face issues ranging from variable selection to model specifications.

  tion comes from[START_REF] Pace | Parametric, semiparametric, and nonparametric estimation of characteristic values within mass assessment and hedonic pricing mod els[END_REF]. To address model specification problems, he suggested socalled semiparametric index regression. He also demonstrated how this model avoided misspecification and controls spatial trends.[START_REF] Clapp | A Semiparametric Method for Valuing Residential Locations: Application to Automated Valuation[END_REF] developed local polynomial regression belonging to semi parametric models. The regression contained a nonlinear term based on lati tudes and longitudes to calculate housing location values.[START_REF] Kammann | Geoadditive models[END_REF] then introduced a geoadditive models family, which was a mixture of additive modelling[START_REF] Buja | Linear smoothers and additive models[END_REF] and a geosta tistical component. There are several candidate specifications for the geosta tistical component, such as a Kriging component or a smooth spatial trend component based on the tensor product of longitude and latitude. Basile et al. (2013) applied a geoadditive model incorporating a twodimensional tensor product smoother for space to investigate European industrial loca tions. They indicated that their model outperformed other parametric models since it allowed to control unobserved spatial patterns, to reduce misspecifica tion and to point out inward foreign direct investment clusters simultaneously.

4. 3 .

 3 Spatiotemporal modeling for geostatistical data 4 79 the apartment 𝑖 = {1, … , 𝑛} at location 𝑠 𝑖 with instant 𝑡 = {1, … , 𝑇}.

1

  It reads, 𝜉(𝑠 𝑖 , 𝑡) = 𝑎𝜉(𝑠 𝑖 , 𝑡 -1) + 𝜔(𝑠 𝑖 , 𝑡), (4.4) where 𝜔(𝑠 𝑖 , 𝑡) is a timeindependent Gaussian random field, whose spa tiotemporal covariance function is described by, 𝐶𝑜𝑣 (𝜔(𝑠 𝑖 , 𝑡), 𝜔(𝑠 𝑗 , 𝑡 ′ )𝑧 (𝑠 𝑖 , 𝑡) = (𝑧 1 (𝑠 𝑖 , 𝑡) , … , 𝑧 𝑝 (𝑠 𝑖 , 𝑡)) 80 4. Time, space and hedonic prediction accuracy: evidence from Corsican apartment market

  DataOur study focuses on Corsica, and we use the dataset extracted from the "PERVAL" database. This dataset is a collection of Corsican realestates con veyances registered by realestate lawyers. It includes all transaction infor mation such as sale prices, pointreferenced ownership, structural attributes, and locations (longitude and latitude). The raw dataset contains more than 10 000 apartments sold from 2006 to 2017. Data are then screened to remove the apartments with incomplete or questionable attributes data. Hence, the final dataset is made up of 7 634 sales of apartments spanning from 2006 to 2017. Actual sales prices were available for all apartments in the final dataset with the mean €149 467,08 after adjusting for inflation (The base year is 2006.). Further, apartment sales prices ranged from €57 445,76 to €325 431,67. Other key variables like apartment structural characteristics and accessibility variables are listed in Table 4.1 along with detailed descriptions. For spatial prediction purposes in the following subsections, the cleaned dataset is split into a training set and a validation set. I randomly place 80% of the data in the training set for fitting the models, and the remaining 1 527 observations are assigned in the validation set for testing the models. The summary statistics of continuous variables in the training set are presented in
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 4 The case of Corsican apartment markets 4 Based on the model M1, the third model (M2) involves the additional tem poral random component 𝜇 (𝑡). Therefore, spatial and temporal effects are investigated jointly in this model. Furthermore, the purely spatial (𝜔 (𝑠 𝑖 )) and the purely temporal (𝜇 (𝑡)) random component are uncorrelated. The purely temporal component is specified via an AR(1) process on the ordinal quarters.where 𝜌 is the autoregressive parameter and 𝜀 is the measurement error with the precision parameter 𝜏 𝑎𝑟1 (The corresponding variance parameter is 𝜎 2 𝑎𝑟1 .). In the Corsican case, there are 48 quarters spanning from the first quarter of 2006 to the fourth quarter of 2017. As a result, the spatiotemporal covariance function consists of the purely spatial and temporal covariance functions, which reads, Cov (𝜇(𝑡), 𝜇 (𝑡 ′ )) + Cov (𝜔 (𝑠 𝑖 ) , 𝜔 (𝑠 𝑗 )) = 𝜌 |𝑡-𝑡 ′ | is the hierarchical spatiotemporal model introduced in Subsec tion 4.3.2. This can be considered as an improvement over M2 since the temporallyconstant Gaussian random field together with the AR(1) temporal process is replaced by a temporallydynamic Gaussian random field only.
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87 Figure 4 88 4

 87488 Figure 4.1: The mesh. The boundary of Corsica is delineated in green. The observations in the training set are dotted in red, whereas the observations in the validation set are dotted in blue. The inner black line distinguishes the inner mesh and the outer mesh.

4 91Figure 4

 44 Figure 4.2: The empirical mean of the living area is shown as a black line. The 95% CI for the living area is shaded green. The model identifer is shown in the upperleft corner of each panel.

  Table4.6 displays the metrics for choosing the most effective model for our case study.Regarding the DIC scores, the models involving any random effect compo nents (M1, M2, M3) outperform the referenced model (M0). The improvement of the DIC scores could be evidence of the usefulness of considering spatial and temporal correlation in modelling. A possible reason for the well fitting mixed models (M1, M2, M3) is that through random components, observations can borrow strength from their neighbours in space and over time. Typically, adding the spatial random component to the base model results in a consider 92 4. Time, space and hedonic prediction accuracy: evidence from Corsican apartment market

Figure 4 . 3 :

 43 Figure 4.3: Timesliced plots displaying the posterior mean of spatiotemporal random effects. 2006 Q1 refers to the first quarter of the year 2006. We observe that the clusters near the island center change over time regarding the colour and surface.
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  using a unique dataset on the apartment transactions from the first quarter of 2006 to the fourth quarter of 2017. Further, I propose a set of Bayesian hier archical models incorporating different spatial, temporal and spatiotemporal 4.5. Concluding remarks 4 95 random components. The specifications of these components are demon

  literature, I suggest that researchers consider both the Bayesian hierarchical spatiotemporal model and the INLASPDE approach as instruments in their toolbox when they investigate pointreferenced housing data and real estate economics. In the next chapter, a Bayesian hierarchical spatiotemporal model for areal data is proposed. This model is used for studying second home rates in Corsica. I also look into different spatial, temporal and spatiotemporal latent

  3, I describe the Bayesian hierarchical binomial model specification, in particular, how to incorporate space, time and spacetime random effects in the Bayesian hierarchical model. Section 5.4 details empirical results and interpretation. A robustness check is conducted in Section 5.5, and I draw a conclusion in Sec tion 5.6. 5.2. Second homes in Corsica: An exploratory spatial data analysis The Corsican second home counts data are collected over 360 counties from 2006 to 2016, representing 11 years. As such, this setting results in a total of 3 960 spacetime units without any missing values. These data at the county level are obtained from "French National Institute of Statistics and Economic Studies" (INSEE) through the French population census.

Figure 5 .

 5 Figure 5.1 gives the annual second home rates among the 360 counties, where the raw counts can be found in Table 7.2 in Appendix 7.5. A gradual and steady augmentation of second home proportion is observed. I notice that the median of second home proportion remains stable during the first two years and slightly increases during the subsequent five years. The proportion of the last four years remains fairly stable. The interquartile range of the proportion shows similar stepchanges to the median proportion, falling into [0.4, 0.6].

Figure 5 . 101 Figure 5

 51015 Figure 5.2 displays the distribution of the rate of the second homes over the total house counts in the 360 counties during 20062016. Several counties (ID. 125, 128) situated in the northern tip of Corsica had a low second home rate in 2006 and 2007, which turned up in 2008 and remained stable in the subsequent years. The second home rate in Bonifacio (ID. 80) was relatively low until 2010 and then increased. Moreover, I observed that counties with
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 5210353 Figure 5.2: Geographic distribution of second home rate from 2007 to 2016.

Figure 5

 5 Figure 5.4: Annual Moran's I statistics on second home rates. All are significant at p = 0.05 level.
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 3 Spatiotemporal modeling for areal data 5 109

  is a classical Binomial model without any spatial effects. However, I detect the spatial autocorrelation in the data, it is natural to consider a model in the conditional autoregressive family and then to involve temporal components for capturing temporal trends. Different spatial or temporal components will result in different smoothing in the posterior estimates. Regarding Model 1, estimated values are likely to vary across neighbours but not over the test period. For Model 2, a single value is estimated for each neighbour and period, but the parametric formulation seems restrictive. The linear assumption is relaxed in Model 3 and the model can gauge temporal dependency in the data. Comparing with Model 2, Model 4 incorporates a spatiotemporal interaction 110 5. Unveiling spatial and temporal patterns of second home dynamics: a Bayesian spatiotemporal analysis for a Mediterranean island term, which allows for a specific temporal trend for each observation while retaining the main, linear temporal trend. As such, Model 4 should perform better than Model 2. Concerning Model 5, the inclusion of the spatiotemporal interaction component should additionally improve the goodness of fit. The empirical data will be more accurately represented.

  addition, adding a linear, parametric temporal component (Model 2) im proves the model fit (Δ 𝐷𝐼𝐶 = -61.27) slightly. The fit is further improved (Δ 𝐷𝐼𝐶 = -82.38) in Model 3 with the relaxation of the linear restriction in Model 2, using instead a dynamic nonparametric temporal component. Comparing Model 2 with Model 4, the DIC score is largely reduced (Δ 𝐷𝐼𝐶 = -693.84) because of the inclusion of a spacetime interaction term. After incorporating the TypeI spacetime interaction term, the DIC score is further reduced in Model 5. Regarding model predictive performance, the LCPO and RMSE val ues show in the same sequence as the DIC score, meaning that LCPO and the holdout method favour Model 5 as well. For these reasons, Model 5 will be used to showing the estimated coeffi cients of covariates, as well as the estimated spatial, temporal and spatiotem 5.4. Empirical results 5 111

Figure 5

 5 Figure 5.5: Log odds relations between 𝑙𝑜𝑔 2 (ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑) and the second home rate. The red line indicates the posterior mean log odds, while grey represents the corresponding 95% CI.

Figure 5 .

 5 Figure 5.7 shows the overall temporal trend for the log odds of the sec ond home rate. Two marked falls are recognized, including 20072009 and 20112012. The first period may be related to the global financial crisis of 20072008, and the second period may be related to the European debt cri sis 1 during 20112012[START_REF] Pérez | A Europe of creditor and debtor states: explaining the north/south divide in the Eurozone[END_REF]. We further notice that the scale of the
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 55 Figure 5.6: Posterior mean estimates of spatially joint random effects.

Figure 5 . 7 :

 57 Figure 5.7: Posterior structured temporal trend for second home rate in Corsica. The red line indicates the posterior mean trend and grey represents the corresponding 95% CI.

Figure 5 . 8 :

 58 Figure 5.8: Posterior mean of the typeI spatiotemporal interaction 𝛿 𝑖𝑡 for the log odds of the probability being second homes.
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 5 Unveiling spatial and temporal patterns of second home dynamics: a Bayesian spatiotemporal analysis for a Mediterranean island tainable urban planning, and hence to improve the quality of people's lives.In conclusion, this work contributes to the existing research in second homes in two broad ways. The study assesses the second home in Cor sica, an island in the Mediterranean, at the medium geographical and tem poral resolution. Since this area has not been analysed quantitatively, my findings probably provide valuable information for the intervention from the local government. From a methodological perspective, I underline the impor tance of space and time. Spatial, temporal and spatiotemporal information is very likely missed in many second home analyses. In addition to latent spa tial and temporal information, the inclusion of the amenity, accessibility and socioeconomic factors offers additional insights in the Corsican second home rate. Moreover, Bayesian hierarchical models provide an alternative way out of classical spatial econometric models to handle spatial and spatiotemporal data. After investigating Corsican apartment prices and second home rates, a question arises, how to handle both pointreferenced data and areal data simultaneously? In the next chapter, I will estimate the implicit prices of some environmental amenities via a Bayesian hierarchical model in the presence of socalled spatially misaligned data.

Finally

  [𝑌|𝜇, 𝜃 𝑌 ] depends on the process 𝜇 and other parameters 𝜃 𝑌 . Different likelihood functions (Poisson, Binomial, Gaussian, etc.) can be used for the data model. Regarding the process model, 𝑔(⋅) denotes the given link function, 𝜂 𝑖 is the corresponding additive linear predictor. In the empirical analysis of this chapter, since the logtransformed house prices are closely approximated by the normal distribution. I, therefore, have 𝑙𝑛(𝑌) ∼ [𝑙𝑛(𝑌)|𝜇, 𝜃 𝑌 ] and 𝜃 𝑌 = {𝜎 2 𝜖 } for the data model, and an identity link function is specified for the process model, 6.3. Spatiotemporal modeling for spatial data with multilevel structures 6 131 𝐸 [𝑙𝑛(𝑌)] = 𝑙𝑛(𝑌) = 𝑔(𝜇) 𝑔(𝜇) = 𝜂 𝑖 = 𝑋𝛽 + 𝑍𝜉 + Γ 𝑖 + ΔΓ 𝑗 .

Figure 6

 6 Figure 6.1: Sale counts within each "EPCI".

  Figure 6.2 and Figure 6.3 show the high level and low level spatial adjacency matrices, respectively.

Figure 6 . 2 :

 62 Figure 6.2: Spatial adjacency matrix for "EPCIs", rows and columns represent "EPCI" units.

Figure 6 . 3 :

 63 Figure 6.3: Spatial adjacency matrix for apart ments, rows and columns identify apartment units.

Figure 6 .

 6 Figure6.4 shows the nonlinear relationship between apartment surfaces and sale prices, and we observe an overall increasing trend. This finding con firms that apartment surfaces have a positive impact on sale prices. Moreover, the shape of the curve is similar to that in Chapter 4.

Figure 6

 6 Figure 6.4: Mean (the red line) and a 95% credible interval (the grey area) of the Surface.

Figure 6

 6 Figure 6.5. Time dummies show that apartment prices quickly reached their

Figure 6 . 5 :

 65 Figure 6.5: The time dummies and their 95% credible intervals. The dash line shows the baseline.

144 6 .

 6 Figure 6.6: The "EPCI" level random effects from Model 2

  Employing availability indicators, including housing structural variables, acces sibility variables, view variables (sea view index) and contextual variables, and a spatial multilevel hedonic model, in which spatial effects and nested hous ing data structures are considered, I mainly quantify the impact of sea view on apartment prices in Corsica, France. The inclusion of both the sea view indicator and the accessibility measure to the nearest beach overcomes the possible deviations in traditional hedonic regression, which accounts for either an accessibility indicator or a visibility indicator. Further, multilevel modelling can avoid misalignment, referring to mismatches when transferring the rela tionship from contextual variables to normal variables and vice versa. In the end, incorporating LCAR components to multilevel models addresses spatial effects induced by unobserved neighbourhood effects among apartments and 146 6. The value of sea views in a Mediterranean island: Hedonic analysis with spatial multilevel modelling geographical closeness of "EPCIs".

  model. The proportion of each marginal variance component clearly shows that the nested structure in housing data is important. The estimates of mix ing parameters at each geographic scale demonstrate that spatial effects play a crucial role in housing prices as well. These results indicate that any re gression analysis conducted on a single level that ignores spatial effects is not appropriate, especially in handling pointreferenced data with nested struc tures.This study, however, has several limitations. First, the sea view index can be built in a more sophisticated way. The index used in this study does not account for apartment height and window location. It is necessary to miti gate these assumptions with the help of available Light Detection and Rang ing (LIDAR) data. Moreover, I do not consider the factors affecting human perception, such as trees, obscured properties, angle of depression. With the development of computer graphics and virtual reality tools, view indices should be quantified in more detail in future studies, taking into account those factors. Lastly, this study does not investigate the impact of different prior distributions on posterior estimates for the spatial multilevel model, and this should be explored in future studies.
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 7 Summary and Future works models that contain different spatial, temporal and spatiotemporal compo nents depending on spatial data types. Our findings indicate that housing location and transaction time are the key elements in determining housing prices, the ripple effects do exist among Corsican counties and consumers clearly show their preference for sea views, but the magnitude is small. Section 7.1 attempts to pull together the findings from the empirical chap ters of this thesis. I indicate the general contribution of these chapters to the existing literature in Section 7.2. Section 7.3 presents the strengths and weaknesses of each model. Section 7.4 sets out possible directions for future research.
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 7 Summary and Future works inference throughout the thesis. Empirically, I focus on housing prices and second home rate changes in Corsica (a beautiful island in the Mediterranean), France. The economic growth in the last decade has given rise to concerns about growing housing prices and the number of second homes. Residents have experienced high housing prices and land use conflicts. Further, few researchers focused on the local housing market. Therefore, the inference and the prediction of housing prices and second home dynamics are timely and needed. They are also im perative for planners and policymakers to develop sustainable development strategies. Moreover, the three empirical chapters of this thesis (from Chapter 4 to Chapter 6) investigate the determinants of housing prices, the spatial pattern and temporal evolution of second home rate changes, and the implicit price of sea views on apartment prices. The research questions in Chapter 4 and

Figure 7

 7 Figure 7.1: Prior (red dash line) and posterior (solid line) distribution for hyperparameters in M3. A. Precision parameter 𝜏 𝑟𝑤1 for living area. B. Spatial range 𝑟 in kilometres. C. Spatial variance 𝜎 2 𝜔 . D. Autocorrelation parameter 𝑎.

  

  

  

  To incorporate both fixed covariate effects and spatial or spatiotemporal random effects, I consider the class of Bayesian hierarchical models. I initially propose four candidate model with increasing complexity, and I attempt to select the most effective model
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  Gaussian model 4 and hence adapt to Integrated Nested Laplace Approximations (INLA) based inference.

	1.7. Thesis organization	17
	tial effects. In the Bayesian paradigm, these specifications typically work as priors. The conditional autoregressive or BesagYorkMollie (BYM) model is	1
	used for capturing discrete spatial structures and often induces sparsity in a
	precision matrix. While continuous spatial structures can be modeled by a GRF
	represented by a Matérn covariance field. Then, via a Stochastic Partial Dif
	ferential Equation (SPDE) approach, the GRF is approximated by a Gaussian
	As stated previously, there are several candidate specifications for the spa

  Gaussian random variable is used for conditionally modelling the spatial de pendence between a pair of area 𝑖 and area 𝑗 6 , 3. Quantitative models for housing analysis 𝑢 𝑖 |𝑢 𝑗,𝑖≠𝑗 ∼ 𝑁 (𝜌 ∑ 𝑢 𝑖 represents an areaspecific random variable. 𝑊 denotes an 𝑛 × 𝑛 binary adjacency matrix describing a neighbourhood structure. Notably, 𝑊 is firmly symmetric (𝑤 𝑖𝑗 = 𝑤 𝑗𝑖 ). Its offdiagonal entities (𝑤 𝑖𝑗 ) show the proximity of units 𝑛 𝑖 and 𝑛 𝑗 . All diagonal elements remain zero 𝑤 𝑖𝑖 = 0. 𝑤 𝑖+ is the row sum of the 𝑖 𝑡ℎ row 𝑤 𝑖+ = 𝑤 𝑖𝑗 , and 𝜕 𝑖 denotes the index of neighbours of 𝑖.
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	where The conditional variance parameter	𝜎 2 𝑤 𝑖+	is spatially varying.
	The formula Eq.3.9 is called the full conditional distribution. Since there

, which implies that areas tend to have similar values if they are spatially close.

Concerning the discrete characteristic of lattice data, the spatial closeness is defined by adequate neighbourhood structures (spatial adjacency/neighbour matrices), rather than the distance between two locations 5 . Relying on the predefined spatial adjacency matrix, spatial dependence can be modelled by the socalled proper conditional autoregressive (PCAR) model. More precisely, a are 𝑛 given areas, we can derive a joint distribution via the 𝑛 full conditional distributions 𝑈 = (𝑢 1 , … , 𝑢 𝑛 ). With the help of the Brook's lemma

  𝑃𝐶𝐴𝑅 is expensive, usually requiring 𝑁 3 operations 7[START_REF] Morris | Bayesian hierarchical spatial models: Implement 8. Bibliography ing the Besag York Mollié model in stan[END_REF].

	3.4. Analysis of lattice data					51
	nant of Q Apart from the proper conditional autoregressive model, the intrinsic con
	ditional autoregressive (ICAR) model remains popular in literature. In the
	intrinsic conditional autoregressive model, the spatial dependence parameter
	𝜌 is simply set to 1, implying strong, positive spatial autocorrelation in the
	data. Moreover, the intrinsic conditional autoregressive model often acts as a prior model to impose spatial dependence structures to the given areas. The	3
	full conditional specification of the intrinsic conditional autoregressive model
	reads,					
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	where the conditional mean parameter ∑ 𝑗∈𝜕 𝑖 weighted average of the neighbouring values of area 𝑖, indicating that the 𝑤 𝑖𝑗 𝑢 𝑗 is proportional to the 𝑤 𝑖+
	conditional mean parameter is similar locally. The conditional variance pa 𝜎 2 rameter 𝑤 𝑖+

  56 3. Quantitative models for housing analysis gren et al. (2011) propose a twostep approach. At first, the entire study area is disassembled by a large number of nonoverlapped triangles 9 . Then, based on the discrete triangles, the socalled piecewise linear approach is applied. Gaussian random field. 𝜓 𝑙 (𝑥) are called the basis func tions. 𝑤 𝑙 are Gaussiandistributed weights. In fact, Eq.3.22 uses a weighted sum of basis functions to approximate a spatial process (Simpson et al., 2012).

	𝜔 (𝑠) = ∑	𝑛 𝑙=1 𝜓 𝑙 (𝑠) 𝑤 𝑙	(3.22)
	where 𝜔 (𝑠) is a		

  . Structured Additive Regression models incorporate flexibly structured additive predictors. For example, the response variable 𝑦 is assumed to follow a Gaussian distribution, where the mean 𝐸 (𝑦) is linked to structured additive predictors 𝜂 through an identity link function, so that 𝑣 1 ) + … + 𝑓 𝑞 (𝑣 𝑞 ) + 𝛽 0 + 𝛽 1 𝑥 1 + … + 𝛽 𝑘 𝑥 𝑘 + 𝜖(3.29) where 𝑥 1 , … , 𝑥 𝑘 are standard covariates with linear effects 𝛽 0 , … , 𝛽 𝑘 . 𝑣 1 , … , 𝑣 𝑞 are nonlinear modelled covariates, and 𝑓 𝑗 are different smooth functions cap turing various types of effects:

	𝑦 = 𝐸(𝑦)
	𝐸(𝑦) = 𝜂
	𝜂 = 𝑓 1 (

  𝛼 is an intercept. ∑ 𝑗 𝛽 𝑗 𝑧 𝑖𝑗 are linear, fixed covariate effects with the known covariate 𝑧 𝑖𝑗 and the coefficient 𝛽 𝑗 . ∑ 𝑞 𝑤 𝑞 𝑓 𝑞 𝑣 𝑖𝑞 is used for modelling nonlinear, random effects, where 𝑤 𝑘 is a vector of known weights, 𝑓 𝑞 are basis functions or smooth functions and 𝑣 𝑖𝑞 are the covariates.The key feature of a latent Gaussian model is that a Gaussian prior is as 62 3. Quantitative models for housing analysis signed to all latent variables, which generates a latent Gaussian field denoting x = {𝛼, 𝛽 0 , … , 𝛽 𝑘 , 𝑓 1 , … 𝑓 𝑞 }. The latent Gaussian field is controlled by a vector of hyperparameters 𝜃. Lastly, observed data y are assumed to be condition ally independent given the latent Gaussian field x and hyperparameters 𝜃, and hence the univariate likelihood model describes the marginal distribution of the data. Formally, the threelevel latent Gaussian model is written as:

	𝜂 𝑖 = 𝛼 + ∑ 𝑗 𝜃 ∼ 𝜋(𝜃). where y|x, 𝜃 ∼ ∏ 𝜋 (𝑦 𝑖 |𝜂 𝑖 , 𝜃) 𝛽 𝑗 𝑧 𝑖𝑗 + ∑ 𝑞 hyperparameters 𝑤 𝑞 𝑓 𝑞 𝑣 𝑖𝑞 likelihood x|𝜃 ∼ 𝒩 (0, 𝑄 -1 (𝜃)) latent Gaussian field	(3.30)	(3.31)

3.7.1. Latent Gaussian models

According to

[START_REF] Rue | Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approxi mations[END_REF]

, Latent Gaussian Models (LGMs) are a subset of structured additive regression models within the Bayesian frame work. For example, a simplified Eq.3.29 is written as,

  .34)To obtain Bayes rule', we initially calculate the probability of the event B 𝑃𝑟(𝐵) is known. The probability of event A given B is used to update 𝑃𝑟 (𝐵), so that 𝑃𝑟 (𝐵|𝐴) is obtained.For example, given a model12 , Bayesian inference is achieved by applying To fit a latent Gaussian model, the McMC method is widely applied. How ever, McMC may experience poor mixing or convergence issues. Moreover, for large models or big data sets, McMC takes a lot of computational resources (e.g., time and memory). Given my particular interest in spatial models, spa tial/spatiotemporal dependence arises in data, and then McMC requires ad ditional computational resources (De Smedt et al., 2015; Taylor and Diggle, 2014). These drawbacks show that McMC may not be an appropriate tool for fitting spatial models. Rue, Martino, et al. (2009) therefore developed a deterministic approxi mation approach, namely Integrated Nested Laplace Approximations (INLA) to estimate the posterior distributions of the parameters in latent Gaussian models. INLA is built on the combination of analytical approximations and efficient numerical integration. The main advantages of INLA over McMC can be concluded in the following points:
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	given that A occurs, 3.8.2. Integrated nested Laplace approximations comput
	𝑃𝑟 (𝐵|𝐴) = ing scheme	𝑃𝑟 (𝐴) 𝑃𝑟 (𝐴 ∩ 𝐵)	.		(3.35)
	Then, the numerator in Eq.3.35 is substituted by Eq.3.34, and Bayes the
	orem is written as,				
	𝑃𝑟 (𝐵|𝐴) =	𝑃𝑟 (𝐴|𝐵) × 𝑃𝑟 (𝐵) 𝑃𝑟 (𝐴)	.	(3.36)	3
	Specifically, Bayes' rule,				
	𝑃𝑟 (𝜃|𝑦) =	𝑃𝑟 (𝑦|𝜃) × 𝑃𝑟 (𝜃) 𝑃𝑟 (𝑦)		(3.37)
	While for the denominator of Eq.3.37, we obtain	
	𝑃𝑟 (𝑦) = ∫ 𝑃𝑟 (𝑦, 𝜃) 𝑑𝜃 = ∫ 𝑃𝑟 (𝜃) 𝑃𝑟 (𝑦|𝜃) 𝑑𝜃.	(3.39)
	This equation clearly shows that 𝑃𝑟 (𝑦) is a weighted average likelihood,
	where the weight is defined by the prior 𝑃𝑟 (𝜃). Further, 𝑃𝑟 (𝑦) is a number,
	which is conveniently ignored in estimating the parameter 𝜃.
	11 [𝑝𝑟𝑜𝑐𝑒𝑠𝑠, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠|𝑑𝑎𝑡𝑎]		∝		[𝑑𝑎𝑡𝑎|𝑝𝑟𝑜𝑐𝑒𝑠𝑠, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠]	×
	[𝑝𝑟𝑜𝑐𝑒𝑠𝑠|𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠] × [𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠]		

where the prior distribution 𝑃𝑟 (𝜃) for the parameter 𝜃 is updated by ob served data 𝑃𝑟 (𝑦|𝜃) to yield a posterior distribution 𝑃𝑟 (𝜃|𝑦). Concerning on the numerator of Eq.3.37, 𝑃𝑟 (𝜃|𝑦) ∝ 𝑃𝑟 (𝑦|𝜃) × 𝑃𝑟 (𝜃)

(3.38) 

meaning that the posterior distribution 𝑃𝑟 (𝜃) is proportional to the product of the likelihood of data 𝑃𝑟 (𝑦|𝜃) and prior distribution 𝑃𝑟 (𝜃).

  𝑖 |y) = ∫ 𝜋 (𝑥 𝑖 |𝜃, y) 𝜋 (𝜃|y) 𝑑𝜃, 𝑥 𝑖 is the 𝑖 𝑡ℎ latent variable. 𝜃 𝑗 is the 𝑗 𝑡ℎ hyperparameter. 𝜃 -𝑗 is the complement hyperparameter vector to 𝜃 𝑗 . INLA applies a threestep procedure to achieve the integration. The first step aims to calculate 𝜋 (𝜃|y).The second step aims to compute π (𝑥 𝑖 |y), an approximation of 𝜋 (𝑥 𝑖 |y). can be done by following the same logic for calculating 𝜋 (𝜃|y). How ever, it is more complex since x is highdimensional. Rue, Martino, et al.
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	the relation is obtained:					
	𝜋 (𝜃|y) =	𝜋(x, 𝜃|y) 𝜋 (x|𝜃, y)	∝	𝜋(y|x, 𝜃)𝜋(x|𝜃)𝜋(𝜃) 𝜋 (x|𝜃, y)	.	(3.43)
	The numerator is easy to compute. While INLA approximates the denom
	inator through a Gaussian approximation π𝐺 (x|𝜃, y) 14 by matching the mode
	of the full conditional of x * for a given 𝜃,
	𝜋(y|x, 𝜃)𝜋(x|𝜃)𝜋(𝜃) 𝜋 (x|𝜃, y)	≈	𝜋(y|x, 𝜃)𝜋(x|𝜃)𝜋(𝜃) π𝐺 (x|𝜃, y)	| 𝑥=𝑥 * (𝜃)	=∶ π (𝜃|y) .	(3.44)
	This ≈	𝜋(x, 𝜃|y) π (𝑥 -𝑖 |𝑥 𝑖 , 𝜃, y)	|	𝑥 -𝑖 =𝑥 * -𝑖 (𝑥 𝑖 ,𝜃)	(3.41)
	𝜋 (𝜃 𝑗 |y) = ∫ 𝜋 (𝜃|y) 𝑑𝜃 -𝑗	(3.42)
	where Because this term serves to calculate the marginal distribution of both the
	hyperparameter and the latent variable. Through conditional probability rules,

(2009) 

offer three possible alternatives: a Gaussian approximation, a Laplace approximation and a simplified Laplace approximation. The most obvious one is the Gaussian approximation, because π𝐺 (x|𝜃, y) has already computed in the first step. This approach is very fast, but it may provide inaccurate re sults if the conditional distribution is skewed. The second approach is built on the Laplace approximation directly, namely the full Laplace approximation.

In doing so,

[START_REF] Rue | Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approxi mations[END_REF] 

firstly partition the latent field into x = [𝑥 𝑖 , 𝑥 -𝑖 ], and apply the Laplace approximation to 𝜋 (𝑥 -𝑖 |𝑥 𝑖 , 𝜃, y) around its model x * -𝑖 (𝑥 𝑖 , 𝜃): 𝜋 (𝑥 𝑖 |𝜃, y) = 𝜋 ((𝑥 𝑖 , 𝑥 -𝑖 ) |𝜃, y) 𝜋 (𝑥 -𝑖 |𝑥 𝑖 , 𝜃, y)

  This is also the default option in the Rinla package.The last step is to integrate 𝜃 in Eq.3.41 by applying numerical integra tion. Concerning the uncertainty of 𝜃, it is important to find suitable integra tion points 𝜃 𝑘 of the hyperparameters vector. Therefore, Rue, Martino, et al.(2009) provide three alternatives depending on the number of hyperparame ters, i.e., the grid approach, the central composite design and the approach ignoring the hyperparameter variability. The first approach is very precise but it is appropriate for one or two hyperparameters only. The second approach is the default option of the RINLA if there are more than two hyperparameters.

	3.9. Model assessment					69
						3
	Finally, we have the following equation,		
		𝐾				
	π(𝑥 𝑖 |y) ≈	∑	π(𝑥 𝑖 |𝜃	𝑘 , y) π(𝜃	𝑘 |y)Δ 𝑘	(3.46)
		𝑘=1				

where 𝑘 refers to 1, … , 𝐾 integration points and Δ 𝑘 are corresponding weights. Thus, the meaning of INLA is clear in the threestep procedure. Integrated refers to applying numerical integration. Nested means that to calculate the marginal posterior distribution of latent variables, researchers have to estimate the marginal posterior distribution for the hyperparameters first. Laplace approximation indicates that researchers use Laplace approxi mations several times during the calculation

(Blangiardo and Cameletti, 2015; Faraway et al., 2018)
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	.4: Priors for hyperparameters of the hierarchical model	
	Parameters in	Prior
	the models	specification *
	𝜏 𝑟𝑤1 for the precision of Surface	Prob(	1 √ 𝜏 𝑟𝑤1
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	.5.

Table 4

 4 Lastly, M3 has the smallest DIC values (Δ = -486.45 relative to M2), meaning that it provides the best fit to the data. The LCPO scores dis play in the same sequence as the DIC values. For M1, the LCPO score reaches -0.278. With the inclusion of different spatial, temporal and spatiotemporal components, this score diminishes continuously, and reaches -0.304 for M3.

	.6: Summary of model assessment			
	Model	DIC	LCPO	MAE RMSE	PCC	Elapsed Time (Second)
	M0	1, 817.71	0.119	0.209 0.264 0.725	17.80
	M1	-4, 561.66 -0.278 0.132 0.186 0.875	78.36
	M2	-4, 710.98 -0.286 0.131 0.185 0.876	131.32
	M3	-5, 197.43 -0.304 0.129 0.184 0.878	19, 744.39
	able improvement in model fitting (Δ = -6, 379.37). The model (M2) includes
	an additional temporal random component that leads to further improvements
	(Δ = -149.32).					

Table 5 .

 5 1: Descriptive statistics of independent variables To facilitate interpretation, a base 2 logarithm transformation is applied to the variables.

	Type	Statistic	Mean	St.Dev	Min	Pctl(25)	Pctl(75)	Max
	count	physical landscapes cultural landscapes			0 0			19 28
	dummy	mountainous county coastal county			0 0			1 1
	continuous	6.575 4.865 2.801 3.412 3.915 𝑙𝑜𝑔 2 (distance to university) * 4.985 𝑙𝑜𝑔 2 (ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑) * 𝑙𝑜𝑔 2 (interest rate) * 𝑙𝑜𝑔 2 (council tax) * 𝑙𝑜𝑔 2 (unemployment rate) * 𝑙𝑜𝑔 2 (distance to "gate") *	1.976 0.402 0.645 0.240 0.927 0.840	1.585 5.733 5.702 4.053 0.160 2.288	5.129 5.058 3.206 3.556 3.429 4.501	7.748 4.556 2.281 3.231 4.587 5.575	14.846 4.353 0.712 2.905 5.411 6.594

*

Table 5 .

 5 2: Candidate Models for the second level

	Model	Type	Equation
							𝑝
	0	Classical Binomial without any latent structures	logit (𝜋 𝑖𝑡 ) = 𝑥 𝑖𝑡 𝛽 +	∑	𝑓 (𝑥 𝑗𝑡 )	(5.6)
							𝑗=1
							𝑝
	1	Purely spatial	logit (𝜋 𝑖𝑡 ) = 𝑥 𝑖𝑡 𝛽 +	∑	𝑓 (𝑥 𝑗𝑡 ) + Γ	(5.7)
							𝑗=1
						𝑝
	2	Spatial and temporal jointly	logit (𝜋 𝑖𝑡 ) = 𝑥 𝑖𝑡 𝛽 +	∑	𝑓 (𝑥 𝑗𝑡 ) + Γ + 𝜉 ⋅ 𝑡	(5.8)
						𝑗=1
							𝑝
	3	Spatial and temporal jointly	logit (𝜋 𝑖𝑡 ) = 𝑥𝑖𝑡𝛽 +	∑	𝑓 (𝑥 𝑗𝑡 ) + Γ + 𝑍	(5.9)
							𝑗=1
				𝑝	
	4	Spatiotemporal with interactions	logit (𝜋 𝑖𝑡 ) = 𝑥 𝑖𝑡 𝛽 +	∑	𝑓 (𝑥 𝑗𝑡 ) + Γ + (𝜉 + 𝜑 𝑖 ) ⋅ 𝑡	(5.10)
				𝑗=1	
					𝑝
	5	Spatiotemporal with interactions	logit (𝜋 𝑖𝑡 ) = 𝑥 𝑖𝑡 𝛽 +	∑	𝑓 (𝑥 𝑗𝑡 ) + +Γ + 𝑍 + Δ	(5.11)
					𝑗=1

Table 5

 5 

	.3: Model assessment via DIC, LCPO and RMSE	
		DIC	LCPO	RMSE
	Model 0	210,055.60	26.2451	0.14298
	Model 1	28,633.33	3.7611	0.04227
	Model 2	28,572.06	3.7517	0.04226
	Model 3	28,550.95	3.7466	0.04205
	Model 4	27,939.49	3.6524	0.04045
	Model 5	27,857.43	3.6292	0.03412

Table 5 .

 5 4: Posterior estimates of the covariates in Model 5

		Mean	St.Dev	0.025 quant	0.975 quant
	Intercept	-3.154*	0.500	-4.157	-2.190
	physical landscapes	0.082*	0.027	0.030	0.135
	cultural landscapes	-0.047*	0.019	-0.085	-0.010
	coastal county	0.720*	0.109	0.506	0.935
	mountainous county	0.217*	0.083	0.054	0.379
	𝜎 2 𝑙𝑜𝑔 2 (ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑) 𝑙𝑜𝑔 2 (interest rate)	0.217 -0.161*	0.039 0.028	0.151 -0.217	0.304 -0.108
	𝑙𝑜𝑔 2 (council tax)	-0.016	0.011	-0.037	0.006
	𝑙𝑜𝑔 2 (unemployment rate)	-0.049	0.044	-0.136	0.036
	𝑙𝑜𝑔 2 (dis_gates)	0.051	0.057	-0.059	0.164
	𝑙𝑜𝑔 2 (dis_university)	0.170*	0.069	0.038	0.308
	𝜎 2 Γ	0.7344	0.1290	0.5202	1.0253
	𝜆	0.2980	0.0903	0.1502	0.4999
	𝜎 2 𝑍 𝜎 2 Δ	0.0015 0.0093	0.0009 0.0006	0.0004 0.0082	0.0038 0.0105

* Indicates the significance of independent variables.

Table 5 .

 5 5: Tested hyperpriors in the prior sensitivity analysis

	Component	Default	Test 1	Test 2
	Spatially joint component (Γ)			

Table 5

 5 

	.6: Estimated posterior mean, standard deviation and quantiles of the parameters for
	different hyperpriors								
	Prior		log 𝜏 ∼ log Gamma(1, 1 × 10 -4 )	𝜎 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0, ∞)	
		Mean	St.Dev 0.025quant 0.975quant	Mean	St.Dev 0.025quant 0.975quant
	Intercept 3.153	0.500	4.156	2.188	3.223	0.522	4.272	2.217
	physical landscapes 0.082	0.027	0.030	0.135	0.081	0.027	0.028	0.133
	cultural landscapes 0.047	0.019	0.085	0.010	0.046	0.019	0.084	0.009
	coastal county 0.720	0.109	0.506	0.935	0.722	0.110	0.505	0.939
	mountainous county 0.217	0.083	0.054	0.379	0.218	0.083	0.054	0.381
	𝜎 2 𝑙𝑜𝑔2(ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑)	0.217	0.039	0.151	0.304	0.227	0.040	0.157	0.315
	𝑙𝑜𝑔 2 (interest rate) 0.161	0.027	0.217	0.109	0.165	0.033	0.232	0.102
	𝑙𝑜𝑔 2 (council tax) 0.015	0.011	0.037	0.006	0.018	0.011	0.039	0.003
	𝑙𝑜𝑔 2 (unemployment rate) 0.049	0.044	0.136	0.036	0.056	0.044	0.144	0.031
	𝑙𝑜𝑔 2 (dis_gates) 0.051	0.057	0.059	0.164	0.051	0.058	0.062	0.168
	𝑙𝑜𝑔 2 (dis_university) 0.170	0.069	0.038	0.308	0.173	0.071	0.036	0.316
	𝜎 2 Γ	0.7355 0.1291	0.5207	1.0263	0.7756 0.1371	0.5403	1.0771
	𝜆 0.2980 0.0903	0.1501	0.4998	0.3204 0.0937	0.1592	0.5216
	𝑍 0.0015 0.0009	0.0004	0.0039	0.0026 0.0018	0.0006	0.0072
	Δ 0.0093 0.0006	0.0082	0.0105	0.0093 0.0006	0.0082	0.0105
	colored counties turned in blue after 2010. There were few counties (ID

Table 5
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	.7: Refitted models assessment			
		DIC	LCPO	RMSE
	Model 5	27,857.44	3.6292	0.0341
	Convolution Model5	28,226.61	3.7106	0.0351
	Lastly, the household variable may experience an endogeneity issue due
	to reverse causality. Since it lacks appropriate instruments in the context
	and the instrumental variable method within the Bayesian framework is still
	under investigation, I test strict exogeneity of the household variable via the
	Wooldridge's approach (Wooldridge, 2010, pg. 285, pg. 490). The lead house
	hold variable is included in the model additionally. I initially run Model 5
	including the logged households as a linear predictor. Then, the lead1 or
	lead3 households is included in Model 5 additionally. The posterior estimates
	for the two additional variables are 0.024 (95%𝐶𝐼, -0.132; 0.179) and 0.072
	(95%𝐶𝐼, -0.024; 0.168) (See Table 5.8). Such a result shows that there are
	not any endogeneity issues.			

Table 5 .

 5 8: Estimated posterior mean and quantiles of the covariates for the strict exogenity test

			Test 1				Test 2 lead1				Test 3 lead3	
	Mean St.Dev 0.025quant 0.975quant Mean St.Dev 0.025quant 0.975quant	Mean	St.Dev 0.025quant 0.975quant
	Intercept 0.088	0.483	0.870	1.030	0.184 0.518	1.214	0.828	0.025 0.624	1.275	1.180
	physical landscapes 0.091	0.024	0.043	0.138	0.090	0.024	0.043	0.137	0.088	0.024	0.040	0.135
	cultural landscapes 0.028 0.017	0.061	0.005	0.031 0.017	0.064	0.002	0.039 0.017	0.072	0.006
	coastal county 0.733	0.099	0.538	0.929	0.719	0.100	0.523	0.916	0.675	0.102	0.474	0.876
	mountainous county 0.243	0.076	0.093	0.392	0.245	0.076	0.095	0.395	0.257	0.077	0.106	0.408
	𝑙𝑜𝑔 2 (ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑡 ) 0.342 0.018	0.378	0.307	0.350 0.055	0.458	0.241	0.358 0.034	0.425	0.291
	𝑙𝑜𝑔 2 (ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑡+1 )				0.016	0.055	0.091	0.124				
	𝑙𝑜𝑔 2 (ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑡+3 )								0.051	0.034	0.016	0.118
	𝑙𝑜𝑔 2 (interest rate) 0.179 0.028	0.237	0.125	0.211 0.037	0.288	0.140	0.103 0.064	0.231	0.022
	𝑙𝑜𝑔 2 (council tax) 0.009 0.011	0.031	0.013	0.004 0.011	0.027	0.018	0.0003 0.012	0.024	0.024
	𝑙𝑜𝑔 2 (unemployment rate 0.066 0.046	0.157	0.023	0.085 0.052	0.188	0.018	0.128 0.067	0.261	0.002
	𝑙𝑜𝑔 2 (dis_gates) 0.001 0.051	0.103	0.099	0.005	0.074	0.141	0.151	0.029	0.077	0.121	0.180
	𝑙𝑜𝑔 2 (dis_university) 0.130	0.062	0.007	0.255	0.186	0.091	0.008	0.367	0.184	0.094	0.0004	0.371

  [START_REF] Liu | Exploring spillover effects of ecological lands: A spatial multilevel hedonic price model of the housing market in Wuhan, China[END_REF] proposed a spatial multilevel model to investigate the spillover effects of ecological lands. Studies estimating the impact of views with a consideration of multilevel characteristics and spatial effects are even rare in the literature.[START_REF] Yamagata | Value of urban views in a bay city: Hedonic analysis with the spatial mul tilevel additive regression (SMAR) model[END_REF] recently proposed a socalled spatial multilevel additive regression model, which employs a variance compo nent to gauge buildingwise difference and a twodimensional thinplate spline smoother to capture spatial effects among buildings. Their results showed that only very nice ocean views attracted premiums in Yokohama city, Japan.My study mainly assesses the apartment's sea views, specifically the view of the Mediterranean Sea. To achieve this goal, I employ a more specific and meaningful measure of sea views. In addition, this study is different from oth ers regarding two significant features. First, the study area is a French region,
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	efficient than the Markov chain Monte Carlo (McMC) method in fitting HSAR
	models. More importantly, the motivation of applying the twolevel (LCAR)
	spatial model is different from the HSAR model, and the difference mainly
	comes from the application of the LCAR process or the simultaneous autore
	gressive process for low level units. In the HSAR model, the simultaneous
	autoregressive process for low level units aims to capture autocorrelation in
	the presence of a strong spatial trend. However, as Anselin and LozanoGracia
	stated,	
	"From a theoretical viewpoint, a spatial error specification is the more nat
	ural way to include spatial effects in a hedonic model. Unobserved neighbour
	hood effects will be shared by housing units in the same area and naturally
	lead to spatially correlated error terms". (Anselin and LozanoGracia, 2009,
	pg. 1221)	
	I believe that spatial autocorrelation or heterogeneity in residuals due to
	omitted unobserved neighbourhood effects should be expected, and this leads
	to the application of LCAR components. On the other hand, the proposed
	model has an advantage over the Osland et al.'s (2016) conditional autore gressive model, that is, employing the Moran's I test for highlevel random	6
	where housing and regional characteristics show both spatial autocorrelation effects is not necessary. Because the LCAR component incorporates an ad
	and heterogeneity. To address this issue, I account for both spatial effects and ditional parameter, which compromises between spatially structured and un
	multilevel characteristics through the proposed spatial multilevel model by in structured random effects. If spatially structured random effects dominate,
	corporating the LCAR component. Second, to fill in the gap that transaction the LCAR component will turn into an ICAR component. In contrast, if spatially
	periods may affect estimation accuracy within the multilevel modelling, spa unstructured random effects dominate, the LCAR component will become an
	tiotemporal extensions are also investigated to tackle repeated crosssectional IID component. In an extreme case, where spatially unstructured random
	housing data from 2006 to 2016. effects dominate the two levels, the proposed model will become a standard
	multilevel model	
	6.3. Spatiotemporal modeling for spatial data with
	multilevel structures	
	6.3.1. Leroux's conditional autoregressive model	
	The key part of the proposed multilevel model (Schrödle et al., 2011) is the
	socalled LCAR components (Leroux et al., 2000). With the LCAR component,
	the proposed model can be fitted by Integrated Nested Laplace Approxima
	tion (INLA) approach (Rue, Martino, et al., 2009), which is more computational

  Parameter model: [𝜃 𝑌 , 𝜃 𝜇 ].
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	130	analysis with spatial multilevel modelling
	• Level 3 -	
	• Level 1 -Data model: [𝑌|𝜇, 𝜃 𝑌 ]	
	• Level 2 -Process model: [𝜇|𝜃 𝜇 ]

  𝑡 captures the global time trend. The differential time trend component 𝛿 𝑖 × 𝑡 identifies an interaction between the unit 𝑖 and period 𝑡, The value of sea views in a Mediterranean island: Hedonic analysis with spatial multilevel modelling tween area 𝑗 and period 𝑡, implying an areaspecific time trend 𝛿 𝑗(𝑖) ×𝑡 (𝛿 𝑗(𝑖) = (𝛿 1(1) , … , 𝛿 𝑚(𝑛) )) to depart from the global time trend for all units 𝜙 × 𝑡. Thus, the linear predictor is written as, 𝑔 (𝜇) = 𝜂 𝑖𝑡 = 𝑋 𝑖𝑡 𝛽 + 𝑍 𝑖𝑡 𝜉 + Γ 𝑖 + ΔΓ 𝑗 + (𝜙 + 𝛿 𝑗(𝑖) ) × 𝑡 (6.5)It is important to note that all random effects components Γ 𝑖 , Γ 𝑗 , 𝛿 𝑖 , 𝛿 𝑗(𝑖)
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	On the basis of the twolevel spatial model, it is possible to extend this model
	to a spacetime model.	
	A simple, computationally convenient and widely used spacetime exten
	sion on random effects is the parametric model proposed by Bernardinelli et
	al. (1995). Their parametric time trends model consists of a global linear time
	trend term and a socalled differential time trend component,	
	(𝜙 + 𝛿 𝑖 ) × 𝑡	(6.4)
	where 𝜙 × implying a unitspecific temporal regime (e.g., increase, decrease or stability),
	departing from the global time trend. For example, 𝛿 𝑖 × 𝑡 < 0 implies that the
	time trend of unit 𝑖 is less steep than the global time trend.	
	It is possible to extend this unitspecific interaction to an interaction be

Lastly, I can impose prior distributions on the parameter model [𝜃 𝑌 , 𝜃 𝜇 ]. Fol lowing the three levels, we obtain the posterior distribution of the process and parameters via the Bayesian theorem [𝜇, 𝜃|𝑌] ∝ [𝑌|𝜇, 𝜃 𝑌 ] × [𝜇|𝜃 𝜇 ] × [𝜃].

6.3.3. Spacetime extensions

Table 6

 6 

	.2 provides the corresponding descriptive
	statistics. Concerning accessibility variables, as access to certain amenities
	probably affects housing sale prices, road distances from each apartment to
	the closest pharmacy, hospital, primary school, and beach are calculated.
	In addition to the individual housing data, contextual data are collected
	from different sources depending on variables. Three contextual covariates
	are the population density of each "EPCI" 3 , the averaged property tax ("taxe
	sur le foncier bâti" 4 ) in an "EPCI", and physical landscape counts within each
	"EPCI" offered by Research Center "LISA".	
	6.4.4. Econometric strategies	
	I begin with the classical hedonic regression (Eq. 6.6), labelled as Model 0,
	𝜂 𝑖𝑡 = 𝛼 + 𝑓(𝑆𝑢𝑟𝑓) + 𝛽 2 𝑆𝑡𝑜 + 𝛽 3 𝐵𝑎𝑡 + 𝛽 4 𝑃𝑎𝑟 + 𝛽 5 𝑇𝑦𝑝 + 𝛽 6 𝐶𝑜𝑛𝑡𝑟	
	+ 𝛽 7 𝑃ℎ𝑎 + 𝛽 8 𝐻𝑜𝑠𝑝 + 𝛽 9 𝑃𝑆𝑐ℎ + 𝛽 10 𝐵𝑒𝑎	
	+ 𝛽 11 𝑆𝑒𝑎	(6.6)
	+ 𝜉 1 𝑃𝑜𝑝𝐷𝑒𝑛 + 𝜉 2 𝐶𝑇𝑎𝑥 + 𝜉 3 𝑁𝑎𝑡	
	+ 𝜖	
	Subsequently, I examine spatial effects and multilevel structures in data.

Housing sales data, GISbased view/accessibility data, and contextual data are merged together and we finally obtain a sample of 6 377 apartments for use in estimation. The variance inflation factor (VIF) scores for all covariates are calculated to examine the potential problem of multicollinearity. There is no evidence of such a problem. Most variance inflation factor scores are around 1.3, below the normal threshold of 10.

3 Source: https://www.insee.fr/fr/information/2008354 4 Source: https://www.servicepublic.fr/particuliers/vosdroits/F59

Table 6 .

 6 1: Definitions for study variables and expected relationship to apartment sale values.

	Variable name	Definition	Expected signs
	Structural variables		
	Price	Sales price adjusted to 2006 (Euros)	
	Surf	Total area (𝑚 2 )	Positive
	Sto	Floor	Positive
	Bat	Number of bathrooms	Positive
	Par	Number of parkings	Positive
	Typ	Types of apartments. Base: Apartment	Studio Negative; Duplex Positive
	Contr	Construction periods. Baseline: 18501913.	
		19141947;19481969;19701980;19811991	Positive
		19922000;20012010;20112017	
	Accessibility variables		
	Pha	Road distance to closest pharmacy in km	Negative*
	Hosp	Road distance to closest health facilities in km	Negative*
	PSch	Road distance to closest primary school in km	Negative*
	Bea	Driving time to closest beach in minute	Negative*
	View variable		
	Sea	Sea view index from 0 to 100	Positive
	Contextual variables		
	PopDen	Population density in each "EPCI" (𝑝𝑒𝑜𝑝𝑙𝑒/𝑘𝑚 2 )	Negative
	Tax	Averaged property tax rate in each "EPCI"	Negative
	Nat	Physical landscape counts in each "EPCI"	Positive

* For these distancebased variables, a negative expected relationship means that home buyers would like to pay more to live near an amenity.

Table 6 .

 6 2: Descriptive statistics for quantitative variables.

	Variable name	Mean	SD*	Min	Pctl(25)	Pctl(75)	Max
	Structural variables						
	Price	149,685.400	58,602.020	57,446	103,829.9	185,952.0	325,432
	Surf	59.537	21.983	13	43	73	197
	Sto	1.863	1.733	3	1	3	12
	Bat	1.056	0.265	0	1	1	3
	Par	0.821	0.717	0	0	1	8
	Accessibility variables						
	Pha	1.520	2.237	0.000	0.396	1.448	38.662
	Hosp	10.674	12.250	0.051	1.697	16.612	72.244
	PSch	27.702	37.821	0.063	2.753	33.074	182.492
	Bea	5.472	6.452	0.001	2.360	6.626	67.706
	View variable						
	Sea	12.060	11.303	0.000	1.670	20.801	47.907
	Contextual variables						
	Popden	273.249	307.849	6.888	21.946	307.539	828.975
	CTax	0.115	0.026	0.066	0.094	0.140	0.156
	Nat	11.842	9.059	1	6	14	40
	* Standard deviation						
	As indicated in Chapter 1, Corsica owns rural, semiurban and urban land
	scapes (Vogiatzakis et al., 2008), and public services, infrastructures and hu
	man activities are mainly concentrated in the urban area of Corsica. Cities and

Table 6 . 3
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	Model Identifier Spatial	Temporal
	M0	No control	No control
	M1	2 LCAR components No control
	M2	2 LCAR components Time dummy
	M3	2 LCAR components A Linear temporal trend with the "EPCI"specific component
	M4	2 LCAR components A Linear temporal trend with the unitspecific component
	below:		

: Summary of random components in the spatial multilevel models

Table 6

 6 As shown in Table6.4, Model 2 produces the best model fit according to both the DIC[START_REF] Spiegelhalter | Bayesian measures of model complexity and fit[END_REF] and LCPO[START_REF] Pettit | The conditional predictive ordinate for the normal distribu tion[END_REF] scores, compared with these of the nonspatial model (Model 0), spatial model (Model

	.4: Model assessment via DIC and LCPO	
		DIC	LCPO
	M0	585.683	0.0449
	M1	2,314.626	0.1006
	M2	2,726.109	0.1073
	M3	2,616.119	0.1047
	M4	1,894.402	0.1053

Table 6
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	.5: Posterior estimates of the covariate effects		
		Mean	St.Dev	0.025quant	0.975quant
	Structural variables				
	Intercept*	11.754	0.104	11.555	11.961
	Sto*	0.013	0.002	0.010	0.017
	Bat*	0.069	0.012	0.046	0.092
	Par*	0.044	0.005	0.034	0.053
	Contr 19141947	0.075	0.046	0.014	0.165
	Contr 19481969	0.006	0.041	0.086	0.074
	Contr 19701980	0.045	0.041	0.034	0.125
	Contr 19811991	0.079	0.041	0.0004	0.159
	Contr 19922000*	0.184	0.043	0.099	0.269
	Contr 20012010*	0.230	0.040	0.151	0.309
	Contr 20112017*	0.214	0.040	0.135	0.293
	Duplex*	0.047	0.014	0.020	0.074
	Studio*	0.106	0.015	0.135	0.077
	𝜎 2 𝑆𝑢𝑟𝑓 *	0.00098	0.00026	0.00056	0.00158
	Accessibility variables				
	Fha*	0.001	0.002	0.002	0.004
	Hosp*	0.003	0.001	0.005	0.001
	PSch*	0.003	0.001	0.005	0.002
	Bea*	0.013	0.001	0.015	0.011
	View variable				
	Sea*	0.005	0.0004	0.004	0.005
	Contextual variables				
	PopDen	0.0003	0.0002	0.001	0.0001
	CTax	0.458	0.665	1.766	0.846
	Nat*	0.013	0.005	0.004	0.023
	Time dummies				
	2007*	0.088	0.017	0.054	0.121
	2008*	0.133	0.017	0.099	0.166
	2009*	0.076	0.017	0.042	0.110
	2010*	0.063	0.018	0.029	0.098
	2011*	0.133	0.019	0.096	0.170
	2012*	0.129	0.018	0.093	0.165
	2013*	0.122	0.018	0.085	0.158
	2014*	0.113	0.019	0.076	0.149
	2015*	0.109	0.019	0.071	0.147
	2016*	0.144	0.020	0.104	0.184
	* statistical significance				
	apartment sale prices. This illustrates the preference of homebuyers for apart
	ments with large sea views, even though the magnitude is small. Since both
	the time to beaches and the sea view have a significant impact on apartment

prices, I confirm

Bin, Crawford, et al.'s (2008) 

point, where view variables 6.5. Results 6 141 could capture additional amenity values, even though researchers have al ready controlled for the distance to that amenity.

Table 6 .

 6 6: Posterior estimates of the random effects

		Mean	St.Dev	0.025 quantile	0.975 quantile
	𝜎 2 𝜖	0.0240	0.0025	0.0192	0.0290
	𝜆 𝑖 𝜎 2 𝑖 𝜆 𝑗 𝜎 2 𝑗	0.0026 0.0421 0.2795 0.0545	0.0005 0.0033 0.2171 0.0311	0.0017 0.0361 0.0186 0.0166	0.0038 0.0489 0.7947 0.1350
	I initially calculate the proportion of marginal variance explained by each
	component, given by			
		𝑝 𝜑 = 𝜎 2 𝜑 / (𝜎 2 𝑗 + 𝜎 2 𝑖 + 𝜎 2 𝜖 ) × 100%, 𝜑 = {𝑗, 𝑖, 𝜖}.	(6.9)
	Here, the corresponding proportions are 45.19%, 34.91% and 19.90% re
	spectively. This indicates that the spatial pattern at the "EPCI" level explains

Dubé and Legros defined the microdata as "Observations that are points on a geographical projection...".(Dubé and Legros, 2014)[p.xi] 

e.g., Conditional Autoregressive (CAR) models[START_REF] Besag | Spatial interaction and the statistical analysis of lattice sys tems (with discussion)[END_REF]; BesagYorkMollie (BYM) models[START_REF] Besag | Bayesian image restoration, with two applications in spatial statistics[END_REF] 

Geoadditive models, along with generalised linear models, generalised additive models, smoothingspline models, statespace models, semiparametric regression, spatial and spatio temporal models, logGaussian Coxprocesses belong to a socalled structured additive regres sion (STAR) family. Latent Gaussian model is a subset of the STAR family.

For example, environmental amenities (aesthetic views or proximity to recreational sites), and environmental quality (e.g., air pollution, water pollution, or noise).

[START_REF] Mendelsohn | The Economic Valuation of Environ mental Amenities and Disamenities: Methods and Applications[END_REF] noted that the difference between the use and nonuse value of the environment was whether there was any real interaction between an individual and the environment.

Rosen's theory assumes that everything happens in a perfectly competitive market.

The perfectly competitive market ensures that all combinations of housing characteristics are available on the market.

The spatial weighting matrix is also known as the spatial weights matrix, the spatial adjacency matrix.

More detail on the fitting geoadditive models with thinplate splines or tensor products can be found inWood (2017) and the vignette of mgcv Rpackage[START_REF] Wood | Package 'mgcv[END_REF].

It is possible to define the neighbourhood structure based on the distance between the centroid of areal units. However, contiguitybased neighbourhood structures are commonly used in the conditional autoregressive literature.

I simplify the index of locations (𝑠 1 , … , 𝑠 𝑛 ) by (1, … , 𝑛) in a lattice system.

For example, if 𝑁 = 100, calculating det(Q 𝑃𝐶𝐴𝑅 ) will require 100 3 operations.

The latter refers that the conditional mean of 𝑢 𝑖 would depend on the complement area sets to 𝑢 𝑗 with 𝑗 ≠ 𝑖.

Here we present a generalization by using abstract types of interaction, but not restricted to any specific form of spatial and temporal effects.

Models are the mathematical formulation of the observed events, which are affected by model parameters.

The prior and posterior distributions for the hyperparameters in M3 are displayed in Figure7.1 in Appendix 7.6.

4. Time, space and hedonic prediction accuracy: evidence from Corsican apartment market effects, but the spatial component is built on the conditional autoregressive model family.

That is to say, 𝑍 is derived from two matrices, a 𝑛 × 𝑗 matrix illustrating the relation between apartments and areas, and a 𝑗 × 𝑞 matrix showing areal covariates.

Here, 𝑆 equals either 𝑚 or 𝑛 depending on the level.

The extracts of Chapter 5 have been required major revision in Spatial Eeconomic Analysis.

vestigated in the future.
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Summary and Future works

This thesis provides an investigation of the housing market in Corsica, France.

The present work primarily focuses on the determinants, especially how the spatial and temporal dimensions (i.e., location and time) affect different as pects of the Corsican housing market. More precisely, I deal with various issues associated with the Corsican housing market. These issues include identifying housing price determinants and making predictions, revealing spa tial and temporal patterns of second home rates among Corsican counties, and recognizing the implicit prices of sea views in the presence of nested spatial data structures.

The hedonic price method, the socalled adjacent effect and ripple effect offer the economic underpinnings for analyzing such complex issues. The use Table 7.