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1
Introduction

1.1. Introduction
Housing plays a crucial role in both family assets and local/national economies.
From a consumer or investor’s view, housing is an essential asset for a family,
thus accurately assessing residential housing values is important for making
investment decisions (Li, 2016). From a local authority perspective, under
standing local housing markets could enable planners to allow land to develop
and then promote the local economy (Mitchell et al., 2015). For national poli
cymakers, housing relates to macroeconomic stability, e.g., economic growth,
inflation rates, unemployment (Reichert, 1990). As a complex matter, housing
is usually affected by several social and economic factors. Nowadays, with the
increasing availability of spatial data and advances in geographical information
systems (GIS), more and more economists notice that locational/geographical
factors play a crucial role in determining housing prices (Anselin, 2010) and in
provoking regional market comovement (Abbott and De Vita, 2012; Holmes
et al., 2017a; Holmes et al., 2017b). As spatial econometric techniques took
a huge step forward over the past thirty years, it became a useful instru
ment in the economists’ toolbox that helps economists investigate the loca
tional/geographical factor, including spatial dependence and spatial hetero

1



1

2 1. Introduction

geneity.

Corsica is one of the 18 French administrative regions, whose housing
market shows some specific phenomena. As a beautiful island in the Mediter
ranean Sea, Corsica attracts not only thousands of tourists (Torre, 2018) but
also foreign real estate investors (Touzani, 2018). With the augmentation of
the population (Bretel, 2018), the need for housing has never ceased. Ad
ditionally, as an island, land supply is always limited. This probably leads to
high housing prices. All suggest that a detailed examination of the Corsican
housing market is timely.

Furthermore, only a small number of studies have focused on the issues
relating to the Corsican housing market. Kessler and Tafani’s monograph
(Kessler and Tafani, 2015) contained several chapters investigating the Corsi
can housing and land market from economic and geographic perspectives. For
example, economists clearly showed that there existed two distinct property
markets, i.e. a market for local buyers and a market for external investors.
They also emphasized that the second home phenomenon should be further
studied. Recently, new empirical studies (Caudill et al., 2019; Giannoni et al.,
2017) on these topics arise with new datasets.

Along with these recent studies, many relevant questions still remain to be
answered. Further, the increasing availability of large georeferenced datasets
and high resolution maps, as well as novel statistical tools can help economists
better analyze these questions. This thesis, therefore, offers a twofold contri
bution to the existing literature. The first contribution relates to methodolog
ical issues. It is known that real estate and spatial models naturally comple
ment each other. The traditional spatial econometric models1 like spatial fixed
effects (dummy variables) models, spatial lag models and spatial error models
may experience some limitations if they are used for analyzing crosssectional
housing sales data and data collected over multiple periods (Dubé and Legros,
2013b). To overcome these drawbacks, I propose several new approaches in
this thesis, and such approaches adapt to spatial and temporal correlation
in housing data and provide accurate predictions of the dependent variable
and marginal effect estimates. More importantly, how locational/geographical

1“…spatial econometrics consists of a subset of econometric methods that is concerned with
spatial aspects present in crosssectional and spacetime observations.” (Anselin, 2010)[p.1213]
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features (spatial patterns) affect all aspects of the Corsican housing market is
the key question throughout this thesis. Additionally, I focus on forecasting
Corsican apartment prices and identifying geographical “hot spots” and “cold
spots” in terms of housing prices. I also explore second home phenomena
in Corsica. I demonstrate that the “ripple effects” exist in the Corsican sec
ond home market. The findings clearly show the county belonging to “hot
spots” in terms of second home rates. Lastly, I estimate the implicit price
of Mediterranean Sea views with the consideration of the Corsican regional
context.

The remainder of this chapter is structured as follows. In Section 2, I
detail the Corsican context, in particular the background information about the
regional housing market. In Section 3, I briefly introduce relevant literature.
I highlight research gaps in Section 4. Section 5 discusses research questions
and the aim of the thesis. Section 6 glances at research approaches, and
Section 7 details the thesis organization.

1.2. Corsica context
Corsica is an island located in the Mediterranean Sea. It is the fourth largest
island in the Mediterranean Sea. It is about 183 km in length (northsouth) and
83 km in width (eastwest). It is located southeast of the French mainland,
north of Sardinia and west of the Italian Peninsula.

As “the pearl of Mediterranean”, Corsica is famous for its rich tourism re
sources (Vogiatzakis et al., 2008). A single mountain range crosses the center
of the island with alpine landscapes, while beautiful beaches and seaward cliff
dominate coastal areas. In particular, Calvi and Porto Vecchio (ID. 73 and
ID. 249), located in the northwest and southeast, are famous for their sandy
beaches. Corti (ID. 195) with many mountains and historical sites is suited in
the center of Corsica.

Corsica is one of the 18 French administrative regions consisted of 360
counties (called “communes”). Bastia and Ajaccio are the two main cities
(“communes”) located in the north part and the south part of the island,
respectively. Other cities include Corti, Calvi, Bonifacio, Porto Vecchio, etc. In
contrast, most small villages (“communes”) are often hidden in the mountains
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Figure 1.1: The location of Corsica (within the red rectangle).
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Figure 1.2: The abovementioned Corsican counties.
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such as Soveria, Lama, Olmo, etc.

Due to the particular topography, Corsica owns rural, semiurban and ur
ban landscapes and inhabitant activities are widely affected. Along with the
growing population over the past four decades, population distribution and
densities express significant spatial heterogeneity.

INSEE (National Institute of Statistics and Economic Studies) reported that
from 1982 to 2011, Corsican inhabitants increased by 74 000 (Tempier, 2014).
The corresponding annual growth rate was 0.9%, nearly double the French
national level (0.54%). Concerning the geographical distribution of popula
tion, most inhabitants lived in the two large urban zones (called “grandes aires
urbaines”), the Bastia area and the Ajaccio area. Over the past thirty years,
the two zones accounted for about 67% of the additional population, and
most additional population was received in the peripheral counties of the two
cities, rather than in the city center. Conversely, the population in small rural
counties (less than 250 inhabitants) decreased. In 2011, 61.4% of the total
inhabitants live the two large urban zones. Other urban areas received 17.4%
of the total population in 2011. These urban areas include PortoVecchio,
Calvi, Corti, PentadiCasinca, I’ileRousse, Propriano, Ghisonaccia. The rest
population (21.2% of the population) dispersed in rural areas. In addition
to the urbanrural distinction in the population distribution, a coastal and in
land difference was also observed. In 2011, 79.3% of the population lived in
coastal counties, whereas the rest lived in inland counties. The gradual growth
of the population continued in Corsica. In 2013, the total population in Cor
sica reached 320 200 (Bretel, 2016). This number rose to 324 200 in 2014, to
327 000 in 2015, and to 330 500 in 2016 (Bretel, 2017a; Bretel, 2017b; Bretel,
2018). Nevertheless, the geographical distribution of the population did not
change significantly.

Apart from the continuous population growth, INSEE also highlighted that
significant residential migration has emerged in Corsica. In 2013, there were
approximately 8 000 immigrants but 4 000 emigrants. The immigration rate
defined by immigrants per 1 000 inhabitants was around 25.7, ranking the
Corsica (upper Corsica and southern Corsica) 83th out of 99 French depart
ments. Moreover, the emigration rate (13.3 emigrants per 1 000 inhabitants
approximately) made Corsica the last one among 99 French departments. In



1.2. Corsica context

1

7

contrast to these low rates, with 12.5 net migration rate (12.5 net immigrants
per 1 000 inhabitants), Corsica ranked 3rd out of all French departments. It
should be note that the negative net migration rate was found for people be
tween the ages of 22 and 25. This situation continued for the following years.
In 2016 there were 7 100 immigrants but 4 800 emigrants (Tirroloni, 2017;
Luciani, 2020). Corsica ranked the 2nd out of 13 French metropolitan regions
in terms of the immigration rate and 5th in terms of the emigration rate. As
the net migration rate was positive in 2016, the immigrants of different ages
are evenlydistributed. All these immigrants needed housing.

As previously stated, Corsica is wellknown for its rich tourism resources.
Nearly 9.5 million overnight stays were recorded at Corsican hotels in 2015
(Luquet, 2016). The regional tourist office also reported that the overnight
stays recorded in the Ajaccio area occupied 24% of the total amount recorded
in the region. The overnight stays recorded in the Bastia area, Balagne area
and Extreme Sud area occupied 31.4%, 18.8%, and 25.8% respectively. The
recorded overnight stays reached 9.7 million (Tirroloni et al., 2017) in 2016,
with the proportions being 41.2%, 23.3%, 18.4% and 17.1% for the Ajaccio
area, Bastia area, Balagne area and Extreme Sud area, respectively. The
increase in overnight stays continued. In 2017, this number was nearly 10.8
million (GenoveseBolleyn and Torre, 2018), and the proportion were 42.3%,
23.3%, 16.9%, 17.5%. In a word, a growing number of inhabitants, ceaseless
immigration and growing tourists put intense pressure on the local housing
market. The strong need for housing remains.

On the other hand, the supply of housing has indeed increased. In 1999,
there were 177 460 houses irrespective of housing types. This number reached
222 460 in 2011 and 242 100 in 2015 (Pedinielli and Bretel, 2015; Touzani,
2018). From 2011 to 2015, the annual growth in housing supply reached
5 000 units. In response to the population growth, the government planned to
boost housing supply. From 2010 to 2030, around 70 000 new houses would
be built (Balzer and Murati, 2015). Nevertheless, a number of houses were
bought and converted to second homes. In 2015, Corsica had the highest
second home rate among all French regions. This rate equaled 37.2%, while
the national second home rate was 9.6%. Additionally, lowrental housing
was rare in Corsica. There was no lowrental housing in several counties. At
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the regional level, the rate of lowrental housing was around 26%, which was
much lower than the national level (42.1%) in 2009 (Insee Corse, 2010).

Concerning housing prices in Corsica, the average price of a property in an
apartment building was €3 599 per 𝑚2 in 2015. Such a high price made the
Corsica become the fifth most expensive region in terms of housing prices.
Further, housing appreciation has never ceased. The price increased by 5%
compared with that in 2014, and the price augmented 3.5% from 2012 to
2013. There was also an intraregional difference. The average price reached
€4 024 per 𝑚2 in Southern Corsica, which was higher than that in Upper Cor
sica (€3 152 per 𝑚2).

As is well known, housing prices are often correlated with land prices.
According to an official report (Préfet de Corse, 2017), from 2006 to 2011,
Corsican land prices experienced a surge. Within this period, the average
land price rose from 30% to 50% depending on areas. The residential land
price was around €60 per 𝑚2, which was higher than that in other French
regions, holding the demographic increase constant.

In a word, after decades of appreciation, housing prices and residential
land prices attained a very high level in Corsica. Even though local author
ities attempted to boost housing supply, the phenomena such as the rapid
growth of second homes and the low rate of lowrental houses remained in
the Corsican real estate market.

1.3. A glance at the literature
Although the old cliché “location, location, location” has been used in the
housing business for a century, it has not been abandoned. The cliché was
firstly underpinned by the monocentric model derived from the work of Alonso
(1964), Muth (1969) and Mills (1972). In simple, the monocentric model
shows how land prices, land types and population density changes relate to
the distance to the city center. The development of the monocentric model is
also considered as the birth of modern urban economics. More recently, the
economic underpinning of the cliché has moved to the polycentric models pro
posed by Fujita and Ogawa (1982), but the location is still the key determinant
of property values. Not surprisingly, within the polycentric framework, the lo
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cation is still associated with remunerative economic opportunities, scenic and
desirable landscapes and amenities, and transport networks, etc. In a word,
virtually every attribute of a house beyond its physical dimensions can be
reduced to locations.

After briefly exploring the economic foundation of the location, my interest
now moves to assessing the location. The assessment is usually based on the
socalled hedonic price method. Proposed by Rosen (1974) in a seminal paper,
the hedonic approach has enjoyed a great deal of success in the empirical
literature investigating housing markets, e.g., housing appraisals, calculating
the implicit price of nonmarket goods.

Hedonic housing price models have evolved alongside the development
of spatial econometric models. In the early stages, housing location was of
ten represented by accessibility (Heyman et al., 2018). The fact is that re
searchers considered the location of a house as the geographical position in
relation to its neighbours, and accessibility provided a simple and straightfor
ward measure of it. More recently, some researchers noticed that although
accessibility attributes were taken into account, there were still spatial cor
relations in residuals (Koschinsky et al., 2012). This led to the application of
spatial econometric models, since spatial econometrics has provided a feasible
way to account for spatial effects in models of housing values. Additionally,
in the early stages, the computational burden made researchers implement
linear regression models, rather than spatial econometric models. The devel
opment of the spatial twostage least squares estimator (Kelejian and Prucha,
1998) and the acceptance of maximum likelihood methods hence accelerated
the use of spatial econometrics.

To my knowledge, the combination of spatial econometrics and the hedo
nic approach may date back to the late 80s and the early 90s. Can (1990)
and Can (1992) published a series of articles discussing the relationship be
tween housing price differentials and housing locations. In these articles,
traditional hedonic price models were extended to incorporate spatial neigh
borhood dynamics, and this led to the use of spatial econometrics. She also
discussed the advantages of using these models. After then, empirical ap
plications of spatial econometrics and the hedonic approach have increased
dramatically. Geoghegan et al. (1997) studied the implicit price of landscapes



1

10 1. Introduction

through spatial econometrics within the hedonic price framework. More re
cently, Anselin and LozanoGracia (2009) published a paper discussing the
fusion of spatial econometrics and the hedonic pricing method, namely “spa
tial hedonic models”. Several scholars (Anselin, 2010; LeSage, 2014) argued
that the spatial hedonic model has become the mainstream of quantitative
methods in analyzing housing markets. In recent years, due to the diversity
and complexity of regional affairs and contexts, traditional spatial econometric
models have faced criticism and more and more sophisticated spatial econo
metric/statistical models have been developed (Dong and Harris, 2015; Shi
and Lee, 2018). In summary, the monocentric, polycentric model and the
hedonic price model lay the microeconomic foundation of housing prices.

Regarding regional housing markets, Meen (1996) introduced the socalled
“ripple effect”, which describes a market phenomenon, where housing price
shocks in the Greater London region spread out their influence to neighbour
ing regions and eventually to the rest of the country over time. Chiang (2014)
specified the ripple effect as a kind of local housing price comovements. In
particular, the ripple effect is presented in a leadlag manner, begins with
the spillover of housing prices in a specific region to its neigbhouring regions
and it eventually leads to comovement among local housing prices. Meen
(1999) also stated that the economic mechanism behind ripple effects was
still unclear, but he proposed four factors that may facilitate the ripple effect,
including migrations, equity transfer, spatial arbitrage and spatial patterns in
the determinants of housing prices. Many scholars (Balcilar et al., 2013; Chi
ang, 2014; Kyriazakou and Panagiotidis, 2018; Teye and Ahelegbey, 2017)
have provided empirical evidence that the ripple effect exists in the housing
market in many different counties and regions.

1.4. Research gaps
The existing literature on evaluating housing prices and on investigating re
gional housing markets was extensive. However, regarding the Corsican hous
ing market, empirical analyses were scarcer. A few economic studies centered
on the impact of second dwellings purchased by foreign investors.

For example, Maupertuis et al. (2017) looked into Corsican coastal counties
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and second home buyers who lived there. Taking Lumio as an example, they
identified four factors that might explain the purchase, including previous con
nection with the county, physical characteristics of the county, local culture
and social network, and the relationship between buyer and the local soci
ety. Giannoni et al. (2017) proposed using a bargaining framework to analyze
foreign investors in the Corsican land/housing market. They clearly showed
that there is the socalled nonlocal buyer premium, which drove local buyers
away from the market. However, they illustrated this mechanism by analyzing
farmland transaction data. Caudill et al. (2019) investigated the segmentation
of Corsican housing markets through Harding, Rosenthal, et al.’s (2003) bar
gaining model. They finally found that there were two distinct submarkets in
the Corsican housing market. In the first submarket, asymmetric bargaining
power arose for local French and nonFrench residents. In contrast, similar
bargaining power arose for local French, Corsican and nonFrench residents
in the second submarket. Although these studies offer some enlightenment
about the Corsican housing market, many relevant phenomena remain unex
plained and questions remain unanswered.

In addition to the research gap related to the Corsican housing market,
some methodological drawbacks exist in the aforementioned studies and also
in the real estate valuing literature. For example, none of the aforementioned
studies account for unexplained spatial effects in empirical analyses. To im
prove these works, spatial econometrics may provide a feasible way. How
ever, as indicated previously, spatial econometrics experiences some criticism
and much of it relate to the specification of spatial weighting matrices. Cor
rado and Fingleton (2012) argued that in empirical practice, it is common to
build a spatial weighting matrix based on a rule of thumb or the prior knowl
edge of data. The simplified weighting matrix does reduce computational
workloads, but it neglects economic implications. Corrado and Fingleton thus
suggested that economic theories, rather than a rule of thumb should serve
as a guide to generate an appropriate spatial weighting matrix. McMillen
(2012) criticized misspecifying spatial weighting matrices in empirical analy
ses, and concluded that spatial econometric models seemed overused. He
found that nonparametric models (locally weighted regression) offered accu
rate prediction and marginal effect estimates relative to spatial econometric
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models with misspecified spatial weighting matrices. Brady and Irwin (2011)
argued that spatial econometric models were used in the context, in which
the primary interest was to estimate the relationship of neighboring values of
the dependent variable to itself. Furthermore, these models were sensitive
to the design of weighting matrices. In most hedonic housing applications,
the goal was probably not to identify that relationship, but instead accurate
parameter estimates that were robust to model misspecification and unob
served spatially correlated variables. They also suggested that nonparametric
and semiparametric models such as spline regression, Fourier analysis, locally
weighted regression, and kernel methods were alternatives of spatial econo
metric models in the context, in which spatial weighting matrices were difficult
to build or select.

Another methodological gap concerns the temporal dimension of hous
ing data. The spatial effects within the hedonic housing price model have
been intensively discussed over the past decades, but temporal dimensions
have attracted very little attention. In many hedonic price applications, hous
ing sales data consist of cross sections pooled over time (known as repeated
cross sections), and only a few applications (Kiel and Zabel, 2008) have panel
data, i.e., repeated sales data. Additionally, the time dimension is sometimes
neglected in applications, where transactions are effected within a short pe
riod. Conversely, in the case of fairly long periods, many researchers prefer
the time dummy variable approach, which is simple and straightforward. The
time dummies are mainly used for capturing temporal heterogeneity. Waltl
(2016) believed that time should be treated as a continuous variable, and the
application of time dummies is a compromise between temporal dimensions
and model complexity. However, repeated cross sections make things more
complicated, since data contain continuousspace information together with
continuoustime information. Moreover, the temporal relation generates a
unidirectional effect, which usually requires the inclusion of an autoregressive
component in models. In general, there are two ways to tackle both spatial
and temporal dimensions continuously. Waltl (2016) modeled the housing
price variations by means of two individual nonparametric functions, meaning
that there is no interaction between space and time. In other words, housing
prices have a common evolving pattern in space, and also a common pat
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tern in time. The house price variation in spacetime is expected to be much
more flexible. Cohen et al. (2017) combined the time dimension with the
continuousspace through the nonparametric part of local polynomial regres
sion, and this allowed the housing price variation across the space to vary over
time. Even though this approach can capture the spatiotemporal variation in
housing prices, there is a flaw in the sense that continuoustime information is
overlooked again. Consequently, it is necessary to propose a spatiotemporal
model for filling this research gap.

The last gap in the literature that I would like to highlight is the data
type. Generally speaking, economists distinguish three basic types of eco
nomic data, i.e., crosssectional data, time series data and Panel data. This
classification may seem inappropriate for analyzing housing markets, as hous
ing and spatial models complement each other. Housing data could be recog
nized in two basic types, the geostatistical (pointreferenced) data and areal
data. More precisely, individual housing sales collected over space and time
or microdata2 related to housing pertain to geostatistical data. In contrast,
data coming in an aggregated form with locational information often pertain
to areal data. Different data types thus correspond to different models in
terms of tackling spatial effects. For example, simultaneous and conditional
autoregressive processes are apt to handle areal data, while Gaussian pro
cesses are apt to tackle geostatistical data. For an economist, it is better to
recognize the data type before starting statistical modeling.

1.5. Aims of the thesis
This thesis makes a twofold contribution to the literature. I attempt to fill the
abovementioned methodological gaps. Then, I provide empirical evidence
on how dispersal mechanisms impact the Corsican housing market. Towards
these goals, a number of issues related to the Corsican housing market are
investigated through spatiotemporal Bayesian hierarchical models. These is
sues roughly include finding the determinant of housing prices, identifying
second home rate growth spatially and temporally, and recognizing the eco
nomic benefits of some environmental amenities.

2Dubé and Legros defined the microdata as
“Observations that are points on a geographical projection...”. (Dubé and Legros, 2014)[p.xi]
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The subject of the thesis belongs to the housing economics (Kingsbury,
1941), and these empirical analyses are rooted in the Corsican context. More
precisely, the first empirical analysis mainly looks into apartment price predic
tions. In order to assess the apartment prices across the entire region, we
need models to predict housing prices, where there are no recorded sales. To
address this problem, I focus on the spatial attributes of housing, since the
housing location is an important determinant of its price. On the other hand,
the spatial autocorrelation usually occurs in apartment prices. Additionally,
housing transaction time cannot be ignored either. To incorporate both fixed
covariate effects and spatial or spatiotemporal random effects, I consider the
class of Bayesian hierarchical models. I initially propose four candidate model
with increasing complexity, and I attempt to select the most effective model
that that is satisfactory with respect to the goodness of fit, predictive power
and computational costs.

In the second empirical, I intend to demonstrate the existence of ripple
effects in the Corsican second home rates. In doing so, I investigate spatial
patterns for second home rates at the county level in Corsica and how these
patterns change over time, after gauging covariate effects that may affect the
second home rate. Possible explanations for the ripple effect include that the
rapid growth of second home prices could shift the second home demand to
the surrounding areas. In addition, second home spillovers from one county
to another may coincide with the expectation of housing sellers in surround
ing counties. In the context of the high demand for surrounding counties,
property developers would like to build new houses for second home buyers
and second home buyers may also choose secondhand houses. This, in turn,
accelerates the second home rate among the surrounding counties. It is im
portant to note that second home rates data come in an aggregated form,
which implies that second home counts and total house counts within each
county are collected. To handle such data and to demonstrate the existence of
ripple effects, a spatiotemporal model within the Bayesian hierarchical frame
work is proposed, where spatial patterns are modeled using the conditional
autoregressive process.

The previous chapters use pointreferenced data and areal data respec
tively. One of the motivations for the third empirical analysis comes from the
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methodological aspect. How do we model spatially misaligned housing data?
Such data refer to the combination of the abovementioned pointreferenced
data and areal data. Concerning the misalignment, I propose a spatial multi
level model within the Bayesian hierarchical framework. Furthermore, I intend
to estimate the implicit price of sea views and closeness to beaches based on
the proposed multilevel model. It is widely accepted that living close to envi
ronmental amenities like coasts provides a large amount of welfare to house
holds. Coastal areas offer not only aesthetic elements for local landscapes,
but also space for recreation, leisure and viewing. As an island in the Mediter
ranean Sea, Corsican coastal areas attract the attention of house buyers. For
example, households living within the viewing zone of the Mediterranean Sea
could benefit sea views. In this context, understanding the environmental
amenity value is useful for planners and local policymakers, because the better
recognition of the economic impacts of environmental amenities could provide
justification to preserve them, and minimize negative impacts associated with
urbanization.

To summarize, this thesis contains three empirical analyses with different
topics about the Corsican housing market. A crucial issue throughout the the
sis is how locational/geographical features affect the Corsican housing market,
i.e., housing prices, subregional second home rates and the implicit price of
some amenities. I also look into the impact of the time dimension. In doing so,
several dynamic spatiotemporal models are proposed. Spatial and temporal
components are investigated jointly and separately within these models.

1.6. Research approaches
1.6.1. Data source
In this thesis, data are obtained from different sources. In the first empirical
chapter, I use the “PERVAL” dataset obtained from “Notaire de France”. It is
important to note that the “PERVAL” dataset registered all the apartment sale
contracts. Further, the dataset provides information from housing transaction
prices to apartment characteristics. Over 10 000 transactions are registered
spanning from 2006 to 2017, and I, therefore, have a repeated crosssectional
dataset. From a geostatistician’s point of view, these data belong to geosta
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tistical (pointreferenced) data (Cressie, 2015).

In the second empirical chapter, data are acquired mostly from open
sources, e.g. the website of INSEE and “Banque de France” (see Table 7.1 in
Appendix 7.5 ). Research center “LISA” provides data about Corsican tourist
attractions. Based on these data, a panel dataset is built. The data contain
360 spatial units and cover the period from 2006 to 2016. Again, these data
are areal data.

In the third empirical chapter, the abovementioned two datasets are com
bined. I, therefore, obtain misalignment spatial data, meaning that the spa
tial data at different scales of spatial resolution do not coincide (Gelfand et
al., 2010). The misaligned dataset contains 6 377 observations from 2006 to
2016.

1.6.2. Statistical models
A classical linear model is inappropriate to model spatial data if spatial effects
emerge. Additionally, classical spatial econometric models have some intrin
sic properties, which severely limit its use. I, therefore, keep my eyes on the
socalled geoadditive models proposed by Kammann and Wand (2003). Some
researchers (Fahrmeir, Kneib, et al., 2013) classified the geoadditive model
into the latent approach relative to the direct approach such as spatial lag
models. To be more specific, in a geoadditive model, the mean and variance
of a response variable are functions of both fixed covariate effects and the
spatially structured random effects. There are several specifications for cap
turing the spatial effects, including Markov random field (MRF) models3, Gaus
sian random field (GRF) models (Cressie, 2015), twodimension (2D) splines
(Toraichi et al., 1988). Further, according to Rue, Martino, et al. (2009), some
geoadditive models can be rewritten into a latent Gaussian model4 and hence
adapt to Integrated Nested Laplace Approximations (INLA) based inference.

As stated previously, there are several candidate specifications for the spa

3e.g., Conditional Autoregressive (CAR) models (Besag, 1974); BesagYorkMollie (BYM) models
(Besag et al., 1991)
4Geoadditive models, along with generalised linear models, generalised additive models,
smoothingspline models, statespace models, semiparametric regression, spatial and spatio
temporal models, logGaussian Coxprocesses belong to a socalled structured additive regres
sion (STAR) family. Latent Gaussian model is a subset of the STAR family.
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tial effects. In the Bayesian paradigm, these specifications typically work as
priors. The conditional autoregressive or BesagYorkMollie (BYM) model is
used for capturing discrete spatial structures and often induces sparsity in a
precision matrix. While continuous spatial structures can be modeled by a GRF
represented by a Matérn covariance field. Then, via a Stochastic Partial Dif
ferential Equation (SPDE) approach, the GRF is approximated by a Gaussian
Markov random field (GMRF) and then generates a sparse precision matrix
(Lindgren et al., 2011). The sparsity produces significant computational gains
for INLAbased inference.

1.6.3. Bayes inference
All models used in this thesis are fitted by the Integrated Nested Laplace
Approximation within the Bayesian paradigm. The change from frequentist
approaches to Bayesian approaches is motivated in different ways. Common
reasons include accounting for uncertainty from data, processes and parame
ters, incorporating prior knowledge, avoiding interpretation of confidence in
tervals and pvalues. As such, the Bayesian approach should provide a more
reasonable interpretation of parameters and adapt to fit various complex spa
tial models. More details about the research approach can be found in Chapter
2.

1.7. Thesis organization
This thesis is organized into seven chapters as follows: Chapter 1: General
Introduction gives a brief overview of this thesis, including study areas, a short
literature review, research gaps, research aims and research approaches.

Chapter 2: Literature review discusses the economic basis of the hedonic
price method, housing locations and ripple effects.

Chapter 3: Quantitative models for housing analysis provides a detailed
examination of different econometric/statistical tools. In particular, I look into
the latent Gaussian model with different spatial components and estimation
techniques (integrated nested Laplace approximations for Bayesian analysis).

Chapter 4 corresponds to the first empirical chapter. A set of Bayesian
hierarchical spatiotemporal models coupled with the INLASPDE approach are
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specified. Our aim is to select the most effective model that accounts for the
goodness of fit, the prediction capability and the computational costs. This
model is then used to make precise housing price predictions. Moreover, the
spatiotempoal random effects are displayed on maps to analyse their impacts
on housing prices.

Chapter 5 corresponds to the second empirical chapter. A Bayesian gen
eralized additive regression model is developed to investigate the spatial and
temporal patterns of Corsican second home rates. I identify several coun
ties as “hot spots” in terms of second home rates and policymakers should
be aware of the second home issue in these counties. Methodologically, I
highlight the usefulness of CAR models working as priors.

Chapter 6 corresponds to the third empirical chapter. I review the literature
on scenic amenities and then generate a subjective, continuous measurement
of views. I also proposed a spatial multilevel hedonic model to estimate the
implicit price of sea views on Corsican apartment prices in the presence of
nested data structures.

Chapter 7: Conclusions present overall conclusion remarks. The contri
bution of this thesis to the existing literature. I also discuss the limitation of
each empirical study and the potential directions for future work.
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Literature review on

housing analysis

2.1. Introduction
As previously stated, housing has attracted the attention of researchers, policy
makers, planners, homeowners and investors. Highquality data on housing
prices at a disaggregated level can be used to make investment or buying de
cisions (Jayantha and Lau, 2016). For researchers, the availability of such data
can help them to build housing indices and to accurately assess nonmarket
goods (Taylor, 2003). On the other hand, analyzing dynamics in a housing
market on aggregated levels (e.g., regions, counties, etc.) provides valuable
information about the linkage of a regional/subregional housing market to
the rest of the country (Jansen et al., 2011). Therefore, I intend to provide
an overview of the economic literature associated with housing analysis in this
chapter.

I initially point out the importance of housing for both personal finance
and the national economy (Hill, 2013). Further, housing also has some special
features (i.e., heterogeneity, spatial fixity and durability) that make it different
from other goods (Galster, 1996). Based on these features, I introduce an
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analytical framework, that is, the hedonic price method (Rosen, 1974). I
discuss the application of the hedonic price method and its alternatives in the
housing analysis literature. The discussion illustrates that the hedonic price
method is advantageous over its alternatives. The economic cornerstone of
the hedonic price model is also reviewed.

More importantly, I highlight that the location is an important determinant
of housing prices, as well as regional second home markets in the literature.
In the early stages, most scholars considered the location of a dwelling as
the geographical position in relation to its surroundings (Marcus, 2010), and
therefore accessibility was a straightforward and feasible way to measure it.
The meaning of locations was further developed. Beyond the geographical
position, the location is considered the source of spillovers. In the early 90s,
Can (1992) demonstrated that for houses, locations were represented not
only by accessibility, but also by adjacent effects. Regarding the regional
market, Meen (1999) proposed using socalled ripple effects to describe the
comovement among certain regions that were spatially close to each other.

Once all of these have been examined, I hope that readers can understand
why we use the hedonic price method, the importance of the location for both
housing and subregions.

2.2. Housing and wealthy
Housing markets are an integral part of an economy. On a global scale, Syz
(2008) stated that almost one third of global total wealth ($21.6 trillion ap
proximately) was tied up in residential housing. Real estate also forms a
dominant component of the total wealth of many countries and regions. Liu,
Park, et al. (2002) clearly showed that the entire real estate sector accounted
for 30% of the gross domestic product (GDP) growth of China in 2001, and
local governments gained considerable revenue from real estate (Liu, 2018).
Wagenmakers et al. (2008) demonstrated that in 2006, the real estate value
in Sweden was nearly three times higher than its GDP.

Furthermore, housing is a major component of wealth for most house
holds. According to a report from European Central Bank (2003), the esti
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mates of households’ housing wealth1 in the euro area augmented from €3.7
trillion in 1980 to €19.6 trillion in 2003. In Australia, land and housing assets
accounted for 55% of household assets and 70% of household net worth in
2015. For several OECD countries (the US, UK, Canada and Germany), the
ratio of housing prices relative to the disposable income of households kept
rising over the past two decades. In France, this rise was around 60%, and
housing capital measured by housing prices experienced a surge in the 1990s
(Bonnet et al., 2014).

Not only housing wealth in general, but the associated housing prices have
received attention from economists as well. Many economists believe that
the linkage between housing markets and the rest of the economy is mainly
through house price fluctuations. Case, Quigley, and Shiller (2005) indicated
that changes in housing prices had a significant impact on household con
sumption. Case and Quigley (2008) noted that the impact of the downturn
in housing prices might be reflected via income effects. Moreover, the global
financial crisis in 2008 was an obvious example, since the collapse of the
U.S. subprime mortgage market followed by the fall in housing prices almost
triggered that crisis (Shiller, 2007).

From a microeconomics perspective, much of the housing wealth is spread
across households. Households act not only as homeowners but also as con
sumers and investors. For example, among homebuyers, housing market
prices are usually several times the household’s annual income, and a house
is typically the largest single item purchased by a household. The purchase
of a house possibly represents the largest part of household savings (Good
man and Muth, 2013). If house prices go up, homebuyers may wait and see.
When homebuyers become homeowners, the house is the major asset in their
portfolio. In this context, if house prices increase, they will become better off.
Some homeowners will borrow more to spend on other goods and services.
Conversely, if house prices go down, homeowners risk that their house will be
worth less than mortgages. As such, they will probably cut down on spending
and will hold off on investments. In short, housing prices have a considerable
impact on households’ consumption, investment and savings (Case, Quigley,
1“Households’ housing wealth is defined as the value at current market prices of all residential
dwellings, including the value of land on which the buildings are built, owned by households.”
(European Central Bank, 2003)[P. 47]
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and Shiller, 2005).

In addition to the abovementioned channels, other channels include: hous
ing price fluctuations may impact personal savings ratio (Green and Hadji
matheou, 1990); housing price fluctuations are likely to affect the distribution
of wealth (Giussani and Hadjimatheou, 1991); and housing price fluctuations
may have impacts on labour mobility among cities or regions (Alun, 1993;
Karahan and Rhee, 2019).

2.3. Specific characteristics of housing
Housing is often referred to as a shelter and therefore meets basic human
needs. Moreover, in most cases, a house implies a home and is therefore im
portant for individuals (Bourne, 1981). Bourne (1981) and Dieleman (1996b)
also highlighted that housing brought psychological satisfaction such as com
fort, privacy and security. Jansen et al. (2011) mentioned that housing also
accompanied with social activities, such as talking to the neighours family,
and friends. For economists, housing is a complex, composite good, and it
can act not only as a consumer good, but also as a capital good and an invest
ment good. Even though housing has triple status, according to economists,
housing is often analyzed through conventional market theory. On the other
hand, housing is set apart as a special market due to some particular features
involving heterogeneity, spatial fixity, and durability (Galster, 1996; Sheppard,
1999). These three features are explained in more detail below.

According to Taylor (2003), heterogeneous goods refer to the products
with characteristics that are significantly different, even though the products
are sold in one market. It is evident that housing is a heterogeneous good
(Łaszek, 2013). Its intrinsic characteristics vary across houses, such as types,
size, age, building materials, accessibilities, decoration and etc. The degree
of heterogeneity also varies among housing units. Housing is a package or
a bundle of many features in terms of quality and quantity. The associated
value for consumers is the sum of these features weighted by the consumer’s
preferences.

Spatial fixity or spatially immobile features indicate that housing occupies
a fixed place, and that the location is its intrinsic attribute. For homeowners,
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regardless of whether they come or leave, the house remains there. More
importantly, spatial fixity also generates physical and social externalities. If a
household purchases a house, it obtains not only housing structural features,
but also the socioeconomic status of the neighbourhood and the accessibility
to any desired places, such as central business districts (CBD), private goods
or public facilities. These externalities provide additional utility and implicitly
improve housing prices. It should be noted that no two houses can occupy the
same location, no matter how similar their structural features are. As such,
the location also provides evidence that housing is a heterogeneous good. In
a word, the location is a crucial determinant of housing quality and household
welfare.

Durability means that housing, in general, is a durable good and has a very
long lifespan. Unlike singleuse or shortterm consumer goods, housing can
serve for many years (Dieleman, 1996a). Moreover, in the market, a large
share of dwellings is provided by houses or apartment buildings constructed
in the past.

Combining the durability, heterogeneity, and spatial fixity contribute to dif
ferences in housing quality and housing prices across locations. Further, be
cause of these particular features, housing can be analyzed using the hedonic
price method. In the following section, I will examine the major approaches
to housing analysis.

2.4. Methods of housing analysis
Housing has been extensively studied. Bourne (1981) concluded several com
monly seen topics in housing studies. From the demand side perspective,
topics included household location decisions, land use and neighbourhood
change, environmental (nonmarket goods) valuation. By contrast, the top
ics on the supply side involve investment and capital markets, institutional
behavior. More recently, Jansen et al. (2011) provided a summary of ana
lytical techniques for measuring housing preferences and choices. Among all
the techniques, they mentioned the hedonic price method. As an analytical
method within the neoclassical economics framework, this method is famil
iar to economists. The hedonic price method uses information on housing
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prices and corresponding features, and then provides monetary estimates of
the willingness to pay for and equilibrium of alternatives (De Haan and Diew
ert, 2013). That is to say, the hedonic price function reveals the maximum
amount that buyers would like to pay for a housing attribute. They also stated
that the key idea of the hedonic price method was that price differences de
pended on a set of features associated with housing. This emphasized the
heterogeneous feature of housing.

Malpezzi (2008) also pointed out the heterogeneous nature of housing,
and therefore the application of the hedonic price method was appropriate.
He stated

“The method of hedonic equations is one way that expenditures on housing
can be decomposed into measurable prices and quantities, so that rents for
different dwellings or for identical dwellings in different places can be predicted
and compared.” (Malpezzi, 2008)[p. 68]

In practice, a hedonic price function is expressed by multiple regression
of transaction prices on housing features. Regression coefficients are usually
interpreted as the implicit price of the housing features.

It is natural to use the hedonic price method for assessing nonmarket
goods2, since some environmental benefits can be measured via features that
are related to housing prices. For instance, if nonenvironmental factors are
controlled, any remaining differences in price can be attributed to differences
in environmental quality. Taylor (2003) stated that the hedonic method could
be used for assessing nonmarket goods, and the assessment was based on
housing transactions to determine the implicit value of a feature. By observing
the difference in prices between two product varieties that have only one
distinct feature, researchers can indirectly observe the monetary tradeoffs
that agents are willing to make in terms of the difference in that feature.
Since researchers cannot directly observe the value of the feature, but infer
that value from transaction information, the hedonic price method thus is an
“indirect” valuation method.

A rival to the hedonic price method is the contingent valuation (Ready et
al., 1997). The contingent valuation has been used to study the external bene

2For example, environmental amenities (aesthetic views or proximity to recreational sites), and
environmental quality (e.g., air pollution, water pollution, or noise).
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fits, such as improved air quality (Belhaj, 2003; Ligus, 2018), newlybuilt local
railway systems (Utsunomiya, 2018) and increased green space (Chen and Qi,
2018; Latinopoulos et al., 2016). As a “direct” valuation method, the contin
gent valuation relies on surveys, where individual respondents clearly show
their preferences for a hypothetical environmental change. The aggregate in
dividual valuations can then help to make inferences about a communitywide
valuation for the landscape in question. Bateman (1994) concluded that two
kinds of questions often appeared in surveys. The first one was about the
respondent’s willingness to pay to conserve a landscape. That is to say, how
much people are willing to pay to prevent welfare losses due to the chang
ing landscape. Another one is about the respondent’s willingness to pay to
improve landscapes. In other words, how much people are willing to pay to
achieve welfare gains due to the changing landscape.

Relying on surveys, the contingent valuation can be used for measuring
nonuse values3, whereas the hedonic price method can not.

Furthermore, in conducting the survey, three types of bidding formats have
been used to elicit the willingness to pay for a nonmarket good (Cuccia,
2020). They are openended, iterative, and dichotomous choices.

The openended bidding implies that people’s willingness to pay is induced
by open questions. The respondents are asked to make a decision (i.e., he/she
is willing to pay for a nonmarket good.) in a hypothetical situation. However,
this bidding format has been critiqued. For example, some situations are
set to be very hypothetical and dissimilar to realworld market transactions
(Hoyos and Mariel, 2010). Further, some respondents may not be sensitive to
the quantity and quality of changes (e.g., landscape changes). As such, the
willingness to pay is likely inaccurate (Brander and Koetse, 2011).

The iterative bidding means that interviewers directly introduce a starting
bid, and then increments or decrements are given. This procedure is re
peated several times until an acceptable bid is reached. This iterative bidding
may be the most frequently used format in the contingent valuation literature
(Mousumi et al., 2007; Hoyos and Mariel, 2010).

The dichotomouschoice bidding refers to respondents indicating whether
3Mendelsohn and Olmstead (2009) noted that the difference between the use and nonuse value
of the environment was whether there was any real interaction between an individual and the
environment.
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they are willing to pay a specific amount for a nonmarket good on the basis
of closed questions. This bidding format is simple and straightforward, but it
is affected by many factors, such as payment methods. Bateman et al. (1993)
found that changing the payment method from donation to tax almost doubled
the willingness to pay. As such, the willingness to pay may be inconsistent.

In summary, as a surveybased method, the contingent valuation has spe
cific characteristics, like investigating nonuse values, but it requires complex
survey designs, and the associated questions are based on a hypothetical situ
ation, rather than on observed economic choices (Brander and Koetse, 2011).
Moreover, this method typically required a high budget and long operating
time.

In addition to acting as a valid valuation method, the hedonic price method
is also a crucial tool in identifying the determinant of housing prices, and
further predicting house prices. Belke and Keil (2018) summarized several
commonlyused approaches to identify the determinants of housing prices in
empirical studies. These approaches include: the asset pricing approach, the
hedonic price method, and the analysis based on aggregate housing price
indices.

The asset price approach attempts to demonstrate the relationship be
tween housing prices and expected future discounted earnings derived from
properties (Himmelberg et al., 2005; Hott and Monnin, 2008; Weeken, 2004).
In particular, Hott and Monnin (2008) employed a user cost model and showed
that housing prices mainly depended on mortgage rates, depreciation, main
tenance costs, taxes or capital gains.

The hedonic price method can also be employed to identify the determi
nant of housing prices. The fact is that it can measure each structural or
neighbourhood feature that has contributed to the overall housing price. Em
pirical studies use data on individual housing transactions with corresponding
prices and various characteristics. Rich literature can be found in this field,
from the early applications (Can, 1992; Freeman, 1979; Li and Brown, 1980;
Rothenberg et al., 1991) to the recent studies (Delgado and Wences, 2019;
Noh, 2019; Yang et al., 2019).

The last approach refers to some econometric models that directly esti
mate the housing price determinants based on some form of aggregate (i.e.,
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national, regional or local level) housing price indices. In contrast to the he
donic price method using individual properties, these models use national, re
gional or local level economic variables as determinants. For example, Sutton
(2002) investigated how shocks in incomes, interest rates and equity prices
affect housing prices in six OECD countries by means of a vector autoregres
sive (VAR) model. The results clearly showed that positive shocks to income
or equity prices and negative shocks to interest rates resulted in housing price
appreciation.

Thus far, I have looked into various approaches to investigating hous
ing price determinants. It should be noted that the application of these ap
proaches depends on specific research questions and the availability of data.

Aside from the abovementioned applications, the last application of the
hedonic price method that I intend to discuss is building price indices (Fik et al.,
2003). In general, there are three types of housing price indices (Rappaport,
2007), the median index, the repeatsales index and the hedonic index.

As the simplest, straightforward measure, the median index lists the tem
poral changes in the median housing price of a region from one period to the
next. However, it experiences several drawbacks. First, this index confounds
changes in prices with quality differences. As a result, the information pro
vided by this index is very noisy, and we cannot distinguish the pure housing
price change from the price change due to quality changes. A variation of this
median index is the mixadjustment (stratification) index. Even though the
mixadjustment index takes an arithmetic or geometric mean for the median
index of all subregions, it does not overcome the same issue in constructing
a median index (Gan and Hill, 2009).

The repeatsales index is calculated using repeatsales housing data. At
tributed to Bailey et al. (1963), this index is then developed and promoted
by Case and Shiller (1989). Nevertheless, this index also experiences some
limitations. First, it drops a lot of data, for instance, the property that only
sells once has to be removed to build this index. Further, dropping these ob
servations may give rise to sample selection biases. Second, the repeatsales
index may have the same problem as the median index. If an observation
was renovated or extended between two sales, the repeated sales index may
also confound changes in prices and quality differences (Prasad and Richards,
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2008).

The hedonic index, like the previous hedonic applications, considers hous
ing as a bundle of attributes with their implicit prices (Goodman, 1978; Ong
et al., 2003). Using regression techniques, the hedonic index can account for
the extreme heterogeneity of housing, as well as provides qualityadjusting
measures of price changes.

In summary, the hedonic price method has been used in a number of ways
in housing contexts. First, as previously stated, it can be used to measure the
implicit price of certain nonmarket goods. Second, it is used to identify the
determinants of housing prices and corresponding impacts, and also to provide
general appraisals of houses. Third, it is used to build housing price indexes.
In these three situations, the hedonic price method often has advantages
over its alternatives. For example, it is multitasking and does not restrict data
types. Considering the availability of data in the following empirical analyses
and research aims, I will look into the economic underpinning of the hedonic
price method in the following sections.

2.5. Hedonic Price Model (HPM)
As one of the most popular methods, the hedonic price method provides a
theoretical basis for many housing studies. In short, the idea of the hedonic
price method can be expressed as follows: an entire good can be reduced to
its constituent attributes, and the implicit value for these attributes is then cal
culated based on market transaction prices. In the following subsections, I will
review the evolution of the hedonic price method, followed by an examination
of its economic underpinnings.

2.5.1. A brief history
It is widely accepted that Andrew Court is a pioneer in applying the hedo
nic price method (Goodman, 1998; Herath and Maier, 2010; Malpezzi, 2008).
Working as an economist in General Motors, Court intended to develop auto
mobile price indices in the 1930s. In his paper, he explained the reason to
name the method “hedonic” and gave an example of the newlyborn method.
He noted:
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“Utilitarianism, seeking the good in the greatest happiness of the commu
nity as a whole, is the chief hedonistic doctrine. Thus, Hedonic price compar
isons are those which recognize the potential contribution of any commodity,
a motor car in this instance, to the welfare and happiness of its purchasers and
the community... Passenger cars serve so many diverse purposes that such
a single, most important specification cannot be found. The simple method
is inapplicable, but why not combine several specifications to form a single
composite measure?” (Court, 1939)[p. 107]

The phrases contain some key ideas of the hedonic price method, including
the heterogeneous attributes of products, the heterogeneities of consumers’
demands and the composite measurement.

Following Court’s study, Lancaster (1966) introduced a new consumer the
ory, which provides the underpinning of the hedonic price method. Lancaster’s
new theory states that utility comes from the intrinsic properties of goods,
rather than a good itself. He wrote:

1. The good, per se, does not give utility to the consumer; it possesses
characteristics , and these characteristics give rise to utility.

2. In general, a good will possess more than one characteristic, and many
characteristics will be shared by more than one good.

3. Goods in combination may possess characteristics different from those
pertaining to the goods separately. (Lancaster, 1966)[p. 134]

In other words, consumers purchase relevant characteristics of goods rather
than goods themselves, the composite goods are heterogeneous due to dif
ferent “characteristics”. Thus, people purchase goods based on the number
of good characteristics and per unit cost of each characteristic. Lancaster’s
new consumer theory is the microeconomic foundation for analyzing utility
bearing characteristics. However, a possible limitation of his theory is that it
considers the demand side of the market only.

The complete theoretical foundation of the hedonic price method is laid
by Rosen (1974). Presented in a seminal paper, Rosen overcame the limita
tion of Lancaster’s theory. Rosen’s model integrates the earlier hedonic price
model into a neoclassical economics framework4. Additionally, the theoretical
utility framework links consumers’ preferences for characteristics goods and

4Rosen’s theory assumes that everything happens in a perfectly competitive market.
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market equilibrium prices. Following Lancaster’s theory, Rosen also argued
that goods are valued by characteristics. Hence, the total price is a function
of the characteristic and the implicit price of a characteristic is the derivative
of the total price with respect to the amount of the characteristic5. Further,
he demonstrated the market equilibrium and concluded that each attribute
has a unique implicit price in an equilibrium market, which equals Marshallian
willingness to pay (WTP).

Five years later, Freeman (1979) brought a paper named “hedonic prices,
property values and measuring environmental benefits: a survey of the is
sues”. He highly praised Rosen’s model. He also underlined that a household’s
willingness to pay for a unit of each characteristic should equal the housing
attribute prices. More precisely, treating the price of a house as a dependent
variable and associated housing characteristics as independent variables, re
searchers can apply regression techniques. The estimated coefficients are
interpreted as implicit marginal prices.

Rothenberg et al. (1991) summarized that the hedonic price method has
two advantages over other valuing methods in measuring house prices. On
the one hand, decomposing different houses into many characteristics makes
an adequate simplification and avoids using multicommodity models. On the
other hand, housing characteristics can be regarded as the marginal tradeoffs
both supplier and demanders made on markets.

2.5.2. Theoretical foundation
In Rosen’s theory, the hedonic price model is built on two stages. The first
stage analysis is used for estimating the implicit price of characteristics and
reflecting consumers’ preference for these characteristics through the trans
action prices of a differentiated product and its characteristics (Taylor, 2017).
The firststage analysis is widely used for assessing housing prices. A possible
explanation is that most regional scientists are interested in the implicit price
of characteristics, and it is easy to collect data for the firststage analysis.
Housing characteristics, neighborhood and amenities attributes are usually

5Rosen wrote:
“…a class of differentiated products is completely described by a vector of objectively measured
characteristics. Observed product prices and the specific amounts of characteristics associated
with each good define a set of implicit prices.” (Rosen, 1974)[p. 34]
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included in an econometric model.
Conversely, few researchers (Bajari and Kahn, 2005; Bishop and Timmins,

2011) discuss the secondstage analysis in terms of estimating inverse de
mand functions. This gap in the literature is undoubtedly due to the identifica
tion strategy in empirical analyses. Since the prices for calculating the inverse
demand function are not actually observed, the estimated implicit prices in
the first stage must be put into the secondstage simultaneous estimation. As
such, the hedonic price method experiences an endogeneity issue in the sense
that the hedonic price function simultaneously determines both the number
of characteristics and the marginal price associated with them. Researchers
can use instrumental variables to correct this endogeneity issue, but it is very
difficult to find a truly exogenous instrument (Bishop and Timmins, 2019).

Regarding housing, as a differentiated product, each housing unit has spe
cific characteristics, which result in nonuniform house prices in a perfectly
competitive market6. To be more specific, let 𝑧𝑗 denotes a bundle of 𝑛 charac
teristics associated to the house 𝑗, 𝑧𝑗 = (𝑧1, … , 𝑧𝑛). Following Rosen’s theory,
the equilibrium price for the house is a function of all characteristics associated
with the house,

𝑝𝑗 = 𝑝 (𝑧𝑗) = 𝑝𝑗 (𝑧1, … , 𝑧𝑛) (2.1)

where 𝑝𝑗 denotes the market price of house 𝑗. This function is also known
as the hedonic price function or the hedonic price schedule. Since buyers
in the market own heterogeneous preferences and budgets, they can only
affect the price of their chosen house via a selection of attributes, but they
can not affect the equilibrium price in the market. For example, the buyer ℎ
seeks to maximize his/her utility by choosing a differentiated product 𝑧 and
expenditure of nonhousing numeric goods 𝑥, subject to a budget constraint,
the buyer’s income 𝑦ℎ.

max 𝑢ℎ𝑗 = 𝑈ℎ(𝑧𝑗 , 𝑥)
s.t. 𝑝𝑗 + 𝑥 ≤ 𝑦ℎ ,

(2.2)

6The perfectly competitive market ensures that all combinations of housing characteristics are
available on the market.
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where 𝑢ℎ𝑗 denotes the utility of house 𝑗 for the given household ℎ. 𝑝𝑗
denotes a buyer’s housing expenditure. To find the optimal choice for buyer
ℎ, the firstorder condition is applied,

𝑗∗(ℎ) = argmax 𝑈ℎ(𝑧𝑗 , 𝑥) (2.3)

𝜕𝑝(𝑧∗𝑗 , 𝑥)
𝜕𝑧𝑗

=
𝜕𝑈ℎ
𝜕𝑧𝑗
𝜕𝑈ℎ
𝜕𝑥

(2.4)

where the lefthand side of Eq.2.4 is the implicate price of 𝑗𝑡ℎ attribute,
and the righthand side of Eq.2.4 represents the marginal rate of substitution
between the 𝑗𝑡ℎ attribute and the numeric nonhousing good 𝑥.

Thus far, I have thoroughly examined the hedonic price method from the
associated applications to its economic underpinnings. In the next section, I
will look into another specific feature of housing, that is, the spatial fixity.

2.6. Location and housing prices
In this section, I provide an overview of the relationship between housing
locations and prices from a microeconomic perspective. In particular, spe
cial attention has been paid to measuring the impact of locations on housing
prices.

2.6.1. Background
Economists have focused on urban structures for a long time. In the “isolated
state” model, Von Thünen (1966) assumed that there existed a monocen
tric market with concentric circles for agricultural land use. Farmers intend
to maximize their profits, which is the market price of farming products mi
nus transport and production costs. Consequently, activities with the highest
transport costs and the highest revenues were found near the center.

In the middle 20th century, Alonso, Mills, and Muth (Alonso, 1964; Mills,
1972; Muth, 1969) extended Von Thünen’s (1966) model to adapt to a mod
ern urban context. More precisely, a socalled Central Business District (CBD)
plays a key role in the AlonsoMillsMuth monocentric model, where land val
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ues decline with distance from the central business district of a city. Further,
different types of land use, land prices, population and employment relate
to the distance to the central business district (Brueckner, 2007; Wheaton,
2004). Many empirical analyses using the AlonsoMillsMuth model investi
gate the relationship between distances to the central business district and
observed land values. Several researchers have shown that a negative gra
dient exists, mostly for residential land (McMillen, 1996). That is to say, for
residential land, as the distance from the central business district increases,
the residential land value decreases.

The simple and analytically elegant monocentric model has dominated the
urban economic theory since the middle of the 20th century. As time went
by, more and more researchers found that the magnitude of the gradients
decreased significantly, and this was widely interpreted as urban decentral
ization. Economists, therefore, attempted to explain the emergence of such
complex patterns. In the late 20th century, Fujita and Ogawa (1982) pro
posed the polycentric model, where cities/regions owned multiple centers in
cluding the socalled primary urban centers and subcenters. ArribasBel and
SanzGracia (2014) showed that some large cityregions in North America had
become polycentric, but the monocentric model could still explain the spatial
structure of most North American regions. Several researchers (Romero et
al., 2014; Lopez and Olivera, 2005) pointed out that in Europe, formerly in
dependent smaller cities formed larger regional conurbations with polycentric
structures. In a polycentric city, the negative house pricing gradients did not
maintain. Waddell et al. (1993) studied house prices in Dallas, USA and stated

“the emergence of new nodes of regional significance has created housing
price gradients that far overshadow any residential gradient with respect to
the CBD.” (Waddell et al., 1993)[p. 15]

That is to say, the relative location of residential land is a crucial factor
in creating residential gradients. If a new node emerges in a metropolitan
region, the old residential gradients will be broken and new gradients will be
created.

Blotevogel (1998) noted the same phenomenon in the Rhine Ruhr metropoli
tan region, Germany. He showed that in the polycentric metropolitan region,
house price gradients are a combination of the previous patterns of formerly
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independent smaller cities.

2.6.2. How is location measured in housing valuation?
Even though the corresponding economic theory changed from the mono
centric model to the polycentric model (Heikkila et al., 1989; McDonald and
McMillen, 1990), the location has always been the key impact factor on hous
ing prices, and there are a great number of empirical analyses to support this
point. Bowen et al. (2001) reviewed the theoretical and empirical studies of
the hedonic price method from a spatial analysis perspective. They advocated
that empirical studies applying the hedonic price method should consider spa
tial effects.

After reviewing empirical analyses employing different location character
istics, I conclude that location characteristics in empirical work can be classi
fied into two broad categories, that is, relative or absolute locations (Marcus
et al., 2019). The notion of the absolute location is derived directly from
geography. The geographical position (location) is usually described by co
ordinates given longitudes and latitudes. Empirical studies considering the
absolute location within the hedonic price framework may date back to the
early 1990s. Dubin (1992) proposed applying Kriging7 (Krige, 1952). She
highlighted that the Kriging method could account for spatial relationships
explicitly, and thus produced a spatial trend map. Clapp and his colleagues
developed the socalled local regression model (Clapp, 2003; Clapp et al.,
2002). This model contains both a fixed covariate effects component and a
nonparametric smoother. The nonparametric smoother relies on local poly
nomial regression, which estimates the value of locations using a function of
longitude and latitude. McMillen and Redfearn (2010) developed the socalled
locally weighted regression. The locally weighted regression also involves
a nonparametric component for computing the value for a given location.
Furthermore, the nonparametric component is allowed to interact with other
housing characteristics.

Conversely, the relative location depicts the relationship between locations.
Some scholars (Marcus, 2010; Rérat, 2018) held the view that the relative

7Kriging is also known as Gaussian process regression (Latinopoulos et al., 2016), details about
Gaussian process regression are found in Sect.3.5.1.
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location was a subset of the absolute location. The fact is that the absolute
location also reflects the relative location, but the relative location is merely
used to describe the relationship between locations.

However, in the early stages, most studies account for the relative loca
tion through accessibility to specific amenities. For example, several scholars
(Colwell and Guntermann, 1984; Downes and Zabel, 2002; Dhar and Ross,
2012) investigated the accessibility to schools. Others (Anderson and West,
2006; Bolitzer and Netusil, 2000; Dehring and Dunse, 2006; Yoo and Wagner,
2016) studied the accessibility to nearby parks or other open spaces.

Accessibility in these studies is measured by Euclidean distance, and acts
as a continuous or categorical independent variable in a classical linear re
gression model. Heyman et al. (2018) reviewed 52 hedonic housing studies
between 2000 and mid2016, which used accessibility as a measure of the
location. They concluded that accessibility was mainly measured in four ways
in hedonic studies, including Euclidean distance, network distance, travel cost,
and zone. The Euclidean distance refers to the straight line distance between
two points, and is usually the shortest distance in space. The network dis
tance is the distance measured by a network, such as road networks. The
travel time, as its name suggests, often accounts for both traveling speed and
distance. Lastly, the zone is also a way to specify accessibility.

However, externalities generated by housing imply the relative location. An
economist, Can (1992) gave another explanation. Instead of using the acces
sibility or the spillover, he used the term “adjacent effects” and “neighborhood
effects” to describe some phenomena on housing markets.

For the “neighborhood effects”,

“The common approach with respect to the measurement of neighbor
hood effects is the inclusion of a set of characteristics pertaining to the so
cioeconomic and physical makeup of the neighborhood, accessibility to urban
amenities, and the level of public services.” (Can, 1992)[p. 456]

For the “adjacent effects”,

“Similarity in the prices of nearby houses can be partially explained by ex
ternalities due to shared neighborhood characteristics. In addition, however,
there will be a set of absolute spatial spillover effects on a given residen
tial structure of the physical quality as well as the uses associated with the
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surrounding neighboring structures.” (Can, 1992)[p. 457]

In a word, the “adjacent effects” emphasize the role of spillover effects in
a housing market, but the “neighborhood effects” do not have this meaning.

Regarding the adjacent effect, externalities generated by a house in a place
are capitalized into the nearby house prices. As the distance from that house
increases, the strength of the externality decreases. Moreover, houses in the
same block, built at the same time and having similar intrinsic characteristics
may reinforce such externalities. Moreover, housing buyers and sellers often
use similar sales between neighbours as a reference for assessing transac
tion prices, which is an efficient way to reduce uncertainties due to lack of
information. Further, Páez (2009) noted that in the real estate literature, the
adjacent effect was widely accepted to be interpreted as the pattern of sim
ilarities observed in housing prices due to locations, after gauging housing
structural attributes.

As indicated previously, in practice, the hedonic price method is often car
ried out through classical linear regression. If the adjacent effect appears in
the housing data, the estimation technique like ordinary least square (OLS)
is not appropriate (Pace and LeSage, 2004; Wilhelmsson, 2009). The fact is
that an accurate OLS (i.e., unbiasedness, efficiency and consistency) should
follow several assumptions, such as constant variance (homoscedasticity) and
no correlations in error terms (iid). Since the adjacent effect often occurs in
crosssectional or pooled housing data, these assumptions are seldom fulfilled.
If the adjacent effect is presented, but not modeled, OLS will be biased and
will lead to unrealistic inference and prediction. To correct these problems,
spatial analysis methods such as spatial statistics and spatial econometrics are
required, since they explicitly account for the influence of space, and signifi
cantly improve model quality and prediction accuracy (Osland, 2010).

This section uncovers one of the determinants of housing, that is, its lo
cation. I also give particular attention to the socalled adjacent effect derived
from the location. It is important to note that here the observation refers to
transacted properties individually, which lead to a micro dataset. In the next
section, I move to investigate regional/subregional housing markets based
on aggregate data.
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2.7. Location and housing analysis: a regional
perspective

As previously stated, analysing the temporal behaviour of aggregate housing
market fluctuations remains the interest of many economists (Belke and Keil,
2018). Further, many scholars (Kiel and Zabel, 2008; Pace and LeSage, 2004)
accepted housing to be an inherently spatial phenomenon, so we need to
account for the impact from space if we are to investigate aggregate housing
market fluctuations. Additionally, the literature on second home analysis often
overlooks these spatial and temporal patterns. To fill in this gap, I will focus
on the socalled ripple effects.

2.7.1. Ripple effects
In the late 1980s, British researchers (Giussani and Hadjimatheou, 1991;
Meen, 1996) noticed that regional house prices showed a distinct spatial pat
tern. For instance, housing price appreciation first occurred in the Greater
London region, then gradually spread out to neighbouring regions, and even
tually spread out to the rest of the country over time.

To depict this phenomenon, Meen (1996) used the term “ripple effects”.
Further, the ripple effect occurs in a leadlag manner. That is to say, house
price appreciation was first observed in a specific region, and then transmitted
to its contiguous regions and then beyond. This also implies that increased
comovement in closer, rather than distant, regions is significantly observed
(Meen, 1999). This phenomenon has attracted increasing attention and vari
ous techniques have been proposed, including cointegration (Kyriazakou and
Panagiotidis, 2018) and spatial econometrics (Meen, 1996).

Meen (1996) employed the standard spatial econometric framework, and
he believed that spatial effects, referring to both spatial autocorrelation (de
pendence) and spatial heterogeneity played an important role in capturing
the ripple effect. Regarding spatial dependence, the British housing market
is probably characterized by a series of interconnected local markets rather
than a single national market. On the other hand, spatial heterogeneity shows
that the British housing market may exhibit structural differences. More im
portantly, spatial dependence cannot properly explain the entire ripple effect.
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The fact is that even though spatial heterogeneity reflects differences in the
structure of British housing markets, it is represented by random coefficients
exhibiting nonrandom spatial patterns.

He also argued that in the British case, the economic mechanism leading
to the ripple effect was still not entirely clear. Possible explanations include
migration, equity transfer, spatial arbitrage and spatial patterns in the determi
nants of house prices. Although it is hard to demonstrate these explanations,
the first two are the most convincing explanations. The migration implies that
if average housing prices are higher in a region than those in neighbouring
regions, home buyers may be expected to migrate to the neighbouring region
benefiting from low housing prices. The equity transfer refers to lagged hous
ing prices from neighbouring regions affecting the current house prices in a
region.

2.7.2. Second homes
Second homes have attracted researchers’ attention for a long time (Cop
pock, 1977). Even though second dwellings are an integral part of the overall
housing market, they have conventionally been considered to be a particular
submarket, which is distinct from primary dwellings (Barke, 2008). As such,
topics on second dwellings are dominated by investigating the internal feature
of the second home submarket. For example, the socioeconomic profile of
the second home owner, the seasonal migration or tourists relating to the sec
ond homes, the conflicts between second home buyers and local inhabitants
and the locational feature of second homes (Paris, 2009).

Much rarer is the consideration of links between second homes and the
overall housing market. For example, the fluctuation of second home rates in
certain subregions and subsequent ramifications for the rest of the housing
market is still unknown in the regional housing market context.

To fill this gap in the literature, I borrow from the idea of the ripple effect.
Second home rates initially rise in a subregion, and then spread out to the rest
of the region over time. The upswing in second home rates is probably due to
certain landscapes. Furthermore, the ripple effect in terms of second home
rates may also imply the migration or the equity transfer. For example, second
home buyers seek out certain landscapes, like beaches in a county, and then
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the second home rate in the county goes up. As second home supply is limited
in a short period, price appreciation occurs. This price appreciation could drive
some second home buyers to surrounding counties with fairly low housing
prices. Consequently, the second home rates in neigbhouring counties go up.
In addition, second home spillovers from one county to another may coincide
with the expectation of housing sellers in surrounding counties. In the context
of the upswing demand for surrounding counties, property developers would
like to build new houses for second home buyers. Further, second home
buyers may also choose secondhand houses. This, in turn, accelerates the
second home rate among the surrounding counties.

The existence of the ripple effect will results in some practical issues (e.g.,
spatial autocorrelation) if classical linear regression is applied. In this context,
spatial econometrics or spatial statistics could be applied, as it can gauge the
spatial effects properly.

The last two sections uncover the role of locations for both individual hous
ing and regional housing markets. I highlight the existence and importance
of adjacent effects for properties and ripple effects for subregional second
home markets. These two effects are translated into spatial autocorrelation
or spatial heterogeneity in the residuals of classical linear regression. As a
result, spatial analysis is required, and its associated notions and techniques
will be reviewed in the next chapter.

2.8. Summary
This chapter is divided into three parts. First, I indicate the considerable im
pact on individuals and countries from housing, and the specific characteris
tics of housing. Second, I thoroughly review the major approach (the hedonic
price method) that is used to analyze housing from different angles. Third, I
examine how the location affects housing and regional housing markets.

More precisely, this chapter starts with an emphasis on the role of hous
ing. I highlight that housing is important for both the national economy and
personal finances. Further, I clearly show that as a good, housing has some
special features that most goods do not have. These features include het
erogeneity, spatial fixity and durability. Based on these features, several re
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search topics associated with the hedonic price method are presented, such
as assessing nonmarket goods, identifying price determinants and predicting
prices, and building price indices. I then thoroughly examine the theoretical
underpinnings of the hedonic price method. Regarding the spatial immobile
feature of housing, it relates to some economic notions, such as adjacent ef
fects. From a regional perspective, I review the socalled ripple effects, and
I look into regional second home markets. I also suggest borrowing the idea
from the ripple effects to describe the comovement of second home rates
within a region. Additionally, I briefly indicate that the adjacent effects and
the ripple effects often give rise to series correlation (spatial autocorrelation)
and heteroskedasticity (spatial heterogeneity) in the residuals of classical lin
ear regression, and thus leads to the failure of OLS. To overcome these issues,
scholars prefer to apply spatial econometrics, which gauges the influence from
space explicitly. All these statistical tools will be examined in the next chapter.

In summary, the literature review chapter examines the role of housing
in the economy, the cornerstone hedonic price method, and the location that
acts as a crucial determinant for housing and regional markets. All of these
contribute to the theoretical basis of the following empirical analyses.
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Quantitative models for

housing analysis

3.1. Introduction
Spatial modeling and the Bayesian paradigm are used throughout this thesis.
In this chapter, I initially review some notions and basic models in spatial
econometrics, since these methods are often considered a classical way to
handle spatial data. On the other hand, I offer an overview of some specific
models (i.e. latent Gaussian models) in spatial statistics and the key concepts
in the Bayesian paradigm.

This chapter is divided into two parts. In the first part, I give an overview
of spatial econometrics, such as spatial lag models and spatial error models.
More importantly, I point out some drawbacks of these models. In the sec
ond part, I focus on spatial statistical models, which play an alternative role to
spatial econometric models. I start with an introduction to spatial data types.
Then, I investigate the spatial models corresponding to the spatial data types.
Lastly, I give a detailed examination of the integrated nested Laplace approxi
mation (INLA), which is a deterministic approximation for Bayesian inference.
Following this organization (data, model and estimation), I hope that readers

41
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can understand these datadriven models and INLAbased Bayesian inference,
since these methods provide the methodological cornerstone of the following
empirical analysis.

3.2. Spatial econometrics and housing analysis
In the last chapter, I mention that the spatial dependence of housing charac
teristics, prices and subregional second home rates make the bias towards
OLS almost inevitable. Ignoring these would result in severe statistical errors,
and thus spatial analysis methods would be required. Spatial econometrics1

explicitly gauges the influence of space in houses, urban areas and regions
(Pace and LeSage, 2004). The key concepts in spatial analysis are spatial
autocorrelation and spatial heterogeneity (Anselin, 1988).

3.2.1. Spatial autocorrelation and spatial heterogeneity
According to Anselin and LozanoGracia (2009), spatial autocorrelation is a
subset of crosssectional dependence, where the structure of the covariance
between observations is related to their location termed as spatial ordering.
The spatial ordering is defined by the spatial arrangement of the observations
including relative positioning or relative distance. Spatial autocorrelation is
derived from Tobler’s First Law of Geography whose statement is “everything
is related to everything else, but near things are more related than distant
things” (Tobler, 1970).

For housing, the most straightforward reflection of spatial autocorrelation
is the dependence on housing prices, whose strength depends on the rela
tive location between properties, and may diminish as the distance between
the properties increases. The autocorrelated housing prices, in turn, provide
evidence for the need of implementing spatial modelling. Other reasons to
implement spatial analysis include omitting spatially correlated variables and
misspecifying functional forms (Anselin and LozanoGracia, 2009; Wilhelms
son, 2009).

Another key concept in spatial analysis is spatial heterogeneity. Anselin

1According to Anselin and LozanoGracia (2009), spatial econometrics is defined as “a subset
of econometric methods that is concerned with spatial aspects present in crosssectional and
spacetime observations.”
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and LozanoGracia (2009) noted:

“Spatial heterogeneity is a special instance of structural instability, which
can be observed or unobserved. The spatial aspect of this issue is that spa
tial structure provides the basis for the specification of the heterogeneity.
This may inform models for spatial structural change (referred to as spatial
regimes), heteroskedasticity, or spatially varying and random coefficients.”
(Anselin and LozanoGracia, 2009)[p.1227p.1228]

The housing submarket is a reflection of spatial heterogeneity. The ex
istence of housing submarkets may result from spatial arbitrage (Grigsby,
1963). For example, ideally, houses within an area can be substituted for each
other. However, search costs and information constraints may impose limits
on the degree of spatial substitutability. Spatial characteristics like accessibil
ity and neighbourhood characteristics also limit spatial substitutability (Jones
et al., 2004). These elements eventually induce some barriers that segment
the entire area. If spatial submarkets persist, structural differences should ex
ist between local markets, which are reflected by the spatial heterogeneity of
implicit prices (Bourassa, Hoesli, and Peng, 2003). Geographically weighted
regression (GWR) (Brunsdon et al., 1998) is widely used to gauge spatial
heterogeneity. Other approaches include classical linear regression combined
with submarketspecific dummy variables (Goodman and Thibodeau, 2003),
multilevel modelling (Orford, 2000) and finite mixture models (Belasco et al.,
2012).

Several scholars believed that a mixture of spatial autocorrelation and spa
tial heterogeneity was expected to be present in crosssectional housing data.
De Graaff et al. (2001) argued that scholars should tackle both spatial auto
correlation and heterogeneity simultaneously for three reasons. First, there
might be no significant difference between spatial heterogeneity and auto
correlation in some georeferenced datasets. Second, spatial autocorrelation
might lead to a particular form of heteroskedasticity. Lastly, in some empir
ical studies, it was difficult to distinguish spatial autocorrelation from spatial
heterogeneity. More recently, Anselin (2010) argued that both spatial auto
correlation and spatial heterogeneity occurred simultaneously, and it was dif
ficult to distinguish spatial heterogeneity from spatial autocorrelation in most
crosssectional settings.
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3.2.2. Basic spatial econometric models
Promoted by Anselin (1988), classical spatial econometric models have two
basic specifications, the spatial lag model and the spatial error model.

The spatial lag model2 explicitly incorporates a lagged dependent vari
able on the righthand side. This model is also known as a direct approach
(Fahrmeir and Kneib, 2011), in the sense that spatial autocorrelations are
assumed to be gauged via a part of the response:

𝑦 = 𝜌𝑊𝑦 + 𝑋𝛽 + 𝜖 (3.1)

where 𝑦 is the dependent variable. 𝑊 is the 𝑛 × 𝑛 spatial weights ma
trix, and 𝜌 is the spatial autoregressive coefficient. 𝑋 is an 𝑛 × 𝑘 matrix of
independent variables, and 𝛽 is a 𝑘 × 1 vector of coefficients. 𝜖 is the error
term.

The spatial weights matrix 𝑊 is a simplification of connection between
an object and its neighbours. Considering a contiguitybased spatial weight
matrix, the element in the matrix is assigned to 0 or 1 following the rule below:

𝑤𝑖𝑗 = {
1 sharing boundary or edge

0 otherwise (3.2)

where if observation 𝑖 and 𝑗 are neighbours, the element 𝑤𝑖𝑗 , which shows
the interaction between 𝑖 and 𝑗, will equal 1 and 0 otherwise. Conventionally,
diagonal elements are set to 0 since an object can not be its own neighbours.
Rowstandardization is often implemented on 𝑊 in spatial econometrics. The
fact is that on one hand, the lagged dependent variable 𝑊𝑦 represents a
weighted average of the neighbouring values, given the rowstandardized
𝑊. On the other hand, rowstandardization ensures the largest and small
est eigenvalues, which facilitate maximum likelihood estimation or draws of
the autocorrelation coefficient 𝜌 (LeSage and Pace, 2009). The spatial au
toregressive coefficient 𝜌 measures the strength of spatial spillovers. Even
though many hedonic price applications choose the spatial lag specification,
Anselin and LozanoGracia (2009) argued that spatial spillovers among hous
ing units were difficult to maintain. Therefore, a spatial error model may be

2Simultaneous autoregressive model on dependent variables.
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appropriate, since unobserved neighbourhood effects are probably shared by
housing units in the same blocks and then result in nonspherical residuals.
By assuming a spatial autoregressive process with coefficient 𝜆 in residuals,
we have

𝑦 = 𝑋𝛽 + 𝜖
𝜖 = 𝜆𝑊𝜖 + 𝑢

(3.3)

where 𝜖 is the spatially correlated residual term and the term 𝑢 is identically
distributed (iid). The corresponding variancecovariance matrix reads

𝐸 [𝜖𝜖′] = 𝜎2 [(𝐼 − 𝜆𝑊) (𝐼 − 𝜆𝑊′)]−1 . (3.4)

The interpretation of 𝜆 is different from 𝜌 in the spatial lag specification,
since the aim of the term 𝜆𝑊𝜖 is to mitigate biases and to produce reliable
inference.

3.2.3. Some alternatives
Spatial econometric methods have been criticized, and most criticisms center
on spatial weighting matrices3.

As shown previously, in a spatial econometric model, spatial effects are
assumed to be captured by a predefined spatial weighting matrix (contiguity,
nearest neighbours, inverse distance weighting, etc.). This also implies that
the nature of the unobserved spatial effects is known a priori.

Several researchers (Corrado and Fingleton, 2012) argued that building a
weighting matrix following the rule of thumb was not appropriate, and eco
nomic theories should serve as a guide to predefine that weighting matrix.
Others (Brady and Irwin, 2011) stated that spatial econometric models were
used in the context, in which the primary interest was to estimate the rela
tionship of neighboring values of the dependent variable to itself. In most
hedonic housing applications, however, the goal was probably not to identify
that relationship, but instead accurate parameter estimates that were robust

3The spatial weighting matrix is also known as the spatial weights matrix, the spatial adjacency
matrix.
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to model misspecification and unobserved spatially correlated variables. In
some cases, selecting an appropriate spatial weight matrix for unobserved
spatial effects is not easy. For example, in a polycentric cityregion, there are
complex spatial effects, which cannot be captured by a simplified weighting
matrix based on the contiguity or nearest neighbours.

To address the weakness of standard econometric models, several schol
ars (Brunauer et al., 2010; Marcelo and Sebastian, 2018; Razen et al., 2015)
have proposed using geoadditive models for hedonic house price valuation.
The reason is that geoadditive models do not require any assumptions about
the structure of the omitted spatial effects in the housing market, and thus
produce more accurate predicted values and marginal effect estimates com
pared with spatial econometric models.

Introduced by Kammann and Wand (2003), the geoadditive models family
is the mixture of a generalized additive model and a geostatistical compo
nent. There are several candidate specifications for the geostatistical compo
nent, such as Gaussian random fields, 2dimension thinplate splines and ten
sor products of longitude and latitude. These semiparametric/nonparametric
components are treated as a hedonic covariate.

Geniaux and Napoléone (2008) compared a geoadditive model with a ten
sor product of longitude and latitude and a geographically weighted regression
model empirically. Their geoadditive model reads,

𝑦 = 𝑋𝛽 + 𝑓 (long, lat) + 𝜖. (3.5)

They concluded that geoadditive models had advantages over geograph
ically weighted regression since the geoadditive model provides better fits,
processes large datasets, and handle nonlinearity. McMillen (2012) demon
strated that nonparametric and semiparametric models are generally a prefer
able approach for more descriptive spatial analysis. To be more specific, local
weighted regression models outperform spatial econometric models in the
presence of misspecified weighting matrices. Von Graevenitz and Panduro
(2015) presented a geoadditive model with a 2D thinplate splines to gauge
the spatial effects. The thin plate spline bases are a series of known poly
nomials of increasing complexity based on the longitude and latitude of a
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property. They clearly showed that the geoadditive model fits better than
aspatial models and spatial fixed effects models. These geoadditive models
can be estimated either by the frequentist approach, e.g, restricted maximum
likelihood (REML)4 or by the Bayesian approach, e.g. Markov chain Monte
Carlo (McMC) simulation.

In this section, I focus mainly on spatial econometrics models, which is
the preference of economists. I initially detail the fundamental notions in
spatial analysis, referring to spatial autocorrelations and spatial heterogene
ity. I describe the basic spatial econometric models that can handle the spatial
effects. More importantly, I list the drawbacks of spatial econometrics in han
dling housing data, and alternative approaches. From the next section, I will
turn to spatial statistical models. This begins with an introduction of spatial
data types, since different spatial data types correspond to different spatial
statistical models.

3.3. Spatial data
Spatial data are data from known locations in space. They are defined as the
realization of a stochastic process indexed by space,

𝑌 (s) ≡ {𝑦 (s) , s ∈ D ⊂ ℝ2} . (3.6)

According to Cressie (2015), spatial data are often classified into three ma
jor types: areal data, pointreferenced (geostatistical) data and spatial point
patterns. In this thesis, my interest is centered around areal data and point
referenced data.

Typically, areal data are built on a given region, which is decomposed into
many nonoverlapped subregions with clear boundaries, and observations
are grouped according to the subregions. This implies that areal data are
composed of a finite number of areal units with welldefined boundaries, irre
spective of their regular or irregular shapes. Furthermore, areal data do not
provide exact coordinate information on observations, but the observations
are assigned to areal units with a specific spatial alignment. Hence, I simply

4More detail on the fitting geoadditive models with thinplate splines or tensor products can be
found in Wood (2017) and the vignette of mgcv Rpackage (Wood, 2015).
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identify the 𝑠 distinct areas with their indices, leading to s = {1,… , 𝑛}. The
most common example is the census data. For example, a city is divided into
many administrative districts due to practical or confidentiality reasons. This
implies the discrete nature of areal data.

Concerning pointreferenced (geostatistical) data 𝑌 (s) = {𝑦(𝑠1), … , 𝑦(𝑠𝑛)},
𝑦(𝑠𝑖) is a univariate random variable at location 𝑠𝑖, where s = {𝑠1, … , 𝑠𝑛} de
notes the locations on the continuous domain D. Theoretically, the number of
locations in D is infinite. More importantly, location information is represented
by coordinates 𝑠𝑖 = (𝑙𝑜𝑛𝑔𝑖 , 𝑙𝑎𝑡𝑖).

3.4. Analysis of lattice data
I start with the discussion of modeling lattice data, because the relevant mod
els are straightforward and establish the basis for analyzing geostatistical data.

When data collected in nearby areas are more similar than those further
apart due to similar contexts, spatial information can be represented by neigh
borhood structures, which leads to a large class of spatial autoregressive
models. The two most common spatial autoregressive models are the si
multaneous autoregressive and conditional autoregressive models. Promoted
by Anselin (1988), the simultaneous autoregressive model has received much
attention from economists, while the conditional autoregressive model (Besag
et al., 1991) may seem overlooked. Conditional autoregressive models, how
ever, offer computational advantages and insight on fully conditional random
effects compared to simultaneous autoregressive models within the hierarchi
cal modeling framework (Arab et al., 2017; Ver Hoef, Peterson, et al., 2018).
On the other hand, conditionals autoregressive models are flexible in terms of
handling spatiotemporal data. For these reasons, I focus on conditional au
toregressive models, and I attempt to apply these models to analyze economic
data indexed over space and time.

3.4.1. Markov random fields
Most spatial models for lattice data are special cases of Markov Random Fields
(MRFs) (Tyagi, 2017; Won and Gray, 2004). A Markov random field is based
on conditional independence assumptions applying to a random vector. Given
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my interest in spatial applications, I assume the random vector 𝑈 = (𝑢1, … , 𝑢𝑠)
of spatial random effects for areas s = {1,… , 𝑠}. The conditional independence
assumption relies on neighbourhood structures, where two spatial random ef
fects are assumed to be conditionally independent if they are not neighbours.
Formally,

𝑢𝑖 ⊧ 𝑈−𝜕𝑖 |𝑈, (3.7)

where 𝑢𝑖 is the random effect of the 𝑖𝑡ℎ area. 𝜕𝑖 denotes the neighbours
of the 𝑖𝑡ℎ area, and hence 𝑈−𝜕𝑖 means the random effects of the complement
areas of the neighbours of area 𝑖. This leads to the sparse precision matrix 𝑄
of 𝑈:

𝑄𝑖𝑗 = {
𝜕𝑖 if 𝑖 = 𝑗
1 if 𝑗 ∈ 𝜕𝑖
0 otherwise

. (3.8)

More importantly, the sparseness of the precision matrix results in efficient
computations (Rue and Held, 2005).

3.4.2. Conditional Autoregressive (CAR) model family
Again, one fundamental property of spatial data is spatial dependence derived
from Tobler’s first law of geography (Tobler, 2004; Tobler, 1970), which implies
that areas tend to have similar values if they are spatially close.

Concerning the discrete characteristic of lattice data, the spatial closeness
is defined by adequate neighbourhood structures (spatial adjacency/neighbour
matrices), rather than the distance between two locations5. Relying on the
predefined spatial adjacency matrix, spatial dependence can be modelled by
the socalled proper conditional autoregressive (PCAR) model. More precisely,
a Gaussian random variable is used for conditionally modelling the spatial de
pendence between a pair of area 𝑖 and area 𝑗6,

5It is possible to define the neighbourhood structure based on the distance between the centroid
of areal units. However, contiguitybased neighbourhood structures are commonly used in the
conditional autoregressive literature.
6I simplify the index of locations (𝑠1 , … , 𝑠𝑛) by (1, … , 𝑛) in a lattice system.
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𝑢𝑖|𝑢𝑗,𝑖≠𝑗 ∼ 𝑁(𝜌∑
𝑗∈𝜕𝑖

𝑤𝑖𝑗𝑢𝑗
𝑤𝑖+

, 𝜎
2

𝑤𝑖+
) (3.9)

where 𝑢𝑖 represents an areaspecific random variable. 𝑊 denotes an 𝑛×𝑛
binary adjacency matrix describing a neighbourhood structure. Notably, 𝑊 is
firmly symmetric (𝑤𝑖𝑗 = 𝑤𝑗𝑖). Its offdiagonal entities (𝑤𝑖𝑗) show the proximity
of units 𝑛𝑖 and 𝑛𝑗. All diagonal elements remain zero 𝑤𝑖𝑖 = 0. 𝑤𝑖+ is the row
sum of the 𝑖𝑡ℎ row 𝑤𝑖+ = 𝑤𝑖𝑗, and 𝜕𝑖 denotes the index of neighbours of 𝑖.
The conditional variance parameter 𝜎2

𝑤𝑖+
is spatially varying.

The formula Eq.3.9 is called the full conditional distribution. Since there
are 𝑛 given areas, we can derive a joint distribution via the 𝑛 full conditional
distributions 𝑈 = (𝑢1, … , 𝑢𝑛). With the help of the Brook’s lemma (Brook,
1964) and HammersleyClifford theorem (Hammersley and Clifford, 1971),
Besag (1974) proved that the joint distribution for the random vector 𝑈 is
multivariate normal with a mean of 0 and a precision matrix 𝑄,

U𝑃𝐶𝐴𝑅 ∼ 𝑀𝑉𝑁 (0,Q−1𝑃𝐶𝐴𝑅)
Q𝑃𝐶𝐴𝑅 = 𝜏 (𝐷 − 𝜌𝑊)

(3.10)

where 𝐷 denotes the 𝑛 × 𝑛 diagonal matrix, whose diagonal entries 𝑑𝑖𝑖
equal the number of neighbours of unit 𝑛𝑖 and offdiagonal entries are all
zero. 𝜏 is the precision parameter, 𝜏 = 1

𝜎2 . The spatial dependence parameter
𝜌 is between 0 and 1. The term 𝜌 shows the amount of spatial dependence.
On the other hand, the term 𝜌 ensures the positive defined precision matrix.
The log probability density of U𝑃𝐶𝐴𝑅 reads,

𝜋 (U𝑃𝐶𝐴𝑅) = − 𝑛2 𝑙𝑜𝑔 (2𝜋) +
1
2𝑙𝑜𝑔 (det(Q𝑃𝐶𝐴𝑅)) −

1
2U

𝑇
𝑃𝐶𝐴𝑅Q𝑃𝐶𝐴𝑅U𝑃𝐶𝐴𝑅

∝ 𝑛2 𝑙𝑜𝑔 (𝜏) +
1
2𝑙𝑜𝑔 (det(𝐷 − 𝜌𝑊)) −

1
2U

𝑇
𝑃𝐶𝐴𝑅𝜏(𝐷 − 𝜌𝑊)U𝑃𝐶𝐴𝑅

(3.11)

where 𝑛 is the number of given areas. However, computing the determi
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nant of Q𝑃𝐶𝐴𝑅 is expensive, usually requiring 𝑁3 operations7 (Morris et al.,
2019).

Apart from the proper conditional autoregressive model, the intrinsic con
ditional autoregressive (ICAR) model remains popular in literature. In the
intrinsic conditional autoregressive model, the spatial dependence parameter
𝜌 is simply set to 1, implying strong, positive spatial autocorrelation in the
data. Moreover, the intrinsic conditional autoregressive model often acts as a
prior model to impose spatial dependence structures to the given areas. The
full conditional specification of the intrinsic conditional autoregressive model
reads,

𝑢𝑖|𝑢𝑗,𝑖≠𝑗 ∼ 𝑁(∑
𝑗∈𝜕𝑖

𝑤𝑖𝑗𝑢𝑗
𝑤𝑖+

, 𝜎
2

𝑤𝑖+
) (3.12)

where the conditional mean parameter ∑𝑗∈𝜕𝑖
𝑤𝑖𝑗𝑢𝑗
𝑤𝑖+

is proportional to the
weighted average of the neighbouring values of area 𝑖, indicating that the
conditional mean parameter is similar locally. The conditional variance pa
rameter 𝜎2

𝑤𝑖+
is inversely proportional to the number of the neighbours of unit

𝑖, meaning that areas with few neighbours tend to vary more strongly com
paring with units with many neighbours. Thus, Both conditional mean and
conditional variance parameters highlight that the intrinsic conditional autore
gressive model imposes smoothing over local dependence structure, rather
than global dependence structures8.

As previously stated, the intrinsic conditional autoregressive model is of
ten used as a prior distribution for the areaspecific variables. Two elements
should affect the shrinkage of the intrinsic conditional autoregressive prior.
The exogenous element is the sample size. If there is a large dataset and
the likelihood dominates the posterior distribution, the intrinsic conditional
autoregressive prior plays a minimal role. The intrinsic element relates to the
neighbourhood structure, i.e., the number of neighbours of area 𝑖. The de
nominator 𝑤𝑖+ in Eq.3.12 ensures that the more neighbours an area has, the
more local smoothing it will receive. Considering an extreme case, where the

7For example, if 𝑁 = 100, calculating det(Q𝑃𝐶𝐴𝑅) will require 1003 operations.
8The latter refers that the conditional mean of 𝑢𝑖 would depend on the complement area sets to
𝑢𝑗 with 𝑗 ≠ 𝑖.
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complement areas are all neighbours of area 𝑖, the conditional mean equals
the globally weighted average value and the conditional variance tends to be
small. This is equivalent to placing a strong prior. If strong, positive spatial
autocorrelation occurs, the strong prior works well, because more neighbours
mean that more information can be borrowed properly. Nevertheless, if there
is weak or no spatial autocorrelation, the “global” neighbours setting should
be inappropriate.

3.4.3. Besag, York and Mollie (BYM) model and Leroux’s
model

Thus far, we have reviewed the conditional autoregressive model family. The
key idea of conditional autoregressive models is to impose a spatial depen
dence structure on the areaspecific random variables. However, in the pres
ence of weak spatial dependence, the intrinsic conditional autoregressive model
probably produces oversmoothing issues. Moreover, there are some ele
ments of randomness in terms of similarity, e.g., gentrification or spatial mis
matches in regional science. To mitigate spatial oversmoothing and the
impact of spatial outliers, an additional areaspecific random vector V =
{𝑣1, … , 𝑣𝑛} with an exchangeable prior 𝑀𝑉𝑁 (0, 𝜎2𝑉) is introduced. V is known
as the spatiallyunstructured component in the literature. This results in the
socalled BesagYorkMollie (BYM) model (Besag et al., 1991),

U𝐼𝐶𝐴𝑅 + V. (3.13)

The two additive random effect components in the BYMmodel are assumed
to be independent. Again, the spatiallystructured component is developed for
spatial dependence, whereas the spatiallyunstructured component captures
spatial heterogeneity (Harris, 2019).

Some researchers (Riebler et al., 2016) argued that the spatially structured
and unstructured components in the BYM model could not be seen indepen
dently from each other. The separation of the two components should lead
to identifiability issues and make prior definitions challenging. Alternatively,
Leroux et al. (2000) proposed the specification (LCAR), where the spatially
structured component in the BYM model is replaced by a mixing parameter 𝜌,
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which shows the compromise between unstructured and structured compo
nents. Its full conditional distribution reads,

E (𝑢𝑖|𝑢𝑗≠𝑖) =
𝜌

1 − 𝜌 + 𝜌𝑤𝑖𝑖
∑
𝑗∼𝑖
𝑢𝑗

Var (𝑢𝑖|𝑢𝑗≠𝑖) =
𝜎2𝑢

1 − 𝜌 + 𝜌𝑤𝑖𝑖
𝜌 ∈ (0, 1),

(3.14)

which leads to the unique joint distribution,

𝑈𝐿𝐶𝐴𝑅 ∼ MVN(0,Q−1𝑃𝐶𝐴𝑅)
Q𝑃𝐶𝐴𝑅 = 𝜏 [𝜌(𝐷 −𝑊) + (1 − 𝜌)𝐼] .

(3.15)

If 𝜌 = 1, Leroux’s model becomes the intrinsic autoregressive model,
whereas Leroux’s model turns to an independent and identically distributed
component if 𝜌 = 0.

Thus far, I have introduced several major models for analyzing lattice data.
In subsequent sections, I will move to a model designed specifically for geo
statistical data.

3.5. Analysis of geostatistical data
As explained earlier, geostatistic data are measurements of a continuously
spatial process, which are collected at particular sites. Although I have a
finite number of observations, I attempt to estimate the characteristics of the
entire spatial process e.g., the mean and variance of the process over the
study region. These characteristics are useful for predicting the process at
unobserved locations and building a continuous surface.

A typical example is the spatial distribution of housing prices in a region.
In this case, pointreferenced prices data are represented as the partial real
ization of a spatial process,

𝑌 (s) ≡ {𝑦 (s) , s ∈ D ⊂ ℝ2} , (3.16)
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where 𝑌 (s) is a collection of housing prices at the location set s, and D
denotes the study region. Such a stochastic process is often assumed to follow
a Gaussian distribution, and thus 𝑌 (s) is a Gaussian Process (GP) (Cressie,
2015) (a special case of Gaussian random fields (GRFs)), where each collection
of housing prices follows a multivariate normal distribution.

3.5.1. Gaussian process
A Gaussian process is often assumed to fulfill two important properties: sta
tionarity and isotropy. A Gaussian process 𝑌(⋅) is assumed to be strictly sta
tionary under the following conditions:

𝐸[𝑌(s)] = 𝜇, ∀s ∈ 𝐷, (3.17)

meaning that the Gaussian process has a constant mean. In addition, the
covariance matrix of the Gaussian process depends on the difference between
locations only,

𝐶𝑜𝑣(𝑌(s), 𝑌(s+ h)) = 𝐶(h), ∀s ∈ 𝐷, ∀h ∈ ℝ2 (3.18)

where h is a shift in space. Furthermore, the Gaussian process 𝑌(⋅) is
assumed to be isotropic if the covariance between two observations only de
pends on the distance between the two locations regardless of directions.
Otherwise, it is called anisotropic.

3.5.2. Matérn covariance function
Delving into the covariance matrix more deeply, the dependence structure
among observations is captured by the covariance matrix. There are sev
eral specifications of covariance functions, but a commonly used covariance
function is the Matérn family (Gelfand et al., 2010),

Cov(𝑦(𝑠𝑖), 𝑦(𝑠𝑗)) =
𝜎2

2𝜈−1Γ(𝜈)(𝜅||𝑠𝑖 − 𝑠𝑗||)
𝜈𝐾𝜈(𝜅||𝑠𝑖 − 𝑠𝑗||). (3.19)

Here, 𝜎2 denotes the marginal variance of the process. Γ(𝜈) is the gamma
function. ||𝑠𝑖 − 𝑠𝑗|| is the Euclidean distance between locations 𝑠𝑖 and 𝑠𝑗.
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𝐾𝜈 is the modified Bessel function of the second kind, and the order param
eter 𝜈 > 0. For the special case of 𝜈 = 1

2 , the Matérn covariance func
tion is equivalent to the exponential covariance function (Cov(𝑌(𝑠𝑖), 𝑌(𝑠𝑗)) =
𝜎2𝑒𝑥𝑝(−𝜅||𝑠𝑖 − 𝑠𝑗||)). The nonnegative parameter 𝜅 has the relationship:
𝜌 = √8𝜈/𝜅, indicating the distance at which the correlation between two lo
cations declines to 0.1 (Simpson et al., 2012).

3.5.3. Stochastic partial differential equation approach
To model geostatistical data, the spatial effect component 𝑓𝑔𝑒𝑜(𝑠) in latent
Gaussian models is specified by a spatially continuous variable underlying the
observations and the variable follows a Gaussian random field.

However, fitting the Gaussian random field with a full covariance matrix in
latent Gaussian models is computationally expensive when sample size 𝑁 is
large (the socalled “big n problem” (Banerjee et al., 2014)). More precisely,
the Gaussian random field has a dense covariance matrix built on all locations.
Performing factorization on such a large, dense matrix requires 𝑁3 operations.

One approach to reducing computational complexity is to introduce the
Markovian property. Hence, random variables at observed locations are con
ditionally independent. Based on the conditional independence, the Gaussian
random field can be converted to a Gaussian Markov Random Field with a
sparse precision matrix. The trick here is called the Stochastic Partial Dif
ferential Equation approach (SPDE) introduced by Lindgren et al. (2011) The
point of this approach is to use a discretely indexed random process, a Gaus
sian Markov random field, approximating the continuously indexed Gaussian
random field with the Matérn covariance function. Formally,

(𝜅2 − Δ)𝛼/2 × 𝜔 (𝑠) = 𝑊 (𝑠) (3.20)

𝛼 = 𝜈 + 𝑑2 , 𝜅 > 0, 𝜈 > 0, 𝑠 ∈ ℝ
𝑑 (3.21)

where Δ is a Laplace operator. 𝛼 is an integer with a default setting of
2 in RINLA. 𝑑 indicates the dimension of data. 𝑊 (𝑠) stands for the spatial
Gaussian white noise process.

To implement the stochastic partial differential equation approach, Lind
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gren et al. (2011) propose a twostep approach. At first, the entire study area
is disassembled by a large number of nonoverlapped triangles9. Then, based
on the discrete triangles, the socalled piecewise linear approach is applied.

𝜔 (𝑠) = ∑𝑛𝑙=1 𝜓𝑙 (𝑠)𝑤𝑙 (3.22)

where 𝜔 (𝑠) is a Gaussian random field. 𝜓𝑙 (𝑥) are called the basis func
tions. 𝑤𝑙 are Gaussiandistributed weights. In fact, Eq.3.22 uses a weighted
sum of basis functions to approximate a spatial process (Simpson et al., 2012).

To summarize, given the discrete approximation and conditional indepen
dence, we obtain a considerable computational gain, where the computational
complexity dramatically reduces to 𝑁3/2 flops for Gaussian Markov random
fields. Again, INLA takes over the following task.

In this section, I have reviewed the Gaussian process regression for geo
statistical data. In particular, I have looked into the Matérn kernel (covari
ance) function and the fast calculation method, the SPDE approach. In the
next section, these spatial models will be extended to handling spatiotemporal
data.

3.6. Spatiotemporal extensions
Investigating the spatial effect as described in the previous sections seems in
sufficient, temporal variation is also important and interesting. For example,
housing transactions naturally happen at a specific location and at a spe
cific time point. As such, housing observations are indexed both in time and
space. Due to limited modelling approaches and estimation methods, hous
ing transaction data are collected and aggregated into different time scales,
e.g., months, quarters and years. Considering a oneyear housing transaction
dataset, if we aggregate data over the year, we can model the spatial pattern
only; but if we aggregate data over months or quarters, we may observe a
temporal trend over spatial patterns. That is to say, the temporal trend is rep
resented either by the same spatial patterns or by different spatial patterns
across the entire time frame. From another angle, ignoring time dimensions

9The process is also called triangulation and the aggregate of the nonoverlapped triangles is
called a mesh.
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(i.e., we aggregate data over the year) is equivalent to assuming that future
observations can influence present and even past observations. This assump
tion does not seem to be true if the time dimension is large enough. For these
reasons, it is necessary to consider the time dimension in our analyses.

The spatial process introduced in the previous sections can be easily ex
tended to spatiotemporal processes with the inclusion of time dimensions, and
the data are defined by a process indexed by space and time (Gneiting and
Guttorp, 2010),

𝑌 (s, 𝑡) ≡ {𝑦 (s, 𝑡) , (s, 𝑡) ∈ D ⊂ ℝ2 × ℝ} . (3.23)

Here, s has the same definition as in the pure spatial case, but we have
𝑡 = {1,… , 𝑇}.

Again, we start with the areal data model. The simplest and most straight
forward way to capture temporal variation is to directly add a temporal com
ponent 𝛾 based on the temporal indicator 𝑡, and 𝛾𝑡 denotes 𝛾 measured in
time point 𝑡. That is to say, the spatial effect and the temporal variation are
gauged separately.

There are many specifications for the temporal component (Schrödle et al.,
2011). In the economics literature, the temporal component is often specified
by dummy variables (a kind of fixed effect), and thus estimating the effect
of each time point independently from others. Some researchers believe that
time dummies are mainly used for capturing temporal heterogeneity (Füss and
Koller, 2016). In contrast to more restrictive approaches such as time dummies
or linear parametric models (i.e., 𝛾 = 𝛽 × 𝑡), models with fewer restrictions
or allowing for flexible shapes in the evolution curve are preferred, especially
if there are long periods of time. Most of these models use a structured
random effect component, and thus ensuring that adjacent periods are likely
to be similar. Examples include firstorder random walks (RW(1)), firstorder
autoregressive (AR(1)) processes (Held and Besag, 1998), and splines (Ugarte
et al., 2012). A random walk of the first order is defined as,

𝛾𝑡 − 𝛾𝑡−1 ∼ 𝑁 (0, 𝜎2𝛾) (3.24)

And the firstorder autoregressive reads,
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𝛾1 ∼ 𝑁 (0,
𝜎2𝛾
1−𝜌2 )

𝛾𝑖 = 𝜌𝛾𝑡−1 + 𝜖𝑡
𝜖𝑡 ∼ 𝑁 (0, 𝜏𝜖)

(3.25)

Modeling spatial and temporal effects separately has received several cri
tiques. Several researchers (Nobre et al., 2005; Sun et al., 2000; Xia and
Carlin, 1998) have argued that these approaches do not account for the
spatiotemporal interactions. As such, Bernardinelli et al. (1995) developed
a parametric model, which was an extension of a random coefficient model
(𝛾 + Φ = (𝛽 + 𝜃𝑖) × 𝑡). The spatiotemporal component is written as,

Φ = 𝜃𝑖 × 𝑡 (3.26)

where 𝜃𝑖 is an areaspecific coefficient. Since 𝜃𝑖 is spatially structured,
neighbouring areas can evolve similarly over time. 𝜃𝑖 is often interpreted as
the deviation from the global trend 𝛽 × 𝑡. 𝜃𝑖 < 0 implies that some areas
evolve slower than the global trend, while 𝜃𝑖 > 0 implies that some areas
evolve more rapidly than the global trend. This specification is simple and
straightforward, but the assumption of a linear evolution in time for the area
specific component seems too restrictive and inappropriate for modeling long
periods.

To overcome these issues, Held (2000) established nonparametric mod
els on the basis of the interaction between different spatial and temporal
random effects. Applying the Kronecker product on the covariance matrices
of different spatial and temporal components10, Held obtains four possible
specifications.

Type I interaction is the product of a spatially unstructured component
(i.e., the iid term in the BYM model) and a temporally unstructured component
(i.e., a temporal iid term that captures temporal heterogeneity), which can be
considered as a random intercept based on all observations. Seen differently,
this component represents global spacetime heterogeneity and measures the
deviation from the global spatial and temporal effects. It also represents all

10Here we present a generalization by using abstract types of interaction, but not restricted to
any specific form of spatial and temporal effects.
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kinds of areaspecific but nonpersistent factors that can give rise to a slight
increase or decrease in the dependent variable.

Type II interaction combines a spatially unstructured component with a
temporally structured term (i.e., the random walk of the first order). To be
more specific, this type of interaction assumes that once the global temporal
trend is fixed, each areal unit still follows a random walk temporally, differing
from neighbouring units. This does not mean that each area has a tempo
ral evolution that differs from its neighbours, since they may share a global
temporal effect.

Type III interaction is composed of a spatially structured component (i.e.,
the ICAR term in the BYM model) and a temporally unstructured component.
As such, there is spatial autocorrelation among units for each period, but no
temporal correlation between adjacent periods. This implies that each unit
may have a slight deviation from the global spatial trend and that deviation
tends to be spatially correlated within the same period. In practice, this in
teraction shows the context, in which unobserved areal factors affect an area
and its neighbouring areas, but the impact does not persist over time.

Lastly, the Type IV interaction is based on the Kronecker product between a
spatially structured component and a temporally structured component. This
type of interaction describes that the departures from the global spatial and
temporal trends are likely to be correlated with their neighbours both in space
and time.

Regarding the application of the abovementioned temporal component and
spatiotemporal components, the simplest approach is to use time dummy vari
ables or a parametric function of time. Both approaches can be replaced by a
more flexible random effect component such as a firstorder random walk or
autoregressive process, or a spline. These approaches, however, assume that
the temporal parameters are spatially independent. Considering the context in
which neighbouring areas may have a similar temporal evolution, spacetime
interaction terms are introduced. The complexity increases from Bernardinelli
et al.’s (1995) parametric model to Held’s (2000) interaction model based on
random effects.

On the other hand, we need to specify a spatiotemporal covariance func
tion (Finkenstadt et al., 2006) for spatiotemporal geostatistical data. Scholars
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(Cressie and Huang, 1999; Gneiting, 2002) have proposed several valid non
separable spatiotemporal covariance functions. A commonlyseen spatiotem
poral covariance function reads,

Cov (𝜔 (𝑠𝑖 , 𝑡) , 𝜔 (𝑠𝑗 , 𝑡′)) = 𝜎2𝜔𝐶𝜃(ℎ, 𝑙) ∀𝑖 ≠ 𝑗, 𝑡 ≠ 𝑡′ (3.27)

where 𝜎2𝜔 is the constant variance of the spatiotemporal process. 𝐶𝜃 is the
spatiotemporal correlation function parameterized by 𝜃. ℎ = ‖𝑠𝑖 − 𝑠𝑗‖ is the
Euclidean distance between location 𝑖 and 𝑗. 𝑙 = ‖𝑡 − 𝑡′‖ denotes the tem
poral lag between time knot 𝑡 and 𝑡′. In practice, the estimation of a model
employing this spatiotemporal covariance function is computationally expen
sive. To reduce the computational complexity, researchers often simplify the
correlation function by assuming separability, where 𝐶𝜃 (⋅) consists of a purely
spatial component 𝐶𝑆 (ℎ) and a purely temporal component 𝐶𝑇 (𝑙). Through
the Kronecker product, we have 𝐶𝜃 (ℎ, 𝑙) = 𝐶𝑆 (ℎ) ⊗ 𝐶𝑇 (𝑙) (Gneiting, 2002).

Another approach is to assume the constant spatial correlation in time
when 𝑡 = 𝑡′, and is zero otherwise (Harvill, 2010). This assumption induces
the following correlation function,

𝐶𝜃 (ℎ, 𝑙) = {
0 if 𝑡 ≠ 𝑡′

𝐶𝜃(ℎ) if 𝑡 = 𝑡′ . (3.28)

In this case, the temporal evolution can also be considered by assuming
the spatial process evolved in time through an autoregressive dynamics, i.e.,
the firstorder autoregressive process. This is done by applying the Kronecker
product of the abovementioned spatial correlation function and the temporal
correlation function of the firstorder autoregressive process (Sahu, Yip, et al.,
2009; Sahu and Bakar, 2012).

Thus far, I have reviewed spatial data types, the corresponding spatial
models and their spatiotemporal extensions. In the following section, I will
look into latent Gaussian models, in which spatial models can be embedded.

3.7. Structured additive regression models
Structured Additive Regression (STAR) (Fahrmeir, Kneib, et al., 2013) is a uni
fied and general framework covering a series of regression models, including
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generalized additive models (GAM) (Hastie and Tibshirani, 1987), generalized
additive mixed models (GAMM) (Lin and Zhang, 1999), geoadditive models
(Kammann and Wand, 2003) and varying coefficient models (VCM) (Hastie
and Tibshirani, 1993). Structured Additive Regression models incorporate
flexibly structured additive predictors. For example, the response variable
𝑦 is assumed to follow a Gaussian distribution, where the mean 𝐸 (𝑦) is linked
to structured additive predictors 𝜂 through an identity link function, so that

𝑦 = 𝐸(𝑦)
𝐸(𝑦) = 𝜂

𝜂 = 𝑓1 (𝑣1) + … + 𝑓𝑞 (𝑣𝑞) + 𝛽0 + 𝛽1𝑥1 +…+ 𝛽𝑘𝑥𝑘 + 𝜖
(3.29)

where 𝑥1, … , 𝑥𝑘 are standard covariates with linear effects 𝛽0, … , 𝛽𝑘. 𝑣1, … , 𝑣𝑞
are nonlinear modelled covariates, and 𝑓𝑗 are different smooth functions cap
turing various types of effects:

𝑓1 (𝑣1) = 𝑓1 (𝑧1) 𝑣1 = 𝑧1 nonlinear effect of 𝑧1;
𝑓2 (𝑣2) = 𝑓𝑔𝑒𝑜 (𝑠) 𝑣2 = 𝑠 spatial effects of location variable 𝑠;
𝑓3 (𝑣3) = 𝑓𝑙𝑜𝑛𝑔,𝑙𝑎𝑡 (𝑠𝑙𝑜𝑛𝑔, 𝑠𝑙𝑎𝑡) 𝑣3 = (𝑠𝑙𝑜𝑛𝑔, 𝑠𝑙𝑎𝑡) twodimensional surfaces 𝑠1𝑜𝑛𝑔 with 𝑠𝑙𝑎𝑡;
𝑓4 (𝑣4) = 𝛾𝑖 𝑣4 = 𝑖 individualspecific random intercept;
𝑓5 (𝑣5) = 𝛾𝑖𝑢 𝑣5 = (𝑢, 𝑖) individualspecific random slope of 𝑢.

3.7.1. Latent Gaussian models
According to Rue, Martino, et al. (2009), Latent Gaussian Models (LGMs) are
a subset of structured additive regression models within the Bayesian frame
work. For example, a simplified Eq.3.29 is written as,

𝜂𝑖 = 𝛼 +∑
𝑗
𝛽𝑗𝑧𝑖𝑗 +∑

𝑞
𝑤𝑞𝑓𝑞𝑣𝑖𝑞 (3.30)

where 𝛼 is an intercept. ∑𝑗 𝛽𝑗𝑧𝑖𝑗 are linear, fixed covariate effects with the
known covariate 𝑧𝑖𝑗 and the coefficient 𝛽𝑗. ∑𝑞 𝑤𝑞𝑓𝑞𝑣𝑖𝑞 is used for modelling
nonlinear, random effects, where 𝑤𝑘 is a vector of known weights, 𝑓𝑞 are
basis functions or smooth functions and 𝑣𝑖𝑞 are the covariates.

The key feature of a latent Gaussian model is that a Gaussian prior is as
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signed to all latent variables, which generates a latent Gaussian field denoting
x = {𝛼, 𝛽0, … , 𝛽𝑘 , 𝑓1, … 𝑓𝑞}. The latent Gaussian field is controlled by a vector
of hyperparameters 𝜃. Lastly, observed data y are assumed to be condition
ally independent given the latent Gaussian field x and hyperparameters 𝜃,
and hence the univariate likelihood model describes the marginal distribution
of the data. Formally, the threelevel latent Gaussian model is written as:

y|x, 𝜃 ∼∏𝜋 (𝑦𝑖|𝜂𝑖 , 𝜃) likelihood

x|𝜃 ∼ 𝒩 (0, 𝑄−1(𝜃)) latent Gaussian field

𝜃 ∼ 𝜋(𝜃). hyperparameters

(3.31)

Here 𝑄 (𝜃) is the precision matrix (the inverse of the covariance matrix) of
the latent Gaussian field.

3.7.2. Spatial components in latent Gaussian models
The aforementioned conditional autoregressive component (model) or the
Gaussian process component (model) act as the (nonlinear) spatial random
effect component, and then is easily embedded in the latent Gaussian model.
As such, the spatial effects can follow the specifications: (i) 𝑓𝑔𝑒𝑜(𝑖) = U𝑃𝐶𝐴𝑅;
(ii) 𝑓𝑔𝑒𝑜(𝑖) = U𝐼𝐶𝐴𝑅 + V; (iii) 𝑓𝑔𝑒𝑜(𝑖) = UGaussian process.

Thus, a threelevel latent Gaussian model with a Gaussian distributed de
pendent variable Y is given by:

Y ∼ [Y|𝜇, 𝜃𝑌] 𝜖 ∼ 𝑁 (0, 𝜎2𝜖 )
𝜇 = 𝜂 = 𝑋𝛽 + U(⋅)
U(⋅) ∼ 𝑀𝑉𝑁(0,Q−1(⋅) )
Q(⋅) ≡ 𝐹 (𝑊,𝐷, 𝜌, 𝜅, 𝜈, …)

(3.32)

where [Y|𝜇, 𝜃Y] is the data model. It depends on the mean parameter 𝜇,
where 𝐸 (𝑌) = 𝜇 and other parameters 𝜃𝑌. 𝜖 is a measurement error. Regard
ing the process model [𝜇|𝜃𝜇], 𝜂 represents the structured additive predictors.
𝑋 is a design matrix involving all covariates, 𝛽 are unknown coefficients. U(⋅)
denotes the latent spatial random vector with the abovementioned condi
tional autoregressive specifications. 𝐹 represents a function that describes
the relationship between a series parameters and the precision matrix Q(⋅).
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𝜃𝜇 and 𝜃Y denotes hyperparameters appeared in the process model and data
model respectively. Lastly, I can impose priors on the hyperparameter vector
𝜃 = [𝜃Y, 𝜃𝜇].

Relying on the three levels, we obtain the posterior distribution of the pro
cess and parameters via the Bayesian theorem [𝜇, 𝜃|Y] ∝ [Y|𝜇, 𝜃Y] × [𝜇|𝜃𝜇] ×
[𝜃].

3.8. Bayesian statistics
After reviewing spatial data and latent Gaussian models, our aim is to esti
mate the parameters in the models. There are two predominant schools in the
statistic field, the frequentist and the Bayesian (Efron, 2005). They hold dif
ferent points of view in terms of probability and further inferential procedures
(Wagenmakers et al., 2008).

Frequentists, dominating in the 20th century, own a frequency view of
probability, meaning that probability is longrun frequencies, where an event
occurs in an identical experiment repeated over infinite times. That is to say,
the probability is a measurement of uncertainty derived from randomness in
a repeated event. Further, frequentist inference is often aimed at provid
ing point estimation, the best guess of an unknown parameter, and interval
estimation, a range for unknown parameters (Samaniego, 2010). It is im
portant to note that frequentists do not allow probability statements about
the unknown parameters, therefore unknown parameters as considered as
fixed quantities. For example, a 95% confidence interval for a parameter 𝛼
is [0.1, 0.2]. It does not imply that there is a 95% probability that 𝛼 is in
[0.1, 0.2]. By contrast, in the context of repeating the same procedure to con
struct confidence intervals over infinite times, 95% of the cases would the
true 𝛼 drop into the 95% confidence interval. In a word, frequentist infer
ence is evaluated under hypothetical repeated sampling of the data. Such
a point of view receives criticisms, since it is sometimes infeasible to repeat
the same procedure over infinite times for constructing the 95% confidence
interval (Baker, 2016; Gelman and Carlin, 2017).

Conversely, Bayesians have a subjective view of probability (subjective
probability and thereafter), where individuals give their evaluation to the odds
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that an event will occur or not. Subjective probability also follows the rules
of the probability calculus. In contrast to the fixed quantities of parameters
in frequentist inference, both the degree of belief and unknown parameters
are considered as random variables, and then updated by observed data in
Bayesian inference. Therefore, the Bayesian approach is more natural than
the traditional frequentist approach, since it allows tackling the uncertainty in
the model and its parameters. More precisely, priori degrees of beliefs to an
event (prior and thereafter) have an influence on the uncertainty of the model,
and the total uncertainty can be represented by a probability distribution. In
a word, the Bayesian approach starts with priori knowledge of parameters
and data, and subsequently extrapolates backward to the true probability dis
tribution of the parameters. In Bayesian statistics, this inversion process is
carried out by the socalled Bayes’ rule (Lambert, 2018). Finally and perhaps
the most important, the threelevel latent Gaussian model is a good reflec
tion of Bayesian thinking, as it contains hyperpriors (prior distributions are
imposed to hyperparameters), a latent process model (prior distributions are
also imposed to the parameters of latent variables) and a likelihood (i.e. data
or observations)11.

3.8.1. Bayes’ rule
Bayes’ rule is naturally derived from conditional probability:

𝑃𝑟 (𝐴|𝐵) = 𝑃𝑟 (𝐴 ∩ 𝐵)
𝑃𝑟 (𝐵) (3.33)

where 𝑃𝑟 (𝐴|𝐵) corresponds to the probability that event A will occur given
that event B has already been observed. The numerator of the righthand
side equation (𝑃𝑟 (𝐴 ∩ 𝐵)) represents the probability that event A and B occur
jointly, while the denominator (𝑃𝑟 (𝐵)) means that the probability of observing
event B only. Eq.3.33 can be rewritten as follows:

𝑃𝑟 (𝐴 ∩ 𝐵) = 𝑃𝑟 (𝐴|𝐵) × 𝑃𝑟 (𝐵) . (3.34)

To obtain Bayes rule’, we initially calculate the probability of the event B

11[𝑝𝑟𝑜𝑐𝑒𝑠𝑠, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠|𝑑𝑎𝑡𝑎] ∝ [𝑑𝑎𝑡𝑎|𝑝𝑟𝑜𝑐𝑒𝑠𝑠, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠] ×
[𝑝𝑟𝑜𝑐𝑒𝑠𝑠|𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠] × [𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠]
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given that A occurs,

𝑃𝑟 (𝐵|𝐴) = 𝑃𝑟 (𝐴 ∩ 𝐵)
𝑃𝑟 (𝐴) . (3.35)

Then, the numerator in Eq.3.35 is substituted by Eq.3.34, and Bayes the
orem is written as,

𝑃𝑟 (𝐵|𝐴) = 𝑃𝑟 (𝐴|𝐵) × 𝑃𝑟 (𝐵)
𝑃𝑟 (𝐴) . (3.36)

Specifically, 𝑃𝑟 (𝐵) is known. The probability of event A given B is used to
update 𝑃𝑟 (𝐵), so that 𝑃𝑟 (𝐵|𝐴) is obtained.

For example, given a model12, Bayesian inference is achieved by applying
Bayes’ rule,

𝑃𝑟 (𝜃|𝑦) = 𝑃𝑟 (𝑦|𝜃) × 𝑃𝑟 (𝜃)
𝑃𝑟 (𝑦) (3.37)

where the prior distribution 𝑃𝑟 (𝜃) for the parameter 𝜃 is updated by ob
served data 𝑃𝑟 (𝑦|𝜃) to yield a posterior distribution 𝑃𝑟 (𝜃|𝑦). Concerning on
the numerator of Eq.3.37,

𝑃𝑟 (𝜃|𝑦) ∝ 𝑃𝑟 (𝑦|𝜃) × 𝑃𝑟 (𝜃) (3.38)

meaning that the posterior distribution 𝑃𝑟 (𝜃) is proportional to the product
of the likelihood of data 𝑃𝑟 (𝑦|𝜃) and prior distribution 𝑃𝑟 (𝜃).

While for the denominator of Eq.3.37, we obtain

𝑃𝑟 (𝑦) = ∫𝑃𝑟 (𝑦, 𝜃) 𝑑𝜃 = ∫𝑃𝑟 (𝜃) 𝑃𝑟 (𝑦|𝜃) 𝑑𝜃. (3.39)

This equation clearly shows that 𝑃𝑟 (𝑦) is a weighted average likelihood,
where the weight is defined by the prior 𝑃𝑟 (𝜃). Further, 𝑃𝑟 (𝑦) is a number,
which is conveniently ignored in estimating the parameter 𝜃.

12Models are the mathematical formulation of the observed events, which are affected by model
parameters.
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3.8.2. Integrated nested Laplace approximations comput
ing scheme

To fit a latent Gaussian model, the McMC method is widely applied. How
ever, McMC may experience poor mixing or convergence issues. Moreover,
for large models or big data sets, McMC takes a lot of computational resources
(e.g., time and memory). Given my particular interest in spatial models, spa
tial/spatiotemporal dependence arises in data, and then McMC requires ad
ditional computational resources (De Smedt et al., 2015; Taylor and Diggle,
2014). These drawbacks show that McMC may not be an appropriate tool for
fitting spatial models.

Rue, Martino, et al. (2009) therefore developed a deterministic approxi
mation approach, namely Integrated Nested Laplace Approximations (INLA)
to estimate the posterior distributions of the parameters in latent Gaussian
models. INLA is built on the combination of analytical approximations and
efficient numerical integration. The main advantages of INLA over McMC can
be concluded in the following points:

(i) INLA has significantly computational gains for large, complex models
under several conditions13;

(ii) INLA is carried out by the mature RINLA package (Martins et al., 2013)
for the R programming language (R Core Team, 2019), which provides a user
friendly interface for making Bayesian inference (Bakka et al., 2018).

Having reviewed the highlights of the INLA approach, I will move on to
introduce the INLA computing scheme. Following Rue, Martino, et al. (2009),
the joint posterior distribution of the latent field x and hyperparameters 𝜃 in
Eq.3.31 is written as:

13E.g., the dimension of hyperparameter vectors requires small and the precision matrix should
be sparse.
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𝜋(x, 𝜃|y) ∝ 𝜋(𝜃)𝜋(x|𝜃)
𝑛

∏
𝑖=1

𝜋 (𝑦𝑖|𝑥𝑖 , 𝜃) ∝

𝜋(𝜃)|Q(𝜃)|1/2 exp{−12x
𝑇Q(𝜃)x+

𝑛

∑
𝑖=1

log (𝜋 (𝑦𝑖|𝑥𝑖 , 𝜃))} .

(3.40)

Notably, the size of the hyperparameter vector 𝜃 should be small (less than
< 15 empirically), while the dimension of data y and latent Gaussian fields x
can be large. The fact is that numerical integration is implemented over the
𝜃 space. Furthermore, the dependence structure of data is usually stored in
the precision matrix 𝜃. Since the size of the latent Gaussian field is fairly large
(𝑛 = 102 − 105), Rue, Martino, et al. (2009) impose conditional independent
(Markovian) properties. Consequently, the latent Gaussian field x becomes a
Gaussian Markov random field (GMRF) with a sparse precision matrix. This
step offers additional computational gains, since numerical methods for sparse
matrix calculation is much faster than dense matrix calculation (Martino and
Riebler, 2019).

The joint posterior distribution for the latent Gaussian field and the hy
perparameters has been derived. However, in practice, researchers are inter
ested in the marginal posterior distributions of the hyperparameter 𝜋 (𝜃𝑗|𝑦)
and the latent variable 𝜋 (𝑥𝑖|𝑦), rather than their joint posterior distribution.
In doing so, integration is applied.

𝜋 (𝑥𝑖|y) = ∫𝜋 (𝑥𝑖|𝜃,y) 𝜋 (𝜃|y) 𝑑𝜃, (3.41)

𝜋 (𝜃𝑗|y) = ∫𝜋 (𝜃|y) 𝑑𝜃−𝑗 (3.42)

where 𝑥𝑖 is the 𝑖𝑡ℎ latent variable. 𝜃𝑗 is the 𝑗𝑡ℎ hyperparameter. 𝜃−𝑗
is the complement hyperparameter vector to 𝜃𝑗. INLA applies a threestep
procedure to achieve the integration. The first step aims to calculate 𝜋 (𝜃|y).
Because this term serves to calculate the marginal distribution of both the
hyperparameter and the latent variable. Through conditional probability rules,
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the relation is obtained:

𝜋 (𝜃|y) = 𝜋(x, 𝜃|y)
𝜋 (x|𝜃,y) ∝

𝜋(y|x, 𝜃)𝜋(x|𝜃)𝜋(𝜃)
𝜋 (x|𝜃,y) . (3.43)

The numerator is easy to compute. While INLA approximates the denom
inator through a Gaussian approximation 𝜋𝐺(x|𝜃,y)14 by matching the mode
of the full conditional of x∗ for a given 𝜃,

𝜋(y|x, 𝜃)𝜋(x|𝜃)𝜋(𝜃)
𝜋 (x|𝜃,y) ≈ 𝜋(y|x, 𝜃)𝜋(x|𝜃)𝜋(𝜃)

𝜋𝐺(x|𝜃,y)
|
𝑥=𝑥∗(𝜃)

=∶ 𝜋 (𝜃|y) . (3.44)

The second step aims to compute 𝜋 (𝑥𝑖|y), an approximation of 𝜋 (𝑥𝑖|y).
This can be done by following the same logic for calculating 𝜋 (𝜃|y). How
ever, it is more complex since x is highdimensional. Rue, Martino, et al.
(2009) offer three possible alternatives: a Gaussian approximation, a Laplace
approximation and a simplified Laplace approximation. The most obvious one
is the Gaussian approximation, because 𝜋𝐺(x|𝜃,y) has already computed in
the first step. This approach is very fast, but it may provide inaccurate re
sults if the conditional distribution is skewed. The second approach is built
on the Laplace approximation directly, namely the full Laplace approximation.
In doing so, Rue, Martino, et al. (2009) firstly partition the latent field into
x = [𝑥𝑖 , 𝑥−𝑖], and apply the Laplace approximation to 𝜋 (𝑥−𝑖|𝑥𝑖 , 𝜃,y) around
its model x∗−𝑖 (𝑥𝑖 , 𝜃):

𝜋 (𝑥𝑖|𝜃,y) =
𝜋 ((𝑥𝑖 , 𝑥−𝑖) |𝜃,y)
𝜋 (𝑥−𝑖|𝑥𝑖 , 𝜃,y)

≈ 𝜋(x, 𝜃|y)
�̃� (𝑥−𝑖|𝑥𝑖 , 𝜃,y)

|
𝑥−𝑖=𝑥∗−𝑖(𝑥𝑖 ,𝜃)

=∶ �̃� (𝑥𝑖|𝜃,y) .

(3.45)

This approach returns very precise estimates, but it is computationally ex
pensive. The last approach is a compromise of accuracy and computational
costs, namely the simplified Laplace approximation. It addresses the draw
back of the Gaussian approximation by implementing a Taylor series expansion
up to the third order to both the numerator and the denominator of Eq.3.45.

14Tierney and Kadane (1986) proved that this equation is equivalent to the Laplace approximation
of a marginal posterior distribution.
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This is also the default option in the Rinla package.

The last step is to integrate 𝜃 in Eq.3.41 by applying numerical integra
tion. Concerning the uncertainty of 𝜃, it is important to find suitable integra
tion points 𝜃𝑘 of the hyperparameters vector. Therefore, Rue, Martino, et al.
(2009) provide three alternatives depending on the number of hyperparame
ters, i.e., the grid approach, the central composite design and the approach
ignoring the hyperparameter variability. The first approach is very precise but
it is appropriate for one or two hyperparameters only. The second approach is
the default option of the RINLA if there are more than two hyperparameters.

Finally, we have the following equation,

�̃�(𝑥𝑖|y) ≈
𝐾

∑
𝑘=1

�̃�(𝑥𝑖|𝜃𝑘 ,y)�̃�(𝜃𝑘|y)Δ𝑘 (3.46)

where 𝑘 refers to 1,… , 𝐾 integration points and Δ𝑘 are corresponding
weights. Thus, the meaning of INLA is clear in the threestep procedure.
Integrated refers to applying numerical integration. Nested means that to
calculate the marginal posterior distribution of latent variables, researchers
have to estimate the marginal posterior distribution for the hyperparameters
first. Laplace approximation indicates that researchers use Laplace approxi
mations several times during the calculation (Blangiardo and Cameletti, 2015;
Faraway et al., 2018).

3.9. Model assessment
Thus far, we have known the spatial data, the geoadditive model family and
the blackbox of INLA. A number of Bayesian criteria for model assessment
are also provided in the RINLA package.

The Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002) is a
wellknown Bayesian model choice criterion for comparing complex hierarchi
cal models. This criterion relies on the deviance,

𝐷 (𝑥, 𝜃) = −2𝑙𝑜𝑔𝜋 (𝑦|𝑥, 𝜃) (3.47)

where 𝑥, 𝜃 are latent effects and hyperparameters, respectively.
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The Deviance Information criterion incorporate the posterior expectation
of deviance (�̄�()) and an estimate the number of effective parameters (𝑝𝐷)
of a model,

𝐷𝐼𝐶 = �̄�(𝑥, 𝜃) + 𝑝𝐷. (3.48)

where �̄�() is considered as a Bayesian measure of model fit, and defined
as

�̄�(𝑥, 𝜃) = 𝐸𝑥,𝜃|𝑦[𝐷(𝑥, 𝜃)] = 𝐸𝑥,𝜃|𝑦[−2 log𝜋(𝑦|𝑥, 𝜃)]. (3.49)

Here, the better the model fits the data, the larger the loglikelihood value,
but the smaller the posterior expectation of the deviance. 𝑝𝐷 works as a
penalty term indicating model complexity, and is defined as the difference
between the posterior expectation of the deviance and the deviance evaluated
at the posterior expectation of the latent effects and hyperparameters,

𝑝𝐷 = �̄�(𝑥, 𝜃) − 𝐷(�̄�, �̄�), (3.50)

and a higher 𝑝𝐷 indicates more complex models. Finally, a lower DIC value
reflects a better model in terms of fitting data.

An alternative model comparison tool is the conditional predictive ordinate
(CPO) (Pettit, 1990). It is a predictive measure since the calculation of CPO is
depended on crossvalidation. For each observation, the conditional predictive
ordinate is given by

𝐶𝑃𝑂𝑖 = 𝜋 (𝑦𝑖|𝑦−𝑖) . (3.51)

Here, the conditional predictive ordinate value is defined as the cross
validated predictive density 𝜋 (𝑦𝑖|𝑦−𝑖) at the observation 𝑦𝑖, 𝑦−𝑖 denotes the
excluded observations. A larger value indicates a better fit of the model to
the data, whereas smaller values indicate an illfitting model. Roos and Held
(2011) suggested calculating the socalled crossvalidated logarithmic score,
which is the mean of all CPO values,
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LCPO = − 1𝑁

𝑁

∑
𝑖=1

log (CPO𝑖) . (3.52)

Lower LCPO scores indicate better models.

3.10. Summary
In this chapter, I initially offer an overview of spatial econometrics and rele
vant notions. I also list the drawback of these models. To overcome these
drawbacks, spatial statistical models are introduced. I review different types
of spatial data, areal data models, geostatistical models and their related con
cepts. I also look into spatiotemporal processes, and some extensions of
the aforementioned spatial models for fitting the spatiotemporal process. As
these spatial or spatiotemporal models can be incorporated into the hierar
chical modeling framework, it is natural to estimate the parameters via the
Bayesian approach. I, therefore, investigate the Bayesian framework and the
integrated nested Laplace approximation technique. I also provide several
model choice criteria for choosing different Bayesian models. This chapter
provides the cornerstone of statistical modeling for this thesis. I will use the
aforementioned models in later chapters of this thesis.





4
Time, space and hedonic

prediction accuracy:
evidence from Corsican

apartment market

4.1. Introduction
It is widely agreed that housing locations affect housing prices. To explain this
phenomenon, Can (1992) identified two effects: (1) “neighbourhood effects”,
and (2) “adjacent effects”. The first refers to sharing a series of location
specific amenities and public goods, whereas the second refers to a sort of
spillover.

In addition to the theoretical explanation, economists have attempted to
construct appropriate econometric models for evaluating properties. In par
ticular, via the hedonic price method (HPM), researchers can evaluate “neigh
bourhood effects” and interpret them as the marginal willingness to pay for
corresponding attributes, even if these attributes cannot be observed directly
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on the market. Nowadays, with the help of spatial econometrics (Anselin,
2010), economists can also estimate “adjacent effects”.

However, arguments arise since researchers may overlook the impact from
a temporal dimension if data are collected over time (Dubé and Legros, 2013a).
Specifically, researchers usually have no information on repeated sales in most
cases. As such, housing transactions data pertain to repeated cross sections,
meaning that the data are composed of the different observations from given
populations following a chronological order. According to Dubé and Legros,

“The structure of real estate databases is different from conventional pan
els, since the same observation is not necessarily repeated. Instead, real
estate data are collections of many crosssectional data pooled over time.”
(Dubé and Legros, 2013a, p. 5)

The most straightforward approach to process such data is to build a large
pooled cross section and then apply pooled OLS regression with space or time
dummy variables. However, this approach has an explicit limitation. It fails
to capture the correlation in space and over time. As such, the estimated
coefficients may be biased and prediction may be unrealistic.

Consequently, the aim of this chapter is threefold. I suggest that par
ticular attentions should be paid to both spatial and temporal attributes of
housing sales data. As such, the repeated cross sections belong to spatiotem
poral pointreferenced data. Secondly, a Bayesian hierarchical spatiotemporal
model is initially introduced. Spatiotemporal correlation is gauged via the la
tent random effect component in the model. I illustrate how this model is fitted
with two new techniques, namely integrated nested Laplace approximations
(INLA) (Rue, Martino, et al., 2009) and the stochastic partial differential equa
tion (SPDE) approach (Lindgren et al., 2011). INLA relies on direct numerical
integration and is designed for latent Gaussian models. In addition, the SPDE
approach makes use of Matérn covariance structures and Delaunay triangles
to yield a Gaussian Markov random field (GMRF), which is the good approxi
mation of a Gaussian random field (GRF). Lastly, a set of Bayesian hierarchical
models are used for studying Corsican apartment markets. I compare the data
fitting result, the prediction accuracy and the computational complexity of all
candidate models, which involve spatial and temporal random components in
dividually and jointly. Based on the result of the comparison, I finally illustrate
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the most effective model for prediction.

This chapter is structured as follows. In Section 4.2, I briefly review lit
erature, in particular, certain new methods to gauge spatial and temporal
correlation in property prices. In Section 4.3, I describe Bayesian hierarchical
spatiotemporal models and briefly introduce the INLA method and the SPDE
approach. In Section 4.4, I detail the used dataset, the model specifications
and the results of estimation and prediction in the study. The conclusions are
presented in Section 4.5.

4.2. Literature review: research trends in the HPM
based property valuation

Half a century ago, Lancaster (1966) introduced his utility theory. He stated
that goods per se did not give utilities, but the involved characteristics provided
utilities. As such, the utilities of a good equalled the sum of the utilities of
all characteristics. Rosen (1974) integrated Lancaster theory into a market
equilibrium framework and developed the hedonic price method.

In the context of house valuation, the hedonic price method ensures that a
house buyer’s utility is a function of housing characteristics involved in the pur
chased house. Moreover, since the house buyer’s utility can be expressed by
the market equilibrium price of the purchased house (Deaton and Muellbauer,
1980), the house price is a function of the characteristics associated with the
house. Following Malpezzi’s (2008) definition , the empirical representation of
a house price is given as:

𝑃 = 𝑓 (𝑆, 𝑁, 𝐿, 𝐶, 𝑇, 𝛽)

where 𝑃 is the house price, 𝑆 is the structural characteristics of the house,
𝑁 represents the neighbourhood characteristics, 𝐿 denotes the locational char
acteristics, 𝐶 describes the contract conditions and 𝑇 is time. 𝛽 is the vector
of the parameters to be estimated.

Although the hedonic price method provides the theoretical basis to in
vestigate how housing characteristics affect prices, a crucial challenge is es
timation. More specifically, this method merely provides a general analytical
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framework rather than guidance on a specified case (Moreira de Aguiar et al.,
2014). Researchers must face issues ranging from variable selection to model
specifications.

We have observed some current trends (Sheppard, 1999) in empirical stud
ies addressing these issues, e.g., applications of semiparametric or nonpara
metric methods and applications of spatial econometrics (Anselin and Lozano
Gracia, 2009).

The pioneering application of semiparametric models on property valua
tion comes from Pace (1995). To address model specification problems, he
suggested socalled semiparametric index regression. He also demonstrated
how this model avoided misspecification and controls spatial trends.

Clapp (2003) developed local polynomial regression belonging to semi
parametric models. The regression contained a nonlinear term based on lati
tudes and longitudes to calculate housing location values.

Kammann and Wand (2003) then introduced a geoadditive models family,
which was a mixture of additive modelling (Buja et al., 1989) and a geosta
tistical component. There are several candidate specifications for the geosta
tistical component, such as a Kriging component or a smooth spatial trend
component based on the tensor product of longitude and latitude.

Basile et al. (2013) applied a geoadditive model incorporating a twodimensional
tensor product smoother for space to investigate European industrial loca
tions. They indicated that their model outperformed other parametric models
since it allowed to control unobserved spatial patterns, to reduce misspecifica
tion and to point out inward foreign direct investment clusters simultaneously.
Further, it is possible to model spacetime interactions via a threedimensional
tensor product smoother (Augustin et al., 2009), and therefore, a model incor
porating such tensor product smoother can handle repeated cross sections.

In short, the semiparametric and geoadditive models have advantages
such as flexibility, handling repeated cross sections, avoiding model misspec
ification and of course, mitigating estimation biases.

Another trend related to widely used spatial econometrics (Anselin, 2010).
Within the hedonic price framework, spatial econometric models were used for
measuring locationspecific amenities and spillover effects. However, applying
spatial econometric models on repeated cross sections was rarely seen in the
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existing literature, most empirical studies focused on crosssectional or panel
data Anselin (2010) and Shi and Lee (2018).

After exploring spatial econometrics literature, I found two outstanding
applications. Dubé and Legros (2013a) said that tools for analysing point
referenced house transactions data were very limited. Pooling data over time
and applying time dummy variables might lead to biased estimates, because
the time dummy variables merely captured temporal variability, but neglect
temporal correlation (Palmquist, 2005). Hence, they initially proposed a so
called spatiotemporal autoregressive (STAR) model. Certainly, the spatiotem
poral autoregressive model is an extension of a spatial lag model, where the
spatial weighting matrix in the spatial lag model is replaced by a spatiotem
poral weighting matrix. The author also showed that the spatiotemporal au
toregressive model performed better than the spatial lag model in their case.
However, due to its specification, the spatiotemporal autoregressive model
may have limited use.

Another approach called unbalanced spatial lag pseudopanel models with
nested random effects came from Baltagi et al. (2015). The authors were also
confronted with a pointreferenced house transaction dataset, but they con
sidered the hierarchical structure of the data. As a result, the data took the
structure of an unbalanced pseudopanel. Regarding the model, the spatial
correlation was captured by timevarying spatial weighting matrices and tem
poral variability was captured by time fixed dummy variables. Nevertheless,
the temporal correlation was not considered in the model.

Notably, the abovementioned models are estimated via frequentist ap
proaches including maximum likelihood (ML) or restricted maximum likelihood
(REML). However, regarding uncertainty and model complexity, Bayesian in
ference should be a better choice (Weller, 2016; Browne and Draper, 2006;
Mathew et al., 2015). To be more precise, model parameters are random vari
ables defined by a probability distribution in the Bayesian approach. Hence,
both information in data and prior knowledge are absorbed into the posterior
distribution of the model parameter.

Weller (2016) held the view that Markov chain Monte Carlo (McMC) meth
ods had advantages over likelihoodbased methods in fitting a linear mixed
model because of considering the uncertainty of parameters of interest. Ac
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cording to Browne and Draper (2006), both McMC and likelihoodbased meth
ods provided unbiased point estimates, if they fitted a twolevel variance com
ponents model with a large dataset. Recent research (Mathew et al., 2015;
Huang et al., 2017) suggested that INLA was a good alternative of the McMC
and REML methods in fitting a linear mixed model with multiple random com
ponents. Moreover, Martino and Riebler (2019) showed that INLA was re
markably efficient comparing with McMC for fitting large, complex models,
and it provided accurate point estimates. Besides, INLA did not experience
convergence and mixing issues.

After investigating the advantages and drawbacks of the aforementioned
models and estimation, I introduce the Bayesian hierarchical spatiotemporal
model, which is deemed as the extension of a geoadditive model. The fact
is that there is a GRF component evolving over time in the hierarchical spa
tiotemporal model, so that we can gauge spatiotemporal random effects and
handle repeated cross sections. Additionally, model estimation is done via
INLASPDE approach.

4.3. Spatiotemporal modeling for geostatistical data
4.3.1. Spatiotemporal data
Before reviewing Bayesian hierarchical spatiotemporal models, I concentrate
on data types. Palmquist (2005) stated that most hedonic property valuation
studies used microdata. Dubé and Legros defined the microdata as

“Observations that are points on a geographical projection...”. (Dubé
and Legros, 2014, p. xi)

The definition implies that the geographical coordinates of properties are
stored in the microdata. From a geostatistical perspective, the microdata
pertain to geostatistical data. It is a widely held view that such data can
be considered as a stochastic process indexed on a continuous plane (Arbia,
1989; Ver Hoef, 2002). Further, regarding a time dimension, the stochastic
process can be indexed both in space and time (see Section 3.6).

Hence, I assume that 𝑦 (𝑠𝑖 , 𝑡) denotes the realization of the stochastic
process, which describes the observed logtransformed transaction price of
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the apartment 𝑖 = {1,… , 𝑛} at location 𝑠𝑖 with instant 𝑡 = {1,… , 𝑇}.

4.3.2. Bayesian hierarchical models with spacetime ran
dom effects

The proposed Bayesian hierarchical spatiotemporal model is derived from the
modified hierarchical autoregressive model (Sahu and Bakar, 2012). The key
point is that the underlying spatiotemporal dependence is modelled by first
order autoregressive (AR(1)) dynamics with spatially correlated innovations.
This specification is known as an AR(1) group model, where the group refers to
the spatial group 𝜔(𝑠𝑖). As such, the dependence in space and the temporal
dependence between spatial groups are captured. This proposed model is
also formulated in a latent Gaussian model, which is written as,

𝑌 ∼ [𝑌|𝜇, 𝜃𝑌] , (4.1)

𝑔(𝜇) = 𝜂(𝑠𝑖 , 𝑡) = 𝑧(𝑠𝑖 , 𝑡)𝛽 + 𝜉(𝑠𝑖 , 𝑡), (4.2)

𝜃 = {𝜃𝑌 , 𝜃𝜇} = {𝜎2𝜔 , 𝑎, 𝜅, 𝜎2𝜖 } . (4.3)

Here, 𝑧(𝑠𝑖 , 𝑡)1 is the vector of covariates referring to the fixed effects.
𝜖(𝑠𝑖 , 𝑡) is the measurement error following a Gaussian distribution. 𝜉 is the
spatiotemporal random component. 𝜉 and 𝛽 consists of the latent Gaussian
field x = {𝜉, 𝛽}. More importantly, 𝜉(𝑠𝑖 , 𝑡) is used for describing spatiotemporal
process, which is assumed to be a Gaussian random field evolved over time.
It reads,

𝜉(𝑠𝑖 , 𝑡) = 𝑎𝜉(𝑠𝑖 , 𝑡 − 1) + 𝜔(𝑠𝑖 , 𝑡), (4.4)

where 𝜔(𝑠𝑖 , 𝑡) is a timeindependent Gaussian random field, whose spa
tiotemporal covariance function is described by,

𝐶𝑜𝑣 (𝜔(𝑠𝑖 , 𝑡), 𝜔(𝑠𝑗 , 𝑡′)) = {
0 𝑖𝑓 𝑡 ≠ 𝑡′

𝜎2𝜔𝐶 (‖𝑠𝑖 − 𝑠𝑗‖) 𝑖𝑓 𝑡 = 𝑡′. (4.5)

1𝑧 (𝑠𝑖 , 𝑡) = (𝑧1 (𝑠𝑖 , 𝑡) , … , 𝑧𝑝 (𝑠𝑖 , 𝑡))
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Here 𝐶 (‖𝑠𝑖 − 𝑠𝑗‖) denotes the Matérn correlation function, which depends
on ‖𝑠𝑗 − 𝑠𝑖‖.2 ‖𝑠𝑗 − 𝑠𝑖‖ is the Euclidean distance between the observation 𝑖
and 𝑗. Notably, the Matérn correlation function implies that the spatial process
is secondstationary and isotropic (Cressie, 2015). Subsequently, the Matérn
covariance function reads:

𝜎2𝜔𝐶 (‖𝑠𝑖 − 𝑠𝑗‖) = 𝜎2𝜔 ×
21−𝜈
Γ (𝜈) × (𝜅 × ‖𝑠𝑖 − 𝑠𝑗‖)

𝜈 × 𝐾𝜈 (𝜅 × ‖𝑠𝑖 − 𝑠𝑗‖) , (4.6)

where Γ is the gamma function. 𝐾𝜈 is the modified Bessel function of the
second kind with order 𝜈. Generally, the 𝜈 is the smoothness parameter and is
a nonnegative number3. 𝜅 is the scaling parameter and is also a nonnegative
number. Based on the empirically derived definition (Lindgren et al., 2011),
the relation among 𝜅, 𝜈 and 𝑟 is expressed as:

𝑟 = √8𝜈
𝜅 ,

where 𝑟 indicates the distance where spatial correlation diminishes to 0.1.

Concerning the former part of Eq. 4.4, 𝑎 is the autoregressive parameter
with |𝑎| < 1. More importantly, to implement the model in the RINLA package
(Martins et al., 2013), we actually add a √1 − 𝑎2 term before 𝜔(𝑠𝑖 , 𝑡) to ensure
the stationary of the AR(1) process. Further, the timedependent Gaussian
random field 𝜉(𝑠𝑖 , 𝑡) has a spacetime separable covariance function, which is
characterized by:

∑𝜉 = ∑𝑇 ⨂ ∑𝑆 (4.7)

where ∑𝑇 is the covariance function of the temporal process and ∑𝑆 is the
Matérn covariance function of the spatial process. ⨂ is the Kronecker product.
Eq. 4.7 is further written as:

2 𝑖 ≠ 𝑗
3Based on Eq. 3.20 and Eq. 3.21, we have 𝜈 = 𝛼 − 𝑑

2 . In Eq. 4.6, 𝑑 equals 2 and hence 𝜈 = 1.
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∑𝜉 = Cov(
∞

∑
𝑘=0

𝜌𝑘𝜔 (𝑠𝑖 , 𝑡 − 𝑘) ,
∞

∑
𝑘′=0

𝜌𝑘′𝜔 (𝑠𝑗 , 𝑡′ − 𝑘))

=
∞

∑
𝑘,𝑘′=0

(𝜌𝑘+𝑘′ Cov (𝜔 (𝑠𝑖 , 𝑡 − 𝑘) , 𝜔 (𝑠𝑗 , 𝑡′ − 𝑘′)))

= 𝜎2𝜔
𝑎|𝑡−𝑡′|
1 − 𝑎2 ⊗𝐶 (‖𝑠𝑖 − 𝑠𝑗‖)

. (4.8)

As such, the correlation over space and time is gauged simultaneously.
Lastly, I can assign hyperpriors to the hyperparameter vector 𝜃 in Eq. 4.3.

4.3.3. INLASPDE approach
Fitting the proposed Bayesian hierarchical spatiotemporal model is challeng
ing, in particular, the “big n problem” (Banerjee et al., 2014) often occurs.

Several solutions have been proposed to overcome this issue. Bakar and
Sahu (2015) developed the “spTimer” package, where they employ McMC with
a lowrank approximation. A recent solution is to apply INLA coupled with the
SPDE approach. Apart from the advantages such as accounting for uncer
tainty and low computational costs, this approach can estimate spatial range
and other hyperparameters automatically. More precisely, the SPDE approach
is devoted to tackling complex spatial dependence. Relying on the Matérn co
variance function for the the spatial random component and subsequently
introducing Markovian properties, the value at each location is conditional in
dependent and then the dense Matérn covariance matrix is substituted by a
sparse precision matrix. To conclude, the GRF is approximated by a GMRF to
speed up the calculation. Currently, the difficulty becomes how to define that
GMRF, which is the best substitution for the GRF, given local neighbourhoods
and the sparse precision matrix. Lindgren et al. (2011) proposed using the
SPDE approach. The numerical resolution of a stochastic partial differential
equation given by the piecewise linear basis functions based on a mesh (the
aggregate of a large number of nonoverlapped triangles over the study area
is called a mesh) can provide a good approximation to the Matérn covariance.
INLA will take over the following task.
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4.4. The case of Corsican apartment markets
4.4.1. Data
Our study focuses on Corsica, and we use the dataset extracted from the
“PERVAL” database. This dataset is a collection of Corsican realestates con
veyances registered by realestate lawyers. It includes all transaction infor
mation such as sale prices, pointreferenced ownership, structural attributes,
and locations (longitude and latitude). The raw dataset contains more than
10 000 apartments sold from 2006 to 2017. Data are then screened to remove
the apartments with incomplete or questionable attributes data. Hence, the
final dataset is made up of 7 634 sales of apartments spanning from 2006
to 2017. Actual sales prices were available for all apartments in the final
dataset with the mean €149 467,08 after adjusting for inflation (The base
year is 2006.). Further, apartment sales prices ranged from €57 445,76 to
€325 431,67. Other key variables like apartment structural characteristics and
accessibility variables are listed in Table 4.1 along with detailed descriptions.

For spatial prediction purposes in the following subsections, the cleaned
dataset is split into a training set and a validation set. I randomly place 80%
of the data in the training set for fitting the models, and the remaining 1 527
observations are assigned in the validation set for testing the models. The
summary statistics of continuous variables in the training set are presented in
Table 4.2.

4.4.2. Model discussion
One objective of this study is to compare the prediction performance of differ
ent models that delineate the impacts of space and time in different ways. To
meet this goal, I examine four candidate models with different specifications
of spatial and temporal components. Starting from a linear additive model,
I then add different random components, e.g., a spatial random component,
spatial and temporal random components jointly and a spatiotemporal ran
dom component. The summary of the random components in the hierarchical
models is displayed in Table 4.3.

Let us explore these models in more detail. The dependent variable is the
transaction price of an apartment in a logarithmic scale. The application of
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Table 4.1: List of hedonic variables with description

Variable Abbreviation Description/Unit

STRUCTURAL ATTRIBUTES
Room Ro Number of rooms
Bathroom Bat Number of bathrooms
Parking Par Number of parkings
Floor Sto Number of floors
Living area Surf Square meters (𝑚2)

Apartment type Typ
Standard apartment
(reference) SA
Duplex apartment DU
Studio apartment ST

Construction period Contr
18501913
(reference) Contr 18501913
19141947 Contr 19141947
19481969 Contr 19481969
19701980 Contr 19701980
19811991 Contr 19811991
19922000 Contr 19922000
20012010 Contr 20012010
20112017 Contr 20112017

ACCESSIBILITY VARIABLES
Distance to the nearest
beach Bea kilometres (𝑘𝑚)
Distance to the nearest
health facility Hosp kilometres (𝑘𝑚)
Distance to the nearest
public primary school PSch kilometres (𝑘𝑚)

the logarithmic transformation is not only intended to stabilize the variance
of the dependent variable, but also to make the distribution of price data
approximately normal.

The base model (M0) is the linear additive model (Eq. 4.9). You can find
all structural variables and accessibility variables in the model, but there are
not any spatial or temporal random components.

𝑙𝑜𝑔(𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑃𝑟𝑖𝑐𝑒) = 𝛽0 + 𝛽1𝑅𝑜 + 𝛽2𝐵𝑎𝑡 + 𝛽3𝑃𝑎𝑟 + 𝛽4𝑆𝑡𝑜
+ 𝛽5𝑇𝑦𝑝 + 𝛽6𝐶𝑜𝑛𝑡𝑟 + 𝛽7𝐵𝑒𝑎
+ 𝛽8𝐻𝑜𝑠𝑝 + 𝛽9𝑃𝑆𝑐ℎ
+ 𝑓 (𝑆𝑢𝑟𝑓)

(4.9)
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Table 4.2: Descriptive statistics about housing attributes for the training set

Mean St. Dev. Min Pctl(25) Pctl(75) Max

Transaction
Price 149,440.60 58,789.31 57,445.76 102,921.40 185,406.50 325,431.70

log(Transaction
Price) 11.84 0.39 10.96 11.54 12.13 12.69

Ro 2.68 0.97 0 2 3 8
Bat 1.05 0.26 0 1 1 3
Par 0.79 0.72 0 0 1 8
Sto 1.85 1.73 −3* 1 3 12
Surf 59.38 22.46 6 42 73 197
Bea 3.75 7.07 0.00 1.02 3.41 50.09
Hosp 10.43 12.11 0.05 1.64 16.51 72.24
PSch 1.34 1.74 0.000 0.47 1.46 39.51

N=6107; St. Dev.=standard deviation;
Pctl(25)=25% quantile; Pctl(75)=75% quantile;
∗The negative number appears because there are ”souplex” apartments.

Table 4.3: Summary of random components in the hierarchical models

Model Identifier M0 M1 M2 M3

Spatial None 𝜔 (𝑠𝑖) * 𝜔 (𝑠𝑖) * None
Temporal None None 𝜇 (𝑡) None
Spatiotemporal None None None 𝜉 (𝑠𝑖 , 𝑡)

* 𝜔 (𝑠𝑖) is a Gaussian random field that is temporally con
stant.

where the living area is modelled as a nonlinear covariate regarding resid
uals and literature (Baltagi et al., 2015; Shimizu et al., 2014). Concerning
the nonlinear specification 𝑓 (⋅), the default firstorder random walk (RW1)
smoother in the RINLA package is used.

The second model (M1) is the combination of the first model (M0) with
the spatial random component (𝜔 (𝑠𝑖)). This specification is similar to the
geoadditive model proposed by Kammann and Wand (2003). In this context,
I do not consider impacts from time. That is to say, the temporal dimen
sion is collapsed to “zero thickness”. The corresponding spatial covariance
function reads 𝐶𝑜𝑣 (𝜔(𝑠𝑖), 𝜔(𝑠𝑗)) = 𝜎2𝜔𝐶 (‖𝑠𝑖 − 𝑠𝑗‖), and 𝐶 (‖𝑠𝑖 − 𝑠𝑗‖) is the
aforementioned Matérn covariance function.
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Based on the model M1, the third model (M2) involves the additional tem
poral random component 𝜇 (𝑡). Therefore, spatial and temporal effects are
investigated jointly in this model. Furthermore, the purely spatial (𝜔 (𝑠𝑖)) and
the purely temporal (𝜇 (𝑡)) random component are uncorrelated. The purely
temporal component is specified via an AR(1) process on the ordinal quarters.

𝜇(1) = 𝑁 (0, (𝜏𝑎𝑟1 (1 − 𝜌2))
−1) , 𝑡 = 1

𝜇(𝑡) = 𝜌 × 𝜇(𝑡 − 1) + 𝜀(𝑡), 𝜀(𝑡) ∼ 𝑁 (0, 𝜏−1𝑎𝑟1)
(4.10)

where 𝜌 is the autoregressive parameter and 𝜀 is the measurement error
with the precision parameter 𝜏𝑎𝑟1 (The corresponding variance parameter is
𝜎2𝑎𝑟1.). In the Corsican case, there are 48 quarters spanning from the first
quarter of 2006 to the fourth quarter of 2017. As a result, the spatiotemporal
covariance function consists of the purely spatial and temporal covariance
functions, which reads,

Cov (𝜇(𝑡), 𝜇 (𝑡′)) + Cov (𝜔 (𝑠𝑖) , 𝜔 (𝑠𝑗)) = 𝜌|𝑡−𝑡
′| 𝜎2𝑎𝑟1
1 − 𝜌2 + 𝜎

2
𝜔𝐶 (‖𝑠𝑖 − 𝑠𝑗‖)

(4.11)

Lastly, M3 is the hierarchical spatiotemporal model introduced in Subsec
tion 4.3.2. This can be considered as an improvement over M2 since the
temporallyconstant Gaussian random field together with the AR(1) temporal
process is replaced by a temporallydynamic Gaussian random field only.

Regarding the computational complexity of each model, M2 incorporates
the purely temporal AR(1) process (see Eq. 4.10), which is assumed to be con
stant in space. That is to say, the temporal latent process is built on the tempo
ral knots and is unidimensional. However, M3 incorporates an AR(1) structure
with spatially correlated but temporally independent innovations (see Eq. 4.4).
This latent process is defined by the number of spatial observations. From a
computational perspective, M3 requires more computational resources than
M2, even if M2 has an additional parameter (𝜎2𝑎𝑟1) to estimate.
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4.4.3. Implement details
Before training all candidate models, I highlight two key points, the used mesh
and prior distributions. I construct a convex hull mesh, as shown in Figure
4.1. Considering distances among housing locations and Corsican city sizes,
I set the maximum triangle length to 10 km in the interior domain, while the
length is specified to 50 km in the outer extension to avoid boundary effects4.
To reach a compromise between dense housing locations in urban areas and
too many tiny triangles, minimum distances among points are specified to 0.1
km. Lastly, I obtain the mesh containing 3 060 vertices of triangles.

One advantage of Bayesian modelling is the inclusion of prior knowledge.
I select penalizedcomplexity priors (PC priors) for all hyperparameters. The
list of prior distributions is shown in Table 4.4.

Table 4.4: Priors for hyperparameters of the hierarchical model

Parameters in
the models

Prior
specification*

𝜏𝑟𝑤1 for the precision of Surface Prob( 1
√𝜏𝑟𝑤1

> 1) = 0.5
𝑟 for the spatial range of the random field Prob(𝑟 < 20𝑘𝑚) = 0.8
𝜎𝜔 for the standard deviation of the random field Prob(𝜎𝜔 > 0.4) = 0.2
𝑎 for the AR(1) parameter in Eq. 4.4 Prob(𝑎 > 0.5) = 0.7
𝜏𝑎𝑟1 for the precision of AR(1) in Eq. 4.10 Prob( 1

√𝜏𝑎𝑟1
> 5) = 0.1

𝜌 for the AR(1) parameter in Eq. 4.10 Prob(𝜌 > 0.5) = 0.7
* All priors are PC priors.

4.4.4. Model assessment criteria
In this subsection, I describe how to assess the predictive performance of the
models. As previously stated, we are interested in determining which is the
most effective model for spatial predicting. In doing so, I consider a set of
metrics, including the deviance information criterion (DIC), the crossvalidated
logarithmic scores (LCPO), the mean absolute error (MAE) and the root mean
square error (RMSE) and the Pearson correlation coefficient (PCC).

The deviance information criterion (DIC) is calculated based on the whole

4Source: Bakka Haakon (30 January 2018). “Mesh Creation including Coastlines”, https://
haakonbakka.bitbucket.io/btopic104.html

https://haakonbakka.bitbucket.io/btopic104.html
https://haakonbakka.bitbucket.io/btopic104.html
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Figure 4.1: The mesh. The boundary of Corsica is delineated in green. The observations in the
training set are dotted in red, whereas the observations in the validation set are dotted in blue.
The inner black line distinguishes the inner mesh and the outer mesh.

dataset. The crossvalidated logarithmic scores (LCPO) are also calculated
based on the training dataset. Both are directly obtained from RINLA outputs.
The rest indices are calculated through the difference between the predicted
housing price on the logarithmic scale and the observed measurements on the
validation set. More precisely, the mean absolute error is defined by MAE =
1
𝑛 ∑

𝑛
𝑗=1 |𝑦𝑗 − �̂�𝑗|, and the root mean square error is computed as RMSE =



4

88
4. Time, space and hedonic prediction accuracy: evidence from

Corsican apartment market

√ 1
𝑛 ∑

𝑛
𝑗=1 (𝑦𝑗 − �̂�𝑗)

2
. The Pearson correlation coefficient between observations

and predictions is also computed. These three metrics quantify prediction
errors, where lower values of MAE and RMSE, but higher values of PCC indicate
more similarity among observed measurements and predicted values.

4.4.5. Results and discussion
The posterior statistics, including the mean, 0.025 and 0.975 quantiles of the
fixed effect coefficients for the candidate models are displayed in Table 4.5.
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Table 4.5: Regression results of all candidate models

M0 M1 M2 M3
Mean 0.025quant 0.975quant Mean 0.025quant 0.975quant Mean 0.025quant 0.975quant Mean 0.025quant 0.975quant

Intercept 11.703 11.595 11.811 11.745 11.635 11.855 11.715 11.590 11.840 11.742 11.638 11.847
ROOM 0.009 0.005 0.024 0.008 0.002 0.019 0.008 0.002 0.019 0.009 0.001 0.020

BATHROOM 0.096 0.066 0.127 0.063 0.042 0.084 0.063 0.042 0.084 0.059 0.039 0.080
GAR 0.020 0.008 0.031 0.043 0.034 0.053 0.048 0.039 0.058 0.048 0.039 0.058

FLOOR 0.009 0.005 0.013 0.019 0.015 0.022 0.018 0.015 0.022 0.019 0.016 0.022
DU 0.055 0.020 0.089 0.035 0.007 0.063 0.035 0.007 0.063 0.036 0.008 0.063
ST −0.076 −0.116 −0.037 −0.100 −0.128 −0.072 −0.099 −0.127 −0.071 −0.100 −0.128 −0.072

PERIOD B 0.091 −0.010 0.191 0.008 −0.063 0.079 0.003 −0.068 0.073 0.001 −0.068 0.070
PERIOD C 0.085 −0.005 0.175 0.003 −0.064 0.070 −0.004 −0.071 0.062 −0.005 −0.071 0.061
PERIOD D 0.150 0.060 0.240 0.032 −0.035 0.100 0.023 −0.044 0.090 0.023 −0.044 0.089
PERIOD E 0.163 0.073 0.254 0.057 −0.010 0.125 0.051 −0.016 0.118 0.051 −0.015 0.118
PERIOD F 0.184 0.085 0.282 0.124 0.050 0.198 0.121 0.047 0.194 0.111 0.038 0.184
PERIOD G 0.237 0.148 0.327 0.232 0.163 0.301 0.238 0.170 0.307 0.226 0.158 0.295
PERIOD H 0.233 0.144 0.322 0.243 0.174 0.313 0.228 0.159 0.297 0.239 0.171 0.308
DBEAD −0.012 −0.014 −0.010 −0.016 −0.022 −0.011 −0.016 −0.022 −0.011 −0.016 −0.021 −0.011

DHealFac 0.019 0.015 0.024 0.007 −0.001 0.015 0.007 −0.001 0.015 0.007 −0.001 0.015
DPuPriSch −0.004 −0.005 −0.003 −0.002 −0.004 0.001 −0.002 −0.004 0.001 −0.001 −0.004 0.001
SURF 𝜎2𝑟𝑤1 0.051 0.029 0.084 0.040 0.022 0.066 0.041 0.022 0.067 0.041 0.023 0.069

𝜎2𝜖 0.074 0.072 0.077 0.030 0.029 0.031 0.029 0.028 0.030 0.026 0.025 0.028
𝜎2𝜔 0.1 0.083 0.119 0.103 0.085 0.123 0.097 0.082 0.114
𝜎2𝑎𝑟1 0.003 0.0007 0.011

Spatial Range (km) 1.880 1.606 2.244 1.881 1.598 2.196 1.741 1.502 2.021
𝜌 0.939 0.828 0.990
𝑎 0.991 0.988 0.994
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We find that the estimates for the fixed covariate effects are fairly robust
with respect to M1, M2 and M3. This finding implies that the introduction
of different spatial, temporal and spatiotemporal components does not sig
nificantly affect these estimates. More precisely, the posterior mean of the
intercept is around 11.7, meaning that the average apartment price is approxi
mately €120 571. Moreover, most covariates measuring the structural charac
teristics of apartments are significant with the expected signs. As expected,
everything else remains the same, an additional room, bathroom, parking,
floor and surface area generally improve the price of an apartment. A duplex
apartment is likely to be more expensive than a standard apartment, but a
studio apartment is likely to be cheaper. The nonlinear relationship between
apartment prices and living area in each model is displayed in Figure 4.2. Even
though these curves are shown in the graph, we observe overall increasing
trends over the whole range, which follow our expectation. That is to say,
a positive coefficient for the living area would be expected. A significantly
positive coefficient for the proximity to the nearest beach is also observed.
Insignificant relations are found between the distance to the nearest public
high school and apartment prices, between the distance to the nearest health
facility and apartment prices.

As seen in the lower part of Table 4.5, we find that the majority of the
remaining variance is due to the variance of the spatiotemporal process 𝜎2𝜔,
rather than the variance of the measurement error, 𝜎2𝜖 . In particular, for M1,
M2 and M3, the estimate of 𝜎2𝜔 is around four times greater than the esti
mate of 𝜎2𝜖 . Such large variance is derived from the complex spatiotemporal
structure, and is useful for explaining variability of the spatiotemporal pro
cess5. Further, we may conclude that the Corsican apartment price is partly
determined by the spatiotemporal structure.

The posterior estimates of correlation parameters and spatial ranges are
also reported in the lower part of Table 4.5. Regarding M1, the posterior mean
estimate of the spatial range is 1.880 km (95% 𝐶𝐼, 1.606; 2.244), meaning that
the distance at which mean spatial correlation declines to 0.1 is 1.880 km. For
M2, I estimate a range of about 1.881 km (95% 𝐶𝐼, 1.598; 2.196). Further,

5The prior and posterior distributions for the hyperparameters in M3 are displayed in Figure 7.1
in Appendix 7.6.
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Figure 4.2: The empirical mean of the living area is shown as a black line. The 95% CI for the
living area is shaded green. The model identifer is shown in the upperleft corner of each panel.

the posterior estimate of the AR(1) temporal correlation coefficient 𝜌 is 0.939
(95% 𝐶𝐼, 0.828; 0.990), showing the strong quarterly persistence of housing
prices. M3 has the smallest spatial range, with 1.741 km (95% 𝐶𝐼, 1.502; 2.021).
This implies that the spatial correlation decreases rapidly, and that at 1.741 km
there is a very weak correlation. On the other hand, its temporal correlation
is strong. The posterior estimate is 0.991 (95% 𝐶𝐼, 0.988; 0.992), indicating
that the spatial random effects change quite slowly from quarter to quarter.

Table 4.6 displays the metrics for choosing the most effective model for
our case study.

Regarding the DIC scores, the models involving any random effect compo
nents (M1, M2, M3) outperform the referenced model (M0). The improvement
of the DIC scores could be evidence of the usefulness of considering spatial
and temporal correlation in modelling. A possible reason for the well fitting
mixed models (M1, M2, M3) is that through random components, observations
can borrow strength from their neighbours in space and over time. Typically,
adding the spatial random component to the base model results in a consider
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Table 4.6: Summary of model assessment

Model DIC LCPO MAE RMSE PCC
Elapsed Time
(Second)

M0 1, 817.71 0.119 0.209 0.264 0.725 17.80
M1 −4, 561.66 −0.278 0.132 0.186 0.875 78.36
M2 −4, 710.98 −0.286 0.131 0.185 0.876 131.32
M3 −5, 197.43 −0.304 0.129 0.184 0.878 19, 744.39

able improvement in model fitting (Δ = −6, 379.37). The model (M2) includes
an additional temporal random component that leads to further improvements
(Δ = −149.32). Lastly, M3 has the smallest DIC values (Δ = −486.45 relative
to M2), meaning that it provides the best fit to the data. The LCPO scores dis
play in the same sequence as the DIC values. For M1, the LCPO score reaches
−0.278. With the inclusion of different spatial, temporal and spatiotemporal
components, this score diminishes continuously, and reaches −0.304 for M3.
This result shows that M3 should offer the strongest predictive power among
the abovementioned models. The descending order is observed for the MAE
and RMSE values, and the ascending order is observed for the PCC coefficients.
Note that compared with M2, M3 shows tiny increments or decrements with
respect to the MAE, RMSE and PCC value (Δ𝑀𝐴𝐸 = −0.002, Δ𝑅𝑀𝑆𝐸 = −0.001,
Δ𝑃𝐶𝐶 = 0.002), but these increments or decrements cannot be ignored.

Overall, M0 offers the lowest prediction performance, with the largest DIC
value, LCPO score, RMSE value and the smallest PCC value. Conversely, M3
should be the best model in terms of the predictive power. M2 seems to have
similar predictive power compared with M3, but tiny differences still exist.

In addition to the results of model assessment, the information about the
estimation time (in seconds) is displayed in the last column in Table 4.6. As
expected, the running time during the estimation increases with the number of
parameters and the complexity of random effect components. M0 without any
random component is obviously the least time consuming. Compared with M1,
M2 is characterized by an extra component for gauging temporal dynamics.
The inclusion of the temporal component almost doubles the running time. M3
is particularly most timeconsuming one. The running time of M3 is 150 times
greater than that of M2. As previously indicated, M2 has a onedimensional
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vector for the AR(1) equation, while M3 has multidimensional matrices for the
the AR(1) equation.

Thus far, I demonstrate that M3 has a better perdition capability, and such
capability should come from a high computational cost. To further explore the
spatial prediction, I decide to draw the posterior mean of the spatial random
fields 𝜉 (𝑠𝑖 , 𝑡) in some quarters in Figure 4.3.

−0.4

−0.2

0.0

0.2

0.4

−0.6

0.6

2006 Q1

−0.4

−0.2

0.0

0.2

0.4

0.6

−0.6

2007 Q2

−0.4

−0.2

0.0

0.2

0.4

0.6

−0.6

2008 Q3

−0.4

−0.2

0.0

0.2

0.4

0.6

−0.6

2009 Q4

−0.4

−0.2

0.0

0.2

0.4

0.6

−0.6

2010 Q1

−0.4

−0.2

0.0

0.2

0.4

0.6

−0.6

2011 Q2

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

2012 Q3 2013 Q4

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

2014 Q1

4
5
5
0
0
0
0

4
6
0
0
0
0
0

4
6
5
0
0
0
0

4
7
0
0
0
0
0

4
7
5
0
0
0
0

4
8
0
0
0
0
0

2015 Q2 2016 Q3

4
5
5
0
0
0
0

4
6
0
0
0
0
0

4
6
5
0
0
0
0

4
7
0
0
0
0
0

4
7
5
0
0
0
0

4
8
0
0
0
0
0

2017 Q4

4e+05 5e+05 6e+05
4e+05 5e+05 6e+05

−0.4

−0.2

0.0

0.2

0.4

0.6

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

−0.6

Figure 4.3: Timesliced plots displaying the posterior mean of spatiotemporal random effects.
2006 Q1 refers to the first quarter of the year 2006. We observe that the clusters near the island
center change over time regarding the colour and surface.
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This figure gives us the first impression that the spatial pattern across the
island is relatively constant from one quarter to the next. It is thought that
the constant spatial pattern is also a reflection of the high posterior mean
of the AR(1) parameter. We also observe several clusters. Apartment prices
are significantly affected by their location inside these clusters. In general,
most clusters are situated on coastal plains. A few clusters are dotted in the
junction between the coastal plain and the inland area. More specifically, the
cluster in which apartment prices are positively affected by their location is
called a “hot spot”. If an apartment is located in a hotspot, the location will
generate an additional increase in its price. A cluster in warm colour is the
“hot spot” in these figures. In contrast to the “hot spot”, the cluster in which
apartment prices are negatively affected by their location is deemed a “cold
spot”. The “cold spot” is plotted in cold colours. Spatially, the “cold spots”
include the eastern coastline and the whole northern tip of the island, whereas
the “hot spots” include the northwestern area and the western coastline.
Furthermore, “cold spots” and “hot spots” near the coast evolve slowly over
time. By contrast, “hots pots” located in the inland area evolve relatively fast.

To gain further insight into the impact of location on apartment prices, I
take an antilogarithm. Concerning the scale of Figure 4.3, it varies from −0.6
to 0.6 approximately, which means that in some “hot spots”, the location may
increase the expected apartment price up to 82.21% (𝑒𝑥𝑝(0.6) −1 = 0.8221).
However, in some “cold spot” zones, the location probably causes a 45.12%
(𝑒𝑥𝑝(−0.6)−1 = −0.4511) reduction in the expected apartment price. We may
conclude that the location can be a crucial factor for apartment prices.

4.5. Concluding remarks
In this chapter, I propose a powerful framework to predict apartment prices.
This framework is based on the flexible Bayesian hierarchical models and two
novel data fitting techniques, INLA and SPDE.

To illustrate this framework, I investigate the Corsican apartment prices
using a unique dataset on the apartment transactions from the first quarter of
2006 to the fourth quarter of 2017. Further, I propose a set of Bayesian hier
archical models incorporating different spatial, temporal and spatiotemporal
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random components. The specifications of these components are demon
strated with increasing complexity, from a pure spatial process to the sum
of a pure spatial process and a pure temporal process, and finally to a spa
tial process evolving in time according to an AR(1) specification with spatially
correlated innovations. All models are fitted by INLA coupled with the SPDE
approach. Fitting these models usually requires large computational resources
and long running time, but the INLASPDE approach addresses these prob
lems by Laplace approximation, numerical integration and GMRFs. Thus, this
approach provides fast and reliable Bayesian inference under affordable com
puting power.

The model comparison is based on criteria that account for data fitting,
spatial predictive power and computational costs. Moreover, the estimates of
the covariates for the candidate models with random effect components are
fairly robust as the specification changes. This allows us to compare models
solely based on their random effects components. M1 is discarded since it does
not take into account the temporal process. M2 requires less computational
resources, but its prediction capability is slightly weaker than that of M3. M3
offers the best predictive power. Even though M3 is time consuming, the
computational resources are still affordable.

According to our findings, it can be confirmed that most apartment at
tributes and the proximity to the nearest beach significantly affect the apart
ment price. I also point out the nonlinear relationship between the living area
and apartment price. Additionally, regarding the spatial relation, I specify sev
eral “hot spots” and “cold spots”, where the apartment prices are significantly
affected by their locations. Moreover, in general, the location of the “hot
spots” and “cold spots” remains stable over time. This phenomenon reflects
the high posterior mean value of the AR(1) parameter.

Currently, the INLASPDE approach is not widely seen in hedonic pricing
literature, I suggest that researchers consider both the Bayesian hierarchical
spatiotemporal model and the INLASPDE approach as instruments in their
toolbox when they investigate pointreferenced housing data and real estate
economics. In the next chapter, a Bayesian hierarchical spatiotemporal model
for areal data is proposed. This model is used for studying second home rates
in Corsica. I also look into different spatial, temporal and spatiotemporal latent
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effects, but the spatial component is built on the conditional autoregressive
model family.



5
Unveiling spatial and
temporal patterns of

second home dynamics: a
Bayesian spatiotemporal

analysis for a
Mediterranean island

5.1. Introduction
With the rapid evolution of land cover/land use change in the past decades,
many second homes were built in the European countries around the Mediter
ranean, e.g., Spain, Italy and France (Hof and BlázquezSalom, 2013).

Second homes have often been considered as a threat to rural/coastal
areas, rather than as an opportunity (Coppock, 1977; Gallent, Mace, et al.,
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2017). The impact of such threat spreads from social, environmental aspects
to economic aspects (Hall and Müller, 2018). Regional scientists (Gallent,
Mace, et al., 2003) argued that second home development could undermine
local culture, languages in rural areas. Others (Stettler and Giovanelli, 2008)
stated that second homes decrease the quality of landscapes around tourist
attractions. More importantly, economists (Paris, 2009) demonstrated that
second homes relate to gentrification and the instability of local housing mar
kets. Thus, several scholars (Gallent and TewdwrJones, 2001) employed the
term “epidemic” or “endemic” to describe the effect of second homes on local
communities.

On a European scale, the falling cost of travel, the progressing of informa
tion and communications technology and the growing of wealthy households
in affluent countries have contributed to the investment in second homes
(Paris, 2009). In addition, these purchases are recognized as the external
demand for a local housing market (Égert and Mihaljek, 2007; Wheaton and
Nechayev, 2008). Following basic economic theories, the housing price should
be a function of supply and demand in a perfectly competitive market. If the
demand for houses increases but the supply remains, there will be a shortage
of houses in the market and therefore house prices will go up.

Despite the Europewide nature of second homes, to my knowledge, no
spatiotemporal analysis has been performed on the second home growth yet.
As such, the objective of this study is to investigate second home rates by
means of identifying their spatiotemporal patterns at a county level. In the
study, second homes in Corsica (a French region) are chosen as a case study.

The Corsican context is worthy of studying for several reasons. Corsica is
a famous tourist destination in the Mediterranean, whereas most inhabitants
think that second homes affect their lives. In 2014, the second home rate in
Corsica equalled 35%, which was 26% higher than that at the French national
level. In some villages, this proportion even reached 80% (Maupertuis et al.,
2017). With the growth of tourism, this rate might further increase. As an
island, Corsica merely provides limited residential lands. Local public agencies
and economists (Giannoni et al., 2017; Caudill et al., 2019) have identified the
growth of second home properties as a crucial issue to urban planning and
rural development. They, all suggest that a detailed examination of Corsican
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second home development and change patterns is timely.

Apart from the underexplored Corsican case, past research on second
homes was dominated by qualitative approaches or case study designs. Few
papers employed basic quantitative approaches, e.g., mapping volumes,
identifying spatial clusters and applying classical linear regression (Back and
Marjavaara, 2017; Barke, 2007). These methods, however, may lead to bi
ased results and unrealistic inference due to the presence of spatial and/or
temporal dependence in data.

Facing the abovementioned research gaps, this chapter makes two main
contributions. Firstly, I attempt to explain the second home dynamics using
suitable binomial regression with the inclusion of latent spatial and tempo
ral effects. More specifically, the main idea of the proposed spatiotemporal
models is that after preserving the fixed covariates effects, the residual is de
composed into spatial components, temporal components and a spacetime
component. These complex components account for the spatiotemporal de
pendency on the second home rate in each Corsican county, since observa
tions tend to be similar if they are geographically close (Tobler, 1970) or tem
porally adjacent. Additionally, the specifications of the components are flexi
ble, therefore both a parametric and a nonparametric structure for temporal
components are considered. Through borrowing strength from neighboring
areas and adjacent periods, the proposed models provide reliable estimates.
Another key point is that the models can be used within a binomial response
setting. In this study, they overcome the limitation of a Gaussian response
variable in classical spatial econometric models, e.g., the spatial lag model
(SAR) and the spatial error model (SEM) (Anselin, 1988). Consequently, I can
directly apply the proposed models for count data, such as the number of sec
ond homes, rather than implement data transformation to meet the Gaussian
response variable.

Incorporating many random effect components significantly increases model
complexity. Therefore estimation is carried out by the Integrated Nested
Laplace Approximation (INLA) approach (Rue, Martino, et al., 2009). This
approach takes advantages of numerical integrations and Laplace approxi
mations, which could significantly reduce computational time and return the
reliable posterior probability distributions of model parameters. Hence, all
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models in this work are fitted by the RINLA package (Martins et al., 2013).

The primary objective of this chapter is to reveal the spatiotemporal pat
terns of second home rates at the county level in Corsica. I examine potential
factors, which may affect the second home rate. Different spatial and tem
poral priors are investigated to give accurate estimates. The remainder of
this paper is structured as follows. In Section 5.2, an exploratory spatial data
analysis is implemented for Corsican second home data. In Section 5.3, I
describe the Bayesian hierarchical binomial model specification, in particular,
how to incorporate space, time and spacetime random effects in the Bayesian
hierarchical model. Section 5.4 details empirical results and interpretation. A
robustness check is conducted in Section 5.5, and I draw a conclusion in Sec
tion 5.6.

5.2. Second homes in Corsica: An exploratory
spatial data analysis

The Corsican second home counts data are collected over 360 counties from
2006 to 2016, representing 11 years. As such, this setting results in a total of
3 960 spacetime units without any missing values. These data at the county
level are obtained from “French National Institute of Statistics and Economic
Studies” (INSEE) through the French population census.

Figure 5.1 gives the annual second home rates among the 360 counties,
where the raw counts can be found in Table 7.2 in Appendix 7.5. A gradual and
steady augmentation of second home proportion is observed. I notice that the
median of second home proportion remains stable during the first two years
and slightly increases during the subsequent five years. The proportion of the
last four years remains fairly stable. The interquartile range of the proportion
shows similar stepchanges to the median proportion, falling into [0.4, 0.6].

Figure 5.2 displays the distribution of the rate of the second homes over
the total house counts in the 360 counties during 20062016. Several counties
(ID. 125, 128) situated in the northern tip of Corsica had a low second home
rate in 2006 and 2007, which turned up in 2008 and remained stable in the
subsequent years. The second home rate in Bonifacio (ID. 80) was relatively
low until 2010 and then increased. Moreover, I observed that counties with
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Figure 5.1: Boxplot of the temporal trend in the raw rate of second homes as a proportion of the
total number of houses. The marked number indicates the median of the annual second home
rate among Corsican counties.

a high second home rate clustered in the Cap Corse area (in pink in Figure
5.3), SaintFlorent area (in olive in Figure 5.3) and Balagne area (in yellow
in Figure 5.3). Low rate zones involve the Grand Bastia area (in orange in
Figure 5.3), the Corsica center (in navy in Figure 5.3) and the Ajaccio area (in
green in Figure 5.3). These high and low rate zones likely persisted during
the whole study period. As the temporal trend of the second home rate by
county evolves differently, it is too restrictive to impose a linear relationship.
Hence, spacetime interaction terms should be considered for modelling the
second home rate.

I employ Moran’s I tests (Moran, 1950) to further investigate the spatial
dependence structure in the data. To do so, the adjacency matrix is defined
by queen contiguity weights (The visualisation of the spatial weights matrix
is shown in Figure 7.2 in Appendix 7.6). The results in Figure 5.4 provide
evidence that there is positive spatial dependence in the second home rates
with an average of 0.334 (p < 0.05) over the 11 years. Hence, when modelling
the Corsican second home rate, I take the spatial dependence into account.

After reviewing second home literature from economic, social and envi
ronmental perspectives, I find that there are two key factors affecting second
homes, i.e., amenities and socioeconomic factors. Several researchers (Hall
and Müller, 2004; Müller and Hoogendoorn, 2013) showed that a key de
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Figure 5.2: Geographic distribution of second home rate from 2007 to 2016.
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Figure 5.3: 360 counties of Corsica. County identifiers are shown on the map.
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Figure 5.4: Annual Moran’s I statistics on second home rates. All are significant at p = 0.05 level.

terminant for selecting second home locations was their high amenity value.
Extensive research has focused on the impact of various amenities in different
regions. Müller (2002) found that more and more second homes were con
centrated around coastlines and uplands due to scenic qualities and recreation
opportunities in Northern Sweden. Barnett (2007) concluded that ideal sec
ond home locations should satisfy weather, infrastructure, views, history and
nature in Central and Eastern Europe. Norris and Winston (2009) indicated
that second homes were usually located in the areas with amenityrich land
scapes or proximity to sea, rivers, lakes and mountains in Ireland. Kaltenborn,
Andersen, Nellemann, et al. (2008) showed that Norwegian second homes in
creasingly occurred closely around mountain and coast tourism resorts. Addi
tionally, some second homes located in areas with historical or social meaning
(Kaltenborn, Andersen, and Nellemann, 2007).

Regarding socialeconomic factors, Norris and Winston (2009) concluded
that the growth of second homes was likely related to local factors (Hall,
2015). According to Norris and Shiels (2007), some local governments passed
tax incentive schemes to promote second home development. In addition,
Barke (2007) showed that the number of second homes in a given province
was related to the provincial population size in Spain, and concluded that
depopulation was an important factor to create second homes. Lastly, Dower
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(1977) showed that high costs of borrowing money could slacken the pace of
second home growth because of additional capital demand.

According to the existing literature and data availability, I introduce three
types of variables in my study. The first type is the amenity. I consider four
variables: the physical landscape counts within a county, e.g., the number of
lakes, alpine rocks, estuaries; the cultural landscape counts within a county,
e.g., the number of castles, city walls, towers, churches; the coastal county,
indicating a county locates on the coast or not; and the mountainous county,
indicating a county locates in the mountainous areas or not, where the thresh
old of the mountainous area is based on the 500 m elevation. These four
variables are timeinvariant, meaning that these variables are mainly used for
gauging spatial variation.

The second type of variables are socialeconomic variables. These include
the number of households of a county; the annualized interest rate; the coun
cil tax; and the unemployment rate. The third type of variables are accessi
bility variables. I consider distances to the nearest “gate” of Corsica, and
distances to the regional university. The “gates” contain all commercial ports
and airports on the island. To avoid the impact of each variable measured
in different units, I rescale all continuous variables by means of a logarithm
transformation.

I use the number of households of a county as a proxy for county popu
lation. The household, council tax and land tax covariate are spatiotemporal,
but the interest rate is timevarying only. The unemployment rate is spa
tiotemporal, based upon the “zone d’emploi” level. Hence, it captures limited
spatial variability. Descriptive statistics for these variables are shown in Table
5.1.

5.3. Spatiotemporal modeling for areal data
5.3.1. Spatiotemporal data
Before introducing Bayesian hierarchical spatiotemporal models, we look into
data types. As previously stated, second homes data are areal data, which
are collected over 360 spatial units (counties) for 11 years. This, however,
implies a balanced spatial panel setting.
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Table 5.1: Descriptive statistics of independent variables

Type Statistic Mean St.Dev Min Pctl(25) Pctl(75) Max

count physical landscapes 0 19
cultural landscapes 0 28

dummy mountainous county 0 1
coastal county 0 1

continuous

𝑙𝑜𝑔2(ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑)* 6.575 1.976 1.585 5.129 7.748 14.846
𝑙𝑜𝑔2(interest rate)* 4.865 0.402 5.733 5.058 4.556 4.353
𝑙𝑜𝑔2(council tax)* 2.801 0.645 5.702 3.206 2.281 0.712

𝑙𝑜𝑔2(unemployment rate)* 3.412 0.240 4.053 3.556 3.231 2.905
𝑙𝑜𝑔2(distance to “gate”)* 3.915 0.927 0.160 3.429 4.587 5.411
𝑙𝑜𝑔2(distance to university)* 4.985 0.840 2.288 4.501 5.575 6.594

* To facilitate interpretation, a base 2 logarithm transformation is applied to the variables.

To capture all information from the data, the proposed models should
handle both count data and latent spatial, temporal and spatiotemporal pro
cesses. Therefore, I turn to the Bayesian hierarchical spatiotemporal model
again (Banerjee et al., 2014, chap. 6).

5.3.2. Modelling spatial dependence
I apply the LCAR model to gauge spatial dependence among spatial units.
Therefore, the random vector for joint spatial effects (also known as a joint
spatial component) reads, Γ = (𝛾1, … , 𝛾𝑆), and together with a mixing param
eter 𝜆 in the precision matrix. The mixing parameter indicates the joint spatial
effect explained by spatially structured and unstructured components, as well
as measures the strength of spatial dependence among units. The random
vector Γ is assumed to follow a multivariate normal distribution with mean 0
and a designed precision matrix 𝑄Γ,

Γ ∼ 𝑀𝑉𝑁 (0, 𝜎2Γ𝑄−1Γ ) (5.1)

𝑄Γ = [𝜆𝑊∗ + (1 − 𝜆) 𝐼𝑆] . (5.2)

Here 𝐼𝑆 denotes the identity matrix of dimension 𝑆. 𝑊∗ denotes the variant
of a 𝑆×𝑆 spatial adjacency matrix. Its diagonal elements 𝑤∗𝑖𝑖 are equal to the
number of neighbours of each unit 𝑛𝑖+, the offdiagonal elements 𝑤∗𝑖𝑗 are
equal to −1 if unit 𝑖 and unit 𝑗 are neighbours, and 0 otherwise. The mixing
parameter ensures that the precision matrix 𝑄Γ𝑖 is a weighted average of the
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𝑊∗ and 𝐼𝑆 matrices with 0 ≤ 𝜆 ≤ 1.

5.3.3. Modelling temporal dependence and spatiotemporal
variability

In addition to the spatial latent process (dependence), the temporal latent
process (dependence) should be taken into account if data are collected over
the years. Hence, several temporal and spatiotemporal specifications are pro
posed. Further, both parametric and nonparametric smoothing functions of
time are considered.

The two prominent specifications for the temporal and spatiotemporal
components are the linear trend model proposed by Bernardinelli et al. (1995)
and the dynamic trend model proposed by Held (2000).

Regarding the linear trend model,

(𝜉 + 𝜑𝑖) ⋅ 𝑡 (5.3)

where 𝜉 ⋅ 𝑡 denotes a linear function of time representing a global trend
in time and 𝜑𝑖 ⋅ 𝑡 is an areaspecific linear function gauging an areaspecific
trend to depart from the global trend. I specify a Gaussian exchangeable
prior Normal (0, 𝜎2𝜑) to 𝜑𝑖. This model is a simple, straightforward variant of
a random slope model, where the slope (𝜉 + 𝜑𝑖) is spatially varying.

The linearity assumption, however, is restrictive. To relax the linear re
striction, I model time as a dynamic nonparametric formulation:

𝜁𝑡 + 𝛿𝑖𝑡 (5.4)

where 𝜁𝑡 (𝑍 = (𝜁1…𝜁𝑇)) is the temporally structured random effect (the
temporal main effect) and 𝛿𝑖𝑡 denotes the spacetime interaction term. The
parameter 𝜁𝑡 is usually modelled by a firstorder of random walk 𝜁𝑡|𝜁𝑡−1 ∼
Normal (𝜁𝑡−1, 𝜎2𝜁 ).
For the spacetime interaction component Δ = (𝛿,… , 𝛿𝑆1, … , 𝛿1𝑇 , … , 𝛿𝑆𝑇),

a Type I unstructured interaction is used (Held, 2000). The Type I interac
tion is the Kronecker product of spatially and temporally unstructured com
ponents, which can be considered as a random intercept based on all obser
vations. Seen differently, this component represents global spacetime het
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erogeneity and measures the deviation from the spatial and temporal main
effects. This component is assigned a multivariate normal distribution Δ ∼
𝑀𝑉𝑁 (0, 𝜎2Δ (𝐼𝑆⊗ 𝐼𝑇)).

These spatial and spatiotemporal models can be formulated as latent Gaus
sian models (Rue and Held, 2005). I apply INLA for these models, as it
is designed for latent Gaussian models, and hence return fast and accuracy
Bayesian inference.

5.3.4. Candidate model specifications

To model the second home data, the LCAR model and its spatiotemporal ex
tensions are considered. In this study, I specify five latent processes with
increasingly complex representation of space and time. As discussed above,
Bayesian spatial and spatiotemporal models can be written as latent Gaussian
models. I assume that the observed counts for second homes (𝑦𝑖𝑗), condi
tionally on the rate of second homes (𝜋𝑖𝑡) and the total number of houses
(𝑛𝑖𝑡), are binomialdistributed (Ferrari and Comelli, 2016),

𝑌𝑖𝑡 ∼ Binomial (𝑛𝑖𝑡 , 𝜋𝑖𝑡) . (5.5)

Counties are denoted by 𝑖 = {1,… , 𝑆} (𝑆 = 360 here) and years are la
belled as 𝑡 = {1,… , 𝑇} (𝑇 = 11). Housing transactions are not frequent in
Corsica, and hence a second home could hardly sell more than once in a year,
meaning that an annual housing survey is considered a Bernouilli trial, where
the occurrence of a second home is treated a success. Various applications
using spatiotemporal Bayesian hierarchical binomial models include modelling
disease risks (MacNab, 2003), violent crimes (Zhu et al., 2006), public health
intervention (Viola et al., 2013), presidential elections (Linzer, 2013) and pub
lic confidence on police (Williams et al., 2019).

In the process model, a logit transformation is applied to 𝜋𝑖𝑗, and thus the
transformed 𝜋𝑖𝑡 equals the sum of all structured additive predators. Table 5.2
shows the candidate specifications for the second level.
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Table 5.2: Candidate Models for the second level

Model Type Equation

0 Classical Binomial without any latent structures logit (𝜋𝑖𝑡) = 𝑥𝑖𝑡𝛽 +
𝑝

∑
𝑗=1
𝑓 (𝑥𝑗𝑡) (5.6)

1 Purely spatial logit (𝜋𝑖𝑡) = 𝑥𝑖𝑡𝛽 +
𝑝

∑
𝑗=1
𝑓 (𝑥𝑗𝑡) + Γ (5.7)

2 Spatial and temporal jointly logit (𝜋𝑖𝑡) = 𝑥𝑖𝑡𝛽 +
𝑝

∑
𝑗=1
𝑓 (𝑥𝑗𝑡) + Γ + 𝜉 ⋅ 𝑡 (5.8)

3 Spatial and temporal jointly logit (𝜋𝑖𝑡) = 𝑥𝑖𝑡𝛽 +
𝑝

∑
𝑗=1
𝑓 (𝑥𝑗𝑡) + Γ + 𝑍 (5.9)

4 Spatiotemporal with interactions logit (𝜋𝑖𝑡) = 𝑥𝑖𝑡𝛽 +
𝑝

∑
𝑗=1
𝑓 (𝑥𝑗𝑡) + Γ + (𝜉 + 𝜑𝑖) ⋅ 𝑡 (5.10)

5 Spatiotemporal with interactions logit (𝜋𝑖𝑡) = 𝑥𝑖𝑡𝛽 +
𝑝

∑
𝑗=1
𝑓 (𝑥𝑗𝑡) + +Γ + 𝑍 + Δ (5.11)

Thus far, we have known the candidate specifications for latent spatial,
temporal and spatiotemporal processes. At the third level, I assign hyperprior
distributions to all parameters appeared in the previous levels. The used priors
are listed below:

𝜆 ∼ Uniform (0, 1),

𝑙𝑜𝑔 ( 1
𝜎2𝑥𝑗𝑡

) , 𝑙𝑜𝑔 ( 1𝜎2Γ
) , 𝑙𝑜𝑔 ( 1𝜎2𝑍

) , 𝑙𝑜𝑔 ( 1𝜎2Δ
) , 𝑙𝑜𝑔 ( 1𝜎2𝜑

) ∼ logGamma(1, 0.00005).

(5.12)

I maintain the following strategy. Model 0, serves as the benchmark. It
is a classical Binomial model without any spatial effects. However, I detect
the spatial autocorrelation in the data, it is natural to consider a model in the
conditional autoregressive family and then to involve temporal components
for capturing temporal trends. Different spatial or temporal components will
result in different smoothing in the posterior estimates. Regarding Model 1,
estimated values are likely to vary across neighbours but not over the test
period. For Model 2, a single value is estimated for each neighbour and period,
but the parametric formulation seems restrictive. The linear assumption is
relaxed in Model 3 and the model can gauge temporal dependency in the data.
Comparing with Model 2, Model 4 incorporates a spatiotemporal interaction
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term, which allows for a specific temporal trend for each observation while
retaining the main, linear temporal trend. As such, Model 4 should perform
better than Model 2. Concerning Model 5, the inclusion of the spatiotemporal
interaction component should additionally improve the goodness of fit. The
empirical data will be more accurately represented.

5.4. Empirical results
5.4.1. Model assessment results
DIC, LCPO and RMSE values are displayed in Table 5.3.

Table 5.3: Model assessment via DIC, LCPO and RMSE

DIC LCPO RMSE
Model 0 210,055.60 26.2451 0.14298
Model 1 28,633.33 3.7611 0.04227
Model 2 28,572.06 3.7517 0.04226
Model 3 28,550.95 3.7466 0.04205
Model 4 27,939.49 3.6524 0.04045
Model 5 27,857.43 3.6292 0.03412

The DIC score indicates that the classical Binomial model is poorly fit
ted. Comparing Model 0 with Model 1, the fit is much improved (Δ𝐷𝐼𝐶 =
−181, 422.27). The marked decrease of the DIC score also provides evidence
that the illfitting Model 0 is a result of omitting unobserved spatial patterns.
In addition, adding a linear, parametric temporal component (Model 2) im
proves the model fit (Δ𝐷𝐼𝐶 = −61.27) slightly. The fit is further improved
(Δ𝐷𝐼𝐶 = −82.38) in Model 3 with the relaxation of the linear restriction in Model
2, using instead a dynamic nonparametric temporal component. Comparing
Model 2 with Model 4, the DIC score is largely reduced (Δ𝐷𝐼𝐶 = −693.84)
because of the inclusion of a spacetime interaction term. After incorporating
the TypeI spacetime interaction term, the DIC score is further reduced in
Model 5. Regarding model predictive performance, the LCPO and RMSE val
ues show in the same sequence as the DIC score, meaning that LCPO and the
holdout method favour Model 5 as well.

For these reasons, Model 5 will be used to showing the estimated coeffi
cients of covariates, as well as the estimated spatial, temporal and spatiotem
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Table 5.4: Posterior estimates of the covariates in Model 5

Mean St.Dev 0.025 quant 0.975 quant
Intercept −3.154* 0.500 −4.157 −2.190

physical landscapes 0.082* 0.027 0.030 0.135
cultural landscapes −0.047* 0.019 −0.085 −0.010
coastal county 0.720* 0.109 0.506 0.935

mountainous county 0.217* 0.083 0.054 0.379
𝜎2𝑙𝑜𝑔2(ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑) 0.217 0.039 0.151 0.304
𝑙𝑜𝑔2(interest rate) −0.161* 0.028 −0.217 −0.108
𝑙𝑜𝑔2(council tax) −0.016 0.011 −0.037 0.006

𝑙𝑜𝑔2(unemployment rate) −0.049 0.044 −0.136 0.036
𝑙𝑜𝑔2(dis_gates) 0.051 0.057 −0.059 0.164

𝑙𝑜𝑔2(dis_university) 0.170* 0.069 0.038 0.308

𝜎2Γ 0.7344 0.1290 0.5202 1.0253
𝜆 0.2980 0.0903 0.1502 0.4999
𝜎2𝑍 0.0015 0.0009 0.0004 0.0038
𝜎2Δ 0.0093 0.0006 0.0082 0.0105

* Indicates the significance of independent variables.

poral patterns of the second home rate.

5.4.2. Fixed effects and interpretation
For each covariate, the upper part of Table 5.4 presents the log odds of the
second home rate associated with a 1unit or percentage increase and its
associated 95% credible interval (𝐶𝐼).

Most covariates are significant except for the council tax, the unemploy
ment rate and the distance to the nearest “gates”.

The relative log odds of the second home rate (𝜋𝑖𝑡) increases 0.082 (95%𝐶𝐼, 0.030; 0.135)
times with a 1unit increase in the physical landscape count, given all else is
equal. In contrast, a unit increase in the cultural landscape count decreases
0.047 (95%𝐶𝐼, −0.085;−0.010) times in the log odds of the second home
rate. Hence, both landscape variables are informative. The result suggests
that second home buyers likely prefer natural scenery to artificial elements.
A possible explanation for this finding is that since cultural landscapes usu
ally locate in a town with good accessibility, it may bring overcrowding issues
(Cheer et al., 2019). Second home buyers often look for an area with beauti
ful scenery, silence and low population density, so they probably consider the
overcrowding as a disamenity.

There would be a 0.720 (95%𝐶𝐼, 0.506; 0.935) increase in the log odds
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of the second home rate, as an inland county changes to a coastal county.
One possible implication of this is that Corsican second home buyers prefer
living near coasts to living in mountainous areas. In addition, the posterior
mean coefficient 0.217 (95%𝐶𝐼, 0.054; 0.379) indicates that the log odds of
the second home rate increases by 0.217 approximately, as a mountainous
county compares with a flat county, given all else equal.

The positive association of the log odds of second home rate with the dis
tance to the university is also observed 𝛽𝑙𝑜𝑔2(𝑑𝑖𝑠_𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦) = 0.170 (95%𝐶𝐼, 0.038; 0.308).
Consequently, a county far away from the university tends to have a high sec
ond home rate.

After analysing plots of each covariate against the model residuals, a non
linear relation between the logged households and the second home rate is
detected. Hence, the default firstorder random walk (RW1) smoother in the
RINLA package is applied to the logged households. Figure 5.5 displays the
nonlinear relation between the base 2 logarithm of households and the sec
ond home rate, showing on the log odds scale. We initially observe a down
ward trend. The log odds of the second home rate are at their highest in
areas with the lowest value of logged households and decrease as the value
of the logged households increases. The decrease is nonlinear, with a descent
reaches around −0.5, followed by a leap of the slope. The leap occurs when
the logged households reaches the interval (11, 13). A possible explanation
for the leap is that these midsize counties (around 2 000 to 8 000 households)
locate close to the main cities or are the capital of cantons, and some of them
are not far from national parks. In a word, these counties are easy to reach
and people can find different services and also public facilities. Then, the
slope decreases again, but the width of the 95% CI is relatively large because
of limit observations.

The coefficient on the base 2 logarithm of interest rates has a posterior
mean of −0.161 (95%𝐶𝐼,−0.217;−0.108), meaning that a doubling of interest
rates translates to a 19.51% decrement for the odds, given all else equal.
The coefficient reported here appears to support the assumption that a low
interest rate will encourage house buyers to enter the market. There is a likely
explanation for this result, house buyers are more likely to take out a home
loan and the low interest rate means that obtaining home finance is more
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Figure 5.5: Log odds relations between 𝑙𝑜𝑔2(ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑) and the second home rate. The red
line indicates the posterior mean log odds, while grey represents the corresponding 95% CI.

affordable (Paris, 2009).

5.4.3. Spatial and temporal random effects and interpre
tation

Once the covariates effects are gauged properly, I can investigate the spatial
and temporal random effects, and the spatiotemporal interaction. The spa
tial random effect component shows the log odds of the second home rate
associating with each county. The temporal random effect component indi
cates the overall temporal trend relating to unobserved temporal covariates,
and finally the spatiotemporal interaction term captures the idiosyncrasy of a
county. Initially, I calculate the proportion of marginal variance explained by
each component, given by

𝑝𝑖 = 𝜎2𝑖 / (𝜎2Γ + 𝜎2𝑍 + 𝜎2Δ) × 100%, 𝑖 = {Γ, 𝑍, Δ} (5.13)

The corresponding proportions are 98.56%, 0.20%, 1.24%. These re
sults suggest that a huge part of the variability is explained by the spatial
patterns. According to the posterior distribution of the mixing parameter
𝜆 = 0.2980 (95%𝐶𝐼, 0.1502; 0.4999), the spatially unstructured component
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contributes to the spatial variability most (69.18%), while the spatially struc
tured component explains a sizable proportion (29.38%). Differently, the tem
poral component explains very little of the variability. Finally, the spacetime
interaction term explains a small proportion of the remaining variance, but the
proportion is relatively larger than the proportion of the temporal component.

Figure 5.6 reveals the spatial pattern. In general, southeastern, north
western and some central counties show a greater second home rate than
other counties. Moreover, a county (ID. 281) on the eastern coast presents
the highest second home rates. In contrast, the Bastia area, the Ajaccio area
and Corti are relatively low in terms of the second home rate. To distinguish
the positive and negative contributions, I define “hot spots” and “cold spots”.
The “hot spot” means the area for which there is evidence that its location
positively contributes to the log odds of the second home rate most, given all
covariates. More precisely, five main “hot spots” are Linguizzetta (ID. 281),
Lumio (ID. 68), GrossetoPrugna (ID. 51), Lecci (ID. 248) and Quenza (ID.10)
county. In contrast, Biguglia (ID. 218), Furiani (ID. 299), Bastia (ID. 360),
Alzi (ID.116) and Ambiegna (ID. 213) are marked as “cold spots”.

Figure 5.7 shows the overall temporal trend for the log odds of the sec
ond home rate. Two marked falls are recognized, including 20072009 and
20112012. The first period may be related to the global financial crisis of
20072008, and the second period may be related to the European debt cri
sis1 during 20112012 (Pérez, 2019). We further notice that the scale of the
vertical axis of the red line ranges from −0.05 to 0.04 approximately, which
suggests a slightly positive increase in the second home rate over the past 11
years.

Investigating the typeI spacetime interaction term provides further in
sight into the spatiotemporal pattern of the second home rate, as shown in
Figure 5.8. In the first three years, the spatial pattern seemed to stabilize.
From 2009 to 2013, the spatial pattern seemed unstable, and the map grew
darker from 2014 to 2017. Moreover, some counties (ID. 8, 10, 28, 34, 301)
were colored in light red at the beginning of the study period, while these

1Source: Seth W. Feaster; Nelson D. Schwartz; Tom Kuntz (22 October 2011).
“It’s All Connected: A Spectators Guide to the Euro Crisis”. The New York
Times. https://archive.nytimes.com/www.nytimes.com/imagepages/2011/10/
22/opinion/20111023_DATAPOINTS.html?ref=sundayreview.

https://archive.nytimes.com/www.nytimes.com/imagepages/2011/10/22/opinion/20111023_DATAPOINTS.html?ref=sunday-review
https://archive.nytimes.com/www.nytimes.com/imagepages/2011/10/22/opinion/20111023_DATAPOINTS.html?ref=sunday-review
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Figure 5.6: Posterior mean estimates of spatially joint random effects.

Figure 5.7: Posterior structured temporal trend for second home rate in Corsica. The red line
indicates the posterior mean trend and grey represents the corresponding 95% CI.
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Table 5.5: Tested hyperpriors in the prior sensitivity analysis

Component Default Test 1 Test 2
Spatially joint component (Γ) log 𝜏 ∼ logGamma(1, 5 × 10−5) log 𝜏 ∼ logGamma(1, 1 × 10−4) 𝜎 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0,∞)

Temporally Structured component (𝑍) log 𝜏 ∼ logGamma(1, 5 × 10−5) log 𝜏 ∼ logGamma(1, 1 × 10−4) 𝜎 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0,∞)
Spacetime interaction term (Δ) log 𝜏 ∼ logGamma(1, 5 × 10−5) log 𝜏 ∼ logGamma(1, 1 × 10−4) 𝜎 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0,∞)

* 𝜎 = 1
√𝜏

Table 5.6: Estimated posterior mean, standard deviation and quantiles of the parameters for
different hyperpriors

Prior log 𝜏 ∼ logGamma(1, 1 × 10−4) 𝜎 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0,∞)
Mean St.Dev 0.025quant 0.975quant Mean St.Dev 0.025quant 0.975quant

Intercept 3.153 0.500 4.156 2.188 3.223 0.522 4.272 2.217
physical landscapes 0.082 0.027 0.030 0.135 0.081 0.027 0.028 0.133
cultural landscapes 0.047 0.019 0.085 0.010 0.046 0.019 0.084 0.009

coastal county 0.720 0.109 0.506 0.935 0.722 0.110 0.505 0.939
mountainous county 0.217 0.083 0.054 0.379 0.218 0.083 0.054 0.381

𝜎2𝑙𝑜𝑔2(ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑) 0.217 0.039 0.151 0.304 0.227 0.040 0.157 0.315
𝑙𝑜𝑔2(interest rate) 0.161 0.027 0.217 0.109 0.165 0.033 0.232 0.102
𝑙𝑜𝑔2(council tax) 0.015 0.011 0.037 0.006 0.018 0.011 0.039 0.003

𝑙𝑜𝑔2(unemployment rate) 0.049 0.044 0.136 0.036 0.056 0.044 0.144 0.031
𝑙𝑜𝑔2(dis_gates) 0.051 0.057 0.059 0.164 0.051 0.058 0.062 0.168

𝑙𝑜𝑔2(dis_university) 0.170 0.069 0.038 0.308 0.173 0.071 0.036 0.316

𝜎2Γ 0.7355 0.1291 0.5207 1.0263 0.7756 0.1371 0.5403 1.0771
𝜆 0.2980 0.0903 0.1501 0.4998 0.3204 0.0937 0.1592 0.5216
𝑍 0.0015 0.0009 0.0004 0.0039 0.0026 0.0018 0.0006 0.0072
Δ 0.0093 0.0006 0.0082 0.0105 0.0093 0.0006 0.0082 0.0105

colored counties turned in blue after 2010. There were few counties (ID. 190,
191, 328) with light red color from 2011 to 2016.

5.5. Robustness Check
Concern may arise from three major issues: sensitivity to the priors, necessity
of including covariates and endogeneity.

Regarding the prior sensitivity, I test different prior distributions to assess
the change in the posterior distribution of all covariates and variance parame
ters. The tested priors and the fixed effects are shown in Table 5.5 and Table
5.6 respectively. The posterior distribution of all covariates obtained from the
tested priors is almost the same as the posterior distribution of covariates us
ing the default prior. In addition, the posterior distribution of the variance
parameters is quite similar for the different priors. These results suggest that
Model 5 should not be sensitive to priors.

To evaluate the need to include all covariates, I rerun Model 5 without
any covariates, named as the convolution model. From Model 5 to the con
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Figure 5.8: Posterior mean of the typeI spatiotemporal interaction 𝛿𝑖𝑡 for the log odds of the
probability being second homes.
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volution model, the decrease of the DIC score can be clearly seen in Ta
ble 5.7. We also notice that the posterior mean of the mixing parameter 𝜆
equals 0.542 (95%𝐶𝐼, 0.346; 0.741) in the convolution model. The increase
of the posterior mean of the mixing parameter demonstrates that spatially
referenced covariates capture some spatial variability. Rao (2003) stated that
incorporating covariates into small area estimation models could increase the
model predictive power. The finding provides evidence for this point of view.

Table 5.7: Refitted models assessment

DIC LCPO RMSE
Model 5 27,857.44 3.6292 0.0341

Convolution Model5 28,226.61 3.7106 0.0351

Lastly, the household variable may experience an endogeneity issue due
to reverse causality. Since it lacks appropriate instruments in the context
and the instrumental variable method within the Bayesian framework is still
under investigation, I test strict exogeneity of the household variable via the
Wooldridge’s approach (Wooldridge, 2010, pg. 285, pg. 490). The lead house
hold variable is included in the model additionally. I initially run Model 5
including the logged households as a linear predictor. Then, the lead1 or
lead3 households is included in Model 5 additionally. The posterior estimates
for the two additional variables are 0.024 (95%𝐶𝐼, −0.132; 0.179) and 0.072
(95%𝐶𝐼, −0.024; 0.168) (See Table 5.8). Such a result shows that there are
not any endogeneity issues.
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Table 5.8: Estimated posterior mean and quantiles of the covariates for the strict exogenity test

Test 1 Test 2 lead1 Test 3 lead3
Mean St.Dev 0.025quant 0.975quant Mean St.Dev 0.025quant 0.975quant Mean St.Dev 0.025quant 0.975quant

Intercept 0.088 0.483 0.870 1.030 0.184 0.518 1.214 0.828 0.025 0.624 1.275 1.180
physical landscapes 0.091 0.024 0.043 0.138 0.090 0.024 0.043 0.137 0.088 0.024 0.040 0.135
cultural landscapes 0.028 0.017 0.061 0.005 0.031 0.017 0.064 0.002 0.039 0.017 0.072 0.006

coastal county 0.733 0.099 0.538 0.929 0.719 0.100 0.523 0.916 0.675 0.102 0.474 0.876
mountainous county 0.243 0.076 0.093 0.392 0.245 0.076 0.095 0.395 0.257 0.077 0.106 0.408
𝑙𝑜𝑔2(ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑡) 0.342 0.018 0.378 0.307 0.350 0.055 0.458 0.241 0.358 0.034 0.425 0.291

𝑙𝑜𝑔2(ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑡+1) 0.016 0.055 0.091 0.124
𝑙𝑜𝑔2(ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑡+3) 0.051 0.034 0.016 0.118
𝑙𝑜𝑔2(interest rate) 0.179 0.028 0.237 0.125 0.211 0.037 0.288 0.140 0.103 0.064 0.231 0.022
𝑙𝑜𝑔2(council tax) 0.009 0.011 0.031 0.013 0.004 0.011 0.027 0.018 0.0003 0.012 0.024 0.024

𝑙𝑜𝑔2(unemployment rate 0.066 0.046 0.157 0.023 0.085 0.052 0.188 0.018 0.128 0.067 0.261 0.002
𝑙𝑜𝑔2(dis_gates) 0.001 0.051 0.103 0.099 0.005 0.074 0.141 0.151 0.029 0.077 0.121 0.180

𝑙𝑜𝑔2(dis_university) 0.130 0.062 0.007 0.255 0.186 0.091 0.008 0.367 0.184 0.094 0.0004 0.371
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5.6. Concluding remarks
In this study, I propose a Bayesian spatiotemporal approach to identify the
spatial and temporal dynamics on the second home rate in Corsica, France,
from 2006 to 2016. I also investigate the impact of fixed effects, including
amenity, socioeconomic factors and accessibility factors. These fixed effects
provide additional insight into the dynamics of Corsican second home rates.
To my knowledge, the approach in this study has previously not been used
for analysing second homes and has offered a useful tool for practitioners
to discover underlying covariates, to localize spatial clusters and to identify
temporal trends.

The choice of models is initially motivated by spatiotemporal data indexed
at medium geographical and temporal resolution. Further, I point out the
importance of space and time in second home analyses. To gauge latent
spatial and temporal information, I introduce 6 candidate models with a range
of spatial and temporal representation structures, which still formulate into
Bayesian hierarchical models. Note that all models are implemented by the
RINLA package in the programming language R. As a result, the models are
widely applicable and well reproducible. INLA provides a feasible way to hand
large, spatiotemporal datasets and return a considerably accurate result for
practical applications. Based on the information criteria, the best fitting model
owns spatial, temporal and spatiotemporal random components. Hence, the
stable spatial pattern and the gradual temporal trend on the second home
rate are uncovered.

Some key findings are related to the fixed effects. Most amenity covariates
are associated with an increase in the log odds of the second home rate, ex
cept the cultural landscape. While, the negative association between the log
odds of the second home rate and the households and the interest rate is cur
rently detected. Moreover, there is not a significant relationship between the
council tax, the unemployment rate and the log odds. Concerning accessibil
ity covariates, the distance to the nearest “gate” is not statistically significant,
but I find a positive association between the distance to the university and
the log odds of the second home rate.

Regarding the random effects, the “hot spot” and “cold spot” areas of sec
ond home rates in Corsica are well identified. In addition, the gradual temporal
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tend with two falls for the second home rate is also recognized throughout the
11year study period. The spatiotemporal dynamics of the second home rate
are finally described by the spacetime interaction random effect. We gain
some further insight into the spatiotemporal dynamics, rather than lose the
information. Therefore, the proposed approach can be viewed as a decent
tool to analyze second home dynamics, and the findings offer useful insights
for formulating effective policies to manage second homes in Corsica, and
then to meet the concern of inhabitants.

First, the outcomes of the proposed Bayesian hierarchical model provide
convincing evidence that interest rates negatively contribute to Corsican sec
ond home rates. This finding justifies a potential policy intervention. The
regional governors can propose the central authority to pass a law that forces
local inhabitants to declare their properties. According to the deceleration,
second home owners are not allowed to negotiate interest rates with their
banks, and to benefit any tax incentives. As a result, the loan costs will in
crease, and investment purchases should be restrained.

In addition to the financial tool, interventions on second home hot spots
may achieve better results than focusing on the financial tool alone. In doing
so, all levels of government are advised to prioritize these zones, and there
is a great need for coherent interventions to curb the high second home rate
and to prevent second home buyers spilling over to adjacent counties. For
example, second home purchasing restrictions should be implemented strictly
in the hot spot zones and neighbouring counties (E.g., “taxe d’habitation sur
les logements vacants” according to French law.). The regional authority may
also require to regulate the real estate developers and to provide more low
rental houses in the hot spot zones.

While, for other counties, local governments should decide whether to
apply the second home purchasing restriction. This enables the local govern
ment to be more responsive to the inhabitants’ needs. In other words, after
recognizing the unique context of each county, a diversified, countyspecific
second home regulation is urgently needed. Therefore, upgrading the existing
institutional framework for improving coordination between urban planning
and housing policies, between the regional government and local government
are essential elements to achieve balanced economic development and sus
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tainable urban planning, and hence to improve the quality of people’s lives.
In conclusion, this work contributes to the existing research in second

homes in two broad ways. The study assesses the second home in Cor
sica, an island in the Mediterranean, at the medium geographical and tem
poral resolution. Since this area has not been analysed quantitatively, my
findings probably provide valuable information for the intervention from the
local government. From a methodological perspective, I underline the impor
tance of space and time. Spatial, temporal and spatiotemporal information is
very likely missed in many second home analyses. In addition to latent spa
tial and temporal information, the inclusion of the amenity, accessibility and
socioeconomic factors offers additional insights in the Corsican second home
rate. Moreover, Bayesian hierarchical models provide an alternative way out
of classical spatial econometric models to handle spatial and spatiotemporal
data. After investigating Corsican apartment prices and second home rates,
a question arises, how to handle both pointreferenced data and areal data
simultaneously? In the next chapter, I will estimate the implicit prices of some
environmental amenities via a Bayesian hierarchical model in the presence of
socalled spatially misaligned data.



6
The value of sea views in a

Mediterranean island:
Hedonic analysis with

spatial multilevel modelling

6.1. Introduction
Environmental amenities usually play an important role in people’s residential
property choices (Chasco and Le Gallo, 2013; Irwin et al., 2014; Liu, Hu, et al.,
2020; Liu, 2020). Recognition of the economic value of these amenities helps
policymakers better understand the decisions of homebuyers. This knowledge
could also contribute to urban development planning and differentiating com
pensation policies (CarriónFlores and Irwin, 2017; Troy and Romm, 2004).
Corsica is a beautiful island in the Mediterranean Sea, its coastal zones are aes
thetically desirable and economically important. For example, roughly 70%
of the population lives in shoreadjacent counties. Most cities and tourist at
tractions distribute along coasts (Vogiatzakis et al., 2008). Even though local
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researchers (Kessler and Tafani, 2015) have paid attention to the coast for a
long time, no studies have been conducted to quantify the value of sea views.
In the existing literature, the main approach to assessing amenities is to an
alyze their implicit prices, via the hedonic pricing method (Rosen, 1974). In
this chapter, I assess the implicit price of sea views on Corsican apartment
prices within the hedonic pricing framework.

Scenic amenities, however, are usually perceived through the human eyes.
Views, therefore, are difficult to quantify. Earlier studies attempt to valuate
views using dummy variables, categorical variables within the hedonic pricing
framework (Benson et al., 1998; Bourassa, Hoesli, and Peng, 2003; Michael
et al., 2002). While the utilization of these approaches has some limitations.
Nowadays, with the help of geographic information systems (GIS) and point
referenced data, recent studies incorporate a more precise and objective mea
sure of views (Hindsley et al., 2013; Paterson and Boyle, 2002; Yu et al.,
2007).

In addition to the difficulty of measuring view, another important question
arises: what is the implicit price of sea views in the presence of spatial ef
fects? To answer this question, spatial econometrics (Anselin, 1988) seems to
provide a promising way. We have observed a large number of hedonic price
applications incorporating spatial econometrics (Yoo and Wagner, 2016), since
it became the mainstream in regional science methodology over the last few
decades. Further, pointreferenced housing data are sometimes organized hi
erarchically (Bivand et al., 2017; Dong, Harris, et al., 2015; Dong and Harris,
2015). For example, individual houses are located in neighborhoods, which
are nested within districts, and then are situated in even higher or more aggre
gated scales such as municipalities and regions. Such multilevel structures are
reinforced if we investigate regional or national data, as higher spatial scales
lead to more heterogeneous factors. Ignoring or misspecifying the multilevel
structure in a hedonic housing price model is likely to produce biased infer
ence, and of course, incorrect estimates of the implicit price for sea views. As
such, the question is further specified, what is the implicit price of sea views
in the presence of both the spatial effect and the multilevel structure.

To account for the spatial effect and multilevel structure simultaneously,
singlelevel regression seems inappropriate. I, therefore, develop a Bayesian
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hierarchical spatial model (Arab et al., 2017) containing two Leroux’s condi
tional autoregressive (LCAR) components (Leroux et al., 2000) (spatial mul
tilevel models hereafter). The LCAR process is used for modelling spatial
effects at both the apartment and the higher scale. More precisely, I consider
a context, in which the apartmentlevel spatial effect is probably induced by
omitting spatial covariates or misspecifying spatially delineated variables; fur
ther, the highlevel spatial effect may be derived from spatial spillovers. The
proposed spatial multilevel model allows spatial autocorrelation, heterogene
ity and nested structures to be captured simultaneously, and hence offers
precise estimates of the implicit price for sea views.

The rest of this chapter is organized as follows. Section 6.2 reviews pre
vious hedonic analyses on the economic valuation of views, and examines
spatial hedonic models with different spatial scales. Section 6.3 gives a de
tailed introduction of statistical models, including the LCAR model, the pro
posed spatial multilevel models and their spacetime extensions. Section 6.4
introduces the procedure to generate the variable of interest, followed by the
empirical investigation of the value of sea views. Section 6.5 presents the
results and policy implications, and I draw conclusions in Section 6.6.

6.2. Literature review
6.2.1. What is in a view?
Researchers have recognized the economic benefits of views on property val
ues for a long time.

Bourassa, Hoesli, and Peng (2003) believed that the benefit of views came
from aesthetic characteristics in the environment. More importantly, it is
necessary to distinguish the view from the accessibility to an amenity, since
good views usually imply the closeness to an amenity. Bin, Crawford, et al.
(2008) confirmed their and demonstrated that view variables could capture the
rest residual amenity values, after controlling for the access to an amenity.
Bourassa, Hoesli, and Sun (2004) also reviewed 35 earlier studies focusing on
the economic benefit of views and concluded that views often induce positive
impacts on property values. The magnitude of the impact ranges from 0.01%
to 147% according to different types and definitions of views.
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Benson et al. (1998) investigated different types and scope of views and
found that both ocean and lake views can attract premiums. A poor par
tial ocean view attracted the lowest premium of 8%, while a full ocean view
commanded the highest premium of 59%. However, mountain views did not
affect property values significantly. Tse (2002) estimated the impact of a sea
view on Hong Kong residential properties. Their results demonstrated that the
sea view had significantly positive impacts on property values, irrespective of
different model specifications. Sea views were found to increase the value
by 6% in the selected model, while linear regression omitting spatial effects
overestimated positive impacts. Jim and Chen (2009) studied the harbour
view of Hong Kong and showed that the harbour view premium was around
3%. Moreover, the mountain view of Hong Kong was found to be insignificant.
Sander and Polasky (2009) investigated how a singlefamily house’s viewshed
affects residential property values. They concluded that properties with larger
viewsheds often had higher transaction prices compared with smaller view
sheds.

6.2.2. How to measure a view?
Many studies accessing views in housing prices fall into the hedonic pricing
model. Thus, views act as an explanatory variable in hedonic pricing regres
sion. In the existing literature, researchers have attempted different ways
to generate view variables, including discrete measures in the early stages
and recent continuous measures. For example, a viewrelated dummy vari
able equals 1 if a property has a view of an amenity and 0 otherwise. The
dummy variable approach has clear limitations, since it neglects the quality
of the view. To address this critique, multiply dummy variables or a polyto
mous variable is applied. In the study of Benson et al. (1998), four dummy
variables (e.g., a full ocean view dummy, a superior partial ocean view, a
good partial ocean view and a poor partial ocean view) are implemented to
describe the quality of ocean view. Bourassa, Hoesli, and Sun (2004) applied
a polytomous variable including narrow, medium and wide levels to measure
the quality of lake views. However, the polytomous variable approach may
experience subjective classification, and fail to properly capture the impact of
views.
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Recent advances in GIS allow us to carry out a viewshed analysis, which
provides a precise, objective and continuous measurement of views compared
with the previous discrete indicators. In simple, the viewshed analysis quan
tifies a two/threedimensional view by examining whether each point on the
surface is visible from an observation point or not. Advances in GIS have
promoted viewshed analyse. Bin, Crawford, et al. (2008) created an ocean
view variable relying on the twodimensional viewshed analysis. Their result
showed that homebuyers would like to pay $995 for a onedegree increase in
the view of the Atlantic Ocean. Hamilton and Morgan (2010) investigated the
willingness to pay for ocean views using data from Florida coastal communi
ties. The variable was also built on the twodimensional viewshed analysis.
It was found that a onedegree increase in the viewshed would command a
$1 228 premium. Hindsley et al. (2013) analyzed the impact of Ocean views
on residential property prices using data from Pinellas County, Florida. To
capture the impact of ocean view, they generated three continuous, ocean
view indicators, e.g., total visibility, maximum visibility and mean visibility. All
indicators were statistically significant and the authors concluded that ocean
view would command premiums.

6.2.3. Spatial effects at different spatial scales
Standard hedonic regression, however, does not account for spatial effects.
Regional scientists then apply spatial hedonic regression, which often offers
satisfying results compared with standard hedonic regression. For example,
the abovementioned studies from Bin, Crawford, et al. (2008) and Hindsley
et al. (2013) implemented spatial lag models. More recently, researchers are
aware of the importance of the multilevel characteristic of spatial data, since
different spatial scales probably induce different spatial interactions.

To the best of my knowledge, few researchers give solutions to account
for both multilevel structures and spatial effects (Harris, 2019). Glaesener
and Caruso (2015) assessed the effect of green space amenities and neigh
bourhood services on residential land prices in Luxembourg by means of a
cross regressive multilevel model containing an additional spatial lag of inde
pendent variables (Halleck Vega and Elhorst, 2015). Dong and Harris (2015)
suggested a more sophisticated, spatial multilevel model, namely the Hierar



6

128
6. The value of sea views in a Mediterranean island: Hedonic

analysis with spatial multilevel modelling

chical Spatial Autoregressive (HSAR) model. It is designed for the context,
in which spatial spillovers appear in both highlevel units and lowlevel units.
Hence, the model incorporates two spatial weighting matrices, one is used for
gauging the spatial spillover among all lowlevel units, another is used to as
sessing the spatial spillover among the highlevel units. This model is used for
investigating the impact of schools on property prices (Dong and Wu, 2016).
Liu, Hu, et al. (2020) proposed a spatial multilevel model to investigate the
spillover effects of ecological lands. Studies estimating the impact of views
with a consideration of multilevel characteristics and spatial effects are even
rare in the literature. Yamagata et al. (2016) recently proposed a socalled
spatial multilevel additive regression model, which employs a variance compo
nent to gauge buildingwise difference and a twodimensional thinplate spline
smoother to capture spatial effects among buildings. Their results showed
that only very nice ocean views attracted premiums in Yokohama city, Japan.

My study mainly assesses the apartment’s sea views, specifically the view
of the Mediterranean Sea. To achieve this goal, I employ a more specific and
meaningful measure of sea views. In addition, this study is different from oth
ers regarding two significant features. First, the study area is a French region,
where housing and regional characteristics show both spatial autocorrelation
and heterogeneity. To address this issue, I account for both spatial effects and
multilevel characteristics through the proposed spatial multilevel model by in
corporating the LCAR component. Second, to fill in the gap that transaction
periods may affect estimation accuracy within the multilevel modelling, spa
tiotemporal extensions are also investigated to tackle repeated crosssectional
housing data from 2006 to 2016.

6.3. Spatiotemporal modeling for spatial data with
multilevel structures

6.3.1. Leroux’s conditional autoregressive model
The key part of the proposed multilevel model (Schrödle et al., 2011) is the
socalled LCAR components (Leroux et al., 2000). With the LCAR component,
the proposed model can be fitted by Integrated Nested Laplace Approxima
tion (INLA) approach (Rue, Martino, et al., 2009), which is more computational
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efficient than the Markov chain Monte Carlo (McMC) method in fitting HSAR
models. More importantly, the motivation of applying the twolevel (LCAR)
spatial model is different from the HSAR model, and the difference mainly
comes from the application of the LCAR process or the simultaneous autore
gressive process for low level units. In the HSAR model, the simultaneous
autoregressive process for low level units aims to capture autocorrelation in
the presence of a strong spatial trend. However, as Anselin and LozanoGracia
stated,

“From a theoretical viewpoint, a spatial error specification is the more nat
ural way to include spatial effects in a hedonic model. Unobserved neighbour
hood effects will be shared by housing units in the same area and naturally
lead to spatially correlated error terms”. (Anselin and LozanoGracia, 2009,
pg. 1221)

I believe that spatial autocorrelation or heterogeneity in residuals due to
omitted unobserved neighbourhood effects should be expected, and this leads
to the application of LCAR components. On the other hand, the proposed
model has an advantage over the Osland et al.’s (2016) conditional autore
gressive model, that is, employing the Moran’s I test for highlevel random
effects is not necessary. Because the LCAR component incorporates an ad
ditional parameter, which compromises between spatially structured and un
structured random effects. If spatially structured random effects dominate,
the LCAR component will turn into an ICAR component. In contrast, if spatially
unstructured random effects dominate, the LCAR component will become an
IID component. In an extreme case, where spatially unstructured random
effects dominate the two levels, the proposed model will become a standard
multilevel model (Goldstein, 2011).

6.3.2. spatial multilevel models
The LCAR component is often considered as a prior specification in Bayesian
paradigms and easily embedded in a hierarchical generalized linear model,
whose three levels are:

• Level 1 – Data model: [𝑌|𝜇, 𝜃𝑌]

• Level 2 – Process model: [𝜇|𝜃𝜇]
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• Level 3 – Parameter model: [𝜃𝑌 , 𝜃𝜇].

For example, apartments are located at 𝑛 nonoverlapping points 𝑖 =
{1,… , 𝑛} and nested into𝑚 nonoverlapping areas (corresponding to the high
level units) labeled as 𝑗 = {1,… ,𝑚}, which are linked to a 𝑛 × 1 vector of
responses 𝑌 = (𝑦1, … , 𝑦𝑛). The structured additive predictor contains a 𝑛 × 𝑝
housing covariate matrix 𝑋, a 𝑛 × 𝑞 areal covariate matrix 𝑍, an LCAR com
ponent for apartments Γ𝑖 = (𝛾1, … , 𝛾𝑛), and an LCAR component for areas
Γ𝑗 = (𝛾1(1), … , 𝛾𝑚(𝑛)). 𝑚(𝑛) denotes the area 𝑚 to which apartment 𝑛 be
longs. For areal covariates, apartments within an area are assigned the same
areal covariate value1. It is worth noting that Γ𝑖 is a 𝑛 length random vector,
while Γ𝑗 is a𝑚 length vector with𝑚 ≪ 𝑛, and Δ is a 𝑛×𝑗 block diagonal design
matrix linking apartments to areas. The two LCAR components are used for
gauging spatial autocorrelation at different levels that remain in the data after
the covariate effects have been accounted for. Lastly, 𝛽 and 𝜉 correspond to
𝑝 × 1 and 𝑞 × 1 vectors of unknown coefficients, respectively.

Finally, the hierarchical model reads,

𝑌 ∼ [𝑌|𝜇, 𝜃𝑌]
𝑔(𝜇) = 𝜂𝑖 = 𝑋𝛽 + 𝑍𝜉 + Γ𝑖 + ΔΓ𝑗
Γ𝑖 ∼ 𝑀𝑉𝑁 (0, 𝜎2𝑖 𝑄−1Γ𝑖 )
Γ𝑗 ∼ 𝑀𝑉𝑁 (0, 𝜎2𝑗 𝑄−1Γ𝑗 )
𝜃𝜇 = {𝜆𝑖 , 𝜆𝑗 , 𝜎2𝑖 , 𝜎2𝑗 } .

(6.1)

The data model [𝑌|𝜇, 𝜃𝑌] depends on the process 𝜇 and other parameters
𝜃𝑌. Different likelihood functions (Poisson, Binomial, Gaussian, etc.) can be
used for the data model. Regarding the process model, 𝑔(⋅) denotes the
given link function, 𝜂𝑖 is the corresponding additive linear predictor. In the
empirical analysis of this chapter, since the logtransformed house prices are
closely approximated by the normal distribution. I, therefore, have 𝑙𝑛(𝑌) ∼
[𝑙𝑛(𝑌)|𝜇, 𝜃𝑌] and 𝜃𝑌 = {𝜎2𝜖 } for the data model, and an identity link function
is specified for the process model,

1That is to say, 𝑍 is derived from two matrices, a 𝑛 × 𝑗 matrix illustrating the relation between
apartments and areas, and a 𝑗 × 𝑞 matrix showing areal covariates.
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𝐸 [𝑙𝑛(𝑌)] = 𝑙𝑛(𝑌) = 𝑔(𝜇)
𝑔(𝜇) = 𝜂𝑖 = 𝑋𝛽 + 𝑍𝜉 + Γ𝑖 + ΔΓ𝑗 .

(6.2)

Here, 𝑄Γ(⋅) is the corresponding precision matrix for the LCAR component
Γ(⋅),

𝑄Γ(⋅) = [𝜆𝑊∗ + (1 − 𝜆) 𝐼𝑆] (6.3)

where 𝐼𝑆 denotes the identity matrix of dimension 𝑆2. 𝑊∗ denotes the vari
ant of a 𝑆×𝑆 spatial adjacency matrix𝑊. The mixing parameter 𝜆 (0 ≤ 𝜆 ≤ 1)
ensures the separation of spatially structured and unstructured variability.

Moreover, 𝜃𝜇 contains all parameters that appeared in the process model.
Lastly, I can impose prior distributions on the parameter model [𝜃𝑌 , 𝜃𝜇]. Fol
lowing the three levels, we obtain the posterior distribution of the process and
parameters via the Bayesian theorem [𝜇, 𝜃|𝑌] ∝ [𝑌|𝜇, 𝜃𝑌] × [𝜇|𝜃𝜇] × [𝜃].

6.3.3. Spacetime extensions
On the basis of the twolevel spatial model, it is possible to extend this model
to a spacetime model.

A simple, computationally convenient and widely used spacetime exten
sion on random effects is the parametric model proposed by Bernardinelli et
al. (1995). Their parametric time trends model consists of a global linear time
trend term and a socalled differential time trend component,

(𝜙 + 𝛿𝑖) × 𝑡 (6.4)

where 𝜙 × 𝑡 captures the global time trend. The differential time trend
component 𝛿𝑖 × 𝑡 identifies an interaction between the unit 𝑖 and period 𝑡,
implying a unitspecific temporal regime (e.g., increase, decrease or stability),
departing from the global time trend. For example, 𝛿𝑖 ×𝑡 < 0 implies that the
time trend of unit 𝑖 is less steep than the global time trend.

It is possible to extend this unitspecific interaction to an interaction be

2Here, 𝑆 equals either 𝑚 or 𝑛 depending on the level.
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tween area 𝑗 and period 𝑡, implying an areaspecific time trend 𝛿𝑗(𝑖)×𝑡 (𝛿𝑗(𝑖) =
(𝛿1(1), … , 𝛿𝑚(𝑛))) to depart from the global time trend for all units 𝜙×𝑡. Thus,
the linear predictor is written as,

𝑔 (𝜇) = 𝜂𝑖𝑡 = 𝑋𝑖𝑡𝛽 + 𝑍𝑖𝑡𝜉 + Γ𝑖 + ΔΓ𝑗 + (𝜙 + 𝛿𝑗(𝑖)) × 𝑡 (6.5)

It is important to note that all random effects components Γ𝑖 , Γ𝑗 , 𝛿𝑖 , 𝛿𝑗(𝑖)
must be centered around zero to avoid identifiability issues of the models
(Goicoa et al., 2018).

6.4. Empirical analysis
6.4.1. Generating sea view Index
As previously stated, more and more studies employ continuous metrics to
measure view. The most common are variants of viewable areas or view
angles based on a radius. For my study, the sea view index relies on an
individual property’s viewable areas adapted with minor modifications from
Hamilton and Morgan (2010). I detail the procedure to create viewable areas
into three steps that involved:

(i) Positioning a virtual “observer”. To reduce heavy computational loads
and to facilitate following calculation, the observer point for each apart
ment is set to the centroid of the parcel where an apartment locates. I
believe that the centroid of a parcel is a good approximation of apart
ment location, because the parcel is the smallest unit of land and usually
corresponds to one apartment building in Corsica. Moreover, to deter
mine the observer’s height, I first calculate the elevation at the centroid
of a parcel. Then, a point 1.8meters off the ground is added.

(ii) Creating apartments’ potential view areas at a 10km distance from the
“observer” point. It is important to note that the view area should not
exceed half of the circle given the “observer” point and the 10km radius.

(iii) Summarizing the field, where the view area overlaps with the Mediter
ranean Sea. The unit of the view area is in square meters.
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Finally, for the 6 377 sea view scores, 8.2% of the scores are zeros, 0.9%
of the scores are duplicate with nonzero values.

6.4.2. Measuring beach access
In the hedonic analysis, another crucial factor relating to the sea view index is
the accessibility of the nearest beach, e.g., actual access distances from each
property to the nearest beach, to enable the implicit value of living close to
the beach to be quantified (Bin and Kruse, 2006). Previous studies typically
used the Euclidean distance from each property to the centroid of the nearest
beach (Parsons and Noailly, 2004; Pompe, 2008). This simple measurement
could be a good proxy of access, but it fails to truly account for the actual
access to the nearest beach. Because we believe that beaches are likely
to be accessed using road networks, rather than cutting across other places
in a roughly asthecrowflies manner. For example, many sandy beaches in
Corsica are located on the other side of hills, access is not always easy. People
have to follow singed beach access points and drive along crooked roads.

I, therefore, argue that the road distance to the nearest beach from each
property should offer a more accurate measurement of beach access than the
Euclidean distance. Hence, the road distance to each beach from properties is
calculated on the basis of local road networks in a GIS environment. Based on
the average driving speed on different types of roads (average driving speeds
are identified by a vehicle GPS database provided by Navteq), I further give
the driving time to the nearest beach from each apartment. These data with
sea view information will be joined back to apartment sales data.

6.4.3. Data
Housing transaction data are obtained from the “PERVAL” dataset used in the
Chapter 4, and the data associated with “EPCI” are an aggregation of the
Corsican countylevel data used in the Chapter 5. After a combination, the
final dataset is made up of 6 377 sales of apartments.

Actual sales prices are available for all apartments in the final dataset with
the mean €149 685 and median €138 042 after adjusting for inflation (the
base year is 2006). Further, apartment sale prices range from €57 446 to
€325 432. This variable is transformed into a logarithmic scale and serves as
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the dependent variable.
Housing structure covariates can be found in the dataset directly, while

neighbourhood covariates and view variables for each apartment are calcu
lated via a geographic information system (GIS). All independent variables are
summarized in Table 6.1 along with the expected impact of each variable on
apartment sale prices, and Table 6.2 provides the corresponding descriptive
statistics. Concerning accessibility variables, as access to certain amenities
probably affects housing sale prices, road distances from each apartment to
the closest pharmacy, hospital, primary school, and beach are calculated.

In addition to the individual housing data, contextual data are collected
from different sources depending on variables. Three contextual covariates
are the population density of each “EPCI”3, the averaged property tax (“taxe
sur le foncier bâti”4) in an “EPCI”, and physical landscape counts within each
“EPCI” offered by Research Center “LISA”.

Housing sales data, GISbased view/accessibility data, and contextual data
are merged together and we finally obtain a sample of 6 377 apartments for
use in estimation. The variance inflation factor (VIF) scores for all covariates
are calculated to examine the potential problem of multicollinearity. There
is no evidence of such a problem. Most variance inflation factor scores are
around 1.3, below the normal threshold of 10.

6.4.4. Econometric strategies
I begin with the classical hedonic regression (Eq. 6.6), labelled as Model 0,

𝜂𝑖𝑡 = 𝛼 + 𝑓(𝑆𝑢𝑟𝑓) + 𝛽2𝑆𝑡𝑜 + 𝛽3𝐵𝑎𝑡 + 𝛽4𝑃𝑎𝑟 + 𝛽5𝑇𝑦𝑝 + 𝛽6𝐶𝑜𝑛𝑡𝑟
+ 𝛽7𝑃ℎ𝑎 + 𝛽8𝐻𝑜𝑠𝑝 + 𝛽9𝑃𝑆𝑐ℎ + 𝛽10𝐵𝑒𝑎
+ 𝛽11𝑆𝑒𝑎
+ 𝜉1𝑃𝑜𝑝𝐷𝑒𝑛 + 𝜉2𝐶𝑇𝑎𝑥 + 𝜉3𝑁𝑎𝑡
+ 𝜖

(6.6)

Subsequently, I examine spatial effects and multilevel structures in data.

3Source: https://www.insee.fr/fr/information/2008354
4Source: https://www.servicepublic.fr/particuliers/vosdroits/F59

https://www.insee.fr/fr/information/2008354
https://www.service-public.fr/particuliers/vosdroits/F59
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Table 6.1: Definitions for study variables and expected relationship to apartment sale values.

Variable name Definition Expected signs
Structural variables
Price Sales price adjusted to 2006 (Euros)
Surf Total area (𝑚2) Positive
Sto Floor Positive
Bat Number of bathrooms Positive
Par Number of parkings Positive
Typ Types of apartments. Base: Apartment Studio Negative; Duplex Positive
Contr Construction periods. Baseline: 18501913.

19141947;19481969;19701980;19811991 Positive
19922000;20012010;20112017

Accessibility variables
Pha Road distance to closest pharmacy in km Negative*
Hosp Road distance to closest health facilities in km Negative*
PSch Road distance to closest primary school in km Negative*
Bea Driving time to closest beach in minute Negative*

View variable
Sea Sea view index from 0 to 100 Positive

Contextual variables
PopDen Population density in each “EPCI” (𝑝𝑒𝑜𝑝𝑙𝑒/𝑘𝑚2) Negative
Tax Averaged property tax rate in each “EPCI” Negative
Nat Physical landscape counts in each “EPCI” Positive

* For these distancebased variables, a negative expected relationship means that home buyers would like to pay more to live near an amenity.

Table 6.2: Descriptive statistics for quantitative variables.

Variable name Mean SD* Min Pctl(25) Pctl(75) Max
Structural variables
Price 149,685.400 58,602.020 57,446 103,829.9 185,952.0 325,432
Surf 59.537 21.983 13 43 73 197
Sto 1.863 1.733 3 1 3 12
Bat 1.056 0.265 0 1 1 3
Par 0.821 0.717 0 0 1 8

Accessibility variables
Pha 1.520 2.237 0.000 0.396 1.448 38.662
Hosp 10.674 12.250 0.051 1.697 16.612 72.244
PSch 27.702 37.821 0.063 2.753 33.074 182.492
Bea 5.472 6.452 0.001 2.360 6.626 67.706

View variable
Sea 12.060 11.303 0.000 1.670 20.801 47.907

Contextual variables
Popden 273.249 307.849 6.888 21.946 307.539 828.975
CTax 0.115 0.026 0.066 0.094 0.140 0.156
Nat 11.842 9.059 1 6 14 40

* Standard deviation

As indicated in Chapter 1, Corsica owns rural, semiurban and urban land
scapes (Vogiatzakis et al., 2008), and public services, infrastructures and hu
man activities are mainly concentrated in the urban area of Corsica. Cities and
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peripheral counties, therefore, consist of a cluster in terms of sharing public
or private services, e.g., schools, hospitals, gyms, parks, shopping malls, and
this cluster probably produces delimitation to others. Hence, in addition to
attributes associated with an apartment, the factors associated with clusters
(hereafter contextual factors) probably affect the apartment price as well.

In this context, I take the socalled “Etablissement public de cooperation
intercommunale” (“EPCI”) as the cluster. There are 19 “EPCI” zones in Cor
sica. The spatial configuration of Corsica “EPCI” zones are displayed in Figure
6.1 (Table 7.3 in Appendix 7.5 shows the corresponding names). According
to an official report (Nicolai, 2019), in 2016, there were 130 200 active em
ployees in Corsica, and most of them commuted within the EPCI where they
lived. Since apartments are nested into “EPCIs”, spatial dependence caused
by omitting unobserved neighbourhood effects may occur among apartments
that are spatially close within an “EPCI”. Further, spatial dependence between
“EPCIs” seems to be expected. More precisely, “EPCIs” located further apart
should be less similar than “EPCIs” located closer to each other. For example,
we may observe the transition from a highly urbanized area to semiurban and
even rural areas, if we move from an “EPCI” to its neighbours and then further
“EPCIs”. As such, LCAR components for the different levels are incorporated
in Eq. 6.6, leading to the same specification of Eq. 6.2 (labelled as Model 1).

Lastly, I investigate the impact of sale periods on the basis of the spatial
effect and multilevel structures. In the hedonic pricing literature, the tem
poral dimension has attracted little attention. In some hedonic applications,
sales data are collected over short periods, e.g., one year or two years, and
researchers prefer to collapse the few periods to a single time point. In the
case of long periods, some scholars intend to capture temporal heterogeneity
via time dummies. Following the same logic, I develop Model 2. On the other
hand, other researchers attempt to capture temporal trends via a linear or
spline function. I extend a linear trend function by incorporating additional
“EPCI”specific and unitspecific components to gauge both temporal trend
and spatiotemporal variation, like the specifications shown in Section 6.3.3.
These models are labelled as Model 3 and Model 4 respectively. A summary
of model specifications are shown in Table 6.3.

Note that different prior distributions are assigned to the hyperparameters
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Figure 6.1: Sale counts within each “EPCI”.

Table 6.3: Summary of random components in the spatial multilevel models

Model Identifier Spatial Temporal

M0 No control No control
M1 2 LCAR components No control
M2 2 LCAR components Time dummy
M3 2 LCAR components A Linear temporal trend with the “EPCI”specific component
M4 2 LCAR components A Linear temporal trend with the unitspecific component

below:

𝜆𝑖 , 𝜆𝑗 ∼ Uniform (0, 1),

𝑙𝑜𝑔 ( 1𝜎2Γ𝑖
) , 𝑙𝑜𝑔 ( 1𝜎2Γ𝑗

) , 𝑙𝑜𝑔 ( 1
𝜎2𝛿𝑗(𝑖)

) , 𝑙𝑜𝑔 ( 1𝜎2𝛿𝑖
) ∼ logGamma(1, 0.00005).

(6.7)
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Furthermore, the highlevel spatial adjacency matrix 𝑊𝐸 is built on the
queen contiguity of the 19 “EPCIs”. In contrast, an element in the lowlevel
spatial adjacency matrix 𝑊𝐴 is specified as:

𝑤𝐴𝑖𝑗 = {
1 𝑑𝑖𝑗 < 𝑑
0 otherwise, (6.8)

where 𝑑 is the distance threshold. Considering the Corsican context (the
95%𝐶𝐼 for the spatial range is (1.291; 1.698)), this threshold is set to 2.5 km.
𝑑𝑖𝑗 is the Euclidian distance between apartment 𝑖 and 𝑗. Figure 6.2 and Figure
6.3 show the high level and low level spatial adjacency matrices, respectively.

Figure 6.2: Spatial adjacency matrix for “EPCIs”,
rows and columns represent “EPCI” units.

Figure 6.3: Spatial adjacency matrix for apart
ments, rows and columns identify apartment
units.

6.5. Results
6.5.1. Model assessment
Model comparison results for the four models are provided in Table 6.4.

Table 6.4: Model assessment via DIC and LCPO

DIC LCPO
M0 585.683 0.0449
M1 2,314.626 0.1006
M2 2,726.109 0.1073
M3 2,616.119 0.1047
M4 1,894.402 0.1053
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As shown in Table 6.4, Model 2 produces the best model fit according
to both the DIC (Spiegelhalter et al., 2002) and LCPO (Pettit, 1990) scores,
compared with these of the nonspatial model (Model 0), spatial model (Model
1), and the model with spatial and linear time trend components (Model 3
& 4). A better model fit of Model 1 against Model 0 indicates the benefit of
account for spatial effects, and a better mode fit of Model 2 against Model 3
and 4 indicates that the dummy variable approach captures more temporal
variation compared with the linear temporal trend approach.

6.5.2. Interpreting covariate effects
The estimation results from Model 2 are provided in Table 6.5.

Most structural variables are statistically significant, and their signs are
as expected. Several construction periods, including the period 19141947,
19481969, 19701980 and 19811991 are not significant. In contrast, the
price of apartments built over the period 19922000, 20012010, 20112017
has a significant increase, compared with the apartment built over the pe
riod 18501913. Further, the signs for the apartment type variable are as
expected. This result indicates that studio apartments should have lower
values compared with normal apartments, while duplex apartments should
have higher values, and the associated marginal implicit prices are 0.106
(95%𝐶𝐼, −0.135;−0.077) and 0.047 (95%𝐶𝐼, 0.020; 0.074), respectively.

These results clearly show that most accessibility covariates influence apart
ment sale prices, and the corresponding signs are as expected. In general,
increasing the distance to the nearest hospital decreases home sale prices,
and increasing the distance to the nearest hospital by 1 km produces a 0.3%
(95%𝐶𝐼, −0.005;−0.001) decrease in apartment sale prices. Increasing the
distance to the nearest primary school by 1 km also suggests an apartment
sale price decrease of 0.3% (95%𝐶𝐼, −0.005;−0.002). In contrast, we do not
observe a significant impact of the distance from the nearest pharmacy on
apartment prices.

Increasing the time to the nearest beach by 1 minute produces a 1.3%
(95%𝐶𝐼, −0.015;−0.011) decrease in apartment sale prices. The coefficient
for the variable of interest, the sea view, is 0.005 (95%𝐶𝐼, 0.004; 0.005). It
means that increasing sea view by 1 𝑚2 should steam a 0.5% increase in
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Table 6.5: Posterior estimates of the covariate effects

Mean St.Dev 0.025quant 0.975quant
Structural variables
Intercept* 11.754 0.104 11.555 11.961
Sto* 0.013 0.002 0.010 0.017
Bat* 0.069 0.012 0.046 0.092
Par* 0.044 0.005 0.034 0.053
Contr 19141947 0.075 0.046 0.014 0.165
Contr 19481969 0.006 0.041 0.086 0.074
Contr 19701980 0.045 0.041 0.034 0.125
Contr 19811991 0.079 0.041 0.0004 0.159
Contr 19922000* 0.184 0.043 0.099 0.269
Contr 20012010* 0.230 0.040 0.151 0.309
Contr 20112017* 0.214 0.040 0.135 0.293
Duplex* 0.047 0.014 0.020 0.074
Studio* 0.106 0.015 0.135 0.077
𝜎2𝑆𝑢𝑟𝑓* 0.00098 0.00026 0.00056 0.00158

Accessibility variables
Fha* 0.001 0.002 0.002 0.004
Hosp* 0.003 0.001 0.005 0.001
PSch* 0.003 0.001 0.005 0.002
Bea* 0.013 0.001 0.015 0.011

View variable
Sea* 0.005 0.0004 0.004 0.005

Contextual variables
PopDen 0.0003 0.0002 0.001 0.0001
CTax 0.458 0.665 1.766 0.846
Nat* 0.013 0.005 0.004 0.023

Time dummies
2007* 0.088 0.017 0.054 0.121
2008* 0.133 0.017 0.099 0.166
2009* 0.076 0.017 0.042 0.110
2010* 0.063 0.018 0.029 0.098
2011* 0.133 0.019 0.096 0.170
2012* 0.129 0.018 0.093 0.165
2013* 0.122 0.018 0.085 0.158
2014* 0.113 0.019 0.076 0.149
2015* 0.109 0.019 0.071 0.147
2016* 0.144 0.020 0.104 0.184

* statistical significance

apartment sale prices. This illustrates the preference of homebuyers for apart
ments with large sea views, even though the magnitude is small. Since both
the time to beaches and the sea view have a significant impact on apartment
prices, I confirm Bin, Crawford, et al.’s (2008) point, where view variables
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could capture additional amenity values, even though researchers have al
ready controlled for the distance to that amenity.

Figure 6.4 shows the nonlinear relationship between apartment surfaces
and sale prices, and we observe an overall increasing trend. This finding con
firms that apartment surfaces have a positive impact on sale prices. Moreover,
the shape of the curve is similar to that in Chapter 4.

Figure 6.4: Mean (the red line) and a 95% credible interval (the grey area) of the Surface.

For the contextual covariates, the coefficient for the population density
is negative, but this variable does not significantly impact apartment sales
prices, indicating that population density is not a particular consideration for
homebuyers. The averaged council tax rate within an “EPCI” has a large
negative coefficient, but it is not statistically significant either. On the other
hand, the physical landscape counts have a significant impact on apartment
prices. The estimated coefficient is 0.013 (95%𝐶𝐼, 0.004; 0.023), meaning that
the marginal implicit price for increasing the physical landscape count by 1
evaluated at the mean apartment sale price indicates a 1.3% price increase.
This illustrates the preference of homebuyers for physical landscapes, e.g.,
lakes, mountains, alpine rocks, estuaries.

Lastly, all time dummies are statistically significant and positive, compared
with the baseline year (2006). The evolution of their coefficients is shown in
Figure 6.5. Time dummies show that apartment prices quickly reached their
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peak (the year 2008) and then experienced a decrease till 2010. After the
rebound in 2010, apartment prices have tended to stable since 2011.

Figure 6.5: The time dummies and their 95% credible intervals. The dash line shows the baseline.

6.5.3. Interpreting random effects and visualization
The estimates of random effect components are shown in Table 6.6.

Table 6.6: Posterior estimates of the random effects

Mean St.Dev 0.025 quantile 0.975 quantile
𝜎2𝜖 0.0240 0.0025 0.0192 0.0290
𝜆𝑖 0.0026 0.0005 0.0017 0.0038
𝜎2𝑖 0.0421 0.0033 0.0361 0.0489
𝜆𝑗 0.2795 0.2171 0.0186 0.7947
𝜎2𝑗 0.0545 0.0311 0.0166 0.1350

I initially calculate the proportion of marginal variance explained by each
component, given by

𝑝𝜑 = 𝜎2𝜑/ (𝜎2𝑗 + 𝜎2𝑖 + 𝜎2𝜖 ) × 100%, 𝜑 = {𝑗, 𝑖, 𝜖}. (6.9)

Here, the corresponding proportions are 45.19%, 34.91% and 19.90% re
spectively. This indicates that the spatial pattern at the “EPCI” level explains
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a huge part of variability, then the spatial pattern at the apartment level also
explains a considerable part of variability. Lastly, the Gaussian residual com
ponent explains the smallest part of variability.

In addition to the variance components, the spatial mixing parameters at
both the apartment level and the “EPCI” level are statistically significant at
the 95% credible level. That is to say, the proposed spatial multilevel hedonic
model, rather than a standard nonspatial multilevel model, is the most effec
tive model. The spatial mixing parameter at the “EPCI” level equals 0.2795
(95%𝐶𝐼, 0.0186; 0.7947), confirming that a considerable part of variability is
due to spatial autocorrelation. Regarding 𝜎2𝑗 and 𝜆𝑗 jointly, I can conclude
that apartment prices are affected by spatial effects from their own “EPCI” as
well as by effects from surrounding “EPCIs”.

The spatial mixing parameter at the apartment level is also significant,
but its magnitude is fairly low 0.0026 (95%𝐶𝐼, 0.0017; 0.0038). The low value
indicates that heterogeneity dominates variability among apartments. These
results conform to the motivation of applying the proposed spatial multilevel
models.

Figure 6.6 maps the estimated posterior means of “EPCI” level random
effects from Model 2. Lighter colours represent stronger positive effects and
darker colours indicate stronger negative effects. Overall, there is a clear
spatial pattern: “EPCIs” with strong negative effects cluster around the north
eastern coast (zone 16, 14, 8), and “EPCIs” with strong positive effects are
located on the southeastern coast (zones 2, 4). These may be a reflection of
the significant and positive spatial mixing parameter. Further, the strongest
positive effects are found in zone 17, alongside the “EPCI” (zone 10) with
a strong negative effect. I believe that this is a reflection of heterogeneity.
More precisely, the strongest positive random effects found in zone 17 may
be related to the presence of the University of Corsica. The strong negative
random effects of the northeastern cluster are likely associated with counties
dominated by agricultural and industrial activities. Concerning the southeast
ern cluster, the high positive random effects are probably related to cities
(Porto Vecchio, Bonifacio) and two commercial ports. There are many resi
dential communities in this cluster, along with many commercial facilities such
as shopping malls and many servicerelated job opportunities.
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Figure 6.6: The “EPCI” level random effects from Model 2

6.5.4. Policy implications
As the regional council (“Collectivité Territoriale de Corse”) requires local au
thorities to release new zoning plans and regulations soon, planners or policy
makers will make important decisions about developing or preserving differ
ent types of lands in each county. These decisions will determine future land
uses. This, in turn, will influence the availability of environmental amenities
both locally and regionally.

To formulate relevant planning, a question should be addressed primarily,
“what is the implicit price of each amenity?” Once the accurate information
on residents’ preferences is estimated, the planner can formulate appropriate
planning and policies to meet the community expectations and to minimize
the negative economic, social, and environmental impacts associated with
land use changes. In this study, the estimates serve as a starting point for
the investigation of residents’ preference and expectation for coastal views,
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beach access, etc.

Further, this study suggests that sea views and beach access jointly should
be considered as key elements in future planning. Since the beach access sig
nificantly affects apartment sale prices, a potential policy intervention is that
local authorities should improve the accessibility, e.g., by providing better
transportation infrastructure or public transport to beaches. This interven
tion seems more attractive for noncoastal counties than for coastal counties.
Concerning the sea view, planners should preserve this amenity, for example,
levying council tax in coastal counties and limiting building height. Policy
makers could enhance the benefit of the sea view by releasing amenityled
growth strategies. Local authorities should also provide more public goods
like hospitals and schools.

Lastly, my findings also suggest the regional council to establish differ
entiated planning depending on the “EPCI”. For example, zone 17 has the
strongest positive random effects, which probably relate to the housing de
mand from college students. The regional authority should conduct surveys to
collect detailed information on this area, so that planners could decide whether
to increase land supply or not, e.g., to convert agricultural or industrial lands
for residential uses.

6.6. Concluding remarks
Employing availability indicators, including housing structural variables, acces
sibility variables, view variables (sea view index) and contextual variables, and
a spatial multilevel hedonic model, in which spatial effects and nested hous
ing data structures are considered, I mainly quantify the impact of sea view
on apartment prices in Corsica, France. The inclusion of both the sea view
indicator and the accessibility measure to the nearest beach overcomes the
possible deviations in traditional hedonic regression, which accounts for either
an accessibility indicator or a visibility indicator. Further, multilevel modelling
can avoid misalignment, referring to mismatches when transferring the rela
tionship from contextual variables to normal variables and vice versa. In the
end, incorporating LCAR components to multilevel models addresses spatial
effects induced by unobserved neighbourhood effects among apartments and
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geographical closeness of “EPCIs”.
The first basic problem I focused on in this study is building a sea view

index, which can quantify sea views objectively and appropriately. In doing
so, I generate a continuous index based on the viewshed analysis. This index
can enhance the judgement of planners, as compared with the traditional use
of subjective rules of thumb.

Subsequently, I apply this index with other covariates to assess the implicit
price of sea views via the hedonic price method. The results, like those of
previous studies, clearly indicate that a preference exists for living near prime
schools, pharmacies. More importantly, I find that the sea view has a small but
significant impact on housing prices. My results also confirm that homebuyers
are willing to pay a premium for living close to coasts, and that premium
consists of both accessibility values and the value of sea views. As such, the
value calculated for either the beach access or the sea view does not represent
the real values for living near to coasts.

Lastly, I focus on the rationality of the proposed spatial multilevel hedonic
model. The proportion of each marginal variance component clearly shows
that the nested structure in housing data is important. The estimates of mix
ing parameters at each geographic scale demonstrate that spatial effects play
a crucial role in housing prices as well. These results indicate that any re
gression analysis conducted on a single level that ignores spatial effects is not
appropriate, especially in handling pointreferenced data with nested struc
tures.

This study, however, has several limitations. First, the sea view index can
be built in a more sophisticated way. The index used in this study does not
account for apartment height and window location. It is necessary to miti
gate these assumptions with the help of available Light Detection and Rang
ing (LIDAR) data. Moreover, I do not consider the factors affecting human
perception, such as trees, obscured properties, angle of depression. With
the development of computer graphics and virtual reality tools, view indices
should be quantified in more detail in future studies, taking into account those
factors. Lastly, this study does not investigate the impact of different prior
distributions on posterior estimates for the spatial multilevel model, and this
should be explored in future studies.
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Summary and Future

works

This thesis provides an investigation of the housing market in Corsica, France.
The present work primarily focuses on the determinants, especially how the
spatial and temporal dimensions (i.e., location and time) affect different as
pects of the Corsican housing market. More precisely, I deal with various
issues associated with the Corsican housing market. These issues include
identifying housing price determinants and making predictions, revealing spa
tial and temporal patterns of second home rates among Corsican counties, and
recognizing the implicit prices of sea views in the presence of nested spatial
data structures.

The hedonic price method, the socalled adjacent effect and ripple effect
offer the economic underpinnings for analyzing such complex issues. The use
of the “PERVAL” dataset and other open source datasets are also crucial fac
tors in addressing these issues. More importantly, the corresponding empirical
analyses are based on the Bayesian hierarchical modeling, which has advan
tages over classical spatial econometrics in terms of handling data indexed
both spatially and temporally. In particular, I specify Bayesian hierarchical
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models that contain different spatial, temporal and spatiotemporal compo
nents depending on spatial data types. Our findings indicate that housing
location and transaction time are the key elements in determining housing
prices, the ripple effects do exist among Corsican counties and consumers
clearly show their preference for sea views, but the magnitude is small.

Section 7.1 attempts to pull together the findings from the empirical chap
ters of this thesis. I indicate the general contribution of these chapters to
the existing literature in Section 7.2. Section 7.3 presents the strengths and
weaknesses of each model. Section 7.4 sets out possible directions for future
research.

7.1. Main Findings
The first empirical chapter (Chapter 4), “Time, space and hedonic prediction
accuracy: evidence from Corsican apartment market”1 mainly evaluates three
Bayesian hierarchical models with different spatial, temporal and spatiotempo
ral components. I attempt to select the most effective model that satisfies the
goodness of fit, the predictive power and the computational costs. Our results
demonstrated that the modified hierarchical autoregressive model (Sahu and
Bakar, 2012) is the most effective. In particular, this model involves a space
time random effect specified by an AR(1) structure with spatially correlated
but temporally independent innovations. Based on this particular component,
spatial and temporal autocorrelation across housing units is gauged. In other
words, an observation directly borrows strength from its neighbours in space
and time.

Moreover, I find that most housing structural attributes and accessibility at
tributes significantly affect housing prices. More importantly, the spatiotem
poral patterns explain a large portion of the variance. I also draw a map
showing housing price gradients. I identify the hot spots and cold spots in
terms of housing prices on the map. Some hot spots may lead to price ap
preciation by up to 82%, whereas some cold spots may result in a 45% price
reduction. Regarding the time dimension, the location of these hot spots and
cold spots has not changed dramatically between the first quarter of 2006 and

1The extracts of Chapter 4 are published in The Annals of Regional Science, 64, 367–388 (2020),
https://doi.org/10.1007/s00168019009672.

https://doi.org/10.1007/s00168-019-00967-2
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the fourth quarter of 2017.
The second empirical chapter (Chapter 5), “Unveiling spatial and temporal

patterns of second home dynamics: a Bayesian spatiotemporal analysis for a
Mediterranean island”2 demonstrates that the socalled ripple effect exists in
the Corsican second home rates. Promoted by Meen (1996), the ripple effect is
initially used to describing regional/subregional housing prices comovement
in the United Kingdom. This comovement happens on both the spatial and
temporal scales. I, therefore, intend to study the comovement of Corsican
second home rates at the county level.

In Corsica, second homes have been considered a major development is
sue, but few empirical studies discuss this issue at an island scale (Maupertuis
et al., 2017). To study the comovement of second home rates, I look into
the spatial and temporal dimensions of second home rate changes among
Corsican counties. Borrowing ideas from small area estimation, I propose a
Bayesian hierarchical model built on the BesagYorkMollie (BYM) model and
its variants (i.e. LCAR model (Leroux et al., 2000)).

Through model comparison criteria, I demonstrate that the model involving
spatial, temporal components (i.e., the LCAR component and the firstorder
random walk component) and a spatiotemporal interaction term produces the
most precise estimates and the best forecasts compared with other models
involving different combinations of spatial and temporal components. This
also implies the existence of the comovement of the second home rates in
Corsica. In addition to the spatial and temporal components, the spatiotem
poral component is used for capturing the deviation beyond the main spatial
and temporal trends.

To interpret the spatial comovement, I also identify hot spots and cold
spots, where specific counties exhibit higher second home rates or lower sec
ond home rates respectively. For instance, the Bastia area (e.g. Biguglia,
Furiani, Bastia) is a significant cold spot, whereas some counties in the Bal
agne area (e.g., Lumio) and the Southern area (e.g., Lecci) belong to hot
spots. The temporal comovement reveals a gradual increase in the second
home rate over the past 11 years. Furthermore, the study found that physical
landscape counts, coastal counties, and mountainous counties are positively

2The extracts of Chapter 5 have been required major revision in Spatial Eeconomic Analysis.
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associated with second home rates, while cultural landscape counts, number
of households and interest rates show a negative association.

The results of this study should be useful for policy makers. They can in
tervene in hot spots to curb the high second home rate and to prevent second
home buyers spilling over to adjacent counties. As a result, the inhabitants’
needs are met.

The third empirical chapter (Chapter 6), “The value of sea views in a
Mediterranean island: Hedonic analysis with the spatial multilevel model”
mainly assesses the implicit price of sea views on Corsica apartment prices
in the presence of nested spatial data structures. This study is based on the
hedonic price method, as it is the main approach for estimating the implicit
price of environmental attributes.

As a scenic amenity, views are usually perceived through human eyes and
are difficult to measure and quantify for valuation purposes. After reviewing
the literature, I find that the viewshed analysis implemented on geographic
information systems provides a feasible way to generate an objective, contin
uous measurement of views. Then, estimating sea views relies on the hedonic
price method. However, I notice that the nested data structure may affect
the results if I account for additional contextual variables. To address this is
sue, I propose a spatial multilevel model, where spatial effects and the nested
structure of data are considered simultaneously. Furthermore, this model is
extended by including a temporal component to account for temporal dynam
ics.

Our findings demonstrate that after controlling for all covariates, the sea
view has a small but statistically significant impact on apartment prices. That
is to say, home buyers have a higher marginal willingness to pay for larger sea
views, even if the magnitude is small. More importantly, I find that proximity
to beaches also produces positive impacts on apartment sale prices as well.
We may conclude that the implicit price of living near to beaches consists of
two parts, the implicit price of sea views and the implicit price of proximity to
beaches. Further, most apartment characteristics are statistically significant,
but variables associated with “EPCIs” are not. I also find that strong spatial
spillovers occur at the EPCI scale, but unobserved heterogeneity dominates
at the apartment level.
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The results of this chapter provide valuable information for planners. Based
on the estimated implicit prices, planners can prepare appropriate planning to
meet the expectations of the inhabitants and to minimize the negative impacts
on the economy, society, and environment during the land use changes.

7.2. Main contributions
In addition to the abovementioned results, this thesis contributes to the ex
isting literature on two broad aspects, the methodological proposition and the
empirical findings.

Methodologically, I apply several adhoc geoadditive models combined
with the conditional autoregressive and Gaussian processes, and the Bayesian
approach to analyze repeated crosssectional and panel data that exhibit clear
spatial and temporal dimensions. As alternatives to classical spatial economet
rics models, the proposed models are used for analyzing housing markets and
land use changes. To my knowledge, these models have not been considered
in the existing literature.

It is common knowledge that in a residential property market, if buyers
face many unobservable local factors, public amenities and unreasonable ask
ing prices of a house from a property agency, they often choose to take a
look at the prices of nearby properties. As such, they can obtain some in
formation and reduce associated uncertainty. The application of geoadditive
models with the conditional autoregressive process and the Gaussian process
preserves the idea of spatial spillovers, but the spillovers are shown in an
other manner. Both the conditional autoregressive process and the Gaussian
process borrow strength from the neighbours of an observation.

Lastly, spatial econometrics does provide a powerful tool for examining
spatial patterns across different properties. There has been a significant
amount of research on spatial effects over the last few decades, but tempo
ral dimensions have received limited attention in empirical analyses of hous
ing. Since classical spatial econometrics may not be flexible enough to handle
spatiotemporal data, I turn to geoadditive models, which can gauge spatial
and temporal dynamics in different ways. I also highlight that the integrated
nested Laplace approximation (INLA) technique is used for model fitting and
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inference throughout the thesis.

Empirically, I focus on housing prices and second home rate changes
in Corsica (a beautiful island in the Mediterranean), France. The economic
growth in the last decade has given rise to concerns about growing housing
prices and the number of second homes. Residents have experienced high
housing prices and land use conflicts. Further, few researchers focused on the
local housing market. Therefore, the inference and the prediction of housing
prices and second home dynamics are timely and needed. They are also im
perative for planners and policymakers to develop sustainable development
strategies.

Moreover, the three empirical chapters of this thesis (from Chapter 4 to
Chapter 6) investigate the determinants of housing prices, the spatial pattern
and temporal evolution of second home rate changes, and the implicit price
of sea views on apartment prices. The research questions in Chapter 4 and
Chapter 6 are addressed via the hedonic price method, since I attempt to
investigate the determinants of housing prices and to evaluate nonmarket
goods. The adjacent effect is also an important economic underpinning for
these two studies. Our findings, such as location being an important de
terminant, the sea view and the accessibility to beaches having significant
impacts, can provide useful information for planners and policymakers. Re
garding Chapter 5, I intend to investigate whether the comovement of second
home rates among all Corsican counties exists. This is done by analyzing the
spatial and temporal patterns of second home rates. Our results clearly show
the existence of the comovement. In addition, I identify the hot spots and
cold spots of second home rates, meaning that additional interventions need
to be applied to these areas.

7.3. Strengths and Weaknesses of Each Model
The proposed model in Chapter 4 has several advantages over classical spatial
econometrics models. For example, it does not require a predefined spatial
adjacency matrix, but it calculates distance (known as “spatial ranges”) where
spatial dependence diminishes to the threshold automatically. Moreover, it
offers a more flexible way to handle repeated crosssectional data compared
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with the spatiotemporal autoregressive model (Dubé and Legros, 2013a) and
the pseudopanel model (Baltagi et al., 2015).

The spatiotemporal Bayesian binomial regression described in Chapter 5 is
a new approach to handling second home rate changes. The model accounts
for both potential covariates and spatiotemporal trends, which outperforms
classical linear models and original spatiotemporal Bayesian binomial models
that do not consider covariate effects. Further, this model contains a Leroux’s
conditional autoregressive component relying on spatial adjacency matrices.
The selection of an appropriate spatial adjacency matrix is still challenging.

The multilevel spatial model in Chapter 6 is also a new approach to handle
pointreferenced housing data. Since the proposed model is different from
the spatial multilevel from Dong and Harris (2015), it enriches the spatial
econometrics literature. However, from an economic perspective, endogenous
variables may exist in the model, i.e., property tax. Moreover, for a multilevel
model, prior selection is challenging. An indepth analysis of various prior
distributions should be necessary.

7.4. Future works
In this thesis, particular attention has been paid to addressing the spatial
and/or temporal dimensions in hedonic housing prices models and mapping
second home rate dynamics. In this section, we suggest some possible direc
tions for future research.

Concerning the models in chapter 4, future studies may focus on the pre
dictive power of different spatiotemporal components, including the tensor
product approach, thinplate splines and the SPDE approach. Moreover, it is
possible to extend the proposed Bayesian hierarchical model to study the bar
gaining power associated with both home buyers and sellers in the market.
For example, weak buyers probably pay higher prices for a house, but strong
sellers may receive higher prices (Harding, Rosenthal, et al., 2003; Harding,
Knight, et al., 2003).

In Section 7.3, I have mentioned that the proposed model in Chapter 5
relies on a spatial adjacency matrix, which should be selected prudently. A
recent study on conditional autoregressive models focuses on the socalled
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stochastic spatial adjacency matrix (CorpasBurgos and MartinezBeneito, 2020).
This matrix creates an additional level in Bayesian hierarchical models for es
timating the elements in the stochastic matrix. For example, Lu and Carlin
(2005) and Lu, Reilly, et al. (2007) proposed a stochastic spatial adjacency
matrix approach, where the element in the stochastic matrix is assumed to
be a binary stochastic value following a Bernoulli distribution. I would like to
extend the model described in Chapter 4 to adapt to this flexible spatial matrix
selection approach.

On the other hand, I would also like to compare the model described in
Chapter 5 with spatial lag models with spatiotemporal trends. A few schol
ars (Ver Hoef, Hanks, et al., 2018; Wall, 2004) compare conditional autore
gressive models and spatial lag models empirically and theoretically. To my
knowledge, Simões et al. (2017) found that the spatial lag model outperform
the conditional autoregressive model when they analyzed Portuguese national
health line data. I intend to know, which model performs better in my case.

Concerning Chapter 6, future work may focus on the two aspects.

The first aspect centres on spatial adjacency matrices. Anselin and Arribas
Bel (2013) investigated a special case where spatial dependence is group
wise, with all observations in the same group as neighbours of each other.
The groupwise setting is very interesting in the multilevel modelling context.
As previously stated, EPCIs may have some impacts on individual units, known
as group dependence. Therefore, I intend to know whether a multilevel model
with a groupwise adjacency matrix outperforms other multilevel models with
traditional adjacency matrices in terms of fitting data.

Another issue is about endogenous variables. Ross and Yinger (1999)
indicated that early studies on the relationship between housing prices and
property taxes may experience endogeneity of tax rates, therefore the two
stages least square method should be used. Sirmans et al. (2008) examined
the existing literature on property tax capitalization and pointed out that one
third of the examined studies applied the two stages least square method,
others used the ordinary least square method, and some researchers applied
random coefficients models. I believe that the endogeneity of tax rates should
be investigated in the Corsican case as well. Combining the spatial multilevel
regression model with the instrumental variable approach should also be in
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vestigated in the future.
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7.5. Tables

Table 7.1: Data sources

Variable Source
Physical landscape Corsica Recreational Areas database, UMR LISA
Cultural landscape Corsica Recreational Areas database, UMR LISA
Coastal county Corsica GIS database, UMR LISA
Mountainous county Corsica GIS database, UMR LISA
Population www.insee.fr/fr/information/2008354
Household growth www.insee.fr/fr/information/2008354

Interest rate
webstat.banquefrance.fr/en/
quickview.do?SERIES_KEY=243.MIR1.Q.
FR.R.A22FRX.A.R.A.2254FR.EUR.C50

Council tax www.impots.gouv.fr/portail/statistiques
Unemployment rate www.insee.fr/fr/statistiques/1893230

Table 7.2: Descriptive statistics for the temporal variation of second home counts

Mean Min Max St. Dev.

2006 194.183 1 4474 386.796
2007 197.336 6 4465 389.425
2008 203.175 4 4906 413.219
2009 207.750 4 5077 426.535
2010 212.553 4 5115 432.917
2011 220.594 4 5375 450.401
2012 229.789 4 6025 482.729
2013 236.519 4 6025 486.182
2014 244.769 4 6748 524.319
2015 250.450 4 6539 524.530
2016 254.512 4 6581 529.661
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Table 7.3: “EPCI” identifier and corresponding names

ID Name

1 Communauté d’Agglomération du Pays Ajaccien
2 Communauté de communes de l’Alta  Rocca
3 Communauté de communes du Sartenais  Valinco
4 Communauté de communes du Sud Corse
5 Communauté d’Agglomération de Bastia
6 Communauté de communes d’îleRousse  Balagne
7 Communauté de communes de Calvi  Balagne
8 Communauté de communes de Castagniccia  Casinca
9 Communauté de communes de l’Oriente
10 Communauté de communes de l’Ouest Corse
11 Communauté de communes de la Costa Verde
12 Communauté de communes de la Haute Vallée de la Gravona
13 Communauté de communes de la Pieve d’Ornano
14 Communauté de communes de Marana  Golo
15 Communauté de communes des quatre territoires
16 Communauté de communes du Cap Corse
17 Communauté de communes du Centre Corse
18 Communauté de communes du Fium’Orbu  Castellu
19 Communauté de communes du Nebbiu Conca d’Oru
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7.6. Graphs
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Figure 7.1: Prior (red dash line) and posterior (solid line) distribution for hyperparameters in M3.
A. Precision parameter 𝜏𝑟𝑤1 for living area. B. Spatial range 𝑟 in kilometres. C. Spatial variance
𝜎2𝜔 . D. Autocorrelation parameter 𝑎.
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Figure 7.2: Adjacency matrix: rows and columns identify areas; squares identify neighbors.
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