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A PhD thesis is the final act of an initiatory journey. As is the case for most of us, numerous encounters have punctuated and influenced mine, sometimes profoundly. I would not be able to pay tribute to all of these without writing something like a novel, and, may be it sounds better to leave an aura of mystery since I would inevitably suffer from selective memory and its unfairness. Yet, some people directly and actively influenced my scientific trajectory and deserved to be mentioned for that: Hervé Froissard, my only great high school teacher in Natural Sciences, who introduced me to the magic of Evolution, although

Résumé

Depuis la naissance de la vie, son inlassable évolution a créé une diversité exceptionnelle d'entités couvrant une gamme extravagante de tailles, depuis les molécules microscopiques à la source de l'héritabilité et de l'expression des phénotypes jusqu'aux aux organismes multicellulaires et leurs sociétés. Cette grande variabilité du monde vivant, présente à la fois entre classes d'entités biologiques et au sein de ces classes (par exemple, les protéines), a souvent été expliquée théoriquement en supposant l'existence de compromis (les trade-offs) biologiques -impossibilité d'optimiser plusieurs traits à la fois -et/ou de niches spécifiques, telles que produites par la co-occurrence de plusieurs nutriments. Cependant, la manière dont ces compromis émergent au niveau cellulaire est restée, en général, insaisissable notamment du fait que les modèles d'évolution négligent le plus souvent les fondements mécanistiques et le fonctionnement réel des cellules. Dans cette thèse, je tente de construire des modèles évolutifs mécanistiques en étudiant l'une des propriétés les plus fondamentales du vivant: comment produire de l'énergie, et croitre, plus vite que les autres? Cette propriété repose au niveau cellulaire sur la structure et l'expression des enzymes. Or contrairement à l'optimisation extrême que ce rôle laisse imaginer, les enzymes ont des caractéristiques extrêmement diverses -certaines sont proches des limites physiques atteignables quand d'autres en sont très éloignées -qu'il convient d'expliquer. Par une approche de modélisation des processus cinétiques impliqués, j'ai montré que ces différences peuvent s'expliquer par des contextes sélectifs différents, caractérisant notamment les réactions dans lesquelles ces enzymes sont impliquées. Par ailleurs, l'expression d'une enzyme est le résultat d'un processus sélectif complexe faisant intervenir l'intérêt évident de catalyser la réaction concernée mais aussi des coûts globaux pour la cellule, tant en terme de production de l'enzyme que d'encombrement du cytoplasme. Ces contraintes peuvent favoriser l'évolution d'une expression partielle d'une voie métabolique, conduisant à relarguer dans le milieu des métabolites utilisables pour générer de l'énergie et pouvant donner lieu à l'évolution de spécialistes de ces métabolites dans un processus appelé alimentation croisée ou cross-feeding. La prise en compte de ces processus dans un modèle de dynamique adaptative intégrant également une dimension écologique m'a permis d'établir les conditions restreintes dans lesquelles le cross-feeding peut évoluer, faisant la lumière sur l'implication prépondérante de certains métabolites (acétate, glycérol). Dans une dernière partie, sortant du cadre strictement mécanistique de la thèse, je développe un modèle de génétique des populations destiné à expliciter les ressorts de l'épistasie métabolique et ses conséquences sur la fitness atteinte à l'équilibre mutation-sélection-dérive. Enfin, je discute des perspectives ouvertes par ce travail dont la vocation serait de contribuer au développement de cartes génotype-phénotype-fitness plus réalistes et de documenter quantitativement leur influence sur l'évolution, en combinant génétique des populations et biologie des systèmes.

Abstract

Since Life was born, its tireless evolution has created an exceptional diversity of entities spanning an extravagant range of sizes, from the microscopic molecules underlying heritability and the expression of phenotypes to multicellular organisms and their societies. This great variety of the living world, present both between classes of biological entities and within these classes (e.g. proteins), has often been explained theoretically by assuming the existence of trade-offs -impossibility to optimize multiple traits at once -and / or specific niches as produced by the co-occurrence of multiple nutrients. However, the way in which these internal compromises emerge at the cellular level has remained in general elusive, especially since models of evolution most often overlook the mechanistic foundations and the very functioning of cells. Across this thesis, I try to build mechanistic evolutionary models by studying one of the most fundamental property of living things: how to produce energy, and grow, faster than others? This property is based at the cellular level on the structure and expression of enzymes. Rather than the extreme optimization this role suggests, enzymes have extremely diverse characteristics -some are close to achievable physical limits while others are very far from them -that should be explained. Through a modeling approach of the kinetic processes involved, I have shown that these differences can be explained by different selective contexts, characterizing in particular the reactions in which these enzymes are involved. Furthermore, the expression of an enzyme is the result of a complex selective process involving the obvious interest of catalyzing a given reaction but also overall costs for the cell, both in terms of production of the enzyme and of crowding within the cytoplasm. These constraints can promote the evolution of a selective (partial) expression of a metabolic pathway, leading to the release into the medium of metabolites, which can be used as an energetic source. In turn,this can give rise to the evolution of organisms specialised at these metabolites through a process called cross-feeding. Taking into account these processes in an adaptive dynamic model while also integrating an ecological dimension allowed me to establish the restricted conditions in which the cross-feeding may evolve, shedding light on the preponderant implication of certain metabolites (acetate, glycerol). In a last part, outside the strictly mechanistic framework of the thesis, I develop a model of population genetics intended to clarify the mainsprings of metabolic (weakest link) epistasis and its deleterious consequences on fitness at the mutation-selection-drift equilibrium. Finally, I discuss the perspectives opened up by this whole work, the vocation of which would be to contribute to the development of more realistic genotypephenotype-fitness maps and to document their quantitative influence on evolution, through the combination of population genetics and systems biology.

v "Science is like sex: sure, it may give some practical results, but that's not why we do it." 

General introduction

Preamble "If one doctor doctors another doctor, does the doctor who doctors the doctor doctor the doctor the way the doctor he is doctoring doctors? Or does he doctor the doctor the way the doctor who doctors doctors?" Why on earth should anyone write a PhD thesis? Surely, it enables the writer to become a doctor, which, as far as the lay public is concerned, means that you can doctor people, raising questions about the appropriate way you should do that as the apocryphal tongue twister states.

Rightly enough, most of doctors are not, in fact, entitled to deliver medication. Therefore, the plot thickens, echoing questions once raised by the great Umberto Eco [START_REF] Eco | Comment écrire sa thèse[END_REF] who assimilated a thesis1 with a treasure hunt. But Eco refers to an ancient time, when reading was neither a luxury, nor an incongruity. There was a time not that far back when doing a PhD was, surprisingly, aimed at writing a PhD thesis that people would actually read. It even happened that a PhD work was awarded the Nobel Prize, when the then student Louis de Broglie extended the wavecorpuscle duality to matter. Nowadays, the question should be : "Why on earth should anyone write something that hardly anyone will read?" There exists some simple answers to that: it is, as it were, an obliged step to obtain the sacred diploma; but, because what matters to make a scientific living is publishing articles, with the aim of increasing any arbitrary if not preposterous index, one should not bother that much with the thesis thing and instead focus on writing these papers. Some would argue that the writing exercise is first and foremost a personal quest, a soul searching, so to speak. My opinion is that we shall not embrace these point of views, although

Introduction

"If we knew what we were doing, it would not be called research, would it?."

Albert

As Einstein brilliantly put it, research is about travelling in an unknown land, where unknown unknowns mingle with known unknowns, both of which sometimes lie quietly, hidden behind unknown erroneous truths. Think about Ptolemy, admiring his ingenious system that describes how stars and planets orbit around the earth in the not yet called Solar System. Definitely, this held together, like a house of cards; but in a sense, it was a part of the truth, like a flat earth is, in first approximation, true. Indeed, no truth is definitive in Science, which inspired Einstein the following ironical parable: "Student: -Dr. Einstein, Aren't these the same questions as last year's final exam? Dr. Einstein: -Yes; But this year the answers are different."

Since a PhD is the first step into the maze of scientific research, this should be anything but a surprise when a PhD does end up far from where it was heading. This is commonly appreciated by considering that what matters (most) is not the end but the initiatory route followed to reach this end. Yet, this adage sounds somewhat vague and should dissatisfy any trained ear, mainly because it does not insist enough on the witty role played by the route itself, both on its own edification and on the resulting insights, as argued by Van Valen (1976), one of the most inspirational evolutionary scientist ever, in a visionary grant criticism: "I have had several useful ideas in biology and mathematics. None were developed under a government grant, and none could have been. I have also had several grants and eventually realised that the required conformity stultified my research". Wrapped up with contingency and necessity, this evolutionary-like phenomenon holds at any scale of scientific research, from the individual project up to the history of entire fields, not only to its learning stage, and can be likened to Lakatos' concept of research programs fecundity according to which the acknowledgement of a theory relies on its ability to give birth to new research programmes [START_REF] Lakatos | Falsification and the Methodology of Scientific Research Programmes[END_REF][START_REF] Chalmers | What is This Thing Called Science[END_REF]. How much Darwin's ideas were guided by its trip on the Beagle [START_REF] Darwin | Journal of researches into the natural history and geology of the countries visited during the voyage of[END_REF], its way of collecting facts; and would they have at all emerged had he not boarded on it, no one shall never know. Nor shall we ever know how much they changed the way he did and we do research in Biology, and whether it would have been different had Wallace discovered Evolution alone [START_REF] Wallace | On the Tendency of Varieties to Depart Indefinitely From the Original Type[END_REF].

My PhD work was no exception to the path-dependent pattern, as we shall explain further on, but still, there is more to the story than this universal pattern. To follow its logic requires to go back to its genesis and tell its history, an erstwhile exercise nowadays overlooked in Science, often sacrificed for the sake of both legibility and rationality. At the roots of this project was the idea that cell differentiation, the traditional distinctive trait of multicellular organisms, could have evolved first within unicellular organisms, contrary to the dominant paradigm (see Figure 1.1) according to which complex multicellular organisms are cell aggregates that later acquired the ability to differentiate into several cell types. This alternate scenario had already been suggested by [START_REF] Ispolatov | Division of labour and the evolution of multicellularity[END_REF] and Niklas and Newman [START_REF] Niklas | The origins of multicellular organisms[END_REF][START_REF] Niklas | The evolutionary-developmental origins of multicellularity[END_REF], and is supported by the ubiquitous presence of the multicellular genetic toolkit among unicellular organisms that are not considered to live in colonies [START_REF] Rokas | The Origins of Multicellularity and the Early History of the Genetic Toolkit For Animal Development[END_REF][START_REF] Ruiz-Trillo | A phylogenomic investigation into the origin of metazoa[END_REF][START_REF] Tikhonenkov | Insights into the origin of metazoan multicellularity from predatory unicellular relatives of animals[END_REF]. What is more, the widespread existence of non-genetic unicellular heterogeneity2 (Veening et al., 2008a;[START_REF] Ratcliff | Individual-Level Bet Hedging in the Bacterium <em>Sinorhizobium meliloti<[END_REF]Huh et al., 2011a;[START_REF] Cerulus | Noise and Epigenetic Inheritance of Single-Cell Division Times Influence Population Fitness[END_REF][START_REF] Takhaveev | Metabolic heterogeneity in clonal microbial populations[END_REF] lends further credence to a "differentiation-first" scenario whereby complex multicellular organisms evolved from unicellular ancestors prone to differentiation. To get a clearer picture into the zoo of cells, we review the multiple forms of cell diversification3 that exists in section 2.2.2, and introduce a unifying framework through which differentiated ones -where diversification results from the differential expression of the same genotype -all belong to one specific dimension of Life.

For it triggered a dramatic increase in complexity and thereby in diversity [START_REF] Koonin | The Biological Big Bang model for the major transitions in evolution[END_REF], Evolution towards Multicellularity is considered one of the few Major Evolutionary Transitions -METs thereafter -Life came through during its course on earth [START_REF] Szathmáry | The major evolutionary transitions[END_REF][START_REF] Szathmáry | Toward major evolutionary transitions theory 2.0[END_REF]. More precisely, this is an Evolutionary Transition in Individuality [START_REF] Michod | Cooperation and Conflict in the Evolution of Individuality. II. Conflict Mediation[END_REF]; developed a model suggesting joint evolution between aggregation and cooperation, triggered by the emergence of aggregation. Meanwhile, [START_REF] Rokas | The Origins of Multicellularity and the Early History of the Genetic Toolkit For Animal Development[END_REF], [START_REF] Ruiz-Trillo | A phylogenomic investigation into the origin of metazoa[END_REF] and [START_REF] Tikhonenkov | Insights into the origin of metazoan multicellularity from predatory unicellular relatives of animals[END_REF] have enlightened us about the ubiquitous presence of multicellular toolkit genes among unicellulars [START_REF] Sebé-Pedrós | The Dynamic Regulatory Genome of Capsaspora and the Origin of Animal Multicellularity[END_REF][START_REF] Sebé-Pedrós | The origin of Metazoa: a unicellular perspective[END_REF][START_REF] Ferrer-Bonet | Capsaspora owczarzaki[END_REF], and [START_REF] Niklas | The evolutionary-developmental origins of multicellularity[END_REF] reminded us that differentiation can be advantageous even for unicellular organisms, which may have therefore paved the way for complex multicellularity [START_REF] Brunet | The Origin of Animal Multicellularity and Cell Differentiation[END_REF]. [START_REF] Michod | Transitions in individuality[END_REF][START_REF] West | Major evolutionary transitions in individuality[END_REF] -ETI -since it comes with a shift of the level on which Natural Selection operates [START_REF] Buss | The Evolution of Individuality[END_REF]. During this transition, an apparent transfer of fitness occurs that brings together lower level units into a collective to eventually form a higher level unit [START_REF] Okasha | Multilevel Selection and the Major Transitions in Evolution[END_REF]Bourrat, 2015b). We review what makes these transitions special and how they foster Life diversity in section 2.1.3.

To date, two major drivers have generally been put forward to explain the Evolution of the incredible diversity of Life -see Chapter 2 for a selective introduction to this diversity. The first one is rooted in the Neutral Corpus of Evolution [START_REF] Wright | Evolution in Mendelian Populations[END_REF][START_REF] Bibliography Kimura | Evolutionary Rate at the Molecular Level[END_REF][START_REF] Ohta | Slightly Deleterious Mutant Substitutions in Evolution[END_REF][START_REF] Lynch | Phenotypic Evolution by Neutral Mutation[END_REF]: because there is a nearly neutral genotypic space where organisms can walk randomly as exemplified in [START_REF] Huynen | Exploring phenotype space through neutral evolution[END_REF], the input of new genotypes -through any process susceptible to do so -can exceed the amount that vanishes through extinction events and hence sustains an increase in diversity, either transient or longer lasting, an idea at the core of Evolutionary thinking [START_REF] Darwin | On the origin of species by Means of Natural Selection[END_REF][START_REF] Wallace | On the Tendency of Varieties to Depart Indefinitely From the Original Type[END_REF], in fact, that definitively acquired its credentials with the Modern Synthesis [START_REF] Wright | Evolution in Mendelian Populations[END_REF]Wright, 1932); survived the test of time [START_REF] Kimura | Protein Polymorphism as a Phase of Molecular Evolution[END_REF]; and even thrived through the ages up to the controversial but successful Neutral Theory of Biodiversity [START_REF] Hubbell | Tree Dispersion, Abundance, and Diversity in a Tropical Dry Forest[END_REF][START_REF] Bell | Neutral Macroecology[END_REF]Hubbell, 2001;[START_REF] Rosindell | The Unified Neutral Theory of Biodiversity and Biogeography at Age Ten[END_REF][START_REF] Missa | Understanding how biodiversity unfolds through time under neutral theory[END_REF].

The second explanation originates from the adaptive side of Evolution [START_REF] Darwin | On the origin of species by Means of Natural Selection[END_REF]Fisher, 1930;Wright, 1932;[START_REF] Smith | The Logic of Animal Conflict[END_REF]: if organisms face a trade-off [START_REF] Stearns | Trade-Offs in Life-History Evolution[END_REF][START_REF] Roff | The evolution of trade-offs: where are we?[END_REF][START_REF] Garland Theodore | Trade-offs[END_REF], a specialisation may occur, that enables an organism to thumb its nose at its effects. This is where an ETI is supposed to enter the game: depending on the shape of this trade-off, ETIs may be advantageous for a (biological) information as it is associated with a higher average performance [START_REF] Michod | Transitions in individuality[END_REF]. We review the nitty-gritty of how these processes operate to promote diversification in section 3.1.2, before discussing in depth how they are suggested to fuel ETIs. Hitherto, insights on the Evolution of Multicellularity -and more broadly cell diversity -have mostly stemmed from frameworks that rely on arbitrary -and ad hoc -fitness functions, aiming to show under which conditions Natural Selection should promote codependencies among lower-level units through labour division, and, in turn, drive this transfer of fitness. More specifically, these functions involve two components -fecundity and survivalwhich are supposed to be subject to a trade-off whose convexity determines the benefit conferred by sharing the tasks [START_REF] Michod | Transitions in individuality[END_REF]Michod, 2005;[START_REF] Bibliography Rueffler | Evolution of functional specialization and division of labor[END_REF][START_REF] Nedelcu | The Evolution of Self During the Transition to Multicellularity[END_REF].

Despite being rather artificial, this framework stimulated thoughts and provided the community with qualitative predictions where an explicit trade-off prevails and can readily be captured.

The great philosopher, Bertrand Russell, once said that the greatest challenge to any thinker is stating the problem in a way that will allow a solution, and it is very true and even unavoidable.

Of course, often in the History of Science, scientists have invented tools to answer their questions.

Isaac Newton developed its methods of fluxions 4 to understand the laws of motions [START_REF] Kleiner | History of the Infinitely Small and the Infinitely Large in Calculus[END_REF] while Fisher imagined the analysis of variance at the onset of his career when he was starting to study population genetics [START_REF] Bibliography Fisher | XV.-The Correlation between Relatives on the Supposition of Mendelian Inheritance[END_REF][START_REF] Fisher | On the "Probable Error" of a Coefficient of Correlatino Deduced from a Small Sample[END_REF][START_REF] Conniffe | R.A. Fisher and the development of statistics -a view in his centenary year[END_REF]. But no matter how inventive scientists are, the invention still makes them look at their problem through, as it were, a particular inflexible lens. In other words, stating the problem in a way that allows a solution coincides with charting one way forward and impacts not only the solutions we find but also how we interpret both the problem, and these solutions. Thus far, the approach used by scientists interested in multicellularity evolution are faced with three closely related limitations.

First, it focuses on the effect of an uncharacterized (and unrealistic) preexisting trade-off whereas identifying how it emerges from cellular underpinnings and its ensuing shape (and dimensionality) remains a conundrum. Meanwhile, how much the chosen definition for fitness -at both levels of individuality -can capture biological reality is anything but clear, to say the least, especially when labour division facilitates the emergence of and/or the exploitation of a new ecological niche5 . As a corollary, it is hard if not impossible to make quantitative -or even testable -predictions beyond wonderful but simplistic experiments [START_REF] Ratcliff | Experimental evolution of multicellularity[END_REF][START_REF] Bernardes | The evolution of convex trade-offs enables the transition towards multicellularity[END_REF]. No less importantly, ignoring the mechanisms at the root of the trade-off(s) rules out the possibility for organisms to overcome them through other processes than the transition itself.

Finally, without specifying a genotype-phenotype map it is impossible to determine the genetic and ecological factors making this transition susceptible to happen (or preventing it). In a sense, we do not examine how likely it is that Evolution chooses Multicellularity over the constellation of imaginable (and unimaginable) unicellular strategies. Our original goal was to tackle these issues by adopting a complementary approach (to these previous works) based on a mechanistic framework. Achieving such a goal calls first for a closer look on what fitness is.

"Yes, fitness is the central concept of evolutionary biology, but it is an elusive concept. Almost everyone who looks at it seriously comes out in a different place."

Leigh Van Valen

Paradoxically, most foundational concepts in Science have proven contentious, fleeting and evanescent glimpses teetering as soon as one attempts to get close, akin speed and position which refuse to be captured together at the tiniest scales, questioning their very existence [START_REF] Heisenberg | Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik[END_REF][START_REF] Rozema | Violation of Heisenberg's Measurement-Disturbance Relationship by Weak Measurements[END_REF][START_REF] Ozawa | Heisenberg's original derivation of the uncertainty principle and its universally valid reformulations[END_REF]. Sometimes absolute as in Newton's Principia [START_REF] Greene | The elegant universe: Superstrings, hidden dimensions, and the quest for the ultimate theory[END_REF][START_REF] Greene | The fabric of the cosmos : space, time, and the texture of reality[END_REF], sometimes relative as under Ernst Mach's pen [START_REF] Greene | The elegant universe: Superstrings, hidden dimensions, and the quest for the ultimate theory[END_REF][START_REF] Raine | Mach's Principle in General Relativity[END_REF], Space and Time have been tossed back and forth ever since They exist, and Their ongoing turbulent journey is not finished at all now that They are woven in the same fabric [START_REF] Einstein | On the electrodynamics of moving bodies[END_REF], for Their dimensionality is henceforth standing on the operating table of scientists [START_REF] Kaluza | Zum Unitätsproblem der Physik[END_REF][START_REF] Klein | QUANTUM THEORY AND FIVE-DIMENSIONAL RELATIVITY THE-ORY[END_REF][START_REF] Greene | The fabric of the cosmos : space, time, and the texture of reality[END_REF], awaiting to explain reality by the impossible as pointed out by Alexandre Koyré [START_REF] Koyré | Du monde clos à l'univers infini[END_REF]. No one exactly knows, either, what Money is, other than a belief, nor what role It clearly plays on economic processes : while some proposed that It is purely neutral, especially in the long-run [START_REF] Friedman | The Role of Monetary Policy[END_REF][START_REF] Hall | Short-Run and Long-Run Effects of Milton Friedman's Presidential Address[END_REF][START_REF] Salerno | Two views on neutral money: Wieser and Hayek versus Menger and Mises[END_REF], others thought that burying money to stimulate the creation of industries specialised at unearthing it could be fruitful, at least under certain circumstances such as a job crisis (Keynes, 1936). Life also had Its share of troubles going through the mind of scientists [START_REF] Schrödinger | What is Life? The Physical Aspect of the Living Cell[END_REF][START_REF] Forterre | Defining Life: The Virus Viewpoint[END_REF][START_REF] Weber | What is Life? Defining Life in the Context of Emergent Complexity[END_REF][START_REF] Tessera | Origin of evolution versus origin of life: a shift of paradigm[END_REF]. As more than a hundred definitions have been recorded [START_REF] Trifonov | Vocabulary of Definitions of Life Suggests a Definition[END_REF], some of these scientists would now willingly abandon completely the very idea of a definition to rely instead on a fuzzy logic [START_REF] Bruylants | Is it Useful to Have a Clear-cut Definition of Life? On the Use of Fuzzy Logic in Prebiotic Chemistry[END_REF] more capable to accommodate with a continuous scale from non-life to life and where, following Joseph Felsenstein, "Rocks [would be] the outgroup" [START_REF] Felsenstein | Cases in which Parsimony or Compatibility Methods Will be Positively Misleading[END_REF]; but, as coal may not be, one may question : which rock is the outgrup, Joe?

Fitness has definitely earned its place in this distinguished family, and not only because Van

Valen is always right. For a long while, Karl Popper denied to Evolution Its scientific status on the ground that fitness is a tautology [START_REF] Popper | Unended quest: An intellectual autobiography[END_REF], which it is, as long as one essentially stares at it through the mesmerizing metrics (and statistical) prism6 , something reflected in the most basic theorems of Natural Selection (Fisher, 1930;[START_REF] Price | Fisher's 'fundamental theorem' made clear[END_REF][START_REF] Wagner | The measurement theory of fitness[END_REF][START_REF] Queller | Fundamental Theorems of Evolution[END_REF]. Fitness measures the ability of an entity to multiply (not to survive, contrary to a common shortcut) that decides its fate in the struggle with environment for existence [START_REF] Darwin | On the origin of species by Means of Natural Selection[END_REF][START_REF] Wallace | On the Tendency of Varieties to Depart Indefinitely From the Original Type[END_REF]Haldane, 1932;Mayr, 1992;[START_REF] Bennett | Evolution and Ecology: The Pace of Life[END_REF]; as such, it can be the object of a measurement theory [START_REF] Wagner | The measurement theory of fitness[END_REF]. In a sense, it is the mere mathematical translation of the idea that the more one reproduces in a lifetime (Orr, 2009), the more one will be represented as time goes by, regardless of whether it is detrimental to another entity or not, an idea that Popper himself applied to highlight the evolutionary logic behind the scientific approach [START_REF] Popper | Objective Knowledge: An Evolutionary Approach[END_REF] 7 . If each star -or cloud, or idea, or whatever physical or virtual object one may think to -gives birth to more stars after it has died, one will see a universe filled with more and more stars: stars would have a high fitness, multiplying ad infinitum. Recently, the case has incidentally been made that there could be Natural Selection at the level of universes [START_REF] Smolin | The life of the cosmos[END_REF], which would draws its source from the existence of differential fitnesses between those having distinct laws 8 . At this stage though, it remains effectively untestable. The problem raised by Popper was that fitness measures the ability of an entity to survive but that we determined this ability by measuring the survival, giving rise to a circular reasoning. What unequivocally makes Evolution a scientific theory is that fitness emerges from mechanistic underpinnings, a case which was recently made by [START_REF] Doebeli | Towards a mechanistic foundation of evolutionary theory[END_REF], albeit without getting past the metrics problem: since they only insist on the importance of drawing fitness from birth and death contributions, they do not propose solutions to the riddle of what fitness is in the first place.

Fitness is the ability of an heritable information [START_REF] Wagner | The road to modularity[END_REF] to exploit its environment(s) (Haldane, 1932) in order to multiply [START_REF] Sahney | Links between global taxonomic diversity, ecological diversity and the expansion of vertebrates on land[END_REF], that is to maximize its (geometric) growth rate like in predator-prey models [START_REF] Lotka | Elements of physical biology[END_REF][START_REF] Volterra | Fluctuations in the Abundance of a Species considered Mathematically[END_REF][START_REF] Sibly | Population growth rate and its determinants: an overview[END_REF]. For one heritable information in one given environment, this ability results from its effective biomass production -that enabling the pursuit of the proliferative process -after deduction of the costs incurred to produce it, be they endogeneous like toxic molecules or exogeneous like predatory factors 9 . In Natura, environment are complex fabrics, varying in space, time and ecological conditions, be they abiotic or biotic. Bypassing many of these details has proven incredibly successful to understand the nature of evolutionary processes, but it has also often left us embarrassed with an undecidable ingrowing bundle of theories [START_REF] Forber | Spandrels and a pervasive problem of evidence[END_REF] -as exemplified by the question of genome size evolution and the C-value enigma according to which genome size bears no actual relation with the putative complexity of organisms [START_REF] Gregory | Coincidence, coevolution, or causation? DNA content, cellsize, and the C-value enigma[END_REF][START_REF] Blommaert | Genome size evolution: towards new model systems for old questions[END_REF]. This may be due, on the one hand, to the true existence of many processes susceptible to produce similar outcomes and the consequent intrinsic contingency of Evolution as well as it can proceed, on the other hand, from the lack of Biology in these predictive models. Whichever reason is true, if mutually exclusive, deciding requires to deepen the field of Quantitative Evolution 10 (Brookfield, 2010), a daunting task because if Biology is doubtless the historical product of a specific kind of physicochemical systems sieved by Evolution, Evolution has to cope with the very same Biology It has created through the previous paths It took.

In the case of cells, whether it be to apprehend quantitatively fitness transfers or even the mere effect of Evolution on phenotypes, we have made the case that we need to develop models where the mapping of genotypes to fitness [START_REF] Bershtein | Bridging the physical scales in evolutionary biology: from protein sequence space to fitness of organisms and populations[END_REF][START_REF] Manrubia | From genotypes to organisms: State-of-the-art and perspectives of a cornerstone in evolutionary dynamics[END_REF] through their phenotypes genuinely reflects cellular processes and their eventual trade-offs. Guided by the previous developments about fitness, let us now look at what such mapping look like in real life.

Within cells, molecular phenotypes 11 stem from the specific expression of genes controlled by gene networks through the interaction between transcription factors and cis-regulatory elements and further multiple post-transcriptional regulatory processes [START_REF] Davidson | Gene regulatory networks[END_REF][START_REF] Sherman | Thermodynamic State Ensemble Models of cis-Regulation[END_REF] -reviewed in section 3.2.2. Involving finite numbers of molecules and binding motifs, gene expression is thereby intrinsically noisy [START_REF] Spuldich | Non-genetic individuality: chance in the single cell[END_REF][START_REF] Elowitz | Stochastic Gene Expression in a Single Cell[END_REF][START_REF] Raser | Noise in Gene Expression: Origins, Consequences, and Control[END_REF], setting an irreducible threshold above which noise tuning and tunability are themselves being besides subject to Evolution [START_REF] Eldar | Functional roles for noise in genetic circuits[END_REF]Sanchez et al., 2013a;[START_REF] Viney | Adaptive noise[END_REF].

Mutations affecting these networks create a complex genotype space where neighbours may correspond to a broad range of phenotypic strategies, possibly very distinct from one another. In turn, functional phenotypes 12 result from the specific combination of relatively well-known chemical reactions between expressed proteins together and/or with metabolites and polypeptides (Michaelis et al., 1913a;[START_REF] Briggs | A Note on the Kinetics of Enzyme Action[END_REF]Haldane, 1930;Stein, 1986a;[START_REF] Bosdriesz | Low affinity uniporter carrier proteins can increase net substrate uptake rate by reducing efflux[END_REF][START_REF] Srinivasan | A guide to the Michaelis-Menten equation: steady state and beyond[END_REF]; most of which occur within the peculiar, packed and viscous cellular context [START_REF] Ellis | Macromolecular crowding: obvious but underappreciated[END_REF][START_REF] Zhou | Macromolecular Crowding and Confinement: Biochemical, Biophysical, and Potential Physiological Consequences[END_REF] in a more or less synchronised fashion throughout an organism's life. These reactions are more or less directly contributing to the production of reproductive biomass: while metabolism is the direct biomass plant of the cell [START_REF] Wagner | The road to modularity[END_REF], drug resistance proteins [START_REF] Stiffler | Evolvability as a Function of Purifying Selection in TEM-1 -Lactamase[END_REF][START_REF] Rodrigues | Biophysical principles predict fitness landscapes of drug resistance[END_REF], for instance, indirectly increase the flux of biomass under certain ecological conditions despite not producing any of the biomass necessary to reproduce [START_REF] Feist | The biomass objective function[END_REF]. On the final side of the map, fitness derives from the ability of these cells to use this biomass in order to produce new cells, that is, roughly speaking, to grow up to twice its (membrane) size while doubling its information and expression content: the effort of biosynthesis is at least twofold, shared between the allocation to cell maintenance -compensating for biomolecules degradation -and that to cell growth -compensating for the dilution effect and producing membranes [START_REF] Lynch | The bioenergetic costs of a gene[END_REF]. We review how functional phenotypes emerge in section 3.2.1, starting with the principles of biochemical reactions and metabolism, and their modelling, before focusing on cellular constraints and their link with trade-offs. We then discuss in section 3.2.2 how gene regulatory networks function and how they influence evolutionary trajectories through their link with the phenotype space and its sub-spaces.

To meet these issues, the last decades of research have seen the innovative developments of evolutionary simulators [START_REF] Lehman | The Surprising Creativity of Digital Evolution: A Collection of Anecdotes from the Evolutionary Computation and Artificial Life Research Communities[END_REF] based on digital organisms, dating back to the pioneering work on Artificial Life of [START_REF] Hogeweg | Simulating the growth of cellular forms[END_REF] and the first instances of cellular automaton [START_REF] Wolfram | Statistical mechanics of cellular automata[END_REF][START_REF] Hogeweg | Cellular automata as a paradigm for ecological modeling[END_REF]. In these frameworks, digital evolution is used to simulate that of real complex systems [START_REF] Lenski | Genome complexity, robustness and genetic interactions in digital organisms[END_REF][START_REF] Adami | Evolution of biological complexity[END_REF][START_REF] Ofria | Avida: a software platform for research in computational evolutionary biology[END_REF]Knibbe et al., 2007a). Some of them introduce emerging fitness definitions and cellular phenotypes driven by the expression of proteins through gene networks (Hogeweg, 2000;Knibbe et al., 2007b;Knibbe et al., 2007a;[START_REF] Dijk | Trusting the hand that feeds: microbes evolve to anticipate a serial transfer protocol as individuals or collectives[END_REF][START_REF] Bibliography Meijer | Contingent evolution of alternative metabolic network topologies determines whether cross-feeding evolves[END_REF]. Because they do not set a priori assumptions on the phenotype space, the way it is explored and the fitness each of them yields, these in silico experiments are capable to bring a new evolutionary perspective sharing similarities with the Long Term Experiment in Evolution [START_REF] Lenski | Long-Term Experimental Evolution in Escherichia coli. I. Adaptation and Divergence During 2,000 Generations[END_REF][START_REF] Lenski | Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations[END_REF] -LTEE hereafter -endorsing Cocteau's precept that "since these mysteries exceed our grasp, we shall pretend to have been their instigator". Their immense advantage -both for the experimenter's busy schedule and the course of the experiments -is to be far less time consuming and time-dependent, thus facilitating the test of how some factors of interest influence the course of Evolution: for instance, Meijer et al.

(2020) have recently shown that the evolution of cross-feeding seems to be subject to contingency, echoing predating results from the LTEE [START_REF] Blount | Historical contingency and the evolution of a key innovation in an experimental population of <em>Escherichia coli</em>[END_REF]. In a first work aiming to determine whether noise in gene expression could be exploited by Evolution in response to noise in the environment 13 , we built such an evolutionary model based on mechanistic underpinnings about genetic, cellular and metabolic processes. As previously stated, our aim was also to see if in silico Evolution would favour the evolution of cell differentiation among unicellular organisms. This framework is described in the first chapter of results -Chapter 4. Preliminary simulations suggest that environmental noise can promote the evolution of different levels of phenotypic heterogenity [START_REF] Ackermann | A functional perspective on phenotypic heterogeneity in microorganisms[END_REF][START_REF] Norman | Stochastic Switching of Cell Fate in Microbes[END_REF][START_REF] Boxtel | Taking chances and making mistakes: non-genetic phenotypic heterogeneity and its consequences for surviving in dynamic environments[END_REF] -where a single genotype produces a broad range of phenotypes -through the exploitation of noise in gene expression and indicate how this degree of cellular heterogeneity is canalized by the frequency of environmental fluctuations.

However, contrary to theoretical expectations, diversified bet-hedging -where a single genotype produces a given amount of canalized phenotypes -did not evolve and, ignoring the shape and interrelationships of the genotype-phenotype-fitness map kept us from resolving which factors precluded it.

In fact, thinking about these outcomes is what made us change our mind on the purpose of such models, at least given the current state of the art, because, as LTEE experiments, they need be understood on their own; rather than unreasonably varying each of the numerous parameters in the hope of finding the combination(s) favouring the expected behaviour(s), we decided to understand each of the constitutive module independently. In brief, these modules are the gene network, the cell metabolism or metabolic network, the cellular mechanisms behind replication and survival, which, coupled with competition, define fitness, and the environmental complexity. Because one has to start somewhere, we focused at this stage (and during the rest of my PhD) on the metabolic definition of fitness and how it interacts with the evolutionary process through competition and mutational processes. First, we built metabolic fitness landscapes from enzyme-substrate reactions whose efficiency relies on their manifold kinetic parameters and their costly expression. It turns out that building such multidimensional metabolic fitness landscapes from a theoretical point of view had not been achieved before but on a case-by-case basis [START_REF] Dean | Fitness as a function of -galactosidase activity in Escherichia coli[END_REF][START_REF] Dykhuizen | Metabolic flux and fitness[END_REF][START_REF] Yi | Adaptive Landscapes in the Age of Synthetic Biology[END_REF]. Because some of these dimensions can influence fitness and hence buffer each other weaknesses, they can partly explain why enzyme efficiencies resemble a zoo when gathered together [START_REF] Bar-Even | The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters[END_REF]. Along with genetic drift, this dimensionality had long been suggested as a possible explanation for this broad variability [START_REF] Bibliography Hartl | Limits of adaptation: the evolution of selective neutrality[END_REF][START_REF] Clark | Mutation-selection balance and metabolic control theory[END_REF][START_REF] Yi | Adaptive Landscapes in the Age of Synthetic Biology[END_REF]. Instead, we have shown in Chapter 5 (article published in Molecular Biology and Evolution) that this explanation is unlikely if not unfounded. Enzyme efficiencies should on the contrary be highly predictable when the mutation-selection-drift has established, while data CHAPTER 1. GENERAL INTRODUCTION indicate that they are in fact far more contingent on chemical and metabolic features than related to effective population sizes of organisms. We determined that the existence of local metabolic and enzyme-specific constraints modulate fitness landscapes on which enzymes evolve. These key drivers are extensively studied in Chapter 5 and we discuss how they herald quantitative insights on enzyme kinetics as our predictions are readily testable.

Simultaneously, not only are enzyme efficiencies widely distributed, most of them are also moderately efficient and, even more surprisingly, far off their expected physical limits [START_REF] Bar-Even | The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters[END_REF][START_REF] Bar-Even | The Moderately Efficient Enzyme: Futile Encounters and Enzyme Floppiness[END_REF]. As we have shown in Chapter 5, compensating for this effect through higher concentrations is not appropriate and should be counter-selected. More generally, enzyme efficiencies can be profoundly affected when the cellular content reaches a level that hinders the diffusion of macromolecules [START_REF] Han | Macromolecular diffusion in crowded solutions[END_REF][START_REF] Roosen-Runge | Protein self-diffusion in crowded solutions[END_REF][START_REF] Andrews | Effects of surfaces and macromolecular crowding on bimolecular reaction rates[END_REF], which also occurs as the metabolic network expands. Several consequences follow from this endogenous cellular trade-off, among which the emergence of a ceiling for the proteome size and the resulting limitation on the number of tasks -performed through chemical reactions, often embedded in pathways -a cell can concurrently carry out. Because all tasks do not have the same return, some may be more readily sacrificed: self-evidently, a pathway that yields few biomass or energy relatively to a very high initial protein investment may often prove ill-adapted. Yet, more interestingly, even the highly profitable respiration pathway is removed from the phenotype under certain unexpected circumstances where oxygen is effortlessly available, as exemplified by the Warburg effect in cancer cells [START_REF] Warburg | THE METABOLISM OF TUMORS IN THE BODY[END_REF][START_REF] Crabtree | Observations on the carbohydrate metabolism of tumours[END_REF][START_REF] Vander Heiden | Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation[END_REF]. Known more generally as overflow metabolism [START_REF] Vemuri | Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio[END_REF][START_REF] Valgepea | Systems biology approach reveals that overflow metabolism of acetate in Escherichia coli is triggered by carbon catabolite repression of acetyl-CoA synthetase[END_REF], this process, appears tightly linked with membrane crowding [START_REF] Zhuang | Economics of membrane occupancy and respiro-fermentation[END_REF][START_REF] Szenk | Why Do Fast-Growing Bacteria Enter Overflow Metabolism? Testing the Membrane Real Estate Hypothesis[END_REF] and efficient proteome allocation [START_REF] Molenaar | Shifts in growth strategies reflect tradeoffs in cellular economics[END_REF][START_REF] Basan | Overflow metabolism in Escherichia coli results from efficient proteome allocation[END_REF][START_REF] Peebo | Proteome reallocation in Escherichia coli with increasing specific growth rate[END_REF] though sealing the deal still deserves more examination [START_REF] Zeng | Modelling overflow metabolism in Escherichia coli with flux balance analysis incorporating differential proteomic efficiencies of energy pathways[END_REF]. In this part of our work, we focused on a related issue dealing with proteome allocation, trying to answer whether cross-feeding, sometimes sometimes referred to as syntrophy (see section 2.2.2 for details) [START_REF] Morris | Microbial syntrophy: interaction for the common good[END_REF][START_REF] Smith | The Classification and Evolution of Bacterial Cross-Feeding[END_REF], can evolve in response to these intrinsic cellular constraints. Crossfeeding is a cellular behaviour where organisms feed on the (possibly wasted) product released by other ones [START_REF] Bibliography Seth | Nutrient cross-feeding in the microbial world[END_REF][START_REF] Smith | The Classification and Evolution of Bacterial Cross-Feeding[END_REF]. There have been many projects dealing with the evolutionary relevance of cross-feeding interactions. Yet, this question is of noticeable interest owing to the fact that for whatever unknown reason, some metabolites -namely glycerol and acetate -are more prone to be involved in such interactions (San Roman et al., 2020) 14 . It turns out that these two metabolites [START_REF] Gibson | Movement of acetate across the cytoplasmic membrane of the unicellular cyanobacteria Synechococcus and Aphanocapsa[END_REF][START_REF] Orsi | Permeability of Small Molecules through a Lipid Bilayer: A Multiscale Simulation Study[END_REF][START_REF] Milo | Cell Biology by the Numbers[END_REF] are among the very few to diffuse freely through the membrane, be it directly or indirectly 15 , introducing a process competing with enzymes. Therefore, avoiding losses of the leaky metabolite necessarily implies an increased enzyme activity for all downstream enzymes. There are two ways to do so: the first one would be to increase all enzyme kinetic efficiencies, which we did not study at this stage because their evolutionary dynamics along pathways is yet to be studied (see next paragraph).

The second one would be to change the proteome allocation between the two pathways, which may eventually lead to specialisation under the form of cross-feeding. We studied the conditions in which such a behaviour emerges using Adaptive Dynamics to simulate competition in Chapter 7.

Furthermore, these moderate enzyme efficiencies significantly depart from the classical expected population genetics steady-state and their entailed mutational load (Kimura, 1958;[START_REF] Bibliography Kimura | Evolutionary Rate at the Molecular Level[END_REF][START_REF] Crow | An Introduction to Population Genetics Theory[END_REF]. As always in biology, this may result from numerous factors, such as the existence of a trade-off between protein activity and stability for instance [START_REF] Schreiber | Stability and function: two constraints in the evolution of barstar and other proteins[END_REF][START_REF] Tokuriki | How Protein Stability and New Functions Trade Off[END_REF], or the difference between in vivo and in vitro reactions [START_REF] Rivas | Macromolecular Crowding <em>In Vitro</em>, <em>In Vivo</em>, and In Between[END_REF][START_REF] Rivas | Toward an understanding of biochemical equilibria within living cells[END_REF]. However, as discussed in the introduction of Chapter 5, these latter phenomenon are unlikely to explain a pattern widely shared among enzymes, as it has been shown to be very enzyme and ecological conditions dependent [START_REF] Bar-Even | The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters[END_REF][START_REF] Davidi | A Bird's-Eye View of Enzyme Evolution: Chemical, Physicochemical, and Physiological Considerations[END_REF]).

Yet, this mutational load is not entirely unforeseen by theory. In the twilight of the XX eth century, [START_REF] Hartl | Compensatory Nearly Neutral Mutations: Selection without Adaptation[END_REF] and [START_REF] Poon | COMPENSATING FOR OUR LOAD OF MUTATIONS: FREEZING THE MELTDOWN OF SMALL POPULATIONS[END_REF] revived Fisher's geometric model (Fisher, 1930;[START_REF] Tenaillon | The Utility of Fisher's Geometric Model in Evolutionary Genetics[END_REF][START_REF] Hwang | Genotypic Complexity of Fisher's Geometric Model[END_REF] to show that complexity may come at a great cost, while congruent results were obtained through [START_REF] Kauffman | Towards a general theory of adaptive walks on rugged landscapes[END_REF]'s NK models approach (see 6 for details on these approaches). Complexity in these models describe both pleiotropic and epistatic interactions albeit in a purely conceptual fashion [START_REF] Yi | Adaptive Landscapes in the Age of Synthetic Biology[END_REF]. Therefore, it is not possible to predict how the level of complexity defined in these models correlates with realistic biological features such as the epistatic relationships between enzymes or pathways arising from their complementary contribution to fitness. In chapter 6, we put forward a new framework based on 14 In this article, San Roman et al., 2020 published negative results as they could not find metabolic arguments behind this preference for acetate and glycerol cross-feeding. This unusual and often despised effort caught our attention and fuelled our desire to work on this issue with the model we had developed (for another motif). We surely do not provide a definitive answer, but whatever will happen, the behaviour in itself, where scientists communicate about their failure or difficulties, proved how valuable and unfairly forgotten it is.

15 By indirect, we mean after a chemical reaction (eg. the conversion of acetate into acid acetic).

order statistics and simulations that allows the derivation of population genetics predictions in the case of genetic interactions derived from cellular first principles. In this framework, fitness is determined by the weakest biological link. Hence, only one locus at a time undergoes directional selection, while the others evolve merely neutrally. We then discuss ways to push it forward and how it should enlighten the evolution of complex traits and of their components like enzymes, fuelling the knowledge on the respective mutational load they endure and possible ways organisms use to overcome it.

During this project, I have been dealing with seemingly very different questions, and, in a sense, this is the way I like Science. Be that as it may, its common thread is to be found in the ambition to tackle theoretical questions with frameworks grounded on biological underpinnings.

In the concluding discussion -Chapter 8 and 9 -we elaborate a plan to combine our three projects with the goal of bettering our knowledge both on the genotype-phenotype-fitness map and about its multi-level influence in the evolutionary process, following the idea of a functional synthesis [START_REF] Dean | Mechanistic approaches to the study of evolution: the functional synthesis[END_REF]. The immediate step further should be to continue the dialog between population genetics and metabolic models as to improve our knowledge about how epistasis builds up through the functioning of a cell. In parallel, I have developed during this PhD a framework through which cellular noise can be accounted for. Introducing this phenomenon may eventually provide a complete theoretical picture on this end of the project, and may prove relevant to predict how coding sequences evolve at the level of codons, especially their evolutionary rates. In Chapter 9, I then go on by discussing how this metabolic knowledge should help fuel the development of more realistic models of cell differentiation, and provide quantitative clues about when it shouldor should not -happen and foster the ecological scaffolding of microbial communities. Introducing mechanistic trade-offs and realistic ways to overcome them should also feed us with information on the conditions that promote transitions in individuality. Along the manuscript, we discuss about the importance of accounting for the findability of genotypes, i.e. how easy it is to find them through Evolution -see section 3.2.2 for more details. At this stage, it seemed to us a premature effort to combine it with realistic functions of fitness, as both ends are very complex and already challenging to deal with in isolation. We introduce ideas to make progress in that direction, now well aware that it sketches out a more remote research horizon. Meanwhile, we have also developed a philosophical approach about how to grasp the idea of cell differentiation from a more inclusive evolutionary perspective. We conclude this manuscript by pushing further this proposition, explaining why we believe in its relevance, and shortly introducing a phylogenetic work in progress using genes coding for homeodomain proteins.

Chapter 2

Evolutionary Principia of Diversification -with a focus on the cellular level

Boundless diversity as the ultimate outcome of Evolution

"If one could conclude as to the nature of the Creator from a study of creation it would appear that God has an inordinate fondness for stars and beetles."

John Burdon Sanderson Haldane

At first glance, the ironical remark of Haldane may seem indisputable. After all, when we look at the sky, most of what we see are stars, and when we look at the Tree of Animals, beetles have definitely attracted the lion's share. But in Science, delusion is always threatening us all when we jump on conclusions from standpoints dazzled by self-evident observations. Evolution, the God of Biology, may or may not have a fondness for beetles (and more generally insects), in the sense that they outnumber other order of Animals. But this is definitely a detail when we look at the bigger picture (see for example figure 2.1 to get a sense of the numbers behind this diversity).

Diversity is by far the most conspicuous feature of Life; it is the trace left by the fingerprint of its governing principle, Evolution, and the story of its existence. This is nowhere better reflected than in the history of Biology itself, whose starting point, drawing its legitimacy in the Platonic 2.1. BOUNDLESS DIVERSITY AS THE ULTIMATE OUTCOME OF EVOLUTION idea of forms1 , was Aristotle and Theophrastus' descriptions of the teeming myriad of organisms, in Plants and in Animals [START_REF] Thanos | Aristotle and Theophrastus on plant-animal interactions[END_REF][START_REF] Serafini | The Epic History of Biology. 1st[END_REF]. Biodiversity is everywhere on Earth, and, who knows, may be beyond Earth, and has been there for a long while, at least to us, Humans, as stars may not "feel" that few billion years is that much. Its seeds, indeed, germinated early in the history of our planet [START_REF] Dodd | Evidence for early life in Earth's oldest hydrothermal vent precipitates[END_REF][START_REF] Allwood | Reassessing evidence of life in 3,700-million-year-old rocks of Greenland[END_REF] through an evolutionary process whose recipe and ingredients are yet to be uncovered. Everywhere we have looked since our species was born, we have discovered new species with novel, often startling, features. It is as if where Life is, Life is rarely alone. This statement holds for each of us apart for astronomers, who are still eagerly seeking for some extra-terrestrial occurrence of Life, and for astronauts, although

Thomas Pesquet was chased by tardigrades up to the International Space Station.

As soon as we were born, we experimented this diversity in the arms of our parents, whose sex and gender differ, before being faced consciously with this undeniable fact in our early childhood, as we learnt to speak and make the verbal distinction between our father and our mother, our cat and our neighbour's dog. This diversity is also present at very distinct scales, from the tiny DNA molecules all the way to the enormous sizes of whales or regretted non-avian dinosaurs. It is ubiquitous in our environment, filled with wonderful animals, plants and fungi. It is present by day, for instance with these dazzling wasps buzzing around our meals, while warning us about their painful venom through their black and yellow cuticle. It is present by night: remember this mosquito who woke you up last night, just before he bit you and disappeared behind your wardrobe. It is present within our bodies, through the multiple organs whose distinctive cell types make us look and think the way we do. It is present within our organs, beyond our own cells, and possible cheater ones involved in cancers, through the recently discovered microbiota. Swarming with diversity, the number of these microorganisms far exceeds anything we could and would have expected: in fact, we are probably made of more non-self cells than self cells [START_REF] Sender | Revised Estimates for the Number of Human and Bacteria Cells in the Body[END_REF]Kho et al., 2018), and definitely more non-self genes, and it seems more and more that they largely contribute to our individuality [START_REF] Thursby | Introduction to the human gut microbiota[END_REF]. These cells are themselves crowded with diverse molecules whose expression is governed, partly, by different DNA molecules, partly by their environment. We could go on and on in vain : it is impossible to exhaust the subject and it belongs to Naturalists to come closer and closer to that end. What we can do, as scientists, is to try and make sense of this luxuriant biodiversity, to reveal the hidden patterns behind the Natural 2.1. BOUNDLESS DIVERSITY AS THE ULTIMATE OUTCOME OF EVOLUTION scene. This is what Darwin and Wallace were the first to do, one and a half century ago, when they placed the foundation stone as to why species variability exists and why it is distributed the way it is. To make sense of the notion of biodiversity, complex by nature, there may be no better place to start than trying to put numbers on it; this is what we achieve in the next section.

Biodiversity: a census

There are many ways to categorize and quantify biodiversity. Probably the most obvious one, counting the number of species outlines a first picture consistent with Haldane's views (see Figure 2.1), as Animals belong to the most diverse clade; within Animals, Insects are the most numerous and within Insects, Beetles have the upper hand [START_REF] Mora | How Many Species Are There on Earth and in the Ocean?[END_REF][START_REF] Stork | How Many Species of Insects and Other Terrestrial Arthropods Are There on Earth?[END_REF]. Noticeably, most of the reported biodiversity is made by the three best-known multicellular clades [START_REF] Rose | What do we mean by multicellularity? The Evolutionary Transitinos Framework provides answers[END_REF] Márquez-Zacarías et al., 2021a)2 , Animals, Plants and Fungi, lending credence to the idea that the transitions towards Multicellularity (Bonner, 1998b;[START_REF] Grosberg | The Evolution of Multicellularity: A Minor Major Transition?[END_REF], which occurred in multiple occasions, triggered massive evolutionary diversification events. However, we must also keep in mind that it is easier to classify what we know best and what is easier to find, which gets even more significant when acknowledging our human bias [START_REF] Kokko | Give one species the task to come up with a theory that spans them all: what good can come out of that?[END_REF] in such matters ; besides, the species delimitation was built to tackle this issue in Multicellular organisms and it was only recently that scientists broaden their vision to render a more inclusive vision [START_REF] Cohan | Bacterial Species and Speciation[END_REF][START_REF] Achtman | Microbial diversity and the genetic nature of microbial species[END_REF], whereby the species definition also applies to microorganisms [START_REF] Dykhuizen | Species Numbers in Bacteria[END_REF][START_REF] Barraclough | Evolving Concepts of Bacterial Species[END_REF], and thus includes most of the previously neglected Prokaryotes.

In the past, bacterial species were largely determined using multiple criteria among which physiological ones or genetic identity prevailed [START_REF] Chan | Defining bacterial species in the genomic era: insights from the genus Acinetobacter[END_REF], whereas Mayr's "metapopulation lineages" -relying on the possibility of lineages fusion -had long brought a mechanistic underpinning to the cohesiveness behind the concept for organisms with sexual reproduction (Mayr, 1996;[START_REF] Queiroz | Ernst Mayr and the modern concept of species[END_REF]. One criteria used for the species definition in Prokaryotes was a threshold of 95% of genetic identity. If we were to apply this criteria to Animals, Chimpanzees and Humans -along with Bonobos and all the extinct lineages of Homo -could belong to the same species [START_REF] Prüfer | The bonobo genome compared with the chimpanzee and human genomes[END_REF], such that the number of species would decrease substantially. Assuming a definition based on the level of genetic exchange [START_REF] Dykhuizen | Species Numbers in Bacteria[END_REF][START_REF] Achtman | Microbial diversity and the genetic nature of microbial species[END_REF] P la n t s (2 2 4 ,0 0 0 )
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Prokaryotes [START_REF]Compensatory mutations and epistasis for protein function[END_REF]500) Catalogued (1,440,000) Predicted (10,960,000) Catalogued Land Sea Animalia (9,920,000) P la nt s (3 15 ,0 00 ) F u n g i (6 1 5 ,0 0 0 ) C h r o m is t a (3 5 ,0 0 0 ) Proto zoa (73,0 00) Prokaryotes [START_REF]Compensatory mutations and epistasis for protein function[END_REF]500) Figure 2.1: Species numbers and the major kingdoms: according to [START_REF] Mora | How Many Species Are There on Earth and in the Ocean?[END_REF]'s census and predictions, Animals are by far the most diverse kingdom on earth as shown on the largest charts above. In fact, they promote a vision where diversity is orders of magnitude higher in Animalia, Plants and Fungi than in the remaining clades while Prokaryotes would be both little diversified and largely known, as their predictions on Prokaryotes are very similar to those catalogued; but [START_REF] Mora | How Many Species Are There on Earth and in the Ocean?[END_REF] recognised that estimates and their predicting methods are not suited for Prokaryotes, whose diversity is definitely far greater, with an upper-bound estimated around 1,000,000 [START_REF] Sweetlove | Number of species on Earth tagged at 8.7 million[END_REF]. Most of this diversity is yet to be discovered (around 90%), as the predicted numbers are far above the catalogued ones. Besides, a larger part of the biodiversity lives on land, although the difference should be lower than currently observed (charts on the right). [START_REF] Dykhuizen | Species Numbers in Bacteria[END_REF] estimated that the number of bacterial species could well be around one billion, completely reversing prevailing ideas on the subject. Such a landscape would better coincide with the estimates of biomass distribution [START_REF] Bar-On | The biomass distribution on Earth[END_REF], were diversity not to depend on the clade, as Plants and Bacteria have thus far appeared to reign over ecosystems. In any case, the numbers reported are huge, amounting at least to several million species even with a very conservative definition of microorganisms' species whose relaxation could make these biodiversity estimates skyrocket [START_REF] Locey | Scaling laws predict global microbial diversity[END_REF][START_REF] Louca | A census-based estimate of Earth's bacterial and archaeal diversity[END_REF]. If Life originally thrived in aquatic environments [START_REF] Beraldi-Campesi | Early life on land and the first terrestrial ecosystems[END_REF], most of which now blossom on land (or in the air) [START_REF] Benton | Biodiversity on land and in the sea[END_REF][START_REF] Mora | How Many Species Are There on Earth and in the Ocean?[END_REF], as shown in figure 2.1. One of the main difference is that marine organisms are mainly comprised of consumers contrary to terrestrial ones for whom autotrophy through photosynthesis is more readily accessible [START_REF] Bar-On | The biomass distribution on Earth[END_REF]. We will explore the logic behind these trends more in depth in the following sections.

BOUNDLESS DIVERSITY AS THE ULTIMATE OUTCOME OF EVOLUTION

Hitherto, we have focused on the diversity of Life in terms of pieces of information -DNA -and their effect on the vehicle bearing them [START_REF] Dawkins | The selfish gene[END_REF], since species are delimited by a shared gene pool representing their information. There is another self-evident way to quantify biodiversity, which is to count the number of different functional biomolecules produced on the course of Evolution. A vast array of such molecules exists, ranging from metabolites and macromolecules like proteins all the way to large biomolecular complexes like ribosomes, most of them being specific products of Life. According to the Central Dogma proposed by Crick [START_REF] Crick | Central Dogma of Molecular Biology[END_REF][START_REF] Cobb | 60 years ago, Francis Crick changed the logic of biology[END_REF], these phenotypic molecules are the product of gene expression, the mechanical components whose assemblage results in the vehicle, and, as such, define the backside of the phenotype. These molecules carry out different type of functions, which is a first source of diversity. For instance, proteins can display cellular functions: transcription factors regulate gene expression; transport proteins ensure the mobility of molecules, signalling molecules just do what their name actually tells; or proteins can act as enzymes, catalysing chemical reactions to produce useful biomass; sometimes they do many of these, through a process known as moonlighting [START_REF] Gancedo | Moonlighting Proteins in Yeasts[END_REF][START_REF] Huberts | Moonlighting proteins: An intriguing mode of multitasking[END_REF]. And of course, each of these molecules itself evolves and can differ from the other ones, either because they got specialised at given tasks or just because they belong to different species. This diversity is also overwhelming, even within one single kind of protein : Brenda, the reference enzyme database, contains hundreds of thousands entries from thousands of organisms [START_REF] Jeske | BRENDA in 2019: a European ELIXIR core data resource[END_REF], making up something resembling a zoo [START_REF] Bar-Even | The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters[END_REF] no matter the viewing angle -see Box 1.

"Most evolving lineages, human or otherwise, when threatened with extinction, don't do anything special to avoid it."

G.C. Williams

Biodiversity covers an incredible range of forms, sizes and structures. All of that luxuriance emerges through the sluggish, tedious, but nonetheless incredibly creative process of relentless evolution. Evolution features an asymmetrical birth-death process where overall multiplication is the rule, although being slowed down in the long-term [START_REF] Moen | Why does diversification slow down?[END_REF].

BOUNDLESS DIVERSITY AS THE ULTIMATE OUTCOME OF EVOLUTION

Box 1. The enzyme paradox as an illustration of biomolecular diversity

Enzymes speed up reactions that would otherwise be far too slow to sustain the metabolism of self-replicators. In parallel, an organism should in principle be as efficient as possible in order to maximize its evolutionary success. Yet, enzyme apparent efficiencies resemble a zoo, raising one of these evolutionary paradox Nature is fond of. We worked to resolve this paradox in Chapter 5.
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Range of observed kinetic values 10 0 10 5 10 10 10 -5 Such a logic can only be reverted on large scales by catastrophic events, be they exogenous such as the fall of a meteorite or massive volcano eruptions; or endogenous, through the creation of reckless species, oblivious to ecosystems equilibrium, that outrageously exploit their environment much in the same way as cancers do with their hosts, eventually up to a point where they disappear to the huge unconscious relief of everyone. This is the place where we are, as humans, and, despite our so-called intelligence, our awareness seems to fit G.C. Williams' grim observation, 2.1. BOUNDLESS DIVERSITY AS THE ULTIMATE OUTCOME OF EVOLUTION for we are gruesomely pushing most of biodiversity on the verge of extinction [START_REF] Barnosky | Has the Earth's sixth mass extinction already arrived?[END_REF][START_REF] Payne | Ecological selectivity of the emerging mass extinction in the oceans[END_REF][START_REF] Ceballos | Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines[END_REF] while still focusing on our petty human affairs. In a lunar epiphany, the regretted legendary Robert May, yet one of the most influential biologist ever, proved the (relative) validity of the Nobel disease3 by oddly reassuring us with some of his colleagues: as extinction rates may be overestimated, we probably still have enough time to name species before they go extinct, which may in turn help save them 4 (Costello et al., 2013), as if knowing the existence of species helped us thus far to do so. How Robert May, one of the father of chaos theory [START_REF] May | Simple mathematical models with very complicated dynamics[END_REF], came to forget about the bigger picture and overlook the subtle, fragile balance of Life to pick such a title and lapse into blissful optimism, no one shall ever know for sure.
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But it remains that if all species are equal, one seems more equal than the others5 , as we are still lethargically arguing [START_REF] Briggs | Emergence of a sixth mass extinction?[END_REF] on scientific (and politic) details while our lifestyle is highly likely wreaking havoc [START_REF] Mora | Comment on "Can we name Earth's species before they go extinct?[END_REF][START_REF] Payne | Ecological selectivity of the emerging mass extinction in the oceans[END_REF][START_REF] Ceballos | Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines[END_REF]. Before going extinct, we still have time to do Science, as May suggested, and continue on our meandering path, which now spearheads us through the geological times, at the very source of this disappearing diversity.

Evolutionary diversification and the geological time scale

It is not yet completely clear, to say the least, how and when Evolution started, eventually setting the stage for Life's Odyssey (and not the other way around) [START_REF] Tessera | Origin of evolution versus origin of life: a shift of paradigm[END_REF]Tessera, 2018). For instance, there are ongoing debates about the detection of the earliest fossils of Life. [START_REF] Nutman | Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures[END_REF] thought they had unearthed evidence for 3.7 billion-year-old stromatolites in Greenland rocks, but it was not long before [START_REF] Allwood | Reassessing evidence of life in 3,700-million-year-old rocks of Greenland[END_REF] rejected the idea on the ground of more plausible geological explanations. As an empty promise is always worth being made, such an example should be a warning for all of us, to avoid jumping to the conclusions we like, or we want.

But in fact, it is what Science is about, as absurdly Beckettian as it sounds: "Ever tried. Ever failed. No matter. Try Again. Fail again. Fail better." This is precisely the method that has enabled the reconstruction of past Life and the understanding of its long-term patterns, starting 2.1. BOUNDLESS DIVERSITY AS THE ULTIMATE OUTCOME OF EVOLUTION again with the father of the Origin of Species.

Darwin based his evolutionary ideas on the concept of gradualism, whereby slow gradual changes steadily accumulate to finally produce new species [START_REF] Darwin | On the origin of species by Means of Natural Selection[END_REF][START_REF] Eldredge | Punctuated Equilibria: An Alternative to Phyletic Gradualism[END_REF], although he was already well aware of the coexistence of different tempo in evolution [START_REF] Rhodes | Gradualism, punctuated equilibrium and the Origin of Species[END_REF][START_REF] Rhodes | Darwinian gradualism and its limits: The development of Darwin's views on the rate and pattern of evolutionary change[END_REF]. Since then, such differences have been repeatedly documented, within and between both genomes and phenotypes: they have precipitated refinements in phylogenetic methods [START_REF] Lartillot | Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model[END_REF] to limit long branch attraction artefacts [START_REF] Felsenstein | Cases in which Parsimony or Compatibility Methods Will be Positively Misleading[END_REF][START_REF] Bergsten | A review of long-branch attraction[END_REF], whereby quickly evolving species such as parasites could branch anywhere due to their highly divergent genome -as was shown for Microsporidia fungi [START_REF] Germot | Evidence for loss of mitochondria in Microsporidia from a mitochondrial-type HSP70 in Nosema locustae1Note: Nucleotide sequence data reported in this paper has been submitted to the GenBank™data base under the accession number U97520.1[END_REF] or Myxozoan cnidaria [START_REF] Foox | The Road To Cnidaria: History of Phylogeny of the Myxozoa[END_REF]; they have also fuelled the development of new subfields such as eco-evolution [START_REF] Urban | The evolutionary ecology of metacommunities[END_REF][START_REF] Pelletier | Eco-evolutionary dynamics[END_REF][START_REF] Post | Eco-evolutionary feedbacks in community and ecosystem ecology: interactions between the ecological theatre and the evolutionary play[END_REF], undermining the spurious separation between ecological and evolutionary scales [START_REF] Schoener | The Newest Synthesis: Understanding the Interplay of Evolutionary and Ecological Dynamics[END_REF], which is nowhere better exemplified than in the recurrent adaptive waves found in the beaks of the famous nonfinches Darwin's finches [START_REF] Grant | How and Why Species Multiply[END_REF]. Nonetheless, and despite some rather childish dispute grounded on ancient philosophical traditions -on which we shall not elaborate -dating back to Wright and Fisher, and beyond (Shanahan, 2001), there does not seem to persist too much of a debate on the large involvement of gradual changes in Evolution; at least, a consensus seems to exist about a weak formulation of gradualism that could be called mutational gradualism, according to which, when an organism largely differs from its ancestor, for example in size or in a bunch of characters, this difference is most often the result of mutations that have been piling up. It does not contradict Mendelian inheritance either, as was thought before the modern (darwinian) synthesis [START_REF] Huxley | Evolution. The Modern Synthesis[END_REF]; rather, it complements Mendel's insights [START_REF] Bateson | Mendel's principles of heredity; a defence[END_REF] as to explain how species overall phenotypes change and diversify (Fisher, 1930;[START_REF] Wright | Evolution in Mendelian Populations[END_REF]. The success of quantitative genetics approaches [START_REF] Mackay | The genetics of quantitative traits: challenges and prospects[END_REF][START_REF] Sella | Thinking About the Evolution of Complex Traits in the Era of Genome-Wide Association Studies[END_REF], describing (complex) traits as the sum of numerous additive contributions, corroborate this view, despite its flaws on which one will later elaborate. Instead of a confrontation between gradualism and saltationism (the fact that huge adaptive effects having a profound phenotypic impact could arise in one generation), the controversy around gradualism has mostly revolved around how slow and how variable exactly this gradualism is, the reasons why it is so and the effects it produces; and, obviously, the existence of exceptions [START_REF] Mazzocchi | Complexity in biology. Exceeding the limits of reductionism and determinism using complexity theory[END_REF][START_REF] Dhar | Laws of biology: why so few?[END_REF], which is inevitable in biology.

BOUNDLESS DIVERSITY AS THE ULTIMATE OUTCOME OF EVOLUTION

Box 2. Processes of diversification and geological patterns in Life history

Several processes influence the big picture of Life diversification history on the geological timescale. Seldom major events trigger bursts of diversification, reflected in radiative phylogenetic patterns. Alongside them, less minor biological or geological events are responsible for noisiness around what looks like a rather gradual process. Noticeably, within clades diversification slowdowns often happen in the long run [START_REF] Moen | Why does diversification slow down?[END_REF] and the topology of the tree is subject to phenomenological constraints, such as trade-offs in tree or sub-tree sizes [START_REF] Missa | Understanding how biodiversity unfolds through time under neutral theory[END_REF][START_REF] Lewitus | Natural Constraints to Species Diversification[END_REF].
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Major events Figure 2.3: Phyletic gradualism depicts the progressive unfolding of Life diversity, where species diversify and get extinct steadily, displaying no particular trend. This view was abandoned although it remains relevant as a null hypothesis for diversification, coinciding with the (era dependent) background balance between diversification and extinction. Diversification may occur through anagenesis, where a species simply changes over time; cladogenesis, where two species were born from a previous one (eg. after the split of its habitat range) ; or a mix of that, called anacladogenesis, which may follow from the colonisation of a new geographic area [START_REF] Vaux | Lineages, splits and divergence challenge whether the terms anagenesis and cladogenesis are necessary[END_REF][START_REF] Emerson | Anagenesis, Cladogenesis, and Speciation on Islands[END_REF]. Radiation events may also occur that drastically modify biodiversity: they become apparent through tree multifurcations where many branches emerge from the same node [START_REF] Hallström | Mammalian Evolution May not Be Strictly Bifurcating[END_REF]. This is due to key innovations (green stars), which can scaffold the arrival of other ones, as was the case when Plants provided land with oxygen supply. Finally, major crisis can be set off by punctual catastrophes and are then followed by a slower recovery owing to a bouncing effect.
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Among these exceptions, the recent observation that aggregative multicellularity can evolve in yeasts through one mutation [START_REF] Ratcliff | Origins of multicellular evolvability in snowflake yeast[END_REF] and be entrenched by a few ratcheting others [START_REF] Ratcliff | Experimental evolution of multicellularity[END_REF][START_REF] Libby | Ratcheting the evolution of multicellularity[END_REF][START_REF] Libby | Stabilizing multicellularity through ratcheting[END_REF]) could be called saltationism, stricto sensu, which does not imply that the then evolutionary consequences are not, again, gradual. This controversy was initiated by [START_REF] Eldredge | Punctuated Equilibria: An Alternative to Phyletic Gradualism[END_REF] who made the point that gradualism is an erroneous view at the phylogenetic level. If discontinuities are overwhelming in the fossil record, they should not be regarded as imperfections due to our methods, but as real patterns depicting the tempo and mode of evolution [START_REF] Gould | Punctuated equilibria: the tempo and mode of evolution reconsidered[END_REF]. 6 According to their Punctuated Equilibrium theory, changes occur quickly, reshaping completely phenotypes and feeding a proliferative cladogenesis [START_REF] Eldredge | On Punctuated Equilibria[END_REF] -see Box 2 for more details; these disruptions are then followed by long periods of stasis, during which organisms undergo few and mild phenotypic changes while diversification, if any occurs, goes hand-in-hand with sluggishness.

Whether it is the universal trend they claim does not sound very scientific since there is neither any satisfying -meaning consensual -definition on the taxonomic level concerned with these punctuated cycles 7 , nor is there a precise statement for the timescale defining punctuation, both being required if the theory is to be refutable. Still, punctuated equilibria is the rule at the geological scale as much as gradualism is on the mutational scale. A simple look at the major diversification and extinction events is convincing in this respect [START_REF] Sepkoski | A kinetic model of Phanerozoic taxonomic diversity I. Analysis of marine orders[END_REF]Sepkoski, 1984;[START_REF] Benton | Diversification and extinction in the history of life[END_REF]. And if there are still debates about the existence of a generic shape for large scale diversification [START_REF] Benton | HOW DID LIFE BECOME SO DIVERSE? THE DY-NAMICS OF DIVERSIFICATION ACCORDING TO THE FOSSIL RECORD AND MOLEC-ULAR PHYLOGENETICS[END_REF], there is not much of a conundrum behind punctuated equilibriums, as it follows from three well identified processes, one being biotic while the others are mostly independent from life.

We have already met the first one shortly, for it is nowhere better exemplified than by our own species: sometimes occur catastrophes that sweep a vast part of Life away, and wrapped it in the linen of History. These disruptive catastrophes encompass staggering meteorite impacts, sudden and/or large climate changes, volcanoes massive eruptions. Until us, five such events have been documented, the last one being famous for having cleared the stage for mammals after the 6 Again, we should not be afraid of changing evolutionary laws when facts disagree with them while still being careful to the observational bias through which facts are built. The history of Science has shown that both may be wrong; for instance, Neptune was predicted before its discovery because scientists were working on apparent inconsistencies in Uranus' orbit; on the other hand, the intrigue raised by inconsistencies in Mercury's orbit could not be solved by the same planet adding trick and forced instead to change the law of gravity, setting the stage for the discovery of general relativity.

7 Do they occur at the level of populations, species, order?

2.1. BOUNDLESS DIVERSITY AS THE ULTIMATE OUTCOME OF EVOLUTION dawn of dinosaurs had finally occurred [START_REF] Benton | HOW DID LIFE BECOME SO DIVERSE? THE DY-NAMICS OF DIVERSIFICATION ACCORDING TO THE FOSSIL RECORD AND MOLEC-ULAR PHYLOGENETICS[END_REF][START_REF] Barnosky | Has the Earth's sixth mass extinction already arrived?[END_REF], according to the idea of creative destruction, used in economics to describe coevolutionary processes through which innovative companies disrupt the market and lead to the collapse of lame ducks 8 (Schumpeter, 1942 (rev. 2010)). What still remains unclear at this stage is whether their occurrence impacts the global trend of diversity, or if it only triggers a short transient period with an abrupt decline followed by a quick bouncing effect that only modifies which organisms sustain the overall diversification trend [START_REF] Benton | HOW DID LIFE BECOME SO DIVERSE? THE DY-NAMICS OF DIVERSIFICATION ACCORDING TO THE FOSSIL RECORD AND MOLEC-ULAR PHYLOGENETICS[END_REF] -for instance, mammals replacing non-avian dinosaurs in several ecological niches. Did biodiversity completely recover after each crisis and get back to what it would have been were the crisis not to have wiped it out? Or did it even help increase this diversity? In short, it brings back the same pervasive evolutionary question: is the process neutral -Evolution completely removes its scars -or not? This matter is left somewhat in abeyance, but the preponderance of catastrophic events definitely seems to be waning in the (observable) long run.

Another abiotic factor comes from pure geological events, and, contrary to the previous one, may be damaging but also fruitful. As tectonic plates move, interact with earth's mantle and rub with one another [START_REF] Wegener | Die Entstehung der Kontinente[END_REF][START_REF] Hess | Geological Hypotheses and the Earth's Crust under the Oceans[END_REF][START_REF] Heezen | Tectonic Fabric of the Atlantic and Indian Oceans and Continental Drift[END_REF][START_REF] White | Subduction[END_REF], new territories, be they land, sea or lake, emerged or merged [START_REF] Heezen | Tectonic Fabric of the Atlantic and Indian Oceans and Continental Drift[END_REF][START_REF] Rogers | Supercontinents in Earth History[END_REF], mingling biology with geology into biogeography [START_REF] Wallace | The Geographical Distribution of Animals: With a Study of the Relations of Living and Extinct Faunas as Elucidating the Past Changes of the Earth's Surface[END_REF][START_REF] Wallace | The Geographical Distribution of Animals: With a Study of the Relations of Living and Extinct Faunas as Elucidating the Past Changes of the Earth's Surface[END_REF]reed.) McIntyre et al., 2017). When continents merge, a burst of extinction may occur as organisms formerly isolated suddenly engage in a new competition. According to the competitive exclusion principle [START_REF] Gause | Experimental Studies on the Struggle for Existence : I. Mixed Population of Two Species of Yeast[END_REF][START_REF] Gause | The Struggle for Existence[END_REF][START_REF] Hardin | The competitive exclusion principle[END_REF], there can be no coexistence between species in one single ecological niche [START_REF] Hutchinson | Concluding remarks" on Animal Ecology and Demography[END_REF], except transiently, for competition should exclude the weaker species, and, even, neutral ones segregating in populations. Because biological reality is always, and somewhat unfortunately (or fortunately from the scientist perspective), more complex than what reductionist theories tell us [START_REF] Bergelson | Functional biology in its natural context: A search for emergent simplicity[END_REF], we will get into the daunting nitty-gritty of these processes in section 3.1.1. Yet, although the principle overlooks neutral processes, it foresees the existence of large-scale extinction that have recurrently occurred in the past. Driven by the rise of the isthmus of Panama, some three million years ago [START_REF] Marshall | Mammalian Evolution and the Great American Interchange[END_REF], the Great America Interchange elicited an upsurge of extinctions, especially concerning South American 2.1. BOUNDLESS DIVERSITY AS THE ULTIMATE OUTCOME OF EVOLUTION species [START_REF] Webb | THE GREAT AMERICAN BIOTIC INTERCHANGE: PATTERNS AND PRO-CESSES[END_REF], which were subjugated by the invasion from North American ones, a plausible consequence of a disequilibrium between their preexisting adaptive habitat ranges [START_REF] Webb | THE GREAT AMERICAN BIOTIC INTERCHANGE: PATTERNS AND PRO-CESSES[END_REF][START_REF] Webb | THE GREAT AMERICAN BIOTIC INTERCHANGE: PATTERNS AND PRO-CESSES[END_REF]. On the other hand, where a separation occurs, it creates a geographical barrier more or less impassable for organisms and thereupon sets off a species schism. The very same isthmus of Panama that brought Americas together completed in parallel a biogeographic oceanic schism, Pacific and Atlantic tropical hybridization being henceforth shut down [START_REF] Lessios | The Great American Schism: Divergence of Marine Organisms After the Rise of the Central American Isthmus[END_REF]. Similar processes are at stake when mountains emerge, and are even strengthened: mountainous topography self-evidently creates both a separation and a whole new world with different climate conditions tiered along an altitudinal gradient, adding thereby new ecological niches. The recurrent input of new islands mostly due to (volcanic) hotspots also provides Life with new playgrounds, like in Galapagos islands [START_REF] Harpp | The Evolution of Galápagos Volcanoes: An Alternative Perspective[END_REF].

There is absolutely no question that new playgrounds often emerge through purely geological history. But most of them stem from Life itself, from its essential ability to build and discover these new playgrounds. Evolution is indeed very effective at finding innovations, although it comes at the cost of many deadly mistakes. These innovations enable receiving organisms to do something else and/or to do it somewhere else. Ensuring protection against stressful conditions, heat shock proteins revealed for instance a whole new ecological world to organisms no longer constrained by protein denaturation [START_REF] Becker | Heat-shock proteins as molecular chaperones[END_REF][START_REF] Maleki | Bacterial Heat Shock Protein Activity[END_REF]. Each new function can be seen as an evolutionary innovation and these innovations are boundless: innovation may even be easier than optimisation for some biological entities [START_REF] Newton | Enzyme evolution: innovation is easy, optimization is complicated[END_REF]. And yet, [START_REF] Wagner | Evolutionary innovations and novelties: Let us get down to business![END_REF] reminded us of the elusiveness of their basis in our understanding of biology. However accessible these innovations are [START_REF] Chatterjee | The time scale of evolutionary innovation[END_REF], they are assumed to sustain a basal diversification rate -without significant effect on the fossil record -in contrast to 'key' evolutionary innovations that considerably spur diversification [START_REF] Heard | Key evolutionary innovations and their ecological mechanisms[END_REF][START_REF] Hunter | Key innovations and the ecology of macroevolution[END_REF][START_REF] Rabosky | Phylogenetic tests for evolutionary innovation: the problematic link between key innovations and exceptional diversification[END_REF]. The choice of the word innovation is somewhat unfortunate, since its etymological meaning is rooted in the notion of rider, far more similar to Red Queen coevolutionary trajectories than to evolutionary game changers. Innovation, in the Middle Ages sense of Machiavel, is what one changes so that nothing changes afterwards [START_REF] Klein | Progrès et innovation : quels liens ?[END_REF]. In fact, 'key innovations' are the evolutionary counterpart to the philosophical idea of Progress, where a qualitative leap is made, but which definitely sounds erroneously anthropocentric from an evolutionary perspective, as microorganisms are not primitive versions of us, but instead, merely a different way of being efficient. Evolution- [START_REF] Pigliucci | What, if Anything, Is an Evolutionary Novelty?[END_REF], and recently revived by scientists interested in their underpinnings [START_REF] Wagner | The measurement theory of fitness[END_REF], would definitely have been a better match. Yet, if forerunners are not (always) right, primacy is their realm and rightly so. [START_REF] Heard | Key evolutionary innovations and their ecological mechanisms[END_REF] suggested to draw distinctions between classes of key innovations depending on whether they allow for invasion, replacement or specialisation. Heat shock proteins definitely belong to the latter category, whatever the precise selective context behind their evolution. Inasmuch as diversification rates and potential are the metrics defining key innovations [START_REF] Rabosky | Phylogenetic tests for evolutionary innovation: the problematic link between key innovations and exceptional diversification[END_REF], land colonization, first by Plants [START_REF] Beraldi-Campesi | Early life on land and the first terrestrial ecosystems[END_REF][START_REF] Morris | The timescale of early land plant evolution[END_REF], is by far Life's keyest innovation -let us recall that most biodiversity is terrestrial (see previous sections) even though it had long flourished only in water. Terrestrial plants, helped in their journey by Fungi [START_REF] Heckman | Molecular evidence for the early colonization of land by fungi and plants[END_REF], unlocked land access to Animals and heterotrophic protozoan through oxygenation [START_REF] Holland | The oxygenation of the atmosphere and oceans[END_REF][START_REF] Erwin | The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals[END_REF][START_REF] Schirrmeister | Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event[END_REF], which was followed by a long coevolutionary history [START_REF] Hedges | A molecular timescale of eukaryote evolution and the rise of complex multicellular life[END_REF][START_REF] Erwin | The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals[END_REF]. This is how key innovations combine with coevolution to build whole new worlds of biodiversity. And among these, one type is in a class of its own, as the initiator of diversification outbursts, and because they provide the raw material for a cascade of further key innovations, such as land colonization. [START_REF] Szathmáry | The major evolutionary transitions[END_REF] baptized them the Major Evolutionary Transitions.

Diversification and Major Evolutionary Transitions

In a canonical book on the evolution of biological complexity, [START_REF] Szathmáry | The major evolutionary transitions[END_REF] introduced the concept of Major Evolutionary Transitions, which refers to changes in the way biological information is stored, transmitted, and/or the onset of quantum leaps in division of labour [START_REF] Szathmáry | Toward major evolutionary transitions theory 2.0[END_REF]. Although Gould himself surprisingly posited that increases in complexity -in the sense of the amount of functions an organism can carry out -are just the by-product of a drunkard's walk in the complexity space that started with a low complexity level9 , much alike the arrow of time would be the fortuitous consequence of the incredibly low entropy shrouding the dawn of the universe, this view is not supported by the radiations that followed these transitionseg. of the Ediacaran-Cambrian explosion [START_REF] Butterfield | Modes of pre-Ediacaran multicellularity[END_REF][START_REF] Erwin | The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals[END_REF][START_REF] Erwin | Ecological drivers of the Ediacaran-Cambrian diversification of Metazoa[END_REF]) -and 2.1. BOUNDLESS DIVERSITY AS THE ULTIMATE OUTCOME OF EVOLUTION actively enhanced cladogenesis when they materialised. In the end, each of these transitions added a new slice to the complexity of Life for they created a novel object evolving on a yet unexplored stage. They encompass events such as endosymbiosis, sex, multicellularity or the birth of language, restricted to humans at the time of publication owing to what looks like one of these unfortunate anthropocentric bias, which even Maynard Smith and Szathmary could not resist. Indeed, any form of communication relying on a shared idiom susceptible to evolve should pretend to be considered as having achieved this latter transition: bacterial quorum sensing [START_REF] Miller | Quorum sensing in bacteria[END_REF][START_REF] Parsek | Sociomicrobiology: the connections between quorum sensing and biofilms[END_REF] and plant communication [START_REF] Ueda | Plant communication: mediated by individual or blended VOCs?[END_REF], as much as primates' speeches, if it appears they share the same evolvability properties. In any case whatsoever, language is quite different since it concerns the advent of a new kind of biological information [START_REF] Szathmáry | The major evolutionary transitions[END_REF]. What it shares with those other major events is its entrenchment in a lower level substrate and the ensuing reliance coming along with it (Okasha, 2006). Meanwhile, one distinctive feature within these transitions is whether they concern fungible (eg. cells) or non fungible (eg. symbiosis) units [START_REF] Grosberg | The Evolution of Multicellularity: A Minor Major Transition?[END_REF], thus being egalitarian or fraternal [START_REF] Charlesworth | Relatedness and the fraternal major transitions[END_REF][START_REF] Szathmáry | Toward major evolutionary transitions theory 2.0[END_REF]. Regardless of their type, most, if not all, of these transitions rely on the birth of a new level of organization -a new individual -on which Natural Selection operates [START_REF] Lewontin | The Units of Selection[END_REF][START_REF] Buss | Evolution, development, and the units of selection[END_REF][START_REF] Buss | The Evolution of Individuality[END_REF]Clarke, 2016) and are therefore also called Evolutionary Transitions in Individuality [START_REF] Michod | Transitions in individuality[END_REF][START_REF] West | Major evolutionary transitions in individuality[END_REF] (see Figure 2.4). Because they are particular arrangements of specific memes, theories are to these memes -the self-replicating units of language [START_REF] Dawkins | The selfish gene[END_REF] -what cells are to self-replicating genes; as it were, theories (as well as other human beliefs 10 ) are memes that underwent an ETI, which brings credit as to why they tend to obey an evolutionary logic [START_REF] Lakatos | Falsification and the Methodology of Scientific Research Programmes[END_REF]. After such transitions, at least two lower level units have assembled into groups that eventually coalesced into a higher level unit where lower 10 Notice that we consider here, Science as a belief, but one different from religion since the selective pressure acting on the collective of memes differs in nature from one another. On one side, religious belief are facing a very high selective pressure against "memetic" mutations, which are generally thought to corrupt God's message, although "epimemetic" mutations are frequently retained through the success of textual interpretations. On the other hand, Science is the belief in a specific method, based on parsimony, refutability, repeatability and their declinations; contrary to religious feelings, Natural selection promotes "memetic" mutations in Science provided they enhance an objective measurable value correlated with reality -in that it does not depend on the observer, which is even true for quantum mechanics where the proven influence of the observer does not depend itself on the human observer. This objective value does not assure us to get closer to the targeted objective values at any time, and even less to do so without circumvolutions and other toing and froing; humans are humans, and among -not above -them are scientists, and they tend to make mistakes. Exactly like cheaters can destruct positive effects of collaboration between organisms, scientific "cheaters", be they conscious or unconscious, can prevent some fitness enhancing mutations to thrive. Besides, the way fitness emerges is in itself biased by humans. But yet, eventually, science is probably the only belief shared by humans, as we all take for granted its effects, even those who claim not to but still use phones, computers, as well as they take medicines.
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level units are completely interdependent [START_REF] Okasha | Multilevel Selection and the Major Transitions in Evolution[END_REF][START_REF] Nedelcu | The Evolution of Self During the Transition to Multicellularity[END_REF], and so are their long term fitnesses as the success of individual units is now aligned with that of groups while it was the other way around beforehand (Michod, 2005). The assembly can be facultative, obligatory or in between. This singularity is nowhere better illustrated than with sex, where it can be facultative as in yeasts or plants, obligatory as in most animals, or where it can rely on the mating between some but not all of the existing subtypes -some Fungi have many of those, sometimes thousands [START_REF] Constable | The rate of facultative sex governs the number of expected mating types in isogamous species[END_REF] although few is more usual -with mating susceptible to involve two but also more lower level partners as was highlighted for a mind-blowing ant species [START_REF] Parker | A major evolutionary transition to more than two sexes?[END_REF]. one of these entities may evolve to embrace a group lifestyle, where fitness of each group is aligned with that of their lower level individuals: hence, the level at which fitness is measured does not matter. Here, a group producing 6 lower-level units yields 3 group-level descendants while one with only 4 lower-level units only leaves 2 group-level descendants. (C) Eventually, a fitness decoupling may arise through which the fitness of groups is no longer aligned with that of the individuals. This step is detailed in Figure 2.5.
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But to accurately define what an ETI is and what it concerns, individuality must first be plainly laid down, and it is anything but self-evident [START_REF] Hull | A Matter of Individuality[END_REF]Hull, 1980;[START_REF] Santelices | How many kinds of individual are there?[END_REF][START_REF] Clarke | The Problem of Biological Individuality[END_REF][START_REF] Pradeu | The many faces of biological individuality[END_REF]. Individuality has indeed proven to be confusing because one can accommodate or even change the meaning of words in order to support the paradigm he or she is more comfortable with: while acknowledging the absence of organismal (physiologically integrated) individuality for species, [START_REF] Folse | What is an individual organism? A multilevel selection perspective[END_REF] merely distorted the very idea of individuality to brightly make things look the way they want, that is, that species are (evolutionary) individuals rather than the more consensual evolving classes [START_REF] Lewontin | The Units of Selection[END_REF]). Yet, the idea appears neither inane, nor completely wrong, but definitely relative instead: however spatially and physiologically divisible they are, between populations as well as individuals, species do have evolvable emergent properties that are heritable and influence their persistence and multiplication, such as the trans-species blood group polymorphism in primates [START_REF] Ségurel | The ABO blood group is a trans-species polymorphism in primates[END_REF]. Such properties are not understandable at the lower level considered in isolation (and lower level units cannot be understood without accounting for the group composition). Natural Selection can partly operate on them -the group level properties -but their potential internali.e. within group -conflict is intrinsically high [START_REF] Queller | Beyond society: the evolution of organismality[END_REF]. These somewhat paradoxical pressures can disrupt emerging cooperative properties so that beneficial fitness effects have to be aligned almost at any time between higher level and lower level units if they are not to disappear, and no actual transition can hence materialise for species -what it means is that if competition were to take place between one species with the group property and one without this group property, the group property shall only persist and proliferate when their lower level units outperform those of the other species. If both were to thrive, this would mean that they do not map onto the same ecological niche and compete against each other. What is misguiding in the debate is that the "fitness" of a species is generally not aligned with that of its individual units because it partly emerges from the discovery of new niches and therefore differs from the way fitness is defined for more traditional organisms, which is precisely the reason why the distinction between individuals and classes seems, even more than relevant, precious.

The semantic situation has proven to be even more sophisticated since it lies nearby a philosophical crossroads where the idea of organismality interferes [START_REF] Queller | Beyond society: the evolution of organismality[END_REF][START_REF] West | Evolution: What Is an Organism?[END_REF]: from a (modernised) platonic perspective, organisms are the ideal and virtual forms embodied in a subset of its countless possible manifestations that each represent an individual. which would completely lose their character were they to be divided [START_REF] Santelices | How many kinds of individual are there?[END_REF]. Hence, ETIs11 denote events through which indivisibility and autonomy switch to the level of groups, made of the former individuals, where heritable differences that matter for long-term fitness are those of the group (Bourrat, 2019). ETIs are thought to be promoted by the co-transmission of lower level units [START_REF] Queller | Problems of multi-species organisms: endosymbionts to holobionts[END_REF] and to therefore occur gradually (see Figure 2.4), through the transfer of fitness towards the group level -lower-level units increase group fitness even at the expense of their own fitness (see Box 3 for more details) -until lower-level units have entirely lost 2.1. BOUNDLESS DIVERSITY AS THE ULTIMATE OUTCOME OF EVOLUTION their ability to reproduce outside the group [START_REF] Okasha | Multilevel Selection and the Major Transitions in Evolution[END_REF], and higher-level individual features emerge from the cooperative interaction(s) between lower-level units [START_REF] Nedelcu | The Evolution of Self During the Transition to Multicellularity[END_REF]. Insofar as lower level units lose their autonomy, reversals are unlikely. These theoretical considerations match the observation that the transition apparently becomes decreasingly reversible with time, albeit the recurrent losses of sex [START_REF] Tilquin | What does the geography of parthenogenesis teach us about sex?[END_REF] and the evolution of transmissible cancer suggests that reversion by mutation may always remain a possible outcome [START_REF] Murgia | Clonal Origin and Evolution of a Transmissible Cancer[END_REF][START_REF] Murchison | Clonally transmissible cancers in dogs and Tasmanian devils[END_REF]. On the course of the transition, it was put forward that a transfer of fitness is completed (Okasha, 2006), but, as Bourrat insisted, it seems more of a conceptual artefact for

Box 3. Fitness transfers and group selection in ETIs

ETIs have long been thought to involve a transfer of fitness from lower level units to groups gathering them. According to this view, there is a critical point beyond which the group fitness is no longer aligned with that of its individual parts (see Figure 2.5). Depending on ecological and evolutionary conditions, the group may thus thrive or disappear.

No migration

Coexistence

Competitive exclusion Competitive equilibrium

Possible migrations

Figure 2.6: The coexistence of fitness at different levels of individuality has spawned a long standing controversy over group selection, revolving around whether or not selection at the group level matters for the evolutionary outcome. In fact, the conundrum solves itself when factored in it that populations cannot grow indefinitely -at a point, any population size becomes constant due to the carrying capacity of the environment -and that lower level units may or may not be able to migrate.

Assuming no migration between groups, these latter can either coexist if they do not share their ecological niche, or, if they do, one will exclude the other, that for whom the group fitness is higher (when the demographic equilibrium has been reached), by replacing progressively its agents. Therefore, groups and individuals fitnesses get realigned in the long run, as [START_REF] Bourrat | Beyond Fitness Decoupling: Tradeoff-breaking during Evolutionary Transitions in Individuality[END_REF] pointed out. This is because lower level entities disappear with their groups, no matter how numerous they are. Introducing possible migrations complicates the dynamics and may result in the influence of both lower level fitness and group level fitness, and contribute to establish a frequency dependent equilibrium between competitors (eg. transmissible cancers and their hosts). Here, we compared groups between them, but the same argument prevails when they compete directly with lower level individuals.
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there is actually no decoupling of lower-level and group-level fitnesses provided the chosen timescale is large enough (Bourrat, 2015b;Bourrat, 2015a) -see also Box 3.

A long-standing debate over ETIs, and more generally the evolution of cooperation, has been the question of the relevance of inclusive fitness [START_REF] Nowak | The evolution of eusociality[END_REF][START_REF] Abbot | Inclusive fitness theory and eusociality[END_REF]Nowak et al., 2011;[START_REF] Allen | Limitations of inclusive fitness[END_REF][START_REF] Birch | The inclusive fitness controversy: finding a way forward[END_REF][START_REF] Levin | Inclusive fitness is an indispensable approximation for understanding organismal design[END_REF], where the fitness of an individual includes the fitness of its kins, and that of the existence of group selection (Wynne- [START_REF] Wynne-Edwards | Animal Dispersion in Relation to Social Behaviour[END_REF][START_REF] Wiens | On group selection and Wynne-Edwards' hypothesis[END_REF][START_REF] Wilson | Eusociality: Origin and consequences[END_REF], where groups are favored over individuals. The controversy has mostly been sparked by the use of (yet useful) toy models that do not capture the inherent complexity of biological processes such as that of [START_REF] Hamilton | The genetical evolution of social behaviour. I[END_REF] and [START_REF] Dawkins | The selfish gene[END_REF] featuring the famous rbc selfish gene condition of cooperation. Although interesting philosophically speaking (but see Box 3), these debates miss the most salient points on the question, which are the quantitative how and why of such events without which untested theories endlessly accumulate, as already discussed about the C-value enigma (see general introduction). Regardless of the scientists involved, such transitions have largely been assumed to get promoted by the advantage of Labour Division [START_REF] Koufopanou | Soma and germ: an experimental approach using Volvox[END_REF][START_REF] Szathmáry | The major evolutionary transitions[END_REF][START_REF] Michod | Transitions in individuality[END_REF]Michod, 2005;[START_REF] Gavrilets | Rapid Transition towards the Division of Labor via Evolution of Developmental Plasticity[END_REF][START_REF] Simpson | The evolutionary history of division of labour[END_REF][START_REF] West | Major evolutionary transitions in individuality[END_REF][START_REF] Szathmáry | Toward major evolutionary transitions theory 2.0[END_REF][START_REF] Cooper | Division of labour and the evolution of extreme specialization[END_REF][START_REF] Doulcier | Division of labor and fitness decoupling in evolutionary transitions in individuality[END_REF][START_REF] Hammerschmidt | The Order of Trait Emergence in the Evolution of Cyanobacterial Multicellularity[END_REF], where lower level units specialise at one task.

Using Game Theory introduced in Biology in [START_REF] Smith | The Logic of Animal Conflict[END_REF], it was shown that cooperation should evolve under certain conditions, be it in the case of the Prisoner's dilemma -where the cost of cooperation is high -or that of the snowdrift game -where the cost of cooperation is low compared to the cost incurred by mutual defections -provided repeated interactions occur and individuals are able to recognise and punish cheaters [START_REF] Doebeli | Models of cooperation based on the Prisoner's Dilemma and the Snowdrift game[END_REF]. But spatial structure, thought to promote kin selection, may bring the unexpected reverse behaviour [START_REF] Hauert | Spatial structure often inhibits the evolution of cooperation in the snowdrift game[END_REF]. To make sense of these theoretical results, it is now needed to ground models on more realistic biological underpinnings, which is now becoming possible as genotype-phenotype maps tremulously get documented. During my PhD, we focused on Evolution acting at the cellular level, which requires that we now examine cells hectic variability.

THE UBIQUITY AND PROTEAN NATURE OF CELL DIVERSITY

The ubiquity and protean nature of cell diversity

"A cell is regarded as the true biological atom. Nothing is living but cells, or what can be directly traced back to cells. However great a departure from the cell-form may be disclosed in an anatomical investigation -as in fibres, vessels, bones, membranes -a morphological investigation detects that all these were cells in their origin. As a cell the organism commences; all through its career, a large part of the organism is made of cells, and the rest is of transformed cells, or cell-products."

George Henry Lewes

Although Evolution probably started without cells, unless we accept to get stuck in another egg-chicken issue, the invention of cells is arguably the most important leap it ever took. This is especially true for whom considers viruses not to be alive, exactly as weird a viewpoint as considering them to be alive. Actually, there is likely more viruses than any other biological entities on Earth (editorial, 2011), which is also true for their diversity, and Life may have originated from them through Evolution [START_REF] Podolsky | The Role of the Virus in Origin-of-Life Theorizing[END_REF][START_REF] Kostyrka | What roles for viruses in origin of life scenarios?[END_REF]. After two long and painful years of action stations in the struggle against a tiny subset of this evolving diversity, we are all well aware that they are definitely more than passive onlookers awaiting in the backseats for the performance.

In fact, they constantly interact with living entities and were involved in numerous innovations.

We may feign disgust or outrage, but we are viruses. Approximately 8% of our information comes from viruses [START_REF] Grandi | Human Endogenous Retroviruses Are Ancient Acquired Elements Still Shaping Innate Immune Responses[END_REF], at least until our genomic tools help dig out some more12 : most of it is silent, but yet also lie among them some of our most distinctive, typical characters, such as the famous syncitins engaged in placental development [START_REF] Mi | Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis[END_REF][START_REF] Chuong | The placenta goes viral: Retroviruses control gene expression in pregnancy[END_REF].

Within these fascinating and seldom dreadful objects, some may even be the descendants of the ingredients with which Life was cooked by Evolution. Hence, except for this controversial, bizarre part of the living world -that is, if we forget all the non cellular life on the altar of metabolismliving organisms, all of them, from the tiniest we know to the largest we cannot ignore, are made of cells. This is the part on which we now elaborate in further details.
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About the underpinnings of phenotypic diversity

"It is not the strongest of the species that survives, not the most intelligent that survives. It is the one that is the most adaptable to change."

Charles Darwin

As Darwin pointed out, evolutionary success heavily relies on the ability of a species to adapt in the face of changes. This is true at every level of organisation, and may elicit very different responses. This diversity of phenotypic strategies can be classified according to different non exclusive criteria when we get interested into the rationale underpinning them:

(i) diversification can be heritable or not heritable;

(ii) diversification can be reversible or irreversible;

(iii) diversification can rely on genetic or non-genetic determinism;

(iv) diversification can be canalised or uncanalised, and even decanalised13 .

About reversibility and heritable variability

At the core of Darwino-Wallacism is the existence of the distinct survival of heritable variations [START_REF] Wallace | On the Tendency of Varieties to Depart Indefinitely From the Original Type[END_REF][START_REF] Darwin | On the origin of species by Means of Natural Selection[END_REF]. In its modern (synthesis) acceptation, Evolution occurs and perpetuates itself when different heritable units -in the broad sense of genetic entities -compete against each other (Pigliucci, 2009;[START_REF] Futuyma | Evolutionary biology today and the call for an extended synthesis[END_REF][START_REF] Stoltzfus | Why we don't want another "Synthesis[END_REF]. These heritable units are always comprised of genetic materials, but mutations that make them different can be non-genetic.

Heritable units need not possess distinct fitnesses for evolution to unfold for organisms may drift apart completely neutrally [START_REF] Bibliography Kimura | Evolutionary Rate at the Molecular Level[END_REF][START_REF] Lester | Non-Darwinian Evolution[END_REF][START_REF] Jukes | The neutral theory of molecular evolution[END_REF] -see Section 3.1.1. By heritable, we mean the existence of a (trait) correlation between parent and offspring, or, in other words, the part of trait variance ascribable to something they share or have shared: for instance, they may have grown up in a similar environment, or they may possess a gene in common [START_REF] Visscher | Heritability in the genomics era -concepts and misconceptions[END_REF]. With these premises in mind, it is possible to distinguish between different timescales of heritability contingent to the determinism involved. First, heritability can be intrinsic, in that 2.2. THE UBIQUITY AND PROTEAN NATURE OF CELL DIVERSITY Figure 2.7: Diversity of phenotypic strategies and their underpinnings: circles represent genotypes while squares coincide with their phenotypic projections, which can be one as well as numerous, depending on the strategy. On the left hand-side, non-genetic diversity is represented: such strategies are also called phenotypic plasticity because the phenotype can be moulded differently from a single genotype. On one hand, plasticity can be canalised, which means that the diversity produced by the genotype corresponds to very distinct phenotypic states, as is at least the case for certain cell types in our body. Among this canalised plasticity, two different phenomenon are to be distinguished: plasticity can be predictive, when it is a proximal response to an environmental change (left corner), or it can be random, through diversifying bet-hedging, when organisms apparently sharing the same environment still differentiate into sub-types. On another hand, plasticity can be decanalised when Evolution favors a genotype susceptible to produce a wide array of more or less diverse phenotypic strategies: this phenotypic heterogeneity may be predictive or not. As these categories tend to be blurred at one scale or another, we discuss the boundaries that exist between them in the text. On the right hand-side, we represent the two main types of genetic diversification: species can either diverge between them, through speciation, when the gene flow between lineages is no longer enough to maintain the capacity to exchange genes. On the contrary, genetic differentiation may occur within a species, either because of pure random genetic drift or because this polymorphism is actively maintained by Natural Selection owing to frequency-dependent selection.
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it is caused by the organism on its own, or extrinsic when the non-self (meaning all that is not due to its own gene expression and its effects) environment proximally influences how genes are expressed. Specifying in the latter case that this influence has to be proximal -in the canonical sense of Ernst Mayr [START_REF] Mayr | Cause and Effect in Biology[END_REF][START_REF] Beatty | The proximate/ultimate distinction in the multiple careers of Ernst Mayr[END_REF] -is indispensable for genes and their subsequent expression are otherwise always the product of an interaction with the environment, if only because their ultimate cause is to succeed in the struggle with the environment. Among intrinsic factors, genetic heritability -directly encoded in the genome [START_REF] Lynch | Genetics and analysis of quantitative traits[END_REF][START_REF] Visscher | Heritability in the genomics era -concepts and misconceptions[END_REF] -usually lasts for a longer time than that coming from epigenetic mechanisms [START_REF] Jablonka | Epigenetic inheritance in evolution[END_REF][START_REF] Noble | Conrad Waddington and the origin of epigenetics[END_REF][START_REF] Boyce | Genes and environments, development and time[END_REF], such as methylation tags, especially when it relies on purely additive contributions of loci (epistatic interactions may distort trait heritability under certain circumstances [START_REF] Domingo | The Causes and Consequences of Genetic Interactions (Epistasis)[END_REF], see section 6 for details about genetic interactions).

The existence of different timescales for heritability comes hand-to-hand with different degrees of reversibility of this variation, which itself can be seen at two different scales: diversification may be reversible during the lifetime, when it is based on the punctual differential expression of genes: the expression of lactose operon in response to the presence of lactose in the environment exemplifies the phenomenon [START_REF] Jacob | Genetic regulatory mechanisms in the synthesis of proteins[END_REF], or it may be reversible between generations, especially insofar as epimutations are concerned : genomic imprinting by methylation tags are often transgenerational but only lasts for a few generations [START_REF] Jablonka | Transgenerational Epigenetic Inheritance: Prevalence, Mechanisms, and Implications for the Study of Heredity and Evolution[END_REF][START_REF] Heard | Transgenerational epigenetic inheritance: myths and mechanisms[END_REF].

Reversibility is on the contrary largely compromised when mutations affect genes, especially since they accumulate over time, although Dollo's principle 14 [START_REF] Gould | Dollo on Dollo's law: Irreversibility and the status of evolutionary laws[END_REF] is not absolutely exempt of exceptions. A recent debate has again ignited the community of evolutionary theorists, about whether or not epigenetic reactions could promote genetic evolution, a process known as genetic assimilation (Waddington, 1953;[START_REF] Waddington | Genetic Assimilation[END_REF][START_REF] Pigliucci | Phenotypic plasticity and evolution by genetic assimilation[END_REF][START_REF] Ghalambor | Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments[END_REF][START_REF] Rajon | In)exhaustible Suppliers for Evolution? Epistatic Selection Tunes the Adaptive Potential of Nongenetic Inheritance[END_REF]. At this stage, no definitive answer exists: on the one hand, epigenetic reactions enable organisms to explore new environments, which should change selective pressures acting on them, but on the other hand, these same reactions may trap organisms in a portion of the genotype space where assimilation is not possible. The balance between these antagonistic 14 Dollo's Law or Principle has been the subject of many interpretations across the ages. We propose to distinguish between the weak Dollo's Principle, stating that a phenotypic trait cannot be regained after its loss, which has been proven wrong in cases as different as the phenotypic construction of digits or wings [START_REF] Galis | Dollo's law and the irreversibility of digit loss in Bachia[END_REF][START_REF] Diogo | Violation of Dollo's law: evidence of muscle reversions in primate phylogeny and their implications for the understanding of the ontogeny, evolution, and anatomical variations of modern humans[END_REF] and that of multicellularity [START_REF] Nagy | Evolution: Complex Multicellular Life with 5,500 Genes[END_REF][START_REF] Nagy | Complex multicellularity in fungi: evolutionary convergence, single origin, or both?[END_REF]; and a strong Dollo's Principle according to which the specific substrate of a trait -its exact genetic architecture, including each protein residue -cannot evolve similarly twice, which is more robust to contradictions, although adaptive convergence may to a certain extent bring exceptions [START_REF] Storz | Causes of molecular convergence and parallelism in protein evolution[END_REF]. This second version seems closer to the original one laid down by the belgian paleontologist.
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factors decides if, and more plausibly when it happens. Opening up a wide window of opportunity, these types of determinism are often involved in different adaptive phenotypic strategies.

About the interplay between genotypic and phenotypic states

As detailed in previous sections, genetic variability is one of the most self-evident distinction to be made among living organisms -see also right hand side on Figure 2.7 -both because its large scale result is obvious, and because it has an objective genetic basis easily accessible nowadays: in short, speciation happens when organisms stop to exchange genes, while polymorphism is a variability within species that results from random genetic drift or balancing selection. The picture is not so clear though for microbiologists who study (micro)organisms that share their gene pools more willingly, blurring the distinction between polymorphism and speciation, but still, the existence of a gradient of gene flow correlated with relatedness calls for the conservation of a "continuous speciation spectrum" [START_REF] Shapiro | Microbial Speciation[END_REF][START_REF] Shapiro | What Is Speciation?[END_REF].

Among non-genetic variability -see left hand side on Figure 2.7 -predictive plasticity15 describes the proximal influence of the environment on the actual phenotypic state. This can be irreversible, especially when it concerns development [START_REF] Fusco | Phenotypic plasticity in development and evolution: facts and concepts. Introduction[END_REF][START_REF] Bateson | The biology of developmental plasticity and the Predictive Adaptive Response hypothesis[END_REF].

Axolotls, endangered animals whose aquatic larvae undergoes metamorphosis to become salamanders, are endowed with a unique breathtaking plastic capacity called neoteny, which comes with paedogenesis: they can reproduce at the larval stage and never reach their adult stage. In fact, it is even their most usual behaviour, to the extent that their salamander nature was serendipitously discovered when these specimens endemic from central America were imported to Europe (Renard, 2010). In this case, predictive plasticity is irreversible, since the reaction norm -describing how the phenotype changes with the environment [START_REF] Pigliucci | Reaction norms of Arabidopsis. IV. Relationships between plasticity and fitness[END_REF] -cannot go in reverse once development has taken place. Most often yet, plasticity remains reversible, following the example of the lac operon.

Diversifying bet-hedging [START_REF] Slatkin | Hedging one's evolutionary bets[END_REF][START_REF] Seger | What is Bet-Hedging[END_REF][START_REF] Philippi | Hedging one's evolutionary bets, revisited[END_REF]) is a strategy 2.2. THE UBIQUITY AND PROTEAN NATURE OF CELL DIVERSITY enabling one to cope with unpredictable fluctuations in the environment, when mistakes may be very expensive for fitness. It is a strategy of risk-minimisation. How does it work? A diversifying bet-hedger (genotype) picks randomly between a set of phenotypic tactics: each organism has a precise phenotypic state, but within an isogenic population of this genotype, the strategy encompasses organisms displaying distinct tactics, each with a given frequency -see Figure 2.7. Since the fate is supposed to stem from randomness, it has also been artfully dubbed "adaptive coin flipping", or "coin-flipping plasticity" in certain cases [START_REF] Cooper | Adaptive "coin-flipping": a decision-theoretic examination of natural selection for random individual variation[END_REF][START_REF] Kaplan | On the Evolution of Coin-Flipping Plasticity: A Response to McGinley, Temme, and Geber[END_REF][START_REF] Menu | Coin-flipping plasticity and prolonged diapause in insects: example of the chestnut weevil Curculio elephas (Coleoptera: Curculionidae)[END_REF], but the very use of this fluctuation concept has been fluctuating as if history was making fun of scientists, and hence became somewhat contentious [START_REF] Olofsson | Bet-hedging as an evolutionary game: the trade-off between egg size and number[END_REF] see Figure 3.2.2 and next section. The classical example of plant seeds germinating after a latency stage is telling [START_REF] Cohen | Optimizing reproduction in a randomly varying environment[END_REF]: because plants do not move, they can be trapped in harsh environments, which may impair their capacity down to a point where fitness is approximately zero.

In this case, delaying germination may seem a cost when mild reproductive seasons succeed one another, but the unpredictable occurrence, even scarce, of a bad reproductive season can sweep this house of cards up like the evolutionary straw it is. The idea behind Natural Selection is that genotypes have to optimise their geometric mean growth rate [START_REF] Lewontin | ON POPULATION GROWTH IN A RANDOMLY VARYING ENVIRONMENT[END_REF], which, for mathematical sake, is often correlated with a reduction in between (reproductive) season growth rate. The optimal frequency of each phenotypic state can be determined theoretically depending on the relative frequency and quality of each environmental conditions [START_REF] Cohen | Optimizing reproduction in a randomly varying environment[END_REF][START_REF] Ellner | ESS germination strategies in randomly varying environments. I. Logistic-type models[END_REF][START_REF] Menu | Bet-Hedging Diapause Strategies in Stochastic Environments[END_REF][START_REF] Rajon | Spatially heterogeneous stochasticity and the adaptive diversification of dormancy[END_REF].

About canalisation and underlying mechanisms

Both predictive plasticity and diversifying bet-hedging -DBH, hereafter -pass through the sieve of genetic canalisation16 [START_REF] Waddington | CANALIZATION OF DEVELOPMENT AND THE INHERITANCE OF ACQUIRED CHARACTERS[END_REF][START_REF] Siegal | Waddington's canalization revisited: developmental stability and evolution[END_REF], yielding distinct phenotypic states. An extreme case of both these phenomenon occurs when there is no canalisation at all, hence enabling the emergence of a wide (still non-genetic) phenotypic heterogeneity that could be considered as an infinite diversification process whose phenotypic states occupy a continuum along a trait axis. What favors this kind of strategy remains unclear, although some mathematical conditions were derived in the past [START_REF] Sasaki | THE EVOLUTIONARILY STABLE PHENOTYPE DISTRI-BUTION IN A RANDOM ENVIRONMENT[END_REF]. The distinction appears tricky, though, 2.2. THE UBIQUITY AND PROTEAN NATURE OF CELL DIVERSITY because a genotype producing numerous canalised17 cell types shall resemble one relying on uncanalised heterogeneity, which is nothing else than the infinite limit of DBH. Yet, under certain occurrences, where there is positive phenotypic auto-correlation -that is heritability between phenotypic states -within a DBH lineage that, only from time to time, produces the other phenotypes, a difference exists that can be identified -see Figure 2.8 for an introduction on the reasons why. Also, from an evolutionary perspective this is likely to matter, as the genetic mechanism triggering canalised bet-hedging may be completely different from that leading to heterogeneous (non-canalised) bet-hedging.

More ecological considerations should be made at this point: predictive plasticity emerges as a reaction to the environment, but in fact, a part of diversifying bet-hedging also does: microenvironmental cues can drive the fate of an organism and this micro-environmental plasticity should still be called DBH -see Figure 2.8 -as what matters is not that much the mechanism from which it originates, but its outcome. Predictive plasticity is supposed to always produce the same phenotype when faced with a given selective environment, whereas through DBH, it should be exactly the opposite, as micro-environments are just convenient cues -uncorrelated with the macro-environment responsible for Natural Selection -used to produce the adaptive genotypic strategy based on several phenotypic states. In this latter case, the environment is only a convenient mean to cope with relevant selective environment(s). Surely, environments should exist where micro-environmental cues partially correlate with the macro-environment, and can feed genotypes with partial information, fascinatingly blurring the boundaries, again. Consequently, the distinction established by [START_REF] Olofsson | Bet-hedging as an evolutionary game: the trade-off between egg size and number[END_REF], whereby coin-flipping plasticity would differ from DBH in that it relies on fixed strategy for each reproductive season, seems more confusing than helpful -see Figure 2.8. Coin-flipping plasticity is a DBH strategy where phenotypic states are drawn randomly (at least we ignore its substrate), no matter its scale. Within coin-flipping plasticity there exists multiple ways to produce diversification, one of which coincides with the narrow definition used by [START_REF] Olofsson | Bet-hedging as an evolutionary game: the trade-off between egg size and number[END_REF]. Distinguishing between the ways to produce DBH can nonetheless prove useful under certain conditions: in this case, a coin-flipper can only produce diversification when there is multiple organisms in the environment and, even more importantly, can only finely tune phenotypic frequencies when there are numerous organisms who use it. Hence, it may be theoretically less likely to evolve, and more likely to be restricted to large and produces only this one for a given reproductive season. In this latter case, there is no within clutch variance and phenotypic diversification only emerges at the population-level. This process is illustrated in (C) through a short subset of seasons where the pink season favors the reproduction of pink/purple phenotypes while the yellow season favors that of orange/yellow phenotypes. Because at the level of genes, coin-flipping plasticity is indistinguishable from diversifying bet-hedging, it may be awkward to separate them only because it is not mediated identically at the level of organisms (see text to explain why it is relevant, at least to be aware of the difference mentioned by [START_REF] Olofsson | Bet-hedging as an evolutionary game: the trade-off between egg size and number[END_REF]). Instead, we propose to stick to the definitions put forward earlier in [START_REF] Kaplan | On the Evolution of Coin-Flipping Plasticity: A Response to McGinley, Temme, and Geber[END_REF][START_REF] Menu | Bet-Hedging Diapause Strategies in Stochastic Environments[END_REF][START_REF] Menu | Bet-hedging for variability in life cycle duration: bigger and later-emerging chestnut weevils have increased probability of a prolonged diapause[END_REF], where diversifying bet-hedging is the phenomenon where one single genotype produces several phenotypes.

Within diversifying bet-hedging, coin-flipping plasticity is DBH relying on random gene expression while environmental-driven bet-hedging emerges as the consequence of environmental plasticity (eg. a difference in the resources allocated by the parent(s)) uncorrelated with the unpredictable environment -and thus uninformative [START_REF] Menu | Bet-hedging for variability in life cycle duration: bigger and later-emerging chestnut weevils have increased probability of a prolonged diapause[END_REF].

THE UBIQUITY AND PROTEAN NATURE OF CELL DIVERSITY

populations. Besides, if such a mutation appears in one organism at first, coin-flipping plasticity has no advantage against specialist strategies because it also only produces specialists in one given year. This conundrum reminds a little about some ancient issues in the evolution of cooperation, where cooperation was supposed to be impeded at first because a mutation producing a cooperator should be disadvantaged as it only meets with non cooperators.

A final remark to conclude this non-comprehensive review relates to the substrate of non genetic diversity : it should be made clear indeed that non-genetic diversity can be genetically encoded, in that it relies on a genotype whose network properties -see section 3.2.2 for details on gene networks functioning -ensure its inheritance. Non genetic diversity, in the end, is often genetically driven!

How does it translate at the cellular level?

Endosymbiosis, a remarkable case of genetic diversity

It is obvious from what we have been saying that genetic diversity is huge at the cellular level.

Hitherto, we have, however, kept on mentioning Prokaryotes and Eukaryotes without discussing one of the most salient point behind diversity, the (genetic) 18 dichotomy between these two very distinct cellular architectures [START_REF] Sapp | The prokaryote-eukaryote dichotomy: meanings and mythology[END_REF]. Several biological differences exist between these types of cells, and many questions persist about their order of appearance [START_REF] Mariscal | Eukaryotes first: how could that be?[END_REF] and the very reasons behind that [START_REF] Eme | Archaea and the origin of eukaryotes[END_REF]. Obviously, eukaryotic cells have organelles, a nucleus and many unique features. Yet, to be phylogenetically and structurally rigorous, we must mention that there exists three distinct types of cells, each corresponding to one domain of Life as [START_REF] Woese | Phylogenetic structure of the prokaryotic domain: the primary kingdoms[END_REF] and [START_REF] Woese | Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya[END_REF] brought to light (and that was recently amended, see below) 19 .

If the difference is so striking at first sight between Prokaryotes -Bacteria and Archaea -and Eukaryotes, it is because of the extreme compartmentalisation of the latter, whose evolutionary understanding seems to me one of the greatest scientific achievement ever. [START_REF] Sagan | On the origin of mitosing cells[END_REF] put forward more than half a century ago (Gray, 2017) that mitochondria, the powerhouse compart-2.2. THE UBIQUITY AND PROTEAN NATURE OF CELL DIVERSITY ments of Eukaryotes, were ancient microorganisms that had been domesticated by eukaryotic cells, a process known as endosymbiosis [START_REF] Archibald | Endosymbiosis and Eukaryotic Cell Evolution[END_REF][START_REF] Ku | Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes[END_REF][START_REF] Martin | Endosymbiotic theories for eukaryote origin[END_REF]. This brilliant and insightful inspiration progressively gained credit [START_REF] Gray | Mitochondrial evolution[END_REF], and what remains in the mitochondrial genome was finally linked to α-proteobacteria [START_REF] Gray | Mitochondrial evolution[END_REF][START_REF] Martijn | Deep mitochondrial origin outside the sampled alphaproteobacteria[END_REF].

For other compartments, the mystery remains, keeping the secret of the evolutionary causality that prevailed and eventually gave birth to Eukaryotes [START_REF] Eme | Archaea and the origin of eukaryotes[END_REF]. We do not know for sure how endosymbiosis took place, but the discovery of new Archaeal species -the Asgardsseemingly bridging the gap between Archaea and Eukaryotes clearly indicates that Eukaryotes are, in the end, just one prolific lineage of the former [START_REF] Williams | An archaeal origin of eukaryotes supports only two primary domains of life[END_REF][START_REF] Spang | Complex archaea that bridge the gap between prokaryotes and eukaryotes[END_REF][START_REF] Eme | Archaea and the origin of eukaryotes[END_REF]. At a point in the ancient past, some Bacteria and Archaea became so tightly dependent that they made the final leap of abandoning their freedom forever [START_REF] López-Garcıa | Metabolic symbiosis at the origin of eukaryotes[END_REF]. Most often (co-)dependency do not go that far -we know for sure that a similar process happened with chloroplasts, and even lead to Matryoshka nested dolls dynamics, where an endosymbiotic eukaryote got himself caught as an endosymbiont (Keeling, 2004) -even coooperative ones; be that as it may, engaging in relationships is the rule for living organisms, well beyond predation. We will now review the molecular part of these interactions at the level of cells. Note that we will use the lexical field of symbiosis, even though these interactions may not engage distinct species, like initially proposed by Haskell for symbiosis [START_REF] Lidicker | A Clarification of Interactions in Ecological Systems[END_REF]: this distinction is harder at the cellular level and, in any case, we do not wish presume at this stage about which interaction should act at the level of species or within it.

Interactions and cell diversification

Interactions between single-celled organisms involve various molecules: genetic flow through lateral gene transfer contribute to their genetic similarity (and differentiation), much like recombination does for multicellular organisms (these processes are not mutually exclusive), while the interactions mediated by proteins or metabolites are more of an ecological nature. Typically, these ecological interactions would be distinguished in two classes, between those involving reproduction and those involving resource uptake. When organisms face tough environmental conditions, they should benefit from the ability to disperse and explore another environment that aggregation can provide, a form of sociality widespread among terrestrial amoeba [START_REF] Bonner | Evidence for the formation of cell aggregates by chemotaxis in the development of the slime mold Dictyostelium discoideum[END_REF][START_REF] Madgwick | Strategic investment explains patterns of cooperation and cheating in a microbe[END_REF][START_REF] Madgwick | Evolution of strategic cooperation[END_REF]. These interactions can be mediated to stabilize or even enhance their 2.2. THE UBIQUITY AND PROTEAN NATURE OF CELL DIVERSITY efficiency: aggregation in social amoeba was recently shown to rely on polychromatic greenbeard loci working through the binding of a ligand to a receptor, that facilitate kin recognition [START_REF] Gruenheit | A polychromatic 'greenbeard'locus determines patterns of cooperation in a social amoeba[END_REF][START_REF] Madgwick | Greenbeard Genes: Theory and Reality[END_REF].

In parallel, microbes may interact because they share molecules for their direct fitness effects, be it willingly (co-dependency) or not (due to leaky functions), through a process known as crossfeeding 20 (Seth et al., 2014; D'Souza et al., 2018; Smith et al., 2019) -see Box 4 for a classification based on evolutionary considerations. These interactions can thereby range from pure parasitism to synergistic cooperation. [START_REF] Smith | The Classification and Evolution of Bacterial Cross-Feeding[END_REF] made distinctions between these interactions on the basis of the nature of the molecules involved:

(i) substrate cross-feeding involves the release of an enzyme in the environment to break a nutrient so that its uptake is made possible. Some secreted enzymes are known: invertase can break sucrose into glucose and fructose [START_REF] Koschwanez | Improved use of a public good selects for the evolution of undifferentiated multicellularity[END_REF] and siderophores can chelate iron [START_REF] Griffin | Cooperation and competition in pathogenic bacteria[END_REF], both processes catalysing uptake. As in the snowdrift game [START_REF] Doebeli | Models of cooperation based on the Prisoner's Dilemma and the Snowdrift game[END_REF][START_REF] Gore | Snowdrift game dynamics and facultative cheating in yeast[END_REF], this behaviour often gives rise to a Black Queen dynamics [START_REF] Jeffrey | The Black Queen Hypothesis: Evolution of Dependencies through Adaptive Gene Loss[END_REF][START_REF] Morris | Black Queen evolution: the role of leakiness in structuring microbial communities[END_REF] where an equilibrium establishes between cooperators and cheaters because cheaters cannot survive in a community without cooperators but have an advantage when they are rare.

(ii) Metabolite cross-feeding involves the release of a useful (but how useful may be the question) metabolite on which commensal microorganisms can thrive. When cross-feeding is mutual, a positive feed-back may start (D 'Souza et al., 2018;[START_REF] Smith | The Classification and Evolution of Bacterial Cross-Feeding[END_REF] and contribute to the establishment of a cooperative community, for example owing to spatial structures [START_REF] Estrela | Evolution of Cooperative Cross-Feeding Could Be Less Challenging Than Originally Thought[END_REF][START_REF] Germerodt | Pervasive Selection for Cooperative Cross-Feeding in Bacterial Communities[END_REF][START_REF] Tatenhove-Pel | Population dynamics of microbial cross-feeding are determined by co-localization probabilities BIBLIOGRAPHY and cooperation-independent cheater growth[END_REF], and/or niche extension [START_REF] Oña | Obligate cross-feeding expands the metabolic niche of bacteria[END_REF]. Ensuring the long-term (evolutionary) stability21 of these mutualisms (but also of genetic exchange, cunningly) may capitalise on quorum-sensing [START_REF] Miller | Quorum sensing in bacteria[END_REF][START_REF] Juhas | Quorum sensing: the power of cooperation in the world of Pseudomonas[END_REF][START_REF] Parsek | Sociomicrobiology: the connections between quorum sensing and biofilms[END_REF] whereby, as the name already tells, the overrun of a (counterparts) threshold sparks a given behaviour; here, cooperation. This communication is mediated more or less accurately by diffusible signal molecules that microbes can sense in return and is not an absolute guarantee as cheaters may divert it [START_REF] Diggle | Cooperation and conflict in quorum-sensing bacterial populations[END_REF]. But one may now ask: how much of this diversity belongs to the realm of genetics? 2.2. THE UBIQUITY AND PROTEAN NATURE OF CELL DIVERSITY Box 4. An evolutionary classification of cross-feeding D 'Souza et al. (2018) put forward the classification shown in figure 2.9 where parasitic cross-feeding is called substrate cross-feeding because the cross-feeder feeds on a hidden nutrient revealed by the producer, while commensalism is called metabolite cross-feeding.

In spite of its molecular relevance, cross-feeding is above all an interaction phenomenon, which also calls for a framework based on the nature of the interaction: indeed, if a cell cross-feeds on a leaky metabolite (or uses it to do so), leakiness and parasitism are more important to understand why it evolves than the nature of the molecule. Souza et al., 2018) and [START_REF] Smith | The Classification and Evolution of Bacterial Cross-Feeding[END_REF], albeit with a higher emphasis on the degree of cooperation each of them involves. Through cross-feeding interactions, an organism -at least -feeds on a product released by another one. When an organism releases a Public Good that is needed to take a nutrient, the relation is parasitic because the cross-feeder takes benefit from the investment of the other without paying the cost: such a function is called leaky [START_REF] Morris | Black Queen evolution: the role of leakiness in structuring microbial communities[END_REF]. The relation may also be cooperative, when both organisms cross-feed on each other, through the mutual release of metabolites, or purely neutral -at least apparently -for the producer when it releases a waste product on which a consumer feeds. Such cases are very well known within microbiota, but also in animal trophic chains, where beetles and flies thrive on feces. The neutrality may only be apparent since it is plausible that in some cases, this specialisation is a secondary evolution to stay competitive against cross-feeders.

THE UBIQUITY AND PROTEAN NATURE OF CELL DIVERSITY

Cells and non genetic diversity

Indeed, however wide non genetic variability among cells appears to be at first (microscopic) sight, it seems natural to wonder how much of it only holds as a purely artifactual vision biased by overlapping generations, instead of the aforementioned processes. Almost any population contains overlapping generations departing from their non overlapping (e.g. WF) version. Therefore, it is practically inevitable to find phenotypic heterogeneity, as any living organism passes through different stages. Cells have to process nutrients, to grow, to replicate their DNA and to divide into daughter cells, all of these tasks relying on specific genetic cascades. This differential expression has long been known through the discovery of the eukaryotic Cdk-cyclin complex [START_REF] Hartwell | Genetic control of the cell-division cycle in yeast. I. Detection of mutants[END_REF][START_REF] Hartwell | Genetic Control of the Cell Division Cycle in Yeast[END_REF][START_REF] Lee | Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2[END_REF][START_REF] Standart | Cyclin synthesis, modification and destruction during meiotic maturation of the starfish oocyte[END_REF], whereby the intertwined ballet between protein kinases (Cdk) and regulatory factors (cyclin proteins) is constantly acting to ensure the progression towards reproduction. In an elegant paper, [START_REF] Aviner | Uncovering Hidden Layers of Cell Cycle Regulation through Integrative Multi-omic Analysis[END_REF] clarified which genes are down-regulated and up-regulated during each stage, revealing an even more differentiated picture, where genetic cascades are highly dynamic and synchronised with life cycles. Consistent with this highly dynamic nature of cells, temporal differentiation also concerns the mitochondrial content (Scott et al., 2010a), subject to cellular allometric rules, to ensure an optimal functionality [START_REF] Miettinen | Cellular Allometry of Mitochondrial Functionality Establishes the Optimal Cell Size[END_REF]. Albeit to a lesser extent 22 , this dynamic nature holds for Prokaryotes [START_REF] Wang | Metabolism, cell growth and the bacterial cell cycle[END_REF][START_REF] Bibliography Lindås | The cell cycle of archaea[END_REF], although replication is more of a continuous process for them, especially in rapidly growing cells for which multifork replication empowers overlapping rounds of replication [START_REF] Youngren | The multifork Escherichia coli chromosome is a self-duplicating and self-segregating thermodynamic ring polymer[END_REF].

Although not documented for a long time due to technical curtailments, biologists have long been suspected the pervasiveness of non-genetic non-lifecycle diversity among microorganisms.

Thanks to the refinement of experimental and genetic techniques [START_REF] Solopova | Bet-hedging during bacterial diauxic shift[END_REF][START_REF] Takhaveev | Metabolic heterogeneity in clonal microbial populations[END_REF], it is no longer an intuition that microbes also display all the behaviours described in the previous section. Among isogenic cell lines, there is often, if not always, a wide phenotypic diversity, which raises fascinating questions about why such diversity evolved, how it works, and whether it can provide clues about how cells are responsible for complex behaviours when they assemble into community, be it within (physiologically) integrated 23 organisms -such as multi-Figure 2.10: During their life, cells follow a cycle starting with growth and eventually leading to division were the cell to avoid death. These cycles depend on the type of cells [START_REF] Wang | Metabolism, cell growth and the bacterial cell cycle[END_REF][START_REF] Cooper | The Cell: A Molecular Approach[END_REF][START_REF] Bibliography Lindås | The cell cycle of archaea[END_REF], which is required for the genetic material is not stored the same way: in Bacteria, it is a single circular chromosome while in Eukaryotes, it is located in the nucleus compartment and made of chromatin during most of its life, which compacts into chromosomes to let replication happen. The cell cycle comes along with temporal differentiation since different tasks have to be accomplished at different period of times. The bacterial cell cycle starts with the B stage, following birth, during which the cell grows without replication; then, the C stage occurs after the initiation of chromosome replication, while the cell is still growing, and eventually leads to cell division [START_REF] Wang | Metabolism, cell growth and the bacterial cell cycle[END_REF]. In Eukaryotes, and at least in some Archaea [START_REF] Bibliography Lindås | The cell cycle of archaea[END_REF], the G 1 -S-G 2 -M cell cycle involves a growth phase that can be separated in three stages, as DNA replication is carried out in the middle of it and thus separates G 1 from G 2 . Obviously, the cycle ends up with reproduction, through mitosis (M) owing to the complexity of Eukaryotic machineries and compartments. Each of this stage comes with its specific genetic cascadessee text for more details. These cycles can be interrupted by cells entering latency (in growth stages), until growth is resumed afterwards. cellular organisms like humans [START_REF] Regev | The Human Cell Atlas[END_REF] -or not [START_REF] Dean | A molecular investigation of genotype by environment interactions[END_REF][START_REF] Justice | Morphological plasticity as a bacterial survival strategy[END_REF][START_REF] Veening | Bet-hedging and epigenetic inheritance in bacterial cell development[END_REF]Veening et al., 2008a;[START_REF] Zhang | Bet hedging in the underworld[END_REF][START_REF] Ratcliff | Individual-Level Bet Hedging in the Bacterium <em>Sinorhizobium meliloti<[END_REF][START_REF] Ackermann | A functional perspective on phenotypic heterogeneity in microorganisms[END_REF][START_REF] Solopova | Bet-hedging during bacterial diauxic shift[END_REF][START_REF] Rong | Phenotypic Plasticity of Staphylococcus aureus in Liquid Medium Containing Vancomycin[END_REF], and in between within social amoeba such as Dictyostelium [START_REF] Bonner | Evidence for the formation of cell aggregates by chemotaxis in the development of the slime mold Dictyostelium discoideum[END_REF]Bonner, 1998a;[START_REF] Martínez-García | Seasonality can induce coexistence of multiple bet-hedging strategies in Dictyostelium discoideum via storage effect[END_REF] or cancers (Hausser capability of developing the whole organism from a unique cell -called bottleneck reproduction. We elaborate on the idea of organismality in the concluding discussion. OF CELL DIVERSITY et al., 2020;[START_REF] Black | Genetic and non-genetic clonal diversity in cancer evolution[END_REF][START_REF] Mo | Bidirectional Genetic Control of Phenotypic Heterogeneity and Its Implication for Cancer Drug Resistance[END_REF].

THE UBIQUITY AND PROTEAN NATURE

As already stated, one extreme form of non genetic cell diversification occurs in multicellular organisms, where a single totipotent cell can give rise to numerous distinct cell types, called specialised or differentiated cells [START_REF] Niklas | The evolutionary-developmental origins of multicellularity[END_REF]. Cell types are self-evident in Animals, Plants and Fungi, the three major clades of multicellular organisms. But multicellularity is pervasive in the tree of Life and seems easily achievable [START_REF] Niklas | The origins of multicellular organisms[END_REF], which has even pushed some scientists to diminish the importance of the transition towards multicellularity, making the case for multicellularity as having a status of minor major transition [START_REF] Grosberg | The Evolution of Multicellularity: A Minor Major Transition?[END_REF]. These cell types can communicate and cooperate; and the evolutionary need for division of labor has actually been claimed to promote differentiation. Along aggregative properties, these processes are undeniably what characterise multicellularity, are they? Considering what we said in this section, we nonetheless go on by making a preposterous proposal.

Differentiation through the evolutionary looking-glass: rethinking the idea of cell specialisation

In a seminal and inspiring book about molecular biology [START_REF] Schrödinger | What is Life? The Physical Aspect of the Living Cell[END_REF], whose influence transcends time, as it led to the discovery of DNA, the physicist Erwin Schrödinger questioned the classification used to distinguish the different states in which matter can exist. In the classical view based on everyday life, matter can be under a solid, liquid, gaseous, or plasma form. But, Schrodinger argued, this classification is merely a misguiding product of History, for these features are not the ones involved in their most essential characteristics. Instead, it would have been more fortunate to insist on the dichotomy between crystals, like N aCl salt; and non-crystals, like glass, which results from the vitrification transition and shares properties traditionally associated with both liquid and solid forms. His main argument leans on mechanistic principles about the arrangement of atoms as in crystals, all atoms are regularly spread following geometric rules, while in non-crystals, be they solid, liquid or whatever else, atoms do not follow any pattern. Building on this idea, Schrödinger further proposes the existence of a third state of matter lying in between the first two he describes. He called this state of matter an aperiodic crystal, in a claim already made earlier by Hermann Joseph Müller [START_REF] Varn | What did Erwin mean? The physics of information from the materials genomics of aperiodic crystals and water to molecular information catalysts and life[END_REF], to which he gave its nobility letters, stating that the molecule of Life is made by a repetition of specific atoms that do not follow any overall periodic pattern. According to Schrödinger, it was the only way through which a molecule 2.2. THE UBIQUITY AND PROTEAN NATURE OF CELL DIVERSITY could both have its prerequisite stability -atoms are not disturbed and rearranged over and over again into new assemblages -and its susceptibility to changes, called mutations. He then further elaborates on this molecule of Life, making predictions about its size, in terms of its number of atoms, based upon statistical physics. We shall never know how much reshuffling ideas truly influenced the way scientists pursued this molecule; but we definitely know how much it propelled some of them, noticeably Watson and Crick, to get interested in this quest for Life's heritable underpinnings.

"When I use a word, it means just what I choose it to mean -neither more, nor less."

Lewis Caroll

The Red Queen, who urged Alice to run faster and faster if she were "to keep in the same place", became popular in Evolutionary Biology through Van Valen's pen as a cunning metaphor describing ever-lasting coevolutionary runaways [START_REF] Van Valen | A new evolutionary law[END_REF]. But Lewis Carroll went far beyond this single premonition, as the book abounds with brilliant intuitions, from the sudden drop of Alice down the dark rabbit-hole, during which she cannot tell whether the hole is deep or the drop is slow, to the numerous philosophical remarks about the meaning of words and language.

It is often said that great discoveries comes by thinking differently. What can we learn from the Red Queen and Schrödinger's perilous enterprise is that it can also be meaningful to speak differently and that the choice of words we use can limit our knowledge. "But if thoughts corrupt language, language can also corrupt thought.", as George Orwell brought to light. Admitting that the relationship between thoughts and language is two-way, we shall never forget the reminder delivered by the Red Queen when she shook her head. "You may call it 'nonsense' if you like" she said, "but I've heard nonsense, compared with which that would be as sensible as a dictionary!" Our nonsense proposition is that we should not see organisms through the dichotomy between unicellular and multicellular organisms, at least when we try to understand how some of the first ones evolved features associated with multicellularity, and among these latter, how some accomplished the final evolutionary leap to forms that very few hesitate to categorize as multicellular ones. Multicellular organisms have two major distinctive characteristics: they are made of aggregated and differentiated cells. But how much are they distinctive from unicellular organisms? sense, this organism cannot exist, as discussed earlier when introducing the idea of lifecycles). Between these two extreme states, one may find intermediate levels of differentiation as exemplified by 2 states diversified bet-hedging. In (B), we further the perspective by unraveling the two components of the substrate of differentiation, and showing also that its one-dimensional projection is simplistic: noticeably, we can see here that the level of canalisation defines whether a strategy coincides with differentiation or rather phenotypic heterogenity. As discussed in the text, this may be important from an evolutionary perspective as some strategies may hinder the achievement of other or, on the contrary, promote it.

We know for quite a long time that microorganisms can aggregate in biofilms [START_REF] Shapiro | Thinking about bacterial populations as multicellular organisms[END_REF][START_REF] Xavier | Cooperation and conflict in microbial biofilms[END_REF]. But, more interestingly, or at least, more originally, we are now aware that microorganisms, even made of one cell with one single genotype24 , can readily differentiate into different phenotypes beyond the paramount temporal feature of life cycles -see previous section.

One distinctive feature of differentiation is that it follows from the heritable differential expres-2.2. THE UBIQUITY AND PROTEAN NATURE OF CELL DIVERSITY sion of genes, making the process highly irreversible: differentiated cells belonging to one lineage are well identified and, most often, cannot de-differentiate [START_REF] Cai | Dedifferentiation: A New Approach in Stem Cell Research[END_REF]. But the repeated occurrence, long overlooked when not withheld, of bacterial inheritance of cell states [START_REF] Dubnau | Bistability in bacteria[END_REF]Veening et al., 2008a;[START_REF] Norman | Stochastic Switching of Cell Fate in Microbes[END_REF], and of this bistability, is now broadly accepted, and this distinction appears faint as our knowledge goes by. Differentiation does occur in microorganisms. Moreover, unicellular differentiation -the term may sound shocking because where there is one cell, what on earth can differentiate? -share all of its features with the multicellular trait and the point can be made that what we call unicellular organisms do not often live a solitary life, be it in soils or in biofilms. Therefore, it appears more reasonable to assume organisms' differentiation ability to spread along a continuum [START_REF] Boxtel | Taking chances and making mistakes: non-genetic phenotypic heterogeneity and its consequences for surviving in dynamic environments[END_REF], where the point zero might even be non-existent -see figure 2.11. This continuum is in fact a simplified projection of two orthogonal dimensions -diversity and canalisation -in which differentiation takes its roots. As we elaborated previously, phenotypic heterogeneity and differentiation are two extreme ways to produce diversity from one single phenotype, depending on whether or not canalisation domesticates noise. Why would this sleight of hand bring anything scientifically sensible? From an evolutionary perspective, neglecting all the intermediate states between differentiated and non differentiated forms can prove very problematic. Indeed, what credit must we give to findings resulting from frameworks where a wide range of biological possibilities have been ruled out a priori? We may well conclude that differentiation is advantageous where in fact, phenotypic heterogeneity would easily outcompete such a strategy. Equally important, some alternate strategies may evolve more readily, which, even if suboptimal, may bias the evolutionary process, transiently if it is possible for genotypes to find strategies with higher fitnesses or definitively (till death do us part) when genotypes are stuck in evolutionary ruts nearby a local fitness optimum. In this latter case, so-called intermediate states would bury evolutionary progress where it unfortunately and perhaps contingently landed. Owing to the competitive exclusion principle of Gause [START_REF] Gause | Experimental Studies on the Struggle for Existence : I. Mixed Population of Two Species of Yeast[END_REF][START_REF] Hardin | The competitive exclusion principle[END_REF], one may imagine that if such a scenario were to exist, it would be replaced one day or another, but it is not a necessity since the first come can deform adaptive landscapes [START_REF] Burmeister | Host coevolution alters the adaptive landscape of a virus[END_REF], even its own one under certain circumstances [START_REF] Bajić | On the deformability of an empirical fitness landscape by microbial evolution[END_REF]. And thus intermediate states would be anything but evolutionary intermediate stages. Last but not least, this transversal perspective is supported by recent findings in cyanobacteria for whom some scientists recently highligthed the plausibility of a "differentiation first" scenario on the evolution-2.2. THE UBIQUITY AND PROTEAN NATURE OF CELL DIVERSITY ary route to multicellularity [START_REF] Hammerschmidt | The Order of Trait Emergence in the Evolution of Cyanobacterial Multicellularity[END_REF].

Cell differentiation exists at every scales and to plethora of extent. For the very reason that Nature, especially after being complexified by a quasi infinity of mutational attempts, defies the boxes in which we often want to lock it, models now need to see It through less distorted mirrors. This is where our endeavours went throughout my PhD, and we will now focus on why and how we did that to tackle the question of the evolution of cell diversification.

Chapter 3

The causes of Diversification: a tale of drift and trade-offs

Why do living organisms diversify?

"The limits of my language are the limits of my world". [START_REF] Wittgenstein | Tractatus logico-philosophicus[END_REF] Evolution is the ongoing process that gave birth to the wide zoo of wild organisms that have ever lived and shall ever live [START_REF] Darwin | On the origin of species by Means of Natural Selection[END_REF][START_REF] Wallace | On the Tendency of Varieties to Depart Indefinitely From the Original Type[END_REF]. It is, as it were, the language of Nature when it deals with mutable self-replicating entities. If this language has been fruitful, it still sets the limits of what can exist and how this space of possibilities is explored, as pinpointed by [START_REF] Wittgenstein | Tractatus logico-philosophicus[END_REF]. Melting many mechanisms acting at different levels of space and time, these limits are yet to be fully understood. It has long been known indeed that the power of Natural Selection is limited by (random) genetic drift (Fisher, 1930;Fisher, 1931;[START_REF] Wright | THE GENETICAL THEORY OF NATURAL SELECTION: A Review[END_REF][START_REF] Wright | Evolution in Mendelian Populations[END_REF] such that organisms are the best of the possible ones under the conflicting mutational and selective pressures (Kimura, 1962;Ohta, 1992). In the first chapter, we have extensively documented the diversity Evolution has created. From time to time, we gave a glimpse about the reasons why. By contrast, we did not yet elaborate on the underlying mechanisms. This is what we do here, reviewing first how mutations combine with genetic drift and trade-offs, endlessly spawning diversification.

Drifting away from one another or when Evolution without Adaptation sustains the Tree of Diversity

What is drift?

Genetic drift is the process through which segregating alleles get fixed or lost. Historically, it did not make any assumption about the underlying process, be it selection or randomness, echoing the later Kimura's elegant diffusive formulation of the evolutionary process, where selection is represented by the drift term while chance is represented by the diffusion term -see Box 5.

Yet, genetic drift has tended to become synonymous with random drift throughout time. The idea that chance would play a large role in the evolutionary process was first put forward in [START_REF] Hagedoorn | The Relative Value of the Processes Causing Evolution[END_REF] and mathematically derived in Fisher (1923) and Fisher (1931), who gave the probability that a mutation bringing an extra fitness (s) would eventually get fixed -and remained contentious until Kimura, Lester and Jukes proved it to be one pervasive force at the molecular level [START_REF] Bibliography Kimura | Evolutionary Rate at the Molecular Level[END_REF][START_REF] Lester | Non-Darwinian Evolution[END_REF][START_REF] Ohta | Slightly Deleterious Mutant Substitutions in Evolution[END_REF]. Since then and despite time to time revivals (Kern et al., 2018;[START_REF] Jensen | The importance of the Neutral Theory in 1968 and 50 years on: A response to Kern and Hahn 2018[END_REF] where scientists claim loud and clear their disagreement before explaining that they in fact just look at things from a different perspective, the controversy has mostly shifted towards how influential it is when looking at the whole evolutionary picture, including from an adaptive perspective.

Genetic drift, diversity and sub-optimality

The idea of random drift is pretty simple: if I flip a coin once, and this coin is not stacked, it will ends up either heads or tails. Even though the probability of going either way is identical, there is no way to observe that through one toss. If the same coin is flipped twice, there is an identical probability of getting twice the same outcome or one occurrence of each: stochasticity has diminished, which would endlessly repeat were the coin to be flipped again and again, and our patience sufficient to report the outcomes. Random genetic drift is simply the result of stochasticity in the birth-death demographic process, where the ideal -also called effectivepopulation size is equivalent to the number of coin flipping, which explains the expectation that random drift is far higher in lower effective population sizes N e , as shown through the probability of fixation discussed in Box 5. The derivation of the probability of fixation has a long story dating back to the fathers of population genetics [START_REF] Mccandlish | Modeling evolution using the probability of fixation: history and implications[END_REF]. Fisher (1931) and [START_REF] Wright | Evolution in Mendelian Populations[END_REF] demonstrated how the population size and the selective effect of a mutation interact to determine the probability that a newly allelic mutant invades the population. Later on, Kimura (1955) derived more general formulation based on stochastic differential equations. Applying the Kolmogorov backward equation by seeing population genetics as a Markovian process yields the canonical equation below (Kimura, 1962;Kimura, 1964, Mousset -unpublished work), where lower order terms are neglected:

∂u(p, t) ∂t = V 2 ∂ 2 u(p, t) ∂p 2 + M ∂u(p, t) ∂p , ( 3.1) 
where u(p, t) denotes the probability of fixation of an allele with frequency p at the time t and M and V are the first and second (centered) moment of probability density of the infinitesimal change from p to p + δp, which can include selection. The ultimate probability that a mutation gets fixed coincides with the conditions u(0) = 0, u(1) = 1 and ∂u(p,t) ∂t = 0, which makes possible to rewrite u(p) as the quotient between two integrals (Kimura, 1962), so that:

u(p) = p 0 G(x) dx 1 0 G(x) dx , where G(x) = e -2M V dx . (3.2)
In the simple case of an allele that has a selective advantage s in a haploid population size of N , a frequency x of the advantageous mutant has M = sx(1x) and V = x(1x)/N , which yields, when merged with 3.2:

u(s, p; N ) = 1 -e -2N sp 1 -e -2N s = 1 -e -2s
1e -2N s , when p = 1/N . (3.3) When a mutation enters a population, its frequency is p = 1/N , which allows to determine analytically the ratio between the probability of fixation for mutations having exactly opposite effects [START_REF] Mccandlish | Formal properties of the probability of fixation: Identities, inequalities and approximations[END_REF]:

u(s; N ) u(-s; N ) = e 2(N -1)s (3.4)
When N s << 1, this ratio implies that mutations of adverse effects have similar probablity of fixation and, thus, random drift should prevail over Natural Selection.

This framework only exposes the simple case of haploid populations (and therefore no intralocus dominance) with no migration and under the assumption of weak mutations where no clonal interference occurs. By the way, it is assumed an idealised population of constant size, the reason for which the parameter determining the strength of drift is called the effective population size N e , which can often be approximated as the long run harmonic mean of N [START_REF] Karlin | Rates of Approach to Homozygosity for Finite Stochastic Models with Variable Population Size[END_REF], on which bottlenecks have a preponderant impact. (Kimura et al., 1973).

So how can this be that Neutral Evolution sustains genetic diversity? The answer is just about the balance between the input of diversity (through mutations, migration -or gene exchange, though not discussed here) and its loss -see Figure 3.1-A. If mutation rates outpace the sorting by Natural Selection and Random Drift, genetic diversity arises. What has long been known at the molecular level has by contrast, remained confidential at the macro-ecological scale where it was not considered relevant and then ignited criticisms [START_REF] Clark | The coherence problem with the Unified Neutral Theory of Biodiversity[END_REF][START_REF] Scheffer | Toward a unifying theory of biodiversity[END_REF]). Yet, the same balance rule should prevail at this scale also. If mutants (or migrants) settle in a place where they are slightly disadvantaged, they may escape to the principle of exclusion from time to time, and segregate in the community assemblage (Hubbell, 2001;[START_REF] Bell | Neutral Macroecology[END_REF][START_REF] Rosindell | The Unified Neutral Theory of Biodiversity and Biogeography at Age Ten[END_REF]. And where the diversity inflow is, again, higher than the outflow, there should exist a non adaptive diversity -see Figure 3.1-B. The main question orbits around the plausibility of conditions where the balance is in favour of diversity. Are the speciation and migration rates enough to exceed the capacity of Natural Selection otherwise than marginally? Noticeably, most of the criticisms focused on the lack of realism of Hubbell (2001)'s framework to defend his view [START_REF] Etienne | The zero-sum assumption in neutral biodiversity theory[END_REF][START_REF] Clark | The coherence problem with the Unified Neutral Theory of Biodiversity[END_REF], as it is not grounded on the existence of ecological niches.

Therefore, organisms assigned with the same probability of success, as done in the Unified Theory of Neutral Biodiversity and therefore considered as neutral could very well be proven to thrive in different ecological niches. This is why models need include both neutrality, ecological niches and the reasons why there should be different species in different niches: the ubiquity of trade-offs faced by living organisms.

3.1. WHY DO LIVING ORGANISMS DIVERSIFY? But whatever the underpinnings, this always means that even without diversifying selection, diversity can arise, just because the input of variations outnumbers those that disappear, as shown in (B) where the phenotype space is supposed completely neutral. Well known at the molecular level, it has also become clear that the process may also contribute to violations of Gause's principle of exclusion, although determining to which extent is still an ongoing research avenue. Migration is also involved in genetic diversity as it can contribute to the discovery of novel environments, or to the reintroduction of diversity where it has diminished or disappeared.

Trade-off as the pervasive theoretical explanation for adaptive cell diversification

What is a trade-off?

Life is about compromise. No matter how frustrating this fact may be, this is something we all learn very early in our existence. If I cook, I cannot write a letter at the same time -at best, I can dictate my thoughts and have them written for me, which is not the same. And this is true as soon as a budget is not infinite. In the previous case, the budget was time, which itself is a money with its own currency. A finite budget comes with the consequence that one has to allocate this amount to the tasks he wishes to do, and to choose how much he dedicates to each of these chosen tasks [START_REF] Tilman | Constraints and Tradeoffs: Toward a Predictive Theory of Competition and Succession[END_REF]) -see Figure 3.2. Biologically speaking, such an internal compromise is at the roots of the trade-offs observed in Life History traits [START_REF] Stearns | Trade-Offs in Life-History Evolution[END_REF][START_REF] Roff | Evolution of life histories: theory and analysis[END_REF][START_REF] Zera | The Physiology of Life History Trade-Offs in Animals[END_REF][START_REF] Roff | The evolution of trade-offs: where are we?[END_REF] eg. of such traits are the number of offspring and their sizes [START_REF] Stearns | Life-History Tactics: A Review of the Ideas[END_REF] -and generally gives rise to negative relationship between traits at the level of populations or species [START_REF] Roff | The evolution of trade-offs: where are we?[END_REF][START_REF] Garland Theodore | Trade-offs[END_REF]Bourg et al., 2019b) -see Figure 3. In (B), individuals belonging to two species are represented: the underlying trade-off is different, leading to a different mapping of each population. It is important to remark that the trade-off is the underpinning behind the negative relationship, but that these concepts are not equivalent -in the mathematical sensefor two reasons: (i) a negative relationship between two traits need not be underpinned by a trade-off; (ii) even when grounded on an underlying trade-off, the mapping of the population, i.e. the observed trade-off, differs as it includes the effect of mutation, drift, and that of the mapping between performance at each trait and fitness -see text and next figures for more details on that.

1989 ;[START_REF] Roff | Evolution of life histories: theory and analysis[END_REF][START_REF] Zera | The Physiology of Life History Trade-Offs in Animals[END_REF]. It is a common abuse however, to speak automatically about trade-offs when negative relationships are observed and one that can be misleading: the fallacy is especially conspicuous when the concept is used outside the theory of life history traits, for any negative relationship between traits we suppose to be both positive for fitness may then be called that way, even when it is not the result of an internal compromise. Some negative relationships may exist that can be overcome by finding one mutation escaping from it -for instance, the trade-off between protein stability and activity is a misuse of the term since there exists plenty enzymes defying it where some mutations improve both traits at once [START_REF] Miller | An appraisal of the enzyme stability-activity trade-off[END_REF]. Even more importantly, two traits may be negatively correlated because there is diversifying selection to favour two distinct optimums, for instance when one observes two different species -see Box 6.

3.1. WHY DO LIVING ORGANISMS DIVERSIFY?

Typically, organisms have to make a choice at a point between different expenditure items in a process that could be assimilated to pleiotropy -one locus influencing several traits, see Chapter 6 -because an increase of the expression of an item cannibalises resources that would otherwise be used to sustain other tasks. Do I produce a lot of small offspring or a few more vigorous ones?

The answer is anything but obvious and all but one, as it depends on a variety of factors [START_REF] Smith | The Trade-Off Between Offspring Number and Quality in the Great Tit Parus major[END_REF][START_REF] Uller | Trade-offs between offspring size and number in the lizard Lacerta vivipara: a comparison between field and laboratory conditions[END_REF], and is pervasive at any organismic level (from cells to collective of multicellular organisms).

Box 6. Trade-off beyond the individual level

Negative relationships are often observed between two traits of different species. They most often emerge as the result of a trade-off, for instance between fecundity and longevity [START_REF] Jeschke | The roles of body size and phylogeny in fast and slow life histories[END_REF]). Yet, it can spurious because there may be no trade-off at the scale of the species and thus no internal compromise as shown on Figure 3.4. focusing on individuals within a species, as we do in (B), may dismiss the existence of an internal compromise resulting in a trade-off between these two traits. For instance, body mass may be negatively related to dispersion between species within a clade owing to different strategies played by these species, one being a specialist at depleting its local environment while the other is better at exploring large areas. Yet, within species, organisms more prone to disperse may be the largest because they have stored more energy.

3.1. WHY DO LIVING ORGANISMS DIVERSIFY? showing only two of these dimensions, where it often looks like a triangle. Within the triangle, phenotypes are both feasible and potentially optimal so that many of them may coexist (eg. like on the curve of B).

About trade-off shapes and their underpinnings

Something we have been neglecting in this introduction is the shape of trade-offs. It may be linear as we have shown, but there is no particular reason to imagine that it should be that way (Michod, 2005;[START_REF] Reekie | 7 -The Shape of the Trade-off Function between Reproduction and Growth[END_REF][START_REF] Farahpour | Trade-off shapes diversity in eco-evolutionary dynamics[END_REF]Bourg et al., 2019a). As a consequence, trade-offs are also described by their convexity, making the linear trade-off a specific case -see Figure 3.5. One may even imagine more complicated shapes, such as S-shape trade-offs, as long as the relationship is strictly a negative one -see Figure 3.5 -A. Looking at the problem from an economic perspective helps to disentangle distinct concepts connected with the field : the curve of the internal trade-off portrays a Pareto front [START_REF] Shoval | Evolutionary Trade-Offs, Pareto Optimality, and the Geometry of Phenotype Space[END_REF][START_REF] Sheftel | The geometry of the Pareto front in biological phenotype space[END_REF] [START_REF] Sheftel | The geometry of the Pareto front in biological phenotype space[END_REF] predict that these shapes may often be relatively simple, only mildly departing from a straight relationship for a broad variety of fitness landscapes, much like the black curve on Figure 3.5 -B. They have also shown that if many tasks are to be optimised at once, the shape of the Pareto front should still resemble polytopes made of straight lines (eg. a triangle with 3 traits) [START_REF] Shoval | Evolutionary Trade-Offs, Pareto Optimality, and the Geometry of Phenotype Space[END_REF], with pairwise trade-offs looking like the mild curves previously described (unlike the S-shape therefore). Collapsing such polytope in 2-dimensions, as shown in C of Figure 3.5 also coincides with a triangle, where points outside the triangle are either unfeasible or suboptimal.

By refining theory, this Pareto framework is a helpful tool to understand how population and species should occupy the phenotype space: noticeably, as it is a bottom-up approach, starting from internal constraints, it can help understand how trade-offs also impact how species are distributed in this space when a trade-off exists: indeed, if negative relationships at the species level may not necessarily stem from a trade-off, an internal compromise should always end up with this negative relationship and has therefore a high potential explanatory power. Yet, there remains an important deviation between the underlying compromise or internal trade-off and its projection in a population: the latter is subject to the mapping of trait performance into fitness landscapes, and, has besides undergone mutation and drift that push it away from the front. We illustrate this phenomenon on Figure 3.6. Finally, one underappreciated question about these shapes is whether or not they can change, and by the latter, we mean evolve.

Trade-offs and the evolutionary process

Obviously, as soon as one discover different shapes in different organisms, Evolution should be acknowledged as a trade-off modifier [START_REF] Roff | The Evolution of Trade-Offs: Testing Predictions on Response to Selection and Environmental Variation[END_REF][START_REF] Roff | The evolution of trade-offs under directional and correlational selection[END_REF]. But because trade-offs have often been considered through the lens of fixed physical constraints, the question of their shape has been neglected or even considered immutable in some cases [START_REF] Roff | The Evolution of Trade-Offs: Testing Predictions on Response to Selection and Environmental Variation[END_REF]Bourg et al., 2019b). If Evolution is the very reason why we can observe different types of trade-offs, it is yet not known how easy it is to change it through mutations. It may require a lot of mutations, so that the shape is rather constrained on short evolutionary timescales. It may even be possible that some trade-offs have been entrenched into sub-optimal evolutionary states because they were more easy to find through Evolution -see section 3.2.2 for details about findability and accessibility. [START_REF] Roff | The Evolution of Trade-Offs: Testing Predictions on Response to Selection and Environmental Variation[END_REF] have shown, amongst others that it may readily evolve under certain experimental circumstances, a finding which has also received recent theoretical support (Bourg et al., 2019b).

But let us now focus on how an entrenched trade-off should influence the evolutionary process, as this has been the main explanation behind the idea of adaptive diversification.

This brings us back to another storied question. Why does the shape of the trade-off matter? This is because a convex shape should favor specialisation while a concave one should go against it. On a convex trade-off indeed, as a strategy departs from being a specialist, it loses more on its preferred task than it gains on the other side (and the opposite for a concave shape)

-as shown on Figure 3.7. The fate of such strategies will obviously depend on how the performance in each task maps to fitness, as their contribution may not be equal, but the general idea holds, that is a convex shape favors the emergence of specialisation while concave shapes prevent its advent [START_REF] Michod | Life-history evolution and the origin of multicellularity[END_REF][START_REF] Cooper | Division of labour and the evolution of extreme specialization[END_REF][START_REF] Bernardes | The evolution of convex trade-offs enables the transition towards multicellularity[END_REF] as shown in (B) of Figure 3.7. In the next section, we will elaborate on the nitty gritty of this idea in the case of ETIs.

A final important remark should come back on the universality of seeing trade-offs as an allocation problem, as we have assumed hitherto. I do endorse this point of view, at least to a certain extent, but it deserves to be precised as to sound perfectly clear: there are many cases where the trade-off is a mere incompatibility between two phenotypes, for example caused by physical or chemical reasons. An organism that depletes its environment cannot be latent at the same time: hereby, the budget which is limiting is not directly an energetic budget at the level of the individual. As an organism lives in one body, there are certain impossible things, like being latent and depleting its environment to reproduce. The budget is therefore the number of (organisms) in itself, which is limited, and a genotype is thus confronted with an allocation problem between the organisms it produces. The number of organisms a genotype can produce is in turn inherently limited because of an intrinsic energetic and raw material limit, which brings us back to the original explanation, albeit at the level of the genotype1 . Such incompatibility trade-offs are also numerous at the level of cells -see Figure 3.8 -for an example in cyanobacteria [START_REF] Adams | Tansley Review No. 107. Heterocyst and akinete differentiation in cyanobacteria[END_REF][START_REF] Ventura | Multicellular Individuality: The Case of Bacteria[END_REF][START_REF] Hammerschmidt | The Order of Trait Emergence in the Evolution of Cyanobacterial Multicellularity[END_REF], which fuelled insights about the evolution of 

Trade-offs, Division of Labor and ETIs

Because differentiation has generally been attributed to multicellular organisms, past studies about the evolution of Labor Division have attempted to understand its rise at the roots of multicellular organisms, or in the case of ETIs3 more generally, and to solve the conundrum of reproduction sacrifice. Indeed, the simplest form of Complex Multicellularity follows the erstwhile rule Weismann (1892) conceptualized through his germ-plasm theory, in which somatic cells perform vital tasks while germ cells carry the genetic information. Forerunners of theoretical studies about the evolution of Labor Division, Michod and his colleagues [START_REF] Michod | Cooperation and Conflict in the Evolution of Individuality. II. Conflict Mediation[END_REF][START_REF] Michod | Transitions in individuality[END_REF]Michod, 2005;[START_REF] Michod | Life-history evolution and the origin of multicellularity[END_REF] have largely contributed to understanding this step of the transition towards higher level of individuals, by means of extensive mathematical models. They have argued that the essential and indisputable notion behind Labor Division is the mere incom-3.1. WHY DO LIVING ORGANISMS DIVERSIFY? patibility between cellular processes involved in viability and fecundity, thereby drawing a convex trade-off that fosters specialisation [START_REF] Doulcier | Division of labor and fitness decoupling in evolutionary transitions in individuality[END_REF] -see Figure 3.10. Box 7 shows how

Labor Division can provide an extra push of fitness to a genotype, when tasks are more or less incompatible. Such incompatiblities may result from antagonistic metabolic pathways, as observed in Volvox where one pathway ensures motility and nutrient transport, while another leads to cell division [START_REF] Koufopanou | Soma and germ: an experimental approach using Volvox[END_REF], or from that between nitrogen fixing and respiration -see 3.1. WHY DO LIVING ORGANISMS DIVERSIFY?

Box 7. Evolution of Labor Division

Using a framework based on a trade-off between fecundity and viability helps understand qualitatively why spreading tasks between cooperating phenotypes may be advantageous, especially when the trade-off is convex. Assuming a simplistic definition for the interaction between group fitness and lower level fitness yields a conflicted picture where cooperators have a lower fitness when isolated that becomes higher if they can somehow collaborate.

Although this toy model is heuristically inspiring, we expose some of its flaws in the main text, noticeably how curtailing biologic realism precludes any quantitative predictions, and may even reverse some of the qualitative ones. For specialists (the trade-off is symmetrical so that their fitness is identical) f sp = 3/4, while generalists have fitness f g = 1, and thus f g > f sp . Now, let us say that the group fitness is given by and his colleagues of course discussed many of the framework limitations [START_REF] Michod | Life-history evolution and the origin of multicellularity[END_REF]Michod, 2007;[START_REF] Rashidi | A Darwinian approach to the origin of life cycles with group properties[END_REF][START_REF] Leslie | Generation time and fitness tradeoffs during the evolution of multicellularity[END_REF], introducing for instance the influence of group size on the shape of the trade-off, which is supposed to get more and more convex as it increases noticeably because bottleneck reproduction incurs a large but one off cost (a cell needs to overcome a higher reproductive threshold if it is to produce N descendants at once instead of 1).

F = B • V ,
Although stimulating, this simplistic framework does not seem appropriate to play any other role than that of an inspiring toy model, even if it were to be refined. First, we have shown how b and v can be decoupled from their respective contribution to the group. But even more importantly, fitness relies on these two composite traits whose underlying contributions are numerous. For this reason, the trade-off is completely unrealistic in most cases: such relation is indeed highly multidimensional, which proved to defy predictions about specialisation (Amado et al., 2018a;Amado et al., 2018b). Because of trait (and environment) multidimensionality, it is also self-evident that cells continuously influence their own adaptive landscapes and that of their competitors, through niche construction for instance [START_REF] Laland | Evolutionary consequences of niche construction and their implications for ecology[END_REF][START_REF] Post | Eco-evolutionary feedbacks in community and ecosystem ecology: interactions between the ecological theatre and the evolutionary play[END_REF], whose potential in microorganisms seems actually huge [START_REF] San Roman | An enormous potential for niche construction through bacterial cross-feeding in a homogeneous environment[END_REF]. Furthermore, synergistic cooperation is a game changer for multi-tasking, as it enables to reshape profoundly the Pareto front and therefore to 'break' two-dimensional trade-offs [START_REF] Bourrat | Beyond Fitness Decoupling: Tradeoff-breaking during Evolutionary Transitions in Individuality[END_REF] -see Figure 3.9. Let us illustrate this phenomenon with some of the cross-feeding interactions detailed in Chapter 2. If a cell C C -denoting consumer cells -feeds on another cell's wasted products and provides this other cell C P -denoting producer cells -with another useful substrate, the producer cell C P has in turn a higher amount of available substrate, and can produce more nutrient, hence more wasted product, which creates a positive feed-back in the system. Notice that breaking the trade-off does not imply the absence of trade-offs at all (for fecundity and viability, it 3.1. WHY DO LIVING ORGANISMS DIVERSIFY? is even impossible, as it would mean that nothing limits fitness), but that its original boundaries can be overcome, either leading to coexistence through the discovery of a new niche or to the disappearance of the original strain if ecological niches are completely remoulded -see Figure 3.9 -B.

Having said that, what should we be doing to improve our predictions? There is no one way to answer this question and progress is being made on a variety of fronts. We shortly discuss them to explain the modelling choices we made.

A short note about modelling approaches

In parallel to Michod's approach, Evolutionary Game Theory [START_REF] Smith | The Logic of Animal Conflict[END_REF] has also been used to try and understand the emergence of Labor Division within a larger framework, as we introduced in Chapter 2 when discussing Major Transitions. Cooperation has thoroughly been studied through two different games, the Prisoner's Dilemma and the Snowdrift Game [START_REF] Doebeli | Models of cooperation based on the Prisoner's Dilemma and the Snowdrift game[END_REF]. More specifically, the latter one has provided interesting insights about the dynamics between cheating and cooperative behaviours in microorganisms. In the Snowdrift Game, cooperation comes at a low cost while mutual cheating on the contrary is highly deleterious. Imagine two drivers being stuck by a snowdrift: if none of them gets out of his car to remove the snowdrift, they are doomed to a certain death; if one of them accepts to leave his car, he may suffer a little pain but will deliver both players. Such dilemma generally comes with the coexistence of cheaters and cooperators mediated by a frequency-dependent selection [START_REF] Doebeli | Models of cooperation based on the Prisoner's Dilemma and the Snowdrift game[END_REF]. This game also brings by intriguing and sometimes counter-intuitive consequences: it may favor the evolution of facultative cheating, as shown in yeasts [START_REF] Gore | Snowdrift game dynamics and facultative cheating in yeast[END_REF], but it can more surprisingly preclude the emergence of cooperation owing to spatial structure while this latter has long been considered as a systematic driver of cooperation [START_REF] Hauert | Spatial structure often inhibits the evolution of cooperation in the snowdrift game[END_REF]. Snowdrift Game allows one to get a sense of what should happen when the investment in cooperation undergoes a trade-off with the investment in other phenotypic traits. At the level of microorganisms, it often drives Black

Queen dynamics [START_REF] Jeffrey | The Black Queen Hypothesis: Evolution of Dependencies through Adaptive Gene Loss[END_REF][START_REF] Morris | Black Queen evolution: the role of leakiness in structuring microbial communities[END_REF] where an organism keeps a costly function needed by the whole community: if it disappears, the community dies with it, but generally, when cooperators are in low frequencies they have a better fitness, which avoids this mutual disappearance. Recently, such game was used to make accurate predictions about the level of cooperation in social ameoba -where cooperation involves aggregation -leading to the coexistence between full 3.1. WHY DO LIVING ORGANISMS DIVERSIFY? cooperators and moderate cooperators/cheaters, because the absence of cooperation is very detrimental [START_REF] Madgwick | Strategic investment explains patterns of cooperation and cheating in a microbe[END_REF][START_REF] Madgwick | Evolution of strategic cooperation[END_REF]. Yet, similarly to the trade-off approach, this framework is purely theoretical and better at understanding evolutionary outcomes rather than predicting them. The estimation of costs and benefits is often complex in Nature [START_REF] Madgwick | Evolution of strategic cooperation[END_REF], because they are idealised quantities influenced by numerous factors collapsed in two dimensions (exactly like the trade-off framework). Thus, without even mentioning the question of the accessibility of phenotypic strategies4 , completely overlooked in such approaches, these idealised quantities are often constant in models, and even when they are noti.e. if costs and benefits change with the composition of the population(s) and/or the environment -they need be informed by what gives rise to them, or we are never to know what their true value is and to make predictions as to what should happen. [START_REF] Yi | Adaptive Landscapes in the Age of Synthetic Biology[END_REF] proposed recently that, contrary to Dobzhansky (1973)'s view, "nothing in Evolution makes sense except in the light of Biology", which rightly questioned the original statement and rejuvenated the debate on the influence of mechanisms and constraints [START_REF] Gould | The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme[END_REF][START_REF] Pigliucci | The fall and rise of Dr Pangloss: adaptationism and the <em>Spandrels</em> paper 20 years later[END_REF], but failed to avoid circular reasoning. In fact, since Biology is the product of the joint Evolution of physical entities whose combined properties are explored in a (non-random) particular way [START_REF] Monod | Chance and Necessity[END_REF]Monod, 1974;[START_REF] Bibliography Rueffler | Evolution of functional specialization and division of labor[END_REF] during the process, it seems more likely that Dobzhansky (1973)'s statement holds if and only if we acknowledge that nothing in Evolution makes sense without accounting for physics and chemistry, which raises the need for more investigation merging these fields [START_REF] Dean | Mechanistic approaches to the study of evolution: the functional synthesis[END_REF][START_REF] Serohijos | Merging molecular mechanism and evolution: theory and computation at the interface of biophysics and evolutionary population genetics[END_REF] with genetics. While scientists embracing this paradigm are often influenced by their physicist's background, evolutionary biologists have often been reluctant to do so as to keep the ability to make general statements. Indeed, understanding diversification from a metabolic point of view has often been made on a case-by-case basis, where it is easier to quantify each of the influential parameters.

For instance, scientists working on overflow [START_REF] Vemuri | Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio[END_REF][START_REF] Valgepea | Systems biology approach reveals that overflow metabolism of acetate in Escherichia coli is triggered by carbon catabolite repression of acetyl-CoA synthetase[END_REF][START_REF] Renilla | Acetate scavenging activity in Escherichia coli: interplay of acetyl-CoA synthetase and the PEP-glyoxylate cycle in chemostat cultures[END_REF][START_REF] Szenk | Why Do Fast-Growing Bacteria Enter Overflow Metabolism? Testing the Membrane Real Estate Hypothesis[END_REF][START_REF] Pinhal | Acetate Metabolism and the Inhibition of Bacterial Growth by Acetate[END_REF][START_REF] Millard | Control and regulation of acetate overflow in Escherichia coli[END_REF] -the switch from respiration to respiro-fermentation -have often relied on highly specific models where eco-evolutionary factors, amongst others, are ignored, hence preventing them from a generic understanding.

In parallel, there has been a promising new literature studying eco-evolutionary processes 3.1. WHY DO LIVING ORGANISMS DIVERSIFY?

in microorganisms from a metabolic perspective, lead by scientists who take advantage from a dialog between experimental and modelling approaches [START_REF] Molenaar | Shifts in growth strategies reflect tradeoffs in cellular economics[END_REF][START_REF] Gudelj | An integrative approach to understanding microbial diversity: from intracellular mechanisms to community structure[END_REF][START_REF] Estrela | Evolution of Cooperative Cross-Feeding Could Be Less Challenging Than Originally Thought[END_REF][START_REF] Solopova | Bet-hedging during bacterial diauxic shift[END_REF][START_REF] Basan | Overflow metabolism in Escherichia coli results from efficient proteome allocation[END_REF][START_REF] Wortel | Evolutionary pressures on microbial metabolic strategies in the chemostat[END_REF][START_REF] Bajić | On the deformability of an empirical fitness landscape by microbial evolution[END_REF][START_REF] Bajic | The ecology and evolution of microbial metabolic strategies[END_REF][START_REF] Estrela | Metabolic rules of microbial community assembly[END_REF]Estrela et al., 2021a). This tradition dates back to pioneers in the field [START_REF] Bibliography Hartl | Limits of adaptation: the evolution of selective neutrality[END_REF][START_REF] Dean | Fitness as a function of -galactosidase activity in Escherichia coli[END_REF][START_REF] Dykhuizen | Metabolic flux and fitness[END_REF][START_REF] Pfeiffer | Evolution of Cross-Feeding in Microbial Populations[END_REF] and has been used to tackle both how within [START_REF] Solopova | Bet-hedging during bacterial diauxic shift[END_REF][START_REF] Basan | Overflow metabolism in Escherichia coli results from efficient proteome allocation[END_REF] and between species diversification could be promoted (or not) and, more precisely, how community assemblages are driven by metabolic rules [START_REF] Bajic | The ecology and evolution of microbial metabolic strategies[END_REF][START_REF] Estrela | Functional attractors in microbial community assembly[END_REF].

From a theoretical point of view, these models build on Flux Balance Analysis, a framework designed to predict cell growth from biomass production and its underlying flows [START_REF] Feist | The biomass objective function[END_REF]. In such models, trade-offs are both more realistic and more testable since fitness relies on measurable quantities. Another, even more inclusive approach has relied on the development of digital evolutionary simulators [START_REF] Hogeweg | Cellular automata as a paradigm for ecological modeling[END_REF][START_REF] Adami | Evolution of biological complexity[END_REF][START_REF] Ofria | Avida: a software platform for research in computational evolutionary biology[END_REF]Knibbe et al., 2007b;[START_REF] Beslon | Scaling laws in bacterial genomes: a side-effect of selection of mutational robustness?[END_REF][START_REF] Dijk | Trusting the hand that feeds: microbes evolve to anticipate a serial transfer protocol as individuals or collectives[END_REF][START_REF] Bibliography Meijer | Contingent evolution of alternative metabolic network topologies determines whether cross-feeding evolves[END_REF][START_REF] Lehman | The Surprising Creativity of Digital Evolution: A Collection of Anecdotes from the Evolutionary Computation and Artificial Life Research Communities[END_REF], where in silico organisms are endowed with more or less realistic capabilities -the framework put forward by Ofria and colleagues, based on the evolution of computer programmes, is somewhat more remote from biological considerations. One of the advantage of these models is that they do not set any purposeful a priori assumptions. Thus, they are less subject to human (modeller) biases, in principle. As a corollary, they also enable a wide variability of phenotypic solutions because these latter emerge themselves as simulations run. Attracted by the appealing possibilities of these models, I began my PhD by building such a model, where each cell is driven by its own gene network, which produces a simplistic metabolism that fuels cell growth and eventually leads to reproduction. At the end of Chapter 4, we discuss how designing this model made us change our perspective and actually lead us to adopt an approach closer to the metabolic one presented at the beginning of the paragraph. Either way, these models are based on cellular and genetic mechanisms that we have to review before going any further.

TOWARDS A MECHANISTIC APPROACH ABOUT CELL DIFFERENTIATION

Towards a mechanistic approach about cell differentiation

Cell fitness as the product of metabolic pathways

"An attempt to study the evolution of living organisms without reference to cytology would be as futile as an account of stellar evolution which ignored spectroscopy."

John Burdon Sanderson Haldane

Introduction: what is metabolism?

Metabolism is the functional network of an organism. As such, it is responsible for its production of biomass, which itself relies on the creation of needed molecules -anabolism -and the removal of harmful or unneeded molecules -catabolism. Its shape looks like a network for it is highly intertwined, a feature whose origin is still elusive: is it mostly contingency or mostly necessity that guided evolution to this bizarre complex machinery? The question remains open, and probably do not call for a binary answer [START_REF] Schmidt | Metabolites: a helping hand for pathway evolution?[END_REF], which is trivial as soon as Evolution is involved. Because of this complexity, it is hard to test hypotheses about metabolism as a whole.

Rather, scientists have on the one hand chosen to study pathways neglecting their underpinnings by making simplifying assumption: this is the case of the theory of the flux control, which assumes both reactions far from saturation and that the yield, not the net production is maximised [START_REF] Kacser | The control of flux[END_REF][START_REF] Bagheri-Chaichian | Effects of epistasis on phenotypic robustness in metabolic pathways[END_REF][START_REF] Schuster | Is maximization of molar yield in metabolic networks favoured by evolution?[END_REF]; and it is also the case in Flux Balance analysis, where making an assumption about optimality of the system enables one to predict the expected biomass production through the partial knowledge of some fluxes and the law of mass conservation [START_REF] Raman | Flux balance analysis of biological systems: applications and challenges[END_REF][START_REF] Orth | What is flux balance analysis?[END_REF][START_REF] Feist | The biomass objective function[END_REF]. On another hand, the traditional framework to study enzyme catalysis dates back to a century ago [START_REF] Cornish-Bowden | Victor Henri: 111 years of his equation[END_REF], when [START_REF] Henri | Théorie générale de l'action de quelques diastases par Victor Henri[END_REF] first developed an equation translating mathematically the idea of biochemical reactions, before it was further developed by Michaelis et al. (1913b) and [START_REF] Briggs | A Note on the Kinetics of Enzyme Action[END_REF]. During my PhD, we focused on the bottom-up approaches of the latter kind5 , starting from the lower level units, for they need not "black box" assumptions, at first glance.

As a consequence, we review this framework in the next section before precising the constraints acting directly or indirectly on the metabolism. Elements of discussion about other bottom up approaches can be found in section 8.

The traditional enzyme-substrate model : Michaelis-Menten kinetics

In this model, one assumes the product concentration to be very low such that the reversible reaction can be neglected [START_REF] Bar-Even | The Moderately Efficient Enzyme: Futile Encounters and Enzyme Floppiness[END_REF]Michaelis et al., 1913b;[START_REF] Johnson | The Original Michaelis Constant: Translation of the 1913 Michaelis-Menten Paper[END_REF]. This is summed up through the canonical equation:

E + S kf --⇀ ↽-- kr ES kcat --→ E + P (3.5)
This process can be reflected mathematically through the following system of equations:

                       d[ES] dt = -d[E] dt = k f .[E].[S] -(k cat + k r ).[ES] (3.6a) d[S] dt = -k f .[E].[S] + k r .[ES] (3.6b) d[P ] dt = k cat .[ES] (3.6c) [E tot ] = [E] + [ES] (3.6d) 
Under the fast equilibrium assumption between enzymes and substrates, Michaelis et al. (1913b) shown that the velocity of the reaction is given by :

v = d[P ] dt = k cat .[E tot ]. [S] K S + [S] , ( 3.7) 
where

K S = k r /k f .
As [START_REF] Bar-Even | The Moderately Efficient Enzyme: Futile Encounters and Enzyme Floppiness[END_REF] pointed out recently, it comes directly with the corollary that most of the encounters between enzyme and substrate are futile, i.e. they do not go through the reaction and form the product. Furthermore, the fast equilibrium assumption implies that newly formed product molecules that free enzyme molecules but decrease the number of ES complexes are not accounted for. Mathematically, it means that k r ≫ k cat . Later on, [START_REF] Briggs | A Note on the Kinetics of Enzyme Action[END_REF] relaxed the hypothesis of a fast equilibrium through the quasi-steady state approximation, only assuming that, at equilibrium, the concentration of ES complexes and free substrate S does not change.

Based on this assumption, one can start back from (3.6a):

[ES] * = k f .[E].[S] k cat + k r = k f .([E tot ] -[ES]).[S] k cat + k r
And, then, one can derive the equilibrium rate:

[ES] * = k f kcat+kr .[S] 1 + k f kcat+kr .[S] [E tot ] = [S] K M + [S] [E tot ], (3.8) 
with

K M = kcat+kr k f .
In this case, the velocity can also be written in the form of equation ( 3.7) although with a different saturating constant :

v = d[P ] dt = k cat .[E tot ]. [S] K M + [S]
(3.9)

Although less restrictive than Michaelis' and Menten's original formulation, this equilibrium holds only if enzyme levels are far below either substrate levels or the given enzyme/substrate couple Michaelis Menten constant K M [START_REF] Segel | The Quasi-Steady-State Assumption: A Case Study in Perturbation[END_REF]. It is straightforward that it is not a true steady state for the concentration of the substrate decreases during the course of the reaction. The whole approximation relies on the assumption that enzyme are always in equilibrium with this decreasing concentration of substrates. Using a perturbation approach, Segel et al.

(1989) determined that it is valid for reactions in which there is no inward flux if [Etot] K M +[S 0 ] << 1. This consideration must be kept in mind when one intend to determine kinetic features from experiments where the substrate indeed vanishes. Nonetheless, within a cell, concentrations do not often change quickly as they are self-sustained by other biochemical reactions and, besides, they rarely go down to zero, especially for core reactions of the metabolism.

It is possible to summarize equation (3.9) to distinguish a saturating factor depending only on

[S] and a maximum (achievable) velocity

V max related to [E tot ]: v = d[P ] dt = V max . [S] K M + [S]
(3.10)

The (half-)saturating factor K M coincides with the concentration for which the flux is half the achievable maximum. In other words, it is the inverse of an affinity, since affinity describes how easily two different chemical compounds bind. When K M increases, higher concentrations are needed to form complexes, because they are more likely to dissociate (any increase in K M implies, if k cat does not change, that the dissociation rate k r gets larger compared to the association rate k f ). Another way to rewrite eq. ( 3.9) is to assume K M ≫ [S], thus stating that the enzyme works far from saturation. This may be justified on one hand, because minimising substrate should be one of the objective of cells, but, on the other hand, this also means that enzymes work far from their maximum rate, which may be disputable. No matter what, the rewriting yields:

v = d[P ] dt ≈ k cat .[E tot ]. [S] K M (3.11) Since [S]
is not directly a lever on which selection may act, the flux is maximised when

k cat [E tot ]/K M is maximum.
This quantity has often been called enzyme activity or performance, and is therefore supposed to undergo a directional selective pressure [START_REF] Bibliography Hartl | Limits of adaptation: the evolution of selective neutrality[END_REF][START_REF] Dykhuizen | Metabolic flux and fitness[END_REF]. It was nonetheless shown that it does not describe correctly enzyme efficiency, since this latter also depends on other metabolic properties in the pathway that could for instance, lead to [S] ≈ K M [START_REF] Koshland | The Application and Usefulness of the Ratio kcat/KM[END_REF]. Nevertheless, this quantity is of major interest inasmuch as it is readily accessible through experiments [START_REF] Bar-Even | The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters[END_REF], meaning that enzyme data generally attempts to capture [E tot ] and k cat /K M . Meanwhile, one problem that arose when trying to make sense of enzyme kinetics is our limited knowledge about mechanistic parameters, which remains extremely elusive despite well recognised models describing how they influence the emerging phenomenological ones -see section 3.2.1 for more details. It means that even k r and k f are not well documented for the vast majority of enzyme-substrate couples while there are already compounds of thermodynamic underpinnings -see figure 3.14. If we do analyse equation ( 3.5), one can observe that k f groups the rate at which enzymes meet and the probability that they bind when they meet. The first rate corresponds to the diffusion limit: all molecules undergo more or less passive diffusion in any aqueous environment. The maximum diffusion rate has been estimated theoretically through models of diffusion that both estimated it to be around 10 9 -10 10 M -1 s -1 [START_REF] Alberty | Application of the Theory of Diffusion-controlled Reactions to Enzyme Kinetics[END_REF][START_REF] Zhou | Diffusion-Controlled Reactions of Enzymes[END_REF]. This constraint cannot be overcome, thus also defining a limit to the ratio k cat /K M as:

k cat K M = k cat k cat + k r k f (3.12)

Kinetic parameters and the enzyme zoo

The term particle zoo was coined and quickly endorsed to describe the wide variability of particles popping up from the first devices designed to detect them, as it were, at an industrial scale [START_REF] Greene | The fabric of the cosmos : space, time, and the texture of reality[END_REF]. Leptons, quarks, bosons were discovered over and over, unflaggingly depleting the stock of Greek letters and exhausting the imagination of physicists, who eventually gave up rigour through the use of flavours and colours to characterise these subatomic peculiarities [START_REF] Feynman | QED: The strange theory of light and matter[END_REF]. A zoo refers to an assemblage of objects whose diversity6 has been and/or is driven by an evolutionary process, which by the way seems rather contradictory with the elementary nature of particles in physics, unless one assumes they share a common ancestor in the past.

Still, this colourful concept aroused vocations time and again, making unequivocal its heuristic value. But there should be no question, until Lee Smolin has been proven right about universe evolution [START_REF] Smolin | The life of the cosmos[END_REF], that biology is the (first) place where to look for zoos. And enzymes are no exception to the rule, as we will expose below, based on Bar-Even et al. ( 2011)'s inspiring work. shows the relation between saturating constant K M and k cat , suggesting a possible trade-off since kinetic efficiency is maximum when affinity is high (and thus K M is low) and catalytic activity k cat is also high.

The relation is more pronounced when using Deming regression -see Box 8 about orthogonal regressions -which is more appropriate here because error terms concern both variables. (B) shows the relationship between affinity and kinetic specificity k cat /K M : the negative correlation shows that they are optimum at the same time, which may reflect that they are both optimised by Natural Selection, but also merely the fact that they are both largely dependent on the same variables, especially k f . Finally, (C) shows the strong positive correlation between the catalytic constant k cat and the specificity constant k cat /K M , the two experimentor (because easily accessible to experimentors) kinetic parameters supposed to act on enzymatic activity. The latter relationship seems to make the case for the relative ease to overcome the internal compromise between k cat and k f , since k cat /K M largely depends on k f .

Under the form of (3.10), the equation allows one to determine the macroscopic parameters -

V max and K M -of enzyme-substrate couples. This has been the object of extensive research, and eventually sparked the development of exhaustive database such as Brenda [START_REF] Jeske | BRENDA in 2019: a European ELIXIR core data resource[END_REF], since the end of the XX th century. Analysing these data, [START_REF] Bar-Even | The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters[END_REF] observed a wide diversity among enzyme parameters -see Box 1 and Figure 3.11 -raising the question about the apparent moderate efficiency characterizing many enzymes. Categorising a subset of these enzymes also lead them to remark that those involved in central metabolism are more efficient than others, on average (see Figure 3.13). This finding is in agreement with molecular studies dealing with the strength of selection pressure [START_REF] Greenberg | Evolutionary Constraint and Adaptation in the Metabolic Network of Drosophila[END_REF][START_REF] Olson-Manning | Evolution of Flux Control in the Glucosinolate Pathway in Arabidopsis thaliana[END_REF] whose results confirm the existence of a stronger selection acting on enzymes with high flux control. Besides, it is all but surprising that Michaelis Menten parameters and reactant concentrations should positively coevolve as theoretically highligthed by [START_REF] Klipp | Evolutionary Optimization of Enzyme Kinetic Parameters; Effect of Constraints[END_REF] or more recently unearthed in datasets [START_REF] Liebermeister | Visual account of protein investment in cellular functions[END_REF][START_REF] Davidi | A Bird's-Eye View of Enzyme Evolution: Chemical, Physicochemical, and Physiological Considerations[END_REF], for example.

However, as the selection pressure operates mostly on k cat × [E tot ], this seems to be this quantity that is mostly correlated with the metabolic flux, more than k cat alone [START_REF] Davidi | A Bird's-Eye View of Enzyme Evolution: Chemical, Physicochemical, and Physiological Considerations[END_REF], therefore leaving unanswered questions about selection acting directly on k cat and whether or not this parameter has to be optimized.

We have previously discussed the maximum that the k cat /K M ratio can attain: it coincides with no reverse reaction, that is to say k r = 0, and thence matches exactly with k f . In a seminal paper about the "perfect enzyme", [START_REF] Knowles | Perfection in enzyme catalysis: the energetics of triosephosphate isomerase[END_REF], who worked on TIM (trio-sephosphate isomerase), shown that some enzymes can indeed reach this ceiling, an observation that Bar-Even et al. ( 2011) corroborated with an exhaustive analysis -see (B) and (C) on Figure 3.11. By the way, the consilience [START_REF] Fisch | Whewell's Consilience of Inductions-An Evaluation[END_REF] between theoretical and experimental results is nothing short of astounding. This enzyme (TIM) is part of the glycolysis pathway, suggesting it undergoes a high selective pressure, which may account for this "perfection". But yet again, this glimmer opens up more questions than it enlightens the situation, because TIM directly flanking enzymes, be it upstream or downstream, stand far away from the perfect enzyme in regard to the macroscopic parameters [START_REF] Davidi | A Bird's-Eye View of Enzyme Evolution: Chemical, Physicochemical, and Physiological Considerations[END_REF]. Incidentally, note that the existence of a trade-off between rate (k cat ) and affinity (K M ), although tempting [START_REF] Gudelj | An integrative approach to understanding microbial diversity: from intracellular mechanisms to community structure[END_REF]) is all but supported by evidence, as k cat displays a highly positive correlation to K M /k cat (Y-least squares R 2 =0.36 -see Figure 3.11-C), when re-analysing the data of [START_REF] Bar-Even | The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters[END_REF]. Up until now, we have overlooked one key feature of Life: it does not happen in a test tube. Could the cellular environment explain the discrepancy between naive evolutionary expectations and these troubling datasets?

Box 8. A brief note on least squares

There exists various criteria to fit a regression to data, even for a linear model. One of them is to minimise the sum of least squares. When measurement reports the response of an output variable to an input variable, the input is supposed known without errors.

Therefore, data variability and thence the error term should only concern the Y-variable, no matter the underlying model describing it: in this case, the simple linear regression or ordinary least squares is most appropriate -A in figure below. On the contrary, when both variables are results from measurements, the error term should apply to each of them, and the best model should be one that minimises the total least squares, which can be captured by an orthogonal regression where distances are euclidean distances in the two-dimensional plan -see B below. Orthogonal regression is the extreme case where both variances are similar such that error terms are assumed equally spread between each variable. It may not often be the case, and this can be relaxed using Deming regression, as we did when re-analysing the enzyme dataset. 

What about in vivo enzymes?

Hitherto, these empirical values only results from in vitro experimentation. Recently, the focus has shift to the better understanding of these in the living context : [START_REF] Davidi | Global characterization of in vivo enzyme catalytic rates and their correspondence to in vitro k cat measurements[END_REF] rightly underlined that enzyme properties must make sense nowhere but in the cell, which may influence them in many ways [START_REF] Rivas | Life in a crowded world[END_REF][START_REF] Zhou | Macromolecular Crowding and Confinement: Biochemical, Biophysical, and Potential Physiological Consequences[END_REF][START_REF] Rivas | Macromolecular Crowding <em>In Vitro</em>, <em>In Vivo</em>, and In Between[END_REF][START_REF] Rivas | Toward an understanding of biochemical equilibria within living cells[END_REF].

To date, empirical knowledge on this point is very scarce [START_REF] Davidi | Global characterization of in vivo enzyme catalytic rates and their correspondence to in vitro k cat measurements[END_REF]. Presented as a "daunting challenge because of the many factors involve" [START_REF] Davidi | Global characterization of in vivo enzyme catalytic rates and their correspondence to in vitro k cat measurements[END_REF], it requires to grasp how and to what degree the cell may affect the mechanistic foundations of microscopic parameters.

To that end, [START_REF] Davidi | Global characterization of in vivo enzyme catalytic rates and their correspondence to in vitro k cat measurements[END_REF] used insights from the flux balance analysis [START_REF] Edwards | In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data[END_REF][START_REF] Orth | What is flux balance analysis?[END_REF] to calculate intracellular fluxes. Theoretically, the flux through a reaction of an equation of type (3.7) can be rewritten under the following form: 

v(C) = [E(C)].k cat .η(C), ( 3 
k app = k cat • η(C) = v(C) E(C)
This definition shows the dependence of k app to the factor η(C) =

[S]

K M (C)+[S]
. To determine k app , [START_REF] Davidi | Global characterization of in vivo enzyme catalytic rates and their correspondence to in vitro k cat measurements[END_REF] then calculate its values under many conditions and pick the higher one to approach its maximum value, denoted by k vivo max . Applying their methods, they find a good agreement between the two measurementsk vivo max and k vitro cat -although large deviations, that might be attributable to the departure from saturation, are observed for few enzymes. However, the generality of their crafty method seems contingent to many known unknowns as well as a yet to study assumption. The latter states that enzymes work near the saturation within the cell, otherwise it would not be possible to obtain k vivo max similar to k cat , for η(C) necessarily lies below 1. But this is actually inconsistent with many of their calculated values uncovering higher levels in vivo, meaning that k cat may also fluctuate with the context. This finding is in line with many work on macromolecular crowding [START_REF] Ellis | Macromolecular crowding: obvious but underappreciated[END_REF][START_REF] Zhou | Macromolecular Crowding and Confinement: Biochemical, Biophysical, and Potential Physiological Consequences[END_REF], where k cat of different enzymes respond differently, and besides in a non-monotonous fashion. Accordingly, to account for the many within cell influences, it seems relevant to rewrite again k app relaxing the hypothesis of the independance between the context and the catalytic rate, which yields: .14) where k cat now depends on the context.

k app = k cat (C).η(C) = v(C) E(C) , ( 3 
But in so doing, it sheds light on the limits of this expression. Indeed, if k cat (C) can exceed k cat in the context of the cell [START_REF] Ellis | Macromolecular crowding: obvious but underappreciated[END_REF], how can one be sure that it is not the case by many orders of magnitude, which could very well in turn be more or less partly hidden by reactions acting much more remotely from the saturation. As a corollary, one shall also wonder about the relevance to assimilate k app to k vivo cat : what would be the point of this trick if k app no longer matches with a catalytic rate? Let us show our point: to do so, one has to estimate the influence of a widely recognized slower diffusion rate within the cell [START_REF] Muramatsu | Tracer diffusion of globular proteins in concentrated protein solutions[END_REF][START_REF] Zimmerman | Macromolecular Crowding: Biochemical, Biophysical, and Physiological Consequences[END_REF][START_REF] Han | Macromolecular diffusion in crowded solutions[END_REF][START_REF] Roosen-Runge | Protein self-diffusion in crowded solutions[END_REF][START_REF] Blanco | Macromolecular diffusion in crowded media beyond the hard-sphere model[END_REF] on the estimate of k vivo cat . According to [START_REF] Davidi | Global characterization of in vivo enzyme catalytic rates and their correspondence to in vitro k cat measurements[END_REF], one has:

k vivo max = k cat . [S] K M + [S]
But if we are to use the more generic form of equation (3.14), it should be written as:

k vivo max = k vivo cat .
[S]

K vivo M + [S]
One could then show that, for an identical k vivo max , k vivo cat can be expressed as a function of in vitro parameters and the substrate concentration. Considering that K vivo M is affected, both by diffusion and catalytic rates, might however change the saturation level [S]/K M so that the cell might in turn process chemicals far from it. This yields:

k vivo cat . [S] K vivo M + [S] = k cat . [S] K M + [S] ⇔k vivo cat .(K M + [S]) = k cat .(K vivo M + [S]) ⇔k vivo cat = k cat . k f k vivo f . k r + k vivo cat + k vivo f [S] k r + k cat + k f [S]
Rearranging the terms allows one to write the following equation:

k vivo cat = k cat .µ(k vivo f ) (3.15) where µ = k f k vivo f kr+k vivo f [S] kr+k f [S]+kcat.(1- k f k vivo f )
represents an adjustement factor between the real living value of k vivo cat and its artefactual in vitro counterpart known as k cat .

As an example, one could imagine that a cell working near saturation may correspond to the high substrate concentration7 of [S] = 10K M . Imagining that k cat is lower than k r by 1 order of magnitude, it becomes possible to formulate the following relationship (as k cat becomes more or less negligible):

k r ≈ 10 -1 .k f [S]
According to many concurrent sources [START_REF] Muramatsu | Tracer diffusion of globular proteins in concentrated protein solutions[END_REF][START_REF] Roosen-Runge | Protein self-diffusion in crowded solutions[END_REF][START_REF] Blanco | Macromolecular diffusion in crowded media beyond the hard-sphere model[END_REF], it seems likely that macromolecule diffusion is slowed down by two orders of magnitude under cell conditions, at least for some of them. Assuming this value yields:

µ ≈ 10 2 . k r k r + 10k r -10 2 .10 -1 .k r ≈ 10 2
If the enzyme works further apart from the equilibrium, the catalytic rate could even be more readily affected than the two orders of magnitude we have just found. Be that as it may, we are not stating that it has to be this way, only noticing that more evidence is required to rule on the matter, and that we cannot deprive ourselves of examining a wider range of hypothesis. It should be mentioned that the extent to which diffusion is slowed down has yet to be precised and may depend on many parameters, introducing once again more uncertainty on the estimates previously made [START_REF] Roosen-Runge | Protein self-diffusion in crowded solutions[END_REF][START_REF] Blanco | Macromolecular diffusion in crowded media beyond the hard-sphere model[END_REF]. One limit to these approaches is to partially ignore the embedding of enzymes within pathways, despite frameworks already in existence. We continue our review by presenting how a pathway can be modelled from its individual components.

Building a toy metabolic pathway

Metabolic pathways are always initiated by nutrient uptake, in one way or another. Without nutrient uptake, there could be no biomass production. In order to show that the theory of flux control was valid when considering nutrient transport, [START_REF] Kuile | The kinetics of facilitated diffusion followed by enzymatic conversion of the substrate[END_REF] built on prior developments about facilitated diffusion [START_REF] Kotyk | Mobility of the free and of the loaded monosaccharide carrier in Saccharomyces cerevisiae[END_REF]Stein, 1986b) to create a toy model where substrate uptake is followed by its cellular processing through the activity of an enzyme. This model enables the in silico construction of a metabolic pathway without making any untestable assumption.

To determine the steady-state of chemical reactions inside the cell, one needs to account for its homeostasis, which proceeds from the uptake of substrate molecules in the environment. Assuming the environment contains a constant amount of substrate, one can derive exact biochemical steadystates as the input is no longer subject to a steady decrease. After uptake, substrate molecules can then be processed by enzymes whose properties are supposed to be targeted by Natural Selection, provided they do not diffuse back through the membrane. No matter the way diffusion happens, any of these phenomena can be summed up through the following chemical equation (assuming no global reversibility for sake of legibility):

S out --⇀ ↽--E + S in kf --⇀ ↽-- kr ES kcat --→ E + P (3.16)
As within cell substrate concentration reaches a steady state, any upstream 8 Michaelis-Menten reaction has the same equilibrium feature concerning the relation between complexes and substrates as long as their enzyme concentration remains constant. Indeed, starting back from the system of equations (3.6a) and fixing the equilibrium cellular free substrate concentration to [S i ] * , the system can be simplified. At equilibrium, one has

d[ES i ] dt [ES i ]=[ES i ] * = 0
, and the already mentioned relationship:

[ES i ] * = k f [S i ] * k r + k cat + k f [S i ] * .[E tot ]
(3.17)

Passive diffusion obeys Fick's laws where the uptake rate is given by P SA V , with P the membrane permeability, SA the membrane surface area of the cell and V its volume. For the vast majority of substrate, however, passive diffusion is a very inefficient way to acquire nutrients. It is all the more true for bigger cells experiencing lower SA:V ratios, and this holds even under rich conditions. Involving transmembrane carrier proteins, facilitated diffusion allows cells to overcome this constraint through the specific recruitment and translocation of bound substrates [START_REF] Danielli | Morphological and molecular aspects of active transport[END_REF][START_REF] Wilbrandt | THE CONCEPT OF CARRIER TRANSPORT AND ITS COROLLARIES IN PHARMACOLOGY[END_REF][START_REF] Kotyk | Mobility of the free and of the loaded monosaccharide carrier in Saccharomyces cerevisiae[END_REF]. Remodelling Briggs-Haldane equations, [START_REF] Kotyk | Mobility of the free and of the loaded monosaccharide carrier in Saccharomyces cerevisiae[END_REF] shown that facilitated diffusion involving symmetrical carrier obeys Michaelis Menten like kinetics [START_REF] Kuile | The kinetics of facilitated diffusion followed by enzymatic conversion of the substrate[END_REF][START_REF] Bosdriesz | Low affinity uniporter carrier proteins can increase net substrate uptake rate by reducing efflux[END_REF], with the important characteristic that it is of course based on the concentration gradient of substrates, as shown in the following canonical equation :

∂[S i ] ∂t = V T m . [S o ] -[S i ] K T + ([S o ] + [S i ]) + α. [So][S i ]
K T (3.18) with:

                   [S o ] and [S i ]
: the substrate con V T m : the maximum rate of a given carryer protein;

K T : the pseudo Michaelis saturation constant9 for transport;

α : the Kotyk constant capturing the disequilibrium between occupied and free transporters.

Alongside the concentration gradient, the Kotyk interactive constant [START_REF] Kotyk | Mobility of the free and of the loaded monosaccharide carrier in Saccharomyces cerevisiae[END_REF]) also brings by something new because the efflux (i.e. outwards flow) can no longer be overlooked due to the emergence of saturation in the process [START_REF] Teusink | Intracellular glucose concentration in derepressed yeast cells consuming glucose is high enough to reduce the glucose transport rate by 50%[END_REF][START_REF] Bosdriesz | Low affinity uniporter carrier proteins can increase net substrate uptake rate by reducing efflux[END_REF]. By construction, this constant cannot exceed 1 and according to [START_REF] Kotyk | Mobility of the free and of the loaded monosaccharide carrier in Saccharomyces cerevisiae[END_REF]'s measurements for different sugars it does not differ significantly from this limit (e.g. 0.91 for glucose). Because in this expression the transporter affinity is context dependent, that is, the intracellular substrate concentration diminishes the apparent affinity, the interplay between V T m and K T becomes complex. [START_REF] Bosdriesz | Low affinity uniporter carrier proteins can increase net substrate uptake rate by reducing efflux[END_REF] have put forward the possible involvement of this kinetic peculiarity in the apparent trade-off observed in yeast hexose transporters [START_REF] Maier | Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters[END_REF][START_REF] Gudelj | An integrative approach to understanding microbial diversity: from intracellular mechanisms to community structure[END_REF]: decreasing the affinity of transporters that have higher rates V T m could help limit the leaky efflux of substrate when the environment is getting richer. At this stage, it remains an hypothesis amongst others, because they did not consider the reasons why this efflux has to be limited. Indeed, what matters for biomass production in the end is how much of the substrate is converted into product, and it only depends on substrate concentration. This is not to say they did not point a relevant process, and on the contrary it again makes the case for the introduction of mechanisms as to avoid jumping to easy ad hoc explanations, such as the existence of a trade-off where we see a negative relationship between two traits. But yet, concluding requires to consider what happens next in the pathway, because the main problem with the efflux is that it competes with enzyme processing for the same substrate and thus diminishes the effective (available) substrate concentration.

This is what [START_REF] Kuile | The kinetics of facilitated diffusion followed by enzymatic conversion of the substrate[END_REF] brought through their framework. When the flow throughout the membrane combines with substrate processing, the variation or intracellular substrate is given by:

d[S i ] dt = V T m . [S o ] -[S i ] K T + ([S o ] + [S i ]) + α [So][S i ] K T + k r [ES i ] -k f [S i ][E] (3.19)
Satisfying the steady-state for equation (3.19) and incorporating (3.17) yields:

V T m ([S o ] -[S i ]) = (K T + ([S o ] + [S i ]) + α [S o ][S i ] K T )× (k f [S i ] * k r + k cat k r + k cat + k f [S i ] * [E tot ] -k r k f [S i ] * k r + k cat + k f [S i ] * [E tot ])
Though this equation is rather awkward, solving it is straightforward and yields the following quadratic equations:

a × ([S i ] * ) 2 + b × ([S i ] * ) + c = 0 (3.20)
where, assuming α = 1 yields:

             a = k f k cat [E tot ](1 + [S o ] K T ) + k f V T m b = k f k cat [E tot ]([S o ] + K T ) + (k cat + k r -k f [S o ])V m c = -V m [S o ](k r + k cat ) (3.21)
Eventually, the flux flowing through the pathway can be determined by injecting [S i ] * into 3.17. For the sake of simplicity, we only developed the case where the first reaction is following Michaelis Menten kinetics 10 , i.e. it is essentially irreversible. But in fact, biochemical reactions are subject to an intrinsic reversibility rate, which is part of a larger set of constraints acting on the metabolism.

Enzymes and physical constraints

Enzymes face many constraints in the cellular context. Some of these constraints are endogenous -the need for protein stability, the reversibility of reactions -while others are indirect costs due to enzyme expression and their interactions. We do not discuss protein stability here, as we assumed during my PhD the existence of a genotype space where kinetic parameters evolve free from this constraint. Note that we discuss it as a perspective in section 8.

Reversibility and the complete enzyme-substrate model : Briggs Haldane formulation

Carrying on with the quasi-steady state resolution, Haldane (1930) put forward a more complex symmetrical model involving two types of complexes -[ES] and [EP] -and allows for complete reversibility. The kinetics is then given by:

E + S k1 --⇀ ↽-- k-1 ES k2 --⇀ ↽-- k-2 EP k3 --⇀ ↽-- k-3 E + P (3.22)
It is possible to interpret this model as one distinguishing between diffusion and association: k 1 could be the diffusion rate leading to encounters between substrate and enzyme, while k -1 could represent the "escape rate" when substrate and enzyme are within a molecular neighbourhood.

As well, k 2 could be the association rate of the couple E/S, assuming the association directly transforms S into P while k -2 would thus be its dissociation rate. With such an expression, one could therefore be able to express the macroscopic parameters in a different way, provided the information is available, which is rarely the case. Under the steady state assumption, both complexes should be at quasi-equilibrium. Haldane (1930) demonstrated that the rate could nevertheless be written under the simple following form [START_REF] Heinrich | Mathematical analysis of enzymic reaction systems using optimization principles[END_REF][START_REF] Klipp | Evolutionary Optimization of Enzyme Kinetic Parameters; Effect of Constraints[END_REF]:

v = d[P ] dt = [E tot ]. k + cat .[S]/K S -k - cat .[P ]/K P 1 + [S]/K S + [P ]/K P (3.23) with:                          K S = k -1 k -2 +k -1 k 3 +k 2 k 3 k 1 .(k -2 +k -2 +k 3 ) K P = k -1 k -2 +k -1 k 3 +k 2 k 3 k -3 .(k -2 +k -2 +k -1 ) k + cat = k 2 k 3 k 2 +k -2 +k 3 k - cat = k -1 k -2 k -1 +k 2 +k -2
What this framework most importantly adds concerns the reversibility of reactions. Indeed, under this formulation, the product can also combine back with the enzyme and be converted into the substrate (Haldane, 1930;[START_REF] Cornish-Bowden | Chapter 2 -Introduction to enzyme kinetics[END_REF][START_REF] Klipp | Evolutionary Optimization of Enzyme Kinetic Parameters; Effect of Constraints[END_REF]). An isolated reaction sooner or later reaches its thermodynamic equilibrium where the same amount of product and substrate are produced, such that their concentrations do not change anymore. Typically, for

Haldane's model, this physical constraint can be written as:

K eq = k 1 k 2 k 3 k -1 k -2 k -3 = [P ] [S] (3.24) 
Yet, it depends neither on the level of the intermediate states, nor on the number of rates one assumes to describe a reaction. Using a simpler model without the EP intermediate thermodynamic state would just yield:

K eq = k 1 k 2 k -1 k -2 = [P ] [S] (3.25)
Thermodynamically speaking and for a given temperature, the equilibrium results from the difference between Gibbs free energy in the final and the initial states, according to the simple equation: (3.26) where

K eq = e -∆G o r /RT ,
∆G o r = ∆G f -∆G i . When ∆G f > ∆G i , K eq < 1 entailing
an equilibrium shifted to higher loads of substrate, and vice versa when ∆G f < ∆G i -see Figure 3.14. If the equation could speak, it would simply tell that a state is more often visited when it has a lower free energy. Note that the equations above apply to chemical potentials in principle, such that they may be distorted depending on the conditions in the cell, for they depart from that of an ideal solution [START_REF] Zimmerman | Macromolecular Crowding: Biochemical, Biophysical, and Physiological Consequences[END_REF] -also see next section below. Quantifying reversibility from this equation is straightforward, since it is the inverse ratio K rev = 1/K eq that dictates how much of the substrate is expected to remain when nothing changes anymore. on the left is represented a couple for which the reaction is highly reversible, meaning that it proceeds preferentially from product towards substrate, while on the right is depicted the other way around. Although the equilibrium constant of a reaction is set by intangible physical properties, any path may exist and yield distinct energetic profiles: consequently, reversibility can be spread differently by enzymes and, besides, the rates of reactions themselves, that depend on intermediate gaps in free energies, can each be high or low as long as they link ∆G i to ∆G f .

Reflected by the absence of E in the equation, enzyme inability to influence this equilibrium cannot be overlooked anymore. By means of an optimisation approach, [START_REF] Klipp | Evolutionary Optimization of Enzyme Kinetic Parameters; Effect of Constraints[END_REF] acutely demonstrated how they should nonetheless tailor the energetic profile to maximise its yield in isolation, and that it can provide qualitative clues about their functioning [START_REF] Klipp | Competition for enzymes in metabolic pathways: implications for optimal distributions of enzyme concentrations and for the distribution of flux control[END_REF] see Figure 3.14. But what should happen within a cell is still largely elusive as thermodynamic equilibrium are pointless for them. Thermodynamic equilibrium comes with no more biomass production and hence absolutely no fitness. The very challenge of cells is to defy and run away from equilibrium. Pathways should obey rules that maximise this runaway provided no other constraint wander about in the cellular neighbourhood. One would expect the contrary, and rightly so, as we will now review the several emerging cellular constraints.

Emerging cellular constraints

Even beyond those intrinsic to metabolism and its components, cellular constraints are still numerous, being caused by the very nature of cell functioning: the idea for a cell is indeed to maximise the number and the yield of tasks susceptible to contribute to its fitness while adjusting the cell size and its content to an optimum value (Koch, 1996;[START_REF] Jorgensen | How Cells Coordinate Growth and Division[END_REF][START_REF] Kafri | The Cost of Protein Production[END_REF][START_REF] Miettinen | Cellular Allometry of Mitochondrial Functionality Establishes the Optimal Cell Size[END_REF][START_REF] Gallet | The evolution of bacterial cell size: the internal diffusion-constraint hypothesis[END_REF]. In short, being big requires more biosynthesis and more raw material [START_REF] Lynch | The bioenergetic costs of a gene[END_REF], being small requires to sacrifice some of its proteome (and organelles for eukaryotes) [START_REF] Dill | Physical limits of cells and proteomes[END_REF], so that there might be many possible and non exclusive strategies on the Pareto front [START_REF] Shoval | Evolutionary Trade-Offs, Pareto Optimality, and the Geometry of Phenotype Space[END_REF] described in the previous section.

The major cellular constraints are: i the cost of protein expression;

ii the cost of macromolecular crowding;

iii the involvement of molecules in side reactions, be it intentional or not.

The cost of protein production is probably the most obvious. The synthesis of a protein is intrinsically costly, in terms of energy and material [START_REF] Lynch | The bioenergetic costs of a gene[END_REF], but there is also an indirect cost when increasing its proteome, arising from the increasing need for ribosomes [START_REF] Molenaar | Shifts in growth strategies reflect tradeoffs in cellular economics[END_REF][START_REF] Kafri | The Cost of Protein Production[END_REF], notably, a cost that may largely be punctual as the cell adjusts its ribosomal content [START_REF] Shachrai | Cost of unneeded proteins in E. coli is reduced after several generations in exponential growth[END_REF]. Coined the protein burden, expressing unneeded proteins such as the lac operon when there is no lactose, is costly because it does not bring anything in return [START_REF] Koch | The protein burden of lac operon products[END_REF][START_REF] Dekel | Optimality and evolutionary tuning of the expression level of a protein[END_REF][START_REF] Stoebel | The Cost of Expression of Escherichia coli lac Operon Proteins Is in the Process, Not in the Products[END_REF]. This is an extreme case because unneeded protein expression should be counter-selected, at least in microorganisms where it largely exceeds the drift barrier [START_REF] Wagner | Energy Constraints on the Evolution of Gene Expression[END_REF][START_REF] Lynch | The bioenergetic costs of a gene[END_REF]. Finding useless proteins in the cytoplasm of such (micro)organisms is thus rather unlikely, and it is even truer for higher levels of expression. In general, proteins are however produced because they bring extra fitness to their recipient [START_REF] Liebermeister | A theory of optimal differential gene expression[END_REF][START_REF] Dekel | Optimality and evolutionary tuning of the expression level of a protein[END_REF], which is most often its genotype. Therefore, there should exist a subtle balance between the expression of a protein and its fitness yield: protein expression draws a mechanistic trade-off resulting from purely cellular economics [START_REF] Molenaar | Shifts in growth strategies reflect tradeoffs in cellular economics[END_REF]. This balance is determined by numerous factors -for instance, some proteins are more costly than others, because they are longer [START_REF] Lynch | The bioenergetic costs of a gene[END_REF] or owing to their degradation rate and concentration that must also be factored in it. And it is besides contingent to the environment [START_REF] Kafri | The Cost of Protein Production[END_REF]: when the environment gets richer in sugars, some microorganisms engage in overflow, a switch from respiration to respiro-fermentation suggested to happen at a point where respiration is no longer profitable [START_REF] Basan | Overflow metabolism in Escherichia coli results from efficient proteome allocation[END_REF].

According to this theory, cells would rather reallocate a part of their proteome even though not doing so would have brought them some more energy, which necessarily means that it is relevant to invest in other tasks instead, as energy may not be limiting in that case [START_REF] Peebo | Proteome reallocation in Escherichia coli with increasing specific growth rate[END_REF].

In fact, pointless protein production can even lead to growth defects [START_REF] Eguchi | Estimating the protein burden limit of yeast cells by measuring the expression limits of glycolytic proteins[END_REF]. In that latter case, it remains unclear whether it is mainly due to the protein burden or if other processes are at stake, because this is not the only cost incurred by a cell which would overexpress its proteome.

Membrane occupancy has also been pointed as a plausible explanation for overflow [START_REF] Zhuang | Economics of membrane occupancy and respiro-fermentation[END_REF][START_REF] Szenk | Why Do Fast-Growing Bacteria Enter Overflow Metabolism? Testing the Membrane Real Estate Hypothesis[END_REF], since the electron transport chain is a cumbersome machinery.

There should be a point beyond which membrane structure can no longer resist to the addition of proteins, which sets a ceiling to its uptake capability. Because cells may also produce their needed metabolites themselves, there should be a compromise, again based on cellular economics, between uptake and endogenous processing, because the latter also faces the risk -and the limit -of overcrowding. We have already briefly met with this influence when saying that it can bias our in vivo estimates of enzyme kinetic parameters. Indeed, in vivo biochemical reactions do not behave like those we make in test tubes [START_REF] Ellis | Macromolecular crowding: obvious but underappreciated[END_REF][START_REF] Rivas | Life in a crowded world[END_REF][START_REF] Zhou | Macromolecular Crowding and Confinement: Biochemical, Biophysical, and Potential Physiological Consequences[END_REF][START_REF] Rivas | Toward an understanding of biochemical equilibria within living cells[END_REF]. The cytoplasm is a very complex intertwining of molecules, some being very large such as ribosomes [START_REF] Klumpp | Molecular crowding limits translation and cell growth[END_REF]. Because crowding decreases the accessible volume through a process known as volume exclusion, and noticeably favors states where the kinetic activity of enzymes is enhanced, the catalytic constant k cat should be higher within a cell, at least for some enzymes [START_REF] Ralston | Effects of "crowding" in protein solutions[END_REF][START_REF] Ellis | Macromolecular crowding: obvious but underappreciated[END_REF][START_REF] Jiang | Effects of Macromolecular Crowding on the Intrinsic Catalytic Efficiency and Structure of Enterobactin-Specific Isochorismate Synthase[END_REF][START_REF] Pozdnyakova | Non-linear effects of macromolecular crowding on enzymatic activity of multi-copper oxidase[END_REF]. As already discussed, this effect is probably significant but has to be evaluated on a case-by-case basis and, to the best of our knowledge, should not modify estimates by several orders of magnitude [START_REF] Davidi | Global characterization of in vivo enzyme catalytic rates and their correspondence to in vitro k cat measurements[END_REF]. In the meantime, as the cell gets packed with these macromolecules, an inevitable adverse effect arises: diffusion gets slowed down. In turn, molecules meet less often and more rarely engage in reactions [START_REF] Han | Macromolecular diffusion in crowded solutions[END_REF][START_REF] Schavemaker | How Important Is Protein Diffusion in Prokaryotes?[END_REF][START_REF] Blanco | Macromolecular diffusion in crowded media beyond the hard-sphere model[END_REF]. The consequences of these molecular traffic jams also depend on biochemical reactions, with diffusion-limited reactions more prone to get impeded [START_REF] Andrews | Effects of surfaces and macromolecular crowding on bimolecular reaction rates[END_REF]. Using a simple model of cell content optimisation, [START_REF] Dill | Physical limits of cells and proteomes[END_REF] suggested that the total proteome lies within a range consistent with an optimisation driven by diffusive constraints, while [START_REF] Klumpp | Molecular crowding limits translation and cell growth[END_REF] proved its impact on cell growth. Theoretically, there is in fact a loophole which cells may exploit. With a larger cytoplasm, molecules should not be hampered in their movements, a phenomenon which was confirmed by [START_REF] Kafri | The Cost of Protein Production[END_REF], who observed that cells grew larger when filled with more proteins, and who may have been responsible for the evolutionary growth of cells in LTEE [START_REF] Gallet | The evolution of bacterial cell size: the internal diffusion-constraint hypothesis[END_REF]. However, in Nature, cells do not have that much latitude to grow and their size should be rather constrained by resource availability and predatory pressures: rather similarly to protein production, increasing the proteome is most probably a subtle equilibrium between the added costs and benefits.

Finally, a single enzyme may be involved in diverse processes within the cell. Indeed, protein can moonlight and be involved in different types of functions such as catalytic activity and genetic expression regulation [START_REF] Gancedo | Moonlighting Proteins in Yeasts[END_REF][START_REF] Huberts | Moonlighting proteins: An intriguing mode of multitasking[END_REF]. Any imbalance could therefore interfere with other fitness contributions of an enzyme. Moonlighting can also describe an enzyme that would contribute to different biochemical reactions through the process of enzyme promiscuity (Khersonsky et al., 2010;[START_REF] Tawfik | Enzyme promiscuity and evolution in light of cellular metabolism[END_REF]. Right, but how would it translate? In first approach, promiscuity can be modelled through a linear degradation rate of metabolites, because these reactions obey Michaelis Menten kinetics albeit with a low affinity, which corresponds to Eq. (3.11). This process is known to lead to the formation of damaged metabolites, and there even exists machineries to repair them [START_REF] Niehaus | Enzyme promiscuity, metabolite damage, and metabolite damage control systems of the tricarboxylic acid cycle[END_REF]. Many considerations must be made at this point. After all our discussion about reversibility, one may think that promiscuous enzymes should also be subject to the process so that the cost of diverting a metabolite from a pathway would be zero once the equilibrium of the metabolite has been reached (the damaged metabolite would have a constant non zero concentration). In that case, the cost would have more to do with the possible toxicity of this undesired metabolite. This toxicity may exist as a by-product of the deleterious modifications of cellular chemical properties such as the osmotic balance. Or it may follow from an inherent and unavoidable similarity between two metabolites, one being the damaged metabolite, and hence the disruption of another pathway. These toxic effects largely exist [START_REF] Chou | Mapping the Fitness Landscape of Gene Expression Uncovers the Cause of Antagonism and Sign Epistasis between Adaptive Mutations[END_REF][START_REF] Niehaus | Enzyme promiscuity, metabolite damage, and metabolite damage control systems of the tricarboxylic acid cycle[END_REF] and need be accounted for, but regardless of them, the linear degradation rate should hold, although it is somewhat a simplified vision. This is because the potential for promiscuous interactions [START_REF] Peracchi | The Limits of Enzyme Specificity and the Evolution of Metabolism[END_REF] is manifold. Practically all biomolecules could interact at a point, when their concentrations are sufficiently high, exactly like transcription factors can bind any DNA sequence albeit with a very low affinity [START_REF] Stormo | Modeling the specificity of protein-DNA interactions[END_REF][START_REF] Barnes | Mapping DNA sequence to transcription factor binding energy in vivo[END_REF]. Apart from desired promiscuous interactions, a metabolite thus has a basal interaction rate with other biomolecules of the form described by unstarurated Michaelis Menten equation (3.11), so that when it accumulates, it should both interfere with many other processes, much the way like arsenic poisons cells by replacing phosphorus, and partly be lost for the focal reaction due to unwanted transformations.

In this part, we have mostly focused on how the molecular phenotype of cells work, leaving aside how they emerge through the expression of genes by gene networks. This is yet again another fascinating story at the crossroads of opportunities, biases and constraints, one that eventually completes our journey from genotypes to fitness and Evolution.

Gene networks: constraints, opportunities and in between

"The Darwinian process of continued interplay of a random and a selective process is not intermediate between pure chance and pure determinism, but qualitatively utterly different from either in its consequences." Sewall Wright

In this section, we will briefly introduce how regulatory gene networks -RGNs, hereby -drive the expression of genes and why it matters in the study of Evolution. RGNs represent the noisy interface between chance and necessity at the crossroads of Natural Selection, Random Drift and mutational biases. Notice that we do not go deeply into the details of how to model them -only explaining Hill-Langmuir equations used to find the occupancy of binding-sites at equilibriumto avoid redundancies with the first chapter of results, where we made developments aimed at including both findability and noise in gene expression in an evolutionary model, furthering an approach put forward in [START_REF] Draghi | Robustness to noise in gene expression evolves despite epistatic constraints in a model of gene networks[END_REF].

What is a gene network and how does it work?

RGNs are the operating tools used by cells to produce gene expression [START_REF] Davidson | Gene regulatory networks[END_REF][START_REF] Karlebach | Modelling and analysis of gene regulatory networks[END_REF]. They are based on an intertwining of regulators (acting at the transcriptional and the translational levels), which can enhance or inhibit selectively the expression of genes. These regulators are also produced through the gene network and thus, their expression is also subject to modulation. The expression of a given gene may even respond to its own previous expression. An example of RGN containing 3 transcription factors is represented on Figure 3.15.

In Figure 3.15, we presented a very simplified version of gene networks, obviously because more transcription factors yields a far more interconnected picture, but more generally since regulation can be a highly cooperative process where helper molecules are numerous [START_REF] Bintu | Transcriptional regulation by the numbers: models[END_REF]. Furthermore, we focused on transcriptional regulation, the keyest step of the process, but translational regulation also exists [START_REF] Gebauer | Molecular mechanisms of translational control[END_REF] as well as protein modification by protein kinase [START_REF] Cheng | Regulation and function of protein kinases and phosphatases[END_REF] for instance, not to mention that transcription is also affected by the state of the chromatin and other chemical processes such as methylation [START_REF] Moore | DNA Methylation and Its Basic Function[END_REF]. As always, biology is a mess and it has even been proposed that we should switch from polygenic view of quantitative genetics to an omnigenic one [START_REF] Boyle | An Expanded View of Complex Traits: From Polygenic to Omnigenic[END_REF] where thousands of genes influence the expression of a single one, for instance, because the loss of a single binding Transcription factors can turn on and off their own activity. Notice that although not represented, gene products are subject to a degradation process [START_REF] Gallego Romero | RNA-seq: impact of RNA degradation on transcript quantification[END_REF][START_REF] Milo | Cell Biology by the Numbers[END_REF] whose rate is gene dependent. site in one regulatory sequence for a transcription factor shared by many genes influences largely the gene which has lost its site and to a lesser extent all of the genes with which it previously shared it. Properties of transcription factors and cis-regulatory elements are also highly variable (affinity, departure when slightly different binding sites -from the consensus sequence(s) -are found) [START_REF] Stewart | Why transcription factor binding sites are ten nucleotides long[END_REF][START_REF] Kribelbauer | Low-Affinity Binding Sites and the Transcription Factor Specificity Paradox in Eukaryotes[END_REF], although in first approach, it is possible, at least for the difference between binding sequences, to consider general rules -see Figure 3.16.

Each RGN coincides with a phenotypic strategy in the phenotypic space. To put it clearly, it does not mean however that it encodes one single phenotype. In fact, it is exactly the contrary, sites (even those departing completely from the consensus sequence). This picture is of course simplified as some nucleotides have a higher influence on binding, noticeably those in the middle of the binding sequence [START_REF] Maerkl | A systems approach to measuring the binding energy landscapes of transcription factors[END_REF][START_REF] Jung | True equilibrium measurement of transcription factor-DNA binding affinities using automated polarization microscopy[END_REF][START_REF] Barnes | Mapping DNA sequence to transcription factor binding energy in vivo[END_REF]. (C) Transcription occurs once polymerase has been recruited by the promoter of a gene, which can be facilitated or hindered by TFs, with the same TF susceptible to play the role of activator or repressor depending on the position of the binding site in the regulatory sequence [START_REF] Le | Comprehensive, high-resolution binding energy landscapes reveal context dependencies of transcription factor binding[END_REF].

which is reflected by the use of the term phenotypic strategy. A phenotypic strategy encompasses the whole set of possible phenotypes (also called phenotypic tactics) produced by a genotype, as well as their frequency and conditions of appearance. If a RGN enables its cell to react to the presence of lactose in the environment thanks to signal transduction, the lactose phenotype represents a tactic used in the presence of lactose. Signal transduction uses sensing to trigger specific genetic cascades, as realised by enzymes from the protein kinase families [START_REF] Papin | Reconstruction of cellular signalling networks and analysis of their properties[END_REF]), but we do not elaborate further on that as we did not study this part of the regulation process. Another way to produce different responses through a gene network is cellular noise, which typically occurs when phenotype switching stems from low copy numbers of gene products, especially transcription factors. Most of cellular noise involves noise in gene expression -see Box 9. Cellular noise gives rise to non genetic heterogeneity within isogenic cells. This noise may be deleterious [START_REF] Raser | Noise in Gene Expression: Origins, Consequences, and Control[END_REF], and in this case undergoing purifying selection, but the case for functional noise has been made in the last decade [START_REF] Eldar | Functional roles for noise in genetic circuits[END_REF] and largely confirmed since -see introduction of Chapter 4 for a larger review on the subject.

Box 9. Illustration of cellular noise

Cellular noise describes the random variability observed at the cellular level that is intrinsically induced by the cell -it typically does not include noise generated by differences in the environment. This noise generally concerns gene expression, but in fact, organelles may also undergo the same process, as mitochondria can also be in low copy numbers for instance [START_REF] Johnston | Mitochondrial Variability as a Source of Extrinsic Cellular Noise[END_REF]. Although noise in gene products may result from any process involving copy numbers, transcription and cell division are supposed to be the two major contributors [START_REF] Spuldich | Non-genetic individuality: chance in the single cell[END_REF][START_REF] Sánchez | Transcriptional control of noise in gene expression[END_REF]Huh et al., 2011a;Huh et al., 2011b;[START_REF] Dar | The Low Noise Limit in Gene Expression[END_REF][START_REF] Urban | The evolutionary ecology of metacommunities[END_REF]. The affinity between TF and BS may also contribute since a low affinity comes with a lower probability of being bound for the same number of TFs.

Figure 3.17: In (A), cellular noise is represented in the general case of noise in gene expressionsee text of the box for the distinction we put forward. It typically arises when low copy numbers are present in the cell, as shown with the example of one transcript that can give rise to few or numerous proteins (the copy numbers are not realistic, since 1 transcript should typically yield tens or hundreds of proteins). TFs are often in lower copy numbers than other proteins, which means that they either face lower purifying selection against noise or even are positively selected to be noisy. In (B), the emergence of noise in gene expression is illustrated by cell reproduction, where one transcript (it could also be a few) has to be spread into two daughter cells, which inevitably induces an asymmetry between these cells, at least at birth. Noise could in principle be buffered by the gene network, if it has evolved to do so. However, if the transcript copy numbers are low, it probably means either that this gene product is useless under the circumstances, or that it is actively selected to be noisy, and produce non genetic heterogeneity at the (genotype) population level.

Gene networks and findability of strategies

Through their interaction with fitness and mutations, RGN determines the accessibility of phenotypic strategies. This depends critically on two factors: (i) how redundant is the phenotype in the genotype space [START_REF] Ahnert | Structural properties of genotype-phenotype maps[END_REF] -indeed, some phenotypic strategies may be more accessible than others for there exists a wider array of underlying genotypes giving rise to them; (ii) how findable are the underlying genotypes yielding this phenotype. As defined by McCandlish (2013), findability measures "how easy it is for a population to evolve a genotype". Under the weak mutation hypothesis, it coincides with the (average) waiting time to reach this genotype. A genotype having Figure 3.18: In (A), we show a complex genotype space where three sub-spaces are comprised of genotypes tightly connected, while connections between sub-spaces are very few. As fitness increases when going upwards, the green subspace has a higher fitness. It has a low accessibility as only 3 trajectories can lead to it. However, when it is reached, a population is unlikely to leave it. Focusing on subspaces with similar fitnesses in (B) shows that the outcome depends on the starting point and on the interconnections between the sub-spaces. If only the lower subspace is connected to each other one, a starting genotype in (B) may end up in the intermediate sub-space because it is more accessible (B1) -notice that we speak about accessibility in here, as sub-spaces share a rather similar fitness, which is a phenotypic trait. Indeed when located in this sub-basin, it needs to cross a fitness valley by coming back to the lower sub-space before being able to reach, may be, the higher peak, as shown in (B2) and (B3). It is also possible that the genotype is stuck at the beginning in the intermediate sub-space and that besides few paths lead to the valley as in (B2).

an infinite waiting time before it is found has zero findability. Under this definition, findability includes both how advantageous a genotype is, how much the intermediate genotypes leading to it are and how many mutation links lead to this genotype. As a matter of fact, it may be that a genotype with a rather high fitness is relatively findable (on average) but that a population still Figure 3.19: (A) A gene network may be approached in first approximation through a purely analytical matrix with no knowledge of its underpinnings. Functional genes are genes that have no regulatory power.

In such matrix, the contribution of a TF to the expression of any gene is given through a number. The i eth line corresponds to contributions by the i eth TF to the expression of each of the genes found in the columns. G 1 is a selective TF as it only regulates G 3 , while this latter is on the contrary a general TF (the more general TF is the polymerase itself, which is not represented in this matrix) because it regulates many genes. Finally, G 2 is not regulated at all, which means that its transcription rate will be determine by the residual non-specific binding between DNA and the polymerase. In (B), we relax the assumption that TFs have a binary effect by authorising different values for the strength of the regulation, a model resembling the pioneering approach by Wagner (1996a). Note that we did not consider if these links are positive or negative, but one may imagine that G 1 encodes a repressor and G 2 an activator for instance.

It is more correct to distinguish the interaction matrix and the effect (positive or negative) since the effect of repressor and activator are not linear. gets caught at this local optimum with few chances to explore enough to find a higher fitness peak -see Figure 3.18. Findability also includes this part of contingency in the evolutionary process.

Note that we distinguish between the idea of findability applying for the genotype and the idea of accessibility used for the phenotypic level. The same contingency may apply to phenotypes when their accessibility is intermediate (equivalent to relatively above for genotypes). In turn, it can modify the expression of transcription factors and, for instance, dramatically enhance the expression of a previously hidden (or in low copy numbers) TF, which itself may turn on and off some genes, triggering a cascade of changes in gene expression.

Depending on the cases, findability can be high or not, and can come with a high evolvability or a low one as evolvability is the capability for a population to reach adaptive phenotypes [START_REF] Draghi | The evolutionary dynamics of evolvability in a gene network model[END_REF][START_REF] Schweizer | Genotype networks of 80 quantitative Arabidopsis thaliana phenotypes reveal phenotypic evolvability despite pervasive epistasis[END_REF]. To account for that, evolutionary models needs to integrate realistic network features, including the effect mutations have on the connections within this network [START_REF] Draghi | The evolutionary dynamics of evolvability in a gene network model[END_REF][START_REF] Draghi | Robustness to noise in gene expression evolves despite epistatic constraints in a model of gene networks[END_REF]. Indeed, when the links in the networks directly correspond to nodes depicted by numbers in a matrix of interaction -see Figure 3.19 -mutations are discrete quantities in this matrix whereas they are in fact the emerging result of a complex set of intertwined underpinnings, where pleiotropy 11 -see section 6 for details on pleiotropyis ubiquitous, as shown in Figure 3.20. Accounting for these mutations realistically can only be made by considering explicitly regulatory sequences and binding motifs. Notice that accounting for noise would also be very arbitrary within this framework, where it would be described by distributions affecting each node instead of relying on the existence of few molecules in the cell, as a biochemical treatment enables one to do.

Modelling of gene networks

Since the pioneering work of Wagner (1996a), based on interaction matrix -see previous section, a constellation of GRN models have been published [START_REF] Karlebach | Modelling and analysis of gene regulatory networks[END_REF][START_REF] Barbuti | A survey of gene regulatory networks modelling methods: from differential equations, to Boolean and qualitative bioinspired models[END_REF] and it is not the place where to be exhaustive, should it be possible. Since we are interested in realistic mutational landscapes, where the regulatory links are modified because underlying sequences mutate, as well as mechanistic descriptions of binding processes, the appropriate approach has to be based on chemical equations. Traditionally, such models have drawn inspiration from those describing ligand-receptor kinetics, also known as Hill-Langmuir equations [START_REF] Hill | Understanding and using quantitative genetic variation[END_REF][START_REF] Stormo | Modeling the specificity of protein-DNA interactions[END_REF]. This model is equivalent to those derived from statistical physics, using Boltzmann distribution for instance [START_REF] Stormo | Modeling the specificity of protein-DNA interactions[END_REF][START_REF] González | Thermodynamic model of gene regulation for the Or59b olfactory receptor in Drosophila[END_REF], although for the sake of conciseness, we do not report the proof here. Most of the characterisation of BSTF couples properties rely on this physicist view: noticeably, the different free energies of couples are responsible for the influence of deviations from the consensus sequence. Hill Muir reactions are described according to the following scheme: (3.27) where L denotes the ligand, R the receptor and n the degree of cooperativity, which is a function of the number of receptors found at the surface of a protein. The dissociation constant can be written as: 11 The involvement of one locus in several traits.

nL + R kon --⇀ ↽-- koff RL n ,
K D = k of f k on = [R][L] n [RL n ]
Concomitantly, the total fraction of occupied ligand is given by:

θ = [RL n ] [RL n ] + [R] (3.28)
Assuming that there is no interaction between [RL n ] and [L], which means that the number of bound ligands RL n does not influence the amount of free ligands L immediately (same rationale as for Michaelis Menten quasi steady-state) hence comes with:

θ = [L] n K D + [L] n , (3.29)
Considering no cooperation would coincide with n = 1, and, applying this simpler case to DNA, one finally has:

θ = [T F ] K D + [T F ] (3.30)
This equation is very elegant because it does not depend on the copy number of binding sites.

However, it relies on the fact that the concentration in free TFs is not affected throughout the process, which is not true if they are in low copy numbers and can be degraded while being bound.

Degradation acting without regard to binding may be the null hypothesis, as it has even been shown that some TFs behave like kamikazes, being targeted by degradation if and only if they are bound to DNA [START_REF] Thomas | Transcriptional regulation: Kamikaze activators[END_REF]. At this stage, there is no consensus to our knowledge about which degradation process is more widespread or if it is contingent on the TF family or the TF itself.

We developed an approach to relax the assumption that only free TFs are degraded in the first Chapter of results. As already stated, this model was very valuable for my PhD and the way we approached things, but it will not be the object of a publication since we do not think that its scientific value -except may be for the gene network approach -is sufficient for that and would rather not contribute to the inflation of scientific papers with a framework which has no proven value to its own authors. 

Part II

Results

Introduction

Earth is teeming with a wide variety of environments that opens up opportunities for the diversification of living organisms. One typical feature of these environments is the extent to which they fluctuate and how they fluctuate. Where fluctuations are predictable, predictive plasticity is supposed to evolve, provided it is accessible. On the contrary, diversified bet-hedging -DBH hereafter (see introduction for more details) -is the ultimate solution to cope with unpredictable environmental stochasticity [START_REF] Cohen | Optimizing reproduction in a randomly varying environment[END_REF][START_REF] Slatkin | Hedging one's evolutionary bets[END_REF][START_REF] Cooper | Adaptive "coin-flipping": a decision-theoretic examination of natural selection for random individual variation[END_REF][START_REF] Seger | What is Bet-Hedging[END_REF][START_REF] Philippi | Hedging one's evolutionary bets, revisited[END_REF]. Through this strategy, a single genotype produces more than one phenotype, each of these phenotypes being adapted to a specific environmental condition [START_REF] Seger | What is Bet-Hedging[END_REF]. This response is particularly suited if lifetime switching (through predictive plasticity) between these phenotypes is hard, costly, or even impossible due to irreversible developmental 4.1. NOISE IN GENE EXPRESSION AT THE EVOLUTIONARY ROOTS OF DIVERSIFIED BET-HEDGING stages [START_REF] Rajon | Adaptation locale et optimalitédes stratégies de dormance en environnement imprévisible : développements théoriques et validation expérimentale chez le balanin de la châtaigne, Curculio elephas[END_REF][START_REF] Rajon | The Evolution of Bet Hedging in Response to Local Ecological Conditions[END_REF]. Although first documented in Plants [START_REF] Cohen | Optimizing reproduction in a randomly varying environment[END_REF] and Animals, where it ensures, for instance, the survival of the genotype when conditions become harsh [START_REF] Cohen | Optimizing reproduction in a randomly varying environment[END_REF][START_REF] Cooper | Adaptive "coin-flipping": a decision-theoretic examination of natural selection for random individual variation[END_REF][START_REF] Menu | Coin-flipping plasticity and prolonged diapause in insects: example of the chestnut weevil Curculio elephas (Coleoptera: Curculionidae)[END_REF][START_REF] Menu | Bet-hedging for variability in life cycle duration: bigger and later-emerging chestnut weevils have increased probability of a prolonged diapause[END_REF][START_REF] Rajon | Adaptation locale et optimalitédes stratégies de dormance en environnement imprévisible : développements théoriques et validation expérimentale chez le balanin de la châtaigne, Curculio elephas[END_REF], it is now widely recognised to occur within single-celled organisms (Veening et al., 2008a;[START_REF] Beaumont | Experimental evolution of bet hedging[END_REF][START_REF] Zhang | Bet hedging in the underworld[END_REF][START_REF] Solopova | Bet-hedging during bacterial diauxic shift[END_REF][START_REF] Grimbergen | Microbial bet-hedging: the power of being different[END_REF][START_REF] Levy | Cellular Heterogeneity: Benefits Besides Bet-Hedging[END_REF][START_REF] Martínez-García | Seasonality can induce coexistence of multiple bet-hedging strategies in Dictyostelium discoideum via storage effect[END_REF]. Because of that, it seems relevant to ask whether DBH occurring in unicellular organisms could have triggered the transition towards what is classically known as multicellular organisms. For this reason, DBH may also be called differentiation -see

Chapter 2 -and we will from now on assume that there is no qualitative difference between multicellular and unicellular differentiation. Despite its pervasiveness, how genotypes evolve that manage to produce several phenotypic states is largely unknown.

Given its major role in development and non-genetic individuality [START_REF] Schlichting | Origins of differentiation via phenotypic plasticity[END_REF], reviewed in [START_REF] Balázsi | Cellular Decision-Making and Biological Noise: From Microbes to Mammals[END_REF]Sanchez et al., 2013a), cellular noise triggered by noise in gene expression is a promising candidate for the evolution of differentiation (Sanchez et al., 2013a). Cellular noise refers to the random phenotypic differences between cells sharing the same genotype and seemingly experiencing the same environment [START_REF] Kaern | Stochasticity in gene expression: from theories to phenotypes[END_REF]: it is usually the product of noise in gene expression [START_REF] Raser | Noise in Gene Expression: Origins, Consequences, and Control[END_REF], id est the random difference in gene product copy numbers. The functional role for noise was theorized by [START_REF] Eldar | Functional roles for noise in genetic circuits[END_REF] and further reviewed in [START_REF] Viney | Adaptive noise[END_REF][START_REF] Richard | How does evolution tune biological noise?[END_REF], but the mere idea of its influence in Multicellular development had been fiercely promoted by [START_REF] Waddington | The strategy of the genes[END_REF], [START_REF] Spuldich | Non-genetic individuality: chance in the single cell[END_REF] and [START_REF] Kupiec | Gene regulation and DNA C-value paradox: A model based on diffusion of regulatory molecules[END_REF], [START_REF] Kupiec | A chance-selection model for cell differentiation[END_REF], and [START_REF] Kupiec | A Darwinian theory for the origin of cellular differentiation[END_REF] long before it became mainstream. Far ahead of his time, Waddington spoke first about epigenetic influences on cellular decision-making during development. Kupiec followed and developed a Darwinian theory for the origin of cellular differentiation where different cell types arise randomly and are subsequently submitted to a form of intra-individual selection [START_REF] Kupiec | A Darwinian theory for the origin of cellular differentiation[END_REF]Kupiec, 1998). In Multicellular organisms, the developmental role of noise is Noise in gene expression can only be a mechanism for targeted differentiation if a gene regulatory network evolves that canalizes cellular noise into different cell types. Indeed, noise can be tuned [START_REF] Richard | How does evolution tune biological noise?[END_REF], especially at the transcriptional level whose potential control [START_REF] Sánchez | Transcriptional control of noise in gene expression[END_REF] is intrinsically high inasmuch as it relies on limited copy numbers (Sanchez et al., 2013b). [START_REF] Gavrilets | Rapid Transition towards the Division of Labor via Evolution of Developmental Plasticity[END_REF] was first to test theoretically the influence of gene networks on differentiation between aggregated cells. Here, we intend to test if it may have triggered differentiated behaviours before the advent of multicellularity, which would suggest that noise-driven differentiation may have been coopted in multicellular organisms rather than evolved once aggregate already existed. Assuming an environment where two types of nutrients may occur, but only one at a time and in an auto-correlated manner, it is possible that a bistable gene network evolves that randomly produces cells specialised at each nutrient. This is at least the theoretical expectation, owing to the fact that small differences in gene expression sometimes lead to distinct phenotypes. Capitalising on cell unpredictability sounds an elegant solution to solve the challenge raised by the unpredictability of the environment. But for such a phenomenon to evolve, the signals, despite being based on chance, must reliably produce the optimal frequency of switch between phenotypic states [START_REF] Donaldson-Matasci | When Unreliable Cues Are Good Enough[END_REF], and/or intermediate genotypes leading to these solutions should not be too deleterious. In fact, it may be that some suboptimal solutions are easier to find [START_REF] Mccandlish | On the findability of genotyes[END_REF] and therefore evolve more readily. Whether these genotypes are close or not, in terms of mutational steps, from those enabling diversified bet-hedging may decide if (and when) the latter evolves -when the mechanism behind differentiation is noise.

Evolutionary theory may inform us on this question, assuming that we build a comprehensive genotype-to-phenotype map for the evolution of DBH. To this aim, we have built an evolutionary model accounting for metabolic and genetic underpinnings, in which cells feed in a stochastic environment to produce energy used for the production of metabolites, as considered in [START_REF] Ispolatov | Division of labour and the evolution of multicellularity[END_REF][START_REF] Amado | A mechanistic model for the evolution of multicellularity[END_REF]. The environment can contain two nutrients alternately, and the switch between these nutrients occurs stochastically with a given frequency. The allocation is driven by the copy numbers of proteins dedicated to a given task, which itself is the result of gene expression under the regulation of a gene network. Gene regulatory networks dynamics involve the Our work contrasts with most earlier relevant models in that competing phenotypic strategies are not set a priori and hence a wide range of possibilities may be produced with a probability that is both dependent on intrinsic features and contingency. In the same vein, the trade-off between cell traits is not arbitrarily set but implicitly arises from mechanistic assumptions about cellular processes. Indeed, fitness emerge from birth-death processes -as advocated by Doebeli et al. ( 2017) -at the cell-level which itself results from the differential allocation of energy to cell growth or the metabolic processing of nutrients: cell division occurs when the amount of cycle-regulating proteins reaches a given threshold, acting similarly to CDK-cyclin complexes in Eukaryotes [START_REF] Hartwell | Genetic Control of the Cell Division Cycle in Yeast[END_REF][START_REF] Evans | Cyclin: A protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division[END_REF], while death relies on a constant probability rate. As a consequence, cells can adjust their size and growth, whereas genotypes encode how heterogeneous these sizes are as well as decide how cells synchronise nutrient processing with growth.

Model

Overview

We consider the evolution of a population of Eukaryote unicellular organisms in a spatially limited aquatic environmentwater puddle hereafter. Cells compete for two nutrients: either one or the other is replenished at a time: yet, since nutrients are replenished and depleted through diffusion processes, they may coexist for a short period of time after a switch in nutrient production has occurred. Nutrients are readily converted into energy after they enter the cell, through passive diffusion, a part of which is used to ensure the basal metabolism necessary to sustain the cell viability. The remainder can be allocated to the production of molecules contributing either to growth, or to the processing of nutrients, hence creating an implicit antagonism between these expenditure items. A cell's differential allocation relies on the dynamical expression of genes under the control of an evolvable gene network, which is partly stochastic due to the randomness of transcription, of translation, and of mitosis. The model includes three layers directly or indirectly interacting at different scales: the water puddle (i) may contain cells (ii), each cell containing its own gene network (iii).
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Cells

Nutrient uptake

In our model, each cell takes nutrients by diffusion through its membrane. This well-known process described by Fick's laws of diffusion involves the surface area of a cell SA, its permeability P mem and the outside-inside concentration gradient. Here, cells are assumed empty of nutrients at the beginning of a timestep,an asumption on which we elaborate below when describing the cellmedium interface. Considering the diffusion of nutrients as independent processes -the uptake of one nutrient does not directly influence the uptake of the other one (contrary to what would happen if they were to share room in the cell membrane) -their diffusion into the i th cell follows equation ( 4.1):

∂[N (c i , t)] ∂t = P mem . SA(c i , t) V ( c i , t) .([N (ex, t)]) (4.1)
where:

                                     [N (c i , t)]
denotes the nutrient concentration of the i th cell at time t;

P mem denotes the permeability of the cell membrane, the same for each cell here; SA(c i , t) denotes the surface area1 of the i th cell at time t;

V(c i , t) denotes the volume of the i th cell at time t;

[N (ex, t)] denotes the extra-cellular nutrient concentration in the compartment hosting the cell at time t Both nutrients follow this chemical scheme on their own. We solve this equation at the environment scale for faster calculation -which is made possible by the assumption of cells being empty at the beginning of each timestep -then divide nutrients among cells proportionally to their surface area. Assuming that cells are spherical, we have SA ( c i , t) = 4πR i (t) 2 and V(c i , t) = we have considered that cells release the nutrients they have not consumed at the end of each timestep. Assuming this gives an advantage to cells unable to spend all the energy they are able to take. Indeed, these cells presumably experience an increase in their internal nutrient concentrations, which according to equation (4.1) should impede their ability to absorb nutrients from the extracellular medium and leave more nutrient for cells which do consume all the nutrients they take. To avoid this issue, one solution would be to choose wisely the timescale, enabling one to consider the concentration in the medium to be constant during a timestep. Under this condition, it would then be possible to relax the need for cells to be empty. Such ideas have been further developed in section 7.1, where the systems can be solved using classical tools of numerical analysis.

Cell allocation

Once they have entered the cell, nutrients are readily converted into energy (typically units of ATP). In Eukaryote, this process takes place within mitochondria and generates potentially harmful compounds like free radicals as a byproduct. The process is summed up by the following balanced chemical equation:

1N → ξ E E + ξ W W (4.2)
where N denotes a nutrient unit, be it a standard nutrient or a revealed one, ξ E represents the number of energy units released by the reaction, ξ W represents the number of waste units released by the reaction.

The dynamics describing the conversion of nutrient into energy is described further. In a first instance of the model, we did not consider waste products, but derived an approach that would consider it in Appendix. It is important when studying bet-hedging because our ultimate goal would be to incorporate many different strategies in the model as to see which ones are picked by Natural Selection: a large allocation to maintenance (and potentially to resistant shapes that could also reduce mortality) could be an invaluable behaviour when facing unpredictable environments.

Meanwhile, a nutrient yields 30 energy units, in line with the TCA cycle estimates [START_REF] Rich | The molecular machinery of Keilin's respiratory chain[END_REF].

Also, we assume mitochondria to be very effective at converting nutrient into energy, resulting et al., 2010a), which allows a cell to adjust its mitochondrial content through fusion and fission, in particular. Yet, this should be the object of independent studies to determine the precise role of the mitochondrial machineries.

A part of the energy produced by a cell is used to fuel a basal metabolism (equation (4.3a); figure 4.1). This basal metabolism corresponds to the energy necessary to sustain cell viability, mainly to maintain the concentrations in vital organelles and biomolecules, which we do not consider explicitly. The basal metabolism increases as a cell grows in our model, taking into account the fact that more material needs to be renewed in a larger cell2 . This increase is modelled through equation ( 4.3b), where the allometric coefficient α BM sets the part of the basal metabolism devoted to the renewal of peripheral (e.g. membrane, contingent to the surface area)

or cytoplasmic components (contingent to the volume). α BM = 2 3 would account for cytoplasmic components only, α BM = 1 for peripheral components only. We have used the intermediate value α BM = 5 6 , considering a mix of cytoplasmic and peripheral components involved in the basal metabolism. Although it may vary during the cell cycle [START_REF] Miettinen | Cellular Allometry of Mitochondrial Functionality Establishes the Optimal Cell Size[END_REF], this seems consistent with estimates of [START_REF] Lynch | The bioenergetic costs of a gene[END_REF], even if their calculation relies on partly distinct hypotheses -see footnote 2 .

     ∂E alloc ∂t (c i , t) = ∂E tot ∂t (c i , t) - ∂E bas ∂t (c i , t) (4.3a) ∂E bas ∂t (c i , t) = ∂E bas(V=1) ∂t .V α bm (c i , t) (4.3b)
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where, for the i th cell at time t, the rates per unit time are given by:

                                    
E alloc (c i , t) denotes the energy remaining after withdrawal by the basal metabolism;

E tot (c i , t) represents the total amount of energy created;

E bas (c i , t) denotes the amount of energy withdrawn by the basal metabolism;

E bas(V=1) represents the equivalent basal metabolism for a cell which volume would be

1µm 3 ;
α bm denotes the allometric coefficient of basal metabolism consumption.

The remaining energy is allocated to three traits through the triggering of protein cascades by three regulator proteins (see figure 4.1). These traits are cellular life-history traits: growth, following the production of molecules forming the cell membrane (e.g. phospholipids), and nutrient processing. Each protein cascade involves an energetic cost, which may yield two distinct outcomes: either the energy available (after the basal metabolism) covers this cost, or not. If the amount of energy is limiting, the energy is spread among the cascades relative to the respective amounts of triggering proteins (cf. equation 4.4a). Otherwise, every cascade is triggered, only limited by the maximum production rate of a protein (cf. 4.4b) and the cell does not consume all its energy3 such that: where: 

∂M g ∂t (c i , t) =    %P g (c i , t) × ∂E alloc ∂t (c i ,
                                     M g (c i , t

Cell fitness

Nutrient processing follows from Michaelis Menten equation (also used below for gene networks), with each pathway described by its own equation, as in [START_REF] Rubin | Rethinking the evolution of specialization: A model for the evolution of phenotypic heterogeneity[END_REF], so that the speed of nutrient processing is given by

V m,n = k cat [E tot ] [Sn]
[Sn]+K M for the n ieth nutrient. All kinetic parameters are set to median values for central carbon metabolism, found in Bar-Even11; hence, only enzyme expression influences the efficiency of nutrient processing. A penalty is inflicted to cells whose total content is too high, so that highly concentrated enzymes may eventually bring no extra fitness on the contrary. This is done by considering that

k f = k f,vitro • (1 - i=1 3[E i ] i=1 3[E i ]+K E ),
with K E = 1mM ; as a matter of fact, the penalty becomes important when triggering enzymes overcome a concentration of 10 -1 mM . This simplistic way used to depict metabolism is highly unrealistic, and made us change our approach and extensively work on metabolism during the rest of my PhD (Chapters 5,6 and 7.1). Growth occurs as the membrane molecules are incorporated in the membrane immediately after production. Based on the example of phospholipids, we consider that the increase in the surface area SA ( c i , t) of cell (i) equals 2.10 -7 µm 2 (Alberts et al., 2002) times the number of growth molecules produced, M g . Cell growth is part of a simplified cell cycle we call "GSM" (Growth-Synthesis-Mitosis): first, the cell grows, then it enters the S-M phase where it duplicates its genome before ongoing mitosis. Key drivers determining the duration for this latter phase are assumed non-evolvable and set equal to 1500 seconds -the approximate duration of this phase in S. cerevisae [START_REF] Brewer | Cell cycle phases in the unequal mother/daughter cell cycles of Saccharomyces cerevisiae[END_REF]. The entrance in the S-M phasei.e. reproduction -involves a "sizer" protein whose role is to estimate the size of the cell. Once the amount of this protein overcomes a threshold5 , it triggers a switch in the cell cycle that starts the S-M phase. Inspired by Wang et al. (2009a), we considered the sizer as a protein whose degradation rate is very high (it has a life expectancy of 5 minutes in the model) and whose translation rate is indexed to the amount of energy produced during a timestep [START_REF] Cross | Testing a Mathematical Model of the Yeast Cell Cycle[END_REF]Wang et al., 2009a). The dynamics of the sizer otherwise follows the same basic processes as any other gene in the model, as its transcription depends on the evolvable gene network (see below).

After the 1500 seconds-period for the S-M part of the cycle, the cell splits into two daughter cells.

Division may be asymmetrical, as documented in budding yeast [START_REF] Brewer | Cell cycle phases in the unequal mother/daughter cell cycles of Saccharomyces cerevisiae[END_REF], producing daughter cells unequal in volume, but we consider the case of symmetrical division as a model case. The molecular content of the mother cell is spread randomly between the two daughter cells.

For the sake of realism, we have set a minimum threshold that a cell has to reach to be viable, to 1 µm 3 in volume, corresponding to the smallest Eukaryote cell known [START_REF] Derelle | Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features[END_REF].

Eventually, cells may die owing to a basal death rate.

Gene networks

Gene networks are composed by two types of genes in our model: those regulating the expression of others (and, possibly, themselves) -typically coding for transcription factors -and those contributing to cellular traits -that is, the aforementionned triggering genes and the "sizer gene".

We thus ignore the phenomenon of moonlighting whereby some proteins may exert two functions [START_REF] Huberts | Moonlighting proteins: An intriguing mode of multitasking[END_REF][START_REF] Gancedo | Moonlighting Proteins in Yeasts[END_REF], and more generally of gene pleiotropy: proteins in our model either play a regulatory role or contribute to physiological mechanisms.

In our model, regulatory proteins, or transcription factors, are able to bind a specific 8 bp (base pair) sequence -in accordance with [START_REF] Stewart | Why transcription factor binding sites are ten nucleotides long[END_REF] -within each of the 1000 bp regulatory sequence supposed to neighbour any of the genes in the network. Matching each of the binding sites noisy process is, where a single entity (for example a transcript) is subject to stochasticity in its expression, for example due to the low copy numbers of its regulators. (C) summarises interactions within a relatively simple gene network: Regulatory genes can be transcribed through a noisy process, producing transcripts serving as templates for translation, which is also a noisy process albeit to a lesser extent. The expression of transcription factors can feed-back on regulatory genes, through repression (in red) or enhancing (in green). They can also influence the expression of metabolic genes, whose functional products are enzymes, involved in nutrient processing or growth (to comply with our model). Notice that we have made the simplistic assumption that there is neither protein moonlighting, nor adverse effects of transcription factors depending on the motif they find or its location, a phenomenon largely documented.

with all regulatory sequences produces a matrix of integers B where each value B ij is the number of binding sites for transcription factor i found in the regulatory sequence of gene j. This matrix is sufficient to describe the gene network, as we ignore interactions between transcription factors.

Half of the transcription factors are activators, meaning that they facilitate the recruitment of the RNA polymerase, half are repressors precluding the recruitment of polymerase. At this stage we ignore mutations that would finely tune the effects of transcription factors when associated with DNA. In other words, all activators (all repressors) have identical effect, but each may bind a 4.1. NOISE IN GENE EXPRESSION AT THE EVOLUTIONARY ROOTS OF DIVERSIFIED BET-HEDGING specific DNA sequence. We also ignore residual effects of incomplete binding sites, that may occur when the mismatch between the recognised cis-sequence and a motif of the regulatory sequence involves only one or few residues [START_REF] Maerkl | A systems approach to measuring the binding energy landscapes of transcription factors[END_REF][START_REF] Jung | True equilibrium measurement of transcription factor-DNA binding affinities using automated polarization microscopy[END_REF][START_REF] Barnes | Mapping DNA sequence to transcription factor binding energy in vivo[END_REF].

Transcription factors binding dynamics

Following [START_REF] Draghi | Robustness to noise in gene expression evolves despite epistatic constraints in a model of gene networks[END_REF] and [START_REF] Sherman | Thermodynamic State Ensemble Models of cis-Regulation[END_REF], we consider the recruitment of a transcription factor by a binding site to obey thermodynamic laws -see also [START_REF] Lässig | From biophysics to evolutionary genetics: statistical aspects of gene regulation[END_REF][START_REF] Stormo | Modeling the specificity of protein-DNA interactions[END_REF]) and 3.2.2 -thus opening the way to capture the process through canonical equations.

Assuming a single binding site per regulatory sequence results in the well-known enzyme kinetics

Michaelis-Menten equations [START_REF] Draghi | Robustness to noise in gene expression evolves despite epistatic constraints in a model of gene networks[END_REF]. We chose to relax this assumption, such that more complex (and realistic) networks may evolve. For this purpose, we go back to the basic thermodynamic equations describing the process. The chemical equation is given by the universal ligand-receptor reaction :

BS i + TF i kon --⇀ ↽-- koff BSTF i (4.5)
with K on the binding constant and K off the dissociation constant. Note that we consider binding to occur only when the match between the binding site and the regulatory sequence is perfect (though it can be relaxed if necessary), which explains that the affinity of DNA-transcription factor complexes is defined by a single constant. For the i th transcription factor, this chemical reaction results in the following system of equations: 

       ∂[BSTF i ] ∂t = k on .[BS i ][T F i ] -k off .[BSTF i ] (4.6) ∂[BS i ] ∂t = ∂[TF i ] ∂t = - ∂[BSTF i ] ∂t (4.
∂[BSTF i ] ∂t = k on .[BSTF i ] 2 (t) + (-k off -k on .([TF tot i ] + [BS tot i ])).[BSTF i ](t) + k on .[BS tot i ][TF tot i ] (4.8)
where

[TF tot i ] = [TF i ] + [BSTF i ] and [BS tot i ] = [TF i ] + [BSTF i ].
This yields the following equilibrium for the concentration of DNA-transcription factor complexes:

[BSTF i ] * = [TF tot i ] + [BS tot i ] 2 + k off -((k off + k on ([TF tot i ] + [BS tot i ])) 2 -4 • k 2 on [BS tot i ][TF tot i ]) 1/2 2k on (4.9)
We verify that we obtain the Michaelis-Menten equilibrium for the case where BS tot i = 1 (as considered by [START_REF] Draghi | Robustness to noise in gene expression evolves despite epistatic constraints in a model of gene networks[END_REF] and [START_REF] Sherman | Thermodynamic State Ensemble Models of cis-Regulation[END_REF], see appendix for the demonstration that equation 4.10 is a particular case of equation 4.9):

[BSTF i ] * = kon k off • [TF tot i ] 1 + kon k off • [TF tot i ] (4.10)
Assuming equal affinity across similar binding sites, the probability of being bound for one given binding site of the i th transcription factor equals the ratio between the concentration of bound sites to the concentration of the potential binding sites for this transcription factor:

P BSTF i = [BSTF i ] * [BS tot i ] (4.11)
Note finally that we also did not considered any interference between transcription factors that could bind similar sequences.

Transcription

Given the probability calculated in equation (4.11), it is now possible to determine the mean transcription rate of any gene (g). We consider a basal transcription rate λ resulting from the residual probability for DNA-RNA polymerase binding, and extend the thermodynamics approach where:

                                
P AR = P A .P R denotes the probability for the regulatory sequence of gene (g) to be free of activator and repressor.

P AR = P A .P R denotes the probability for the regulatory sequence of gene (g) to bind at least one activator and no repressor.

c is the maximum transcription rate, because c > λ.

φ g is thus equal to the basal transcription rate λ when no activator or repressor binds its regulatory sequence, and may increase toward c if activators get recruited, as long as repressors stay mute. One should notice that repressors dominate activators and completely inhibit transcription regardless of the presence of activators, as is generally observed [START_REF] Sherman | Thermodynamic State Ensemble Models of cis-Regulation[END_REF].

The probability that a repressor (subset r) or an activator (a) binds the regulatory sequence of gene (g) is obtained from equation (4.11), which we now use to calculate P A and P R :

           P A = na a=1 (1 -P BSTFa ) (4.13a) P R = nr r=1 (1 -P BSTFr ) (4.13b)
The products in equations (4.13b) and (4.13b) are calculated over all the n a and n r potential binding sites for activators and repressors, respectively, in the regulatory sequence of gene (g).

Inserting these probabilities back in equation ( 4.12), we obtain:

φ g = λ. na a=1
(1 -P BSTFa ) . and Poisson (production) distributions [START_REF] Draghi | Robustness to noise in gene expression evolves despite epistatic constraints in a model of gene networks[END_REF]:

∂N RN Ag ∂t = -B(N Tg , θ deg ) + P(φ g (t)) (4.15) ∂N Pg ∂t = -B(N Pg , θ deg ) + P(N RN Ag .θ trad ), (4.16) 
with N RN Ag the number of transcripts and N Pg the number of proteins of gene i.

During the "S-M" (synthesis-mitosis) cycle phase, transcription is interrupted and translation decreases to become equal to half the translation rate during growth phase, a very rough estimation -based on [START_REF] Aviner | Uncovering Hidden Layers of Cell Cycle Regulation through Integrative Multi-omic Analysis[END_REF] -intended to remain as general as possible. [START_REF] Aviner | Uncovering Hidden Layers of Cell Cycle Regulation through Integrative Multi-omic Analysis[END_REF] has shown that transcription and translation dynamics are highly gene-dependent, paving the way for major future improvements in order to implement biological antagonism more realistically. This is an extremely high value, which, at this stage of development of the code, is necessary for Evolution to proceed in a small number of generations.

Mutations

Mutations affecting coding sequences have distinct effects depending on the type of gene that is mutated. Mutations of the coding sequence of a regulatory gene randomly change one of the 8 nucleotides sequence it binds, thereby also changing the connectivity of the gene network.

This illustrates a major difference between coding and regulatory mutations in our model: most mutations in regulatory sequences are likely neutral as they do not form a new binding site, but we only consider non-neutral mutations of coding sequences. In the case of transcription factors, we only considered mutations changing the sequence they may bind, which are likely very rare;

we thus considered that this sequence -which does not correspond to a nucleotide sequence in the coding sequence of the transcription factor -mutates at a rate µ T F = 10 -4 , similar to the mutation rate per base of regulatory sequences. Along with these regulatory mutations, we also consider rare mutations µ other = 10 -4 /gene/division of the coding sequence of cell-trait triggering genes (the genes that regulate the allocation of energy to maintenance, growth and cooperation), resulting in the loss of these functions. Fine tuning of these traits can thus only occur through the regulatory mutations described above.

A last case is to be considered: as we do not model explicitly the process through which emerges the sizer threshold involved in cell cycle checkpoint, it is supposed to follow its own mutational dynamics. Based on considerations made by (Wang et al., 2009a), we chose in our model that a mutation would increase or decrease the checkpoint threshold according to a Poisson distribution. A higher mutation rate (µ sizer = 10 -3 ) was considered for this threshold, relevant with respect to the fact that many elements are involved in the process [START_REF] Cross | Testing a Mathematical Model of the Yeast Cell Cycle[END_REF].

Environment

Medium-surroundings interaction

As previously mentioned, the environment can be described as a non-spatialised water puddle, which is represented as a compartment that exchanges metabolites with its surroundings, implicitly meaning that no cell can leave the puddle and no cell can immigrate. We have used an explicit finite differences numerical scheme applied to Fick's first diffusion law as to model realistically the diffusion of nutrients. This canonical method requires the discretisation of differential operators and is especially suited for equations involving the transfer of a physical quantity, as is the case for heat transfers and Fick's diffusion processes. Fick's diffusion law can be described by the general equation:

J = -D. ∂C ∂l (4.17)
where:

                
J is a flux, for instance of nutrients across compartments;

C represents a concentration, hence ∂C ∂l is a gradient of concentration between two compartments separated by a distance l;

In finite differences, numerical instability arises when the first order approximation no longer holds, which can be avoided by complying with the condition:

D.δt δ 2 l < 1 2 .
We have set the size of the compartment and of the timestep accordingly, such that : δ t = 1s., δ l = 0.1mm. When the nutrient is replenished, it does with an outside concentration was set at [N ] = 10 -1 µmol.L -1 and diffusion coefficients to D = 10 -7 dm 2 .s -1 for nutrients, close to estimates for glucose [START_REF] Milo | Cell Biology by the Numbers[END_REF]. Although choices were to be made about diffusion coefficients, cell permeabilities and concentrations, the set of parameter was adjusted to accord with findings by [START_REF] Lynch | The bioenergetic costs of a gene[END_REF] about the amount of energy spent by Eukaryotes of different sizes.

Environmental stochasticity was modelled by considering that a switch from one nutrient to the other can occur with a given probability, which means that there is an intrinsic temporal auto-correlation in the presence (or absence) of a given nutrient in the medium. Nutrients are replenished alternately, implying that when the first nutrient diffuses towards the compartement, the other does not, and vice-versa. For a short period of time, they may coexist, before the one which is no longer replenished vanishes owing to its consumption by cells and to the diffusion process itself, whose direction changes when the medium is richer than its surroundings. Different frequencies were tested, ranging from frequent switches (occuring many times in the lifetime of Cell-medium interaction Cells absorb nutrients from the medium, resulting in nutrient depletion. In order to avoid difficulties arising from the highly dynamic character of a population -whose growth could disrupt the stability of numerical schemes -we have favoured an analytical resolution. As mentioned above (see section 2.2.1.), this solution requires the assumption that cells are empty at the beginning of a timestep, which is achieved by releasing the remaining intracellular nutrients in the external compartment at the end of a timestep. Under this assumption, all the cells in a compartment can be considered as a single equivalent depletor. After calculating the quantity of intake nutrients, we divide this quantity proportionally to the relative surface area of each cell. Here again, we model exchanges between the equivalent depletor and the neighbouring compartment as a Fick's diffusion process, in which assuming N ut(c i , t 0 ) = 0 for all cells yields the straightforward solution to this system:

       [N ] med,t = [N ] med,t0 • exp -P.SA eq V med • t (4.18a) N ci,t = SA i SA eq .[N ] med,t0 .V med . 1 -exp -P • SA eq V med • t (4.18b)
where :

                                    
[N ] med,t is the nutrient concentration of the (j th ) compartment at time t, and N ut(comp j , t) the absolute amount;

P figures the permeability of cell membranes, the same for each cell here;

SA eq figures the SA of the equivalent depletor, at a given time (t);

V med figures the volume of the (j ieth ) compartment;

N (ci,t figures the absolute amount of nutrient in the (i eth ) cell, at a given time (t).

Simulation procedure

Events occur sequentially in our simulations, and time is discretized in timesteps of length δ t = 10 seconds. For many of the processes described above, we have derived analytical solutions for the temporal dynamics and their equilibria, which we unfold by replacing t by t + δ t in the corresponding equations. Ordinary differential equations are solved using the forward Euler During one timestep, (i) the medium first interacts with its surroundings, then (ii) cells absorb nutrients and convert them into molecules involved in the dynamics of their life-history traits, before (iii), the excess amount of energy is released in the medium. In parallel, transcription and translation dynamics occur and change the cell content in gene products, thus influencing cell fate.

These regulatory dynamics are carried over longer timesteps (30 seconds) to increase simulation efficiency. This is consistent with the literature on the subject, evoking switches in expression occurring over tens to hundreds seconds [START_REF] Alberts | Molecular Biology of the Cell-The Lipid Bilayer[END_REF].

Considering the small size of the organisms modeled, generation time should ordinarily be in the order of few thousands seconds. Hence, simulations were set to unfold over t = 5.10 7 s, allowing in principle simulations to last for a few thousands generations. Nevertheless, it is not possible to predict a priori how the generation time -an evolving trait in our model -will evolve.

Each simulation started with 500 genetically identical cells. The initial genotype was randomly set -and thus differed between simulations -by uniformly sampling transcription factors binding sites and regulatory sequences. However, we made sure that the initial population was viable by forcing the presence of a general transcription factor enhancing the expression of each gene (generalist strategy), and by having an additional transcription factor enhance maintenance. Our choice to include a general transcription factor is not arbitrary, as these are known to be very common [START_REF] Reese | Basal transcription factors[END_REF]. The whole set of parameters considered is detailed in the appendix.

Values were generally derived from literature, be it directly or after few calculations, such as for transcription and translation rates and probabilities, which were set to match the ranges of copy numbers found in cells [START_REF] Milo | Cell Biology by the Numbers[END_REF].

Models were written in C++, and ran thanks to PRABI computing resources.

Results & Discussion

In this project, our first aim was to test whether or not Evolution could use noise in gene expression to produce several distinct phenotypes from a single genotype in response to an unpredictable environment. For this purpose, we simulated Evolution with two opposite frequencies of nutrient switches -rare switches (approximately once every 20 generations, on average); frequent switches (approximately twice in a lifetime, on average). In our framework, it is not possible to state exactly how often these changes occur -in terms of generation times -because these latter may vary depending on the size at reproduction that evolves, as well as on the strategy of organisms. In this simulation, phenotypic noise seems huge for most of the dominant genotypes, but there is also a specialist of nutrient 2 that seems to have evolved. Notice also that there is a high polymorphism, resulting from the high mutation rate.

For the same reason, carrying capacity (i.e. the maximum sustainable population size of the environment), and the strength of drift, is partly contingent on the strategies in place. Our expectation was that rare switches would favor diversified bet-hedging while frequent ones would not. Our first results tend to contradict this assumption for we did not observe any non genetic differentiation-like behaviour; instead, different levels of canalisation evolved, as shown in the snapshot of two simulations with opposite outcomes (see figure 4.4). Rare changes fostered a high level of canalisation, with very few phenotypic heterogeneity 4.4-B, be it genetic or non genetic.

On the contrary, frequent changes yielded more phenotypic heterogeneity 4.4-A, probably because there is selection favouring strategies that depart from the optimum generalist. Indeed, cells that invest a little more into one nutrient are not deleterious since they rarely die before the medium has been replenished in their preferred nutrient. Meanwhile, they have an advantage when their preferred nutrient is in place -the evolutionary outcome should depend on the balance between the benefit provided by the slight specialisation and its cost. Besides, one genotype evolved that is largely specialised at processing nutrient 1, suggesting that specialist strategies may also be an adequate adaptive response in this environment. In fact, such frequent changes are likely to switches when considering the concentration of specialised proteins. Phenotypic noise is largely higher when cells have a high chance of meeting both nutrients during their lifetime (in A), while canalisation evolves to favour a precise generalist strategy investing identically in both nutrients when switches scarcely occur (in B). Besides, when environment switches often, it seems that specialist strategies (such as the grey phenotype) may be able to invade, or have, at least, a fitness disadvantage small enough to coexist neutrally, which explains why it can be observed. Finally, we observed that despite normalising proteome content by cell size, there is still a variability: it is because, in our model, cell division comes with a decrease in cell volume that increases protein concentration, and, as well, because during the synthesis phase, we assumed a decrease in the protein production rate (to half of its otherwise level).

Incidentally, we did observe some kind of noise driven non genetic heterogeneity in our model, confirming that cellular noise may be used by Evolution to produce different phenotypes from one 4.1. NOISE IN GENE EXPRESSION AT THE EVOLUTIONARY ROOTS OF DIVERSIFIED BET-HEDGING single genotype. We have also found that heterogeneity may be better-suited to quickly switching environments than it is to face rare unforeseen events. Clonal interference also occurred with a specialist strategy emerging among those practising heterogeneity. This suggests that phenotypic heterogeneity may not be an intermediate step towards the evolution of differentiation, but may on the contrary evolve to resist invasion, for instance by specialists, in multidimensional ecological niches (it may also be that simulations were not ran over sufficiently long timescales to see the emergence of two specialist strategies, or DBH). It also raises some intriguing new questions: as noise is largely reduced under rarely fluctuating scenarios, do evolutionary trajectories exist that can use it to produce diversified bet-hedging or does the canalisation process completely preclude the arising of differentiation; and, as a corollary, is it that differentiation can only evolve within a small range of moderate frequencies of nutrient switch, or is it only the model itself which entails these trends? For instance, one major limit of our gene network approach is that we do not consider residual binding probabilities, when binding sequences depart from the consensus one(s). Hence, we both limit how genes interact with one another through their binding sites and, as well, unrealistically diminish the plausibility of noise driven bistability. Indeed, instead of relying on the expression of transcription factors with lower affinities for their binding sites, cells have to tune these levels of expression through a combination of repression and activation along with the basal rate existing when none of these processes is acting. In fact, it could even be that regulatory cross-talks, where a TF regulates off target genes due to redisual binding affinities, push the expression of some TFs towards low and thus noisy levels as to avoid deleterious interferences between pathways. Again, how much overlooking these features bias our predictions? Rather than answering such questions immediately, which proved to be a conundrum, we took a step back to give some thoughts as to how we wanted to address these questions, laying foundations for the approach we have consistently undertaken for the remainder of my PhD.

IN SEARCH FOR THE LOST CAUSALITY

Perspectives -in search for the lost causality

Throughout this project, our second, more ambitious aim was to develop a framework based on realistic underpinnings to study cell evolution. Two features were essential: first, a wide array of phenotypes should be achievable, and both their probability of occurrence and their accessibility should be intrinsic features of the framework. In parallel, fitness was to emerge through a birthdeath process itself being the product of mechanistic biochemical cascades of reactions. We believe such features to be crucial factors underneath the joint evolution of traits underlying (cell) life histories -cooperation, maintenance, plasticity, heterogeneity -and hence likely to be involved in the history of adaptive and non adaptive differentiation. Undoubtedly it turned to be the case in our simulations, although in a rather unexpected fashion.

As an other proof of principle, we have also launched simulations where cells can discover a new niche through the release of Public Goods in a spatialised medium, to determine if it can realistically capture the evolution of cooperation. In this modified version, a hidden resource can be revealed by the production of these public goods; once revealed, it can diffuse through the cell membrane. Our assumption was that public goods release nutrients that would remain hidden in their absence, consistent with many examples described in the literature. For instance, cells may produce molecules like antimicrobials that kill competitors, hence freeing a part of the nutrients these were consuming. Our model is also compatible with the telling example of invertase [START_REF] Koschwanez | Improved use of a public good selects for the evolution of undifferentiated multicellularity[END_REF] -and siderophores helping to extract iron from the medium [START_REF] Griffin | Cooperation and competition in pathogenic bacteria[END_REF]) -, which splits sucrose into the much more diffusive fructose and glucose. In many simulations, we have observed a coexistence between cooperators and cheaters, matching general predictions from evolutionary game theory. Indeed, such coexistence is a typical result of snowdrift evolutionary games, where cheaters pay a high cost in the absence of cooperators while cooperators pay a low cost for cooperating [START_REF] Doebeli | Models of cooperation based on the Prisoner's Dilemma and the Snowdrift game[END_REF][START_REF] Gore | Snowdrift game dynamics and facultative cheating in yeast[END_REF]: these Black Queen6 behaviours have recently received a lot of attention [START_REF] Jeffrey | The Black Queen Hypothesis: Evolution of Dependencies through Adaptive Gene Loss[END_REF][START_REF] Oliveira | Evolutionary limits to cooperation in microbial communities[END_REF][START_REF] Morris | Black Queen evolution: the role of leakiness in structuring microbial communities[END_REF][START_REF] Bibliography Mas | Beyond the Black Queen Hypothesis[END_REF] in the study of cooperation among microorganisms. Our model matches this description, as Public goods are cheap to produce and their absence greatly impoverishes the environment. Nonetheless, we found that profound differences exist among sim-
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ulations -suggesting a plausible role for contingency, as found a short while ago for cross-feeding, using the same kind of models (Meijer et al., 2020) -in the amount of cooperation that evolved, apparently contrasting with general predictions of simpler models. These attempts indicate that these experiments bring insightful thoughts, for (in silico) Evolution, as often, outsmarted us 7

and our anticipations in many ways. For instance, how do cells regulate their content during their cell cycle to avoid deleterious effects of an intrinsic cyclicity in proteome content deriving from their growth and division? How do cell size jointly evolves with the proteome content? Now, how do we make sense of these outcomes and how should we build on these thoughts?

In the last volume of the Search written by Marcel Proust [START_REF] Proust | A la Recherche du Temps Perdu[END_REF], the narrator, suddenly hit by present time, decides to try and regain time through the recollection of his elusive souvenirs. Eventually, he seems to think, he should be capable of unravelling the unfathomable intricacies behind the passage of time, and its consequences. One may not presume of his success without spoiling such a masterpiece, but there is definitely no mystery about how daunting is this task when causality is teeming with poorly understood interactions. Looking at the bigger picture, our belief about this class of models, to which we have come up with by experimenting them directly, is that they are tools to feed the community with avenues of research, much like the Long-Term evolution experiment does. In a sense, they are Long-term evolution experiments 8 , with the same weaknesses -they are necessarily simplifications of Nature -and the same strengths -they enable the observation of evolution over long, otherwise inaccessible, periods of time. They can suggest ideas about processes involved in -and/or produced by -Evolution, such as mutational robustness [START_REF] Elena | Effects of population size and mutation rate on the evolution of mutational robustness[END_REF][START_REF] Beslon | Scaling laws in bacterial genomes: a side-effect of selection of mutational robustness?[END_REF] or genome sizes [START_REF] Fischer | A model for genome size evolution[END_REF].

But what triggers these behaviours is harder to retrieve within these frameworks, for the causality is driven by a complex intertwining of poorly understood objects and non trivial emerging properties. In fact, these models outputs therefore themselves require to be explained, as is the case for the LTEE [START_REF] Tenaillon | Tempo and mode of genome evolution in a 50,000-generation experiment[END_REF]. But they may prove to enlighten us beyond their strict scope, at least qualitatively, especially where (quasi) universal laws prevail [START_REF] Couce | The rule of declining adaptability in microbial evolution experiments[END_REF].

To this end -approaching functional evolution in its natural context, as [START_REF] Dean | Mechanistic approaches to the study of evolution: the functional synthesis[END_REF]) and 7 This is even truer than what we have implied until there, because the canalising strategy chosen by Evolution to minimise deleterious effects of temporal unpredictability in our model consists of relinquishing high expected fitness in one given environment (when compared to a specialist strategy) to mitigate its temporal fitness variance in the long run. Because of this latter fact, this risk avoidance strategy coincides with a conservative bet-hedging, suggesting that bet-hedging could evolve to counteract unpredictability by minimising cellular noise rather than exploiting it.

8 It may thus comes as no surprise that scientists involved in LTEE are also part of some of these in silico experiments.
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more recently [START_REF] Bergelson | Functional biology in its natural context: A search for emergent simplicity[END_REF] have advocated -we decided to take another more quantitative -in the sense of being able to make quantitative predictions -path, where we try and decipher the influence of mechanisms on one biological object at a time, before extending the approach to higher order interactions. Two different projects emerged from this first attempt: (i) deciphering the structure of the genotype-phenotype map in the case of diversifying bet-hedging;

(ii) understanding how realistic trade-offs emerge from metabolism and therefore influence cellular metabolic strategies. During my PhD, we focused on this second goal and this journey begins with enzymes, which are the object of the following chapter.
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Appendix Connection between our approach and prior thermodynamics approach on the influence of BSTF match on transcription

Starting back with equation 4.9, one can factorize the expression by the term

([TFtot]+[BStot])kon+k off 2kon
that can be retrieved twice in 4.9:

[BSTF] * = ([TF tot ] + [BS tot ])k on + k off 2k on × (1 -(1 - 4 • k 2 on [BS tot ][TF tot ] (k off + k on ([TF tot ] + [BS tot ])) 2 ) 1 2 ) (4.19)
With one binding-site only -as developed in [START_REF] Draghi | Robustness to noise in gene expression evolves despite epistatic constraints in a model of gene networks[END_REF] -and considering transcription factors to be largely more than few copy numbers yields [BS tot ] << [TF tot ], hence one has:

[BSTF] * = ([TF tot ] + [BS tot ])k on + k off 2k on × (1 -(1 - 4k 2 on .[BS tot ].[TF tot ] (k off + k on .[TF tot ]) 2 ) 1 2 ) (4.20)
Introducing the expansion (1 + x) α = 1 + αx + o(x) yields:

[BSTF] * = ([TF tot ] + [BS tot ])k on + k off 2k on × ( 1 2 • 4 • k 2 on [BS tot ][TF tot ] (k off + k on [TF tot ]) 2 + o([BS tot ])) (4.21)
Finally, simplifying the equation gives the master equation:

[BSTF] * = k on [TF tot ][BS tot ] k off + k on .[TF tot ] (4.22)
And, when considering only one binding-site such as [START_REF] Draghi | Robustness to noise in gene expression evolves despite epistatic constraints in a model of gene networks[END_REF] did, one finally obtains:

⇒ BSTF * = θ a [TF tot ] 1 + θ a [TF tot ] (4.23)
where θ a = kon k off , therefore leading to the non cooperative Hill Muir function often referred to. What shows this equation is that in the case of similar copy numbers of binding-sites and transcription factors, the approximation no longer holds. For instance, in the case mentioned by 4.2. IN SEARCH FOR THE LOST CAUSALITY (Wang et al., 2009a), where hundreds of binding-sites are involved, the simplified expression fails to capture the dynamics. More generally, it seems increasingly clear that some transcription factors are confronted with a wide number of identical cis-sequence targets [START_REF] Brewster | The transcription factor titration effect dictates level of gene expression[END_REF], which could be responsible for the omnigenic basis of complex traits [START_REF] Boyle | An Expanded View of Complex Traits: From Polygenic to Omnigenic[END_REF]. Further works should try to incorporate differential affinities between distinct BSTF matches and for incomplete binding-sites. [START_REF] Draghi | Robustness to noise in gene expression evolves despite epistatic constraints in a model of gene networks[END_REF] considered differences in affinity, adding a probability of differential binding in their expression for each specific BSTF match, yielding:

BSTF * = p a θ a [TF tot ] 1 + θ a [TF tot ] (4.24)
It seems fairly reasonable and less artificial to modify values of k on and k off to account for that. However, our method will be limited to 3 different affinities in any case, as the Abel-Ruffini theorem, proven a long while ago, states that there is no general solution in radicals for polynomial equations of degree larger than 4.

Introducing maintenance in the framework

Maintenance is a process that may be largely involved in bet-hedging strategies where a genotype produces a latent form to survive nutrient depletion. Simplistically, maintenance can be modeled through a chemical reaction involving cellular waste (w) and maintenance proteins (m), which would result from their expression through the gene network. We detail below a method to add this item to the model.

In order to avoid the introduction of an overwhelming number of parameters, each maintenance molecule is hypothesized to annihilate one unit of waste and be immediately removed upon their encounter. Waste molecules may, for instance, be a by-product produced by any chemical reactions having occurred in the cellular system. Such chemical reactions can be represented under the form:

m + w kN --→ mw, (4.25) 
whose explicit dynamics can be analytically solved.
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Considering dynamics of the first order yields:

                 [m] = [m] 0 -x(t) [w] = [w] 0 -x(t) [mw] = [mw] 0 + x(t) (4.26)
where x(t) can be determined analytically:

x(t) = [w] 0 • [m] 0 • (e k N t([m] 0 -[w] 0 ) -1) [m] 0 • e k N t([m] 0 -[w] 0 ) -[w] 0 (4.27)
To solve this equation from 4.26, let x denote the variation in concentrations as a function of t, so that:

       [m](t) = [m] 0 -x(t) [w](t) = [w] 0 -x(t) (4.28)
The equation below:

d[w] dt = -k N [w][m] (4.29)
yields to:

d[w] dt = -dx dt = -k N • ([w] 0 -x)([m] 0 -x)
Hence, one has:

x(t) x 0 dx ([w] 0 -x)([m] 0 -x) = t t 0 k N dt
The left member of the integral can be written:

1 [m] 0 -[w] 0 x(t) x 0 1 [w] 0 -x -1 [m] 0 -x dx
Integration yields:

1 [m] 0 -[w] 0 [(ln([m] 0 -x) -ln([w] 0 -x))] x x 0 = k N (t -t 0 )
Few calculus and an exponential transformation gives, while considering t 0 = 0:

([m] 0 -x)[w] 0 ([w] 0 -x)[m] 0 = e k N t([m] 0 -[w] 0 )
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Which, solving on x, gives the master equation quoted above -not to be used when the denominator equals 0, -that is to say:

x(t) = [w] 0 [m] 0 (e k N t([m] 0 -[w] 0 ) -1) [m] 0 e k N t([m] 0 -[w] 0 ) -[w] 0 (4.30)
A lack of maintenance proteins may have a major influence on fitness: waste could for example worsen life expectancy for a cell, increasing the instantaneous death probability through a sigmoid function: this function reflects the fact that residual waste should have scarce impact on life expectancy, while crossing a threshold should spark deleterious effects. Once the threshold exceeded, the effect may be more or less sudden, depending on a parameter β -see below.

Notice that this process may combine with an external mortality D ext .The sigmoid function used here is log-logistic, as is commonly used in survival analysis, with D ext denoting external death risk, [w] denoting the current concentration of waste in a given cell, [w cr ] representing the critical concentration at which the internal mortality risk is half its maximum value:

S(t) = D ext + 1 -D ext 1 + ( [w] [wcr] ) -β (4.31)
The process of maintenance is important because it adds extra dimensionality to the tradeoff function, and can thence impact the optimal allocation strategy. To introduce more realistic latency, the step further would be to enable cells the triggering of a genetic cascade leading to a latent form that increases its external survival but at the cost of no (or few) nutrient processing. 

Parameters used in the simulations

Environment features

Gene network features

Energy processing features Cell features

Initial conditions

Chapter 5

A new perspective on enzyme evolution 5.1 Resource uptake and the evolution of moderately efficient enzyme This chapter was published in Molecular Biology and Evolution (https://doi.org/10.1093/ molbev/msab132 ).

Abstract

Enzymes speed up reactions that would otherwise be too slow to sustain the metabolism of selfreplicators. Yet, most enzymes seem only moderately efficient, exhibiting kinetic parameters orders of magnitude lower than their expected physically achievable maxima and spanning over surprisingly large ranges of values. Here, we question how these parameters evolve using a mechanistic model where enzyme efficiency is a key component of individual competition for resources.

We show that kinetic parameters are under strong directional selection only up to a point, above which enzymes appear to evolve under near-neutrality, thereby confirming the qualitative observation of other modelling approaches. While the existence of a large fitness plateau could potentially explain the extensive variation in enzyme features reported, we show using a population genetics model that such a widespread distribution is an unlikely outcome of evolution on a common landscape, as mutation-selection-drift balance occupy a narrow area even when very moderate biases towards lower efficiency are considered. Instead, differences in the evolutionary context

RESOURCE UPTAKE AND THE EVOLUTION OF MODERATELY EFFICIENT ENZYME

encountered by each enzyme should be involved, such that each evolves on an individual, unique landscape. Our results point to drift and effective population size playing an important role, along with the kinetics of nutrient transporters, the tolerance to high concentrations of intermediate metabolites, and the reversibility of reactions. Enzyme concentration also shapes selection on kinetic parameters, but we show that the joint evolution of concentration and efficiency does not yield extensive variance in evolutionary outcomes when documented costs to protein expression are applied.

Introduction

Living organisms need to uptake and metabolize nutrients, relying on enzymes to catalyse chemical reactions along metabolic pathways. Accordingly, and despite being intrinsically reversible (Haldane, 1930;[START_REF] Klipp | Evolutionary Optimization of Enzyme Kinetic Parameters; Effect of Constraints[END_REF], in vivo enzyme-catalyzed reactions are commonly thought of as an irreversible two-step process (Michaelis et al., 1913a;[START_REF] Bar-Even | The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters[END_REF][START_REF] Bar-Even | The Moderately Efficient Enzyme: Futile Encounters and Enzyme Floppiness[END_REF][START_REF] Johnson | The Original Michaelis Constant: Translation of the 1913 Michaelis-Menten Paper[END_REF]:

E + S kf --⇀ ↽-- kr ES kcat --→ E + P, (5.1) 
where k f and k r are the rates of association and dissociation between enzyme and substrate, and k cat is the turnover number, that is the rate of formation of the product P from ES complexes.

The first part of this chemical equation describes the encounters between the enzyme E and the substrate S; the enzyme will be efficient if ES complexes form often and do not dissociate before the substrate has been turned into a product, which is reflected by the constant

K M = k r + k cat k f .
The efficiency v of an enzyme -the rate at which it makes a product P from S -depends on these two constants through equation (5.2):

v = k cat .[E tot ]. [S] K M + [S] , (5.2)
under the assumption that the concentration [S] is approximately constant and that of [ES] is at steady-state (Michaelis et al., 1913a;[START_REF] Briggs | A Note on the Kinetics of Enzyme Action[END_REF].

At first glance, Natural Selection is presumed to optimize enzymatic efficiency by pushing k cat upwards and K M downwards to universal physical limits. Enzyme efficiencies are for instance limited by the diffusion properties of their aqueous environment, which sets an upper bound of approximately 10 8 -10 10 M -1 s -1 for the ratio k cat /K M [START_REF] Alberty | Application of the Theory of Diffusion-controlled Reactions to Enzyme Kinetics[END_REF][START_REF] Zhou | Diffusion-Controlled Reactions of Enzymes[END_REF].
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Nearly optimal enzymes indeed seem to exist, as exemplified by triosephosphate isomerase (TIM)

whose ratio is close to this theoretical ceiling [START_REF] Knowles | Perfection in enzyme catalysis: the energetics of triosephosphate isomerase[END_REF]. But they are uncommon:

most enzymes appear to be only moderately efficient and far off these physical limits -including enzymes immediately flanking TIM in the glycolysis metabolic pathway [START_REF] Davidi | A Bird's-Eye View of Enzyme Evolution: Chemical, Physicochemical, and Physiological Considerations[END_REF]. Indeed, [START_REF] Bar-Even | The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters[END_REF] have analysed a dataset of several hundreds of enzymes and found a wide diversity among enzyme parameters, thus sketching a puzzling pattern that has far more in common with a zoo than it looks like variations around an archetypal form.

This wide distribution of enzyme features could partly be explained by differences between enzyme behaviour in vivo and in vitro. Such differences are expected, first because diffusion in a test tube is hardly comparable to diffusion in the cytoplasm [START_REF] Ellis | Macromolecular crowding: obvious but underappreciated[END_REF][START_REF] Rivas | Life in a crowded world[END_REF][START_REF] Zhou | Macromolecular Crowding and Confinement: Biochemical, Biophysical, and Potential Physiological Consequences[END_REF][START_REF] Rivas | Toward an understanding of biochemical equilibria within living cells[END_REF]. As the cytoplasm gets packed, the cell approaches a state where molecules are less mobile, hindering substrate-enzyme encounters [START_REF] Muramatsu | Tracer diffusion of globular proteins in concentrated protein solutions[END_REF][START_REF] Zimmerman | Macromolecular Crowding: Biochemical, Biophysical, and Physiological Consequences[END_REF][START_REF] Blanco | Macromolecular diffusion in crowded media beyond the hard-sphere model[END_REF]. In this regard, K M values are likely underestimated in vitro, and enzymes should perform less efficiently in vivo. Simultaneously, macromolecular crowding can sometimes improve catalytic activity in vivo, making specificity constants k cat /K M higher than their in vitro estimates [START_REF] Ralston | Effects of "crowding" in protein solutions[END_REF][START_REF] Ellis | Macromolecular crowding: obvious but underappreciated[END_REF][START_REF] Jiang | Effects of Macromolecular Crowding on the Intrinsic Catalytic Efficiency and Structure of Enterobactin-Specific Isochorismate Synthase[END_REF][START_REF] Pozdnyakova | Non-linear effects of macromolecular crowding on enzymatic activity of multi-copper oxidase[END_REF]. Crowding effects are obviously important for our understanding of enzyme evolution but, alone, they are definitely too weak to explain the wide variability across enzymes insofar as their reported estimates typically lie in the range of one order of magnitude [START_REF] Davidi | Global characterization of in vivo enzyme catalytic rates and their correspondence to in vitro k cat measurements[END_REF].

Another source of explanation to the observed distribution of enzymes (in)efficiencies is a failure of Evolution to consistently optimize them, possibly due to physical constraints. Indeed, [START_REF] Heckmann | Modeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates[END_REF] have shown how a variety of k cat s may evolve provided that some of them are physically constrained. Besides the diffusion limit already mentioned, constraints on enzyme evolution might include an intrinsic trade-off [START_REF] Gudelj | An integrative approach to understanding microbial diversity: from intracellular mechanisms to community structure[END_REF][START_REF] Stiffler | Evolvability as a Function of Purifying Selection in TEM-1 -Lactamase[END_REF] that originates from the dependency of both k cat and K M on intermediate energy profiles [START_REF] Heinrich | Mathematical analysis of enzymic reaction systems using optimization principles[END_REF]. Nonetheless, this trade-off is scarcely observable among evolved enzymes -Bar-Even et al.

(2011) report a coefficient of determination around 0.09 for the correlation between log 10 (k cat )

and log 10 (K M ) -suggesting that it can be overcome. Other constraints may exist and be specific of a given reaction [START_REF] Klipp | Evolutionary Optimization of Enzyme Kinetic Parameters; Effect of Constraints[END_REF] Following this idea, the premise of our theoretical investigation into the origins of enzyme diversity is that it results mainly from unconstrained evolution, such that the reported differences may be caused by the combined action of selection and genetic drift. It is important to notice that the information we have is partial, as an enzyme's activity is the joint result of its kinetic constants and cellular concentration, perhaps also contributing to the reported variance in the former. In fact, [START_REF] Davidi | Global characterization of in vivo enzyme catalytic rates and their correspondence to in vitro k cat measurements[END_REF]'s method to determine in vivo turn-over rates lends some credence to the idea that increased levels of expression make up for lower kinetic constants [START_REF] Davidi | A Bird's-Eye View of Enzyme Evolution: Chemical, Physicochemical, and Physiological Considerations[END_REF]. It is therefore obvious that an enzyme's expression needs to be considered as another dimension of its activity, especially since it has been shown that the evolutionary tuning of gene expression can happen very quickly [START_REF] Dekel | Optimality and evolutionary tuning of the expression level of a protein[END_REF].

Concomitantly, an enzyme's activity can be impacted by protein misfolding, which reduces the effective enzyme concentration [START_REF] Tokuriki | Stability effects of mutations and protein evolvability[END_REF][START_REF] Yue | Loss of protein structure stability as a major causative factor in monogenic disease[END_REF][START_REF] Drummond | Why highly expressed proteins evolve slowly[END_REF][START_REF] Echave | Biophysical Models of Protein Evolution: Understanding the Patterns of Evolutionary Sequence Divergence[END_REF] while also impacting fitness by enhancing protein erroneous interactions [START_REF] Yang | Protein misinteraction avoidance causes highly expressed proteins to evolve slowly[END_REF] and the formation of toxic protein aggregates [START_REF] Bucciantini | Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases[END_REF][START_REF] Sabate | Protein folding and aggregation in bacteria[END_REF][START_REF] Geiler-Samerotte | Misfolded proteins impose a dosage-dependent fitness cost and trigger a cytosolic unfolded protein response in yeast[END_REF]. Protein stability is thus under strong purifying selection to avoid the deleterious effects of misfolding [START_REF] Drummond | Mistranslation-Induced Protein Misfolding as a Dominant Constraint on Coding-Sequence Evolution[END_REF]. Accordingly, it has been shown that proteins have evolved to stand beyond a stability threshold [START_REF] Bloom | Thermodynamic prediction of protein neutrality[END_REF], although marginally [START_REF] Taverna | Why are proteins marginally stable?[END_REF]. Because mutations are on average destabilizing, this definitely narrows down the spectrum of adaptive mutations [START_REF] Shoichet | A relationship between protein stability and protein function[END_REF][START_REF] Depristo | Missense meanderings in sequence space: a biophysical view of protein evolution[END_REF][START_REF] Weinreich | Darwinian Evolution Can Follow Only Very Few Mutational Paths to Fitter Proteins[END_REF][START_REF] Tokuriki | The Stability Effects of Protein Mutations Appear to be Universally Distributed[END_REF][START_REF] Tokuriki | How Protein Stability and New Functions Trade Off[END_REF][START_REF] Lunzer | Pervasive Cryptic Epistasis in Molecular Evolution[END_REF].

Nevertheless, several studies have reported the existence of a genotype space where activity can be optimized without compromising stability [START_REF] Schreiber | Stability and function: two constraints in the evolution of barstar and other proteins[END_REF][START_REF] Burg | Selection of mutations for increased protein stability[END_REF][START_REF] Bloom | Stability and the Evolvability of Function in a Model Protein[END_REF][START_REF] Knies | Enzyme efficiency but not thermostability drives cefotaxime resistance evolution in TEM-1 -lactamase[END_REF][START_REF] Miller | An appraisal of the enzyme stability-activity trade-off[END_REF]. Even when improving function requires the fixation of destabilizing mutations, compensatory mutations can in principle cancel out stability losses arising from active site evolution [START_REF] Depristo | Missense meanderings in sequence space: a biophysical view of protein evolution[END_REF][START_REF] Tokuriki | How Protein Stability and New Functions Trade Off[END_REF][START_REF] Tokuriki | Stability effects of mutations and protein evolvability[END_REF]Storz, 2018). Adaptive evolution may even be facilitated by preexisting mutational robustness against misfolding [START_REF] Bloom | Protein stability promotes evolvability[END_REF][START_REF] Bloom | Evolution favors protein mutational robustness in sufficiently large populations[END_REF]. Therefore, although the requirement of a 5.1. RESOURCE UPTAKE AND THE EVOLUTION OF MODERATELY EFFICIENT ENZYME stable, correctly folding protein may sometimes slow down the evolutionary process, it is rather unlikely that stability explains the distribution of enzyme kinetic parameters albeit marginally.

Enzyme kinetics evolution has often been considered theoretically through the lens of flux control [START_REF] Burns | Control analysis of metabolic systems[END_REF][START_REF] Clark | Mutation-selection balance and metabolic control theory[END_REF][START_REF] Fell | Metabolic control analysis: a survey of its theoretical and experimental development[END_REF][START_REF] Kacser | The control of flux[END_REF][START_REF] Yi | Adaptive Landscapes in the Age of Synthetic Biology[END_REF]. Indeed, the control of the flux in a metabolic pathway is shared between all enzymes, in what is known as the summation theorem [START_REF] Kacser | The control of flux[END_REF][START_REF] Heinrich | A linear steady-state treatment of enzymatic chains. General properties, control and effector strength[END_REF]. Thence, because the sum of control coefficients must equal 1 within a pathway, if all enzymes have similar kinetic parameters, none of them exerts a strong influence [START_REF] Dean | A molecular investigation of genotype by environment interactions[END_REF]. But if one enzyme departs from this trend and becomes inefficient, it exerts a strong control at the expense of others [START_REF] Dykhuizen | Enzyme activity and fitness: Evolution in solution[END_REF]. This leads to diminishing-returns epistasis in which the fitness landscape flattens because, as an enzyme becomes more efficient, subsequent mutations have smaller effects [START_REF] Kacser | The control of flux[END_REF][START_REF] Dykhuizen | Metabolic flux and fitness[END_REF][START_REF] Tokuriki | Diminishing returns and tradeoffs constrain the laboratory optimization of an enzyme[END_REF], a finding that has since received empirical confirmation [START_REF] Fell | Metabolic control analysis: a survey of its theoretical and experimental development[END_REF][START_REF] Dean | A molecular investigation of genotype by environment interactions[END_REF][START_REF] Lunzer | The biochemical architecture of an ancient adaptive landscape[END_REF][START_REF] Yi | Adaptive Landscapes in the Age of Synthetic Biology[END_REF][START_REF] Chou | Mapping the Fitness Landscape of Gene Expression Uncovers the Cause of Antagonism and Sign Epistasis between Adaptive Mutations[END_REF]. [START_REF] Bibliography Hartl | Limits of adaptation: the evolution of selective neutrality[END_REF] and [START_REF] Dean | Fitness as a function of -galactosidase activity in Escherichia coli[END_REF] have considered such a fitness landscape under a population genetics framework to conclude that enzymes may quickly reach a fitness plateau and evolve on nearly neutral landscapes (Ohta, 1992). Nonetheless, these studies fall short of explaining why inefficient enzymes having stronger control do not evolve higher activities [START_REF] Yi | Adaptive Landscapes in the Age of Synthetic Biology[END_REF]. In these models as in most, an enzyme's efficiency is captured by its activity, generally represented by a composite of k cat , K M and enzyme concentration [START_REF] Bibliography Hartl | Limits of adaptation: the evolution of selective neutrality[END_REF][START_REF] Clark | Mutation-selection balance and metabolic control theory[END_REF][START_REF] Chou | Mapping the Fitness Landscape of Gene Expression Uncovers the Cause of Antagonism and Sign Epistasis between Adaptive Mutations[END_REF][START_REF] Kaltenbach | Dynamics and constraints of enzyme evolution[END_REF], such that the distinct evolutionary dynamics of these parameters, together with an enzyme's concentration, is ignored. This reduction of an enzyme's dimensionality goes against the empirical observation that each dimension may have a differential impact on fitness in the context of antibiotic resistance [START_REF] Walkiewicz | Small changes in enzyme function can lead to surprisingly large fitness effects during adaptive evolution of antibiotic resistance[END_REF][START_REF] Stiffler | Evolvability as a Function of Purifying Selection in TEM-1 -Lactamase[END_REF][START_REF] Rodrigues | Biophysical principles predict fitness landscapes of drug resistance[END_REF] and that each is thus necessary to predict evolutionary outcomes [START_REF] Walkiewicz | Small changes in enzyme function can lead to surprisingly large fitness effects during adaptive evolution of antibiotic resistance[END_REF].

Perhaps more importantly, [START_REF] Heinrich | Mathematical analysis of enzymic reaction systems using optimization principles[END_REF] and [START_REF] Schuster | Is maximization of molar yield in metabolic networks favoured by evolution?[END_REF] have pointed out that these modelling frameworks assume a constant value for either or both concentrations of the first substrate and of the final product [START_REF] Orth | What is flux balance analysis?[END_REF], whereas Evolution should instead maximize the amount of final products generated. [START_REF] Klipp | Evolutionary Optimization of Enzyme Kinetic Parameters; Effect of Constraints[END_REF] found that the aforementioned 5.1. RESOURCE UPTAKE AND THE EVOLUTION OF MODERATELY EFFICIENT ENZYME concentrations indeed have a major influence on optimal rate constants under certain assumptions. Likewise, nutrient uptake is most often not considered explicitly in existing models of enzyme evolution, while it is obviously critical in the competition for resources [START_REF] Dykhuizen | Predicted fitness changes along an environmental gradient[END_REF].

Nutrient uptake occurs when metabolites move inwards across cell membranes; it may rely on membrane permeability only (passive diffusion) or involve channels and carrier proteins, be they transporters or cotransporters (Stein, 1986a). Here we build a model that explicitly includes passive (PD hereafter) or facilitated diffusion (FD) followed by an unbranched metabolic pathway to study how resource availability coupled to transport modulates the evolution of enzymes along the pathway. In ecological scenarios where individuals compete for resources, Natural Selection should favour genotypes that maximize the net intake of molecules and their transformation, which are linked under both PD and FD.

Based on this premise, we confirm that the evolution of enzyme kinetic parameters k f and k cat takes place on cliff-like fitness landscapes where a fitness plateau covers a wide part of the relevant parameter space. Kinetic parameters have co-dependent but distinct evolutionary dynamics -and thus distinct sensitivities to certain parameters of the model -such that the shape of the plateau can be modulated by changing parameters of the model within realistic ranges. We show that this fitness landscape depends on features of transporters that initiate a metabolic pathway, along with parameters that vary among enzymes within a pathway, like the tolerance to high concentrations of intermediate metabolites or the reversibility of reactions.

We further demonstrate, using a simple population genetics model, that the evolutionarily expected features of an enzyme should be predictable, even though enzymes evolve near-neutrally on the fitness plateau. This is because the model includes slightly biased mutations that tend to produce a majority of less efficient enzymes. We thus postulate that the wide variety of enzyme features reported might be explained in a large part by differences in the shape of their fitness landscapes. While testing this hypothesis will require extensive information about individual enzymes, we made a small step in this direction, showing that enzymes involved in metabolic pathways with different types of transporters exhibit differences that our model qualitatively predicts.
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Results

Passive diffusion is generally inadequate to sustain cell metabolism

In the version of our model in which intake relies on passive diffusion (PD), the net uptake of a nutrient is a direct outcome of its concentration gradient, and therefore of how efficiently the first enzyme catalyses its transformation inside the cell. Assuming that fitness is proportional to the flux of product of this reaction, we find that the fitness landscape has a cliff-like shape with fitness increasing steeply as parameters k cat and k f increase (see Supplementary materials, section Text S1). The precise shape will not be commented in detail here, for it is very similar to landscapes obtained under facilitated diffusion (FD, treated in the rest of this manuscript).

Importantly, our results indicate that PD can only sustain a small part of the metabolism of most living cells given cell permeabilities reported in the literature [START_REF] Wood | Glucose permeability of lipid bilayer membranes[END_REF][START_REF] Milo | BioNumbers-the database of key numbers in molecular and cell biology[END_REF], suggesting that this process may not be a determining factor in the evolution of enzymes along metabolic pathways. Indeed, even extremely efficient enzymes, harbouring values of k cat and k cat /K M close to their physical limits, yield low inward fluxes that approach 10 -2 mM.s -1

when considering a spherical cell with a diameter D = 1µm. To get a sense of how low these fluxes are, we calculated the maximum cell size they can theoretically sustain. Considering that basal metabolic demands are approximately proportional to the cell volume and using estimates by [START_REF] Lynch | The bioenergetic costs of a gene[END_REF] for this relationship, we predicted the maximum size enabled by sugar passive diffusion (see 5.1.5 -Materials and Methods). Setting a (conservatively high) medium concentration in glucose [G] = 1M yields a theoretical volume ceiling V est = 0.84µm 3 .

Nearly all eukaryotes, and most prokaryotes are de facto larger than this threshold [START_REF] Heim | Hierarchical complexity and the size limits of life[END_REF], which might help explain the apparent ubiquity of FD. While this demonstration hinges on numbers for sugar uptake, which may arguably be the task requiring the highest flux, PD may be limiting for many other metabolites [START_REF] Boer | Growth-limiting intracellular metabolites in yeast growing under diverse nutrient limitations[END_REF], depending on their permeability and availability in the environment: even for very high amino-acids concentrations that may only be met in multicellular organisms [START_REF] Schmidt | Plasma concentrations and intakes of amino acids in male meat-eaters, fish-eaters, vegetarians BIBLIOGRAPHY and vegans: a cross-sectional analysis in the EPIC-Oxford cohort[END_REF] and assuming the highest observed permeability for such metabolites [START_REF] Chakrabarti | Permeability of membranes to amino acids and modified amino acids: Mechanisms involved in translocation[END_REF], these levels are orders of magnitude lower than with FD (see Supplementary material -section Text S1 for PD results). [START_REF] Zampieri | Regulatory mechanisms underlying coordination of amino acid and glucose catabolism in Escherichia coli[END_REF]. We also set the transport saturation ratio [S out ]/K T to 10 such that the FD process approaches saturation, and relatively high transporter affinity K T = 50µM , also in line with estimates for nucleosides [START_REF] Griffith | Nucleoside and nucleobase transport systems of mammalian cells[END_REF][START_REF] Xie | Purification and properties of the Escherichia coli nucleoside transporter NupG, a paradigm for a major facilitator transporter sub-family[END_REF]. Other parameter values include k r = 10 3 s -1 and [E tot ] = 1mM .
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The color gradient indicates the absolute and normalized (with a maximum flux of 1) values of equilibrium flux.

General shape of the fitness landscape under facilitated diffusion

For most metabolites, FD relies on the specific binding of the substrate to transmembrane carrier proteins (transporters hereafter), followed by its translocation to the other side of the membrane [START_REF] Danielli | Morphological and molecular aspects of active transport[END_REF][START_REF] Kotyk | Mobility of the free and of the loaded monosaccharide carrier in Saccharomyces cerevisiae[END_REF]Stein, 1986b). Our model builds on [START_REF] Kuile | The kinetics of facilitated diffusion followed by enzymatic conversion of the substrate[END_REF]'s approach to model FD, considering the simplifying assumption of symmetric transport. Within this framework, FD operates on the concentration gradient [START_REF] Bosdriesz | Low affinity uniporter carrier proteins can increase net substrate uptake rate by reducing efflux[END_REF] and is susceptible to saturation, represented by constant K T -similar to K M in the Michaelis-Menten equation -and an interaction constant α (see Methods for details). We assessed how this saturation phenomenon influences the selection pressure acting on forward enzyme kinetic parameters (k f and k cat ) under various scenarios.

In order to depict a fitness landscape representative of an average enzyme, we first consider a situation where transporters induce a moderately low rate V T m and saturate with a relatively high affinity -corresponding to a low K T (FIG. 5.1). In this situation, the inward flux at steadystate (which, as argued in the introduction, can be considered representative of fitness) forms a plateau when the upstream enzyme in the metabolic pathway has high k cat and k f . This low
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equilibrium flux elasticity coincides with the saturation theory (Wright, 1934;[START_REF] Kacser | The control of flux[END_REF][START_REF] Bibliography Hartl | Limits of adaptation: the evolution of selective neutrality[END_REF][START_REF] Dykhuizen | Metabolic flux and fitness[END_REF][START_REF] Dean | A molecular investigation of genotype by environment interactions[END_REF][START_REF] Yi | Adaptive Landscapes in the Age of Synthetic Biology[END_REF], especially with its version incorporating facilitated diffusion [START_REF] Kuile | The kinetics of facilitated diffusion followed by enzymatic conversion of the substrate[END_REF][START_REF] Dean | A molecular investigation of genotype by environment interactions[END_REF]. The flux plateau is delineated by parallel isoclines (solid and interrupted lines in FIG. 5.1) oriented in the bottom-right direction of the landscape for intermediate values of k cat and k f , such that decreasing k f by one order of magnitude can be compensated by a similar increase in k cat . While this mutual dependency holds even for high k f values as long as k cat is not critically low (i.e. when k cat > 10 -3 ), it stops when k cat ≥ 10 3 , where increasing k cat no longer improves fitness. Besides, the influence of k cat and k f is not strictly equivalent, since the increase in flux is more gradual in response to k f . Furthermore, and contrary to the textbook picture whereby most biological reactions are not limited by diffusion at all [START_REF] Bar-Even | The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters[END_REF][START_REF] Sweetlove | The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation[END_REF], increasing an enzyme's association rate k f -be it through its diffusivity or its binding rate -may still enhance the equilibrium flux when diffusion is substantially faster than catalysis.

Properties of facilitated diffusion modulate the landscape

To explore the effect of FD kinetics on the evolution of enzymes in the metabolic pathway, we studied the influence of K T -the affinity of the transporter for the substrate -and V T m -the maximum transport rate -still assuming that the substrate is close to saturation ([S out ]/K T = 10).

We find that increasing the transport flux V T m exerts a positive selection pressure on kinetic parameters for the upstream enzyme (i.e. for increasing k cat and k f ). The plateau is shifted accordingly (see FIG. 5.2-A), towards the top-right corner of the landscape, at a distance that corresponds to the magnitude of the change in V T m . Increasing the affinity of the transporter (i.e.

decreasing K T ), however, selects for higher k f (the isoclines are displaced to the right and the fold change is similar to that of K T ) but has no other visible influence on k cat than increasing its codependency with k f , a result that holds regardless of the flux at saturation V T m (notice that we only considered high V T m s, larger than in the average case, because these cases are more likely to be under directional selection).

This specific effect on the affinity of the upstream enzyme is likely due to a competition between the transporter -which can transport the substrate in both directions -and the enzyme, which harvests the substrate at a rate that depends on the dissociation constant K D = k r /k f . It should be noted that nutrients under lower demandse.g. amino acids -are generally less concentrated
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in the environment, often coinciding with a higher affinity of their transporter. Therefore, the possible combinations of flux and affinity likely occupy a restricted space of possibilities where flux and affinity are negatively linked [START_REF] Gudelj | An integrative approach to understanding microbial diversity: from intracellular mechanisms to community structure[END_REF][START_REF] Bosdriesz | Low affinity uniporter carrier proteins can increase net substrate uptake rate by reducing efflux[END_REF], which as can be seen in SM Figs. S3-A,E,I results in landscapes that mainly differ by the minimum value of k cat on the plateau. In FIG. 5.2-A, we have considered ranges of empirical estimates for sugars (high flux with low to moderate affinity) (Stein, 1986b;[START_REF] Maier | Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters[END_REF], nucleosides [START_REF] Griffith | Nucleoside and nucleobase transport systems of mammalian cells[END_REF] and amino acids (Stein, 1986b;[START_REF] Zampieri | Regulatory mechanisms underlying coordination of amino acid and glucose catabolism in Escherichia coli[END_REF] (weak to moderate flux with moderate to high affinity), which indeed mainly correspond to these combinations. 

Enzymes differ among metabolic pathways

We then superimposed empirical estimates of kinetic parameters over our theoretical fitness landscapes, after substituting parameter k f for its usual empirical counterpart, k cat /K M . Because

k cat /K M = k f k cat /(k r + k cat )
, this approximation only holds when k cat ≫ k r . Representing the fitness landscape in this parameter space sets an inaccessible area in the bottomright part of the landscapes where k f would exceed the diffusion limit (grey area on FIG. 5.3). For purposes of inclusiveness, we used k r = 10 2 s -1 by default -noting that this limit would be displaced upwards for larger k r (and downwards otherwise).

We otherwise used sets of parameters that correspond to typical features of sugar and amino those metabolising amino-acids and nucleotides. Our superimposition with the predicted fitness plateaus in FIG. 5.3 suggests that there may indeed be an explainable difference between enzymes contributing to carbohydrate processing (in red) and to that of other primary metabolites (in black, e.g. amino acids). We acknowledge that this result implicitly suggests that enzymes relatively similar for sugar-like transporters, as reported in SM -Fig. S6).

within a pathway have evolved on a common fitness landscape, spreading neutrally onto the fitness plateau. This is by no means our interpretation, as this subset of the full dataset includes enzymes that differ in many other ways that, as we will see, make each enzyme evolve on its own fitness landscape and thereby potentially explain a large part of this observed variance.

Downstream enzymes also evolve on cliff-like fitness landscapes

One of the factors that makes enzymes different along a pathway is their position, such that the fitness landscape in FIG. 5.1 may only hold for the most upstream enzyme in a pathway. Indeed, because the flux of the first product in a pathway increases with the substrate gradient across the cell membrane, the upstream enzyme of a given metabolic pathway is selected for efficiency as described above. In contrast, this selection pressure does not apply directly downstream; at steady-state, even inefficient enzymes can in principle process newly formed substrate molecules at an elevated rate, assuming that the concentration of the substrate is allowed to reach any steadystate value. This is an obviously unreasonable assumption, since a part of this standing substrate should be lost by outward diffusion or degradation [START_REF] Jones | Efflux systems in bacteria and their metabolic engineering applications[END_REF][START_REF] Bosdriesz | Low affinity uniporter carrier proteins can increase net substrate uptake rate by reducing efflux[END_REF].
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The loss of fitness may therefore result from the loss of metabolites in a way that can be modelled by a constant degradation rate η d [START_REF] Chou | Mapping the Fitness Landscape of Gene Expression Uncovers the Cause of Antagonism and Sign Epistasis between Adaptive Mutations[END_REF] (assuming that the external environment is infinite, the degradation term can as well represent an efflux). Highly concentrated metabolites may also be involved in widespread non-specific (Keller et al., 2015) or promiscuous interactions (Khersonsky et al., 2010;[START_REF] Schäuble | Effect of substrate competition in kinetic models of metabolic networks[END_REF][START_REF] Peracchi | The Limits of Enzyme Specificity and the Evolution of Metabolism[END_REF]) that may interfere with other cellular processes; this is well captured by the linear cost as non-specific interactions should follow Michaelis-Menten kinetics albeit with much lower affinities, hence following an approximately linear relationship up to very high cellular concentrations (see Materials and Methods for more details). However for some reactions the accumulation of metabolites may result in the production of toxic compounds [START_REF] Lilja | Metabolite toxicity determines the pace of molecular evolution within microbial populations[END_REF][START_REF] Niehaus | Enzyme promiscuity, metabolite damage, and metabolite damage control systems of the tricarboxylic acid cycle[END_REF], hence triggering toxicity best modelled as a non-linear fitness cost [START_REF] Clark | Mutation-selection balance and metabolic control theory[END_REF][START_REF] Wright | The Evolution of Control and Distribution of Adaptive Mutations in a Metabolic Pathway[END_REF].

We first consider a "perfect", highly concentrated upstream enzyme (

k f = 10 10 M -1 s -1 , k cat = 10 6 s -1 , k r = 10 3 s -1 , [E tot ] = 10 -3 M
) and focus on the second enzyme in the pathway, showing that it evolves on a fitness landscape that has a similar shape than described above, still hitting The shape of the negative relationship between metabolite concentration and fitness can be important (Figs S7-S9 in SM), as it can make the fitness landscape of an enzyme dependent of the overall flux of the metabolic pathway, and therefore on other enzymes in the pathway. Indeed, low general fluxes (as modelled by an inefficient first enzyme in Figs. S7-S8) make the metabolite concentration below its toxicity threshold, therefore making organisms tolerant to enzymes with lower k f and k cat . Taken together, these results show that the precise epistatic relationship between enzymes in a pathway will depend on the exact cost function applied, with a linear cost generating epistasis for k cat only and a non-linear cost possibly impacting both k f and k cat .
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The reversibility of reactions also matters

Reversibility is an intrinsic feature of chemical reactions that cannot be directly overcome by Evolution (Haldane, 1930;[START_REF] Cornish-Bowden | Chapter 2 -Introduction to enzyme kinetics[END_REF]. A highly reversible reaction corresponds to a large intrinsic equilibrium constant K eq = [S] eq /[P ] eq [START_REF] Klipp | Evolutionary Optimization of Enzyme Kinetic Parameters; Effect of Constraints[END_REF], and results in higher backward than forward rates in the following chemical equation:

E + S kf --⇀ ↽-- kr ES kcat ---⇀ ↽ --- kinh E + P 1 , (5.3)
where k inh represents the rate at which enzyme and product combine back. Such a (reversible) reaction could in principle influence the selective pressure acting on the following enzyme in the pathway, for both enzymes compete to process the same metabolite P 1 . We thus quantified how reversibility affects the evolution of an enzyme downstream (SM Figs S10 andS11).

The equilibrium constant K eq has a similar (non-linear) impact on the fitness landscape of the second enzyme to that of the degradation rate, with a highly reversible upstream enzyme exerting a selection pressure downstream towards an increase of kinetic parameters (SM Fig. S10-A).

Indeed, increasing K eq moves the fitness plateau toward the upper-right corner in the (k f , k cat ) parameter space, hence selecting for more efficient downstream enzymes. The effect appears linear, except for very low values of K eq where metabolite accumulation exerts a dominant role in shaping the fitness landscape (through the degradation rate η d , set to a low residual value). Therefore, the reversibility of the upstream reaction appears like a critical parameter for the evolution of an enzyme.

Evolutionary dynamics of enzyme kinetic parameters

How much variance in evolutionary outcomes these differences in fitness landscapes may explain is contingent on the interplay between selection, mutation and drift. Small differences in an isocline position should indeed be of little importance if populations perform random walks on the fitness plateau, for instance. To approach how populations evolve on our mathematically derived fitness landscapes, we built a simple population genetics model in which absolute fitness is directly proportional to the flux arising from the first enzyme at steady-state -which itself equals the net inward flux of nutrients. Two different levels of metabolic demands were considered, corresponding to parameter values of amino acids/nucleosides and sugar transporters (panels (A) effective population sizes ranging from 10 2 to 10 5 (different colors) and two strengths of the mutational bias (the absence of mutational bias was also considered, see SM). Each of 30 independent simulations for each scenario is represented a dot in the "empirical" parameter space (k cat , k cat /K M ), but only k cat and k f were susceptible to evolve. k r is set to 10 3 s -1 such that the grey part of the parameter space is inaccessible to enzymes that would otherwise exceed the diffusion limit.
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and (I) in SM Fig. S3). In this instance of the model, only k cat and k f were susceptible to evolve through mutations. Mutational effects on log 10 k cat and log 10 k f were drawn from independent normal distributions with mean b ≤ 0, and the absolute value of b setting the intensity of a mutational bias towards less efficient parameter values, as has been widely documented in many contexts [START_REF] Eyre-Walker | The distribution of fitness effects of new mutations[END_REF][START_REF] Serohijos | Protein biophysics explains why highly abundant proteins evolve slowly[END_REF][START_REF] Heckmann | Modeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates[END_REF]. The standard deviation of the distribution of mutational effects equals 0.3 such that most mutations explore the neighbouring parameter space, seldom changing a parameter by more than one order of magnitude (one log 10 unit) in compliance with empirical estimates [START_REF] Carlin | Kinetic Characterization of 100 Glycoside Hydrolase Mutants Enables the Discovery of Structural Features Correlated with Kinetic Constants[END_REF]. Since the relation between kinetic parameters may be constrainede.g. due to shared properties of the energy profile of a reaction -we tested the influence of negative and positive relationships using bivariate normal distributions, with three different values of ρ (see Materials and Methods for details).

In the absence of mutational bias (b = 0), simulated enzymes spread over the fitness plateau, as expected (Fig. S16-A for low flux, Fig. S17A otherwise). The onset of the plateau depends
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on the strength of drift and hence derive from the effective population size N e , following the classical expectation that selection becomes inefficient when N e × s < 1 [START_REF] Wright | Evolution in Mendelian Populations[END_REF][START_REF] Bibliography Kimura | Evolutionary Rate at the Molecular Level[END_REF]. Introducing a mutational bias that makes enzyme kinetics less efficient on average has a strong effect on both k cat and k f , preventing simulated enzymes from improving far above the drift barrier (FIG. 5.5-A for low flux, FIG. 5.5-B otherwise). Even weak biases (b = -0.1) lead to enzymes evolving in the vicinity of the isocline where N e × s ≈ 1. Increasing the strength of this bias to 0.2 only slightly decreases the population variance around this expectation. Finally, mutational correlations do not impact much the distribution of evolutionary outcomes (SM Fig. S18).

Our results suggest a strong effect of the effective population size on enzyme evolution, such that species with N e above 10 5 [START_REF] Bobay | Factors driving effective population size and pan-genome evolution in bacteria[END_REF], most unicellular organisms) should express extremely efficient enzymes. This appears to not be the case, as for instance Eukaryotes and Prokaryotes display similar enzymes despite large differences in effective population sizes [START_REF] Bar-Even | The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters[END_REF]. As we will later discuss, this conundrum might resolve when considering the smaller size of organisms forming large populations, making them more sensitive to noise in gene expression and favouring higher concentrations. Notwithstanding this issue, the prediction of enzymes evolving a predictable set of kinetic parameters strongly suggests that a large part of the broad variance in enzyme features is due to differences in the selective context experienced by each, thereupon requiring further investigation on the dependency of the position of the fitness plateau to parameters of our model.

The joint evolution of enzyme concentrations and kinetic parameters

Hitherto, we have considered enzymes to be highly concentrated, an assumption that we now relax since it is an important component of the presumed kinetic activity [START_REF] Koshland | The Application and Usefulness of the Ratio kcat/KM[END_REF].

Predictably, increasing the concentration of the first or second enzyme in a pathway releases the selection on their kinetic parameters [START_REF] Noor | The Protein Cost of Metabolic Fluxes: Prediction from Enzymatic Rate Laws and Cost Minimization[END_REF], producing larger fitness plateaus as an enzyme concentration increases (see SM -Figs S12-B and S13-B for this influence in different contexts). Due to the compensatory effects between concentration and activity, we anticipate that the joint evolutionary dynamics of the concentration and kinetic parameters should yield a negative correlation between them, as reported by [START_REF] Davidi | Global characterization of in vivo enzyme catalytic rates and their correspondence to in vitro k cat measurements[END_REF] and [START_REF] Davidi | A Bird's-Eye View of Enzyme Evolution: Chemical, Physicochemical, and Physiological Considerations[END_REF].

Despite their common role on reaction efficiency, enzyme concentration expectedly responds to very different selection pressures than kinetic parameters, as increased gene expression levels come with costs [START_REF] Wagner | Energy Constraints on the Evolution of Gene Expression[END_REF][START_REF] Lang | The cost of gene expression underlies a fitness trade-off in yeast[END_REF]Scott et al., 2010b;[START_REF] Noor | The Protein Cost of Metabolic Fluxes: Prediction from Enzymatic Rate Laws and Cost Minimization[END_REF][START_REF] Kafri | The Cost of Protein Production[END_REF]. Indeed, producing extra proteins requires both energy and matter [START_REF] Novick | Enzyme induction as an all-or-none phenomenon[END_REF][START_REF] Stoebel | The Cost of Expression of Escherichia coli lac Operon Proteins Is in the Process, Not in the Products[END_REF][START_REF] Wagner | Energy Constraints on the Evolution of Gene Expression[END_REF][START_REF] Lynch | The bioenergetic costs of a gene[END_REF] and may impede the efficiency of physical processes that rely on an optimal intermediate content [START_REF] Dong | Gratuitous overexpression of genes in Escherichia coli leads to growth inhibition and ribosome destruction[END_REF][START_REF] Dill | Physical limits of cells and proteomes[END_REF][START_REF] Andrews | Effects of surfaces and macromolecular crowding on bimolecular reaction rates[END_REF]. We designed a new instance of our population genetics model to study the tangled evolution of kinetic constants and enzyme concentration, introducing two of these costs: (1) the cost of producing proteins c, considered to be proportional to concentration [START_REF] Wagner | Energy Constraints on the Evolution of Gene Expression[END_REF][START_REF] Chou | Mapping the Fitness Landscape of Gene Expression Uncovers the Cause of Antagonism and Sign Epistasis between Adaptive Mutations[END_REF][START_REF] Lynch | The bioenergetic costs of a gene[END_REF], and (2) the exponential cost of an increase in macromolecular crowding, which hinders diffusion and thus slows down reactions [START_REF] Dill | Physical limits of cells and proteomes[END_REF][START_REF] Schavemaker | How Important Is Protein Diffusion in Prokaryotes?[END_REF][START_REF] Andrews | Effects of surfaces and macromolecular crowding on bimolecular reaction rates[END_REF] (see SM Fig. S15 for the resulting fitness landscapes of enzyme concentration).

The two types of costs result in a different shape of the fitness landscape, with the noticeable difference that evolutionarily expected concentration depends on N e when the cost of production is considered (SM -Fig. S19) but not with crowding effects (SM -Fig. S20). With a combination of the two costs, enzyme concentrations decrease with N e and production costs, resulting in the evolution of higher kinetic constants (FIG. 5.6). This is because at higher effective sizes, direct costs of protein production are large enough to incur effective selection for lower protein expression. This is no longer the case when N e decreases, such that the major force driving the optimization
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of enzyme concentration becomes that opposing macromolecular crowding, which is less sensitive

to N e (as shown in Fig. S19 in SM). The balance between these two selective forces, and the dependency to N e , obviously depend on the relative importance of these costs (SM -Fig. S20), itself depending on many parameters (protein length, molecular weight, etc.) that should only make enzymes marginally different within a given species (when their activity evolves on similar fitness landscapes).

Discussion

Most enzymes have been considered to be only moderately efficient [START_REF] Bar-Even | The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters[END_REF], if not sloppy [START_REF] Bar-Even | The Moderately Efficient Enzyme: Futile Encounters and Enzyme Floppiness[END_REF]. This claim was put into perspective by [START_REF] Newton | Enzyme evolution: innovation is easy, optimization is complicated[END_REF] who argued that the link between fitness and enzyme efficiencies is complex and may be partly enzyme dependent, such that all enzymes may not evolve on a common fitness landscape. Through this work, we have developed a model where enzyme efficiencies are mechanistically linked to fitness through the impact of nutrient gradients on the production of metabolites. Our results emphasize that an enzyme's fitness landscape -and the resulting mutation-selection-drift balance -may indeed be largely context dependent, possibly explaining a large part of the extreme observed variance in enzyme features.

At first sight, all enzymes evolve on fitness landscapes that have the same general shape, with a fitness plateau surrounded by a steep slope. While this shape is usual in models of enzyme evolution [START_REF] Bibliography Hartl | Limits of adaptation: the evolution of selective neutrality[END_REF][START_REF] Kaltenbach | Dynamics and constraints of enzyme evolution[END_REF][START_REF] Yi | Adaptive Landscapes in the Age of Synthetic Biology[END_REF], in our model the landscape is drawn in the parameter space formed by the two forward kinetic parameters k cat and k f , instead of a composite "efficiency" whose relevance is questionable [START_REF] Eisenthal | Catalytic efficiency and k cat /K M : a useful comparator?[END_REF][START_REF] Koshland | The Application and Usefulness of the Ratio kcat/KM[END_REF].

Our model allows to predict the precise position of the fitness plateau in various contexts, showing that model parameters may have a selective impact on k f , k cat , or both, thereby confirming the relevance of considering their distinct evolutionary dynamics.

We have shown that the exact position of the plateau is important through a population genetics model including mutational biases that produce less efficient enzymes at a slightly higher frequency. Despite their small effect, these biases are sufficient to have a significant impact on the evolutionary dynamics occurring on the fitness plateau, preventing enzymes to explore the parameter space far away from an isocline whose precise value can be predicted. Because the mutation-selection-drift balance occupies a narrow part of the landscape, this makes the
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evolution of an enzyme, in principle, highly predictable. Likewise, we anticipate that differences between enzymes should largely be explained by differences in the shapes of their individual fitness landscapes.

Overall, the selective pressure acting on an enzyme results from an interplay between several biochemical factors. We have effectively found that the shape of the fitness landscape is first governed by features of the transporter initiating a pathway, especially the maximum flux they can sustain. Using parameters that correspond to empirical estimates for sugars and amino acids/nucleosides, we have found that enzymes contributing to subsequent metabolic pathways should be different, with those in the "sugars" pathway being selected for faster kinetics.

While sharing a common transporter, enzymes along a pathway are also subject to a variety of local chemical contexts, making each evolve on its own unique fitness landscape. This could explain, at least in part, the large within-pathway variance of enzyme kinetic parameters. Physical constraints may for instance act differentially on different enzymes, as exemplified by the intrinsic reversibility of a reaction that fuels the selective pressure towards higher efficiency in downstream enzymes. This may contribute to explain the high efficiency of a few enzymes like TIM [START_REF] Williamson | The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver[END_REF][START_REF] Davidi | A Bird's-Eye View of Enzyme Evolution: Chemical, Physicochemical, and Physiological Considerations[END_REF].

One way to compensate for low kinetic constants is to enhance the level of expression of an enzyme, as confirmed by our model -concentration indeed has a strong influence on the fitness landscape of k f and k cat . Nonetheless, concentration and kinetic parameters face very distinct selection regimes: while the latter are both under directional selection, vanishing at high efficiencies, concentration is under stabilizing selection -owing to a combination between its positive impact on the flux and the adverse costs to high expression -as already pinpointed by [START_REF] Chou | Mapping the Fitness Landscape of Gene Expression Uncovers the Cause of Antagonism and Sign Epistasis between Adaptive Mutations[END_REF]. Their joint evolution is complex because the position of the concentration optimum depends on an enzyme's kinetic constants, whose fitness landscape itself depends on concentration. This results in a slightly increased variance in enzyme efficiencies compared to simulations with fixed concentrations, along with a complex relationship with genetic drift, because small populations tend to tolerate higher enzyme concentrations and, therefore, evolve less efficient enzymes.

It should be noted that our model does not consider another selection pressure on enzyme concentrations that arises from noise in gene expression, as argued by Wang et al. (2011). Indeed, low expression results in detrimental noise that should be avoided by pushing enzyme concen-
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trations towards higher values in small organisms like Prokaryotes (see SM section Text S6 for an estimate of this effect). This could result in a different relationship between N e and enzyme efficiencies than considered here, possibly explaining the confusing observation that species with larger populations (and smaller sizes) do not express markedly more efficient catalysts. Furthermore, an enzyme's effective concentration can also increase through compartmentalization [START_REF] Ovádi | On the origin of intracellular compartmentation and organized metabolic systems[END_REF][START_REF] Diekmann | Evolution of intracellular compartmentalization[END_REF][START_REF] Cornejo | Compartmentalization and organelle formation in bacteria[END_REF] and substrate channeling [START_REF] Welch | Metabolic channeling versus free diffusion: transitiontime analysis[END_REF][START_REF] Huang | Channeling of Substrates and Intermediates in Enzyme-Catalyzed Reactions[END_REF][START_REF] Sweetlove | The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation[END_REF], within the limits imposed by noise, and modify the selective pressure acting on kinetic parameters.

This illustrates that rather than making precise predictions, our study aims at making the strong claim that selection acting on enzyme features is important for their diversity, possibly largely overcoming the diversity arising from neutral processes. If this is indeed the case, trends in enzyme evolution can be predicted -as it was shown empirically in the context of antibiotic resistance [START_REF] Walkiewicz | Small changes in enzyme function can lead to surprisingly large fitness effects during adaptive evolution of antibiotic resistance[END_REF] -and further improvements of this model should allow one to predict the expected features of individual enzymes. Such improvements are made easier by the use of a mechanistic framework, where fitness arises as enzymatic efficiency helps ingesting nutrients and win the competition for resources. This framework could even be enriched by other dimensions relevant to the genotype-phenotype-fitness map [START_REF] Bershtein | Bridging the physical scales in evolutionary biology: from protein sequence space to fitness of organisms and populations[END_REF][START_REF] Echave | Beyond Stability Constraints: A Biophysical Model of Enzyme Evolution with Selection on Stability and Activity[END_REF][START_REF] Kinsler | Fitness variation across subtle environmental perturbations reveals local modularity and global pleiotropy of adaptation[END_REF].

Unfortunately, mechanistic does not mean free of a definition of fitness, as we have here assumed that the latter is proportional to metabolic flux, hence considering each flux in isolation.

Fitness instead results from a wide range of metabolic pathways that combine together and should all be competitive to certain degrees. How global epistasis builds up [START_REF] Weinreich | Should evolutionary geneticists worry about higher-order epistasis?[END_REF][START_REF] Otwinowski | Inferring the shape of global epistasis[END_REF][START_REF] Reddy | Global epistasis emerges from a generic model of a complex trait[END_REF], and genetic drift acts in this context, is far from obvious (Iwasa et al., 2004a;Weinreich et al., 2005a;[START_REF] Weissman | The rate at which asexual populations cross fitness valleys[END_REF]. But this should not impact much how enzymes evolve in old, overall efficient pathways, as any impediment in efficiency should have a relatively independent effect on fitness in this context, as captured by our model. Understanding these complex interactions between pathways would nevertheless be crucial to understand how metabolic pathways arose and improved, likely from a highly inefficient state during early steps in the evolution of life on Earth [START_REF] Kacser | Evolution of catalytic proteins[END_REF][START_REF] Schmidt | Metabolites: a helping hand for pathway evolution?[END_REF][START_REF] Heckmann | Modeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates[END_REF].

CHAPTER 5. A NEW PERSPECTIVE ON ENZYME EVOLUTION
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Materials and Methods

Quantifying the maximum size for cells using passive diffusion

If a cell is to be viable, it has, at least, to uptake enough glucose to compensate for basal metabolism -metabolism that allows to maintain the same cell size for non-actively growing cells [START_REF] Lynch | The bioenergetic costs of a gene[END_REF] -leading to the following equation: φ P D = C M , with φ P D the uptake through passive diffusion and C M the basal metabolism demand. To calculate the maximum size a cell can reach using only passive diffusion, we relied on the formula C M = 0.39V 0.88 (10 9 AT P/hr) estimated in [START_REF] Lynch | The bioenergetic costs of a gene[END_REF]. We also assumed the cell to be of spherical shape, both concentrations -inside and outside the cell -to be constant with the cellular concentration staying so low that it can be overlooked, meaning that the uptake resulting from passive diffusion can merely be written as φ P D = P.[S out ].

SA sphere

V sphere , where SA sphere and V sphere are the surface area and the volume of a sphere, and P represents the cell permeability and was measured to 10 -6 µm -1 [START_REF] Wood | Glucose permeability of lipid bilayer membranes[END_REF] for glucose. Finally, we considered that each glucose yields 30 ATP molecules [START_REF] Rich | The molecular machinery of Keilin's respiratory chain[END_REF].

Flux sustained by the first enzyme

When assessing the flux of product made by the first enzyme in a pathway, both (PD) and (FD) result in similar sets of equations; we focus on FD here (see Text S5 -Mathematical appendix in Supplementary material for a comparison with PD). FD typically relies on the specific binding of substrate molecules -located outside the cell -by transmembrane carrier proteins, followed by their translocation into the cytoplasm [START_REF] Danielli | Morphological and molecular aspects of active transport[END_REF][START_REF] Wilbrandt | THE CONCEPT OF CARRIER TRANSPORT AND ITS COROLLARIES IN PHARMACOLOGY[END_REF][START_REF] Kotyk | Mobility of the free and of the loaded monosaccharide carrier in Saccharomyces cerevisiae[END_REF][START_REF] Bosdriesz | Low affinity uniporter carrier proteins can increase net substrate uptake rate by reducing efflux[END_REF]. This specific process obeys Michaelis Menten-like kinetics when transport is assumed to be symmetric [START_REF] Kotyk | Mobility of the free and of the loaded monosaccharide carrier in Saccharomyces cerevisiae[END_REF], which can be modelled through Briggs-Haldane equations [START_REF] Briggs | A Note on the Kinetics of Enzyme Action[END_REF]Haldane, 1930;Stein, 1986b):

d[S in ] dt = V T m . [S out ] -[S in ] K T + ([S out ] + [S in ]) + α. [Sout][Sin] K T
(5.4)
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with:

                          
V T m : the maximum rate of a given carrier protein;

K T : a constant inversely proportional to the transporter efficiency;

α : the Kotyk interactive constant capturing the disequilibrium between bound and free transporters.

By construction, α cannot exceed 1 Kotyk, 1967 and is close to this upper limit for sugars (e.g. α = 0.91 for glucose [START_REF] Teusink | Intracellular glucose concentration in derepressed yeast cells consuming glucose is high enough to reduce the glucose transport rate by 50%[END_REF], so we set α = 1 by default in this study, maximizing the effect of interaction).

A model including both FD and irreversible substrate conversion by an enzyme therefore corresponds to the following chemical equation:

Sout VT m, KT α Sin + E k f kr ES kcat E + P (5.5)
Using analytical tools (see [START_REF] Kuile | The kinetics of facilitated diffusion followed by enzymatic conversion of the substrate[END_REF] and [START_REF] Bosdriesz | Low affinity uniporter carrier proteins can increase net substrate uptake rate by reducing efflux[END_REF], rederived in Supplementary material -Text S5 Mathematical appendix), the flux can be determined through the following set of equations:

[ES] * = k f [S in ] * k r + k cat + k f [S in ] * .[E tot ] (5.6) v = d[P ] dt = k cat [ES] * (5.7)
where:

[S in ] * = -b + √ b 2 -4ac 2a (5.8)
with:

             a = k f k cat [E tot ](1 + [S out ] K T ) + k f V T m b = k f k cat [E tot ]([S out ] + K T ) + (k cat + k r -k f [S out ])V T m c = -V T m [S out ](k r + k cat )
(5.9)

Multiple enzymes model

In order to study the evolution of downstream enzymes, we considered an unbranched metabolic pathway in which the product formed by the first reaction serves as the substrate for a second

RESOURCE UPTAKE AND THE EVOLUTION OF MODERATELY EFFICIENT ENZYME

reaction whose flux determines fitness. Theoretically, as there is nothing prohibiting increase in product concentrations -for it is not considered reversible at this point -any second enzyme should be able to sustain any metabolic demand. We penalized large increases in cellular concentrations through a degradation process of the product of the first reaction, occurring at rate η d (× this concentration). The chemical reactions occurring after uptake (Michaelis Menten part of Eq.5.5) are described by the following equations:

S in + E 1 k f 1 k r1 E 1 S k cat1 E 1 + P 1
(5.10)

P 1 + E 2 k f 2 k r2 E 2 P 1 k cat2 E 2 + P 2 η d P 1out
(5.11)

Such a system may reach a steady-state at which the cellular concentrations of the substrate S in and of the first product P 1 are constant. At this point, the net instantaneous uptake of substrate equals the instantaneous production of P 1 which, in turn, equals the sum of the instantaneous amount of degraded P 1 and the instantaneous production of P 2 , according to the principle of mass conservation. It yields the following system of equations:

VT m. ([Sout] -[Sin]) KT + ([Sout] + [Sin]) + α. [Sout][S in ] K T = Vm1. [Sin] KM1 + [Sin]
(5.12)

Vm1.

[Sin]

KM1 + [Sin] = Vm2. [P1] KM2 + [P1] + η d .[P1] (5.13)
where appear the traditional Michaelis-Menten kinetic parameters for the (i eth ) reaction:

       V mi = k cati [E toti ] K Mi = k ri + k cati k fi
To test the potential influence of toxicity, we defined the absolute fitness as a function of both the flux and a toxicity factor whose influence is represented through a sigmoid function and reflects the non-linearity nature of toxic effects [START_REF] Clark | Mutation-selection balance and metabolic control theory[END_REF][START_REF] Wright | The Evolution of Control and Distribution of Adaptive Mutations in a Metabolic Pathway[END_REF]: f = φ(1 - [P ] [P ]+T ) In an independent section, we also introduced reversibility through the modification of equation
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(5.10), which becomes:

S in + E 1 k f 1 k r1 E 1 S k cat1 k inh1 E 1 + P 1 (5.14)
Such a phenomenon is described by the more general form of Haldane equation (Haldane, 1930;[START_REF] Cornish-Bowden | Chapter 2 -Introduction to enzyme kinetics[END_REF], which changes the contribution of the first reaction (V m1 .

[S in ] K M 1 +[S in ]
) in both equations (5.12) and (5.13) to:

V m1 + .
[Sin]

K M 1 + + [Sin] + KI [P1] -V m1 -. [P1] K M 1 -+ [P1] + [Sin]/KI
with V m1 + and K M 1 + respectively correponding to the previous V m1 and K M 1 , while:

           V m1 -= k r1 [E tot1 ] K I = k inh1 /k f 1 K M 1 -= K M 1 + /K I
To solve these systems we implemented the Newton method [START_REF] Atkinson | An Introduction to Numerical Analysis[END_REF] aiming to find [S in ] * and [P 1 ] * . We ran the algorithm starting from very low values of concentration (both set to 10 -20 M ) to determine numerically the equilibrium without facing convergence problems. The final flux can then be determined through the "production" part of equation (5.13), i.e. V m2 .

[P 1 ] K M 2 +[P 1 ]
.

Validation of the method and computing of the fitness landscapes

To validate the approach, we compared equilibrium results obtained with Raphson-Newton algorithm to those obtained when simulating the process with Euler explicit schemes for a set of (3x3) kinetic valuesk cat and k f -encompassing three orders of magnitude (see SM -Section Text 5 for further details).

We then drew fitness landscapes after determining the flux -assumed to be to be linearly related to fitness -achieved for enzyme kinetic parameters k cat and k f varying by 10 orders of magnitude, setting k r to 10 3 s -1 -within the range found for several enzymes [START_REF] Klipp | Evolutionary Optimization of Enzyme Kinetic Parameters; Effect of Constraints[END_REF][START_REF] Knowles | Perfection in enzyme catalysis: the energetics of triosephosphate isomerase[END_REF] -unless stated otherwise. Except in the section dedicated to the influence of enzyme concentration, we set the enzyme concentration such that [E tot ] = 1mM , lying nearby the highest observed values [START_REF] Albe | Cellular concentrations of enzymes and their substrates[END_REF][START_REF] Noor | The Protein Cost of Metabolic Fluxes: Prediction from Enzymatic Rate Laws and Cost Minimization[END_REF]. Other parameters are detailed on a case-by-case basis as they may change depending on the goal of each section. To compare
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with the data and visualize results in the experimenter's parameter space, we also determined the flux and plotted simulation results using k cat and kcat K M , also making them vary by 10 orders of magnitude. We divided the parameter space in 100 log-equidistant values (250 for representations with k cat /K M to obtain a cleaner demarcation for the diffusion limit).

Population genetics model

Evolutionary simulations rely on a Wright-Fisher process including the selective effects of mutations displacing enzymes on mathematically-derived fitness landscapes. Two fitness landscapes were considered: weak flux, high affinity (Fig. S3 A of SM) and high flux, low affinity (Fig. S3 I of SM), both with saturated facilitated diffusion ([S out ] = 10K T ) and the following constant parameters: k r = 10 3 s -1 and [E tot ] = 1mM . Mutations occur at a rate µ = 10 -1 /N e following reproduction, with an effect sampled in Gaussian distributions with dispersion (σ = 0.3). The mean effect of a mutation is given by parameter b, hence representing the mutation bias -absent with b = 0, low (b = -0.1) or high (b = -0.2). Kinetic parameters were initiated to the inefficient values of k cat = 10 -3 s -1 and k f = 10 2 M -1 s -1 and k f was limited to values under the diffusion limit -10 10 M -1 s -1 (k cat was also limited to 10 6 s -1 when b = 0 to avoid physical outliers). To analyse simulation outcomes, we picked out the kinetic and fitness values of the most represented genotype when multiple variants were segregating. 30 simulations were ran for each set of parameters. Finally, we verified that evolutionary steady-states were reached and considered it was the case when at least the average fitnesses (over all simulations) of the last three time-steps were not significantly different one from another (SM Figures S5 andS6).

We also simulated the case where mutations between parameters are correlated. We tested both positive and negative mutational relationships through a bivariate Gaussian distribution whose correlation coefficient were set to ρ = -0.8, ρ = -0.5, ρ = +0.5 (see SM Figure 18 for the results with a moderate flux).

Evolution of enzyme concentrations

Finally, we simulated the joint evolution between kinetic parameters and enzyme concentration, repeating the previous procedure with concentration as an evolvable quantity and the fitness function including deleterious effects of extra gene expression (see SM section Text S5 for the effect of each cost considered independently one from another). Mutations affected either levels
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of expression or kinetic constants, with those affecting levels of expression (in log values) being drawn from Gaussian distributions with mean 0 and σ = 0.2 to comply with existing estimates [START_REF] Landry | Genetic Properties Influencing the Evolvability of Gene Expression[END_REF][START_REF] Metzger | Contrasting Frequencies and Effects of cis-and trans-Regulatory Mutations Affecting Gene Expression[END_REF][START_REF] Hodgins-Davis | Empirical measures of mutational effects define neutral models of regulatory evolution in Saccharomyces cerevisiae[END_REF]. Because sugars are directly involved in energy metabolism, we computed these simulations for the case of a high flux which can more readily be linked to the cost of expression.

As explained above, producing extra proteins is costly, both energetically and because it may increase a cell's crowding. The cost of protein production is considered to be proportional to the steady-state enzyme concentration, with a slope c. Empirical estimates suggest that c should be in the range [10 -4 , 10 -3 ] ( [START_REF] Wagner | Energy Constraints on the Evolution of Gene Expression[END_REF][START_REF] Lynch | The bioenergetic costs of a gene[END_REF], such that producing an extra mM of a protein would impede the whole energy budget by one 10000 th to one 1000 th (we also consider c = 10 -5 and 10 -2 in the SM). Accordingly, we calculate the absolute fitness

f = Φ -[E tot ]c,
where Φ is the flux generated by the enzyme.

The influence of crowding was computed by penalizing k f through an effective

k f,act = k f .10 -([Etot]+[M b ])/[2M b ]
, where [M b ] = 2.5.10 -3 M represents the basal protein concentration of a viable cell and also constitutes a scaling factor that complies with Andrews (2020) log-linear influence of crowding or glass transition effects described by [START_REF] Dill | Physical limits of cells and proteomes[END_REF].

SM. RESOURCE UPTAKE AND THE EVOLUTION OF MODERATELY EFFICIENT ENZYME : THE FULL SET OF PARAMETERS INVOLVED IN ENZYME EVOLUTION

SM. Resource uptake and the evolution of moderately efficient enzyme : the full set of parameters involved in enzyme evolution

This chapter was published as the supplementary material to the previous one and can also be found online (https://doi.org/10.1093/molbev/msab132 ).

Fitness landscapes with passive diffusion

Passive diffusion (PD) efficiency is proportional to the surface-to-volume (SA:V) ratio such that smaller cells are more efficient than larger ones. Here we focus on rather small cells (D = 1µm), alike Prokaryotes rather than Eukaryotes, whose larger ratio befits this mode of diffusion. Fitness landscapes for upstream enzymes are represented in Figure 5.7. high external concentrations (for a same flux level) that increase nutrient gradients. Anyhow, the substrate concentration yielding such a high level is either very unlikely to be found even within multicellular organisms -for nucleosides/amino acids -or still yielding very low flux relatively to FD -for sugars -as sugar flux are many orders of magnitude higher than nucleosides/amino acids ones (see (A) of Figure 5.8 for absolute flux with sugar-like transporters). Likewise, setting the concentration to more realistic levels for nucleosides/amino acids does not alter the shape of the landscape while proving PD to be nowhere near the efficiency of FD (illustration (B) on the right of Figure 5.7). Besides, as for lower levels of flux, saturation only affects the selective pressure acting on k cat when transporters affinity is moderate to low.

Transporters and the general shape of the fitness landscape (under FD)

On Figure 5.9, the fitness landscape of the upstream enzyme is displayed considering different kinetic parameters of transporters (summarized by the 0.9 isocline in fig. 2A Equilibrium concentrations for sugars are higher for similar degradation rates because the influx is larger (see Figure 5.11) -the increase being proportional to that of the flux. If the absolute concentration -instead of the relative cost -matters then the constant η d may be higher for sugars (thereby reaching biologically relevant metabolite concentrations).

Degradation rates modulate the fitness landscapes of the second enzyme. One remarkable phenomenon here is that the landscape does not depend much on the efficiency of the first enzyme : this is especially true for k f , whose selective pressure is mostly insensitive to the first enzyme efficiency (or the level of flux, more generally). compromising a cell's viability, only the higher one is considered to compare with the first enzyme (fitness landscape in Figure 5.12) along with two higher degradation rates limiting concentration to

[P 1 ] = 10 -2 M
and [P 1 ] = 10 -4 M , the same amount than in the case of amino acids with the upper degradation rates.

Φ << k cat [E tot ] (see Mathematical appendix for the proof, where

V m = k cat [E tot ]
). This explains that the location of the fitness landscape for the second enzyme in this case scarcely depends on the previous enzyme.

The flux of product that the second enzyme needs to process depends on the interplay between the first intracellular enzyme, the degradation rate and transmembrane transporters. To test the selective influence of the latter on the second enzyme, we plotted the landscape of the second enzyme for different degradation rates and first enzyme efficiencies when the pathway is initiated by sugar-like transporters, showing that the processes studied follow similar trends than with transporters involved in lower fluxes (see Figure 5.12 for sugars, to contrast with landscapes for lower fluxes found in Fig. 3 of the article).

Fitness landscapes with a non-linear toxicity function

So far, we have considered that the flux was decreased due to the loss of product mainly arising from non-specific activities. But fitness may also be impacted because excessive concentrations in one or few metabolites disrupt other pathways or produce damaged metabolites (for example through promiscuous processes), both phenomena being largely documented (see references in the article). To test the influence that toxicity may have on fitness, we set the absolute fitness to [START_REF] Clark | Mutation-selection balance and metabolic control theory[END_REF], such that it results from both the flux of final products (the product formed by the second reaction) and a sigmoid influence dependent on the concentration of the first product P 1 (which is processed by the second enzyme to produce the final product). T acts as a threshold concentration which, when getting approached, significantly diminishes fitness.

f = Φ(1 -[P 1 ] [P 1 ]+T )
At first approximation, toxicity yields the same effect as the degradation rate (see Figure 5.14), but in this context, the proximity to the concentration threshold depends on the flux of substrate provided by the reactions upwards in the metabolic pathway. Accordingly, an inefficient first enzyme releases the selection pressure (in green in Figure 5.14), but not a moderately efficient or perfect first enzyme (see Figure 5.13).

To gain a better sense of -and generalize -this flux-dependent selection process, we drew fitness landscapes where a fixed supply of substrate is added continously, processed by a perfect 

k f = 10 2 M -1 s -1 , k cat = 10 -2 s -1 ; moderate : k f = 10 5 M -1 s -1 , k cat = 10 1 s -1 ; high : k f = 10 10 M -1 s -1 , k cat = 10 6 s -1
) are considered. The case presented here is that of sugar-like transporters (V T m = 1mM s -1 and K T = 5mM ). Note that other kinetic parameters are still [E tot ] = 10 -3 M , k r = 10 3 s -1 and no reaction reversibility K eq = 0. As a bad first enzyme diminishes the flux by several orders of magnitude, the fitness landscape of the second enzyme already flattens for low kinetic values and the influence of toxicity is marginal. On the contrary, the moderately and highly efficient first enzymes give rise to similar fitness landscapes for the second enzyme because they generate relatively similar levels of flux : this is true for both toxicity constants (see Figure 5.14 for a direct comparison based on relative fitness isoclines), with a linear relationship between the toxicity concentration and the location of the plateau. The fact that the location of the plateau is only determined by the amount of metabolite an enzyme has to process and the cellular tolerance to high concentrations indicates that it applies for any enzyme downstream the first two ones, as expected.

enzyme E n which produces a product P n that in turn, can eventually be processed by a following enzyme E n+1 . Toxicity and degradation were set to moderate values, but these parameters do not qualitatively impact the results. It is straightforward on Figure 5.15 that the flux proportionally increases the selective pressure on enzyme kinetic parameters (increasing the flux by one order of magnitude moves isoclines by one order of magnitude to the upper right). Because we have only considered a given amount of (first or n ieth ) substrate produced -which can correspond to any reaction at any location within a pathway -the fitness landscape depicted here applies to any enzyme under directional selection to maximize the flux. In fact, the enzyme needs even not be 

k f = 10 2 M -1 s -1 ,k cat = 10 -2 s -1 ; moderate : k f = 10 5 M -1 s -1 ,k cat = 10 1 s -1 ; high : k f = 10 10 M -1 s -1 ,k cat =

Interplay between kinetic parameters

Reversibility and reverse rate influence on fitness landscapes

We have shown in the article that the interplay between kinetic parameters should play a part in the wide variability observed among enzymes, focusing on the effect of inescapable non specific interactions and their possible toxicity (the latter being also detailed in the previous section of the SM). But we have also discussed that physical constraints, the reversibility of reactions in first place, can also explain large differences among enzyme kinetic parameters by competing for the use of a specific substrate -similar to non specific interactions. We here present why reversibility matters and how it impacts the fitness landscape in more details.

Discussion of the direct effect of reversibility can be found in the dedicated section of the paper while the graphical results on which this dicussion is based are presented in Figures 5.16 for a low flux and 5.17 for a high flux. Both of them are shown in the theoretical's (A) and experimenter's (B) parameter space to better grasp how basic properties give rise to phenomenological ones.

Overall, the equilibrium constant K eq has a rather similar impact on the fitness landscape of the next enzyme than the non-linear toxicity function, with a highly reversible upstream enzyme exerting a selection pressure downstream towards an increase of kinetic parameters.

Increasing reversibility through an increase in k r (Figure 5.18-A) increases the selective pressure on both kinetic parameters downstream -except for very low k r -jointly pushing them towards higher values. When using the "empirical" parameter space (Figure 5.16-B), we observe that increasing reversibility K eq only selects for higher k cat /K M in principle. Yet, the diffusion limit constraint also matters since it removes accessibility to the high k cat /K M , low k cat part of the landscape (see grey area and grey lines on Figure 5.16-B). As K eq sets the ratio between the four kinetic parameters, the joint evolution of forward and backward rates is determined by the dependency this ratio creates : indeed, higher reversibility comes on average with higher k r s for similar turn-over rates k cat , which means that higher reversibility pushes both k cat and k cat /K M to the upper right corner. On the contrary, when K eq is low, the diffusion limit may vanish from the experimenter's space and opens it up completely. As a consequence, the unbinding rate k r of an enzyme may eventually fuel a positive codependency between the forward rates k cat and k f as [START_REF] Klipp | Evolutionary Optimization of Enzyme Kinetic Parameters; Effect of Constraints[END_REF] and quantifies the degree of reversibility, a low K eq featuring low reversibility and vice versa. The first enzyme is a nearly perfect forward enzyme, but with k f = 10 8 M -1 and k cat = 10 4 s -1 so that we can test for enzymes being even more efficient working in reverse without using abnormal values (eg. association constant overcoming the diffusion limit set to 10 10 M -1 s -1 ). Reversibility was equally spread between the two backwards parameters (e.g. K eq = 10 2 yields k r = 10 1 k cat and k inh = 10 1 k f ), and a low degradation rate was considered (η d = 10 -4 s -1 ). In (A), results are plotted in the theoretical parameter space (k f , k cat ), showing that any increase in reversibility increases the pressure on enzyme kinetics by the same magnitude -except when reactions are highly non-reversible (in red). In (B), the same results are shown in the experimenter parameter space of the second enzyme, showing that there is an increased pressure on k cat /K M under higher reversibility. While the plateau is not moved upwards, indicative of a selection on k cat independent on reversibility when k cat /K M is fixed, positive selection for this parameter may still arise due to the diffusion limit that precludes the access to the lowest k cat at high k cat /K M . The diffusion limit should play an important role for enzymes with a high dissociation rate k r , as illustrated by the delineation of the diffusion limit (grey area or grey dashed lines) corresponding to several k r values (eg. DL 3 stands for k r = 10 3 s -1 ; the star indicates that it is the case represented in (A)).

the latter is no longer sufficient to ensure a high k cat /K M (see Figure 5.16-B and Figure 5.17-B of SM for this influence in the theoretical parameter space).

Because optimal concentrations may generally be below 10 -3 M and since the flux is determinant in the drawing of the fitness landscape (especially when accounting for toxicity of metabolites), the influence of epistasis between following enzymes also differs (see Figure 5.20). This means that when toxicity is the main driver of the selective pressure, the moderate epistasis -between kinetic parameters of neighbouring enzymes -shown with high concentrations (see Figure 5.14) increases if lower concentrations are assumed. as the isoclines are displaced towards higher values) but also on k cat , first because k cat and k cat /K M are not independent; second, because the diffusion limit precludes the access to high k cat /K M for a wider range of k cat values when the pressure on k cat /K M is higher. This is particularly true when the dissociation rate k r of the second enzyme is high, as illustrated by the delineation of the diffusion limit (grey area or grey two-dashed lines) corresponding to several k r values.

Enzyme concentration and shape of the fitness landscape

Finally, levels of gene expression can also influence an enzyme's catalytic activity, and as such, high enzyme concentrations can relax the selective pressure acting on enzyme kinetic parameters, whereas very low concentrations require that extreme kinetic efficiencies evolve when the metabolic demand is high like in the case for sugars (see Figure 5.18B). In this context, the influence of enzyme concentrations is similar for the second enzyme (see Figure 5.19) such that increasing it comes with a relaxed selective pressure on both k cat and k f (and k cat /K M ).

However, we have unreasonably assumed here that gene expression is cost-free, an assumption that we now relax by introducing two well documented costs: 1) the cost of protein production and 

k f = 10 2 M -1 .s -1 , k cat = 10 -2 s -1 ; Moderate : k f = 10 5 M -1 .s -1 , k cat = 10 2 s -1 ; High : k f = 10 7 M -1 .s -1 , k cat = 10 4 s -1 ; Perfect : k f = 10 10 M -1 .s -1 , k cat = 10 6 s -1
). We see here, that toxicity being a major factor of influence, it changes how the fitness landscape of a second enzyme reacts to different first enzyme efficiencies. This is expected since toxicity dependent lanscapes have been proved to be sensitive to the level of flux. In (B), an inefficient enzyme is more constrained because the higher degradation rate still competes with the second enzyme at relatively low metabolite concentrations.

to sustain the enzyme concentration (detailed formulas describing these processes can be found in the paper -section Materials and Methods). This interplay gives rise to the fitness landscapes depicted in figure 5.21 (in which the absolute value of the spread to the maximum fitness is represented on a log-scale such that highest values still correspond to the highest fitnesses), where a crowding limit emerges mechanistically (in grey) for concentrations corresponding to the glass transition [START_REF] Dill | Physical limits of cells and proteomes[END_REF]. Besides, the optimum concentration is shifted owing to the cost of production, a phenomenon which is both dependent on the kinetic parameters of the enzymes and the estimate of the cost used.

Evolutionary simulations

Due to the interplay between drift, mutation and selection, Evolution eventually establishes steady-states in which enzyme kinetic parameters walk randomly -in response to nearly neutral mutations -in a given part of the landscape. To study the mutation-selection-drift balance for enzymes, we first verified that the equilibrium was achieved for each set of parameters detailed (k cat and k cat /K M ). Only k cat and k f were susceptible to evolve, while k r was set to 10 3 s -1 such that the grey part of the parameter space is inaccessible to enzymes due to the diffusion limit. At evolutionary steady-state, enzyme efficiencies evolve on the plateau in any case, each plateau starting according to the strength of drift enzymes cope with. In (A), no mutational bias results in evolutionary outcomes that spread all over the plateau, some reaching very high k cat and/or k cat /K M values, while in (B) enzyme efficiencies stick to their predicted isoclines -under the Nearly Neutral Theory of Evolution (Ohta, 1992) -owing to the over-representation of mutations that diminish efficiency. The stickiness to the isocline is self-evidently positively correlated to the average mutational bias.

Mutation-Selection-Drift balance of kinetic parameters

As explained in the article, fitness at steady-state matches the expectations of the Nearly Neutral Theory [START_REF] Bibliography Kimura | Evolutionary Rate at the Molecular Level[END_REF][START_REF] Ohta | Slightly Deleterious Mutant Substitutions in Evolution[END_REF]Ohta, 1992), with average fitnesses aligned with drift barriers [START_REF] Sung | Drift-barrier hypothesis and mutation-rate evolution[END_REF] when mutations are biased towards making enzymes less efficient, and a large nearly neutral area (more fitness variability) when there is no bias at all (see bottom lines of plots in Figures 5.27 (k cat and k cat /K M ). Only k cat and k f were susceptible to evolve, while k r was set to 10 3 s -1 such that the grey part of the parameter space is inaccessible to enzymes due to the diffusion limit. At evolutionary steady-state, enzyme efficiencies evolve on the plateau in any case, each plateau starting according to the strength of drift enzymes cope with. In (A), no mutational bias results in evolutionary outcomes that spread all over the plateau, some reaching very high k cat and/or k cat /K M values, while in (B) enzyme efficiencies stick to their predicted isoclines -under the Nearly Neutral Theory of Evolution (Ohta, 1992) -owing to the over-representation of mutations that diminish efficiency. The stickiness to the isocline is self-evidently positively correlated to the average mutational bias.

exists between simulations based on enzymes involved in pathways initiated by transporters with distinct rates V T m . Therefore, when no mutational bias is considered, enzyme kinetic parameters cover the whole nearly neutral plateau that begins when fitness has reached the drift barrier isocline, which stands at w = 1 -1/N e relatively to the maximum achievable level (because mutations occuring at this level of fitness cannot provide more than s = 1/N e of extra fitness). It ensues that enzymes display a wide variability in robustness -as seen in Figures 5. [START_REF] May | Simple mathematical models with very complicated dynamics[END_REF] 
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increasing either one by an order of magnitude, at least for some combinations of parameters).

Expectingly, a positive correlation therefore favours combination of more homogeneous kinetic parameters (compare (C) with (A) and (B) in Figure 5.24), simply because positive mutations on k cat /K M are more often correlated to positive mutations on k cat .

Mutation-Selection-Drift balance of kinetic parameters with enzyme concentrations

In this section, we report results in which enzyme concentrations are made evolvable quantities subject to the two aforementionned costs (1) crowding; (2) protein production.

Accounting only for ( 1) results in an increase in variance mainly within effective population size replicates (see Figure 5.25) and a shift from the expected isocline based on a high concentration :

as enzymes can partially compensate for differences in kinetic activities due to kinetic constants of enzymes, it enables enzymes to explore a little wider area for a given effective population size.

Accounting only for the cost of production ((2); see Figure 5.26) largely increases the variance for a given effective population size because higher concentrations can compensate for lower kinetic parameters as long as they do not overcome a cost threshold set by N e , and higher concentrations can more readily evolve (unbiased mutational effects and no physical ceiling in the model) than higher kinetic parameters, which are again considered to be biased. Depending on the relative cost of expression, an enzyme can evolve towards very low kinetic parameters thanks to extremely high (and unrealistic) concentrations or, on the contrary, evolve towards very high kinetic parameters due to the early onset of the protein burden. Because the level of expression under the mutationselection-drift balance is determined by N e , results are still largely dependent on this factor (in fact, even more than when enzyme concentration is set -see paper for discussion). None of these two independent constraints considered in isolation realistically catch the overall protein burden.

In Figure 5.26, results are shown including both of these costs (like in the article) but for the 4 different costs. Depending on N e and the cost of production, the two constraints are now affecting the evolutionary outcomes: when the cost is unlikely low, outcomes resemble that of crowding alone while when it is high, they resemble outcomes found when considering protein production alone. Between theses two cases, a mixture of the two constraints affects enzyme steady-states and is discussed in the article since they correspond to the more likely ones. protein burden in relation to the strength of drift. Note also that absurd concentrations can be achieved since there is no deleterious effects of crowding. When crowding also limits concentration, the outcomes become more or less sensitive to the cost of enzyme production: for an unlikely very low cost, results are much alike those obtained with crowding alone. However, when assuming higher costs, outcomes depend on a balance between these two influences, which tend to increase the selective screening for higher N e .

As a consequence, enzymes are pushed towards higher efficiencies than when considering high enzyme concentrations, which is all the more true with higher N e s.

Influence of noise in gene expression on the selective pressure acting on enzyme concentrations

One explanation that can account for the discrepancy between these clear-cut results and empirical data is noise in gene expression, whose influence is also manifold as shown by (Wang et al., 2011). In the competition for resources, a cell needs to possess exactly the right amount of enzymes for a given set of kinetic parameters. To ensure that this happens, a cell has to possess continously at least one transcript of a specific enzyme. Since typical prokaryotic cells range around V cell = 1µm 3 , for a prokaryotic cell to have at least one transcript yields a concentration

[RN Am] = 1/(6.02×10 23 ) 10 -15
≈ 1nM . Making the conservative hypothesis of a 1:100 ratio between transcripts and proteins, this yield a noisy concentration threshold around [E tot ] ≈ 0.1µM for this kind of cells. This is a highly conservative estimate of this threshold, for 1 transcript on average is far from sufficient to alleviate noisiness and even less to tune the kinetic activity with the needed subtelty. As a consequence, the threshold should be one or two order of magnitude higher and typically stands around 1 -10µM for average prokaryotic cells, therefore precluding the access to low concentrations in prokaryotes in a volume dependent manner, with smaller prokaryotes being even more constrained than the above estimate. Small cells are thus subject to a complex balancing selection acting on their protein content that needs to be adressed carefully to better 5. 

Mathematical and computational appendix

General description of nutrient driven pathways -analytical solution for the first enzyme

The model describing the metabolism (through the first enzyme) inside the cell relies on the following system of equations:

             d[ES] dt = k f .[E].[S] -(k cat + k r ).[ES],
(5.15a)

d[P ] dt = k cat .[ES],
(5.15b)

[E tot ] = [E] + [ES], (5.15c) 
where [E], [S] and [ES] denote the respective cytoplasmic concentrations of the enzyme, substrate, and of their complexes. We assume that the system can reach an equilibrium obeying

d[ES]
dt [ES]=[ES] * = 0, resulting in the following equation:

[ES] * = k f [S] * k r + k cat + k f [S] * .[E tot ],
(5.16)

where the equilibrium concentration of the substrate within the cell [S] depends on the uptake mechanism considered, as described in the next two sections.

Uptake by passive diffusion

Passive diffusion occurs when molecules cross the membrane without specifically binding any protein. This well-known process can be modelled through Fick's diffusion law [START_REF] Fick | V. On liquid diffusion[END_REF][START_REF] Overton | Vierteljahresschrift Naturforsch[END_REF][START_REF] Meyer | Zur theorie der alkoholnarkose[END_REF] that takes into account the surface area of a cell S c , its permeability P and the outside-inside concentration gradient. Ignoring cell growth -or, similarly, assuming growth to be far slower than diffusion -this equation can be written as: (5.18) such that the equilibrium value [S] * (where d [S] dt = 0) obeys the equation:

d[S] dt = P.S c V c .([S out ] -[S]), ( 
d[S] dt = P.S c V c .([S out ] -[S]) -k f .[E].[S] + k r .[ES],
P.S c V c .([S out ] -[S] * ) + k r k f [S] * [E tot ] k r + k cat + k f [S] * -k f [S] * (k r + k cat )[E tot ] k r + k cat + k f [S] * = 0.
which can be written:

-P k f S c V c ([S] * ) 2 + (P S c V c ([S out ]k f -(k r + k cat )) -k cat k f [E tot ])[S] * + P S c V c [S out ](k r + k cat ) = 0 (5.19)
Since a concentration cannot be negative and this quadratic equation has a single positive root, we obtain a single equilibrium value [S] * under passive diffusion, whose calculation is straightforward.

Uptake by facilitated diffusion

Assuming that transport is bidirectional and symmetric, FD obeys Michaelis Menten-like kinetics [START_REF] Kotyk | Mobility of the free and of the loaded monosaccharide carrier in Saccharomyces cerevisiae[END_REF] that can be modelled through Briggs-Haldane equations [START_REF] Briggs | A Note on the Kinetics of Enzyme Action[END_REF]:

d[S] dt = V T m . [S out ] -[S] K T + ([S out ] + [S]) + α. [Sout][S]
K T

(5.20)

1 A depleting environment would bring back to a quasi steady state situation in which the substrate concentration decreases although on a much slower timescale than that at which happen chemical reactions and transport.
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          
V T m : the maximum rate of a given carrier protein; K T : a constant inversely proportional to the transporter efficiency; α : the Kotyk interactive constant capturing the disequilibrium between bound and free transporters.

Along the concentration gradient, the Kotyk interactive constant α Kotyk, 1967 also brings by something new because transporters saturation (i.e. outwards flow) can no longer be overlooked [START_REF] Teusink | Intracellular glucose concentration in derepressed yeast cells consuming glucose is high enough to reduce the glucose transport rate by 50%[END_REF][START_REF] Bosdriesz | Low affinity uniporter carrier proteins can increase net substrate uptake rate by reducing efflux[END_REF]. By construction, α cannot exceed 1 and is apparently close to this upper limit for sugars (e.g. α = 0.91 for glucose [START_REF] Kotyk | Mobility of the free and of the loaded monosaccharide carrier in Saccharomyces cerevisiae[END_REF]) so we set α = 1 by default in this study. With similar assumptions to the PD derivation above regarding the external environment, the inward net flow of the substrate is given by:

d[S] dt = V T m . [S out ] -[S] K T + ([S out ] + [S]) + α [Sout][S] K T + k r [ES] -k f [S][E],
which at steady-state yields a unique positive solution [S] * because the system can be summarized by equations ( 8) and ( 9) found in the Materials and Methods of the main body of the article, after following the same steps than for PD.

Flow in metabolic pathways

The flow of product is obtained by substituting [S] in equation (5.16) with its steady-state value under either passive or facilitated diffusion, and merging with equation (5.15b):

d[P ] dt = k cat k f [S] * k r + k cat + k f [S] * .[E tot ].
(5.21)

Influence of the metabolite influx and the degradation rate for the fitness landscape of an enzyme

Let Φ be the influx of a specific metabolite M (which can be the product of the previous enzyme).

Such a process -where an enzme competes against degradation to produce its product -can be 5. 

Φ = V m [M ] K M + [M ] + η d [M ] (5.22)
Note that this equation is similar to that of (5.21) where

d[P ] dt = Φ, k cat [E tot ] = V m and kr+kcat k f = K M ,
with the difference that a degradation rate has been added. Rearranging the terms is straightforward and yields a quadratic equation whose only valid solution is: .23) where:

[M ] * = b(-1 + (1 -4ac b 2 ) 1/2 ) 2a , ( 5 
                 a = η d b = V m + η d K M -Φ c = -ΦK M When Φ << V m one can write: ac b 2 ≈ η d ΦK M V m 2 + 2η d K M V m + (η d K M ) 2
which yields:

ac b 2 ≈                  η d ΦK M V m 2 , if η d K M << V m Φ 4V m , if η d K M ≈ V m Φ η d K M , otherwise.
Therefore, if Φ << V m , one has ac b 2 << 1 in any case, such that it is always possible to approximate [M ] * through its first order Taylor series expansion, which yields

[M ] * = b(-1+(1-2 ac b 2 )) 2a = -c b . This means that [M ] * = ΦK M Vm+η d K M -Φ
, and, as we are interested in the case where

Φ << V m , [M ] * ≈ ΦK M Vm+η d K M . As a consequence, if Φ = O(V m ), the relative fitness -compared to the maximum attainable value -is f = Φ-η d [M ] * Φ ≈ Vm+(η d -1)K M Vm+η d K M ,
which is not influenced by Φ. As soon as k cat is sufficiently high, the level of flux does not impact the selective pressure acting on k f anymore but marginally,
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which helps understand the shape of the fitness landscape when an enzyme competes against degradation processes.

General description of nutrient driven pathways -numerical solution for the model with two enzymes

We checked the implementation of the Newton algorithm by comparing results for the flux of the second product given by the algorithm with those resulting from the numerical simulations of the process through Euler explicit method for 9 different couples of kinetic parameters, concentrated nearby the average enzyme kinetic parameters to avoid reactions too slow to reach equilibrium (low efficiencies) and/or numerical stability problems arising from high efficiencies. Simulations with the Euler method were ran for a total simulation time of 1s., with timesteps inversely proportional to the efficiency of the quickest kinetic parameter involved. Results for the control case of amino acids with a low degradation rate (η d = 10 -4 s -1 ) and following a first enzyme relatively efficient (k f = 10 7 M -1 s -1 and k cat = 10 4 s -1 ) to avoid the aforementionned issues with stability are reported in the following tables:

log 10 k f log 10 k cat 2 3 4 5
9.08871051750e-07 9.09087090923e-07 9.09087909102e-07 6 9.09087909093e-07 9.09088727281e-07 9.09088809099e-07 7 9.09088809098e-07 9.09088890917e-07 9.09088899099e-07 Finally, we compared the relative difference between dynamical solutions using Euler method and the root finding Newton algorithm:

The relative difference between the estimates is very low except for log 10 k cat = 2 and log 10 k f = 5 because one second is not enough to reach steady-state for such kinetic parameters. Indeed, looking at the last two steps of dynamic simulation reveals that changes in flux cannot yet be 5. Far from these considerations, it was shown that the biological relevance of earnestness is very dependent on the sex of an organism and the natural mating system of the species to which it belongs [START_REF] Wade | The intensity of sexual selection in relation to male sexual behaviour, female choice, and sperm precedence[END_REF]Darwin, 2008;[START_REF] Shuster | Sexual selection and mating systems[END_REF][START_REF] Tilquin | What does the geography of parthenogenesis teach us about sex?[END_REF]. The same holds when one substitutes this first name for its French counterpart "Constant". Since Biology is about being adapted, its fitness may rely on constantly changing its phenotype when the environment varies, or, on the contrary, may require one to target one or few (in the case of balancing selection) constant optimal phenotypic values or ratios. For illustrative purpose, let us slip ourself in the shoes of Alice pilgriming in her Wonderland. When she suddenly grows up, her whole body extends, not only one specific part [START_REF] Carroll | Alice's Adventures in Wonderland[END_REF]. Were it not to be the case, this body would appear completely unfit due to simple physical properties such as the Fundamental Principle of the Dynamics (of rotation) regarding joints or muscle efficiency. Such conservation of scaling and relative proportions has been extensively studied for one century since the seminal work of D'arcy Thompson [START_REF] Bonner | On Growth and Form[END_REF] through the concept of allometry [START_REF] Gould | Allometry and size in ontogeny and phylogeny[END_REF][START_REF] Cheverud | Relationships among ontogenetic, static, and evolutionary allometry[END_REF][START_REF] Damuth | Scaling of growth: plants and animals are not so different[END_REF][START_REF] Dill | Physical limits of cells and proteomes[END_REF], shedding light on these scaling laws [START_REF] West | The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization[END_REF], their range of variation and the reasons behind both their variability and similarity (Pélabon et al., 2014). We have shown previously that such constancy ratios should also been maintained along metabolic pathways since the final flux depends on the efficiency of all proteins involved in it. Consequently, it seems relevant to evaluate how this need for regularity impacts population genetics. This is what we propose to address in the following pages.

An introduction on epistasis, complexity and the need for complementarity

This chapter has been the object of an emerging collaboration with David Mac Candlish, who suggested the use of global epistasis for simulations and that of order statistics for the analytical derivations.

About complex genetic interactions

"On rencontre sa destinée souvent par les chemins qu'on prend pour l'éviter".

Jean de la Fontaine

Epistasis (see Figure 6.1) is a ubiquitous phenomenon in which the effect of a mutation differs depending on the genetic background in which it occurs [START_REF] Bateson | Principles of Heredity[END_REF][START_REF] Phillips | Epistasis-the essential role of gene interactions in the structure and evolution of genetic systems[END_REF][START_REF] Domingo | The Causes and Consequences of Genetic Interactions (Epistasis)[END_REF]. As [START_REF] Weinreich | Should evolutionary geneticists worry about higher-order epistasis?[END_REF] pointed out, it is a measure of our "surprise" insofar as we a priori expect mutational effects to be additive [START_REF] Phillips | Epistasis-the essential role of gene interactions in the structure and evolution of genetic systems[END_REF][START_REF] Domingo | The Causes and Consequences of Genetic Interactions (Epistasis)[END_REF]. Epistasis has long been known to occur between pairwise mutations where the combined effect between them results in a phenotype or a fitness not being the sum of that they would have in isolation from one another [START_REF] Bateson | Principles of Heredity[END_REF]. If Adaptation can sometimes still occur through few genetic changes [START_REF] Orr | The genetic theory of adaptation: a brief history[END_REF], such epistatic interactions in general comes with several consequences. Forasmuch as it influences genetic architecture [START_REF] Hermisson | Epistasis in polygenic traits and the evolution of genetic architecture under stabilizing selection[END_REF][START_REF] Domingo | The Causes and Consequences of Genetic Interactions (Epistasis)[END_REF][START_REF] Sella | Thinking About the Evolution of Complex Traits in the Era of Genome-Wide Association Studies[END_REF], it often narrows the path towards adaptive phenotypes [START_REF] Poelwijk | Empirical fitness landscapes reveal accessible evolutionary paths[END_REF] and may even create fitness valleys under certain circumstances called reciprocal sign epistasis (Weinreich et al., 2005b;[START_REF] Poelwijk | Reciprocal sign epistasis is a necessary condition for multi-peaked fitness landscapes[END_REF] -see Figure 6.1 for visual explanations.

Because of the process of genetic drift [START_REF] Wright | THE GENETICAL THEORY OF NATURAL SELECTION: A Review[END_REF]Kimura, 1958;Ohta, 1992;[START_REF] Sella | An exact steady state solution of Fisher's geometric model and other models[END_REF] that entails a mutational load (Haldane, 1937;[START_REF] Muller | Our load of mutations[END_REF][START_REF] Agrawal | Mutation Load: The Fitness of Individuals in Populations Where Deleterious Alleles Are Abundant[END_REF], lower effective population sizes (as was shown again for enzyme efficiencies in our work -see 5.1.3) are, on average, further from the optimum phenotype. This is notably the case when a species experiences a bottleneck [START_REF] Wright | Evolution in Mendelian Populations[END_REF][START_REF] Nei | The Bottleneck Effect and Genetic Variability in Populations[END_REF] during which part of the genetic variability is lost even if adaptive. It was thus supposed that small effective population sizes could help escape from a local fitness peak by facilitating fixation of intermediate deleterious mutations [START_REF] Wright | THE GENETICAL THEORY OF NATURAL SELECTION: A Review[END_REF]Wright, 1932) ; therefore, subdivision in small populations should be better at finding the highest peak though they are less efficient to climb up towards this peak. In a sense, as Jean de La Fontaine once put it, one may often meet his (Adaptive) Destiny on the (Neutral) route he took to escape from It. However, introducing polymorphism and recombination disproved 6.1. AN INTRODUCTION ON EPISTASIS, COMPLEXITY AND THE NEED FOR COMPLEMENTARITY this conclusion (Weinreich et al., 2005a) since combined mutations can either be found through stochastic tunneling (Iwasa et al., 2004b) -whereby a population jump to the fixation of an adaptive double mutation thanks to the transient segregation of a first deleterious mutationor be brought together after having emerged in different lineages, and it was later shown that considering the widthi.e. the number of loci making up the valley -of valleys would even reverse Wright's initial intuition with higher populations more prone to cross large fitness valleys, especially if these valleys are much alike plateaus [START_REF] Weissman | The rate at which asexual populations cross fitness valleys[END_REF].

Known as high(er)-order epistasis 1 , this phenomenon involving many interacting loci usually gives rise to rugged fitness landscapes [START_REF] Kauffman | Towards a general theory of adaptive walks on rugged landscapes[END_REF]Kauffman et al., 1989;[START_REF] Weinreich | Should evolutionary geneticists worry about higher-order epistasis?[END_REF] where peaks and valleys quickly follow each other in both the phenotype and the genotype spaces, as can be observed in Figure 6.4-C. Based on the NK-model (see Box 12 to get to the nitty gritty of the model), [START_REF] Kauffman | Towards a general theory of adaptive walks on rugged landscapes[END_REF] showed that such high order epistasisassimilated to a kind of complexity -comes at a great cost for fitness since more ruggedness in turn increases the probability of being trapped at a local optimum [START_REF] Kauffman | Towards a general theory of adaptive walks on rugged landscapes[END_REF][START_REF] Bibliography Geard | A comparison of neutral landscapes -NK, NKp and NKq[END_REF], a finding that was further confirmed when accounting for the possibility of neutral mutations, through NKq and NKp models [START_REF] Barnett | Ruggedness and Neutrality-the NKp Family of Fitness Landscapes[END_REF][START_REF] Newman | Effects of selective neutrality on the evolution of molecular species[END_REF][START_REF] Bibliography Geard | A comparison of neutral landscapes -NK, NKp and NKq[END_REF]. Under certain assumptions, this model makes possible to estimate analytically the average expected mutation-selection-drift balance [START_REF] Weinberger | Local properties of Kauffman's N-k model: A tunably rugged energy landscape[END_REF] and its mutational load counterpart, which can thus be contrasted to other such predictive frameworks.

Indeed, the influence of complexity on evolutionary trajectories and outcomes has in parallel thoroughly been addressed through the lens of Fisher's geometrical model (Fisher, 1930;[START_REF] Orr | THE POPULATION GENETICS OF ADAPTATION: THE DISTRIBUTION OF FACTORS FIXED DURING ADAPTIVE EVOLUTION[END_REF][START_REF] Orr | Adaptation and the cost of complexity[END_REF][START_REF] Poon | COMPENSATING FOR OUR LOAD OF MUTATIONS: FREEZING THE MELTDOWN OF SMALL POPULATIONS[END_REF][START_REF] Martin | A general multivariate extension of Fisher's geometrical model and the distribution of mutation fitness effects across species[END_REF][START_REF] Tenaillon | Quantifying Organismal Complexity using a Population Genetic Approach[END_REF][START_REF] Sella | An exact steady state solution of Fisher's geometric model and other models[END_REF][START_REF] Tenaillon | The Utility of Fisher's Geometric Model in Evolutionary Genetics[END_REF]. Within this framework, epistasis builds up from the mathematical underpinnings [START_REF] Hartl | Compensatory Nearly Neutral Mutations: Selection without Adaptation[END_REF][START_REF] Orr | Adaptation and the cost of complexity[END_REF][START_REF] Tenaillon | The Utility of Fisher's Geometric Model in Evolutionary Genetics[END_REF][START_REF] Hwang | Genotypic Complexity of Fisher's Geometric Model[END_REF] and the assumption of both nonlinearities in the fitness landscapes [START_REF] Hwang | Genotypic Complexity of Fisher's Geometric Model[END_REF] and pleiotropy preexistence [START_REF] Tenaillon | The Utility of Fisher's Geometric Model in Evolutionary Genetics[END_REF]) -see Box 13 for a description of Fisher's geometrical model and [START_REF] Stearns | One hundred years of pleiotropy: a retrospective[END_REF] for a review on pleiotropy.

1 see Illustrated Glossary of complex genetic interactions in Box 11
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High order epistasis is the general case of epistasis where the interaction involves a great number of interacting parts owing to processes detailed in Box 11. It features the effect of the genomic background on lower order interactions (see Figure 6.3); noticeably, it was shown that the magnitude of epistasis sometimes seems to decline with its order [START_REF] Ferretti | Measuring epistasis in fitness landscapes: The correlation of fitness effects of mutations[END_REF][START_REF] Weinreich | The Influence of Higher-Order Epistasis on Biological Fitness Landscape Topography[END_REF], which means that high order interactions may be overlooked in certain cases. to produce a phenotype (eg. G1 vs G2, with a lower level interaction involving two loci in the picture). Synergistic epistasis ('syn', occuring in G4) means that mutations produce a higher effect on the phenotype than the expected additive one. Diminishing-returns epistasis ('dim') stands for any mutational interaction in which the effect of combined advantageous mutations is less than the sum of their isolated effect. As a corollary, global epistasis is a special case of diminishing returns epistasis ('dim', occuring in G3) and occurs when several loci combine additively ('add') on an underlying -possibly unobserved -trait that influences an observed trait or phenotype (including fitness) through a diminishing returns relationship. Functional complementarity results from the contribution of different intermediate phenotypic traits that each need be present in order to produce a functional phenotype: when different loci are involved in the intermediate traits, this gives rise to complementary epistasis (see also Figure 6.6). This is true for example when a specific color results from the involvement of several pigments.

Functional redundancy describes the existence of multiple ways -often involving sub-phenotypic traits (Phenotypic redundancy) -to optimize a phenotypic trait (eg. concentration, affinity and catalytic rates for enzyme efficiency). Genetic redundancy is also possible, with distinct loci involved in the same phenotypic trait (eg. loci contributing to protein stability, or different genes involved in the same function) and may follow from duplication and sub-functionalization, for instance. Pleiotropy represents a process in which a specific locus (eg. single residue) influences several traits at once. Owing to the numerous interactions occuring in gene newtorks, many loci are assumed to influence many traits at once: this idea has been coined Universal pleiotropy.

Loci -or underlying phenotypic traits -may combine through Non-linear interactions, akin the diminishing returns law shown here, to produce a focal trait. Modularity defines the existence of relatively independent modules (eg. the arm and the leg) -in that they contribute independently to the phenotype -that are comprised of tightly interacting parts. Combined with epistasis, it extends the latter concept into Modular epistasis where each functional units (modules) display purely buffering or aggravating interactions.
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Besides enabling to study the distribution of fitness effects [START_REF] Martin | A general multivariate extension of Fisher's geometrical model and the distribution of mutation fitness effects across species[END_REF][START_REF] Lourenço | COMPLEXITY, PLEIOTROPY, AND THE FITNESS EFFECT OF MUTATIONS[END_REF], it is in principle possible through this framework to approach how complexity emerges and evolves [START_REF] Orr | THE POPULATION GENETICS OF ADAPTATION: THE DISTRIBUTION OF FACTORS FIXED DURING ADAPTIVE EVOLUTION[END_REF][START_REF] Martin | Distributions of epistasis in microbes fit predictions from a fitness landscape model[END_REF][START_REF] Gros | The evolution of epistasis and its links with genetic robustness, complexity and drift in a phenotypic model of adaptation[END_REF][START_REF] Bibliography Le Nagard | The emergence of complexity and restricted pleiotropy in adapting networks[END_REF], what it really portrays2 , and even to try and derive that of an organism from the strength of drift experienced by an organism (when adopting a top-down approach) [START_REF] Tenaillon | Quantifying Organismal Complexity using a Population Genetic Approach[END_REF]. This is because epistasis and pleiotropy are intrinsic features to the multidimensional formulation of the model [START_REF] Tenaillon | The Utility of Fisher's Geometric Model in Evolutionary Genetics[END_REF] such that complexity needs not be defined in terms of the unknown explicit genotypic-phenotypic relationships, but can on the contrary be understood as the factor limiting the strength of selection when adopting a top-down approach [START_REF] Bibliography Le Nagard | The emergence of complexity and restricted pleiotropy in adapting networks[END_REF].

Interestingly, [START_REF] Hwang | Genotypic Complexity of Fisher's Geometric Model[END_REF] have recently disputed how we interpret the ins and outs of the model by shown, demonstrating that the amount of sign epistasis is contingent on the position in the landscape (see (C) in 6.5 to get a sense of why it is so); as well as it decreases with the predefined phenotypic dimensionality n. Yet more significant is their demonstration that fitness landscape complexity does not, in general, correlate with the n, which sheds light on the fact that complexity may take different irreducible and non-fungible forms.

Though fascinating, both these frameworks lack a mechanistic basis as highlighted recently by [START_REF] Martin | Fisher's Geometrical Model Emerges as a Property of Complex Integrated Phenotypic Networks[END_REF] and [START_REF] Yi | Adaptive Landscapes in the Age of Synthetic Biology[END_REF], even if Fisher's geometrical model was specifically revived for this purpose by [START_REF] Hartl | Compensatory Nearly Neutral Mutations: Selection without Adaptation[END_REF] and subsequently led to several insights about the mutational load and the expected distribution of mutation fitness effects [START_REF] Poon | COMPENSATING FOR OUR LOAD OF MUTATIONS: FREEZING THE MELTDOWN OF SMALL POPULATIONS[END_REF][START_REF] Martin | A general multivariate extension of Fisher's geometrical model and the distribution of mutation fitness effects across species[END_REF][START_REF] Martin | Distributions of epistasis in microbes fit predictions from a fitness landscape model[END_REF]. If we are to succesfully achieve a functional synthesis [START_REF] Dean | Mechanistic approaches to the study of evolution: the functional synthesis[END_REF] predicated on an integrative approach [START_REF] Gudelj | An integrative approach to understanding microbial diversity: from intracellular mechanisms to community structure[END_REF], such approaches deserve, at least, to be informed by the very biological processes giving rise to genetic interactions. Otherwise, disentangling causes from effects in Evolution will remain to the state of wishful thinking.

For instance, it has been shown that the distribution of fitness effects can be captured using such models [START_REF] Martin | A general multivariate extension of Fisher's geometrical model and the distribution of mutation fitness effects across species[END_REF][START_REF] Huber | Determining the factors driving selective effects of new nonsynonymous mutations[END_REF], but how alternate and potentially more parsimonious explanations could account for similar patterns is largely unknown [START_REF] Lourenço | COMPLEXITY, PLEIOTROPY, AND THE FITNESS EFFECT OF MUTATIONS[END_REF], a case that can also be made for fitness landscapes [START_REF] Blanquart | Epistasis and the Structure of Fitness Landscapes: Are Experimental Fitness Landscapes Compatible with Fisher's Geometric Model?[END_REF]. In the same vein, determining how features such as modularity [START_REF] Wagner | The road to modularity[END_REF][START_REF] Segrè | Modular epistasis in yeast metabolism[END_REF][START_REF] Hartwell | From molecular to modular cell biology[END_REF] or niche construction [START_REF] Bajić | On the deformability of an empirical fitness landscape by microbial evolution[END_REF] changes the landscape and whether it is a specific kind of intrinsic interactions or the evolutionary product that these interactions favour 6.1. AN INTRODUCTION ON EPISTASIS, COMPLEXITY AND THE NEED FOR COMPLEMENTARITY or even made necessary requires to understand how they all dynamically behave together, as was argued for molecular networks [START_REF] Alexander | Understanding Modularity in Molecular Networks Requires Dynamics[END_REF]. This is especially significant -and, noticeably, a major challenge for biological understanding [START_REF] Young | Deconstructing the sources of genotype-phenotype associations in humans[END_REF] -inasmuch as the genotype-phenotype-fitness map stems from the intertwining between interacting genes -susceptible to evolve [START_REF] Gros | The evolution of epistasis and its links with genetic robustness, complexity and drift in a phenotypic model of adaptation[END_REF] during the course of Adaptation -with their basic and emerging physiochemical properties [START_REF] Bershtein | Bridging the physical scales in evolutionary biology: from protein sequence space to fitness of organisms and populations[END_REF][START_REF] Bergelson | Functional biology in its natural context: A search for emergent simplicity[END_REF]. Lately, shy first steps to fill in this theoretical gap have adopted the prolific paradigm of statistical physics -also used in [START_REF] Sella | The application of statistical physics to evolutionary biology[END_REF] to determine genotype distribution at mutation-selection-drift balance -in an interesting attempt to derive the isotropic instance of Fisher's geometrical model from first principles [START_REF] Martin | Fisher's Geometrical Model Emerges as a Property of Complex Integrated Phenotypic Networks[END_REF] that draws inspiration from results

of systems biology such as those of the FBA (Flux Balance Analysis) [START_REF] Orth | What is flux balance analysis?[END_REF]. However, FBA should not be the most appropriate framework to study their past Evolution for several reasons. First, FBA relies on an assumption of optimality to solve the systems of equations describing the process as well as on the existence of fixed molecule contents; moreover, such an assumption comes with a corollary that yield should be optimize rather than nutrient consumption, which is not always relevant from an eco-evolutionary standpoint 3 . Perhaps more importantly, because this framework does not deal with real mechanisms but only describes a complex system that has already evolved, it does not seem ideal to capture how genetic interactions evolved in the first place. On another hand, it seems nonetheless very well suited to tackle how these existing systems may react to changes and to give clues about their evolution from a given, already very complex point.

3 See for example [START_REF] Schuster | Is maximization of molar yield in metabolic networks favoured by evolution?[END_REF] .
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Box 12. A brief note on Kaufman's NK model NK models are a class of models which were initially built to understand the influence of complex epistasis interactions on the shape of the fitness landscape and the ability to adapt [START_REF] Kauffman | Towards a general theory of adaptive walks on rugged landscapes[END_REF] but also eventually lead to progress in computer science and strategy sciences. Within this framework, an organism's fitness is simply the mean of all its components fitness. Its core assumptions are also very simple since only two parameters originally influence the fitness landscape: N denotes the number of components that contribute to fitness while K stands for the number of components influencing the fitness c i (i; Kother elements of the set of components) of each component [START_REF] Csaszar | A note on how NK landscapes work[END_REF].

Each of these entities can exist into two forms ('0' and '1'). For example, let us say that the fitness of a fictional organism depends only on N = 2 traits which would be its brain size (small or large) and its body size (small or large). If K = 1, c i is only function of (i) and each trait is independent such that if a large brain and a large body are adaptive, there is no epistasis and the fitness is just the average of that conferred by each of these features. However, if K = 2, the fitness component brought by both of them depends on the other trait value, which seems more realistic, as a large shape with a small brain to use it should be deleterious. For 2 dimensions, fitness can be represented through the four nodes of a square. Increasing N means that they map onto a N-dimensional hypercube,

where the number of fitness maximum depends on K. This framework has largely been used to explain that epistasis complexity yields rugged fitness landscape as depicted in (C) of Figure 6.4. Although the framework is fascinating and has been very fruitful on several key issues, the latter analogy is not to be taken too literally, if taken at all, because it is not possible to assess whether the exploration of the N-dimensional rugged landscape is similar to the same process in an apparent 2 dimensional counterpart. In Fisher's geometrical model, a phenotype is described by a set of t idealized traits, each being independent from one another so that they are to be optimized specifically (Fisher, 1930) (see A below, in Figure 6.5). These traits can consequently be depicted as independent axes in the euclidean space of the relevant dimensionality, such that fitness isoclines are represented by hyperspheres of dimension t [START_REF] Tenaillon | The Utility of Fisher's Geometric Model in Evolutionary Genetics[END_REF]. Phenotypes are subject to stabilizing selection towards an optimum: the more an organism approaches the optimum, the lower the selective pressure is. Fisher (1930) used this model to set the stage for quantitative genetics by showing that it is more efficient to rely on a large amount of loci with small effects than the opposite as small mutational hyperspheres display very few bias towards deleterious mutations on the contrary to large ones (see B below). (Global)

epistasis is also an intrinsic feature of the framework (see C below for details). The 2D fitness landscape can be described by a circle whose center represents the optimum under stabilizing selection -denoted by the star -and is surrounded by concentric fitness isoclines. This is because fitness decreases identically along any axis in the isotropic instance of the model. As shown in (B), mutations are also considered isotropic and can be represented by a sphere of radius r: the larger this sphere, the larger the disequilibrium between advantageous mutations (grey blue area in (B) where the two spheres overlap) and deleterious ones (grey area in (B) where mutations pull organisms further from the optimum). (C) shows that mutations with exactly similar effects on a trait may have very different impacts on fitness depending on the position in the phenotypic space : epistasis is thereby built from the core assumptions of the model [START_REF] Hwang | Genotypic Complexity of Fisher's Geometric Model[END_REF]. case is shown in the short window, with the need for both A and B mutations to experience any gain of fitness, while the larger plot represents how phenotype/fitness isoclines can be mapped in the genotype space when more mutations are considered. On the right panel is also shown the mutational path that allows to gain extra fitness: first, a potentially advantageous but actually perfectly neutral mutation needs -at least -to exist on either one of the locus before the advantageous mutation can occur and give an actual extra push of fitness. This phenomenon can involve higher order interactions leading to the need for the segregation of numerous neutral mutations, which may besides be subject to mutational biases.

Be that as it may, it has not yet been determined how the combination of complementary -or weakest link -epistasis [START_REF] Crow | An Introduction to Population Genetics Theory[END_REF][START_REF] Sackton | Genotypic Context and Epistasis in Individuals and Populations[END_REF] -where a phenotypic trait can only be competitive if each and any of its underlying loci are (see Figure 6.6 for more details) -with global epistasis [START_REF] Otwinowski | Inferring the shape of global epistasis[END_REF] could specifically change population genetics predictions arising from the Neutral Theory of Evolution and its extensions [START_REF] Bibliography Kimura | Evolutionary Rate at the Molecular Level[END_REF][START_REF] Ohta | Slightly Deleterious Mutant Substitutions in Evolution[END_REF]Ohta, 1992) while this process seems to be to be strongly supported by mechanistic underpinnings [START_REF] Kacser | The control of flux[END_REF][START_REF] Bibliography Hartl | Limits of adaptation: the evolution of selective neutrality[END_REF][START_REF] Yi | Adaptive Landscapes in the Age of Synthetic Biology[END_REF][START_REF] Taverna | Why are proteins marginally stable?[END_REF][START_REF] Bloom | Thermodynamic prediction of protein neutrality[END_REF][START_REF] Labourel | Resource uptake and the evolution of moderately efficient enzymes[END_REF] and [START_REF] Crutchfield | The Evolutionary Unfolding of Complexity[END_REF]'s work suggested that neutral diffusion in the genotype space can guide the evolution towards higher complexity 4 . This is what we propose to do in what follows; to justify the interest of such an investigation and its consequences, we start with the presentation of a toy model based on simplistic assumptions from global epistasis. We then put forward an analytical treatment dealing with a simple instance of the process. Finally,

A FIRST APPROACH

we show how this framework may have a profound impact on our understanding of Evolution at different levels of biological organization and put forward the key components that a more complete instance of the model should include.

A first approach

A simplistic prediction of classical population genetics

We expect that complementary epistasis should influence both the speed of adaptation, as was observed for evolutionary escape (Weinreich et al., 2005a;[START_REF] Weissman | The rate at which asexual populations cross fitness valleys[END_REF] and the mutational load (see introduction for previous approaches on this idea), and focus here on this latter phenomenon. More particularly, we assume that fitness should decrease with the number of units/loci involved and that the mutational bias should play a major part in hampering Adaptation because it influences the preexistence of potential complementary beneficial mutations (at loci which are drifting because they differ from the worst one). Nevertheless, it should be possible to derive a rough prediction from the underlying premises of such a phenomenon.

Based on results of the neutral theory of Evolution (Kimura, 1962;[START_REF] Ohta | Slightly Deleterious Mutant Substitutions in Evolution[END_REF], we indeed know that Natural Selection cannot screen mutations whose selective effect |s| is below 1/N e for haploid populations. If fitness is limited by a maximum value, this means that deleterious mutations with effects |s| ≈ 1/N e evolve through genetic drift and that fitness at the mutation-selectiondrift balance establishes around ≺ f * 1 ≻ ≈ 1 -1/N e when mutations are mostly deleterious and one locus is considered (Kimura, 1958). Let us say that an organism starts with the maximum possible fitness. Through drift on the first gene, f should decrease on average to approximately 1 -1/N e . Drift on the second gene should again push fitness downwards since the maximum fitness relatively to which drift occurs is now set to

1 -1/N e , such that ≺ f * 2 ≻ ≈ (1 -1/N e ) × (1 -1/N e ) = (1 -1/N e ) 2
. Therefore, considering n complementary genes yield the following

prediction ≺ f * n ≻ ≈ (1 -1/N e ) n .
If N e >> n, this can be summarized by ≺ f * n ≻ ≈ 1 -L * using the first order Taylor expansion, with L * = n/N e denoting the mutational load. In that case, this rough estimate is comparable in size to that from the Fisher's geometrical model in a N-dimensional space -namely L * ≈ n/(n + 2N e ) - [START_REF] Hartl | Compensatory Nearly Neutral Mutations: Selection without Adaptation[END_REF][START_REF] Poon | COMPENSATING FOR OUR LOAD OF MUTATIONS: FREEZING THE MELTDOWN OF SMALL POPULATIONS[END_REF][START_REF] Sella | An exact steady state solution of Fisher's geometric model and other models[END_REF] that considers the influence of complexity on the evolutionary balance.
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A toy evolutionary model

In this toy model, we consider a fitness landscape subject to saturation due to diminishing returns epistasis [START_REF] Tokuriki | Diminishing returns and tradeoffs constrain the laboratory optimization of an enzyme[END_REF][START_REF] Kaltenbach | Dynamics and constraints of enzyme evolution[END_REF] as has widely been documented for proteins in the case of stability [START_REF] Taverna | Why are proteins marginally stable?[END_REF][START_REF] Bloom | Thermodynamic prediction of protein neutrality[END_REF][START_REF] Bloom | Protein stability promotes evolvability[END_REF][START_REF] Kaltenbach | Dynamics and constraints of enzyme evolution[END_REF] and catalytic efficiency [START_REF] Dykhuizen | Metabolic flux and fitness[END_REF][START_REF] Bibliography Hartl | Limits of adaptation: the evolution of selective neutrality[END_REF][START_REF] Yi | Adaptive Landscapes in the Age of Synthetic Biology[END_REF][START_REF] Labourel | Resource uptake and the evolution of moderately efficient enzymes[END_REF]. It has also been recently shown that global diminishing returns epistasis [START_REF] Kryazhimskiy | Microbial evolution. Global epistasis makes adaptation predictable despite sequence-level stochasticity[END_REF][START_REF] Bahcall | Global epistasis[END_REF][START_REF] Otwinowski | Inferring the shape of global epistasis[END_REF] should arise for a complex trait as a by-product of the distribution of fitness effects [START_REF] Reddy | Global epistasis emerges from a generic model of a complex trait[END_REF]. Such a fitness landscape can typically be described through a sigmoid function whose shape is given by the following equation (similar to that of Michaelis Menten):

f (x) = x x + K X (6.1)
The evolutionary process is then simulated using the probability of fixation [START_REF] Mccandlish | Modeling evolution using the probability of fixation: history and implications[END_REF], which is a classical result in population genetics [START_REF] Haldane | A Mathematical Theory of Natural and Artificial Selection, Part V: Selection and Mutation[END_REF]Kimura, 1962;[START_REF] Wright | Evolution in Mendelian Populations[END_REF]. Within this simplified framework, neither clonal interference nor double/multiple mutants are considered, meaning that the fixation process concerns only one mutation (on one gene) at a time through a pairwise competition. Under this assumption, the probability that a mutation occurring in a haploid population is eventually fixed is given by:

P fix (s, N e ) = 1 -e -2s
1e -2Nes (≈ 2s 1e -2Nes , when s << 1) (

Let us say that X = (X 1 , ..., X n ) is the vector representing a state of the pool of n complementary gene5 where X i denotes the phenotypic value of the i eth gene, and that

s ′ m = f (X ′ m )-f (Xm) f (Xm)
denotes the potential selective value of a mutation X ′ m with fitness f (X ′ m ) occurring on the gene m whose current value in the population is X m (and fitness f (X m )). The fitness function detailed above therefore determines the maximum fitness a gene can potentially induce (e.g. the maximum catalytic flux an enzyme may be able to sustain without incurring costs). The actual selective value of a mutation, and its evolutionary fate, depends on the whole genetic background X within which it occurs owing to the specific process of complementary epistasis that changes the selective 6.2. A FIRST APPROACH effect this mutation provides to its carrier. Two cases have to be distinguished, as we specified below and on Figure 6.7.

First, if the mutation affects the less efficient gene of a pool of complementary genesi.e.

X m = min i∈Sg (X), such that f X = f (X m )
, with S g the set of genes involved in the phenotypic set X -the probability of fixation of the mutation X ′ m rises only up to the threshold where it is no longer the worst gene among the pool. It yields:

P fix,X ′ m =      P fix (s ′ m , N e ), when s ′ m ≤ ∆s {m,max} P fix (∆s {m,max} , N e ), otherwise, (6.3) 
where ∆s {m,max} = min

i∈Sg i =m f (X i ) f (Xm) -1 (with ∆s {m,max} ≥ 0).
Conversely, if the mutation influences the phenotypic value of any other genei.e. X m > min i∈Sg (X), with S g the set of genes involved in the phenotype X -its probability of fixation is that of a perfectly neutral mutation as long as the phenotypic value for this gene remains above the minimum of the set while it is that of a disadvantageous mutation -relatively to this thresholdwhen it falls under it, such that:

P fix,X ′ m =      1/N e , when s ′ m ≥ ∆s {m,min} P fix (s {act,m ′ } , N e ), otherwise, (6.4) 
where ∆s {m,min} = min

i∈Sg f (X i ) f (Xm) -1 (with ∆s {m,min} ≤ 0) and s {act,m ′ } = f (X ′ m ) min i∈Sg f (X i ) -1.
We considered the influence of different distribution of fitness effects by drawing phenotypic values X ′ m according to the following equation :

log 10 (X ′ m ) ∼ N (log 10 (X m ) -b, σ X ), (6.5) 
where b represents the intensity of the bias towards deleterious mutations. To comply with estimates on biological phenotypic traits, be they catalytic constants [START_REF] Carlin | Kinetic Characterization of 100 Glycoside Hydrolase Mutants Enables the Discovery of Structural Features Correlated with Kinetic Constants[END_REF] or gene expression [START_REF] Metzger | Contrasting Frequencies and Effects of cis-and trans-Regulatory Mutations Affecting Gene Expression[END_REF][START_REF] Hodgins-Davis | Empirical measures of mutational effects define neutral models of regulatory evolution in Saccharomyces cerevisiae[END_REF], the distribution of mutational phenotypic effects is modelled through a Gaussian distribution whose mean depends on the present value of the trait X m at the loci m and a variance σ 2 X (and the aformentionned mutational bias).

A FIRST APPROACH

Potential fitness

Complementary locus

Actual fitness as shown in A, the actual fitness is determined by the potential fitness of the worst locus. In accordance with that, two cases are to be distinguished : if the mutation hits the worst one (B), it evolves under selection-drift regime (with P f ix corresponding to the single locus model expectation) up until its potential fitness reaches the 2 nd worst one of the set of complementary loci, where any extra improvement would have the same selective value as that provided by the difference between the two worst loci; on the other hand, if the mutation hits one of the other (than the worst one) loci, it evolves under pure neutrality (P f ix = 1/N e for haploid Wright-Fisher process) down to the actual fitness because it does not affect this latter, and it is only below this threshold that it can be counter-selected according to the drift-selection regime.

We examined different situations ranging from cases where no mutational bias exists (b = 0) to some with high ones (|b| = λX m , where λ >> 0). Both because it seems more realistic [START_REF] Carlin | Kinetic Characterization of 100 Glycoside Hydrolase Mutants Enables the Discovery of Structural Features Correlated with Kinetic Constants[END_REF] and because the optimization process would otherwise be far longer, mutations are drawn for the log 10 value of the trait in such a way that those affecting higher phenotypic values have a proportionally higher variability and are more biased (when the bias is not null).

Note that there exists a broad scientific literature on the distribution of fitness effects of mutations [START_REF] Eyre-Walker | The distribution of fitness effects of new mutations[END_REF]Orr, 2003;[START_REF] Gillespie | Molecular Evolution Over the Mutational Landscape[END_REF] and some previous theoretical arguments for it (see for instance [START_REF] Martin | A general multivariate extension of Fisher's geometrical model and the distribution of mutation fitness effects across species[END_REF][START_REF] Rice | The Evolutionarily Stable Distribution of Fitness Effects[END_REF], but we are here interested in the 6.2. A FIRST APPROACH making of these effects from underlying causes and cannot, as a consequence, use distributions that result from evolved phenotype-fitness maps. We shall later discuss this point as a direct perspective of the present project.

Simulation results

As an attempt to evaluate the relevance of studying this phenomenon, we tested as a premise the influence of complementary epistasis on the mutational load. To do so, we set K X = 1 in equation (6.1). Three mutational biases were considered (0;-σ X ;-2σ X ) ranging from no bias to a high one through which only 1 mutations out of 40, approximately, is advantageous. We also studied two different levels of phenotypic variability among mutants for the log 10 of X ′ m (σ X = 0.25 and σ X = 0.5), with the highest one producing advantageous mutations with greater selective effects while decreasing the relative pool of slightly deleterious ones. These sets of parameters are in line with the aforementioned estimates for some distribution of phenotypic effects of mutations [START_REF] Carlin | Kinetic Characterization of 100 Glycoside Hydrolase Mutants Enables the Discovery of Structural Features Correlated with Kinetic Constants[END_REF][START_REF] Metzger | Contrasting Frequencies and Effects of cis-and trans-Regulatory Mutations Affecting Gene Expression[END_REF]. The initial value of each complementary phenotypic trait was set to X i = X 0 for any gene, with X 0 = 1 -1/N e to start from the null hypothesis of nearly-neutral Evolution under high deleterious bias (but only one module). This starting point thus coincides with the classical Wright and Kimura's expectation and should outstrip the final value as any extra epistasis comes at a cost. Finally, the probability of fixation was computed through either equation (6.3) or equation (6.4) depending on the locus which was affected and the simulations were ran for an average of 10 3 mutation events per gene per ideal Wright-Fisher individual (eg. if N e = 10 2 , 10 5 mutations are drawn per gene).

We simulated the evolutionary process for N e = 10 (see Appendix section at the end of this subsection) and N e = 100 and present the results obtained for the mutational load in this latter case. In line with expectations, we observed that the number of complementary genes (denoted under the generic term of modules in the figure) severely impairs the strength of Natural Selection, with a decrease of the order of n mod × 1/N e when mutational biases are considered. However, this is not the case when no bias is considered with a decrease being far more limited that does not jeopardise the optimisation process albeit marginally -see (A) and (B) on Figure (6.8). Because deviations from the expected steady-state can accumulate, the balance is also more sensitive to the variability of mutational effects, with lower variability coming with a predictable decreased fitness -due to an increased amount of slightly deleterious mutations and a decreased amount 6.2. A FIRST APPROACH documented in models based on universal pleiotropy such as [START_REF] Hartl | Compensatory Nearly Neutral Mutations: Selection without Adaptation[END_REF] and [START_REF] Poon | COMPENSATING FOR OUR LOAD OF MUTATIONS: FREEZING THE MELTDOWN OF SMALL POPULATIONS[END_REF]. But we show here using a toy model that such complexity-selection trade-off may be readily observed without any preexisting pleiotropic relationship (and without accounting for the decrease of effective population size usually associated with complexity), which lends credit to the idea of an intrinsic cost to complexity.

Towards an analytical treatment ?

In order to grasp the effect of high order complementary epistasis, it is of great interest to derive results in terms of phenotypes and fitness distributions, rather than only the mutation load it entails. Our working hypothesis is that fitness is determined by the weakest link of the cellular functioning. Under the weakest link model, it is possible to calculate the stationary distribution of the n-trait fitness distributions by considering only the order statistics for a single trait.

Indeed, based on insights by [START_REF] Sella | The application of statistical physics to evolutionary biology[END_REF], who shown that assuming weak mutations -no clonal interference, such as in Moran or Wright-Fisher model -it is possible to determine the distribution of fitness at evolutionary steady-state as a combination between the neutral distribution of fitness and the effect of the power of selection N e using the formula:

ρ * (f ) = f v .ρ g (f ) 1 0 f v .ρ g (f ) df , ( 6.6) 
where v denotes the temperature analogy and can be estimated for both Moran and Wright-Fisher models (eg. haploid Wright-Fisher model v = 2(N e -1)), f represents any possible value of fitness for a genotype, and ρ g (f ) is the neutral distribution of fitnesses in the genotype space.

In this formula, one assumes symmetrical mutations (µ ij = µ ji ), but it is possible to relax this assumption [START_REF] Sella | The application of statistical physics to evolutionary biology[END_REF].

For example, if fitness is uniformly distributed between 0 and 1, meaning that ρ g (f ) ∼ U(0, 1), it is straightforward to show that the stationary distribution of fitness is given by:

ρ * (f ) = f v 1/(v + 1) = (v + 1)f v (6.7) 6.3. TOWARDS AN ANALYTICAL TREATMENT ?
As a direct consequence, such a fitness distribution yields the following mutational load:

L * = 1-≺ f * ≻ = 1 -(v + 1) 1 0 f v+1 .ρ g (f ) df = 1 - v + 1 v + 2 = 1 v + 2 (= 1 2N e
for an haploid Wright-Fisher population)

Simultaneously, the fundamental theorem of order statistics [START_REF] Casella | Statistical inference[END_REF] enables one to determine the distribution of the k ieth order statistic. More particularly, the distribution followed by the minimum X (1) = min{X 1 , X 2 , ..., X n } of a n-tuple of random variables identically distributed obeys the following equation:

f X (1) (x) = n f (x) (1 -F (x)) n-1 , ( 6.8) 
where f (x) and F (x) respectively represents the density and cumulative probability distribution of these variables.

Using this theorem and assuming all traits to follow the same fitness distribution -which means fitness between the different traits would not depart much one from another -the stationary fitness distribution is given by the equation above (eq. 6.8). It is therefore possible to determine the neutral distribution of fitness using known distributions under certain circumstances. A simple didactic case corresponds to the aforementioned uniform distribution, for which it is known that the first order statistic obeys a Beta distribution B(1, n) when n variables are drawn. The neutral distribution of fitness under complementary epistasis is therefore given by this distribution, which yields that the fitness distribution at evolutionary steady-state also follows a Beta distribution as:

ρ * (f ) = f v .(1 -f ) n-1 1 0 f v .(1 -f ) n-1 df , ( 6.9) 
Notice that the scaling factor made by the beta function vanishes as it is present on both sides of the fraction. It follows that ρ * (f ) ∼ B(v +1, n), whose expectancy -which corresponds to fitness at mutation-selection-drift balance -is given by ≺ f * Un ≻ = v+1 v+1+n , which yields ≺ f * hap,Un ≻ = 6.3. TOWARDS AN ANALYTICAL TREATMENT ?

2Ne-1 2Ne-1+n in an haploid population for a corresponding mutational load of L * hap,Un = n n+2Ne-1 . Remarkably, this burden is the exact same quantity than that derived from Fisher's N dimensional geometric model, meaning that the latter coincides with a model of weakest link complementary epistasis where the neutral distribution of fitness is uniformly distributed.

Nonetheless, we know that such a distribution is not very realistic. Instead, the fitness distribution is more likely to obey a Beta-like distribution whose parameters may differ on a case-by-case basis. Beta-distributions do not enable analytic tractability, but [START_REF] Kumaraswamy | A generalized probability density function for double-bounded random processes[END_REF] put forward the beta-like Kumaraswamy distribution, which allows such calculations [START_REF] Jones | Kumaraswamy's distribution: A beta-type distribution with some tractability advantages[END_REF]. This distribution is described by the following DFD:

f (x; a, b) = abx a-1 (1 -x a ) b-1 1 [0,1] ,
for which it is possible to write the first order statistic using Eq.(6.8) and to apply it to the fitness distribution:

ρ g (f ) = n × abf a-1 (1 -f a ) b-1 1 [0,1] ((1 -f a ) b )) n-1
Rearranging the terms to gather n and b ones, it is straightforward to show that ρ g (f ) ∼ K(a, nb).

Consequently, the distribution of fitness at evolutionary steady-state obeys the following law:

ρ * (f ) = a(nb)f v+a-1 (1 -f a ) nb-1 1 [0,1] 1 0 a(nb)f v+a-1 (1 -f a ) nb-1 df (6.10)
Furthermore, another interesting property of this distribution is that its moments may be expressed analytically through a combination of beta functions and thus also through one of the well-known gamma distributions. It is very helpful because looking carefully at [START_REF] Sella | The application of statistical physics to evolutionary biology[END_REF]'s formula shows that the fitness at evolutionary steady-state simply reduces to the ratio between the v + 1 eth and the v eth moments of the neutral fitness distribution. These considerations lead to the following expression:

≺ f * Kv(a,b) ≻ = nb.B(1 + (v + 1)/a, nb) nb.B(1 + v/a, nb) = Γ(1 + (v + 1)/a) Γ(1 + v/a) × Γ(1 + nb + v/a) Γ(1 + nb + (v + 1)/a)
, (6.11) 6.3. TOWARDS AN ANALYTICAL TREATMENT ?

where Γ(x, y) denotes the gamma function6 .

When a = 1 (or more broadly a ∝ 1/k | k ∈ N * ), the gamma function can be expressed as a factorial, which simplifies the reduction of Eq.(6.11). Yet, the relevance of using Beta-like distributions for the neutral distribution of fitness is to determine the influence of the balance between deleterious and advantageous mutations on the mutational load, which critically depends on both the ratio between a and b, and their absolute values: more specifically, setting a > 1 allows one to explore the influence of bell-like curves, as can be shown by drawing the DFD for a sample of parameters set: The balance between low and high fitnesses is mainly determined by the ratio between a and b: the higher b, the largest deleterious variants.

From the property connecting the Gamma function to factorial numbers for integer numbers -Γ(n + 1) = n! -it is straightforward to derive the steady-state fitness and its corollary mutational load when a can be written under the form 1/k with k ∈ N * , which is given by:

≺ f * Kv(a,b) ≻ = 1/a i=1 2N e /a + i 2N e /a + nb + i (6.12)
In parallel, it is also possible to determine an analytical solution when a = 2 taking advantages of the well-known formula for half integers, which states that

Γ(m + 1/2) = (2m)! 2 2m m! √ π if m ∈ N * .
Assuming that nb is an integer, it is therefore possible to determine Γ(N +1/2) Γ(N )

as well as Γ(N +1/2+nb) Γ(N +nb) , 6.3. TOWARDS AN ANALYTICAL TREATMENT ? which gives:

≺ f * Kv(2,b) ≻ = 2 2nb .
(2N e )! N e !(N e -1)! .

(N e + nb)!(N e + nb -1)! (2(N e + nb))! (6.13)

Stirling's formula7 [START_REF] Dutka | The early history of the factorial function[END_REF] states that when K is a large integer, the factorial matches the much simpler form

K! = √ 2πK( K e ) n . Given that (2K)! K!(K-1)! = (2K)!K (K!) 2
, substituting Stirling's formula in a term of the form found in Eq.(6.13) yields:

(2K)! K!(K -1)! ∼ 2 2K K π , for K ∈ N *
Finally, it yields for a = 2 and v = 2(N e -1):

≺ f * Kv(a,b) ≻ = N e N e + nb (6.14)
Using first order approximation, it follows from these findings that when nb << N e , the Poon-Otto's burden of complexity holds with L * ≈ nb 2Ne , which confirms that these confounding causes may be difficult to disentangle through data analysis alone. By contrast, if the number of interacting units is large, the mutational load can depart largely from this previous prediction, especially when nb approaches or exceeds the order of magnitude of N e . Noticeably, this new formulation shows that parameters b (which can be seen as a mutational bias towards deleterious mutations) and n are equally contributing to the load, and their importance critically depends on the shape of the neutral fitness distribution. Focusing on the most documented distributions, those displaying an excess of extreme values -both low and high ones potentially-, correspond to cases where the mutational load is increased if b > 1, and decreased otherwise, for a given number of complementary units. But in contrast with Fisher's model, it seems plausible if not inevitable to assume that n outnumbers small or even intermediate N e since each of the units can for instance represent an enzyme's or a protein's activity. The final analytical step should be to derive yet more general predictions. 6.4. DISCUSSION : HOW OTHER BIOLOGICAL FEATURES IMPACT THESE PREDICTIONS ?

Discussion : how other biological features impact these predictions ?

Because the aim of this new framework is to try and understand the influence of epistasis from physical and chemical first principles, further developments will definitely need include other relevant features that should influence evolutionary outcomes. First, it is known that mutations occurring on coding sequences, even being synonymous, are rarely exactly neutral, reflecting in particular the cost arising from codon usage bias [START_REF] Ikemura | Codon usage and tRNA content in unicellular and multicellular organisms[END_REF][START_REF] Galtier | Codon Usage Bias in Animals: Disentangling the Effects of Natural Selection, Effective Population Size, and GC-Biased Gene Conversion[END_REF][START_REF] Labella | Variation and selection on codon usage bias across an entire subphylum[END_REF], a feature that definitely influences fitness landscapes [START_REF] Fragata | The fitness landscape of the codon space across environments[END_REF]. In parallel, not all kind of phenotypic traits undergo deleterious mutational biases as simple as that presented up until now : this is especially true for levels of expression8 , which often result themselves from complex changes in gene networks features such as the level of trans-regulatory elements, their affinity and specificity, and a pleitropic set of relations with cis-regulatory elements involving the whole genome [START_REF] Hodgkin | Seven types of pleiotropy[END_REF][START_REF] Chesmore | Complex Patterns of Association between Pleiotropy and Transcription Factor Evolution[END_REF][START_REF] Boyle | An Expanded View of Complex Traits: From Polygenic to Omnigenic[END_REF][START_REF] Sella | Thinking About the Evolution of Complex Traits in the Era of Genome-Wide Association Studies[END_REF]. For illustrative purpose, let us imagine that a given gene is mainly regulated by a transcriptional inhibitor: as transcription factors face a mutational bias towards lower affinities, this bias should enhance gene expression rather than decrease it. Last but not least, if biological systems may be thought to be under directional selection to maximize growth and biomolecules production, the intertwining of pathways and biological reactions is more likely to result in a slightly different picture -portrayed on Figure 6.10 -than that displayed by a simple positive complementary epistasis: proteins that are too efficient may at some point yield collateral damages either because they monopolize resources in vain or as they induce toxicity (eg. producing too many metabolites) [START_REF] Lilja | Metabolite toxicity determines the pace of molecular evolution within microbial populations[END_REF][START_REF] Niehaus | Enzyme promiscuity, metabolite damage, and metabolite damage control systems of the tricarboxylic acid cycle[END_REF][START_REF] Labourel | Resource uptake and the evolution of moderately efficient enzymes[END_REF]. Consequently, it seems more realistic that each of the non-worst genes is under more or less relaxed stabilizing selection towards an optimum, coinciding with the worst gene -that can only change when the worst gene of the set improves to a higher value -which means that even when no mutational bias exists, most genes involved in complementary epistasis should be pulled towards the worst one, for complementary epistasis becomes negative in those cases. Likewise, it seems judicious to study whether the effect of such epistasis differs when it occurs within entities part of a linear system or between parallel entities (which could of course be made by lower-level entities themselves) like two pathways comprised 6.4. DISCUSSION : HOW OTHER BIOLOGICAL FEATURES IMPACT THESE PREDICTIONS ?

of proteins, which would also be philosophically interesting for its shared similarity with electric or heat systems -as recently outlined by [START_REF] Yi | Adaptive Landscapes in the Age of Synthetic Biology[END_REF] -where parallel and series circuit were shown to work differently a long while ago, by the then student Gustav Kirchhoff [START_REF] Charbonneau | In: Biographical Encyclopedia of Astronomers[END_REF].

Potential fitness

Complementary locus

Actual fitness ing all loci towards the same lowest level coinciding with actual fitness. But in fact, it is even likely that mutations towards very high values of potential fitness can often prove to be deleterious rather than neutral (eg. an enzyme far more efficient than its neighbours in a pathway may produce a metabolite so quickly that it ends up reaching toxic cellular levels.). In turn, only a small range of adaptive phenotypes exists at any given time (B). Despite the trait being under directional selection, this latter process thence mimics stabilizing selection, although towards an optimal area rather than a precise point, whilst the mutational pressure further stabilizes the actual deleterious phenotype.

A

Being directly based on functional insights, such a framework seems very relevant to start tackling the challenges set out by the joint evolution between basic functional epistasis -and more broadly, genetic interactions -and Adaptation from a population genetics theoretical perspective insofar as it may allow to draw very general and testable conclusions. In spite of its apparent specificity, it can indeed describe both intra-level and multilevel evolution: it is appropriate to describe the joint evolution of organs/appendages, as well as enzymes along a pathway, or organs/appendages and enzymes all together, provided that one knows how the genotype-phenoype-fitness map builds up. Many further developments are thereby possible.

6.4. DISCUSSION : HOW OTHER BIOLOGICAL FEATURES IMPACT THESE PREDICTIONS ?

One natural sequel would of course be to refine its components and account for the existence of compensatory mutations entailed by the multidimensional phenotypic redundancy of some biological features: higher enzyme concentrations can buffer lower kinetic enzymes -though it comes with the cost of a protein burden [START_REF] Koch | The protein burden of lac operon products[END_REF][START_REF] Dill | Physical limits of cells and proteomes[END_REF][START_REF] Kafri | The Cost of Protein Production[END_REF]; villi can theoretically relax the selective pressure acting on enzymes for the absorption of nutrients; a longer calf can compensate for a smaller thigh or vice-versa, etc. To expand further in this area, it would also be relevant to see what happens when genes undergoing true stabilizing selection come into play, as they are also widespread9 [START_REF] Sella | Thinking About the Evolution of Complex Traits in the Era of Genome-Wide Association Studies[END_REF], and whether the joint evolution with the fitness effects of mutations -whose distribution both impacts the course and the outcome of Evolution while inescapably being subject to It -could overturn expectations.

However, it would seem premature to further investigate these specific building blocks more than others while we know that there exists plenty other kind of genetic interactions (eg. biological modularity (Wagner, 1996b)), that each deserves to be accounted for on a mechanistic basis: for instance, pleiotropy is, like epistasis and the distribution of fitness effects, both a result of Evolution and an intrinsic biological phenomenon (Wagner, 1996b;[START_REF] Chesmore | Complex Patterns of Association between Pleiotropy and Transcription Factor Evolution[END_REF] depending on its underpinnings, which are numerous. This means that understanding its joint evolution with epistasis requires first to inform which part is intrinsic to biological systems10 , when and how it can be alleviated, and how it finally impacts the genotype-phenotype-fitness map before these systems are studied using a complete framework, which undeniably sketches a rather more distant objective.

Instead, it seems more appropriate to adopt a step-by-step approach where population genetics and first principle fitness landscapes are built in parallel, as was done in the past to understand the evolution of stability [START_REF] Taverna | Why are proteins marginally stable?[END_REF][START_REF] Bloom | Stability and the Evolvability of Function in a Model Protein[END_REF] and its evolutionary [START_REF] Drummond | Why highly expressed proteins evolve slowly[END_REF][START_REF] Bloom | Protein stability promotes evolvability[END_REF][START_REF] Drummond | Mistranslation-Induced Protein Misfolding as a Dominant Constraint on Coding-Sequence Evolution[END_REF][START_REF] Tokuriki | Stability effects of mutations and protein evolvability[END_REF][START_REF] Serohijos | Protein biophysics explains why highly abundant proteins evolve slowly[END_REF][START_REF] Dasmeh | The Influence of Selection for Protein Stability on dN/dS Estimations[END_REF][START_REF] Echave | Biophysical Models of Protein Evolution: Understanding the Patterns of Evolutionary Sequence Divergence[END_REF] and functional consequences [START_REF] Bloom | Evolution favors protein mutational robustness in sufficiently large populations[END_REF][START_REF] Geiler-Samerotte | Misfolded proteins impose a dosage-dependent fitness cost and trigger a cytosolic unfolded protein response in yeast[END_REF][START_REF] Dasmeh | Estimating the contribution of folding stability to nonspecific epistasis in protein evolution[END_REF], and to derive the models of genetic interactions and constraints from these latter ones rather than taking them for granted because they currently exist after billion years of evolutionary history.

Chapter 7

Proteome allocation, niche construction and the evolution of cellular diversification 7.1 Proteome allocation and the evolution of metabolic crossfeeding

About Adaptive Dynamics

In the following project, we made extensive use of the Adaptive Dynamics framework [START_REF] Geritz | Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree[END_REF][START_REF] Rajon | Adaptation locale et optimalitédes stratégies de dormance en environnement imprévisible : développements théoriques et validation expérimentale chez le balanin de la châtaigne, Curculio elephas[END_REF], whereby the competition is simulated by determining the invasive fitness of a mutant strategy when it is rare. The first step is to simulate pairwise interactions in which the resident strategies is composed by one phenotype, assuming weak (i.e. rare) mutations.

The mutant invades when its invasive fitness f mr > f r , that is, when f mrf r > 0, which is the gradient represented in Box 14. When branching points are detected -see below -one has to determine, in a second step, if a neighbouring mutant can invade a coalition through the mutation of either one of the resident composing the coalition. This is summarised through trait evolution plots, as can be seen in the supplementary materials of this project. Determining if the strategy is an attractor or a repeller is straightforward as one just has to follow the simple rule that a mutant (in ordinates) invades if it is in the green area, while it disappears otherwise [START_REF] Rajon | Adaptation locale et optimalitédes stratégies de dormance en environnement imprévisible : développements théoriques et validation expérimentale chez le balanin de la châtaigne, Curculio elephas[END_REF]. In (A), mutant invades above the bisector for low values and below it for high values, which means that the singular strategy is convergent. Besides, the singular strategy cannot be invaded by mutant when it is in place, as depicted by skulls, implying that it is also stable.

Such a strategy is called a CSS for convergent stable strategy, as shown in (B). We do not report the case of repellers here, as we did not find any such behaviour in our work, but the mere idea is that green and red areas are located in an opposite fashion. Another interesting case occurs when the singular strategy is convergent but can nonetheless itself be invaded. In this case, the singular strategy is not stable, and the situation corresponds to a branching point as in (C) [START_REF] Rajon | Adaptation locale et optimalitédes stratégies de dormance en environnement imprévisible : développements théoriques et validation expérimentale chez le balanin de la châtaigne, Curculio elephas[END_REF]. Notice that in (C), it is neither locally nor globally stable, but there can be cases where it is locally stable in that neighbouring strategies cannot invade, but yet globally instable if remote strategies can. Determining the outcome for branching points require to draw trait evolution plots -denoted TEPs -as exemplified in the work we did, and more specifically in the SMs.

PROTEOME ALLOCATION AND THE EVOLUTION OF METABOLIC CROSS-FEEDING

Significance statement

Can two species thrive on a single energetic resource? While the competitive exclusion principle predicts that one in the pair should go extinct, it may occur that an organism releases partially metabolized molecules in the environment, securing an ecological niche for a second organism in a process called metabolic cross-feeding. Here we investigate how evolution may favor the waste of a useful resource using an evolutionary model that considers how a cell packed with proteins may be less efficient, hence favoring a shortening in metabolic pathways. Our model indicates that such shortenings only occur -and cross-feeding only evolve -in restricted conditions. Incidentally, this makes the signatures of cross-feeding, such as which metabolites are preferentially involved, quite predictable.

Abstract

Metabolic cross-feeding (MCF) is a widespread type of ecological interaction where organisms share nutrients. In a common instance of MCF, an organism incompletely metabolizes sugars and releases metabolites that are used by another as a carbon source to produce energy. Why would the former waste good food, and why does this preferentially occur at specific locations in the sugar metabolic pathway (acetate and glycerol are preferentially exchanged) have challenged evolutionary theory for decades. Here we investigate how a special feature of these metabolites -their high diffusion across the cell membrane -may trigger the emergence of cross feeding in a population. We explicitly model metabolic reactions, their enzyme-driven catalysis, and the cellular constraints on the proteome that may incur a cost to expressing all enzymes along the metabolic pathway. We find that up to high permeabilities of an intermediate metabolite, the evolutionarily expected outcome is not a diversification that resembles cross-feeding but a single genotype that instead overexpresses the enzymes downstream the metabolite to limit its diffusion.

Only at very high permeabilities and under restricted sets of parameters should the population diversify and MCF evolve.

Introduction

Genetic diversification (Wright, 1949;[START_REF] Ayala | Genetic differentiaiton during the speciation process in Drosophila[END_REF] may occur when different ecological niches are encountered [START_REF] Gause | Experimental Studies on the Struggle for Existence : I. Mixed Population of Two Species of Yeast[END_REF][START_REF] Hardin | The competitive exclusion principle[END_REF][START_REF] Levin | Coexistence of Two Asexual Strains on a Single Resource[END_REF], for instance when different carbon sources are available in the environment [START_REF] Hermsen | A growth-rate composition formula for the growth of E. coli on co-utilized carbon substrates[END_REF][START_REF] Wang | Growth strategy of microbes on mixed carbon sources[END_REF]. What may 7.1. PROTEOME ALLOCATION AND THE EVOLUTION OF METABOLIC CROSS-FEEDING at first glance sound puzzling -why not using all the available nutrients? -finds an explanation in physiological constraints or even absolute incompatibilities that make specialists of each resource outperform generalists [START_REF] Hutchinson | The Paradox of the Plankton[END_REF][START_REF] Stearns | Trade-Offs in Life-History Evolution[END_REF]Michod, 2005;[START_REF] Sheftel | The geometry of the Pareto front in biological phenotype space[END_REF][START_REF] Baquero | The Origin of Niches and Species in the Bacterial World[END_REF]. Even more bewildering is the observation that diversification occurs in the presence of a single energetic resource [START_REF] Helling | Evolution of <em>Escherichia coli</em> During Growth in a Constant Environment[END_REF][START_REF] Lenski | Long-Term Experimental Evolution in Escherichia coli. I. Adaptation and Divergence During 2,000 Generations[END_REF][START_REF] Good | The dynamics of molecular evolution over 60,000 generations[END_REF]. One finds a clear example in chemostats or controlled experimental systems in which glucose is continuously injected, where glucose consumers may evolve that release metabolites for others to use as a carbon source [START_REF] Helling | Evolution of <em>Escherichia coli</em> During Growth in a Constant Environment[END_REF][START_REF] Treves | Repeated evolution of an acetate-crossfeeding polymorphism in long-term populations of Escherichia coli[END_REF]. This unidirectional by-product process is a form of metabolite cross-feeding (D 'Souza et al., 2018;[START_REF] Smith | The Classification and Evolution of Bacterial Cross-Feeding[END_REF], and its evolutionary underpinnings are still blurry (D 'Souza et al., 2018;[START_REF] San Roman | An enormous potential for niche construction through bacterial cross-feeding in a homogeneous environment[END_REF].

In particular, the reasons why specific metabolites are more likely involved in cross-feeding remain unclear. Indeed, a large number of metabolites can be produced by a glucose-reliant genotype that can be used as a viable single carbon source by a second genotype (a glucose reliant strain of Escherichia coli can produce 58 such useful metabolites for example, San Roman et al.,

2018

). Yet only two metabolites are commonly reported as being traded in such cross-feeding interactions, namely acetate and glycerol. San-Roman and Wagner (San Roman et al., 2020) have hypothesized that this preferential evolution could be due to shorter mutational paths, such that modifying the metabolic network to produce these interacting strains would require fewer mutations and thus, under a neutral model of evolution, be more likely. But their conclusion is that acetate or glycerol trades are no more likely than others to arise by mutation and evolve neutrally.

Adaptation is often incomprehensible without considering the ability of an organism to perform a task as dependent on internal constraints. For example, fully expressing all enzymes along a metabolic pathway may incur a fitness cost, such that sacrificing a part of a pathway becomes beneficial [START_REF] Doebeli | A model for the evolutionary dynamics of cross-feeding polymorphisms in microorganisms[END_REF][START_REF] Pfeiffer | Evolution of Cross-Feeding in Microbial Populations[END_REF]. The cost of packing a cell with proteins is actually two-fold [START_REF] Labourel | Resource uptake and the evolution of moderately efficient enzymes[END_REF]. First, producing enzymes incurs a direct energetic cost, approximately proportional to the sum of enzymes concentrations in the cell [START_REF] Wagner | Energy Constraints on the Evolution of Gene Expression[END_REF][START_REF] Lynch | The bioenergetic costs of a gene[END_REF][START_REF] Kafri | The Cost of Protein Production[END_REF]. Second, cell packing may disturb the diffusion of enzymes, thereby hindering metabolic efficiency [START_REF] Dill | Physical limits of cells and proteomes[END_REF][START_REF] Blanco | Macromolecular diffusion in crowded media beyond the hard-sphere model[END_REF]. Making quantitative predictions thus requires to combine realistic features of cells and competitive principles.

In a previous study, we have shown that the evolution of enzyme kinetic parameters and con-7.1. PROTEOME ALLOCATION AND THE EVOLUTION OF METABOLIC CROSS-FEEDING centrations is contingent on their competition with other processes for their substrate [START_REF] Labourel | Resource uptake and the evolution of moderately efficient enzymes[END_REF]. One of these competing processes may be diffusion through the cell membrane, such that highly diffusive metabolites should be processed by more efficient or concentrated enzymes.

The combination of this requirement for high concentrations, and the cost of an abundant proteome, could make these metabolites the preferential points of rupture in a metabolic pathway by favoring a reduction in expression for downstream enzymes.

Very few metabolites can diffuse through membranes, either because of their size or due to their electronic properties [START_REF] Milo | Cell Biology by the Numbers[END_REF]. Such diffusion may be direct, as is the case for glycerol, or indirect when a non-diffusive metabolite spontaneously transforms into a diffusive one, as is the case with acetate [START_REF] Orsi | Permeability of Small Molecules through a Lipid Bilayer: A Multiscale Simulation Study[END_REF][START_REF] Pinhal | Acetate Metabolism and the Inhibition of Bacterial Growth by Acetate[END_REF]. In this work, we assess the hypothesis that cross-feeding evolves in response to the high diffusion rates of metabolites. A stated above, suppressing a part of a pathway may reduce the cost of over-expressing enzymes; interestingly, a genotype that would only express these enzymes to use the intermediate metabolite would not have to reach concentrations so high, as the metabolite would be present in the environmenti.e. high diffusion, for a specialist of the intermediate metabolite, is beneficial.

We use Adaptive dynamics to model the competition for the resource, as the environment is shaped by the genotype in a population (that control the equilibrium frequencies of both the nutrient and the intermediate metabolite). We find that cross-feeding only evolves at very high permeabilities for the focal metabolite, compatible with diffusion rates reported for acetate or glycerol. We also find such evolutionary diversification between two specialist phenotypes occurs at moderate to high, but not low, levels of degradation of metabolites along the pathway, and that it is also promoted by toxicity effects, although between a generalist strategy and a specialist feeding on the intermediate metabolite in that case.

Optimal metabolic allocation and cell constraints

Evolution of the overall expression of metabolic enzymes

We first assume that all enzymes have an equal concentration and consider its evolution. Increasing and the latter through a penalty on k f , whose effect has been estimated [START_REF] Blanco | Macromolecular diffusion in crowded media beyond the hard-sphere model[END_REF][START_REF] Andrews | Effects of surfaces and macromolecular crowding on bimolecular reaction rates[END_REF] and modelled in previous studies [START_REF] Dill | Physical limits of cells and proteomes[END_REF]) -(see Model and Labourel et al., 2021).

To approach the case of reactions involved in the carbon cycle [START_REF] Liebermeister | Visual account of protein investment in cellular functions[END_REF], we consider a pathway comprised of 40 enzymes and initiated by facilitated diffusion through a transporter [START_REF] Kotyk | Mobility of the free and of the loaded monosaccharide carrier in Saccharomyces cerevisiae[END_REF], where an energy unit is produced at each step in the process. Reactions follow Michaelis-Menten kinetics [START_REF] Briggs | A Note on the Kinetics of Enzyme Action[END_REF], where we set their kinetic constants to log 10 (k f ) = 7 and log 10 (k cat ) = 2.5. These are high values relative to the average enzyme in a cell, but only slightly (one order of magnitude) above the median observed for enzymes involved in the central metabolism [START_REF] Bar-Even | The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters[END_REF]. The local context of a reaction -including reaction reversibility and metabolite toxicity -may also affect metabolic efficiency, as captured by a linear degradation rate of each metabolite, η, in this instance of the model [START_REF] Labourel | Resource uptake and the evolution of moderately efficient enzymes[END_REF]. Nutrients are added to the environment at a constant rate α and degraded at a linear rate β, which also applies to metabolites that can be released by cells.

For all combinations of the parameters above considered, the evolutionarily expected concentrations of the 40 enzymes in the pathway sum up to 15 -25 % of the proteome (see SM -section Text S1). The highest fraction is obtained in conditions where selection for efficiency is acute, such that increasing concentration becomes beneficial even though it increases cell crowding. These predictions are consistent with estimates in unicellular species [START_REF] Liebermeister | Visual account of protein investment in cellular functions[END_REF]: in most cases, enzymes involved in the carbon cycle constitute 15 to 25% of the proteome. In the remaining of this study, the overall concentration of enzymes in the pathway is considered fixed at its evolutionary expectation by default.

Overexpression in upstream reactions

We then studied how cells should allocate their proteome along a pathway where several reactions are involved in energy production and fitness -for simplicity we consider that each reaction in the pathway contributes equally. The first enzyme in the pathway has a fixed concentration close to its optimal value, that is [E 0 ] = 10 -4 M . We then split the rest of the pathway in two parts of equal length and study the evolution of the expression in each part. This is a proteome allocation problem, since the overall concentration is fixed as just described; we study the evolution of the part of this overall concentration allocated to the first half of the metabolic pathway, δ, which we The evolution of δ is modeled using adaptive dynamics [START_REF] Hofbauer | Adaptive dynamics and evolutionary stability[END_REF][START_REF] Geritz | Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree[END_REF][START_REF] Doebeli | A model for the evolutionary dynamics of cross-feeding polymorphisms in microorganisms[END_REF], as is appropriate when the fate of a mutant can depend on the environment shaped by a resident population. Here the resident strategy impacts the equilibrium concentrations of the nutrient and of the metabolite produced by the last reaction of the first half of the metabolic pathway. At this stage, this metabolite is considered identical to any other in the pathway, particularly regarding its diffusion across the membrane (i.e. membrane permeability for this metabolite is 0). Therefore in this case, the evolutionary outcome is always a single allocation strategy δ, as shown in Fig. 7.2-A. Indeed, from any resident strategy in place in the population, evolutionary trajectories will converge to δ ≈ 0.7, and once in place in the population (as resident) this strategy will be stable against the invasion by mutants with any other δ.
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The investment in the first part of the pathway is generally above 0.5, e.g. δ evolves to approximately 0.6 even at very low degradation rates where the resulting loss in metabolites is less than 1% along the pathway. A possible explanation is that upstream enzymes not only concur to fitness directly through the energy generated by their respective reaction, but also through their indirect contribution to downstream reactions -see Fig. 7.2 and SM Text S2 for the analysis of this phenomenon through a more tractable model. The irreversible loss of metabolites caused by an increase in the degradation rate (see Fig. S3 of SM) increases the asymmetry in fitness contributions further and thereby tends to increase the ratio of upstream to downstream enzyme expression (see Fig. 7.2). This asymmetry in fitness contributions might help explain why enzymes catalysing more upstream reactions tend to face stronger selection [START_REF] Greenberg | Evolutionary Constraint and Adaptation in the Metabolic Network of Drosophila[END_REF][START_REF] Wright | The Evolution of Control and Distribution of Adaptive Mutations in a Metabolic Pathway[END_REF][START_REF] Olson-Manning | Evolution of Flux Control in the Glucosinolate Pathway in Arabidopsis thaliana[END_REF]. Overexpression of upstream enzymes can nonetheless be counteracted by selection for homogeneity in metabolite concentrations, as is the case when toxicity is high (Fig. 7.2B).

Nonetheless, downstream enzymes in the carbon cycle tend to produce much more energy that their upstream counterparts (Cox et al., 2000). We considered this in our model -see Figure 7.12 in Appendix 2 of SM -by increasing the production of the enzymes in the second half of the pathway tenfold. In consequence, δ is closer to 0.5 at low degradation rates, as expected because upstream enzymes in this case contribute mostly indirectly to fitness, with a contribution that tends to equal the direct contribution of downstream enzymes.

Membrane permeability and cross-feeding

Membrane permeability changes proteome allocation

Membranes are only permeable to a few metabolites, owing to their unique chemical features [START_REF] Milo | Cell Biology by the Numbers[END_REF]. In our model, we allowed the diffusion of the metabolite produced by the last reaction of the first half of the metabolic pathway, with permeability rates ranging from P = 10 -12 dm.s -1

to 10 -4 dm.s -1 -in line with empirical estimates [START_REF] Milo | Cell Biology by the Numbers[END_REF], see the Model section for details. Metabolites making their way across the membrane have two effects. First, they are lost for the cell that has produced them, which may act as a selective pressure for limiting diffusion.

Second, they may accumulate in the external environment and be available to other individuals as a resource. A cell has little leverage to limit outward diffusion; the most obvious solution is to use the metabolite before it is lost, which in our model is possible through an increase in the The reported large allocation to the second half of the pathway is a rather efficient strategy, associated with a slight decrease in the equilibrium concentration of the metabolite in the external environment (for diffusion rates above 10 -8 in fig. 7.3). Despite its efficiency, this strategy results in an external concentration of the metabolite between 10 -4 and 10 -3 M, and is increasingly costly as permeability increases, as shown by the decrease in population size at high permeabilities (Fig. 7.3).

High permeability coefficients can promote cross-feeding by creating an ecological niche

This decrease in efficiency associated with an overinvestment in the second part of the pathway, and the increase in the external concentration of the metabolite, may create a new ecological niche when genotypes increasing their contribution to the first or second part of the pathway become fitter than the generalist. These situations can be identified by a specific type of pairwise invasibility plots where the singular strategy is convergent but evolutionarily unstable, as represented in fig. 7.3B.

In these cases, an adaptive diversification may occur, which can then be studied through coalition invasion graphs where the fate of mutants invading a pair of coexisting strategies is considered (SM Figure 6, section Text S3.1). When the degradation rate increases, the emergence of this new ecological niche eventually gives birth to a branching point, where the singular strategy is no longer stable (see PIP B of figure 7.3 for an extreme example where the singular strategy is both locally and globally unstable). For moderately high permeability rates -around P = 10 -6 dms -1

-the evolutionary outcome is actually dubious, but when this permeability maxes out at P = 10 -4 dms -1 (see PIP B of figure 7.3), cross-feeding diversification occurs between two specialists strategies, which was established by drawing trait evolution plots (see SM -Text S3.2). Two degradation rates are considered here (two others in Fig. S5) : low η = 10-3 s -1 and moderate η = 10 -2 s -1 . The enzymes catalysing reactions in either of two parts of the metabolic pathway, with their relative concentrations represented by δ, have kinetic parameters typical of those intervening in the carbon cycle (k f = 10 6 M -1 . s -1 and k cat = 10 2 s -1 ); we also assume that reactions in the second part of the pathway produce 10 times more energy than reactions in the first part. For low permeability rates (below 10 -7 dm.s -1 ), the evolutionarily expected strategy is always globally and locally stable and consists in investing more in the first part of the pathway as described in Fig. 7.2. Increasing permeabilities above 10 -7 dm.s -1 result in a decrease in the investment in the first part of the pathway, δ, with different consequences for low and moderate degradation rates. At low degradation rates, lowering δ remains the most efficient strategy. At moderate degradation rates, however, high permeabilities result in singular strategies that are both convergent (they evolve from any starting δ) and evolutionarily unstable (they can be invaded by mutants with close (locally unstable) or distant (globally unstable) δ (panel B). This can lead to adaptive diversification, resulting in a stable coalition of strategies, that is, a population made of coexisting genotypes with different values of δ. The coalition can be determined (see SM -Figure 7.8 and 7.15) ; it is composed of genotypes with δ = 1 (expressing only the first part of the pathway) and of genotypes with δ = 0 (expressing only the second part), corresponding to metabolic cross-feeding.
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Diversification therefore occurs in our model when the degradation rate is low and permeability is high (over 10 -6 dm.s -1 ; Fig. 7.3). The stable coalition of strategies that evolve in this situation are composed of two phenotypically different genotypes: one that uses the nutrient and produce the intermediate metabolite (corresponding to δ ≈ 0) and a second consuming the metabolite (δ ≈ 1). It should be highlighted, however, that the results in figure 7.3 correspond to a metabolic pathway with unequal contributions of reactions to the energy needs of the cell (upstream reactions produce more than downstream ones, as observed on average in the carbon cycle).

More generally, the evolution of cross-feeding seems quite contingent on several other factors:

for instance, selection on the overall concentration of enzymes contributing to the pathway is important, such that allowing higher concentrations prevents the occurrence of cross feeding. This is because increasing downstream concentrations, which may efficiently deal with metabolite diffusion, comes at a lower cost on upstream concentrations in this case. This illustrates that the occurrence of cross feeding may critically depend on the other tasks performed by cells and thereby on selection acting on their own proteome, as the global proteome concentration only varies to a small extent [START_REF] Milo | Cell Biology by the Numbers[END_REF]. Equally important should be the size of cells since smaller ones mechanically come with higher relative leakiness due to larger surface-to-volume ratios, which could favor the occurrence of cross-feeding. Cells can nonetheless adapt their size to their content, to a certain extent [START_REF] Kafri | The Cost of Protein Production[END_REF], which may limit the costs incurred by an increase in concentration and prevent the occurrence of cross-feeding.

Finally, while in our model the efficiency of a reaction may only be changed by changing an enzyme concentration, kinetic parameters may also evolve and present a relevant alternative in some parts of the network. The evolution of cross feeding could thus also be contingent on the relative availability of mutations changing concentration versus kinetic parameters. This is especially relevant as increasing concentration is likely most favorable when reactions are irreversible, as considered here. Otherwise, increasing concentrations may impact both forward and backward rates, depending on the reaction itself and on other enzymes composing the pathway.

Therefore, while this model includes much of the available information about enzyme kinetics and the selective constraints acting on the proteome, actually predicting how and when cross-feeding should evolve will require more efforts to better understand the building of global epistasis along metabolic networks 7.1. PROTEOME ALLOCATION AND THE EVOLUTION OF METABOLIC CROSS-FEEDING

Discussion

The fact that few metabolites -acetate and glycerol, noticeably -are more likely involved in the evolution of cross-feeding has been a conundrum for as long as experiments have revealed this phenomenon (San Roman et al., 2020). Here, we have put forward an explanation based on the necessity for a cell to optimise its proteome allocation, owing to its different incurred costs, and the existence of intrinsic constraints, noticeably the permeability of its membrane to a few metabolites. Indeed, acetate is in constant chemical equilibrium with the highly diffusive acid acetic [START_REF] Pinhal | Acetate Metabolism and the Inhibition of Bacterial Growth by Acetate[END_REF], and glycerol readily leaks towards the environment (Milo et al., 2016). The appearance of a new ecological niche when metabolites rather upstream in a metabolic pathway -and therefore of potential use to generate more energy -tend to diffuse, is not as straightforward as it may seem. In most cases that we have considered and that fall into the realistic range of parameters, proteome allocation will evolve in such a way that it prevents, or at least limits, the diffusion of the molecule. Only under some restricted conditions will cross-feeding evolve, characterized by a division of labor between a part of the population that transforms the nutrient into the diffusive metabolite, and another part that uses the metabolite as a carbon source, echoing work on digital evolution that similarly pointed to the possible contingency of cross-feeding [START_REF] Bibliography Meijer | Contingent evolution of alternative metabolic network topologies determines whether cross-feeding evolves[END_REF].

One process that may facilitate the emergence of cross-feeding, or that may be coopted to foster its efficacy when it is in place, is the export of metabolites through facilitated transport [START_REF] Enjalbert | Acetate fluxes in Escherichia coli are determined by the thermodynamic control of the Pta-AckA pathway[END_REF][START_REF] Pinhal | Acetate Metabolism and the Inhibition of Bacterial Growth by Acetate[END_REF]. This process, where cells actively give up a metabolite even though it still has the potential to bring fitness contributions, is often known as overflow metabolism [START_REF] Vemuri | Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio[END_REF] and also often involves acetate. We did not consider the existence of a documented cost to the second part of the pathway, as has been documented in the past to explain overflow [START_REF] Peebo | Proteome reallocation in Escherichia coli with increasing specific growth rate[END_REF][START_REF] Basan | Overflow metabolism in Escherichia coli results from efficient proteome allocation[END_REF], nor did we account for other possible costs such as the membrane occupancy involved in cellular respiration [START_REF] Zhuang | Economics of membrane occupancy and respiro-fermentation[END_REF][START_REF] Szenk | Why Do Fast-Growing Bacteria Enter Overflow Metabolism? Testing the Membrane Real Estate Hypothesis[END_REF]. These processes may promote the advent of cross-feeding, for they could bring extra fitness to an organism willing to specialize at one or the other part of the pathway. For instance, in a rich environment where producing energy is easy, it may be relevant to free some part of the membrane in order to sustain the uptake of other useful and otherwise costly nutrients. Yet, they are generally associated with rich environments while cross-feeding does not seem to be limited to these conditions. Besides, we believe that studying this question needs not bypass epistatic 7.1. PROTEOME ALLOCATION AND THE EVOLUTION OF METABOLIC CROSS-FEEDING relationships stemming from the joint evolution between enzyme kinetic parameters [START_REF] Heckmann | Modeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates[END_REF] and their expression along pathways; this may yield unexpected predictions, since increasing expression -as we did here -is not identical to increasing kinetic efficiency.

In parallel, it is in fact also possible that cross-feeding only arises as the by-product of permeability without bringing any fitness advantage to its initiator. Because there is an unexploited niche, an organism could evolve that thrives on this metabolite, even at the cost of a slower pace of life. This may be even truer since nutrients are almost never constant in Nature, but rather more or less subject to stochasticity. What strategy should be favored in the light of such unpredictable fluctuations should be addressed to make more quantitative predictions: even a fast growing cell may indeed be willing to feed on the residual wasted product when its main source of food is about to or has already disappeared [START_REF] Enjalbert | Acetate fluxes in Escherichia coli are determined by the thermodynamic control of the Pta-AckA pathway[END_REF][START_REF] Millard | Control and regulation of acetate overflow in Escherichia coli[END_REF]. In the past, bet-hedging has been suggested as an explanation to the diauxic shift [START_REF] Solopova | Bet-hedging during bacterial diauxic shift[END_REF] that occurs when the environment starts to run out of an organism's preferred nutrient.

Which strategy should evolve and whether it is conditioned by the environmental context will tell us more about the rules behind microorganisms community assembly [START_REF] Goldford | Emergent simplicity in microbial community assembly[END_REF][START_REF] Bajic | The ecology and evolution of microbial metabolic strategies[END_REF][START_REF] Estrela | Metabolic rules of microbial community assembly[END_REF], a longstanding and ongoing question in evolutionary ecology. We believe that the present study will help explain how the organisms composing these communities appeared in the first place.

Materials & Methods

Metabolic Model of fitness

Cell fitness results from the biomass produced along a metabolic pathway (eg. ATP). The pathway is initiated by carrier proteins, passively transporting nutrients inside cells and whose features are based on those for glucose in yeasts, as detailed in [START_REF] Labourel | Resource uptake and the evolution of moderately efficient enzymes[END_REF]. Nutrient molecules are added (resp. degraded) at a constant rate α (resp. β) in the external environment. The metabolic pathway is linear, comprising a first reaction catalysed by an independent enzyme followed by 40 reactions catalysed by enzymes whose expressions is considered in this study. Each reaction follows irreversible Michaelis Menten kinetics (Haldane, 1930) -but see SM for the treatment of irreversible reactions: (7.1) 7.1. PROTEOME ALLOCATION AND THE EVOLUTION OF METABOLIC CROSS-FEEDING Each reaction produces energy -which is a simplification of the carbon cycle where some do not, unimportant as we consider the global expression of large portions of a pathway. We consider the case where contributions are equal along the pathway as well as other, more realistic setups.

E i + S i kf,act ---⇀ ↽ --- kr ES i kcat --→ E i + P i ,

Cellular constraints

Cell proteomes face two intrinsic constraints: (i) the burden of protein expression and (ii) the cost entailed by molecular crowding. We model (i) through a linear cost c impeding fitness [START_REF] Lynch | The bioenergetic costs of a gene[END_REF]. We considered values of c such that the whole cytoplasmic proteome -the enzymes in the pathway and other free enzymes -costs 5 to 50% of the whole cell budget. We model molecular crowding (ii) through a non-linear decrease of diffusion [START_REF] Dill | Physical limits of cells and proteomes[END_REF]) that changes the affinity constant k f to k f,act according to equation:

k f,act = k f .10 -([E other ]+ 40 i=1 [E tot,i ])/[M b ] , (7.2) 
where Our model includes three processes involving the metabolites produced that select for enhancements of enzyme activity, drawing a complex trade-off on the coexpression of enzymes: (1) metabolites can be lost, either because they are involved in parasitic reactions or because they are subject to targeted degradation [START_REF] Peracchi | The Limits of Enzyme Specificity and the Evolution of Metabolism[END_REF], modelled through a linear degradation rate η;

[E tot,i ] = [E i ] + [ES i ]
(2) metabolites can be toxic for the cell, for they engage in parasitic reactions, for instance [START_REF] Niehaus | Enzyme promiscuity, metabolite damage, and metabolite damage control systems of the tricarboxylic acid cycle[END_REF]; (3) highly reversible reactions within a pathway may also require efficient enzymes to maintain a high net flux [START_REF] Heinrich | Mathematical analysis of enzymic reaction systems using optimization principles[END_REF]. We considered these three processes in various instances of our model, as described the SM Text S1; the results presented in the paper only comprise the action of a linear degradation rate, which provides a good qualitative understanding of how processes impacting the metabolites also impact selection on enzymes. Finally, the permeability of cell membrane to a given metabolite also acts as a constraint, which is introduced here by considering that one metabolite in the pathway diffuses passively at a rate η d .
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Adaptive Dynamics of enzyme expression

We use Adaptive Dynamics [START_REF] Hofbauer | Adaptive dynamics and evolutionary stability[END_REF][START_REF] Geritz | Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree[END_REF][START_REF] Doebeli | A model for the evolutionary dynamics of cross-feeding polymorphisms in microorganisms[END_REF] to model the evolution of enzyme expression along the metabolic pathway. This framework consider rare mutations, such that a resident "strategy" -corresponding to a given expression pattern -is assumed to have reached its demographic equilibrium before a mutant strategy appears in the population. At this demographic equilibrium, births compensate for deaths in the population, resulting in a concentration of nutrients specific of the resident (see APPENDIX of SM). The fitness of any mutant strategy is then determined for each resident equilibrium, which enables the drawing of Pairwise Invasibility Plots (PIPs) representing for each pair the ability of a rare mutant to invade the resident strategy, based on a comparison between the growth rate of the mutant and 1. These plots are used to identify singular strategies and their properties, as defined in [START_REF] Geritz | Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree[END_REF]. A particular type of singular strategies, branching points, may be indicative of a diversification in the population, which we further study by drawing areas of mutual invasibility (each strategy invades when rare), and then computing the ecological equilibrium for each coalition -composed of two resident strategies instead of one -in that space. We then calculate the growth rate of mutants for each nearby mutants of each strategy in the coalition to identify coalitions that are stable (they cannot be invaded by nearby mutants) and convergent (there exist evolutionary trajectories towards them), hence identifying evolutionarily expected communities (or bimodal populations) after diversification has occurred [START_REF] Dieckmann | The dynamical theory of coevolution: a derivation from stochastic ecological processes[END_REF][START_REF] Dieckmann | On the origin of species by sympatric speciation[END_REF].

Note that the method to determine ecological equilibrium is presented in APPENDIX 1 of SM.

Settings for the models

A list of the basic settings can be found at the end of section Text S1.1 -SM. We varied them in their biological realistic ranges. This allowed us to identify key drivers of the diversification process that eventually result in cross-feeding, as discussed in the results section. The extensive analysis of parameters can be found in SM texts S1 and S3. 

Introduction

Numerous constraints may affect the total optimal content of cells. It was shown by [START_REF] Dill | Physical limits of cells and proteomes[END_REF] that the amount of proteins should establish at an optimal intermediate level due to the deleterious impact extra expression of proteins would have on diffusion. However, they did not account for the protein burden of producing these molecules. Their focus was besides on the total content without regard to the specific allocation of this content. This matters because a cell should be more prone to invest in a task when it entails large increases of fitness, and/or when these tasks are necessary to survive. Here, we assessed the effects of cellular constraints asumed to be within documented ranges [START_REF] Wagner | Energy Constraints on the Evolution of Gene Expression[END_REF][START_REF] Chou | Mapping the Fitness Landscape of Gene Expression Uncovers the Cause of Antagonism and Sign Epistasis between Adaptive Mutations[END_REF][START_REF] Lynch | The bioenergetic costs of a gene[END_REF][START_REF] Kafri | The Cost of Protein Production[END_REF][START_REF] Blanco | Macromolecular diffusion in crowded media beyond the hard-sphere model[END_REF][START_REF] Andrews | Effects of surfaces and macromolecular crowding on bimolecular reaction rates[END_REF].

We modelled a pathway initiated by a glucose carrier protein that facilitates diffusion, whose features correspond to average values -V T m = 1mM/s, K T = 10mM, α = 1 -for those reported in yeasts [START_REF] Teusink | Intracellular glucose concentration in derepressed yeast cells consuming glucose is high enough to reduce the glucose transport rate by 50%[END_REF][START_REF] Maier | Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters[END_REF]; notice that we do not report results of the influence of transporters since it had none on the processes we are interested in. The chemical equation for facilitated transport can be approached by the following equation [START_REF] Kuile | The kinetics of facilitated diffusion followed by enzymatic conversion of the substrate[END_REF][START_REF] Bosdriesz | Low affinity uniporter carrier proteins can increase net substrate uptake rate by reducing efflux[END_REF]:

d[S in ] dt = V T m . [S out ] -[S in ] K T + ([S out ] + [S in ]) + α. [Sout][Sin] K T (7.3)
To match with central carbon metabolism, composed by glycolysis and tricarboxylic acid cycle, the pathway modelled is comprised of 40 enzymes that obey Michaelis Menten kinetics, according to the following scheme (we relax the absence of reversibility later, by using Briggs-Haldane equations [START_REF] Briggs | A Note on the Kinetics of Enzyme Action[END_REF]): (7.4) where k f,act is the in vivo value of k f when accounting for the influence of crowding on diffusive processes. This influence is modelled by the following equation, already justified elsewhere [START_REF] Labourel | Resource uptake and the evolution of moderately efficient enzymes[END_REF] 

E i + S i kf,act ---⇀ ↽ --- kr ES i kcat --→ E i + P i ,
k f,act = k f .10 -([E basal ]+ 40 i=1 [E tot,i ])/[M b ] ,
where

[E tot,i ] = [E i ] + [ES i ],[M b ] = 3 • 10 -3
M represents the scaling factor for the effect of diffusion, while E basal denotes the amount of protein. Notice that compared with the previous reference, where we were more interested in setting a qualitatively realistic crowding limit, we have here refined this estimate to get as close as possible from physical findings [START_REF] Blanco | Macromolecular diffusion in crowded media beyond the hard-sphere model[END_REF][START_REF] Andrews | Effects of surfaces and macromolecular crowding on bimolecular reaction rates[END_REF] and from a realistic cellular protein fraction [START_REF] Ellis | Macromolecular crowding: obvious but underappreciated[END_REF][START_REF] Dill | Physical limits of cells and proteomes[END_REF].

Noticeably, the effect appears somewhat higher than previously, reflecting the need of an increase in the expression of cellular machineries such as ribosomes [START_REF] Klumpp | Molecular crowding limits translation and cell growth[END_REF][START_REF] Kafri | The Cost of Protein Production[END_REF] in order to produce more proteins.

k f , k cat and k r are first set to values in line with median estimates for central carbon metabolism [START_REF] Bar-Even | The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters[END_REF].

The selective pressure can be approximated by a linear degradation parameter η d competing with enzymes for their substrate (often denoted as a product since it also coincides with the product of the previous reaction), according to the following scheme:

P i + E i+1 k f k r E i+1 P i k cat E i+1 + P i+1 , η d P i,out (7.5)
where P i is the product of the first enzymatic reaction and E 2 the second enzyme of the pathway specialised at processing this product. As previously stated, the degradation rate η d that compete for metabolites applies to each reaction in the pathway.

Total optimal content and cellular constraints

In the first section below, we tested the influence of the selective pressure imposed by the degradation rate under different assumptions. As mentioned in the manuscript, our Adaptive Dynamics model relies on the dynamic competition between cells, and, more specifically, on the capability of mutants to invade resident strategies.
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Influence of the degradation rate on optimal enzyme concentration

Because Adaptive Dynamics rely on the resident strategy having reached its ecological equilibrium, it is necessary to set an amount of net energy produced -the energy produced minus expenses entailed by protein production -that corresponds to this equilibrium in which births compensate for deaths. We set this amount to Φ eq = 10 -4 M.s -1 . This parameter only influences the relative cost dedicated to the sustainment of the proteome. Besides, there is also a need to set the size of cellsr c = 1µm corresponding to a volume of V c ≈ 4.2µm 3 (roughly that of E.coli -and to consider a specific fraction of the environment -set to V env = 1000µm 3 without cells (it is the volume of the environment that is free of cells). Notice that the size of cells matter when we study the influence of permeability for passive diffusion depends on the SA:V ratio, which decreases when cells are bigger -this is discussed in the section about cross-feeding. On the contary, the size of the environment does not matter: it only modifies the number of cells coinciding with the ecological equilibrium, which, in Adaptive Dynamics, is not involved in the outcome due to genetic drift not being considered. Finally, the "chemostats" parameters are set such that the enrichment rate equals the dilution rate, α = 10 -3 and β = 10 -3 yielding a steady-state concentration in a cell depleted medium of [S] * out = 1M . These coefficients are in line with estimates for diffusion coefficients of metabolites in solvant. Lowering them changes the speed at which nutrients are brought to the environment, and, therefore, influences how possible it is for cells to thrive (because they need to sustain a given flux, that is a given amount of production per unit time, which is partly dependent on how quickly the environment is replenished). The set of parameters that are fixed at this stage is summed up in the following table:

Parameters Φ eq (M -1 s -1 ) V c (µm 3 ) V env (µm 3 ) α(M s -1 ) β(s -1 )
Values 10 -4 4.2 1000 10 -3 10 -3 Notice also that in this first subsection, k r is always set to equal k cat .

Influence of enzyme kinetic parameters and the concentration of the first enzyme of the pathway To evaluate how kinetic parameters impact the optimal cell content, we modelled the process for three different values of enzyme efficiency, varying them by half an order of magnitude. This is made necessary because kinetic parameters define another parameter on which Natural Selection can act to promote enzyme activity. But there is an essential difference between those two: while enzyme levels should be easily tunable, there are constrained by their consequence on the working of cells, kinetic parameters are constrained by the inherent difficulty to improve them due to the scarcity and findability, if existing, of very efficient phenotypes. Simulatenously, there is also another factor impacting the fitness landscape on which cells evolve and that in turn modifies the optimal content, which is the concentration of the most upstream enzyme. Indeed, this enzyme determines how much nutrients is taken from the environment at each timestep, and therefore, the flux of substrate entering the metabolic pathway. Because facilitated diffusion relies on carrier proteins and the substrate gradient along the cell membrane, it has its own selective pressure, potentially differing from downstream enzymes [START_REF] Kuile | The kinetics of facilitated diffusion followed by enzymatic conversion of the substrate[END_REF][START_REF] Labourel | Resource uptake and the evolution of moderately efficient enzymes[END_REF].

The higher the concentration, the higher the nutrient gradient, and the higher the flux, as long as the expression of downstream enzymes do not impede too much cellular diffusion of macromolecules. This means that a more highly expressed upstream enzyme increases the selective pressure on downstream enzymes, which increases their optimal expression level and eventually up to a point where the effect of an increment of expression is deleterious. Inasmuch as the expression of the first enzyme is part of the hindering process and in spite of the previous argument, its occurrence may also decrease the optimal concentration for other enzymes. This latter phenomenon can be observed marginally on Figure 7.4 -C, where the optimal concentration decreases more for a higher degradation rate -compare C with B, for the highest degradation rates. Notice that the A situation corresponds to the example pf PIPs shown in Figure 7.16 of Appendix. For high values of degradation rates (around -that are consistent with the selective pressure observed for enzymes involved in central carbon metabolism [START_REF] Bar-Even | The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters[END_REF][START_REF] Labourel | Resource uptake and the evolution of moderately efficient enzymes[END_REF], the optimal content approximately converges towards an asymptotic value of 20%. Above this level, the extra activity does not offset the loss of intracellular diffusibility, a conclusion that holds 7.2. SM. PROTEOME ALLOCATION AND THE EVOLUTION OF METABOLIC CROSS-FEEDING qualitatively for all enzyme efficiencies and first enzyme concentration. Notice that this degradation rate is on another hand inconsistent owing to the amount of nutrients lost in the process, a limit on which we later elaborate.

Influence of other cellular parameters

As to study the influence of other parameters, we then set k f = 10 7 M -1 s -1 , k cat = 10 2.5 s -1

and k r = k cat , approximately an order of magnitude higher than median estimates of [START_REF] Bar-Even | The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters[END_REF] In parallel, the concentraiton of the upstream enzyme is set to 0.1mM . In the following, we tested the influence of other parameters and demonstrated that the main influence is set, as expected, by the degradation rate. The replenishment of the environment results from the flux parameter α while the degradation results from the rate parameter β. They had no impact on the optimal content, only changing the demographic equilibrium (with a lower α, the steady-state population diminishes and may even vanish, even if the steady-state concentration in the environment is high). We do not report these results but the scripts that generated the results are available in the repository.

Influence of the degradation rate on the concentrations of metabolites along the pathway

In this section, we determined the effect of the degradation rate on the loss of metabolites along the pathway. Indeed, each reaction copes with this linear effect that accumulate progressively.

Assuming degradation rates in line with estimates accounting for reversibility yields high losses, and a high decrease of flux, which is unrealistic. This may bias the estimation of the optimal concentration insofar as the concentration of enzyme should not be equally spread along the pathway, contrary to what we model. This even truer for the case where we study the allocation between two parts of a pathway, one being downstream and following the last reaction of the one, which is the upstream part. To overcome these limits and test how they may bias outcomes, we also studied a model including metabolite toxicity and reversibility within the pathway.

Influence of more realistic sets of constraints on the optimal content

We determined the effect of toxicity using a non-linear effect of toxicity -as in [START_REF] Chou | Mapping the Fitness Landscape of Gene Expression Uncovers the Cause of Antagonism and Sign Epistasis between Adaptive Mutations[END_REF] -affecting fitness according to the following equation:

f = (Φ -cost • 40 i=1 [E tot,i ]) × T T + 40 i=1 [M i ] ,
where T is a toxicity constant, which, when reached by the total metabolite content, cut fitness by half.

For example, a toxicity constant set to 10 -1 M means that if the sum of all 40 metabolites involved in the pathway equals this amount, then fitness is half what it would have been without this constraint. Toxicity has a similar qualitative effect than those studied previously -see Figure coincide with realistic losses of metabolites. However, the selective pressure acting on enzymes was shown to correspond to the highest degradation rates (η > 10 -2 ), raising a limit to approach the process through the sole degradation rate.

7.2. SM. PROTEOME ALLOCATION AND THE EVOLUTION OF METABOLIC CROSS-FEEDING 7.7, where T varies from 10 -2M to 1M . Nevertheless, its impact on the optimal content is larger, as a high toxicity alone is sufficient to induce the same selective pressure than a high degradation rate. The maximal optimal content -coinciding with approximately 20% of the pathway dedicated to the energy metabolism -does not differ from the ones yielded by other parameters. A), so that even with a low degradation rate, the optimal cell content is largely increased. With a high toxic level of metabolites, the selective pressure on enzyme concentration is no longer influenced by the degradation process except that the higher it is, the lower the efficiency for any strategy (in terms of expression). Assuming a moderate toxicity -K eq = 1/9 -in (B) that combines with a realistic level for reaction reversibility, the selective pressure is again less dependent on the degradation rate, although changes in where the reversiblity is located -"equal":

k r = k cat /3, k inh = k f /3; "mostly k r " :k r = k cat , k inh = k f /9
-only impacts the viability of cells (when relying mostly on k inh , cells are no longer viableresults not displayed here).

Reversible reactions obey the following scheme (where (i) denotes the i eth reaction):

S i + E i k f,i k r,i E i S k cat,i k inh,i E i + P i (7.6)
Reversibility was therefore studied by considering that it can affect either k r , k inh or both.

The level of reversibility was set to a specific value (K eq = [S] eq /[P ] eq = 1/9), which is the geometric mean of that for reacions involved in the central carbon metabolism and whose value have been summarised in [START_REF] Li | A database of thermodynamic properties of the reactions of glycolysis, the tricarboxylic acid cycle, and the pentose phosphate pathway[END_REF]. As reversibility can be spread between two parameters, it is necessary to see how the flux reacts to this intrinsic process under the cellular constraints.
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Notice that we simplify this process by assuming it does not evolve, even though it was shown that organisms should in principle optimise the energy profile determining how reversibility is spread [START_REF] Heinrich | Mathematical analysis of enzymic reaction systems using optimization principles[END_REF][START_REF] Klipp | Evolutionary Optimization of Enzyme Kinetic Parameters; Effect of Constraints[END_REF]. If the reversibility impedes only the parameter k inh , there is no degradation rate susceptible to produce a flux high enough to compensate for the need to sustain its pool of proteins. Therefore, we report results only for the two cases where reversibility acts only on k inh , or that for which it is equally spread between both parameters (k cat = k r /3 and

k inh = k f /3
). The effect of reversibility also increases largely the selective pressure, although for low degradation rates, there is still a little room for extra protein expression. Notice that we do not report the influence of reversibility solely, for it proved to be similar.

Differential allocation between subparts of pathways: a toy model

In this section, we introduce a toy model designed to unraval the intricacies behind the optimal allocation strategy along a pathway. Instead of considering a long pathway, we focus on a pathway made up of two consecutive reactions that contribute to fitness, where the flux prior to the first reaction is denoted by Φ 0 . Based on insights from the flux control theory [START_REF] Kacser | The control of flux[END_REF][START_REF] Heinrich | A linear steady-state treatment of enzymatic chains. General properties, control and effector strength[END_REF] and a more recent mechanistic approach [START_REF] Labourel | Resource uptake and the evolution of moderately efficient enzymes[END_REF] partly relaxing the need for unsaturated reactions, the flux sustained by enzymes of reaction (i) can be written as:

Φ i = Φ i-1 [E i ] K + [E i ] , ( 7.7) 
where [E i ] denotes the total concentration of enzyme (i) and K represents a phenomenological saturation parameter acting on enzymes and involving different constraints emerging within a pathway [START_REF] Bibliography Hartl | Limits of adaptation: the evolution of selective neutrality[END_REF][START_REF] Kaltenbach | Dynamics and constraints of enzyme evolution[END_REF].

With two reactions in pathway, the system can be summarised as follows:

               Φ 1 = Φ 0 [E 1 ] K + [E 1 ] (7.8a) Φ 2 = Φ 1 [E 2 ] K + [E 2 ] (7.8b) W = Φ 1 + Φ 2 -c • ([E 1 ] + [E 2 ]) (7.8c)
with c representing the cost of protein production and Φ Making the simplistic assumption that the parameter K is identical for both reactions, fitness can therefore be written as:

W = Φ 0 • ( [E 1 ] [E 1 ] + K )(1 + [E 2 ] [E 2 ] + K ) -c • ([E 1 ] + [E 2 ])
Note that what generates the flux Φ 0 does not matter for our purpose, though it may be seen as the flux produced by carrier proteins transporting a specific nutrient.

The optimal allocation stemming from such a system is reached when the extra fitness gained by increasing either one of the concentration equals that obtained with the other one. Indeed, at the point where any increase of the total concentration does not entail any extra fitness, this concentration has to be spread between pathways and if it increases fitness to increase the allocation in one pathway, it implies that there is a corollay interest to decrease the allocation to the other one. This condition can be written as:

∂W ∂[E 1 ] = ∂W ∂[E 2 ]
This condition straightforwardly requires the following quadratic equation to hold:

([E 1 ]) 2 + K[E 1 ] -(2[E 2 ] + K)([E 2 ] + K) = 0,
which can be rewritten as:

[E 1 ] = -K + (K 2 + 4(2[E 2 ] + K)([E 2 ] + K)) 1/2 2 (7.9)
Finally, one can distinguish this optimal allocation depending on the level of saturation of the reactions: [START_REF] Yi | Adaptive Landscapes in the Age of Synthetic Biology[END_REF] and [START_REF] Labourel | Resource uptake and the evolution of moderately efficient enzymes[END_REF] for other approaches showing similar saturating effects of enzyme concentrations.

           [E 1 ] ≈ √ 2[E 2 ], if [E 2 ] ≫ K (7.10a) [E 1 ] ≈ 2[E 2 ], if [E 2 ] -→ K (7.10b) [E 1 ] is independent from [E 2 ], if K ≫ [E 2 ] ( 7 

Membrane permeability and optimal allocation between pathways

Because fitness contributions add up along the pathway, we have shown that it may be relevant for an organism to favour certain of its reactions over others. Up until there, the selective pressures faced by enzymes were identical. Yet, the situation may turn out very differently, for instance if a metabolite is susceptible to be released in the environment, either passively through simple diffusion or actively through excretion machineries. In this section, we evaluated the impact on optimal metabolic strategies that membrane permeability may beget.

High enzyme efficiencies foster cell investment in downstream enzymes

We first report what happens when enzyme kinetic efficiencies are high -approximately, one order of magnitude higher than median values observed in datasets [START_REF] Bar-Even | The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters[END_REF]. To grasp the qualitative effect of diffusion affecting a given metabolite, the contribution of each reaction to fitness, which depends on its flux, is first considered identical (each molecule produced by any reaction contribute one fitness unit). This echoes findings detailed in the article about the relevance for cells to cope with permeability by allocating more to the part of the pathway downstream the metabolite that is subject to it. One interesting phenomenon is that the higher population size is found for intermediate permeability levels, which means that permeability may help cells to deplete the environment more quickly -see Figure 7.8.

We have also reported in APPENDIX (Figure 7.15) the outcomes when accounting for metabolite toxicity, which proved to have very little impact. Each coalition is made up by two resident strategies, except on the bottom left toward upper right bisector for which the two resident strategies are identical. The red area is an area where coexistence is not possible, contrary to the blue one. In the blue area, we determine the fitness of each neighbouring mutant: there are four such mutants, except on the boundaries of the plot, as each resident can mutate and either increase or decrease its trait by one small unit. Here, we see that mutants that invade coalitions push the trait towards the upper left corner or the lower right one, which is exactly similar as these plots are symmetrical.

Moderately high enzyme efficiencies foster cross-feeding diversification

In this section, kinetic parameters have been set to their median values found in Bar-Even et al.

(2011)'s dataset, that is k f = 10 6 M -1 s -1 and k cat = k r = 10 2 s -1 . Results obtained with two degradation rates were reported in the article. We here provide details -see Figure 7.9 about the trait evolution plot (TEP) showing for which minimum permeability -combined with the moderate degradation rate -the singular strategy is invaded by a protected dimorphism [START_REF] Geritz | Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree[END_REF][START_REF] Brännström | The Hitchhiker's Guide to Adaptive Dynamics[END_REF]. Notice that owing to computational difficulty, it is not possible to decide whether the singular strategy is stable for cases where fitnesses are closer from one another. Typically, in this situation, one would expect that coalitions are favored where the subtypes are in between the singular strategies and the specialist ones [START_REF] Geritz | Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree[END_REF].

We also provide results in Figure 7.10 for two different degradation rates, which confirm observations described in the main body of the article. Here, η = 10 -2.5 s -1 and 10 -1.5 s -1 . For a moderately low degradation rate, the singular strategies have similar fitness to their neighbours so that it is not possible to decide whether they are gloablly stable or not. On the contrary, a high degradation rate promote specialisation to the first part of the pathway, no matter the permeability rate. This is because it is too costly to prevent the loss of metabolite, which makes both necessary to allocate a lot to upstream enzymes and pointless to do so for downstream enzymes. As a direct consequence, this strategy also prevails for higher permeability rate, but the parallel emergence of an unexploited niche unleashes the path for coalitions of specialists. The TEPs enabling the determination of the coexistence between two specialists are reported in APPENDIX.

Toxicity may also yield cross-feeding interactions

We tested how metabolite toxicity influences the outcomes by setting η = 10 -3 s -1 as to limit the impact of this parameter and studied two toxicity levels: T = 10 -1 M and T = 1M . The outcomes are qualitatively different although branching points still emerge (see Figure 7.11 -A). Because there is little loss of metabolites, the generalist strategy has no interest to sacrifice its second subpathway, which looks like a Black Queen coexistence where it may seem costly to keep the first subpathway but it is nonetheless essential for the community to survive. Yet, for very high permeability rates, cross-feeders may eventually have the edge on generalist strategies (see Figure 7.11 -B and C), although the path leading to them is narrow, at least on a linear scale. This may not undermine these findings since levels of expression are likely evolving on a log scale, and switching off a subpathway may still be achievable through few regulatory mutations. Notice that for this latter reason, we did not draw coexistence plots because most of them would be dubious since weak mutations should not permit the invasion by cross-feeders; only simulations would be able to determine whether or not cross-feeding evolves and, if so, how often it does. Besides, we 7.2. SM. PROTEOME ALLOCATION AND THE EVOLUTION OF METABOLIC CROSS-FEEDING have also shown that these results are robust to the way mutations are drawn, as PIPs based on mutants that change only one of their concentration (and set the other to the optimum without permeation) display similar trends. This situation is slightly different because cells may be able to decrease their total content in order to avoid excess crowding and its deleterious effect.
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Figure 7.12: Convergent stable strategy in the case of no permeability and a downstream pathway yielding ten times more energy than the upstream one.

APPENDIX 3 -Subset of PIPs obtained for the optimal pathway content

We here report PIPs that were obtained when testing the influence of enzyme efficiencies and the concentration of the first enzyme:

We also report PIPs that were used to determine how the content between two parts of pathways should establish with low selective constraints and how it should change in response to higher selective ones:

We report below the outcomes about otpimal allocation obtained when considering toxicity, a low degradation rate and high enzyme efficiencies: We report the underlying TEPs that helped draw Figure 7.10: 7.3. PERSPECTIVES

Perspectives

We have unveiled through this project the possibility of the emergence of cross-feeding as a passive by-product of membrane intrinsic characteristics. To finalise our conclusions, we will address the situations where reliable TEPs were not drawn by using pseudo-simulations -instead of a heuristics -that should allow us to accurately determine equilibrium population sizes in the case of coalitions. There is also a need to test these conditions of emergence when the reversibility of reactions comes into play. Intuition tells us there should not be large differences, since crossfeeding seems to emerge both when selective pressures are similar to that imposed by reversibility and, also, when there is no loss of metabolite along the pathway; but still, as Koyré pointed out for Physics [START_REF] Koyré | Du monde clos à l'univers infini[END_REF], Science is about explaining Reality by the impossible. Hence, we may not be willing to trust our intuitions. Confirming the validity of these predictions will also require in the future the removal of limitations set by the framework of Adaptive Dynamics. This could be done using a modified instance of Moran model [START_REF] Moran | Random processes in genetics[END_REF], where an individual dies at each timestep and can be replaced by one or a few new individuals, or, on the contrary not be replaced at all. Such process would be captured by drawing samples from Poisson distribution, with a parameter influenced by the amount of product processed by a strategy during the last timestep. This trick is made necessary by the differences in equilibrium population sizes from one strategy to the other, which means that the arrival of a mutant can go along with changes in population sizes.

Part III

Discussion and Perspectives

Quantitative Biology is a field that arose in the XX eth century [START_REF] Brookfield | Evolution Is a Quantitative Science[END_REF], when Evolutionary thinking finally met Genetics (Fisher, 1930;[START_REF] Wright | THE GENETICAL THEORY OF NATURAL SELECTION: A Review[END_REF][START_REF] Wright | Evolution in Mendelian Populations[END_REF]. The main problem at that time was to reconcile the apparent gradual changes observed in many traits with the discrete effect of genes described by Mendel [START_REF] Bateson | Mendel's principles of heredity; a defence[END_REF]. Despite loci following

Mendelian genetic rules, it was then put forward that traits relying on multiple loci could follow quantitative laws whereby mutational effects cover a wide range of values susceptible to add when combined together [START_REF] Sella | Thinking About the Evolution of Complex Traits in the Era of Genome-Wide Association Studies[END_REF]. Mutational effects could therefore be small and result in near continuous values for traits [START_REF] Bibliography Fisher | XV.-The Correlation between Relatives on the Supposition of Mendelian Inheritance[END_REF], which was already suggested by Mendel in fact [START_REF] Turelli | Commentary: Fisher's infinitesimal model: A story for the ages[END_REF]. Such traits are known as complex traits and can be described through the quantitative genetic framework [START_REF] Barton | Understanding quantitative genetic variation[END_REF][START_REF] Sella | Thinking About the Evolution of Complex Traits in the Era of Genome-Wide Association Studies[END_REF]. This was the missing mechanistic piece of genotype-phenotype maps (not yet called that way) that would eventually help understand both how Evolution occurs and how heritable variation builds up. This field was furthered by the discovery of the importance of genetic drift, already discussed by Sewall Wright [START_REF] Wright | Evolution in Mendelian Populations[END_REF]Wright, 1932), when [START_REF] Bibliography Kimura | Evolutionary Rate at the Molecular Level[END_REF] shown how pervasive it seems at the molecular level.

But still, there is much to the genotype-phenotype picture and this was acknowledged at that time. Indeed, evolutionary scientists were already well aware that many biological interactions are susceptible to interfere and give birth to more complex patterns: this was the case within Fisher's geometric model used to explain the excess of deleterious mutations (Fisher, 1930;[START_REF] Tenaillon | The Utility of Fisher's Geometric Model in Evolutionary Genetics[END_REF][START_REF] Hwang | Genotypic Complexity of Fisher's Geometric Model[END_REF]; on his side, Wright suggested the involvement of saturating (and thus non-additive) genotypic effects on phenotype values to account for how dominance emerges through physiological considerations (Wright, 1934); meanwhile, Haldane explicitly demonstrated the existence of saturating effects in biochemical reactions subject to Michaelis Menten kinetics [START_REF] Briggs | A Note on the Kinetics of Enzyme Action[END_REF]. By the way, Haldane's preoccupation with building biology on mechanistic foundations is also reflected in the causal approach he chose to study Evolution (Haldane, 1932).

However exceptional their minds and despite this inclination for causal explanations, long-standing controversies have persisted due to the lingering lack of knowledge on the link between genotype, phenotype and fitness. The most famous one of these debates, one of these relative significance ones of which Biology abounds with 1 , still largely open and even often reignited [START_REF] Provine | The R. A. Fisher-Sewall Wright Controversy[END_REF][START_REF] Coyne | Perspective: A Critique of Sewall Wright's Shifting Balance Theory of Evolution[END_REF][START_REF] Wade | Perspective: The Theories of Fisher and Wright in the Context of Metapopulations: When Nature Does Many Small Experiments[END_REF]Coyne et al., 2000;[START_REF] Skipper | The persistence of the R.A. Fisher-Sewall Wright controversy[END_REF], pitted Wright's shifting balance theory (Wright, 1932;Wright, 1982) -whereby Adaptation usually results from the crossing of fitness valleys thanks to random genetic drift -against Fisher's Large Population Size Theory, where larger populations are more efficient in the face of Natural Selection and thus get more adapted as time goes by [START_REF] Fisher | The "Sewall Wright Effect[END_REF].

It was not until the second half of the century that scientists started again to delve realistic biological underpinnings so as to test previous theoretical assumptions. It led, for instance, to settle the debate about dominance, at least under certain circumstances [START_REF] Bagheri-Chaichian | Effects of epistasis on phenotypic robustness in metabolic pathways[END_REF], when Kacser et al. (1981) finally proved Sewall Wright's intuition to be true, interpreting consequences of the flux summation theorem [START_REF] Kacser | The control of flux[END_REF][START_REF] Heinrich | A linear steady-state treatment of enzymatic chains. General properties, control and effector strength[END_REF] in terms of phenotypic robustness. In the meantime, furthering population genetics -through quantitative genetics and diffusion approximations -and population dynamics -through Evolutionary Game

Theory and Adaptive Dynamics -frameworks had lead to multiple qualitative insights at different biological scales that have become more and more testable thanks to the amazing progresses in both experiments and data analysis. Data accumulation in now being so quick that ideas have become unfashionable and tend henceforth to withdraw from Biology, fading away even though we know data can neither elaborate theory on their own [START_REF] Nurse | Biology must generate ideas as well as data[END_REF], nor bettering methods to analyse them can make up for bad theories [START_REF] Smaldino | Better methods can't make up for mediocre theory[END_REF]. Throughout this project, we have tried to pave the way for a renewed dialog between mechanisms and Evolution, as defended by [START_REF] Serohijos | Merging molecular mechanism and evolution: theory and computation at the interface of biophysics and evolutionary population genetics[END_REF], in a sense that could fit the needs behind the call of a functional evolutionary synthesis [START_REF] Dean | Mechanistic approaches to the study of evolution: the functional synthesis[END_REF]. We will now discuss how to push this attempt further, both at the level of genetics and that of ecology.

Chapter 8

Understanding Evolution needs an accurate genotype-phenotype-fitness map 8.1 Towards mechanistic fitness landscapes of cells

Introduction: general limits and perspectives of the current approach

During my PhD, we laid a first stone for a deciphering of realistic genotype-phenotype-fitness maps at the whole cellular level, and started to study the influence of these latter on the evolutionary process. We tackled these questions through the lens of evolutionary ecology where the struggle of life with the environment is mediated by the production of biomass from nutrient uptake. Organisms compete for resources and their processing, which rely on the efficiency of their metabolism. Previously, the evolution of cell metabolism has been approached with frameworks based on fixed phenomenological assumptions designed to describe biomass production, and its variations; these frameworks include various hypotheses for they need override the numerous unknown quantities hidden in the layers of metabolism (eg. Flux Balance Analysis, see next subsection). Such hypotheses raise insurmountable barriers for any comprehensive understanding of Evolution, noticeably because they entail an indomitable bias: what would happen indeed, were these hypotheses not to constrain -or to constrain differently -Evolution as is inevitably the case in Nature? Rather than building on such frameworks, more appropriate to applied metabolic 8.1. TOWARDS MECHANISTIC FITNESS LANDSCAPES OF CELLS questions [START_REF] Raman | Flux balance analysis of biological systems: applications and challenges[END_REF][START_REF] Feist | The biomass objective function[END_REF][START_REF] Mori | Constrained Allocation Flux Balance Analysis[END_REF], we developed a bottom-up approach starting from the individual units of metabolism, enzymes, involved in a linear pathway whose length may vary. Beyond ideas developed in the discussion of these chapters, the immediate self-evident next step should be to combine approaches from the two metabolic chapters of results

(Chapter 5 and Chapter 7) as to determine how much analytical predictions from population genetics -developed in Chapter 6 -can capture the complementary epistasis effects stemming from metabolic interactions. Testing these ideas would build on insights from our previous approach designed to prove that an enzyme's selective pressure is driven by several biochemical and ecological factors (see Chapter 5), thereby explaining why their enzyme kinetic features resemble a zoo [START_REF] Bar-Even | The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters[END_REF][START_REF] Davidi | A Bird's-Eye View of Enzyme Evolution: Chemical, Physicochemical, and Physiological Considerations[END_REF]. Noticeably, an enzyme's selective pressure partly relies on the efficiency of more upstream enzymes and the other way around, which fully legitimates to study theoretically the influence of complementary epistasis (as also do other models and experiments we already mentioned). What is more, we have also unveiled in Chapter 7 the plausible unequal contribution of enzymes to fitness, even within a pathway, along which it may wane. Unifying the multidimensionality of enzyme activity with their convoluted clout on fitness should definitely help figure out the effect of biological complexity over (flux) fitness landscapes, the evolutionary process and how they shape each other, and we will put forward a plan to deal with this topic.

Yet, cells are in fact made of a complex arrangement between molecules, reactions, pathways, machineries and regulatory processes. At least two straightforward limits exist in the approach we adopted that need be overcome to achieve testable quantitative predictions. First, reactions should be featured individually, like in Chapter 5, while accounting for their real specific constraints instead of studying the sensitivity of outcomes to the variation of parameters (which is most appropriate to general principles and theoretical predictions1 ): some are well known, such as the reversibility of reactions, at least for the main carbon cycles [START_REF] Li | A database of thermodynamic properties of the reactions of glycolysis, the tricarboxylic acid cycle, and the pentose phosphate pathway[END_REF]; others may be hard to evaluate at this stage since they involve processes recently discovered and mostly unknown, such as enzyme promiscuous activities2 whose potential range is nothing less than whopping [START_REF] Peracchi | The Limits of Enzyme Specificity and the Evolution of Metabolism[END_REF]; furthermore, enzyme contributions to fitness may also be intrinsically pleiotropic as they appear able to infringe their primary catalytic function through the process of 8.1. TOWARDS MECHANISTIC FITNESS LANDSCAPES OF CELLS moonlighting3 [START_REF] Gancedo | Moonlighting Proteins in Yeasts[END_REF][START_REF] Huberts | Moonlighting proteins: An intriguing mode of multitasking[END_REF]. These molecular interactions can either be an inescapable by-product or a fitness-related function undergoing Natural Selection, or it can more assuredly lie at the crossroads of these processes (Khersonsky et al., 2010;[START_REF] Peracchi | The Limits of Enzyme Specificity and the Evolution of Metabolism[END_REF][START_REF] Tawfik | Enzyme promiscuity and evolution in light of cellular metabolism[END_REF]. Insofar as we know some of these constraints and can measure the parameters involved in enzyme apparent activity -concentration, kinetic parameters -and the levels of metabolites in cells [START_REF] Milo | Cell Biology by the Numbers[END_REF], it may become possible to use our framework in the future to identify local constraints (for example a promiscuous activity), when measured values depart from evolutionary predictions. But achieving this latter goal cannot be done without accounting for the network shape of metabolism, which is teeming with cycles, branched pathways and merge points. Epistasis builds up in a pathway (series epistasis4 ) and between them (parallel epistasis 4 ).

Thereafter, the following step of such enterprise should aim at studying how cellular fitness emerges as the intertwining of metabolic fluxes within a cell and how this relationship in turn influences the subsequent evolution of enzymes and of the network shape itself. Such a task would intend to further the understanding of how functional phenotypic principles emerge from the intrinsic working of metabolism, and contribute to draw conclusions about (higher level) architectural constraints that population genetics must take into account. This complexity in the shape of metabolic networks sketches a second horizon to deal with this wide subject. Finally, fitness is also at the crossroads of several genotype-phenotype maps. Metabolism is one of these maps, but other biochemical reactions such as those ensuring drug resistance also play a part in the making of fitness [START_REF] Walkiewicz | Small changes in enzyme function can lead to surprisingly large fitness effects during adaptive evolution of antibiotic resistance[END_REF][START_REF] Stiffler | Evolvability as a Function of Purifying Selection in TEM-1 -Lactamase[END_REF]. Molecular transport, gene expression, and gene replication all possess their own mapseg. of splicing in [START_REF] Julien | The complete local genotype-phenotype landscape for the alternative splicing of a human exon[END_REF] -that amalgamate at the cellular level. Many progresses have been made lately and the time may come, hopefully sooner than later, when it is possible to understand precisely how they combine using frameworks such as the one introduced in Chapter 4.

Enzyme evolution and linear pathways

As stated previously, some authors have already raised the need to address the consequences of high order epistasis -see [START_REF] Weinreich | Should evolutionary geneticists worry about higher-order epistasis?[END_REF] for instance -in the context of molecular evolution. In fact, [START_REF] Heckmann | Modeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates[END_REF] have lately tried to do so precisely in the case of 8.1. TOWARDS MECHANISTIC FITNESS LANDSCAPES OF CELLS enzyme kinetic parameters (focusing on turn-over numbers k cat s). In their model relying on FBA5 , the fitness of E.coli cells results from the complex combination of thousands of enzymes whose k cat s can undergo mutations. Mutation fixation of one variant is computed by a random draw from a binomial distribution with Kimura (1962)'s formula for fixation probability. Through that framework, they did observe that Evolution fails to produce optimal enzymes but this seems partly due to their premise that some enzymes are constrained under an efficiency ceiling and that some features of the metabolism are supposed to be optimal, so that their study, though promising, does not provide a reliable answer to the influence of epistasis on Adaptation in the case of enzymes.

This is even truer since FBA is already the fruit of a long evolutionary process and can tell things about how features will evolve from an already complex starting point but should therefore not be considered the appropriate framework to understand how the joint evolution between epistasis and Adaptation once established. Previously, the evolution of enzymes and pathways had also often been studied theoretically using the Flux Control Theory [START_REF] Kacser | The control of flux[END_REF][START_REF] Heinrich | A linear steady-state treatment of enzymatic chains. General properties, control and effector strength[END_REF][START_REF] Bibliography Hartl | Limits of adaptation: the evolution of selective neutrality[END_REF][START_REF] Dean | Fitness as a function of -galactosidase activity in Escherichia coli[END_REF]) -as discussed in the introduction of chapter 5 -where diminishing returns effects on flux are the result of complementary epistasis (named differently) because of the flux summation theorem [START_REF] Kacser | The control of flux[END_REF][START_REF] Kacser | The control of flux[END_REF][START_REF] Kaltenbach | Dynamics and constraints of enzyme evolution[END_REF]. This theorem states that flux control has to be spread between all enzymes of a pathway. Though it is only valid under certain circumstances [START_REF] Bagheri-Chaichian | Effects of epistasis on phenotypic robustness in metabolic pathways[END_REF], this theory has met some empirical success [START_REF] Dykhuizen | Enzyme activity and fitness: Evolution in solution[END_REF][START_REF] Fell | Metabolic control analysis: a survey of its theoretical and experimental development[END_REF] but has come short of explaining why the system does not improve further its observed state since some enzymesespecially transporters among empirically documented cases (Kacser et al., 1981;[START_REF] Bibliography Hartl | Limits of adaptation: the evolution of selective neutrality[END_REF][START_REF] Yi | Adaptive Landscapes in the Age of Synthetic Biology[END_REF] -necessarily have a large control. Passage of time should therefore lead to a step-by-step increase through which large control coefficients continuously travel from one enzyme to another and thus, enzymes would endlessly improve. Besides, the fact that transporters play a specific role also poses a riddle and calls for a careful examination for it can reflect many distinct causes (physical constraints limiting their efficiency through trade-offs [START_REF] Gudelj | An integrative approach to understanding microbial diversity: from intracellular mechanisms to community structure[END_REF][START_REF] Bosdriesz | Low affinity uniporter carrier proteins can increase net substrate uptake rate by reducing efflux[END_REF]; cellular constraints acting on metabolite and enzymatic content that, along with organisms evolving under stabilizing selection for the efficiency of reactions, favour upstream control [START_REF] Wright | The Evolution of Control and Distribution of Adaptive Mutations in a Metabolic Pathway[END_REF] -are explanations that have been proposed in the past; but they are, in one way or another, ad hoc assumptions).

TOWARDS MECHANISTIC FITNESS LANDSCAPES OF CELLS

Enzyme evolution and epistasis along a linear pathway

Surely, enzymes -and more generally proteins -face physical constraints at a point that prevents them from being more efficient, but this does not explain why the same enzyme (or transporter) can be more efficient -both in vitro and in vivo [START_REF] Bar-Even | The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters[END_REF][START_REF] Davidi | Global characterization of in vivo enzyme catalytic rates and their correspondence to in vitro k cat measurements[END_REF][START_REF] Davidi | A Bird's-Eye View of Enzyme Evolution: Chemical, Physicochemical, and Physiological Considerations[END_REF] -in another species and besides by many orders of magnitude. And even when these constraints really exist and impede Adaptation, determining when, where and how an enzyme departs from partly naive evolutionary predictions seems pivotal to expose them. What we propose to do here is to build a model where fitness results from the flux sustained by a linear pathway and is initiated by a carrier protein specialised at the uptake of one nutrient for which cells compete. As a first approach relevant for theoretical purposes, a metabolic pathway can be modelled as a succession of more or less reversible Michaelis Menten reactions (see 7.6 to recall how they work) initiated by a transport process [START_REF] Kotyk | Mobility of the free and of the loaded monosaccharide carrier in Saccharomyces cerevisiae[END_REF][START_REF] Kuile | The kinetics of facilitated diffusion followed by enzymatic conversion of the substrate[END_REF][START_REF] Bosdriesz | Low affinity uniporter carrier proteins can increase net substrate uptake rate by reducing efflux[END_REF], according to the following scheme comprised of one initiating transport followed by (n) reversible steps:

Senv + T Sin + E1 P1+E2 (...) Pn-1+En P f , (8.1) 
with S env and S in corresponding to the environmental and the cellular substrate, T and E i representing respectively the transporter protein and the i eth enzyme of the pathway involved in processing substrate S or P i-1 , while P f represents the final product of this pathway (eg. energy).

We have developed in chapter 7 an approach to determine the equilibrium flux of a reversible metabolic pathway, based on the kinetic parameters k f , k cat , k r , k inh and [E tot ] of each enzyme.

The idea would now be to let all these parameters evolve, like in chapter 5 to see how they all influence the final flux, which would be used as a proxy for fitness. To do so, one should model the joint evolution of enzymes embedded in one such pathway, where fitness is represented by the final point: the efficiency of enzymes derives from its kinetic parameters and its concentration, while the need for efficient enzymes (i.e. the fitness landscape on which each evolves) is driven by the extra flux it provides. It needs to account for all the constraints we have documented throughout this document: the possible loss of fitness due to excessive concentrations of metabolites -for instance, because it creates an imbalance with ubiquitous promiscuous reactions (Khersonsky et al., 2010;[START_REF] Peracchi | The Limits of Enzyme Specificity and the Evolution of Metabolism[END_REF][START_REF] Tawfik | Enzyme promiscuity and evolution in light of cellular metabolism[END_REF][START_REF] Niehaus | Enzyme promiscuity, metabolite damage, and metabolite damage control systems of the tricarboxylic acid cycle[END_REF] -and the costs contingent to the protein burden 8.1. TOWARDS MECHANISTIC FITNESS LANDSCAPES OF CELLS related to the cost of expression, and, to a lesser point, cellular and membrane molecular crowding [START_REF] Chou | Mapping the Fitness Landscape of Gene Expression Uncovers the Cause of Antagonism and Sign Epistasis between Adaptive Mutations[END_REF][START_REF] Labourel | Resource uptake and the evolution of moderately efficient enzymes[END_REF]. On the course of my PhD, we have been confronted

again and again to the difficulty of getting a sense and making sense of multidimensional questions.

Instead of working on the full pathway length, the first wise step should more cautiously begin with determining the full pairwise mutual influence of two consecutive enzymes, before extending the pathway to see what changes high order epistasis brings on the phenotype-fitness map of enzymes. It is already a challenging task because [START_REF] Klipp | Evolutionary Optimization of Enzyme Kinetic Parameters; Effect of Constraints[END_REF] have shown that reversibility alone can be optimised by being spread among its couple of underlying parameters, a finding that we have confirmed in the Supplementary Material section of Chapter 7. Since the way reactions contribute to fitness matters too, it should also be tested, which is already made possible by our framework. Most exciting of all, the second step of this project would then intend to determine the evolutionary outcomes at mutation-selection-drift balance, how organisms jointly improve their enzymes and whether there is space -and how much -for evolutionary contingency or not. The ultimate goal would be to contrast these outcomes to those obtained with the population genetics framework created during my PhD -in chapter 6 -and which we plan to broaden so as to make it more realistic. Developing the evolutionary model for full pathways rather than only one enzyme is fairly easy, because it shall use very similar tools than previously; noticeably, using Wright-Fisher model seems very appropriate as the population genetics framework is built on the fixation probability provided by this model (although it is self-evident to adapt it to other conventional models -see [START_REF] Sella | The application of statistical physics to evolutionary biology[END_REF]). Yet, at this stage, the modelling strategy could also be guided by the latest results we will find when accounting explicitly for competition -see the proposition in section 7.3. It may in effect seem paramount to incorporate the existence of ecological feed-backs entailed by each strategy, or by their specific combinations.

Noise in gene expression, cell size and enzyme evolution

Understanding enzyme evolution also needs to include noise in gene expression as noisiness was shown to harbour a potential for very deleterious effects on such systems (Wang et al., 2011) not to mention that some concentrations are biochemically unachievable, see section 5.2.6 -that should be contingent to cell sizes in such a way that evolutionary outcomes must be very sensitive to this parameter. Why should noise in gene expression have a huge impact on enzyme evolution, and why may it explain the apparent absence of patterns within datasets? Besides a ceiling for 8.1. TOWARDS MECHANISTIC FITNESS LANDSCAPES OF CELLS enzyme concentrations, there should in fact also exists a lower limit, below which deleterious effects of cellular noise are huge and this latter is dependent on cell sizes. The explanation for this dependency is that noise in gene expression preferentially affects small cells, concealing few proteins of each kind although their concentration may be rather high. One thousand enzymes -which would typically correspond to few transcripts and high noise -in a cell of V = 0. optimisation. Yet, noise in gene expression is in no way limited to an inter-generational issue: it is anywhere, at any time, and if it may be canalised, there exists an impassable frontier [START_REF] Elowitz | Stochastic Gene Expression in a Single Cell[END_REF][START_REF] Lestas | Fundamental limits on the suppression of molecular fluctuations[END_REF]. If the effect were proven to be profound, relaxing this assumption can follow, building on the explicit modelling of the birth-death process of enzymes -see chapter 4 -using standard transcription, translation and degradation rates for highly expressed proteins [START_REF] Milo | Cell Biology by the Numbers[END_REF]. Once this phenomenon has been studied in details, it may be possible to account for it at the scale of a pathway, which would ultimately conclude this part of the project.

Enzyme evolution, and the competition for multiple resources

Thus far, we have considered that fitness is equivalent to the level of one flux, which decides of cells' probability to multiply within different frameworks simulating competition. Notwithstanding its significance, how metabolic fluxes combine to produce fitness is nothing less than obscure, despite progress that have been made on a case by case basis through FBA [START_REF] Mori | Constrained Allocation Flux Balance Analysis[END_REF]Lularevic 8.1. TOWARDS MECHANISTIC FITNESS LANDSCAPES OF CELLS et al., 2019;[START_REF] Zeng | Modelling overflow metabolism in Escherichia coli with flux balance analysis incorporating differential proteomic efficiencies of energy pathways[END_REF]. Obviously, these flux do not contribute identically6 .

The follow-up step of this project would be to unveil what occurs when multiple pathways contribute to a cell's fitness under diverse circumstances: pathways could be parallel or branched, fitness could be determined only by the last step of processes, like for phospholipid synthesis, or result from multiple additions that add along the pathway, like for energy production. With these latter realistic components, there would emerge a need to synchronize pathways, not only enzymes, in order for cells to be efficient and ensure them, in particular, to avoid some adverse effects of local excessive efficiency. The intrinsic constraint of epistasis would therefore concern two different levels of interactions: within a pathway and between pathways. Again, contrasting abstract approaches through population genetics with those from systems biology should be possible in principle.

To begin with, only the interactions between pathways should be studied, through population genetics, before trying to find out how much this correlates with pairwise interactions and beyond through the combination of metabolic fluxes.

It is not possible to anticipate at this stage how tractable these models could be, but the goal does not appear absolutely out of reach. Interestingly, if we also explicitly introduce substrate competition and multiple resources, we may see that some cells sacrifice part of their functions in order to maximize their fitness. This should be especially true when the environment is considered dynamically and can be depleted by cells, because cells may rather feed on nutrients than produce the corresponding metabolites de novo: determining when it happens and which cellular constraints (membrane crowding, protein burden) drive the process would open up avenues about the evolutionary trajectories that followed from the advent of the eukaryotic cell or transitions towards multicellularity, and more generally from that of symbiosis relationships. We will discuss this in a further section as it mostly deals with a higher level of biological organisation. It should be kept in mind, still, that transporters are a major driver of the evolution of pathways, and as a consequence, of that of enzymes, which means that they should be accounted for at a point.

But, because there is a competition between uptake and de novo synthesis, the implementation of a pathway raises a whole new (fascinating) world of questions dating back to [START_REF] Horowitz | On the Evolution of Biochemical Syntheses[END_REF] -reviewed in [START_REF] Schmidt | Metabolites: a helping hand for pathway evolution?[END_REF] for instance -beyond the scope of this discussion. Indeed, 8.1. TOWARDS MECHANISTIC FITNESS LANDSCAPES OF CELLS this cannot be addressed outside an eco-molecular perspective7 ; just to give a flavour of why it is so, we may mention two alternate routes put forward to explain how pathways evolve: the first proposal, called retro-evolution, imagines that a pathway evolves first the last reaction because it is necessary for fitness, before upstream reactions evolve progressively, one after the other, to facilitate the production of the needed end-product and avoid relying only on the environment [START_REF] Roy | Multifunctional enzymes and evolution of biosynthetic pathways: retro-evolution by jumps[END_REF]; another track leans towards the existence of multifunctional enzymes, whose promiscuous activity may be readily coopted to initiate a novel pathway [START_REF] O'brien | Catalytic promiscuity and the evolution of new enzymatic activities[END_REF]. There are plenty other theories [START_REF] Schmidt | Metabolites: a helping hand for pathway evolution?[END_REF], but whichever is to be tested, our belief is that they are to be treated through frameworks that include explicitly the complexity of the environment, probably at the micro-and macro-scales, and should therefore fit more logically with the approach we developed for cross-feeding.

Enzyme optimisation and the trade-off between activity and stability

Concurrently to all we have mentioned hitherto, it has also been firmly established that the ability of a protein to fold and adopt its active conformation is a prerequisite to an enzyme's function [START_REF] Taverna | Why are proteins marginally stable?[END_REF][START_REF] Bloom | Stability and the Evolvability of Function in a Model Protein[END_REF][START_REF] Echave | Biophysical Models of Protein Evolution: Understanding the Patterns of Evolutionary Sequence Divergence[END_REF], not to mention that misfolded states conceal the potential to be harmful [START_REF] Bucciantini | Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases[END_REF][START_REF] Geiler-Samerotte | Misfolded proteins impose a dosage-dependent fitness cost and trigger a cytosolic unfolded protein response in yeast[END_REF] -see Box 15. Accounting for the fact that enzymes cannot sacrifice too much stability -see Figure 8.2A and B - [START_REF] Taverna | Why are proteins marginally stable?[END_REF] subsequently enabled the community to better understand many processes in molecular evolution, such as the distribution of evolutionary rates or the effects of mutations [START_REF] Zeldovich | Protein stability imposes limits on organism complexity and speed of molecular evolution[END_REF][START_REF] Tokuriki | The Stability Effects of Protein Mutations Appear to be Universally Distributed[END_REF][START_REF] Lobkovsky | Universal distribution of protein evolution rates as a consequence of protein folding physics[END_REF][START_REF] Tokuriki | Stability effects of mutations and protein evolvability[END_REF][START_REF] Echave | Biophysical Models of Protein Evolution: Understanding the Patterns of Evolutionary Sequence Divergence[END_REF][START_REF] Bershtein | Bridging the physical scales in evolutionary biology: from protein sequence space to fitness of organisms and populations[END_REF], and led to insights about the evolvability of new functions [START_REF] Bloom | Stability and the Evolvability of Function in a Model Protein[END_REF][START_REF] Bloom | Protein stability promotes evolvability[END_REF][START_REF] Tokuriki | How Protein Stability and New Functions Trade Off[END_REF]. Meanwhile, it has been documented that mutations are on average destabilizing [START_REF] Tokuriki | The Stability Effects of Protein Mutations Appear to be Universally Distributed[END_REF][START_REF] Tokuriki | How Protein Stability and New Functions Trade Off[END_REF] so that it gives rise to an apparent function-stability trade-off [START_REF] Shoichet | A relationship between protein stability and protein function[END_REF]De-Pristo et al., 2005;[START_REF] Weinreich | Darwinian Evolution Can Follow Only Very Few Mutational Paths to Fitter Proteins[END_REF][START_REF] Lunzer | Pervasive Cryptic Epistasis in Molecular Evolution[END_REF], which can preclude many enzymes to be highly efficient [START_REF] Tomala | Limits to Compensatory Mutations: Insights from Temperature-Sensitive Alleles[END_REF] -see introduction in section 5 for more on this subject.

As mentioned in introduction, the term trade-off is an abuse in this case. Although the negative relationship is real, it is definitely closer to the idea of mutational bias. No matter what, it has thus become increasingly apparent that understanding enzyme (and pathway) evolution crucially 8.1. TOWARDS MECHANISTIC FITNESS LANDSCAPES OF CELLS requires to integrate both these fitness components. At this stage however and in spite of commendable first proposals [START_REF] Bloom | Stability and the Evolvability of Function in a Model Protein[END_REF], combining mechanistically the effects of residues on stability and catalysis -through their contribution to the respective ∆G -within a general framework remains a major challenge [START_REF] Echave | Biophysical Models of Protein Evolution: Understanding the Patterns of Evolutionary Sequence Divergence[END_REF][START_REF] Bershtein | Bridging the physical scales in evolutionary biology: from protein sequence space to fitness of organisms and populations[END_REF] because the intensity of the average negative relationship and its existence itself8 seem to be largely enzyme-dependent [START_REF] Schreiber | Stability and function: two constraints in the evolution of barstar and other proteins[END_REF][START_REF] Burg | Selection of mutations for increased protein stability[END_REF][START_REF] Knies | Enzyme efficiency but not thermostability drives cefotaxime resistance evolution in TEM-1 -lactamase[END_REF][START_REF] Miller | An appraisal of the enzyme stability-activity trade-off[END_REF][START_REF] Tomala | Limits to Compensatory Mutations: Insights from Temperature-Sensitive Alleles[END_REF], and it is also anything but obvious to draw a generic two-dimensional phenotype-fitness map involving both these quantities -see [START_REF] Echave | Beyond Stability Constraints: A Biophysical Model of Enzyme Evolution with Selection on Stability and Activity[END_REF] for one of the most recent and significant efforts relying on the ansatz of neutral threshold in the fitness landscapes. What should be possible at this stage to refine Echave (2019)'s approach is to simulate theo- . This ratio critically depends on the difference between the free energy of each state, so that the probability of being folded is

P F = 1 1+e -∆G/RT
, where ∆G is high (and thus P F , and fitness) if ∆G U >> ∆G F . Such phenomenon gives rise to the traditional plateau-cliff-valley fitness landscape when one considers that fitness coincides with the probability of being folded. Since stability combines with activity to produce a function, the fitness landscape of an enzyme, and more generally a protein, is subject to two distinct selective pressures: (i) the active site is under purifying selection to conserve the function while (ii) the rest of the protein is responsible for its stability and evolve more freely as mutations slightly destabilising are less deleterious and can be buffered by some occurring in their molecular neighbourhood. At the scale of the whole protein, this gives rise to two different trends, yet to be understood, for the evolutionary rate: near the catalytic site, the evolutionary rate increases steadily as residues stand further away from it, a process which stops beyond a point where residues all have approximately the same relatively high evolutionary rate. Notice finally that there exists many examples of intrinsically disordered proteins having two or more preferred states that we did not show here for the sake of simplicity. This phenomenon can be described by considering another folded state (as shown in the previous figure, though in the case of a third shape corresponding to misfolding). Understanding why it is so remains a (fascinating) conundrum, as one may imagine that it is a parallel way to produce adaptation -one that would not need a new gene in the genome.

retically the evolution of an enzyme based on realistic principles for mutations affecting residues (which is different than realistic mutations, which would mean that we know in general how these 8.2. FURTHER PERSPECTIVES mutations affect the shape of the protein and, in turn, how it changes its catalytic efficiency for a given metabolite) and on a predetermined fitness for different (codon) motifs present in the protein, one being the catalytic site while the rest being involved in protein stability. This could help determine how findable are efficient genotypic solutions and if there exists some contingency in the process. Under purifying selection against mutations affecting protein stability, such simulations have introduced the idea that entrenchment and contingency may be a widespread rule [START_REF] Shah | Contingency and entrenchment in protein evolution under purifying selection[END_REF][START_REF] Mccandlish | Epistasis and the Dynamics of Reversion in Molecular Evolution[END_REF], as much as contingency can pretend to such a status.

These ideas may seem a little far-fetched but progresses in molecular biology have also allowed the extensive characterisation of sequence-function relationships at different scales, from transcription factors to proteins involved in splicing [START_REF] Kinney | Massively Parallel Assays and Quantitative Sequence-Function Relationships[END_REF]. Therefore, it should be possible in parallel to test these ideas with model case enzymes, and, considering phenotype-fitness maps incorporating realistic features of metabolism, to simulate how genotypes should evolve in specific cases where phylogenies can also inform on the evolutionary trajectories through ancestral reconstruction [START_REF] Merkl | Reconstruction of ancestral enzymes[END_REF]. In the long run, it could be useful to understand some patterns in molecular evolution because it has been shown that rates of evolution are determined by a complex functional-stability relationship [START_REF] Bibliography Marcos | Too packed to change: side-chain packing and site-specific substitution rates in protein evolution[END_REF][START_REF] Echave | Causes of evolutionary rate variation among protein sites[END_REF][START_REF] Jack | Functional Sites Induce Long-Range Evolutionary Constraints in Enzymes[END_REF][START_REF] Jimenez | Substitution Rates Predicted by Stability-Constrained Models of Protein Evolution Are Not Consistent with Empirical Data[END_REF] -see Figure 8.2-C and also that highly expressed enzymes evolve more slowly [START_REF] Drummond | Why highly expressed proteins evolve slowly[END_REF][START_REF] Drummond | Mistranslation-Induced Protein Misfolding as a Dominant Constraint on Coding-Sequence Evolution[END_REF][START_REF] Serohijos | Protein biophysics explains why highly abundant proteins evolve slowly[END_REF], enzyme levels of expression being an already present feature in our phenotype-fitness metabolic maps (although not described mechanistically through a RGN, as modelling choices proved too arbitrary at this stage).

Further perspectives

We have designed here a project that intends to draw theoretical evolutionary predictions from first principles and to foster the dialog between functional and evolutionary approaches in order to better understand why organisms work the way they do. Because further developments on both ends of the project are contingent to their results, it is not possible to anticipate precisely the next steps, but we have already put forward how some of these natural steps will emerge from the project. Two other concomitant perspectives deserve to be considered at this stage.

FURTHER PERSPECTIVES

Influence of the environment and time to equilibrium

First, in the present outline of the perspectives, the environment is considered to be constant such that fitness landscapes always look exactly the same, an unreasonable assumption for in vivo conditions. Acknowledging that ecological conditions impact Adaptation dates all the way back to the very beginning of Evolutionary biology insofar as it is the tenet of Natural Selection identified by [START_REF] Darwin | On the origin of species by Means of Natural Selection[END_REF] and [START_REF] Wallace | On the Tendency of Varieties to Depart Indefinitely From the Original Type[END_REF]: different environments can be seen as different fitness landscapes [START_REF] Wright | Evolution in Mendelian Populations[END_REF] where the optima are not located at the same place. Conversely, this means that species evolving under different environments are not subject to the same selective pressure, which therefore contribute to define evolutionary outcomes such as the mutation-selection-drift balance. Complexity is indeed ubiquitous in Nature [START_REF] Bergelson | Functional biology in its natural context: A search for emergent simplicity[END_REF], even in simplified systems [START_REF] Sanchez-Gorostiaga | High-order interactions distort the functional landscape of microbial consortia[END_REF]. This is all the more true since environment are always subject to fluctuations -albeit with different magnitude, temporality and stochasticity -a phenomenon which has largely been proven to determine optimal phenotypic strategies such as predictive plasticity [START_REF] Gotthard | Adaptive Plasticity and Plasticity as an Adaptation: A Selective Review of Plasticity in Animal Morphology and Life History[END_REF][START_REF] Ghalambor | Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments[END_REF], bet-hedging [START_REF] Cohen | Optimizing reproduction in a randomly varying environment[END_REF][START_REF] Slatkin | Hedging one's evolutionary bets[END_REF][START_REF] Cooper | Adaptive "coin-flipping": a decision-theoretic examination of natural selection for random individual variation[END_REF][START_REF] Philippi | Hedging one's evolutionary bets, revisited[END_REF] or polymorphism [START_REF] Wittmann | Seasonally fluctuating selection can maintain polymorphism at many loci via segregation lift[END_REF], be it among macro- [START_REF] Menu | Coin-flipping plasticity and prolonged diapause in insects: example of the chestnut weevil Curculio elephas (Coleoptera: Curculionidae)[END_REF][START_REF] Philippi | Bet-Hedging Germination of Desert Annuals: Beyond the First Year[END_REF] and micro-organisms [START_REF] Ratcliff | Individual-Level Bet Hedging in the Bacterium <em>Sinorhizobium meliloti<[END_REF][START_REF] Solopova | Bet-hedging during bacterial diauxic shift[END_REF] or in between [START_REF] Martínez-García | Seasonality can induce coexistence of multiple bet-hedging strategies in Dictyostelium discoideum via storage effect[END_REF]. [START_REF] Wilke | Dynamic fitness landscapes in molecular evolution[END_REF] and [START_REF] Mustonen | Molecular Evolution under Fitness Fluctuations[END_REF] compellingly unraveled how it should impact the long-term selective coefficient s, but it was not until recently that these ecological pressures were shown to impair severely the strength of Natural Selection under certain circumstances [START_REF] Cvijović | Fate of a mutation in a fluctuating environment[END_REF]. Besides, it was also put forward in parallel that fitness landscapes may turn out to be deformable such that the power of selection would be even more contingent to the evolutionary and ecological history [START_REF] Bajić | On the deformability of an empirical fitness landscape by microbial evolution[END_REF]. Introducing ecological factors and other phenomenon likely to harm the potential of Natural Selection [START_REF] Graves | Variability in Fitness Effects Can Preclude Selection of the Fittest[END_REF] cannot thus be overlooked when one is willing to make accurate predictions about in vivo Evolution and should be added for further developments on either part of this project.

But that is definitely not the whole story, as it would also raise another often neglected issue when dealing with metabolism: in most frameworks, and ours does not escape this "rule", biochemical reactions are supposed to always be at equilibrium. This may be true for a significant part of the energetic metabolism, especially among certain cell types of multicellular organisms where homeostasis is ensured so that variations of the environment are partly buffered. But this is 8.2. FURTHER PERSPECTIVES not what happens in general, since organisms often meet different environmental conditions during their lifetime, which occurs as soon as one (or all) nutrient has been depleted, as exemplified with the diauxic shift [START_REF] Solopova | Bet-hedging during bacterial diauxic shift[END_REF]. Assuming it only changes the pace of life means that the content should be adapted albeit always being there, which requires to adjust to a richer environment when it happens. The phenomenon could even be of greater importance as the cell completely loses an ability when it becomes unnecessary -through plasticity -as exemplified by the operon lactose; the cell has first to express its proteome and then can only be efficient when Michaelis Menten steady-state is approached. In any case, the time to switch from the equilibrium in one environmental condition to that of another environment is costly and should be under selection. A next work should address how this should impact the selection acting on enzyme kinetic efficiency -we tested this idea, which seemed at first sight to show similar outcomes than with efficiency at steady-state (results not reported in this dissertation). Our intuition is that there should be two major factors behind the selective strength encountered due to this constraint: (i) how often and how extreme environmental changes are should modify it, as well as (ii) the pace of life of organisms, since losing a few seconds may not prove to be enough for Natural Selection to overcome random drift for organisms with a lifecycle lasting several days, while it may be critical for microorganisms with short generation times of tens of minutes such as E.coli or yeasts. Studying diversifying bet-hedging or plasticity for instance, may benefit from such an understanding, as these strategies have to change their equilibrium recurrently.

Weakest link epistasis in the data

Simultaneously, it could also become relevant to attempt to detect weakest link epistasis in genomic data using well identified and characterized genes and pathways (eg. genes involved in glycolysis) among closely related species -sharing similar ecological niches -or even within populations, whose genetic divergence concerns few loci. Identifying genes and/or loci of the same pathway that face distinct selective pressures depending on the genomic background to which they belong may yield testable predictions about the actual metabolic effects of mutations even when they depart from a priori (for example, a mutation improving catalytic properties of an enzyme is supposed to increase the metabolic flux and may well do so in some organisms/species but still have few or no effect at all on the fitness in some others, because in those where it does not, it is not the fitness limiting step) and to reconcile expectations about fitness effects of mutations 8.2. FURTHER PERSPECTIVES with their actual counterpart. Reciprocally, investigating why some mutations increasing fluxes9 display similar fitness effects than synonymous mutations would help appreciate how existing phenotypes and their underlying genotypes are translated into fitness while it should also feeds the community with information about mechanisms responsible for adaptation in functional sites such as the catalytic site of an enzyme.

Then, using species with more or less different life histories and phylogenetic relatedness, it may become practicable to test these ideas on a wider scale as some pathways are largely conserved, and to see whether it influences the inference of population features (such as N e ). Obviously, there are many contributions that can equally account for similar selective signatures and the objective being to disentangle these manifold contributions, data analysis needs be restricted to typical cases where flux, fitness and genomic index of adaptations can readily be determined. This suggests another long-term line of research, where the combination of such a framework with the knowledge of other mechanisms involved in molecular fitness -namely protein stability [START_REF] Dasmeh | The Influence of Selection for Protein Stability on dN/dS Estimations[END_REF][START_REF] Dasmeh | Estimating the contribution of folding stability to nonspecific epistasis in protein evolution[END_REF][START_REF] Echave | Biophysical Models of Protein Evolution: Understanding the Patterns of Evolutionary Sequence Divergence[END_REF][START_REF] Echave | Beyond Stability Constraints: A Biophysical Model of Enzyme Evolution with Selection on Stability and Activity[END_REF] -would aim at explaining part of the variability observed when characterizing the fitness of specific sites or codons along and across phylogenies [START_REF] Rodrigue | Mutation-selection models of coding sequence evolution with site-heterogeneous amino acid fitness profiles[END_REF][START_REF] Rodrigue | Detecting Adaptation in Protein-Coding Genes Using a Bayesian Site-Heterogeneous Mutation-Selection Codon Substitution Model[END_REF][START_REF] Parto | Detecting consistent patterns of directional adaptation using differential selection codon models[END_REF][START_REF] Jones | A Phenotype-Genotype Codon Model for Detecting Adaptive Evolution[END_REF] and may help to better grasp adaptation signals as was shown in [START_REF] Dasmeh | The Influence of Selection for Protein Stability on dN/dS Estimations[END_REF], and also to identify which selective factors govern the adaptive process, a yet contentious issue even in quantitative genetics 10 (Harpak et al., 2021). We put forward the first step of such a project when we discussed about the idea of simulating sequences based on knowledge about activity and stability, but the idea here would be to do quite the opposite, i.e. to see if we can explain phylogenetic data through the information about stability and activity, much like [START_REF] Echave | Beyond Stability Constraints: A Biophysical Model of Enzyme Evolution with Selection on Stability and Activity[END_REF] started to do. Along with many other lines of research, for instance on convergent Adaptation [START_REF] Stoltzfus | Mutational Biases Influence Parallel Adaptation[END_REF], such an effort would also help uncover which part of the evolutionary process is contingent and which one is necessary [START_REF] Monod | Chance and Necessity[END_REF][START_REF] Ben-Menahem | Historical Contingency[END_REF], for a similar strength of selection may yield pathways whose weakest links are spread differently, and, eventually, lead to variability in levels of evolvability.

Chapter 9

Towards an integrative view of cell diversification 9.1 Furthering our understanding of cellular metabolic diversification Cellular diversification is a conundrum whose complexity has been studied from a broad array of perspectives. At this stage, we are still not at the point where a general framework has been sketched out, and it may be that no such paradigmatic vision is possible. In fact, the choice of a framework often influences the outcomes, but without any possibility to understand in which way it does, reminding us of Bertrand Russell's thoughts about the question -see Introduction. During my PhD, we have come to the point of view that these questions must be addressed using bottom-up approaches where the behaviour of components in isolation is well understood so that it is possible to tackle questions dealing with how they behave together. This lead us to focus on the evolution of metabolic strategies rather than that of integrated cells where these metabolic strategies would be in addition the result of underlying gene networks.

By doing so, we acknowledged that combining these questions is not yet possible if we are to do it without sacrificing how realistic both these systems are. We put forward below how our metabolic framework may naturally be extended to study community assemblages in more complex environments, after discussing an approach that could help make progress in the direction of 9.1. FURTHERING OUR UNDERSTANDING OF CELLULAR METABOLIC DIVERSIFICATION combining accessibility1 with realistic fitness landscapes.

Accessibility, trade-off and differentiation in unicellular organisms

If it is too tricky to understand what happens when gene networks interact with metabolic tradeoffs from a mechanistic perspective, it remains possible to test some of our ideas about accesibility and differentiation. This is even truer now that we have built a robust metabolic model where trade-offs emerge from cellular constraints. To address this question, the first step should be to analyse mathematically the shape of the trade-off when distinct nutrients are successively available in the environment. Indeed, what was lacking in our first approach was both the mapping from genotype to phenotype and that from phenotype to fitness. We have addressed this second question and it should be relatively easy to understand what it implies when the environment is unpredictable. Meanwhile, the mapping from genotype to phenotype also raised unsolvable issues, which is noticeably due to the way we wish to answer this question, that is without setting a priori assumptions about the genotype and the phenotype spaces. Because our RGN approach is more costly in terms of calculations than Hill-Langmuir equations but a little more general, the preliminary gene network step should examine how much the approaches differ from one another to determine which one is more relevant. Knowing this, it should then be possible to simulate all the phenotypic strategies of possible genotypes assuming simplistic RGNs based on a few transcription factors. For instance, with 2 genes and assuming 3 types of connections (1: activation; 0: basal probability of being bound to the polymerase; or -1: inhibition), there are 6 combinations possible ({1,1},{1,0},{1,-1},{-1,1},{-1,0},{-1,-1}), which allows the determination of the full genotype-phenotype-fitness maps for a starting set of sequences and two given binding motifs -one corresponding to the ehnancer, the other to the repressor. Knowing these phenotypic strategies then enables one to relate each genotype to a fitness in an idealised environment 2 , and finally, to draw genotype-fitness maps where findability, and in turn accessibility, would appear. At this point, one problem is that competition for resources has not included ecological feed-backs. We have seen that Adaptive Dynamics is a good way to start such things, especially when maps are not straightforward. The idea with more complex networks would be to simulate pairwise competition 9.1. FURTHERING OUR UNDERSTANDING OF CELLULAR METABOLIC DIVERSIFICATION where, by definition, there is no clonal interference: because the environment is complex, the competition should rely on a relevant timescale, typically one that includes several occurrences of each environment, and introduce the mutant strategy at different starting environmental point, as it may be critical to overcome the initial random drift pressure (if a sub-type arrives in a slightly deleterious environment, it may vanish even though it would have been very advantageous in the long run).

Meanwhile, our framework has raised many other interesting questions. One of these concerns the rewiring of gene networks. It would be interesting to simulate an evolutionary process starting from a moderately efficient state and assuming a constant environment to determine how much of the optimising process is pure contingency and whether or not it can alter the evolutionary trajectory, be it in the genotypic or the phenotypic space. When fitness stationarity is reached, it would also be interesting to test whether or not a gene network can be rewired in a nearly neutral fashion and thereby opens up new evolutionary opportunities.

Cooperation and diversification among microorganisms: what comes next?

We have shown that the evolution of cross-feeding interactions among microorganisms may arise as an intrinsic by-product of cellular constraints -Chapter 7.1. We have already discussed how the framework should be pushed forward, for instance by evaluating what would happen if cells can actively remove and/or take the intermediate metabolite so as to increase the rate with which cross-feeding proceeds. It is noticeably important in the case of acetate, which is involved in the phenomenon of overflow that occurs when cells switch from respiration to respiro-fermentation within rich glucose environments. Besides, how environmental fluctuations could influence the process is also a relevant question, specially when we get interested into which genetic underpinnings are more likely to emerge. Cross-feeding interactions are mostly documented between species, which raises intriguing questions about when it should rely on genetic and non-genetic differentiation.

Modelling an export mediated by carrier proteins also raises several evolutionary questions.

Noticeably, membrane occupancy -and its limits -becomes an important parameter in the process, one that we have been indirectly assuming during my PhD thesis. Indeed, setting transporter proteins to constant parameters, be it their efficiency or their copy numbers, implies both that 9.1. FURTHERING OUR UNDERSTANDING OF CELLULAR METABOLIC DIVERSIFICATION these quantities are not evolvable and that they are facing a constraint precluding them to be overexpressed. If they are probably constrained from a physical perspective, it is not straightforward that this is why they did not evolve towards further efficiency. One possibility is that they are constrained by an underlying trade-off [START_REF] Bosdriesz | Low affinity uniporter carrier proteins can increase net substrate uptake rate by reducing efflux[END_REF], possibly involving the cost incurred by their production. Another is that there exists a point above which the speed of certain processes such as DNA replication is the limiting step -there could be a limit to replication that has already been enormously optimised through multiforking in some bacteria [START_REF] Youngren | The multifork Escherichia coli chromosome is a self-duplicating and self-segregating thermodynamic ring polymer[END_REF] -so that metabolism is no longer under directional selection [START_REF] Wright | The Evolution of Control and Distribution of Adaptive Mutations in a Metabolic Pathway[END_REF]. But still, this should not be a constraint for all organisms since Evolution did not push all of them towards such extreme paces of life. The membrane real estate hypothesis has also been proposed and seems appealing, as membranes are known to be very packed with molecules [START_REF] Milo | Cell Biology by the Numbers[END_REF], thereby creating another internal trade-off. This hypothesis comes with many consequences about how cells should allocate their membrane depending on the environment in which they live -for instance, microorganisms belonging to the microbiota of multicellular organisms may benefit from reducing their size and allocate a lot to nutrient transport instead of de novo synthesis, and may trigger a coevolutionary process with their hosts.

Meanwhile, two other questions are intriguing and may be solved using our framework: the first one concerns the evolution of cell size and the amount of gene products (and gene content), as the cell needs to allocate preferentially its proteome to certain tasks, or to expand in response to its content. How these features jointly evolve and/or adapt through predictive plasticity as seems the case in some microorganisms [START_REF] Kafri | The Cost of Protein Production[END_REF], and whether there may be different possible stable strategies relying on distinct paces of life should be studied to give a more accurate picture on the questions raised by our work on cross-feeding and the further ideas developed above. We have also mentioned ideas about the genetic underpinnings behind these interactions. Yet, we have not discussed the influence latency could have in further versions of the model that would include environmental fluctuations. How much would it change co-evolutionary trajectories and the community assemblage that arises is not obvious and needs to be studied on its own. Latency shares, from a certain point of view, commonalities with germ cells in multicellular organisms, on two different aspects. First, they ensure evolutionary success on the long run, by diminishing their short run fitness. Second, they are not actively maximising the depletion of their environment in order to reproduce (during their latent stage). These reflections finally lead us to discuss again [START_REF] Thanos | Aristotle and Theophrastus on plant-animal interactions[END_REF][START_REF] Serafini | The Epic History of Biology. 1st[END_REF] a situation that lasted until Antoni van Leeuwenhoek made a microscope powerful enough to distinguish microorganisms [START_REF] Meinesz | Comment la Vie a commencé? Belin[END_REF]. Later, [START_REF] Darwin | On the origin of species by Means of Natural Selection[END_REF] and Wallace (1858) both drew inspiration from the scientific observation of multicellular organisms to build the Theory of Evolution by Natural Selection. Even dating the origin of Life has largely relied on multicellular structures known as stromatolites, built by cyanobacteria since 3.7 billion years ago [START_REF] Riding | The term stromatolite: towards an essential definition[END_REF][START_REF] Nutman | Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures[END_REF]: to date, these structures are still the oldest known evidences of Life.

Paradoxically, as influential as it has been on unraveling the mysteries of Life, Multicellularity still thumbs its nose at biologists who fail to explain its own origin (Márquez-Zacarías et al., 2021a;Márquez-Zacarías et al., 2021b).

In fact, even the basic definition of Multicellularity is subject to longstanding debates, and considerably influences how many clades belong to this category. Regardless of the precise definition of the term, it is clear that Multicellularity arose several times independently in the History of Life (Bonner, 1998b;[START_REF] Niklas | The origins of multicellular organisms[END_REF][START_REF] Niklas | The evolutionary-developmental origins of multicellularity[END_REF] -see Figure 9.1. Under a broad definition based upon aggregative properties, Multicellularity evolved across all domains of Life [START_REF] Nickell | Pyrodictium cannulae enter the periplasmic space but do not enter the cytoplasm, as revealed by cryo-electron tomography[END_REF]Bonner, 1998b) -as defined by [START_REF] Woese | Phylogenetic structure of the prokaryotic domain: the primary kingdoms[END_REF] and [START_REF] Woese | Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya[END_REF], and since corroborated by [START_REF] Spang | Complex archaea that bridge the gap between prokaryotes and eukaryotes[END_REF] -and, within those domains, among very different and often remote clades like Animals and Plants [START_REF] Parfrey | Multicellularity arose several times in the evolution of eukaryotes (Response to DOI 10.1002/bies.201100187[END_REF] or Myxobacteria and Cyanobacteria [START_REF] Dworkin | The Myxobacteria: New Directions in Studies of Procaryotic Development[END_REF]Bonner, 1998b). [START_REF] Grosberg | The Evolution of Multicellularity: A Minor Major Transition?[END_REF] indexed up to 25 independent transition events toward broad-sense Multicellularity; 15 such events are acknowledged [START_REF] Niklas | The origins of multicellular organisms[END_REF] when considering more stringent criteria such as sustained cell-cell communication or cooperation. One could even be more stringent by limiting Multicellularity to life forms where cells specialize into germ and soma (Bonner, 1998b), thus excluding most, but not all, Prokaryotic forms (eg. of Myxobacteria). This latter definition of Multicellularity specifically identifies groups of cells where some members will not reproduce, as opposed to Simple Multicellularity where cells Noticeably, shapes looking like slime molds can be found in many different clades, such as rhizaria, excavata, social amoebozoa, with the latter denomination, which, by the way, should be abandoned as it is confusing.

This tree raises many questions about the evolutionary trajectories followed by the different types of Multicellularity and Eumulticellularity and their degree of differentiation.

aggregate but keep the ability to reproduce. Based on a parallel with Eusociality, in which social groups also include non-reproductive members [START_REF] Batra | Behavior of Some Social and Solitary Halictine Bees within Their Nests: A Comparative Study (Hymenoptera: Halictidae)[END_REF][START_REF] Crespi | The definition of eusociality[END_REF][START_REF] Wilson | Eusociality: Origin and consequences[END_REF] and previous distinctions about Multicellularity complexity set by [START_REF] Butterfield | Modes of pre-Ediacaran multicellularity[END_REF], [START_REF] Knoll | The Multiple Origins of Complex Multicellularity[END_REF], [START_REF] Niklas | The origins of multicellular organisms[END_REF] and [START_REF] Rebolleda-Gomez | Evolution of simple multicellularity increases environmental complexity[END_REF], we suggest to coin this form of Multicellularity "Eumulticellularity". Like other forms of Multicellularity, the evolution of Eumulticellularity appears rather unconstrained [START_REF] Boraas | Phagotrophy by a flagellate selects for colonial prey: A possible origin of multicellularity[END_REF][START_REF] Gavrilets | Rapid Transition towards the Division of Labor via Evolution of Developmental Plasticity[END_REF][START_REF] Niklas | The evolutionary-developmental origins of multicellularity[END_REF], considering the repeated evolution of germ-soma differentiation that even occurred within single families such as Volvocaceae [START_REF] Kirk | A twelve-step program for evolving multicellularity and a division of labor[END_REF].

Following Haeckel's Gastraea Theory, stating that cells begin their life in a solitary fashion before aggregating for reproduction, in this respect very similar to the life cycle of slime molds 9.2. ADOPTING A TRANSVERSAL VIEWPOINT TO DEMYSTIFY WHAT DRIVES COMPLEX MULTICELLULARITY -AND ITS APPARENT LOSSES [START_REF] Bonner | Evidence for the formation of cell aggregates by chemotaxis in the development of the slime mold Dictyostelium discoideum[END_REF][START_REF] Shaffer | Aggregation in Cellular Slime Moulds: in vitro Isolation of Acrasin[END_REF], it has very often been assumed some kind of chronological progression from Simple Multicellularity to Complex Eumulticellularity. This "aggregation first" paradigm relies on the intuition that larger organisms often benefit from an immediate selective advantage. For instance, Gerhart and Kirschner observed that a group of cells creates its own environment (Bonner, 1998b), thereby possibly buffering environmental fluctuations. [START_REF] Dawkins | The selfish gene[END_REF] similarly identified aggregation as a solution to ensure the safety of reproductive cells.

The intuition has been confirmed by experiments showing that aggregation may evolve rapidly as a protection against predators in the green alga Chlorella vulgaris [START_REF] Boraas | Phagotrophy by a flagellate selects for colonial prey: A possible origin of multicellularity[END_REF] or as means to induce sedimentation in Saccharomyces cerevisae [START_REF] Ratcliff | Experimental evolution of multicellularity[END_REF]. Bonner (1998b) underlined that aggregation may not need be adaptive: assuming that it is neutral -or nearly neutral [START_REF] Niklas | The origins of multicellular organisms[END_REF] -mutations promoting clustering may remain long enough to be observed, or to be stabilized by further mutations [START_REF] Libby | Ratcheting the evolution of multicellularity[END_REF][START_REF] Libby | Stabilizing multicellularity through ratcheting[END_REF].

Recent investigations have thought to explain how aggregative properties become stabilized through the fixation of mutations detrimental at the cell level but potentially advantageous for the group. Such mutations may only fix in multicellular organisms that develop clonally, because Multicellularity buffers their individual deleterious effects that would be fully expressed in unicellular organisms [START_REF] Libby | Ratcheting the evolution of multicellularity[END_REF][START_REF] Ratcliff | Nascent life cycles and the emergence of higher-level individuality[END_REF]. In experiments involving yeasts, Ratcliff et al. capable to differentiate, as suggested by [START_REF] Ispolatov | Division of labour and the evolution of multicellularity[END_REF]. More recently, Márquez-Zacarías et al. (2021a) has even started to question why aggregative multicellularity does not seem to promote more complex forms, and whether some forms of aggregation could preclude the evolution of further differentation (Márquez-Zacarías et al., 2021b). Based on these considerations, we propose to push forward the conceptual framework we have proposed for differentiation by adding the aggregative dimension.

Furthering our non sense proposition

As we have reviewed, Multicellularity is traditionally characterized by two main cellular characteristics: aggregation and differentiation. According to the authors, differentiation is sometimes considered to be the determinant of what is called complex Multicellularity -Eumulticellularity for us. One difficulty when speaking about multicellular organisms is that it mixes up two related but nonetheless distinct notions, that of multicellularity with that of organismality. In an inspiring philosophical work, [START_REF] Queller | Beyond society: the evolution of organismality[END_REF] proposed a decade ago to define this idea of organismality, emphasizing its two-dimensional aspect composed by the extent of (genetic) conflictuality and phenotypic cooperation that biological entities face (for example cells in a multi-cellular organism, or each ant in a colony) -see Figure 9.2.

A multicellular organism is therefore generally considered to be an organism made up of several aggregated and differentiated cells which cooperate, supposedly because this increases the fitness of the genotype(s) that constitute it: kinship plays a role in mediating an individual's own conflict, but genetic conflict is never completely abolished, as cancer may always arise and disrupt this fragile equilibrium by reducing its organismality. Notice that cancers are very specific entities whose understanding may benefit from seeing things according to our transversal framework, since their main feature seems that they disrupt organismality while retaining some features of the multicellular lifestyle, such as aggregation and differentiation. Observing that both cooperation and differentiation are very widespread in unicellular organisms, we proposed to put this proposition back into perspective, by taking into account the fact that there are many forms of unicellular organisms practising varying degrees of differentiation and cooperation. This seems important to us when we want to determine the evolutionary trajectories that have led to multicellular organisms, because it could be that the evolution of certain forms of (multicellular) differentiation is only made possible by the prior presence of differentiation in their unicellular ancestor and is therefore [START_REF] Queller | Beyond society: the evolution of organismality[END_REF], from which the figure is inspired, organismality is defined by two axes along which cooperation and conflict increase. Societies, like the human ones or biofilms, are groups with highly cooperative interactions and a lot of genetic conflict, while simple groups describe entities that have few genetic conflict but at the same time few cooperative interactions. On the contrary, the higher the cooperation and the lower the genetic conflict, the higher organismality is, with complex multicellular organisms displaying the highest levels (of organismality). Because plasmodium entities cooperate, and have few conflict, they also have a high level of organismality.

not a potential evolutionary consequence resulting from the previous evolution of aggregation, as also pointed out in (Márquez-Zacarías et al., 2021a). As such, it seems relevant to us, at least when dealing with this process to adopt a characterization of organisms based on their distribution along the axes of the organism as defined by [START_REF] Queller | Beyond society: the evolution of organismality[END_REF], but also along the axes related to the multicellular lifestyle -see Figure 9 et al., 2015;[START_REF] Coneva | Plant architecture without multicellularity: quandaries over patterning and the soma-germline divide in siphonous algae[END_REF]. Choanoflagellates, the closest relatives to Metazoans among Opisthokonts, would also start making sense, as some of them can live either as single cells or as aggregates with some forms of proto-differentiation, for instance in Salpingoeca rosetta [START_REF] Dayel | Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta[END_REF][START_REF] Ruiz-Trillo | A phylogenomic investigation into the origin of metazoa[END_REF][START_REF] Sebé-Pedrós | The Dynamic Regulatory Genome of Capsaspora and the Origin of Animal Multicellularity[END_REF][START_REF] Sebé-Pedrós | The origin of Metazoa: a unicellular perspective[END_REF]. the solution to overcome this barrier [START_REF] Murgia | Clonal Origin and Evolution of a Transmissible Cancer[END_REF]. Bottleneck reproduction is both linked to aggregation and to the idea of reduced genetic conflict in an organism, while being promoted by the goods provided by cooperation, although the existence of serial cellular division in Chlamydomonas testifies that cooperation is not a prerequisite for that [START_REF] Kirk | A twelve-step program for evolving multicellularity and a division of labor[END_REF][START_REF] Herron | De novo origins of multicellularity in response to predation[END_REF]. Finally, communication is also an important feature of organisms, which is coopted in the case of multicellular organisms. How the level of communication jointly evolves along the unicellular-multicellular continuum should therefore also be examined carefully, and may be 9.2. ADOPTING A TRANSVERSAL VIEWPOINT TO DEMYSTIFY WHAT DRIVES COMPLEX MULTICELLULARITY -AND ITS APPARENT LOSSES quantified using the amount of exchanged molecules. It could be interested to start evaluate that by examining the evolution of the repertoire of gene families involved in cell-cell communication along phylogenies.

Box 16. Yeasts and evolutionary reversals

Yeasts have long been suspected to be evolutionary reversals [START_REF] Rebolleda-Gómez | The Cost of Being Big: Local Competition, Importance of Dispersal, and Experimental Evolution of Reversal to Unicellularity[END_REF]Rebolleda-Gómez et al., 2019) towards unicellularity [START_REF] Nagy | Latent homology and convergent regulatory evolution underlies the repeated emergence of yeasts[END_REF], although the number of these reversals is very contingent on how easy it is to gain "multicellularity"

among Fungi. This could stem from a cost of being big [START_REF] Rebolleda-Gómez | The Cost of Being Big: Local Competition, Importance of Dispersal, and Experimental Evolution of Reversal to Unicellularity[END_REF]). Yet, this claim deserves to be put in a wider perspectives: first, it has been shown that yeasts have retained the possibility to produce hyphae or pseudohyphae (no septum enabling cell communication) [START_REF] Kiss | Comparative genomics reveals the origin of fungal hyphae and multicellularity[END_REF]. Therefore, can we still say that yeasts are strictly unicellular organisms? Yet more interestingly, how yeasts could have evolved in a crowded unicellular world is a conundrum if we assume that they compete for the same niche than those of already unicellular specialists bacteria for instance. Could it be that transiting through multicellularity during their evolutionary history enabled them to discover a new ecological niche? Were it to be proven true, yeasts would definitely not be reversals, but yet another way of moving forward through the acquisition of a novelty. [START_REF] Kiss | Comparative genomics reveals the origin of fungal hyphae and multicellularity[END_REF] have shown that hyphae were acquired early in the evolutionary history of Fungi. They have also hypothesized that a yeast potential emerged at a time in this history [START_REF] Nagy | Latent homology and convergent regulatory evolution underlies the repeated emergence of yeasts[END_REF], which would explain why many yeast lineages evolved later on. Notice that in Fungi, unicellularity and multicellularity seem to evolve easily in either way, as a second acquisition of multicellularity has been documented [START_REF] Nagy | Evolution: Complex Multicellular Life with 5,500 Genes[END_REF]. 9.2. ADOPTING A TRANSVERSAL VIEWPOINT TO DEMYSTIFY WHAT DRIVES COMPLEX MULTICELLULARITY -AND ITS APPARENT LOSSES

Homeodomain phylogenies and the evolution of differentiation

Many phylogenetic approaches have been used to try and approach the question of the evolution of Multicellularity. In a recent stimulating work, [START_REF] Hammerschmidt | The Order of Trait Emergence in the Evolution of Cyanobacterial Multicellularity[END_REF] unveiled the different steps leading to the complexification in cyanobacteria, and proved nitrogen fixing to be one of its key drivers. Also among the most promising, Nagy and his colleagues [START_REF] Nagy | Latent homology and convergent regulatory evolution underlies the repeated emergence of yeasts[END_REF][START_REF] Nagy | Evolution: Complex Multicellular Life with 5,500 Genes[END_REF][START_REF] Nagy | Complex multicellularity in fungi: evolutionary convergence, single origin, or both?[END_REF][START_REF] Kiss | Comparative genomics reveals the origin of fungal hyphae and multicellularity[END_REF] have been able to determine when aggregation arose in Fungi, and which gene families were then undergoing massive diversification, among which regulators are the most represented, confirming that one of the key features associated with multicellularity is the extent of its regulatory processes. These insights are very quantitative because they rely on functional genomics, enabling to tackle the questions at the level of gene function.

What is still lacking, to our knowledge, would be a more phenomenological approach focusing on the evolution of distinctive multicellular traits -with all the limits previously mentioned about how distinctive they are, as it is only their combination which make them look this way.

Homeodomain proteins seems a good candidate to approach these questions. They are transcription factors involved in developmental features among multicellular organisms and widely spread among Eukaryotes. In fact, it was shown in 2007 that there may have already been two different families in the LECA, the last eukaryotic common ancestor [START_REF] Derelle | Homeodomain proteins belong to the ancestral molecular toolkit of eukaryotes[END_REF]. It is not completely clear how these findings would resist reconciliation that account for lateral gene transfers [START_REF] Menet | Phylogenetic reconciliation et Biologie Evolutive -UMR 5558 (LBBE) Computational Biology[END_REF]. In any case, it clearly makes one wonder about what this ancestor looked like. One serious hypothesis would be that this ancestor was a slime mold, an organism with a few homeodomain protein coding genes, as such lifeforms are widespread in the Eukaryotic tree of life. The ubiquity of unicellular eukaryotes may in this case only be the result of a high transition rate from multicellular to unicellular lifestyle, or to agree with our framework and fit our proposal, with high transition rates along the unicellular-multicellular continuum: the same evolutionary logic that prevails in Fungi would thereby have prevailed at the whole eukaryotic level.

But this is guesswork, which would need to be studied rigorously. What we have been starting to explore at this stage is to take benefit from protein databases such as PFAM or Interpro [START_REF] Finn | Pfam: the protein families database[END_REF][START_REF] Mitchell | In-terPro in 2019: improving coverage, classification and access to protein sequence annotations[END_REF] to reconstruct the evolution of the number of Homebox genes in Eukaryotes. Although there is some uncertainty in these estimates, this should in principle be possible. The main limitation may more plausibly arise from the uncertainty existing for the gainloss rates, which may jointly evolve along the branches of the tree. It should also be interesting 9.2. ADOPTING A TRANSVERSAL VIEWPOINT TO DEMYSTIFY WHAT DRIVES COMPLEX MULTICELLULARITY -AND ITS APPARENT LOSSES to contrast this evolution with that of other features, often associated with multicellularity and differentiation, such as sex, for instance.

Nonetheless, if it is indeed true that Science is like sex, as suspected repeatedly by Feynman, Science is not (always) about Sex. This is why we have ignored (the word recombination may have been mentioned once or twice despite our efforts), as for now, the influence of anything that could be related in one way or another to sex. Yet, in a laboratory where (scientific) sex is everywhere, from cannabis sex chromosomes to GC-biased gene conversion and Red queening recombination hotspots all the way down to lateral gene transfer, it is impossible not to say that our work will need one day to look deeper into how sex, in its broader sense, interacts with all the phenomenon we have described. But it is, definitely, another story...

Final appendix -Thesis reviews

November [START_REF] Slatkin | Hedging one's evolutionary bets[END_REF]2021 This thesis is a theoretical examination of core concepts and ideas in evolutionary systems biology. I appreciated the elegance of the methodology and simulations, and the conceptual depth of the ideas presented. It is still rather rare to see work attempting to bridge the multiple layers of molecular biology (from enzyme kinetics to metabolic networks and generegulatory networks) with cellular fitness. This thesis does an excellent job at this complex task, offering a wealth of ideas that could be elaborated in future work and, some, experimentally tested.

The thesis is also very well and clearly written, and provides an excellent introduction to the field for newcomers, beginning graduate students and even undergraduates. I commend the author for the clarity of exposition and the engaging writing style. I would recommend my own students to read the Introductory chapters, without hesitation.

The thesis opens with three Introductory chapters. These do an excellent job at contextualizing the Results section. The first chapter represents a general introduction that lays down the conceptual framework of the thesis. The two following chapters provide a more in-depth introduction to evolutionary biochemistry and systems biology, with particular attention to enzyme kinetics, the possible existence of tradeoffs and their evolutionary significance for diversification, and gene networks. The core concepts are described mathematically and through the aid of useful boxes and cartoons that I found are pedagogical and clear. • In chapter 4, one issue I would have liked to see it discussed in more detail the possibility of regulatory cross-talk and how this may limit TF concentration inside the cell. One could estimate the likelihood that a TF will bind to non cognate binding sites and thus interfere with the expression of other genes off-target. This is a likely candidate constraint that would conspire to keeping TF concentration low, which in turn can lead to noisy regulation. I of cours do not ask that this is introduced into the model but the fact that cells must regulate multiple pathways and phenotypes at once is an issue that may lead to noisy strategies too and -unless it is indeed there and I have missed it-this could be discussed in the chapter. L'introduction est décomposée en deux parties. La première très conceptuelle aborde la question de la diversification cellulaire et introduit de nombreux termes de la discipline. La seconde partie se concentre sur des observations et des outils qui seront utilisés par la suite. Les compromis, le métabolisme et le transport de métabolites et la surprenante diversité des paramètres enzymatiques sont ainsi abordés afin de promouvoir une approche mécanistique de la diversité cellulaire. Il est important de noter à quel point le document depuis l'introduction jusqu'à la discussion est riche en termes de références bibliographiques qui touchent de vastes sujets avec un forte composante en articles conceptuels.

Yale University

Le premier chapitre de résultat introduit dans les détails l'approche mécanistique envisagée dans sa version la plus ambitieuse. Une multitude de couches allant de métabolisme à sa régulation en incluant le bruit sont introduits dans un modèle de simulation dont l'ambition est de tester comment la variabilité de l'environnement peut promouvoir un variabilité phénotypique lié au bruit et non à la génétique. Les résultats obtenus sont très peu explicités mais semblent complexe comme souvent dans les modèles trop riches. Mais, comme le conçoit Florian Labourel, cette étape a permis d'orienter le reste du travail de thèse vers des questions plus ciblées. Le dernier chapitre de résultat utilise la dynamique adaptative pour prédire l'émergence de cross-feeding dans une population. C'est une approche que j'ai trouvé très intéressante, mêlant une fois de plus approche évolutive et mécanistique, mais cette fois ci avec une valence écologique. Le modèle arrive à faire émerger une stratégie double avec une spécialisation sur la voie haute ou basse du métabolisme. Si les résultats sont très intéressants et l'approche novatrice ici comme dans le chapitre 5 j'ai été un peu surpris par les résultats obtenus avec des intermédiaires toxiques, une question que nous avons abordé expérimentalement dans le passé (Kemble et al 2020) et qui me semble devrait avoir plus de conséquence que celles mentionnées.

Les deux chapitres de discussion remettent en perspective les résultats obtenus et leurs limites et finissent sur une discussion plus générale sur la diversification cellulaire initiée dans l'introduction.

Je trouve personnellement que cette thèse repose sur une excellente réflexion, sur un travail solide de modélisation informatique et mathématique et sur une très bonne maitrise des concepts liés à la construction mécanistique de la valeur sélective. A ce titre, je donne un avis extrêmement favorable à la soutenance du travail de recherche de Florian Labourel afin d'obtenir le diplôme de docteur de Université de Lyon 1.

Olivier Tenaillon

Figure 1 . 1 :

 11 Figure 1.1: In the widely accepted "aggregation first scenario", differentiation occurs in already existing aggregates. Recently, Ispolatov et al. (2012) have shown that multicellularity could evolve through the cooption of a differentiation behaviour pre-existing in solitary cells. Short after, Biernaskie et al. (2015)
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 22 Figure 2.2: Substrate can transform spontaneously but slowly into product or it can be actively transformed by an enzyme at a faster rate, as shown in (A). Most enzymes seem only moderately efficient as Bar-Even et al. (2011) have shown when compiling a large dataset (findings summarized in C), exhibiting kinetic parameters orders of magnitude lower than their expected physically achievable maxima and spanning over surprisingly large ranges of values -see (B) above.
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 24 Figure 2.4: Evolutionary trajectories leading to transitions in individuality (for fungible units, here) are assumed to be comprised of two steps, going from (A) to (C). (A) Originally, lower level individuals compete to multiply and fitness of genotypes coincide with the fitness of these individuals. (B) Following a mutation,

2. 1 .

 1 Figure 2.5: A (short-term) fitness conflict between levels of organisation emerges when the fitness of individuals is decoupled from that of groups (step C on Figure 2.4, as shown in this picture where cyan entities have a lower individual fitness (only 8:2 as opposed to 10:2) but promote a higher group fitness (4:1 against 2:1). If the lower levels units have lost their autonomy, the individual on which Natural Selectionacts is now the group of lower level units, who carries the fitness of the genotype.[START_REF] Bourrat | Beyond Fitness Decoupling: Tradeoff-breaking during Evolutionary Transitions in Individuality[END_REF] have recently made the case that no fitness decoupling occurs, provided fitness is considered at the relevant timescale (see Box 3 for more details).
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 228 Figure 2.8: Controversy about coin-flipping plasticity: some authors have put forward a distinction between the two phenomenon: in (A), diversifying bet-hedging produces several phenotypic states from a single genotype within a reproductive season while, in (B), an organism picks at random a phenotypic state
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 2 Figure 2.9: Cross-feeding interactions are classified according to distinctions made in (D'Souza et

2. 2 .

 2 Figure 2.11: Defining what differentiation is: in (A), we put forward a differentiation continuum where types of organisms are positioned as to legitimate this continuous perspective. Animals are the most differentiated organisms, while at the root of the axis, a putative undifferentiated cell is represented (in a

CHAPTER 3 .

 3 A TALE OF DRIFT AND TRADE-OFFS 3.1. WHY DO LIVING ORGANISMS DIVERSIFY? Box 5. About the probability of fixation

Figure 3 . 1 :

 31 Figure 3.1: In (A), we show how diversity is driven by a few key factors: mutations introduce genetic differentiation through polymorphism or speciation. When mutations are (strongly) deleterious they are quickly screened by purifying Selection, which reduces diversity. If mutations are nearly neutral, they segregate in the population a certain time before getting fixed or lost, which also reduces the diversity albeit at a slower pace. On the contrary, few advantageous mutations can get to fixation owing to diversifying selection, for instance because they allowed their carriers to thrive in a novel ecological niche. Notice that for the sake of simplicity, we do not add the input provided by recombination (or any gene exchange).
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 32 Figure 3.2: Description of the emergence of trade-offs owing to the existence of a finite budget enforcing choices. In (A), the budget is allocated to the two different tasks. Investing more to the blue task comes inevitably with a diminishing allocation to the orange task. When looking at the simplified picture in (B), traits undergo a trade-off represented by a negative relationship.

Figure 3 . 3 :

 33 Figure 3.3: Description of the trait mapping of populations undergoing trade-offs. In (A), a linear trade-off exists between trait 1 and trait 2 and gives rise to a negative relationship -the observed trade-off -at the population/species level with individuals spreading around the regression because of residual variability.
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 34 Figure 3.4: A negative relationship may be the result of diversifying selection that favours two distinct optimums as in (A): looking at the species clearly shows this negative relationship, whereas

Figure 3 .

 3 Figure 3.5: The shape of a trade-off may differ from a straight line, as shown for the black diamond population in (A) -the same population as shown on previous figures. Although this shape may be complex (like the orange S-shape), it was shown that there are most often likely to resemble a straight line and mildly differ from it as shown through the convex red shape in (A). In (B), the idea of a trade-off as a Pareto front is represented: on this front any improvement in one task necessarily comes at the cost of a worse performance in the other task, which is reflected by the arrows of internal compromise: going up (increase in T1) comes with going to the left (decrease in T2). Above the Pareto front are unfeasible phenotypes, while below phenotypes are feasible but suboptimal and should not exist -but see text and next figure for comments on that. Finally, in (C), a 3-dimensional Pareto front is collapsed into a plan

3. 1 .Figure 3 . 6 :

 136 Figure 3.6: In this figure, we illustrate how the Pareto front may differ from the observed trade-off at different levels: at the population level (A), an equal fitness contribution of traits leads to an observed trade-off shifted towards lower efficiency owing to genetic drift whereas the higher importance of one trait should produce an aggregate of organisms close to the maximum value for T1, albeit still below the Pareto front for the same reason. Meanwhile, at the species level, organisms should still be under the impassable Pareto front, but because one trait brings less fitness, one may imagine that species have different effective population sizes and respond differently at the mutation-selection-drift balance.

3. 1 .

 1 Figure3.7: Trade-off shapes -both internal and observed -may vary from one species to another but how much they can evolve has been mostly overlooked: therefore, it is still not known how often and how quickly a trade-off may shift from the red curve to the green one of (A). The shape of the Pareto front (internal trade-off) matters, as depicted in (B) where arrows represent plausible evolutionary trajectories, because a generalist strategy is inefficient at both tasks (closer to the lower left corner of poor performance at each task) when it is convex and the other way around when it is concave. Notice that the mapping of the internal compromise into the fitness space rather than the performance state -as shown in (B) herealso influences evolutionary trajectories -as previously shown, and discussed in the next section through the example of ETIs.

3. 1 .

 1 WHY DO LIVING ORGANISMS DIVERSIFY? cell differentiation -in the broad sense defined at the end of section 2.2.3. Incompatibility tradeoffs are by definition concerned with the production of distinct entities, but this can materialise at different ecological scales: it can be localised in space and time, or it can emerge throughout time, when the environment is subject to changes. The most widespread way to break 2 trade-off is through labor division and, as you might have guessed, this is where we have now to stop by.
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 38 Figure 3.8: Illustration of the incompatibility trade-off in cyanobacteria -inspired by[START_REF] Meeks | Cellular differentiation in the cyanobacterium Nostoc punctiforme[END_REF][START_REF] Hammerschmidt | The Order of Trait Emergence in the Evolution of Cyanobacterial Multicellularity[END_REF]: as nitrogen fixing requires an oxygen-free environment, multitasking can only work through the differentiation of cells between two cooperative sub-types. In parallel, resistant akinete cells can also be produced to survive in harsh environments, cold or depleted in phosphate, but at the cost of growth.
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 38 Figure 3.8. The incompatibility could also concern foraging: if we imagine that viability is better when an organism forages less, because it is less exposed to death, it would in turn decrease its fecundity because it has less energy to allocate; in the case of cells, this should coincide with the trade-off between latency and active development.
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 39 Figure 3.9: Fecundity and viability are traits that should trade-off as in (A), as the amount of energy should be allocated between them. But these traits are composite of other quantities and the precise nature of this relationship is inevitably case-by-case dependent. Moreover, as shown in (A), another trait, which is likely not completely independent, may change the location of the Pareto front (and its shape) by completely 'breaking' the trade-off: for instance, as cooperation increases the limited budget, there is more to allocate to both traits, so that investing in this trait enables an organism to increase both viability and fecundity: the third dimension reshapes the Pareto front by adding another possible contribution, as in (B), where the trade-off 'breaking' is represented when the Pareto front is collapsed in the two dimensional landscape.Assuming the existence of synergistic cooperation, where investing in cooperation comes with increasing returns may even lead to the possibility that the phenotype space where each trait can be increased is shifted and that the Pareto front does not include anymore the original trade-off -dashed line in (B). The composition of the the community also shapes the Pareto front, as cheaters may rip off benefits without contributing to cooperation. On the dashed Pareto front, cooperators could be in the lower left corner, as investing in cooperation limits what can be invested in v and b while cheaters could be organisms maximising v and/or b thanks to savings achieved at the expense of cooperators.
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 3 Figure 3.10: Toy model proposed by Richard Michod(Michod, 2005;[START_REF] Michod | Life-history evolution and the origin of multicellularity[END_REF] to study the rise of Labor Division occurring during an evolutionary transition in individuality. Assuming that fitness of individuals is given by f = b • v, one can determine the fitness of cells when isolated.

  with B and V corresponding to the average of the lower level units part of the groups. On the one hand, collectives made up of two opposite specialists practising Labor Division have B DL = 13/8, V DL = 13/8, and F = 169/64 ≈ 2.6. On the other hand collectives of generalists haveB G = 1, V G = 1 and F G = 1. As a consequence -shown in (B) -F DL > F G ,meaning that Labor Division should evolve provided its underlying genotype(s) are findable (see section 3.2.2 for details on findability).However promising the hypothesis, these models use many simplifying arguments that may fail to capture the very nature of the underlying processes, especially when it departs from these incompatibility trade-offs. Just to give a glimpse about the reasons why this trade-off can fail to address the question, let us consider the case of immune cells. In one instance of Michod's 3.1. WHY DO LIVING ORGANISMS DIVERSIFY? framework, detailed in Box 7, the fitness of groups is given by F = B • V , where B = b and V = v are the contributions given by lower level entities. Through this definition, the contribution provided by a cell to the group is the same that what it would bring to itself. For example, a specialist investing more in viability may have very high b (b = 3 in the example of the Box) and bring it to the group. But immune cells bring a large contribution to B, the viability of the group, thanks to a sacrifice in its individual viability b, as (specialised) immune cells die to ensure the group survival, which means that they have a very low b but largely contribute to B. Michod
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 311 Figure 3.11: Dataset of enzyme kinetic parameters compiled in (Bar-Even et al., 2011), where red dots represent one enzyme in one species and black lines two regressions based on distinct assumptions: (A)

Figure 3 .

 3 Figure 3.12: Illustration of two different methods used to fit a linear model to data. In (A),the ordinary least squares method is based on minimisation of the sum of least squares between Yobserved values and their predicted counterpart. In (B), the total least squares method assumes that both variables are subject to uncertainty so that the metrics relies on a 2-dimensional distance. In case of an orthogonal regression, which makes the implicit assumption that both variables display similar levels of variance, this 2-dimensional distance is euclidean. The orthogonal regression is tightly linked with Pearson's correlation method.

Figure 3 .

 3 Figure 3.13: Dataset of enzyme kinetic parameters compiled in (Bar-Even et al., 2011) distinguished according to the metabolic pathways in which they are involved with (AA,FA,N): metabolism of amino acids, fatty acids, nucleotides; (CEM): central energy metabolism; (INTER): intermediate metabolism; (SEC): secondary metabolism. Two types of regression are shown that point towards the difficulty of drawing definitive conclusions about how kinetic features correlate with the pathway within which enzymes are embedded. What is relatively clear is that enzymes involved in central metabolism (C) are more efficient by one to two orders of magnitude on average -to be compared with (D) -with a little more variability for the (AA, FA, N) and (SEC) classes than for the other ones.

  .13) with [E(C)] the overall concentration of enzyme active sites in the system and η(C) a conditiondependent saturation parameter ranging from 0 to 1. Davidi et al. (2016) elaborated on this expression to determine k app -introduced in Valgepea et al. (2013) -the in vivo catalytic rate they define as:

Figure 3 .

 3 Figure 3.14: Example of energetic profiles involving two different model cases of enzyme-substrate couples:

Figure 3 .

 3 Figure 3.15: (A) The expression of a gene is a two step process: transcription of the coding sequence by the polymerase produces a transcript that can then be translated by ribosomes. At the level of the whole genome (B), a regulatory network emerges as regulatory genes coding for transcription factors modulate the expression of other genes, be they regulatory or functional, through repression or enhancing and may have distinct DNA-binding and polymerase recruiting affinities and therefore distinct strength of regulation.

Figure 3 .

 3 Figure 3.16: A transcription factor typically recognises preferentially one sequence comprised of few or up to tens nucleotides (Garvie et al., 2001; Stewart et al., 2012) (A), called the consensus sequence. (B) On average, binding sites that differ by one nucleotide have an intermediate binding afinity with the TF, while more than 2 differences preclude any recognition beyond the residual binding shared by all non specific

Figure 3 .

 3 Figure 3.20: Realistic mutations affecting gene networks may be of different kind: in (B), the mutation affects the BS of the regulatory sequence and mainly modifies one node in the network as depicted in the matrix below where a high link becomes low. According to the polygenic/omnigenic model, it is also possible that this modification impacts the expression of many other genes, albeit to a low extent. It is unlikely however to induce major rewiring within the network, in contrast to mutations affecting the binding motif recognised by a TF: in this case, all the nodes contained in the line of this TF are modified.

  now clearly established: stem cells do play with dice, and it is relevant to our understanding of development as[START_REF] Efroni | Stem cells do play with dice: A statistical physics view of transcription[END_REF] answered[START_REF] Enver | Do Stem Cells Play Dice?[END_REF] in a replay of Bohr-Einstein disputes. The significant influence of cellular noise in cell differentiation has also been exhaustively exemplified in reviews by[START_REF] Losick | Stochasticity and Cell Fate[END_REF],[START_REF] Balázsi | Cellular Decision-Making and Biological Noise: From Microbes to Mammals[END_REF] and[START_REF] Bibliography Urban | Buffering and Amplifying Transcriptional Noise During Cell Fate Specification[END_REF], both in Prokaryotes and Eukaryotes, for instance in the case of bet-hedging[START_REF] Garcia-Bernardo | Noise and low-level dynamics can coordinate multicomponent bet hedging mechanisms[END_REF][START_REF] Bibliography Urban | Buffering and Amplifying Transcriptional Noise During Cell Fate Specification[END_REF][START_REF] Carey | A bacterial signaling system regulates noise to enable bet hedging[END_REF]. More recently,Huh et al. (2011a) and Huh et al. 4.1. NOISE IN GENE EXPRESSION AT THE EVOLUTIONARY ROOTS OF DIVERSIFIED BET-HEDGING (2011b) shed the light on the influence of noise inheritance in non-genetic individuality between unicellular organisms, revealing a strong influence of mitosis in the heterogeneity of the cellular content.

4. 1 .

 1 NOISE IN GENE EXPRESSION AT THE EVOLUTIONARY ROOTS OF DIVERSIFIED BET-HEDGING binding of cis-sequences by transcription factors, whose expressions are themselves continuously regulated by the network. Since these transcription factors can be either numerous or very few on average, noise can be large or small, depending on what Natural Selection achieves to favour.

4 3

 4 πR i (t)3 , with R i (t) the radius of the i th cell at time (t). We assume that only the two nutrients considered are limiting for growth. Sugars could be tempting examples as they are widely used among living beings. The fact that their diffusion is generally facilitated does not undermine our model of diffusion because facilitated diffusion follows the same processes as passive diffusion,4.1. NOISE IN GENE EXPRESSION AT THE EVOLUTIONARY ROOTS OF DIVERSIFIEDBET-HEDGING except that it involves transmembrane carrier proteins. Nonetheless, as a simplifying premise,
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 41 Figure 4.1: Chronological allocation process: the cell starts by sustaining its basal metabolism before spreading the remainder to the expenditure items proportionately to the copy numbers of the genes triggering each specific task.
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 1 NOISE IN GENE EXPRESSION AT THE EVOLUTIONARY ROOTS OF DIVERSIFIED BET-HEDGING

4. 1 .Figure 4 . 2 :

 142 Figure 4.2: Simple example of a gene network based on three regulatory genes: the network is based on interactions between transciption factors and regulatory sequences: (A) describes how transcription factors recognise a 8bp binding-site along a regulatory sequence, as it happens in our model. (B) exemplifies what a

  7)with [BS i ] the concentration of binding sites for transcription factor i across the regulatory sequences of all genes, [TF i ] the concentration of transcription factor i, and [BSTF i ] the concentration of their BS-TF complexes. This equation is often used to model DNA-protein interactions, and is known as the (non cooperative) Hill-Muir equation[START_REF] Hill | The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves[END_REF]) -see 3.2.2 for more details on this model. But here, we relax the assumption that free ligand concentration is known and thus does not interfere with the steady-state, which is not the case when one is interested in modelling explicitly the kinetic changes of these equilibrium. Further development of equation 4.5 results in 4.1. NOISE IN GENE EXPRESSION AT THE EVOLUTIONARY ROOTS OF DIVERSIFIED BET-HEDGING the master equation:

( 1 -

 1 P BSTFr ) (4.14) Finally, parameters c and λ can be considered as the product of the efficiency of the RNA polymerase once bound -denoted by µ trans -and the probability of recruitment of the polymerase, either in the absence of a repressor and in the presence of an activator -denoted by (P(pol|AR)) 4.1. NOISE IN GENE EXPRESSION AT THE EVOLUTIONARY ROOTS OF DIVERSIFIED BET-HEDGING -or in the absence of both repressors and activators -denoted by (P(pol|AR)). This leads to λ = P(pol|AR).µ trans and c = P(pol|AR).µ trans .This approach extends the model that[START_REF] Draghi | Robustness to noise in gene expression evolves despite epistatic constraints in a model of gene networks[END_REF] developed by adding a basal transcription rate -the demonstration of similarity between approaches is given in the appendix. They have considered differential affinities between binding sites and transcription factors; we have not, which we might change in the future. Instead, in our model, fine tuning of transcriptional regulation occurs through changes in the numbers of transcription factor binding sites, which would have been impossible without the developments presented above.Noise in gene expressionCellular noise can arise from 2 processes: first, sampling noise can divide unequally gene products during mitosis (see bottom of page 10), especially when these products are in low numbers in the mother cell. Noise in gene expression may also play a role: mRNA transcripts of gene g are produced at a mean rate φ g , obtained from equation (4.12), and are degraded at a constant mean rate θ deg . Proteins are produced at a constant mean rate θ trad per transcript, and are degraded at a constant mean rate θ deg . These are mean rates, and actual transcription rates follow stochastic dynamics that we model through random sampling from binomial (degradation)

  Each gene in the model contains two sequences that may change by mutation: a regulatory sequence and a coding sequence. Mutations always occur at division and can affect each of the two daughter cells. A mutation changing a regulatory sequence may change the connectivity 4.1. NOISE IN GENE EXPRESSION AT THE EVOLUTIONARY ROOTS OF DIVERSIFIED BET-HEDGING of the gene network, as it may create new binding sites or remove existing ones. Regulatory sequences are explicit 1000 sequences of the 4 nucleotides A, T, G and C. Only point mutations are considered, which replace a nucleotide by one of the others (each possible replacement has an equal probability of being sampled). Such mutations occur at a rate µ reg = 10 -4 /site/division.
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 1 NOISE IN GENE EXPRESSION AT THE EVOLUTIONARY ROOTS OF DIVERSIFIED BET-HEDGING represented by a second compartment. Movements of molecules occur through diffusion in our model, and active movements (especially of cells) are therefore ignored: the environment is closed,
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 1 NOISE IN GENE EXPRESSION AT THE EVOLUTIONARY ROOTS OF DIVERSIFIED BET-HEDGING cells)
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 1 NOISE IN GENE EXPRESSION AT THE EVOLUTIONARY ROOTS OF DIVERSIFIED BET-HEDGING method -by multiplying the first order derivative by δ t .

4. 1 .

 1 Figure 4.3: Example of outcomes -after one thousand generations -in the case of a frequently switching environment: in (A), the most dominant genotype is represented and displays a high level of proteome heterogenity. Part of this heterogeneity is due both to the fact that the copy number of proteins increases a little during the cell cycle and because of the existence of a size heterogeneity as some cells are about to divide while other ones are still in their growth phase. In (B), we show how a broader range of the most dominant phenotypes allocate their proteome. In this simulation, phenotypic noise seems huge for most of

4. 1 .

 1 NOISE IN GENE EXPRESSION AT THE EVOLUTIONARY ROOTS OF DIVERSIFIEDBET-HEDGING resemble a constant environment. Although we only represent results for two simulations, these outcomes were robust among the 10 replicates simulated for each condition. What is yet unclear at this stage is whether the evolution of phenotypic heterogenity is advantageous or if it is only far more accessible than gene networks more prone to differentiation through noise canalisation or to specialisation. The repeatability of outcomes is apparently leaning to the first explanation, but at this stage, we cannot rule out the other possibility. This would require to better apprehend the genotype-fitness maps hidden behind the interacting modules of our in silico organisms, which would also be necessary to identify the reasons why noisy phenotypes outperform pure generalist strategies. Notice that a part of the proteome variability withing genotypes is the result of cell size heterogeneity as cells can be at different stages of their lifecycle (see figure4.3).
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 44 Figure 4.4: Contrasting the outcomes between two typical simulations with (A) frequent -(B) rare nutrient
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 51 Figure 5.1: The flux of product following substrate uptake by transporters and conversion by a dedicated enzyme depends on kinetic parameters k f and k cat . This landscape is based on a moderately low flux at saturation V T m = 1µM.s -1 close to those measured for amino acids and nucleosides in E.coli(Zampieri et 
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 52 Figure 5.2: Features of a transporter have an impact on the flux landscape for upstream enzymes, asshown by the 0.9 isoclines -above which the relative flux is > 90% -that delineate the fitness plateau for each set of parameter. A: low (K T = 0.1M ) and high (10µM ) transporter affinities are considered, in combination with low (V T m = 10 -6 M ), moderate (10 -4.5 M ) or high maximum flux (10 -3 M ). Increasing K T extends the plateau only towards the left part of the landscape, allowing enzymes with lower k f on the plateau, whereas decreasing V T m extends the plateau in both directions. B: the shape of the fitness plateau is however little dependent on the saturation of the transporter, for a transporter with moderate flux (V T m = 10 -4.5 M.s -1 ; the effect is identical for higher V T m , see SM Fig.S2). Other parameter values: k r = 1000/s, [E tot ] = 1mM and [S env ] = 10 × K T .

  acid/nucleoside transporters to obtain FIG. 5.3. Because we have previously shown that changing the affinity or maximum flux of transporters may move the fitness plateau, our model predicts that enzymes involved in the corresponding pathways (e.g. of sugars and amino acids) should have their own specific distributions. We see that enzymes involved in the central carbohydrate metabolism as categorized by Bar-Even et al. (2011) have on average higher k cat and K M than

5. 1 .

 1 Figure 5.4: Downstream enzymes exhibit similar fitness landscapes as those upstream, with a dependency to degradation parameter η d . A: a high degradation rate (η d = 10 -2 /s) results in a fitness plateau for the second enzyme very similar to that of the first enzyme ; in the case presented the first enzyme is considered "perfect" in order to draw the fitness landscape of the second enzyme (k f = 10 10 M -1 .s -1 , k cat = 10 6 s -1 , k r = 10 3 s -1 , [E tot ] = 1mM ). B: decreasing the degradation rate allows less efficient enzymes (with lower k cat or k f ) to reach the fitness plateau. Considering the first enzyme to be inefficient (k f = 10 2 M -1 .s -1 , k cat = 10 -2 s -1 , k r = 10 3 s -1 ) instead of perfect marginally changes the fitness landscape by making organisms tolerant to extremely low k cat . Other parameter values are identical to FIG. 5.1 (findings are

  a plateau(FIG. 5.4, with the same parameterization asFIG. 5.1). The degradation rate creates a ceiling for the concentration of the product of the first reaction, such that reducing η d allows for higher concentrations (see SM Fig.S4) and makes the flux tolerant to second enzymes with lower k f s, whereas selection on k cat is barely impacted by this parameter. The plateau is therefore extended to the left when high product concentrations are enabled at low η d (see. The shape of the plateau is little impacted by changes in the efficiency of the first enzyme, especially when it stands on the plateau. These results are almost independent of the transporter initiating the pathway (see SM Fig.S6for the case of moderate affinity, high flux transporters).

Figure 5

 5 Figure 5.5: Population genetic simulations predict that enzymes should reach a predictable set of features when mutation biases towards lower efficiencies are considered (see SM fig. S17 for the case of an absence of bias). Indeed, the mutation selection drift equilibrium establishes close to an isocline indicative of effective selection that depends on the effective population size N e . The cases considered here are that of a transporter with a low flux at saturation and high affinity (A; V T m = 1µM s -1 and K T = 10µM ) and one with a high flux at saturation but low affinity (B; V T m = 1mM s -1 and K T = 100mM ) with
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 1 Figure 5.6: Simulations of the joint evolution of en-
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 57 Figure5.7: Fitness landscapes for the first enzymes in pathways when uptake results from PD with P = 10 -12 m -1[START_REF] Wood | Glucose permeability of lipid bilayer membranes[END_REF][START_REF] Chakrabarti | Permeability of membranes to amino acids and modified amino acids: Mechanisms involved in translocation[END_REF] in line with values for nucleosides or sugars for instance. The isocline corresponds to 90% of the maximum flux. In panel A, the flux plateau is shown for an abnormally high environment nucleoside concentration ([S out ] = 0.15M ) -that would be more consistent for sugars -which allows to compare the respective landscapes for PD and FD when similar levels are reached, although the situation described for PD is thence far-fetched. The trend -steep slope, large plateau -is even more pronounced than for FD, because concentrations used with FD are low in comparison, which proved to move the plateau towards higher values for both kinetic parameters. In panel B, the flux is represented given the same concentration as that used with FD ([S out ] = 0.5mM ), showing a large plateau whose span is barely demarcated by an area sustaining a very low flux. Furthermore, the flux obtained is more than 2 orders of magnitude lower than for facilitated diffusion, suggesting that PD can only marginally contribute to nutrient uptake even under an extremely favourable scenario.

  of the article) that correspond to those found in living organisms. In well studied organisms, sugars correspond to the (F,I) cases -low to moderate affinity, high flux -and amino acids and nucleosides more or 5.2. SM. RESOURCE UPTAKE AND THE EVOLUTION OF MODERATELY EFFICIENT ENZYME : THE FULL SET OF PARAMETERS INVOLVED IN ENZYME EVOLUTION less match with (A) cases -and to a lower degree, (B) and (D). As discussed in the paper, the maximum flux induced by transporters increases the selective pressure on both k cat and k f of the first enzyme, while their affinity mainly influences selection on k f .
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 5923 Figure 5.9: Both the affinity and rate of a transporter have an impact on the (normalized) flux landscape for upstream enzymes, the black isocline (corresponding to 0.9) delineates the fitness plateau. Each plot represents the landscape obtained with a pair of values for transporters affinity K T and saturation V T m . Moving one step to the right means that V T m increases by 1.5 orders of magnitude -from 10 -6 (low flux) to 10 -3 M.s -1 (high) -and one step up means that K T decreases by 2 orders of magnitude, starting at 10 -1 M (low affinity). Increasing K T extends the plateau only towards the left part of the landscape, allowing enzymes with lower k f s on the plateau, whereas decreasing V T m extends the plateau in both directions. Other parameter values are : k r = 1000/s, [E tot ] = 1mM and [S out ] = 10 × K T .

Figure 5 .

 5 Figure 5.10: Concentrations (unit: M) of the product of the first reaction for three degradation rates are plotted as functions of second enzyme kinetic parameters, for the model case of nearly saturated aminoacids like transporters (V T m = 1µM/s, K T = 50µM and [S out ] = 10K T ). The first enzyme is assumed to be perfect and highly concentrated (k f = 10 10 M -1 s -1 , k cat = 10 6 s -1 , k r = 10 3 s -1 , [E tot ] = 10 -3 M ). In (A), the degradation rate is set to η d = 10 -6 s -1 and limits the intracellular concentration of product to [P 1 ] = 1M , while in (B) and (C), these values are respectively η d = 10 -4 s -1 and 10 -2 s -1 limiting it to [P 1 ] = 10 -2 M and [P 1 ] = 10 -4 M .

  Figure 5.11: Concentrations (unit: M) of the product of the first reaction for three degradation rates are plotted as functions of second enzyme kinetic parameters, for the model case of nearly saturated sugar like transporters (V T m = 1mM/s, K T = 5mM and [S out ] = 10K T ). The first enzyme is assumed to be perfect and highly concentrated (k f = 10 10 M -1 s -1 , k cat = 10 6 s -1 , k r = 10 3 s -1 , [E tot ] = 10 -3 M ). In (A), the degradation rate is set to η d = 10 -6 s -1 and limits the intracellular concentration of product to [P 1 ] = 10 3 M , while in (B) and (C), these values are respectively η d = 10 -4 s -1 and 10 -2 s -1 limiting it to [P 1 ] = 10 1 M and [P 1 ] = 10 -1 M . As the first two concentrations (A and B cases) cannot be reached without completely

5. 2 .

 2 Figure 5.12: Fitness landscapes for the second enzyme in the context of an irreversible pathway (no backwards flux for the first reaction). These enzymes are involved in a high flux pathway whose pace is driven by V T m = 1mM/s, K T = 5mM and [S out ] = 10K T . Constant settings for both enzymes also correspond to the model case with k r = 1000s -1 and [E tot ] = 1mM . (A) shows the fitness landscape for a rather low degradation rate (for the case of sugars) limiting [P 1 ] to 10 -1 M when the upstream enzyme is perfect and concentrated(k f = 10 10 M -1 .s -1 , k cat = 10 6 s -1), and constrasts this landscape with that for two higher degradation rates limiting concentration to [P 1 ] = 10 -2 M and [P 1 ] = 10 -4 M . Predictably, the isocline moves toward upper k f s. Besides, contrasting these landscapes with that of the first enzyme shows that they are rather similar. Plateau isoclines drawn in (B) show results for the two higher degradation rates, in the context of an upstream concentrated enzyme being either perfect (see above) or inefficient (k f = 10 2 M -1 .s -1 , k cat = 10 -2 s -1 , k r = 10 3 s -1 ). Decreasing η d still makes the cell tolerant to higher concentrations of intermediate metabolites (the product of the first reaction), while the efficiency of the first enzyme only influences the pressure on k cat if high intracellular concentrations are not toxic.

5. 2 .

 2 Figure 5.13: Fitness landscapes for the second enzyme in a pathway when different metabolite toxicity T and first enzyme efficiencies (low :k f = 10 2 M -1 s -1 , k cat = 10 -2 s -1 ; moderate : k f = 10 5 M -1 s -1 ,

5. 2 .

 2 Figure 5.14: Fitness landscapes (depicted by the 0.9 isoclines) for the second enzyme in a pathway when different metabolite toxicities T and first enzyme efficiencies (low : k f = 10 2 M -1 s -1 ,k cat = 10 -2 s -1 ;

  10 6 s -1 ) are considered. Note that other kinetic parameters are still [E tot ] = 10 -3 M , k r = 10 3 s -1 and neither reaction reversibility (K eq ≈ 0) nor degradation rate (η d = 0) are considered to show the effect in isolation from the other ones. (A) represents the cases of Figure 5.13 for which we see that the isoclines showing the level of flux were partly misguiding since the fitness landscapes are in fact complletely superimposable for the cases of a moderately and highly efficient first enzyme. The exact same pattern is found on (B) which represents the case of amino acids like transporters (V T m = 10 -6 M , K T = 50µM ). In any case, toxicity proved to display a similar influence, although the shift depends on the level of the flux as shown in Fig. 5.13. Still, the influence of the first enzyme is different with this form of toxicity than with a linear degradation rate, because the level of flux henceforth matters, which was mostly not the case previously for k f (see text for the demonstration).

Figure 5 .

 5 Figure 5.15: Fitness landscapes of any enzyme for different levels of flux (Low : Φ = 10 -6 M.s -1 ; Moderate : Φ = 10 -4.5 M.s -1 ; High : Φ = 10 -3 M.s -1 , with a moderate toxicity for the intermediate metabolite (T = 10 -3 ) and a moderately high degradation rate η d = 10 -2 s -1 . Note that other kinetic parameters are still [E tot ] = 10 -3 M , k r = 10 3 s -1 and no reaction reversibility K eq ≈ 0. One can clearly see that for enzymes involved in non-reversible pathways, the flux is the main driver of the fitness landscape on which an enzyme evolve when metabolite toxicity is accounted for.

5. 2 .

 2 Figure 5.16: Backwards reaction rates of an enzyme directly upstream have a strong impact on the fitness landscape. Both plots show results of the influence of the reversibility of the first reaction on the fitness landscape of the next enzyme. Parameters are identical as in the model case for amino acids, with k r = 10 3 s -1 and [E tot ] = 1mM . K eq equals [S] eq /[P ] eq = k r k inh /k cat k f[START_REF] Klipp | Evolutionary Optimization of Enzyme Kinetic Parameters; Effect of Constraints[END_REF] and quantifies the degree of reversibility, a low K eq featuring low reversibility and vice versa. The first enzyme is a nearly

5. 2 .

 2 Figure 5.17: Influence of backwards parameters on fitness landscapes: both plots show results of the influence of the reversibility of the first reaction on the fitness landscape of the following enzyme. Parameters for uptake are V T m = 1mM.s -1 and K T = 5mM , corresponding to the model case for sugars. The settings for enzymes are also the same as the generic ones used previously (highly concentrated enzymes and k r = 10 3 s -1).The first enzyme is a nearly perfect forward enzyme, but with k f = 10 8 M -1 and k cat = 10 4 s -1 . Reversibility was equally spread between the two backwards parameters (eg. K eq = 10 2 yields k r = 10 1 k cat and k inh = 10 1 k f ), and a low degradation rate was considered (η d = 10 -4 s -1 ). In (A), results are plotted in the theoretical parameter space (made up of k f and k cat ), showing that any increase in reversibility increases the pressure on enzyme kinetics by the same magnitude -except when reactions are highly irreversible (in red) -because the first product, instead of accumulating, may thus often react backwards and limit the flow progressing forward. In (B), the same results are shown in the experimenter parameter space of the second enzyme, showing that there is an increased pressure on k cat /K M (trivially,

5. 2 .

 2 Figure 5.18: Influence of several kinetic quantities involved in catalytic activity. (A) Influence of the dissociation constant k r on the joint selective pressure acting on forward parameters k cat and k f for the model case of the first enzymes involved in the processing of amino acids (see FIG. 1 in main body of article). (B) Influence of enzyme concentration on the pressure acting on forward parameters in the model case for sugars (V T m = 1mM.s -1 and K T = 1mM ): see next figure for the effect in the context of amino acids-like pathways, coupled to the influence of reversibility. In this panel, increasing an enzyme concentration is not costly, which is an unrealistic assumption relaxed later.

Figure 5 .

 5 Figure 5.19: Influence of enzyme concentration on kinetic parameters for the model case of amino acids (V T m = 1µM.s -1 and K T = 50µM ) followed by a nearly perfect enzyme and including a low degradation rate (η d = 10 -4 s -1 ) for the first product, represented in (A) the theroretical parameter space; and (B) the experimenter's parameter space: the case of downstream enzymes in a pathway. These plots show the joint variability introduced by the reversibility of the previous -the first one here -reaction and the concentration of the enzyme of the focal -the second one here -reaction. General trends are identical thanfor the first enzyme and reversibility of the previous reaction has the same effect (with the same magnitude) no matter the enzyme concentration. Decreasing enzyme concentration pushes the fitness plateau towards higher values of both k cat , k f and k cat /K M . In this panel, increasing an enzyme concentration is not costly, which is an unrealistic assumption relaxed later.

5. 2 .

 2 Figure 5.21: Influence of enzyme concentration on the fitness landscapes for different combinations of enzyme kinetic parameters and different costs of production. The panels represent the absolute value of the log 10 spread between the maximum fitness and the fitness for the concentration represented on the xaxis, such that a peak corresponds to high fitness. k cat improves from left to right (specific values indicated at the top of each column) and k f improves from top to bottom (specific values indicated at the right of each row). The grey area delimits the crowding limit where fitness equals zero because the cytoplasm undergoes the glass transition; obviously, because diffusion slows down before reaching this level, fitness starts to plummet for concentrations approximately an order of magnitude below (see the case of a moderately low k f on the first row, where the cost of expression is not the dominant constraint). In parallel, the protein cost exerts a linear influence with expression, which is especially important when kinetic parameters are higher, as outlined by the cost-dependent spread of the influence of concentration in the lower panels. This means that Natural Selection should oppose the protein burden differently for protein of different costs and that drift should in turn act differently upon enzyme kinetic parameters depending on the values of N e s since the burden differs with these parameters.
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 522 Figure 5.22: Comparison between evolutionary steady-states and fitness landscapes depicted by isoclinesfor the case of a low flux with high affinity (V T m = 1µM s -1 and K T = 10 -5 M ) -under various scenarios: four effective population sizes from 10 2 to 10 5 (different colors) and three cases of mutational biases b (b = 0 corresponds to the absence of mutational bias). For each scenario, 30 independent simulations were ran, whose outcomes are represented by a dot (per simulation), here in the experimenter parameter space

  Figure 5.23: Comparison between evolutionary steady-states and fitness landscapes depicted by isoclinesfor the case of a high flux with low affinity (V T m = 1mM s -1 and K T = 0.1M ) -under various scenarios: four effective population sizes from 10 2 to 10 5 (different colors) and three cases of mutational biases b (b = 0 corresponds to the absence of mutational bias). For each scenario, 30 independent simulations were ran, whose outcomes are represented by a dot (per simulation), here in the experimenter parameter space

  Figure 5.24: Comparison between evolutionary steady-states and fitness landscapes depicted by isoclines -for the case of correlated mutations and a low flux with high affinity (V T m = 1µM s -1 and K T = 10µM ) -under various scenarios: four effective population sizes from 10 2 to 10 5 (different colors) and two cases of mutational biases b. For each scenario, 30 independent simulations were ran, whose outcomes are represented by a dot (per simulation), here in the experimenter parameter space (k cat and k cat /K M ). Only k cat and k f were susceptible to evolve, while k r was set to 10 3 s -1 such that the grey part of the parameter space is inaccessible to enzymes due to the diffusion limit. In (A), a moderate negative correlation (ρ = -0.5) is considered, that does not change much the outcomes from the case of no correlation at all, while a higher negative correlation (ρ = -0.8) and a positive correlation (ρ = 0.5) did slightly change enzyme kinetics at steady-state. Indeed, enzyme efficiencies at the mutation-selection-drift balance stands in the vicinity of their respective drift barrier, albeit negative correlations can pull enzyme fitnesses more or less an order of magnitude down depending on their strength (and the other way around for a positive correlation). In (C), enzymes are also pulled away from the diffusion limit because increases of k cat /K M are much more often corerlated to increased k cat due to the correlation. .

5. 2 .

 2 Figure 5.25: Evolutionary outcomes for enzyme fitness and kinetic constants in the case of a high flux with low affinity (V T m = 10 -3 M ; K T = 1mM ) where the cost of expression includes only macromolecular crowding effects. Again, 30 simulations were ran for each set of parameter and 2 mutational biases were considered for enzyme kinetic constants, while levels of expression were not subject to mutational bias on the course of their evolution. The first plot (A) shows how enzyme efficiencies spread in the landscape when the mutation-selectiondrift balance has established. Values are slightly higher than in the case of fixed enzyme concentrations although concentrations lie on average at sligthly upper levels (see (B) and (C), with no influence of the mutational bias). This means that fighting against this cost comes with a slightly higher directional selective pressure.

Figure 5 .

 5 Figure 5.27: Evolutionary outcomes for enzyme fitness in the case of a moderate flux with high affinity (V T m = 10 -6 M ; K T = 10µM ). The first four lines represent the evolution of an enzyme's fitness relatively to the time, starting from an enzyme with a very low efficiency. Timesteps are specific to each set of parameters: they are proportional to (2.5 × 10 1 )N e for the low bias and increased by a factor 2 with a high bias and 4 with no bias for the establishment of steady-state is slowed down. Several parameters are considered : effective population sizes differ from one line to the other while mutational biases differ between columns. The last row indicates the span of fitness for each set of parameter when steady-state has been reached: each column corresponds to a different bias, as for the other plots.
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 1 AN INTRODUCTION ON EPISTASIS, COMPLEXITY AND THE NEED FOR COMPLEMENTARITY

6. 1 .Figure 6 . 1 :

 161 Figure 6.1: Main types of two-locus epistasis. First, no epistasis corresponds to the simple additivity model where loci (a/A or b/B) contribute the same amount to the trait no matter the value of a second locus involved in the trait. Magnitude epistasis depicts the case where synergistic or antagonistic effects come into play so that the effect of the combination is respectively increased or decreased compared to the expected additivity. With sign epistasis, the sign of the contribution brought by the second locus changes with the value of the first locus, which narrows the path towards the highest fitness. Reciprocal sign epistasis coincides with an extreme case of sign epistasis where both intermediate mutants (aB or Ab) are deleterious, giving birth to a fitness valley separating two local peaks.

Figure 6 . 2 :

 62 Figure 6.2: In High order epistasis, the genetic background (denoted G) modifies how loci combine

6. 1 .Figure 6 . 3 :

 163 Figure 6.3: Summary of the genetic interactions involved in the emergence of high order epistasis.
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 64 Figure 6.4: Illustration of the influence of complexity in NK models. When complexity is low (K ≈ 1), the fitness landscape is smooth (A). Increasing K (toward the right) goes along with an increase in ruggedness of the landscape, which suggests that organisms can be trapped at local optimum -for instance in (C).
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 65 Figure 6.5: Illustrating the framework with the two dimensional isotropic Fisher's geometrical model.

6. 1 .Figure 6

 16 Figure 6.6: Description of complementary epistasis: on the left panel, its effect in the classical a/A-b/B

Figure 6 . 7 :

 67 Figure 6.7: Explanations on how the probability of fixation depends on the locus affected by a mutation:

Figure 6 . 8 :

 68 Figure 6.8: Simulation outcomes for the fitness at mutation-selection-drift balance with N e = 10 2 under the interplay of complementary epistasis and diminishing returns epistasis (through the fitness landscape of traits). The number of complementary modules (eg. genes) varies from 1 to 50. Each line corresponds to a level of mutational bias: null in (A) and (B), low in (C) and (D), high in (E) and (F) -see text for details; each column represents a level of mutational variability, with (A), (C) and (E) having low variability while (B), (D) and (F) display a moderately high variability.
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 69 Figure 6.9: Subset of Kumaraswamy distributions: each panel corresponds to a given value of a: a < 1 in A produces distributions with an excess of extreme values as is often described about the distribution of fitness effects, a = 1 in B represents simpler distributions, while a = 2 in C encompasses bell-like distributions.
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 6 Figure6.10: Owing to mutational biases, the mutational process exerts a pressure towards lower fitness phenotypes (A), which is not counterbalanced by Natural Selection above the actual fitness: this phenomenon may look like stabilizing selection since most mutations are going to stabilize the actual phenotype by push-

7. 1 .

 1 Figure 7.1: (A) represents how the singular strategy can be determined: it is where the isoclines of null invasion fitness coincide, which happens necessarily on the bisector starting from the lower left corner to the upper right one, as alongside it, resident and mutant strategies are identical.

  concentration increases the efficiency of catalysis and thus the production of energy, but with diminishing returns. It also incurs costs, firstly due to the actual energy cost of making proteins, and secondly because high protein concentrations in the cell decrease the efficiency of reactions due to cell packing. The former is captured in our model by a linear cost inflicted to extra production, 7.1. PROTEOME ALLOCATION AND THE EVOLUTION OF METABOLIC CROSS-FEEDING

7. 1 .

 1 Figure 7.2: Figure A shows an example of pairwise invasibility plot, where green (resp. red) areas stand for positive (resp.negative) invasive fitness. The grey area represents an area where no strategy is viable because it cannot produce enough energy to reach the level set as corresponding to the demographic steadystate. When a mutant arrives in the population of resident strategies, it takes the place of the resident strategy if its invasion fitness is positive. Here, below the CSS, mutants with higher values (above the left lower corner to right upper corner bisector) than the resident invades and Evolution pushes resident to converge towards the CSS, while above the CSS, it is the other way around. On Figure B, we show how cells should spread their proteome content between upstream and downstream enzymes: if metabolitetoxicity is low, it is always advantageous to invest more in upstream enzymes, an effect which decreases when this toxicity increases. Self-evidently, because the degradation rate eventually reaches levels for which the loss of metabolite is significant -see FigureS3of SM to grasp this effect quantitatively -cells should prioritize even more the first part of the pathway.

7. 1 .

 1 PROTEOME ALLOCATION AND THE EVOLUTION OF METABOLIC CROSS-FEEDING concentration of enzymes acting on the second part of the pathway. This is indeed what happens in our model: the optimal allocation shifts from a higher concentration in the first part of the pathway to a higher concentration in the second part as permeability increases (Fig.7.3 for the case of a low degradation rate (grey dots)). The results presented in Fig.7.3 are for proteins with kinetic parameters similar to the median of those reported for enzymes in the carbohydrate and energy pathway[START_REF] Bar-Even | The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters[END_REF]. Higher efficiencies consistently produce a qualitatively similar result of a downward shift in allocation to the first part of the metabolic pathway as permeability increases (see FigureS5in SM).

7. 1 .

 1 Figure 7.3: Permeability influences the evolution of strategies of enzyme allocations along a metabolic pathway, with the occurrence of cross-feeding at high permeabilities depending on the degradation rate.

  ,[M b ] = 3 • 10 -3 M represents the scaling factor for the effect of diffusion, while [E other ] denotes the sum of the concentrations of other cytoplasmic proteins than the 40 under consideration.

  Figure 7.4: Influence of kinetic parameters and the concentration of the most upstream enzyme on the optimal content of cells. The optimal concentration that each enzyme needs reach is represented for moderately low (black squares)-k f = 10 6.5 M -1 • s -1 , k cat = 10 2 s -1 , moderate (red circles) k f = 10 7 M -1 • s -1 , k cat = 10 2.5 s -1 -and moderately high (green triangles)k f = 10 7.5 M -1 • s -1 , k cat = 10 3 s -1 -enzyme efficiency. It is represented for three values of first enzyme concentration (A:[E 0 ] = 10 -4.5 M ,B:[E 0 ] = 10 -4 M ,C:[E 0 ] = 10 -3.5 M ) picked in the range for which the flux is the highest (the optimal first concentration varies a little with the degradation rate). As the degradation rate increases, the selective pressure on the content is higher, and thereby the optimal enzyme concentration. Notoriously, the increase of the content eventually meets an asymptote -when accounting for 20% of the proteome -where the effect of hindered diffusion always overcomes the extra gain of activity.

7. 2 .

 2 Figure 7.5: Influence of cellular parameters on the optimal proteome content have proven to be minor. (A): linear protein cost, where c = 1e -3 means that intracellular proteins approximately accounts for 5% of the total budget of cells while c = 1e -2 approximately accounts for 50% of the same budget. (B): basal proteome concentration [M tot ] (proteome fraction not dedicated to energy metabolism like the central carbon metabolism) -the total fraction of the proteome also depends on the background concentration, which explains why distinct lines are drawn. (C): pathway yield varies from 1 to 10 "fitness" molecule(s) per glucose molecule. Notice, that an energy molecule can be 2 ATPs, for instance. Again, the total fraction of the proteome dedicated to energy metabolism cannot exceed an amount between 15% to 20%.

7. 2 .

 2 Figure 7.6: Metabolite losses along the pathway due to various degradation rates (rows) considering different enzyme concentrations (columns): the loss is log-linear in any case. The first two lines (η < 10 -2 s -1 )

Figure 7 . 7 :

 77 Figure 7.7: Influence of metabolite toxicity (A) and reversibility (B, combined with a basal toxicity) on the optimal content. Toxicity T -High: T = 10 -2 M ; Moderate: T = 10 -1 M ; Low: T = 1M -drastically increases the selective pressure acting on enzyme concentration (see the high toxicity -black points -in

7. 2 .

 2 Figure 7.8: (A) shows the strategy that evolved when considering different degradation rates (η = 1e-3s -1 and η = 1e -2s -1 ) and enzymes highly efficient, for different permeability levels of the membranepermeability only concerns one nutrient, in the middle of the chain. To cope with this phenomenon and avoid the cost of leakiness, cells allocate more to the second part of the pathway in either cases. Still, an ecological niche tends to emerge as the concentration of the intermediate metabolite in the environment increases steadily until moderate permeability levels are reached. They then slightly decrease as population sizes (B) also decrease. Remarkably, intermediate levels enable a slight increase in the population size, which means that the population is better at depleting its environment thanks to leakiness. No matter what, singular strategies are stable, which is explained by the large difference between the nutrient concentration in the environment (blue) and that of the intermediate metabolite.

7. 2 .

 2 Figure 7.10: Plot showing results of Adaptive Dynamics when considering two complementary degradation rates than those in the main body of the article. Here, η = 10 -2.5 s -1 and 10 -1.5 s -1 . For a moderately low

7. 2 .

 2 Figure 7.11: Outcomes of competition for a low degradation rate η = 10 -3 s -1 and two levels of metabolite toxicity -moderate: T = 10 -1 M , low: T = 1M . (A) shows an example of branching points obatined when studying the effect of toxicity: notice that the singular strategy can only be invaded by a cross-feeder, which may yield a Black Queen dynamics. (B) shows results where the content is constantly adjusted, first by increasing allocation to the first subpathway while the other remains constant (until 0.5 on the PIP scale of (A)) and viceversa when the trait exceeds the value of 0.5 (on the PIP). In this latter case, cross-feeder mutants are a little less favoured, and, in turn, branching points are a little more difficult to find than in (C), which shows results obtained when optimisation is made for a constant total content, by adjusting both content at the same time.

7. 2 .

 2 Figure 7.13: PIPs showing the convergent stable strategy -CSS hereafter -for a first enzyme concentration (the enzyme directly following the transporter) [E tot,0 ] = 100µM ,different average enzyme efficiencies (rows) and degradation rates (columns). The point at the crossroads of green and red areas denote the CSS. Grey areas represent areas where no strategy at all is viable, which means that no strategy is able to produce enough energy to compensate both for the protein production cost and the minimumx flux ensuring that births compensate for deaths. Results are shown and commented more in depth on figure 7.4, where CSSs are denoted as points.

Figure 7 .

 7 Figure 7.14: PIPs showing the convergent stable strategy for the set of generic parameters in the situation where an organism can spread its proteome between upstream reactions and downstream ones. Axis denote the resident and the mutant strategy, which are expressed as the investment in the first part of the pathway as the total concentration is set to its optimum (found in section Text-S1). Results in Figure 1 of the article sums up these PIPs by showing only the CSSs.

Figure 7 .

 7 Figure 7.16: TEPs in the case of median enzyme efficiencies (kf = 10 6 M -1 s -1 , k cat = 10 2 s -1) and a high degradation rate η = 10 -2 s -1 . Evolution yields the same strategy in all these cases, that is the coexistence of two specialist strategies where the second subtype cross-feeds on the first one.

1µm 3 coincides

 3 with a relatively high concentrations around [Etot] = 10µM . Such a concentration would correspond to 10 3 times more copy numbers for a cell of V = 100µm 3 as often found among Eukaryotes, and thus very little noise. Small cells, in the mean time, push effective population sizes to skyrocket, which means that organisms with the higher selective potential N e are also the ones which have potentially no or few interest in reducing their concentrations, due to deleterious effects of (cellular) noise. Hence, organisms with large population sizes may have relatively inefficient enzymes because they need not have better ones, while those with small population sizes would have the same relative enzymatic inefficiency because of N e . A first version of the model would just introduce the influence of noise in gene expression and cell size in the Wright Fisher model developed for enzyme evolution. In this model, noise in gene expression could be merely drawn at each generation, assuming that the amount of enzymes in a cell follows a Gaussian distribution featuring a variability in the range of observed values. However simplistic, this model should help get a sense of noise in gene expression strength as a factor counteracting enzyme parameters

Box 15 .

 15 About protein stabilityTo become active and perform the task they are designed for, proteins have to fold in the correct form from an initially unfolded state (during translation). Unfolded proteins and misfolded proteins (proteins that folded in another conformation than the useful one) may prove deleterious -see Figure below.

Figure 8 . 1 :

 81 Figure 8.1: Illustrating the possible outcomes of protein folding: during translation, the newly formed protein is unfolded. Shortly after, it adopts its conformational shape by folding into one or few conformations according to the free energy profile of folding -see Figure 8.2. Misfolded or unfolded proteins may represent a burden both as they are not active for the function they are supposed to accomplish and because they may besides be involved in undesired reactions such as the formation of toxic protein aggregates.
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 182 Figure 8.2: Fitness landscapes of protein folding based on folding free energy profiles (B). Since only the folded state enables the function, the ratio between k u and k f should be low (A). This ratio critically
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 11 FURTHERING OUR UNDERSTANDING OF CELLULAR METABOLIC DIVERSIFICATION our nonsense idea about differentiation and to propose a way to push it forward. 9.2. ADOPTING A TRANSVERSAL VIEWPOINT TO DEMYSTIFY WHAT DRIVES COMPLEX MULTICELLULARITY -AND ITS APPARENT LOSSES An historical premise on Multicellularity and its evolution Multicellular organisms have played a very special role in our understanding of Life throughout History. They were the only living beings known in Ancient Times, when Aristotle and Theophrastus gave birth to what was afterwards named Modern Biology

9. 2 .

 2 Figure 9.1: Figure inspired by[START_REF] Niklas | The origins of multicellular organisms[END_REF]. Eukaryota phylogenies consistently -it does not depend on uncertainties in the tree reconstruction -enhances a picture where Multicellularity has arisen repeatedly.

(

  2012) and[START_REF] Ratcliff | Origins of multicellular evolvability in snowflake yeast[END_REF] identified a trait with the appropriate characteristics (detrimental at the cell level and advantageous for colonies): apoptosis. As expected, this trait increased during their evolutionary experiment, favouring the dissociation of clusters of cells in a form of proto-multicellular reproduction. Even the authors who have studied cell differentiation seem to agree with the "aggregation first" scenario. For instance, Gavrilets (2010) explored germ-soma differentiation assuming cells already exhibiting aggregative behavior. Short before,[START_REF] Willensdorfer | Organism Size Promotes the Evolution of Specialized Cells in Multicellular Digital Organisms[END_REF] andWillensdorfer (2009) had also proven that the more cells in an aggregate, the faster the evolutionary transition towards specialized cells.Like other Evolutionary transitions in individuality (ETI), the transition towards Eumulticellularity has created new opportunities for complexity to arise: by relieving somatic cells from the task of reproduction, it likely fostered their specialisation at other vital tasks. Aggregation has usually been considered a prerequisite for differentiation to evolve. Yet, as we have extensively shown throughout this document, differentiation-like behaviours are widespread among unicellular organisms and there is no reason to think that aggregation did not evolve in organisms already 9.2. ADOPTING A TRANSVERSAL VIEWPOINT TO DEMYSTIFY WHAT DRIVES COMPLEX MULTICELLULARITY -AND ITS APPARENT LOSSES

9. 2 .

 2 Figure 9.2: As seen by[START_REF] Queller | Beyond society: the evolution of organismality[END_REF], from which the figure is inspired, organismality is defined by

Figure 9 . 3 :

 93 Figure 9.3: Furthering Queller et al. (2009)'s framework, a multicellular organisms could be characterised on one side by its organismality and on the other side by its degree of multicellular lifestyle, which itself results from how differentiated and how aggregated organisms are. Aggregation may be characterised first through the dimensionality of an organism: hyphae or filaments would be one dimensional while animals would be comprised of three dimensions. Aggregation may also need to include the idea of multinucleus cells since many organisms evolved syncitium properties where a single cell is largely elongated thanks to its numerous nucleus. This, in turn, enables some kind of differentiation as remote nucleus can express different parts of the genomes and change the local cell behaviour. We have already documented this idea about differentiation and do not elaborate on that here.
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 94 Figure 9.4: Nagy and his colleagues (Kiss et al., 2019) have shown that hyphae were acquired early

  CONCLUSION: In summary, this is an excellent thesis that is both conceptually rich and clearly written. I am very supportive of it. École Polytechnique, Research Director INSERM Head of Team « Quantitative Evolutionary Microbiology » Paris, le 12 Novembre 2021 Objet: Rapport sur le manuscrit de thèse rédigé par Florian Labourel Florian Labourel a rédigé un manuscrit intitulé «A mechanistic view of the Evolution of Cell Diversity» or « When Constraints meet chance and necessity in Life's struggle for Mutliplication » afin d'obtenir le diplôme de thèse de l'Université ́ de la Lyon 1. Cette thèse est composée d'une introduction en deux chapitres, de quatre chapitres de résultats incluant un article publié, et de deux chapitres de discussion/perspective. Le corps du manuscrit fait 367 pages incluant 70 pages de références et est rédigé ́ en anglais dans son intégralité.

  Le second chapitre de résultats publiés dans la prestigieuse revue Molecular Biology and Evolution, aborde la question de l'optimisation des paramètres enzymatique. La richesse de Infection • Antimicrobiens • Modélisation • Evolution UMR 1137 Inserm -Universités de Paris & Sorbonne Paris Nord l'approche repose pour moi dans la prise en compte d'un part des limites de la sélection lié à la dérive génétique, d'autre part du transport des métabolites et leur diffusion et enfin à la possible réversibilité des réactions. Cette approche mécanistique donne ainsi de nouvelles clés de lecture pour comprendre comment la sélection naturelle façonne les paramètres clés des enzymes impliqués dans le métabolisme.Le chapitre suivant aborde la question des pressions de sélection jouant sur les enzymes d'une voie métabolique. En utilisant diverses approches de simulation ou analytiques notamment à la limite des mutations peu fréquentes, des observation et dérivations sont faites. En prenant en compte des biais mutationnels cette approche montre que le système évolue de façon contrastée avec la sélection améliorant le gène les plus limitant et le biais mutationnels dégradant les autres.

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  2.1. BOUNDLESS DIVERSITY AS THE ULTIMATE OUTCOME OF EVOLUTION ary novelties, proposed by one of the father of Modern Biology, Ernst Mayr

  4.1. NOISE IN GENE EXPRESSION AT THE EVOLUTIONARY ROOTS OF DIVERSIFIED BET-HEDGINGin immediate energy conversion. This seems a fairly reasonable hypothesis given the importance of such a process and the highly dynamical nature of mitochondria[START_REF] Mcbride | Mitochondria: More Than Just a Powerhouse[END_REF] Scott 

  4.1. NOISE IN GENE EXPRESSION AT THE EVOLUTIONARY ROOTS OF DIVERSIFIEDBET-HEDGING elucidated by[START_REF] Sherman | Thermodynamic State Ensemble Models of cis-Regulation[END_REF] to obtain the mean transcription rate for gene g: φ g = λ.P AR + c.P AR(4.12) 

Table 4 .

 4 1: Set of default parameters

	Surroundings nutrient concentration (M)	Nutrient diffusivity (dm 2 s -1)	Volume of environment			
	10 -2	10 -7	1mm 3			
	Transcription speed (s -1 )	Translation speed (s -1 )	Basal polymerase binding probability	Polymerase binding probability with activator	Ploymerase binding probability with repressor	
	10 -1	10 -1	10 -2	0.5	0	
	Timestep for TF dynamics (s.)	k on BSTF (M -1 s -1 )	k off BSTF (s -1 )	mRNA degradation rate (s -1 )	Protein degradation rate (s -1 )	Sizer degradation rate (s -1 )
	30	10 2	10 5	10 -3	10 -3	0.2
	Nutrient to energy rate	ATP basal cost per V=1m3 (ATP units/µm 3 )	Basal metabolism allometry coefficient	Growth cost of one cascade	Nutrient cost of one cascade	
	30	10 6	5:6	10 3	10 2	
	Mutation rate per base (per gen.)	Daughter cells ratio	Lethal cell volume	Basal death rate		
	10 -4	1:1	1	0.25		
	Initial sizer threshold	Initial cell volume (µm 3 )	Initial number of transcripts	Initial number of cells	Theoretical simulation duration (s.)	
	100	30	5	500	10 7	

  e.g. reaction reversibility -potentially explaining a part 5.1. RESOURCE UPTAKE AND THE EVOLUTION OF MODERATELY EFFICIENT ENZYME of the variance in enzyme efficiencies. It remains that estimating constraints on all individual enzymes appears like a daunting task, which could be guided, in part, by the identification of deviations from evolutionary predictions.

  2. SM. RESOURCE UPTAKE AND THE EVOLUTION OF MODERATELY EFFICIENT ENZYME : THE FULL SET OF PARAMETERS INVOLVED IN ENZYME EVOLUTION 5.2. SM. RESOURCE UPTAKE AND THE EVOLUTION OF MODERATELY EFFICIENT ENZYME : THE FULL SET OF PARAMETERS INVOLVED IN ENZYME EVOLUTION understand how enzyme concentrations are tuned, but in Prokaryotes at the least, concentrations are restricted within a narrow range which cannot explain most of the observed variability.

  5.17) 5.2. SM. RESOURCE UPTAKE AND THE EVOLUTION OF MODERATELY EFFICIENT ENZYME : THE FULL SET OF PARAMETERS INVOLVED IN ENZYME EVOLUTION recalling that [S] is the intracellular substrate concentration, and with V c the volume of the cytoplasm. Assuming a large surrounding environment where the external concentration of the substrate [S out ] remains constant 1 and an homogeneous distribution of the substrate inside the cytoplasm, the dynamics of [S] should obey the following differential equation:

  2. SM. RESOURCE UPTAKE AND THE EVOLUTION OF MODERATELY EFFICIENT ENZYME : THE FULL SET OF PARAMETERS INVOLVED IN ENZYME EVOLUTION described by the following expression of flux conservation:

Table 5

 5 

		.1: Flux at steady-state using Euler explicit method	
	log 10 k f log 10 k cat	2	3	4
	5	9.09078909140e-07 9.09087090923e-07 9.09087909102e-07
	6	9.09087909093e-07 9.09088727281e-07 9.09088809099e-07
	7	9.09088809098e-07 9.09088890917e-07 9.09088899099e-07

Table 5.2: Flux at steady-state using Newton algorithm

  2. SM. RESOURCE UPTAKE AND THE EVOLUTION OF MODERATELY EFFICIENT ENZYME : THE FULL SET OF PARAMETERS INVOLVED IN ENZYME EVOLUTION log 10 k f log 10 k cat

		2	3	4
	5	0.000228646147092 6.40454889231e-13 2.40388743711e-13
	6	3.4637409099e-13 2.14299849973e-14 1.44419451114e-14
	7	2.05797717838e-13 1.9566504519e-14 4.30928964696e-15
	Table 5.3: Relative differences between estimates of flux at steady-state
		log 10 k f log 10 k cat	2	3 4
		5	1.74440671693e-09 0 0
		6	0	0 0
		7	0	0 0
	Table 5.4: Difference of flux between the las two timesteps adjusted to one second

overlooked in that case, as shown in this table where the difference corresponds to the one that would be observed if it were to remain constant during one second: 5.2. SM. RESOURCE UPTAKE AND THE EVOLUTION OF MODERATELY EFFICIENT ENZYME : THE FULL SET OF PARAMETERS INVOLVED IN ENZYME EVOLUTION Evolutionary trajectories for the simulations

Table 7 .

 7 1: Set of constant parameters used to simulate competition As the system yields an ecological equilibrium that needs be solved numerically through a two step process -see Materials & Methods of the article for details -it is not possible to determine the joint influence of the whole set of parameters. Instead, we varied them on a pairwise basis where the degradation rate is always the focal variable while other parameters are all set but one (or two, if necessary). When not explicitly mentioned, these parameters are set according to the

	following table:

Table 7 .

 7 2: Set of basic settings used to determine their individual influence

  .10c) 7.2. SM. PROTEOME ALLOCATION AND THE EVOLUTION OF METABOLIC CROSS-FEEDING As a conclusion, it means that a cell should allocate more to the first part of the pathway since it contributes more to the fitness (both directly and indirectly), a phenomenon which fades away, to a certain extent, when reactions stand far from saturation. More precisely, cells should allocate around 0.6 of their available proteome to the first part of the pathway under such circumstances. This estimate needs not be considered as a quantitative prediction (despite being close to findings with the more realistic pathway), yet, for it relies on an oversimplified definition of the influence of enzyme concentration on fluxes. It is all the more true since the expression used to describe it originally comes from a framework that does not capture realistically reactions approaching saturation (Bagheri-Chaichian et al., 2003) -but see

  .3.Through this transversal perspective, many organisms with intermediate features would be better accounted for. For instance, yeasts could be both at an intermediate level of organismality and of Eumulticellularity, explaining why it is (relatively) easy to make them evolve multicellular features -see Box 16. Caulerpa algae is a form of coenocytic multicellularity composed of one cell 3 with numerous nucleus that would clearly coincide with a multicellular organism in there, as it has both differentiation, nucleus aggregation, while undergoing few genetic conflict and thriving thanks to large cooperative contributions between its nucleus[START_REF] Varela-Álvarez | Mediterranean Species of Caulerpa Are Polyploid with Smaller Genomes in the Invasive Ones[END_REF]; Ranjan 9.2. ADOPTING A TRANSVERSAL VIEWPOINT TO DEMYSTIFY WHAT DRIVES COMPLEX MULTICELLULARITY -AND ITS APPARENT LOSSES

Eco discusses the thesis de laurea, equivalent to the report wrote at the end of undergraduate studies.

Non-genetic heterogeneity refers to organisms that produce distinctive phenotypes -individuals -from a single genotype. Some authors have been using the term individuality interchangeably with that of heterogeneity[START_REF] Pradeu | The many faces of biological individuality[END_REF] -even if the first term concerns an organism while the latter one defines a population -mostly those who do not work on evolutionary questions (eg. physiologists, cognitive scientists), what we do not do at this stage for purpose of clarity (we clarify these points in section 2.1.3).

By diversification, we mean any process that allows the production of diversity, whatever its underlying determinism.

Fluxion is Newton's equivalent for the (mathematical) differentiation notation concomitantly developed by Leibniz and which went down in history.

The Hutchinsonian concept of ecological niche refers to the ecological mapping of an organism onto a ndimensional environmental space through its population dynamics. If an organism finds itself in a habitat somewhere in its niche, it can persist there without any migratory influx from its neighbourhood whereas otherwise it goes extinct[START_REF] Grinnell | The Niche-Relationships of the California Thrasher[END_REF][START_REF] Hutchinson | Concluding remarks" on Animal Ecology and Demography[END_REF][START_REF] Holt | Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives[END_REF].

The same argument could be made for time, by the way.

Interestingly, as theories are collection of ideas that only have a fitness when grouped together, it may be that ETIs also occur at the level of memes, the cultural equivalent of biological genes[START_REF] Szathmáry | The major evolutionary transitions[END_REF] 

Notice that distinct laws shall mean distinct set of parameters of the same laws.

Even though such an information's fitness seems better suited, or at least more intuitive, for the information carried by cells or higher level of individuals, it is also valid for the lower ones such as genes or even parasitic genomic elements like transposons. Indeed, what matters is only how we define effective biomass production for an informational entity and what is the environmental scale which is relevant for the question one asks.

Quantitative Evolution -mostly represented by the field of population genetics -defines here the field in

evolutionary sciences where predictions are measurable and testable (eg. the evolution of an allele frequency in a population under a given a selective pressure), can be refuted, and whose refutation enables the community to get rid of the possibility of specific underlying assumptions.11 i.e. which molecules are present in the focal cell and in which state (for example, they can be aggregated together or free).12 i.e. which functions are carried on by the focal cell.

Throughout this manuscript, noise and stochasticity are used interchangeably, although some scientists such as J.J.Kupiec, drawing inspiration from quantum mechanics, have proposed to distinguish between intrinsically random processes -stochastic ones -and extrinsically random processes -noisy ones. We do not embrace this distinction as its relevance does not appear obvious: indeed, what if intrinsic randomness is only the name we give for unobserved noisy processes?

In short, Platoo thought that objects were the imperfect deceptive representation of an ideal form.CHAPTER

EVOLUTIONARY PRINCIPIA OF DIVERSIFICATION

Multicellularity is a contentious concept as it depends on what features is considered to discriminate between multi-and uni-cellular organisms. Being one if not the unifying thread of our work, we will largely discuss it in following sections; at this stage though, we base the discussion on commonly accepted vocable.

De Gaulle even once stated that "old age is a shipwreck", which, as for any definitive and clear-cut opinion, happily does not embrace the whole truth.

One of the argument is that pessimistically overestimating the efforts to be made could feel depressing, since the trend may be irreversible. One may wonder in return what would be the cost of not being enough alarmist, as May and his colleagues may also have done.

The original quote is from George Orwell's Animal Farm, published in 1945, and applies to the Animals. It is the final Commandment of Animalism, all the other ones having been erased, to which pigs added the second part to arrogate the power.

It is weird that Schumpeter used the name creative destruction, which seems to entail a causality where destruction predates creation, as with catastrophes, like the 1929 crash, while he elaborates on the opposite idea, creation being the active force whose by-product is destruction.

To picture that, one may imagine the average level of complexity as following a one dimensional walk bounded by a backward wall at the starting point. Because it is not possible to cross this wall without going extinct, organisms with low complexity are more likely to evolve towards more complexity, creating a statistical imbalance similar to that of statistical physics. Hence, most of the trajectories push the level of complexity upwards, especially when it is low.

Here again, one may argue that organisms being the theoretical concept, these transitions should have been called ETOs, but quibbling has to stop at some point.

It is unlikely that the opposite -diminishing this part -will be proven true, but it remains possible that comes a point where we question how we dissociate between selfish genetic elements and viruses, for instance, or questions the very idea that all these elements can be all gathered under a common denomination.

By decanalised, we imply that Natural Selection favored explicitly decanalisation, while uncanalisation is a wider concept where there exists a phenotypic heterogenity between individuals of a population/species.

Note that to the physicist ear, the undifferentiated use of plasticity, no matter how reversible is the change, sounds confusing. In mechanics, where these words first appear, plasticity describes the state of matter corresponding to an irreversible deformation -at this stage, the structure can no longer assume more loads without undergoing an atomic reorganisation -while elasticity, on the contrary, describes reversible changes where there is proportionality between deformation and force, as stated by Hooke's Law. Applying this definition to phenotypes would have meant that part of the plasticity should have been called phenotypic elasticity: for instance, the operon lactose activated cells would correspond to elasticity, as well as the change of our behaviour when we enter a classroom, for the better and the worse. On the contrary, developmental plasticity would be a clear example of plasticity.

Note that canalisation has mostly been used as the stabilisation of acquired characters, such as in developmental plasticity. We here use it in a wider disputable sense where canalisation merely represents the decrease of cellular noise -see next chapter, section 3.2.2 for more details on cellular noise.

Here again, we do not presuppose any heritability (or no heritability) in cell fates.CHAPTER 2. EVOLUTIONARY PRINCIPIA OF DIVERSIFICATION

Note that because these entities have their own DNA, there is some genetic conflict between and within them, and they may also display some non genetic differences, even within a single cell.

Note that we still endorse the idea of three domains of Life although it is phylogenetically inconsistent now that Eukaryotes are acknowledged as an Archaeal lineage: Prokaryotes are not monophyletic, and, owing to endosymbiosis, it is not so sure that monophyly can ever be a relevant characteristic at this scale.

It is also named synthrophy[START_REF] Morris | Microbial syntrophy: interaction for the common good[END_REF] even though some distinctions have been made by a part of the community, as usual.

By evolutionary stability, we mean that the strategy cannot be invaded by other one, for instance containing cheater cells.

This estimate may sound dubious, since there is no metrics to quantify temporal differentiation, or at least none of which we know. The remark is merely based on the fact that there are less stages in bacterial cell cycle, fewer compartments susceptible to behave differently and less independent genetic entities susceptible to contribute to this differential expression.

Throughout this document, we see how complex defining an organism is. By integrated, we mean here the

Especially, if one considers that a eukaryotic cell, despite being a chimera owing to endosymbiosis, only contains one genotype.

Notice that such a view may not however apply to trade-offs involving frequency-dependent selection since there might exist an underlying genetic trade-off in that producing different organisms needs different alleles.

By breaking a trade-off, we surely do not imply that no trade-off limits organisms once it has happened, but more reasonably that the initial trade-off has been overcome. Hence, the new trade-off is defined by new boundaries previously inaccessible.

Evolutionary Transitions in Individuality.

For a definition of accessibility, see section 3.2.2.

Note that each of them are bottom up approaches to build a fitness function, but they make different simplifying assumption.

One may argue that a zoo is also only a subset of the whole existing diversity.

Very high concentrations are to be avoided for they materialize a toxic cellular environment.CHAPTER 3. MECHANISTIC APPROACH OF DIFFERENTIATION

By that, we mean directly following the transporter protein.

For [Si] ≈ 0, it tends to the same macroscopic role than Michaelis constant, i.e. half saturation concentration.

[START_REF] Kuile | The kinetics of facilitated diffusion followed by enzymatic conversion of the substrate[END_REF] also derived a formula for the reversible case.

The surface defining the boundary between the medium and the cytoplasm of the cell.

Our definition of basal metabolism here is quite different from that by[START_REF] Lynch | The bioenergetic costs of a gene[END_REF] who considered the energy necessary to sustain cell viability while it does not grow, and, by extending the method to organisms with various cell sizes, define an allometric cellular rule for basal metabolism. To us, the increase is due to the higher cell size of the same organism when it is growing.

In this case, this energy is considered lost for the cell and is returned to the medium under the initial form of nutrient

Not to be confused with the remainder after the process of allocation to traits has occurred, that is to say after this step, which represents the amount of energy unnecessary for the cell.

Wang et al. (2009a) proposed the amount of a given binding-site as an accurate way to generate and tune this threshold.

They were named this way as a tribute to the Red Queen of Van Valen, and also because of the Black Lady, a trick avoidance card game, where the Black Queen incurs a very high cost so that any player should try to get rid of it. For each deck of card has inevitably a black queen, one player will always end up with her, despite its cost. Biologically, the Black Queen loser is the organism that ends up with a costly function, which is necessary for a community. Being necessary for the survival of a community, it never disappears though.

In a broad sense, it can cover independent phenotypic traits, epistasis, pleiotropy among other (and more organismic) features.

In this line of work, this neutral diffusion drives the finding of a higher complexity attraction sub-basin, which gives rise to (quick) epochal evolution followed by stasis, echoing the pioneering and controversial work on punctuated equilibrium by Gould and Eldredge[START_REF] Eldredge | Punctuated Equilibria: An Alternative to Phyletic Gradualism[END_REF][START_REF] Eldredge | On Punctuated Equilibria[END_REF].

For convenience, we only mention genes, but as stated previously, it may also apply to loci or organismic units, for instance.

Tha gamma function generalizes the factorial concept to the set of complex numbers.

As often happens in the History of Mathematics, Stirling's formula, despite its baptismal name, was not formulated first by Stirling but by De Moivre.

And organic shapes, albeit for different reasons.

This is noticeably interesting for such fitness landscapes -including stabilizing selection -have been empirically documented in the case of drug resistance in microorganisms[START_REF] Ford | Genetic capitalism and stabilizing selection of antimicrobial resistance genotypes in Escherichia coli[END_REF].

In order to avoid introducing constraints which may be the result of Evolution, be it adaptive or not.

For instance, we met such a controversy when introducing the gradualism/punctualism confrontation and some of its belligerents. In relative significance dispute, the relative influence of phenomenon is at stake rather than their mere existence that no one really questions(Skipper, 

2002).

For instance, studying the evolution of new functions, potentially through de novo reactions, cannot be done outside a theoretical framework for we do not know a priori their specific features.

Just as a reminder, promiscuity is the involvement of the same enzyme in different biochemical reactions.

Protein moonlighting occurs when a protein is involved in different types of function, such as regulation, transduction and catalysis.

 4 In terms of electric/heat analogy.

Flux Balance Analysis.

For logical reasons, if nothing else, it does not make any sense, because identical means they should contribute the same precise exact value, which is, at best, undecidable. Identical requires one to settle the debate about the range of variability she (or he) associates to identity. This is nowhere better exemplified than in the theory of neutral evolution, where neutral mutations are not mutations that have the same fitness, but only implies that they respond the same way to the sieve of Natural Selection. By identical, one more reasonably means that contributions are indiscernible from one another, following the controversial but of common usage Leibinz' Principle of Identity.

We have suggested its relevance for some of the questions discussed previously, but there would be a quantitative upgrade in these former cases, while they seem an indispensable qualitative ingredient in the process discussed here.

As many residues act specifically on stability, they can even buffer some of the deleterious effects of mutations affecting both[START_REF] Tokuriki | Stability effects of mutations and protein evolvability[END_REF] Storz, 2018).

In principle, it could also be done with organs for instance, or symbiotic relationships or any complementary interaction, but the link with fitness for a seemingly improved parameter is yet more complex and makes it all but attainable at this stage.

It is not sure, in my opinion, that quantitative genetics provides enough biology to answer such questions.

Just as a reminder, we make a distinction between accessibility, which is linked to the number of evolutionary trajectories leading to an adaptive phenotype, and findability, which concerns the genotype.

By idealised, we do not mean that it is constant but instead that assumptions are made to simplify its complexity; for a switching environment, one may assume in first approach that nutrients can never be found together, and that their concentration is set, without ecological feed-backs by organisms, when it is there.

At least, this shows that we are not alone to get stuck in nonsense ideas.CHAPTER 9. INTEGRATIVE VIEW OF CELL DIVERSIFICATION
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Appendix -simulation outcomes for N e = 10 

APPENDIX 1-Determination of ecological equilibrium and pairwise invasibility plots

As to draw pairwise invasibility plots, we determine the equilibrium through a three step process (it is not possible to use solver methods on the whole system for they fail to find consistent solutions as a consequence of the huge difference in order of magnitude between metabolite concentrations and population size). First, we set an equilibrium flux -to Φ net,Neq = 10 -4 M which is needed to sustain the population at equilibrium. We then compute the value of the net flux Φ net,N for a given population size N . As long as it is lower (or higher) than Φ net , population is increased (or decreased) at the next iteration. The algorithm is stopped either when the difference between these fluxes is lower than 10 -6 Φ net,N , or when it oscillates between two neighbouring values (N eq is then set to the average between these values). Ecological equilibrium matches with he concentration in the environment for this demographic equilibrium. Notice that to make the algorithm quicker, the first 100 iterations change population size by the ratio between the current net flux and its targeted equilibrium value. Then, a fine adjustment is lead by increasing or decreasing the population size by one unit. The same process is used for coexistence, although henceforth applied to resident coalitions composed by two resident strategies that each has its own population size at equilibrium. PIPs were generally drawn for 250 strategies, unless lower resolution was sufficient to capture the trend. In order to determine the optimal allocation, we set the total proteome content to its optimal value as determined without the influence of permeability. An individual whose strategy is to invest as much in the first part of the pathway than in the second part corresponds precisely to this case. We also tested -see SM -the case where the optimal content can change, by varying only the amount of each part at a time, setting the other one to its optimal value.

APPENDIX 2 -Results obtained for the stable allocation strategy of the proteome when the yield differs between subpathways

Here, we report the results obtained when the second part of the pathway yields more energy than the first half, showing that it pushes towards equal repartition, no matter the toxicity rate -compare with B of Figure 1 in the paper. The first part of the Results section (Chapter 4) presents a model (which is not solvable analytically but rather through simulations) that explores the evolution of noisy cellular strategies. The model considers a population of asexual eukaryotic organisms growing in acqueous medium by uptaking and metabolizing nutrients. The model is focused on growth as the main driver of organismal fitness (this is of course fine and consistent with other modeling approaches such as Flux Balance Analysis). I found this model intriguing and insightful, as well as useful in that one could build up from it.

Yale University

Department of Ecology & Evolutionary Biology

The second Results chapter (Chapter 5) present results from a recent study by the author, published this year in MBE. The author discusses a systems-level view of enzyme evolution that places each enzyme into its own metabolic context, addressing the question of why enzymes seem to be far in general from achieving the maximum possible catalytic rate (set by diffusion encounter rates). The author examines how nutrient transport influences the evolution of enzymes that metabolize that nutrient. I similarly found this model to be thought-provoking and interesting.

The third Results chapter (Chapter 6) presents a discussion of epistasis. I particularly appreciated the introduction to global and high-order epistasis and its potential mechanistic sources. The authors introduce a simple model to investigate the role of complementary epistasis on the mutational load. The model is rather abstract and conceptual but I do not mean this in a negative way, quite the contrary. The fourth and final Results chapter (Chapter 7) focuses on the evolutionary emergence of crossfeeding. I think this was my favorite chapter. The author proposes plausible scenarios that may lead to the secretion of metabolites. I have alternative pet hypotheses but I enjoyed reading the original and thoughtful perspective by the author.

Yale University

Finally the conclusion is well written and does a good job at wrapping everything up.

Below, I add a few minor issues I detected. None of them are required for the thesis to be approved, as they do not affect any of the main conclusions.

• In the abstract, the author writes: "[...] by studying the most fundamental property of living things: how to produce energy and grow faster than others?". I think this leads to the impression that fitness is primarily determined by fast growth. In practice, there are other life history and fitness-related traits that impact the success of organisms. Low mortality rates, rapid phenotypic switching, avoiding predation, resistance to stress, or survival to starvation are amongst them.

• In page 77, the author refers to equation 3-27 and I believe this is likely a typo?

• In page 78, in the caption of Fig. 3-11 the author could include the R2, slope and other statistical parameters of the regressions shown.