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Introduction 
 

The selection of structural materials for a given application is mostly based on their mechanical 

properties and then on their environmental resistance. By optimizing these two factors, it is 

therefore possible to increase the durability of the structural materials.  

Ni-based superalloys are widely used in several domains, including aero and land-bases turbine 

engines. For such applications, metallic component are carefully designed by adjusting their 

chemical composition and microstructure to respond to the demanding mechanical resistance. 

Placed at the exit of the combustion chambers, the turbine blades can be stressed at temperatures 

reaching 1150°C and their rotation speed is of the order of 10.000 revolutions/ minute. Therefore, 

creep and fatigue linked to the cyclic use of turbines, erosion and oxidation at high temperature 

are the main modes of degradation of the blades.  

All main gas turbine components (blades, vanes and disks) are also submitted to highly corrosive 

environments (O2, SO2/SO3 and H2O species) with pressurized hot gases, combustion impurities 

and different types of erosive particles (salts, sand, volcanic ashes, concrete dust, etc.) leading 

hot corrosion by CMAS (Calcium Magnesium Alumino-Silicates). Under these conditions, the parts 

are usually coated with a platinum-modified nickel aluminide coating β-(Ni, Pt)Al or with an overlay 

MCrAlY (with M: Ni,Co) coating. These protective coatings on the surface are designed to limit the 

corrosion and oxidation of the substrates by forming an aluminum oxide and/or a chromium oxide 

layer. The application of protective coatings significantly increases the high-temperature surface 

stability of nickel-based superalloys and are essential to guarantee their integrity of the blades 

during their lifetime.  

One of the main challenges in the aeronautical field is to increase the efficiency of the turbine 

engines, allowing to reduce the consumption of kerosene, hence the emissions of harmful gases 

into the atmosphere. The Brayton thermodynamic cycle demonstrates that the efficiency of gas 

turbine engines is a direct consequence of the turbine inlet temperature (TIT). The higher the TIT, 

the greater the thermodynamic efficiency of the engine. For example, increasing the turbine inlet 

temperature by 50°C enhances the specific thrust by 1% and reduces the fuels consumption by 

5%. Therefore, aircraft manufactures continuously increase the TIT of the turbine engines and the 

resistance of the materials must be thus increased. This is why in their latest developments, nickel-

based superalloys are monocrystalline with a microstructure based on coherent γ-γ’ precipitation 

and enriched in two refractory elements, rhenium and ruthenium. The developments have made 

it possible to increase the temperature of use of these alloys by around 100°C and to increase 

high creep and fatigue resistance compared to the first polycrystalline alloys. Increasing the 

temperature fosters the degradation of the blades by enhancing both oxidation and interdiffusion 

between Al (of the coating) and Ni (of the substrate) for instance. In addition, the usually less 

attacked components (low stages of turbine) become now extremely sensitive to the high-

temperature oxidation and corrosion. These new corrosive conditions require the application of 

protective coatings to these stages and the improvement of state-of-the-art coatings for the upper 

stages. 

For high-temperature oxidation resistance, industrial protective coatings are usually based on 

electrodeposition of platinum followed by CVD-related techniques to enrich the surface of nickel-

based superalloys with Al. The nickel aluminide coatings, based on the β-NiAl phase, decrease 
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the oxidation kinetics of the underlying substrate by forming a dense and continuous α-Al2O3 

scales on the surface. The two main factors of degradation in cyclic oxidation are the spallation of 

the oxide layer upon thermal cycling conditions and the interdiffusion between Al and other 

elements in the nickel-based superalloys. 

Indeed, under cyclic conditions, the damage of coated superalloys occurs by successive spallation 

of the aluminum oxide layer, which consumes the aluminum contained in the coating to form a 

new layer of alumina on the spalled areas. The ruin of coated superalloys occurs when the quantity 

of Al in the coating is not high enough to form a new layer of protective alumina. As a result, non-

protective nickel-rich oxides, NiAl2O4 and NiO develop. The formation of these fast-growing and 

little adherent oxides accelerates the aging of the system. Thus, the content of the aluminum 

coating is a criterion characterizing the lifetime of a coated superalloy.  

In addition, the differences in chemical compositions foster the interdiffusion between the elements 

of the superalloys substrates and their protective coatings at their temperature of use. This is 

particularly significant in the case of a β-NiAl coating, because the difference in composition of the 

coating and of the superalloy is greater. The diffusion flow associated with this phenomenon leads 

to a premature depletion of the aluminum coating. The consequences related to the aluminum 

depletion mentioned above are thus increased. 

The interdiffusion between the superalloy and its protective coating has other negative influences 

on the life of the coated superalloys. The diffusion of certain elements of the superalloys, such as 

titanium and tantalum, or certain impurities such as sulfur, decrease further the adhesion of the 

oxide layer. In addition, the premature depletion of the aluminum coating promotes phase 

transformation in the coating ((β-NiAl → γ’-Ni3Al, martensitic transformation β-B2 → L10). These 

transformations, by constraining the coating, also promote the spallation of the oxide layers. 

Finally, interdiffusion degrades the microstructure of the superalloys to a depth that increase with 

the time of exposure to high temperature. These modified zones reduce the “healthy” part of the 

superalloy, which carries the mechanical loading. 

In order to limit the harmful consequences of interdiffusion and thus increase the lifespan of coated 

superalloys, studies focus on the development of diffusion barriers between the superalloy and its 

protective layer. These diffusion barriers consist of a dense layer of alumina or a rhenium based-

alloy where the diffusion of aluminum, nickel and other elements of the superalloy and coating 

would be slowed down. Some of the last works of the group of Prof. T. Narita showed the 

development of chemically stable, effective diffusion barriers to limit interdiffusion for periods of at 

least 400 hours at 1100°C or 300 hours at 1150°C. However, the mechanical resistance and the 

resistance to thermal fatigue of a system with diffusion barriers can be reduced because of the 

differences in thermal expansion coefficients between the diffusion barrier, the coating and the 

superalloy. In addition, the initiation of cracks could be accentuated at the diffusion barrier level 

during mechanical fatigue stresses. 

In contrast, these diffusion barriers are mostly applied for very high temperatures and not for the 

intermediate ones that the low-pressure turbine blades may undergo due to the increase of the 

TIT. 

It is interesting to notice that the conventional industrial processes employed to generate a coating 

require technical resources, handle hazardous chemicals (halide activators, chromic acid, etc.) 

and can produce lots of waste in the particular case of pack-cementation. Therefore, to comply 

with environmental and safety regulations (e.g. Registration Evaluation Authorization and 
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Restriction of Chemicals), new approaches have been developed in the last decades for the high-

temperature protective of metallic materials. One of this new approach started about a decade 

ago with the European project “PARTICOAT”. The overall idea was based on the formation of a 

complete thermal barrier system (metallic bond coat, oxide scale and ceramic barrier coating) from 

water-based Al microparticles containing slurries. The complete thermal barrier system formed in 

a single-step process with a nickel aluminide bond coat and ceramic top coat expected to act as 

a cost-efficient and environmentally friendly manner to aluminize the turbine blades. These two 

aspects were explored in the thesis of B. Rannou and M. Mollard (nickel aluminide) and G. 

Boissonnet (ceramic top coat). In addition, B. Grégoire worked on the functionalization of coatings 

for hot corrosion applications.  

These slurry synthesized coatings are found to be an economical and environmentally friendly 

alternative to the CVD synthesized diffusion coating. However, most of the aluminum contained 

in the coating is lost by interdiffusion with the substrate. Therefore, the main objectives of the 

present study are to form a self-regenerating nickel aluminide coating by slurry aluminizing 

process.  

For this, two ways will be explored: 

- The first way, consists in using the aluminothermic reaction between nickel oxide and 

aluminum. Preoxidation of the substrate or of a nickel electrodeposit followed by an 

aluminization treatment will allow the simultaneous formation of a diffusion coating and 

aluminum oxide 

- The second way consists of the synthesis, preoxidation and incorporation of intermetallic 

microparticles in a nickel electrodeposit. Subsequently this composite electrodeposit will 

be aluminized by slurry route. 

This manuscript has been divided in 5 main chapters: 

Chapter I: Presents the state of the art and the industrial context for the high temperature oxidation 

and protection of metallic materials in gas turbine engines. A general overview focus on the 

diffusion barriers and nickel aluminide coating outcomes is given. The different modes of 

degradation encountered in gas turbines engines and their solution are also introduced.  

Chapter II: Presents and describes the experimental methods of the present study, including the 

materials of study, elaboration of slurry coatings and the degradation tests performed. The 

characterization techniques carried out in this work are also presented. 

Chapter III: Presents the study of the reactivity of the aluminum and preoxidized nickel particles. 

In this part, the influence of the sizes and the amount of NiO contained in the Ni particles, the 

heating rates and the arrangement of the different elements will be tested by DSC method. A 

better comprehension of the mechanisms of formation is needed before extrapolation to a pure Ni 

substrate and a nickel-based superalloy in chapter IV. 

Chapter IV: Presents a preliminary study to obtaining a self-regenerating coating on pure nickel 

substrates. This part was subdivided into a first study on the influence of heat treatments and 

preoxidation time on raw nickel substrate and a second part on the influence of heat treatments 

and current density on preoxidized nickel electrodeposits. 
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Chapter V: Presents the synthesis of self-regenerating electrochemical coating and a preliminary 

study of oxidation behavior. Oxidation tests were performed to the effectiveness of the diffusion 

barrier and the protective behavior of the slurry coatings. 
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I-Gas turbines: generalities and selection of materials for high-

temperature applications 
Gas turbines have long been used in energy and aeronautical sectors. In an aircraft engine, the 

turbine is placed at the exit of the combustion chamber (Figure I-1.a) and consists of alternately 

fixed and rotating parts receiving the hot gases expelled from the combustion chamber. A turbine 

is divided into two sections, the high-pressure and the low-pressure turbines (HPT and LPT, 

respectively). By partial expansion of the combustion gases, the turbine transforms the thermal 

power of the gases passing through its rotating blades into mechanical power that in turn drive the 

compressor and the fan through the shaft. The blades are profiled obstacles immersed in the flow 

of fluids, serving to guide them. In contrast, in utility power plants, the heat produced by burning 

fossil (e.g. coal, gas, oil), or renewable (biomass) fuels or the heat stored in molten nitrates 

(thermosolar plants) is exchanged to heat and pressurize steam, which becomes the fluid that 

makes the blades rotate. 

 

Figure I-1: (a) Schematic view in cross-section with the selected alloys for each section [1] and 

(b) evolution of the temperature, pressure and axe velocity through the engine [2]. 

 

According to aviation and environmental requirements, jet engines are expected to be more and 

more efficient. The thermodynamic efficacy of the gas turbine engine is ensured by the Turbine 

Inlet Temperature (Figure I-1.b) according to the Brayton cycle [3-4]. For example, increasing the 

turbine inlet temperature by 50°C enhances the specific thrust by 1% and reduces fuel 

consumption by 5%. The high-pressure turbine blades are located in the hottest part of the engine 

and operate in oxidizing (blade airfoil) and corrosive (blade root) atmospheres. The temperature 

at the tip and leading edge of the airfoils can reach nearly 1700°C [3-8]. In addition, they undergo 

strong mechanical stresses (about 10,000 revolutions/min). In this particularly harsh 

environments, nickel-based superalloys are used. Indeed, nickel-based superalloys have good 

mechanical properties at high temperatures, which have been optimized by modifying their 

composition and their microstructure. In particular, monocrystalline superalloys have excellent 

resistance to creep [5]. However, their use remains limited to surface temperatures of around 

1100°C. To stay within this temperature range, sophisticated air film cooling have been designed 

[9]. The circulation of “cold” air (taken from the high-pressure compressor, at around 600°C) inside 

the blades, cools the superalloy. The internal cooling requires thinning of the walls of the blades, 

which in turn lower the overall mechanical resistance. Therefore, the internal cooling has currently 
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reached its maximum capacity and is thus combined with thermal barrier coatings to keep the 

metal temperature at around 1100°C [10] (Figure I-2). 

 

Figure I-2: Evolution of the high-pressure turbine blades over the past 50 years [5]. 

 

II-Nickel based superalloys for gas turbines 
II.A-Microstructure  
Nickel-based superalloys are a two-phase material with γ’-Ni3Al phases in a γ-Ni matrix (Figure I-

3) [5,11]. The γ-Ni matrix crystallizes in an A1 system and the γ’-Ni3Al phases in an L12 system. 

These two networks are semi-coherent, the crystallographic networks of the two phases having a 

very similar lattice parameter. The mechanical properties at high temperatures of the superalloys 

are due to two types of reinforcement that include the precipitation of the γ’-Ni3Al hardening phase 

and the addition of hardening elements in solid solution in the γ-Ni matrix. In addition, the volume 

fraction of the γ’-Ni3Al hardening phase can be as high as 70% at room temperature [12].  

 

Figure I.3: Duplex γ-γ’ microstructure of a nickel-based superalloy [5] and corresponding crystal 

structures. 
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II.B-Structure and solidification  
The evolution of elaboration processes has made it possible to increase the mechanical properties 

of nickel-based superalloys at high-temperatures. After elaboration, nickel-based alloys have a 

dendritic structure (Figure I-4). The primary dendrite arms and their secondary ramification grow 

in the <100> direction. The dendrite arms have a fine γ/γ’ microstructure, equivalent to one of 

Figure I-3, while the γ/γ’ microstructure is coarser in the interdendritic spaces. Moreover, in these 

interdendritic spaces, massive γ’ phases are formed, which do not contribute to the hardening of 

the alloy [5].  

This dendritic structure comes from the rejection of certain elements from the solid phase to the 

liquid phase during the solidification of the alloy. Elements such as nickel, tungsten, rhenium and 

ruthenium for the most recent generation are not released into the liquid phase and are distributed 

preferably in the dendrite after solidification. The other elements, therefore, tend to segregate in 

the interdendritic spaces of the alloys [5]. Thus, a solution heat-treatment is required after the 

casting of the nickel-based superalloys to homogenize their microstructure. This treatment makes 

it possible to break the dendritic chemical inhomogeneity inherited from the solidification and to 

dissolve the γ/γ′ eutectics pools. For this, the alloy is usually heated above the γ′ solvus 

temperature and the closest possible to the incipient melting temperature (or solidus) to achieve 

the best chemical homogeneity in a reduced time. Thereafter, the alloy is quenched and two 

subsequent tempering (ageing) treatments are often performed to adjust the size and morphology 

of γ′ precipitates, so as to achieve a regular array of cubical precipitates. During the first aging at 

1080°C for 6h, followed by air quench, a very regular array of cubical precipitates is obtained. The 

last aging heat treatment is conducted at lower temperatures (typically between 750°C and 900°C) 

to relax residual stresses introduced during all processing steps (e.g. perforation of the cooling 

holes) and to make thinner γ matrix channels between the γ’ allowing to limit dislocation mobility, 

hence to improve creep and fatigue resistance [13].  
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Figure I-4: γ’- γ microstructure evolution in primary dendrite arms of AM3 1st generation Ni-based 

SX superalloy from as cast to fully heat-treated state [13]. 

 

II.C-Alloying elements 
The most advanced generation of single-crystal turbine blades operate at a temperature greater 

than 85% of their absolute melting temperature [10]. To increase resistance to creep and oxidation 

and corrosion resistance different elements can be added. The effect of the various alloying 

elements used in the nickel-based superalloys is summarized in Table I-1 and Figure I-5 [5, 13]. 

Ti and Ta are added to increase the proportion of hardening γ’ phase, by substituting Al in γ’-Ni3Al. 

Cr, Co, Mo and Re partition into the γ matrix and act mainly as solid solution strengthening 

elements to increase the creep properties [14]. Al and Cr play a fundamental role in promoting the 

formation of a stable alumina and chromia surface scales, which respectively promote the 

oxidation and corrosion resistance. The heavy refractory elements Mo, W, Re and Ta increase 

the creep properties by solid solution strengthening while the Ru added in the most advanced 

generation also improves fatigue properties. However, the contents of these elements shall be 

carefully controlled to avoid the formation of topologically close-packed (TCP) phases, such as σ, 

µ, P, etc., because they are brittle and lower ductility and creep strength [7,15-16]. These TCP 

phases also occur during the Al inward diffusion from aluminide coatings to the substrates. 
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Table: I-1: effect of major alloying elements in Nickel-based superalloy [11]. 

Element γ-genes γ’-genes 

Grain 

boundary 

precipitates 

Other effects 

Cr Moderate Moderate M23C6; M7C3 
Improve corrosion resistance; 

promotes TCP formation 

Mo High Moderate M6C; MC Increase density 

W High Moderate  Promote TCP phases σ, µ (Mo, W) 

Ta High Large   

Nb High Large NbC Promote γ’ and δ phases 

Ti Moderate Very large TiC  

Al Moderate Very large  Improves oxidation resistance 

Fe  
γ’→β, η, γ’’ or 

δ 
 

Decrease oxidation resistance; 

promotes TCP phases σ, Laves 

Co High 
Moderate in 

some alloys 
 

Raises solidus; may raise or lower 

solvus 

Re Moderate   Retards coarsening; increase misfit 

C Moderate  Carbides  

B, Zr Moderate   

Inhibit carbide coarsening; improve 

grain boundary strength; improve 

creep strength and ductility 

 

 

Figure I-5: Elements commonly selected for the constitution of nickel-based superalloys and 

their respective contribution to the microstructure [5]. 
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III-Degradation of metallic materials at high temperature   
The properties required to superalloys are high-temperature creep, high fatigue life, phase 

stability, as well as corrosion and oxidation resistance. Hot components of gas turbines operating 

in aggressive environments are subject to various modes of degradation that include high-

temperature corrosion, oxidation and mechanical degradation (mainly erosion and foreign object 

damage). This thesis mainly focuses on the topic of oxidation resistance and therefore, the 

complex topic of hot corrosion will not be developed in this manuscript. Under normal conditions 

of use, the turbine blades are continuously under a pressurized flow of hot air. Oxidation is 

therefore inevitable and is the preponderant environmental degradation well above temperatures 

of 884°C (melting point of Na2SO4 considered as the “reference salt” of hot corrosion) (Figure I-

6). Oxidation is a natural phenomenon where metal and oxygen will react together to form an 

oxide. The oxides have a negative Gibbs enthalpy of formation, which results in an exothermic 

reaction and therefore results in greater stability of the newly formed oxide. However, this 

phenomenon is not always harmful and protection against oxidation rely on the formation of 

protective oxides.  

Indeed, when the oxide formed is compact, impermeable to the aggressive agent and adherent, it 

can offer protection against the environment. To characterize the protective aspect of the oxide, 

several parameters can be considered: 

 

Figure I-6: Schematic illustration of the temperature dependence on the corrosion rate. 

 

- The Pilling and Bedworth ratio (PBR) (eq. 1), which is the ratio between the volume of oxide formed 

and the volume of metal consumed or between masses [7]. If the PBR is lower than 1, the oxide 

layer is in compression and the oxide layer is in tension with PBR greater than 1. These stresses 

can induce cracks in the oxide layer or at the metal/oxide interface and ultimately spall off the 

oxide. The ideal case is when the PBR ratio is between 1 and 2, but this condition alone is not 

enough. Indeed, the RPB of HfO2 or NiO is respectively 1.62 and 1.65, however, these oxides are 

harmful, unlike Al2O3 which is 1.28. 

𝑃𝐵𝑅 =
𝑉𝑜𝑥𝑖𝑑𝑒 (𝑓𝑜𝑟𝑚𝑒𝑑)

𝑉𝑚𝑒𝑡𝑎𝑙 (𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑)
=

𝑀𝑜𝑥𝑖𝑑𝑒 · 𝜌𝑚𝑒𝑡𝑎𝑙

𝑛 · 𝑀𝑚𝑒𝑡𝑎𝑙 · 𝜌𝑜𝑥𝑖𝑑𝑒
 (eq. 1) 
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With:  

Moxide: molar mass of the oxide (g.mol-1) 

Mmetal: molar mas of the metal (g.mol-1) 

N: number of metal atoms in the stoichiometry of the oxide 

ρoxide: density of the oxide (g.cm-3)  

ρmetal: density of the metal (g.cm-3)  

 

- The coefficient of thermal expansion (CTE), is the most important parameter under thermal-cycling 

conditions. If the differences of CTE between the superalloy and oxide are large (Figure I-7), the 

oxide layer will detach from the substrate, during the cooling part, thus causing a loss of mass and 

leaving a naked metal surface. Upon subsequent cycling, new layers of oxide may repeatedly 

detach and grow again, which consumes good metal thickness leading to the loss of mechanical 

properties.  
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Figure I-7:  The variation of CTE with temperature of α-Al2O3 [17], pure Ni [18], NiAl [19], Ni3Al 

[19] and NiO [20]. 

 

- The kinetic study is also an important element. These studies are carried out in most cases by 

measuring the variations of the mass of a sample in a chamber at high temperatures and under 

an aggressive atmosphere (thermogravimetric analyses). In an ideal case, a slow mass gain 

followed be a stagnation of mass, indicate that the oxide formed is impermeable to the aggressive 
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agent, but these behaviors never occur at high temperatures. It is therefore better to rely on oxide 

with slow parabolic growth, this will indicate that the growth of the oxide layer is rather anionic with 

a majority diffusion of oxygen towards the material. Anionic diffusion is preferred over the cationic 

diffusion because in the case of cationic diffusion the oxide forms outwardly, a vacancy flow is 

then formed in the other direction. These vacancies can segregate at the interface oxide/metal 

and pores are formed, which will weaken this interface (Kirkendall porosity). Thus, during thermal 

stress due to the CTE, the oxide layers can detach from the substrate. 

One of the elements that have the best protective oxide for this temperature range is aluminum. 

Indeed, aluminum forms very quickly an oxide scale of alumina at 1100°C (α-Al2O3). The growth 

of this oxide follows a parabolic law and has a PBR of 1.28, one of the closest to an ideal value.  

A comparative study of cyclic oxidation performance on 1st to the 4th generation of single crystal 

superalloys confirmed that in the latest generation, the mass loss by spallation of the oxide scale 

in cyclic oxidation conditions becomes larger (Figure I-8). Indeed, the latest generation of alloys 

has higher mechanical strength than the previous versions at the expense of their resistance to 

oxidation and corrosion. The latest generation of alloys has more interesting mechanical 

properties characteristics, due mostly to the addition of Re and Ru. However, mechanical 

resistance and oxidation resistance are incompatible properties. Indeed, the addition of Re and 

Ru induces oxidation of these two species in Re2O7 and RuO4. Once these oxides have formed, 

they vaporize on the surface inducing significant spallation and consequently a reduction in the 

sound metal parts, which bear the mechanical loads [21]. To sum up, in nickel-based superalloys, 

Al plays a major role against oxidation resistance at high temperatures. However, it is kept below 

6 wt.% to maximize the creep resistance and to avoid brittleness of the alloy. When such alloys 

are exposed to the environments encountered in gas turbines, they will rapidly degrade. Therefore, 

the current choice is to employ highly mechanical resistant superalloys and provide oxidation (and 

corrosion) protection through the application of coatings among which nickel aluminides are very 

popular in the turbine components [22]. 

 

Figure I-8: Cyclic oxidation testing at 1100°C under air (1h hold at high temperature) for various 

generation of SC superalloys [21]. 

 

IV-High temperature protection of nickel-based superalloys 
With the advent of turbojet engines and the increased gas flows and temperature, surface 

engineering has become an important area of research. To protect the parts from oxidizing or 
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corrosive environments, metallic coatings are most commonly used. These metallic coatings must 

be mechanically and chemically compatible with the substrate to maximize their effectiveness and 

service life. Coatings are often divided into two categories, overlay and diffusion coatings.  

Overlay coatings, often refer to MCrAlY coating (with M= Ni in nickel-based superalloys). These 

Cr-rich coatings are mainly used when Type-I and Type-II hot corrosion are encountered [23-29]. 

These coatings are produced from metallic powders with selected chemical concentrations and 

sprayed at very high speed in the form of a molten droplet, by plasma spray or by high-velocity 

oxy-fuel (HVOF) [7]. 

Diffusion coatings are formed by enriching the surface layer of the superalloys with Al, Cr or Si. 

[8,23,29], and are generally produced by chemical vapor deposition (CVD) [29], like pack 

cementation [30-33] or other gas-phase processes [30,33-35]. To a lesser extent, slurry coatings 

are also used in repair stages to form a diffusion coating. Slurry coatings are characterized by 

their great flexibility. Indeed, it is an easy method to set up, easily adjustable, inexpensive and 

often environmentally friendly. In all cases, a donor compound that will deliver the element/s to 

the substrate to be coated shall be considered, for instance Ni/Al alloys or pure Al donors release 

Al to form the coating. The enrichment of the substrate with a protective element (Al, Cr or Si) 

allows the formation of a thin and adherent protective oxide scale, which decreases the kinetics 

oxidation [6-7,36]. Alumina oxide scales are particularly interesting since the oxide maintains good 

stability at elevated temperature and there is barely any points defect in the scale [7]. As a result, 

and under majority oxidation conditions, diffusion coatings developed for nickel-based superalloys 

are generally based on the unique formation of a layer of alumina. 

In addition, for the very hot parts such as vanes and blades in the high-pressure turbines located 

at the outlet of the combustion chamber, thermal barriers are also added. Thermal barriers have 

a low thermal conductivity, which allows to thermally insulate the system and can, therefore, 

decrease the surface temperature by a hundred degrees provided the rear surface of the substrate 

is also cooled down [37-39].  

IV.A-Diffusion coatings 
To understand the processing and behavior of high-temperature coatings, background in 

thermodynamics, the kinetics of reactions, diffusion, crystal structure, phase equilibrium, and 

phase diagrams of alloys is necessary.  

Diffusion is a process of the mass transport through matter. In solids, there are three main diffusion 

mechanisms. The first one is known as volume diffusion, atoms diffuse by migrating from atomic 

sites through vacancies. The second mechanism is a modification of the first, in which the atoms 

migrate through defect sites such as dislocations, surface and grain boundaries. The third 

mechanism involves the movement of atoms through interstitial atomic sites. The driving force of 

diffusion is the reduction of free energy. In many cases, this results from the existence of a 

concentration gradient occurring between higher and lower concentrations. The rate of diffusion 

is governed by Fick’s laws. 

IV.B-Nickel aluminide coatings and Ni-Al binary phase diagram 
Nickel aluminide diffusion coatings are based on the β-NiAl intermetallic phase (Figure I-9). Even 

if we will focus on a Ni-based superalloy of complex chemical composition, the equilibrium binary 

phase diagram (Figure I-9) can give useful information on the typical phases in Al diffused coating 

of Ni-base superalloy. 
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The γ-Ni phase dissolves up to 4wt.% of Al below 400°C. The solubility increases as the 

temperature is raised. The γ’-Ni3Al phases has a narrow phase field, which means that the 

composition does not vary significantly from Ni3Al. The β-NiAl domain phase is much larger than 

that of the other phases and has a great concentration in Al. The β-NiAl intermetallic phase is 

particularly advantageous for reducing the harmful effect of oxidation at high temperatures. 

Indeed, this phase has a high melting point and a relatively low density (5.9 mg/cm2 [40-42]). In 

addition, the coefficient of thermal expansion is close to the nickel-based superalloys (Figure I-7) 

[40-41]. At high temperatures, this phase develops a unique formation of alumina, which is 

characterized by slow growth and good resistance to spallation. The high Al concentration helps 

in providing a large reservoir of Al for oxidation protection through the formation and replenishment 

of the α-Al2O3 oxide scale [43-45]. These characteristics are very favorable in high-temperature 

coatings. Al3Ni2 and Al3Ni phases contain a higher proportion of Al, which would make a reservoir 

with a larger capacity. However, these phases are less stable and brittle. In addition, a significant 

difference in concentration between the coating and the substrate induces a high interdiffusion 

rate. This will cause an accelerated depletion of the reservoir. 

 

Figure I-9: Binary Al-Ni diagram phase [46]. 

 

To enrich the substrate with aluminum (aluminizing process), there are several methods such as 

high and low activities. These methods will be detailed in the following sections. 

IV.C-High-activity and low activity-activity diffusion coatings 
During the aluminizing process, one of the main factors that controls the microstructure of the 

coating is the activity of Al [28]. This activity is most often governed by the temperature of the 

process and/or by the Al donor source. Indeed, the high-activity coatings are produced between 

700°C and 950°C and the low-activity coatings between 950°C and 1100°C (Figure I-9) [21,29,47]. 
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The differences in microstructures are then linked to the mechanisms of formation of the coatings, 

and more particularly to the interdiffusion coefficient between Al and Ni [48]. 

• HALT: High-Activity Low temperature (700 and 950°C) 

When the donor is rich in Al, the inward diffusion of Al in the substrate occurs at relatively low 

temperatures, and the mobility of Al is greater than Ni at low temperatures [48]. The fast Al 

diffusion leads to the formation of an Al-rich phases (i.e. NiAl3 and Ni2Al3) in the substrate. When 

these phases are formed, the diffusion of Al is still preponderant and it keeps on diffusing into the 

substrate [31,48]. Simultaneously, the refractory elements such as W, Mo, and Ta segregate in 

the outer region of the coating (close to the interface coating/air) (Figure I-10.a). Carbides and 

other impurities can also be trapped in the coating. The phase often formed with this method is 

Ni2Al3 [31]. However, given its instability and brittleness, a subsequent annealing treatment is 

conducted between 1000 and 1100°C to form a β-NiAl phase [31,49]. As a result, an interdiffusion 

zone rich in precipitates forms under the initial surface (Figure I-10.a). This microstructure 

obtained is thus typical of the high-activity pack cementation (gas phase) [31,47,50-51] and simple 

aluminide slurry (liquid/solid) coatings [31,52]. One great advantage of this method is that the 

overall wall thickness is not increased, which is particularly interesting in components with very 

narrow dimensional tolerance as opposed to the coatings growing over the initial surface (LAHT). 

• LAHT: Low-Activity High-Temperature (950°C and 1100°C) 

The low activity coatings are carried out in a temperature range between 950 and 1100°C, where 

Ni preferentially diffuses compared to Al. The diffusion takes place outwardly from the initial 

surface of the substrate and a β-NiAl phase is directly formed [31]. The main outward diffusion of 

Ni above the substrate’s surface brings about an “additive zone” free of precipitates (Figure I-

10.b). However, the depletion of Ni under the initial surface brings about a concentration of the 

refractory elements in the “interdiffusion zone” and form numerous precipitates [31]. The 

interdiffusion zone is proportionally larger for the high-activity method than the low activity. 

Diffusion coatings by low-activity are often preferred to those produced by high-activity because 

they are precipitate-free, which gives better resistance to oxidation [53]. This coating 

microstructure is commonly observed with the out-of-pack process (gas phase) [34,47,51,54-55] 

and pack cementation using master alloys as Al donors [30]. Recently, low activity slurry coatings 

using powders of Cr/Al alloys, mixed Cr and Al powders and layers of Cr and Al powders have 

also been reported [56-59]. 
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Figure I-10: Comparison between High-Activity Low-Temperature (HALT) and Low-Activity High-

Temperature (LAHT) aluminide diffusion coatings [55]. 

 

V-High-temperature ageing of coated superalloys 
V.A-Oxidation of nickel aluminide coatings 
In service, the turbine blades are exposed to very hot gases coming out of the combustion 

chamber. At this temperature, the formation enthalpies of aluminum oxide and nickel oxide are -

1689 and -469 kJ.mol-1, respectively. Therefore, selective oxidation of Al from the β-NiAl coating 

occurs. 

Several types of alumina can form with increasing temperature and exposure (Figure I-11.a). First, 

an amorphous alumina forms and crystallizes in a cubic structure to form γ-Al2O3. Then γ-alumina 

gradually turns into -Al2O3 of monoclinic structure and finally into α-Al2O3 of hexagonal structure. 

The allotropic α variety forms because of its hexagonal structure is the most among the different 

Al2O3 polymorphs [59] and is the one requested to protect the turbine blades. 
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Figure I-11: (a) Schematic Temperature-Time-Transformation diagram for high-tempearture 

oxidation of β-NiAl alloy [50] (b) Arrhenius diagram representing the kinetics of oxidation of 

aluminas [60]. 

 

Under the conditions encountered in the turbine blades (around 1100°C), the stable form α is 

obtained after the transformation of the transition alumina, mainly -Al2O3. It can be noted that the 

preferential formation of one or the other form of alumina, as well the rates of transformation 

depend on several parameters such as surface preparation or oxygen partial pressure [61]. 

-Al2O3 is a fast-growing oxide (Figure I-11.b and kp= 7.2.10-6 mg².cm-4.s-1 at 1100°C [60]) by major 

outward cation diffusion, which leads to an external growth of the oxide [44,60,62-64].  

In the case of α-Al2O3, the formation mechanisms are not clearly defined. The diffusion coefficients 

of O2- and Al3+ in alumina [65] do not explain the slow oxidations kinetics of α alumina (Figure I-

11.a and kp= 1.62.10-7 mg².cm-4.s-1 at 1100°C [60]). Therefore, some authors [44,66-67] put 

forward two types of mechanisms whereby the growth of α-Al2O3 would be governed by a mixed 

anionic and cationic mechanism. First, oxygen (O2-) diffuses into the oxide layer mainly through 

the grain boundaries, which leads to oxidation of Al at the metal/oxide interface. In a second time, 

during the stationary phase the cations (Al3+) and anions (O2-) diffuse mainly through the grain 

boundaries and in opposite direction. The oxide can thus form at the grain boundaries [68], 

inducing an increased grain size and a slow decrease in the kinetics of oxidation of α-Al2O3 (Figure 

I-13.a).   

For authors like Monceau et al. [69], the anionic transport of oxygen at the grain boundaries 

predominates over the cationic transport of aluminum. This may explain why an outer layer of 

equiaxed α-Al2O3 is observed above a layer of α-Al2O3 columnar structure (Figure I-12). The 

equiaxial grains would be composed of the alumina having germinated initially and the columnar 

grains are signs of an anionic growth. In addition, Al3+ and O2- diffusing counter currently can also 

be trapped by defects, such as dislocations. Dislocations can climb outwards from the oxide/metal 

interface and climb inwards from the air/oxide interface and the new oxide molecule forms within 

the scale (Figure I-13.b) [68].  
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Figure I-12: Cross-section of an Al oxide formed by high-oxidation of a single crystal FeCrAlY 

alloy. In C the inner columnar oxide, whereas the outer portion E is equiaxial [68]. 

 

(a)                                                                       (b) 

 

Figure I-13: (a) Schematic diagram of possible locations of new oxide formed as a result of the 

inward flux of oxygen, Jo and the outward flux of metal ions, Jm (b) and schematic diagram of 

possible edge dislocation climb due to the trapping of “unlucky” counter-diffusing Al and O ions 

at dislocation cores [68]. 

 

V.B-Factors and mechanisms responsible for spallation of the oxide 

layer 
Spallation of the oxide layer is one of the main factors that determine the durability of a coating, 

and therefore of the system. The adhesion of the oxides partly depends on the internal stresses 

developed during their growth and the presence of defects at the metal/oxide interface. 

• Stress in oxide layers 

The stresses present in the oxide layers have two origins: stresses due to the growth of the oxide 

and stresses due to the thermal stress (especially in thermal cyclic conditions). The growth 
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constraints are essentially due to the variation in volume between the oxide formed and the metal 

consumed, characterized by the Pilling-Bedworth ratio (PBR). This ratio is 1.28 for α-Al2O3 formed 

on a β-NiAl alloy, which induces compressive stresses in the oxide layer and tensile stresses in 

the metal [70]. Furthermore, the allotropic transformations of alumina, which are accompanied by 

a change in volume, generate other types of stress. For example, the contraction in volume 

associated with the transformation of ϴ-Al2O3 into α-Al2O3 is of about 5% and leads to constraints 

that decrease as the transformation takes place [71]. 

 

Thermal stresses are due to the differences in the coefficient of thermal expansion (CTE) between 

the substrate (Figure I-7) and the oxide layer. Thus, the oxide developed at high-temperature is 

subjected to compressive stresses and the substrate to tensile stresses during the cooling phases. 

These thermal stresses are the order of few GPa [72] and are much higher than the growth 

stresses of the order of hundreds of MPa [71]. Some of these stresses are relaxed by creep at 

high-temperature, and during cooling, cracking phenomena at the metal/oxide interface can occur, 

causing the spallation of the oxide layer. 

 

• Cavity formation at the metal/oxide interface  

The formation of interfacial cavities contributes to the reduction of the energy of adhesion of the 

oxide layer by reducing the contact surface between the oxide and the coating. Cavities also play 

the role of preferential crack initiation site during mechanical stresses, induced by the difference 

of CTE between the coating and the oxide layer (Figure I-7).  

 

These cavities are empty spaces that develop and grow on the surface of the coating and under 

the oxide layer. Cavities can form at the start of oxidation of the coating, during the first heating 

ramp, or subsequently after the spallation of the oxide layer. Three major mechanisms are often 

proposed to explain the appearance of these cavities. The formation of the first layer of ϴ-Al2O3 

by cationic diffusion of Al3+, would cause the formation of vacancies [73-74]. Indeed, the growth of 

the oxides induces a flow of Al coming from the coating and ending at the oxide/air interface. To 

fill this material departure, a flow of cationic vacancies would be created in the opposite directions. 

These vacancies can coalesce at the interface to form cavities [75]. A part of these cavities can 

either be removed when moving the oxide/metal interface with the formation of α-Al2O3. Although 

the oxide layer is no longer in contact with the coating at the cavities, the oxide layer can continue 

to grow. For oxidation at 1100°C, the amount of aluminum evaporated from the surface of the 

cavities is greater than the amount of aluminum necessary to form an oxide [76]. For lower 

temperatures, the amount of Al is not sufficient and surface diffusion phenomena can fill up the 

cavities. The other factor that explains the formation of cavities is the Kirkendall effect [76]. The 

oxidation-induced Al-depleted zone on the external surface of the coatings leads to the diffusion 

of Ni from this zone towards the superalloy. The diffusion of Ni in the Al-poor NiAl is 3 times faster 

at 1000°C compared to that of Al in nickel aluminide alloys (Figure I-14) [77-78] and a 

countercurrent flow of Ni vacancies towards the metal/oxide interface would develop. Like in the 

previous case, the condensation of the nickel vacancies would thus result in the formation of 

cavities [79]. In contrast, the diffusion of Ni is greatly reduced (Figure I-14) in the Al-rich nickel 

aluminides, thereby reducing the formation of cavities associated with nickel [76]. In this situation, 

the formation of cavities would be thus linked to Al depletion is favored during the growth of ϴ-

Al2O3.  
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Figure I-14: Ratio of the diffusion coefficients of Ni and Al in the β-NiAl phase as function of the 

Al content [78]. 

 

For longer oxidation times at 1100°C, other authors [80] have observed the formation of another 

type of cavity related to the decohesion of the oxide layer. In thermal cycling, an undulation 

(roughness increase) of the interface between the coating and the oxide layer gradually takes 

place (Figure I-15). The stresses of thermal origin, applied in the oxide layer and coating due to 

the difference in CTE, therefore cause the appearance of cohesion constraints in the convex parts 

of this undulation. In these convex parts, the oxide layer can separate from the underlying coating, 

without necessarily causing spallation, and form interfacial cavities. 
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Figure I-15: Cavity formation during high-temperature oxidation [80]. 

 

V.C-Formation and propagation of the interdiffusion zone of the coating 
The interdiffusion between the superalloy and its protective coating is due to the differences in 

chemical activities between the different elements composing the coating and the substrate. 

Diffusion flows of aluminum and nickel result from these large activities. Aluminum diffuses from 

the coating to the superalloy, while nickel and the elements contained in the superalloy diffuse in 

the opposite direction, towards the coating. These fluxes reduce the lifetime of the coated 

superalloys by modifying the oxidation behavior of the system. 

The interdiffusion between the superalloy and the protective coating modifies the microstructure 

of the superalloy [81-91]. The enrichment of the aluminum superalloy and the departure of nickel 

towards the coating leads to a deterioration of the microstructure γ/γ ’of the superalloy. Indeed, 

the γ/γ’ microstructure transforms into the γ’-Ni3Al phase and sometimes into β-NiAl. This 

transformation of the superalloy takes place from the aluminization stage where an interdiffusion 

layer is formed (Figure I-16). This area is made up of several thicknesses. First, the outermost 

layer in contact with the coating is composed of phases rich in γ-gene elements (Cr, Mo, W, etc.) 

or γ'-genes (Ta, Ti, etc.) in a matrix β-NiAl (Figure I-16.a) [47,92]. These phases appear because 

of the saturation of these elements during the phase transformation of the superalloy. The next 

layer is composed of phases rich in the γ-gene element and the β-NiAl phase trapped in the γ’-
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Ni3Al matrix. As for the previous layer, the formation of these phases is due to the saturation of 

the elements during phase transformation [47,92]. 

During high-temperature oxidation, the interdiffusion, especially between aluminum and nickel, 

causes the growth of this interdiffusion zone. The γ-Ni phase is transformed into the γ'-Ni3Al phase 

and the thickness of the transformed zone depends directly on the time and temperature of the 

treatment. The γ/γ ’structure of the superalloy is thus destabilized. The γ-gene elements that had 

saturated in the interdiffusion zone tend now to coalesce by continuous outward diffusion of nickel 

and inward Al diffusion. Their precipitation induce the appearance of a two-phase zone containing 

topologically-close packed (TCP) phases that propagate inside the superalloy (Figure I-16.b) [47]. 

  

Figure I-16: (a) SEM cross section of a coated superalloy after the elaboration of coating, (b) 

SEM cross section of a coated superalloy after 500h at 1050 ° C, under laboratory air [47]. 

 

V.D-Phase transformation in additive layer of the coating 
The depletion of the aluminum coating and the enrichment in nickel leads to the transformation of 

the initial phase β-NiAl into γ’-Ni3Al then γ-Ni. 

Considering the loss of aluminum, the β-NiAl to γ’-Ni3Al phase transformation is accompanied by 

a change in volume [93]. The reduction in volume induced by this phase transformation (Vγ’= 

0.62Vβ) causes tensile stresses within the coating. The increase in stresses due to this 

transformation induces an increase in the roughness of the metal/oxide interface [93]. 

These transformations and the depletion of Al lead above all to the loss of the oxidation resistant 

properties of the coating. Indeed, the low Al concentrations of the γ’-Ni3Al and γ-Ni (Al) phases do 

not allow the formation of a protective oxide layer of α-Al2O3 [79,94-95]. During oxidation at 1100°C 

of the intermetallic compound γ’-Ni3Al leads to the formation of nickel-rich oxides, such as spinel 

NiAl2O4 and the oxide NiO which coexists with alumina. The formation of several layers of non-

protective oxide greatly increases spallation and drastically reduces the life of the system. 
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VI-Diffusion barriers 
In the last paragraph, it has been shown that the interdiffusion between the substrate and the 

coating has harmful consequences on the life of the protective coatings. The main consequences 

are accelerated depletion in Al. N. Vialas [96] showed in a (Ni,Pt)Al coating exposed to 1050°C 

for 100 hours that the quantity of Al consumed by oxidation was of the order of 2 to 8% while the 

one lost by diffusion towards the superalloy reached 20 to 35% of the Al depending on the 

superalloy. For a very long period of oxidation (more than 15.000 hours), the tendency would be 

reversed, and oxidation would be a more important cause of loss of Al in the coating. Her results 

demonstrated that the increased performance of protective coatings cannot be solely achieved by 

the introduction of platinum in the coatings and therefore, the introduction of intermediate diffusion 

barriers have also been proposed [97-98]. Such diffusion barriers are placed between the coating 

and the superalloy to limit the diffusion of Al into the substrate, so as to increase the life of the 

coatings.  

VI.A-Diffusion barrier based on an oxide layer 
Some authors [99-102] have developed diffusion barriers based on Al oxide, such a γ-Al2O3, or 

compounds such as Ti-Al-O-N or even Al-O-N. Among these compounds, Al-O-N seems the most 

effective, due to this great stability at high-temperature. For diffusion barriers based on γ-Al2O3 

[101], their efficiency is reduced due to transformation into α-Al2O3. This transformation induces a 

change of volume, crystallographic transformation and initiation of cracks favored the interdiffusion 

between the superalloys and the protective coating MCrAlY. 

One of the oxides that can be considered for the development of diffusion barriers is α-Al2O3. With 

a compact hexagonal structure, few points of defects and high stability, α-Al2O3 is an oxide that 

has many interesting properties for a diffusion barrier application. Several studies [97,103] have 

therefore verified the possibility of depositing a layer of α-Al2O3 on a superalloy to quantify its 

effectiveness as a diffusion barrier between CMSX-4 and a coating of NiCoCrAlY type. Initially, 

Müller et al [97] showed that the CVD deposition methods it possible to deposit a dense and 

adherent layer of α-Al2O3 of approximately 3µm of thickness, however, a layer of a TiN with a 

thickness of 1µm is necessary for obtaining a compact layer of α-Al2O3. Subsequently, the 

effectiveness of this TiN/Al2O3 layer was tested between a CMSX-4 and a NiCoCrAlY coating. 

After 100h at 1100°C under an inert atmosphere, the samples with a diffusion barrier do not have 

an interdiffusion zone, while the system without diffusion barrier has an interdiffusion zone of 6 

µm for a duration of 10h (Figure I-17.a). For a period longer than 100h at 1100°C, the diffusion 

barrier layer remains intact and chemically stable (Figure I-17.b).  
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Figure I-17: (a) WDX linescan coated CMSX-4 sample without diffusion barrier annealed for 10h 

at 1100°C in Ar and (b) WDX linescan of a coated CMSX-4 with diffusion barrier sample 

annealed for 100h at 1100°C in Ar [103]. 

 

In a similar vein, other studies [104-105] developed a diffusion barrier using the EB-PVD method. 

By heating the substrate with an electron beam and under low oxygen pressure, an oxide layer 

composed of NiO, Cr2O3, and α-Al2O3 of thickness varying between 200 and 500 nm was grown. 

This diffusion barrier slows down the depletion of the coating in Al and Cr.  

The main drawback of these oxide-based diffusion barriers is the difference in CTE. Indeed, the 

difference in CTE between the coating and the oxide layer and between the oxide layer and the 

substrate can induce stresses during cyclic oxidation, which in turn cause cracks, spallation and 

ultimately the ruin of the system. 

 VI.B-Diffusion barriers enriched with refractory element 
The second type of diffusion barriers consists of refractory elements (high melting temperature) 

such as Re and W. The challenge of this approach is to form a dense layer composed of an 

intermetallic rich in refractory element between the coating and the superalloy [106-112]. The 

desired phase should be stable and an extremely high melting point (e.g. σ(Re(W)-Cr-Ni with a 

Tf= 2284°C). High melting temperature is necessary to limit the diffusion to the intended 

applications.  

A study [106] on diffusion couples between Re/Ni and Re(1-x)Ni-xAl (with x=0.12, 0.25 and 0.5) 

was realized at 1100°C to quantify the stability of a diffusion barrier between a superalloy and a 

protective coating of β-NiAl. The kinetics of diffusion of Re in γ-Ni phase is very low [113]. 

However, the solubility limit of Re in the γ-Ni phase is important, which can deteriorate the stability 

of the diffusion barrier for long periods of oxidation. The diffusion couples are very stable and show 

little interdiffusion after 100h at 1100°C. This agrees with the very low solubility limits of Re in γ’-

Ni3Al and β-NiAl intermetallics compounds.  

The manufacturing process for these diffusion barriers enriched with refractory elements is 

however very complex and require a large amount of operations. In addition, the effectiveness of 

these barriers strongly depends on the experimental parameters used during the development of 
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the barriers and coating. Sumoyama et al. [111] studied electroplating of Re(Ni) and Ni(W) films, 

Al- and Cr- (high-Cr and low-Cr) pack cementations, and a combination of the two treatments. 

With the low-activity chromizing, the interdiffusion zones of 10 µm thick were observed. In contrast, 

the high-activity chromizing resulted in a dense zone of TCP phase precipitates present over a 

thickness of 100 µm (Figure I-18). 

 

Figure I-18: Cross-section of a system with a diffusion barrier oxidized at 1150°C for 100h and 

having undergone a low-activity chromizing (a) or a high-activity chromizing (b) during their 

development [111]. 

 

VII-Motivation of the present study 
VII.A-Slurry coating 
Over the last decades, new approaches to produce protective coatings have been developed to 

comply with environmental and safety regulations [114-125]. In this sense, the slurry coating 

technique has been studied in several thesis at La Rochelle University. M. Mollard [119], B. 

Rannou [121], M. Brossard [122] and G. Grégoire [123] studied the slurry deposits on model Ni, 

Ni20Cr and on different superalloys and the resistance to isothermal and cyclic oxidation in air 

and in water vapour in addition to the Type II hot corrosion were assessed. C. Boulesteix [124] 

focused her investigations on the slurry aluminizing on different steels for to procure resistance to 

steam conditions. G. Boissonnet [125] employed the slurry approach to create thermal barrier 

coatings. The pioneer works of the slurry approach using water-based suspensions containing Al 

microparticles were proposed by Pedraza et al. by spraying the slurry on pure Ni [116]. After 

annealing in Ar atmosphere, a typical high-activity diffusion coating formed due to high Al contents 

in the donor [115,126]. Such microstructure resulted from the high exothermal synthesis 

[52,117,127]. A schematic representation of the different steps for the mechanisms of formation 

is given in Figure I-19. The diffusion layer increases rapidly due to the high exothermic reaction 

between the substrate and the Al particles. The synthesis reaction is mainly controlled by the 

molten Al, which dissolves the substrate and forms an intermetallic Al-rich NixAly phase (Figure I-

19.a). When all the Al particles have reacted, solid state diffusion occurs between the Al-rich phase 
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formed and the Ni-rich substrate forming a layer of Ni2Al3 (Figure I-19.b). The subsequent 

annealing treatment at high-temperature (i.e. 1000-1100°C) brings about major Ni outward 

diffusion and stabilizes the β-NiAl phase (Figure I-19.c). A foam of residual alumina shells (also 

called bisque or residue) remain on the surface at the end of the treatment. This foam can be 

removed by sandblasting or can be used, with a specific treatment under steam, as a thermal 

barrier [125]. Low-activity aluminide coatings have been also studied by making the Al powders 

react with Cr powders or with a Cr interlayer, which allows to increase the Type II hot corrosion 

[123]. The versatility of the slurry approach thus inspired me to evaluate the possibility of 

synthesizing self-restoring or self-healing coatings while considering the “diffusion barrier 

concepts” described above. 

 

 

Figure I-19: Mechanisms of formation of the slurry coating [52]. 

 

VII.B-Synthesis of a self-restoring coatings  
As seen in the previous parts, many turbine components are made of nickel-based superalloy and 

are protected against high-temperature oxidation by nickel aluminide diffusion coating, which 

permit to form a protective Al oxide of Al2O3. However, the amount of Al decreases over time, due 

to the formation of the oxide layer and mainly by interdiffusion between the coating and the 

substrate.  Below a critical content of Al content, the formation of a protective scale cannot be 

maintained and the protection is lost. To guarantee a sufficient quantity of Al diffusion barrier can 

be placed between the coating and the substrate. These barriers can be effective but are difficult 

to produce.  

In this context, the main objective of this PhD is to elaborate a self-restoring coating, based on the 

slurry and aluminothermic approach, in a single step process. 

The idea and the concept of self-healing or self-regenerating coatings are not new. In fact, in many 

fields, polymeric coatings are used as an environmental barrier to protect metallic structures, in 

particular from corrosion. When these barriers have a defect, scratches, or shock, the barrier 

action is no longer ensured and rapid corrosion of the metallic surface occurs. To prevent this, 

polymeric microcapsules or a vascular network can be incorporated into the polymeric coating 

(most often these capsules contain a resin and a hardener). When a shock or a scratch occurs, 

the capsules are broken and the elements contained in the capsules are released and reform a 

layer of polymers at the location of the defects thus preventing the degradation of the part to be 

protected [128]. 

More recently, the field of thermal barriers has benefited from the beneficial effect of self-
regenerating coatings. This time, micro-capsules containing an Si-Mo alloy are trapped inside the 
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thermal barrier. When a crack occurs (caused by thermal or mechanical stresses), these capsules 
of Si-Mo alloy will oxidize in contact with hot air. A liquid glass then forms and fills the crack, thus 
preventing the propagation of the crack [129]. 
 
This concept of incorporating micro-capsules into coatings is therefore not new. All the originality 
of this study is to extrapolate these ideas to the metallic diffusion coatings for the very first time in 
the open literature. In the field of high-temperature oxidation and nickel-aluminide coatings, there 
are two main causes of coatings failures are Al depletion and the diffusion/oxidation of refractory 
elements to the surface. Thus, our idea is to incorporate alumina micro-capsules containing an Al-
rich NixAly alloys. Under operating conditions, a continuous flow of Al towards the superalloy has 
formed. When a critical level of Al is reached in the coating, a flow of Al from the micro-capsules 
will form between the capsules and the coatings passing through alumina shell. Also, these micro-
particles will create obstacles for the diffusion of Al towards the substrate and harmful elements 
towards the coating (Ni, Ta, Ti, etc.). It is expected that these longer diffusion paths will delay the 
diffusion and oxidation of the harmful elements towards the surface.  
 
Ideally these micro-particles should be composed of an α-Al2O3 shell to avoid any phase 
transformation which will weaken the shells and of an intermetallic compound of Al3Ni2 or Al-rich 
NiAl which will be an important source of Al.  
 
α-A2O3 has several advantages for constituting the shell of micro-particles. In fact, alumina has a 
great chemical and thermal stability and a very low wettability with Al. In addition, numerous 
studies have focused on the diffusion of Al3+ and O2- ions through α-Al2O3. One of these studies 
by Paladino and Kingery [130] measured a diffusion rate of the Al3+ ion between 10-13 and 10-15 
m2/s in the region from 1670 to 1905°C. For this region, the results can be described by the 
relation: 

𝐷 = 28 exp −
114 000 ± 15 000

𝑅𝑇

 

A comparison of the diffusion data of O2- and Al3+ ions in α-Al2O3 indicates that the mobility of Al 
ions is greater than the mobility of O ions (Figure I-20), which is highly desired in our case. 
 

  

Figure I-20: Comparison of Al ions self-diffusion coefficients with O ion self-diffusion coefficients 

in α-Al2O3 [130]. 
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One of the uncertainties that awaits us is the possible reactions between α-Al2O3 and Ni. In fact, 

during the depletion of the Al coating, the concentration of Ni increases. When a threshold in Ni 

concentration is reached, it is possible than an α-Al2O3 → NiAl2O4 transformation takes places 

(Figure I-21). This transformation is not desired for the resistance to cyclic oxidation at high-

temperature [131]. In addition, this transformation can be accelerated by the internal diffusion of 

O2- ions. 

 

Figure I-21: Schematic log aO2 vs composition phase diagram of the system Ni-Al-O at constant 

temperature [131]. 

 

To synthesize these coatings, two-ways are envisaged. The first way consists of a Ni plating onto 

the surface of a superalloy, this layer of Ni will then be oxidized to form a thin coating of nickel 

oxide. Then an aluminum slurry will be sprayed onto the NiO and finally a heat treatment will be 

carried out. 

The second way differs slightly from the first one. In this case, particles formed from an 

intermetallic core and an aluminum oxide shell will be synthesized first and they will be trapped 

them in the Ni plating before carrying out the slurry aluminization. Finally, these two types of 

coating will be chemically very similar but will have microstructural differences. 
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I-Materials of study  
Pure Ni was used as a model material to investigate the mechanisms of formation of the coatings 

whose nominal compositions and surface view after polishing are given in Table II-1 and Figure 

II-1.a. This material of study with pure composition makes it possible to carry out preliminary 

studies before extrapolation on more complex material such as superalloys. In addition, the 

aluminum diffuses extremely quickly in the nickel, which will highlight the self-regenerating nature 

of the coatings for short oxidation times. 

The microstructures of pure Ni material were investigated by etching the 1 µm polished materials. 

The pure Ni substrate was chemically etched with a Kalling no. 2 solution (5g CuCl2 + 100mL HCl 

+ 100mL ethyl alcohol) (Figure II-1.b). 

In addition, for all tests, the nickel coupons were hand-polished up to # 180 grade in order to 

decrease the preferential directions of the polishing scratches (Figure II-1.a). 

Table II-1: Nominal composition (wt.%) of the investigated nickel-based materials. 

Material Ni Co Cr C S 

Pure Ni 

(EQ) 
99.98 <8 ppm <8 ppm <70 ppm <10 ppm 

 

 

Figure II-1: (a) Surface view of pure Ni sample after polishing and (b) microstructure in SEM (SE 

mode) after chemical etch.  

 

The XRD patterns of the different materials are presented in Figure II-2. The CFC structure of γ-

(Ni) was identified for pure Ni material.  
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Figure II-2: XRD patterns of the pure Ni substrate of this study. 

 

I.A-Electrodeposition of nickel 
For the development of the Ni-plating, direct current and three baths were used to obtain two 

different coatings. 

- the first coating (Figure II-3.a) consists of a simple Ni electroplating. This coating was carried out 

with a Watts bath and at a fairly high-current in order to obtain a porous coating, 

- the second coating (Figure II-3.b) was carried out with two baths. The first bath of Ni sulfamate 

was carried out at low current density (5 mA/cm²) to obtain a first Ni plating with an average 

thickness of 10 µm. This first step is expected to improve the adhesion of the second deposited 

coating. The second bath is composed of Ni sulfamate and Al3Ni2 preoxidized particles and aims 

at obtaining a composite coating where preoxidized Al3Ni2 particles will be homogeneously 

distributed in a Ni coating. 

Subsequently, the first coating will be oxidized and aluminized using Al slurry and the second one 

will only be aluminized with the same slurry method. 
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Figure II-3:  Schematic drawing of sample after being coated with (a) a Ni deposit and (b) a Ni 

deposit with trapped Al3Ni2 micro-particles. 

 

I.A.1-Electroplating bath assembly 
Electroplating is a very popular technique because it has the advantages of being cheap and 

makes it possible to simply and effectively control the main parameters of the deposits (current 

density, temperature, composition of the baths, etc.).  

The electrodeposition technique consists in imposing a current or a voltage between two 

electrodes (the working electrode and the counter electrode) immersed in a solution containing 

metal salts of the metal or alloy to be deposited. The coatings were produced in galvanostatic 

mode. This allows to record the potential as a function of time upon the application of a given 

current density. The plating is formed by reducing the metallic cations in solution at the active 

surface of the working electrode (the substrate). 

In addition, it is possible, to determine the deposition time t so as to obtain a desired thickness e 

and it is defined by the following relation: 

𝑡 =
𝑒. 𝐹

𝑗𝑚. 𝜂 (
𝑥𝑁𝑖. 𝑀𝑛𝑖
𝑧𝑁𝑖. 𝜌𝑁𝑖

)
 

 

(eq. 1) 

𝑁𝑖2+ + 2𝑒− → 𝑁𝑖 (eq. 2) 
 

The parameters xNi, Mi, zNi et ρNi are, respectively, the atomic fraction of Ni (=1), its molar mass 

(~58,693 g.mol-1, the number of electrons exchanged during the reduction reaction (eq. 2) and the 

density of Ni (~8.907 g.cm-3). The relation also depends on the electrical parameters such as the 

average current density jm, the Faraday constant F (~96 485 A/mol) and the faradic efficiency η 

defined by the ratio of mass measured vs. the theorical mass. The thickness of the deposit is thus 

verified by measuring the weight gain. 

I.A.2-Bath assembly 
In this part, the development of the Ni coatings using the Watts and the sulfamate baths is 

presented. The device is an experimental set-up with two electrodes illustrated in Figure II-4. It is 

composed of a double-walled cell, a working electrode and a counter electrode. The cell is placed 

on a magnetic stirrer and is connected to a cryostat in order to obtain a homogenous temperature 

in the bath (~50°C). The counter electrode is a pure Ni plate of 60x60 mm2 in the case of Watts 

bath and a 20 mm diameter cylinder in the case of the sulfamate bath. Finally, the working 
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electrode is the substrate coated with masking tape to deposit the coating on one side only. The 

two electrodes are connected to a KeySight U8001 generator (30 V and 3 A max.). 

The active surfaces of the pure Ni sample are 1.27 cm². 

 

Figure II-4: Schematic representation of the bath assembly for (a) the simple Ni plating and (b) 

for the Ni plating with Al2O3 micro-particles. 

 

I.A.3: Electrolytes and protocols used  

• Watts bath 

The Watts bath for Ni plating is traditionally used with additives such as coumarin, sodium lauryl 

sulfate, etc., to reduce internal stresses or simply to get an aesthetic aspect such as shine. In our 

case, none of these additives was added. The goal is to produce an electrodeposit with a large 

number of defects, which will allow, after oxidation, to have an oxide which also many defects to 

increase its permeability to aluminum. 

The concentrations and the role of the different elements of the Watts bath are summarized in 

Table II-2. After the formulation of the bath and the dissolution of all the species, the pH value is 

comprised between 3.7 and 3.9. This pH is adjusted by adding nickel carbonate to obtain a pH 

between 4.2 and 4.3. For the tests, the temperature of the bath is set at 50°C. The bath is regularly 

renewed to allow good reproducibility of the tests (following excessively long times at 50°C), which 

represents approximately 4 hours. 
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Table II-2:  Composition, utility and plating conditions of the nickel Watts bath. 

Components Quantity (g/L) Function Fixed parameters 

Nickel 

sulfate 

tetrahydrate 

280 Ni2+ donor 

pH= 4.2-4.3 

Temperature=50°C 

 

Nickel 

chloride 

hexahydrate 

60 

Reduce the 

passivation of the 

anode 

Boric acid 40 Acts as a pH buffer 

Nickel 

carbonate 
--- Adjusts the pH (↗) 

Sulfuric acid --- Adjusts the pH (↘) 

 

• Ni sulfamate bath 

Ni sulfamate baths are well known and commonly used in industrial applications to obtain coatings 

without additives and with a low level of residual stress [1]. It is the reason why the sulfamate bath 

was chosen to make the codeposited coating. For these baths, different deposition protocols were 

used depending on the number of particles to be trapped and on the desired thickness of the 

deposit. The choice of the different protocols is based on several studies [2-11]. The 

concentrations and the role of the different elements for the sulfamate bath are summarized in 

Table II-3.  

As with the Watt’s bath, the sulfamate bath is regularly checked and renewed. For the sulfamate 

bath containing the microparticles, the procedure is different. The pH and the volume of the 

solution are checked and adjusted every 4 hours. But due to the reduced amount of preoxidized 

Al3Ni2 particles produced, the bath was renewed twice.  

The first bath was used for preliminary tests such as the effect of current density, or the 

aluminization tests. During this period, the number of trapped particles in the coating decreased 

from 22% to 20% vol.. The second bath was used to synthesize the coatings tested in isothermal 

oxidation. In addition, approximately 0.4g of preoxydized particles are added to 1L of solution 

every 20 deposits.  
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Table II-3:  Composition, role and plating conditions of the nickel sulfamate bath. 

Components Quantity (g/L) Function Fixed parameters 

Nickel 

sulfamate 

tetrahydrate 

 

300 Ni2+ donor 

pH= 4.2-4.3 

Temperature=50°C 

 

Nickel chloride 

hexahydrate 
15 

Reduce the 

passivation of the 

anode 

Boric acid 30 Acts as a pH buffer 

Nickel 

carbonate 
--- Adjusts the pH (↗) 

Sulfuric acid --- Adjusts the pH (↘) 

 

II-Characterization of metallic powders  
Different metallic powders were selected and their reactivity was investigated (Table II-4). The 

Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometry (EDS) techniques 

(described later in §V.3) were employed to determine the morphology and the accurate 

composition of the powders. The SEM images and size dispersion are given in Figure II-5. 

• The Al metallic powders 

The Al powder supplied by Hermillon (France) is composed of spherical microparticles with a 

mean diameter of 4±3 µm (Figure II-5.a). The nanometric - and to a less extent the micrometric 

powders - are very dangerous because they are extremely flammable in contact with air (due to 

the energy released during the oxidation). Therefore, all these powders are passivated before 

transportation and subsequent use [12]. 

• The Ni metallic powders 

Two different Ni powders (coarse and fine) supplied by GoodFellow and Alfa Aesar were selected 

in this study (Table II-4). The coarse Ni powder was composed of microparticles with a complex 

geometry and a mean diameter of 31±19 µm (Figure II-5.b). The fine Ni powder is approximately 

three times finer than the coarse one and also has a complex geometry (Figure II-5.c). Two 

different types of particles have been selected to study the influence of the size of the Ni powders 

on their reactivity with Al (Chapter III). 
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Table II-4: Main features of initial Ni and Al particles. 

Powders Supplier Purity (wt.%) Size (µm) Geometry 

Al Hermillon 99.8 4±3 Spherical 

Ni (coarse) GoodFellow 99.95 31±19 
Pseudo-

spherical 

Ni (fine) Alfa Aesar 99.9 11±6 
Pseudo-

spherical 

 

 

 

Figure II-5: SEM images and size dispersion of the three powders investigated in this study with 

(a) aluminum powder, (b) nickel coarse powder, and (c) nickel fine powder. 

 

Furthermore, for the aluminothermic studies, the Ni coarse and fine powders were preoxidized to 

form a thin layer of NiO (Table II-5 and Figure II-6). The coarse particles were oxidized at 700°C 

for 1 h and 4 h in air (with intermediate crushing in a mortar every hour) and the small particles 

were oxidized for 15 and 40 min (with intermediate crushing in a mortar respectively every 5 and 

10 min). The temperature of 700°C was chosen following the works of Peraldi et al. [13,14]. This 

part will be detailed in Chapter III. 
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Table II-5: Main features of the coarse and fine prexidozed Ni particles for different times at 

700°C under atmospheric pressure of open air. 

Powder Ni coarse Ni fine 

Size (µm) 10±9 17±14 7±4 5±3 

Morphology 
Pseudo-

spherical 

Pseudo-

spherical 

Pseudo-

spherical 

Pseudo-

spherical 

Oxidation time at 

700°C 
1 h 4×1 h 3×5 min 4×10 min 

 

Coarse particle preoxidized for 1 h Coarse particle preoxidized 4×1h 

  

Fine particle preoxidized for 3×5 min Fine particle preoxidized for 4×10 min 

  

Figure II-6: SEM (BSE mode) cross-section images on the coarse and small preoxidized Ni 

particles at 700°C in air for different times. 
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Figure II-7: Area proportion of NiO (SNiO/SNi ×100) as a function of particle size on the coarse (Ni-

1.a & Ni-1.b) and small (Ni-2.a & Ni-2.b) preoxidized Ni particles.  

 

• Nickel aluminide powder 

The nickel aluminide particles were synthesized for the purpose of incorporating them into a nickel 

plating. For this, Ni sheets with a thickness of 250 µm and a purity of 99.98% (GoodFellow) were 

aluminized by pack cementation. Ten (10) sheets were cut into 10x10x0.25 mm2 square-like 

coupons and rinsed with acetone and placed in an alumina crucible filled with 100 g of a powder 

mixture. The powders (56 g of Al2O3, 40 g Al and 4 g NH4Cl) were mixed using a three-dimensional 

mixer (Turbula System Schatz type T2 F). The crucible was closed and heated at 800°C for 50h 

under Ar/5%H2 atmosphere. The crucible temperature of 800°C was chosen to produce an LTHA 

coating (Low Temperature High-Activity), thus promoting the diffusion of aluminum and 

consequently the formation of the Al3Ni2 intermetallic phase. 

Table II-6: Main features of powder mixture for pack-cementation. 

Components Quantity (wt.%) Function Fixed parameters 

Al2O3 56 Inert filler 

50 h to 800°C 
Al 40 Al3+ donor 

NH4Cl 4 
Activator (allows the formation 

of AlCl3 (g)) 

 

These samples were then ground into powder first with a jar milling to obtain coarse particles 

(Figure II-8). During this step, three aluminized nickel sheets were placed in the jar with two balls 

and a few drops of ethanol (ball and crucible in WC). The sheets were ground for 5 min at 30 Hz 

to obtain particles with a mean diameter of 4±9µm. 
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Figure II-8: (a) Schematic view of motion of the jar milling and (b) SEM cross-section images of 

the Al3Ni2 powder after the jar milling. 

 

 

Figure II-9: Size dispersion of the particles after the jar milling (5 min at 100Hz). 

 

To homogenize and further reduce the particle size, a planetary ball milling (P100 - Retsch) was 

used (Figure II-7). The powders previously obtained with the jar milling were placed at half of the 

volume of the crucible and filled with zirconia balls with a diameter of 2.15 mm. The free space 

between the particles was filled with 96% pure ethanol and the crucible was finally sealed. The 

crucible was then rotated at 500 rpm for 8 h. After the mechanical treatment, the particles and the 

balls were collected in a crystallizer and rinsed with ethanol. The crystallizer was then placed in 

an oven at 60°C for 12 hours to evaporate the whole ethanol. 

 



- II. Experimental methods - 

 
-60- 

Finally, the last step consisted of sorting the particles using several sieves positioned on a JEL 

200 sieve machine. The sieves consisted of 5 assembly sieves made up of 630 µm, 250 µm, 160 

µm, 100 µm and 25 µm mesh. 

 

Figure II-10: (a) Schematic view of motion of the planetary ball milling and (b) SEM surface 

images of the Al3Ni2 powder after the planetary ball milling. 
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Figure II-11: Size dispersion of the particles after the planetary ball milling (8h at 500 rpm). 
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III-Elaboration of the slurry coatings 
The coatings developed during this thesis were based on the use of a slurry with an 

environmentally-friendly composition. This composition is derived from the slurry initially 

developed and used for the European project PARTICOAT [15,16]. The elaboration of the slurry 

coatings follows the sequence: 

1. Surface preparation of the metallic substrate (ground with #180 SiC paper) 

2. Ni plating and/or a preoxidation 

3. Preparation of the slurry (organic binder+ deionized water+ Al powder) 

4. Deposition of the slurry by an air brush and drying of the slurry in an oven at 50°C during 30 

min. 

5. Heat treatment under Ar to form the self-regenerating coating 

The following paragraph will detail the experimental procedure for the elaboration of the slurry 

coatings. 

III.A-Composition and preparation of the slurries 
The different slurries used in the present study were composed of: 

 - Metallic and pre-oxidized powders of Al and Niox 

 - Polyvinyl alcohol (PVA) furnished by Sigma-Aldrich 

 - Milli-Q water as a solvent 

The preparation of the slurries requires three stages. First, the PVA is weighed and dissolved in 

milli-Q water at around 40°C with a magnetic stirring (few drops of alcohol are added to the 

preparation to accelerate the dissolution of the PVA in water). The composition of the obtained 

binder follows a PVA/water ratio of 1/10. The work of B. Rannou et al. showed that below nine 

days no aging phenomenon was observed [15]. “Large” quantities of binder could so be prepared 

to save time and avoid raw material losses (over the entire study, no binder was used beyond one 

week after preparation).  

The slurries were generally prepared the very day of depositing it on the samples. The metallic 

powders are accurately weighed and added to the binder in a pill box to get a slurry. For each 

composition, the proportions of the metallic powders were selected empirically after the deposition 

tests (it depends on several factors like the size, the morphology and the quantity of the particles). 

The slurry was then placed in a water bath at 40°C for a minimum time of 30 min. This step allowed 

to maintain slurry preparations always at the same temperature. Indeed, the viscosity of the 

slurries strongly depends on the temperature, which can fluctuate from one day to another. 

III.B-Deposition of the slurries on metallic substrate by air brush 
The slurry preparations were deposited on samples hand-polished up to #180 grade, followed by 

a Ni plating and/or a preoxidation. Polishing grade 180 was used to maintain continuity with the 

work done in previous years, where this grade was selected [17-20]. The purpose was to get a 

rough surface with no preferential direction of roughness to which the wet slurry adheres to [17]. 

After polishing, the samples were rinsed with milli-Q water and cleaned in an ethanol ultrasonic 

bath. The samples were then placed on a sample holder rotating at a constant speed (5.25x10-3 

m.s-1 = 1 rpm [17]). 
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Slurry deposits were made using an airbrush (AZTEK A4709T model) and a nozzle (0.5 or 0.7 

mm) placed at 10 cm from the samples (Figure II-12.a). The pressures used to spray slurries 

depend on each slurry composition and also on the quantity of slurry to be deposited. These 

pressures vary between 0.6 and 1.8 bars. To control the quantity of deposited slurry, the samples 

were weighed before and after deposition on each sample side (with a 10-4g precision balance).  

In addition, for a better reproducibility, no more than five samples were covered in a single pass 

(Figure II-12.b). Indeed, the deposited mass varied between the first and the last samples covered. 

For small series, this difference can vary between 0.2 and 1 mg.cm-2 and for larger series this 

variation can be larger and may exceed several mg/cm-2  

 

Figure II-12: (a) Picture of the airbrush and (b) view of the samples after deposition of the slurry 

by the airbrush. 

III.C-Thermal treatments 
• Thermogravimetric analysis (TGA) 

A SETARAM TGA 92 thermobalance with a 10-6 g of accuracy was employed to study the evolution 

with high-temperature and time of the different slurry coatings on pure nickel and nickel plating. 

The different mass variations during the heat treatment help to detect the events that may occur 

during it, such as water evaporation, binder decomposition, oxidation, etc. 

To reduce any uncontrolled oxidation, a partial vacuum is created in the combustion chamber 

(down to 4×10-2 mbar) before the heat treatment and an Ar flow (20mL/min) fills the space until 

reaching a pressure of 1.3 bars. The heating rate was fixed at 5°C/min and at 25°C/min, and the 

cooling rate at 5°C or 50°C/min, to, respectively, reduce the thermal constraints or to keep the 

microstructure developed at the annealing temperature to room temperature and better 

comprehend the mechanisms of formation. The different heat treatments performed in the TGA 

will be detailed in the relevant chapters. 

According to the supplier, small amounts of impurities are present in the gas bottle (5 vpm of H2O 

and 2 vpm of O2). Referring to the Ellingham diagram (thermodynamics considerations), the 

content in these oxidizing species is sufficient to cause the oxidation of Al at 600°C. 

In addition, a SETARAM Setsys Evo 1750 (10-6g accuracy) was used for the isothermal oxidation 

test. 
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IV-Degradation of the coatings 
Once the coatings synthetized and characterized, it was essential to determine their stability and 

high-temperature behavior.  

The samples were tested at high-temperature under an oxidizing gas to study oxidation resistance, 

the stability of the coating, and quantify the interdiffusion phenomena.  

IV.A-Isothermal oxidation  
Thermogravimetric analyses were conducted at 1000°C for periods of 48h in synthetic air (80 

vol.% N2 + 20 vol.% O2) to study the oxidation kinetics. As previously described, the oxidation 

chamber was first purged with a vacuum pump and then filled with Ar. Once the dwell temperatures 

reached, the reaction chamber was emptied from Ar and synthetic air was then introduced. By 

measuring the mass variation of samples along oxidation time, by using a TGA92 (Setaram) 

thermobalance, it was possible to determine the growth kinetics of the oxide layer. 

In order to get information from the isothermal oxidation kinetics, a complete parabolic law (eq. 1) 

was locally adjusted to the experimental curves that allowed to determine the parabolic oxidation 

coefficients, kp [21]: 

𝑡 = 𝐴 + 𝐵. 𝛥𝑚/𝑆 + 𝐶. (𝛥𝑚/𝑆)2 𝑤𝑖𝑡ℎ 𝐶 =
1

𝑘𝑝
  (eq. 5) 

With: 

- t, the oxidation time at 1100°C, in s; 

- 𝛥𝑚/𝑆, the mass gain per surface area measured during the step at high-temperature, in 

mg.cm-2; 

- kp, the parabolic coefficient of oxidation in mg2.cm-4.s-1. 

 

V-Characterization methods 
V.A-Calorimetry analyses 
Differential scanning calorimetry (DSC) is a technique able to detect thermal events occurring 

during heating and cooling periods. The DSC analyses were carried out using a SETARAM Labsys 

Evo 1600 thermal analysis. This type of DSC possesses two crucibles in parallel, which allow the 

simultaneous heating of the samples to be analyzed and of an inert sample. The measurements 

were performed in flowing Ar (20 mL/min) to limit oxidation phenomena and prevent secondary 

reactions in the system. For the different systems investigated, energy changes and temperatures 

of reaction or transformation were measured with the Calisto software coupled to the DSC 

instrument. The heat treatments were performed using alumina crucibles (90 µL), depending on 

the system. The alumina crucibles were systematically cured at 1350°C. This technique was 

particularly helpful to analyze the reactivity between Al, Ni and NiO, with or without substrate. 

 

V.A-Crystallographic and structural analyses 
• X-Ray Diffraction (XRD) 

X-ray diffraction is an analytical technique used to determine the crystallographic structure of 

compounds with a crystalline phase (such as metallic and oxide compounds). Coupled with the 
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Raman µ-spectrometry and the image and chemical analyses available thanks to the SEM, this 

technique is essential to differentiate products with the same chemical composition but with 

different crystalline structures. In addition, this technique is non-destructive and allows the 

underlying areas of the samples to be probed, unlike Raman and SEM. The surfaces of as-

deposited, as-coated and degraded samples were analyzed by X-ray diffraction using a last 

generation Brüker D8 Advance diffractometer with Cu Kα1 radiation (λ = 0.15406 nm). The XRD 

patterns were acquired for a 2ϴ range between 10° and 90° with a step size of 0.01° and an 

accumulation time fixed at 0.1s. 

• Raman micro-spectrometry 

Raman micro-spectrometry is a non-destructive technique which allows local analyses to 

characterize the molecular composition and the crystalline structure of the non-metallic 

compounds (such as oxides). A monochromatic radiation, with a known wavelength, is emitted by 

a laser and is directed onto a sample. The photons can then be reflected, absorbed or scattered, 

and some of these photons will be scattered in a non-elastic way. The nonelastic diffusion is 

characteristic of an energy exchange between the incident photon and the compound, 

corresponding to a transition between two vibrational energy levels [22]. Depending on the 

frequency (or energy) of the diffused photons compared to incident ones, the scattering can be 

qualified as Stokes or as anti-Stokes [22]. 

During this work, the oxides were analyzed using 2 micro-spectrometer Raman. A high-resolution 

micro-spectrometer Jobin Yvon Horiba (LabRAM HR8000 model) with a He-Ne laser (λ = 632.817 

nm) and a LabRAM HR evolution model with a diode laser (λ = 532 nm). An Olympus confocal 

microscope is coupled to the micro-spectrometer to visualize the sample and focus the laser (10x, 

50x and 100x magnifications).  

V.C-Microscopic analyses 
• Optical microscopy 

Optical microscopy generally takes place after a first visual inspection to study the surface of the 

samples. This simple method comes before the more advanced techniques such as XRD, µ-

Raman spectrometry and SEM. A LEICA DMRM microscope coupled to a LEICA MC170 HD 

camera was used to characterize the samples at the University of La Rochelle. The measurements 

were done with the LAS (Leica Application Suite) software associated with the microscope. 

 

In DECHEMA- Forschungsinstitut (Germany), the samples were characterized with a LEICA 

DMRM microscope coupled to a LEICA DFC450 camera.  

 

• Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy 

(EDS) 

The SEM allows more detailed analyses of the samples. A focused electron beam scans the 

surface of the sample. The energy of the electrons is then transferred to the atoms of the matter 

increasing their potential energy. After being excited, the atoms then return to their ground state 

by de-excitation in the form of a secondary radiation. In the case of SEM, two types of radiation 

are used for the observation of the samples: secondary electrons, which permit to visualize a 

topographic contrast, and back-scattered electrons, which allow to visualize a chemical contrast.  
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 -Secondary electrons imaging (SEI): secondary electrons are produced by the repulsion 

of incident electrons by atoms on the surface (inelastic interaction). The secondary electrons have 

a low energy and only those extracted from the surface can be detected. An excellent spatial 

resolution is then provided and therefore topographic image is obtained.   

 -Back-scattered electrons imaging (BSEI): the backscattered electrons are due to the 

elastic interactions between the atomic nuclei and the incident electrons. The energies emitted by 

this interaction directly depend on the atomic number of the atoms. As a result, this observation 

mode makes it possible to obtain a chemical contrast for the sample observed.   

Surface and cross-section analyses were carried out with an environmental microscope FEI 

Quanta 200F equipped with a Schottky field emission gun (FEG). For cross-section observations, 

the samples were mounted in a polymeric resin and progressively ground with finer SiC papers 

up to grade #4000, then polished with a 1 µm water-based diamond suspension (Struers) to obtain 

a mirror polish surface. To finish, samples were cleaned with ultrasounds in successive baths of 

acetone and alcohol. The energy of the electron beam was fixed at 20 kV with a working distance 

of 10 mm and spot size between 3.4 and 3.7. To limit the charging effects of low-conductive 

samples (due to the ceramic part), the analyses were performed in low vacuum (0.9 mbar). 

The SEM is coupled with an EDAX detector, for elemental analyses. Energy dispersive X-ray 

spectroscopy was carried out to analyze the chemical composition of the products by X-rays 

micro-diffraction.  
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Chapter III. Study of the 

reactivity and microstructure of Al 

and preoxidized Ni powders by 

DSC. 
 

Aluminothermic (or thermite) reaction are well known and have been used for centuries. The rise 

of this reaction is due to two unique characteristics. Indeed, aluminum has an extremely high 

affinity with oxygen, so it is able to reduce a large part of the metal oxides. In addition, this reaction 

is extremely exothermic and can reach temperature above 2700°C [16-17]. For decades these 

two characteristics have been put into practice to weld railways. Indeed, when aluminum liquid 

(T=660°C) is deposited on the junction of two rusty rails, the aluminum will reduce the iron oxide 

to form liquid iron (T>1538°C) and alumina. The density of alumina being much lower (3. 95 g/cm3) 

than that of iron liquid, it naturally floats on the surface and can be easily removed. 

In our case, the aluminothermic reactions take place between aluminum and nickel oxide to 

synthetize self-regenerating coatings. The goal of the thermite reaction is to provide additional 

exothermicity to the SHS reaction between aluminum and nickel, and essentially synthesize in-

situ alumina. In this case, the presence of alumina is desired because it often considered as a 

reinforcement element and moreover it blocks the diffusion of the species thus slowing down 

harmful phenomena such as interdiffusion. 

For the study of these complex phenomena (aluminothermic process and SHS), the tests were 

divided into 2 parts. The first part treated in sub-chapters 1 and 2 concerns the study of the 

reactivity between the Al powders and preoxidized Ni powders. The second part addressed in sub-

chapter 3, concerns the study of the reactivity between a model substrate (pure Ni) and Al powder.  

In the first part, several parameters will be tested and the experiments will take place in 2 steps. 

The first step consists in oxidizing the Ni particles, weighing and mixing the powders to obtain the 

desired layout. Then, the crucibles are heated up in a DSC. This first step will give us an energetic 

analysis of the different reactions that will take place inside the alumina crucibles. The second 

step concerns the characterization of the microstructure and the analysis of the elements 

previously formed. This step consists of a slow and meticulous polishing in cross-section of the 

crucibles followed by SEM observation coupled with EDS analyses. 

The reactivity between the powders has been studied by considering the size of Ni particles, the 

main oxide features of the preoxidized Ni powders, the arrangement of the particles (Al over Ni or 

vice versa and random mixtures) and the heating rates. 

First, a scientific article [Troncy et al. Materials Chemistry and Physics (2020)] focuses on the 

powder mixture between Al and preoxidized Ni particles (Al + Niox), and the second configuration 

is a bilayer system with Niox on top of Al particles (Niox / Al). 

The Al over preoxidized Ni configuration (Al/Niox) will be discussed separately. 



- III. Study of the reactivity and microstructure of Al and preoxidized Ni powders by - 

 
-70- 

Table of contents 

I-Article I: Reactivity and microstructural observation of Al+Niox and Niox/Al system by DSC ... 71 

Abstract ..................................................................................................................................... 71 

I-Introduction ............................................................................................................................. 71 

II-Experimental procedure ......................................................................................................... 73 

III-Results .................................................................................................................................. 74 

III.A-Effect of the preoxidation time of the Ni powder .......................................................... 74 

III.B-Reactivity of Al-Niox microparticles .............................................................................. 77 

III.C-Reactivity of preoxidized Ni over pure Al ..................................................................... 82 

IV-Discussion ............................................................................................................................ 87 

IV.A-Effect of the preoxidation time .................................................................................... 87 

IV.B-Layout 1- Mixture of preoxidized Ni and Al particles ................................................... 88 

IV.C-Layout 2- preoxidized Ni powders over the Al particles............................................... 89 

V-Conclusion ............................................................................................................................. 91 

References ................................................................................................................................ 93 

II- Reactivity and microstructural observations of Al/Niox system by DSC ................................. 97 

II.A-Results ......................................................................................................................... 97 

I.A.1-Differential scanning calorimetry ............................................................................. 97 

I.B-Microstructural development ......................................................................................... 99 

II.C-Discussion ................................................................................................................. 102 

II.D-Conclusion ................................................................................................................. 104 

III-Reactivity of the Al particles with pure preoxidized nickel substrate ..................................... 105 

III.A-layout A and B: Pure Ni and pure Ni with Al particles ................................................ 105 

III.A.1-Results ............................................................................................................... 105 

III.B-Layout C: Preoxidized pure Ni with Al particles ......................................................... 107 

III.B.1-Results ............................................................................................................... 107 

III.C-Discussion ................................................................................................................ 113 

III.D-Conclusion ................................................................................................................ 114 

References .............................................................................................................................. 116 



- III. Study of the reactivity and microstructure of Al and preoxidized Ni powders by - 

 
-71- 

I-Article I: Reactivity and microstructural observation of 

Al+Niox and Niox/Al system by DSC 
 

Materials Chemistry & Physics 251 (2020) 123124. 

Microstructural characterization of NiAl-Al2O3 composite 

materials obtained by in situ aluminothermic reduction of NiO 

for potential coating applications 

R. Troncy1, a, G. Bonnet1, b, F. Pedraza1, c 

1 La Rochelle Université. LaSIE, UMR-7356-CNRS. Avenue Michel Crépeau, 17042 La Rochelle 

Cedex 1, France 
aromain.troncy1@univ-lr.fr, bgbonnet@univ-lr.fr, cfpedraza@univ-lr.fr 

 

Abstract 
Aluminothermic reactions between Al microparticles and preoxidized Ni particles were carried out 

to fabricate mixed compounds of NixAly containing in situ generated Al2O3. The mixed composites 

were obtained by applying a thermal treatment to either a mixture of NiO and Al powders or to a 

stacking of powders. The effects of the particle size, thickness of oxide, heating ramp and 

temperature on the microstructure of the NiAl-Al2O3 coating are discussed. The results indicate 

that Ni3Al forms first during the synthesis, followed by NiAl and Al3Ni2 while Al3Ni forms on cooling. 

Moreover, the alumina was observed to form a continuous network surrounding NixAly intermetallic 

compounds. It derives that these composites have a potential to form self-healing coatings. 

 

I-Introduction 
Nowadays, the demand for materials with high performances at elevated temperature is in 

constant increase. Nickel based superalloys possess excellent mechanical properties at high 

temperature due to their high melting point. However, their resistance to oxidation by hot gases 

and to so-called hot corrosion appears limited [1, 2]. To overcome these disadvantages, the use 

of intermetallic compounds was developed. NiAl is the most attractive due to capacity to develop 

a protective aluminum oxide layer through oxidation [3, 4]. The coating acts as an aluminum 

reservoir whereby aluminum is consumed by oxidation at the surface of the coating to form an 

alumina protective layer [1, 2, 5, 6]. Further, Al diffuses into the substrate, which lowers the overall 

Al content in the coating. Below a critical concentration, other non-protective oxides such as 

NiAl2O4 and NiO may form resulting in the rapid degradation of the material. For instance, during 

the oxidation of Ni(Pt)Al systems at high temperature (100 h at 1050°C), 2 to 8% of Al are 

consumed by the formation of the aluminum oxide while 20 to 35% of Al are “lost” by diffusion to 

the superalloy substrate [7]. Diffusion barriers can be employed to prevent diffusion of aluminum 

in the substrate. These diffusion barriers can be made of refractory elements or rare-earth ones 

whose effectiveness to slow down the diffusion of aluminum has been demonstrated [8-10]. 

However, such diffusion barriers mechanically weaken the coated components and increase the 

coating prices.  
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Our approach to maintain a sufficient amount of Al is to introduce aluminum micro-containers into 

the coating so that Al is released once a concentration gradient is established between the 

reservoir and the Al-impoverished coating matrix. The micro-containers are small volumes (tens 

of µm) of an Al-rich NixAly intermetallics compound entrapped by aluminum oxide. The micro-

containers shall thus have an Al-rich intermetallic core (Al3Ni or Al3Ni2) encapsulated in an alumina 

shell. The intermetallic core can be synthesized by Self Propagating High-Temperature Synthesis 

(SHS). SHS is a complex thermally activated physicochemical process that takes place at elevated 

temperatures [11]. A great number of factors and process conditions can exert a significant 

influence on the results, in particular temperature, time, size of the particles, heating and cooling 

rates, pressure and atmosphere [12, 13]. The relationship between these different parameters and 

the reaction process between the three elements (Ni, Al and O) was reported by Levin & al. and 

results in multiphase (metal, liquid and oxide) components as shown in Figure III-1 [14]. 

 
Figure III-1: Ternary phase diagram of Ni-Al-O at 1638 K (1365°C) [14]. 

 

The alumina shell can be produced in situ by an aluminothermic process following the thermite 

reaction (eq. 1) [15]:  

  

2𝐴𝑙 + 3𝑁𝑖𝑂 → 𝐴𝑙2𝑂3 +  3𝑁𝑖 ;  𝛥𝐻𝑟 = −3.4 𝑘 𝐽. 𝑔−1 (eq.1) 
 

 

The redox reaction between NiO and Al results in the release of a large amount of energy. The 

products of such a reaction are solid, liquid and sometimes gaseous, inducing an intense 

sputtering and destruction of the samples [16, 17]. However, the exothermic effect can be inhibited 

by the addition of an inert diluent, i.e. of a heat absorber. Vrel et al. studied the effects of the 

addition of alumina and of the limitation of one of the two reagents on the aluminothermic reaction 

[16, 17]. In addition, Biswas et al. [18] reported that the heating rate and the particle size could be 

modified to limit the amount of energy released and produce different intermetallic compounds. 

For instance, low heating rates and a large size of particles can cancel the explosion of the 

powders. 

Based on the above, the Al-Ni SHS and the aluminothermic reactions will be combined in this work 

to synthesize NiXAly-Al2O3 phases that could serve as self-healing coatings. Different parameters 
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including particle size, heating rates, amount of nickel oxide and contact area between particles 

will be studied. 

 

II-Experimental procedure  
Commercially available Ni microparticles underwent a preoxidation treatment at 700°C in air for 

different times to form NiO oxide shells over the Ni powders. This oxidation temperature of 700°C 

was chosen following the works of Peraldi et al. [19, 20], who described the microstructure of the 

oxide scales grown on pure Ni as function of temperature and time. The porous NiO formed at 

700°C for short times is expected to facilitate the Al flow during the SHS reactions. The particles 

size of the powders and the time of preoxidation are given in Table III-1. 

 

Table III-1: Main features of initial Ni, Al and preoxidized Ni particles. 

 

The coarse powder (Ni-1) was heated at 700°C for 1h (Ni-1.a) and 4h (Ni-1.b) in air (intermediate 

crushing in a mortar every hour). The small-sized powder (Ni-2) underwent the same preparation 

but the oxidation time was of 15 min (Ni-2.a) and 40 min (Ni-2.b) (intermediate crushing every 5 

and 10 min, respectively). The intermediate crushing step was realized to increase the oxide 

thickness and avoid sintering. Such partial oxidation is assumed to present two simultaneous 

advantages, i.e. to reduce the energy release during the thermite reaction and to lower the content 

of one of the two reagents like in the works of Vrel et al. [16, 17]. Moreover, it allows to keep a 

metal core surrounded by a porous NiO to form the desired composite compounds [18-20]. 

 

A powder mixture containing the preoxidized nickel particles and aluminum particles was blended 

in the stoichiometric atomic ratio to form NiAl according to the Al-Ni binary diagram (Figure IIi-2.a). 

In addition, the preoxidized nickel particles were deposited over the Al microparticles (Figure III-

2.b) to simulate the interfacial reactions of a potential coating. Both configurations (mixed and 

stacked powders) were placed in alumina crucibles for the DSC experiments (SETARAM Labsys 

Evo 1600 thermal analysis). The heating rates were fixed at 2 and 25°C/min with a maximum 

temperature of 1300°C; the cooling rate was fixed at 50°C/min (to keep the microstructures and 

crystal phases obtained at high temperature). Upon annealing, the reaction chamber was 

ventilated with a flow of Ar (20 mL/min) to limit oxidation phenomena and prevent secondary 

reactions in the system, although some air can be trapped between the powders when poured 

into the crucible. For each test, energy changes and reaction temperatures were determined using 

the Calisto software coupled to the DSC technique. To identify all the transformations, additional 

heat treatments were performed in the same conditions but the tests were interrupted at 750 and 

1000°C. 

 

Powder Aluminum Nickel 1 Nickel 2 
Nickel 1 

preoxidized 
Nickel 1 

preoxidized 
Nickel 2 

preoxidized 
Nickel 2 

preoxidized 

Symbol Al Ni-1 Ni-2 Ni-1.a Ni-1.b Ni-2.a Ni-2.b 

Purity (wt %) 99.8 99.95 99.9 --- --- --- --- 

Size (µm) 4±3 31±19 11±6 10±9 17±14 7±4 5±3 

Morphology Spherical Spherical 
Pseudo-
spherical 

Pseudo-
spherical 

Pseudo-
spherical 

Pseudo-
spherical 

Pseudo-
spherical 

Oxidation 
time at 
700°C 

0 0 0 1 h 4×1 h 3×5 min 4×10 min 

Supplier Hermillon GoodFellow Alfa Aesar --- --- --- --- 
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Figure III-2: Schematic drawings representing the two different layouts: (a) mixture of 

preoxidized Ni and of Al particles; (b) preoxidized Ni over the Al particles. 

 

After the heat treatment, the crucibles were prepared for microscopy observation of the cross-

sections. They were thus mounted in a phenolic resin, ground till SiC P4000 and finally polished 

with a 1 µm diamond suspension (Struers). The characterization of the cross-sections was 

performed with a SEM (FEI QUANTA 200F Field Emission Gun) coupled to an EDAX detector for 

chemical analysis at 20 kV in low vacuum (0.9 mbar). Raman micro-spectrometry (Jobin Yvon 

LabRam HR800, λ=632.82 nm) was also carried out to identify the different oxide phases. 

III-Results 
III.A-Effect of the preoxidation time of the Ni powder  
Figure III-3 shows the cross-section of the preoxidized nickel particles. The Raman spectra of 

Figure III-4 clearly demonstrate the unique formation of NiO on all particles at different oxidation 

times at 700°C [21]. The smaller nickel particles (Ni-2) present thicker oxide scales on their surface 

although the oxidation time is shorter (15 and 40 min) than for the coarse particles (1 and 4 h). 

Some of the grain boundaries of the coarse particles (Ni-1) are also oxidized. At increased 

magnifications (see inset in Figure III-3), the surface of  

Ni-1 exhibits a duplex scale (platelet and compact) after 1 h but the oxide is thicker and porous 

after 4 h of oxidation. It thus appears that the oxides get thicker with increasing time and number 

of cycles of oxidation. However, the thickness of the oxide layer varies among the particles (0.3 to 

3 µm for 1 h and 1 to 5 µm for 4×1 h). Additional characterization of the coverage with NiO as a 

function of particle size was performed with “Image J” software (Figure III-5). It can be observed 

that the smaller the particles, the greater the oxidation. Also, the dependence of oxidation with the 

particle size decreases with increasing the number of oxidation cycles. Moreover, sintering of the 

particles caused by oxide growth is observed for all the oxidation times and particle sizes, in 

particular for the smallest ones (Ni-2). This indicates that the crushing between oxidation cycles 

was effective in avoiding sintering. In addition, the large particles seem to break along the oxidized 

grain boundaries and thus form smaller particles upon the repetitive crushing. 
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Ni-1.a                                        
(coarse particle preoxidized for 1 h) 

Ni-1.b                                          
(coarse particle preoxidized 4×1 h) 

  

Ni-2.a                                            
(small particle preoxidized for 3×5 min) 

Ni-2.b                                           
(small particle preoxidized for 4×10 min) 

  

Figure III-3: SEM (BSE mode) cross-section images on the coarse (Ni-1.a & Ni-1.b) and small 

(Ni-2.a & Ni-2.b) preoxidized Ni particles at 700°C in air for different times. 
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Figure III-4: Raman spectra of the oxides formed on the coarse (Ni-1) and small (Ni-2) particles 

after oxidation at 700°C in air for different times [21]. 
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Figure III-5: Area proportion of NiO (SNiO/SNi ×100) as a function of particle size on the coarse 

(Ni-1.a & Ni-1.b) and small (Ni-2.a & Ni-2.b) preoxidized Ni particles.  
 

  



- III. Study of the reactivity and microstructure of Al and preoxidized Ni powders by - 

 
-77- 

III.B-Reactivity of Al-Niox microparticles 
• Differential scanning calorimetry 

The DSC results of the reference powders (Al; metallic Ni-1 and Ni-2; preoxidized Ni-1 and Ni-2) 

heated at 25°C/min till 1300°C are shown in Figure III-6. The data are summarized in Table III-2. 

Coarse Ni (Ni-1) undergoes an event starting at 346°C that corresponds to the Curie temperature 

(358°C) [22]. In contrast, the same thermal event is more energetic and starts and finishes at a 

larger temperature interval when the particles are small (Ni-2). For Al, the onset and the maximum 

melting temperatures also differ (665 and 677°C for, respectively, the 2 and 25°C/min heating 

rates) but the overall endotherm is relatively similar. The differences with respect the theoretical 

melting temperature (660.5°C [23]) can be thus ascribed to the different heating rates [24] that 

change the manner heat is absorbed. 
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Figure III-6: DSC thermograms for the reference powders (Al, Ni and Ni oxidized) upon heating 

at 2 and 25°C/min till 1300°C in Ar. 

 

Table III-2: Thermal data of the effects observed for the reference powders (Al, Ni and Ni 

oxidized) upon heating at 2 and 25°C/min till 1300°C in Ar. 

Transformation 

Ni-1 
(coarse particles) 

Ni-2 
(small particles) 

Tmax (°C) ΔT (°C) ΔH (J g-1) Tmax (°C) ΔT (°C) ΔH (J g-1) 

Curie temperature 654 346-950 -81 616 250-1300 -166 

 Ni-1.a  
(coarse preoxidized particles: 1 h) 

Ni-2.a  
(small preoxidized particles: 3×5 min) 

Curie temperature 593 352-901 -105 612 387-1300 -156 

 Al-2°C/min Al-25°C/min 

Melting point 665 645-671 362 677 658-686 385 
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In the mixed Al + Ni powders, the first exothermic peak at 620±2°C (label 1 in Figure III-7) is most 

likely related to a solid-state reaction between Al and NiO [25, 26]. This peak is followed by an 

endothermic one at 671±6°C, which corresponds to the melting point of Al (label 2 in Figure III-7) 

[23]. For the coarse oxidized particles (Ni-1), the reaction between Al and Ni occurs at 852±14°C 

(label 3 in Figure III-7) and forms NixAly intermetallic compounds [27]. Right after, a last exothermic 

peak (label 4 in Figure III-7) starting above 1000°C can be related to the stabilization of the NiAl 

intermetallic compound and to the transformation of metastable γ-Al2O3 into stable α-Al2O3 [25, 

27]. Interestingly, the maximum temperature for NiAl formation is lower in the least preoxidized 

coarse particles than the ones oxidized for longer times (4×1 h). 

 

For the small preoxidized particles (Ni-2), the same reactions occur until 750°C (Figure III-7, Table 

III-3). However, a clear separation between NiAl and Al2O3 cannot be made at higher temperatures 

because the phenomena are now significantly exothermic. Further, the least oxidized particles 

(3×5 min) do not undergo a subsequent transformation of NiAl like the one observed in the 

preoxidized 4×10 min + Al mixtures. 
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Figure III-7: DSC thermograms of the mixtures of Al with the different Ni particles upon heating 

25°C/min till 1300°C in Ar. 
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Table III-3: Thermal data and potential transformations in the mixtures of Al with the different Ni 

particles. 

 Tmax (°C) ΔT (°C) ΔH (J g-1) Tmax (°C) ΔT (°C) ΔH (J g-1) 

Transformation Al + Ni-1.a  
(coarse oxidized Ni particles: 1 h) 

Al + Ni-1.b 
(coarse oxidized Ni particles: 4×1 h) 

NiO reduction 620 526-656 -73 618 540-656 -78 

Al melting 671 656-712 63 669 656-711 69 

NiAl formation 838 742-988 -596 867 740-1000 -576 

γ-Al2O3 → α-Al2O3 1095 988-1252 -54 1080 993-1142 -52 

 Al + Ni-2.a 
(small oxidized Ni particles: 3×5 min) 

Al + Ni-2.b 
(small oxidized Ni particles: 4×10 min) 

NiO reduction 621 555-655 -66 621 551-655 -72 

Al melting 668 655-724 61 670 655-727 81 

NiAl formation and  
γ-Al2O3 → α-Al2O3  

1023 754-1244 -1457 1036 742-1136 -1290 

NiAl formation --- --- --- 1192 1136-1272 -314 

 

• Microstructural development 

The microstructures and the composition of the mixed powders obtained at 750, 1000 and 1300°C 

are shown in Figure III-8 and Figure III-9. These temperatures correspond to the main exothermic 

reactions observed in the DSC curves of Figure III-7 (peaks 1, 3 and 4). 

 

In the coarse Ni particles (Ni-1.a and Ni-1.b), all the NiO formed by preoxidation is consumed by 

the aluminothermic reaction at 671±6°C. As a result, the particles present a homogeneous 

composition of about 30Al-70Ni (at %) (Figs. 8.a and 8.b). At 1000°C, quite similar concentration 

gradients of Al and Ni between the core and the external areas are observed in Ni1.a and Ni1.b 

(labels 1 to 4 in Figs. 8.c and 8.d). Concentrations of Al and Ni of 21-79; 37-63; 48-52 and 58-42 

at % are respectively retrieved from the core to the surface. After the full treatment at 1300°C, all 

the particles show a fully homogenized NiAl phase with 46Al-54Ni (at %). Moreover, cracks and 

Kirkendall porosity appear. 
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Figure III-8: SEM (BSE mode) of the mixture between Al and coarse Ni preoxidized particles 

(Ni1.a & Ni2.b) after DSC treatments at 25°C/min for different temperatures. 

 

For the small Ni particles (Ni-2.a and Ni-2.b) preoxidized for 15 and 40 min, NiO is not fully 

consumed by the aluminothermic reaction before 750°C. The core of the particles presents a 

homogeneous phase with a composition of Al and Ni, respectively, of 16-84 and 39-61 at % (Figure 

III-9.a and 9.b). Moreover, a high content of Al is found in the oxide when the particles have been 

preoxidized for 40 min (label 2 in Figure III-9.b) but it was not possible to identify the precise nature 

of mixed Ni-Al oxide by XRD or Raman spectroscopy. A quasi-stoichiometric NiAl compound has 

been observed on the outer part of the particles (label 3 Figure III-9.b). For the treatment stopped 

at 1045°C for Ni-2.a (3×5 min), metallic and partially oxidized particles are observed. The metallic 

particles are composed of two different zones. One zone has a homogeneous composition of 15Al 

and 85Ni (at %) (label 1 in Figure III-9.c). Other areas show a gradient of concentration of Al and 

Ni respectively, 21-79; 32-68 and 38-62 (at %) from the core to the surface (labels 3 at 5 in Figure 

III-9.c). Concerning the partially oxidized particles (label 2 in Figure III-9.c), the core presents a 
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homogeneous phase with a composition of 63Al-37Ni (at %) while the periphery appears clearly 

oxidized with Al and Ni. 

For the Ni-2.b (4×10 min), two types of partially oxidized particles can be observed. The first type 

is composed by a metal core with a composition of 11Al-89Ni at % (label 1 in Figure III-9.d), 

surrounded by an NiO layer which is itself surrounded by a metal layer identical to that of the 

particle core (view inset Figure III-9.d). The second type of particles is made of a homogeneous 

phase of 44Al and 56Ni (at %) (label 2 in Figure III-9.d) and interpenetrated alumina. After 1300°C, 

all the particles show a fully homogenized Ni3Al phase with 31-68 and 27-73 at % of Al and Ni, 

respectively (labels 1 in Figure III-9.e and 9.f). Moreover, an aluminum oxide layer can be noticed 

at the periphery of the particles, as well as some aluminum oxide inclusions inside the particles. 
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Figure III-9 SEM (BSE mode) of the mixture between Al and small Ni preoxidized particles (Ni-

2.a & Ni-2.b) after DSC treatments at 25°C/min for different temperatures. 
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Therefore in the rest of the study, we will focus on the coarse particles oxidized 4×1 h (Ni-1.b) 

because the oxide layers are thicker and more homogeneous (Figs. 3 and 5), which should be 

favorable for the formation of micro-reservoirs. Concerning the small oxidized particles, the 

particles oxidized 4×10 min (Ni-2.b) will be discarded. Indeed, the oxide layers are conversely too 

important (Figs. 3 and 5), which would consume a large part of aluminum, likely impeding the 

formation of an Al-rich intermetallic core rich for the micro-reservoirs. 

 

III.C-Reactivity of preoxidized Ni over pure Al 
• Differential scanning calorimetry 

The DSC results of the different preoxidized Ni particles obtained with two heating ramps (2 and 

25°C/min) are shown in Figure III-10 and the thermal data are summarized in Table III-4. 

Reduction of NiO and melting of Al occur at respectively, 620±2°C and 670±2°C. For the two 

heating rates applied to the coarse particles, and for the heating rate of 25°C/min applied to the 

small ones, many peaks (label 3 in Figure III-10) appear at temperatures ranging between 750 

and 1300°C.  
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Figure III-10: DSC thermograms of the preoxidized Ni over Al upon heating (2 and 25°C/min) till 

1300°C in Ar. 
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Table III-4: Thermal data and the potential transformations in the preoxidized Ni over Al layout 

 Tmax (°C) ΔT (°C) ΔH (J g-1) Tmax (°C) ΔT (°C) ΔH (J g-1) 

Heating ramp 2°C/min 25°C/min 

Transformation Ni-1.b / Al  Ni-1.b / Al 

NiO reduction 612 529-649 -50 622 577-648 -9 

Al melting 665 649-671 99 678 648-732 104 

NiAl formation 1086 1056-1124 -85 1275 1123-1292 -52 

 Ni2.a / Al Ni2.a / Al 

NiO reduction 556 511-549 -76 612 560-648 -14 

Al melting 663 649-670 108 675 648-766 95 

Ni3Al and NiAl 
formation  

γ-Al2O3 → α-Al2O3 
--- --- --- 1081 757-1300 -137 

 

• Microstructural development 

The microstructure and composition of the layout “preoxidized Ni over Al” heated in Ar following 

different temperature ramps (2 and 25°C/min) till 1300°C are respectively shown in Figure III-11 

and III-12. The crucible can be divided into three main sections from the top to the bottom. A 

summarized description of these different sections is given in Table III-5. 

 

The top of the crucibles coincides with the area where the preoxidized Ni particles did not react 

with Al. No noticeable difference can be observed between the samples (Figure III-11.c and 11.d) 

except for the small oxidized particles for which the recrystallization of the NiO grains occurred 

forming compact facetted grains (Figure III-12.c and 12.d).  

 

The central section of the crucible corresponds to the interface area between preoxidized Ni and 

Al particles. This zone is composed of different layers of nickel, intermetallic compounds and 

alumina. The coarse Ni particles form a compact Ni-rich NiAl phase when heated at 25°C/min 

(label 1, Figure III-11.e). Underneath, an Al-rich NiAl phase with Al2O3 segregated at the grain 

boundaries occurs (label 2 on Figure III-11.e). In between, many pores can be observed. The Al 

content increases further to the bottom (label 3 on Figure III-11.e). For a heating ramp of 2°C/min 

(Figure III-11.f), the NiAl compounds are also observed but the Al2O3 appears more segregated in 

the Ni-rich NiAl than in the Al-rich counterpart. Further, the interface is not homogeneous and 

displays cracks rather than pores. Ni/Al2O3/Ni-rich NiAl/Al-rich NiAl are distributed on one side and 

Ni/Al2O3 Al-rich NiAl on the other but this can be due to the evolution of the solid powders upon 

melting. 
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Figure III-11: SEM (BSE mode) cross-sections of the layout 2 with coarse preoxidized Ni 

particles (Ni-1.b over Al after DSC treatments at 25 and 2°C/min. (a) and (b) overview; (c) and 

(d) top; (e) and (f) center; (g) and h) bottom of the crucible. 
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The small Ni particles form Ni3Al (label 1 on Figure III-12.e) and Ni-rich NiAl (label 2 on Figure III- 

12.e) when heated at 25°C/min. The Ni-rich NiAl exhibits two different microstructures whereby 

one is compact and contains Al2O3 at the grain boundaries and the other is “porous” and contains 

Ni-rich NiAl grains trapped in Al2O3. At the reduced heating ramp of 2°C/min, clusters of Ni grains 

(label 1 on Figure III-12.f) and Ni-rich NiAl (label 2 on Figure III-12.e) can be also observed. The 

interfaces between these clusters are composed by Al2O3.  

 

For the bottom of the crucibles, there is barely any significant difference between the heating 

ramps of 25 and 2°C/min. In contrast, the compounds formed differ between the coarse and small 

Ni particles. Indeed, Al-rich NiAl particles (label 1 in Figure III-11.g) surrounded by Al3Ni2 and 

simultaneous Al2O3 formation (label 2 in Figure III-11.g) are developed from the coarse particles. 

In contrast, the small Ni particles develop both the Ni-rich and the Al-rich NiAl compounds (labels 

1 and 2, respectively in Figure III-12.g). 
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Figure III-12: SEM (BSE mode) cross-sections of the layout 2 with small preoxidized Ni particles 

(Ni-2.a over Al) after DSC treatments at 25 and 2°C/min. (a) and (b) overview; (c) and (d) top; (e) 

and (f) center; (g) and h) bottom of the crucible. Heat treatment (cross-section) 
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Table III-5: Summary of the different zones observed metallographically  

Heating 
ramp 

25°C/min 2°C/min 

Particles Ni-1.b / Al Ni-2.a / Al Ni-1.b / Al Ni-2.a / Al 

Zone 1 
(top) 

Ni particles with NiO 
Ni particles with NiO 

recrystallized 
Same as Ni 1.a at 

25°C/min 
Same as Ni 2.a at 

25°C/min 

Zone 2 
(center) 

-Ni particles (10 at 
% Al) 

-NiAl (Ni rich) 
-NiAl (Al rich) with 

Al2O3 grain 
boundaries 

- Ni particles with NiO 

Interface of Al2O3 

-Ni3Al 

-NiAl (Ni rich) with grain 
boundaries of Al2O3 

Same as 25°C/min 
 

- Ni particles with NiO 
-Interface of Al2O3 

-cluster of NiAl particles 
with grain boundaries 

of Al2O3 

Zone 3 
(bottom) 

-grains with a NiAl 
core and Al3Ni2 at 

the edge + Al2O3 in 
grain Al3Ni2 

- cluster of NiAl (Al rich) 
particles with grain 
boundaries of Al2O3 

-interface of Al2O3 

- cluster of Al3Ni2 
particles with grain 
boundaries of Al2O3 

Same as Ni 1.a zone 
25°C/min but more 

developed 

Same as Ni 2.a 
25°C/min 

 

IV-Discussion  
IV.A-Effect of the preoxidation time  
Two different Ni powders were oxidized at 700°C under air. The coarse particles (Ni-1) were 

crushed every hour to avoid the formation of different NiO morphologies and sintering of the 

oxidized powders. Indeed, porous equiaxial and duplex layer (equiaxial and columnar oxides) 

forms at the periphery of the Ni coarse particles during oxidation (Figure III-3.a). According to the 

works of Peraldi et al., a porous NiO scale forms at 700°C for short times [19, 20]. With increasing 

the oxidation time to 3 h, a duplex scale grows with the porous and equiaxed layer surmounted by 

columnar grains but the thickness remains almost constant (about 1 µm) [19, 20]. In our case, the 

formation of the duplex layer appears along the first hour of oxidation with oxide thicknesses 

ranging from 0.3 to 3 µm (Figure III-3.a and 5.a). The existence of these two types of oxide 

morphologies within the system may be due to the larger active surface of the Ni powders 

compared to the average grain size (2 mm) of the Ni studied by Peraldi et al. [19, 20]. When the 

exposure time is extended to 4 h with crushing of the powder every hour, the scale morphology is 

exclusively porous with thicknesses ranging from 1 to 5 µm (figure III-3.b and 5.b). This difference 

can be due to the stresses generated by the crushing of the particles, which in turn foster nickel 

and oxygen interdiffusion and/or provoke the spallation of the columnar grains [29]. In addition, 

the increase in oxidation time brings about the intergranular oxidation of the Ni particles. The 

action of crushing effectively disassembles the grains and causes the reduction of the grain sizes 

and the creation of new un-oxidized surfaces.  

 

The greater reactivity of the smaller Ni particles (Ni-2) is due to their greater specific surface. Such 

a greater reactivity is demonstrated through the oxide thickness that ranges between 0.5 and 2 

µm after just 15 min (i.e. 3×5 min) (Fig 5.c) and between 1.5 and 4 µm after 40 min (i.e. 4×10 min) 

(Fig 5.d) at 700°C. The oxidation of the small particles is so fast that some of them appear 

completely oxidized (Figure III-3.d). The small particles preoxidized for 40 min were thus 

consequently discarded as they would not allow the formation of Al-rich NixAly cores in the particle 

by reaction with Al. Similarly, the coarse particles preoxidized for 1 h did not develop sufficiently 
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thick nickel oxide to results in Al2O3 shells upon the aluminothermic reaction. The coarse and small 

particles preoxidized for, respectively, 4 h (i.e. 4×1 h) and 15 min (i.e. 3×5 min) were then used to 

study the formation of the NixAly + Al2O3 phases. 

 

IV.B-Layout 1- Mixture of preoxidized Ni and Al particles  
The DSC of the Al and preoxidized Ni powders show two peaks at temperatures corresponding to 

the melting of Al and to the Curie temperature of Ni. When these two powders are mixed together 

and heated, various additional phenomena appear. The first exothermic peak at 620±2°C is most 

likely related to the solid-state aluminothermic reaction given in equation (1) [30]. The heat 

released upon this highly exothermic reaction causes the melting of Al and the stop of the solid-

state aluminothermic reaction. Whereas by solid state or by molten Al, the whole NiO is consumed 

by Al to form Al2O3 and Ni (Figs. 13.b and 13.c). When the temperature exceeds the melting of Al, 

the dissolution of Ni can readily occur [31, 32]. Ni and Al are thus quickly consumed and form Ni3Al 

(eq. 2) (Fig 13. c). 

 

3Ni(s) + Al(l) → Ni3Al(s)  (eq. 2) 
 

With increasing temperature between 740 and 1000°C, further Al inward diffusion occurs and the 

coarse Ni particles thus develop a concentration gradient between Ni at the core, the intermediate 

layer of Ni3Al and the external layer of NiAl (Figure III-13.c). The formation of NiAl is accompanied 

of a strong exothermic peak shown in Figure III-7 following equation (3) [18]: 

 

Ni3Al(s) + 3Al(l) → 3 NiAl(s)   (eq. 3) 
 

The residual Ni is fully transformed with the subsequent heating till 1300°C. The final 

microstructure is made of clusters of NiAl particles with many cracks (Figure III-13.d). In contrast, 

no alumina resulting from the aluminothermic reaction could be detected under the SEM, probably 

because it is either too thin and/or it came up to the surface given its much lower density than that 

of the Ni-Al intermetallic compounds.  

 

For the small particles, the exothermic peak at 620°C associated with the NiO reduction is also 

observed but the energy released is lower than with the coarse particles. As a result, a large 

amount of the NiO grown on the small Ni particles has not reacted yet at about 656°C (Fig. 13.f). 

Between 750 and 1000°C, the exothermal reaction can be associated with the solid-liquid 

reduction reaction that brings about an exothermic reaction (Figure III-7). At this range of 

temperature three types of particles are formed: NiAl/Al2O3, Ni/Ni3Al/NiAl and Ni/NiO/Ni multi-

layered microstructures (Fig. 13.g). For the first one, the Ni formed the periphery of the surface is 

the result of the aluminothermic reaction. These features would imply that the reaction is controlled 

by the solid-state diffusion of species through the products layers because of the incomplete 

dissolution of NiO. For the second and the third ones, all the NiO is consumed to form Ni and 

Al2O3. Moreover, for the third case of Ni/NiO/Ni particles, the Al2O3 was expelled.  

 

The full consumption of NiO, Ni and Al at 1050°C results in Ni3Al and Al2O3 and the metastable γ-

Al2O3 transforms into the stable α-Al2O3 that releases heat (Figure III-7) [24,33]. Moreover, isolated 

alumina particles can also be found inside the particles of Ni3Al. 

 



- III. Study of the reactivity and microstructure of Al and preoxidized Ni powders by - 

 
-89- 

 
Fig. 13: Schematic model of NiO reduction and formation of intermetallic particles for a mixture 

of (a-d) coarse preoxidized Ni (4h) and Al and (e-h) small preoxidized (15 min) Ni and Al heated 

at f 25°C/min.  

 

IV.C-Layout 2- preoxidized Ni powders over the Al particles 
The comparison of the results obtained with the mixed particles with that for the layout “preoxidized 

Ni over Al” clearly points out the tremendous impact of the contact between the reactive particles. 

Indeed, for the same particle size, the melting enthalpy of Al is much lower with the mixed powders 

( 65 J g-1) than with the double layer configuration ( 100 J g-1). Therefore, the greater contact 

area between Al and NiO results in the formation of more Al2O3 absorbing heat and hampering 

melting of Al. In contrast, when the preoxidized Ni powder is deposited over the Al particles, a 

front of reactions and of heat propagates from the interface, resulting in different compounds and 

microstructures. 

 

In this latter configuration (Figs. 14.a and 15.a), the influence of the heating rate appears 

negligible. Indeed, the DSC curves present the same reaction peaks (within a couple of degrees 

of difference) and the SEM images exhibit similar zones. However, it has been noted that the 

extent of the Al-rich areas is greater than that of the Ni-rich area when a slow heating rate 

(2°C/min) has been applied and vice-versa. This can be related to the fact that diffusion of 

aluminum is favored below 1000°C [34] (inward diffusion) while the outward diffusion of Ni is 

promoted above 1000°C [34]. The system therefore spends a longer time at low temperature with 

slow heating rates. 

 

When the coarse preoxidized Ni particles are heated till 550°C, the solid/solid aluminothermic 

reaction begins [24]. The external NiO is reduced by Al, bringing about the formation of alumina 

and of nickel (Figure III-14.b). The resulting particles close to the interface (between Al and Niox 

particles) are then exposed to the flux of Al, which in turn allows the formation of intermetallic 

compounds (Ni3Al and NiAl) successively towards the core (Figure III-14.b). This stage 
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progressively continues along the crucible until the onset of Al melting is reached (645±1°C). Part 

of this molten aluminum may be transported upwards by capillarity between the nickel particles. 

Therefore, the nickel particles get embedded in the molten aluminum (Figure III-14.c). Moreover, 

the melting of aluminum induces a preferential dissolution of Ni at the grain boundaries and the 

subsequent formation of cracks, either by shrinkage upon quenching or through the formation of 

denser phases. Beyond 750°C, aluminum keeps on diffusing through the Ni particles. Therefore, 

the NixAly intermetallics get progressively richer in Al at the expense of Ni-rich NixAly. In addition, 

the grains of the newly formed intermetallic phases grow during this stage causing the 

disappearance of porosity. The molten aluminum between these grains will be gradually 

“absorbed” by the Ni particles leaving behind alumina trapped between the grains (Figure III-14.c). 

 

Between 1000 and 1300°C, the microstructure barely evolves while the composition slightly 

changes due to favored nickel diffusion. This results in Al-rich and Ni-rich NiAl compounds (Figure 

III-14.d). Quenching to room temperature provokes solidification of molten Al and the segregation 

of Al3Ni2 between the grains of Al-rich NiAl (Figure III-14.d).  

 

 
Figure III-14: Schematic drawings of the aluminothermic reduction and reactions between the 

coarse preoxidized Ni over Al particles (double layer configuration) heated at 25°C/min. 

 

For the small particles the effect of the heating rate is very significant as demonstrated by the 
different DSC peaks (Figure III-10) and SEM microstructures at the center of the crucibles (Figure 
III-12). These differences can result from the preoxidation of the powders whereby the oxide 
growth at 700°C is ruled by the faster diffusion rate of the Ni2+ ions than that of the O2- ions. As a 
consequence, pores and cavities are generated at the oxide/metal interface [35]. Further the 
particles are subjected to intermediate air quenching and crushing (3x15 min), which induce stress 
in the oxide and in the metallic Ni particle. These phenomena are enhanced on the small particles 
vs. the coarse ones because of their greater oxide thickness and less spherical morphology. 
Overall, the small particles become more reactive than the coarse ones.  
 
When the temperature of 550°C is reached, the solid/solid aluminothermic reaction begins [27], 
NiO and Al react at the interface of the preoxidized Ni particles (Figure III-15.b). As opposed to 
the coarse particles, the thickness of the oxide layer is now quite significant and the 
aluminothermic reaction is thus momentarily superseded by the onset of the Al melting at 
648±1°C. Molten Al flows upwardly by capillarity between the Ni preoxidized particles NiO grains 
causing the entrapment of nickel particles in the molten Al and the enrichment of the NiO in Al 
(Figure III-15.c). Beyond 750°C, the second aluminothermic reaction (liquid/solid) begins. The 
remainder of the NiO near the interface is thus finally converted into an adherent Al2O3 (Figure III-
15.c). Simultaneously, the NiO “barrier” over the Ni particles is transformed in Al2O3 creating 
cracks, the Ni core is directly exposed to the molten Al (Figure III-15.c). The greater amount of 
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alumina formed at this stage aggregates around the particles and prevents their sintering. As a 
result, clusters of intermetallic compounds with a lot of porosity are obtained (Figure III-15.c).  
 
When the temperature reaches 950°C, a third exothermic peak appears when heating at 25°C/min 
(Figure III-10 peak labeled 3’). This peak results from the transformation of the Ni phase into Ni3Al 
and NiAl but the reaction does not take place continuously. This reaction can be explained by the 
difference in the thermal expansion coefficient between Ni and NiO and the potential residual 
stress and cavities that cause cracking and spallation of the NiO layer. Therefore, Al becomes 
free to react with Ni and form Ni3Al and NiAl. The NiO expelled continue its reduction in the molten 
Al to form Al2O3 that gets trapped between the grains of the intermetallic compounds as they grow. 
This step will be repeated until the intermetallic layer thickens enough to hamper the arrival of Al. 
The heat produced during this stage and the very low amount of trapped oxide do not prevent the 
sintering of the particles to each other to form a compact structure. The Ni3Al layer will 
subsequently enrich with Al to form NiAl (Figure III-15.d).  
 
In contrast, cracking and spallation of NiO do not occur when heating at 2°C/min. Therefore, when 
the temperature reaches 750°C, the solid/liquid aluminothermic reaction occurs and the remainder 
of the NiO near the interface is finally converted into an adherent Al2O3. Simultaneously, the NiO 
“barrier” over the Ni particles being reduced, the Ni core can now react directly with the molten Al 
(Figure III-15.c). The greater amount of alumina formed at this stage aggregates around the 
particles and prevent their sintering. As a result, clusters of intermetallic compounds with 
significant porosity are obtained (Figure III-15.c) 
 
Deeper in the crucible and irrespective of the heating rate, clusters of Al3Ni2 and Al3Ni are formed 
upon cooling (Figure III-15.d). At the surface of these clusters, almost no Al2O3 was observed, 
which suggests that Al2O3 either dissolves and/or that is transported to the surface of the melt 
given its lower density than the intermetallic compounds. 

 

Figure III-15: Schematic drawings of the aluminothermic reduction and reactions between the 

small preoxidized Ni an Al (double layer configuration) heated at 2 and 25°C/min 

 

V-Conclusion   
The reaction process of a NiXAly-Al2O3 phases via thermite reaction of preoxidized Ni particles and 

aluminum particles was investigated by DSC and metallographic observations. It was found that 

different intermediate phases formed during heating of the powder mixtures. Metallic Ni formed 
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first at around 600°C, followed by the formation of Ni3Al and NiAl and a temperature increase. 

After 1300°C, the coarse preoxidized Ni powders formed a cluster of NiAl particles while the small 

preoxidized Ni particles resulted in a cluster of interpenetrated Ni3Al and Al2O3. The formation of 

Al2O3 is believed to result from a three-stage process. Initially, a small amount of Al2O3 was 

produced by the reduction of NiO with solid Al. Then, Al2O3 particles formed by the reduction of 

NiO with liquid Al. Finally, Al2O3 developed by the solid-state displacement reaction between NiO 

and nickel-aluminides (Al3Ni, Al3Ni2, NiAl). 

 

When the coarse preoxidized Ni particles lay over the Al ones, a dense structure composed by a 

Ni-rich NiAl above an Al-rich NiAl was formed. The Al2O3 formed by thermite reaction was trapped 

in the grain boundaries of the Al-rich NiAl. However, the small preoxidized Ni particles grew a 

dense structure with Ni3Al above a Ni-rich NiAl and Al2O3 trapped in the grain boundaries in some 

areas and clusters of Al-rich NiAl and Al3Ni2 particles surrounded by a thin layer of Al2O3 in some 

other areas. 

 

These results, therefore, suggest that the synthesis of self-regenerating coating could be obtained 

by e.g. spraying slurries containing mixtures of preoxidized Ni and metal Al or multilayering them 

onto a substrate. Subsequent heat treatments with relatively fast heating ramps (25°C) till 

moderate temperatures ( 750°C) assisted by the aluminothermic reaction between NiO and Al 

could consolidate the formation of the micro-containers trapped in the coating. 
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II- Reactivity and microstructural observations of Al/Niox 

system by DSC 
The preoxidized Ni particles were placed in an alumina crucible and covered with Al particles in 

an atomic stochiometric ratio (size of particles in Table III-1, Figure III-16). The alumina crucibles 

were placed in the DSC (SETARAM Labsys Evo 1600 thermal analysis). Like with the previous 

configurations (Al+Niox and Niox/Al), the heating rates were fixed at 2 and 25°C/min with a 

maximum temperature of 1300°C and the cooling rate was fixed at 50°C/min. 

 

Figure III-16: Schematic drawings representing the layout: Al over preoxidized Ni particles. 

 

II.A-Results 

I.A.1-Differential scanning calorimetry 
The DSC results of the different preoxidized Ni particles obtained with two heating ramps (2 and 

25°C/min) are shown in Figure III-17 and the thermal data are summarized in Table III-6.  

o 2°C/min 

For the coarse and small particles heated to 2°C/min, the first exothermic peaks at 549 and 557°C 

corresponds to a solid-state reaction between Al and NiO [1,2]. This exothermic reaction is directly 

followed by an endothermic reaction at 662 and 664°C which corresponds to the melting of Al [3]. 

For the coarse oxidized particles heated to 2°C/min, a third reaction takes place between 1307 

and 1128°C, and many peaks appear. With the small oxidized particles heated to 25°C/min, two 

other exothermic reactions can be observed respectively between 767-1067°C and 1067-1224°C. 

These two exothermic reactions most probably correspond to the formation of NixAly intermetallic 

compound and to the transformation of metastable γ-Al2O3 into stable α-Al2O3 [1,4-5].  

o 25°C/min 

For the coarse and small particles heated to 25°C/min, the first and second peaks respectively 

correspond to the solid-state reaction [1,2] with a maximum at 608 and 621°C, and the melting of 

Al [3] 682 and 677°C. 

The last exothermic phenomenon (more developed for small particles with a maximum at 

1136±56°C) corresponds to the transformation of metastable γ-Al2O3 into stable α-Al2O3[1,4-5]. 
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Figure III-17: DSC thermograms of the preoxidized Al particles over Ni preoxidized particles 

upon heating (2 and 25°C/min) till 1300°C in Ar. 

 

Table III-6: Thermal data and the potential transformation in the Al particles over Ni preoxidized 

particles. 

 Tmax (°C) ΔT (°C) ΔH (J g-1) Tmax (°C) ΔT (°C) ΔH (J g-1) 

Heating ramp 2°C/min 25°C/min 

Transformation Al/Ni-1.b (coarse oxidized 4x1h) Al/Ni-1.b (coarse oxidized 4x1h) 

NiO reduction 549 528-567 -4 608 568-643 -4 

Al melting 662 567-670 56 682 643-734 78 

NiAl formation 1105 996-1140 -85 --- --- --- 

 Al/Ni-2.a (small oxidized 3x10min) Al/Ni-2.a (small oxidized 3x10 min) 

NiO reduction 557 507-634 -22 621 560-653 -23 

Al melting 664 634-670 101 677 653-725 66 
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I.B-Microstructural development  
The microstructure and the composition of the layout heated in Ar following different temperature 

ramps (2 and 25°C/min) till 1300°C are respectively shown in Figures III-18 and III-19. For a 

clearer description, the crucibles are divided into three parts, with a first part above the original 

interface, a second part at the interface level and a third part below the interface. A summarized 

description of these different sections is given in Table III-7.  

For the coarse preoxidized particles (Figure III-18), the first part coincides with the area where the 

Al particles are initially placed (Figure III-18.c and Figure III-18.d). This area is defined by the 

formation of spherical particles with a size of 6±4 µm. The largest particles are composed of Ni3Al 

intermetallic compounds in the center and NiAl intermetallic compound on the outside of the 

particle. The smallest particles are mainly composed of NiAl. In addition, the periphery of the 

particles is particularly rich in Al2O3, which is also sometimes trapped inside the particles. 

The central section of the crucibles represents the interface of the parts rich in Al (top) and part 

rich in Ni (bottom) (Figure III-18.e and Figure III-18.f). The upper part of the interface is composed 

of NiAl particles sintered to each other, with alumina trapped between the particles. In addition, 

for rapid treatment (25°C/min), the NiAl particles appear more compact (Figure III-18.f) and 

consequently, the layer shrinks to 97 ± 18 µm compared to the one obtained with the slow heat 

treatment (161 ± 29 µm, Figure III-18.e). The bottom layer is made of Ni particles enriched in Al 

sintered to each other. As with the upper layers, a rapid heat treatment leads to greater 

compaction. 

Deeper in the crucibles, a third zone can be observed (Figure III-18.g and Figure III-18.h). This 

area consists of unreacted preoxidized Ni particles. 

In the case of small preoxidized Ni particles (Figure III-19), the first zone of the crucibles is very 

similar to the coarse counterparts (Figure III-19.c and Figure III-19.d). Indeed, we can observe the 

spherical particles of NiAl. However, unlike the coarse particles, a more compact area of NiAl 

particles sintered can be observed deeper. The microstructure of this area depends on the heating 

ramp. For 2°C/min, a compact Ni-rich NiAl area extends for about 70 µm. The grains are elongated 

with alumina segregated at the grain boundaries. Underneath the compact area, the clusters of 

Ni-rich NiAl particles appear separated by porosity (Figure III-19.c). In contrast, the heating ramp 

at 25°C/min results in clusters of Al-rich NiAl particles with a core of NiAl and alumina around 

(Figure III-19.d). This morphology extends to the centre of the crucible. 

The center of the crucibles displays an Al gradient with cluster of Ni3Al in the upper part of the 

interface and Ni in the lower part of the interface irrespective of the heating ramp. Alumina 

segregates between these two areas, in particular with the slowest heating rate of 2°C/min.  

The third zone at the bottom is composed of un-reacted preoxidized Ni particles. 
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Figure III-18: SEM (BSE mode) cross-sections of the layout with coarse preoxidized Ni particles 

(Ni-1.b over  Al particles) after DSC treatment at 2 and 25°C/min. (a) and (b) overview; (c) and 

(d) top; (e) and (f) center of the crucible. 
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Figure III-19: (BSE mode) cross-sections of the layout with small preoxidized Ni particles (Ni-2.a 

over Al particles) after DSC treatment at 2 and 25°C/min. (a) and (b) overview; (c) and (d) top; 

(e) and (f) between top and center; (g) and (h) center; (i) and (j) the bottom of the crucible. 

 

Table III-7: Summary of the different zones observed metallographically 

Heating 
ramp 

2°C/min 25°C/min 

Particles Al / Ni-1.b  Al / Ni-2.a  Al / Ni-1.b  Al / Ni-2.a  

Zone 1 
(top) 

Spheres of Ni3Al 
and NiAl  

Spheres of Ni3Al and 
NiAl with a shell of 

Al2O3 

Spheres of Ni-rich NiAl 
and Al-rich-NiAl with a 

shell of Al2O3 

Spheres of Ni rich-NiAl 
and Al rich-NiAl  

Zone 2 
(center) 

-Spheres of NiAl 
 

-Clusters of Al-rich 
NiAl particles 

sintered 
 

-Ni particles 
sintered (10 at % 

Al)  

-Spheres of Al-rich 
NiAl  

-Compact clusters of 
Al-rich NiAl particles 

with grain boundaries 
of Al2O3 

interface in Al2O3 
-Ni particles sintered 

(10 at % Al) 

-Compact clusters of 
Ni-rich NiAl particles 
with grain boundaries 

of Al2O3 

-Cluster of oxides 
particles 

-Clusters of NiAl 
particles with Al2O3 

-Interface between Ni-
rich NiAl and Ni 

clusters 

Zone 3 
(bottom) 

-Ni particles 
sintered 

-Unreacted Ni 
preoxidized 

particles 

-Same as Ni-1.b -Same as Ni-1.b  -Same as Ni-1.b 

 

II.C-Discussion 
The DSC curves of the Al over Ni preoxidized particles show 2 main phenomena irrespective of 

the particle size and heating ramp. The first peak at 581±36°C (exothermic) is related to the solid-

state aluminothermic reaction (Figure III-20, label 1) that reduces NiO into Ni by solid Al [5,6]. The 

heat released upon this exothermic reaction causes the melting of Al and stops the solid-state 

aluminothermic reaction [5,6] The heat released during the aluminothermic reaction is relatively 

similar between the coarse (≈ 4 J.g-1) and the small particles of Ni (≈ 22 J.g-1) when considering 

the largest reactive surface of the latter. Yet, the enthalpy values are lower than the ones reported 

in the literature of 3,4 kJ.g-1 [7] probably because of the low contact area between the particles of 

Al and NiO, and the small amount of NiO compared to the overall mass of Ni and Al. 

The second peak at 669±9°C (endothermic) (Figure III-17, label 2) corresponds to the melting of 

Al [3]. Above the melting temperature of Al, no additional thermal event can be observed except 
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for the coarse particles and low heating rates. Indeed, a cluster of fine peaks appears above 

1050°C that can be related to the formation of intermetallic compounds (Al3Ni, NiAl, Ni3Al,) towards 

the Ni core [4]. In contrast, the thermal events cannot be detected in the other conditions because 

either the overall heat release is too small (low amount of compound formed) or the heating rate 

is too rapid to follow the event or both.  

In spite of this, the SEM cross-sections of Figures III-18 & III-19 clearly show that the mechanisms 

of reaction are more dependent on the particle size than on the heating ramp. Indeed, the smallest 

particles are relatively more preoxidized than the coarse ones and are therefore less reduced into 

Ni by reaction with Al. Yet, when Al melts, the aluminothermically formed Al2O3 can be trapped 

and then segregate at the surface of the NixAly intermetallic compound formed given that Al and 

Al2O3 do not wet each other [7]. The heat released by the aluminothermic reaction [8] and by the 

dissolution of Ni in the molten Al [9] then provokes a heat gradient in the crucible that explains the 

different degrees of reaction from the top to the bottom. The enrichment of the NixAly in Al also 

allows the growth of the grains following the heat flow (elongated shape) and subsequent sintering. 

Therefore, only the milder conditions (2°C/min) do not allow the NixAly particles to sinter since their 

periphery appears more oxidized (Figure III-18.e).  

 

Figure III-20: Schematic drawing of the aluminothermic reduction reaction between the coarse or 

the small preoxidized above Al particles (double layer configuration) heated at 25°C/min. 
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II.D-Conclusion  
The reaction process of a NiXAly-Al2O3 phase via thermite reaction of preoxidized Ni particles and 

aluminum particles was investigated by DSC and metallographic observations. A total of 3 particle 

arrangements, two heating rates, 2 Ni particle sizes and 4 preoxidation times were studied 

(Scientific article on Al+Niox and Niox/Al and last section on Al/Niox). 

It was found that different intermediate phases formed during the heating of powder mixtures. The 

metallic nickel resulting from the aluminothermic reaction between the aluminum particles and the 

oxidized shells of the nickel particles formed at about 620 ± 2°C, followed by the formation of Ni3Al 

and NiAl at about ~ 980 ± 164°C, after the aluminum melting temperature (~ 669 ± 2°C). Finally, 

the transformation of γ-Al2O3 to α-Al2O3 occurs at ~ 1059 ± 35°C. 

Concerning the microstructure, after 1300°C and cooling, the powder mixtures (Al+Niox) form 

clusters, a cluster of NiAl for the coarse preoxidized Ni particles and a cluster of interpenetrating 

Ni3Al and Al2O3 for the small preoxidized nickel particles. 

When the preoxidized Ni particles lay over the Al ones, a dense structure of Ni-rich NiAl on top of 

Al-rich NiAl for the Ni coarse particles occurs while a dense structure of Ni3Al on top of Ni-rich NiAl 

develops with the small preoxidized Ni particles. The Al2O3 formed during the aluminothermic 

reaction is found trapped at the grain boundaries of the Al-rich NiAl structure for the coarse 

particles and of the Ni-rich NiAl structure for the small particles. In addition, for the small particles, 

a cluster structure composed of Al-rich NiAl and Al3Ni2 particles is surrounded by Al2O3.  

Finally, for the third configuration (Al over preoxidized nickel particles), two zones can be 

distinguished in the case of coarse Ni particles. The first zone consists of a cluster of Al-rich NiAl 

particles when heated slowly (2°C/min), which become Ni-rich NiAl when rapidly heated 

(25°C/min). Below, one can observe the Ni particles slightly enriched in aluminum sintered to each 

other. 

As for fine particles, a first layer of a dense cluster of Ni-rich NiAl particles with alumina grain 

boundaries can be observed for the heat treatment of 2°C/min and this layer become porous for 

a treatment of 25°C/min. The second layer consists of elongated grains of Ni-rich NiAl, and finally 

below, the Ni(Al) particles sintered to each other can be observed. 
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III-Reactivity of the Al particles with pure preoxidized nickel 

substrate 
In part I and II, simplified powder systems of Al/NiO/Ni have been studied, but to understand the 

mechanisms of the formation of self-regenerating coatings on a metallic substrate, it is necessary 

to identify the reactions that take place between the slurry Al, the nickel oxide and the substrate. 

For this purpose, a pure nickel substrate is used as model material. The reactivity of the Al particles 

and the Ni and the preoxidized Ni substrate were studied by DSC. Three different layouts were 

tested to try to separate the contribution of the different elements.  

For these tests, coupons of approximately 1x3.5 mm were prepared from a rod a pure Ni of 4 mm 

diameter (99.98% purity). For consistency with the TGA experiments (Chap. IV), the Ni samples 

were ground with SiC #180 paper then rinsed in distilled water and cleaned with acetone and 

ethanol under ultrasonic agitation before any further step. 

Three different configurations were tested. The pure Ni substrate was first measured as a 

reference to identify the intrinsic transformations occurring in the substrate upon heating (Figure 

III-21.A). The second system employed as reference consists of a coupon of Ni placed at the 

bottom of the crucible onto which ~20 mg.cm-2 of Al microparticles were deposited (Figure III-

21.B). The third system studied is very similar to the previous one. However, this time the Ni 

coupon was preoxidized beforehand at 1100°C for 2 hours (Figure III-21.C).  

 

Figure III-21: Schematic drawing representing the three different layouts for the DSC tests 

between (A) pure Ni substrate, (B) with Al powder and (C) preoxidized Ni substrate with Al 

powder. 

 

III.A-layout A and B: Pure Ni and pure Ni with Al particles 

III.A.1-Results 

• Differential scanning calorimetry 

Like with the Ni particles, the peak associated with the Curie temperature ~ 352°C can be 

observed in the Ni substrate (Figure III-23) [10]. In addition, at higher temperature, an exothermic 

peak can be observed. This peak was attributed to the oxidation of nickel by the residual air 

remaining in the alumina crucible. 
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Figure III-22: DSC thermograms of a pure nickel sample (heating at 5 °C/min) till 1300°C in Ar. 

 

As a reference test for self-regenerating coatings, the reactivity between pure Ni and Al powder 

(without slurry binder) was first investigated. The DSC thermograms for the heating rate of 5°C 

are given in Figure III-23 and the data are summarized in Table III-8. 

A strong endothermic peak referring to the Al melting was observed at 659°C (Figure III-23). The 

heat exchanged for this reaction was lower than the one for the pure Al powder, which suggests 

that a small quantity of Al reacts with the substrate [11] and/or with the oxygen present in the 

combustion chamber. Nevertheless, the exothermic signal of this reaction between Al and Ni 

and/or Al and O2 was not identified on the thermograms. Two other endothermic peaks induced 

by the melting of an element can identified for this system, the melting of Ni3Al takes place at 

863°C and the melting of Ni2Al3 at 1242°C.  

Finally, an exothermic peak can be observed over a large temperature range with a maximum of 

1081°C. This peak most likely corresponds to the formation of the compound NiAl (possibly added 

with the oxidation of aluminum at higher temperature). In addition, this reaction and the melting of 

the Al3Ni2 compound take place at similar temperatures. This may explain the temperature shift 

observed for the melting of the intermetallic compounds. 
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Figure III-23: DSC thermograms of the Ni samples with Al particles over upon heating (5°C/min) 

till 1300°C in Ar. 

Table III-8: Thermal data and the potential transformation in the Al particles over Ni preoxidized 

particles. 

 Tmax (°C) ΔT (°C) ΔH (J g-1) 

Heating ramp 5°C/min 

TCurie 352 --- --- 

Al melting 659 643-664 27 

Al3Ni melting 863 861-866 1 

NiAl formation 1081 986-1289 -89 

Al3Ni2 melting 1242 1177-1254 101 

 

III.B-Layout C: Preoxidized pure Ni with Al particles 

III.B.1-Results 

• Differential scanning calorimetry 

For the third system, where the preoxidized Ni substrate is made to react with the Al powder, the 

thermograms are given in Figure III-24. Considering the reactivity between the pure Ni and Al 

powder, two reactions occur for the heating rate at 2°C/min while four thermal events were 

identified for the heating rate at 25°C/min. The data are summarized in Table III-9.  
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o Heating rate of 2°C/min 

For the heating rate at 2°C / min, the endothermic peak at 660°C (Figure III-24, label 2) 

corresponds to the fusion of Al. As for the second and last peak could correspond to the fusion of 

the intermetallic compounds Al3Ni2 at 1133°C [12,13]. Finally, between 981 and 1246°C the strong 

exothermic formation of the β-NiAl phase occurs. Between 700 and 900°C, the diffusion of 

aluminum is favored and promotes the formation of phases rich in aluminum such as Al3Ni and 

Al3Ni2. Thereafter, from 900°C, the diffusion of Ni is favored. This makes it possible to enrich these 

phases previously synthesized to form β-NiAl, which is the most thermodynamically phase of the 

Al-Ni system [30,32,48-chapter I]. 

o Heating rate of 25°C/min 

For the heating rate of 25°C/min, the first exothermic reaction starts after the Curie’s temperature 

of Ni (352°C) and refers to the solid/solid aluminothermic reaction between Al and NiO. This 

reaction occurs until the melting of Al. In addition, contrary to what is expected considering the 

reactivity between the powders (I and II), the peak has a “saw-tooth” shape. An endothermic 

reaction also takes place during the exothermic reaction. This endothermic reaction is probably 

caused by the heat released during the exothermic reaction. Indeed, when a sufficient amount of 

heat is emitted and the local temperature exceeds 660°C, the Al particles near the surface begin 

to melt, causing these endothermic peaks that can be seen on the thermogram (Figure III-24, label 

2). 

The third peak between 668 and 885°C is exothermic (Figure III-24, label 3) and most likely 

corresponds to the end of the reduction of NiO (S/L), as well as to the formation of the first 

intermetallic component, Al3Ni in the bath of molten aluminum, γ’-Ni3Al in the substrate and then 

quickly β-NiAl. In addition, in this temperature range a second endothermic phenomenon occurs. 

This phenomenon has been attributed to the melting of the Al3NI compound between 676 and 

845°C [12,13]. 

Finally, the last exothermic peak (Figure III-24, label 4) corresponds to the transformation of 

alumina, during this exothermic reaction the melting of Al3Ni2 also occurs at 1136°C [12,13]. 

o Heating rate of 5°C/min 

The last heat treatment carried out at 5°C/min. This heating rate was selected because it 

corresponds to an industrial heating rate for larger installations. Moreover, this temperature seems 

to be a good compromise between the heating rate of 2°C/min and 25°C/min from a 

thermodynamic point of view. Indeed, the strong exothermicity observed for the temperature ramp 

of 25°C (Figure III-24, label 3) can be controlled, which should avoid any projections of molten 

material or significant deformation of the coating caused by excessive temperatures [14]. 
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Figure III-24: DSC thermograms of a preoxidized pure nickel samples in contact with the Al 

metallic powders upon heating (2, 5 and 25°C/min) till 1300°C in Ar. 

 

Table III-9: Thermal data and the potential transformation in the Al particles over Ni preoxidized 

particles upon heating (2, 5 and 25°C/min) till 1300°C in Ar. 

 
Tmax 
(°C) 

ΔT (°C) 
ΔH   

(J g-1) 
Tmax 
(°C) 

ΔT (°C) 
ΔH   

(J g-1) 
Tmax 

(°C) 
ΔT (°C) 

ΔH   
(J g-1) 

Heating ramp 2°C/min 5°C/min 25°C/min 

NiO reduction --- --- --- --- --- --- 642 352-649 -13 

Al melting 660 645-663 28 661 655-662 37 660 649-672 6 

NiO reduction 

(S/L) + NixAly 

formation 

--- --- --- --- --- --- ~756 668-886 -19 

Al3Ni melting --- --- --- 889 884-891 3 745 681-844 19 

NiAl formation 1090 981-1246 -177 867 865-868 -1 1123 1068-1159 -5 

Al3Ni2 melting 1134 1134-1136 1 1136 1135-1138 1 1137 1123-1145 1 

 

Subsequently, a DSC heat treatment comprising different stages depending on the thermal event 

of the aluminothermic reaction between nickel oxide and solid aluminum (620°C), nickel oxide with 

melting aluminum (700°C) and the formation of the intermetallic β-NiAl was deduced from the 

above results and applied to a preoxidized nickel substrate topped with aluminum particles (Figure 

III-25) so as to simulate the formation of a coating. 
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During the rise in temperature, the thermal event corresponding to the Curie temperature can be 

observed. When the first heating ramp is over and the dwell of 620°C is reached, a first exothermic 

event appears. It most likely corresponds to the solid aluminothermic reaction between aluminum 

particles and nickel oxide. This solid-state reaction generates significant energy during the first 

minute of the dwell (Figure III-25 label 1) and tends to fade with time. 

During the second heating ramp to reach the temperature of 700°C, the aluminum melts and an 

endothermic peak is observed at 656°C (Figure III-25 label 2). 

For the stage of 700°C, only one exothermic event can be observed after the aluminum melting. 

This one corresponds most certainly to the second step of the liquid aluminothermic reaction and 

to the formation of an Al3Ni intermetallic. As in the previous case, most of the energy is released 

during the first moments of the dwell and then tends to fade away (Figure III-25 label 3). In addition, 

two endothermic peaks are detected, but with very low intensities. It thus appears difficult to 

unambiguously ascribe these peaks to noise or to a proof of fusion. 

Finally, the last temperature rise occurs after 6 hours and 45 minutes of treatment, upon the 

heating ramp to 1080°C, where four exothermic peaks are noted. The first two at 715°C and 816°C 

could correspond to the aluminothermic reaction between molten aluminum and nickel oxide 

(Figure III-25 label 4). The third at 865°C could correspond to the formation of the intermetallic β-

NiAl (Figure III-25 label 4) and finally the last at 1045°C would correspond to the transformation 

of aluminum oxide to its more stable form α-alumina (Figure III-25 label 5). 

 

Figure III-25: DSC thermograms of a preoxidized pure nickel sample in contact with the Al 

metallic powders upon heating with a heating ramp of 5°C/min and dwells of 2h at 620°C, 700°C 

and 1080°C, in (a) curve as a function of the total duration of the heat treatment, and in (b) curve 

as a function of temperature (= dwell represented at 1 point). 
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Table III-10: Thermal data and the potential transformation in the Al particles over Ni preoxidized 

particles upon heating (5°C/min) till 1300°C in Ar. 

 Tmax (°C) ΔT (°C) ΔH (J g-1) 

Heating ramp 5°C/min 

NiO reduction -92 627-640 -92 

Al melting 655 639-663 8 

Al3Ni melting --- --- --- 

NiAl formation --- --- --- 

Al2O3 transformation 1042 959-1084 -14 

 

• Microstructural development  

The samples were analyzed in cross-section to observe the exothermic reactions and the different 

layers after the annealing DSC treatment. The SEM images (Figure III-26) and EDS spot 

measurements (Figure III-27) allowed to identify the phases formed after the heat treatment. The 

thicknesses of the different layers are summarized in Table III-11. 

For the samples heated at 5°C/min up to 1300°C, 3 distinct zones can be observed (Figure III-

26.a). The first and thickest layer (225±16µm) consists of an Al-rich β-NiAl intermetallic compound 

(Figure III-27). This layer can be divided into 2 parts, with a first part containing pores and alumina 

close to the surface, and a second part without pores and alumina close to the interface. The 

second layer of 31±6 µm consists of a NI-rich β-NiAl intermetallic compound (Figure III-27). Finally, 

the last layer between the coating and the substrate is mainly composed of pores (Figure III-26.a). 

For the second samples heated with 2 dwells of 620 and 700°C/2h, a first layer of Al3Ni 

intermetallic is observed at the surface of the sample (Figure III-37). Below, a dense alumina layer 

can be observed which itself overcomes the residual NiO layer. It is interesting to observe that 

liquid aluminum did not evenly flow/percolate through the nickel oxide layer (Figure III-26.b). 

Finally, Al3Ni2 diffusion islands formed at the top of the substrate (Figure III-27) 

The third heat treatment with an additional stage of 2 hours at 1080°C results in a coating very 

similar to those observed for a continuous heating rate of 5°C/min until 1300°C. At the top of the 

sample, the first layer of β-NiAl intermetallic and alumina clusters can be observed (Figure III-

26.c). The cluster of alumina seems to adhere to the coating. A significant thickness of Al-rich β-

NiAl of 341±- µm is then observed which can be split into two main sublayers (Figure III-27). A 

first part close to the surface containing pores and a second part close to the substrate without 

pores, with a higher proportion/size of pores for the coating with a heat treatment of 5°C/1300°C. 

A second layer of 12±-4 µm consist of a Ni-rich β-NiAl intermetallic compounds and along the 

interface a discontinuous layer of pores can be observed (Figure III-26.c) 

In the case of heat treatments with stages at 620°C, 700°C, and 1080°C deduced from the different 

thermal events, the observations are in line with the previous results. Indeed, for the shortest heat 

treatment with a heating ramp of 2°C/min and two two-hour stages at 620°C and 700°C, the first 

layer of Al3Ni intermetallic is observed at the surface of the sample. Below, a dense alumina layer 
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can be observed which itself overcomes the residual NiO layer. It is interesting to observe that 

liquid aluminum did not evenly flow/percolate through the nickel oxide layer. Areas with a higher 

concentration of defects allowed the liquid Al to fully pass through the NiO layer. Liquid Al was 

then able to reach the substrate and aluminize it, thus forming diffusion islands of Al3Ni2 (Figure 

III-26.b). For the heat treatment with the additional dwell of 1080°C/2h, the results of the end of 

the solid/liquid reduction of NiO, and the formation of NiAl intermetallics can be observed (Figure 

III-26.c). 

 
Heating ramp:  

5°C/min 

Heating ramp: 620°C/2h      

+ 700°C/2 

5°C/min 

Heating ramp: 620°C/2h 

+700°C/2h + 1080°C/2h 

5°C/min 

SEM 

image 

   

Figure III-26: SEM (BSE mode) cross-section of the preoxidized pure nickel sample in contact 

with the Al metallic powders upon heating with a heating ramp of 5°C/min until 1300°C (a) and 

dwells of 2h at (a) 620°C, (b) 700°C and (c) 1080°C. 
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Figure III-27: EDS concentration profiles of Al in the coatings for preoxidized pure nickel sample 

in contact with the Al metallic powders upon heating with a heating ramp of 5°C/min until 1300°C 

(blue) and dwells of 2h at 620°C, 700°C (orange) and 1080°C (red). 
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Table III-11: Summary table of the different compounds and thicknesses of the samples after the 

heat treatments. 

Heating ramp 5°C/min 

Layer 1 2 3 4 

Compounds --- Al rich-NiAl Ni rich-NiAl Cavities 

Thickness 
(µm) 

--- 225±16 31±6.3 14±4 

Heat 

treatment 
700°C/2h 

Compounds Al3Ni Al2O3 NiO Al3Ni2 

Thickness 
(µm) 

15±1 3±1 2±1 9±1 

Heat 

treatment  
1080°C/2h 

Compounds Cluster of Al2O3 Al rich-NiAl Ni rich-NiAl Cavities 

Thickness 

(µm) 
16±3 341±9 11±4 7±4 

 

III.C-Discussion 
As in the case of the heat treatment between the powders, during the first stage of 620°C, the Al 

particles reduce the surface of the NiO thus forming a thin Ni layer with inclusions of Al2O3 (Figure 

III-28.a). When the first dwell of 620°C is over, the temperature increases until reaching the second 

dwell of 700°C. During this temperature rise, the melting of the aluminum particles takes place 

and stops the solid aluminothermic reaction. When the second dwell of 700°C is reached, the 

solid/liquid aluminothermic reaction between the NiO and aluminum begins. As observed in the 

SEM images, this reaction is homogeneous at first, but then when the alumina layer becomes too 

thick and compact the molten aluminum penetrates through specific grain boundaries of the NiO. 

Molten Al reacts with the NiO to form metallic Ni and Al2O3 (Figure III-26.b). The Ni is immediately 

dissolved by the molten aluminum. This makes it possible to widen the cracks and to consolidate 

them (Figure III-28.b). When the liquid Al passes through the entire layer of NiO, it comes into 

contact with the Ni substrate and causes the aluminization of the substrate, resulting in the 

formation of an Al3Ni2 intermetallic diffusion islands. These islands form inwards and outwards the 

substrate, causing the NiO to lift out. At this temperature, the coating formed is so-called high-

activity, which is characterized by a preferential diffusion of Al and the formation of an intermetallic 

rich Al coating (Figure III-28.c). 

After the second dwell at 700°C, the temperature increases to reach 1080°C. During the heating 

ramp, Al becomes more fluid, accelerating the flow of it through the NiO cracks, consuming it and 

replacing it with Al2O3. The Al still available diffuses through the substrate to form a thick layer of 

intermetallic β-NiAl compound (Figure III-28.d).  
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The aluminization of the substrate can be separated in two steps, at a temperature below of 950°C, 

the coating formation mechanism is so-called by high-activity [15,16], resulting in the majority 

diffusion of Al in the coating and substrate [17]. In this case, this leads to the formation of a β-NiAl 

compound without pores. Subsequently, when the temperatures reach 1000°C, the coating 

formation mechanisms evolve into a low-activity coating [15,16,18], resulting in a decrease in the 

Al activity and the increase in the diffusion rate of Ni. During this step, the Ni will diffuse mainly in 

direction of the molten phase rich in Al. This diffusion causes a rapid enrichment of the liquid 

leading to its solidification. This rapid solidification will trap the air bubbles, that are present 

causing the formation of pores. It may be noted that the higher the heating, the bigger the size of 

trapped air bubbles as opposed to a slow heating rate. This significant diffusion of Ni also leads 

to a deficit of atoms in the substrate, which results in the formation of Kirkendall porosity at the 

coating/substrate interface [19]. 

 

Figure III-28: Schematic drawing of the aluminothermic reduction reaction between a preoxidized 

Ni substrate and Al particles heated under DSC at 5°C/min with three dwells of 2h at 620°C, 

700°C and 1080°C. 

III.D-Conclusion 
During this chapter III, the activity of Al powders with preoxidized Ni powders and preoxidized Ni 

substrate with Al powder were explored. 

It has been revealed that the size, the preoxidation time of the Ni particles, and the heating rate 

are predominant parameters in the case of powder mixtures. Indeed, it has been demonstrated 

that when small particles of preoxidized nickel were used during the thermite reaction, a composite 

of complex structure between various NixAly intermetallic and alumina is formed. This composite 

consists of particles with a metallic core is an alumina shell. As for the rate, it induces a difference 

in porosity between the different composites formed with the opposite effect in the case of layouts 

2 (Niox above Al) and 3 (Al above Niox). In fact, in the case of layout 2, the faster the heating rate, 

the greater the compactness of the composite formed. On the contrary in layout 3, the composite 

formed is more compact during the slow heating rate. In addition, a larger area is affected by the 

diffusion of aluminum when heating slowly. 

For these two configurations, the structures of the composite are promising for obtaining a coating 

with a self-regenerating character. An extrapolation of these preliminary results was then carried 

out on a raw preoxidized substrate. 

The configuration of these tests is similar to the layout 3, where the aluminum particles lay on the 

nickel preoxidized particles. From the calorimetric point of view, the difference between the tests 

on the particles and on the preoxidized substrate is negligible for the low heating rates of 2 and 
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5°C / min. For a heating rate of 25°C/min, the energy exchanges observed are greater. Very likely, 

this corresponds to a difference in the amount of raw material available in the crucible and due to 

the difference in porosity between the powder mixtures and the substrate. 

In addition, different temperature ramps were tested for these tests to highlight the different 

exothermic reactions such as the aluminothermic reaction between nickel oxide and aluminum. 

When the crucible is heated up to 700°C /2h, the various stages of the aluminothermic reaction 

take place on the surface of the preoxidized nickel, consequently forming a thick layer of alumina 

blocking the diffusion of aluminum. However, aluminum flows into defects of NiO to aluminize the 

substrate. This leads to the formation of diffusion islands and the lifting of the oxide layer. When 

the samples are heated to 1080°C, the entire NiO layer is reduced and the thickness of the 

aluminized substrate is several hundreds of microns. 

The results obtained for the stage of 700°C /2h appear interesting for the continuation of this study, 

because the coating that forms on the surface consists of a NixAly intermetallic coating and an 

alumina diffusion barrier. Subsequently, it will be necessary to reduce the entire nickel oxide layer 

during the aluminothermic reaction and to suppress the detachment effects. 

One of the possible methods, is to reduce the thickness of the oxide layer and therefore control 

the oxidation time and/or the temperature.   
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Chapter IV: Synthesis of self-

regenerating composite coatings 

using aluminothermic reaction 
 

The previous chapter dealt with the reactivity of aluminum and preoxidized nickel in two 

configurations: the mixture of aluminum and preoxidized nickel particles and the deposition of 

aluminum particles onto a preoxidized nickel substrate. It has been demonstrated that the high 

exothermicity of the aluminothermic reaction as well as the formation of Al-Ni intermetallics and 

aluminum oxide leads to a complex composite structure. Part of this composite is made up of an 

alumina shell and an intermetallic core of NiAl or Al3Ni2.  

Based on the results of Chapter III, Chapter IV now investigates the aluminizing of preoxidized Ni 

substrate via a slurry route in order to synthetize a nickel aluminide coating containing micro-

reservoirs. 
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Abstract 
The aluminothermic reactions involved either in the mixtures or the stack of NiO and Al powders 

were elucidated in a previous work [1]. The present work now investigates the formation of 

potential self-regenerating coatings using the aluminothermic reaction between nickel oxide and 

aluminum. The use of this exothermic reaction allows the simultaneous formation of both alumina 

and nickel aluminides. The coatings were obtained by first pre-oxidizing the nickel substrate, then 

spraying an aluminum slurry before applying an adequate heat treatment. The most promising 

self-regenerating coatings display a first composite layer, made of an intermetallic compound 

(Al3Ni or NiAl) and alumina, and a second layer with a higher concentration of oxide. The first layer 

is expected to play the role of an Al reservoir coating and the second one that of a diffusion barrier 

to slow down the Al flux to maintain the Al reservoir in the coating. The effects of preoxidation time 

and of temperature on the resulting coating microstructures are discussed as a function of time. 

I.A-Introduction 
Aluminum diffusion coatings manufactured by CVD-related techniques have long and widely been 

used for the protection of turbine blades made of Ni-based superalloys exposed to oxidative and 

corrosive conditions [2,3]. Some recent studies focused on slurry aluminizing via aqueous routes 

due to their milder ecological impact and much lower cost. The oxidation resistance of the slurry 

aluminide coatings was similar the one observed with traditional ones [4,5]. Pedraza et al. 

described the mechanisms of formation of such aluminide coatings on pure Ni [6] and Galetz and 

collab. [7] revealed the high exothermicity associated during the reaction of molten Al and Ni, 

which allowed the impressively quick formation of the coatings on different Ni-based superalloys 

[7,8]. 

However, irrespective of the fabrication mode (CVD or slurry), the Al from the diffusion coatings is 

mostly lost by diffusion into the substrate and diluted by the upward flow of the alloying elements 

upon exposure to high temperatures [9]. As a result, the Al reservoir of the coatings is depleted in 

particular with high activity coatings because of the significant Al gradient between the coating 

and the substrate [5]. While different approaches to slow down the Al inward diffusion have been 

proposed in the open literature, they all rely on placing diffusion barriers between the coating and 

the substrate mostly by using CVD [10], PVD [11], electrodeposition [12-14], and even by 

mailto:romain.troncy1@univ-lr.fr
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explosive welding, forming and heat treatment [15]. Such diffusion barriers can result in different 

coating compositions, microstructures and thicknesses that can be tailored as a function of the 

final application. Yet, none of these studies investigated the simultaneous formation of a hybrid 

coating like the ones derived from the well-known aluminothermic exothermic reactions that result 

in composite coatings made of nickel aluminides and alumina. For instance, Padmavardhani et al. 

sintered functionally graded NiAl-Al2O3 composite compounds by reactive hot compaction of 

powders [16]. Hot-pressing of pre-oxidized NiAl powder was also employed to form NiAl-Al2O3 

bulk samples with adequate bending strength and toughness [17]. One of our previous works 

highlighted the different reactive processes when mixing pre-oxidized Ni and metal Al vs. stacking 

metal Al onto pre-oxidized Ni. It was concluded that the particle size and preoxidation time 

governed the growth of the multilayered bulk samples made of nickel aluminides of different 

stoichiometries with various dispersions of the Al2O3 issued from the aluminothermic reaction [1]. 

Therefore, the goal of this paper is to extrapolate our previous findings to bulk samples to form 

potential self-regenerating coatings. The idea is to exploit the in situ exothermicity (with no external 

compaction) between the powders deposited from water-based slurries onto a pure Ni substrate 

to sinter the composite NixAly-Al2O3 coatings. In addition, the high heat released during the 

aluminothermic reaction will be absorbed by the high thickness of the nickel, which will avoid the 

emission of gas or the projection of molten metal, as the work of K. Woll et al. as shown [18]. The 

mechanisms of formation of these original coatings are discussed for the first time in the literature.  

I.B-Experimental procedure 
Bulk Ni samples (99.98 wt. %, Goodfellow) were cut from 12.7 mm diameter cylindrical rods into 

coupons of about 1.5 mm thickness, polished with SiC P180 papers and then rinsed with deionized 

water and cleaned in ethanol before pre-oxidation at 1100°C for 2 h in air. After this pre-oxidation 

step, an Al-based slurry was sprayed on the coupons. The slurry formulation is based on a 1/10 

PolyVinyl Alcohol (PVA)/deionized water solution to which 45 wt. % of spherical Al powders (4±3 

µm, Hermillon Poudres, France) were added [12]. After blending, the slurries were deposited by 

airbrush on the pre-oxidized coupon samples. After each deposit, the samples were systematically 

dried in a stove at 50 °C for 30 min. The samples were weighed before and after slurry deposition 

with a 10-4g precision balance to control the deposited slurry quantity. 

The dry coatings were then annealed in a TGA apparatus to form the diffusion coating, under a 

flow of argon (20 mL/min) to prevent any significant oxidation of the substrate and of the Al 

particles [7]. The heat treatment was adapted to consider the thermal events observed in the 

differential scanning calorimetry (DSC, SETARAM Labsys Evo 1600) measurements [1]. This 

gave us three steps: at 620°C for 2 h to foster the solid/solid reduction between Al and NiO; 700°C 

for 2h to promote the liquid/solid aluminothermic reduction and the Al inward diffusion and a final 

step at 1080°C to terminate the aluminothermic reduction and foster the outward diffusion of Ni 

[6]. 

Two series of short (2 h) and long (12 and 24 h) heat treatment times were investigated (Figure 

IV-1). In all of them, the heating and cooling rates were set at 5°C/min. In the short annealing 

series (Figure IV-1a), temperature increments from 620 to 700 and finally to 1080°C were also 

investigated. In the long annealing series (Figure IV-1b), the same temperatures were employed 

but the dwell times were longer (24h at 620 and at 700 °C and 12 h at 1080 °C). In the following, 

each heat treatment will be named through the last applied stage, for example: 620°C/2 h, 700°C/2 

h or 1080°C/2 h, or 620°C/24 h. 
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Following these six different tests, the most promising heat treatments (700°C/24 h and 1080°C/2 

h) were performed on the nickel substrate pre-oxidized for different times (30 min, 1 h, 1.5 h, 2 h), 

with a fixed quantity of deposited slurry (10±2 mg/cm²) to examine the influence of the effects of 

the nickel oxide layer. 

   

 

Figure IV-1: Schematic drawing of the annealing treatments (a) short (dwell of 2h) and (b) long 

(dwells of 12 and 24 h) times of treatment. 

 

The analyses and observations were done with a SEM (FEI QUANTA 200F) coupled to an EDAX 

detector for chemical analysis, at 20 kV under low vacuum (0.9 mbar). Raman micro-spectrometry 

(Jobin Yvon LabRam HR800, λ=632.82 nm) was also carried out to identify the different oxide 

phases. In addition, the crystal structure was characterized by X-ray diffraction (XRD) in a Bruker 

AXS D8 Advance with Cu kα1 radiation (λ=0.15406 nm). The cross-sections were polished down 

to 1 µm water-based diamond suspension (Struers).  

In addition, the SEM surface images of the pre-oxidized samples were processed with Photoshop 

to remove the oxide ridges. This step was required to reduce noise in the Image J treatment for 

the calculation of the areas and grain sizes of the oxides.  
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I.C-Results 

I.C.1-Pre-oxidation of bulk Ni 
The Ni substrates were pre-oxidized for 30 min, 1, 1.5 and 2 h at 1100 °C in air. The SEM 

micrographs taken on the surface and in the cross-section are shown in Figure IV-2 in the 

secondary electron (SE) and backscattered electron (BSE) modes. The main results retrieved 

from image analysis are summarized in Table IV-1. Two morphologies of NiO (ridge-like and 

compact grains) can be observed at the surface of the samples for pre-oxidation times shorter 

than 1.5 h. Two mechanisms can be proposed to explain the formation of the ridge-like 

morphology. First, the growth of the oxide is enhanced in the regions close to the grain boundaries 

due to a greater cationic external diffusion. The ridges were also suggested to form over the grain 

boundaries due to a greater local stress resulting from the internal oxide formation [19,20]. In this 

mechanism, the oxide layer is supposed to relax stresses by plastic deformation forcing the oxide 

to move vertically, which leads to the creation of the ridges. In our case, the amount of ridges 

decreases with increasing the pre-oxidation time (Table IV-1). Increasing the pre-oxidation times 

allows the oxide to expand from the grain boundaries towards the grain surface, which thus lowers 

the outward cation diffusion and decreases the growth stresses. In a similar vein, the size of the 

compact oxide grains increases with the exposure time (Figure IV-3). Their growth is well reported 

in the literature to occur by outward lattice diffusion of Ni via singly or doubly charged Ni vacancies 

that leads to the columnar morphology [21] also observed in our study.  
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Figure IV-2: SEM (SE and BSE mode) of surface and cross-section images on Ni samples pre-

oxidized at 1100 °C under air for 30 min, 1, 1.5 and 2 h. 
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Table IV-1: Summary table of the ratio, thickness and size of the grains for different times of pre-

oxidation. 

Time Compact grain area ratio 
(%) 

Size of the compact 
grains (µm) 

Thickness of the oxide 
layer (µm) 

30 min 40.6 2±1 8±1.1  

1h 72.8 2±1 12±1 

1.5h 100 2±1 14±2 

2h 100 3±1 15±2 

 

 

Figure IV-3: Size and dispersion of the NiO compact grain sizes for the different pre-oxidation 

times at 1100 °C. 

 

The 10 mg/cm² slurries deposited on the pre-oxidized samples are shown in Figure IV-4. The top 

layer is 55±4 µm thick and contains the bright Al microparticles (label 1 on Figure IV-4). Below, 

the nickel oxide layer formed by oxidation at 1100 °C for 2 hours of the underlying nickel substrate 

is observed (label 2 on Figure IV-4). 

 

Figure IV-4: Cross-section of the sample after application of the slurry on the pre-oxidized Ni 

substrate (1100 °C for 2 h). 
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I.C.2-Influence of the annealing temperature 

The microstructures of the pre-oxidized (2 h) bulk Ni samples after reaction with Al at 620, 700 

and 1080°C for 2 and 24 h are shown in Figure IV-5. The compositions of the metallic elements 

in the observed layers are also given. The compounds formed and the thicknesses of the different 

layers are summarized in Table IV-2. They have been assessed by XRD, EDS and the Raman 

spectroscopy (Figure IV-6). 

• Heat treatment at 620°C for 2 h and 24 h 

After 2 h at 620°C (Fig. 5.a), only the outermost layer of NiO has reacted with Al to result in a 

porous Ni-rich layer of about 2.0±0.9 µm that also contains some oxide inclusions (Figure IV-5.a, 

layer 1). The layer below corresponds to the part of NiO that did not react during the heat treatment 

(Figure IV-5.a, layer 2). Indeed, the EDS analyses indicate that very little aluminum has diffused 

into this layer (Al-Ni 1-99 at. %). Increasing the time to 24 h results in a similar microstructure than 

after 2 h but now Al has diffused markedly (Figure IV-5.b).  

• Heat treatment at 700°C for 2 h and 24h 

The additional treatment at 700°C for 2 h brings about significant changes of the layers and of the 

microstructure (Figure IV-5.c). Indeed, a large part of the reduced Ni layer has reacted with Al to 

form an Al3Ni intermetallic compound (Figure IV-5.c, layer 1). However, a thin layer of metallic Ni 

still remains below the Al3Ni layer (Figure IV-5.c, layer 2). Then, the layer of NiO and the substrate 

are observed (Figure IV-5.c, layer 3). As opposed to 620°C/2h, a significant amount of Al has now 

diffused all across the layer of NiO (13 at. % Al) towards the substrate (9 at. % Al). 

By increasing the reaction time to 24 h (Figure IV-5.d), three layers can be distinguished over the 

substrate. The thickest (16±3 µm) most external layer is composed of an intermetallic/oxide 

composite, with an Al3Ni intermetallic matrix and Al oxide shells surrounding the original Al 

particles (3.8±1.5 µm) (Figure IV-5.d, layer 1). The central layer (thickness 8.7±1.8 µm) is 

composed of a cluster of oxides (Figure IV-5.d, layer 2). This layer is separated from a 7.5±1.7 

µm layer of unreacted NiO by a very thin layer of metallic Ni (Figure IV-5.d, layers 3 and 4). In 

addition, the EDS analyses indicate that a significant Al has diffused through NiO to the substrate, 

with Al amounts of 23 and 16 at. % respectively. 

• Heat treatment at 1080°C for 2 and 12h 

With the additional last heat treatments at 1080°C, the morphologies of the coatings are 

dramatically different from what was observed at lower temperatures. After 2 h, the first layer 

consists of NiAl intermetallic compound with Al2O3 inclusions (Figure IV-5.e, layer 1) and 

surmounts a thin and compact layer of Al2O3 (Figure IV-5.e, layer 2). Then, the fine layer of Ni 

appears above the layer of NiO and the substrate (Figure IV-5.e, layers 3 and 4). 

After 12 h, the coating is mainly composed of NiAl but three inhomogeneous sub-layers can be 

observed (Figure IV-5.f). The first sub-layer is characterized by the presence of numerous pores 

(Figure IV-5.f, layer 1). The second one is quite similar to the one observed after 24 h at 620 and 

700 °C, with the presence of Al2O3 clusters (Figure IV-5.f, layer 2). The third layer is very uneven 

and contains large oxidized cavities extending into the 4th layer that is composed of NiAl (Figure 

IV-5.f, layer 4). One can also note the delamination between the coating and the substrate 

probably due to a difference of their thermal expansion coefficients.  
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Figure IV-5: SEM (BSE mode) cross-sections of the samples pre-oxidized at 2h for 1100°C and 

subsequent annealing of the Al-slurry coating at 620°C (a and b), 700°C (c and d) and 1080°C 

(e and f) for 2, 12 or 24 h. 

 



- IV. Synthesis of self-regenerating composite coatings using aluminothermic reaction - 

 

 
-130- 

Table IV-2: Summary table of the different compounds and thicknesses of the samples after the 

heat treatment. 

Figure 5.a 5.b 

Layer 1 2 3 4 1 2 3 4 

Compounds 
Ni + 

pores 
NiO Substrate --- Ni NiO Substrate --- 

Thickness 
(µm) 

2.9±1 1.8±1.8 --- --- 1±0.2 13.2±1.8 --- --- 

Figure 5.c 5.d 

Compounds Al3Ni Ni NiO Substrate Al3Ni 
Cluster of 

Al2O3 
Ni NiO 

Thickness 
(µm) 

3.1±0.9 0.6±0.5 10.2±0.6 --- 15.5±3 8.7±2 0.2±0.1 7.5±2 

Figure 5.e 5.f 

Compounds 
NiAl +  

α-Al2O3 
α-Al2O3 Ni NiO 

NiAl + 
pores 

Cluster of 
α-Al2O3 

Oxidized 
cavities 

NiAl 

Thickness 
(µm) 

9.8±1.5 2.4±0.6 2.4±0.7 6.9±0.7 14.4±2 12.3±4 8.1±6 52.7±4 

 

  

Figure IV-6: Raman spectra on the cross-sections of 2 h pre-oxidized samples after the heat 

treatments 1080°C/2h (a), 700°C/24 h and 1080°C/12 h (b). 

 

I.C.3-Influence of the pre-oxidation time of the nickel substrate 
Following the results presented in section 2.2, the most promising heat treatments for a possible 

self-regenerating coating application appear to be 1080°C/2 h and 700°C/24 h. Therefore, the 

study of the influence of the pre-oxidation of the nickel substrate was exclusively conducted with 

such heat treatments. The pre-oxidation times were thus set at 30 min, 1 h and 1.5 h. The 

microstructures and metal contents in the coatings after the heat treatments are given in Figure 

IV-7. Table IV-3 summarizes the crystallographic compounds assessed by XRD, EDS and Raman 

spectroscopy (Figure IV-8), and the thicknesses of the different layers (from SEM images). 
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Figure IV-7: SEM (BSE mode) cross-sections of the pre-oxidized samples at 30 min, 1 h and 1.5 

h for 1100 °C after TGA treatment at 1080°C/2h and 700°C/24 h. 
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Figure IV-8: Raman spectra on the cross-sections of samples pre-oxidized for 30 min, 1 and 1.5 

h made after the heat treatments 1080°C/2 h (a) and 700°C/24 h (b). 

 

• Heat treatment of 1080°C/2h  

For the heat treatment 1080°C/2 h applied on a Ni sample pre-oxidized for 30 min, the coating 

presents a non-homogeneous structure because the areas made of “diffusion islands” alternate 

with more homogeneous zones. The diffusion islands are composed of a NiAl (Figure IV-7.a label 

1) and Ni3Al core (Figure IV-7.a label 1) surrounded by aluminum oxide (Figure IV-7.a label 3). 

The more homogeneous area is made up of a first layer of NiAl, embedding alumina particles that 

surmounts a thick layer of aluminum oxide, nickel and NiO. It can be noted that only a few 

discontinuous areas of NiO remain (Figure IV-7.a label 5), i.e. most of the NiO has been 

consumed. 

With 1 h of pre-oxidation, the diffusion islands can no longer be observed and the coating exhibits 

a more homogeneous aspect. Like with the 30 min of pre-oxidation, the first layer consists of an 

intermetallic compound (Figure IV-7.c label 1) that surmounts an alumina layer (Figure IV-7.c label 

2) whose thickness is similar to the previous one. Finally, Ni resulting from NiO reduction (Figure 

IV-7.c label 3) and the remaining NiO can be observed closer to the substrate (Figure IV-7.c label 

4). 

For a pre-oxidation time of 1.5 h, the coating shows a very different structure, except for the first 

layer (Figure IV-7.e label 1) (NiAl embedding alumina particles). Below, a composite structure 

comprising Al2O3 and NiAl is found whose thickness is uneven and delimited by a dense layer of 

alumina (Figure IV-7.e label 2). Underneath, a Ni layer (Figure IV-7.e label 3) with NiO islands 

(Figure IV-7.e label 4) appears over the Ni substrate (Figure IV-7.e label 6) containing aluminized 

areas (Figure IV-7.e label 5) and alumina particles (Figure IV-7.e label 7). 

• Heat treatment of 700°C/24h 

For the heat treatment 700°C/24 h, the coatings appear rather similar to the one shown in Figure 

IV-5.d (section C.2) irrespective of the pre-oxidation time. Four different layers can again be 

observed. The top layer made of the intermetallic compound Al3Ni (Figure IV-7.b,d,f label 1) 

surmounts an aluminum oxide cluster (Figure IV-7.b,d,f label 2), then a thin layer of Ni resulting 
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from the NiO reduction (Figure IV-7.b,d,f label 3) and finally, the remaining NiO (Figure IV-7.b,d,f 

label 4). Their thicknesses and compositions are however somewhat different (see Table IV-3). In 

addition, the coating contains no trapped particles when the pre-oxidation is conducted for just 30 

min (Figure IV-7.b label 1). 

Table IV-3: Summary table of the different compounds and thicknesses of the coating layers 

resulting from the heat treatments of the slurry after TGA treatment  

(1080°C/2 h and 700°C/24 h). 

 1080°C/2 h 700°C/24 h 

Figure 7.a 7.b 

Layer 1 2 3 4 1 2 3 4 

Compounds NiAl Al2O3 Ni NiO Al3Ni 
Cluster of 

Al2O3 
Ni NiO 

Thickness 
(µm) 

1.1±0.5 1.6±0.3 1±0.2 1.1±0.5 2.1±0.5 3±1.3 0.4±0.3 7.8±1.4 

Figure 7.c 7.d 

Compounds NiAl Al2O3 Ni NiO Al3Ni 
Cluster of 

Al2O3 
Ni NiO 

Thickness 
(µm) 

1.7±0.7 2.6±0.3 1.7±0.3 9±0.8 5±1.5 2.4±1.2 0.4±0.3 9.5±1.8 

Figure 7.e 7.f 

Compounds NiAl 
Cluster 

of 
Al2O3 

Ni NiO Al3Ni 
Cluster of 

Al2O3 
Ni NiO 

Thickness 
(µm) 

3.4±1.3 9.6±3.4 2.3±3.5 2.8±1.8 3.7±1.9 3.9±1.4 0.3±0.2 10±2 
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I.D-Discussion 

I.D.1-Influence of the heat treatment on the formation mechanisms of coatings 
Concerning the heat treatment at 620°C, the observed phenomena are identical when the heat 

treatment is of 2 or 24 h and barely any aluminothermic reaction occurred. In contrast, significant 

differences appear when the temperature is raised to 1080°C (short times) or the times are 

extended (24 h) at intermediate temperature (700°C). 

For the short times (2 h at 620 and at 700°C) till 1080°C/2 h, a sequence for the mechanisms of 

formation of the coatings is schematically depicted in Fig. 9. When the temperature reaches 

517±15°C [1], an aluminothermic reaction between the Al microparticles and NiO starts at their 

interface (eq. 1). This solid/solid reaction of reduction results in the formation of a thin layer (2.9±1 

µm) of metallic Ni after 2 h at 620°C (Fig. 9.a). 

𝐴𝑙 + 𝑁𝑖𝑂 =  𝐴𝑙2𝑂3 + 𝑁𝑖  (eq. 1) 
 

Then, at a temperature of about 660°C, Al melts and begins to dissolve the Ni product near the 

interface and provokes a competition reaction between the formation and the dissolution of the 

eutectic Al3Ni [7]. During this step, no aluminothermic reaction takes place [1,14]. 

When the temperature increases and approaches 700°C, the formation of the Al3Ni intermetallic 

is assumed to be sufficiently fast (eq. 2) to overcome its dissolution (3 µm after 2 h (Fig. 9.b)). 

𝐴𝑙(𝑙) + 𝑁𝑖 = 𝐴𝑙3𝑁𝑖  (eq. 2) 
 

At higher temperature (1080°C), the Ni content locally increases and causes the transformation of 

Al3Ni into solid Al3Ni2 (eq. 3) and then into NiAl (eq. 4) (Figure IV-9.c). The alumina formed during 

this step gets stuck at the grain boundaries of the NiO, depicting the pattern of nickel oxide shown 

in Figure IV-5.e and 5.f. 

𝐴𝑙3𝑁𝑖(𝑙) + 𝑁𝑖(𝑙) =  𝐴𝑙3𝑁𝑖2(𝑠)  (eq. 3) 

𝐴𝑙3𝑁𝑖2(𝑠) + 𝑁𝑖(𝑠) = 𝑁𝑖𝐴𝑙(𝑠)  (eq. 4) 

𝐴𝑙(𝑙) + 𝑁𝑖𝑂(𝑠) =  𝐴𝑙2𝑂3 + 𝑁𝑖  (eq. 5) 
 

One shall note that these reactions are assumed to be fostered by the local temperature increase 

related to the high exothermicity involved in the dissolution of Ni in molten Al [7,8]. Therefore, the 

alumina formed by aluminothermic reaction (eq. 5) rapidly segregates at the interface between 

the intermetallic and the NiO, further reducing matter exchange, which stops the aluminothermic 

reaction (Figure IV-9.d). The combined thickening of alumina and the increased Ni content of the 

intermetallic slow down the solid-state diffusion and the overall activity of the system [18,22-23]. 
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Figure IV-9: Schematic drawing of the aluminothermic reduction and reaction between a pre-

oxidized Ni substrate and Al particles heated by stages till 1080°C. 

 

In contrast, the evolution of the coating is quite significant at 700°C/24 h (Figure IV-10.a). Initially, 

the solid/solid aluminothermic reactions followed by melting of Al and the formation/dissolution of 

the eutectic Al3Ni occur (Figure IV-10.b). However, two different microstructures of the coatings 

have been observed. 

A first microstructure (Figure IV-10.c) results from the aluminothermic reaction between molten Al 

and NiO (eq. 5). This reaction brings about the formation of Al2O3 that segregates at the Al/NiO 

interface. While compact, the alumina layer is relatively discontinuous and therefore restricts the 

diffusion phenomena between the species without blocking them fully. As a result, the thickness 

of alumina increases till a threshold value (~5 µm) over which interdiffusion is arrested and the 

remaining NiO cannot be reduced.  

In the second coating microstructure (Figure IV-10.d), the initial development is assumed to be 

quite similar. However, the Al2O3 grains issued from the aluminothermic reactions form clusters 

that do not slow down sufficiently direct contact of molten Al with the newly formed Al3Ni. This 

exothermic reaction brings about the dissolution of the intermetallic component and the Al2O3 

clusters to float over the melt. The subsequent aluminothermic reaction will keep on producing the 

Al2O3 clusters dispersed in the intermetallic layer. The end of the reactions can occur by either an 

insufficient amount of Al that would stop the aluminothermic reaction, but this does not seem to 

be the case, or by the increased amount of Al2O3 in the coating, which appears in line with the 

experimental observations because Al2O3 both blocks interdiffusion of the species and lowers the 

local temperature given the fact that Al2O3 is an inert heat absorber [23]. 
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Figure IV-10: Schematic drawing of the aluminothermic reduction and reactions between a 

preoxidized Ni substrate and Al particles heated at 700°C during 24 h 

 

I.D.2-Influence of the pre-oxidation time  

• 700°C/24 h 

The coating microstructures obtained after 24 h at 700°C on the substrate pre-oxidized for different 

times do not differ markedly. In particular, the thin NiO scale formed after just 30 min of pre-

oxidation remains almost identical (Figure IV-11). In contrast, a greater permeability of Al through 

the NiO layer to form Al3Ni is obtained with longer pre-oxidation times (Figure IV-11.a). This can 

be interpreted on the basis of the vacancy concentration in the oxide. Indeed, NiO is a p-type 

semiconductor, which implies that thickening of the oxide takes place by outward cation diffusion 

hence leading to a porous scale (Figure IV-12.a). In addition, different studies reported that the 

NiO oxide scale develop a continuous network of pores and cracks that reach the substrate [21,24-

29] due to many different reasons including the dissociation of the oxide along the defects (grain 

boundaries, porosity, etc.) [30-33], cracking induced by the internal stresses [24, 34-37] and 

opening of the microcracks related to different diffusion rates within the oxide scale (Figure IV-

12.b) [37]. In this study, we hypothesize that the molten Al and Al3Ni can pass through these 

channels by capillarity. This is supported by the fact that the 1.5 h pre-oxidized nickel does not 

form homogeneous clusters of Al2O3 after annealing the coatings till 1080°C/2 h and 700°C/24 h 

(Figure IV-12.c). In contrast, the Al2O3 seems to segregate at the channels and grain boundaries 

of NiO (Figure IV-12.c). Furthermore, the Al-rich flux does not reach the Ni/NiO interface because 

(i) the defects in the oxide are too discontinuous to allow a regular flow of Al and/or diffusion of Ni 

to form the Al3Ni, (ii) the Al activity lowers significantly, hence limiting the aluminothermic reaction 

and the interdiffusion of the species and (iii) the Al2O3 layer grows over the critical threshold and 

blocks the direct contact of Al with Ni. Very likely, a combination of the three phenomena occurs 

but (iii) appears more plausible and is coherent with the significant amounts of Al2O3 shown in the 

coatings and with the fact that Al particles get trapped by outward diffusion of Ni (Figure IV-12.d).  

• 1080°C/2 h 

As opposed to 700°C/24 h, the pre-oxidation time exerts a great influence on the aluminothermic 

reaction and on the aluminizing of the nickel substrate. Indeed, for the samples pre-oxidized 30 

min and 1 h, the Al2O3 resulting from the aluminothermic reaction blocks the reaction between Al 

and Ni. As a result, the reaction is stopped and the substrate cannot be aluminized. For longer 

pre-oxidation times (1.5 h), the Al2O3 mimics the shape of the former NiO grains. This suggests 

that molten Al and/or Al3Ni permeates through the defects of NiO and that reduction of half of the 

NiO thickness has occurred (Figure IV-11.b).  
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Figure IV-11: Histogram of the thicknesses of the different formed layers for a heat treatment 

700°C/24 h (a) and 1080°C/2 h (b) applied after different Ni substrate pre-oxidation times. 

 

 

Figure IV-12: Schematic drawing of the aluminothermic reduction and reactions between pre-

oxidized Ni substrate and Al particles heated at 700°C during 24 h, emphasizing on the role of 

the NiO grains boundaries. 
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I.E-Conclusions 
The formation of potential self-regenerating coatings with Al-rich NixAly phases and Al2O3 

dispersion has been investigated using aluminothermic reactions on pre-oxidized nickel substrate. 

It has been found that one key parameter to achieve even coatings is the duration of the 

preoxidation of the substrate. The short pre-oxidation times (< 1 h) grow a “ridge-like” morphology 

of NiO that impedes the homogeneous aluminization of the substrate. The longer pre-oxidation 

times (1<t<2 h) leads to the growth of compact grains that allows the aluminothermic reaction to 

occur, hence to obtain even aluminized layers. It is believed that the increase in the permeability 

of NiO to Al is due to the many defects present in the oxide layer caused by the major diffusion of 

Ni2+ cations to the oxide surface.  

One of the promising coatings was sintered by pre-oxidizing the Ni substrate for 2 h followed by a 

slurry aluminizing at 700°C for 24 h. The coating consists of a first layer of Al3Ni and alumina 

microspheres and a second layer with a composite microstructure between the alumina and the 

intermetallic compound. However, an unreacted NiO layer remained over the substrate even after 

24 h of aluminizing. It thus appears that the control of the thickness of the NiO oxide needed for 

the reduction could be achieved by electroplating nickel layers onto the substrates to be coated, 

which shall be investigated. Similarly, the interdiffusion behavior should be studied to assess the 

regenerating effect of the coatings Al3Ni + Al2O3.  
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II-Synthesis of self-regenerating NiAl-Al2O3 composite 

coatings using Ni plating and aluminothermic reaction 
In the previous part, it was demonstrated that the use of an aluminothermic reaction allows the 

synthesis of a self-regenerating coating. The most promising combination was obtained with a 

preoxidation treatment of 2 hours at 1100°C followed by an aluminizing treatment of 24 hours at 

700°C. However, despite the aluminizing treatment, a thin layer of nickel oxide from the 

preoxidation treatment remained located between the coating and the substrate. It was also shown 

that the longer the preoxidation time, the greater the permeability of the nickel oxide layer by Al. 

In this second part, the aim was to increase the permeability of the oxide layer to transform it 

entirely during the aluminizing step. 

For this, a nickel layer was electroplated on a Ni sample. It was then preoxidized before 

aluminizing. This method presents two major advantages: the electrodeposit results in the unique 

formation of nickel oxide during the preoxidation step and therefore impedes the formation of any 

other -less reducible- oxide from the underlying alloy or superalloy substrate. Moreover, by 

adjusting the current density, it is possible to manage the porosity and grain size of the Ni 

electrodeposit [39-40], which in turns should increase the porosity of nickel oxide, hence its 

permeability to aluminum. 

The challenge is here to achieve a nickel deposit that is porous enough to allow its full oxidation 

and the subsequent permeation of Al resulting in the formation of the expected composite structure 

(micro-reservoirs of Al-rich intermetallic phase and alumina shells). The nickel electrodeposits 

were elaborated from a nickel sulfate solution (Watt’s bath). The influence of the electroplating 

current density, of the thickness of the deposit and of the preoxidation time on the resulting 

aluminide coating have been investigated. 

The Ni electrodeposits were carried out on Ni substrates polished by successive SiC papers down 

to P180 grade. A first layer of Ni (= Ni flash) of 5±1 µm was previously deposited at 50 mA/cm² to 

increase the adhesion of the Ni electrodeposit. Indeed, stresses can be generated during 

electrodeposition. These stresses appear greater for high current densities and can cause 

decohesion at the interface between the coating and the substrate. The application of a first flash 

electrodeposited layer is reported to reduce these interfacial constraints [40-42]. The 

electrodeposits were then carried out with higher current densities of 90, 270 and 530 mA/cm², 

i.e. an applied intensity of 0.1, 0.3 and 0.6 A. 

The targeted thickness of electrodeposits was of 40±10 µm for current densities of 90, 270 and 

530 mA/cm². Moreover, thinner (20 µm) electrodeposits synthesized with a current density of 530 

mA/cm² have also been studied. Since the nickel electrodeposits made from nickel sulfate induce 

strong internal stresses [43], annealing of 4 hours at 150°C under argon was conducted after the 

electrodepositions [44] to reduce such stresses and the risk of spallation. 
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II.A-Results 

II.A.1-Microstructure of Ni plating 
The SEM cross-section micrographs of the electrodeposited Ni layer are shown in Figure IV-13. 

The mean thicknesses of Ni deposits retrieved from image analysis are summarized in Table IV-

4. 

All electrodeposits exhibit a columnar grain morphology irrespective the applied current density, 

which is in line with the results of literature [38,40,45-47]. Columnar structures are indeed 

frequently observed in the case of electrodeposited films. According to Thompson et al., the 

formed grains tend to grow perpendicularly to the substrate when the grain growth takes place 

without coalescence [47]. In addition, several studies report that the grain size and the 

microstructure of deposits are directly affected by the adsorption of species that inhibit film growth. 

Winand et al. [38] developed a diagram (Figure IV-15) showing the different microstructures as a 

function of two parameters [48-51]. The first parameters are linked to the crystallization 

overvoltage. However, this measurement is difficult to obtain, therefore Winand et al. chose to 

express J/Jlim ou J/𝐶𝑀𝑒𝑧+(= the apparent cathodic current density to the bulk concentration in 

metallic ions to be discharged). The second parameter is related to the inhibition intensity and 

depends on the adsorption affinity at the surface of the samples. Winand et al. have shown that 

nickel electrodeposits are highly sensitive to these inhibitory phenomena [38]. In the case of the 

Watt’s bath, the inhibitors are electrolyte anions such as Cl- and SO4
2- (Figure IV-15). 

In the considered range of current density, it seems that the grain growth can be described by the 

model proposed by Fischer, based upon a basis-orientated reproduction type (BR) (Figure IV-15) 

[38]. This type of growth has been observed for moderate current densities and moderate degrees 

of inhibition. The growth begins with a 2D nucleation mechanism with the formation of polyatomic 

species leading to the formation of BR type deposits (Figure IV-15). In addition, for long 

electroplating times, the crystal size can become large enough to trap electrolyte in the deposit, 

which then inhibits growth. 

Furthermore, one can observe a decohesion between the first electrodeposit made at 50 mA/cm² 

and the substrate (Figure IV-14). We suppose that this decohesion takes place during the 

shrinkage of the polymeric resin due to its change in volume, or during polishing. After polishing, 

fragments of nickel were embedded in the gap (Figure IV-13.a). The decohesion between the 

plate and the substrate nevertheless indicates a weak interface between the plate and the 

substrate and not between the flash and the electrodeposit (Figure IV-13).  
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Ni flash- 50 mA/cm² 90 mA/cm² 

  
270 mA/cm² 530 mA/cm² 

  

Figure IV-13: SEM (BSE mode) cross-section images on the Ni plates for (a) the Ni flash 50 

mA/cm2 and the Ni electrodeposits at (b) 90 (c) 270 and (d) 530 mA/cm². 
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Figure IV-14: SEM (BSE mode) cross-section images zoom on the Ni plating sample of 530 

mA/cm². 

 

Table IV-4: Summary table of the thicknesses of Ni plating for different current densities and 

times. 

Current density 
(mA/cm²) 

50 90 270 530 40µm 530 20µm 

Time (min) 10 60 23 10 5’30 
Ni thickness (µm) 5±1 39±2 45±2 42±3 22±2 

 

 

Figure IV-15: Simplified diagram showing different possible types of polycrystalline 

electrodeposits as function of J/𝐶𝑀𝑒𝑧+
 and inhibition intensity [38]. 

 



- IV. Synthesis of self-regenerating composite coatings using aluminothermic reaction - 

 

 
-147- 

II.A.2-Texture 

Figure IV-16 shows the diffractograms obtained from the ~40 µm thick electrodeposits and Table 

IV-5 gathers their normalized intensity. First, the calculated thickness probed by the X beam using 

is 10.1 µm for the plane (111), 11.7 µm for the plane (200) and 16.5 µm for the plane (220), well 

below the total thickness (~40 µm) of the electrodeposit (detailed method in annex 1). It can be 

observed that the three main peaks of the substrate (111), (200) and (220) are also observed in 

all the electrodeposits irrespective the applied current density. They appear respectively at 44.5, 

51.8 and 76.4°. However, the direct comparison of the relative intensity with the ones of the pure 

polycrystalline Ni substrate (JCPDS #01-087-0712) indicates that the <111> orientation becomes 

preponderant with respect the <200> and <220>. This clearly suggests some texturing of the 

electrodeposits in line with the literature [52-53] and with the columnar microstructure observed 

under the SEM (Figure IV.13). After annealing, the XRD peaks observed are at ~44.5° and 

corresponds to the crystallographic plane (111), the second peak at 51.8° corresponds to the 

plane (200) and the third peak at 76.4° corresponds to the plane (220). In a polycrystalline material 

without preferential grain orientation (as in the substrate Figure IV-16.a) the relative intensity of 

the peaks corresponds respectively to 1, 0.42 and 0.21 for the planes (111), (200) and (220) 

(JCPDS #01-087-0712). 

Concerning the electrodeposits, texturing of the grains at (111) can be observed for the three 

current densities. These values are in line with those of literature [52-53]. Additionally, textured 

coatings show a mixture of fine and coarse grains. The coarse grains are oriented and have few 

defects and the fine grains are randomly oriented and appear to have a high concentration of 

defects [39,53-54]. 

 

Figure IV-16: XRD patterns of the surface of the samples (a) before and (b) after annealing. 

 

Nickel electrodeposits made from nickel sulfate bath are known to sustain significant internal 

stresses [40-42,55] which can induce cracking or interfacial detachment. To avoid these 

phenomena during oxidation, annealing treatments are carried out at 150°C for 4 hours. Following 

these annealing treatments, a slight deviation of the peaks positions can be observed (Figure IV-

16.b). This deviation sees a decrease in the 2ϴ value of the peaks and a move towards the nickel 

reference values. This could suggest a widening of the mesh and a reduction in the compressive 

stresses [56]. In addition, the thickness calculated from the X beam is 10.1 µm for the plane (111), 
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11.7 µm for the plane (200) and 16.5 µm for the plane (220), which means that only the Ni 

electrodeposit is probed (Figure V-17). 

 

Table IV-5: Summary table of the normalized intensity and texturing of Ni plating for different 

current densities. 

Reference  Ni plating After annealing  

<111> <200> <220> 
Curent 
density 
(mA/cm²) 

<111> <200> <220> <111> <200> <220> 

   90 1 0.16 0.04 1 0.16 0.04 

1 0.42 0.1 270 1 0.14 0.04 1 0.14 0.04 

   530 1 0.24 0.04 1 0.26 0.04 
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Figure IV-17: Nickel penetration depth for the Kα1 copper for symmetrical mounting 
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II.A.3-Preoxidation of Ni plates 

The optical microscope and SEM cross-section micrographs of Ni-plated samples after 1h or 2h 

of preoxidation are shown in Figure IV-18 and IV-20 for optical images and Figure IV-19 and Figure 

IV-21 for SEM images. The mean thicknesses for remaining Ni plating and formed NiO extracted 

from image analysis are summarized in Table IV-6. 

The microstructure of electrodeposits preoxidized for 1 and 2h at 1100°C are quite similar. Indeed, 

in both cases, a relatively thick layer of nickel oxide has formed on the surface. The average 

thickness of the oxide grown on the electrodeposits increase from 10 ± 2 µm to 13 ± 2 µm when 

extending the preoxidation time from 1 to 2 hours and are of about the same magnitude than for 

the oxide layers developed on raw (“reference”) substrates (Table IV-6). In addition, it appears 

that the oxide layer consists of two or three grains of nickel oxide, with a columnar structure close 

to the surface, and of equiaxial grains close to the oxide/electrodeposit interface. 

The microstructure of the electrodeposit also evolves, since the size of the nickel grains becomes 

larger and pores form across the thicknesses of the electrodeposit and at the interface with the 

substrate. 

The microstructures of the Ni plating produced at 90 mA/cm² have similar structure between 1 and 

2 hours of oxidation. In fact, pores have formed mainly at the electrodeposits/substrate interface 

(Figure IV-19.a and IV-21.a). In addition, depressions proven to be caused by bubbles during 

electroplating can be observed at the top of the samples. (Figure IV-18.a and 20.a)  

The 40 µm Ni plating produced at 530 mA/cm² are also similar to those produced at 90 mA/cm². 

The interface between the substrate and the electrodeposits consists of numerous pores (Figure 

IV-19.c and 21.c). These pores are larger and decohesion can be observed. Similar observations 

can also be made for 20 µm Ni plating (Figure IV-19.d and 21.d). 

Finally, a particularity can be observed for the electrodeposits made at 270 mA/cm². The pores 

formed during the heat treatment are no longer localized at the interface but are also present 

throughout the entire electrodeposit layer (Figure IV-18.b, 19.b, 20.b and 21.b). Two types of pores 

can be observed, pores of a few micrometers (grey/black spot on the SEM) and larger pores 

(about ten micrometers). In addition, some larger pores have their inner walls coated with nickel 

oxide (Figure IV-19.b and 21.b). 
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Figure V-18: Optical microscopy of cross-section images of Ni plating samples preoxidized at 

1100°C under air for 1h. 
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90 mA/cm² 270 mA/cm² 

  
530 40µm mA/cm² 530 20µm mA/cm² 

  

Figure IV-19: SEM (BSE mode) of cross-section images of Ni plating samples pre-oxidized at 

1100 °C under air for 1 h. 
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Figure V-20: Optical microscopy of cross-section images of Ni plating samples preoxidized at 

1100°C under air for 2h. 
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90 mA/cm² 270 mA/cm² 

  
530 40µm mA/cm² 530 20µm mA/cm² 

  

Figure IV-21: SEM (BSE mode) cross-section images of Ni plating samples pre-oxidized at 

1100°C under air for 2 h. 

 

Table IV-6: Summary table of the thicknesses of Ni plating and Ni oxide for different current 

densities and preoxidation times. 

 Reference 
(Ni substrate) 

Current density 
(mA/cm²) 

50 90 270 
530 

40µm 
530 

20µm 

Ni plating --- Ni thickness (µm) 5±1 39±2 45±2 42±3 22±2 

Oxidation 
1h 

12±1 NiO thickness (µm) --- 10±1 10±1 11±2 9±1 
--- Ni thickness (µm) --- 28±2 33±4 24±1 10±4 

Oxidation 
2h 

14±2 NiO thickness (µm) --- 11±1 14±2 12±1 14±1 
--- Ni thickness (µm) --- 25±2 49±2 20±2 8±1 
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II.A.4-Influence of the current density and preoxidation time on the aluminized 

layers 
The microstructures of the preoxidized (1h or 2h) samples after reaction with Al at 700°C/24 h are 

shown in Figure IV-22. The compounds formed and the thicknesses of the different layers are 

summarized in Table IV-7. 

• Current density of 90 mA/cm² 

Two main areas can be observed in Figures IV-22.a & IV-22.b for respectively, 1 and 2h of 

preoxidation. 

The first area on the left part of the images (Figure IV-22.a & 22.b) is similar to the ones obtained 

after aluminizing the preoxidized substrate (Chapter IV-1). Five main sublayers are displayed. The 

first at the top of the sample is the composite between the Al3Ni intermetallic and the Al2O3 shells 

of the aluminum particles (label 1, Figure IV-22.a & 22.b). The second layer is composed of a 

cluster of Al2O3 and the intermetallic Al3Ni (label 2, figure IV-22.a & 22.b). This alumina cluster 

layer is not continuous and the thickness is uneven. The third layer is very thin and consists of 

reduced Ni at the Al3Ni/NiO or Al2O3/NiO interfaces. The fourth layer (label 3, figure IV-22.a & 

22.b) is the residual nickel oxide layer. Finally, the fifth layer over the substrate is the nickel 

electrodeposit (label 5, Figure IV-22.a & 22.b) that was barely aluminized.   

The second area can be observed on the right side of Figure IV-22.a and on the central part of 

Figure IV-19.b. These areas are made up of diffusion islands with a "volcano" appearance. In most 

cases, these islands are made up of 4 layers on the top and 5 layers on their side. Regarding the 

top, the first two layers are similar to those described on the left part, with the composite of Al3Ni 

intermetallic and oxide shells of aluminum particles (label 1, Figure IV-22.a & 22.b), and the cluster 

layer of alumina (label 2, Figure IV-22.a & 22.b). The third layer is very irregular and consists of 

unreacted nickel oxide (label 3, Figure IV-22.a & 22.b). The nickel oxide residues are not 

systematically present on top of the diffusion islands. Whenever present, they form small clusters 

of a few microns with a core of nickel oxide and shells of reduced Ni. Finally, the fourth layer 

constitutes the majority of the diffusion island and is composed of an intermetallic NiAl (label 4, 

Figure IV-22.a & 22.b). 

Aside the diffusion islands, five sublayers can again be observed. The top four follow the same 

sequence of the left area (the Al3Ni layer, the layer of Al2O3 clusters, the thin layer of reduced 

nickel and the residual layer of nickel oxide). The sublayer closest to the substrate is now 

composed of the NiAl intermetallic compound according to the EDS analyses. 

When comparing the left and the right areas after aluminizing the preoxidized Ni electroplates, it 

appears that the change in volume caused by the formation of the NiAl compound causes a 

deformation of the various layers present on the surface and results in the characteristic shape of 

“volcanoes”. In addition, when the diffusion islands reach the substrate/electrodeposit interface, 

interfacial detachment occurs between the substrate and the nickel electrodeposit. 

• Current density of 270 mA/cm² 

The coatings obtained with a current density of 270 mA/cm² also exhibit two distinct zones: a first 

"homogeneous" zone where the aluminizing takes place at the surface and a second "diffusion 

island" zone where the aluminizing takes place mainly at the NiO/electrodeposit interface. 
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Regarding the homogeneous zone, from the surface to the bottom, one can observe a porous 

sublayer of Al3Ni2 intermetallic (label 1, figure IV-22.c & 22.d), a sublayer containing the alumina 

clusters (label 2, Figure IV-22.c & 22.d), a very thin layer of reduced Ni and finally the layer of 

residual NiO and the electrodeposit (label 3, Figure IV-22.c & 22.d). 

Concerning the area with diffusion islands, the same observations can be made as on 

electrodeposits carried out at 90 mA/cm² except that Al3Ni2 forms instead of Al3Ni. 

With respect the 90 mA/cm2, it can also be noted that a greater proportion of diffusion islands and 

a greater thickness of the area affected by diffusion island are observed with approximately 36 

and 46% of diffusion islands for, respectively, 1 and 2 h of preoxidation. In contrast, the extent of 

the diffusion islands barely reaches 22 and 25% in the 90 mA/cm2
 coatings. 

• Current density of 530 40 µm mA/cm² 

As with the other electrodeposits, two aluminizing locations are observed: at the surface and under 

the NiO layer. With this current density, the coatings obtained are similar to those produced at 270 

mA/cm² with a first layer made up of porous Al3Ni2 for a preoxidation time of 1h (label 1, figure IV-

22.e) and of non-porous Al3Ni with alumina shells for a preoxidation time of 2 h (label 1, figure IV-

22.f). The second and third layer are respectively made up of the Al2O3 cluster and the NiO (label 

2 & 3, figure IV-22.e & 22.f). Finally, the last layer consists of the intermetallic compound NiAl, 

obtained through the formation of the diffusion islands (label 4, figure IV-22.e & 22.f). Unlike the 

other aluminized electrodeposits, this coating is uniform over the entire surface of the samples. 

In addition, it is important to note that the quantity of consumed NiO is the greatest for this 

aluminizing configuration (Table IV-7). 

• Current density of 530 20µm mA/cm² 

The last coating considered in this part was also carried out at 530 mA/cm² as above but with an 

average initial thickness of 20 μm. 

Aluminizing the samples preoxidized for 1h results in the coating with a microstructure similar to 

the ones previously observed for 270 and 53040 µm mA/cm², with the first layer of Al3Ni2 (label 1, 

Figure IV-22.g), a layer of alumina cluster (label 2, Figure IV-22.g), a third thin and discontinuous 

layer of residual NiO (label 3, Figure IV-22.g) and a final sublayer of intermetallic compounds NiAl 

(label 4, Figure IV-22.g). The third and fourth layers are made of nickel oxide and nickel 

electrodeposits, respectively. 

For the preoxidation time of 2h, the coating obtained resembles that obtained on the raw substrate 

for equivalent oxidation time (Figure IV-5.c), with a first layer of Al3Ni intermetallic matrix and Al 

oxide shells (label 1, Figure IV-22.h). The central layer is composed of a cluster of oxides (label 

2, Figure IV-22.h). The third and fourth layers are respectively composed of the residual NiO (label 

3, Figure IV-22.h) and by the nickel electrodeposit (label 5, Figure IV-22.h). 
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4 59 40 53 47 
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1 65 35        

 

60 40 

2 77 23 90 10 

3 14 86 15 85 

4 51 49 55 45 

5 10 90 7 93 
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1 60 40 

 

73 27 

2 78 22 82 18 

3 19 81 25 75 

4 59 41 56 44 
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530 40µm 

 

1 61 39 

 

77 23 

2 81 19 82 18 

3 28 72 16 84 

4 57 43 25 75 

5 11 89 8 92 

Figure IV-22: SEM (BSE mode) cross-sections of the samples pre-oxidized for 1h and 2h at1100°C and 

subsequent slurry aluminizing at 700°C for 24h. 

 

Table IV-7: Summary table of the different compounds and thicknesses of the different layers observed in 

the samples after the heat treatment (700°C for 24h). 

  Oxidation 1h Oxidation 2h 

90 mA/cm² 

Figure 19.a 19.b 

Layer 1 2 3 4 1 2 3 4 

Compounds Al3Ni 
Cluster 
of Al2O3 

NiO NiAl Al3Ni 
Cluster 
of Al2O3 

NiO NiAl 

Thickness 
(µm) 

5±2 4±3 7±4 4±7 2±2 3±2 6±2 5±9 

270 mA/cm² 

Figure 19.c 19.d 

Compounds Al3Ni2 
Cluster 
of Al2O3 

NiO NiAl Al3Ni2 
Cluster 
of Al2O3 

NiO NiAl 

Thickness 
(µm) 

7±4 3±5 5±5 26±37 5±7 3±3 5±4 
18±1

9 

530 40µm 
mA/cm² 

Figure 19.e                 19.f  

Compounds Al3Ni2 
Cluster 
of Al2O3 

NiO NiAl Al3Ni2 
Cluster 
of Al2O3 

NiO NiAl 

Thickness 
(µm) 

9±6 8±4 2±2 48±16 18±5 6±2 2±2 
54±1

1 

530 20µm 
mA/cm² 

Figure 19.g     19.h 

Compounds Al3Ni2 
Cluster 
of Al2O3 

NiO NiAl Al3Ni 
Cluster 
of Al2O3 

NiO NiAl 

Thickness 
(µm) 

14±3 4±1 5±2 68±11 15±3 8±2 5±3 8±8 
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II.B-Discussion 

II.B.1-Preoxidation of the Ni plating 
During the electrodeposit preoxidation step, many pores formed mainly at the 

electrodeposit/substrate interface, inside the electrodeposits for current density of 270 mA/cm², or 

close to the NiO/electrodeposit interface. 

The formation of pores can be due to several phenomena: (i) the method of electroplating metals: 

those having a high melting point (Ni, Fe, Cr, etc.) lead to a high concentration of vacancies in the 

coatings under the action of temperature (during oxidation) [39]. These vacancies accumulate and 

coalesce to form micropores at the defective zones (grain boundaries, interface, etc.). In addition, 

other types of defects such as vacancies, dislocations, twin boundaries, etc. may also be involved 

in the formation of pores [39]; (ii) the weak bonding between the substrate and the Ni film, which 

can be induced by trapped hydrogen, by the substrate surface roughness or by the processing 

conditions of the coatings (solution, temperature, etc.) [43,55]. However, none of these theories 

can fully explain these differences between electrodeposits. 

A factor that may explain the formation of pores in the Ni electrodeposit is the formation of 

hydrogen during the electrodeposition process. Two phenomena can be observed and have been 

studied so-called Hydrogen Evolution Reaction (HER). HER is described by reaction mechanism 

in several steps (Figure IV-23): (i) the first step, called the Volmer step, corresponds to the electro-

adsorption of the hydrogen present in the solution (eq. 1); (ii) the second Heyrovsky step (eq. 2) 

corresponds to the desorption of hydrogen. This desorption is carried out by recombination 

between the adsorbed hydrogen and another hydrogen present in the solution. There is also Tafel 

desorption, but is extremely minor in the case of nickel in sulfuric acid (eq. 3) [57]. 

According to El Alami et al. [57] for low current densities, the rate of hydrogen surface coverage 

is low, the overall behavior is governed by the Volmer step (eq. 1). As the current density 

increases, the recovery rate increases, Heyrovsky desorption step that become predominant. This 

means, although the current density increases, the [Hads] will increase to a threshold value (depend 

of the materials, solution, etc.) [58-59]. 

 

𝑀 + 𝐻 + 𝑒− ↔ 𝑀𝐻𝑎𝑑𝑠 Volmer 
electrochemical adsorption 

step 
(eq. 1) 

𝑀𝐻𝑎𝑑𝑠 + 𝐻+ + 𝑒− → 𝐻2 + 𝑀 Heyrovsky 
electrochemical desorption 

step 
(eq. 2) 

2𝑀𝐻𝑎𝑑𝑠 → 𝐻2 + 2𝑀 Tafel 
chemical desorption step 

 
(eq. 3) 
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Figure IV-23: Schematic drawing of the Volmer-Heyrovsky mechanism of hydrogen evolution on 

the surface of an electrode in acidic solution [60]. 

 

For electrodeposits carried out at 90 mA/cm², depressions can be observed at the surface of the 

samples. This depression, with an average size of 72±28 µm, has the same order of magnitude 

than hydrogen bubbles formed by electrolysis in water [61]. The depression probably corresponds 

to the imprint left by a hydrogen bubble by a Volmer-Heyrovsky type mechanism. However, since 

the kinetics of the Heyrovsky reaction are slow at this current density, the residence time of a 

bubble on the surface sample is long enough to prevent the electrodeposit from forming in this 

area. 

For electrodeposits made at 270 and 530 mA/cm², these depressions are not observable. This 

would tend to show that the residence time of the bubbles is lower and that the kinetics of the 

Heyrovsky reaction are faster. In addition, for electrodeposits carried out at 270 mA/cm², many 

small pores (a few micrometers) can be observed. These pores present in the nickel grains may 

correspond to the formation a hydrogen blister [62]. This tends to demonstrate the absorption of 

hydrogen within the electrodeposit. The difference between the electrodeposits carried out at 270 

and 530 mA/cm² would hold while the reaction kinetics of Volmer and Heyrovsky have reached a 

plateau and the quantity of hydrogen absorbed depends on the electrodeposition time, which is 

respectively 23 and 10 min [58-59]. 

To conclude, the electrodeposits obtained with low current densities generated low stress in the 

layer but cause a greater amount of absorbed hydrogen. 

II.B.2-Influence of the current density on the aluminothermic and aluminizing 

processes  
During the aluminizing step, two types of mechanisms could be observed. The first one occurs 

with deposits made with “low” current densities (90 mA/cm²) and is similar to what was observed 

on the raw substrate (figure IV-5.d & 7.d). These coatings are composed of a first layer of Al3Ni 

with Al2O3 shells, a second layer of Al2O3 cluster and a third layer made of unconsumed NiO. 

However, one key difference with respect the preoxidized substrate is the appearance of diffusion 
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islands at the NiO/Ni plating interface. These diffusion islands have a “volcano” shape and are 

present in relatively small quantities and induce only minor modifications in the mechanisms of 

formation of the aluminized coatings. 

The diagrams displayed in Figure IV-24 gather the thicknesses of the different zones, the 

percentage of zones affected by the diffusion islands (Figure IV-24.a & 24.b respectively, for 1 

and 2h of preoxidation), the quantity of NiO formed during the preoxidation step, and the amount 

of NiO consumed during the heat treatment (Figure IV-24.c & 24.d respectively, for 1h and 2h of 

preoxidation). The thicknesses of the intermetallic and Al2O3 zones differ only slightly between the 

coatings obtained on a raw substrate and those obtained on the 90 mA/cm² electrodeposits 

(Figure IV-24.a & 27.b). 

For the samples preoxidized for 1h at 1100°C (raw substrate and Ni electrodeposit), the thickness 

of unreacted NiO from the aluminothermic reaction increases from ~20 to ~50% between the raw 

substrate and the electrodeposits (Figure IV-24.c). For pre-oxidation times of 1h and an 

electrodeposition current density of 90 mA/cm², it seems that the electrodeposit increases the 

permeability of the NiO layer towards aluminum. However, this observation cannot be extrapolated 

to longer (2h) preoxidation times because the thickness of NiO reacted is close to 50% for both 

the raw substrate and the electrodeposits (Figure IV-24.d). 

The second mechanism is obtained for electrodeposits elaborated with current densities of 270 

and 530 mA/cm² then preoxidized, and two types of aluminization can then occur. The first one is 

observed on both the preoxidized raw substrate and the preoxidized electrodeposits. It can be 

divided into three major stages: (i) the aluminothermic reaction between the solid aluminum 

particles and the nickel oxide provokes the reduction of the NiO, the formation of Al2O3 and a local 

rise in temperature; (ii) the temperature increase causes the melting of aluminum particles and 

the dissolution of previously formed nickel; (iii) the aluminothermic reaction between liquid 

aluminum and nickel oxide, accompanied by the formation and dissolution of the intermetallic 

Al3Ni. The aluminothermic reaction keeps ongoing forming larger amounts of Al3Ni and Al2O3. The 

intermetallic that forms on the surface is assumed to be viscous enough to trap the alumina shells 

of the aluminum particles. In addition, Al2O3 developed during the thermite reaction is trapped at 

the Al3Ni/NiO interface. These phenomena will continue until a critical thickness of Al2O3 is 

reached that prevents the diffusion of aluminum, or until the system can no longer deliver enough 

free aluminum to sustain the thermite reaction. 

The second type of aluminizing takes place at the NiO/Ni plating interface. A liquid phase rich in 

aluminum (Al and/or Al3Ni) seeps through the defects of the nickel oxide layer (cracks, pores, etc.). 

This liquid infiltration induces the reduction of NiO and the formation of alumina along the defects 

(figure IV-22.b). Once molten Al reaches the Ni film, rapid aluminizing of the metallic nickel occurs, 

which causes the formation of a NiAl intermetallic zone. This aluminum enrichment of the Ni 

substrate provokes a significant change in volume inducing the formation of zones resembling 

volcanos [64-64]. For current densities close to 90 mA/cm², these “volcanos” are one far from the 

others and do not disturb the system very much. For higher current densities, these diffusion 

islands form in large quantities and are very close one to the others. This volume increase also 

induces an interfacial decohesion of the nickel electrodeposit from the substrate, as well as a lifting 

of the coating of several tens of microns (Figure IV-22.e & 22.f and Figure IV-22.a & IV-22.b). 

The formation and number of diffusion islands seem to be closely related to the “quality” of the 

nickel oxide layer (amount of defects) and therefore to that of the nickel electrodeposit. Comparing 
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with the oxidation tests carried out on raw substrates, several phenomena can explain the increase 

in permeability of the NiO layers developed from Ni electrodeposits towards liquid aluminum. 

Graham et al. [65-68] demonstrated that the oxidation rate of Ni electrodeposits depends on the 

surface finish and of the Ni texture. Their results underlined the significant differences in the 

oxidation mechanisms that can occur at low temperatures and for short oxidation times. For an 

oxidation temperature of 600°C, the initial oxidation rate can be changed by a factor of four. In 

contrast, these differences are blurred for high oxidation temperatures or longer times. The surface 

finish and texture that were observed in the electrodeposits are therefore not sufficient to explain 

their different evolutions. Very likely, the hydrogen released upon the electroplating of nickel from 

a sulphamate bath may hurdle the even deposition of the layer. 

The hydrogen present in nickel films always results in a high tensile strength and a high rate of 

hydrogen into the substrate lattice [43]. The influence of heat treatment on nickel electrodeposits 

shows that for heat treatments of 1000°C/30 min, the tensile strength of the film decreases by a 

factor of four [69] which can be reflected by recrystallization phenomena (modification of the grain 

size, reduction in the number of defects, etc.) and due to the release of the hydrogen present in 

the deposit. Studies carried out on nickel ectrodepositions have shown the release of hydrogen 

trapped during heat treatment [58,62]. Mass losses due to the evolution of hydrogen caused the 

formation of networks of cracks and the modification of thermal expansion properties. These 

phenomena can induce the formation of cracks in the nickel oxide layer leading to the formation 

of scattered islands. The greatest quantity of diffusion islands was obtained for high current 

densities, which can give credence to the hydrogen hypothesis. However, further studies should 

be done to confirm these hypotheses, e.g. evaluating the amount of trapped hydrogen in the 

electrodeposits obtained at different current densities and after the annealing treatment. 
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Figure V-24: Histograms of the thickness of the different sublayers formed after slurry 

aluminizing at 700°C/24h, (a) for a preoxidation time of 1h (a) and 2h (b) and the quantities of 

area affected by the formation of diffusion island. The thickness of the NiO formed during the 

preoxidation step and after the aluminizing for preoxidation time of 1h (c) and 2h (d). Detail of 

the different sublayers formed after slurry aluminizing at 700°C/24h the two different thickness of 

electrodeposits at 530 mA/cm² for preoxidation time of 1h (e) and 2h (f). 

 

II.B.3-Influence of the electrodeposit thickness on the aluminothermic reactions 

and the aluminizing processes  

Finally, in this last part, we will focus on the influence of the thickness of the electrodeposits 

(obtained at 530 mA/cm2) on the aluminothermic and aluminizing processes. Figures IV-20.e & 

20.f show the differences in the thicknesses of the different zones observed as well as the 

percentage of coating affected by the formation of diffusion islands. 

In the samples preoxidized for 1h at 1100°C (Figure IV.22.a), the whole surface (100%) is affected 

by the diffusion islands irrespective of the thickness (20 or 40 µm) of the electrodeposit. However, 

the thicknesses of NiO consumed and the derived formation of Al2O3 formed is less significant for 

20 than for 40 µm while the thickness of the AlxNiy intermetallic sublayers is greater.  
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When the preoxidation time was extended to 2h, the differences between the initial thickness of 

the electrodeposits are more marked because only 27% of the surface was affected by the 

diffusion islands, less quantities of NiO consumed and Al2O3 formed and much thinner NiAl 

appeared after aluminizing the 20 µm electrodeposits in comparison with the 40 µm thick 

counterparts. 

Increasing the thickness of the nickel electrodeposits will therefore tend to increase the 

concentration of defects in the nickel oxide layer and therefore the permeability of aluminum.  

The difference in electrodeposition thicknesses is caused by longer electrodeposition times, 

according to Winand et al. [38]. Yet, for the BR type electrodeposits, the increased 

electrodeposition times is expected to lead to the formation of larger grains and to entrapment of 

electrolytes in the coatings. The release of the electrolyte and recrystallization at high temperature 

induce the formation of defects in the nickel oxide layer. In addition, the thinner oxide thickness 

for preoxidation times of 1 h compared to 2h would tend to minimize these effects.  

In addition, we can hypothesize that the amount of hydrogen trapped in thin nickel electrodeposits 

would be less important than in thicker layers but such reduced amount would not be sufficient to 

induce changes in the electrodeposit and in the oxide layer at high temperature. 

Finally, it is also possible that, for thin films, the potential differences in CTE between the substrate 

and the nickel electrodeposit would be minor than for the thick coatings, therefore allowing a more 

even aluminizing similar to the one observed in the preoxidized Ni substrate (part I of chapter IV). 

To conclude, it seems likely that several complex phenomena come into play during the 

electroplating, preoxidation and aluminizing stages. Only one of the cited phenomena cannot 

explain all of these differences. Furthermore, very few studies have investigated these phenomena 

for nickel electroplating by Watt’s bath. It therefore seems extremely difficult to theorize about 

these phenomena. 
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II.C-Conclusion 
The formation of a potential self-regenerating coating by the aluminothermic route was tested on 

nickel substrates and on nickel electrodeposits. 

For pure nickel substrates, the most promising results were obtained for preoxidation times of 2h 

and aluminizing treatments of 700°C/24h. These conditions lead to the formation of a composite 

coating consisting of an Al3Ni layer composed of Al3Ni micro-reservoirs and Al2O3 shell, then a 

second cluster layer of Al2O3 and finally a residual thickness of NiO. 

In order to remove the residual NiO layer, nickel electrodeposits were elaborated on the Ni 

samples previously to preoxidation. These electrodeposits (carried out at high current densities) 

gave birth, through the applied preoxidation treatment, to NiO layers possessing increased 

permeability with respect to aluminum. This goal has been successfully achieved. However, the 

formation of electrodeposits leads to a high concentration of defects in the oxide layer which 

results in the formation of cracks and diffusion islands during the aluminizing. The aluminum 

therefore could pass through the nickel oxide to aluminize the substrate and a decohesion 

between the electrodeposit and the substrate was subsequently observed. The formation of the 

Al3Ni layer and of the micro-reservoirs was no longer guaranteed. 

It therefore appeared necessary to consume the entire nickel oxide layer in another way. One of 

the possibilities would be to carry out a preoxidation then reduction step in an Ar/H2 atmosphere. 

This partly reduction in nickel oxide would allow a thin layer of nickel to form on the surface of the 

sample, thereby reducing the thickness of the nickel oxide layer. In another vein, the use of other 

electroplating baths like the sulphamate baths deserve further investigations to achieve a better 

homogeneity and possibly less decohesion between the electrodeposit and the substrate. This 

will be addressed in Chapter V. 
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Chapter V: Synthesis of self-

regenerating composite coating 

using electrocodeposition of Ni 

and preoxidized Al3Ni2 particles 
 

The previous chapter focused on the use of thermite reactions to obtain self-regenerating coatings 

by slurry aluminizing either a preoxidized nickel substrate or a preoxidized nickel electrodeposit. 

Promising results were obtained in this way, in particular by annealing the Al slurry deposit at 

700°C for 24h. This treatment resulted in a coating made of an Al3Ni matrix containing a dispersion 

of Al3Ni microspheres surrounded by an alumina shell. In addition, an Al2O3 diffusion barrier was 

synthesized in the same annealing step. 

However, not all the NiO between the coating and the substrate was consumed. In an attempt to 

increase the permeability to Al of the NiO layer, Ni layers were then electrodeposited on the 

surface samples and subsequently oxidized to form the NiO layer. We demonstrated that this 

approach increased the permeability of Al through the NiO. However, no adequate compromise 

between the permeability and the formation of the composite structure between the microspheres, 

matrix and diffusion barrier could be found. 

In this fifth (and final) chapter, the formation of self-regenerating coatings is investigated by 

electrodeposition. To do this, preoxidized intermetallic particles were incorporated into a nickel 

matrix and subsequently aluminized. One of the crucial issues is to incorporate a sufficient quantity 

of particles to get a beneficial effect but without damaging the diffusion coating by incorporating 

defects or trapping electrolytic solution. The originality of this approach stems from the numerous 

studies on the incorporation of nanometric ceramic, polymeric or metallic particles. However, very 

few works investigated the incorporation of micrometric composites and the influence of these 

particles under heat treatment.  

Therefore, in this chapter, a first part will focus on the synthesis of intermetallic particles and on 

their preoxidation. In the second and third parts, the incorporation of the particles in Ni 

electrodeposits and the aluminizing of the composite coating are studied. Finally, the fourth part 

is devoted to preliminary isothermal oxidations tests with the aim of characterizing the self-

regenerating character of these coatings.  
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I-Synthesis of intermetallic powders and preoxidation 
In line with the coating concept of investigation, Al-rich intermetallic phases were envisaged to be 

incorporated in the composite coating. The choice was made on Al3Ni2 intermetallic powders for 

which no commercial product was found. The synthesis of the desired powder followed various 

steps including pack aluminizing, grinding, milling and sieving as follows. 

1) Pack aluminizing. Nickel foils with a thickness of 250 µm and a purity of 99.98 wt. % 

(GoodFellow) were aluminized by pack-cementation. The nickel sheets were cut into 10 mm 

x 10 mm samples, placed in an alumina crucible by a number of 10, and then filled with 100 g 

of the reacting powder mixture. The powder mixture was made with a three-dimensional mixer 

(Turbula System Schatz type T2 F), and consisted of 56 g of Al2O3, 40 g Al and 4 g NH4Cl. 

The crucible was then closed and heated for 50h at 800°C under an Ar/5 %H2 atmosphere. 

The crucible temperature of 800°C was chosen to produce an LTHA coating (Low-

Temperature High-Activity), thus promoting the diffusion of aluminum and consequently the 

formation of the Al3Ni2 intermetallic phase. 

After 50 hours at 800°C, the nickel samples were not completely aluminized. The thickness 

reached 616 ± 6 µm (see Figure V-1). According to the EDS analyses (given further below), the 

aluminized samples are mainly composed of Al3Ni2 (Figure V-1, label 1) with a core made of γ-Ni 

slightly enriched in aluminum (81 ± 5 µm) (Figure V-1, label 5). Between these two layers, the 

intermetallic compounds Al-rich β-NiAl (Figure V-1, label 2), Ni-rich β-NiAl (Figure V-1, label 3) 

and γ'-Ni3Al (Figure V-1, label 4).  

 

Figure V-1: Optical microscopy of the Ni samples after the pack-cementation (800°C/50h). 

 

2) Grinding. The aluminized samples were then ground with a jar milling into a powder made of 

coarse particles (Figure V-2). The aluminized nickel sheets were placed by 3 in the jar with 

two balls and a few drops of ethanol (ball and crucible in WC). They were ground for 5 min at 

30 Hz to obtain coarse particles (between 4 and 150 µm) while some fine particles (less than 

1 µm) were also found. 

After this step, the particles are rather coarse and present a high size dispersion (Figure V-3). A 

large majority of these particles are made of the single phase Al3Ni2 (Figure V-2.a). Other particles 
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show several phases labeled from 2 to 5 on the SEM image (Figure V-2.b), respectively 

corresponding to Al3Ni2, Al-rich β-NiAl, Ni-rich β-NiAl, γ'-Ni3Al and γ-Ni. 

In addition, due to the nature of the jar milling balls, small particles of WC are torn off during the 

process that can be observed under the SEM (Figure V-2.b, label 7) and in the X-ray patterns 

(Figure V-8). 

  

EDS spot (at%) 

 Al Ni W 

1 61 39 --- 

2 60 40 --- 

3 56 44 --- 

4 43 57 --- 

5 26 74 --- 

6 3 97 --- 

7 --- 24 76 

Figure V-2: SEM (BSE) cross-section images of the powders after the pack cementation 

(800°C/50h) and jar milling process (5 min at 30 Hz). 

 

 

Figure IV-3: Size dispersion of the particles after the jar milling (5 min at 30 Hz). 
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3)  Milling. To homogenize and further reduce the particles size, a planetary ball milling (P100 - 

Retsch) was used (Figure II-7). The powders previously obtained with the milling jar were 

placed at half of the volume of the crucible which was filled with zirconia balls of 2.15 mm 

diameter. The free spaces between the particles were then filled with 96% pure ethanol and 

the crucible was finally sealed. The crucible was then made to rotate at 500 rpm for 8 h. After 

this mechanical treatment, the particles and the balls were collected in a crystallizer and rinsed 

with ethanol. The crystallizer was then placed in a stove at 60°C to evaporate the whole 

remaining ethanol. 

4) Sieving. The last step consisted of sorting the particles using several sieves positioned on a 

JEL 200 sieve machine. The sieves were built of 5 assembly sieves made up of 630 µm, 250 

µm, 160 µm and 100 µm mesh. After the drying step, the particles are in the form of 

aggregates. The action of the vibrating table and manual scraping is necessary to break them 

up.  

The SEM images of Figure V-4 show the particles right after crushing by the planetary ball mill 

and before being sieved. The morphology and size of the particles observed after the planetary 

ball milling are homogeneous (Figure V-4.b), except for the large rich in nickel particles (Figure V-

4.a). In addition, due to the small particles size (less than a micron) these particles aggregate and 

appear as aggregates of around one hundred microns (Figure V-4.a). After sieving, these 

aggregates were disaggregated and large nickel-rich particles were removed (Figure V-5.a). This 

results in fine and quasi-spherical Al3Ni2 particles (Figure V-5.b and Figure V-6). 

Figure V-4: SEM (BSE) cross-section images of the powders after the planetary ball milling 

(8h/500 rpm) with (a) magnification x500 and (b) magnification x20000. 
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Figure V-5: SEM (BSE) cross-section images of the powders after the planetary ball milling 

retrieved after the 100 µm sieve with (a) magnification x500 and (b) magnification x20000. 

 

 

Figure V-6: Size dispersion of the particles after the planetary ball milling sorted with the 100 µm 

sieve. 

 

The very last step consisted in the preoxidation of the particles to form an aluminum oxide shell 

while keeping a metallic core. For this, the particles were oxidized at 1100°C for 15 min under Ar. 

After the 15 min, the particles were quenched in laboratory air. It is important to note that the 
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applied temperature and time were the same as for the preoxidation of the Ni particles of the 

previous chapters. An Ar atmosphere was however used to selectively oxidize Al instead of Ni and 

form a thin alumina layer while maintaining a high amount of Al into the particles. 

After the oxidation step, the particles show a quasi-spherical morphology (Figure V-7) with an 

Al3Ni2/β-NiAl core and an aluminum oxide shell (Figure V-7 & V-8). The d50 of the preoxidized 

particles is 0.49 µm (Figure V-9) with an oxide shell thickness of 0.06 µm (Figure V-10). 

The analyses carried out by Raman microspectroscopy are difficult to interpret when they are 

carried out on the preoxidized particles. However, when the particles are trapped in the 

electrodeposit,  and α-Al2O3 can be unambiguously identified (Figure V-18).  

 

Figure V-7: SEM (BSE) cross-section images of the powders preoxidized at 1100°C for 15 min 

under Ar. 
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Figure V-8: X-ray patterns of the nickel sheets (black), the powder after the jar milling (purple), 

after the planetary ball milling (blue) and after the oxidation at 1100°C for 15 min (red). 

 

 

Figure V-9: Size dispersion of the particles of the powders preoxidized at 1100°C for 15 min 

under Ar. 
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Figure V-10: Thickness of the oxide layer of the particles preoxidized at 1100°C for 15 min under 

Ar. 

500 1000 1500 2000 2500 3000

0,0

0,2

0,4

0,6

0,8

1,0

N
o
rm

a
liz

e
d
 i
n
te

n
s
it
y
 (

a
.u

.)

Raman shift (cm-1)

 

Figure IV-11: Raman spectrum of the preoxidized particles. 
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II-Electro-codeposition of Ni and Al3Ni2 preoxidized particles 
This section investigates the incorporation of the synthesized and preoxidized Al3Ni2 intermetallic 

particles. For this, the Ni-Al3Ni2(ox) alloy material was prepared by the (direct current) DC 

electrocodeposition method on a Ni substrate. The samples were coated according to the 

procedure described in Figure V-12. 

 

Figure V-12: Schematic representation of the different stage for obtaining coatings. 

 

After the surface preparation, the substrates have been subjected to a nickel flash (also called 

“nickel strike”) electrodeposition process. Nickel strike baths are the same as that used for 

electrocodeposition bath but without the preoxidized particles (I.A.3-Chapter II). The purpose of 

nickel flash deposits is to improve the adhesion between the substrate and the composite layer. 

The use of nickel flash activates the surface as well as removes traces of oxides or pollution on 

the surface of the samples. Therefore, it allows to lay down an active thin pure Ni film ready-to 

electrodeposit [1]. 

The surfaces of the samples being extremely rough, the choice was made to use high current 

densities and significant deposit thicknesses (≈10 µm). The term of nickel flash therefore does not 

appear as the most suitable and we can rather talk about a “first layer”. 

II.A-Surface morphology of the first layer 
Figure V-13 shows the optical and SEM images of the surface and of the cross-section of the first 

layer made for current densities of 2 to 50 A/dm². Table V-1 summarizes the current densities, 

deposition times and main observations. Note here that the deposition time was adjusted to get a 

10 µm-thickness first layer. 

Regarding the visual aspect, the first layer made at 2 A/dm² exhibits numerous polishing scratches 

as well as a shiny aspect (Figure V-13.a). Increasing the current density to 5 and 20 A/dm² results 

in few visible polishing scratches and a matt appearance (Figure V-13.d & 13.g). With the highest 

DC current of 50 A/dm², the surface of the samples is again shiny, shows numerous polishing 

scratches and the edges are blackened (Figure V-13.j). 

At higher magnifications, the surface of the electrodeposits displays three different 

microstructures: (i) a ridge-like microstructure for the electrodeposits made at 2 A/dm² (Figure V-

13.b), (ii) pyramidal structures for the electrodeposits made at 5 and 20 A/dm² (Figure V-13.e & 

13.h), and (iii) a nodular structure for the electrodeposit synthesized at 50 A/dm² (Figure V-13.k). 

Finally, the grain microstructure of Ni electrodeposits is B.R. (“Basis Reproduction”, Chapter IV, 

Figure IV-15). The electrodeposits consist of fine grains close to the interface and coarser grains 
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towards the surface, with a greater grain size difference for electrodeposits of 5 and 20 A/dm² 

(Figure V-13.f & 13.i) 

The X-ray diffraction patterns of the nickel flash obtained at 2, 5, 20, and 50 A/dm² are shown in 

Figure V-14. The XRD patterns of the Ni flash synthesized between 2 and 20 A/dm² show that the 

surface is textured following the (200) planes, which is in agreement with the literature whereas 

for low current densities, a strong [100] texture is observed ((200) ≡ (100) for a FCC structure) [2]. 

For a current density of 50 A/dm², the texture shifts towards the (220) planes. 

The changes in morphology can be attributed to the formation of different interfacial inhibitors, 

such as H2, Hads or Ni(OH)2. In addition, the hydrogen reaction may change the electrochemical 

conditions leading to different surface morphologies, microstructure and texture [3].  
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Figure V-13: OM, SEM images of surface (SE) and in cross-section (BSE) of the first layer of 

nickel for current densities of 2, 5, 20 and 50 A/dm². 
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Table V-1: Summary table of the thicknesses and visual qualities of the first layer for different 

current densities and times. 

Current 
density 
(A/dm²) 

Time 
(min) 

Thickness 
(µm) 

Quality of the first layer (Ni flash) 

2 60 12±1 Uniform deposition with shining surface and visible polishing 
scratches 

5 20 10±1 Uniform deposition with low shining surface and low visible 
polishing scratches 

20 5 9±1 Uniform deposition with shining surface and low visible polishing 
scratches 

50 2 10±1 Non-uniform deposition with low shining surface, visible polishing 
scratch esand burnt edge 
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Figure V-14: XRD patterns of the surface of the electrodeposited Ni first layer with current 

density. 

 

Following these results, it appears that the first Ni flash layers obtained with 5 and 20 A/dm² would 

be suitable as intermediate layers between the substrate and the subsequent thick electrodeposit. 

Therefore, further SEM analyses were conducted to underline the differences of both current 

densities (Figure V-15). 

When the electrodeposits are carried out with 5 A/dm² and 20 A/dm², several defects can be 

observed. The most numerous defects are the polishing scratches randomly appearing on the 

surface of the samples. The second defect for both current densities is the presence of holes. 
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These holes do not seem to follow any specific pattern. The third and fourth types of defects are 

only observed for the electrodeposits made at 20 A/dm². Coarse Ni particles can be observed on 

the surface of the samples, these large particles have an average size of 10±4 µm (Figure V-15.b). 

Finally, the last type of defects corresponds to spherical depressions of 73±34 µm (Figure V-15.b). 

These depressions are assumed to result from the formation of gaseous bubbles on the surface 

of the samples. 

 

 

Figure V-15: SEM (SE) surface images of the Ni flash electrodeposit coated on the Ni substrate 

at (a) 5 and (b) 20 A/dm². 

 

Since the occurrence of the defects is weaker with 5 A/dm2 than with 20 A/dm2, the first layer 

electrodeposited with at 5 A/dm² was selected for the rest of the study.  

In the next part, we will focus on the influence of current density to synthesize composite 

electrodeposits between Ni and Al3Ni2(ox) particles.  

II.B-Electroplating and incorporation of Al3Ni2(ox) particles in a metallic 

Ni matrix 
After studying the influence of current density to electrodeposit the first layer of Ni, we will now 

focus on the electrodeposition and trapping of Al3Ni2(ox). In a first part, the influence of the current 

density on the quantity of trapped particles will be studied and, in a second part, we will focus on 

the aluminizing treatments of composite electrodeposits. 

After successfully trapping the preoxidized Al3Ni2 intermetallic particles, the electrodeposits will be 

aluminized. For this, two successive electrodepositions will be carried out. The first layer of Ni will 

be deposited at 5 A/dm² for 10 min with a nickel sulfamate bath and the second at 20 A/dm² during 

10±1min in a solution of nickel sulfamate containing suspended preoxidized particles. The 

targeted thicknesses are respectively 10 µm and 50 µm. This total thickness of 60 µm was retained 

because, for the slurry aluminizing route, it often corresponds to the aluminized thickness when 

spraying 10 mg/cm² of aluminum. 
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II.B.1-Influence of current density  
Figure V-16 shows the volume percentage of trapped particles as a function of the current density. 

For a nickel sulfamate bath at 50°C (Table II-3 Chapter II), when current density increases the 

amount (volume percentage) of particles trapped increases from 10 to 17.5 % between 2 and 5 

A/dm2 and then stabilizes at 22 % for a current density of 20 A/dm² (Figure V-16).  

 

Figure V-16: Volume percentage of Al3Ni2ox particles trapped in the Ni electrodeposit in function 

of current density. 

 

Figure V-17 shows a cross-section of the samples after electrodeposition. The particles trapped 

in the coating are evenly distributed throughout its thickness (Figure V-17.a) except for some 

clustering of particles (Figure 17.b). One shall note that the particles appear to be stable in the 

electrodeposition bath since the metallic core and the oxide shell are still observed (Figure V-

17.b). The Raman spectroscopy analysis of Figure V-18 allowed to unambiguously identify α-Al2O3 

and ϴ-Al2O3 on the shells of the particles. It is highly probable that several phases of aluminum 

oxide exist. Indeed, for similar oxidation temperatures, a first layer of ϴ-Al2O3 and a second layer 

of α-Al2O3 have been identified for oxidations on Al3Ni2 intermetallic [4]. 

In addition, the EDS spots at the core of the particles revealed about 30±4 at.% of Al. This 

concentration appears lower than expected compared with the theoretical value of Al3Ni2 (60 

at.%). This result can be attributed to the fact that the volume analyzed by the EDS spots larger 

than the particle size and therefore includes the Ni from the matrix.   
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Figure V-17: SEM (BSE mode) cross-sections of the composite electrodeposit with a Ni matrix 

and preoxidized Al3Ni2 particles. 

 

  

Figure V-18: Raman spectra on the shells of the particles trapped in the electrodeposit obtained 

at 20 A/dm² with (a)spectrum obtained for λ=632 nm and (b) λ=532 nm [5-6]. 

 

II.B.2-Influence of heat treatment temperature. 

Once the electrodeposition of the composite (Ni+Al3Ni2) coatings achieved, the final step consists 

in aluminizing by slurry route. For this, “low” temperatures of 650 and 700°C were selected (Figure 

V-19.a label 1 & 2) based on previous investigations conducted in our research group on Ni-based 

substrates [7-9]. The high activity low temperature (HALT) aluminizing allows preferential diffusion 

of aluminum towards the substrate. This results in the formation of the intermetallic coating in the 

electroplated layer and preserves thus the structure of the coating produced by electrochemical 

means. 

In addition, a short-term aluminizing was carried out at 1100°C (Figure V-19.a, label 3) to achieve 

a high-activity high temperature (HAHT) aluminizingallowing the preferential outward diffusion of 

nickel [7,10]. 

The heat treatments have been carried out in a TGA apparatus following the steps described in 

Figure V-19.  
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Figure V-19: Schematic drawing of the aluminizing heat treatments (a) for different temperatures 

and (b) for different times.  

 

Figure V-20 and Figure V-21 respectively show the cross-sections of the aluminized samples at 

650°C/12h (Figure V-20.a), 700°C/12h (Figure V-20.b) and 1100°C/1min (Figure V-20.c), the 

aluminum diffusion profiles of the coating (Figure V-20.a) as well as the thickness of the different 

layers observed (Figure V-20.b). 

For these three heat treatments, the coatings obtained can be divided into four parts. The first part 

at the top of the coatings consists of a porous Al-rich β-NiAl intermetallic for low-temperature 

coatings (Figure V-20.a & 20.b) and a porous Ni-rich β-NiAl intermetallic for high-temperature 

treatment (Figure V-20.c). In addition, inclusions of aluminum oxide can be observed in this layer. 

This layer appears to come from the solidification of a previous liquid phase, according to its 

microstructure. The thicknesses of this porous layer are 10±4 µm, 12±2 µm and 13±4 µm for 

respectively, the treatments of 650°C/12h, 700°C/12h, and 1100°C/1min (Figure V-20.b, label 

“melting layer”). 

The second layer is the coating diffusion zone and shows a composite microstructure with the 

preoxidized Al3Ni2 particles in a matrix of β-NiAl and γ’-Ni3Al intermetallic compounds. The 

intermetallic compound β-NiAl has a composition similar to the first layer, namely Al-rich β-NiAl 

for the aluminizing treatments at 650 and 700°C, and Ni-rich β-NiAl for the treatment of 

1100°C/1min. The preoxidized particles appear to be homogenously distributed for the heat 

treatment of 650°C (Figure V-20.a). For the 700°C treatment, the particles are aligned in lines 

perpendicular to the surface (Figure V-20.b). For the samples aluminized at 1100°C, the particles 

seem to be homogeneously distributed in the first two-thirds of this layer (Figure V-20.c). In the 

last third, no particles can be observed. In addition, the aluminum concentration is low in this part 

(Figure V-21.a). The composition of aluminum particles is given in Figure V-21.a. 

The third layer is the interface between the aluminized part and the poorly-aluminized part. For 

the 650°C heat treatment (Figure V-20.a), this interface consisted of an oxide. For the two other 

treatments, this interface is mainly made up of voids and an interfacial decohesion appears for the 

samples treated at 700°C/12h (Figure V-20.b & 20.c). It can also be noted that, at high 
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magnification, oxide particles can be observed on the upper part of the interface between the 

aluminized and poorly aluminized areas. 

Finally, the last “poorly aluminized” layer below the interface is clearly distinguished for the 

650°C/12h treatment, with 10±1 µm of the electrocodeposited layer and 7±1 µm of the first layer 

of Ni, which have not been aluminized (Figure V-21.a). For the aluminizing treatments at higher 

temperatures (700 and 1100°C) (Figure V-20.c & 20.c), the interfaces between the 

electrodeposition and the first layer of Ni are less visible and it is difficult to differentiate these 

layers.  

 

Figure V-20: SEM (BSE mode) cross-section of the aluminized composite coating with a heat 

treatment of (a) 650°C/12h, (b) 700°C/12h and (c) 1100°C/1 min. 

 

 

Figure V-21: (a) EDS diffusion profiles made in cross-section for the different heat treatments 

and (b) the thickness layers of the coatings. 

 

Finally, Raman micro-spectroscopy analyses were carried out to identify the oxides present in the 

coating (Figure V-22).  

In the non-aluminized layer (Figure V-22.a & 22.d), the peaks corresponding to the ϴ and α-Al2O3 

can be observed for the aluminization treatments of 650°C. For 700 and 1100°C, the presence of 

α-Al2O3 is predominant. Similar observations can be made at the interface level, with the presence 
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of ϴ and α-Al2O3 for aluminization treatments of 650 and 700°C (Figure V-22.b & 22.e). Finally, 

for the aluminized layer, contradictory spectra are obtained for the analyses carried out with the 

laser of 632 and 532 nm. Indeed, ϴ-Al2O3 is mainly observed for the λ=632 nm (Figure V-22.c) 

while for the λ= 532 nm, only the α-Al2O3 peaks are observable (Figure V-22.f). These 

contradictory spectra seem to indicate the presence of the two phases of aluminum oxide.  

Finally, for the aluminization treatment of 700°C/12h, the peaks corresponding to SiO2 could be 

identified (Figure V-22.c). These peaks are caused by the OPS polishing solution which remained 

trapped in the pores present between the particles and the coating. 

 

 

 

Figure V-22: Raman spectra (λ=632 nm for (a), (b) and (c) and λ=532 nm for (d), (e) and (f)) on 

the cross-sections of the samples after the aluminization process, with (a and d) in the particles 

on the non-aluminized layer, (b and e) interface layer and (c and f) in the particles on the 

aluminized layer [5-6,11-12]. 

 

II.B.3-Influence of heat treatment time 
In the previous part, three heat treatment temperatures were conducted at 650, 700 and 1100°C. 

The temperature of 700°C was selected to continue the investigations and study the influence of 

heat treatment time on the development of the composite coating.  

The microstructures of the coating after reaction with Al at 700°C during 1 min, 2, 4 and 12h are 

shown in Figure V-23. The diffusion profiles and the thicknesses of the layers are presented in 

Figure V-24. For the heat treatments of 1 min (Figure V-23.a), 2h (Figure V-23.b) and 4h (Figure 

V-23.c), the microstructure, composition and coating thickness obtained are quite similar and 

comparable to what was obtained at 650°C/12h (Figure 20.a). Indeed, a first porous layer due to 

the solidification of a liquid phase can be observed at the surface of the coating. This layer is rich 

in Al, with a content greater than 56 at. % of Al (Figure V-24.a). The second layer consists of Al-
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rich β-NiAl and Al3Ni2(ox) particles whose thicknesses range between 25 and 33 µm (Figure V-

24.b). Underneath, the non-aluminized composite electroplating is about 7±1 µm thick and the Ni 

flash layer over the substrate kept its thickness (10±1 µm) (Figure V-24.b). It is interesting to note 

that the longer the aluminizing time at 700°C, the more porous becomes the interface between 

the aluminized and non-aluminized layers (Figure V-23). 

 

Figure V-23: SEM (BSE mode) cross-section of the aluminized composite coating with a heat 

treatment of 700°C during (a) 1 min, (b) 2h, (c) 4h and (d) 12h. 

 

 

Figure V-24: (a) EDS diffusion profiles made in cross-section for the different heat treatments at 

700°C and (b) the thickness layers of the coatings. 

 

The analyses of Raman spectroscopy shown in Figure V-25 for the different aluminizing times 

indicate the formation different phases of aluminum oxide.  

In the non-aluminized layer (Figure V-25.a & 25.d), peaks corresponding to the α-Al2O3 can be 

observed for the heat treatments of 12h at 700°C. For shorter times, the analyses carried out with 

a 532 nm laser (Figure V-25.d) show the presence of α-Al2O3 and for the analyses carried out with 

the 632 nm laser (Figure V-25.a), these peaks of α-Al2O3 are not observed. This strongly suggests 

the main presence of α-Al2O3 for times greater than 12h and the presence of several phases of 

aluminum oxide for shorter times. At the interface of the samples treated at 700°C/12h (Figure V-

25.b), the ϴ and α-Al2O3 are observed (Figure V-25.e).  

Finally, in the aluminized layer (Figure V-25.c & 25.f), the presence of the ϴ-Al2O3 seems to 

predominant for the different processing times, although for analyses with the 532 nm laser, α-

Al2O3 is also observed (Figure V-25.f). In addition, for the heat treatments of 12h, the α-Al2O3 
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peaks begin to appear (Figure V-25.c) and some traces of SiO2 due to the polishing OPS solution 

are also visible. It therefore seems that the aluminized area requires greater aluminizing time to 

allow the transformation of ϴ in α-Al2O3. than the non-aluminized layer, for which a majority of α-

Al2O3. Since the oxidation temperature is the same, this difference can only be attributed to the 

greater content of oxygen in the aluminized area according to Garriga-Majo et al. [13] 

 

 

Figure V-25: Raman spectra (λ=632 nm for (a), (b) and (c) and λ=532 nm for (d), (e) and (f)) on 

the cross-sections of the samples after the aluminization process, with (a and d) in the particles 

on the non-aluminized layer, (b and e) interface layer and (c and f) in the particles on the 

aluminized layer [5-6,11-12]. 

. 
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III- Isothermal oxidation 
This section deals with the characterization of the self-regenerating nature of the obtained 

composite coatings. For this, preliminary isothermal oxidation tests of various nickel aluminide 

coatings prepared from four coatings and two aluminizing treatments were carried out in air at 

1000°C for 48 h. Therefore, these oxidation tests were not intended to finely characterize the 

oxidation behavior of the coatings but to demonstrate (or not) the self-regenerating nature of the 

coatings.  

Aluminizing on a raw nickel substrate and on a nickel electrodeposit have been used as 

references. These two coatings have been formed following an aluminizing treatment of 700°C/2h 

or 700°C/2h+1100°C/1min (designated thereafter as “1100°C/1min”) (Figure V-26). The nickel 

plating has been deposited from a bath of nickel sulfamate and with a current density of 20 A/dm². 

The two composite coatings tested were a coating consisting of the first flash layer of 

electrodeposited Ni and a second Ni/Al3Ni2(ox) composite layer. For the second coating, only the 

composite Ni/Al3Ni2(ox) layer has been coated, i.e. with no electrodeposited flash of Ni. The 

coatings tested are summarized in Table V-2. 

 

Figure V-26: Schematic drawing of the aluminizing treatments of 700°C/2h and 

700°C/2h+1100°C/1min. 

 

Table V-2: Summary table of the coatings tested in isothermal oxidation (1000°C/48h in air).  

Substrate 
First Ni 
layer 

Al3Ni2(ox)+Ni Aluminization treatment 

Ni 

--- --- 700°C/2h 
--- --- 700°C/2h + 1100°C/1 min 

50 µm --- 700°C/2h 
50 µm --- 700°C/2h + 1100°C/1 min 

10 µm 50 µm 700°C/2h 
10 µm 50 µm 700°C/2h + 1100°C/1 min 

--- 50 µm 700°C/2h 
--- 50 µm 700°C/2h + 1100°C/1 min 
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III.A-Microstructure and composition 

III.A.1-Aluminizing and isothermal oxidation of the coating carried out on the raw 

substrate 
Aluminizing of the raw substrates requires a few preparation steps to achieve the diffusion coating 

like the ones shown in Figure V-27.  

 

Figure V-27: Schematic representation of the different steps for obtaining an Al-diffusion coating 

on a raw substrate (Ni). 

 

Figure V-28 shows the cross-sections of the coating made after the aluminizing treatment of 

700°C/2h (Figure V-28.a) and 1100°C/1 min (Figure V-28.b). In addition, the EDS concentration 

profiles are plotted later in the manuscript in Figure V-39.a for the heat treatment of 700°C/2h and 

Figure V-39.b for the heat treatment of 1100°C/1 min. 

Three main layers can be observed in Figure V-28.a & V-28.b for, respectively, 700°C/2h and 

1100°C/1min aluminizing heat treatment. The first layer of about 21±1 µm at the top of the coating 

consists of a multitude of micrometric grains with a composition of Al-rich β-NiAl for the treatment 

of 700°C/2h (Figure 28.a & V-39), in line with the pioneer work of Pedraza et al. on the slurry 

aluminizing of pure Ni substrate [14]. In contrast, the grain size obtained with the 1100°C/1min 

treatment is similar to the thickness (16±2 µm) of the Ni-rich β-NiAl upper layer (Figure 28.b & V-

40.a). The second main coating layer is made up of a 2±1 µm thick Ni-rich β-NiAl intermetallic 

compounds for the 700°C/2h treatment (Figure V-28.a & V-39.a) and of a 18±1 µm thick layer with 

a composition close to the Ni5Al3intermetallic compound (Figure V-28.b & V-40.a) although this 

phase is supposedly thermodynamically unstable above 700°C [15]. The last sublayers right 

above the substrate are similar in thickness (~5 µm) (Figure V-28) and composition (Ni3Al) for both 

coatings (Figure V-39.a & V-40.a). In addition, one can note the presence of a few round pores in 

this layer (Figure V-28.b). 
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Figure V-28: SEM (BSE) mode cross-section of the aluminized substrate with heat treatment of 

(a) 700°C/2h and (b) 1100°C/1min. 

Following the aluminizing step, the samples were oxidized at 1000°C for 48h. The two main 

coating layers shown in Figure V-29 have the same composition (Ni5Al3+Ni3Al on top and 

Ni3Al+Ni(Al) at the bottom, Figures V-39.b & V-40.b) but the thicknesses are slightly greater (30±3 

µm and 19±2 µm vs. 13±3 µm and 20±3 µm) with the additional step at 1100°C/1min in line with 

a fostered interdiffusion. It is also important to note that following the oxidation tests, a thin layer 

of α-Al2O3 developed on the surface of the coatings (Figure V-41.a & V-42.a). However, for the 

sake of contrasting conditions in the backscattered electron mode, this 1±0.7 µm oxide layer 

cannot be observed in Figure V-29.  

 

Figure V-29: SEM (BSE) cross-section of the aluminized substrate ((a) 700°C/2h and (b) 

1100°C/1min) after isothermal oxidation of 1000°C/48h in synthetic air.  

 



- V. Synthesis of self-regenerating composite coating using electrocodeposition of Ni and 
preoxidized Al3Ni2 - 

 

 
-192- 

III.A.2-Aluminizing and isothermal oxidation of nickel plating 
The second reference coating is the diffusion coating obtained on nickel electrodeposits. The 

different preparation steps are summarized and given in Figure V-30. 

 

Figure V-30: Schematic representation of the different steps for obtaining an Al diffusion coating 

on a nickel electroplated layer. 

 

The coatings obtained on the Ni plating are made up of several heterogeneous layers (Figure V-

31).   

For the coating of 700°C/2h, the first layer of 31±3 µm consists of Ni-rich β-NiAl intermetallic and 

displays many defects with a bubble shape escaping from the layer (Figure V-31.a & V-39.a). 

Other smaller pores and cracks are also present. In addition, areas with a lower concentration of 

aluminum (light contrast) can be observed at the bottom of this layer. At the aluminized and non-

aluminized layers, a porous interface with aluminum oxide crystals on the edges of the interface 

appear at higher magnifications (Figure V-31.a). 

The second coating layer seems to correspond to the non-aluminized nickel plating (Figure V-

31.a). This 21±3 µm thick layer is porous and the aluminum concentration does not exceed 7 at. 

% (Figure V-39). Finally, the interface between the coating and the substrate is also porous.  

 

Figure V-31: SEM (BSE) mode cross-section of the aluminized Ni plating substrate with heat 

treatment of (a) 700°C/2h and (b) 1100°C/1min. 
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When adding the second aluminizing step of 1100°C/1min, the coating consists of 1 main layer 

and three very thin layers (Figure V-31.b). The first layer is the thickest, with an average thickness 

of 62±5 µm, and consists of Al-rich β-NiAl as well as pores (Figure V-40.a). The pores also take 

the form of « bubbles » running perpendicular to the surface as if they tried to raise the surface. 

The three consecutive thin layers towards the substrate are composed of Ni-rich β-NiAl, γ’-Ni3Al, 

and γ-Ni(Al). Finally, a porous interface can again be observed between the γ-Ni(Al) layer and the 

substrate (Figure V-31.b). 

After the oxidation, the aluminide coating becomes surrounded by oxides (Figure V-32). On the 

surface of the coatings, α-Al2O3 with a thickness of 6±2 µm can be observed (Figure V-32, V-41.a 

& V-42.a). Below, the composition of the 700°C/2h aluminide coating is that of γ’-Ni3Al (Figure V-

32.a) and equivalent to the compound Ni5Al3 for the treatment of 1100°C/1min (Figure V-32.b). 

Within the aluminized layer, many grains of α-Al2O3 can be observabed (Figure V-41.b & V-42.b). 

Between the aluminized layer and the non-aluminized layer, a sequence of α-Al2O3, NiAl2O4 and 

NiO grow following the increasing gradient of Ni towards the electrodeposit (Figure V-32, V-41.c 

& V-42.c). In addition, some pores develop in the NiO area of the coatings formed with the addition 

aluminizing step of 1100°C/1 min (Figure V-32.b). 

 

Figure V-32: SEM (BSE) cross-section of the aluminized Ni plating ((a) 700°C/2h and (b) 

1100°C/1’) after isothermal oxidation of 1000°C/48h in synthetic air. 

 

III.A.3-Aluminizing and isothermal oxidation of composite electrodeposits with “Ni 

flash” 
The coatings studied in this part are similar to those discussed in part V-II, i.e. a first electrodeposit 

of pure Ni at 5 A/dm² followed by a second composite Ni+Al3Ni2(ox) coating at 20 A/dm². The 

different steps for the synthesis of this coating are detailed in Figure V-33. 
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Figure V-33: Schematic representation of the different step for obtaining a composite diffusion 

coating (with a first layer of Ni). 

 

For the aluminizing treatment of 700°C/2h, the first layer of 28±2 µm is composed of Ni-rich β-NiAl 

and preoxidized Al3Ni2 particles (Figure V-34.a & V-39.a). In addition, pores vertically aligned 

appear. The Ni(Al) sublayer corresponding to the Ni electrodeposit has an average thickness of 

21±2 µm and ends with an interface containing pores (Figure V-34.a). Between the two main 

coating layers, several very thin layers form but the EDS spot analyses are too large to 

unambiguously identify any particular intermetallic compound. 

Increasing the aluminizing treatment to 1100°C/1 min results in a 34±5 µm thick Ni-rich β-NiAl 

external sublayer (Figure V-34.b & V-40.a) over a particle and pore-free zone with a Ni5Al3 

composition. Below, a porous interface can be observed (Figure V-34.b). Next comes, the Ni(Al) 

composite electrodeposit with many pores (Figure V-34.b).   

 

Figure V-34: SEM (BSE) mode cross-section of the aluminized Ni/Al3Ni2(ox) composite 

electrodeposit with heat treatment of (a) 700°C/2h and (b) 1100°C/1 min (with a first layer of Ni). 

 

After oxidation at 1100°C/48h in air, the cross-sections of both coatings are quite similar with an 

aluminized layer covered with an α-Al2O3 oxide scale (Figure V-33, Figures V-41.a & V-42.a). The 

aluminized layer has a composition close to the Ni5Al3 compound (Figure V-39.b & V-40.b) and 

contains many grains of α-Al2O3 (Figure V-41.b & V-42.b). This layer has an average thickness of 

30±10 µm for the heat treatment of 700°C/2h (Figure V-39.b) and 19±8 µm for the heat treatment 

of 1100°C/1min (Figure V-40.b). A thin layer of α-Al2O3 and NiAl2O4 spinel (Figure V-41.c & V-
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42.c) grows underneath at the interface with the Ni(Al) layer that contains numerous clusters of α-

Al2O3, spinel NiO and a few pores (Figure V-35.b). 

 

Figure V-35: SEM (BSE) cross-section of the aluminized Ni/Al3Ni2(ox) composite electrodeposit 

((a) 700°C/2h and (b) 1100°C/1min) after isothermal oxidation of 1000°C/48h in synthetic air 

(with a first layer of Ni). 

 

III.A.4-Aluminizing and isothermal oxidation of composite electrodeposits without 

“Ni flash” 
The last coating studied corresponds to the composite Ni+Al3Ni2ox electroplating, i.e. without the 

initial Ni flash electrodeposit (Figure V-36). 

 

Figure V-36: Schematic representation of the different step for obtaining a composite diffusion 

coating. 

 

The coatings obtained with an aluminizing heat treatment of 700°C/2h and 1100°C/1min exhibit 

two distinct zones: a first heavily "aluminized" zone on top of a second "less-aluminized" of Ni(Al) 

(Figure V-37). The first aluminized layer consists of an Al-rich β-NiAl intermetallic compound for 

the aluminizing treatment of 700°C/2h (Figure V-39.a) while a Ni-rich β-NiAl and Ni5Al3 formed 

when the aluminizing was increased to 1100°C/1min (Figure V-40.a). In addition, the Al-rich area 

contains many pores unlike the Ni-rich area (Figure V-37.b). The average thickness of these layers 

is 29±4 µm and 39±2 µm for respectively, the aluminizing treatments of 700°C/2h and 
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1100°C/1min. The second layers over the substrate is much less aluminized and Al incorporates 

into the Ni matrix (substrate) as Ni(Al). It is interesting to remark that the preoxidized particles can 

be readily observed for the 700°C/2h and 1100°C/1min aluminizing treatments (Figures V-37.a & 

37.b) but the latter also display some pores. 

 

Figure V-37: SEM (BSE) mode cross-section of the aluminized Ni/Al3Ni2(ox) composite 

electrodeposit with heat treatment of (a) 700°C/2h and (b) 1100°C/1 min (no Ni flash layer over 

the Ni substrate). 

 

After the isothermal oxidation, some minor changes occur in the coatings (figure V-36) and relate 

just to some thickening (34±4 µm) and greater oxidation of the trapped particles to result in Al2O3 

in a Ni-rich β-NiAl matrix (Figure V-38.a & 41.b). The α-Al2O3 scale is just 2±1 µm thick and 

homogeneously covers the coating (Figure V-41.a). Another Al2O3 oxide layer develops between 

the Al-rich and the Al-poor layers of the coating, that could act as a diffusion barrier (Figure V-

41.c). It is also interesting to remark that the Al3Ni2(ox) particles in the less-aluminized area are 

oxidized further like in the upper coating layer (Figure V-38.a). This suggests that either the 

coatings are permeable to the external oxygen or that the oxygen of the oxidized particles reacts 

further to produce more bulky oxides (e.g. NiAl2O4) or both but the bulky oxides have not been 

observed by Raman spectroscopy. 

For the samples aluminized at 1100°C/1min, the α-Al2O3 present on the top of the coating is thicker 

than at 700°C/2h because the average thickness is of 12±6 µm (Figure V-38.b & 42.a). The layer 

below has a composition similar to the samples aluminized at 700°C/2h. In addition, numerous 

oxide particles can be observed in the first part of this layer, which would confirm the above 

hypothesis, i.e. the coatings would be permeable to oxygen. The potential α-Al2O3 diffusion barrier 

is again observed between the heavily and the poorly aluminized areas (Figure V-42.b). One can 

also note that the grain boundaries of the less-aluminized zone are oxidized (Figure V-38.b) 

forming Al2O3 (Figure V-42.c).  
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Figure V-38: SEM (BSE) cross-section of the aluminized Ni/Al3Ni2(ox) composite electrodeposit 

((a) 700°C/2h and (b) 1100°C/1min) after isothermal oxidation of 1000°C/48h in synthetic air. 

 

 

Figure V-39: EDS diffusion profiles made in the cross-sections for the different coatings after (a) 

the aluminizing treatment of 700°C/2h and (b) the isothermal oxidation at 1000°C/48h. 
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Figure V-40: EDS diffusion profiles made in the cross-sections for the different coatings after 

(a)the aluminizing treatment of 1100°C/1min and (b) the isothermal oxidation at 1000°C/48h. 

 

 

Figure V-41: Raman spectra of samples carried out at 700°C/2h after oxidation, with (a) the 

oxide layer on the surface, (b) the oxide present in the aluminized layer and (c) the oxide present 

in the less-aluminized layer [5,11]. 

 

 

Figure V-42: Raman spectra of samples carried out at 1100°C/1min after oxidation, with (a) the 

oxide layer on the surface, (b) the oxide present in the aluminized layer and (c) the oxide present 

in the less-aluminized layer [5,11]. 

. 
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III.B-Oxidation kinetics 
Figure V-43 shows the mass gain per surface unit against the isothermal (1000°C) oxidation time 

(48h) of the different coatings. These curves can be divided into two parts. The first part is 

characterized by a rapid mass gain, referring to the formation and growth of an oxide. The second 

part is characteristic of a quasi-stationary regime and characterized by a slow mass gain. During 

this step, the transformations of the aluminum oxide phase γ→ϴ→α-Al2O3 have been proposed 

by many authors under similar oxidizing conditions [16-17]. 

For the simple aluminized raw nickel substrates, the mass gains are quite low. These mass gains 

are less than 0.24 mg/cm² for the aluminizing treatments of 700°C/2h and 0.36 mg/cm² for the 

treatments of 1100°C/1min (Figure V-43). These values are in line with other studies on the 

oxidation of different aluminide coatings on pure Ni [8,18-19]. For the oxidation of the other 

coatings with the electrodeposited layers, the mass gains are much greater than for the pure 

aluminized substrate, in particular when the aluminizing treatment is extended from 700°C/2h to 

1100°C/1min as they pass from 3.9 to 6.1 mg/cm² (Figure V-43).  

For the composite electrodeposited coating with the first Ni flash layer, the mass gain is very 

important for treatment of 700°C/2h with 5.9 mg/cm². For the 1100°C/1min treatment, the mass 

gain is initially faster but tends to slow down with time to reach 5.6 mg/cm².  

Finally, for the last composite coating without “nickel flash”, the mass gains are very close between 

the two treatments with 2.4 mg/cm². In addition, higher mass gains occur during the first oxidation 

stages of the 1100°C/1min aluminized samples.  

 

 

Figure V-43: TGA curves of the coatings isothermally oxidized at 1000°C/48h with (a) the 

coatings aluminized at 700°C/2h and (b) with the extension to 1100°C/1min. 
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IV-Discussion 
IV.A-Formation of the first layer of electrodeposited nickel (Ni flash) 
To characterize the quality of the nickel electrodeposits, only basic inspections were carried out. 

Indeed, we were mostly interested in the covering power of the electrodeposit as well as in the 

presence or absence of a marked interface between the electrodeposits and the substrate.  

For current densities of 2 and 50 A/dm², the covering power of the electrodeposits is low. Indeed, 

numerous polishing scratches are observed unlike in the electrodeposits obtained at 5 and 20 

A/dm². For the low current densities, Ni2+ ions preferentially adsorb at the most prominent defects 

(ridges, polishing scratches, etc.). This causes an increase in the difference in thickness between 

the most prominent and the deeper areas, resulting in a rough surface [20]. In addition, for low 

overvoltage, the surface roughness increases [21]. For current densities of 5 and 20 A/dm², it 

seems that the low surface roughness is also linked with overvoltage. When the overvoltage is 

high, the roughness decreases [21]. Finally, for the current density of 50 A/dm², the low covering 

power must be linked with the hydrogen adsorption at the surface of the samples. 

The texture of Ni plating has been studied by many authors. For “low” current density, the texture 

of the electrodeposits largely depends on the processing conditions (current density, pH, 

temperature, additives, etc.) [22]. According to many authors, a texture following the [100] is 

observed for sulfamate Ni plating [23-26]. For very low current densities, a [110] plane will 

preferably be observed [27-28]. In addition, when a strong inhibition by adsorbed hydrogen takes 

place, an orientation in the direction (220) is often observed, which may explain the low covering 

power for the current density of 50 A/dm². 

All these results can also be extrapolated to the interface. In fact, the lower surface roughness 

and the less visible interface can be observed for the Ni plating synthesized at 5 A/dm². As for the 

samples which have a high surface roughness, it also has a visible and porous interface. 

For these reasons, a current density of 5 A/dm² was selected to synthesize the first layer of 

electroplated nickel. In addition, this conclusion is consistent with the work of Kale & al. which 

demonstrates a better adhesion and corrosion resistance for a system with a first layer of Ni made 

at 5A/dm² and a second layer of Zn-Ni [1]. 

 

IV.B-Effect of current density on the amount of preoxidized Al3Ni2 

particles trapped in nickel electrodeposit matrix 
The electrodeposition conditions (stirring, layout of the electrodes, etc.) make it possible to 

synthesize a nickel composite electrodeposit with a high concentration of Al3Ni2(ox) particles. Our 

studies on the incorporation of alumina particles into nickel electrodeposits have shown that  the 

amount of trapped particles is large for low current densities, unlike for high current densities. In 

addition, two evolution behaviors can be observed. The first is a rapid decrease in the number of 

trapped particles as a function of the current density and the second is a plateau. The distinctions 

between the two behaviors take place around 5A/dm². According to several authors [1,29-38], the 

amount of incorporated alumina increases with the decrease of plating current density and 

increased bath loading. Such authors proposed that increasing the number of effective collisions 

between the particles and the cathode surface per unit volume of the deposited matrix will increase 

the amount incorporated into the coating. Therefore, using low current density or high particles 
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concentration in the bath, a large amount of particles can be trapped. However, in our case, for 

an equivalent size and quantity of particles, these results seem contradictory with what should be 

observed. As a matter of fact, the study of Bakhit et al. on the incorporation of silicon carbide in a 

nickel/cobalt electrodeposit [39] reported results similar to ours. Indeed, an increase in the current 

density allows the trapping of a greater quantity of particles. A rapid increase in the quantity of 

trapped particles and then a quasi-stationary state can be observed up to 3 A/dm². Beyond this 

value, a rapid decrease in the concentration of particles can be observed. It is therefore possible 

that the same phenomena occur for preoxidized Al3Ni2 particles. 

A current density of 20 A/dm² was chosen for the rest of the experiments. This value permits to 

synthesize a composite coating containing 20% vol. particles in a Ni matrix.  

IV.C-Effect of aluminizing temperature and time 
After selecting the parameters and synthesizing the composite electrodeposits, aluminizing by 

slurry route was carried out to synthesize the self-regenerating coatings. Various parameters such 

as aluminizing temperature and time were considered.  

The mechanism governing the aluminizing of the substrate at low temperatures is the diffusivity of 

Al. Indeed, it is accepted that below an aluminizing temperature of 950°C, a High-Activity Low-

Temperature aluminizing (HALT) takes place [40-41]. 

The mechanisms and different stages of slurry aluminizing have been studied. When the 

temperatures rise, the aluminum particles react with the substrate by solid/solid diffusion and a 

small diffusion island can be observed after treatment of 600°C/1h [7]. When the temperature 

reaches 650°C, the self-propagating high temperature (SHS) reactions occur [42] where molten 

Al dissolves Ni and produces a highly exothermic reaction and the immediate aluminizing of the 

Ni substrate [14,43]. Therefore, after 1h at 650°C, 35µm of the substrate are already aluminized. 

This would be in line with the slurry aluminizing mechanisms put down in our group [7,14,43] and 

at the Dechema Institute [42] a few years ago. The first step is defined by wetting, dissolution and 

formation of a zone of molten aluminum on the surface of the sample. The second step is defined 

by a majority diffusion of aluminum towards the substrate and a weak diffusion of the nickel 

towards the aluminum. The intermetallics formed during this step range from the nickel to 

aluminum-rich phase (γ-Ni→γ’-Ni3Al→β-NiAl→Al3Ni2→Al3Ni). During this step, an aluminized zone 

of several tens of microns will form. During the last phase at a higher temperature (T>950°C), the 

Ni will preferentially diffuse towards the surface to form the desired phase of β-NiAl (Al3Ni2→ β-

NiAl). 

The mechanisms of slurry aluminizing of the coatings at 650°C/12h and 700°C/1min, 2, 4 and 12h 

are thus similar. Indeed, a first porous layer is formed on the surface. This porous zone is 

characteristic of a bath of molten aluminum [43]. This molten Al bath will dissolve a thin layer of 

nickel on the surface and the dissolved nickel will enrich the molten bath (Figure V-44.b) [7,42]. 

For longer aluminizing times, the amount of Al available on the surface will increase (due to the 

melting of Al particles) and diffusion of Al onto the electrodeposits will quickly occur forming a layer 

of Al3Ni2 intermetallic compound (Figure V-44.c), then β-NiAl. This layer will quickly grow until it 

reaches a thickness of 30 µm. In addition, during this time, nickel will diffuse on the surface and 

induce the solidification of the molten aluminum bath and the formation of the Al3Ni and Al3Ni2 

phases (Figure V-44.c). For treatments of 700°C/1min, these different steps have already occurred 

(Figure V-22.a). For longer aluminizing times, a slight thickening of the aluminized zone and a 
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modification of the aluminized/non-aluminized areas interface appears to occur (Figure V-22 & V-

23.a). 

In addition, the phases of the aluminum oxide differ between the different layers. In the aluminized 

areas, the ϴ-Al2O3 is majorly observed at 650°C and 700°C while the peaks of α-Al2O3 are 

detected after 12h at 700°C, for the two laser wavelengths employed in the Raman analyses. In 

the non-aluminized area, the rapid transformation at low temperature of the ϴ → α-Al2O3 suggests 

a low partial pressure of oxygen in this layer, in contrast to the aluminized zone. Networks of defect 

such as micro-porosities and trapped gas in the aluminized layer may explain these differences in 

Po2. Indeed, part of the trapped gas can be released during the heat treatment and will keep a 

high Po2 in the system. This theory seems consistent with the oxidation tests. Indeed, during the 

oxidation of the two-layers electrodeposited coatings, significant oxidation of the sub-surface of 

the coating is observed. This internal oxidation could be explained by a network of defects in the 

aluminized layer. In addition, nickel oxide and spinels form in the non-aluminized layer. According 

to the Ellingham diagram (thermodynamic and non-kinetic value) the formation of NiO is possible 

for Po2 around 10-17 and 10-11 bar for respectively, 700 and 1000°C. It is therefore probable that 

the trapped gas in the coating maintains a Po2 between these two values. 

In addition, interfacial oxidation occurs around Al3Ni2(ox) particles (Figure V-44.d). The formation of 

this aluminum oxide continues all along with the interface and for aluminizing treatment of 

700°C/12h, interfacial detachment can be observed (Figure V-45.e). For lower temperature 

(650°C/12h), no detachment occurs but an α-Al2O3 can be observed. 

For the treatment of 1100°C/1min, the first stages of aluminizing are identical. The major 

differences will occur when the furnace temperature exceeds 950°C. Indeed, at these 

temperatures, the coating formation mechanisms will go from High to Low-activity (LAHT) 

following the outward Ni diffusion [40]. Moreover, this diffusion of Ni is clearly observed for the 

samples aluminized at 1100°C/1min. Indeed, at the bottom of the aluminized layer, a greater Ni 

concentration and no pores are observed. The lack of pores is caused by the diffusion of Ni which 

will provide a surplus of atoms allowing gaps and pores to be filled. In addition, at the interface of 

the aluminized/non-aluminized areas, an interfacial detachment occurs. Finally, at the layers of 

the first nickel electrodeposit, pores from throughout the thickness of this layer.  

For all the aluminizing temperatures, the coatings are porous and the finer particles appear to 

dissolve. The porosity of the coating appears to be caused by the nature of the electrodeposits in 

relation to their fabrication mode. As such, when sufficient thermal energy (e.g. aluminizing 

temperature) is provided, the defects coalesce and form pores. Regarding the Al3Ni2ox particles, it 

seems that only the finest particles have been completely dissolved. If we compare the area of 

the aluminized and less-aluminized electrodeposits, a large amount of particles can be observed 

in the less-aluminized area (Figure V-19.a). This clearly implies that, despite the oxide shell 

exchanges take place between the core of the particles and the external matrix. In addition, this 

total dissolution of the particles could be prevented by using larger particles or by applying longer 

preoxidation times and therefore forming thicker oxide scales. 

To conclude, these three aluminizing treatments generate quite similar results. Nevertheless, it 

seems that the treatment of 700°C/12h leads to a lower porosity around the preoxidized Al3Ni2 

particles. An excessive interfacial oxidation can occur during the oxidation step the formation of a 

thick oxide layer, which will locally decrease the Al content and allow no exchange between the 

particles and the coatings. For these reasons, a temperature of 700°C was selected for further 
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investigations. For the aluminizing time, the treatment of 700°C/2h was chosen. Indeed, with the 

extension to 1100°C/ 1min, a thick residual layer of molten Al bath remains on the surface. For 

longer times (4 and 12h), cracks appear at the interface that can cause interfacial detachment.  

 

 
Figure V-44: Schematic drawing of the aluminizing process between the composite coating and 

Al particles heated at 700°C. 

IV.D-Isothermal oxidation 

IV.D.1-Oxidation kinetics 
During this study, preliminary short isothermal oxidation tests (48h) were carried out in air at 

1000°C to confirm or refute the self-regenerating nature of the composite coatings.  

The thermogravimetric measurements of the coatings were given in the previous Figure V-43. All 

the samples had been coated by applying 10 mg.cm-2 of slurry and subsequently annealed. For 

all samples, the mass increases with the oxidation time. The lowest mass gain is obtained with 

the aluminized pure Ni substrate. and the typical value to compare with other coatings and with 

other studies is the parabolic rate constant, Kp. The parabolic rate constant is calculated using the 

linear part of the curves Δm/A=f(t1/2) (Figure V-45) as described in detail in the work of B. Pieraggi 

[44]. This value gives a good estimate of the oxidation rate and of the type of oxide formed on the 

surface of the coating [44]. Therefore, the lower the values of kp, the slower the oxidation kinetics, 

which is thus attributed to a slowly growing (protective) oxide. In addition, it is important to consider 

that the longer the oxidation times, the greater the accuracy of the kp values because issues like 

surface roughness, etc. particularly affecting the initial oxidation stages become negligible. 

However, our approach will allow to make a direct comparison with other equivalent systems and 

with other studies. The values of kp are given in Table V-3. 

For the coatings carried out on the raw substrate, the values of kp obtained for the two aluminizing 

treatments are close. In addition, these values are similar to those obtained for other studies on 

β-NiAl diffusion coatings elaborated through slurry route (≈2.10-9 and 7.10-9 g².cm-4.s-1) for 

isothermal oxidation at 1000°C) [8,45].  

The oxidation of the different aluminized nickel electrodeposits largely differs from that of the 

simple aluminide coatings on the Ni substrate. This greater difference in oxidation kinetics can be 

explained by three factors, (i) the difference in composition, (ii) the difference in microstructure, 

and (iii) the presence of internal defects. The microstructure and the composition of the coatings 

obtained on the Ni electrodeposits are quite similar to those obtained on a raw substrate. 

Therefore, the main factor that can explain these differences is the presence of defects. Indeed, 

porosities of several microns are observed in the aluminized layer. In addition, interfacial oxidation 

and detachment of the oxide scale occur. Finally, for the aluminized composite Ni+Al3Ni2ox 
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coatings, the values of kp are far from to two orders of magnitude with respect the values of Ni 

electrodeposits. 

The kp values show higher oxidation rates for the electrodeposits and the composite coatings. This 

suggests the formation of less protective oxides such as spinels and nickel oxide, which has been 

shown for Ni plating and the two-layer electro-codeposits.  The formation of such oxides occurs in 

several areas of the coatings and not just at the surface like in the simple diffusion coatings. 

Therefore, the mass gain is greater and results in greater kp values. In essence, the physical 

meaning of the parabolic rate constant accounting for solid state diffusion cannot really apply to 

these very uneven situations. 

 

Figure V-45: (Δ/ms) ² vs time curves for the aluminized samples for (a) 700°C/2h and (b) 

1100°C/1min. 

 

Table V-3: Parabolic rate constants of the different Al diffusion coatings after 1000°C/48h in air.  

IV.D.2-Evolution of the microstructure and compositions  
The diffusion coatings obtained on the raw substrate exhibit a similar morphology before and after 

oxidation. Almost the entire aluminized layer is made of an Al-rich β-NiAl expected to evolve upon 

oxidation. First, due to contact with oxygen, the aluminum on the surface of the coating will be 

oxidized, which will slightly deplete its content close to the surface. Second, the structure of these 

Heat treatment 700°C/2h 1100°C/1min 
Oxidation 

time 
48h 100h 

Coatings kp (g².cm-4.s-1) 
Reference 
coatings 

kp (g².cm-4.s-1) 

Ni substrate 4E-8 8E-8 
Slurry 
[45] 

2E-9 4.7E-13 

Ni plating 8E-6 2E-5 
Slurry 

[8] 
7E-9 2.4E-12 

Electrocodeposition 
with “Ni flash” 

3E-5 1E-5 

Pack-
Cementation 

[8] 
 

8E-10 6.1E-14 

Electrocodeposition 
without “Ni flash” 

5E-6 
2E-6 
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coatings together with the difference in composition between the coating and the substrate will 

induce a compositional driving force to foster interdiffusion. The Al present in the coating will 

diffuse towards the substrate and the nickel present in the substrate will diffuse towards the 

surface of the sample. These interdiffusion phenomena can be observed in Figure V-39 and Figure 

V-40. Indeed, at the end of the aluminizing treatments of 700°C/2h, a concentration of 5 at. % of 

Al can be detected to a depth of about 40 µm. At the end of the oxidation treatment, a concentration 

of 5 at. % of Al can be detected up to about 94 µm depth. 

In addition, the gradual depletion of Al will cause several phase changes. For instance, at 1100°C 

the β-NiAl phase is stable up to about 37 at. % of Al and then transforms into γ’-Ni3Al [15]. These 

phase changes will induce changes in volume and changes in microstructure. Close to the surface, 

a typical plate-like martensitic transformation microstructure can be observed and confirmed by 

the L10-Ni3Al XRD peaks. This martensitic structure has been extensively studied and precisely 

forms when the Al content is around 36-37 at.% [45-50]. Below, a layer of an undefined phase can 

be observed. In this layer, the Al concentration gradually decreases to levels below 9 at. % leading 

to the γ-Ni phase with Al dissolved.  

On the aluminized nickel electrodeposits, the oxidation induced much greater modifications. This 

can be attributed to the fact that the coatings contain many defects (pores, cavities, cracks, etc.) 

after aluminizing. The imprints of bubbles formed during the aluminizing step (Figure V-32) could 

come from trapped foreign species such as hydrogen and/or species coming from the 

electrodeposition bath. During the aluminizing treatment, the temperature very likely exceeded the 

value necessary to get gaseous species, which tended to escape from the coating. The defects 

generated by these “gas pockets” appear smaller close to the surface than those observed deeper 

in the coating, which could confirm that these gaseous species were indeed able to escape. 

Deeper in the coating, the “gas pockets” tended to coalesce and to escape but remained trapped 

in the shape of elongated bubbles. During the oxidation step, these defects play a significant role 

by facilitating the penetration of oxygen into the coating. 

In fact, during the oxidation step, significant internal oxidation takes place in the coating, with a 

major formation of α-Al2O3 and of NiO at the coating/substrate interface. This strong oxidation 

induces internal stresses which can lead to an interfacial detachment of the coating from the 

substrate. In addition, this significant oxidation explains the important mass gain during the 

oxidation of this type of coating.  

The oxidation of electrocodeposited coatings (Ni flash + composite) has similarities to simple Ni 

electrodeposits. Due to the high quantity of defects of the electrocodeposited layer, a thick layer 

of Al2O3 forms on the surface, in the coating and at the interface non-aluminized layer/aluminized 

layer. In addition, in the non-aluminized layer, a network of aluminum oxide, spinel and nickel 

oxide are observed. The formation of the aluminum oxide in this layer is probably due to the 

preoxidation of the particles trapped in this layer. Indeed, the diffusion barrier formed by the oxides 

at the interface is too thick and aluminum oxide could also have been observed for the coatings 

carried out on the Ni plating. These observations tend to demonstrate that interdiffusion between 

Al3Ni2(ox) particles and the nickel matrix takes place. 

However, to obtain a functional self-regenerating coating too many defects are present in the 

coating. To reduce the presence of defects, it was decided to carry out an oxidation test on 

composite coatings without the first flash layer of Ni because it oxidizes extremely quickly and 

introduces many defects that affect oxidation.  
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The tests carried out on the composite coatings without “Ni flash” after aluminization are only 

composed of few pores and no interfacial detachment compared to the previous. These 

observations are confirmed after oxidation. Indeed, the observations made on the coating and in 

particular for the treatments of 700°C/2h appear really interesting to us. This coating is 

homogeneous and has a very high aluminum concentration. 

For comparison with the simple aluminide coating made on a raw substrate whose surface 

aluminum oxide is just about 1 µm thick, the Al2O3 scale is barely thicker (2±1 and 12±+ µm 

respectively for the 700°C/2h and 1100°C/1min aluminizing times). After oxidation, the outermost 

20 µm of the simple diffusion coating contain 30 at% of Al whilefor the self-regenerating coating 

the Al content is higher (41 at%) over the entire aluminized area (≈30µm). In this concentration 

range, the β-NiAl intermetallic compounds are stable. This means that after 48 hours of exposure 

to 1000°C in air, there is no phase change. Therefore, no change in volume and no internal 

stresses induced by the phase changes. In addition, a concentration of 5 at. % of Al is observed 

up to about 94 µm for the simple coatings while for the composite coatings this concentration is 

reached at 60 µm due to the Al2O3 diffusion barrier. Finally, the preoxidized particles in the non-

aluminized area have fully oxidized. 

This high concentration of aluminum in the coating appears to be induced by the combined action 

of the Al3Ni2(ox) particles and the alumina diffusion barrier. Unfortunately, due to the total oxidation 

of the particles, it is not possible to quantify the amount of aluminum released by the particles. It 

is therefore not possible to quantify the effect of preoxidized particles and the effect of the diffusion 

barrier. Nevertheless, it would seem that the composite coatings synthesized at 700°C/2h, have 

only a low self-regenerating character and that the large quantity of aluminum in the coating after 

the oxidation test is due to the oxidation of the interface. Indeed, after 48h of oxidation, all of the 

Al3Ni2(ox) particles are oxidized, which suggests that the coating matrix is permeable to oxygen. 

For the aluminizing treatments of 700°C/2h + 1100°C/1min, the observations are less promising. 

This is because a significant portion of the surface of the coatings has oxidized. In addition, strong 

intergranular oxidation can be observed in the non-aluminized area. This greater oxidation can be 

caused by a greater diffusion of oxygen through the defect network [51-52]. This network of 

defects could also explain the greater diffusion of aluminum in the substrate (Figure V-39.b & 

40.b). 

  



- V. Synthesis of self-regenerating composite coating using electrocodeposition of Ni and 
preoxidized Al3Ni2 - 

 

 
-207- 

V-Conclusions 
The synthesis, preoxidation, and incorporation of preoxidized Al3Ni2 nanometric particles into a 

nickel matrix by electrodeposition have been investigated in this work. The preoxidation treatment 

of the particles in Ar and air produced a thin layer of aluminum oxide on the surface, thus forming 

particles with an Al3Ni2/β-NiAl core and an Al2O3 shell. During the electrochemical step and the 

synthesis of composite coating, the concentration of particles trapped in the coating increased 

with the current density forming a composite coating containing 20 vol% of preoxidized particles 

homogeneously distributed. 

These 50 µm composite coatings were aluminized at 700°C to form a HALT diffusion coating. The 

coating obtained for an aluminizing treatment of 700°C/2h is made of a first layer of Al-rich β-NiAl 

(30 µm) and of a second layer of less-aluminized electrodeposit (Ni(Al)). For longer processing 

times or higher temperatures, interfacial decohesion occurred.   

The self-regenerating nature of the coatings was estimated through isothermal oxidation 

experiments (1000°C/48h) and the obtained results revealed promising. Indeed, after 48h of 

oxidation at 1000°C, the aluminum content is of 40 at. % in the first 30 microns of the coating 

whereas, for a simple diffusion coating, the aluminum content is approximately equal to 30 at. % 

in the first 20 µm  

Nevertheless, long-term oxidation is needed to evaluate the long-term effect on the composite 

coating and the alumina diffusion barrier on the durability of the systems. After 48h of oxidation, 

the amount of Al has not yet reached critical values. Additionally, cyclic oxidation assays can also 

be conducted to assess the effect of particles, diffusion barrier, and the delayed β-NiAl → γ’-Ni3Al 

transformation.  
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Conclusion and perspectives 
I-Summary and conclusion  
 One of the main shortcomings of diffusion coatings is the difference in concentration between the 

coating and the substrate. These differences in concentration generate driving forces of aluminum 

and nickel in, and one of the possible ways to overcome this interdiffusion is to synthetize diffusion 

barrier. However, diffusion barrier weakens the interface between the coating and the substrate, 

increasing the weight and the manufacturing costs. Therefore, the main objective of this work was 

to synthetize a self-regenerated nickel aluminide diffusion coating 

One of the ways to synthetize a self-regenerating coating is to synthetize a nickel aluminide 

coating with microreservoirs composed of an Al-rich NixAly and an Al2O3 oxide shell. For this, two 

procedures have been explored, (i) the first consists in preoxidizing a nickel substrate to form a 

thin layer of NiO and during the aluminization process an aluminothermic reaction between Al and 

NiO will form in-situ Al2O3. This method can allow the simultaneous formation of the coating and 

the microreservoirs. (ii) The second method consists in incorporating preoxidized Al3Ni2 

microparticles in a nickel electrodeposits before carrying out an aluminization.  

• Aluminothermic way 

For the first method, the first step is to study reactivity between preoxidized nickel particles and 

aluminum particles by DSC. Secondly, the results obtained were extrapolated to nickel substrate 

and preoxidized nickel electrodeposits. 

To study the reactivity, 3 particles configurations, 2 heating rates, 2 particles size and 4 

preoxidation times were tested. It was observed during the heating 3 exothermic peaks and an 

endothermic peak. At around 620°C, the first stage of the aluminothermic reaction between the 

NiO shells and the aluminum particles takes place. Then at around 660°C, the aluminum melts. 

This melting will stop the thermite reaction up to 700°C, where the second step of the 

aluminothermic reaction between the NiO and liquid Al takes place. This aluminothermic reaction 

causes reduction of NiO and oxidation of Al. These steps are then followed by the formation of the 

intermetallic compound NixAly and the transformation of γ-Al2O3 into α-Al2O3 above 1000°C.  

Regarding the microstructure, it has been identified that the size, the preoxidation time, the heating 

rate and the arrangement of the particles are predominant parameters. In the case of mixing the 

powders between the small preoxidized nickel particles and the aluminum particles, a composite 

structure between Ni3Al intermetallic compound and Al2O3 was observed. This structure made up 

of metallic particles and alumina shell interpenetrated are influence by the heating rated and the 

size of nickel particles. In fact, for rapid heating rates or coarse particles, the structure become 

porous and a smaller quantity of alumina has been observed on the edges of the intermetallic 

particles.  

For the two-layer layouts, the heating rates play an opposing role. When the nickel particles are 

above the aluminum particles, the fast heating rates bring about the formation of compact 

composite structures unlike the opposed configurations. In all 3 layouts (layout A: mixture of 

preoxidized aluminum and nickel particles, layout B: preoxidized nickel particles above the 

aluminum particles and layout C: preoxidized nickel particles below the aluminum particles), the 

fine preoxidized particles provide a promising structure consisting of intermetallic grains and 
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aluminum oxide grains boundaries and/or shells. These grains can act as a reservoir for self-

regenerating coatings and aluminum oxide can act as thin and discontinue diffusion barrier. The 

results were therefore extrapolated to a preoxidized raw nickel substrate coated with Al powder. 

From a calorimetric point of view, the results obtained for fast heating rates are similar to those 

obtained in the case of powder mixing. For slower heating rates, the energies released are 

extremely low. This difference is probably caused by the difference in the amount of material and 

the difference in porosity between the particles and the raw substrate. 

In addition, the thermal treatments made it possible to highlight the various exothermic reactions. 

When the crucibles have been heated to 700°C/2h, the different stages of the aluminothermic 

reaction lead to the formation of a multilayer system, with a first layer Al3Ni intermetallic and a 

thick layer of Al2O3 which blocks the diffusion of Al. Residual NiO can be still observed. Yet despite 

this dense layer of alumina, the aluminum succeeds in infiltrating through defects present in the 

nickel oxide layer and aluminizing the substrate. This aluminization caused the formation of 

diffusion islands and the lifting of the NiO layer. As the temperature rises to 1080°C, the entire 

NiO layers have been reduced and a thick aluminized area of about one hundred microns has 

been observed. The structure of the coating obtained after a treatment of 700°C/2h could make it 

possible to form a self-regenerating coating. However, it appears necessary to reduce the entire 

NiO layer. For this, it was decided to study the influence of the preoxidation time and therefore of 

the thicknesses in order to obtained coatings without residual NiO.  

The tests were carried out on pure Ni substrates, preoxidized and subsequently aluminized under 

TGA. For a preoxidized nickel substrate at 1100°C/2h, the most interesting results are obtained 

by aluminizing at 700°C/24h. The coating obtained consists of a first composite layer between 

Al3Ni matrix and microspheres composed of an Al3Ni core and an Al2O3 shell. A second layer of 

Al3Ni and Al2O3 cluster. Finally, a layer of reduced nickel and NiO are observed. The synthesize 

of the composite layer between Al3Ni and alumina shells was made possible by the formation of 

the diffusion barrier. Indeed, the layer of alumina prevents the aluminum from diffusing deeper into 

the substrate, the intermetallic will then form outwards and trapping the aluminum particles 

oxidizing shells. 

In addition, due to the mechanisms of formation of the nickel oxide layer, the longer the 

preoxidation times, the greater the amount of defects in the NiO layers. These defects are 

preferential diffusion paths for Al, which allows a large amount of NiO to be reduced. However, 

the longer the preoxidation time, the greater the amount of NiO to be reduced. It therefore seems 

complicated to reduce the entire NiO layer with this method. 

It was therefore decided to synthesize electrodeposits of Ni on the substrate. These 

electrodeposits were synthesized at high-current densities, resulting in electrodeposits and nickel 

oxide after preoxidation with a high-concentration of defects. This increase in defects allows an 

increase in the reduced Ni, however, this leads to obtaining a heterogeneous coating. These 

heterogenous coatings, made up of diffusion islands, led to a decohesion of the coating. In 

addition, the formation of the composite layer between, a, intermetallic matrix and particles 

consisting of an alumina shell is no longer guaranteed. Indeed, to obtain this layer it is necessary 

that part of aluminum be blocked by the alumina diffusion barrier. However, by increasing the 

amount of defects in the oxide layer, this barrier has not been homogeneously formed and a large 

amount of Al reacts with the substrate. This method did not make it possible to obtain self-

regenerating coating without nickel oxide. 
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• Electrochemical way 

In this way, preoxidized Al3Ni2 intermetallic particles have been incorporated in a nickel plating. 

This makes it possible to incorporate microreservoirs of a precise size and composition in the 

coating. The micrometric particles of Al3Ni2 were synthetized by pack cementation and preoxidized 

to form a thin shell of Al2O3. It has been observed that during the electrochemical step and the 

synthesis of composite coating, the concentration of particles trapped in the coating increased 

with the current density forming a composite coating containing20% vol. of preoxidized particles 

homogeneously distributed. 50 µm composite coatings were subsequently aluminized at 700°C to 

form low-activity coatings. It was found and optimal time of 2h of heat treatment, where about 30 

µm of coating are made of Al-rich β-NiAl and preoxidized microparticles, and, the other 20 µm is 

slightly enriched with Al. For longer times, an interfacial decohesion was observable. These 

coatings were subsequently oxidized at 1000°C/48h. 

The oxidation of this coating appears promising. In fact, after 48h of oxidation at 1000°C in air, the 

Al concentration is about 40 at. % in the first 30 µm of the coating. In contrast, the Al concentration 

is about 30 at. % in the first 20 µm in a “classic” diffusion coating. In addition, a thin layer of alumina 

which acts as a diffusion barrier is formed between the aluminized and non-aluminized layers of 

the coating. It appears that the high concentration of aluminum that remains in the coating after 

the oxidation treatment is caused by the action of the diffusion barrier and not by the direct action 

of the particles. However, in view of the results obtained on a simple nickel electrodeposits coating, 

no alumina diffusion barrier is formed. It is therefore highly likely that this thin layer of alumina will 

form due to the incorporation of the particles into the coating. 
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II-Perspectives 
This PhD thesis corresponds to a pioneering study on the synthesis of self-regenerating aluminide 

coatings on nickel substrates and therefore, not all the different hypothesis of investigation that 

were set at the beginning of the study have been answered. In some other cases, the initial path 

of investigation had to be detoured according to the results obtained in view of selecting a potential 

self-regenerating coating within the limits of duration of this thesis (3 yeas). This necessarily opens 

new avenues of investigation among which, some key perspectives in the short term can proposed 

in the following. 

In the study of the thermite reactions, some of the unanswered questions are: 

o Which the actual physical state (liquid/solid) of the alumina formed during the thermite 

reaction and can this affect the derived intermetallic formation by absorbing/releasing heat 

locally? 

o How does the reaction and diffusion front form and advance? And what are the 

temperatures reached at the interface? 

o As the Al percolate through the NiO layer to form the diffusion islands, is the Al in a liquid 

or solid state? And what are these defects in the NiO (network of pores, grain boundaries, 

etc.)? 

o Will larger defects in the NiO layer completely reduce the nickel oxide layer? 

To answer these questions, several experiments can be imagined: 

• Thermodynamic and kinetics simulation can be carried out and will allow a better 

understanding of the aluminothermic reaction between Al/NiO/Ni systems. 

• More detailed analyses on the NiO layer (eg. TEM, SEM with FIB, etc.) can reveal the 

defects through which the Al infiltrates NiO. In addition, other in-situ analyses (e.g. SEM 

and Raman spectroscopy with hot stages) can help to determine the different stages 

involved in this Al infiltration. 

• Real-time monitoring tests using methods such as a thermal and SEM images of the 

reaction could help to better understand the sequence of coating formation at the different 

evolving interfaces. For this, a cross-section of a preoxidized sample with an Al deposit 

can be heated in a heating stage in an enclosure and imaged under the SEM. 

• To reduce the thickness of the NiO layer without reducing the preoxidation time or 

temperature. It can be tested to preoxidize the sample, then to reduce the NiO formed by 

a reducing gas such as H2. A thin layer of nickel will form on the top of the NiO layer and 

the aluminizing step should allow to grow a first layer of NiAl and the formation of an 

alumina diffusion barrier. Another possible solution is a light polishing of the NiO to reduce 

the thickness and increase the defects concentration. 

• In addition, higher temperatures and shorter oxidation times can be tested. 

When a Ni plating is synthetized and preoxidized: 

o What is the role of hydrogen in the synthesis, oxidation and aluminization stages? 

o Is this method viable to achieve homogeneous coatings on Ni-based superalloys? 

To answer these questions: 
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• TDS (thermodesorption spectroscopy analyses can be carried out to quantify the amount 

of trapped hydrogen in the electrodeposit before and after the preoxidation step as well as 

after the aluminization step. 

• Finally, in recent years several porous electrodeposits and porous bulk produced by 3D 

printing have been developing. It will be interesting to preoxidize and aluminize then. These 

complex structures could make it possible to form composite coatings with alumina 

inclusions. 

Regarding the synthesis of electrochemically self-regenerating coatings: 

o One of the main questions are the influence of the size, composition and oxide thickness 

of the microparticles. 

o In addition, the results obtained in oxidation were found to be satisfactory, but how the 

manner Al is supplied from the microparticles to the matrix (if really occurring) could be not 

clearly defined. Thus, the way the microparticles will evolve with time and temperature 

under constant pressure should be investigated, in particular by extending the duration of 

the isothermal tests to assess the critical Al content in these systems. In the same vein, 

one key point is the study of the adhesion of the coating to the different substrates (Ni-

based alloys) under high temperature oxidizing cycles since the induced thermal stresses 

might concentrate at the coating/substrate interface especially if the latter is still made by 

a continuous oxide (i.e. incomplete reduction of NiO or excessibely thick interfacial Al2O3). 

To answer these questions, several tests can be set up such as the synthesis of different particle 

sizes, Al and Ni compositions, and different preoxidation times. These differences will make it 

possible to observe the interactions between the particles and the coating, as well as to quantify 

the interdiffusion phenomena during the aluminization and oxidation stages. In particular, very 

local analyses by e.g. EPMA (electron probe microanalyses) and EDS coupled to a TEM might 

reveal convenient.  

In addition, the great flexibility of this method can allow a great adaptability in synthesizable 

coatings. Indeed, each parameter such as thickness and composition of the electrodeposits, the 

size and composition of the particles and the thickness of the oxide shell can be modified 

independently of the others. This makes it possible to adapt the coating to the targeted 

applications. For example, for high-temperature corrosion, preoxidizing AlxCry or NixAlyCrz particles 

can be trapped in the Ni plating. Subsequently, a slurry aluminization of Al and Cr particles would 

form a Cr-rich self-regenerating coating for very harsh corrosive environments such as waste 

recovery and biomass plants.
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Annexes 
Annex 1  
Theoretically, the basis of x-ray diffraction is that the penetration (and therefore the intensity) can 

reach different values depending on the material studied. Thus, the intensity is related to the linear 

absorption coefficient by the following relation: 

𝐼(𝑥) = 𝐼0. 𝑒−µ.𝑥 (eq.1) 
Penetration is also calculated by the relation: 

    𝑝 =
1

µ
. ln (

𝐼0

𝐼
) .

sin(ω).sin (2𝛳−ω)

sin(ω)+sin (2𝛳−ω)
 (eq.2) 

With ω the angle of incidence and 2ϴ the experimental position of the considered peak. 

In our study, the assembly is symmetrical, therefore ω=ϴ. Which give: 

    𝑝 =
1

µ
. ln (

𝐼0

𝐼
) .

sin (𝛳)

2)
 (eq.3) 

It is considered that only the crystallographic planes located at a depth p, such that the total path 

of the X-rays in the samples verifies 
𝐼0

𝐼
=

1

10
 participate significantly in the 2ϴ peak considered. So 

ln (
𝐼0

𝐼
) = ln(10) = 2.3. 

 

Then µ𝑚 =
µ

𝑝
 with µm the mass absorption coefficient and ρ the density of the coating. Since µ and 

µm depend on the energy of the photons, it is necessary to consider the energy associated with 

the wavelength of X-rays. In our case 𝜆 ≡ 𝜆𝑘𝛼(𝐶𝑢) → 𝐸~8 𝐾𝑒𝑉 and then: 

Ni : 𝜇𝑚= 49.52 cm2.g-1 

M= 58.70 g 

ρ = 8.902 g.cm-3 => 𝜇 = 440.827 cm-1 

W : 𝜇𝑚= 170,5 cm2.g-1 

M= 183.85 g 

ρ = 19.3 g.cm-3 => 𝜇 = 3290.65 cm-1 

 

For a Ni samples of Mx molar mass then:   

𝜇𝑚(𝑥) = [𝑥 𝑀(𝑁𝑖) 𝜇𝑚(𝑁𝑖)] ×
1

𝑀𝑥
 

and 𝜇(𝑥, ) = 𝜌𝑥 ×  𝜇𝑚(𝑥) Where 𝜌𝑥 ≡ Density of Ni 

 

For a NixAly compound of Mxy molar mass then: 

𝜇𝑚(𝑥, 𝑦) = [𝑥 𝑀(𝑁𝑖) 𝜇𝑚(𝑁𝑖) + 𝑦 𝑀(𝐴𝑙) 𝜇𝑚(𝐴𝑙)] ×
1

𝑀𝑥𝑦
 

and 𝜇(𝑥, 𝑦) = 𝜌𝑥𝑦 ×  𝜇𝑚(𝑥, 𝑦) Where  𝜌𝑥𝑦 ≡ Density of NixAly 
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Figure 1: γ-Ni and β-NiAl penetration depth for the Kα1 copper for symmetrical mounting 

Table 1: Summary table of the X penetration depth for the different plan and peaks 

γ-Ni Plane 
Penetration 

depth 
β-NiAl Planes 

Penetration 
depth 

2ϴ (hkl) µm 2ϴ (hkl) µm 

44.5 (111) 10.1 31.1 (100) 5.8 

51.8 (200) 11.7 44.5 (110) 8.3 

76.4 (220) 16.5 55.3 (111) 10.1 

   64.7 (200) 11.7 

   73.5 (210) 13 

   82 (211) 14.3 

 



 

 

 
Synthèse et comportement à haute température des revêtements auto-régénérants 

 
La sélection des matériaux utilisés dans les parties chaudes des moteurs aéronautiques ou dans les centrales 
de production d’énergie sont devenu un enjeu crucial au vu des impératifs écologiques et économiques. L’un 
des composants critiques de ces systèmes sont les aubes de turbine dont leur tenue mécanique est assurée 
par la nature des substrats employés (aciers et superalliages à base nickel). Cependant, leur tenue 
environnementale nécessite l’application de revêtements protecteurs source d’Al capables de former de 
barrières d’oxyde (Al2O3) imperméables à l’attaque externe par oxydation et corrosion aux hautes températures. 
L’épuisement de l’Al pour former l’oxyde et par interdiffusion avec le substrat conduit inexorablement à la perte 
de protection. Ainsi, des structures spécifiques de revêtement telles les barrières de diffusion peuvent alors être 
mise en place pour augmenter la durée des vies des aubes au détriment de leurs propriétés mécaniques et de 
coûts élevés de fabrication et environnementaux. Durant cette étude, des nouvelles voies originales de synthèse 
des revêtements de diffusion d’aluminium « autorégénérants » ont été étudiées. Ces revêtements disposent 
d’une structure composite, avec une matrice de phases intermétallique (NixAly) renforcée par des 
microréservoirs constitués d’un cœur (NixAly) et une paroi en Al2O3 au travers laquelle l’Al du cœur peut 
ravitailler la matrice et maintenir une concentration globale en Al suffisamment élevée dans la matrice capable 
de former la couche externe protectrice d’Al2O3.  
Nos études démontrent que les réactions aluminothermiques entre du NiO et l’Al permettent de former un tel 
revêtement autorégénerant avec une barrière de diffusion à l’interface substrat/revêtement lorsque le Ni est 
initialement pré-oxydé à 1100°C pendant 2h. Néanmoins, aucun compromis n’a été trouvé pour former des 
revêtements sans NiO résiduel qui pourrait compromettre l’adhérence du revêtement au substrat. En revanche, 
une voie électrochimique permet d’incorporer de microparticules d’Al3Ni2 dans des électrodépots de Ni. A la 
suite d’un traitement d’aluminisation par barbotine, les microparticles préoxydées s’incorporent de manière 
homogène dans un revêtement de β-NiAl. Après traitement d’oxydation isotherme à 1000°C durant 48h, ce 
revêtement par voie électrodéposition + aluminisation présente une teneur en aluminium supérieure à 40 at%, 
ce qui est supérieur à un revêtement de diffusion absent de microréservoirs démontrant ainsi le caractère 
autorégénerant des nouveaux revêtements. 
 
Mots-clés : Revêtements auto-régénerants ; aluminothermie ; électrodéposition ; aluminisation barbotine ; NiAl-
Al2O3. 
 

 
Synthesis and high-temperature behavior of self-restoring coatings 

 
The selection of materials used in the hot parts of aeronautical turbines or in power plants has become a crucial 
issue in view of ecological and economic imperative. Turbine blades are amongst the most critical components. 
Their mechanical resistance is ensured by the substrate itself (steels and Ni alloys and superalloys). However, 
their low environmental resistance requires the application of protective coatings delivering Al to form oxide 
barriers blocking the external oxidative and corrosive attack. Upon exposure at high temperatures, Al depletes 
from the coating by oxidation to grow the oxide scale and by interdiffusion with the substrate’s elements resulting 
in the loss of protection. Some specific coating structures like the diffusion barriers have been investigated in 
the past but the overall mechanical properties are lowered and the fabrication and environmental costs are high. 
Therefore, a pioneering and original investigation has been conducted to synthesize “self-regenerating” 
aluminum diffusion coatings. These coatings are characterized by a composite structure whereby the matrix 
made of NixAly intermetallic phases is strengthened with microreservoirs made of NixAly core and an Al2O3 shell 
through which Al diffuses out to maintain the adequate Al concentration in the matrix, hence to stabilize the 
external protective Al2O3 scale. 
Our studies demonstrate that the aluminothermic reactions between NiO and Al lead to the formation of such a 
self-regenerating coating with an interdiffusion barrier at the coating/substrate interface whenever Ni is 
preoxidized at 1100°C for 2h beforehand. However, all the coatings sintered through this method possess 
residual NiO, which may compromise their adherence to the substrate. In contrast, the use of electrochemical 
methods allows to incorporate Al3Ni2 microparticles in the NI electrodeposits. With a subsequent slurry 
aluminizing treatment, the preoxidized particles incorporate homogeneously in a β-NiAl coating matrix. After 
exposure at 1100°C for 48h in air, the Al content in the self-regenerating coatings is greater than 40 at% as 
opposed to the micro-reservoirs-free aluminide coating allowing to demonstrate the self-regenerating property 
of these new coatings.  
 
Keywords: Self-regenerating coatings; aluminothermic reactions; electrodeposition; slurry aluminizing; NiAl-
Al2O3. 

 


