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Abstract
In our information age, the needs of security increase. Therefore, the application of cryptographic
algorithms is essential to provide strong theoretical security guarantees on data privacy. Proved
secure against “black-box” adversaries, these algorithms can be implemented into embedded sys-
tems (e.g. smart cards). While those systems are physically accessible, adversaries can exploit
their physical properties, such as physical leakages (e.g. power consumption), in order to re-
trieve sensitive information about the cryptographic computation. This attack scenario, called
side-channel attack, uses some statistical tools to highlight the dependence between the physical
leakages and the secret key. To reduce the adversary’s scope, some countermeasures have been
proposed (e.g. desynchronization, masking scheme) in order to make the attack more difficult to
perform. However, the benefits of those countermeasures can be questioned by the recent develop-
ment of Machine Learning and Deep Learning techniques because they automatically extract the
sensitive information included in the physical leakages. Difficult to configure and optimize, the
deep learning techniques can be considered as “black-box” models. In particular, no theoretical
result bridges deep learning models and classical side-channel attacks. Thus, this new application
can be challenged as no link is proposed with theoretical optimal attacks. This industrial thesis,
based on the collaboration between the “CNRS Laboratoire Hubert Curien UMR 5516 F-42023”
and the Thales ITSEF, contributes to reducing these issues in order to assess the robustness of
an embedded system against side-channel attacks.

Firstly, we bridge the deep learning and the side-channel paradigms through the identification of
a similar approach, namely the generative approach, and correlate our results with well-known
issues in side-channel context (i.e. dimensionality reduction, synchronization, points of interest
selection). Then, we design a new neural network architecture, called cVAE-ST, and demonstrate
that the generative approach is an important step towards explainability and interpretability.
This result is notably useful to reduce the limitation provided by the “black-box” properties and
enhance the security assessment of cryptographic algorithms’ implementations. However, our
work also illustrates the practical limitations of the generative approach. A concrete alternative
is to consider the discriminative approach. The second part of this thesis consists in the develop-
ment of a methodology for constructing low complexity neural network architecture. The related
empirical results validate this methodology by providing the best state-of-the-art result on all the
dataset publicly available. Reducing as much as possible the neural network complexity is highly
beneficial from an ITSEF perspective as it reduces the elapsed time criterion which non-negligibly
influences the conclusion about the robustness of an embedded system. However, for being con-
fident in the evaluation process, it is essential to generate models which converge towards the
theoretical optimal solution.

Then, this thesis focuses on the attack optimality and introduces a new loss function that is
specified to the side-channel context. This new metric, called Ranking Loss, enhances the model
performance by maximizing the widely known success rate metric. Using the ranking loss is
beneficial to select the model which converges towards the theoretical optimal attack. Finally,
we develop an additional loss function for the Ensembling approach. This new metric, called
Ensembling Loss, generates interactions between multiple algorithms in order to enhance their
complementarity and improve even more the resulted attack. In side-channel context, this work
demonstrates that negligible the gain of accuracy highly influences the resulted side-channel attack
and can be useful to question the conclusion regarding the robustness of an embedded system.
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Résumé
À l’heure où l’information prend de plus en plus d’ampleur dans le monde qui nous entoure,
la nécessité de sécuriser nos données croît. Par conséquent, l’utilisation des algorithmes cryp-
tographique est essentielle. Prouvés comme mathématiquement sûrs contre des attaquants en
“boite noire”, ces algorithmes peuvent faire l’objet d’attaques physiques lorsque ces derniers sont
implémentés au sein de systèmes embarqués. En ce sens, les attaques par canaux auxiliaires peu-
vent être appliquées afin d’exploiter les fuites physiques (e.g. la consommation électrique) relatives
aux calculs d’une implémentation cryptographique. Afin de limiter le périmètre de l’attaquant,
de nombreuses contre-mesures ont été proposées (e.g. désynchronisation, schéma de masquage)
afin de complexifier la mise en place de telles attaques. Cependant, les récents progrès en ap-
prentissage profond remettent en cause ces contre-mesures et permettent d’extraire, de manière
automatique, l’information sensible inclue dans les fuites physiques. Difficiles à configurer et à
optimiser, les techniques d’apprentissage profond, très exploratoires, sont considérées comme des
“boites noires”. En particulier, aucun résultat théorique n’a permis d’établir de liens concrets entre
les attaques par canaux auxiliaires, connues pour leur efficacité, et l’apprentissage profond. Par
conséquent, cette nouvelle application peut être remise en cause, car la question de l’optimalité
des attaques reste en suspens. L’objectif cette thèse CIFRE, menée au sein du laboratoire Hu-
bert Curien et du centre d’évaluation de Thales (CESTI), est de réduire ces limitations dans un
contexte d’évaluation sécuritaire visant à assurer la robustesse d’un système embarqué.

Dans un premier temps, nous lions les paradigmes d’apprentissage profond et d’attaques par
canaux auxiliaires via l’identification d’une approche commune, dite générative. Notre travail
permet de corréler un ensemble de problématiques connues par la communauté (réduction de di-
mensionnalité, resynchronisation, sélection de points d’intérêt). Par la construction d’une nouvelle
architecture, appelée cVAE-ST, nous montrons que l’adaptation d’approches génératives est une
première étape vers une meilleure compréhension et interprétabilité des résultats. Cela permet
de réduire les limitations de “boites noires” et ainsi, de résulter en une meilleure évaluation de
sécurité. Cependant, nous montrons que ces approches ont encore quelques limitations pratiques.
Considérées comme une alternative concrète aux cVAE-ST, nous nous intéressons dans un second
temps aux approches discriminatives. En particulier, nous définissons une méthodologie de con-
struction d’architecture à faible complexité, dont les résultats empiriques obtenus sur l’ensemble
des bases de données publiques, sont, aujourd’hui, les meilleurs de l’état de l’art. Leur faible
complexité permet de réduire considérablement la phase de conception des algorithmes, souvent
exploratoire, et ainsi, réduire le temps nécessaire d’une évaluation de sécurité. Cependant, dans le
cadre d’une évaluation, il est important de générer des algorithmes convergeant vers une solution
optimale.

Dans un troisième temps, nous nous focalisons donc sur l’optimalité des attaques et introduisons
une nouvelle métrique d’apprentissage spécifique au contexte des attaques par canaux auxili-
aires. Appelée Ranking Loss, cette métrique vise à améliorer les performances des algorithmes
en maximisant le taux de succès d’une attaque et de se rapprocher des performances théoriques
optimales. Finalement, nous caractérisons une nouvelle métrique d’apprentissage spécifique au
contexte d’Ensembling. Appelée Ensembling Loss, cette métrique combine plusieurs algorithmes
afin d’accroître leur complémentarité et ainsi, améliorer les performances d’une attaque par canaux
auxiliaires. D’après les critères d’évaluation sécuritaire, cette dernière étude permet de démontrer
qu’un faible gain en performance peut remettre en cause les conclusions relatives à la robustesse
d’un système embarqué contre des attaques par canaux auxiliaires.
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Chapter 1

Introduction

This thesis is positioned at the cutting edge of Cryptography and Machine Learning with a par-
ticular focus on the application of Deep Learning techniques to enhance the performance of Side-
Channel Attacks. In this chapter, we give an overview of the thesis’ problematic and the contribu-
tions we have made. After providing a general introduction of Cryptography and its application
in real life, we highlight the need of certification which ensures the robustness of cryptographic
implementations against some attacks we present. Finally, we motivate this thesis by describing
the benefits of using deep leaning to perform side-channel attacks.

Contents
1.1 The Art of the Secret . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Embedded Cryptography . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Physical Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 A Step Towards the Certification . . . . . . . . . . . . . . . . . 10

1.3 Motivations & Goal of the thesis . . . . . . . . . . . . . . . . . 12

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1 The Art of the Secret
A secret is a piece of information that is only known by one person or a few people and should not
be told to others. The field studying the science of the secret is called Cryptology and comes from
the Greek kryptós (hidden, secret) and logia (study). More precisely, it refers to the protection
of communications from an unexpected evil party called attacker or adversary. This field can be
decomposed into two closely and complementary subfields: Cryptography (kryptós and graphein
(to write)) and Cryptanalysis (kryptós and analýein (to analyze)).
Cryptography is the study of mathematical techniques tackling the problem of protecting some
secret information through four fundamental mainstays, namely integrity, authentication, confi-
dentiality and non-repudiation. The confidentiality is a property ensuring to keep the content of
information from all but those authorized to have it. To guarantee this property some crypto-
graphic algorithms are constructed. From a message, known as a plaintext, and a secret, referred
as a secret key, a cryptographic algorithm returns an unintelligible message, namely a ciphertext,
for any person that does not know the secret. A cryptographic process taking a pair (plaintext,
secret) as input and returning a ciphertext is called an encryption. The inverse process generating
a plaintext from a pair (ciphertext, secret) is the decryption. In this setting, the secret key is
mandatory to perform the encryption and/or the decryption. Depending on how does the secret
key is manipulated, the cryptographic algorithms can be categorized into two classes: symmetric

5



6 CHAPTER 1. INTRODUCTION

and asymmetric algorithms. The cryptographic algorithms are designed to resist against adver-
saries. Following the Kerckhoffs’ Principles [Ker83], we generally assumed that the adversary has
a perfect knowledge of these algorithms. Hence, they should be secure based on their mathe-
matical foundations only. A classical way to introduce cryptographic algorithms is to consider a
communication between two parties known as Alice (sender) and Bob (receiver).

Symmetric Cryptography. Symmetric cryptography is a general term referring to the pro-
tection of a communication between a sender and a receiver who share the same secret key. An
algorithm that derives from symmetric cryptography is called a symmetric algorithm. Typically,
a symmetric algorithm can be useful to ensure confidentiality through encryption mechanisms
and to guarantee the data integrity as well as its authenticity with the application of message
authentication code (MAC). Formally, a symmetric algorithm can be expressed as follows. As-
suming two characters Alice and Bob such that Alice wants to send a message to Bob through a
communication channel. To ensure the confidentiality of the message, both protagonists have to
share a common secret key k∗. Then, before sending its message x to Bob, Alice has to encrypt it
using the secret key k∗ and an encryption function denoted enck∗(x). The result of this encryp-
tion defines the ciphertext. Once the ciphertext is constructed, Alice sends it to Bob through a
communication channel. Once Bob receives the ciphertext ciph, he uses the secret key k∗ and a
decryption function denoted as deck∗(ciph) in order to retrieve the readable message that Alice
sent. This communication process is described in Figure 1.1.

To Bob

Figure 1.1: Secure communication using a symmetric algorithm.

To convert a message to a ciphertext, an encryption function can be viewed as a stream cipher
or a block cipher combined with modes of operation most of the time. Firstly, a stream cipher
decomposes a message (resp. ciphertext) into single bits, which then are individually converted
in order to construct a binary representation of the related ciphertext (resp. message) knowing
k∗. On the other hand, a block cipher combined with modes of operation decomposes a message
(resp. ciphertext) into several blocks of identical size (e.g. 64 bits, 128 bits, 256 bits) and performs
an encryption (resp. decryption) one block at a time. To determine a block cipher as secure, it
has to ensure that two encryptions of the same block of plaintext return two different blocks of
ciphertext. Thus, it prevents the risk of extracting information on the global message. More
formally, a block cipher has to respect two properties [Sha49]: the confusion and the diffusion.
The confusion property hides the dependency between the plaintext and the ciphertext while the
diffusion ensures the dependence between one bit of the ciphertext and many bits of the plaintext
and the secret key.
One commonly used block cipher algorithm is called the Advanced Encryption Standard (AES)
[DR02], also known as Rijndael, designed by Joan Daemen and Vincent Rijmen. Standardized by
the National Institute of Standard and Technology (NIST) in 2000, the AES algorithm operates
on blocks of 128 bits. As illustrated in Figure 1.2, a round of AES is configured by multiple
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cryptographic primitives, namely SubBytes, ShiftRows, MixColumns and AddRoundKey. The con-
fusion property is ensured by the substitution functions (i.e. SubBytes and AddRoundKey) while
the diffusion property is ensured by the ShiftRows and the MixColumns. Deeper details on the
AddRoundKey and SubBytes functions will be provided in Chapter 2. Depending on the consid-
ering key size, the number of rounds Nr varies such that 10 (resp. 12/14) rounds are performed
when the key size equals 128 (resp. 192/256). Other symmetric algorithms (e.g. Data Encryption
Standard (DES) [Des77]) are deprecated, because too weak security-wise, and hence are out of
the scope of this thesis.

Figure 1.2: Structure of AES.

Asymmetric Cryptography. In 1976, Diffie and Hellmann propose a new approach to se-
curely communicate between multiple parties [DH76]. Indeed, asymmetric cryptography considers
multiple keys (each dedicated to a party) in order to ensure confidentiality and authentication.
While the confidentiality is provided by the encryption function, the authentication is guaran-
teed by the electronic signature which provides the same benefits as handwritten signature. This
manuscript only considers the latter one. If two parties are considered, a pair of keys has to be
generated for each protagonist. The first key, called private key, is only known by its owner and
it is used to sign a message. On the other hand, the second key, called public key, is known by
everyone and can be used by any party who wants to verify the signature provided by its owner.
The main difference between symmetric cryptography and asymmetric cryptography holds in the
number of keys that are needed to perform an encryption and a decryption when a couple (sender,
receiver) is considered. Formally, a digital signature algorithm can be expressed as following. Let
Alice be a sender and Bob be a receiver. First, Alice constructs a public key (resp. private
key) denoted pk∗,A (resp. sk∗,A). In this process, Alice wants to electronically sign a message
x. Hence, she signs her messagea with her private key in order to obtain the related signature
(i.e. sign = encsk∗,A(x)). Then, Alice sends the message with its signature to Bob through a
communication channel. Once Bob receives the pair (x, sign), he uses Alice’s public key pk∗,A
to verify the signature decpk∗,A(sign) and checks if the result corresponds to x. This process is

aIn practice, the signature is not perfomed on the message itself. This simplification has been made
for educational reasons. Indeed, for security reason, a signature scheme often applies a hash function to
the message before applying encsk∗,A

.
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To Bob

s

To Bob

?

Figure 1.3: Digital signature mechanism.

described in Figure 1.3. The security of asymmetric cryptographic algorithms is based on hard
mathematical problems which means that even a lot of computing power will not defeat such algo-
rithm. Classically, two main mathematical problems are considered for constructing asymmetric
algorithm: the difficulty to factorize the product of two large prime numbers and the discrete
logarithm problem (DLP).
The first problem is the foundation of the RSA system, introduced by Rivest, Shamir and Adle-
man [RSA78]. Given two large prime numbers p and q, the public key is composed by a modulus
N = p × q and an integer e co-prime with (p − 1)(q − 1). Then, the private key, defined by an
integer d, has to respect the restriction e · d mod (p − 1)(q − 1) = 1. To sign a message, Alice
performs the following modular exponentiation sign = xd mod N before sending the signature
through the communication channel. Once Bob receives the signature and the related message,
he computes signe mod N to retrieve its content and then, verifies that it corresponds to x.
This algorithm is known as a hard problem because retrieving p, q and d knowing the public key
pk∗,B = (N, e) is computationally expensive. An alternative to the RSA signature algorithm is
Elliptic Curve Digital Signature Algorithm (ECDSA) [ANS05] that is based on Elliptic Curve
Cryptography [Mil86, Kob87].

Over the years, cryptography arises as a fundamental science for ensuring secure communication
over insecure channels. Thus, its application in our modern world appears as a natural conse-
quence.

1.2 Embedded Cryptography

1.2.1 Physical Attacks
The proliferation of computers and communications systems in the 1960s and a growing demand
from the private sector to provide security services play a major role on the cryptography’s de-
velopment. Hence, cryptography-based security systems may be utilized in various applications
(e.g. data storage, access control, network communications). These cryptography-based security
systems, known as cryptographic modules, are defined in [FIP09]: a cryptographic module “a set
of hardware, software and/or firmware that implements approved or allowed security functions
( e.g. cryptographic algorithms and key establishment) and encompasses the perimeter”. One com-
mon cryptographic module is the so-called microprocessor card. A microprocessor card consists
in a small physical device which is composed by a microchip and has the particularity to host its
own operating system. Its ability to store and modify information in its own non-volatile memory
makes this card a powerful and practical tool in various applications (e.g. mobile telephony, bank-
ing, healthy cards, etc). However, the numerous constraints of size, consumption, and usability
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make the microprocessor card a sensitive target to the attacks described in this thesis.
The security of a cryptographic algorithm is based on the secrecy of the key. Indeed, if the key
is exposed then all the security features may be violated. Therefore, it is crucial to store the
secret key in an unwavering environment. Typically, standardized cryptographic algorithms can
be considered as secure against black-box attacks. In such configuration, the adversary only knows
the algorithm structure, the plaintext and the ciphertext used during the communication process.
Based on this knowledge, the adversary aims at extracting the secret key by exploiting the intrinsic
properties of the targeted cryptographic algorithm. For example, the AES algorithm has been
designed to be robust against classical cryptanalysis attacks, namely differential [BS90] and linear
[Mat94] cryptanalysis. However, this scenario does not fit anymore when cryptographic module
is considered. Indeed, implementing cryptographic algorithm into a physical system requires to
store the secret key into the device. Hence, these embedded systems can be defeated by some
known physical attacks. Much more powerful than classical cryptanalysis techniques, the physical
attacks target the implementation of cryptographic algorithms. Depending on the adversary’s
capabilities, we can decompose these attacks into different categories [MOP07].

Active vs. Passive Attacks. The active attack refers to a perturbation that affects per-
manently or temporarily the device behavior. Typically, an adversary can exploit this abnormal
behavior to retrieve the secret key. The most common example has been introduced by Boneh et
al. [BDL97] and is known as the fault injection (FI) attack. It induces erroneous results being
exploitable to recover the targeted secret.
As opposed, the passive attack does not interact with the cryptographic module. It aims at eaves-
dropping the leaking information of the targeted device under a normal computational behavior.
By observing the physical emanations, the adversary tries to extract some sensitive information in
order to retrieve the secret key. These attacks, known as side-channel attacks (SCA), were firstly
proposed by Kocher in 1996 [Koc96]. The source of information can be large: power consump-
tion [KJJ99], electromagnetic emanations [GMO01, QS01], computational time [Koc96], acoustic
emanations [Tro04, GST16], etc.

Invasive vs. Non-Invasive Attacks. Cryptographic modules such as microprocessor cards
can be physically prepared in order to enhance the resulted attack. Depending on the level of
intrusion, these attacks can be categorized into invasive, semi-invasive or non-invasive attacks.
Firstly, the invasive attack is the strongest attack that can be performed against a cryptographic
module. Commonly, this attack requires to irremediably alter the physical device. For example,
a microprocessor card can be depackaged [KK99] in order to get a physical access to the related
microchip. Thus, the adversary can establish a direct contact with the cryptographic module
in order to recover the secret key. Even if this configuration is beneficial for the adversary, this
requires a lot of skills, expensive equipment and the security flaws’ exploitation highly depends
on the targeted cryptographic module (e.g. reverse engineering).
In the semi-invasive attack, the adversary also removes the package of the cryptographic module
(e.g. depackaging of a microchip). It can be useful to capture the electromagnetic emanations
from the system [GMO01, QS01] or modifying its behavior by faults injection [SA03]. This attack
differs from the invasive attack as it does not require a direct contact to the targeted system for
being performed.
Finally, the non-invasive attack only exploits unintentional leakage information such as running
time, power consumption. Hence, no tampering are processed on the cryptographic module to
reveal information on the secret. For example, measuring the power consumption [KJJ99] and
injecting faults using clock glitches or temperature variations, which does not alter the crypto-
graphic module, [BECN+06] are non-invasive attacks.

In this manuscript, a particular focus will be made on side-channel attacks that are considered as
passive and semi-invasive/non-invasive attacks. The sources of information we consider are the
power consumption and the electromagnetic emanations.
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1.2.2 A Step Towards the Certification
The emergence of side-channel attacks as credible threats against cryptographic modules forces the
governments and the industries to ensure the security of the cryptographic modules by providing
some rules. These rules are defined by the certification schemes which are not limited to the
side-channel threats.

Scheme. The most common scheme, namely the Common Criteria for Information Technology
Security Evaluation (CC) (standard ISO/IEC 15408 [ISO]), was created in 1999. It unifies three
previous standards known as the Information Technology Security Evaluation Criteria (ITSEC, led
by European countries), the Canadian Trusted Computer Product Evaluation Criteria (CTCPEC,
led by Canada) and the Trusted Computer System Evaluation Criteria (TCSEC, led by the United
States). The CC introduces the concept of Target of Evaluation (TOE) that characterizes the
system under evaluation. In particular, the certification of the TOE is made following different
levels of security assurance. The Evaluation Assurance Level (EAL) starts to EAL1 (lowest
security grade) and goes to EAL7 (highest security grade). This level does not measure the
security of the TOE itself but states that the system is evaluated under some conditions. Indeed,
they determine the complexity of the tasks that has to be made to simulate the adversary’s ability.
Consequently, to ensure the security and the robustness of the TOE, the certification is given for a
finite period of time at the end of which it has to follow a new certification process. This ensures
the robustness of the TOE against new security threats. However, the CC does not provide
any details on how the cryptographic implementation should be made within a TOE. Hence,
national standards release some rules that have to be respected in order to certify the specifications
of cryptographic modules. The Senior Officials Group Information Systems Securityb (SOG-
IS) agreement defines a set of requirements and evaluation procedures related to cryptographic
aspects of CC security evaluations of IT products. Participants are government organizations
or government agencies from countries of the European Union (i.e. Austria, Belgium, Croatia,
Denmark, Estonia, Finland, France, Germany, Italy, Netherlands, Luxembourg, Norway, Poland,
Slovakia, Spain, Sweden, United Kingdom). In France, these recommendations can be substitute
by the Référentiel Général de Sécurité (RGS) [ANS14], that is introduced by the Agence Nationale
de la Sécurité des Systèmes d’Information (ANSSI) and provides some rules and guidelines that
have to be respected by the Developper. In the United States, these requirements are provided
by the Federal Information Processing Standard Publication 140-2 (FIPS 140-2 [FIP01]).

Actors. Depicted in Figure 1.4, the CC defines three entities that are involved in the certifica-
tion process:

• Developer – This entity conceives a product destined for sale. To ensure the reliability
of the product, the developer can enter into a certification process in order to reduce the
security flaws. This certification can be made for different purposes such as international
recognition, commercial advantages or it can be needed for selling some specific products
(e.g. the credit cards have to be certified before its use by banking companies).

• Certification body – Often represented by governmental organizations like the Agence Na-
tionale de la Sécurité des Systèmes d’Information (ANSSI, France), the Bundesamt für
Sicherheit in der Informationstechnik (BSI, Germany) or the National Institute of Stan-
dard and Technology (NIST, United States), it delivers the certificate to the Developer and
ensures the suitability of the evaluation provided by the Evaluator.

• Evaluator – It acts as a third independent party. Licensed by the certification body, this
laboratory, also known as an Information Technology Security Evaluation Facility (ITSEF),
must be impartial and is responsible of the security assessment of the TOE. Based on this
evaluation, the Certification body decides to deliver or not the certificate to the Developer.

bThe interested readers may find useful information in https://www.sogis.eu/index_en.html

https://www.sogis.eu/index_en.html
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Evaluator (ITSEF)

Certification Body

Developer

(A)

(A)

(B)(C)(E)

(D)

Figure 1.4: Example of the French Certification Process with Thales considered as the
ITSEF.

Evaluation Process. The certification process can be decomposed into different phases. This
manuscript deliberately chooses to omit some interactions between the entities in order to simplify
the process and get a global overview on it. All the entities and the exchanges we considered are
summarized in Figure 1.4.

• (A) – The Developer aims at certifying one of its products. Hence, he sends a request to
the Certification body and the chosen Evaluator in order to start the certification process.
First, the Developer has to provide the Security Target (ST) that defines the TOE and lists
the features it claims as secure.

• (B) – Once the Evaluator receives the ST, he is charged to validate the claims provided by
the Developer. To this end, he produces to a vulnerability assessment that depends on the
desired EAL grade. This process is performed by deeply analyzing the TOE and verifying
the expected functionalities. If vulnerabilities are detected, the Evaluator determines some
scenarios in order to exploit it under real conditions. Indeed, to evaluate the feasibility
of these attacks, the Evaluator has to estimate a metric, called the cotation, that is based
on some criteria [SI13]: elapsed time, expertise, knowledge of the TOE, access to TOE,
equipment and tools. These terms reflect the difficulty of performing an attack. Based on
his investigations, the Evaluator writes an Evaluation Technical Report (ETR), defines if
the TOE is secure or not, and transmits the report to the Certification body.

• (C) – From the ST and the ETR, the Certification body emits a judgment on the robustness
of the TOE. If the Certification body cannot make a decision from the ETR, he can ask
the Evaluator to conduct additional tests in order to facilitate its decision-making. The
Evaluator should go back to step (B) in order to satisfy the requirements.

• (D) – Once the ETR is confirmed by the Certification body, it can be transmitted by the
Evaluator to the Developer.

• (E) – Finally, if the features claimed by the TOE are not met, the Certification body
informs the Developer that some countermeasures should be provided in order to reduce
the risks exploited during the evaluation. Consequently, the Developer has to consider the
ETR’s recommendations provided by the Evaluator at step (D). Once the modifications
are considered, the certification process goes back to step (A). On the other hand, if the
security claims are respected, the Certification body supplies the certificate with the related
EAL grade and can then be sold as a certified product.

Based on the certification process, the following section describes the context as well as the
motivations of the thesis and defines the main criterion considered in our contributions.
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1.3 Motivations & Goal of the thesis
Context. The thesis originates from the collaboration between the “CNRS Laboratoire Hubert
Curien UMR 5516 F-42023”, part of the University of Saint-Etienne (France) and University of
Lyon (France), and the Thales ITSEF (Toulouse, France). The contributions presented in this
thesis have been developed in the context of a CIFRE convention (Industrial Agreements for
Training through Research), a type of contract launched in 1981 to increase research activities
in French enterprises by promoting the interaction with public research institutions. Conducting
in an ITSEF, this manuscript falls within the Evaluator point of view (see Figure 1.4). More
precisely, we focus our interest on the step (B) of the evaluation process only. To efficiently
evaluate the robustness of a cryptographic module, the Evaluator has to conduct the evaluation
under real conditions. As previously mentioned, the time required to perform an attack, namely
elapsed time, has to be considered during the certification process. The longer the attack, the
highest the cotation rate. A solution to reduce the elapsed time is to enhance the side-channel
attacks by modeling the optimal solution. If this threshold is reached, the Evaluator achieves the
worst-case scenario from a security point of view. This optimal solution helps him to assess the
security of the TOE with a high confidence. Even if the certification process is not considered
in the scope of this manuscript, the elapsed time and the optimality of a side-channel attack are
crucial considerations in our contributions.
Typically, a side-channel attack consists in the construction of a model correlating a set of data
(e.g. power consumption and/or electromagnetic emanations) with the secret key manipulated
by the targeted cryptographic module. To build this model, the Evaluator uses statistical tools
(e.g. correlation) but needs to preprocess the data in order to enhance the attack performance.
This preprocessing phase is based on the expertise of the Evaluator and highly impacts the
performance of the related attack as well as the elapsed time of an evaluation. Finding an
alternative model which automatically maps a set of data with the correct unknown secret key
without any preprocessing phase is crucial in order to reduce the elapsed time attribute while
preserving the ability of the Evaluator to recover the unknown secret key. These models can be
designed from Machine Learning approach which is an application of the Artificial Intelligencec
paradigm. It provides to algorithms the ability to automatically learn how a given task should
be solved from successive experiences and by the use of data. A subfield of Machine Learning,
namely Deep learning and defined as [DY14] “in the intersections among the research areas of
neural networks, artificial intelligence, graphical modeling, optimization, pattern recognition, and
signal processing”, sounds a good solution to automatically learn the model we expected in side-
channel context.

Brief history of Deep Learning. In 1943, McCulloch and Pitts defined the first simplified
model of biological neuron that considered one or multiple inputs and returned a binary output
[MP43]. This concept was then extended by Rosenblatt to introduce the perceptron [Ros58]
(deeper details on the perceptron will be provided in Subsection 4.2.1). In 1986, Rumelhart et
al. propose a new way to interact with a multilayer perceptrons that automatically learns its
configuration for a specific task [RHW86]. Deep learning is a class of machine learning algorithms
that extract higher-level features from a data by the application of multiple layers (e.g. multiple
perceptrons layers) [DY14, p.199-200]. After the first application of GPUs to parallelize the
computational cost of deep learning models [RMN09], this field growth in popularity in 2012, when
Krizhevsky et al. [KSH12] wins Imagenet’s image classification contest [RDS+15] and drastically
outperforms all the previous results. Indeed, deep learning algorithms automatically learn how
does the relevant information induced in the data should be combined in order to correctly classify
it.

cArtificial Intelligence is a wide-ranging branch of computer science concerned with building algorithms
capable of performing tasks that typically require human intelligence (e.g. image classification, speech
recognition, computer vision, etc).
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Figure 1.5: Position of Deep Learning-based Side-Channel Analysis regarding Artificial
Intelligence.

Emergence of DLSCA. Similarly, this approach can be considered in side-channel attacks
for extracting the secret key from a set of power consumption and/or electromagnetic emanations
and limiting the preprocessing phase. In 2013, Martinasek and Zeman introduce the very first work
using deep learning approach in SCA [MZ13]. In [MPP16], Maghrebi et al. extend this work by
showing that deep neural networks are beneficial for defeating an AES’s implementation protected
with Boolean masking (details in Subsection 3.4.1). Then, Cagli et al. demonstrate the suitability
of using a particular network, namely convolutional neural networks (CNNs), to break software and
hardware implementations protected with desynchronization countermeasures [CDP17a] without
any preprocessing phase. Those results convinced the side-channel community and the Evaluator
to deeper investigate the benefits of the deep learning techniques to perform side-channel attacks.
This phenomenon is illustrated in Figure 1.6. This figure depicts the evolution of the number
of papers dealing with DLSCA issues since 2015. The database we use lists the deep learning-
based side-channel papers we observed on ePrintd and arXive during this period of time. From the
Evaluator point of view (e.g. ITSEF), the deep learning-based side-channel analysis can be highly
recommended. While a large part of an evaluation process is to define the adequate preprocessing
for limiting the impact of some countermeasures, this new direction can be favorable to reduce the
effort of the Evaluator for assessing the TOE’s security. However, while the side-channel attacks
are based on strong mathematical foundations, the deep learning models can be difficult to fully
understand and are oftenly seen as black-boxes (see Figure 1.5). Thus, their interpretation and
their configuration are considered as non-trivial tasks for the Evaluator.

Goal. In this thesis, we want to tackle the problem of black-box issues as well as side-channel
attack optimality in order to limit as much as possible the preprocessing phase without altering the

dThe Cryptology ePrint Archive indexes the recent research in cryptology the authors want to make
publicly available. This open-access archive was started by International Association for Cryptologic
Research (IACR) in 2000 (url: https://eprint.iacr.org/)

earXiv is an open-access archive that was founded in 1991 by Paul Ginsparg. Maintained by Cornell
Tech, this platform concerns a wide range of fields and is not exclusive to the cryptology community (url:
https://arxiv.org/)

https://eprint.iacr.org/
https://arxiv.org/
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Papers including a Github repository
Our database

Figure 1.6: Evolution of the number of DLSCA papers released (April 21st, 2021). Among
the papers we report, only 18% include a GitHub repository.

efficiency of the models. In order to reach these objectives, we first aim at bridging the gap between
deep learning and classical side-channel attacks by investigating new kinds of models based on
different strategies. This direction is beneficial to reduce the black-box issues and concretely
illustrate the benefits and the limitations of the deep learning techniques applied in side-channel
context as well as defining some insights to construct an effective model. Furthermore, while the
state-of-the-art considers classical deep learning metrics to train a model, we aim to construct new
metrics that are specific to the side-channel context in order to approximate the optimal solution.
In parallel, to facilitate the reproducibility of our results, we decide to follow one common approach
considered by the machine learning community which deeply encourages the papers to provide the
code and/or the dataset accompanying their submission. In the major conferences, reproducibility
of results and easy availability of code is taken into account in the decision-making process (e.g.
Neural Information Processing Systems (NeurIPS), International Conference on Machine Learning
(ICML), European Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML PKDD), Conference on Computer Vision and Pattern Recognition
(CVPR), etc.). For example, to ease the code publication format, NeurIPS defines a clear policyf
to follow and suggests a templateg the authors can use in order to standardize the submission
process. Following this approach can be beneficial when deep learning techniques are applied in
side-channel context. By pursuing this ideology, we are one of the first authors in the DLSCA field
(see Figure 1.6) to open our research by making publicly available the source codeh [ZBHV19a,
ZBD+20a, ZBHV21a, ZBC+21a] of our contributions we describe in the following section.

1.4 Contributions
This section summarizes the contributions we propose in this manuscript and describes the outline
of the thesis.

Bridging deep learning and classical profiled side-channel attacks. While the
first papers in DLSCA were released in 2013, no particular investigations were made to connect
the side-channel and deep learning’s worlds. In Chapter 5, we reduce this theoretical gap by first,
linked the stochastic models proposed by Schindler et al. [SLP05] with the generative approach
commonly used by the deep learning community. This rapprochement, proposed in Chapter 5,

fhttps://neurips.cc/Conferences/2020/PaperInformation/CodeSubmissionPolicy
ghttps://github.com/paperswithcode/releasing-research-code
hTo reduce this issue, the Conference on Cryptographic Hardware and Embedded Systems (CHES)

(edition 2021) proposes the so-called Artifact Evaluation which supports the open-source and reproducible
research within the embedded cryptography’s field. Even if this process is currently not taken into account
during the submission, this new proposition is a new step towards an open-source research in the side-
channel community.

https://neurips.cc/Conferences/2020/PaperInformation/CodeSubmissionPolicy
https://github.com/paperswithcode/releasing-research-code
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helps us to construct the first generative model that serves to understand the benefits and the
limitations of the deep learning-based side-channel attacks. While classical deep learning models
are seen as black-box tools, this new network, called Conditional Variational AutoEncoder-based
Stochastic Models (cVAE-ST), can be fully explained from a side-channel perspective. Presented in
Chapter 5, this network is derived from the stochastic models and can easily argue the benefits of
classical preprocessing techniques considered by the side-channel community (i.e. dimensionality
reduction, point of interest selection, synchronization, etc). To deal with the Evaluator point of
view, we focus a particular interest on the ease of network configuration in order to limit the
elapsed time criterion. Hence, we define a theoretical complexity bounds of the network and
suggest its minimal complexity given a set of point of interests. Then, we demonstrate the ability
of the cVAE-ST to approximate a leakage trace and extended its application to a wide range of
case study. Finally, we define the benefits and the limitations of this new proposition and suggest
some improvements that can be provided by the discriminative approach. The solutions proposed
in Chapter 5 have been presented at [ZBC+21b]. In addition, all the experiments provided in this
chapter are reproducible [ZBC+21a].

Construction of discriminative models. While the cVAE-ST are beneficial from an
evaluation perspective as it is fully interpretable, the classical DLSCA approach, namely discrim-
inative models, are suggested as more powerful than generative models [NJ02]. However, as the
design of such neural network architecture is an arduous task, it is crucial to deeply understand
how does the Evaluator have to configure them in order to exploit the security flaws of crypto-
graphic module. Hence, in Chapter 6, we propose to decompose the most widely use network,
namely a Convolutional Neural Network (CNN), into a convolutional and a classification part
in order to deeply characterize the impact of some hyperparameters that compose the convolu-
tional part. Assessing its impact to retrieve the point of interests helps us to construct a new
convolutional part that drastically reduces the network complexity without altering the point of
interest detection and the resulted performance. In a nutshell, we propose to reduce the desyn-
chronization effect by focusing the network on the point of interests only and reducing the effect
of the uninformative time samples. This result is in contrast to the DLSCA literature that is
mostly inspired from the computer vision field. While our contribution outperforms the results
obtained by the state-of-the-art, it questions the need of complex networks to perform efficient
side-channel attacks. The solutions proposed in Chapter 6 have been presented at CHES and
published in the journal IACR Transactions on Cryptographic Hardware and Embedded Systems
(TCHES) [ZBHV19b]. In addition, all the experiments provided in this section are reproducible
[ZBHV19a].

To obtain the most powerful models, the Evaluator has to optimize the discriminative approach
in order to converge towards the optimal Adversary. From an evaluation perspective, converg-
ing towards the optimal Adversary is beneficial in order to fully assess the robustness of the
cryptographic module against side-channel attacks. Part III is decomposed into two categories:
performance/learning metrics and network combination.

Assessing the efficiency of a generative/discriminative model. To evaluate the
relevance of the network, the Evaluator monitors the related performance metric for estimating
its efficiency to perform a side-channel attacks. As illustrated in [CDP17a, PHJ+18], the classical
deep learning metrics do not fit with the side-channel paradigm. To mitigate this issue, we
propose a new performance metric which derives from a well-known side-channel performance
metric: Success Rate. This proposition indicates the number of iterations the network has to
be updated in order to attain its best side-channel performance. Hence, during the training
process, the Evaluator can assess the efficiency of the generated model. The solutions proposed in
[RZC+21] have been presented at International Workshop on Constructive Side-Channel Analysis
and Secure Design (COSADE) and published in the proceedings of the international conference.
This contribution will not be presented in this thesis as it was mainly handled by another co-author
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Damien Robissout.

Convergence towards the optimal models. Then, in Chapter 7, we extend the work
provided by Masure et al. [MDP19b] which determines how far a DLSCA model converges towards
the optimal side-channel solution. Actually, the most classical loss function used for training
models in DLSCA, namely the Negative Log Likelihood, is not optimal. To overcome this drawback,
we propose a new loss function which derives from the Success Rate described in [SMY09]. We
demonstrate the benefits of this metric from a side-channel and a deep learning perspective in order
to assess its suitability for the Evaluator. Considering our contribution maximizes the success
rate of a side-channel attack by minimizing the ranking error of the secret key in comparison
with all other key hypotheses. It reduces the errors provided by the cross-entropy loss function
and generate a model converging towards the optimal solution. From an evaluation perspective,
it is therefore possible to precisely assess the robustness of cryptographic module against side-
channel attacks. Published in the journal IACR TCHES [ZBD+20b], this new proposition is finally
experimentally compared with the most classical metric used in DLSCA context. In addition, all
the experiments provided in this section are reproducible [ZBD+20a].

Benefits of diversity to enhance side-channel attacks. While a single network can
be limited to retrieve relevant information related to the secret key, the combination of multiple
networks can handle this problem. Known as Ensembling approach, it consists in mixing of sev-
eral discriminative models in order to reduce its overall error. For being effective, this approach
has to aggregate the result of diverse models, i.e. with uncorrelated errors. In Chapter 8, we
propose a new loss generating interactions between the networks in order to reduce as much as
possible the correlated errors. Hence, from the Evaluator perspective, this proposition can be
useful to increase the performance of the related side-channel attack. While most of the litera-
ture focuses its interest on the symmetric implementations only, the Evaluator also has to cope
with asymmetric implementation. Hence, we propose to evaluate the benefits of our contribution
on cryptographic modules implementing asymmetric algorithms (i.e. RSA and ECC). During
an evaluation, a side-channel attack against asymmetric implementations is rarely sufficient to
retrieve the entire bit of the secret key. Typically, the Evaluator has to combine side-channel
and partial attacks to extract the secret key from the cryptographic module. In order to as-
sess the suitability of the proposed loss in the evaluation process, we evaluate the impact of the
performance gain on the remaining partial attack under different scenarios. The solutions pro-
posed in Chapter 8 have been presented at CHES and published in the journal IACR TCHES
[ZBHV21b]. In addition, all the experiments provided in this section are reproducible [ZBHV21a].

To introduce these contributions, Chapter 3 proposes a general introduction to Side-Channel
Analysis and presents some classical models and metrics used during an evaluation. A general
survey of the main attacks and countermeasures is defined. Then, Chapter 4 describes the general
notion of Deep Learning as well as the statistical learning theory which defines the problem of
finding a predictive function based on a set of data. These chapters are preceded by a formal
description of the mathematical background we consider in this manuscript and is introduced in
Chapter 2 which follows.



Chapter 2

Mathematical Background

In this chapter, some technical backgrounds are recalled. This chapter also fixes the notation used
in the rest of this thesis.
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2.1 Notations
Let calligraphic letters X denote sets such that, if X is finite, its cardinality, denoted |X |, defines
its number of elements. The corresponding capital letters X (resp. bold capital letters) denote
random variables (resp. random vectors T). The lowercase x (resp. t) denote the realization of
X (resp. T). The ith entry of a vector t is defined as t[i]. Finally, t[i:j] denotes a subvector of t
such that it is characterized by the values between the ith entry and the jth entry of t.
A side-channel measurement will be constructed as a random vector T ∈ RD where D defines the
dimension of the related leakage trace. The targeted sensitive variable, denoted Y = f(X, k∗),
depends on a cryptographic primitive f : X ×K → Y , a public variable X ∈ X (e.g. plaintext or
ciphertext) and a part of the secret key k∗ ∈ K (e.g. byte) that the Evaluator tries to retrieve.
We will denote Yk = f(X, k) a hypothetical sensitive variable using a hypothetical key k ∈ K such
that Yk = Y if k = k∗.

2.2 Basics on Finite Field & Boolean Algebra
This section recalls the main definitions of finite field and Boolean algebra.

Definition 2.2.1 (Field). A field is a set F with two operations + and × satisfying the following
properties:

• F is an Abelian group under + with identity element 0,

• The non-zero elements of F form an Abelian group under ×, with identity element 1,

• Distributivity of multiplication over addition, i.e. a× (b+ c) = a× b+ a× c for any a, b, c
∈ F.

17
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The number of elements in a field F is called the order of F. A finite field is simply a field whose
underlying set has a finite number of elements. In the following, a finite field of order p is denoted
Fp, and, for any positive n, we denote Fn2 the vector space over F2 of dimension n.

Definition 2.2.2 (Binary representation of an integer). Let a be an integer such that its binary
representation is (a[n− 1]a[n− 2] . . . a[0])2 with:

a =
n−1∑
i=0

2i · ai,

with ai ∈ {0, 1}. We define a[0] as the least significant bit (or LSB) value while a[n− 1] denotes
the most significant bit (or MSB) value.

The exclusive or (XOR) operator is denoted ⊕ and is defined for every (a, b) ∈ {0, 1} as follows:

a⊕ b =
{

1 if a 6= b,
0 if a = b.

The AND operator, denoted ∧, is defined for every (a, b) ∈ {0, 1} as follows:

a ∧ b =
{

1 if a = b = 1,
0 otherwise.

For every a = (a[n−1]a[n−2] . . . a[0])2 ∈ Fn2 and b = (b[n−1]b[n−2] . . . b[0])2 ∈ Fn2 , the vectorial
XOR (resp. AND), often called bitwise addition (resp. bitwise multiplication), can be expressed
as:

aFb = (a[n− 1]Fb[n− 1] . . . a[0]Fb[0])2,

with F denoting ⊕ or ∧.

2.3 Basics on Linear Algebra & Vector Analysis
As the linear algebra is essential for understanding and working with many machine learning
algorithms, this section introduces the notions used throughout this manuscript.

Definition 2.3.1 (Matrix). A matrix A is a 2D-array defined in rows and columns such that
Mn,m(R) denotes the matrix space of n rows andm columns so that each coefficient (aij)0≤i<n,0≤j<m
is in R.

One specific operation on matrices is the transpose. It characterizes the mirror image of a matrix
across its main diagonal axis. The transpose operation of a matrix A ∈ Mn,m(R) is denoted
AT ∈ Mm,n(R) such that each of its coefficient at the ith row and the jth column is defined as
aTij = aji. A matrix A is known as symmetric if AT = A. In other words, A is symmetric if the
mirror elements with respect to the main diagonal axis are equal (i.e. aij = aji).

One special case matrix is the square diagonal matrix, which is defined to have all of its elements
equal to zero except those on the main diagonal. Thus, a square diagonal matrix A ∈ Mn,n(R)
can be written as follows:

A =


a00 0 0 · · · 0
0 a11 0 · · · 0
0 0 a22 · · · 0
...

...
... . . . ...

0 0 0 · · · an−1 n−1


︸ ︷︷ ︸

n columns

 n rows
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The trace of a square diagonal matrix A is an operator that gives the sum of all the diagonal
entries of A such that:

tr(A) =
n−1∑
i=0

aii.

A particular square diagonal matrix is the square identity matrix I, which is defined to have all
of its coefficients (aii)0≤i<n equal to 1 (i.e. tr(A) = n). In the rest of this manuscript, In denotes
a square identity matrix inMn,n(R).

While elementary matrix addition and matrix multiplication are defined, the matrix division does
not hold. However, for a square matrix, multiplication by its inverse may be thought as an
analogous operation. Let A be a square matrix in Mn,n(R), we denote A−1 its inverse if the
following relationship hold:

A−1A = AA−1 = In.
The readers should notice that the matrix multiplication is not commutative, i.e. the condition
AB = BA, such that A ∈ Mm,n(R) and B ∈ Mn,p(R), is not always true. The importance of
the inverse matrix can be seen from the solution of a set of algebraic linear equations such as:

Ax = b,

If the inverse A−1 exists, then the previous equation can be rewritten as follows:
A−1Ax = A−1b,

Ix = A−1b,

x = A−1b.

The inverse of a matrix does not always exist. If a matrix A ∈Mn,n(R) is invertible, it is defined
to be non-singular. If A−1 does not exist, the matrix is singular.
One common solution to verify if A is a singular matrix consists in computing its determinant,
denoted |A|. If |A| = 0, then space is completely reduced along at least one dimension and thus,
induces a singular matrix.

Norm. Sometimes we will need to measure the distance of a vector x ∈ Rn, from the origin,
through the computation of the Lp − norm. The related distances are also called Minkowski
distances.
Definition 2.3.2 (Lp − norm). Given a vector x ∈ Rn, the Lp − norm is defined as follows:

||x||p =
(
n−1∑
i=0
|x[i]|p

) 1
p

,

for p ∈ R+.
Different norms on a vector space can give rise to different geometrical and analytical structures.
In Figure 2.1, we can see the shape of the Lp − norm for various values of p such that ||x||p = 1.
In particular, the following three specific norms are frequently used:
• L1 − norm – ||x||1 =

∑n−1
i=0 |x[i]|.

• Euclidean Norm – ||x||2 =
√∑n−1

i=0 |x[i]|2.

• L∞ − norm – ||x||∞ = lim
p→∞

(∑n−1
i=0 |x[i]|p

) 1
p .

While the Euclidean norm is classically used in Machine Learning, it can be undesirable because it
increases very slowly near the origin. While it is important to discriminate the very small values
from those that exactly equal zero, the application of the L1 − norm can be beneficial. Thus
depending on the scenario, the p value should differ.
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p = 0.04 p = 0.5 p = 1.0 p = 1.5 p = 2.0 p = 4.0

Figure 2.1: Lp − norm visualization for two dimensional vector such that ||x||p = 1.

Gradient and Jacobian matrix. Given a function f : Rn → R, ∂f(x)
∂x[i] defines the partial

derivative of f with respect to the ith entry of a random vector x ∈ Rn. This partial derivative
measures how the function f is affected as only the element x[i] varies from x. The gradient,
denoted ∇xf(x), generalizes this notion to a vector x such that:

∇xf(x) =
[
∂f(x)
∂x[0] ,

∂f(x)
∂x[1] , . . . ,

∂f(x)
∂x[n− 1]

]
. (2.1)

When we move to derivatives of a function f : Rn → Rm, then, the matrix containing all the
partial derivatives is known as the Jacobian matrix and it is denoted Jf ∈Mm,n(R) such that:

Jf (x) = [∇xf(x)[0],∇xf(x)[1], . . . ,∇xf(x)[m− 1]]T . (2.2)

The Gradient and the Jacobian matrix are essentially used to solve optimization problems in
Section 4.3.

2.4 Basics on probability theory
In this section, we introduce all the needed notations related to the probability theory.

Recall on probability. The probability of observing an event X is denoted by Pr[X] such
that a conditional probability of observing an event X knowing an event Y is denoted Pr[X|Y ].
Besides, the indicator function, denoted by 1X , equals 1 if the event X is realized and 0 otherwise.

In probability theory and statistics, a probability distribution is a statistical function that describes
all the possible values and likelihoods that a random variable X can take within a given range.
If X denotes a continuous random variable, the related probability distribution is computed from
a Probability Density Function (PDF), denoted by fX , and that satisfies, for every a ∈ X and
b ∈ X :

Pr [a ≤ X ≤ b] =
∫

[a,b]
fX(x)dx,

and such that
∫
X fX(x)dx = 1 and for every x ∈ X , fX ≥ 0.

Otherwise, every discrete random variable X is associated with a Probability Mass Function
(PMF) fX : x → Pr[X = x]. In the rest of the manuscript, the set of every PMF is denoted by
P(X ). The notation x→ Pr[x] for a continuous random variable X may be further used without
ambiguity to denote the PDF of X.

Sometimes, it can be useful to compute the joint probability distribution of two, or more, events
such that it characterizes the probability distribution of the intersection of those events. Typically,
given two discrete random variables X and Y , the related joint probability mass function can be
expressed as:

Pr [X = x, Y = y] = Pr [Y = y|X = x] · Pr [X = x] = Pr [X = x|Y = y] · Pr [Y = y] ,
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for every x ∈ X , y ∈ Y and such that Pr [Y = y|X = x] (resp. Pr [X = x|Y = y]) denotes the
conditional probability of observing the event Y (resp. X) knowing the random variable X
(resp. Y ). In particular, Pr[X = x, Y = y] = Pr[X = x] · Pr[Y = y] if and only if X and
Y are independent and the joint probability is then the product of the two marginal probabil-
ities. If both random variables are conditionally independent given a random variable Z, then,
Pr[X = x, Y = y|Z = z] = Pr[X = x|Z = z] · Pr[Y = y|Z = z].

Given the joint probability distribution of two discrete random variables X and Y , it is possible
to compute the conditional probability Pr[X = x|Y = y] following Bayes’ Theorem:

Pr [X = x|Y = y] = Pr [Y = y|X = x] Pr [X = x]
Pr [Y = y] .

In many occasions, we may know the joint probability distribution of two (continuous or discrete)
random variables X et Y and we want to characterize the probability distribution of each random
variable independently (e.g. Pr[X = x] for every x ∈ X ). This probability distribution is known
as the marginal probability distribution and can be computed for every x ∈ X as follows:

Pr [X = x] =
∑
y∈Y

Pr [X = x, Y = y] .

Moments. The moments of a random variable X are quantities providing information about
the shape and location of its PMF (discrete case) or its PDF (continuous case). E[X] is used to
denote the expected value of a random variable X such that, if X is a discrete random variable,
then:

E[X] =
∑
x∈X

x · Pr [X = x] ,

while for continuous random variables, it is computed as follows:

E[X] =
∫
X
x · Pr [x] dx.

The expected value is notably used to measure the location or the central tendency of X . EX∼P
defines under which probability distribution it is computed.
In addition, the second central moment, also known as the variance, of a random variable X is
defined as:

V[X] = E
[
(X − E [X])2

]
= E

[
X2
]
− E [X]2 .

The symbol VX [f(X)] (resp. EX [f(X)]) denotes the variance (resp. expected value) of a function
f of the random variable X, over the distribution of X.
The standard deviation of a random variable X, denoted σX , is defined as the square root of its
variance:

σX =
√
V [X].

The covariance Cov[X, Y ] between two random variables X and Y is defined by:

Cov [X, Y ] = E [(X − E [X]) (Y − E [Y ])] = E [XY ]− E [X]E [Y ] .

This equation implies Cov[X,X] = V[X]. If X denotes a D-dimensional random variable
X = (X0, X1, . . . , XD−1), its expectation is defined as the vector composed of its coordinate
expectations. The related covariance matrix ΣX of a random vector X is an extension of the
variance to a multivariate random variable that is defined as follows:

ΣX = (Cov [Xi, Xj ])0≤i<D,0≤j<D .
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Probability distributions. Through this thesis two probability distributions are essentially
used:
• Discrete Uniform Distribution – A random variable X follows a discrete uniform distri-

bution over X , if, each element x of the finite set X has an equal probability Pr[X = x] = 1
|X | .

• Gaussian Distribution – Also known as the normal distribution, we use the symbol X ∼
ND(µ, σ2) to denote a random variable X that follows an univariate Gaussian distribution
of parameters µ ∈ R and σ ∈ R+ such that the corresponding PDF is defined by:

fX(x) = 1√
2π · σ2

exp
{
−1

2

(
x− µ
σ

)2
}
.

The multivariate Gaussian distribution of dimension D with expectation vector µ ∈ RD
and the covariance matrix Σ ∈ MD,D(R) is denoted ND(µ,Σ) such that the related PDF
fX can be defined as follows:

fX(x) = 1√
(2π)D · |Σ|

exp
{
−1

2(x− µ)TΣ−1(x− µ)
}
. (2.3)

We define X ∼ ND(µ,Σ) to denote a random variable X that follows a multivariate Gaus-
sian distribution of parameters µ ∈ RD and Σ ∈MD,D(R).

2.5 Information theory
In this section, we define the information theory quantities needed in the rest of this thesis.

In information theory, the Shannon entropy of a discrete random variable X measures the amount
of information contained by a realization of X.
Definition 2.5.1 (Entropy). Given a discrete random variable X, the entropy of X, denoted
H(X), can be computed as follows:

H(X) = −
∑
x∈X

Pr [X = x] · log2 (Pr [X = x]) .

From this notation, we can extend the Shannon entropy to the conditional entropy of a random
variable X knowing Y is defined by:

H(X|Y ) =
∑
y∈Y

Pr [Y = y] ·H (X|Y = y)

= −
∑
y∈Y

Pr [Y = y] ·
∑
x∈X

Pr [X = x|Y = y] · log2 (Pr [X = x|Y = y]) .

To quantify how much information can be extracted about X by observing a second random
variable Y , the notion of Mutual Information can be used.
Definition 2.5.2 (Mutual Information). Let (X, Y ) be two discrete random variables with values
over the space X×Y . The mutual information, denoted byMI (X;Y ), between those two random
variables can be expressed as follows:

MI (X;Y ) = H (Y )−H (Y |X)
= H (Y ) +

∑
y∈Y

Pr [Y = y] ·
∑
x∈X

Pr [X = x|Y = y] · log2 (Pr [Y = y|X = x])

= DKL(Pr[X, Y ]||Pr[X]Pr[Y ]),

where the DKL function is known as the Kullback-Leibler (KL-) divergence [KL51]. The KL-
divergence is always non-negative and equals zero if and only if Pr[X, Y ] = Pr[X]Pr[Y ].
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From this result, we can introduce the conditional mutual information that quantifies the amount
of information Y reveals on X given a random variable Z as follows:

MI(X;Y |Z) = H(Y |Z)−H(Y |X,Z)

=
∑
z∈Z

Pr[Z = z]
∑

(x,y)∈X×Y
Pr[X = x, Y = y|Z = z] log

( Pr[X = x, Y = y|Z = z]
Pr[X = x|Z = z]Pr[Y = y|Z = z]

)
.

Introduced by McGill [McG54], interaction information is a multivariate generalization of mu-
tual information for measuring dependence among multiple random variables. The interaction
information MI({X0, X1, · · · , Xn}) between n + 1 random variables {X0, X1, · · · , Xn}, denoted
as {X0:n} in the following sections, and the conditional interaction information MI({X0:n}|Y )
are respectively defined as:

MI({X0:n}) =
{

MI(X0;X1) if n = 1,
MI({X0:n−1}|Xn)−MI({X0:n−1}) for n ≥ 2.

MI({X0:n}|Y ) = EY [MI({X0:n})|Y ] .

Those notions of information theory are essentially used in Chapter 7 and Chapter 8.

In the next chapter, we continue to introduce the notions required for this thesis by focusing on
the Side-Channel Analysis field.
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Chapter 3

Side-Channel Analysis

In this chapter, we describe the link between physical leakage and data dependence. Then, we
present the entire process the Evaluator conducts during the security evaluation. This includes
a description of the measurement setup as well as statistical tools allowing the detection of time
samples where the targeted data leak. This chapter continues with an introduction of the optimal
side-channel attack and describes the classical approaches considered to retrieve a secret infor-
mation. Finally, classical countermeasures, which make the cryptographic module more robust
against side-channel attacks, are presented. This chapter is an overview of the side-channel liter-
ature, hence, readers who are already familiar with this field can skip it, although the material
may be useful to get familiar with the notations and terminologies used in this manuscript.
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3.1 Power Consumption & Data Dependency

3.1.1 CMOS Circuit
To extract the information from a cryptographic module, the Evaluator exploits the security flaws
induced by the physical component. Most of the chips are implemented using the Complemen-
tary Metal Oxide Semiconductor (CMOS) technology to perform logical operation. One of the
simplest examples of the CMOS is the inverter with lumped-C (see Figure 3.1). Composed by
two transistors, namely a P-channel Metal Oxide Semiconductor (PMOS) and a N-channel Metal
Oxide Semiconductor (NMOS), the power consumption of the CMOS inverter depends on a static
and a dynamic power consumption, respectively denoted as Pstat and Pdyn. Pdyn is characterized
by the switching of logic cells while Pstat denotes the circuit consumption when no process of
switching occurs. For a given moment of time, four input transitions can be observed (i.e. 0→ 0,
0 → 1, 1 → 0, 1 → 1). In two cases (i.e. 0 → 0, 1 → 1), the input of the CMOS circuit stays
constant and its consumption only depends on Pstat, while in the other two cases (i.e. 0 → 1,
1 → 0), the combination of Pstat and Pdyn is consumed. Hence, the consumption of the CMOS
circuit depends on the transition it performed. If an input transition 1 → 0 is observed, PMOS
(resp. NMOS) turns to ON (resp. OFF) and charges a capacitor CL. In this setting, a direct path
exists between Vout and VDD, resulting in a steady-state value of 1. On the other hand, if an input
transition 0→ 1 is observed, NMOS (resp. PMOS) turns to ON (resp. OFF) and discharges CL.
Thus, Vout is modified to output a 0 value. This short introduction highlights the dependence
between the data manipulated by the cryptographic module and its related power consumption
[MOP07]. If the Evaluator captures a power consumption resulting from a cryptographic function
(e.g. encryption, decryption), he can correlate it with the data processed and thus, guess the
secret key. To perform this correlation, he has to model the expected behavior of the targeted
cryptographic model in order to enhance its ability to extract the secret key.

VDD

VoutVin

PMOS

NMOS CL

VSS

Figure 3.1: Structure of a CMOS inverter.

3.1.2 Leakage Model
Performing a side-channel attack consists in mapping data values, which are processed by the
cryptographic module, to the related power consumption. For exploiting the dynamic power
consumption, the Evaluator has to consider a metric to characterize the following transitions:
0→ 1 and 1→ 0.

Definition 3.1.2.1 (Hamming Distance). Let a ∈ Fn2 and b ∈ Fn2 , the Hamming Distance between
a and b is defined as follows:

HD(a, b) =
n−1∑
i=0

1a[i] 6=b[i],

where a[i] (resp. b[i]) denotes the ith bit of a (resp. b).
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The basic idea of the Hamming Distance is to count the number of transitions that occurs when
a → b. Hence, for two consecutive values, this metric correlates this number with the related
power consumption. However, even if this metric is suited to describe the leakage consumption,
it requires the knowledge of the preceding and the succeeding data values. Consequently, if the
Evaluator does not have enough knowledge to predict the transition, he has to consider a simpler
solution.

Definition 3.1.2.2 (Hamming Weight). Let a ∈ Fn2 , the Hamming Weight of a is defined as:

HW(a) =
n−1∑
i=0

1a[i]=1,

where a[i] denotes the ith bit of a.

Remark 3.1.2.1. Let a ∈ Fn2 and b ∈ Fn2 , HD(a, b) = HW(a⊕ b).
As defined for the Hamming Distance, the Hamming Weight describes the number of transitions
that occur when a → b such that a equals 0. Thus, the Evaluator assumes that the power
consumption and the processed data are proportional to the number of bits set to 1. Due to the
assumption on a, this metric does not entirely characterize the power consumption of the CMOS
circuit because it does not describe the transitions involved. Hence, depending on its knowledge,
the Evaluator has to adequately choose the best leakage model. Typically, the leakage model
produced by the computation of a data in Fn2 is modelled by a D-size random vector over RD.
If D = 1, the leakage model is said univariate, otherwise if D > 1, the leakage model is said
multivariate.

Definition 3.1.2.3 (Leakage Model). A leakage model is a function ψ : Fn2 → RD characterizing
the dependence between the data manipulated by the cryptographic module and the related power
consumption.

Even if the most classical leakage models are defined by the Hamming Distance and the Hamming
Weight, a plethora of solutions exists:

• Mono-bit leakage model – instead of considering the entire data, the Evaluator can describe
the activity induced by a single bit of the processed data.

• Linear leakage model – in [SLP05], Schindler et al. propose a custom leakage model that
is a linear combination of bits. The particularity of this solution is to capture the bits’
interaction of the processed data in order to find a leakage model with a lowest granularity
level. Notably, the Hamming Weight can be seen as a solution of the linear leakage model.

All these propositions will be considered in this manuscript. However, how does the Evaluator
capture the power consumption from a chip implemented with the CMOS technology? How can
he exploit the security flaws we revealed based on a leakage model ψ? The following section tries
to answer these questions.

3.2 Side-Channel Evaluation
3.2.1 Measurements
Figure 3.2 presents a typical setup used by the Evaluator to assess the robustness of cryptographic
modules against side-channel attacks. To perform this evaluation, at least, an oscilloscope, a
personal computer (PC), a device under test (i.e. cryptographic module) and one probe capturing
the power consumption or the electromagnetic emanations are needed. First, it is assumed that
the Evaluator (PC’s owner) has a physical access to the cryptographic module. Then, he sends
a request to the device under test in order to perform a cryptographic function (e.g. encryption,
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Evaluator / Adversary

Oscilloscope

Cryptographic Module

VDD

Figure 3.2: Measurement setup to acquire power consumption and electromagnetic ema-
nations.

decryption) and obtains the related output (e.g. ciphertext, signature). During the processed of
the cryptographic function, the oscilloscope captures the corresponding signal with the help of a
probe. If the Evaluator wants to capture the power consumption of the cryptographic module,
a solution consists in the insertion of a small resistor in series with the power supply or the
ground. Connected to the oscilloscope, the current probe measures the voltage difference across
the resistor. This channel captures the entire power consumption of the device under test. The
resulted signal is not only dependent on the targeted cryptographic function but also on the other
operations performed simultaneously. This noise, namely switching noise, refers to the variations
induced by cells that do not depend on the targeted cryptographic function. Depending on its
prominence, the quality of the signal can be highly impacted. A solution to reduce this risk
is to precisely locate the cryptographic function’s activity. To this end, the Evaluator can use a
probe that captures the electromagnetic fields of the cryptographic module in order to reveal more
information about the targeted cryptographic function. To measure an isolated signal emitted
by the device under test (e.g. encryption, decryption), the Evaluator has to position its probe
near to the cryptographic core. However, as the signal highly varies with the position of the
probe, an incorrect probe’s location can significantly decrease the effectiveness of a side-channel
attack. While the performance of a side-channel attack highly depends on the noise induced in
the exploited signal, it is essential to adequately select the channel.
To validate the probe position, the Evaluator can visualize the related signal and assess its suit-
ability regarding the targeted cryptographic function. In Figure 3.3, the Evaluator captures the
signal corresponding to an AES-128 encryption. As illustrated, the 10 rounds of the cryptographic
algorithm can be clearly observed as well as the cryptographic primitive, namely AddRoundKey,
SubBytes and MixColumns. Since ShiftRows do not handle arithmetic operations, it cannot be
visualized on the power consumption. With the help of the signal, the Evaluator reveals the
different operations occurring during the encryption of a message. Based on this representation,
he extracts some information that depends on the secret key manipulated by the cryptographic
module. This extraction procedure will be defined in Section 3.3. In the following, no particular
distinction will be made between electromagnetic emanations and power consumption.

Definition 3.2.1.1 (Leakage Trace). A leakage trace, denoted T, defines a physical measure-
ment (e.g. power consumption, electromagnetic emanation) which depends on the secret key
manipulated by the cryptographic module under test.

Given a variable Y and an independent noise Z, a leakage traces T is a D-dimensional random
vector {T[0], . . . ,T[D − 1]} where T[i] represents the leakage of time sample i (for 0 ≤ i < D)
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Figure 3.3: A power consumption of an AES-128 encryption.

satisfying the Gaussian Indepedent Noise Assumptiona:

T = ψ(Y ) + Z, (3.1)

where ψ(.) denotes the leakage model, Y depends on the targeted secret and we assume that the
noise Z follows a multivariate Gaussian distribution ND(µ,Σ) with unknown parameters (µ,Σ).
Thus, T can be decomposed into a deterministic (i.e. ψ(Y )) and a random (i.e. Z) part such that
the deterministic part is non-negligible if the secret key is manipulated. During the evaluation
process, the Evaluator aims at extracting the deterministic part from the leakage trace in order to
retrieve the secret used by the cryptographic function. However, how does the Evaluator retrieve
the time sample which depends on the secret key? The following section presents the tools the
Evaluator considers to perform this analysis.

3.2.2 Leakage Assessment
To assess the security of a cryptographic module, the Evaluator has to estimate its ability to
extract the deterministic part defined in Equation 3.1.

Definition 3.2.2.1 (Sensitive variable). A sensitive variable, denoted Y = f(x, k∗), is an internal
state of the cryptographic function which depends on a value the Evaluator targets (e.g. secret
key, secret random value) and a cryptographic primitive f : X ×K → Y (e.g. output of the Sbox,
a XOR between a plaintext x ∈ X and a secret key k∗ ∈ K).

In that purpose, the Evaluator uses leakage metrics which measure the information contained in
a leakage trace T regarding a processed sensitive variable Y .

Definition 3.2.2.2 (Point of interest). Given a leakage trace T, a point of interest is a time
sample with a non-negligible deterministic part (i.e. ψ(Y )[i] 6= 0).

From the Evaluator perspective, the leakage assessment is helpful to find the points of interest
(PoIs) and evaluate the security flaws induced in a cryptographic module. Furthermore, it can
also be beneficial to validate the observed processing of a leakage trace and the detected point
of interest. As an example, in Figure 3.3, if the Evaluator considers the output of the Sbox in
the first round as his sensitive variable, he expects to obtain one or multiple PoIs between time
samples 1, 000 and 1, 700. Typically, to detect these PoIs, the Evaluator can apply two types of
leakage metrics: the non-specific and the specific leakage metrics.

aThis means that the Gaussian noise Z is independent of the variable Y .
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Non-Specific leakage metric. Given a set of leakage traces, this metric does not require
any prior knowledge on the cryptographic module under test (i.e. sensitive variable) or any
assumption about how it leaks (i.e. leakage model). Mostly applied under black-box restrictions,
it gives a level of confidence related to the presence of leakages without specifying its dependence
with the secret key. Thus, it does not provide any information about the robustness of the device
against physical attacks. However, using this metric is highly beneficial from the Evaluator point
of view in order to get a rapid overview of the cryptographic module’s behavior (e.g. flaws in
the implemented countermeasures). A common example considers the Welch’s T-test [Wel47]
to perform this assessment [GJJR11, BCD+13]. Let TA and TB be two sets of leakage traces
respectively associated to fixed and randomly generated sensitive variable (i.e. fixed vs. random)b.
Let also µA[i] (resp. µB[i]) and σ2

A[i] (resp. σ2
B[i]) be the mean and the variance of the ith time

sample of TA (resp. TB). For targeted cryptographic modules, the Welch’s T-test associated with
the ith time sample is defined asc:

Ttest(TA, TB)[i] = µA[i]− µB[i]√
σ2
A[i]
NA

+ σ2
B [i]
NB

,

where NA (resp. NB) denotes the number of leakage traces in TA (resp. TB).
The result determines if the sets TA and TB are drawn from the same distribution (i.e. null
hypothesis). If two sets do not have similar means and variances, the null hypothesis is rejected
and the Evaluator can assess that the time samples of TA differ from TB. Following [SM15],
this decision can be made following a threshold. Indeed, if |Ttest| > 4.5, the null hypothesis
can be rejected without any other consideration. This threshold was questioned in [DZD+18]
such that it can lead to erroneous results for high-dimensional leakage traces. However, running
independent Welch’s T-test multiple times can reduce this risk by only considering the leakages
that appear at the same time samples. Analyzing the evolution of Ttest over the time samples is
highly recommended to visualize the difference induced in both sets of leakage traces. However,
even if this solution is quite useful, the observed points of interest are not necessarily beneficial
to perform a side-channel attack. While no correlations are made between these leakages and the
targeted sensitive variable, the related exploitation can result in a poor performance. To precisely
identifying some correlations between the targeted sensitive variable and the leakage traces, the
Evaluator has to apply specific leakage metrics.

Specific leakage metric. This metric aims at identifying the time samples dependent on a
targeted sensitive variable. To perform this assessment a specific partition of the sensitive variable
has to be made given a chosen leakage model. An example is the application of a classical signal
processing metric, namely Signal-to-Noise Ratio (SNR). Given a set of leakage traces and its
related sensitive variable Y , the Evaluator can compute the signal-to-noise ratio such that the ith
sample is defined as follows:

SNR[i] = VY [E [T[i]|Y ]]
EY [V [T[i]|Y ]] . (3.2)

Following Equation 3.1, for every y, E [T|Y = y] = E [ψ(y)] + E [Z], and thus, VY [E [T|Y ]] can
be simplified to VY [ψ(Y )] if the noise Z is independent from the targeted sensitive variable Y .
Then, for every y, we can verify V [T|Y = y] = V [Z]. Consequently, under Gaussian indepen-
dent noise assumption, Equation 3.2 can be rewritten as SNR[i] = VY [ψ(Y )[i]]

V[Z[i]] . In other words,
this metric defines the ratio between the variance related to the targeted sensitive information
and the variance of the noise. Thus, using the specific leakage metric is helpful for the Evalu-
ator in order to directly assess the occurrence of points of interest for a given sensitive information.

bIn [DS16], Durvaux and Standaert propose an alternative by applying the Welch’s T-test on fixed vs.
fixed sets. This solution is beneficial from a sampling complexity perspective.

cIn [Sta19], Standaert extends this metric to protected implementations.
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AddRoundKey

SubBytes

MixColumns

Round 1 Round 2

(a) Power consumption of an AES-128 encryption

(b) Welch’s T-test (c) Signal-to-Noise Ratio (Targeted opera-
tion: AddRoundKey)

Figure 3.4: Leakage assessment of AES-128 encryption function.

In a classical evaluation process, the Evaluator collects one or multiple leakage traces (see Fig-
ure 3.3) and identifies the different operation processed during the cryptographic function (e.g.
encryption). In Figure 3.4a, a focus was made on the first AES’s round. Hence, we can clearly
evaluate all the operations performed during an AES encryption (i.e. SubBytes, ShiftRows,
MixColumns and AddRoundKey). Once the Evaluator visualizes these operations, he can use a
non-specific leakage metric to get a global overview of the behavior of the cryptographic mod-
ule. In Figure 3.4b, the Evaluator observes that several leakages occur but cannot assess those
depending on the sensitive variable. Furthermore, the Welch’s T-test can sometimes be irrelevant
for detecting some peaks. Indeed, for some informative samples, the mean values of the fixed and
the random set of leakage traces can provide similar values which makes the detection of sensitive
peaks impossible. Applying the statistical tool on large number of traces can be an effective
solution to prevent this issue. During the evaluation process, the Evaluator can still consider the
non-specific leakage metrics as an initial step to get a first insight of the cryptographic module’s
behavior. However, from the Evaluator point of view, the non-specific leakage metrics cannot be
considered as a unique solution because it does not highlight the leakages that depend on the
targeted sensitive information. Even if a SNR computation is more expensive than a non-specific
approach [DS16], its application is mandatory to label the observed peaks and ease the resulted
attacks. Indeed, as illustrated Figure 3.4c, we perform a leakage assessment on the AddRoundKey
operation of an AES-128 encryption function. The results we obtain are in accordance with the
AddRoundKey processing observed in Figure 3.4a. Hence, if the Evaluator wants to target the
AddRoundKey operation, he can only focus its side-channel attack on the first 1, 000 time sam-
ples. This preprocessing can be highly beneficial to reduce the impact of irrelevant time samples
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regarding the targeted sensitive information and reducing the elapsed time of the related attack
(see Section 3.3). The Welch’s T-test can also be considered as a specific leakage metric [GJJR11]
but the SNR will be the only specific leakage metric we mention in this manuscript.

Once the Evaluator detects the dependence between the processed data and the resulted leakage
trace, he can exploit them through different attack scenarios detailed in the following section.

3.3 Side-Channel Attacks
3.3.1 Optimal Attack
Scenario. To perform a side-channel attack, the Evaluator tries to exploit the dependence be-
tween a D-dimensional leakage trace T and a sensitive variable Y in order to extract the secret
information brought by the deterministic part of Equation 3.1 (i.e. ψ(Y)). The targeted sensitive
variable y = f(x, k∗) depends on a cryptographic primitive f (e.g. the output of the AES Sbox
induced during the encryption of a plaintext x), on a public variable x ∈ X (e.g. plaintext or
ciphertext) and on a part of the key k∗ ∈ K (e.g. a particular byte) that the Evaluator wants to
retrieve. For such a purpose, he collects a set T of N leakage traces (ti)0≤i<N resulting from the
computation of (f(xi, k∗))0≤i<N such that (xi)0≤i<N is uniformly distributed over X . Then, each
trace is labeled with its related sensitive variable such that he obtains the following set of labeled
leakage traces T = {(t0, y0), (t1, y1), . . . , (tN−1, yN−1)}.

Because the Evaluator has access to the internal process of the targeted cryptographic function,
the majority of side-channel attacks can follow the “Divide & Conquer” strategy which consists
in targeting small independent part, known as sub-part, of the secret key (e.g. a byte of k∗). For
example, if an AES-128 is considered, the Evaluator targets 16 sequences of 8 bits (i.e. (k∗i )0≤i<16)
instead of 1 sequence of 128 bits (i.e. k∗). It is beneficial to drastically reduce the key search
space from 2128 (black-box setting) to 28. Hence, once the Evaluator recovers one secret’s byte,
he can replicate his attack on the other fifteen sequences in order to retrieve the whole secret
key. This reduction makes the side-channel attacks particularly efficient performance-wise.

DIVIDE & CONQUER STRATEGY

Definition 3.3.1.1 (Partial Key Recovery). The partial key recovery defines the ability of the
Evaluator to recover a sub-part of the secret key k∗.

Definition 3.3.1.2 (Global Key Recovery). The global key recovery defines the ability of the
Evaluator to recover the whole secret key k∗.

The Evaluator’s goal is to assess the security of a cryptographic module under side-channel at-
tacks. Hence, he has to perform a global key recovery in order to fully evaluate the robustness
of the device under test. However, while the goal of this thesis is to enhance the existing deep
learning-based side-channel attacks, this manuscript will only consider the partial key recovery
strategy assuming that our propositions can also be applied under a global key recovery strategy.
In the rest of the manuscript, the secret key k∗ will interchangeably refer the whole secret as
well as its subparts (k∗i )0≤i<16. It is typically considered in the side-channel literature as well as
the security lab that a partial key recovery can be extrapolated to other parts of the secret key k∗.

Based on this knowledge, the Evaluator tries to exploit the data dependence of the leakage trace
with the help of statistical tools.

Definition 3.3.1.3 (Distinguisher). A distinguisher, denoted D, is a function identifying the
dependence between a set of leakage traces and the related sensitive information Y . Furthermore,
it outputs an ordered score vector defining the likelihood of observing each key hypothesis k ∈ K.
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Objective 3.3.1.1 (Optimal Adversary). Given a cryptographic module, the optimal Adversary
aims at finding the distinguisher that recovers the secret key with a minimum number of attack
leakage traces.

During the evaluation process, the Evaluator finds solutions to converge towards the optimal
Adversary in order to strongly assess the security of the targeted device. In other words, he has
to find the distinguisher suggesting the optimal Adversary.

Definition 3.3.1.4 (Optimal Distinguisher [HRG14]). Given a set T of N leakage traces and a
conditional probability distribution of observing a leakage T knowing a sensitive cryptographic
primitive Y , denoted as Pr[T|Y ], we define the optimal distinguisher as:

Dopt (T , k) =
N−1∑
i=0

log (Pr [T = ti|Y = f (xi, k)]) .

If the chosen distinguisher is well suited, the Evaluator can compute the Distinguisher Rule
arg max
k∈K

(Dopt(T , k)) in order to output the most likely key candidate k. If k = k∗, then, the op-
timal distinguisher succeeds to extract the targeted information from the cryptographic module.
The main issue of Definition 3.3.1.4 is that the optimal distinguisher requires the real unknown
leakage model in order to be computed. While this knowledge highly depends on the setup
environment, one solution is to find the adequate estimation of Pr [T|Y ]. In the literature, this
distinguisher can be defined by multiple tools.

MAIN RESULT IN SCA CONTEXT

Attack Categories. Classically, side-channel attacks can be decomposed into different cate-
gories depending on the targeted cryptographic implementation (i.e. symmetric vs. asymmetric
algorithms) and the knowledge of the Evaluator:

• Simple side-channel attacks – The simple side-channel attacks consist of analyzing the op-
eration flow in runtime of a cryptographic algorithm in order to retrieve the secret key.
This strategy, called horizontal attack [Wal01, CFG+10, BJPW13], consider a single trace
to extract the manipulated sensitive variable. Mainly designed to defeat the asymmetric
algorithms’ implementation, the leakage trace is decomposed into several segments charac-
terizing similar operations (e.g. modular exponentiation for RSA, scalar multiplication for
ECC).

• Differential side-channel attacks – The differential side-channel attacks target the processed
data. Based on several computations, the Evaluator performs vertical attacks which consist
in collecting the related leakage traces and makes a guess about the manipulated secret key.
From this hypothesis, he can construct the corresponding sensitive variables and assigns a
score to the guessed secret key which characterizing its statistical relation with the acquired
leakage traces. The higher the score, the most likely the candidate (i.e. secret key).

The following sections explain the difference between those approaches in order to clarify these
categories.

3.3.2 Simple Side-Channel Analysis
Originally described in [Koc96], the Simple Power Analysis (SPA) is known as the simplest side-
channel attack. It consists in exploiting the security flaws of a cryptographic module by observing
one or very few number of leakage traces. As mentioned in Subsection 3.1.1, the physical leakage
of the device under test depends on the manipulated data. If the Evaluator is able to capture
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a key-dependent leakage trace, he may retrieve information about the secret. Such example is
illustrated in Figure 3.5. Depending on the operation processed by the cryptographic module, the
Evaluator identifies a difference on the resulted patterns. Based on this observation, he can guess
the value of the manipulated secret’s bit.

0 1 0 0 1 0 1 0 0 1 0 1 1 1 0 1

Figure 3.5: Simple Power Analysis (SPA) (k∗ = 0100101001011101).

This is a typical example of a SPA against RSA implementation based on the “Square & Multiply”
algorithmd (see Algorithm 1). In this algorithm, the processing differs depending on the value
of the secret’s bit. While a bit value 0 considers a single operation (i.e. a modular square), a
bit 1 value causes two operations (i.e. a modular square followed by a modular multiplication).
Thus, the Evaluator can easily observe this difference on the resulted leakage trace such that
the pattern related to the bit value 1 should be longer than the pattern related to the bit value
0. This attack was then extended to electromagnetic emanations [QS01, GMO01]. Similarly in
ECC, the execution of a “Double & Add” algorithm involved in the point multiplication can be
exploited by a SPA. Mostly dedicated to attack the asymmetric cryptographic algorithms, the
SPA can be prevented by removing the dependence between computations and key bit values
(see Algorithm 2). However, robust countermeasures exist to reduce the risk of SPA. Hence, the
targeted cryptographic module is rarely vulnerable against this threat.

Algorithm 1: Square & Mul-
tiply (Modular exponentiation,
Left-to-Right)
Data: message: x, private key:

d ∈ Fn2 , modulus: N
Result: signature: xd mod N
sign← 1;
for i← n− 1 to 0 do

sign← sign2 mod N ;
if d[i] = 1 then

sign← (sign× x) mod N ;
end

end
return sign;

Algorithm 2: Multiply Always
(Modular exponentiation, Left-
to-Right)
Data: message: x, private key:

d ∈ Fn2 , modulus: N
Result: signature: xd mod N
R0 ← 1, R1 ← x;
j ← n− 1, i← 0 ;
while j ≥ 0 do

R0 ← R0 ×Ri mod N ;
i← i⊕ d[j];
j ← j − 1 + i;

end
return R0;

In most of the cases, the Evaluator has to deal with a large number of leakages traces (up to
million leakage traces) in order to retrieve the secret key. In this setting, he has to conduct
another strategy, namely Differential Side-Channel Analysis, consisting in the combination of
leakage traces.

dAmong the numerous references an interested reader can refer for instance to [PP10] for details.
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3.3.3 Differential Side-Channel Analysis
The basic idea of differential side-channel analysis is to gather the information of multiple leakage
traces constructed from different inputs. As shown in Figure 3.6, the Differential Side-Channel
Analysis (DSCA) attack can be described in four phases:

• Construction – Given a set of N plaintexts X = {x0, x1, . . . , xN−1}, the Evaluator emits a
hypothesis on the true unknown secret key k∗. This key hypothesis, denoted k, is used to
construct a set of label hypotheses {f(x0, k), . . . , f(xN−1, k)}.

• Modeling – Based on the set of label hypotheses, the Evaluator models the expected leakage
model for each sensitive variable (f(xi, k))0≤i<N . In some cases (e.g. [CRR03]), the model-
ing phase can be done to capture both part of the leakage trace, namely the deterministic
(i.e. ψ) and the random (i.e. Z) parts.

• Observation – In parallel of the Modeling phase, the Evaluator collects the related physical
traces from the targeted cryptographic module considering X and an unknown fixed secret
key k∗ as inputs.

• Exploitation – From the hypothetical leakage models and the related leakage traces, the
Evaluator applies a chosen distinguisher to estimate if k equals k∗.

Figure 3.6: Scenario of a differential side-channel attack (DSCA).

To retrieve k∗, the Evaluator has to process these phases for each key hypothesis k ∈ K. Typically,
to perform a differential side-channel attack, various scenarios can be considered by the Evaluator:

• Non-profiled vs. Profiled attacks – To perform a differential side-channel attack, the Eval-
uator targets a cryptographic module containing a secret key he wishes to retrieve. In the
non-profiled scenario, he has the ability to send a request to the cryptographic module (e.g.
a message) in order to acquire the resulting output (e.g. a ciphertext). From the physical
properties of the device under test (e.g. power consumption, electromagnetic emanations),
the Evaluator uses some statistical tools to extract its dependence with a targeted sensitive
variable. In this scenario, the Evaluator does not have prior information on the leakage
traces (i.e. leakage model). On the other hand, in the profiled scenario, it is assumed that
the Evaluator has access to an open cryptographic module which is identical to the targeted
one. In this configuration, the Evaluator decomposes the process into two phases: a profil-
ing and an attack phase. In profiling phase, the evaluator gathers leakage information from
the open copy of the cryptographic module in order to characterize Equation 3.1. Once the
Evaluator learns how the leakage trace behaves, he gathers leakage information from the
targeted cryptographic module focusing on the identical, but now unknown Y . However,
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based on the knowledge he acquired in the profiling phase, the Evaluator can emit some
assumptions on the sensitive variable Y processed. This scenario is considered as the most
critical from an evaluation point of view.

• Univariate vs. Multivariate attacks – Given a D-dimensional leakage trace T, the Evaluator
can assess the security flaws of the targeted cryptographic module based on leakage metrics
defined in Subsection 3.2.2. Hence, he extracts a vector of index where the impact of
ψ(Y ) is non-negligible. This vector lists all the points of interest induced in the leakage
trace. If the Evaluator chooses to exploit the information from a single element of this
list, it aims at performing an univariate side-channel attack. This time sample can be
selected depending on the result the Evaluator obtained from a specific leakage metric. In
a multivariatee side-channel attack, the Evaluator exploits multiple coordinates from the
PoIs’ vector in order to retrieve information about the targeted variable Y . The strategy
can be chosen depending on the attack scenario (i.e. profiled vs. non-profiled attack) or
the countermeasures implemented (see Section 3.4).

Non-profiled Attacks. As mentioned, a non-profiled side-channel attack relies on the ability
of the Evaluator to extract the sensitive information from one or multiple leakage traces without
any prior knowledge on the related leakage model. They are mostly univariate (i.e. D = 1) and
take into account all the time samples independently. Hence, the selected distinguisher is per-
formed successively on each of those samples and select the one that facilitates the key extraction.

The first non-profiled attack proposed in the literature is the difference of means (DoM) [KJJ99].
Kocher et al. selected the mono-bit leakage model to extract the sensitive information from the
leakage traces. Given a key hypothesis k ∈ K, the Evaluator partitions the leakage traces into
two subsets according to the value of the jth bit of Y (denoted as Y [j]). Then, he estimates the
difference between the subsets for each k ∈ K and defines the argmax as the secret key.
Definition 3.3.3.1 (Difference of Means Distinguisher). Given a set T of 1-dimensional leakage
traces labeled from a key hypothesis k ∈ K, a set of plaintext X and a targeted bit index j, the
difference of means distinguisher is defined as:

DDoM (T ,X , k, j) =
∣∣∣∣∣
∑N−1
i=0 f(xi, k)[j] · ti∑N−1
i=0 f(xi, k)[j]

−
∑N−1
i=0 (1− f(xi, k)[j]) · ti∑N−1
i=0 (1− f(xi, k)[j])

∣∣∣∣∣ ,
where f : X ×K → Y denotes the targeted cryptographic primitive.
For correct key guessed arg max

k∈K
(DDoM (T ,X , k, j)) = k∗, DDoM (T ,X , k, j) converges towards

the true unknown E [T|f(X, k∗)[j] = 0]−E [T|f(X, k∗)[j] = 1] while a wrong key guess generates
two subsets with random predictions. This lead DDoM to converge towards 0 as the number of
measurements growths.
A generalization of the DSCA was introduced by Brier, Clavier and Oliver in 2003 [BCO03,
BCO04]. This solution, named correlation power analysis (CPA), is the most widely used distin-
guisher in DSCA.
Definition 3.3.3.2 (Pearson’s Correlation Distinguisher). Given a set T of 1-dimensional leakage
traces labeled from a key hypothesis k ∈ K, a set of plaintext X and a predicted leakage model
ψ̂, the Pearson’s correlation distinguisher is defined as:

DCPA(T ,X , k, ψ) =
Cov

[
T , ψ̂(f(X, k))

]
σT · σψ̂(f(X,k))

,

where f : X ×K → Y denotes the targeted cryptographic primitive.
eFor the sake of simplicity, the described approach focuses on attack targeting a single sensitive

variable. However, more sophisticated attacks, such as higher-order attacks (see Section 3.5), may exploit
simultaneously multiple leakages related to several sensitive variables.
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A value close to −1 or 1 indicates a strong linear dependence between the measurements and the
related leakage model of Y . An alternative to the CPA is the correlation electromagnetic analysis
(CEMA). It results from a substitution between power and electromagnetic emanations channels.
In opposition, a correlation coefficient close to 0 reveals the absence of dependence between these
data. Consequently, the Evaluator considers the key hypothesis k maximizing the amplitude of
the coefficient correlation as the secret key k∗. While the CPA perfectly fits for detecting linear
dependence between the measurements and the chosen leakage model, it does not capture the
non-linear dependencies.
To circumvent this issue, Gierlichs et al. introduce the mutual information analysis (MIA)
[GBTP08] as an alternative distinguisher exploiting any kind of dependencies between the leakage
traces and the leakage model.

Definition 3.3.3.3 (Mutual Information Distinguisher). Given a set T of 1-dimensional leakage
traces labeled from a key hypothesis k ∈ K, a set of plaintext X and a predicted leakage model
ψ̂, the mutual information distinguisher is defined as:

DMIA(T,X , k, ψ̂) = H [T]−H
[
T|ψ̂(f(X, k))

]
.

The key guess maximizing the mutual information analysis is the one minimizing the conditional
entropy H

[
T|ψ̂(Y )

]
such that Y = f(X, k). Hence, an estimation of the Probability Density

Functions (PDFs) of the conditional leakages (i.e. (T|ψ̂(f(X, k)))) should be computed for each
key hypothesis k in order to perform the attack. However, this estimation needs to choice an
appropriate methods such as histograms, kernel density function, or parametric estimation. How-
ever, selecting the appropriate method can be very challenging. This reason leads the side-channel
community to mainly consider the CPA to perform non-profiled attacks.

Profiled Attacks. As mentioned, the profiled attacks aim at characterizing the behavior of
the cryptographic module under test. Such a setting requires the ability to acquire a clone of the
device such that the data and the key can be fully configured by the Evaluator. While theModeling
phase of non-profiled attacks consists in selecting the correct unknown leakage model ψ, in profiled
attacks, this phase suggests the estimation (or profiling) of the PDFs (Pr [T = t|Y = y])y∈Y , i.e.
estimates the likelihood of a key guess k ∈ K such that, from the Bayes’ Theorem, we have:

Pr [T = t|Y = f(x, k)] = Pr [Y = f(x, k)|T = t] · Pr [T = t]
Pr [Y = f(x, k)] . (3.3)

If k is assumed to be uniformly distributed, Equation 3.3 can be simplified as:

Pr [T = t|Y = f(x, k)] = ε · Pr [Y = f(x, k)|T = t] , (3.4)

where ε denotes a constant independent of k.

Definition 3.3.3.4 (Log-Likelihood Distinguisher). Given a set T of N leakage traces labeled
from a key hypothesis k ∈ K and a set of plaintext X , the Log-Likelihood distinguisher can be
computed from a set of estimated PDFs, denoted (P̂r [T|Y = y])y∈Y , as:

DLL(T ,X , k) =
N−1∑
i=0

log
(
P̂r [T = ti|Y = f(xi, k)]

)
− log (ε) .

While ε does not depend on k, it is usually ignored by the log-likelihood distinguisher.

The first profiled side-channel attack, namely template attack (TA), was introduced by Chari et
al. in 2002 [CRR03]. In the original paper, it is assumed that the PDFs (Pr [T = t|Y = y])y∈Y
are the density of a (multivariate) Gaussian distribution ND(µY ,ΣY ) such that the pair (µY ,ΣY )
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is dependent on the targeted sensitive variable Y . During the profiling phase, the Evaluator
estimates the empirical mean and the empirical covariance matrix for each y ∈ Y . For a set of
D-dimensional leakage traces T , the estimation of the D×D covariance matrix Σy for each y ∈ Y
can be impracticable. More precisely, if N leakage traces are needed to adequatly approximate
Σy for each y ∈ Y , the total amount of physical measurements that is required to compute all
covariance matrices is N · |Y|. Thus, the Evaluator has to find the best trade-off between the
number of acquired leakage traces, his storage capacity and the optimal estimation of (Σy)y∈Y . To
circumvent it, Choundary and Kuhn propose to pool the covariance matrix into a single solution
in order to ease its estimation [CK14]. The pooling consists in considering a unique covariance
matrix, denoted Σ for all y ∈ Y . Consequently, whatever the manipulated sensitive variable, the
related multivariate Gaussian distribution can be reduced to ND(µY ,Σ) for each y ∈ Y . Once
the profiling phase is performed, the Evaluator can apply the log-likelihood distinguisher on the
PDFs’ estimation in order to guess the secret key manipulated by the cryptographic module.
If the estimation of the PDFs are equal to the true unknown PDFs (i.e. P̂r [T|Y ] = Pr [T|Y ]),
then, the template attacks maximize the probability of attack success. From a side-channel
perspective, the template attacks are known as the most powerful solution. An alternative to the
template attacks have been introduced in 2005 by Schindler et al. [SLP05]. This proposition,
called stochastic attacks (SA), will be addressed in Section 5.1. All the attacks introduced are
summarized in Table 3.1 and linked with their related configurations.

The curse of Dimensionality. The practical issue of the profiled and non-profiled attacks
is the selection of the points of interest. Indeed, side-channel measurements acquired with an os-
cilloscope consist of thousands or even millions of time samples. These huge dimensional leakage
traces can be problematic from a practical perspective as the risk of exploiting non-informative
time samples increases. Consequently, the larger the dimension D, the larger this risk. Thus, from
a practical perspective, the Evaluator has to find solution to focus its attack only on the infor-
mative time samples (i.e. PoIs). To conduct such approach, he can reduce the dimensionality of
the leakage traces through multiple scenarios. Furthermore, reducing the amount of time samples
can be highly beneficial to accelerate the attack process and thus, to minimize the elapsed time
(see Subsection 1.2.2) attribute.

One solution to perform dimensionality reduction is based on the specific leakage metrics. In this
scenario, the Evaluator can assess the time samples influenced by a targeted sensitive variable.
For example, once a SNR computation is performed (see Figure 3.4c), the Evaluator is able to
only select the time samples where the most of relevant information leaks. Based on his selected
points of interest, a profiled/non-profiled attack can be applied on this subset of time samples.
Another solution does not locate the points of interest but compresses the leakage traces while
preserving a maximum amount of relevant information. Several techniques are introduced in
the literature: the Principal Components Analysis [RO05, APSQ06, SA08, CDP16], the Linear
Discriminant Analysis [SA08, BGH+15] or the Kernel Discriminant Analysis [CDP17b].

DIMENSIONALITY REDUCTION

In this manuscript, we mainly focus on the vertical multivariate profiled attack because it corre-
sponds to one of the highest risks from an attack perspective. However, how does the Evaluator
can evaluate if the performed attack retrieves the correct secret key? Which solutions should be
considered? In which scenario? The following section tries to answer these questions.

3.3.4 Performance Metrics
To assess the security of the cryptographic module, the Evaluator has to evaluate the robustness
of the device against side-channel attacks. For such purpose, the literature introduced some per-
formance metrics to define the feasibility of a successful attack. In this manuscript, the definition
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Table 3.1: Summary of the most classical side-channel attacks.

Side-Channel Attacks
Simple
Power
Analysis
[Koc96]

Differential
Power
Analysis
[KJJ99]

Correlation
Power
Analysis
[BCO04]

Mutual
Information
Analysis
[GBTP08]

Template
Attacks
[CRR03]

Stochastic
Attacks
[SLP05]

Operation Flow X
Processed Data X X X X X
Horizontal* X
Vertical X X X X X
Profiled X X
Non-profiled X X X X X**

Univariate X X X X X
Multivariate X X X
* Most of the side-channel attacks defined in Table 3.1 can be performed in horizontal setting. However, as the original papers
do not consider this scenario, we do not mention them as horizontal attacks.

** The interested readers may refer to [DPRS11, DDP13] for deeper details on the application of non-profiled stochastic attacks,
also known as Linear Regression Analysis.

of a successful attack differs depending on the cryptographic algorithm considered as well as the
performance metrics.

Symmetric cryptographic implementations. For symmetric cryptographic implemen-
tations, we define a key recovery attack using a distinguisher D as successful if, for a given set
of Na attack traces, the Evaluator retrieves the entire value of the secret key k∗ ∈ Fn2 . From
a distinguisher, the Evaluator predicts the sensitive variables manipulated by the cryptographic
module. Knowing the inputs used during the cryptographic process (e.g. encryption), he can
use a set of Na attack traces and compute a score vector, based on D (e.g. difference of means,
Pearson’s correlation, mutual information, log-likelihood).
Given the score associated with each key hypothesis k ∈ K, the Evaluator can classify all the key
candidates into a vector of size |K|, denoted gNa =

[
g1
Na , g

2
Na , . . . , g

|K|
Na

]
, such that:

gNa(D, k
′) =

∑
k∈K

1sNa (D,k)≥sNa (D,k′ ),

where sNa(D, k) denotes the score related to key candidate k ∈ K for a given number Na of attack
leakage traces and a given distinguisher D.
Example 3.3.4.1 (Computation of sNa(DLL, k).). Given a set T of Na attack leakage traces, a set
of plaintext X and the Log-Likelihood distinguisher DLL, the score sNa(DLL, k) related to a key
hypothesis k ∈ K can be computed as follows:

sNa(DLL, k) =
Na−1∑
i=0

log
(
P̂r [T = ti|Y = f(xi, k)]

)
, (3.5)

where (P̂r [T|Y = y])y∈Y denotes a set of estimated PDFs (see Definition 3.3.3.4).
The variable gNa(D, k

′) defines the position of a given hypothetical key k′ , in gNa , amongst all
hypotheses. We consider g1

Na as the most likely candidate and g|K|Na
as the least likely one.

Definition 3.3.4.1 (Rank). The rank, defined by gNa(D, k∗), measures the position of the secret
key k∗ in gNa .

The rank of the correct key gives to the Evaluator an insight into how well the selected distin-
guisher performs. Broadly, the rank decreases as the attack becomes better and reaches one if it
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can recover the correct key hypothesis.

The first used evaluation metric introduced in the literature was the stability criterion [SBdMVC08]
that consists in determining the minimum number of leakage traces that are needed to continu-
ously retrieve k∗ (i.e. rank equals 1) when accumulating the attack traces. However, this metric
can be questioned. Indeed, if the distinguisher rule outputs the correct key hypothesis 99% of
the time, the targeted cryptographic module is considered as secure while it is not indisputable.
To fix this issue, Standaert et al. propose two new metrics [SMY09]: the Success Rate and the
Guessing Entropy.

More precisely, the success rate is a probability measure quantifying the number of attack traces
that are needed for retrieving the secret key stored into a cryptographic module.

Definition 3.3.4.2 (Success Rate). Given a number of traces Na, the Success Rate (SR) is a
metric that defines the probability that an attack succeeds in recovering the secret key k∗ amongst
all hypotheses.

A success rate of β means that β attacks succeed in retrieving k∗ over 100 realizations. In [SMY09],
Standaert et al. propose to extend the notion of success rate to an arbitrary order o such that:

SRo(D, Na) = Pr [gNa(D, k∗) ≤ o] . (3.6)

In other words, the oth order success rate is defined as the probability that the targeted secret
k∗ is ranked amongst the o first key guesses in the score vector gNa . From an exhaustive search
perspective, the oth order success means that the attacker has, at most, o key candidates to test
after the attack in order to recover the secret key k∗. In side-channel attacks, the Evaluator
wants to find a distinguisher D such that the condition SRo(Na) > β is verified with the minimum
number Na of attack traces (see Objective 3.3.1.1).

Definition 3.3.4.3 (Guessing Entropy). The guessing entropy is defined as the expected rank of
the secret key k∗ such as:

GE(D, Na) = E [gNa(D, k∗)] .

In other words, the guessing entropy measures the average number of key guesses that have
to be tested before finding the secret key. In [MMOS16], Martin et al. propose to take into
account the orders of magnitude of the rank in order to quantify the remaining brute-force budget.
This solution can be employed when the Evaluator has to deal with key enumeration algorithms
[VCGRS13, VCGS13, PSG16].

Definition 3.3.4.4 (Ranking Entropy). The ranking entropy is defined as the expected logarithm
of the rank of the secret key k∗ such as:

RE(D, Na) = E [log2 (gNa(D, k∗))] .

In the security laboratories, the ranking entropy is also known as the remaining entropy. These
metrics, i.e. Success Rate, Guessing Entropy and Ranking Entropy, are often defined in an em-
pirical way by computing them several times over different sets of leakage traces collected from
the same targeted cryptographic module in order to construct security graphs [VCGS13]. A spe-
cial feature of the security graphs is the indication of the probability that a key will be found,
depending on the amount of keys that the Evaluator can enumerate.
However, as mentioned in Subsection 3.3.1, this thesis only considers the partial key recovery
strategy, and consequently, cannot fully exploit the benefits of the security graphs introduced in
[VCGS13]. Instead, we consider partial security graph plotting the rank evolution of a targeted
key byte. An example of such partial security graph is given in Figure 3.7. Given an unprotected
AES-128 implementation, we perform 10 successive CPA against the AddRoundKey operation
considering sets of different leakage traces and we report the rank evolution of the correct secret
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Figure 3.7: Partial security graph resulting of a CPA which targets one byte of an unpro-
tected AES-128 with known inputs.

key byte into 10 vectors (one vector for each attack). In Figure 3.7, the red curve illustrates the
mean rank evolution of this byte on 10 attacks while the dotted black (resp. dotted white) curve
indicates the 5th (resp. 95th) percentile of the rank evolution. The area around the red curve
indicates a non-negligible probability of successful attack.
In this manuscript, the partial security graphs will be considered as the most likely performance
metric when the targeted cryptographic module implements a symmetric algorithm.

Asymmetric cryptographic implementations. For asymmetric cryptographic imple-
mentations, we define a key recovery attack using a distinguisher D as successful attack if, for
one or few attack traces, the Evaluator retrieves the whole private key sk∗ ∈ Fn2 . Indeed, due
to a careful combination of countermeasures (see Subsection 3.4.1), the Evaluator must be able
to recover most of the private bits with one or a few leakage traces capturing the cryptographic
process (e.g. signature). Consequently, his strategy differs from the symmetric cryptographic
implementations. While an attack against symmetric cryptographic implementations computes
the score from a distinguisher over multiple traces, the Evaluator cannot consider the performance
metrics previously designed. Let T be a set of leakage traces labeled from the same private key
sk∗ ∈ Fn2 . Hence, each trace included in T is related to a single bit of (sk∗ [i])0≤i<n.

Definition 3.3.4.5 (Accuracy). Given a set T of n leakage traces, a distinguisher D defining
a score related to each leakage trace (ti)0≤i<n and a private key sk∗ ∈ Fn2 , the accuracy of D is
defined as:

Acc(T ,D, sk∗) = 1
n

n−1∑
i=0

1arg max
k∈{0,1}

(D(ti,k))=sk∗ [i]

The accuracy describes the ability of the distinguisher D to correctly map a leakage trace to its
related private key bit (sk∗ [i])0≤i<n. If the resulted accuracy is less than 100%, the Evaluator has
to perform additional operations to retrieve the full private key.

Definition 3.3.4.6 (Remaining Operations). Given a set T of n leakage traces and a distinguisher
D resulting in an accuracy of α, the remaining operations Nop,α defines the number of operations
the Evaluator has to perform in order to retrieve the remaining bits of the private key sk∗ .

The European SOG-IS scheme considers that a maximum brute-force complexity of around 2100

remaining operations is practical. Hence, this manuscript considers this threshold to evaluate if
an attack becomes feasible against asymmetric cryptographic implementations. Note that the
notion of time complexity is independent of the computational power available to the attacker. In
addition, even if no theoretical results link the accuracy with the remaining operations, it sounds
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evident that a correlation between both metrics exist. Chapter 8 experimentally validates this
intuition. Hence, increasing the accuracy of a side-channel attack is crucial in order to reduce the
remaining operations required to find the entire private key.

For ensuring the robustness of the cryptographic modules against physical attacks, the Developer
has to implement some countermeasures in order to harden the leakage exploitation. Hence,
the side-channel community designs countermeasures in order to reduce the relation between the
leakage traces and the processed data.

3.4 Side-Channel Countermeasures
Following [Shi00], a countermeasure can be defined as:

“An action, device, procedure, or technique that reduces a threat, a vulnerability, or
an attack by eliminating or preventing it, by minimizing the harm it can cause, or by
discovering and reporting it so that corrective action can be taken.”

In the following, we review the most common countermeasures against side-channel attacks. Typ-
ically, these countermeasures can be decomposed into two categories: data randomization and
hiding.

3.4.1 Data Randomization
Randomization for block ciphers. For block cipher implementations, one solution con-
sists in using masking schemes. This countermeasure consists in breaking the dependency between
the targeted sensitive variable Y ∈ Fn2 and the secret key by integrating multiple shares. The
shares’ integration is beneficial to make the sensitive variable independent from the secret key.
Based on the d-probing secure circuit of Ishai et al. [ISW03], the masking schemes are designed
such that during the computation, the d shares {Y 0, Y 1, . . . , Y d−1} occurring reveal no informa-
tion about the secret. The main idea is to randomly split a secret into several shares such that
the Evaluator needs all of them to reconstruct the secret. Hence, given a group operation ⊥, the
following relation should be satisfied:

Y 0 ⊥ Y 1 ⊥ . . . ⊥ Y d−1 = Y, (3.7)

where the d − 1 shares {Y 1, Y 2, . . . , Y d−1}, known as masks, are independent and randomly
distributed over Fn2 while Y 0, known as the masked variable is processed such that the masking
scheme is satisfied (i.e. Equation 3.7).

Definition 3.4.1.1 (dth-Order Masking). A dth-order masking describes a masking scheme in-
ducing d masks.

In the literature, different operations ⊥ have been introduced, notably, the XOR operation
[GP99, CJRR99], the modular addition [Mes01], multiplicative [GT03] or the affine scheme [vW01,
FMPR11].

In this manuscript, a particular focus will be made on the Boolean Masking Scheme. In this
scheme, the invertible operation ⊥ is defined by a XOR operation in F8

2, denoted ⊕. Proposed by
Goubin and Patarin [GP99], and Chari et al. [CJRR99], this is the most classical masking scheme
used in practice due to its simple hardware/software implementation. The computation performed
on the masks and the masked variable should be computed in order to satisfy Equation 3.7. An
example of 1st order Boolean masking scheme is presented in Figure 3.8.
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Figure 3.8: Example of 1st-order Boolean masking scheme.

The soundness of the masking schemes was formally demonstrated by Chari et al. [CJRR99]. They
establish that the number of leakage traces that are needed for defeating such implementations
increases exponentially with the number of shares. More precisely, for a d-order masking scheme,
they assume that each share is modeled as Ti = Y i + Zi such that the noise (Zi)0≤i<d follows a
Gaussian distribution N (µ, σ2). Hence, the number of attack traces is proportional to σd. Many
papers have been proposed as an extension of this seminal work [PR13, DDF14, DFS15, DFS18].
As a result, the side-channel attacks exploiting a single sensitive variable cannot be performed
anymore. A solution suggests the application of high-order side-channel attacks targeting multiple
sensitive variables simultaneously (see Section 3.5).

Randomization for asymmetric algorithms. As illustrated in Subsection 3.3.2, the
asymmetric algorithms’ implementation can be vulnerable to SPA due to the conditional branch
induced in the modular exponentiation (e.g. RSA implementation, see Algorithm 1) or in the
scalar multiplication (e.g. ECC implementation). In order to reduce this limitation, the liter-
ature proposes some countermeasures. A first countermeasure consists of preventing the condi-
tional branch dependence by performing the same operations independently of the value of the
current bit. This solution can be brought by the Multiply Always algorithm (see Algorithm 2),
the Montgomery Ladder or the Double & Add Always algorithm. However, such countermea-
sure is still vulnerable against differential attacks [Cor99]. Hence, as for the symmetric case, the
side-channel community proposes to randomize the manipulated data in order to reduce the de-
pendence between the sensitive variable and the leakage trace by using blinding schemes. However,
depending on the targeted asymmetric algorithm, the countermeasure differs. In RSA algorithm,
let sign = xsk∗ mod N be the signature of a message x given a private key sk∗ and a modulus
N . To make a RSA-CRT implementation robust against side-channel attacks, the Developer can
implement the following blinding countermeasures:

• Exponent blinding [Koc96] – If the same private key sk∗ is used to compute several signatures,
the Developer can generate any random positive integer r such that:

sign = xsk∗ mod N = xsk∗+r·(q−1)(p−1) mod N.

Hence, for each signature computation, a new random value r is picked in order to reduce
the dependence between the private key sk∗ and the related leakage trace. A similar solution
the Developer can consider is the exponent splitting [CJ01].

• Message blinding [MDS99] – The idea is to transform the message x in such a way that the
Evaluator cannot perform, for example, a multiple-exponent, single-data (MESD) a zero-
exponent, multiple-data (ZEMD) attack [MDS99] or a doubling attack [FV03]. Given r1 and
r2, two random position integers, it can be computed based on the following equation:

sign = xsk∗ mod N = ((x+ r1 ·N)sk∗ mod r2 ·N) mod N.

Combination of these countermeasures can be beneficial for reducing the risks of security flaws.
For the ECC algorithms, an analogy can be made with the point blinding and the scalar blind-
ing as fruitful countermeasures. The list introduced in this section represents a non-exhaustive
enumeration of the possible attacks and countermeasures against RSA and ECC. The interested
readers may refer to [FV12, DGH+13, AFSW13, FGI+16] for additional information.
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3.4.2 Hiding
In addition to the data randomization, the hiding mechanisms are widely used as countermeasures
which can be included in hardware or in software cryptographic implementations. As defined in
Subsection 3.2.2, the Evaluator aims at identifying the time samples where the sensitive variable
leaks in order to extract the information related to the manipulated secret key. The goal of hiding is
to distribute the execution of the sensitive variables over different periods of time. The distribution
should neither be predictable nor be observable by the Evaluator. If the leakage traces are perfectly
synchronized, the probability of observing the execution of a given cryptographic operation for
a period of time is nearly 1 while the hiding mechanisms reduce this probability. The higher
the hiding level, the lesser the probability of observing the execution of a given cryptographic
operation for a certain period of time. Therefore, it significantly reduces the correlation between
the targeted sensitive variable and the time samples where it leaks. This countermeasure reduces
the Signal-to-Noise Ratio (see Equation 3.2) by increasing the related noise without eliminating
the informative signal itself. It differs from the masking countermeasures which reduce correlation
between the leakage traces and the sensitive variables by splitting it over multiple shares. In the
literature, several hiding techniques have been introduced:

• Adding Noise – One classical countermeasure generates some noise in the leakages trace in
order to increase the SNR value. The cryptographic module performs unrelated operations
when the relevant computation is being conducted. The sensitive information included in
the leakage trace is thus polluted by the irrelevant operations. This countermeasure is
considered as a moderate way for reducing the security flaws because the electromagnetic
emanation analysis can capture a very local signal that is not affected by the unrelated
operations.

• Random Process Operations [CCD00] – It is based on the insertion of dummy instructions
so that the corresponding operation cycles do not match between the leakage traces. A
straightforward method consists in randomly picking up a number of dummy instructions
in an interval [0, α], with α ∈ N. Some methods were proposed in order to efficiently insert
random delay in software implementations [TB07, CK09] such as the insertion of NOP
instructions. In hardware level, the random process operation can be formulated as a jitter
generated through unstable clock frequency.

• Dummy Operations – This approach randomly inserts meaningless operations, which do
not influence the targeted cryptographic function (e.g. encryption, decryption), amongst
sensitive operations. The 1-amongst-n countermeasure is a classical example. It consists of
executing the computation of the sensitive variables randomly amongst (n − 1) fake oper-
ations. In opposition to the random process operations, the Evaluator cannot distinguish
the dummy operations from the real one.

• Shuffling [HOM06] – It consists in randomizing the order of independent operations. This
countermeasure limits the ability of the Evaluator to assess the time samples where the
sensitive variable is manipulated. As an example, the SubBytes operations of an AES
implementation are independent and thus, can be permuted in an arbitrary order.

• Balancing – This countermeasure aims at making the activity of the physical implementa-
tion independent of the sensitive variables. Applied at the logic gate level, it adds comple-
mentary logic to the existing one in order to make the activity of the cryptographic module
constant [MAM+03, TV03, CZ06].

• Shielding – To prevent hide the internal behavior of the chip, this countermeasure proposes
to insert circuit and wire shielding, such as a Faraday cage, in order to reduce and filter the
signal. Hence, the Evaluator cannot exploit the dependence between the data manipulated
by the cryptographic module and the related power consumption.
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Hiding countermeasures do not make the attack theoretically unfeasible but increase the number
of attack leakage traces considerably. Indeed, from an evaluation perspective, these counter-
measures highly impact the time requires to perform a successful attack, i.e. elapsed time, and
thus, makes a cryptographic module robust regarding the certification schemes. However, these
countermeasures can be mitigated with a preprocessing phase consisting in applying some signal
processing tools such as filtering, pattern detection, signal transformation, synchronization, etc.
While most of the Evaluator’s time consists in optimizing the preprocessing phase in order to
perform successful attacks, some tools have been designed to limit the desynchronization effect,
e.g. phase-only correlation [HNI+06], the amplitude-only correlation [GKLD11], dynamic time
warping [vWWB11].

Most of the real-life protected cryptographic modules implement a mixture of multiple hiding and
masking countermeasures in order to make the side-channel attacks challenging. In this thesis,
we only consider the random delay interrupt as a source of hiding while the masking scheme that
we have to deal with is the Boolean masking scheme.

3.5 High-Order Side-Channel Analysis
In Subsection 3.4.1, the masking countermeasures have been introduced to split a sensitive variable
into d shares {Y 0, Y 1, . . . , Y d−1}. To counteract the effectiveness of the masking schemes, the
Evaluator can perform a High-Order Side-Channel Attack (HO-SCA) for retrieving the secret
key manipulated by the cryptographic module. Let the masking scheme be Boolean, M =
{m1,m2, . . . ,md−1} be a set of d − 1 random masks and Y the targeted sensitive variable such
that:

Y i =
{
Y ⊕m1 ⊕ . . .⊕md−1 if i = 0,

mi otherwise.

Definition 3.5.1 (dth-Order Attack). A dth-Order Attack refers the order of the statistical mo-
ment related to the leakage distribution that is exploited during the attack.

If no masking schemes are implemented, the sensitive variable is unprotected. Thus, a 1st-order
attack exploits the mean (i.e. the first moment) of the leakage distribution to extract the sensitive
variable. Similarly to a 1st-order side-channel attack, when the Evaluator wants to perform a
high-order attack, he aims at targeting the unmasked sensitive variable Y . However, Y is not
directly observable through side-channel measurements because of the masking scheme contrary
to its related PDFs. If Y is split into d shares {Y 0, . . . , Y d−1}, the Evaluator has to perform
a (d + 1)th order attack in order to reveal the sensitive information Y . If the modeling of the
shares (Ti = Y i + Zi)0≤i<d is independent, then the Evaluator must combine the leakages of
different shares and he has to estimate a high-order moment of the leakage distribution. Typically,
classical approaches considered in profiled side-channel attacks use some combining functions as
preprocessing. This approach involves the combination of the d shares in order to reveal the
dependence of the leakage traces and the related sensitive variable Y . To apply this proposition,
various combining functions C(Y 0, Y 1, . . . , Y d−1) are introduced:

• Product combining [CJRR99] – Proposed by Chari et al., this combination function multi-
plies the shares such that:

Cprod(Y 0, . . . , Y d−1) = T0 × . . .×Td−1. (3.8)

• Absolute difference combining [Mes00] – Introduced by Messerges, it computes the absolute
difference between the shares and can be expressed as follows:

Cabs.diff (Y 0, . . . , Y d−1) = |T0 −T1| −T2| . . . | −Td−1|. (3.9)
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• Optimal product combining [PRB09] – Prouff et al. expressed it as the centered product of
the shares:

Copt.prod(Y 0, . . . , Y d−1) = (T0 − E[T0])× . . .× (Td−1 − E[Td−1]). (3.10)

In [PRB09], the authors demonstrate the benefits of using the optimal product combining function
if the leakage model ψ of the processed sensitive variables is the Hamming Weight. In addition,
they suggest that under a very noisy model, the number of side-channel measurements required
to retrieve the secret key is greater when the absolute difference combining function is considered.
Other combining functions have been proposed in the literature [JPS05, OM06] but stay out of
the scope of this manuscript. Once these combinations functions are used as preprocessing, the
Evaluator can perform the classical side-channel attacks as defined in Subsection 3.3.3.

To assess the benefits of new contributions, the side-channel community mainly applies their
related propositions on a wide range of implementations that we describe in the next section.
Those datasets are also considered in the rest of this manuscript.

3.6 Presentation of the Datasets
The datasets, introduced in this section, are beneficial to experimentally validate the theoretical
observations we will make. We use eight different implementations with a wide range of use cases.
Six datasets correspond to symmetric cryptographic implementations related to the Advanced
Encryption Standard. These datasets offer a wide range of use cases: simulations, high-SNRf

unprotected implementation on a smart card (i.e. Chipwhisperer and DPA contest-v4), low-SNR
unprotected implementation on a FPGA (i.e. AES_HD), low-SNR protected implementation with
first-order masking (i.e. ASCAD) and desynchronization with a random delay (i.e. AES_RD).
The other datasets implements protected public-key algorithms, namely RSA and ECC.

Simulations. First, this dataset considers simulations of D-dimensional leakage traces from a
8-bit sensitive variable Y . In this manuscript, the simulated leakage traces are built such that for
every time sample i ∈ [0, D − 1], the jth leakage trace tj is defined as follows:

tj [i] =
{
ψ(yj)[i] + zj [i] if i ∈ {l0, . . . , lu−1},

zj [i] otherwise,

where {l0, . . . , lu−1} defines a set of indices related to each point of interest, ψ(yj)[i] denotes the
leakage model constructed from yj ∈ Fn2 that depends on the secret key k∗j . Finally, zj defines
the noise following a Gaussian distribution N (0, σ2). The noise as well as the leakage model
considered in this manuscript will be specified each time the simulation leakage traces will be
applied.

ChipWhisperer is an unprotected emulation of AES-128 implemented in software on a Chip-
whisperer board [OC14] which corresponds to a ATxMega-128D4, which is composed by a 8-bit
microcontrollerg. Due to the lack of countermeasures, the Evaluator can recover the secret key
directly. In this experiment, we attack the first round S-box operation. We identify each leakage
trace with the sensitive variable Y = Sbox[X[0]⊕k∗] where X[0] denote the first byte of the plain-
text such that the measured SNR equals 7.767 (see Figure 3.9b). The experiences introduced in
this manuscript are conducted with 100, 000 leakage traces of 800 time samples (see Figure 3.9a).

fWe recall that the signal-to-noise ratio (see Equation 3.2) quantifies the dependence between the time
samples and the targeted sensitive information.

gThe interested readers may refer to https://newae.com/tools/chipwhisperer/.

https://newae.com/tools/chipwhisperer/
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(a) Example of a leakage trace from Chip-
Whisperer.

(b) Signal-to-Noise Ratio.

Figure 3.9: ChipWhisperer dataset.

(a) Example of a leakage trace from DPA
contest-v4.

(b) Signal-to-Noise Ratio.

Figure 3.10: DPA contest-v4 dataset.

DPA contest-v4 is a protected AES-128 implemented in software on an Atmel ATMega-163
smart card, which is composed by a 8-bit AVR microcontroller [BBD+14]h. In order to prevent
first-order attack, the Developer protects the implementation with a first-order Boolean masking
scheme. However, for this dataset, we assume that the Evaluator knows the mask manipulated by
the targeted cryptographic module. Hence, this strong assumption reduces the protection of the
implementation such that a first order attack can be performed. Thus, this implementation can be
considered as unprotected. In this manuscript, we attack the first round Sbox operation. Hence,
each leakage trace T is labeled with its corresponding sensitive variable Sbox[X[0] ⊕ k∗] ⊕ M
where M denotes the known mask and X[0] the first byte of the plaintext manipulated by the
cryptographic module. The related dataset is composed by 5, 000 leakage traces. Each leakage
trace has 4, 000 time samples (see Figure 3.10a) and the highest SNR targeting the sensitive
variable with known mask equals 4.33 (see Figure 3.10b).

AES_HD is an unprotected AES-128 implemented on Xilinx Virtex-5 FPGA. Introduced in
[PHJ+18]i, the authors decided to attack the register writing in the last round such that the label
of a leakage trace T can be described as Sbox−1[C[j]⊕ k∗]⊕ C[j′] where C[j] and C[j′] are two
ciphertext bytes associated with the leakage trace T, and the relation between j and j′ is given
by the ShiftRows operation of AES. The authors use j = 12 and j′ = 8. This dataset is composed
by a set of 75, 000 leakage traces. Each leakage trace has 1, 250 time samples (see Figure 3.11a)
and the highest SNR targeting the sensitive variable equals 0.01554 (see Figure 3.11b).

AES_RD is an AES-128 obtained from an 8-bit Atmel AVR microcontroller, protected by
a random delay countermeasure that inserts a random number of dummy operations which is
determined by a RNG [CK09]j. This countermeasure shifts each trace following a random variable.

hhttp://www.dpacontest.org/v4/42_traces.php
ihttps://github.com/AESHD/AES_HD_Dataset
jhttps://github.com/ikizhvatov/randomdelays-traces

http://www.dpacontest.org/v4/42_traces.php
https://github.com/AESHD/AES_HD_Dataset
https://github.com/ikizhvatov/randomdelays-traces
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(a) Example of a leakage trace from
AES_HD.

(b) Signal-to-Noise Ratio.

Figure 3.11: AES_HD dataset.

(a) Example of a leakage trace from
AES_RD.

(b) Signal-to-Noise Ratio.

Figure 3.12: AES_RD dataset.

This renders the attack more difficult because of the misalignment. Like DPA-contest v4, the
sensitive variable is the first round Sbox operation where each leakage trace T is labeled as
such Sbox[X[0] ⊕ k∗]. This dataset contains 50, 000 leakage traces of 3, 500 time samples (see
Figure 3.12a) and the SNR targeting the sensitive variable does not identify any relevant leakages
(see Figure 3.12b). This phenomenon can be explained by the implementation of the random
delay.

ASCAD-v1 is introduced in [BPS+20] and is the first open databasek that has been specified
to serve as a common basis for further works on the application of deep learning techniques in
the side-channel contextl. The target platform is an 8-bit AVR microcontroller (ATmega8515)
where a masked AES-128 is implemented. In order to prevent first-order attack, the Developer
protects the implementation with a first-order Boolean masking scheme. The targeted sensitive
variable is the third byte of the first round Sbox operation. Consequently, each leakage trace is
labeled as follows: Y = Sbox[X[3] ⊕ k∗]. While no leakages characterizing Y are observed (see
Figure 3.13b), the Evaluator or the neural network has to combine an unknown mask, denoted
r3 and the related masked value, denoted Sbox[X[3]⊕ k∗]⊕ r3, in order to perform a high-order
side channel attack. The SNR peaks of the mask, the masked value and the unmasked value are
illustrated in Figure 3.13b. This dataset is interesting to assess the ability of a neural network to
retrieve Y without any assumption on the unknown mask. In order to make the attack even more
difficult, two additional ASCAD datasets have been proposed with an artificial shift of maximum
amplitude of 50 and 100 time samples. The ASCAD-v1 dataset contains 60, 000 such that each
of them has 700 time samplesm (see Figure 3.13a).

khttps://github.com/ANSSI-FR/ASCAD
lRecently, a new dataset known as ASCAD-v2 has been released [MS21]. This implementation is out

of the score of this document.
mA new version randomizes the keys used in the training set. The resulted leakage traces are twice

larger. However, this version is not investigated in this thesis.

https://github.com/ANSSI-FR/ASCAD
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(a) Example of a leakage trace from ASCAD-
v1.

(b) Signal-to-Noise Ratios related to the mask
(r3), the masked value (Sbox[X[3]⊕ k∗]⊕ r3)
and the unmasked value (Sbox[X[3]⊕ k∗]).

Figure 3.13: ASCAD dataset.

(a) Example of a leakage trace from the secure
RSA implementation.

(b) Signal-to-Noise Ratio.

Figure 3.14: Secure RSA dataset.

Secure RSA. Introduced in [CCC+19], the targeted RSA implementation is based on a Left-to-
Right Square & Multiply Always exponentiation algorithm (see [CCC+19, Algorithm 1]) combined
with exponent and message blinding. This implementation runs on a 0.13um 32-bit contact
Smartcard IC. The software part of the targeted RSA implementation does not provide specific
security mechanisms to defeat horizontal or address-bit side-channel attacks. This choice has
been done deliberately by CryptoExperts’ teamn who was responsible for the development of the
RSA software part. In [CCC+19], the authors highlight that the application of advanced deep
learning-based side-channel attacks makes security mechanisms against horizontal and address-bit
attacks mandatory to reduce the Evaluator’s scope.
For two 512 bits primes p and q, the combination of the three masking countermeasures corre-
sponds to the following equation:

md mod N = ((m+ k1 ·N)sk∗+k2·φ(N) mod (k0 ·N)) mod N,

with k0, k1, k2 three random values of bit-length 64, N = p× q the modulus of 1, 024 bits.
In the Square & Multiply Always algorithm (see [CCC+19, Algorithm 1]), Carbone et al. iden-
tify a vulnerability related to the manipulation of an index named segfree. Indeed, this index
stays unchanged for two consecutive exponentiations if the related exponent bit equals 1. If the
Evaluator retrieves the value of this index, he can gradually learn the entire exponent bits except
for the last one. For each leakage trace, this index value is defined in 0, 1, 2 (see [CCC+19,
Equation 5]). For a complete overview of the device under test, we suggest that the readers refer
to [CCC+19]. The related dataset is composed by 43, 880 leakage traces of 13, 000 time samples
(see Figure 3.14a) and the related SNR computation is defined in Figure 3.14b.

Secure ECC. Defined in [NCOS17], the secure ECSM (Elliptic Curve Scalar Multiplication)
algorithm has been implemented in an 8-bit ATmega328P microcontroller [Chm20]. This imple-
mentation is constructed from Curve25519 [Ber06] which is a 255-bit elliptic curve. More precisely,

nhttps://www.cryptoexperts.com/

https://www.cryptoexperts.com/
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(a) Example of a leakage trace from the secure
ECC implementation.

(b) Signal-to-Noise Ratio.

Figure 3.15: Secure ECC dataset.

this curve is defined by the equation y2 = x3 + 486662 · x2 + x over the prime field defined by the
prime number 2255 − 19 and it uses the base point x = 9. It generates a cyclic subgroup whose
order is the prime 2252 + 27742317777372353535851937790883648493 and cofactor 8. To protect
its implementation, the Developer employs the Montgomery Ladder with randomized projective
coordinates and a conditional swap (cswap) (see [NCOS17, Algorithm 1]). Starting from two (or
more) curve points, the cswap countermeasure performs the scalar multiplication algorithm on
one of these points depending on a mask value. Hence, if the Evaluator learns all the conditional
swap bits from one side-channel trace, he retrieves the secret key (i.e. 256 bits) [NCOS17]. To be
successful, the secret bits have to be recovered from a single side-channel trace. In the dataset,
each leakage trace represents a single iteration of the Montgomery Ladder scalar multiplication
(see Figure 3.15a) and the related label corresponds to the cswap condition bit value. For deeper
information on the device under test, we suggest that the readers refer to [NCOS17, Chm20]. The
related dataset contains a set of 24, 560 leakage traces of 5, 500 time samples (see Figure 3.15a)
and the related SNR computation is defined in Figure 3.15b.

3.7 Conclusion
This chapter introduces the side-channel attacks that are considered in this thesis. The scenario of
such attack is summarized in Figure 3.16. From the physical consumptions (e.g. power consump-
tion, electromagnetic emanations) of a cryptographic module, the Evaluator identifies the time
samples where a sensitive variable is manipulated (see Subsection 3.2.2). Based on this knowl-
edge, he can use statistical tools to approximate the optimal distinguisher (see Definition 3.3.1.4).
Typically, two strategies can be considered: non-profiled vs. profiled side-channel attacks. While
the first approach consists in targeting a cryptographic module without any prior knowledge on
the related leakage model, it is classically considered as less efficient than profiled side-channel
attacks which assume a stronger Evaluator. In the latter scenario, the Evaluator has access to
an open copy of the device in order to characterize the behavior of the leakage traces defined in
Equation 3.1. This characterization is helpful to approximate the optimal distinguisher through
the log-likelihood distinguisher (see Definition 3.3.3.4).

However, from a practical perspective, this solution has some limitations. Indeed, the characteri-
zation of the leakage traces requires a preprocessing phase that reduces the dimensionality of the
leakage traces in order to ease the computation process. In addition, to reduce the risk of side-
channel attacks, the community introduces different countermeasures, namely data randomization
(see Subsection 3.4.1) and hiding (see Subsection 3.4.2). The first proposition inserts randomness
to the sensitive variables in order to uncorrelate the sensitive variable from the secret key, and
thus, from the leakage traces. In addition, the hiding countermeasures propose to uncorrelate one
leakage trace from another by inserting irrelevant information during the cryptographic process
(e.g. encryption).
To circumvent these issues, some solutions have been introduced such as the high-order side-
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Figure 3.16: Scenario of a side-channel analysis.

channel attacks (see Section 3.5) or the synchronization tools (see Subsection 3.4.2). But the
efficiency of those solutions, and consequently the attack performance, highly depends on the
Evaluator’s expertise.

Hence, while some decision-making are eased by the attack scenario (e.g. simple vs. differential
side-channel attacks, univariate vs. multivariate side-channel attacks, profiled vs. non-profiled
side-channel attacks), others are very challenging to define (e.g. selection of points of interest,
synchronization tools, the choice of the most effective combining functions) depending on the
targeted cryptographic module and the implemented countermeasures. While the decisions pro-
vided on the latter challenges highly influence the efficiency of classical side-channel attacks, the
Evaluator has to make a suited decision based on his own expertise or, in some worst case (e.g.
selection of points of interest), following a rule of thumb. A solution suggests in automatically
finding the setting that converges towards the optimal attack solution. As a natural consequence,
investigating the benefits of the Deep Learning can be useful in order to reach this solution. This
following chapter introduces this field and characterizes its beneficits from the Evaluator point
of view.

WHAT’S NEXT?
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Chapter 4

Deep Learning for Side-Channel
Attacks

In this chapter, we describe the basic principles of Deep Learning that are applied throughout
the rest of the manuscript. Hence, the first three sections are generic and not specific to the side-
channel context. This choice is motivated by the need of understanding all the concepts induced
by the deep learning field. With this aim in mind, we begin this chapter with a definition of what
a deep learning algorithm is and differentiate the supervised and the unsupervised problems.
After presenting the different manners to approximate a function via the construction of neural
networks, we describe how the training process is performed and define the challenges that occur
when the Evaluator aims at approximating an unknown function. Finally, a specific DLSCA case
study is proposed and an overview of the DLSCA literature is made. We conclude this chapter
by presenting the datasets we consider in this thesis.
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4.1 What is a Deep Learning Model?

4.1.1 Principles of Learning Algorithm
The goal of deep learning is to build algorithms which automatically learn how to solve a task
that generally consists in processing the data for addressing a given problem.

Definition 4.1.1.1 (Learning). [Mit97, p. 2] A computer program is said to learn from experience
Exp with respect to some class of tasks and performance measure Perf, if its performance for
solving tasks, as measured by Perf, improves with experience Exp.

Based on Definition 4.1.1.1, the Evaluator can follow the machine learning paradigm in order to
automatically learn mathematical functions (also known as predictive model) that captures some
properties of the leakage traces in order to make a decision, or return a prediction, related to
the secret key manipulated by the cryptographic module. However, no universal approximator
has been defined until now. Consequently, some assumptions have to be made before performing
the learning phase. More precisely, a model space F (or hypothesis space), which defines a set of
predictive models, has to be selected based on prior knowledge of the data (e.g. leakage traces).

Definition 4.1.1.2 (Learning algorithm). A learning algorithm aims at selecting the most suit-
able predictive model F ∈ F for solving a given task.

Hence, to select this predictive model, a learning algorithm needs experiences represented by a
collection of many leakage traces.

Definition 4.1.1.3 (Input). The input of a learning algorithm is defined by a model space F
and a collection of data (or examples), denoted as I, from which a learning algorithm learns to
complete some class of tasks.

Definition 4.1.1.4 (Output). The output of a learning algorithm denotes the element F belong-
ing to some model space F from a set of inputs I, which best solves a given task.

Typically, we say that a learning problem is realizable if the hypothesis space F contains the
true unknown function which perfectly solves the given task. As classical algorithms, a learning
algorithm is no more than a mathematical function F (.) that automatically learns to solve one or
several tasks. In this manuscript, the task is characterized by the ability of the learning algorithm
to automatically select F ∈ F that maps a leakage trace to the correct secret key k∗.

To model such algorithm, the machine learning paradigm is based on the statistical learning
theory, introduced by Vapnik and Chervonenkis [VC71]. This theory, detailed in Subsection 4.1.2,
consists of studying the problem of inference by constructing a model from a set of data. In
2003, Bousquet et al. [BBL04] describe it as a mathematical framework which can be roughly
summarized in three steps. The transposition to the side-channel context can be presented as
follows:

1. Collecting of a set T of leakage traces involved during a phenomenon we want to characterize
(i.e. a cryptographic function, e.g. encryption, decryption),

2. Estimating of a model F ∈ F describing this phenomenon,

3. Making predictions using this model and verifying its suitability following the ground truth
Y in order to retrieve information related to the secret key k∗ manipulated by the crypto-
graphic module.
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From a set of inputs, two phases are needed in order to consider the learning algorithm during an
evaluation process. First, the profiling (or training) phase, consists in monitoring it to complete
one or several tasks given a set of profiling inputs Ip. From Ip and the related predictions, a
penalization term is computed in order to correct the decision-making of the learning algorithm
and improve its performance for resolving tasks. Then, once the learning algorithm is trained, the
inference phase uses the resulted F to make predictions against previously unseen and unlabeled
set of data Ia. This scenario is typically what the Evaluator does when he performs a profiled
side-channel attack (see Subsection 3.3.3). Hence, the deep learning-based side-channel attacks
can be filed in this category.

To consider such scenario, the Evaluator has to differentiate the multiple experiences exposed by
the machine learning community. Typically, these experiences Exp can be categorized into two
branches: supervised learning and unsupervised learning.

Supervised learning. This approach uses a set of inputs (i.e. leakage traces) to teach
a model to yield a set of labels (i.e. Y). In this setting, we assume that the Evaluator has
access to a set of Np labeled (or annotated) leakage traces which can be defined as Ip =
{(t0, y0), . . . , (tNp−1, yNp−1)} with (ti, yi)0≤i<Np ∈ (T × Y). Mainly considered for resolving clas-
sification or regression tasks, the supervised learning approach builds a model which predicts a
targeted sensitive variable Y from a leakage trace T. The term “supervised” refers the anno-
tated data that the Evaluator uses to correct the decision-making of the learning algorithm by
comparing the predicted output Ŷ with the real expected label Y .
In supervised learning, the learning algorithm is trained to produce a function F : T → P(Y)
that takes a data as input and outputs a PMF over a finite domain Y . This learning process
can be split into two tasks: regression task and classification task. The distinction between these
approaches lies in the definition of Y . Typically, in regression tasks, the resulted model F aims
at predicting a continuous value in Y ⊆ R which characterizes the correlations between labels
and D-dimensional inputs. On the other hand, in classification tasks, the learning algorithm is
trained to select a model F which assigns a specific class Y ∈ Y to any input leakage trace.
This assignment is usually processed by estimating the conditional probability Pr [Y |T] for each
class Y ∈ Y such that the prediction Ŷ is considered as the most likely conditional probability
(i.e. Ŷ = arg max

y∈Y
F (T)[y]). Many algorithms have been presented in the literature for resolving

classification tasks: naives Bayes [FGG97], k-nearest neighbors [CH67], kernel support vector
machines [BGV92, CV95], decision tree classifiers [BFOS84], etc.

Unsupervised learning. This learning algorithm differs from the supervised learning as it
handles with an unlabeled training set (i.e. Ip = T = {t0, t1, . . . , tNp−1}). Hence, contrary to
the supervised learning approach which produces functions that map an input T to a class or a
continuous value in Y , the unsupervised learning observes several inputs T and attempts to learn
the entire probability distribution Pr [T] that generates a dataset. These learning algorithms au-
tomatically discover patterns or data groupings without the Evaluator’s intervention. Based on
similarity measures, it is highly beneficial to perform data analysis, clustering [Llo82, CM02] or
dimensionality reduction [Jol86, vdMH08].

The classical profiled side-channel attacks usually approximate the conditional probability dis-
tribution Pr [T|Y ], thus, it can be assigned to a supervised learning experience as it requires to
label each leakage trace T. Similarly, deep learning-based side-channel attacks consider the clas-
sification task Pr [Y |T] as suited to retrieve the secret key involved in the targeted cryptographic
module. Hence the leakage traces need to be labeled in order to perform both approaches. How-
ever, some differentiation can be highlighted. These specifications will be deeper investigated in
Part II. As previously mentioned, two phases have to be conducted for considering a model as
operational. The first one, namely profiling phase, aims at reducing the error the model made
from several leakage traces. While this process can differ between supervised and unsupervised
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approaches, the following section will be specifically oriented for resolving classical side-channel
tasks (i.e. supervised problems).

The main idea of the following section is to introduce the concept of learning theory which
describes the notion of true risk and empirical risk. These metrics are mandatory to explain how
a model F is selected from a finite model space F .

4.1.2 Learning Theory
To train a learning algorithm in supervised setting, the Evaluator has to deal with a training set
of labeled D-dimensional leakage traces, such that, the pairs (T, Y ) ∈ T × Y are independently
and identically distributed (i.i.d) according to an unknown joint distribution Pr[T, Y ]. Based on
a sequence of Np i.i.d pairs (T, Y ), the Evaluator aims at constructing a function F : T → P(Y)
which can be used to predict the most likely Y from T. In order to correctly choose F , a criterion
has to be set in order to assess the quality of the generated model.

Definition 4.1.2.1 (Loss). A loss is a function L : F × Y → R+ measuring the degree of
disagreement between a selected predictive model F ∈ F , consideringT as input, and the expected
Y .

The most natural loss for classification is the 0− 1 loss which can be defined as follows:

L0−1(F (T), Y ) =

 0 if arg max
y∈Y

F (T)[y] = Y,

1 otherwise.

This loss corresponds to the proportion of incorrectly predicted values Ŷ = arg max
y∈Y

F (T)[y].

Thus, considering the 0 − 1 loss function is beneficial to measure the error rate of the learning
algorithm. Then, to completely assess the quality of the selected model F , the notion of true risk
has to be clearly introduced.

Definition 4.1.2.2 (True risk). Given a loss L : F × Y → R and a model F : T → P(Y), the
true risk R defines the expected loss over the distribution Pr[T, Y ]:

R(L, F ) =
∫
T ×Y
L (F (t) , y) Pr[t, y] dt dy.

The smaller the true risk (also known as generalization error), the better the model F . Hence,
the supervised learning aims at finding a model minimizing this criterion. However, this metric
cannot be computed since the joint distribution Pr[T, Y ] is unknown. Thus, the task of learning
algorithm is to minimize the true risk without being able to evaluate it directly. An alternative
is to compute an empirical risk (also known as empirical error) from a labeled training set Ip of
finite size.

Definition 4.1.2.3 (Empirical risk). Given Ip = {(t0, y0), . . . , (tNp−1, yNp−1)}, with (ti, yi)0≤i<Np ∈
T × Y , a labeled training set of size Np, a loss L : F × Y → R and a model F : T → P(Y), the
empirical risk R̂(L, F ) defines the expected loss over Ip:

R̂(L, F ) = 1
Np

Np−1∑
i=0
L (F (ti), yi) . (4.1)

The larger the size of the training set is, the closer to the true risk the empirical risk is. Indeed,
following the law of large number theorem, we immediately obtain that:

Pr

R(L, F )− lim
Np→∞

1
Np

Np−1∑
i=0
L (F (ti), yi)

 = 0

 = 1. (4.2)
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This result indicates that with enough leakage traces, the Evaluator can compute an empirical
risk which is a good approximation of the true unknown risk.

Minimizing this empirical risk is thus highly beneficial to generate a suited learning algorithm
for completing a given task.

Empirical risk minimization. The principle of Empirical Risk Minimization (ERM) is to
pick a model F from a finite model space F that minimizes the empirical risk as follows:

F = arg min
FΘ∈F

R̂(L, FΘ). (4.3)

MAIN RESULT IN DL CONTEXT

Although the ERM rule seems very natural, this approach may miserably fail. Indeed, the next
section discusses the situation where the true risk is much larger than its empirical risk. This
behavior can be exposed through an error decomposition inducing a generalization gap.

4.1.3 Generalization Learning Boundary
For constructing a good model, we would like to learn an algorithm which minimizes the empirical
risk as a surrogate of the true unknown risk R. More importantly, we expect to select a model F
which performs similarly on unseen labeled leakage traces T drawn from Pr[T, Y ]. In statistical
learning theory, this notion is often referred to as the generalization gap and it is denoted as
|R(L, F )−R̂(L, F )| for a given loss L and a given model F included in a finite model space F . For
the sake of simplicity, this subsection is focused on binary classification tasks (e.g. Y = {−1, 1})
but this notion can be extended to multi-classification tasks. When the Evaluator designs and
trains a model, we can reasonably hope that the following probability condition holds:

Pr
[
|R(L, F )− R̂(L, F )| ≥ ε

]
≤ δ, (4.4)

with ε ≥ 0 and δ ∈ [0, 1]. Bounds of this form are generally derived from the probability approxi-
mately correct (PAC) learning framework and are usually independent of the unknown distribution
Pr[T, Y ] from which leakage traces are drawn. This solution is useful in order to bound the gap
between the true risk and the empirical risk given a model F . One common tool for deriving gen-
eralization bounds is the theory of uniform convergence of empirical quantities [VC71]. It means
that, for any model F ∈ F , the true risk R is bounded by its empirical risk R̂ and a penalty term
depending on the number of training leakage traces Np, the size (also known as complexity) of F
and the probability δ.

Theorem 4.1.3.1 (Uniform convergence bound - Finite case). [BBL04] Let F be a finite model
space, Ip be a labeled training set of size Np i.i.d from an unknown probability distribution Pr[T, Y ]
and δ > 0. For any F ∈ F , a generalization bound states that we have:

R(L, F ) ≤ R̂(L, F ) +
√

log |F|+ log
(1
δ

)
2 ·Np

, (4.5)

with probability 1− δ.

Theorem 4.1.3.1 highlights the impact of some variables in the generalization gap. First, as
illustrated in Equation 4.2, increasing the size of the labeled training set is beneficial to converge
the empirical risk towards the true risk by the law of large number property. However, the model
complexity (i.e. |F|) can badly influence the generalization gap. Intuitively, the larger the value
|F| is, the more models F ∈ F exist that will fit the training data to resolve the underlying
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problem (i.e. classification task). However, considering too complex model class can also be
harmful for the generalization gap. Even if Theorem 4.1.3.1 is valuable for finite model space F ,
this notion has to be extended to continuous cases. In [VC71], the Vapnik-Chervonenkis dimension
of a model space F , denoted V C(F), has been defined as the cardinality of the largest dataset
that can be shattered by F . If arbitrarily large finite sets of leakage traces T can be shattered by
F , then V C(F) = ∞. Hence, using the VC-dimension is helpful to extend the bound defined in
Equation 4.5.
Theorem 4.1.3.2 (Uniform convergence bound with VC-dimension). [BBL04] Let F be a con-
tinuous model space with VC-dimension V C(F), Ip be a labeled training set of size Np i.i.d from
an unknown probability distribution Pr[T, Y ] and δ > 0. For any F ∈ F , a generalization bound
states that we have:

R(L, F ) ≤ R̂(L, F ) + 2 ·

√√√√2 ·
V C(F)

(
log
(

2·Np·e1

V C(F)

)
+ 1

)
− log

(
δ
2

)
Np

, (4.6)

with probability 1− δ.
The bound defined in Equation 4.6 is in accordance with the previous observation. Indeed, the
general idea is that the model space must be complex enough to achieve a low empirical risk R̂,
but not too complex in order to limit the rise of V C(F) (or |F| for finite case) which leads to
high bounds on the true risk R. This phenomenon can be observed in Figure 4.1. More precisely,
three phases can be observed.

Remark 4.1.3.1. As highlighted throughout this section, the theoretical frameworks used to bound
the generalization gap assume, on the one hand, that the data instances tend to the true unknown
joint distribution Pr[T, Y ] if the amount of data tends to infinity and, on the other hand, that
the complexity of the task does not influence the gap between the true risk and the empirical
risk. While the first assumption cannot be validated in practice as the Evaluator does not cap-
ture an infinite number of leakage traces, the latter issue may fail to describe certain tasks. For
instance, in deep learning, the resulted models are often over-parametrized and the complexity-
based boundaries failed to describe the generalization capabilities of such deep neural networks
[ZBH+17, NLB+19, ZBH+21]. As this research direction remains open, we consider it as out of the
scope of this thesis. Consequently, the rest of the manuscript follows the classical generalization
bounds defined in the machine learning literature.

While the Evaluator’s goal is to construct a learning algorithm such that the empirical risk is
as close as possible to the true unknown risk (see Equation 4.3), he has to find a good tradeoff
between model complexity and the upper bound on the true risk in order to generalize its
knowledge on unseen datasets. If the model complexity is low, the penalty term can be almost
negligible (see Equation 4.5 and Equation 4.6) while the empirical risk is high because of the
poor representativity of F which is caused by the low dimensionality of F . Hence, the models
included in F can be not complex enough to fit with its input. For example, considering only
linear functions in F is not suitable if the task that has to be resolved is a polynomial function.
This issue is called underfitting and it occurs when the model complexity is not able to obtain a
sufficiently low empirical risk in comparison with the true risk. On the other hand, if the model
complexity increases, the difference between the empirical risk and the true risk decreases unlike
the penalty term. Unfortunately, this situation, called overfitting, leads to an increase of the
generalization gap such that the true risk is much larger than the empirical risk. In other words,
the resulted model learns by “heart” the labeled training sample but has poor performance on
unseen samples drawing from the same unknown distribution Pr[T, Y ]. Hence, the Evaluator
has to find a good tradeoff between the minimization of the empirical risk and the ability of the
related model to generalize its knowledge on unseen data.

UNDERFITTING vs. OVERFITTING
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Empirial Risk

Upper Bound of
 

OverfittingUnderfitting

Penalty Term Good Fit

Figure 4.1: Evolution of the Risk over the Model space complexity.

(a) Underfitting (b) Good fit (c) Overfitting

Figure 4.2: Example of underfitting - overfitting effect on a binary classification task.

An example of underfitting-overfitting effect on binary classification task is provided in Figure 4.2.
Finding a good tradeoff is crucial to ensure the construction of a learning algorithm which is able
to perform similarly on labeled training sample and unseen data. The tradeoff between the model
space complexity and the generalization of the model behavior is the core problematic we want
to solve in Chapter 6 for deep learning-based side-channel attacks.

However, even if the model space complexity is too large, the Evaluator can mitigate it through
a penalization process that will be introduced in the following section.

4.1.4 Regularization
If the Evaluator chooses its model based on the empirical risk minimization, he can encounter
overfitting issues when the model complexity is large. In order to reduce this problem, he can
consider the principle of Regularized Empirical Risk Minimization (RERM) which consists in
picking a model F from a complex space F and a parameter λ that minimizes the empirical risk
as follows:

F = arg min
FΘ∈F

(
R̂(L, FΘ) + λ · C(FΘ)

)
, (4.7)

with C(.), called regularizer, is a model complexity measure. A common practice is to select the
p-norm ||.||p on the parameters of the model FΘ, i.e. Θ, as regularizer. The free parameter λ ≥ 0,
called the regularization parameter, allows choosing the right tradeoff between generalization and
model complexity. The role of the RERM is to consider the model complexity in the selection
process of a model in order to reduce the overfitting issue.
Typically, the choice of regularizer is important and depends on the considered task and the
desired effect. Let us assume that the Evaluator wants to generate a model F ∈ R2 such that
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(a) L1-norm (b) L2-norm

Figure 4.3: Geometric interpretation of regularizer using L1-norm and L2-norm with
||FΘ||p ≤ α constraint which minimizes the empirical risk represented by the solid ellipses.
The optimal RERM solution is defined by Θ∗ but can lead to overfitting issues.

||F ||p is bounded by a constant α. Thus, F characterizes all the model defined by 2 parameters,
denoted θ0 and θ1 (i.e. Θ = [θ0, θ1]), at most such that the RERM principle aims at finding
the one minimizing Equation 4.7. Figure 4.3 plots the most common norm-based regularizers
considered by the deep-learning community, namely the L1-norm and the L2-norm. To satisfy
Equation 4.7, we have to reach an equilibrium configuration Θ̃ (= [θ̃0, θ̃1]) between the regularizer
and the empirical risk. This point is illustrated by a purple circle in Figure 4.3. As we can
observe, depending on the regularizer we consider, we do not regularize the empirical risk in the
same way. While the L1 regularizer tends to cut off some parameters by turning their coefficients
to zero, the L2 regularizer tends to shrink these coefficients to a tiny value, while avoiding too
large parameters, in order to keep some of their influence on the prediction. This observation
can be made in Figure 4.3. Indeed, through Figure 4.3a, the Evaluator forces to choose a model
F ∈ F such that the following equilibrium point (0, θ̃1) is reached. Hence, considering the L1
regularizer aims at reducing the complexity of the selected model F by shrinking a parameter to
0. On the other hand, Figure 4.3b slightly differs from L1 regularizer by choosing a model F ∈ F
with a non-zero (but relatively small) parameter θ̃0.

To adequately select the most suited predictive model F from F , the Evaluator has to choose
the one respecting the following conditions:

1. Minimize the empirical risk defined in Equation 4.3,

2. Generalize its behaviour on unseen data. In such purpose, the generalization gap
|R(L, F )− R̂(L, F )| has to be minimized.

3. Reduce the underfitting and overfitting issues by adequately configuring the finite model
space F . Thus, F should be complex enough to solve the related task (i.e. extracting
sensitive variable from a leakage trace). However, if the model space is too complex, the
Evaluator can consider some regularization tools in order to reduce the overfitting issue.

SUM UP. . .
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While the regularization process is suitable to mitigate the model complexity, the Evaluator has to
define the space F which can be characterized through different approaches (e.g. kernel support
vector machines [BGV92, CV95], decision tree classifiers [BFOS84], etc). The following section
extends the notion of model estimation through the application of neural networks.

4.2 Model Estimation through Neural Networks
4.2.1 Function Approximation Tools
So far we have introduced the Learning Theory principle as a tool selecting a model F from a
generic model space F . As mentioned in Subsection 4.1.1, the aim of supervised deep learning
approach is to select a model F : T → P(Y) from F which takes a D-dimensional leakage
trace T ∈ RD as input and outputs a PMFa over a finite domain Y . One solution to construct
the related learning algorithm is to design parametric functions such that the parameters that
minimize Equation 4.1 are automatically learned. A parametric model FΘ defines a set of functions
indexed by a vector Θ of scalar called weights. A simple example is a set of linear functions
FΘ : R→ R defined by:

FΘ(T) = θ0 + θ1 ·T,
with Θ = [θ0, θ1] ∈ R2 such that θ0 is also known as the bias. A graphical representation of such
linear function is illustrated in Figure 4.4a. This figure is a typical example of a feedforward neural
network structure. The first feedforward neural network, namely perceptron, was developed in 1958
[Ros58] and can be expressed as the following parametric model FΘ(T) = %

(〈
Θ[1:D],T

〉
+ Θ[0]

)
where %, called activation function, is a non-linear function and Θ ∈ RD+1. In [Ros58], it
is characterized by a threshold activation function which outputs 1 if, for a threshold τ ∈ R,〈

Θ[1:D],T
〉

+ Θ[0] > τ . Since then, many activation functions have been explored by the machine
learning community [MHN13, CUH16, HG16]. Given a vector Θ ∈ RD+1 and a vector v ∈ RD,
this thesis will only consider the following ones:

• ReLU – the rectified linear unit activation function outputs a vector of non-negative value
respecting the following equation:

%relu
(
〈Θ[1:D], v〉+ Θ[0]

)
=
{

max
(
0, 〈Θ[1:D], v〉+ Θ[0]

)}
.

• SELU – the scaled exponential linear unit activation function [KUMH17] is an alternative
to the ReLU and recommended for its self-normalizing properties. The SELU is defined as
follows:

%selu
(
〈Θ[1:D], v〉+ Θ[0]

)
= λ

{
〈Θ[1:D], v〉+ Θ[0] if 〈Θ[1:D], v〉+ Θ[0] > 0,

α(exp(〈Θ[1:D], v〉+ Θ[0])− 1) if 〈Θ[1:D], v〉+ Θ[0] 6 0.
(4.8)

The SELU function pushes neurons towards zero mean and unit variance in order to prevent
vanishing and exploding gradient problems discussed in Subsection 4.3.2.

• Softmax/Sigmoid – this activation function normalizes a vector into a probability distribu-
tion over |Y| different possible outputs. It can be computed as follows:

%softmax
(
〈Θ[1:D], v〉+ Θ[0]

)
=
{

e〈Θ[1:D],v〉+Θ[0][j]∑
z e
〈Θ[1:D],v〉+Θ[0][z]

, for j ∈ [0, |Y| − 1]
}
.

The softmax is a generalization of the sigmoid activation function applied to multiple classes.
The sigmoid function, considered to deal with binary classification problems, is character-
ized as follows:

%sigmoid
(
〈Θ[1:D], v〉+ Θ[0]

)
= 1

1 + e−〈Θ[1:D],v〉+Θ[0] .

aThis notion is defined in Section 2.4.
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(a) Linear function considering an input,
denoted t, a bias, two parameters (θ0, θ1)
and an output y.

(b) XOR function.

Figure 4.4: Graphical representations of diverse functions considering the neural network
structure.

Even if a perceptron is useful for constructing a parametric model, it considers low model space
complexity F because it can only generate models classifying linearly separable sets of vectors.
While the approximation of linear functions can be suited in many scenarios, the Evaluator can
suggest the construction of a more complex parametric learning model in order to reduce the gap
between the true risk R and the empirical risk R̂. The Evaluator can then combine multiple
perceptrons in order to construct a neural network which can be represented as a directed acyclic
graph such that the weight values are characterized by the edges.

Example 4.2.1.1 (The XOR function.). To illustrate the directed acyclic graph idea, we construct a
parametric model approximating the XOR function. As defined in Section 2.2, the XOR function
is an operation on two binary values t0 and t1 such that it returns 1 if and only if exactly one of
these bits equals 1. It returns 0 otherwise. In other words, the XOR operation between two bits
can be defined as follows:

t0 ⊕ t1 = (t0 ∨ t1) ∧ (t0 ∧ t1).

Hence, this function is non-linearly separable by a single decision boundary line: a perceptron
cannot generate a suitable parametric model. Indeed, a XOR function can be decomposed into
three operations which are non-linearly separable, namely an OR and a NAND which are aggre-
gated into a AND gate. Hence, the resulted directed acyclic graph can be decomposed into three
nodes (also called neurons) such that each of them is modeled by a perceptron. In this example,
OR and NAND operations are independent and thus, can be simultaneously approximated such
that the weight vector Θ[1]

1 (resp. Θ[1]
2 ) expresses the importance of the bits t0 and t1 to perform

the OR (resp. NAND) operation. More precisely, the OR neuron outputs 1 if, at least, one of
its inputs equals 1 while the NAND neuron returns 1 if and only if neither input is not activated
at the same time. To express the independence between these nodes, the neurons are gathered
under the same layer. Typically, three types of layers can be defined: the input layer receives the
input of the parametric model while the last layer, denoted output layer, is mostly responsible
for the decision-making related to the prediction ŷ. All the layers in between are called hidden
layers. Hence, once the OR and NAND are processed in the hidden layer, the related results are
put in the last neuron which computes the AND operation (see Figure 4.4b). Depending on the
output of the last layer, the Evaluator makes a decision on the estimated ŷ characterizing the
XOR operation between t0 and t1. In addition, while the combination of linear functions is also
linear, each neuron has to consider a non-linear activation function (e.g. ReLU, SELU, etc) in
order to correctly approximate the XOR function.
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As illustrated, a neural network is no more than a parametric function FΘ that aims at resolving
a given task in Y . However, the Evaluator can question how well an arbitrary neural network
approximates his underlying problem.

Universal Approximation Theorem. In [Cyb89], Cybenko proves that a particular neu-
ral network, namely fully-connected neural network (FCNN), considering one hidden layer and
a finite number of neurons can approximate any bounded and regular function if % is sigmoidal
(i.e. %sigmoid). This result was extended to a wide range of non-polynomial activation functions
[Hor91, Pin99] but does not ensure that all activation functions perform equally well in specific
problems. More formally, the FCNNs respect the universal approximation theorem which can be
stated as follows.

Theorem 4.2.1.1 (Universal Approximation Theorem). [Cyb89, Hor91, Pin99] Let % : R → R
be any continuous non-polynomial activation function. Let ID be a compact subset RD such that
C (ID) denotes the set of continuous function on ID. Then, given any ε > 0, there exists N ∈ N,
two vectors v = [v0, . . . , vN−1], b = [b0, . . . , bN−1] ∈ RN and a matrix Θ ∈MD,N (R) such that we
may define:

FΘ(T) =
N−1∑
i=0

vi% (〈Θi,T〉+ bi) ,

as an approximation of any function f ∈ C(ID),

|FΘ(T)− f(T)| < ε.

The Universal Approximation Theorem is interesting from a theoretical point of view because
it suggests that a neural network with a single hidden layer can be sufficient to approximate
a wide range of functions. However, from a practical perspective, the number of neurons in
the hidden layer can exponentially grow, inter alia, with the generalization gap introduced in
Subsection 4.1.3.

IN SHORT . . .

Fortunately, some alternative solutions can be considered in order to reduce the number of weights
induced in a neural network. Indeed, in [ES16], Eldan and Shamir reduce the limitations brought
by the universal approximation theorem by suggesting that neural networks with 3 layers can be
designed to approximate some functions which cannot be estimated with shallow and wide neural
networks. In addition, they show that even if the depth is increased by 1, it can be exponentially
more valuable than width. This suggestion was confirmed in [Tel16] for any positive number of
layers.

While this section introduces the concept of parametric model, the following one proposes to
extend this notion to particular neural networks, namely fully-connected neural networks (FCNNs)
and convolutional neural networks (CNNs).

4.2.2 Neural Network Architectures
To approximate a complex parametric model FΘ, the Evaluator can extend the notion we briefly
introduced in Subsection 4.2.1, namely neural network. More formally, a neural network can be
defined as follows.

Definition 4.2.2.1 (Neural Network). Given a D-dimensional input T, a neural network char-
acterizes a parametric model FΘ : RD → R|Y| which can be defined as the following composition:

FΘ(T) = %[L] ◦ g[L]
Θ[L] ◦ %[L−1] ◦ . . . ◦ %[2] ◦ g[2]

Θ[2] ◦ %[1] ◦ g[1]
Θ[1] ◦T,
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where L defines the number of layers that forms the neural network, %[l] : RN [l] → RN [l] is
a non-linear activation function related to the lth layer which includes N [l] neurons, g[l]

Θ[l] :
RN [l−1]+1 → RN [l] denotes the operation induced in the lth layer and involving a matrix Θ[l] =
{Θ[l]

0 , . . . ,Θ
[l]
N [l−1]+1} ∈ MN [l−1]+1,N [l](R).

Definition 4.2.2.2 (Network Architecture). The network architecture is defined by the shape of
the related neural network.

Definition 4.2.2.3 (Network Complexity). The network complexity denotes the number of
weights that constitutes the related parametric model FΘ.

One classical example of neural networks is themultilayer perceptrons and refers to neural networks
composed by multiple layers of numerous neurons considering % as a threshold activation function
(i.e. perceptron). An extension of the multilayer perceptrons is the fully-connected neural network
that defines a neural network such that all the neurons induced in one layer are connected to
the neurons in the next layer. In other words, Definition 4.2.2.1 substitutes g[l]

Θ[l] with the dot
product between a matrix Θ[l] ∈ MN [l−1]+1,N [l](R) and a vector v in RN [l−1]+1, denoted 〈Θ[l], v〉.
An example of fully-connected neural network applied in side-channel context is provided in
Figure 4.5a. The structure agnostic property of this architecture is one of its main advantages.
Indeed, to consider it, no particular assumption has to be made on the data structure (e.g. image,
video, leakage trace, etc). In side-channel context, this is beneficial to automatically learns the
time samples that have to be combined in order to recover the secret key manipulated by the
targeted cryptographic module. However, from a practical point of view, the fully-connected
neural networks can be difficult to consider due to their extremely high complexity. Thus, following
Subsection 4.1.3, this type of neural network can lead to overfitting issues such that the upper
bound of the true risk R increases with its complexity. To circumvent this issue, a solution
consists of only combining nearby neurons instead of all of them. In such configuration, the
network complexity can be drastically reduced while preserving variables that are temporally
and spatially highly correlated. A neural network respecting this restriction, called convolutional
neural network, has been proposed by LeCun et al. in 1989 [LBD+89]. While this manuscript is
mainly focused on this neural network structure, a detailed description of the convolutional neural
network is proposed.

Convolutional Neural Network. In this manuscript, we choose to simplify its represen-
tation by considering that it can be decomposed into two parts: a feature selection part, which
extracts information from a leakage trace T to help the decision-making (i.e. points of interest)b,
and a classification part which combines these relevant features in order to correctly retrieve the
targeted secret key k∗ (see Figure 4.5b). To select features, a CNN is composed of n3 stacked
convolutional blocks that correspond to n2 convolutional layers (denoted γ), combined with an
activation function %, and one pooling layer (denoted δ) [ON15]. One interesting property of the
convolutional block is to combine three central ideas, namely locality, shared weights and temporal
subsampling [LBBH98]. This is strongly beneficial to reduce the problem of performance loss
caused by distortion techniques as those introduced in Subsection 3.4.2. This motivates Cagli
et al. [CDP17a] to investigate the suitability of such neural network in side-channel context in
order to reduce the hiding countermeasures. Then, the feature recognition part is plugged into
the classification part of n1 Fully-Connected layers (denoted λ) that are similar to those used in
fully-connected neural networks. Finally, a predicting layer, denoted λ|Y|, composed of |Y| classes
is considered in order to compute Pr[Y |T] which is mandatory to perform the log-likelihood
distinguisher (see Definition 3.3.3.4). This conditional probability is measured via the softmax
activation function %softmax. To sum up, a common convolutional network can be characterized
by the following formula:

%softmax ◦ λ|Y| ◦ [% ◦ λ]n1 ◦ [δ ◦ [% ◦ γ]n2 ]n3 .

bThis assumption is verified in Chapter 6.



4.2. MODEL ESTIMATION THROUGH NEURAL NETWORKS 65

(a) Fully-connected neural network structure.

(b) Convolutional neural network structure.

Figure 4.5: Graphical representations of diverse architectures classically considered in
deep learning-based side-channel attacks.

The rest of this section deeply describes the different layers of the architecture presented above.

Convolutional layer (γ). The convolutional layer performs a series of convolutional oper-
ations on a leakage trace T, used as input, to facilitate the identification of patterns containing
a non-negligible deterministic part ψ(Y ). In that purpose, each leakage trace T is convolved
with a filter (also called kernel). The output of the convolution reveals temporal instants that
influence the classification. These time samples are called features. To build a convolutional layer
identifying suitable features, some parameters have to be configured by the Evaluator, namely
length of filters, number of filters, stride and padding.

• Filters – They are designed to identify features that increase the efficiency of the classifica-
tion task, i.e. retrieving k∗. However, depending on their size, filters reveal local or global
features. Smaller filters tend to identify local features while larger filters focus on global
features. Figure 4.6 gives an example in which the length of filters is set to 3.

• Stride – Stride refers to the step between two consecutive convolutional operations. Using
a small stride corresponds to the generation of an overlap between different filters while a
longer stride reduces the output dimension. By default, the stride is set to 1 (see Figure 4.6).

• Padding – Let a and b be two vectors such that dim(a) 6= dim(b), the dimension of the
convolution between these two vectors will be dim(a ~ b) =

⌊
dim(a)−dim(b)

stride

⌋
+ 1 where ~

refers to the convolution operator. In some cases, a subsample may be generated. To avoid
this phenomenon and losing information, a padding can be used in order to add a “border”
on the related leakage trace T. This processing ensures that the input dimension is retained
after the convolutional operation. By default, two kinds of padding are used: valid padding
and same padding. Valid padding means "no-padding" while same padding refers to a zero-
padding (the output has the same dimension as the input). Figure 4.6 gives an example
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Figure 4.6: Example of computations performed in a convolutional block.

in which same padding is selected. Indeed, two 0 values are added at the endpoints of the
vector in order to obtain an output vector of dimension 6.

After each convolutional operation, an activation function is performed in order to only keep the
features identified as relevant for the classification.

Pooling layer (δ). The pooling layer is a non-linear layer that divides the dimension of the
leakage traces such that the most relevant information is preserved. To apply its down sampling
function, a pooling window and a pooling stride have to be configured. Usually, these variables
have the same value to avoid overlapping. The window slides through the leakage trace in order
to select a segment where the pooling function can be applied. In deep learning, two pooling
functions are commonly used:

• MaxPooling – The output of the pooling operation is defined as the maximum value con-
tained in the pooling window.

• AveragePooling – The output of the pooling operation is defined as the average of the values
contained in the pooling window. Figure 4.6 shows an example of this function applied to
a 1-D vector with pooling_window = pooling_stride = 2.

Flatten layer. Once the set of n3 convolutional blocks (i.e. [δ ◦ [%◦γ]n2 ]n3) has been designed,
the flatten layer concatenates each intermediate trace of the final convolutional block in order to
reduce the 2-D space, which corresponds to the dimension at the end of the convolutional part,
into a 1-D space to fit with the expected dimension of the classification part. Let us denote M
the input of the flatten layer such that M ∈ Mn,d(R) where n denotes the number of outputs
after the last convolutional block and d denotes the output dimension such that:

M =



t0[0] t0[1] t0[2] · · · t0[d− 1]
t1[0] . . . · · · · · ·

...
t2[0] · · · . . . · · ·

...
...

...
...

...
...

tn−1[0] · · · · · · · · · tn−1[d− 1]

 (4.9)

where (ti)06i<n is the ith intermediate trace, which is defined by the ith output of the last convo-
lutional block, and (ti[j])06j<d the jth sample of the ith trace.
The output of the flatten layer is a concatenated vector C that can be constructed following two
approaches:

• Column-wise – C = [t0[0], t1[0], t2[0], ......., tn−1[d− 1]],

• Row-wise – C = [t0[0], t0[1], t0[2], ......., tn−1[d− 1]].
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Fully-connected layers (λ). Once the convolutional part has selected the relevant features,
one or several fully-connected layers are set in order to recombine each neuron and accurately clas-
sify each leakage trace T provided as input of the convolutional neural network. Fully-connected
layers can be compared to a fully-connected neural network where each neuron has full connections
to all activation functions of the previous layer (see Figure 4.5).

Predicting Layer (%softmax ◦ λ|Y|). Finally, a convolutional neural network is concluded by
a predicting layer which is a fully-connected layer composed by |Y| neurons such that a softmax
activation function %softmax is computed in order to turn a vector of |Y| real values into a vector
of |Y| real values that sum to 1. Hence, the softmax activation function is useful to convert
the output of λ|Y|, namely scores, to a normalized probability distribution, which can then be
considered to compute the log-likelihood distinguisher (see Definition 3.3.3.4).

Designing Issue. To construct an effective convolutional neural network, the Evaluator has
to deal with a plethora of parametric variables that he has to configure.

Definition 4.2.2.4 (Model hyperparameters). The model hyperparameters refer to paramet-
ric variables whose values are defined by the Evaluator in order to design the neural network
architecture.

Depending on the choice of the model hyperparameters (e.g. number of layers, number of neu-
rons per layer, length of filters, number of convolutional blocks), the performance of the neural
network varies considerably. In convolutional neural networks, these hyperparameters are defined
by number of convolutional layers, number of convolutional blocks, number of filters per convolu-
tional layer, length of filters per convolutional layer, number of fully-connected layers, number of
neurons per fully-connected layer, etc.

For a neural network, a basic question is how to trade off between its width and depth: Should
the Evaluator uses convolutional neural networks that are narrow and deep (many layers, with
a small number of neurons per layer), or shallow and wide? Hence, choosing correct model
hyperparameters is the first step towards obtaining an optimal neural network.

OPEN QUESTION

One classical solution is to consider the convolutional neural networks already proposed by the
deep learning community: LeNet [LBD+89], AlexNet [KSH12], VGGNet [SZ15], InceptionNet
[SVI+16], ResNet [HZRS16] etc. While these convolutional neural networks were specifically de-
signed to fit with the image classification problem, the side-channel community started to inves-
tigate their suitability in deep learning-based side-channel attacks [CDP17a, PSK+18, KPH+19,
ZS19, BPS+20, JZHY20, GJS20, MS21]. In Chapter 6, we propose to investigate the impact of
multiple hyperparameters (i.e. length of filters, number of convolutional blocks, pooling layers)
in order to design a convolutional neural network specific to the side-channel context such that
the convolutional part focuses its interest only on the PoIs.

Once the Evaluator designs a neural network that characterizes a parametric model FΘ, he has
to determine the value of the weights, included in Θ, such that FΘ is able to retrieve the secret
key manipulated by the targeted cryptographic module. To find this solution, he has to perform
a so-called training process that is based on an optimization problem we describe in the following
section.
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4.3 A Step Towards the Optimal Parametric Model
4.3.1 Optimization Problem
Recall that the goal of a learning algorithm is to find a model F ∈ F which minimizes the
empirical risk R̂ (see Definition 4.1.2.3) such that F = arg min

FΘ∈F
R̂(L, FΘ) and respecting a tight

generalization gap with the true risk R. Hence, given a parametric model FΘ and a loss function
L, the Evaluator has to find the weights Θ that minimizes the empirical risk as suggested in
Equation 4.3. This requirement can be provided by some optimization tools such as the gradient
descent.

Gradient Descent [C+47]. Gradient descent is an iterative minimization algorithm which
consists in computing the gradient of the empirical risk in order to monitor the trainable parame-
ters such that R̂ is minimized. Given a parametric model FΘ and a differentiable loss function L,
the Evaluator has to compute the vector of partial derivatives of R̂ at the weights of the lth layer
(i.e. Θ[l]), denoted ∇Θ[l]R̂(L, FΘ) (see Equation 2.1). These partial derivatives give the direction
in which the empirical risk R̂ has the steepest ascent. Taking the opposite direction is helpful to
find the weight values minimizing the loss function such that, from a random starting point Θ[l]

(0),
the weights are updated as follows at each iteration:

Θ[l]
(i+1) = Θ[l]

(i) − η · ∇Θ[l]
(i)
R̂(L, FΘ(i)), (4.10)

where Θ[l]
(i) denotes the value of the trainable parameters at the ith iteration and η > 0, called

learning rate, is a parameter that the Evaluator has to configure. More precisely, it quantifies
the size of the step to reach a minimum. After n iterations, the Evaluator can update the weight
values following multiple strategies: averaging the weight values Θ̄[l] = 1

n

∑n
i=1 Θ[l]

(i), retaining
the weights induce by the last iteration Θ[l]

(n), or keeping the weight values providing the best
performance, i.e. arg min

i∈[1,n]
FΘ(i) .

If R̂(L, FΘ) is a convex-Lipschitz function, the number of iterations, needed for reaching the
unique optimal solution Θ∗ which minimizes R̂(L, FΘ), such that R̂(L, FΘ) − R̂(L, FΘ∗) ≤ ε is
achieved, growths with 1

ε2 [SSBD14, Corollary 14.2]. Hence, the number of iterations can be large
as ε decreases. In addition, while the classical gradient descent algorithm considers the entire
training set Ip to update the weight values Θ, each iteration can be expensive from a computa-
tional point of view. Hence, some alternative solutions have to be considered.

One common solution to perform such gradient descent optimization is to apply the Stochastic
Gradient Descent (SGD) algorithm which approximates the most suitable parametric model FΘ

on a single leakage trace (tj)0≤j<Np instead of Ip. Hence, from a random starting point Θ[l]
(0), the

weight values are monitored as follows:

Θ[l]
(i+1) = Θ[l]

(i) − η · ∇Θ[l]
(i)
R̂(L, FΘ(i)(tj)[yj ]).

This equation is repeated over the entire set Ip until R̂(L, FΘ) converges. While only one random
leakage trace is processed at a time, the SGD is beneficial from a computational perspective. In
addition, for large datasets, the resulted parametric model can converge faster towards the minima
of the loss function because the parameters are updated more frequently. From an optimization
point of view, the SGD has some limitations. Indeed, due to the multiple iterations performed
on a single leakage trace, a high variance can be observed from an iteration to another. This
phenomenon leads to unstable convergence to the loss minima. One solution to reduce this issue
is to compute the stochastic gradient descent over mini-batch that characterizes a set of few train-
ing leakage traces included in Ip. This gradient descent algorithm, called Mini-Batch Gradient



4.3. A STEP TOWARDS THE OPTIMAL PARAMETRIC MODEL 69

Descent, is useful to reduce the variance of the parameter updates and leads to stable conver-
gence. To compute the gradient over Θ, the Evaluator has to consider the backward propagation
described below.

Backward propagation. This algorithm, also called backpropagation, was introduced by
Rumelhart et al. in 1986 [RHW86]. In 1989, Yann LeCun uses backpropagation to train convolu-
tional neural network to recognize handwritten digits [LBD+89]. The backpropagation is based on
the chain rule which is used to compute the derivative of parametric models formed by composing
of functions.
Definition 4.3.1.1 (Chain rule). [GBC16, Section 6.5.2] Let two vectors a ∈ Rm, b ∈ Rn. Let g
be a function which maps from Rm to Rn such that b = g(a). Let f maps an input from Rn to R
such that f(b) = f ◦ g(a). Then, by the chaining rule, the partial derivative of f (g(a)) at a can
be decomposed as:

∇af (g(a)) = Jg(a)T · ∇g(a)f(g(a)), (4.11)
where Jg(a) is the Jacobian matrix of g at a (see Equation 2.2).
From this definition, we see that this principle can be used to compute the partial deriva-
tive of parametric models as those introduced in Definition 4.2.2.1. The backpropagation algo-
rithm has been proposed to iteratively compute the partial derivatives on each vector composing
Θ[i] = {Θ[i]

0 , . . . ,Θ
[i]
N [i−1]+1} ∈ MN [i−1]+1,N [i](R) in order to reduce the storage issue of Jacobian

matrix.

Even if Definition 4.3.1.1 is focused on vectors, the chain rule can be applied on tensors of
arbitrary dimensionality. Indeed, as mentioned in Definition 4.2.2.1, neural networks deal with
matrices. Hence, to extend the chain rule principle to any arbitrary dimension, the Evaluator has
to flatten the related matrix into a vector before its application. Once the gradient is computed
following Equation 4.11, the result can be reshaped in order to fit with the related neural network.

COMPUTATIONAL TRICK

Consequently, given a parametric neural network FΘ (see Definition 4.2.2.1), the backpropagation
algorithm follows Definition 4.3.1.1 in order to facilitate the computation of partial derivative
∇Θ[l]R̂(L, FΘ) at a given layer indexed at l. Indeed, if a = T, g(a) = FΘ = %[L] ◦ g[L]

Θ[L] ◦ . . . ◦ %[1] ◦
g

[1]
Θ[1] ◦T and f ◦ g(a) = R̂(L, FΘ), then, we can rewrite Equation 4.11 as follows:

∇Θ[l]R̂(L, FΘ) =
N [l]∑
j=0

J(%[L]◦g[L]
Θ[L]◦...◦%

[l]◦g[l]
Θ[l] )[j]

(
Θ[l]

)T
· ∇(%[L]◦g[L]

Θ[L]◦...◦%
[l]◦g[l]

Θ[l] )[j]
R̂(L, FΘ).

In other words, the backpropagation algorithm computes the gradient of R̂(L, FΘ) with respect
to the trainable parameters induced in the layer indexed at l (i.e. Θ[l]). While the neural
network FΘ is a composition of functions, the chain rule can be performed to iteratively deter-
mine (∇

%[L]◦g[L]
Θ[L]◦...◦%

[l]◦g[l]
Θ[l]
R̂(L, FΘ))1≤l≤L. The term backpropagation can be explained by the

need of computing ∇
%[L]◦g[L]

Θ[L]◦...◦%
[l+1]◦g[l+1]

Θ[l+1]
R̂(L, FΘ) before ∇

%[L]◦g[L]
Θ[L]◦...◦%

[l]◦g[l]
Θ[l]
R̂(L, FΘ) because

some terms needed for defining the gradient of R̂(L, FΘ) at g[l+1]
Θ[l+1] are mandatory to compute

∇(%[L]◦g[L]
Θ[L]◦...◦%

[l]◦g[l]
Θ[l] )
R̂(L, FΘ). The interested reader may refer to [GBC16, Section 6.5.6] for

additional information on the backpropagation algorithm.

Remark 4.3.1.1. To accelerate the learning phase, LeCun et al. [LBOM12] suggest to preprocessed
each dataset such that the leakage traces are standardized (unit variance) and normalized. The
rest of this manuscript always considers this preprocessing phase before the beginning of the
training phase.
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However, given such optimizing algorithm, the Evaluator can question the ability of a learn-
ing algorithm to automatically find the optimal trainable parameters Θ∗. The following section
underlines the challenges induced by the optimization algorithms.

4.3.2 Optimization Challenges
Optimization can be considered as an arduous task. As defined in Subsection 4.3.1, the applica-
tion of the gradient descent algorithm requires the consideration of differentiable loss functions.
As suggested in Subsection 4.1.2, the 0− 1 loss can be expressed as a suited solution for resolving
a classification task. However, while this loss function has a non-negligible issue of null derivative,
the use of gradient descent algorithm is useless in such configuration. Consequently, the Evalu-
ator has to optimize alternative loss functions, namely surrogate loss functions, which act as an
approximation of the 0− 1 loss function.

Surrogate Loss functions. A classical alternative to the 0 − 1 loss function is the cross-
entropy measure.

Definition 4.3.2.1 (Cross-Entropy). Given Pr[Y,T] denoting the joint distribution of a leakage
trace T and the related targeted variable Y , the cross-entropy is defined as:

H(Y,T) = − E
Y,T

[log2 (Pr [Y,T])] .

However, as mentioned in Subsection 3.3.3, Y is assumed to be uniformly distributed. Hence,
following Equation 3.4, the cross-entropy can be simplified as follows:

H(Y,T) = − E
Y,T

[log2 (Pr [Y |T])] .

Unfortunately, the computation of the cross-entropy needs to know the joint distribution Pr[Y,T]
which is impossible for the Evaluator. A solution consists in applying the law of large number in
order to approximate the cross entropy. The related loss function, called negative log-likelihood
(NLL), can be associated with the empirical risk in order to solve this issue.

Definition 4.3.2.2 (Empirical risk combined with negative log-likelihood). Given a set of Np

labeled leakage traces Ip = {(t0, y0), (t1, y1), . . . , (tNp−1, yNp−1)}, and a parametric model FΘ
estimating the conditional probability distribution of observing a sensitive cryptographic primitive
Y following a leakage T denoted as Pr [Y |T], the empirical risk combined with the negative log-
likelihood loss function can be expressed as:

R̂(LNLL, FΘ) = − 1
Np

Np−1∑
i=0

log2 FΘ(ti)[yi].

While the optimal distinguisher (see Definition 3.3.1.4) considers the maximum log-likelihood as
the statistical tool, this loss seems a natural choice for generating a suited parametric model
FΘ. Notably, this leads the side channel community to investigate it as the classical loss func-
tion to consider when deep learning-based side-channel attacks are performed [MPP16, CDP17a,
PHJ+18, CCC+19, MDP19b, BPS+20]. In [MDP19b], Masure et al. deeply investigate the ben-
efits of the negative log likelihood to train a specific parametric model for side-channel attacks.
However, one limitation of this loss is the lake of concordance with the performance metric that
has to be optimized in classical side-channel attacks, i.e. success rate (see Definition 3.3.4.2). In
Chapter 7, we reduce this issue by defining a new loss function which derives from the success
rate and extends the work provided by Masure et al..

However, optimizing a non-convex empirical risk raises questions about the ability of the gradient
descent algorithm to converge towards the optimal solution.
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(a) Global minimum (b) Local minimum

Figure 4.7: Evolution of the gradient descent algorithm (red line) on a two-dimensional
loss landscape’s projection of a parametric model FΘ with Θ = [θ0, θ1].

Optimizing non-convex functions. The optimization of trainable parameters Θ, through
the gradient descent, is beneficial until the derivative produces no information about which di-
rection should be chosen in order to reduce the empirical risk. These points are called stationary
points (or critical points). In other words, for a given parametric model FΘ, a loss function L
and an empirical risk R̂(L, FΘ), a stationary point of R̂ is defined if ∇ΘR̂(L, FΘ) = 0. In gra-
dient descent optimization, two stationary points can be underlined: global minimum and local
minimum.

Definition 4.3.2.3 (Global minimum). Given a parametric model FΘ, a loss function L and a
non-convex empirical risk R̂(L, FΘ), we define the global minimum as the point of coordinates
Θ∗, if, for all Θ, R̂(L, FΘ∗) ≤ R̂(L, FΘ).

Definition 4.3.2.4 (Local minimum). Given a parametric model FΘ, a loss function L and a
non-convex empirical risk R̂(L, FΘ), we define the local minimum as the point of coordinates Θ′ ,
if, their exist ε > 0 such that, for all Θ respecting ||Θ′ −Θ|| < ε, R̂(L, FΘ′ ) ≤ R̂(L, FΘ).

In the context of gradient descent optimization, the stationary points that are neither local or
global minimum are known as saddle points. While neural networks, induced in the empirical risk
R̂, lead to generate non-convex functions, the gradient descent algorithm can typically converge
towards a local minimum. This situation can be problematic if this point has a high empirical
risk in comparison with the optimal solution (i.e. global minimum). In Figure 4.7, we provide
an example of application of the gradient descent algorithm given a parametric model FΘ, such
that Θ = [θ0, θ1], a loss function L and the related empirical risk R̂(L, FΘ). Depending on the
random initialization Θ(0), we observe that the gradient descent does not converge towards the
same minimum. Indeed, in Figure 4.7a, the gradient descent converges towards a global minimum
while its application in Figure 4.7b does not. In this example, we observe that R̂(L, FΘ∗) and
R̂(L, FΘ′ ) do not provide a similar empirical risk value. So, to obtain the most efficient para-
metric model FΘ, the Evaluator expects the gradient descent algorithm to converge towards the
global minimum. But finding this solution cannot be ensured. However, promising works suggest
that even if the local minima with high empirical risk can be considered as an optimization issue,
increasing the complexity of the parametric model FΘ can be useful to exponentially reduce this
risk [DPG+14, GVS15, AZLS19]. Another solution consists in considering the stochastic gradient
descent instead of the gradient descent itself. As mentioned in Subsection 4.3.1, the SGD can be
computed for reducing the computation cost. In addition, the application of this optimization
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algorithm on non-convex function converges in the sense of getting to points where the gradient is
arbitrarily small [BT00]. However, this result does not mean that the solution converges towards
a global or a local minimum. Even if an adequate small learning rate suggests an almost surely
convergence towards a local minimum [LSJR16] with a random initialization of the trainable pa-
rameters Θ, the SGD is not widely used in practice because the convergence can be extremely
time-consuming. However, this problem remains an active research area and no general state-
ments can be formally provided.

Depending on the slope of the derivative ∇Θ[l]R(L, FΘ), the convergence of the gradient descent
algorithm can be highly impacted and finding a local minimum can be an arduous task. This
issue, known as the vanishing & exploding gradient problem is detailed below.

Vanishing & exploding gradient. When the Evaluator trains a parametric model FΘ
through the gradient descent algorithm, he updates its trainable parameters (i.e. Θ) in order
to minimize the empirical risk R(L, FΘ). In such purpose, he has to compute ∇Θ[l]R(L, FΘ)
such that the weights get updated proportionally to the gradient (see Equation 4.10). Hence,
a very small the gradient, known as vanishing gradient problem, does not effectively update the
trainable parameters from a previous iteration. In the worst-case scenario, Θ stays stable such
that the optimization process does not improve the related parametric model FΘ. Due to the chain
rule principle used to perform the backpropagation algorithm, this issue grows with the depth
of a neural network. This phenomenon leads to converge towards poor local minima or saddle
points. While a vanishingly small gradient impacts the optimization of a parametric model, a
large gradient does not necessarily improve it and can result in unstable gradients leading to
a poor learning. While the goal of the gradient descent algorithm is to converge towards the
global minimum, this issue, known as exploding gradient problem, can lead to a divergence of the
optimization algorithm.
One solution to reduce both impacts is to adequately monitor the learning rate introduced in
Equation 4.10. While a vanishing gradient problem induces a high learning rate in order to “get
out” from a local minimum or a saddle point, a exploding gradient problem reduces the learning
rate value for converging towards a suited point. The learning rate is defined as an optimizer
hyperparameters that is defined as follows.

Definition 4.3.2.5 (Optimizer hyperparameters). The optimizer hyperparameters refer to para-
metric variables whose values are defined by the Evaluator in order to configure the training and
the optimization processes.

Correlated with the ability of the gradient descent algorithm to converge towards a suited local
minimum, the learning rate is considered as one of the most difficult optimizer hyperparameter
to configure [GBC16, Section 8.5]. To reduce this issue, other optimizing algorithms with adap-
tive learning rates have been proposed in the literature: Adagrad [DHS11], RMSProp [TH12],
Adadelta [Zei12], Adam [KB15], etc. In this manuscript, we particularly choose the adaptive
moment estimation (Adam) as optimizer. The reasons that motivate us can be enumerated as
follows. First, to limit the negative impact of unstable gradients at the ith iteration, it computes
an exponentially decaying moving average of the previous gradients. This solution demonstrates a
high benefit to converge faster towards the solution [Qia99] while reducing the gradient oscillation
induced by its instability. Then, to limit the vanishing and exploding gradient problems, the
learning rate is monitored by the first and the second moment of the gradients, such that, this
process also includes a bias correction induced by the initialization of the optimization algorithm.
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To adequately train a parametric model FΘ, the Evaluator has to perform an optimization al-
gorithm such as the gradient descent, the stochastic gradient descent or the mini-batch gradient
descent in order to find the weights minimizing the empirical risk R(L, FΘ). In order to per-
form such algorithm, the backpropagation principle has to be conducted in order to compute
∇ΘR̂(L, FΘ(i)). However, the Evaluator has to deal with many challenges as the choice of the
loss function, the convergence towards a global minimum and the vanishing & exploding gradient
issues. As no universal solution exists to solve these issues, the Evaluator has to find alternatives
in order to limit their impact: e.g. , using the Adam optimizer, fine tuning the learning rate,
finding a specific loss function to the side-channel context.

SUM UP. . .

Considering all the approaches we presented so far, the Evaluator can define a strategy, derived
from Chapter 3, in order to construct a model which automatically extracts the secret key ma-
nipulated by a targeted cryptographic module.

4.4 Application to the Side-Channel Context

4.4.1 Objective & Strategy
As mentioned at the end of Chapter 3, classical side-channel attacks need multiple steps to
retrieve the secret key (i.e. leakage assessment, preprocessing, SSCA/DSCA) that require the
expertise of the Evaluator. While the Evaluator spends the majority of his time to preprocess
the leakage traces (i.e. synchronization, PoIs’ selection, combining the time samples in order to
perform a high-order attack), the goal of deep learning-based side-channel analysis is to reduce
this phase by generating learning algorithms which automatically find the configuration optimizing
the efficiency of side-channel attacks [MPP16, CDP17a]. While deep learning can be considered
to perform non-profiled side-channel attacks [Tim19], this manuscript is mainly focusedc on the
application of deep learning techniques to perform profiled side-channel attacks.

Figure 4.8: Scenario of a deep learning-based side-channel analysis.

cNevertheless, the readers should noticed that all the contributions, provided in this manuscript, can
be easily extended to perform non-profiled side-channel attacks if the scenario introduced by Timon
[Tim19] is followed.



74 CHAPTER 4. DEEP LEARNING FOR SIDE-CHANNEL ATTACKS

Similarly to the scenario of classical profiled side-channel analysis (see Figure 3.16), the Eval-
uator has to capture a set of leakage traces Ip from a targeted cryptographic module. The
main difference between both approaches lies in the statistical tools considered to estimate PDFs
(P̂r [T, Y = y])y∈Y for a given leakage trace T and a set of sensitive variable Y (see Figure 4.8).

Model construction. In deep learning-based side-channel analysis context, the Evaluator
has to configure a model FΘ which maps the leakage traces to the expected targeted sensitive
variables. Hence, he has to define suited model hyperparameters in order to increase the ability
of FΘ to retrieve the secret key. While no particular suggestions are provided to successfully con-
struct a neural network in side-channel context, the literature recently investigates the benefits of
using tools which automatically tune model hyperparameters [MPP16, BPS+20, WPP20, PRA20,
RWPP21, YAGF21]. Even if these suggestions are useful to generate powerful parametric models
FΘ, the model hyperparameters space is often complex and high-dimensional as the Evaluator
does not have any clues to construct an efficient neural network. Hence, the elapsed time, intro-
duced in Subsection 1.2.2 as an evaluation criterion, can be highly impacted. In order to reduce
this issue, Chapter 6 investigates the impact of model hyperparameters on the ability of a CNN
to retrieve the points of interest. This proposition is helpful to give some hints to the Evaluator
and reduces the model hyperparameters space as well as the elapsed time criterion.

Once the parametric model FΘ is designed, the Evaluator conducts the optimization process as
described in Section 4.3.

Optimization. First, the Evaluator has to choose the most adequate loss function to train
FΘ in order to retrieve the secret key manipulated by the targeted cryptographic module. While
the negative log likelihood has been demonstrated as suited to conduct side-channel attacks, non-
negligible errors can be induced by this loss [MDP19b]. One alternative could consider a loss
function optimizing the success rate in order to adhere with the optimal adversary’s objective (see
Objective 3.3.1.1). A discussion and a proposition, reducing this issue, are detailed in Chapter 7.
Then, in order to deal with the optimization challenges, the Evaluator can consider the solutions
provided in Subsection 4.3.2, but some optimizer hyperparameters, as the learning rate or the
number of iterations required by the descent gradient algorithm, stay problematic to optimize.
Even if some solutions are proposed in the literature to optimize the learning rate [Smi17, ST17],
no generic rules can be stated. In contrast, the number of iterations of the gradient descent
algorithm can be defined during the training process thanks to early stopping. This technique
is considered to determine how long a gradient descent algorithm has to be iterated in order to
obtain a parametric model generalizing well its performance on unseen leakage traces. In such
purpose, a set of leakage traces T can be divided into two sets: a training set Ip used to train
FΘ, and a validation set Iv used to evaluate the training process. Once the gradient descent
algorithm has been performed on each leakage traced included in Ip, the Evaluator compares the
ability of the parametric model to retrieve the secret key from Ip with the unseen data included
in Iv. Typically, the machine learning literature classically considers the accuracy as a suited
performance metric. However, as detailed in Subsection 3.3.4, this performance metric cannot
be considered for all cryptographic algorithms. While the accuracy is adequate to assess the
training process when an asymmetric cryptographic algorithm is targeted [CCC+19, WPB19],
the guessing entropy and the success rate are the most suited performance metrics to evaluate
the optimization process of a parametric model against symmetric cryptographic implementations
[CDP17a, PHJ+18]. In such purpose, the community investigates various solutions to conduct
early stopping in deep learning-based side-channel context. These solutions are based on: the
success rate [RZC+19], the mutual information [PBP20] or the perceived information [MDP19b].
Even if the early stopping technique is considered beyond the scope of this manuscript, this tool

dThis process is known as an epoch. In other words, it refers to the number of iterations processed by
the gradient descent in order to consider the whole training set.
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will be considered in Chapter 8 to prevent the overfitting issue and assess the quality of the
training process against asymmetric cryptographic implementations.
Once the optimization algorithm is performed, the Evaluator has a parametric model FΘ which
approximates the true unknown PDFs (Pr [Y = y|T])y∈Y . Hence, from the log-likelihood distin-
guisher defined in Definition 3.3.3.4, the Evaluator can guess the most likely key candidate for
a given set of Na attack traces with a fixed key. Hence, the main difference between classical
and deep learning-based side-channel approach holds in the estimation of the unknown PDFs.
A deeper discussion will be provided in Part II in order to bridge the gap between these two
approaches.

Explainability and Interpretability. Once the parametric model FΘ is obtained, the
Evaluator has to explain and interpret its decision-making in order to make sure that the resulted
attacks succeed for appropriate reasons (e.g. the expected points of interest are successfully ex-
ploited). Furthermore, he also has to explain to the Developer, through the Evaluation Technical
Report (see Subsection 1.2.2), the security flaws exploited by FΘ in order to find suitable counter-
measures. Chapter 5 and Chapter 6 propose some visualization tools on diverse neural networks
in order to ease the explainability and interpretability of the model’s results.

When the Evaluator conducts an evaluation with neural networks, he wants to:

1. Adequately choose the space dimension of F in order to limit the underfitting/overfitting
issues defined in Subsection 4.1.3.

2. Optimize the elapsed time criterion without altering the attack performance.

3. Explain and Interpret the model’s results in order to highlight the security flaws and ease
the design of suitable countermeasures by the Developer.

EVALUATOR’S GOALS

Apart from these problematics, the Evaluator can consider multiple deep learning approaches in
order to enhance its evaluation. The following section summarizes the recent research directions
proposed by the community.

4.4.2 Related Work
While the deep learning-based side-channel area is a recent field (see Figure 1.6), it is required
to get a clear overview of the works provided by the community. This section aims at briefly
introducing each research direction.

Preprocessing. While the goal of the deep learning-based side-channel analysis is to reduce
the preprocessing phase, several techniques remain beneficial to reduce some risks as the class
imbalance issue. This phenomenon arises when the classes, defined by Y , are not equally repre-
sentede. It induces a non-negligible bias such that the trained parametric model emphasizes the
majority class. To circumvent this issue, the side-channel community adopts diverse techniques
as SMOTE [PHJ+18, WJB20], desynchronization [CDP17a], noise addition [KPH+19], Mixup
[LZW+21, Abd21]. Other preprocessing approaches like de-noising [WP20, KKH21] or leakage
trace embedding [WPP21] have been proposed to enhance the resulted side-channel attacks. Fi-
nally, while the main deep learning-based side-channel attacks are performed in time domain,
the community starts to investigate the benefits of other representations (time-frequency domain
[YLMZ19], image representation [WHJ+21a, HHGG20]).

eA classical example considers the Hamming Weight as leakage model ψ. For example, if Y ∈ F8
2,

the probability of observing HW (4) equals approximately 0.273 which is more than 2 times higher than
uniform probability.
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Mitigate the Hiding countermeasures. The CNNs have been introduced in side-channel
context to reduce the desynchronization effect due to its invariance translation property [CDP17a].
Indeed, this neural network has shown surprisingly good performance against a wide range of
hiding countermeasures as: random process operations [CDP17a], shuffling [ZOB18, Mag19a,
Mag19b], code polymorphism [MBC+20], dummy operations [ZOB18, Mag19a, LH20]. However,
even if CNNs are suited to limit the effect of desynchronization effect, Zhou and Standaert suggest
considering alignment methods before training a neural network as they observed that the training
process is faster on synchronized leakage traces [ZS19].

Architectures. While this thesis is mainly focused on the CNNs, other architectures have
been studied in the literature: fully-connected neural networks [MZ13, MHM14, Wei20], ResNets
[ZS19, JZHY20, GJS20, MS21], Generative Adversarial Networks [WCL+20], RNN [LLY+20],
Transformer Neural Network [HSAM21] or Attention mechanisms [LZC+21]. However, the bene-
fits of these neural networks regarding the CNN are not highlighted. This leads us to focus our
interest only on the CNN. This suggestion will be confirmed in Chapter 6.

Multi-Task Learning. While classical supervised learning approaches generally train a para-
metric model to map a leakage trace to a sensitive variable, the multi-task learning consists in
targeting simultaneously multiple sensitive variables for a given input. In [ZXF+19], Zhang et al.
decompose the output space Y to Fn2 with n = log2(|Y|). Hence, instead of targeting one word
of n bits, they train a neural network to map a leakage trace to n words of 1 bit. By assessing
the ability of a neural network to retrieve each bit, the Evaluator can identify the bits where the
sensitive information is retrieved. Another solution consists in targeting simultaneously several
intermediate operations and/or bytes. This approach has been proposed by Maghrebi [Mag20]
and extended in [Mas20, Section 8.2.2]. Hence, instead of considering the “Divide & Conquer”
strategy (see Subsection 3.3.1) which aims at repeating the training and the inference processes
for each target (e.g. 16 times for an AES-128 implementation), the Evaluator can target multiple
sensitive bytes in parallel, and thus, reduce the elapsed time criterion. On the other hand, if the
Evaluator simultaneously targets several intermediate operations, the elapsed time criterion stays
similar to the “Divide & Conquer” strategy, but the sensitive information exploited by the para-
metric model increases with the number of targeted intermediate information. Thus, the number
of attack leakage traces that are needed to retrieve the secret key can decrease and the related
Evaluator get closer to Objective 3.3.1.1. Even if the multi-task learning is a suited approach
from a certification perspective, its study stays out of the scope of this manuscript.

Multi-Channel. Another suited proposition from an evaluation point of view is to combine
the source of different channels (e.g. power consumption and electromagnetic emanations) [SA08,
YZC+17]. The first works considering the deep learning approach to combine different channels
are proposed in [GMGH19, HFL+20]. More precisely, they collect electromagnetic emanations
captured with multiple probes placed on different areas of the targeted cryptographic module, in
order to capture different sources of information. Then, they construct a multi-channel neural
network [Kim14] that simultaneously operates on the related collected leakage traces. Similar
approach is provided in [WHJ+21b]. However, instead of considering different probe position,
Won et al. combine multiple representations of the same leakage trace such as a reduced leakage
trace resulting from the application of the Principal Component Analysis (PCA) algorithm or
being subject to a moving average technique.

Portability. Classical profiled side-channel attacks imply attacking one cryptographic module
with a leakage model generated from a similar copy, but this concept is known as a hard problem
to deal with. Indeed, intrinsic differences between the cryptographic modules cause variations
in the resulted leakage model and thus, can lead to an unsuccessful attack. While this thesis
does not take into consideration this issue, known as portability, the following works [CCC+19,
WBFD19, BCH+20, RBA20] aim to understand the effect of these variations on the resulted
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attack performance and propose solutions to reduce the portability issue. In [CZLG21], Cao et al.
add a constraint term to the loss function in order to fine-tune a model trained on a cryptographic
module similar but not identical to the one used during the attack phase. In [vdVPB21], Van der
Valk et al. use the Singular Vector Canonical Correlation Analysis tool to investigate internal
similarities between fully-connected neural networks that targeted diverse implementations.
In addition, the Evaluator can help the neural networks to reach a global minimum by providing
further useful information that are beneficial to retrieve the targeted secret key. The approach,
known as “domain knowledge”, refers to the methods inserting additional knowledge to the neural
network in order to enhance its performance. This knowledge can be integrated in the form of
equations, logic rules, and prior distribution into the neural network. Hence, in addition to the
leakage traces, the Evaluator can insert the plaintext as input of the neural network in order to
encourage the secret key extraction [HGG19, HHO20]. However, from an evaluation perspective,
the domain knowledge raises the following question: how to insert the new inputs such that the
neural network can efficiently exploit its information?

Transfer Learning & Mimicking. As mentioned in Subsection 4.4.1, finding a suited
neural network architecture is not a trivial task. A solution consists in refining parametric models
that have been trained to solve different, but still similar, tasks. From these pre-trained parametric
models, the Evaluator looks at reducing the time needed for constructing and training a new
parametric model from scratch. From an evaluation perspective, this is highly beneficial because
the reduction of the elapsed time criterion can be non-negligible. While the very first works
demonstrate promising results [GMGH20, TAM20, vdVKPB20], transfer learning remains an
open topic in the deep learning-based side-channel analysis.

Unsupervised. As the classical profiled and non-profiled side-channel attacks can be included
in the supervised learning paradigm, the majority of the research direction is focused on this ap-
proach. In [PCBP20], Perin et al. propose the first end-to-end unsupervised approach in deep
learning-based side-channel attacks. Targeting a secure ECC implementation, they iteratively
correct each bit by relabeling them following the confidence of the neural network. However, even
if this work is a first insight of how to perform unsupervised learning in side-channel analysis,
this approach is still unexplored. In [CLM20], Cristiani et al. suggest as a future work to extend
the well-known Mutual Information Neural Estimator in an unsupervised way in order to conduct
side-channel attacks.

To assess the benefits of these approaches, the deep learning side-channel community mainly
applies their related propositions on a wide range of implementations described in Section 3.6. To
perfectly use these datasets regarding the application of the deep learning approach in the side-
channel context, we have to decompose them into three subsets: a profiling set Ip, a validation
set Iv and an attack set Ia. The detailed decomposition is provided in Table 4.1 for each dataset
considered in this manuscript.

Table 4.1: Decomposition of the datasets into a training set Ip, a validation set Iv and
an attack set Ia.

ChipWhisperer DPA contest-v4 AES_HD AES_RD ASCAD-v1 Secure RSA Secure ECC
Ip 45, 000 4, 000 45, 000 20, 000 45, 000 30, 000 20, 000
Iv 5, 000 500 5, 000 5, 000 5, 000 3, 000 2, 000
Ia 50, 000 500 25, 000 25, 000 10, 000 10, 880 2, 560

4.5 Conclusion
To reduce the risk enounced at the end of Chapter 3, namely reducing the preprocessing phase,
the Evaluator can adopt the deep learning paradigm in order to automatically find a model that
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maps a leakage trace to the related sensitive variable. In this chapter, we recall the definition of a
learning algorithm and introduce the empirical risk minimization which is beneficial to adequately
choose the algorithm that is the most powerful to complete a given task. However, even if the
ERM is a suited tool to select a model, the related model space complexity can be problematic
regarding the generalization purpose (see Equation 4.4). Indeed, following its complexity, the
related model can encounter difficulties to perform well on unseen leakage traces. This issue is
known as overfitting and can be mitigated through the application of the regularized empirical
risk minimization principle which adds a penalty term to the empirical risk R̂.

To construct the learning algorithm, the Evaluator has to design a parametric function FΘ from
neural network structures (e.g. multi-layer perceptron, fully-connected neural network, convolu-
tional neural network, residual neural networks). The choice made in this manuscript is to only
consider the convolutional neural networks because the literature [CDP17a, Mag19a, MBC+20]
demonstrates its robustness against hiding countermeasures. Once the parametric function is
characterized, the Evaluator updates the trainable parameters induced in FΘ in order to optimize
the ERM. Even if the deep learning paradigm is highly beneficial to reduce the limitations of
classical side-channel attacks, it is unclear how both fields can be connected.

As breafly defined in Subsection 4.1.1, classical side-channel attacks retrieve the secret key by
approximating the following conditional probability distribution Pr [T|Y ]. This approach, known
as generative, can be opposed to the traditional deep learning neural network which estimates
the following conditional probability distribution Pr [Y |T], known as discriminative. While both
approaches can be considered as supervised learning, some differentiations can be highlighted.
The next part opposes both approaches. While Chapter 5 proposes the first generative model in
order to perform deep learning-based side-channel attacks, Chapter 6 introduces a new design to
construct discriminative models. Those propositions aim at bridging deep learning and classical
profiled side-channel attacks.

WHAT’S NEXT?
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Chapter 5

Learning Generative Models from
Side-Channel Attacks’ Foundation
To bridge deep learning and classical profiled side-channel attacks, this chapter firstly describes
one of the most generic profiled attacks, namely the stochastic attack [SLP05], that approximates
the targeted leakage model ψ as a pseudo-Boolean function. After a generic discussion about the
generative models, we reduce the gap between the deep learning and the side-channel context by
introducing a new neural network architecture, namely conditional variational autoencoder, that is
based on the stochastic attack. Then, this new approach is faced with typical side-channel issues
namely, interpretability, curse of dimensionality, and protection with Boolean masking scheme.
Finally, a comparative investigation is proposed with profiled side-channel attacks and some lim-
itations regarding the application of generative models in side-channel analysis are highlighted.
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5.1 Leakage Trace’s Characterization

5.1.1 Approximation of a pseudo-Boolean function
Introduced in [SLP05], the stochastic attack is a profiled side-channel attack which takes ad-
vantage of the Evaluator’s ability to construct a suitable leakage model’s estimation. Indeed,
as mentioned in Subsection 3.3.3, a profiling attack suggests that the Evaluator has access to
an open cryptographic module such that he can estimate the PDFs (Pr[T|Y = y])y∈Y . Let
T = [T[0],T[1], . . . ,T[D − 1]] be a D-dimensional leakage trace depending on a plaintext X ∈ Fn2
and a secret key k∗ ∈ Fn2 . Following Equation 3.1, we know that a leakage trace can be decom-
posed into a deterministic part, defined by a D-dimensional leakage model ψ(Y = f(X, k∗)) with
f denoting a cryptographic primitive, and a random part Z, characterized by a Gaussian noise
ND(0,Σ), that does not depend onX and k∗. Hence, in such scenario, the Evaluator approximates
the D-dimensional leakage model ψ(Y ) = {ψ0(Y ), ψ1(Y ), . . . , ψD−1(Y )} in order to construct the
related PDFs.

Theorem 5.1.1.1. [SLP05, Theorem 1] Let k∗ ∈ Fn2 be the secret key, then, the following asser-
tions hold:

1. Let i ∈ [0, D − 1], then, the minimum

min
ψ̂0,ψ̂1,...,ψ̂D−1

E
[∣∣∣∣∣∣(T[0]− ψ̂0(f(X, k∗)),T[1]− ψ̂1(f(X, k∗)), . . . ,T[D − 1]− ψ̂D−1(f(X, k∗))

)∣∣∣∣∣∣2]

is reached when ψ̂0, ψ̂1, . . . , ψ̂D−1 = ψ0, ψ1, . . . , ψD−1 such that (ψi)0≤i<D denotes the un-
known deterministic part at the ith time sample. Furthermore, ||.|| : Rn → R denotes the
Euclidean norm as ||(a0, a1, . . . , aD−1)||2 =

∑D−1
j=0 a2

j . Futhermore, if Pr[X = x] > 0 for all
x ∈ Fn2 , the minimum is exclusively obtained for ψ̂ = ψ.

2. For each x ∈ Fn2 , we have ψi(f(x, k∗)) = E
X=x

[ψi(f(x, k∗)) + Z[i]].

Given a leakage trace T such that its ith time sample can be defined as T[i] = ψi(f(X, k∗))+Z[i],
the goal of the stochastic attack is to find an approximation of the leakage model, denoted ψ̂i,
as close as possible to the true unknown ψi(f(X, k∗)).

IN SHORT. . .

Approximation of ψi. Let G be the set of functions mapping Fn2 to R which forms a R-vector
space of dimension 2n. More formally, G describes a set of pseudo-Boolean functions that can be
defined as follows.

Definition 5.1.1.1 (Pseudo-Boolean function). [Car10, Section 2.1] Given a variable Y ∈ Fn2 ,
any function g ∈ G can be written as a multilinear polynomial such that there exists a set of real
coefficients (αu)u∈Fm2 (s.t. m ≤ n) as:

gα(Y ) =
∑

u=(u[0],...,u[m−1])∈Fm2

αu · Φu(Y ),

where (Φu(Y ))u∈Fm2 denotes the monomial basis of G and characterizes the conjunction of all bits
of Y as Φu(Y ) = Y u =

∏m−1
j=0 Y [j]u[j] with Y [j] ∈ F2 defines the jth bit of Y and the power

notation is simply Y [j]0 = 1 and Y [j]1 = Y [j].



5.1. LEAKAGE TRACE’S CHARACTERIZATION 83

Round 1 Round 2

^

^
^

Figure 5.1: Simulation of a linear leakage model ψ̂i,α characterized by Equation 5.2 such
that the weighting is similar for all (αj[i])0≤j<8. The red points define the real unknown
leakage model ψi while the blue points denote a sampling coming from the distribution
of T[i] for 200 leakage traces.

As the leakage model aims at characterizing the interaction between the bits of Y , Schindler
et al. approximate ψ as a pseudo-Boolean function [SLP05] such that m = n. In the rest of
this manuscript, this assumption is followed. Typically, the stochastic attack assumes that a
leakage model ψi, at a time sample i, can be approximated as a multivariate polynomial in the
bit-coordinate Y [j] with coefficients in R.
Definition 5.1.1.2 (Degree of a pseudo-Boolean function). Let gα : Fn2 → R be a pseudo-
Boolean function. We denote d the degree of gα as the degree of the multilinear polynomial of
the monomials (Y u)u∈Fn2 (s.t. d ≤ n).
In other words, the degree of a pseudo-Boolean function gα is defined by the Hamming Weight of
u such that it characterizes the maximal number of bits’ interaction induced in the approximation
of ψi(Y ). If we consider a subspace Gd+1 that contains all the functions of degree lower than or
equal to d, the approximation of the leakage model, denoted ψ̂i,α, can be computed as follows:

ψ̂i,α(Y ) = αb[i] +
∑
j<n

αj [i]Y [j]
︸ ︷︷ ︸

degree 1 : linear basis

+
∑
j1,j2

j1<n,j2<n

αj1,j2 [i]Y [j1] · Y [j2]

︸ ︷︷ ︸
degree 2 : quadratic basis

+ . . .+
∑

j1,...,jd
j1<n,...,jd<n

αj1,...,jd [i]
jd∏

j′=j1

Y [j ′ ]

︸ ︷︷ ︸
degree d

, (5.1)

where αb[i] denotes the bias induced at the ith time sample. Following Equation 5.1, we can
notice that the degree d represents the maximum number of bits’ interaction that can be viewed
as logical operator (e.g. AND or XOR).

Example 5.1.1.1 (Approximation of the linear basis.). To illustrate the idea of approximating a
pseudo-Boolean function, we describe the behavior of a leakage trace such that its deterministic
part ψi is assumed to be in G2 (i.e. d = 1). Hence, the pseudo-Boolean function is defined by a
multilinear polynomial of degree 1 such that, given a sensitive variable Y ∈ F8

2, we observe:

ψ̂i,α(Y ) = αb[i] +
7∑
j=0

αj [i]Y [j]. (5.2)

If all the bits (Y [j])0≤j<8 have the same positive weight values (αj [i])0≤j<8, then, the leakage
model can be characterized as a linear function defined in Figure 5.1. Hence, from a set of leakage
trace T , the Evaluator wants to approximate ψi such that Theorem 5.1.1.1 is respected. However,
depending on the noise level, this approximation can be erroneous such that the higher the noise
the less accurate the estimation ψ̂i,α. More precisely, given a degree d, the Evaluator has to find the
coefficients (αu)u∈Fn2 that satisfy Theorem 5.1.1.1. This process is described in Subsection 5.1.2.
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However, considering the monomial basis (see Definition 5.1.1.1) can be problematic from an in-
terpretation perspective. Thus, the Evaluator, who wants to precisely assess the bits’ interactions
induced in ψ, has to consider another basis that we describe in the following section.

5.1.2 Approximation of the Leakage Model
Orthonormalizing the monomial basis. As defined in [GHMR17], two requirements are
mandatory to make an easy interpretation of the leakage structure. First, the basis of G should
be orthonormal so that each vector that constitutes it is uncorrelated with each other. This
requirement ensures that the Evaluator who wants to only approximate the leakage structure of
degree d, i.e. retrieving the real coefficients (αu)u∈Fn2 characterizing the interaction between bits,
is not impacted by other terms induced in Equation 5.1. On the other hand, the chosen basis
should be able to characterize the bit combinations in order to ease the resulted interpretability.
While the monomial basis respects the latter requirements (see Definition 5.1.1.2), it is not or-
thonormal.

Remark 5.1.2.1. As a linear mapping exists between the non-orthogonal basis and its orthogonal-
ized basis, the monomial basis can still be considered to perform a stochastic attack.

Definition 5.1.2.1 (Orthonormal basis). Let G be the set of pseudo-Boolean function such that
(Φu)u∈Fn2 forms a basis of G. We define (Φu)u∈Fn2 as orthonormal if the inner product 〈Φu,Φv〉 = 0
if u 6= v and 〈Φu,Φv〉 = 1 if u = v.

As defined in [GHMR17, Lemma 3], the monomial basis is not orthonormal.To circumvent this
issue, Guilley et al. [GHMR17] propose to decompose the monomial basis in order to isolate the
leakages and assess the impact of each bit as well as their interactions on ψ. Thus, the authors
apply a Gram-Schmidt Transform on the ordereda monomial basis. Through this application, they
introduce a new orthonormal monomial basis that uncorrelates each basis vector and preserves
the degree of bits’ interaction. This solution is beneficial to evaluate the ability of ψ̂α to retrieve
the unknown leakage model ψ as well as maintaining its interpretability. Surprisingly, it is similar
as an orthonormal projection of the leakage traces on the Fourier basis denoted Φ(orth.)

u (Y ).

Definition 5.1.2.2 (Orthonormal Monomial Basis [GHMR17]). Given a sensitive intermediate
value Y ∈ Fn2 , the orthonormal projection of a monomial basis is defined as:

Φ(orth.)
u (Y ) = 1

2n/2 (−1)Y ·u = 1
2n/2

n−1∏
i=0

(1− 2 · Y [i])u[i] ,

where u ∈ Fn2 .

Using the orthonormal monomial basis has a major benefit. As shown by Kasper et al. [KSS10],
when the basis is able to describe the switching activity of the circuit, the estimated basis coef-
ficients highlight specific exploitable security flaws in the studied implementation. Hence, visu-
alizing these coefficients (αu)u∈Fn2 is useful to get deeper information on the exploitable security
flaws. From Definition 5.1.2.2, we can rewrite Equation 5.1 as follows,

ψ̂i,α(Y ) = 1
2n/2

∑
u∈Fn2

〈ψ̂i,Φ(orth.)
u 〉 · Φ(orth.)

u (Y ) = 1
2n/2

∑
u∈Fn2

αu[i] · Φ(orth.)
u (Y ). (5.3)

Once the Evaluator adequately chooses its basis, he can approximate the leakage model ψ through
a profiling phase and then, assessing its estimation through an attack phase.

aHere, this term refers to an ordering according to the monomial degrees.
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Profiling phase. As defined in Theorem 5.1.1.1, the goal of the stochastic attack is to find
a leakage model ψ̂α characterizing a suited approximation of the real unknown leakage model
ψ. Considered as a profiled side-channel attack, the stochastic attack can be decomposed into a
profiling phase and an attack phase.
For the profiling phase, the stochastic attack mechanism approximates the leakage function using
linear regression. Firstly, it consists in choosing the degree d of the pseudo-Boolean function that
has to be estimated. Then, given a set ofNp labeled leakage traces Ip = {(t0, y0), (t1, y1), . . . , (tNp−1, yNp−1)},
the Evaluator estimates the leakage model (ψ̂i,α(Y ))Y ∈Fn2 by finding the best set of coefficients
(αu[i])u∈Fn2 through the application of the ordinary least squares (OLS) method. The law of large
number theorem implies:

1
Np

Np−1∑
j=0

(tj [i]− ψ̂i,α(yj))2

︸ ︷︷ ︸
OLS

Np→∞−→ E
[(
T[i]− ψ̂i,α(Y ))

)2
]
.

The set of coefficients (αu[i])u∈Fn2 which minimizes this sum are called the OLS estimator for ψ.
Once those coefficients are selected for each time sample i ∈ [0, D − 1], the Evaluator obtains an
estimation of the unknown leakage model (ψi,α)0≤i<D. Then, he approximates the random part
Z of a leakage trace T. In stochastic attacks, the noise Z is assumed to follow a multivariate
Gaussian distribution ND(0,Σ). In order to approximate this distribution, the Evaluator has to
compute a random vector, based on (ψ̂i,α)0≤i<D, that corresponds to the following approximation
error vector:

Zα =
[
T[0]− ψ̂0,α(Y ),T[1]− ψ̂1,α(Y ), . . . ,T[D − 1]− ψ̂D−1,α(Y )

]
. (5.4)

Once the profiling phase is performed, the Evaluator has approximated the true unknown leakage
model ψ. Then, to retrieve the secret key manipulated by the targeted cryptographic device,
he has to combine the knowledge it acquires from this modeling process. Based on Zα, the
Evaluator constructs a D × D covariance matrix ΣZα such that each of its element ΣZα [i, j] =
Cov[Zα[i],Zα[j]]. To approximate Pr[T|Y ], the Evaluator aims at exploiting the information
acquired during the profiling phase in order to extract the secret key k∗ manipulated by the
targeted cryptographic module. Thus, given a new set Ia of Na unlabeled leakage traces such that
Ia = {t0, t1, . . . , tNa−1}, the Evaluator computes a random vector Z′α,k for each key hypothesis
k ∈ K following Equation 5.4. Once the Na random vectors (z′α,k,i)0≤i<Na are generated, the
Evaluator can compute the score related to k such that:

Pr
[
z′α,k,i|f(xi, k)

]
= 1√

(2π)D|ΣZ′α,k
|
exp

{
−1

2z
′T
α,k,iΣ−1

Z′α,k
z′α,k,i

}
, (5.5)

with |ΣZ′α,k
| the determinant of ΣZ′α,k

that has been configured during the profiling phase.
Then, this conditional probability is used by the Evaluator to make a decision regarding the most
likely hypothetical key k ∈ K. The related decision rule is characterized by the distinguisher rule
such that the log-likelihood distinguisher (see Definition 3.3.3.4) is performed:

k̂ = arg max
k∈K

Na−1∑
i=0

log
(
Pr
[
z′α,k,i|f(xi, k)

])
.

Thus, he approximates the unknown leakage model ψ which maximizes the unknown conditional
probability Pr [Z|f(X, k∗)]. Estimating such probabilities is typically considered in profiled side-
channel attacks [CRR03, SLP05, HRG14].
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The limitations of the stochastic attacks approach are twofold: first, as the profiling phase aims
at characterizing the interaction between the time samples, the covariance matrix Σ has to be
constructed. However, the decision rule needs the computation of its inverse in order to guess
which secret key is manipulated by the cryptographic module. Unfortunately, this process can
lead to computational issues. One solution suggests to do not capture the interactions between
the time samples and thus, reducing Σ to an identity matrix.
Secondly, if the profiling phase is performed on a D-dimensional leakage trace T, the Evaluator
has to conduct the related attack based on the computation of Equation 5.5 on the same dimen-
sion. However, once the profiling phase is performed, the Evaluator may want to reduce D to a
lower dimension D′ , such that D′ ≤ D, through the visualization of the coefficients (αu)u∈Fn2 for
each time sample. Hence, due to the lack of flexibility of the attack phase, the Evaluator has to
consider the full dimension D except if he conducts a new profiling phase on the reduced leakage
traces of dimension D′ .

LIMITATIONS OF THE STOCHASTIC ATTACKS

Such problematic (i.e. the approximation of Pr[T|Y ]) can be solved by a deep learning approach
belonging to the family of generative approaches. Indeed, given a leakage trace, the related learning
algorithm can automatically approximate the decision boundary that maximizes the decision rule.
The next section proposes a taxonomy of generative models to differentiate each solution in order
to select the most suitable one from SCA perspective.

5.1.3 Taxonomy of Generative Models
Probabilistic generative approach captures the interactions between all the variables considered
by the resulted learning algorithm. To comply with this technical specification, the strategy con-
sists in building a model that estimates the probability distribution of the leakage traces, namely
Pr [T]. Hence, this experience Exp (see Definition 4.1.1.1) can be considered as the application of
an unsupervised learning process. However, to fit with the side-channel context (i.e. supervised
learning), the joint probability distribution, Pr [T, Y ], has to be estimated such that, afterwards,
the Bayes’ theorem can be computed in order to retrieve the conditional posterior probabilities
Pr [Y |T] and pick the most likely label Y . However, in the side-channel context, this problem can
be reduced to the estimation of the following conditional probability distribution Pr [T|Y ] (see
Equation 3.4). Hence, to deal with this observation, a generative model should be designed in
order to estimate a Θ-parametric conditional distribution Pr [T|Y,Θ] that is as similar as possible
to the true unknown conditional distribution Pr [T|Y ]. Through this approach, the Evaluator
estimates the unknown leakage function and gets a complete characterization of the targeted
cryptographic module. This is beneficial for modeling new sets of leakage traces from the Θ-
parametric model.

To conduct such estimation, Goodfellow [Goo17] exposes two solutions (see Figure 5.2):

• Explicit density estimation which explicitly computes an approximation of the true unknown
conditional probability distribution Pr [T|Y ].

• Implicit density estimation generates a Θ-parametric model FΘ which draws leakage traces
from the underlying true unknown conditional probability distribution Pr [T|Y ] without
explicitly defining it.

Explicit density estimation. This branch of generative models aims at designing a Θ-
parametric model FΘ which captures the complexity of the data structure. Through this char-
acterization, the Evaluator hopes to find a solution which is close to the true unknown Pr [T|Y ].
As defined in [Goo17], if the Θ-parametric model guarantees to find the tractable conditional
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Figure 5.2: Taxonomy of Generative Models.

probability density Pr [T|Y ], the related FΘ is therefore defined as a tractable explicit model. One
of the most common solution to conduct explicit tractable density estimation is to consider the
autoregressive density estimation. Given a D-dimensional leakage trace T, the Evaluator approx-
imates Pr [T|Y ] by using the chain rule of probability such that the probability of observing T[i]
given Y is conditioned on (T[i− 1],T[i− 2], . . . ,T[0]) such that:

Pr [T|Y ] =
D−1∏
i=0

Pr [T[i] | T[i− 1],T[i− 2], . . . ,T[0], Y ] .

Through this process, the idea is to use neural networks to model the dependencies between
the time samples. This solution is highly effective because it permits to directly optimize a Θ-
parametric function from the log-likelihood of a set of leakage traces. However, in the side-channel
context, the sensitive variables only leak over a very few PoIs (see Figure 3.4) in comparison to
the dimension of a targeted leakage trace. Thus, regarding the dimension of a leakage trace, the
time samples are poorly correlated. In addition, the main drawback of this method is that it
suffers from slow sequential samplingb. Thus, its application during the evaluation can be limited
because of the elapsed time criterion. However, the readers interested in the autoregressive density
estimation method may refer to [vdOKE+16, vdODZ+16, Goo17].
On the other hand, if Pr [T|Y ] is intractable, the related Θ-parametric model is denoted as an
explicit model requiring approximation. This estimation suggests designing a surrogate loss func-
tion L such that the resulted empirical risk R̂ optimizes the related Θ-parametric model FΘ to
converge towards Pr [T|Y ].

R̂ (L, FΘ) ≥ − log (Pr [T|Y ]) .

bFor example, a significant drawback of WaveNet [vdODZ+16], considering an explicit tractable density
estimation, is its sequential (non-parallelizable) generation of samples. As reported in [Goo17], it requires
2 minutes of computation time to generate 1 second of audio.
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In such scenario, it is possible to find a surrogate loss function that is computationally tractable
while Pr [T|Y ] is not, and thus, approximating the related unknown conditional probability dis-
tribution. Introduced in [KW14], the variational auto-encoder is the main solution considered by
the literature. In Section 5.2, this solution is investigated in the side-channel context in order to
bridge deep learning and classical profiled side-channel attacks.

Implicit density estimation. Alternatively, some models can be optimized without explic-
itly producing density functions. Thus, the related computation can be eased in comparison to
the explicit density estimation approaches. While the previous approach needs to retrieve an ap-
proximation of Pr [T|Y ], this scenario optimizes a model to draw new leakage traces based on a set
of pairs (T, Y ) that are independently and identically distributed according to the unknown joint
distribution Pr [T, Y ]. Thus, the related models indirectly interact with Pr [T|Y ]. To optimize
such algorithms, the Evaluator can follow the Markov chain process or conduct a direct approach
with the application of Generative Adversarial Networks (GANs).
Introduced in [GPAM+14], the GANs are characterized by two neural networks: a “generator”
and a “discriminator”. The goal of such models is to design a generator which aims at con-
structing fake leakage traces such that, the discriminator cannot differentiate it from real leakage
traces. Hence, through this process, the Evaluator implicitly characterizes Pr [T|Y ]. In [WCL+20],
Wang et al. illustrate the benefits of the conditional Generative Adversarial Networks [MO14] to
improve the performance of profiled side-channel attacks in a restricted setting where profiling
traces are limited. Indeed, the authors consider the conditional Generative Adversarial Networks
as a preprocessing phase consisting in implicitly capturing the conditional probability distribu-
tion Pr [T|Y ] in order to increase the number of profiling leakage traces. Once the profiling set
is sufficiently large, the Evaluator can consider it to perform a deep learning-based side-channel
attack as introduced in Chapter 4. This data augmentation technique has then been extended
by Mikhtar et al. [MBPK21] to target asymmetric cryptographic implementations. While this
approach seems helpful for generating new sets of leakage traces, no relation is made to perform
an end-to-end attack.

The following section proposes the first deep learning-based side-channel approach which derives
from the stochastic attack previously introduced. It reduces the gap between the deep learning
approach and the classical profiled side-channel attacks by bridging the stochastic attacks with
the variational auto-encoder introduced in the deep learning literature.

5.2 Conditional Variational AutoEncoder based on
Stochastic Attacks

5.2.1 Generative Latent Variable Models
As a remainder, the variational autoencoder [KW14] has been originally introduced as an unsu-
pervised generative approach which explicitly approximates the density Pr [T]. To extend this
neural network to supervised learning, Sohn et al. proposed the conditional variational au-
toencoder [SLY15] to approximate the true unknown conditional probability distribution Pr [T].
Ever since the seminal works have been widely applied in various fields (e.g. face generation
[KW14, KWKT15], handwritten digits [KW14], objects [KWKT15]), we propose to contextualize
conditional variational autoencoder into side-channel analysis in order to give a new perspective
for generative models.

Starting from the definition of explicit density estimation approach defined in Subsection 5.1.3,
conditional variational autoencoder aims at modeling the Θ-parametric conditional distribution
Pr [T|Y,Θ] from two random variables T ∈ RD and Y ∈ Fn2 .
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Definition 5.2.1.1 (Latent Space). Given a set of leakage traces T ∈ RD, a latent space V of
dimension D

′ (s.t. D′ ≤ D) is a vector space spanned by the latent variables in which similar
leakage traces are closer together in the related D′-dimensional space.

Definition 5.2.1.2 (Latent Variable). A latent variable v ∈ RD
′
is a non-observable variable

that is sufficient to describe a leakage trace.

Suppose that a leakage trace T ∈ RD is acquired such that all the time samples are simultane-
ously generated. To obtain a coherent leakage trace, it is clear that the time samples cannot be
sampled independently from each other as it corresponds to the computation of a cryptographic
function (e.g. encryption) given a plaintext X and a secret key k∗. In particular, these variables
suggest that the assignment of a label on a leakage trace T only depends on a small set of time
samples. The conditional variational autoencoder is a latent variable model which suggests that
the variability in the leakage traces given a label Y can be characterized by a small finite set
of time samples. This is highly correlated with the definition of points of interest introduced in
Definition 3.2.2.2. With this approach, the interactions between the time samples are captured
through the latent space V .

A Θ-parametric latent variable model FΘ, providing a Θ-parametric conditional distribution
Pr [T|Y,Θ], is representative of the true unknown conditional distribution Pr [T|Y ], for every
leakage trace T and every given sensitive variable Y , if there is a representation of compressed
data V, also known as latent space representation, such that the marginal distribution is given
by:

Pr [T|Y,Θ] =
∫
v∈V

Pr [T|Y,v,Θ] Pr [v|Y ] dv, (5.6)

where v is the realization of a random variable V in a D′-dimensional space V , with a probability
Pr [V = v] defined over V , and Pr [V = v|Y ] denotes the probability of observing v over the
latent space V knowing Y . While the latent space characterizes the noise distribution defined
in Equation 3.1, we can easily assume that Pr [V|Y ] = Pr [V] because V is independent of the
label Y (deeper details will be provided in the following paragraphs). In addition, we assume
that Pr [V] follows a multivariate Gaussian distribution of parameters (µ,Σ). Through the
conditional variational autoencoder, we wish to optimize Θ such that we can sample V from
Pr [V], and obtain, with high probability, a new generated leakage trace T̃ very similar to the
true known T. However, Equation 5.6 is unfortunately intractable as it should be computed
for every latent representations induced in the latent space V . Thus, the following part of the
section proposes solutions to circumvent this issue.

PROBLEM STATEMENT

Hopefully, Pr [T|Y,Θ] may still be efficiently approximated thanks to the Monte-Carlo method
[MU49]. Hence, for a large number of latent variables {v0, . . . ,vNv}, and a label Y , the Evaluator
can compute an estimation of Pr [T|Y ]. Indeed, for a given label Y and a latent variableV, we can
build a neural network that computes Pr [T|Y,V,Θ]. This model, denoted F (dec)

Θ : RD
′
×Fn2 → RD,

is named the decoder. Hence, given a latent variable V ∈ RD
′
and a sensitive variable Y ∈ Fn2 , the

decoder generates a new leakage trace T̃ as close as possible to the real observed leakage trace T.
However, to perfectly construct a new set of D-dimensional leakage traces from F

(dec)
Θ , the Eval-

uator has to estimate the multivariate Gaussian distribution characterizing the latent space V
by approximating the following probability distribution Pr [V|T, Y ]. This probability is defined
as Pr [V|T, Y ] = Pr[T|V,Y ]·Pr[V]

Pr[T|Y ] and it is also intractable due to Equation 5.6. Consequently, a
solution is to find a parametric model that approximates the true unknown posterior Pr [V|T, Y ].
In statistics, the variational inference techniques can approximate such complex distributions.
Given a leakage trace T ∈ RD and a label Y ∈ Fn2 , a Θ-parametric model can be constructed
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to estimate the parameters µV ∈ RD
′
and ΣV ∈ MD′ ,D′ (R) of the multivariate Gaussian distri-

bution ND′ (µV,ΣV) such that the KL-divergence between the approximation and the targeted
probability distribution Pr [V|T, Y ] is minimized. Such estimation is made by a Θ-parametric
model, denoted F (enc)

Θ : RD × Fn2 → RD
′
, that is called the encoder.

Remark 5.2.1.1. As the conditional variational autoencoder is composed by an encoder and a
decoder, a distinction has to be made related to the trainable parameters considered in both
models. Hence, in the rest of the manuscript, we denote as FΘ,φ the resulted generative model
such that, for a given leakage trace T, FΘ,φ(T, Y ) = F

(dec)
φ ◦ F (enc)

Θ ◦ (T, Y ).
Remark 5.2.1.2. Typically, an encoder is used to process a dimensionality reduction by reducing
the number of features (i.e. time samples) that describes the input while preserving the main
relevant information in the latent space V . Thus, in most cases, the dimensionality of the latent
space is chosen to be lower than the dimensionality of the input space from which the leakage
traces are drawn. As the aim of this chapter is to bridge deep learning and classical profiled
side-channel attack, the following part assumes that D′ = D.

5.2.2 Latent Space Estimation and Instances’ Generation
Through the description of the stochastic attack (see Section 5.1), the Evaluator can construct a
conditional variational autoencoder adapted for the side-channel context.

Encoder. As mentioned, it aims at modeling a neural network F (enc)
Θ : RD × Fn2 → RD that

takes a D-dimensional leakage trace and returns an approximation of µV ∈ RD and ΣV ∈
MD,D(R) such that it can be used to characterize an element in the latent space V of dimension
D. This element describes the behavior of the targeted cryptographic module (see on the left
part of Figure 5.3). In this regard, we design the encoder F (enc)

Θ such that it characterizes the
leakage model ψ(Y ) and the random part Z of a leakage trace T in order to fit with the stochastic
attack process. To build a suited encoder, the related neural network should follow the structure
defined in Section 5.1 in order to extract the maximum amount of relevant information from
leakage traces. First, the Evaluator has to estimate the deterministic part of a leakage trace
T (i.e. leakage model ψ) that is defined by Equation 5.3. This modeling can be estimated by
a fully-connected layer of D neurons such that each of them is linked with all elements of the
orthonormal monomial basisc Φ(orth.)

u .
Let Y ∈ Fn2 and let (Φ(orth.)

u (Y ))u∈Fn2 (resp. ψ̂i,Θ(Y )) be the input (resp. output) of the ith neuron
such that:

ψ̂i,Θ(Y ) = %

 1
2n/2

∑
u=(u[0],...,u[n−1])∈Fn2

Θu[i] · Φ(orth.)
u (Y )

 ,
where %(.) is a function (linear or non-linear) and Θ ∈ M1+

∑d−1
i=0 (ni),D

(R) denotes the set of

trainable parameters for a given degree d of Φ(orth.)
u . While our work is to reduce the gap between

deep learning and classical profiled side-channel attacks, we decide to define %(.) as the identity
function in order to satisfyd ψ̂Θ[i] = ψ̂α[i] and consider that the deterministic part of leakage
trace at time sample i can be approximated by a single neuron. In the rest of the manuscript,
this layer will be denoted as ψ̂Θ (see Figure 5.3).
Once the noise-free part ψ̂Θ is estimated, the next step is to deeply characterize the noise part
Z using leakage traces and the neurons of ψ̂Θ layer. In the conditional variational autoencoder-
based stochastic attack, we choose to deliberately force the subtraction of the leakage traces
at time sample i and the ith neuron of ψ̂Θ layer in order to fit with Equation 5.4. Then, the

cThe Evaluator can consider the monomial basis (see Definition 5.1.1.1) interchangeably. However,
using this basis leads to a loss of interpretability as defined in Subsection 5.1.2.

dAs a remainder, ψ̂α is defined Equation 5.3.
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Figure 5.3: cVAE-ST structure, considering D = D
′ = 2, where

DKL(Pr [V|T, Y,Θ] ||Pr [V]) (resp. Ev∼F (enc)
Θ

− log (Pr [T|Y,v, φ])) denotes the loss
introduced in Subsection 5.2.3 namely KL-divergence loss (resp. the reconstruction loss).

encoder F (enc)
Θ is trained to return a Θ-parametric mean vector µV,Θ ∈ RD, and a Θ-parametric

covariance matrix ΣV,Θ ∈ MD,D(R) that describes the multivariate Gaussian noise for a given
trace T. Those approximations respectively estimate µV and ΣV. Thus, from these parameters,
the Evaluator can compute Pr[V|T, Y,Θ]. That is, F (enc)

Θ extracts all the information induced in
a leakage trace such that the latent variables V ∈ V are characterized by its noise part Z.

Decoder. Once the encoder is constructed, the Evaluator can capture the parameters µV,Θ and
ΣV,Θ which are needed to design the related Gaussian noise distribution ND(µV,Θ,ΣV,Θ). From a
new sampleV ∼ ND(µV,Θ,ΣV,Θ), the Evaluator designs a decoder F (dec)

φ : RD×Fn2 → RD (see on
the right part of Figure 5.3) such that given Gd+1, containing all the Boolean functions of degree
lower or equal to d, he wants to maximize the conditional probability distribution Pr [T|Y,V, φ],
i.e. building a new leakage trace T̃ ∈ RD as similar as possible to the related real trace T and
defined as follows:

T̃[i] = 1
2n/2

∑
u=(u[0],...,u[n−1])∈Fn2

φu[i] · Φ(orth.)
u (Y )

︸ ︷︷ ︸
ψ̂i,φ

+V[i]. (5.7)

Note that a latent variable V ∈ RD is initially sampled from the prior distribution Pr [V] such
that the dimension of V should correspond with the dimension of the latent space estimated by
the encoder. However, performing the training process in such configuration can be arduous.
Indeed, the backpropagation process described in Subsection 4.3.1 cannot be performed because
the Evaluator has to compute the gradient of the loss function with respect to samples (i.e. latent
variable V ∈ V), which is inherently non-differentiable.
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To circumvent this issue, the reparametrization trick [KW14] proposes to rewrite V such that
the derivative can be computed with respect to the parametric distributions (i.e. µV,Θ and
ΣV,Θ) that are differentiable. Instead of generating samples from ND(µV,Θ,ΣV,Θ), sampling is
performed from ε ∼ ND(0, ID), followed by the computation of V = µV,Θ + Σ

1
2
V,Θ × ε.

REPARAMETRIZATION TRICK

Once V is constructed, the Evaluator has to approximate the deterministic part of the leakage
model, namely ψ̂φ. As already mentioned for the encoder, its estimation can be made with a
fully-connected layer such that the input of size D is characterized by (Φ(orth.)

u (Y ))u∈Fn2 for a given
Y ∈ Fn2 . Because the Evaluator classically wants to characterize all the input time samples, the
number of nodes in the ψ̂φ layer depends on the dimensionality of the latent space, i.e. dimension
of V (see Figure 5.3). Based on ψ̂φ and V, the Evaluator can then build a new trace T̃ following
Equation 5.7.

Then, to adequately find the trainable parameters Θ and φ, the Evaluator has to consider some
learning metrics that aims at approximating Pr[T|Y ].

5.2.3 Learning Similarities
As defined in Subsection 5.2.1 and Subsection 5.2.2, our generative model has to optimize a set
of parameters φ and Θ in order to maximize the marginal log likelihood log(Pr [T|Y, φ]).

Theorem 5.2.3.1. For any choice of encoder F (enc)
Θ and trainable parameters Θ, the conditional

marginal log likelihood log(Pr [T|Y, φ]) satisfies:

log (Pr [T|Y, φ]) = Ev∼F (enc)
Θ

[log (Pr [T,v|Y, φ])− log (Pr [v|T, Y,Θ])] +DKL (Pr [V|T, Y,Θ] ||Pr [V|T, Y, φ]) . (5.8)

Proof. From Equation 5.6 and the work provided by Kingma and Welling [KW19, Section 2.2],
we can extend their result to the conditional marginal log likelihood log Pr[T|Y, φ] as follows:

log (Pr [T|Y, φ]) = Ev∼F (enc)
Θ

[log (Pr [T|Y,v, φ])]

= Ev∼F (enc)
Θ

[
log
(Pr [T,v|Y, φ]

Pr [v|T, Y, φ]

)]
= Ev∼F (enc)

Θ

[
log
( Pr [T,v|Y, φ]

Pr [v|T, Y,Θ] ·
Pr [v|T, Y,Θ]
Pr [v|T, Y, φ]

)]
= Ev∼F (enc)

Θ

[
log
( Pr [T,v|Y, φ]

Pr [v|T, Y,Θ]

)]
+ Ev∼F (enc)

Θ

[
log
(Pr [v|T, Y,Θ]

Pr [v|T, Y, φ]

)]
= Ev∼F (enc)

Θ
[log (Pr [T,v|Y, φ])− log (Pr [v|T, Y,Θ])]

+DKL (Pr [V|T, Y,Θ] ||Pr [V|T, Y, φ]) .

Unfortunately, due to the intractability of Pr[V|T, Y, φ] (see Subsection 5.2.1), Equation 5.8 can-
not be solved in practice. Hence, we have to define a function such that log(Pr[T|Y, φ]) can
be approximated through an optimization algorithm. In [KW14], Kingma and Welling propose
a variational lower bound on the marginal likelihood which was generalized by Sohn et al. on
conditional marginal likelihood [SLY15].

Theorem 5.2.3.2. [SLY15] For any choice of encoder F (enc)
Θ and trainable parameters Θ, the

variational lower bound of the conditional log-likelihood log(Pr[T|Y, φ]) is defined as:

log (Pr [T|Y, φ]) ≥ −DKL (Pr [V|T, Y,Θ] ||Pr [V]) + Ev∼F (enc)
Θ

[log (Pr [T|Y,v, φ])] . (5.9)
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Proof.
log (Pr [T|Y, φ]) = Ev∼F (enc)

Θ
[log (Pr [T,v|Y, φ])− log (Pr [v|T, Y,Θ])]

+DKL (Pr [V|T, Y,Θ] ||Pr [V|T, Y, φ])
≥ Ev∼F (enc)

Θ
[log (Pr [T,v|Y, φ])− log (Pr [v|T, Y,Θ])]

= Ev∼F (enc)
Θ

[log (Pr [v|Y,Θ])− log (Pr [v|T, Y,Θ])] + Ev∼F (enc)
Θ

[log (Pr [T|Y,v, φ])]

= −DKL (Pr [V|T, Y,Θ] ||Pr [V|Y,Θ]) + Ev∼F (enc)
Θ

[log (Pr [T|Y,v, φ])] .

As mentioned in Subsection 5.2.1, the prior distribution Pr [V|Y,Θ] can be reduced to Pr [V]
because V is independent from the label Y and Θ.

The equality between Equation 5.8 and Equation 5.9 holds if and only if the encoder F (enc)
Θ ,

which approximates the parameters µV,Θ and ΣV,Θ that are needed to compute Pr[V|T, Y,Θ],
is able to perfectly predict Pr[V|T, Y, φ] (i.e. DKL (Pr[V|T, Y,Θ]||Pr[V|T, Y, φ]) = 0). In such
configuration, the Evaluator exactly captures the random part induced in a leakage trace T.
Based on Equation 5.9, we define the empirical risk that we minimize to train the conditional
variational autoencoder based on stochastic attacks.

Definition 5.2.3.1 (Empirical risk combined with Evidence Lower BOund (ELBO) Loss). Given
a latent space V , a set of Np labeled leakage traces Ip = {(t0, y0), . . . , (tNp−1, yNp−1)}, we define
the empirical risk optimizing FΘ,φ, that approximates the generative distribution Pr [T|Y ], as
follows:

R̂ (LELBO, FΘ,φ) = 1
Np

Np−1∑
i=0
DKL (Pr [V|ti, yi,Θ] ||Pr [V])︸ ︷︷ ︸

KL-Divergence Loss

−Ev∼F (enc)
Θ

log (Pr[ti|yi,v, φ])︸ ︷︷ ︸
Reconstruction Loss

, (5.10)

such that (Pr [V|ti, yi,Θ])0≤i<Np is computed from µV,Θ and ΣV,Θ provided by the encoder
(F (enc)

Θ (ti))0≤i<Np and (Pr[ti|yi,v, φ])0≤i<Np is obtained from F
(dec)
φ (v).

Sampling v from the learned posterior Pr[V|T, Y,Θ] knowing the leakage trace T, the related label
Y and the multivariate Gaussian distribution ND(µV,Θ,ΣV,Θ), can be seen as encoding T into v,
while F (dec)

φ seeks to reconstruct T from v. Classically used for training a variational autoencoder,
the loss function defined in Equation 5.10 can be decomposed into two terms: the reconstruction
and the KL-divergence terms. To get a better reconstruction loss, the embedding means µV,Θ
are pushed far away from each other and embedding standard deviations ΣV,Θ are pulled toward
zero. To get smaller DKL (Pr [V|T, Y,Θ] ||Pr [V]), the embedding means are pulled toward zero
and the embedding standard deviations are pulled toward one. While the KL-divergence term is
opposed to the reconstruction loss, it can be seen as a regularization term. Indeed, putting a lot
of information about T in V makes reconstruction trivial, but the penalization induced by the
regularization term is non-negligible. Therefore, the regularization term acts as an information
bottleneck, so a balance between both terms must be found. If necessary, the KL-divergence
loss can be monitored by a hyperparameter β. In the state-of-the-art, these models are called
β-Variational AutoEncoders [HMP+17]. However, the impact of the β-parameter on the resulted
learning algorithm is considered as out of the scope of this manuscript.

Reconstruction Loss. This term, denoted by Ev∼F (enc)
Θ

log (Pr[T|Y,v, φ]), is linked with the

decoder F (dec)
φ introduced in Subsection 5.2.2. It defines the probability of constructing T given

the label Y and a sample v of the latent space V of size D. Hence, the reconstruction loss tends
to maximize the log likelihood in order to construct leakage traces that are correlated with the
true unknown leakage model ψ and the noise Z related to T. Thus, it encourages the decoder
to learn how a leakage trace can be reconstructed from a given noise representation defined by
a latent variable V. The reconstruction loss optimizes the parameters φ to retrieve the correct
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coefficients associated with each vector of the orthonormal monomial basis Φ(orth.)
u such that

the probability distribution in latent space V is defined by a multivariate Gaussian distribution
ND(µV,Θ,ΣV,Θ). Typically, if we only consider the case where no interaction between the time
samples of T occurs, then, the covariance matrix ΣV,Θ can be simplified to a diagonal matrix such
that its vector representation can be described as σ2

V,Θ = [ΣV,Θ[0, 0],ΣV,Θ[1, 1], . . . ,ΣV,Θ[D,D]].
In such configuration, we do not expect to capture the time samples’ interaction related to the
constructed leakage trace T̃ ∈ RD. Thus, the reconstruction loss can be computed as follows:

Ev∼F (enc)
Θ
− log (Pr [T|Y,v, φ]) = Ev∼F (enc)

Θ

[
D−1∑
i=0

1
2 log

(
2πσ2

T̃[i]
)

+ (T[i]− µT̃[i])2

2σ2
T̃[i]

]
, (5.11)

with µT̃[i] (resp. σ2
T̃[i]) indicates the ith element of the mean (resp. variance) vector of generated

leakage traces T̃ given a latent representation v and a deterministic part ψ̂φ which depends on
Y = f(X, k∗) (see Equation 5.7). Thus, assuming that ΣV,Θ can be simplified to a diagonal
matrix affects the ability of the generated leakage trace T̃ to capture the interaction between the
time samples of T. While this choice can be problematic from a performance perspectivee, the
computation gain is non-negligible as the matrix inversion does not have to be computed in order
to process the reconstruction loss.
Then, we assume that the output distribution of the conditional variational autoencoder is an
isotropic Gaussian (i.e. for all v ∼ ND(µV,Θ, diag(ΣV,Θ)), we can define ΣT̃ = σ2·ID where σ2 is a
scalar). While theMean Squared Error (MSE) loss functionf can be written as Ev∼F (enc)

Θ
||T−µT̃||2,

Equation 5.11 can be simplified as follows:

Ev∼F (enc)
Θ
− log (Pr [T|Y,v, φ]) = 1

2 log
(
2πσ2

)
+

Ev∼F (enc)
Θ
||T− µT̃||2
2σ2 . (5.12)

Note that this solution is minimized if the scalar σ2 = Ev∼F (enc)
Θ
||T− µT̃||2 = MSE [Yu20].

This loss is approximated via Monte-Carlo sampling, however, due to computation constraints,
we consider only one sample v for computing Equation 5.12 during the training process. Conse-
quently, for an estimated leakage trace T̃, we minimize its L2-norm from the related true leakage
trace T in order to find the best parameters φ. This result is in line with Theorem 5.1.1.1 from
which the stochastic attack is designed. In other words, through this solution, we attempt to find
an estimated leakage trace T̃ as similar as the real one T. Thus, the decoder F (dec)

φ is only affected
by the reconstruction loss and seeks to suitably reconstruct T̃ based on a latent representation V
and a deterministic part ψ̂φ.

KL-divergence loss. However, to reduce the overfitting issue, a regularization term is added
(see Subsection 4.1.4). In addition to the optimization of φ, the conditional variational autoen-
coder concurrently optimizes Θ to minimize the KL-divergence of the approximation Pr [V|T, Y,Θ]
from Pr [V]. In addition, the better Pr [V|T, Y,Θ] approximates the true posterior distribution
Pr [V|T, Y, φ], in terms of the KL divergence, the smaller the gap between Equation 5.10 and the
marginal log-likelihood log(Pr [T|Y, φ]). As remainder, both Pr [V|T, Y,Θ] and Pr [V] are assumed
to be Gaussian, specifically, Pr [V|T, Y,Θ] follows ND(µV,Θ,ΣV,Θ) and Pr [V] follows ND(0, ID).
The latter distribution is assumed as the leakage traces are standardized, i.e. zero mean and unit
variance, and such that no interactions are captured between the time samples. Indeed, as Pr[V]
characterizes the random part of T̃ (see Equation 5.7), it has to follow the same distribution
as the random part of the real trace T which is N (0, 1) for each non-informative time sample.

eTo nuance this issue, Bruneau et al. [BGH+15, Figure 3] illustrate that the information induced by
the covariance matrix is mainly brought by its diagonal.

fThis loss function has already been considered in the side-channel context [Tim19, vdVP19, MWM21].
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Through this configuration, the KL-divergence can be computed as follows:

DKL(Pr [V|T, Y,Θ]||Pr [V]) = Ev∼F (enc)
Θ

[log(Pr [v|T, Y,Θ])− log(Pr [v])]

= Ev∼F (enc)
Θ

[
1
2 log

(
|ID|
|ΣV,Θ|

)
− 1

2(v− µV,Θ)TΣ−1
V,Θ(v− µV,Θ)

+1
2(v− 0)T I−1

D (v− 0)
]

= −1
2 log (|ΣV,Θ|)−

1
2Ev∼F (enc)

Θ

[
(v− µV,Θ)TΣ−1

V,Θ(v− µV,Θ)
]

+ 1
2Ev∼F (enc)

Θ

[
vT I−1

D v
]

= −1
2 log (|ΣV,Θ|)−

1
2tr(Σ

−1
V,ΘΣV,Θ) + 1

2
(
µTV,ΘI−1

D µV,Θ + tr(I−1
D ΣV,Θ)

)
= 1

2
(
− log (|ΣV,Θ|)− tr(ID) + µTV,Θ · µV,Θ + tr(ΣV,Θ)

)
. (5.13)

As ΣV,Θ can be rewritten as a vector σ2
V,Θ such that each element of (σ2

V,Θ[i])0≤i<D defines the
ith diagonal of ΣV,Θ, then, Equation 5.13 can be expressed as follows:

DKL (Pr [V|T, Y,Θ] ||Pr [V]) = −1
2

(
log

D−1∏
i=0

σ2
V,Θ[i] +

D−1∑
i=0

1−
D−1∑
i=0

µ2
V,Θ[i]−

D−1∑
i=0

σ2
V,Θ[i]

)

= −1
2

D−1∑
i=0

(
1 + log

(
σ2
V,Θ[i]

)
− µ2

V,Θ[i]− σ2
V,Θ[i]

)
.

While the KL-divergence measures how the Pr[V|T, Y,Θ] distribution is different from Pr[V],
standardizing input traces is helpful to reduce the impact of irrelevant time samples.

To clearly explain the impact of the KL-divergence loss on the learning process, let us denote
T a D-dimensional leakage trace that has been standardized at each sample (zero mean, unit
variance). Let {l0, . . . , lu−1} defines a set of indices where the sensitive information leaks (i.e.
PoIs) such that,

T[i] =
{
ψ(Y )[i] + Z[i] ∼ N (0, 1) if i ∈ {l0, . . . , lu−1},

Z[i] ∼ N (0, 1) otherwise.

In this setting, we assume that the interactions between trace samples are negligible. Thus, if
the leakage trace T is standardized, each time sample has a zero mean and unit variance. Hence,
if the ith time sample of T has no deterministic part (i.e. ψ(Y ) = 0), the related element of
the latent variable V[i] = Z[i] − ψ̂Θ(Y )[i] follows N (0, 1) which induces that ψ̂Θ[i] is negligible.
Consequently, if i /∈ {l0, . . . , lu−1}, the related sample of the latent variable follows the same
distribution as Z[i]. Thus, in such scenario, the KL-divergence loss is negligible while the latent
representation does not contain any information about the secret key k∗. Thus, considering these
non-informative time samples does not affect the regularization term and are unsuitable for the
decision process. This result encourages the Evaluator to only consider the time samples with a
non-negligible deterministic part.
On the other hand, if i ∈ {l0, . . . , lu−1}, then V[i] = ψ(Y )[i] + Z[i] − ψ̂Θ(Y )[i] follows N (0, 1).
Thus, it suggests that Z[i] ∼ N (E[ψ̂Θ(Y )[i] − ψ(Y )[i]],V[ψ(Y )[i]] + V[ψ̂Θ(Y )[i]] + V[V[i]] − 2 ·
Cov[ψ[i], ψ̂Θ[i]] − 2 · Cov[ψ[i],V[i]] + 2 · Cov[ψ̂Θ[i],V[i]]). However, due to the KL-divergence
loss function involving during the training process, we force the latent variable (V[i])0≤i<D to
follow ND(0, ID). As defined in Subsection 5.2.2, this latent variable characterizes an estimation
of the noise Z induced in the leakage trace T. Thus, during the training process of the cVAE-ST,
we penalize the model to tend E[ψ̂Θ(Y )[i] − ψ(Y )[i]] towards 0 and V[ψ(Y )[i]] + V[ψ̂Θ(Y )[i]] +
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V[V[i]]− 2 ·Cov[ψ[i], ψ̂Θ[i]]− 2 ·Cov[ψ[i],V[i]] + 2 ·Cov[ψ̂Θ[i],V[i]] towards 1 such that this so-
lution is reached if and only if ψ̂Θ = ψ. Consequently, when KL-divergence loss is computed, the
conditional variational autoencoder aims at optimizing the trainable parameters Θ of the encoder
F

(enc)
Θ such that the regularization term equals 0 if and only if Θ is optimal. This justification

suggests that the latent space should be only composed by points of interest. One solution is to
consider dimensionality reduction techniques. In addition, when the Gaussian noise increases, the
dependence between T[i] and ψ[i] decreases. In this configuration, differentiating the sensitive
information from the noise can be difficult as Z[i] approximately follows N (0, 1) regardless the
information included in the time sample i. This observation demonstrates the benefits of the noise
to reduce the efficiency of side-channel attacks.

Once the generative model FΘ,φ is trained, the Evaluator has to make a decision following the
approximation of Pr[T|Y ] in order to fit with the stochastic attack approach (see Subsection 5.1.2).
The following section describes this strategy.

5.2.4 Decision Rule & Network Complexity
Typically, the inference phase of conditional variational autoencoder consists in generating new
set of data based on an input and a conditional known label. In the side-channel context, our
goal is different and tends to find the conditional unknown label Y that fits the best for a given
trace T. The following part describes the proposed solution to retrieve the secret key from the
model previously defined.

Key Extraction Phase. During the training phase, we defined a function FΘ,φ that approxi-
mates log(Pr[T|Y, φ]) through an optimization algorithm (i.e. gradient descent-based algorithms)
such that the generated leakage trace T̃, defined by the output of the decoder F (dec)

φ , are close to
the real one T captured for a given label. Based on these new generated traces T̃, the Evaluator
can find the key hypothesis that approximates the marginal likelihood. Let Ia be a set of Na

attack traces such that Ia = {t0, . . . , tNa−1}. For each of these attack traces, the Evaluator can
compute the related label Y = f(X, k) mixing the known plaintexts X ∈ X and a key hypothesis
k ∈ K. Then, the Monte Carlo method can be performed to get an estimation of Pr [T|Y, φ].
Hence, for a set of Nv latent samples {v0, . . . ,vNv−1}, we can compute an approximation of the
marginal log-likelihood as follows:

log (Pr [ti|yi, φ]) ≈ −DKL (Pr [V|ti, yi,Θ] ||Pr [V])− 1
2 log

2π ·
D−1∑
j=0

(
ti[j]−

1
Nv

Nv−1∑
h=0

t̃h[j]
)2− 1

2 ,

(5.14)
where t̃h is the hth generated leakage trace constructed from the decoder Pr[ti|yi,vh, φ].
When the inferred posterior Pr[V|T, Y,Θ] deviates from the true unknown posterior Pr[V|T, Y, φ],
the number of samples Nv increases in order to obtain an accurate approximation of Pr [T|Y, φ].
If the profiling phase has been performed successfully, then

(
ti − 1

Nv

∑Nv−1
j=0 t̃j

)2
should be min-

imized when k = k∗ (see Theorem 5.1.1.1). Hence, the most likely candidate is defined through
the maximum likelihood rule:

k̂ = arg max
k∈K

(
Na−1∑
i=0

log (Pr [ti|f(xi, k), φ])
)
.

To enhance the key extraction phase, the Evaluator can precisely define the PoIs’ indexes via
a leakage assessment once the profiling phase is performed. Indeed, if Θ and φ are correctly
learned, the Evaluator can visualize them in order to properly select the points of interest (see
Subsection 5.3.1). Thus, during the attack phase, the Evaluator can only compute Equation 5.14
on the samples that are considered as relevant by the conditional variational autoencoder based
on stochastic attacks.
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Theoretical Network Complexity Bounds. Based on the previous sections, we can
efficiently find an architecture for a given implementation. Consequently, some theoretical network
complexity bounds can be expressed following the Evaluator’s knowledge.

Indeed, our generative neural network can be easily built for a given Y ∈ Fn2 , a degree d (s.t
d ≤ n) of bits’ interaction and a D-dimensional leakage trace T ∈ RD. First, for estimating
(ψ̂Θ[i])0≤i<D (resp. (ψ̂φ[i])0≤i<D), the encoder (resp. decoder) needs to optimize Θ (resp. φ) in
order to retrieve the correct leakage model. Hence, for a given Y ∈ Fn2 , the number of weights
that has to be optimized is ((1 +

∑d−1
i=0

(n
i

)
) ·D) in both cases. Then, for estimating (V[i])0≤i<D

(resp. (T̃[i])0≤i<D), we have to link the ith sample of the leakage trace T (resp. the noise V)
with the related ψ̂Θ[i] (resp. ψ̂φ[i]). Here, we decide to follow the classical stochastic models in
order to easily extract the related noise. Hence, no weights are needed for this operation. Finally,
to approximate µV,Θ (resp. ΣV,Θ), we need (D · (D + 1)) (resp. D2 · (D + 1)) neurons. For the
simplified diagonal case, ΣV,Θ can be reduced to σ2

V,Θ, thus, only D · (D+ 1) neurons are needed
in this configuration. To sum up this complexity, the Evaluator needs to construct a generative
model with (D · ((D + 1)2 + 2 · (1 +

∑d−1
i=0

(n
i

)
))) weights (resp. (2D · ((D + 1) + 1 +

∑d−1
i=0

(n
i

)
))

weights if ΣV,Θ is reduced to σ2
V,Θ).

If a leakage assessment is performed before the construction of the generative model, then, the
Evaluator can extract a subset of indices defining the time samples where the sensitive informa-
tion leaks (i.e. PoIs). For example, if the Evaluator detects u PoIs, he can construct a vector
{l0, . . . , lu−1} of u indices such that li denotes the index related to the ith point of interest.
Based on this knowledge, he can build a conditional variational autoencoder with lower com-
plexity such that most of the relevant information, chosen to be related to the u PoIs, can be
extracted from a leakage trace. Instead of considering all the samples of the D-dimensional trace
(D ≥ u), he can construct a neural network with (u · ((u + 1)2 + 2 · (1 +

∑d−1
i=0

(n
i

)
))) weights

(resp. (2u · ((u + 1) + 1 +
∑d−1
i=0

(n
i

)
)) weights if ΣV,Θ is reduced to σ2

V,Θ). As a consequence, we
drastically reduce the network complexity without altering the ability of the generative model to
retrieve the secret key as suggested in Subsection 5.2.3. For example, the network complexity of
Figure 5.3 is about 1, 040 weights if all bits’ interactions are considered (i.e. d = 8, u = 2, n = 8).

The goal of the conditional variational autoencoder based on stochastic attacks is to approximate
the true unknown conditional probability Pr[T|Y ] from a neural network FΘ,φ = F

(dec)
φ ◦ F (enc)

Θ .
To perform such estimation, the Evaluator has to respect the following steps:

1. Construct the encoder F (enc)
Θ and the decoder F (dec)

φ in order to respect the stochastic
attacks structure defined in Section 5.1. The Evaluator can refer to Subsection 5.2.2 in
order to design suited model.

2. Train the conditional variational autoencoder with the empirical risk combined with evi-
dence lower bound loss (see Definition 5.2.3.1) in order to maximize the similarities between
new generated leakage traces T̃ and the real one T.

3. Extract the secret key manipulated by the cryptographic module through the application
of the decision rule described in Subsection 5.2.4.

SUM UP. . .

One of the main benefits of the proposed variational autoencoder is its explainability and its
interpretability regarding the side-channel context. In addition, our theoretical results suggest
that its width does not have to be large no matter the dimension of the leakage traces. This
result is faithful with the Universal Approximation Theorem (see Theorem 4.2.1.1). Through the
following section, we validate these properties and broaden the attacks’ spectrum on protected
implementations considering Boolean making scheme.
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5.3 Investigations on the Constructed Generative Model
Through this section, we validate all the theoretical observations provided in Section 5.2 with-
out optimizing the hyperparameters selection. While classical discriminative models need to
tune a lot of hyperparameters introduced in Subsection 4.2.2 and Subsection 4.3.1 (i.e. type
of neural network structure, number of layers, number of nodes per layer, activation function,
optimizer algorithms, learning rate, number of epochs, batch size), the configuration of the pro-
posed conditional variational autoencoder based on stochastic attacks only considers the optimizer
algorithmg, the batch size, the learning rate and the number of epochs. In this section, optimiza-
tion is done using the Adam algorithm on batch size {8, 16, 32, 64, 128} and the learning rate is
set to {10−4, 10−3, 10−2, 10−1}. We construct each model with the following number of epochs
{10, 20, 30, 40} and select the parameters that provide the best ranking value.
Finally, in this section, Ntrank denotes the number of attack traces that are needed to reach a
constant rank of 1. The attack leakage traces are randomly shuffled and picked up from a set of
attack leakage traces Ia which is characterized by simulations that are described in the following.
For a good estimation of Ntrank, an average over 10 simulations, denoted N̄trank, is computed.
Finally, as the goal of this basis is to ease the explainability and the interpretability of the results
provided by our generative model, the basis that is considered for estimating the leakage model
ψ is the orthonormal monomial basis Φ(orth.)

u defined in Definition 5.1.2.2.

The next section proposes to visualizes the trainable parameters Θ and φ in order to assess the
suitability of the conditional variational autoencoder to extract the expected leakage model ψ.

5.3.1 Leakage Model Visualization
To evaluate the benefits of the generative model to retrieve the correct basis, we simulate a set of
10, 000 traces (9, 000 for the profiling phase and 1, 000 for the validation phase) through multiple
scenarios:
• Scenario 1 – We assume that each leakage trace is configured by 3 time samples such that

only 1 point of interest is considered. The leakage model induces the maximum amount of
interactions between bits (i.e. G9, see Definition 5.1.1.2) such that all bits influencing the
leakage model have the same weighting. Hence, the ith time sample of the simulated trace
T is defined as follows:

T[i] =



1 · Y [1] + 1 · Y [3] + 1 · Y [6]
+ 1 · ⊕1

b=0Y [b] + 1 · ⊕2
b=0Y [b] + 1 · ⊕3

b=0Y [b]
+ 1 · ⊕4

b=0Y [b] + 1 · ⊕5
b=0Y [b] + 1 · ⊕6

b=0Y [b]
+ 1 · ⊕7

b=0Y [b] + Z[i]

if i = 1,

Z[i] otherwise,

(5.15)

where ⊕nb=0Y [b] = Y [0]⊕ . . .⊕Y [n], Y [b] = Sbox[X⊕k∗][b] denotes the bth bit of the output
of the Sbox, and Z[i] is a Gaussian noise following N (0, σ2) such that σ2 ∈ {0.1, 1, 10}.

• Scenario 2 – We assume that each leakage trace is configured by 4 time samples such that
only 2 points of interest are considered. The leakage model does not induce interactions
between bits (i.e. d = 1 and G2) but differs by the location of the points of interest. Hence,
the ith time sample of the leakage trace T is defined as follows:

T[i] =


1 · Y [3] + 1 · Y [6] + Z[i] if i = 1,
1 · Y [1] + 1 · Y [7] + Z[i] if i = 2,

Z[i] otherwise,
(5.16)

gThis observation is an intrinsic property of the proposed neural network architecture. For example,
if the Evaluator wants to construct an encoder in order to reduce the desynchronization effect as well as
the trace dimension, he has to deal with model hyperparameters.
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where Y [b] = Sbox[X ⊕ k∗][b] and Z[i] is a Gaussian noise following N (0, σ2) such that
σ2 ∈ {0.1, 1, 10}.

Different levels of noise are considered for all scenarios in order to get an overview into how FΘ,φ
performs depending on the SNR result but their results are provided in Appendix A.

As mentioned in Section 5.2, the encoder (resp. decoder) is trained to retrieve the parameters
Θ (resp. φ) in order to maximize their correlation with the targeted leakage model. Once the
generative model is correctly trained, the Evaluator can visualize these trainable parameters
(i.e. Θ and φ) in order to find the security flaws induced in the studied implementation. In all
scenarios (see Figure 5.4), the weight visualization can be used to assess the ability of the encoder
(resp. decoder) to retrieve the leakage function defined in each scenario (i.e. Equation 5.15,
Equation 5.16). Indeed, these figures illustrate the coefficient associated to each vector of the
orthonormal monomial basis. The first coefficients of each figure define the lowest bits’ interaction
induced in the leakage model. For example, the first element, included in the interaction of degree
5 area, is characterized by ⊕4

b=0Y [b]. While the related weight is non-negligible, the conditional
variational autoencoder based on stochastic attacks identifies the following interactions ⊕4

b=0Y [b]
in the leakage model. This observation can be confirmed with Equation 5.15. Proceeding this
analysis for the entire set of non-negligible weights can be helpful to evaluate the ability of the
generative model to retrieve the leakage model. Indeed, if we compare the real simulated leakage
model defined in Equation 5.15 with the non-negligible weights depicted in Figure 5.4a, we can see
that all the peaks are associated with the correct basis vector. This observation can be extended
when the leakage model varies following the targeted time sample (see Figure 5.4b).

Degree 2 Degree 3 Degree 4 Degree 5 Degree 6

Degree 2 Degree 3 Degree 4 Degree 5 Degree 6

Vector basis

Vector basis

Encoder

Decoder

(a) Scenario 1 (see Equation 5.15).

Degree 2 Degree 3 Degree 4 Degree 5 Degree 6

Vector basis

Vector basis

Decoder

Encoder

Degree 2 Degree 3 Degree 4 Degree 5 Degree 6

(b) Scenario 2 (see Equation 5.16).

Figure 5.4: Weight visualization assessing the suitability of our generative model to re-
trieve the leakage model.

In addition, each coefficient associated with the sensitive interactions seems to get approximately
the same impact which corresponds to the real leakage function defined in Equation 5.15. Con-
sequently, if the conditional variational autoencoders based on stochastic attacks are correctly
trained, they sound helpful to retrieve complex leakage models and the related security flaws.
Through the additional simulations provided in Appendix A, our generative model can be con-
sidered to evaluate the security flaws when large bits’ interactions are observed, when the de-
terministic part is different for all PoIs and when different weighting occurs. As a consequence,
large use-cases can be considered when the cVAE-ST is applied. Moreover, through the visualiza-
tions provided in Figure 5.4, the Evaluator can also identify the time samples where the sensitive
information leaks. Indeed, Figure 5.4a (resp. Figure 5.4b) highlights that only t[1] (resp. t[1]
and t[2]) is useful to extract the leakage model. Hence, once the generative model is correctly
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trained, the Evaluator can easily retrieve the points of interest. Then, during the attack phase,
the Evaluator can decide to focus its attack by computing Equation 5.14 only on a small set of
relevant samples instead of the entire trace dimension as mentioned in Subsection 5.2.4. One
advantage of the stochastic model is to approximate the data that depends on the secret key.
Through this process, the Evaluator directly obtains a score related to the key manipulated by
the cryptographic module. Hence, the Evaluator can adapt the orthonormal monomial basis to
target simultaneously multiple cryptographic primitives (e.g. input and output of the Sbox)h.

The following section explores the ability of the conditional variational autoencoder to perform
such simultaneous attacks.

5.3.2 Multi-Sensitive Variable Attacks
To evaluate the benefits of our generative model to retrieve the multiple sensitive variables, we
simulate a set of 10, 000 leakage traces (9, 000 for the profiling phase and 1, 000 for the validation
phase). In the following scenario, t is a 4-dimensional leakage trace such that 2 points of interest
are configured. The ith time sample of the leakage trace T is defined as follows:

T[i] =


1 · (X ⊕ k∗)[5] + 1 · (X ⊕ k∗)[3]
⊕ (X ⊕ k∗)[7] + Z[i]

if i = 1,

1 · Sbox [X ⊕ k∗] [3] + 1 · Sbox [X ⊕ k∗] [6] + Z[i] if i = 2,
Z[i] otherwise,

(5.17)

where Sbox [X ⊕ k∗] [b] denotes the bth bit of the output of the Sbox considering a plaintext X
and the secret key k∗, Z[i] is a Gaussian noise following N (0, σ2) such that σ2 = 1.
To exploit all the bits’ interaction for each sensitive variable, we set d = 8 and compute two
orthonormal monomial basis, i.e. (Φ(orth.)

u (X ⊕ k∗))u∈Fn2 et (Φ(orth.)
u (Sbox [X ⊕ k∗]))u∈Fn2 , such

that Figure 5.5 illustrates the impact of each vector of each basis in G9. When the time sample
t[1] is considered, we can see an interaction of degree 1 and 2 that corresponds to the bit 5 and
the interaction between the bits 3 and 7 of the input of the Sbox. Then, through Figure 5.5, we
can see that t[2] extracts a leakage model with two interactions of degree 1. When we refer to
Equation 5.17, we observe that the true leakage model depends on 3th and the 6th bit of the Sbox
output. Hence, through this simulation, we can validate the ability of the conditional variational
autoencoder to correctly retrieve the leakage model of multiple sensitive variables simultaneously.
However, as mentioned in Subsection 5.2.4, the degree d of the orthonormal monomial basis Gd+1
directly affects the complexity of the conditional variational autoencoder based on stochastic at-
tacks. Hence, considering the attacks of multi-sensitive variable increase by 2D · (1 +

∑d−1
i=0

(n
i

)
)

the number of trainable parameters (i.e. weights) for each new targeted sensitive variablei. Thus,
depending on his computational capacity, the Evaluator has to define the most suitable structure
to employ for defeating the targeted cryptographic module.

However, the Evaluator can wonder how does the conditional variational autoencoder retrieves
the points of interest when widely uninformative samples are considered. The following section
answers this question.

5.3.3 Curse of Dimensionality
When the Evaluator performs a side-channel attack, he wants to precisely find the relevant key-
dependent time sample even if a large part of the leakage trace contains uninformative time
samples. Usually, the number of points of interest u is far lower than the trace dimension D (i.e.

hSimilar proposition was introduced by Maghrebi for the discriminative models [Mag20]. But its
investigation on discriminative models is not considered in this thesis.

iThis number can be reduced to 2u ·(1+
∑d−1
i=0

(
n
i

)
) if the Evaluator only targets the points of interest.



5.3. INVESTIGATIONS ON THE CONSTRUCTED GENERATIVE MODEL 101
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Figure 5.5: Weight visualization for assessing the suitability our generative model to
simultaneously target multiple intermediate values (see Equation 5.17).

u � D). Thus, to assess the benefits of the conditional variational autoencoder in side-channel
attacks, we have to understand the ability of this new generative model to retrieve the points
of interest when a lot of samples are irrelevant. In order to evaluate it under this restriction, a
wide range of datasets are simulated (see Section 3.6) with different levels of D. We construct 6
scenarios where D ∈ {3, 10, 50, 100, 500, 1000} and u = 1 such that the noisy samples follows a
Gaussian distribution with parameters µ = 0 and σ2 = 1. The related SNR equals to 0.549. Hence,
for each case study, only a single PoI is configured while the dimension of the simulated leakage
traces increases. In Table 5.1, we denote PRI = u

D , the percentage of relevant information in each
scenario and evaluate the impact of this variable on other parameters, namely the batch-size and
the learning rate. Finally, Nv denotes the number of samples V used to perform Equation 5.14.

Table 5.1: Impact of the trace dimension on the conditional variational autoencoder
performance (with u = 1, Nv = 10, batch-size = 10).

PRI% D Learning rate N̄trank Network complexity Training time (seconds)
33% 3 10−2 47 1, 566 7s
10% 10 10−2 51 5, 360 8s
2% 50 10−2 49 30, 800 35s
1% 100 10−2 46 71, 600 47s
0.2% 500 10−3 52 758, 000 401s
0.1% 1000 10−3 65 2, 516, 000 933s

As suggested in Subsection 5.2.4, the attack process is performed only on the time sample defined
as relevantj by the generative model. Hence, the weight visualization applied on φ and Θ is very
helpful to define which samples can be considered as PoIs. Through Table 5.1, we can see that

jHere, the relevance of a time sample is characterized by its coefficients φ and Θ such that the most
relevant have the highest coefficients.
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increasing D does not impact the resulted performance of the generative model (i.e. N̄trank).
Indeed, if the evaluator adequately finds the correct hyperparameters, namely batch-size and
learning rate, he can expect to get similar results for high values of D. However, as detailed in
Subsection 5.2.4, increasing the input dimension highly impacts the complexity of the conditional
variational autoencoder. Finding a way to focus the interest of the model only on the relevant
time samples can drastically reduce the network complexity (see Definition 4.2.2.3) without alter-
ing its resulted performance. Such investigation could be part of a future work.

Once the Evaluator validates the ability of the generative model to deal with a low percentage
of relevant information, he can question the benefits of the conditional variational autoencoder
to defeat Boolean masking implementations. The next section deeper investigates this protection
against this type of generative model.

5.3.4 Generalization on Boolean Masking Implementation
Typically, the generative approach approximates the leakage model without altering its represen-
tation in order to get a global characterization of Pr[T|Y ] with T the leakage trace and Y the
related label. Consequently, our generative approach does not automatically recombine the PoIs
but preserve the network’s explainability that is mandatory for the evaluation process. Thus, if
the Evaluator has to face with a masking implementation, the preprocessing phase, introduced in
Section 3.5, has to be performed.
As a remainder, a masking scheme of order d− 1 consists in a d-sharing of the sensitive variables
{Y 0, Y 1, . . . , Y d−1}. In our setting, this corresponds to a situation where the leakages of the d
shares are hidden among values that have no relation with the target. As defined in Section 3.5, the
Evaluator has to combine the leakage traces in order to reveal the dependence of the leakage trace
T and its related label Y . To evaluate the suitability of the conditional variational autoencoder in
such scenarios, we decide to simulate 5-dimensional leakage traces with different levels of masking
order d ∈ {0, 1, 2, 3}. For each case study, we apply the product (see Equation 3.8), the absolute
difference (see Equation 3.9) and the optimal product (see Equation 3.10) combining functions
and list the best result obtained in Table 5.2.

Table 5.2: Impact of Boolean masking implementations on the conditional variational
autoencoder performance (with batch-size = 64, Nv = 10).

Order Learning rate N̄trank Combining function Network complexity
0 10−2 9 Optimal product 2, 630
1 10−2 32 Optimal product 14, 150
2 10−3 100 Optimal product 95, 750
3 10−3 247 Absolute difference 1, 103, 750

Through this table, we demonstrate the ability of the proposed generative model to defeat a
high-order Boolean masking implementation. Surprisingly, the number of shares does not highly
impact the hyperparameters’ valuek, namely the learning rate and the batch-size, unlike the net-
work complexity. Indeed, for a given set of D-dimensional leakage traces, the combining methods
multiplied by D the number of time samples for each mask reduction. Hence, for performing a d
order attack, the Evaluator has to deal with leakage traces of Dd+1 samples. As the dimension
of the leakage traces impacts the network complexity (see Subsection 5.2.4), the Evaluator has to
exponentially increase his computational ability with the order of the side-channel attack.

kThe readers must be aware that this observation cannot be generalized on all implementations and
would benefit from further investigations.
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Once all these simulations validate the theoretical observations provided in Section 5.2, we com-
pare the benefits of considering the new conditional variational autoencoder with the classical
profiled side-channel attacks on real unprotected and protected implementations.

5.4 Practical Experiments
The experiments are implemented in Python using the Keras library [Cho15] and are run on a
workstation equipped with 128GB RAM and a NVIDIA GTX1080Ti with 11GB memory. The
configurable hyperparameters, namely the batch-size and the learning rate, are respectively set
to {8, 16, 32, 64} and {10−3, 10−2, 10−1}. We construct each model with the following number of
epochs {10, 20, 30, 40, 50, 75, 100} and select the value that provides the best rank. As mentioned
in Section 5.3, we denote N̄trank the average value of Ntrank over 10 shuffled experiments. In
the following, we always capture the maximum amount of interactions (i.e. G9). This choice
was made because we assume that the Evaluator does not have a priori knowledge on the bits’
interactions. This section considers three datasets that have been presented in Section 3.6, namely
DPA contest-v4, AES_HD and ASCAD-v1. All these experiments can be reproduced through
the following reference [ZBC+21a].

5.4.1 A Comparison with Classical Generative Side-Channel At-
tacks

In this section, we evaluate the benefits of the conditional variational autoencoder against the
classical side-channel attacks (i.e. template attacks, stochastic attacks). We respect the same
conditions as the state-of-the-art result. Hence, we construct a pooled template attack [CK14] and
a pooled stochastic attack [CK15] that consist in manipulating different key hypotheses k ∈ K
with different means but the same covariance. Thus, we pool the covariance matrices into a
single solution in order to cope with statistical difficulties. For the DPA contest-v4 and AES_HD
datasets, Kim et al. [KPH+19] propose to select 50 features with the highest SNR in order
to reduce the needs of computation when classical side-channel attacks are considered. For the
ASCAD-v1 dataset, [BPS+20] applies a dimensionality reduction algorithm, namely Principal
Components Analysis (see [BPS+20, Figure 12]). While no clear description of high-order attack
is defined in [BPS+20], we select the 8 most relevant samples related to the mask and the masked
values and then, apply the three combining functions introduced in Section 3.5.

DPA contest-v4. Once the conditional variational autoencoder is trained, the Evaluator
can observe the coefficients related to each time sample as illustrated in Figure 5.6a. Then, he
can select those with the highest trainable parameters (i.e. Θ and ψ) and perform his attack
on this subset. For this dataset, we compute Equation 5.14 on the 50 time samples previously
extracted. When a high-SNR unprotected implementation is considered, we observe that our gen-
erative model has the same performance as classical profiled side-channel attacks (see Table 5.3).
Hence, for this implementation, similar results can be obtained whatever the attack performed.
Consequently, in this configuration, considering the conditional variational autoencoder based on
stochastic attacks is equivalent to classical profiled side-channel attacks.

AES_HD. Following the state-of-the-art results [KPH+19], a pooled template attack needs
approximately 25, 000 attack traces to retrieve the secret key. Surprisingly, performing the stochas-
tic attack on the same dataset highly improves the related performance. Indeed, when this ap-
proach is considered, the Evaluator can recover the secret key with 4, 500 attack traces which
is 5.5 times better. Finally, when our generative model is applied, an even better attack can
be performed. As mentioned in Subsection 5.2.4, the attack phase is based on sample similarity
measures. Hence, the Evaluator can only compute Equation 5.14 on the relevant samples detected
during the profiling phase. Thus, we drastically reduce the impact of the uninformative samples
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(a) DPA contest-v4 dataset. (b) AES_HD dataset.

Figure 5.6: Weight visualization of 50 time samples assessing the suitability of our gener-
ative model to retrieve the leakage model.

Table 5.3: Comparison of N̄trank value depending on datasets

Pooled Stochastic Attacks Pooled Template Attacks cVAE-ST
DPA-contest v4 4 4 [KPH+19] 4
AES_HD 4, 500 25, 000 [KPH+19] 250
ASCAD-v1 290 351 190

during the attack phase. In this configuration, we only consider the samples where the related
φ coefficients are greater than 0.5 (see Figure 5.6b). Accordingly, while the training process was
performed on traces with 50 samples, the computation of Equation 5.14 was made on the 14
time samples complying with the restriction configured. This processing tremendously increases
the performance of the resulted attack. Indeed, the cVAE-ST model divides by 100 (resp. 18)
the number of attack leakage traces that are needed to perform a pooled template attack (resp.
pooled stochastic attack).

ASCAD-v1. As mentioned in Section 3.5, we perform high-order attacks with the help of
combining functions as preprocessing (i.e. product combining, optimal product combining, abso-
lute difference combining). Then, we profile the generative models on the unmasked value in
order to extract the relevant information. In Table 5.3, the optimal product combination provides
the best performance on the ASCAD-v1 dataset. Through this experiment, we observe that the
conditional variational autoencoder performs better than template and stochastic attacks. While
351 (resp. 290) attack traces are needed to reach a constant rank of 1 when the pooled template
attacks (resp. pooled stochastic attack) are considered, our generative model retrieves the secret
key within 190 attack traces. As previously mentioned for the AES_HD dataset, this result can
be explained by the ability of the conditional variational autoencoder to target a specific range of
relevant combined time samples during the attack phase. On the contrary, the classical profiled
side-channel attacks have to consider the 64 time samples (i.e. 8 time samples related to the
masks and the masked value) used to perform the related attacks. Hence, resulted noisy time
samples can highly influence the performance of the resulted attacks.

In conclusion, the conditional variational autoencoder based on stochastic attacks provides similar
performance as the pooled template attack and the pooled stochastic attacks. However, when a
classical profiled side-channel attack is trained on D-dimensional traces, the Evaluator has to per-
form the exploitation phase on the same leakage trace dimension. Unfortunately, the Evaluator
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does not know a priori which time samples are considered as relevant once the profiling phase
is applied. Hence, performing the exploitation phase on the D-dimensional leakage traces could
be impacted by the uninformative time samples. On the other hand, once the profiling phase is
performed on the D-dimensional traces, our generative model is beneficial to select a subset of
u time samples, such that u � D, in order to compute Equation 5.14 only on the informative
time samples (i.e. points of interest). Hence, this new proposition is more flexible than classical
profiled side-channel attacks.

However, the generative approach can be limited by multiple factors, the following section high-
lights these limitations.

5.4.2 Benefits & Limitations of cVAE-ST
As previously illustrated, the conditional variational autoencoders can be considered in side-
channel context in order to perform physical attacks and extract the secret key from a crypto-
graphic module. From an evaluation perspective, this new neural network architecture is suitable
as it respects the following requirements:

1. Theoretical similarities with classical profiled side-channel attacks – As illustrated
in Section 5.2, the conditional variational autoencoder can be monitored to fit with the
stochastic attacks paradigm introduced by Schindler et al. [SLP05] and recalled in Sec-
tion 5.1. From the Evaluator point of view, this approach is useful to ease the configuration
of the neural network and get a clear overview of the decision-making process. Indeed, as the
conditional variational autoencoder is designed on well-known theoretical attack strategy,
the Evaluator can be confident on the employed neural network structure and thus, ex-
pect to get a resulted predictive model as efficient as classical profiled side-channel attacks,
namely template attacks and stochastic attacks. From this new bridge, the Evaluator can
deeply understand the future improvements that can be provided in order to fully exploit
the automation process in side-channel context.

2. Explainability & Interpretability – One major benefit of the proposed neural network
architecture is to preserve the interpretability and the explainability on the results provided
by the learning algorithm. As the conditional variational autoencoders are constructed
from the classical profiled side-channel attacks, the Evaluator can adapt its interpretation
tools (e.g. visualization) in order to deeply explain the results provided by the model. As
suggested in Subsection 5.3.1 and Subsection 5.4.1, the Evaluator can visualize the trainable
parameters of the conditional variational autoencoder in order to assess the ability of the
encoder and the decoder to retrieve a hypothetical leakage model as similar as possible to
the true unknown ψ. Once the Evaluator retrieves an approximation of ψ, he highlights the
security flaws induced by the targeted implementation and thus, can alert the Developer
on potential vulnerabilities and ease the development of countermeasures.

3. Hiding countermeasures – Even if this manuscript does not assess the robustness of the
conditional variational autoencoder based on stochastic attacks against desynchronization
effectl, an intuitive solution suggests to add convolutional layers to the encoder. However,
it should be validated in practice. While this intuition could be a suitable solution to
mitigate the desynchronization effect, it also helps the network to automatically select the
points of interest and prevent the effect of uninformative time samples. Indeed, as defined
in Subsection 5.2.3 and Subsection 5.2.4, the empirical risk as well as the decision process
are only affected by the points of interest. Hence, this dimensionality reduction technique
can also be useful to quadratically reduce the network complexity.

lThis choice is motivated by our willingness to fit with the stochastic attacks and thus, bridging the
deep learning with classical profiled side-channel attacks.
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However, the conditional variational autoencoder based on stochastic attacks also has some limi-
tations that are listed below.

1. Combining function – As the generative approach, as well as classical profiled side-
channel attacks, captures the conditional distribution Pr[T|Y ], it cannot handle masking
implementations as the targeted unmasked sensitive variable Y is not directly observable
through the leakage trace T. Thus, the Evaluator has to consider combining functions in
order to reveal the dependence between T and Y . Unfortunately, this suggests the need of
preprocessing phase which is not necessarily optimal from an attack perspective. Indeed, as
this combining function is not automatically learned by the generative model, the Evaluator
may not converge towards the optimal solution and reaches Objective 3.3.1.1.

2. Performance – While the goal of a side-channel attack is to optimize a learning algorithm
which approximates Pr[Y |T] in order to discriminate a sensitive variable Y from a set Y ,
the application of generative models can be considered as suboptimal [NJ02]. However, as
computing Pr[T|Y ] is approximately similar to Pr[Y |T] up to a constant independent of
the secret key (see Equation 3.4), the Evaluator expects to obtain similar result regardless
the estimated conditional probability. This verification is performed in Chapter 6.

One solution to solve the latter issues is to substitute the generative approach by the discriminative
approach. Probabilistic discriminative approach captures the decision boundaries between the
classes in Y such that no particular modeling of the leakage trace distribution is performed.
It models the conditional posterior probabilities Pr [Y |T] directly in order to discriminate and
pick the most likely hypothetical candidate (i.e. sensitive information) given a leakage trace. A
discriminative model estimates a Θ-parametric probability conditional distribution Pr [Y |T,Θ]
that is as similar as possible to the true unknown conditional probability distribution Pr [Y |T].
In Subsection 4.2.2, this model is characterized by FΘ such that the last layer of the neural
network is defined by a softmax (resp. sigmoid) activation function if a multiclass (resp. binary)
classification problem has to be solved. In deep learning-based side-channel attacks, this approach
is beneficial for directly retrieving the secret key manipulated by the cryptographic module without
modeling unnecessary information or performing preprocessing phase [MPP16, CDP17a, PHJ+18,
CCC+19]. This approach is notably beneficial to automatically find a suited combining function
and thus, enhancing the high-order attacks. Furthermore, as the discriminative model directly
computes Pr [Y |T,Θ], it generally outperforms generative models at conditional prediction tasks
[NJ02]. However, discriminative models need to be configured more carefully than generative
approach. Hence, if a discriminative model is not well constructed, a generative solution can be
more suitable to optimize the conditional Θ-parametric probability distribution Pr [Y |T,Θ] after
the application of the Bayes’ Theorem. In the following chapter, we propose to deeply investigate
the notion of discriminative approach in order to ease the construction of neural networks in deep
learning-based side-channel attacks.

5.5 Conclusion
In this chapter, we bridge the deep learning paradigm with a classical profiled side-channel attack,
namely stochastic attack. Hence, we design a new conditional variational autoencoder from the
attack proposed by Schindler et al. [SLP05] and highlight its similarities with the theoretical
foundations of stochastic attacks (see Section 5.2). This development leads us to investigate the
ability of the Evaluator to explain and interpret the results provided by the generative model.
Indeed, by visualizing the trainable parameters (i.e. Θ and φ), the Evaluator retrieves the leakage
model approximated by the conditional variational autoencoder as well as the points of interest
induced in the targeted implementation. Through this process, he can assess the suitability of
the resulted model. Then, we validate the benefits of our approach under traditional restrictions,
namely low percentage of relevant information and Boolean masking implementations. Finally,
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the conditional variational autoencoder based on stochastic attacks is more flexible than classical
profiled side-channel attacks. Indeed, while template attacks and stochastic attacks consider the
same leakage traces’ dimension during the profiling phase and the attack phase, our generative
model can conduct the key extraction phase on a smaller dimension (i.e. points of interest) and
therefore, reduce the impact of uninformative time samples on the attack performance.

However, the conditional variational autoencoder based on stochastic attacks does not automat-
ically combine the leakage function in order to deal with Boolean masking implementations.
Thus, a preprocessing phase is still needed for the Evaluator. A solution to this issue is to con-
sider the discriminative approach. As suggested in [NJ02], a discriminative model, that is well
designed, converges towards a better solution and classically outperforms a generative learning
algorithm. Nevertheless, as no particular correlation has been made with the side-channel con-
text, its configuration is considered as an arduous task. To mitigate this issue, Chapter 6 exploits
some visualization tools introduced by the deep learning community, in order to understand how
the model hyperparameters affect the ability of the convolutional neural network to retrieve the
points of interest. We illustrate their impacts and propose a new convolutional structure for a
discriminate perspective.

WHAT’S NEXT?
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Chapter 6

Designing Discriminative Models in
Profiled Side-Channel Analysis

In this chapter, we develop an approach for evaluating the impact of model hyperparameters
induced in convolutional neural networks. First, we recall the restrictions the Evaluateur has to
deal with and define some issues that have to be reduced in order to optimize the evaluation
process. Thus, we adapt visualization tools introduced in the deep learning literature in order to
enhance the understanding of the discriminative models and to reduce the black box issue that
characterized it. Then, a focus is made on the hyperparameters which composed the convolutional
part of a CNN in order to investigate the impact of the length of the filters, the pooling operation
and the number of the convolutional blocks on the ability of the convolutional part to extract
the points of interest from a leakage trace. Finally, we design a methodology which reduces the
impact of uninformative time samples by focusing the interest of the neural network on the points
of interest only. This results in drastically reducing the network complexity as well as the training
time without altering the neural network performance. The solutions proposed in chapter have
been presented at CHES and published in the journal IACR TCHES [ZBHV19b].
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6.1 Discriminative Models in Certification process
6.1.1 In The Reality of Evaluator’s World
As mentioned in Subsection 1.2.2, the robustness of a cryptographic module is assessed by a cota-
tion table which is based on some criteria, namely elapsed time, adversary’s expertise, knowledge
of the target of evaluation (TOE), access to TOE, equipment and tools. The combination of
these criteria provides a score to the Evaluator that reflects the difficulty of conducting an attack.
Thus, during the certification process, the Evaluator aims at optimizing these criteria in order to
perform the most efficient attack within the shortest time. Indeed, as the elapsed time is the most
flexible criterion that the Evaluator has to deal with, he aims at designing discriminative models
which approximate the optimal adversary (see Objective 3.3.1.1) with a minimum amount of time.

To design discriminative models, the Evaluator typically considers the fully-connected neural net-
works or the convolutional neural networks as they have been proven to be effective against
Boolean masking implementations [MPP16, MDP19b] and hiding countermeasures [CDP17a,
ZOB18, Mag19a, Mag19b, MBC+20, ZOB18, Mag19a, LH20]. While both countermeasures can
be mitigated by convolutional neural networks, the rest of this chapter will be focused on its con-
struction. However, designing such neural networks is an arduous task because of the plethora of
model hyperparametersa that are involved in the construction of the CNNs. Indeed, as mentioned
in Subsection 4.2.2, a CNN can be decomposed into two parts, namely feature selection part and
classification part, such that the model hyperparameters that characterized them differ:

• Feature selection part – as a remainder, this part extracts the sensitive information (i.e.
points of interest) from a leakage trace T in order to help the decision-making. Typically,
the Evaluator has to deal with the following model hyperparameters: the number of con-
volutional blocks, the number of convolutional layers per convolutional block, the number
and the length of filters, the activation function applied on each layer, the stride value, the
padding value, the pooling operation and the pooling stride.

• Classification part – as a remainder, this part is defined by numerous fully-connected lay-
ers characterized by the following model hyperparameters: the number of fully-connected
layers, the number of neurons per fully-connected layers and the activation function that
has to be applied on each layer.

To deal with the model hyperparameters space, the Evaluator uses tools which automatically tune
the model hyperparameters values in order to find the most efficient solution from an adversary’s
perspective [MPP16, BPS+20, WPP20, PRA20, RWPP21, YAGF21]. However, if the Evaluator
has no intuition about how the model hyperparameters values should be bounded, the time needed
to find a good predictive model can be tremendously impacted.

Black-box issue. Because a discriminative model can be seen as a black-box tool, the lack of
interpretability is a major drawback for constructing a neural network as well as explaining the
decision-making of the Θ-parametric model. Hence, in deep learning-based side-channel attack,
the configuration of the profiling phase is an arduous task for the Evaluator. One solution to
reduce these bounds is to get a better intuition on the decision-making of the predictive models
in order to understand how it retrieves the secret key manipulated by a targeted cryptographic
module. A common technique to perform such investigations is to visualize the model’s behavior
that is selected by the learning algorithm.

The following section defines the gradient visualization tool [MDP19a] as a solution for assessing
the ability of a model to exploit the points of interest, and denotes its limitation regarding the
grasp of the model hyperparameters’ impact.

aWe recall that this term has been introduced in Definition 4.2.2.4.
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6.1.2 Evaluation of Discriminative Models
As mentioned in Subsection 3.2.2, the signal-to-noise Ratio is a useful tool to identify the time
samples that depend on the targeted sensitive variable. However, this solution cannot be consid-
ered to evaluate the intrinsic ability of a parametric function FΘ to retrieve the related points
of interest as the SNR tool does not depend on a distinguisherb. Alternatively, some visualiza-
tion tools have been introduced by the deep learning community in order to interpret the results
provided by FΘ.

Gradient visualization. Introduced in [SVZ14], the gradient visualization has been investi-
gated by Masure et al. in the side-channel context [MDP19a]. To use this tool, two assumptions
are needed. The first assumptionc states that the points of interest are non-uniformly distributed
over a D-dimensional leakage trace T such that the set {l0, . . . , lu−1}, which defines the coordi-
nates related to each point of interest, has a smaller dimension than D (i.e. u� D). Hence there
are only a few time samples that depend on the sensitive variable Y . The second assumptiond
considers that a Θ-parametric model FΘ : T → P(Y) is differentiable over T.
To evaluate FΘ with the gradient visualization tool, the Evaluator computes the derivatives of the
model with respect to a leakage trace T such that the magnitude of the derivatives indicate which
time samples need to be modified the least to affect the prediction the most. In other words,
following the value of the gradient of FΘ at the ith time sample, the Evaluator can assess if i is
included in the set of points of interest {l0, . . . , lu−1} such that, for a given sensitive variable Y ,
he expects that,

∂

T[i]FΘ(T)[Y ]
{
6= 0 if i ∈ {l0, . . . , lu−1},
≈ 0 otherwise. (6.1)

Thus, the gradient visualization is useful for identifying the time samples that influence the most
the prediction of FΘ. Comparing these time samples to the points of interest, the Evaluator is
able to assess the suitability of the selected model FΘ to solve the side-channel classification task
which consists in mapping a leakage trace to the true sensitive variable Y . More concretely, the
gradient visualization can be considered to:

1. Detect the time samples that the model considers as correlated with the targeted sensitive
information Y (see Equation 6.1).

2. Assess the impact of each time sample to solve the classification task. Indeed, for a given
time sample i, a gradient with a large magnitude ensures that the information included at
i has a huge impact on the PMF and consequently, on the classification task.

Thus, comparing the gradient visualization with the signal-to-noise ratio is a relevant solution
to the Evaluator in order to interpret the suitability of the model FΘ for retrieving the time
samples which affect the most its predictions. However, this tool highlights the impact of time
sample’s variation on the final decision, but not the decision-making itself. Consequently, the
layer-wise relevance propagation [BBM+15] have been introduced in order to mitigate this issue
by directly bridging the visualization tool with the decision of FΘ. In [HGG20], Hettwer et al.
propose a comparison between the gradient visualization, the layer-wise relevance propagation
and the occlusion approache such that no clear benefit has emerged for one of those methods. As
the gradient visualization tool provides some theoretical coherence with the side-channel context,
this manuscript is only focused on the gradient visualization tool for the evaluation of the overall
model’s behavior FΘ.

bFollowing Definition 3.3.1.3, a parametric function FΘ can be defined as a distinguisher.
cThis assumption is called Sparsity in [MDP19a].
dThis assumption is called Regularity in [MDP19a].
eThe occlusion technique consists in removing some time samples from the leakage trace in order to

observe how it impacts the model’s predictions.
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Limitations. However, these techniques are not ones required to understand how the feature
selection part or the convolutional part affects the decision process as they only give a general
interpretation of how a neural network performs. One solution to reduce this issue is to find local
visualization tools that evaluate the impact of model hyperparameters to retrieve the points of
interest.

The following section adapts two visualization tools widely used in deep learning, namely weight
visualization and heatmaps. Through the application of these approaches, we want to get a better
understanding of the model hyperparameters which characterized the feature selection part of a
convolutional neural network.

6.1.3 Evaluation of the Feature Selection
One way to interpret the suitability of a neural network to solve a classification task is to visualize
how the configuration of its model hyperparameters affects the points of interest’s selection.

As mentioned in Subsection 4.2.2, we assume that a convolutional neural network can be decom-
posed into a feature selection part, which extracts the points of interest from a leakage trace,
and a classification part, which combines those relevant time samples in order to make a deci-
sion regarding the classification task to solve. In this chapter, we assume that, once the neural
network adequately retrieves the points of interest, the classification part can be easily designed.
In addition, compared to the classification part, the configuration of the feature selection part
is the most arduous task due to the plethora of model hyperparameters (see Subsection 6.1.1).
Thus, adapting some visualization tools to the side-channel context can be beneficial to highlight
the impact of those hyperparameters to retrieve the points of interest and consequently, ease the
design of convolutional neural networks for the Evaluator as well as reducing the elapsed time
criterion.

VISUALIZATION’S GOAL

Thus, the Evaluator has to consider visualization tools which allow an independent interpretation
of the feature selection part, i.e. leave apart the classification component of the convolutional
neural network, such that he can evaluate the Network Confidence to retrieve the points of interest.

Definition 6.1.3.1. [Network Confidence] Given a leakage trace T at a time sample i, the
Network Confidence defines the capacity of the neural network to retrieve a point of interest at
T[i].

Hence, the higher the network confidence, the higher the probability that the related point of
interest will be exploited in the classification part. One common strategy is to visualize the
trainable weights to interpret the decision-making of the convolutional neural network.

Weight Visualization as Leakage Detection. This method was introduced in [BPK92]
as a useful framework when dealing with spatial information. During the training process, the
neural network evaluates influential neurons which can be helpful to address the classification task
by attributing large weight values. In deep learning, this technique is usually used to evaluate the
patterns extracted by the first layers of a deep architecture [HOWT06, LBLL09, OH08, HOT06].
Therefore, we propose to adapt the weight visualization tool in order to evaluate the feature
selection part of a convolutional neural network. As defined in Subsection 4.2.2, the flatten
operation characterizes the border between the feature selection part and the classification part
of a convolutional neural network. Thus, visualizing the weights at the output of this operation
is beneficial to assess the ability of the feature selection part to capture the expected points
of interest. As remainder, the flatten operation concatenates each intermediate leakage trace
following an axis in order to reduce the space dimension of the feature selection part to a 1-
D space that fits with the classification part. By concatenating the output of the flatten layer
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...
...

(a) (b)
Flatten[Flatten - 1] [Flatten + 1]

Figure 6.1: Methodology for weight visualization ((a) - concatenation of each interme-
diate trace following their temporal axis ; (b) - computation of Θ̄[0] to get a temporal
correspondence).

following the columns (see Equation 4.9), we retain timing information to be able to interpret
the neurons considered as relevant for the decision-making (see Figure 6.1a). Once the training
process is performed, the neurons where the sensitive variable leaks will be evaluated with high
weights if the feature selection part effectively extracts the points of interest. Thus, by visualizing
the weight values of the flatten layer, the Evaluator can understand which neurons have a positive
impact on the classification and hence, thanks to the feedforward propagation, we can interpret
which time samples influence the most the model FΘ.
Let N [f+1] be the number of neurons in the layer following the flatten operation, N [f−1]

filt. be the
number of filters in the last convolutional blocks and dim(T[f−1]) be the dimension associated with
each intermediate leakage trace after the last pooling layer. Let Θ[f+1] be the weights correspond-
ing to the layer indexed after the flatten operation such that Θ[f+1] ∈M

dim(T[f−1])×N [f−1]
filt. ,N [f+1](R).

Let Θ̄ ∈ Mdim(T[f−1]),N [f+1](R) be a matrix that enables visualization of the weights such that
Θ̄[m], which is associated with the mth neuron of the layer following the flatten operation, can be
computed as follows:

Θ̄i[m] = 1
N

[f−1]
filt.

(i+1)×N [f−1]
filt.∑

j=i×N [f−1]
filt.

∣∣∣Θ[f+1]
j [m]

∣∣∣ ,
where i ∈ [0, dim(T[f−1])].
Then, let Θ̄ ∈ Rdim(T[f−1]) be a vector that enables visualization of the mean weight related to
each neuron of the layer [f + 1] such that:

Θ̄i = 1
N [f+1]

N [f+1]∑
m=0

Θ̄i[m], (6.2)

where i ∈ [0, dim(T[f−1])].
In other words, we first reduce the dimension of Θ[f+1] so that it corresponds to the temporal
space defined by dim(T[f−1]). This reduction is obtained by averaging the weights related to the
same time sample (see Figure 6.1b). Finally, to obtain a global overview of feature selection part,
the Evaluator has to compute the average of the weights associated with each neuron in order to
evaluate the confidence of the network in revealing the points of interest.
If the feature selection part retrieves a point of interest on a time sample i, the related weight
will be higher than 0. Depending on its magnitude, the network will be more or less confident in
its detection. If the network is extremely confident in the information included at i, the related
weight will be high and the exploitation of the sensitive information will be easy. On the other
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Figure 6.2: Heatmap

hand, if the weight related to i is low, i.e. similar to the weight related to uninformative time
samples, the neural network will be distrustful on the leakage detection. Hence, the resulted
exploitation will be harder or inexistent and the training time could increase. If necessary, this
visualization can be performed during the training process in order to evaluate the suitability of
the selected model FΘ.
However, even if the weight visualization is a useful tool to get a global overview of the feature
selection part, the Evaluator still cannot investigate the sample extracted by each filter. One
solution is to analyze the activation generated by the convolution operation between an input
layer and each filter.

HeatMaps. Introduced in [ZF14], heatmaps (or feature maps) help to understand and inter-
pret the role of each filter in a convolutional neural network. We apply this technique in the
side-channel context as a new tool to interpret the impact of filters so that we can adapt the
neural network according to how the time samples are selected.
Let us denote N [l]

filt. the number of filters in the lth layer of the convolutional part, T[l] the input(s)
associated with the lth convolutional block such that T[0] corresponds to the leakage trace T.
Then, the convolution operation between T[l] and the N [l]

filt. filters returns N
[l]
filt. intermediate traces.

We denote H [l] the heatmap (or feature map) associated with the lth layer such that:

H [l] = 1
N

[l]
filt.

N
[l]
filt.∑
i=0

(T[l] ~W
[l]
Θ,i),

where W [l]
Θ,i is the ith filter of the lth layer of the feature selection part and it is composed by the

Θ trainable parameters.
Thanks to this visualization technique, we can assess which neurons are activated f by the filters of
each convolutional layer and understand how the time samples are selected (see Figure 6.2). In-
deed, the resulted convolution operation reflects the time samples that are considered as relevant
during the classification task. The comparison of this heatmap with the SNR peaks is helpful to
investigate the ability of the network to find the points of interest. This result will be verified in
the experimental section (see Section 6.2).

The weight visualization and the heatmaps are two tools that help the Evaluator to explain and
interpret the feature selection part more clearly. By using these techniques to understand the
internal layers of a CNN, it is possible to define a method to build suitable neural network archi-
tectures in the presence of synchronization and desynchronization effect.

fIn this manuscript, the term activation refers to the output of a convolutional operation.
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The following section analyzes the effect of the most influencing model hyperparameters (i.e.
the length of the filters, the pooling operation and the number of convolutional blocks) on the
extraction of the points of interest.

6.2 Impact of Hyperparameters on the Leakage De-
tection

To illustrate and explain the effect of each hyperparameters as far as possible, we consider the
Chipwhisperer dataset introduced in Section 3.6. To train the learning algorithm, we use the
negative log-likelihood as loss function (see Definition 4.3.2.2) as it is generally considered in deep
learning based side-channel analysis [MPP16, CDP17a, PHJ+18, CCC+19, MDP19b, BPS+20].
Further discussion on this loss function will be provided in Chapter 7. As mentioned in Subsec-
tion 4.3.2, the optimizing algorithm used in this manuscript is the Adam optimizer [GBC16]. A
batch-size of 50 is configured. As explained in Subsection 4.2.1, we use the SELU activation func-
tion to mitigate the vanishing and exploding gradient issues. The loss function, the optimizer and
the activation function have been selected following a grid search optimization [GBC16] such that
these optimizer hyperparametersg have been selected from a finite set of values (see Table 6.1).
Our choices are motivated by the fact that they provide good results, in terms of classification, on
our datasets. Indeed, using these hyperparameters lead to a faster convergence towards a constant
guessing entropy of 1.

Table 6.1: Grid search optimization on hyperparameters

Values
Optimizer {SGD, RMSprop, Adam}
Activation function {tanh, ReLU, ELU [CUH16], SELU}
Learning Rate One-Cycle policy (see Section 6.3)
Batch size {50, 64, 128, 256}
Epochs {10, 20, 25, 50, 75, 100, 125, 150}
NFC layers {2, 5, 10, 15, 20, 25, 100}
Nnodes per FC layers {1, 2, 3, 4, 5}

Finally, to accelerate the learning phase, we pre-process the data such that all trace samples are
standardized (unit variance, zero mean) and normalized between 0 and 1 [GBC16]. In this section,
we only focus on the points of interest extraction made by the feature selection part and not on
the performance of the selected model FΘ.

Remark 6.2.1. As defined in Subsection 4.3.2, the learning rate is one of the most challenging
hyperparameters to tune because it influences the time needed to train an algorithm and monitors
the risk of vanishing and exploding gradient. In this section, we configure the learning rate by
using a technique called One Cycle Policy [ST17, Smi17, Smi18] that helps choose a suitable
hyperparameter value. Surprisingly, using this policy means we can choose much higher learning
rates and significantly reduce training time while preventing overfitting.

6.2.1 Length of Filters
In this section, we demonstrate that increasing the length of the filter causes entanglement and
reduces the network confidence in the detection of the points of interest. Let WΘ ∈ Rn be a filter
of length n such that WΘ = {θ0, θ1, ..., θn} is optimized for maximizing the detection of a set

gThis term has been defined in Definition 4.3.2.5.
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Figure 6.3: Convolution operation between a ChipWhisperer leakage trace T and a filter
WΘ of size n ((a) - a leakage trace; (b) - zoom on a leakage trace’s portion which includes
points of interest that are characterized by red crosses; (c) - Heatmap between T and
WΘ)

{l0, . . . , lu−1} of u points of interest. Convolution operation between a trace T and a filter WΘ
follows the equation:

(T~WΘ)[i] =
n∑
j=0

(
T
[
j + i− n

2

]
×WΘ[j]

)
,

such that,

T
[
j + i− n

2

]
×WΘ[j] =

{
θj ×T

[
j + i− n

2
]

if (j + i− n
2 ) ∈ {l0, . . . , lu−1},

ε otherwise. (6.3)

where ε ≈ 0 and θj denotes the weight related to the index j (i.e. WΘ[j]).
Denote T a leakage trace such that (T~WΘ)[i] covers the u relevant time samples {l0, . . . , lu−1}
and (T~WΘ)[i+m] covers less than u of those time samples. BecauseWΘ maximize the detection
of the u PoIs, then,

(T~WΘ)[i] > (T~WΘ)[i+m].

Figure 6.3 provides an example of this operation such that four points of interest can be extracted
from the leakage trace T (see red crosses in Figure 6.3b). In this figure, we show the result of two
convolution operations (T~WΘ)[i] (see purple cross) and (T~WΘ)[i+m] (see green cross) that
share the same information related to a point of interest (see Figure 3.9b). Consequently, when
entanglement occurs the convolved samples share the same relevant information. Therefore, in
our example, the PoI is spread over the two convolved samples. By increasing the size n of the
filters, we increase the entanglement, consequently, more PoIs are shared between these convolved
points. Thus, for a given filterWΘ ∈ Rn, the point of interest is spread over 2n convolved samples.
If the Evaluator wants to precisely define the temporal space where the points of interest occur,
we recommend minimizing the length of the filters in order to reduce the risk of entanglement
and ease the training phase.
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(a) Filter size = 1. (b) Filter size = 5.

(c) Filter size = 11. (d) Filter size = 15.

Figure 6.4: Impact of the filter length on the weights Θ̄ introduced in Equation 6.2.

We illustrate this property by considering different scenarios on the ChipWhisperer dataset with
a fixed neural network architectureh. To efficiently evaluate the impact of the length of the filter,
we select a wide range of lengths (i.e. in {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 50, 75, 100}) and
visualize the weights Θ̄ to experimentally verify the previous claim. The shorter the length, the
less the informative time samples are spread over the convolved traces. In addition, comparing the
results provided by the SNR (see Figure 3.9b) with Figure 6.4 shows that the weight visualization
succeeds in recovering the location of the points of interest. The number of samples is divided by
2 because of the pooling stride value (i.e. 2) that we used in the first convolutional block. Thus,
the weight visualization is not directly linked with the temporal instants of a leakage trace T.
However, as the weight visualization is introduced to complement the gradient visualization, it is
mainly useful to evaluate the impact of the model hyperparameters.
Through Figure 6.4, small filters locate information better because the related points of interest
are not shared with a lot of convolved samples, while using larger filters causes entanglement
and provide the detection of “global features”. The latter exploitation could be difficult during
the classification part because the same information is spread over the leakage trace and the
informative weights are almost similar to the noisy convolved samples. Hence, the network can
be less confident on the detection of the resulted PoI and the exploitation phase can be affected.
Indeed, if the weight related to the PoI is 0, the classification part cannot extract the relevant
information provided by this sample. Increasing the entanglement can cause a dramatic impact
on the leakage retrieval. Thus, the resulted training time needed to reach the final performance
could dramatically increase. Another approach consists in linking the length of the filters with the
number of trainable parameters such that the more the number of weights, the longer the training
time. By reducing the entanglement, we can accelerate the training process without significantly
degrading the final performance as the points of interest are extracted (see Figure 6.4a). If the
feature selection part can capture the dependence between the leakage trace and the sensitive
information with small filters, increasing its length does not bring further useful information for
resolving the classification task.

Limitations of small filter size. Questioned by Wouters et al. in [WAGP20], using small
filters have some limitations related to the robustnessi of the training phase. They suggest this

hWe recall that this term has been introduced in Definition 4.2.2.2.
iHere, the robustness refers to the ability of the neural network to provide the same performance while

being trained on datasets which partially differ.
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observation based on the Receptive Field [LLUZ16, IFLF+20] which is similar to the entanglement
[ZBHV20]. Therefore, the concept of entanglement helps us to better understand in which con-
text larger filters can provide more stability. Indeed, increasing the length of the filters spread the
relevant information over multiple convoluted samples. Hence, multiple weights are linked to the
same PoI. During the training phase, the resulted network could be less disrupted to retrieve the
sensitive value because there are multiple ways to extract the point of interest. However, through
Subsection 6.3.1, we will experimentally show that small filters seem not widely impacted by this
issue.

Once the Evaluator sets his convolutional layer, he has to configure the pooling operations to
consider in order to complete the construction on a convolutional block. The following section is
focused on the impact of the common pooling operations on the points of interest detection.

6.2.2 Pooling Operations
Introduced in Subsection 4.2.2, the pooling layer aims at reducing the dimension of the output
of the convolutional layer (i.e. convolved leakage trace) while preserving the relevant information
extracted by the filters. However, depending on the pooling operation the Evaluator considers,
some distinctions can be highlighted. In this section, we compare the two widely used pooling op-
erations, namely average pooling and maxpooling, that we briefly introduced in Subsection 4.2.2.

Average pooling operation. Let T[l] be the input of the lth convolutional block and W [l]
Θ ∈

Rn a filter related to the same convolutional block. Let ps[l] be the pooling stride related to the
lth convolutional block. Assume that the jth convolved sample (T[l] ~W

[l]
Θ )[j] covers u[l]

1 relevant
information {l0, . . . , lu[l]

1 −1} and includes the sample with the most of relevant information l∗opt. on
the targeted sensitive variable. The resulted ps[l] convolved samples are covered by the ith pooling
sample AvgPool(T[l] ~W

[l]
Θ )[i] such that,

AvgPool[l](%(T[l] ~W
[l]
Θ )))[i] =

i+ps[l]∑
j=i

%(T[l] ~W
[l]
Θ )[j]
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= 1
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2

]) .

Because (k + j − n
2 ) ∈ {l0, . . . , lu[l]

1 −1}, θ
[l]
k × T[l][k + j − n

2 ] > 0 is true only for the u[l]
1 points

of interest it covers (see Equation 6.3). Following the SELU function (see Equation 4.8), we can
simplify our solution such that %(x) = λ · x.

On the other hand, assume that the (i+m)th pooling sample AvgPool(T[l] ~W
[l]
Θ )[i+m] covers

(u[l]
1 + u

[l]
2 ) points of interest {l0, . . . , lu[l]

1
+ l

u
[l]
2
− 1} such that it also includes l∗opt.. It this setting,

we assume that its u[l]
1 points of interest are shared with AvgPool(T[l] ~ W

[l]
Θ )[i]. Thus, from

similar approach, we can observe that,

AvgPool[l](%(T[l] ~W
[l]
Θ )))[i+m] ≈ λ

ps[h]

i+m+ps[l]∑
j=i+m

n∑
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u

[l]
1

+l
u

[l]
2
−1}

(
θ
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[
k + j − n
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])
.
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As previously mentioned, θ[l]
k ×T

[l][k+ j− n
2 ] > 0 is true only for the (u[l]

1 +u
[l]
2 ) points of interest

it covers (see Equation 6.3), i.e. when (k + j − n
2 ) ∈ {l0, . . . , lu−1}. Therefore,

AvgPool[l](%(T[l] ~W
[l]
Θ )))[i+m]− AvgPool[l](%(T[l] ~W

[l]
Θ )))[i] =

λ

ps[h]
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u
[l]
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+l
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[l]
2
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[
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2

])
.

Therefore, using the average pooling operation preserves the unshared information when two
consecutive overlapped pooling operation are performed which is beneficial to keep the maximum
amount of information related to the targeted sensitive variable.

MaxPooling operation In the case where the MaxPooling is used, then,

MaxPool[l](%(T[l] ~W
[l]
Θ )))[i] = max

j∈{i,...,i+ps[h]}

(
%(T[l] ~W

[l]
Θ )[j]

)
= l∗opt.,

and,

MaxPool[l](%(T[l] ~W
[l]
Θ )))[i+m] = max

j∈{i+m,...,i+m+ps[h]}

(
%(T[l] ~W

[l]
Θ )[j]

)
= l∗opt..

Therefore,

MaxPool[l](%(T[l] ~W
[l]
Θ )))[i+m]−MaxPool[l](%(T[l] ~W

[l]
Θ )))[i] = 0.

When MaxPooling is used, if two consecutive pooling computation share the same optimal leak-
age l∗opt., then this information is spread over the pooling samples. Furthermore, because l∗opt. is
the only sample selected, all other leakages are discarded. Thus, if the Evaluator considers the
maxpooling operation, he can lose information that seems less important while it is essential for
solving the classification task. For this reason, we recommend using average pooling as much as
possible because no relevant points are discarded. This observation is in accordance with [WP21]
that experimentally evaluate the impact of the pooling hyperparameters in a wide range of sce-
narios. Therefore, we will only consider the average pooling operation in the rest of the manuscript.

Once the Evaluator selects the adequate pooling operation to design the feature selection part,
he has to define the number of convolutional blocksj that constitutes the chosen convolutional
neural network. The following section concludes our investigation by evaluating the impact of the
number of convolutional blocks on the extractions of the points of interest.

6.2.3 Number of Convolutional Blocks
In this section, we provide an interpretation of the number of convolutional blocks. As shown
in Subsection 6.2.2, using average pooling has the advantage that unshared information is pre-
served. However, when a large pooling stride is configured, the network confidence on the relevant
information is reduced because the information is divided by pooling stride value after each con-
volutional block. Consequently, the related weights become similar to those of uninformative
samples.

jAs remainder, in this manuscript, a convolutional block is characterized by one convolutional layer
followed by a pooling layer.
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Furthermore, increasing the number of convolutional blocks reduces the trace dimension while
preserving relevant information associated with the leakages. Indeed, in most cases, dim(T[l]) =
dim(T[l−1])
ps[l−1] . Thus, for each additional convolutional block, the distance between the relevant points

is reduced by a factor which depends on the pooling stride value. Consequently, if the Evalua-
tor has to deal with a cryptographic module, in which hiding countermeasures are implemented,
adding convolutional blocks is useful to reduce the desynchronization effect, and thus, retrieving
the points of interest is eased. By adding more convolutional blocks, we can drastically reduce
the impact of desynchronization by choosing an appropriate pooling stride ps[l].

To illustrate this phenomenon, we visualize the weights Θ̄ associated with four parametric models
FΘ configured with different numbers of convolutional blocks. Indeed, to efficiently evaluate its
impact, we select a wide range of numbers of the convolutional blocks (i.e. in {1, 2, 3, 4, 5}) to
experimentally verify the previous claim. The shorter the number of convolutional blocks, the
less the informative time samples are blurred. Each convolutional block is configured with one
convolutional layer composed by two filters of size 1 and one average pooling layer with a pooling
stride of 2 for each convolutional block. The parametric models are trained on the Chipwhisperer
dataset and the obtained result are illustrated in Figure 6.5. As expected, the model with 1
convolutional block seems to be more confident in its detection as large weight values are assigned
on the related points of interest. However, as we can see, the deeper the network, the less con-
fident it is in its feature detection. In the presence of desynchronization, the Evaluator needs to
find a trade-off between the detection of the desynchronization effect and the preservation of the
maximum amount of information related to the points of interest.

Through this section, we validate our assumption which suggests that the feature selection part
aims at extracting the points of interest from the leakage traces. Introduced as a complement of
the gradient visualization, the weight visualization tool and the heatmaps have been defined to
explain and interpret the impact of model hyperparameters that composed the feature selection
part. Their application allows us to define some guidelines that the Evaluator can follow in order
to design a convolutional neural network. Our observations can be summarized as follows:

• Length of the filters – As illustrated in Figure 6.4, smaller filters tend to identify local
features, which is expected in side-channel context, while larger filters focus on global
features. In addition, increasing the length of the filters spreads the relevant information
over convolved samples. This phenomenon causes a larger training time as the weights
related to informative samples converge towards those of uninformative samples. Thus,
using fitlers with small length seem favourable from an attack perspective.

• Pooling operations – While the average pooling captures all the points of interest induce
in a leakage trace, the maxpooling operation only keeps the time sample which provides
the most of information regarding the targeted sensitive variable. Thus, considering the
latter operation can be problematic from a performance perspective because some points
of interest can be discarded which is an undesired situation. Hence, even if the average
pooling is impacted by uninformative samples, we suggest the Evaluator to consider the
it instead of the maxpooling in order to mitigate this issue.

• Number of convolutional blocks – Because of the pooling operations, increasing the
number of convolutional block reduces the confidence of network in its ability to extract the
sensitive information. However, thanks to the pooling stride value, adding convolutional
block is beneficial to reduce the desynchronization effect. Thus, the Evaluator has to find
a trade-off between the network confidence and the reduction of the desynchronization
effect.

SUM UP...
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(a) Number of convolutional blocks = 1. (b) Number of convolutional blocks = 2.

(c) Number of convolutional blocks = 3. (d) Number of convolutional blocks = 4.

Figure 6.5: Impact of the number of convolutional blocks on the weights Θ̄ introduced in
Equation 6.2.

From the observations provided in this section, we propose a methodology for designing suitable
feature selection part on a set of desynchronized leakage traces which implement a random delay
effect. But first, we propose a solution when the Evaluator has to deal with a set of synchronized
leakage traces.

6.3 Methodology for CNN Architectures

6.3.1 Application on Synchronized Traces
Methodology. According to the observations made in Subsection 6.2.3, adding convolutional
blocks reduces the distance between the samples in order to ease the detection of the desynchro-
nization effect. When the Evaluator wants to build a convolutional neural network such that
leakage traces in the training, validation and test sets are synchronized, he does not need to
configure more than one convolutional block. Indeed, using more than one convolutional block
has two major drawbacks. First, in the case when the points of interest are temporally close
to each other, adding convolutional blocks increases the risk of entanglement. As we showed in
Subsection 6.2.1, entanglement can generate a spreading of relevant information through the con-
volved time samples and thus, reducing the network confidence (see Definition 6.1.3.1). Secondly,
because of the pooling operation (see Subsection 6.2.2), some information can be lost: the same
most relevant feature can be spread over the convolved samples (i.e. maxpooling) or each relevant
information can be reduced following the pooling stride value (i.e. average pooling). Thus, when
no desynchronization occurs, we recommend setting the number of convolutional blocks to 1 in
order to ease the detection of the points of interest.
In [MPP16] and [BPS+20], the authors show that the fully-connected neural networks can be
a good alternative when the Evaluator wants to build a suitable architecture for classifying a
set of synchronized leakage traces. However, fully-connected neural networks are only composed
of fully-connected layers. Thus, considering a convolutional neural network, which is viewed as
a FCNN where each neuron of the layer l is linked with a reduced set of neurons of the layer
l − 1 [Kle17], is beneficial in side-channel context as only a few samples are needed for decision-
making. Using a CNN with short filter helps to focus its interest on local perturbations and
dramatically reduces the complexity of the neural network. It is thus recommended to use CNNs



122 CHAPTER 6. DESIGNING DISCRIMINATIVE MODELS IN PROFILED SCA

with the shortest filters possible (i.e. , 1). In [WAGP20], Wouters et al. suggest that considering
filters of size 1 perform an additional preprocessing to the leakage traces in order to enhance the
points of interest extraction. Finally, the number of filters and the dense layers that compose the
classification part should be managed depending on the device under test.

DPA contest-v4. DPA contest-v4 is the easiest dataset because we consider it without coun-
termeasures, consequently the relevant information leaks a lot. Thus, it is straightforward for the
network to extract sensitive variables. To generate the convolutional neural network, we consider
only two filters of size 1 and compose the classification part with one dense layer of 2 nodes.
Finally, we set our learning rate to 10−3. The network is trained for 50 epochs with a batch size
of 50.
Visualization tools help evaluate the training process (see Figure 6.6). As explained in Subsec-
tion 6.1.3, visualization of the weights shows that the feature selection part is accurately set
because the points of interest are correctly extracted. Indeed, comparing Figure 6.6b with the
SNR computation (see Figure 3.10b) is helpful to verify this observation. Furthermore, by visu-
alizing the gradient (see Figure 6.6c), we can consider that the classification part is also working
accurately because the points of interest exploited at the end of the network are the same as those
recognized by the feature selection part. Thus, no information is lost between the convolutional
part and the end of the network.

(a) Partial security graph over 100 attacks.

(b) Weight visualization.
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(c) Gradient visualization.

Figure 6.6: Evaluation of the DPA contest-v4 dataset.

Then, we compare the resulted performance with [PHJ+18] in which the authors published the
best performance on DPA contest-v4 dataset using deep learning techniques. The results related
to N̄trank seem to be similar to those we obtain. However, when we compare the related network
complexity, we observe a non-negligible improvement when our methodology is considered. Indeed,
the complexity associated with our network is 6 times lower than the previous most powerful
model. By reducing the complexity of the network, we achieve a remarkable reduction in training
time (see Table 6.2).
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Table 6.2: Comparison of performance on DPA contest-v4

State-of-the-art Our
([PHJ+18]) methodology

Complexity (trainable parameters) 52, 112 8, 782
N̄trank 4 3
Training time (seconds) 1, 000 23

AES_HD. For the evaluation of this dataset, we design a convolutional neural network such
that the number of filters is set to 2. Then, the classification part is configured with 1 dense layer
of 2 neurons. Finally, we set the learning rate to 10−3. The training runs for 20 epochs with a
batch size of 256.
Looking at the Figure 6.7, we can conclude that our model is not optimized. Indeed, the weight
visualization shows us that the selection of features is effective because our network can detect
the relevant leakage points. When we look at the SNR computation (see Figure 3.11b), the
sensitive information leaks between the time samples 950 and 1, 050 which corresponds to the
features detected by the feature selection part. However, by visualizing the gradient, we observe
that the overall neural network is not enabled to significantly recognize the points of interest (see
Figure 6.7c). Thanks to these visualization techniques, we can identify which part of the network
needs optimizing. Currently, no tool is available that allows interpretation of the classification
part to improve its efficiency. However, even if the classification part is not powerful, our network
still performs much better than the state-of-the-art.

(a) Partial security graph over 100 attacks.

(b) Weight visualization.
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(c) Gradient visualization.

Figure 6.7: Evaluation of the AES_HD dataset.

We compare our results with the architecture proposed in [KPH+19] where they achieved the
best performance on this dataset. On average, N̄trank reaches 25, 000 traces. By applying our
methodology, we dramatically improve this result. First, the new architecture has 31, 810 times
fewer parameters. Now, only 31 seconds are necessary to train the network. Finally, our network
outperforms the previous state-of-the art network by getting N̄trank around 1, 050 (see Table 6.3)
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while, from Figure 6.7a, we observe that the best side-channel attack retrieves the secret key in
less than 100 leakage traces.

Table 6.3: Comparison of performance on AES_HD

State-of-the-art Our
([KPH+19]) methodology

Complexity (trainable parameters) 104, 401, 280 3, 282
N̄trank 25, 000 1, 050
Training time (seconds) 6, 075 31

ASCAD-v1 (synchronized traces). To generate our convolutional neural network, we
initialize the number of filters to 4 with a length of 1. Then, two dense layers composed of 10
neurons complete the neural network. Thanks to the one cycle policy, we are able to configure
our learning rate in the range [5 × 10−4; 5 × 10−3]. The network is trained for 50 epochs with a
batch size of 50.
Next, we compare our result with the original paper [BPS+20]. Surprisingly, we can notice that
the network detects more points of interest than the mask and the masked value. By visualizing
the weights, we can evaluate that the neural network recognizes relevant information related to
the mask and the masked values, although a sensitive area (between time samples 380 and 450,
see Figure 6.8c) is detected by the neural network whereas nothing appears on the SNR (see
Figure 3.13b). Like the DPA contest-v4 experiment, the weight visualization and the gradient
visualization are similar. The classification part appears to be optimized because no information
is lost between the end of the feature selection part and the output of the neural network.

(a) Partial security graph over 100 attacks.

(b) Weight visualization.
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(c) Gradient visualization.

Figure 6.8: Evaluation of the ASCAD dataset with no desynchronization.

When we compare the new performances, we notice that our new network is 3, 930 times less
complex than the original paper. In terms of performance, our simpler neural network achieves
N̄trank in 191 leakage traces in average while the best attack retrieves the secret key in less than
10 leakage traces. In comparison, the original neural network reaches the same performance only
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after 1, 146 traces (see Table 6.4).

Table 6.4: Comparison of performance on ASCAD-v1 with N0 = 0

State-of-the-art Our
([BPS+20]) methodology

Complexity (trainable parameters) 66, 652, 444 16, 960
N̄trank 1, 146 191
Training time (seconds) 5, 475 253

Through this section, we validate the benefits of our methodology on a wide range of scenarios
when no hiding countermeasure is implemented. From the obtained results, we can suggest that
the convolutional neural networks do not have to be complex in order to extract the secret key
manipulated by the cryptographic module. However, this observation cannot be extended to large
leakage traces as our work is applied only on very small leakage traces (i.e. less than 10, 000 time
samples) where few sensitive variables leak (i.e. less than 10). But this scenario corresponds to a
classical evaluation process where the Evaluator selects a small portion of a leakage trace where
the targeted sensitive variable leaks.

In the following section, we propose another methodology that the Evaluator can consider in order
to mitigate the random delay issue.

6.3.2 Random Delay Effect
As mentioned in Subsection 3.4.2, the random delay countermeasure significantly reduces the
correlation between the targeted sensitive variable and the time samples where it leaks. The
higher the amplitude of the random delay, the lesser the probability of observing the execution
of a given cryptographic operation for a certain period of time. Thus, adding desynchronization
effect does not reduce the information contained in a set of leakage traces, but, retrieving the
secret is more challenging. In this section, we aim to find a methodology such that we design
a Θ-parametric model FΘ to deal with random delay effect while the performance to solve the
classification task is preserved.

Methodology. To build a suitable neural network architecture, we suggest using a new method-
ology that helps the detection of desynchronization effect while reducing the dimension of the
leakage traces so as to focus the neural network on the points of interest (see Figure 6.10). For
a better understanding, we propose to apply the following methodology on a toy example. We
simulate a set of 50, 000 leakage traces (45, 000 for the profiling phase, 5, 000 for the validation
phase) such that we assume that each leakage trace is configured by 4, 000 time samples with 5
points of interest equally distributed the leakage trace. In addition, a random delay effect with
a maximum amplitude of 100 is considered in order to assess our proposition. The simulated
leakage model does not induce interactions between bits (i.e. G1) such that all bits have the same
weighting. Hence, the ith time sample of the simulated leakage trace T is defined as follows:

T[i] =
{

1 · Y [3] + 1 · Y [6] + Z[i] if i = 1,
Z[i] otherwise, (6.4)

where Y [b] = Sbox[X ⊕ k∗][b] denotes the bth bit of the output of the Sbox and Z[i] is a Gaussian
noise following N (0, σ2) such that σ2 = 0.1.
The related SNR computation is provided in Figure 6.9d. The methodology can be described as
follows, such that the feature selection part can be divided into three blocks:

• As shown in Subsection 6.2.1, the first layer aims at minimizing the length of the filters in
order to mimic the entanglement between each point of interest and extract the relevant
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(a) Heatmap of the first convolutional block. (b) Heatmap of the second convolutional
block.

(c) Heatmap of the third convolutional block. (d) Signal-to-noise ratio.

Figure 6.9: Evaluation of the methodology on a simulation characterized in Equation 6.4.

information. Reducing the length of the filters helps the network to focus its interest of local
perturbation and consequently, can get a precise characterization of the points of interest.
We suggest setting the length of the filters in the first convolutional block, to 1 in order
to optimize the entanglement minimization. This can also be explained as an automatic
preprocessing phase where the neural network adjusts the leakage traces in order to enhance
the classification task [WAGP20]. Then, the first pooling layer is set to ps[1] = 2 in order to
reduce the dimension of the trace and help detect desynchronization. In order to confirm
this claim, we compute the heatmap of the first convolutional block (see Figure 6.9a).
Therefore, we are able to evaluate which neurons are activated through this convolution.

• The second block tries to detect the point of interest impacted by the random delay effect
such that ARD be its maximum amplitude. By applying filter length of size ARD

ps[1] , we focus
the interest of the network on the detection of the desynchronization of each leakage trace.
With this proposition, we are assured that the relevant pattern is included in the filter.
Hence, the leakage will be necessarily extracted. The network obtains a global evaluation
of the leakages by concentrating its detection on the leakage desynchronization and not
on the leakages themselves. Then, to focus the information of a single sample, we set
the pooling stride ps[2] to ARD

ps[1] . This maximizes the reduction of the intermediate trace
dimension while preserving the information related to the targeted sensitive variable. This
process is illustrated in Figure 6.9b. Thanks to the heatmap, we evaluate that the SNR
peaks are perfectly identified by the convolutional block. Indeed, by comparing the activity
detected by the convolution operation with the SNRs peaks (see Figure 6.9d), we can argue
that the features are correctly selected by the filters of the 2nd convolutional block.

• The third block aims at reducing the dimensionality of each intermediate trace in order to
focus the network on the relevant points and to remove any irrelevant ones. In the case
where our leakage traces have u points of interest, then, only the u time samples help the
network to make a decision. By dividing the output of the second convolutional block into
u different parts, we force the neural network to only focus its interest on the PoIs. Indeed,
each part contains information related to a single spread leakage. This process reduces
the dimensionality of each intermediate trace by u such that each sample of the output of
the 3rd convolutional block characterizes a point of interest. Furthermore, applying this
technique limits the desynchronization effect because we force the network to concentrate
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Predicting layerFlatten FC layers

Minimizing entanglement

Desynchronization 
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Dimensionality reduction

Average Pooling Average Pooling Average Pooling

Figure 6.10: Convolutional neural network architecture mitigating random delay effect.

the initial desynchronized PoIs into a single sample. This property can be visualized in
Figure 6.9c. In our simulation, we can identify u = 5 SNR peaks. In order to differentiate
informative from uninformative convolved samples, we reduce the leakage trace dimension
into 8 samples such that each of them contains the information related to the targeted
sensitive variable.

Through Figure 6.9, the Evaluator can assess how a point of interest is spread through the feature
selection part. Indeed, when he visualizes the heatmap after each convolutional block, he is able
to evaluate the evolution of the dimension of the leakage trace as well as the related activation.
Through the visualization of the heatmap of the 3rd convolutional block (see Figure 6.9c), the
Evaluator can define the amount of relevant information included in each portion of the leakage
trace such that the sample at index 2 contains the information related to the portion of the leakage
trace in [1, 000, 1, 500] (see Figure 6.9d). The other samples define the information related to the
portion of the leakage trace. Thus, through the proposed feature selection part, we reduce the
dimension of the leakage traces such that only the informative time samples are kept. This reduces
the complexity of the neural network as well as the resulted training time which is beneficial from
an evaluation perspective (see Subsection 6.1.1). An overview of this methodology is provided in
Figure 6.10.

AES_RD. Our new architecture can be set as shown in Figure 6.10. In the second convolu-
tional block, the length of the filters and the pooling stride are configured following the value of
the desynchronization effect (i.e. ARD

ps[1] ). As ARD is nearly equal to 1, 000 [WAGP20], the length
of the filters n[2] as well as the pooling stride ps[2] are set to 500. More details about these hyper-
parameters are provided in Table 6.8. Then, two fully-connected layers composed of 10 neurons
define the classification part. Thanks to the one cycle policy, we are able to set our learning rate
in the range

[
10−4; 10−3]. The network is trained for 50 epochs with a batch size of 50.

Table 6.5: Comparison of performance on AES_RD

State-of-the-art Our
([KPH+19]) methodology

Complexity (trainable parameters) 512, 711 69, 080
N̄trank 10 5
Training time (seconds) 4, 500 1, 965

When our methodology is applied, the impact of the desynchronization is dramatically reduced
and the performance of the neural network is also less affected by this countermeasure. Through
Figure 6.11, we observe the most efficient attack retrieves the secret key in 1 leakage trace while the
worst case, with 10 leakage traces. Compared with the state-of-the-art [KPH+19], the performance
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Figure 6.11: Partial security graph over 100 attacks on the AES_RD dataset.

N̄trank is similar but the complexity related to our network proposal is greatly reduced (7.35 times
smaller). This reduction improves the training time by a non-negligible factor and consequently,
ease the application of deep learning discriminative models in the evaluation process.

ASCAD-v1 with ARD = 50. Thanks to Figure 6.8, we set u = 3 because three global
leakage areas appear. As the previous paragraph, the hyperparameters are configured following
Figure 6.10. In this dataset, the maximum amplitude of random delay equals 50. Thus, the
length n[2] of the filters and the pooling stride ps[2] defined in the second convolutional block
are configured to ARD

ps[1] = 2. Thus, the neural network focuses its interest on the detection of the
desynchronization effect. In order to preserve the information related to the points of interest, we
set ps[3] to 4. This generates an output with 3 samples at the end of the feature selection part.
More details about these hyperparameters are provided in Table 6.8. The best performance is
obtained when we configure three fully-connected layers with 15 neurons. We apply a range of
learning rate between [5 × 10−4; 5 × 10−3] and we set the number of epochs to 50 with a batch
size 256.

Table 6.6: Comparison of performance on ASCAD-v1 with ARD = 50

State-of-the-art Our
([BPS+20]) methodology

Complexity (trainable parameters) 66, 652, 444 87, 279
N̄trank > 5, 000 244
Training time (seconds) 5, 475 380

Applied on this dataset, our methodology outperforms the state of the art remarkably. In the
original paper, Prouff et al. did not reach a constant guessing entropy of 1 with 5, 000 leakage
traces [BPS+20]. Applying our methodology, we converge, in average, towards a constant guessing
entropy of 1 with 244 leakage traces (see Figure 6.12a) while the complexity of our networks is
divided by 763. As a reminder, the performance related to the neural network trained with
synchronized traces converges towards a guessing entropy of 1 with around 200 traces. Thus,
we succeed in dramatically mitigating the random delay effect without impacting the network
performance.

ASCAD-v1 with a Random delay: ARD = 100. Finally, we apply our methodology on
an even more complex system implementing a random delay with ARD = 100. As the previous
paragraphs, we set our network with the hyperparameters detailed in Table 6.8. In the second
convolutional block, we set the length of the filters and the pooling stride to 50 to focus the interest
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(a) ARD = 50. (b) ARD = 100.

Figure 6.12: Partial security graph over 100 attacks on the ASCAD dataset implementing
a random delay effect.

Table 6.7: Comparison of performance on ASCAD-v1 with ARD = 100

State-of-the-art Our
([BPS+20]) methodology

Complexity (trainable parameters) 66, 652, 444 142, 044
N̄trank > 5, 000 270
Training time (seconds) 5, 475 512

of the network on the desynchronization effect. In order to preserve the information related to the
leakages, we set ps[3] to 2. This results in an output with 3 samples which is similar to ASCAD-v1
with a random delay of 50. Thanks to the one cycle policy, we define our learning rate in the
range

[
10−3; 10−2] to allow a robust training and to reach a good local minimum. As before, our

network is trained during 50 epochs with a batch size 256.
In comparison with [BPS+20], our methodology generates a neural network that is far less complex
and N̄trank is outperformed. Indeed, we converge towards a constant guessing entropy of 1 with
270 leakage traces while the original paper couldn’t converge with 5, 000 leakage traces (see
Table 6.7). In addition, over 100 consecutive attacks, the Evaluator retrieves the secret key
with less than 15 leakage traces in the best-case scenario (see Figure 6.12b). Furthermore, by
reducing the network complexity, the training process can be performed much faster. Comparing
this performance with Subsection 6.3.1, we note that our methodology dramatically reduce the
impact of the desynchronization. Indeed, the performance of the two models is similar, thus, our
methodology eliminates the effect of the random delay countermeasure.

Table 6.8: Convolutional hyperparameters for each dataset

Layer Length of the filters Pooling stride Number of filters

AES_RD
1st convolutional block 1 2 8
2nd convolutional block 500 500 16
3rd convolutional block 3 bT [2]

u
c = 1 32

ASCAD-v1
(N [0] = 50)

1st convolutional block 1 2 32
2nd convolutional block 25 25 64
3rd convolutional block 3 4 128

ASCAD-v1
(N [0] = 100)

1st convolutional block 1 2 32
2nd convolutional block 50 50 64
3rd convolutional block 3 2 128
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6.3.3 Discussion on Discriminative Neural Networks in Side-
Channel Analysis

Methodology’s improvement. This methodology can be applied to implementations where
random delay as well as Boolean masking are considered by the Developer. However, to construct
the most efficient convolutional neural network, the fully-connected layers and the optimizer hy-
perparameters have to be adapted following the targeted implementation. Indeed, as observed
through Subsection 6.3.1 and Subsection 6.3.2, the Evaluator has to monitor those hyperparam-
eters in order to adequately solve the classification task. This aspect should be a part of a future
work. Regarding the proposed methodology, some improvements can be brought. Indeed, as ex-
perimentally shown by Wouters et al. [WAGP20], the length of the filters can be reduced without
altering the related model performance. However, no theoretical demonstration or guidelines have
been provided to ease the construction of convolutional neural networks. Finally, the proposed
neural network can be optimized with the related work proposed in deep learning based side-
channel context (see Subsection 4.4.2) or by finding the most suitable hyperparameters like the
weight initialization technique [LKP20] and the activation function [KFJP21].

Network Complexity. Through Subsection 6.3.1 and Subsection 6.3.2, we demonstrate that
the discriminative models applied in deep learning based side-channel context do not have to
be complex to perform well on low leakage trace dimension. This observation has been then
validated by the side-channel community on small [LKP20, WPP20, WAGP20, PP21, WWJ+21,
PWP21, RWPP21] and large leakage traces (i.e. D > 100, 000 time samples) [MBC+20]. However,
to defeat the random delay effect, we observe that the neural network complexity has to be
increased. Thus, from the Evaluator point of view, performing a preprocessing phase that reduces
the desynchronization effect can be beneficial from a network complexity perspective. In addition,
if the Evaluator is confronted to a cryptographic module implementing hiding countermeasures,
Zhou and Standaert suggest performing a preprocessing phase as it can be beneficial from an
attack perspective [ZS19]. Finally, to assess the perfect suitability of discriminative model to
perform side-channel attacks, the Evaluator can question its relevance regarding the performance
of the generative approach introduced in Chapter 5.

Comparison with Generative models. When the discriminative approaches are consid-
ered, a major drawback can be highlighted regarding the architecture configuration (see Subsec-
tion 6.1.1). The more effort the Evaluator spends on the hyperparameter tuning of the network
architecture, the more efficient the resulted attack is expected. Even if the proposed methodol-
ogy tends to reduce this gap, it remains a major issue for the construction of a suitable neural
network. In addition, due to their black-box property, the discriminative models are difficult to
interpret. However, the main benefit of this approach is about automatically combining the point
of interests in order to mitigate the data randomization countermeasure (e.g. the masking effect).
To compare both approaches, the following generative models are designed with respect to the
conditional variational autoencoder proposed in Chapter 5. For being compliant with Subsec-
tion 5.4.1, we focus the interest of the generative models on the most relevant samples only, while
the discriminative model considers all the samples of the leakage traces. Indeed, as highlighted in
Subsection 5.3.3, increasing the number of irrelevant time samples highly impact the network com-
plexity of the cVAE-ST and the training time without altering the related performance. While our
work does not investigate the dimensionality reduction techniques for improving the generative
model, we want to evaluate this new proposition in side-channel field.
First, on Figure 6.13a, we can visualize the rank evolution of the generative and the discriminative
models on the DPA contest-v4 dataset. While a discriminative model can retrieve the secret key
with 4 leakage traces, a generative model reaches the same performance depending on the number
Nv of latent samples. As mentioned in Subsection 5.2.4, the value of Nv depends on the ability of
the conditional variational autoencoder to correctly approximate Pr[T|Y, φ]. The higher the Nv,
the more confident the resulted attack. This observation can be made in Figure 6.13a. Indeed, if
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(a) DPA contest-v4 (b) AES_HD (c) ASCAD-v1

:

Figure 6.13: Mean rank evolution for generative and discriminative models.

Nv = 1, two leakage traces are needed to retrieve the secret key. However, a poor rank stabilization
is observed. To rectify this point, increasing the Nv’s value preserves a constant rank convergence
towards 1.

The same observation can be made when the AES_HD dataset is considered. Indeed, when the
Nv value increases, a rank stabilization is observed when the number of attack traces grows. In
addition, Figure 6.13b highlights a better model when the generative approach is considered. In-
deed, for Nv = {100, 1000}, the resulted model converges towards a constant rank of 1 with 250
attack traces. Even if the discriminative approach directly estimates Pr[Y |T], this figure indi-
cates a lower performance when classical deep learning based side-channel models are considered.
Indeed, on average, the related amount of leakage traces that are needed for retrieving the secret
key is about 1, 000. As illustrated by Ng and Jordan [NJ02], this result suggests that a better
discriminative model can be found on this dataset. This is in accordance with the claim provided
in Subsection 6.3.1. Indeed, an optimal discriminative model should be, at least, as efficient as a
generative approachk because it optimizes an approximation of the true unknown PDFs Pr [Y |T].
However, finding the best discriminative model can be difficult due to the broad hyperparameter
selection. This result highlights the benefits of the cVAE-ST in comparison with the classical deep
learning-based side-channel models from a practical perspective.

One benefit of the discriminative approach is to automatically recombine the point of interests.
In opposition, the generative approach does not take advantage of this property. Through Fig-
ure 6.13c, we can visualize the benefits of automatically combining the point of interest. Indeed,
the discriminative approach converges faster towards a constant rank of 1. This result could be
explained by the ability of the discriminative model to find a custom combining function that
maximizes the posterior probabilities Pr[Y |T]. Hence, this custom unknown function can be more
adapted for the targeted dataset. On the other hand, the cVAE-ST model is trained on combined
leakage traces that are constructed from classical approaches (i.e. optimal product combining).
Unfortunately, those combining functions are not fully adapted for all the targeted cryptographic
modules. Consequently, when masking implementations are considered, a discriminative approach
can provide better result than a generative approach.

These results highlight the benefits and the limitations of classical discriminative models against
the cVAE-ST. While the configuration of cVAE-ST is simple in comparison with the discriminative
models, the latter approach can perform, at least similarly, in all attack scenarios.

kWhile this statement can be justified from a Machine Learning perspective [NJ02], it can be qualified
in Side-Channel context as some simplification can be made (see Equation 3.4).
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6.4 Conclusion
This chapter proposes a new methodology for designing convolutional neural networks that fits
with the Evaluator’s restrictions. To construct such proposition, we analyze the interpretability
of convolutional neural networks by evaluating the impact of different model hyperparameters
that compose the feature selection part. As the latter extracts the points of interest from the
leakage traces, we ease its construction in order to enhance the model’s performance. Thus, we
introduce two visualization tools that help analyze which patterns are the most influential during
the training process. These patterns are similar to points of interest which are well known in the
side-channel context. We demonstrate the theoretical effect of the length of filters, the pooling
operations and the number of convolutional blocks and we use these visualization techniques in
order to check the validity of our demonstrations. These visualization tools help us find a method
of generating an appropriate methodology with respect to the Evaluator’s constraints, i.e. finding
a good trade-off between leakage detection, network complexity and training time. Through the
application of the methodology, we dramatically reduce the network complexity without altering
the attack performance. This illustrates that the neural networks needed to perform side-channel
attacks do not have to be complex.

Which solution should the Evaluator consider? To conclude about Part II, the Eval-
uator can question the relevance of using the discriminative or the generative approach in side-
channel context. Both approaches (i.e. generative vs. discriminative) should be considered
independently. However, depending on the Evaluator’s objective, a solution can be preferred.
Typically, if the Evaluator wants to build a neural network in order to get a first insight into
how well a task can be solved, the construction of cVAE-ST seems natural as it provides a fully
interpretable generative model. This approach can be helpful to evaluate the feasibility of an
attack and get a security bound of a device. In addition, if the objective of the Evaluator is to
deeply characterize the component behavior (i.e. leakage model), using such approach is benefi-
cial from interpretability and explainability perspective. Furthermore, in [NJ02], Ng and Jordan
illustrate that a generative model can converge towards its minimal asymptotic error faster than a
discriminative model. However, after a certain period of time, a discriminative approach converge
towards a better solution and outperforms a generative classifier.

Figure 6.14: Difference between the probabilistic discriminative Pr [Y |T] and the proba-
bilistic generative Pr [T|Y ] approaches given a binary classification problem.

Thus, if the Evaluator wants to perform the most powerful side-channel attack, considering the
discriminative approach is the most suitable solution. Indeed, a discriminative model is specifically
trained to optimize the conditional Θ-parametric probability distribution Pr [Y |T,Θ]. Hence, it is
built to capture the decision boundary of the underlying problem (see Figure 6.14). In opposition,
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the generative models tackle a more difficult task than analogous discriminative models as it re-
quires to capture the behavior of the cryptographic module given each class Y ∈ Y . An example
for a binary classification task is provided in Figure 6.14. As the discriminative model directly
computes Pr [Y |T,Θ], it generally outperforms generative models at conditional prediction tasks
[NJ02].

While the Evaluator’s goal is to converge towards the optimal Adversary (see Objective 3.3.1.1),
the following part of this manuscript will be focused on the discriminative approach only as it
provides the best performance result [NJ02]. More precisely, Part III tackles the problem of opti-
mal discriminative model by proposing new loss functions adapted from the optimal distinguisher
detailed in Definition 3.3.1.4.

WHAT’S NEXT?
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Part III

Towards a Better Optimization of
the Discriminative Models in Deep
Learning Side-Channel Attacks

135





Chapter 7

Ranking Loss: Maximizing the
Success Rate
As defined in Definition 3.3.1.4, the optimal distinguisher rule retrieves the secret key, manipulated
by the cryptographic module, from the true unknown conditional probability Pr[T|Y ] or Pr[Y |T].
Thus, the Evaluator has to construct a Θ-parametric model that approximates such solutions
through the use of an adequate loss function. While finding this learning metric is considered as a
non-trivial task [PHJ+18], this chapter proposes to reduce this gap by deriving a new loss function
from the Learning to Rank field. After a short introduction of this field, we detail its link with
the success rate metric (see Equation 3.6). By adapting this new loss function, called Ranking
Loss (RkL), for the side-channel context, we force the learning algorithm to explicitly select
the model that optimizes the attack performance by extracting the leakage traces’ information.
Then, a theoretical comparison with the negative log-likelihood loss function is proposed. Finally,
experimental results validate our theoretical observations and suggest that the model trained with
the ranking loss performed, at least, similarly to a model trained with the negative log-likelihood
loss function. The solutions proposed in this chapter have been presented at CHES and published
in the journal IACR TCHES [ZBD+20b].
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7.1 A Learning Metric Adapted for Side-Channel Anal-
ysis

7.1.1 Learning To Rank Approach
“Learning to Rank” refers to supervised machine learning techniques for training a model in
solving a ranking task. While classical supervised learning tasks can be solved by classification or
regression, the learning to rank approach requires other properties than regular classes or scores.

Definition 7.1.1.1 (Ranking task). Given a set of inputs I and a set of queries Q, the ranking
task is characterized by the ability of the learning algorithm to automatically select F ∈ F that
defines the relevance degree of each input in I given a query in Q.

In other words, a model that follows the learning to rank paradigm aims at sorting a list of inputs
with respect to a given query such that inputs with a high degree of relevancy are ranked higher
than inputs with a low degree of relevancy. Thus, it does not care about the exact classes or
scores of each item and favors the relative order between each input.
This task is useful for many applications in Natural Language Processing, Data Mining and In-
formation Retrieval [Liu09, Bur10, Li11a, Li11b]. A typical example of inputs is characterized
by a set of documents such that the ranking Θ-parametric model FΘ learns to sort this set with
respect to q ∈ Q. The relevance of these documents is represented by several grades in a set S.
The higher the grade, the more relevant is the document. To perform such approach, Tie-Yan Liu
[Liu09] defines three strategies: the pointwise approach, the pairwise approach and the listwise
approach.

Pointwise approach. Given a query q ∈ Q, a degree of relevancy has been specified for
each input. Thus, the pointwise approach constructs a Θ-parametric scoring (or ranking) model
FΘ : I ×Q → S that predicts the relevance of an input for a given query. Once this prediction is
made for each element of I, one can sort all the inputs in order to produce a final rank list. To
solve this problem, the classification or the regression task can be considered. In the classification
task, it is expected to assign similar inputs in the same class. Typically, this degree may be
binary (e.g. S = {“irrelevant′′, “relevant′′} or S = {0, 1}) or may contain multiple classes (e.g.
S = {“unsatisfactory′′, “satisfactory′′, “good′′, “excellent′′, “perfect′′} or S = {0, 1, 2, 3, 4}). On
the other hand, the regression means giving similar continuous value to similar inputs, so that we
can assign them identical preferences during the ranking procedure.
In side-channel context, the Evaluator’s goal is to rank a set of hypothetical key K given a leakage
trace T. Thus, the set of queries Q is defined by the set of leakage traces T while the set of inputs
I, that has to be ranked, is characterized by K. While, in our context, the set S denotes the score
associated with each hypothetical sensitive variable (Yk)k∈K in Y , we can rewrite it as S ⊆ R|Y|.
Consequently, the Θ-parametric model can be rewritten as FΘ : T → S such that it predicts the
relevance of observing each hypothetical sensitive variable in Y given a leakage trace T. Indeed,
the Evaluator can query FΘ to retrieve the score related to each hypothetical sensitive variable
(Yk = f(X, k))k∈K, with f : X × K → Y a cryptographic primitive (e.g. output of the Sbox, a
XOR between a plaintext and a hypothetical key) which depends on a known plaintext X and a
key hypothesis k ∈ K. As he knows the plaintext X and the related cryptographic primitive, the
Evaluator is able to assign this set of scores to each key hypothesis in K, and therefore, sorting
the list of key candidates from the most likely element to the less likely one. This entire process
is similar to what the Evaluator does in the attack phase.

Pairwise approach. For a given pair of inputs, the model identifies the most relevant with
respect to q ∈ Q. Thus, the pairwise approach constructs a Θ-parametric scoring model FΘ :
I × I × Q → S that takes a pair of inputs and predicts which is the most relevant for a given
query [BSR+05, BRL07, WBSG10]. Once the model predicts the relative order for each pair of
inputs (I × I), all the results can be embedded into a classical sorting algorithm (e.g. bubble
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Figure 7.1: Transposition between the Pairwise and the Side-Channel paradigms.

sort, insertion sort) in order to provide a global ranking list. In this scenario, a classical example
is to consider a binary classification problem such that given a pair of inputs (u, v) ∈ (I × I) the
model assigns 1 (resp. −1) if u (resp. v) is more relevant than v (resp. u). We denote u . v the
event that u should be ranked higher than v. Thus, the set S = {−1, 1}.
In side-channel context, this approach suggests that the Evaluator considers a pair of sensitive
variable in Y × Y as inputa such that, given a leakage trace T, the Θ-parametric model is able
to define the most likely solution. The comparison between each pair of hypothetical sensitive
variable builds the ranking of the whole model. As previously mentioned, the set of scores S
can be described as S ⊆ R|Y|. Thus, instead of evaluating a pair of inputs, the Evaluator can
directly compare the score associated with each pair of classes in order to obtain a ranking list.
This transposition is illustrated in Figure 7.1. This approach consists in predicting the score
related to each hypothetical sensitive variable included in Y , and then, assigns it to the expected
key hypothesis. The pairwise approach can be linked with the success rate metric considered in
side-channel context. This result will be detailed in Subsection 7.1.2.

Listwise approach. It addresses the learning-to-rank problem in the most natural way, by
taking a list of inputs and returning the ranked list for a given q ∈ Q [XL07, XLW+08, PGH18,
CHX+19]. In comparison with the pointwise and the pairwise approaches, the listwise approach
is quite complex to optimize.
From a side-channel context, it is assumed that the Evaluator can predetermine the relevance of
each hypothetical sensitive variable for a given leakage trace T. In this scenario, the Evaluator
should be able to define a relative order between each irrelevant hypothetical sensitive variable.
While his goal is only to differentiate the correct hypothetical sensitive variable from the irrelevant
ones, this approach seems difficult to consider in practice.

Thus, contrary to the classical learning to rank approach that consists in the comparison between

aThe Evaluator can also consider a pair of key hypotheses in K×K as he knows the targeted crypto-
graphic primitive f : X ×K → Y and the manipulated plaintext X.
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inputs’ relevance, we propose to adapt the “Learning to Rank” approach for the side-channel
context through the comparison of the score, related to each hypothetical sensitive information
(Yk)k∈K, with the other classes. Consequently, for a given input, this approach aims at penalizing
the training process when the score related to the correct hypothetical sensitive variable Yk∗ is
not considered as the most relevant. In the following sections, we demonstrate how the pairwise
approach can be useful to optimize the rank of the secret key in comparison with the other
hypothetical ones. The other learning to rank approaches are beyond the scope of this thesis.

7.1.2 Ranking loss Maximizes the Success Rate
Problem statement. During the certification process, the Evaluator wants to determine
the optimal distinguisher (see Definition 3.3.1.4) so as to minimize the probability of errors or
equivalently, maximize the probability of success of an attack [HRG14]. As mentioned in Sub-
section 3.3.4, this metric is characterized by the success rate of retrieving the secret key k∗ such
that, given a set of Na attack leakage traces Ta = {t0, . . . , tNa−1}, it can be defined as follows:

SRo(FΘ, Na) = Pr
[∑
k∈K

1sNa (FΘ,k)≥sNa (FΘ,k∗) ≤ o

]
, (7.1)

where sNa(FΘ, k) denotes the score related to a key hypothesis k ∈ K. Thus, designing a loss
function which automatically finds a Θ-parametric model that maximizes SR1(FΘ, Na) can be
beneficial from an evaluation perspective.

Pairwise approach and success rate approximation. As mentioned in Subsection 7.1.1,
the pairwise approach aims at defining a relative order between a pair of inputs for a given query.
In the side-channel context, the pair of inputs is characterized by the score related to two key
hypotheses (k, k′) ∈ K×K such that the score sNa(FΘ, k) should be higher than sNa(FΘ, k

′) (i.e.
sNa(FΘ, k) . sNa(FΘ, k

′)). The corresponding loss function maps the scores associated with k and
k
′ and penalizes the training process once the relation sNa(FΘ, k) . sNa(FΘ, k

′) is not respected.
This penalization is exactly what the Evaluator wants to optimize with the 1st order success rate.
Indeed, from Equation 7.1, the 1st order success rate can be approximated through the computa-
tion of the probability that the score related to the secret key k∗ is higher than all key hypotheses.
This means defining the probability that the secret key k∗ is ranked higher than all k ∈ K \ {k∗}.
Let a key hypothesis k ∈ K and a secret key k∗, the probability that sNa(FΘ, k

∗) . sNa(FΘ, k) can
be estimated via a sigmoid function [QLL10, BZBN19] such that:

Pr [sNa(FΘ, k
∗) ≈ sNa(FΘ, k)] ≡ 1

1 + e−α(sNa (FΘ,k∗)−sNa (FΘ,k)) , (7.2)

where α denotes the parameter of the sigmoid function. The value of α greatly impacts the
training process. We evaluate its impact in Appendix B. In the following, we assume that α is
well configured.

Definition of the ranking loss. We apply the binary cross-entropy in order to penalize
the deviation of the model probabilities from the desired prediction. In other words, we want to
penalize the loss function when the expected relation sNa(FΘ, k

∗) . sNa(FΘ, k) is not observed.
Thus, we define a partial loss function l(sNa(FΘ, k

∗), sNa(FΘ, k)), for a given hypothesis k ∈ K,
as:

l(sNa(FΘ, k
∗), sNa(FΘ, k)) = −Pk∗,k · log2

(
P̄k∗,k

)
− (1− Pk∗,k) · log2

(
1− P̄k∗,k

)
, (7.3)

where P̄k∗,k = Pr [sNa(FΘ, k
∗) . sNa(FΘ, k)] and Pk∗,k defines the true unknown probability that

k∗ is ranked higher than k.
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In the rest of the manuscript, we assume that the ranking value is deterministically known during
the learning process, such that, Pk∗,k = 1

2 (1 + relk∗,k) [BSR+05] where relk∗,k ∈ {−1, 0, 1} defines
the relation between the secret key k∗ and k such that relk∗,k = −1 if k∗ is less relevant than k;
relk∗,k = 0 if k∗ is as relevant as k; relk∗,k = 1 if k∗ is more relevant than k. We assume that
relk∗,k is always equal to 1. In the side-channel context, this approximation is reliable because the
Evaluator wants to maximize the score related to k∗ compared with the other hypotheses. From
Equation 7.2 and Equation 7.3, we can deduce the following partial loss function:

l(sNa(FΘ, k
∗), sNa(FΘ, k)) = log2

(
1 + e−α(sNa (FΘ,k

∗)−sNa (FΘ,k))
)
, (7.4)

with FΘ : T → S such that the scoreb S ⊆ R|Y| and sNa(FΘ, k
∗) =

∑Na
i=0 FΘ(ti)[f(xi, k)] denotes

the score captured by the parametric model and f : X × K → Y is the targeted cryptographic
primitive.
Thus, Equation 7.4 gives us an insight into how the cost function penalizes the training process
when the relation sNa(FΘ, k

∗) . sNa(FΘ, k) is not the expected result. Therefore, maximizing
the success rate tends to minimize the ranking error between the secret key k∗ and a hypothesis
k ∈ K. As a remainder, this cost function, presented in Equation 7.4, is only applied on a single
key hypothesis. In order to efficiently find the model that minimizes the ranking error, we have to
apply this cost function on each key hypothesis in order to maximize the rank of the secret key.

Definition 7.1.2.1 (Empirical risk combined with ranking loss). Given a profiling set Ip of Np

pairs (ti, yi)0≤i≤Np , a Θ-parametric model FΘ and a number of attack traces Na such that Na|Np,
we define the empirical risk combined with the ranking loss (RkL) function as:

R̂(LRkL, FΘ) = Na

Np

Np/Na∑
i=1

∑
k∈K
k 6=k∗

(
log2

(
1 + e−α(sNa,i(FΘ,k

∗)−sNa,i(FΘ,k))
))
, (7.5)

where sNa,i(FΘ, k) =
∑Na
j=1 FΘ

(
tj+Na·(i−1)

)
[f(xj , k)] defines the scorec of the hypothesis k ∈ |K|

for given plaintexts (xj)1≤j≤Na while α denotes one hyperparameterd related to the sigmoid that
is needed for estimating the success rate.

Remark 7.1.2.1. To discriminate the right sensitive variable and normalize the score vector to a
probability distribution over Y , the softmax function is computed during the attack phase. This
is essential to perform a side-channel attack (see Subsection 3.3.4).

With the ranking loss, we are more concerned with the relative order of the relevance of the key
hypothesis than its absolute value (e.g. negative log-likelihood). Consequently, maximizing the
success rate is equivalent to minimizing the ranking error for each pair (k∗, k)k∈K. Furthermore,
contrary to the classical negative log-likelihood, Definition 7.1.2.1 takes into account the number
of attack traces that is needed to perform a successful side-channel attack. Thus, the ranking loss
penalizes the learning process depending on the number Na of scores that the Evaluator aggre-
gates before iterating the training process. Intuitively, this loss function is beneficial to select the
model in F which minimizes the error provided on the success rate. This statement will be verified
in the following section. As the ranking loss is linked with the success rate metric, visualizing the

bHere, the score S denotes the value before the softmax function (see Figure 7.1). This choice is made
to impact the training process accordingly to the relative order of the key hypotheses’ relevance instead
of the normalized probability distribution. However, the classical side-channel score (see Equation 3.5)
can also be applied.

cIf the normalized probability distribution is considered as the score S, therefore, sNa,i(FΘ, k) =∑Na

j=1 log(FΘ
(
tj+Na·(i−1)

)
[f(xj , k)]).

dThe coefficient α can be specific for each k ∈ K. The resulted (αk)k∈K can be useful to mitigate the
imbalanced data representation by assigning higher weights to classes with smaller occurrences.
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evolution of the related empirical risk during the training process gives an overview of how well
the related attack on Na leakage traces should perform.

Remark 7.1.2.2. In classic information retrieval tasks, (i0, i1) and (i′0, i′1) characterize two differ-
ent pairs of inputs such that the following relation holds i0 . i1 . i′0 . i′1. For each pair of inputs,
if the difference of their scores is equal, thus, the empirical risk is the same regardless of their
relative order. Indeed, in this configuration, swapping the rank of i0 (resp. i1) and i′0 (resp. i′1)
does not impact the empirical risk R̂(LRkL, FΘ) because it only cares about the total number of
pairwise-rankings it gets wrong. This can be particularly problematic if we are interested in the
top-ranking items. To solve this issue, the pairwise approach’s literature applies some information
retrieval measures (e.g. Discounted Cumulative Gain [JK02], Normalized Discounted Cumulative
Gain [JK00], Expected Reciprocal Rank [CMZG09], Mean Average Precision, etc) to compute the
empirical risk. However, in our context, i0 = i′0, therefore the difference between the scores of
each pair (i0, i1) and (i0, i′1) gives us enough information on the position of i0 related to i1 and i′1.
Consequently, the addition of IR metrics is not relevant. Moreover, information retrieval metrics
can be either discontinuous or flat, so gradient descent appears to be problematic (i.e. gradient
equals to 0 or not defined) unless some appropriate approximations are used.

To emphasize the link with the side-channel context, the following section shows that the ranking
loss is an upper bound of the measure-based ranking error.

7.1.3 Theoretical Bounds of the Ranking Loss
In the learning to rank research area, the information retrieval measures are used to evaluate
the network performance. In most cases, two categories of metrics can be used: those designed
for binary relevance levels (e.g. mean average precision, mean reciprocal rank [Cra09]) and those
designed for multiple levels of relevance (e.g. discounted cumulative gain, normalized discounted
cumulative gain [JK00]). In the side-channel context, there are only two levels of relevance such
that 1 is associated with the sensitive information Y related to the secret key k∗ and 0 otherwise.
Thus, the metrics for binary relevance levels have to be considered.

Mean average precision and success rate. The mean average precision (MAP) defines
the average precision of the secret key k∗ over the |K| hypotheses. Let gNa =

[
g1
Na , g

2
Na , . . . , g

|K|
Na

]
be a vector that defines the rank for each key hypothesis in K as introduced in Subsection 3.3.4.
We consider g1

Na as the most likely candidate and g|K|Na
as the least likely one.

Let d be a threshold and MAP@d be the average precision of the secret key k∗ in the top d
relevant position of gNa such that:

MAP@d = 1
Nq

Nq∑
q=1

APq@d,

where Nq denotes the number of queries and APq@d is the average precision of the query q over the
top i relevant position of gNa . As the only query considered in the side-channel context concerns
the position of the secret key k∗ over gNa , MAP@d can be reduced to the computation of APk∗@d
such that:

APk∗@d = 1
Number of True Positives at d

d∑
i=1

Number of True Positive seen× rel(i)
i

,

where rel(i) is an indicator that equals 1 if the element at the ith rank is the secret key k∗ and 0
otherwise. As k∗ is assigned to a single position in gNa , the total number of True Positives equals
1 and the previous equation can be simplified as below:
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MAP@d = APk∗@d =
d∑
j=1

1gNa (FΘ,k∗)=j

j
,

where gNa(FΘ, k
∗) denotes the position of k∗ in gNa such that the sorted vector has been con-

structed from the Θ-parametric model FΘ (see Equation 3.6). Therefore,

MAP@1 = APk∗@1 = 1gNa (FΘ,k∗)=1 = SR1(FΘ, Na).

Thus, MAP@1 can be seen as a 1st order success rate.

Lower bound of the ranking loss. As mentioned in [CLL+09a], the standard pairwise
loss is considered as the upper bound of the measure-based ranking error that is defined by
1−MAP@|K| (justifications are provided in Appendix C).

Theorem 7.1.3.1 ([CLL+09a]). Given a 2-level rating data with n1 elements having grade 1 and
n1 > 0, then, the following inequality holds,

1−MAP@|K| ≤ 1
n1

|K|−1∑
i=0

|K|−1∑
j=0

gr(j)<gr(i)

log2

(
1 + e−α(sNa (FΘ,i)−sNa (FΘ,j))

)
, (7.6)

where gr(i) defines the grade associated to the ith key hypothesis ( i.e. 0 or 1).

In our context, a 2-level rating data means that the grade related to k is in {0, 1} such that it
equals 1 if and only if k = k∗. Thus, Theorem 7.1.3.1 can be easily written following the ranking
loss.

Proposition 7.1.3.1. Given a 2-level rating data with n1 elements having grade 1 and n1 > 0, a
set of Na leakage traces (ti)0≤i≤Na , and a Θ-parametric model FΘ, the following inequality holds:

1− SR1(FΘ, Na) ≤
1
n1

∑
k∈K
k 6=k∗

log2

(
1 + e−α(sNa (FΘ,k

∗)−sNa (FΘ,k))
)
, (7.7)

where sNa(FΘ, k) =
∑Na
i=1 FΘ (ti) [f(xj , k)] defines the output score of the hypothesis k ∈ |K| for

given plaintexts (xj)1≤j≤Na

Proof. Following [CLL+09a, Theorem 2] and [CLL+09b, Lemma 1], given a 2-level rating data,
it can be proved that:

n1 − i0 + 1 ≤ 1
n1

|K|−1∑
i=0

|K|−1∑
j=0

gr(j)<gr(i)

log2

(
1 + e−α(sNa (FΘ,i)−sNa (FΘ,j))

)
,

where n1 denotes the number of elements having grade 1 and i0 defines the position of the first
element with grade 0 in a ranking list.
If i0 > n1, the first element with grade 0 is ranked after position n1. In side-channel analysis,
there is only one candidate with a grade 1 (i.e. k∗). Hence, the correct candidate is ranked at the
first position and 1− SR1(FΘ, Na) = 0. Similarly, the first element with a label 0 is ranked at the
second position and n1 − i0 + 1 = 0.
If i0 ≤ n1, the first element with grade 0 is ranked before the secret key k∗. Consequently, the
correct candidate is ranked at the second position and 1 − SR1(FΘ, Na) = 1. Similarly, the first
element with a grade 0 is ranked at the first position and n1 − i0 + 1 = 1. Thus,

n1 − i0 + 1 = 1− SR1(FΘ, Na) ≤
1
n1

|K|−1∑
i=0

|K|−1∑
j=0

gr(j)<gr(i)

log2

(
1 + e−α(sNa (FΘ,i)−sNa (FΘ,j))

)
.
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Finally, we can easily rewrite the right part of the inequality as:
|K|−1∑
i=0

|K|−1∑
j=0

gr(j)<gr(i)

log2

(
1 + e−α(sNa (FΘ,i)−sNa (FΘ,j))

)
=
∑
k∈K
k 6=k∗

log2

(
1 + e−α(sNa (FΘ,k

∗)−sNa (FΘ,k))
)
.

Indeed, the condition gr(j) < gr(i) holds for all j ∈ K \ {k∗} if and only if i corresponds to k∗.
This result implies:

1− SR1(FΘ, Na) ≤
1
n1

∑
k∈K
k 6=k∗

log2

(
1 + e−α(sNa (FΘ,k

∗)−sNa (FΘ,k))
)
.

From Proposition 7.1.3.1, we can deduce that minimizing the ranking loss is useful to find a
model that maximizes the 1st order success rate. Therefore, the value of the related empirical risk
gives to the Evaluator an insight into how well FΘ performs related to the success rate. Thus, the
ranking loss fits with the performance measure classically considered during the evaluation process.

Finally, to fully understand the role of the ranking loss, we investigate the impact of the empirical
risk minimization on the trainable parameters.

7.1.4 Impact of the Ranking Loss during the Training Process
This subsection theoretically explains how the training process can be useful in order to precisely
order the secret key k∗ amongst all the hypotheses.

The training process aims at minimizing the empirical risk R̂ in order to reduce the error induced
by FΘ (see Equation 4.3). As explained in Chapter 4, this process can be decomposed into two
phases: the forward propagation and the backward propagation. As remainder, the goal of the
forward propagation is to feed training examples to the Θ-parametric model FΘ in the forward
direction by processing successive linear and non-linear transformations in order to predict a
distribution over Y associated with a given leakage trace T. Once this process is done, the
backward propagation measures the gap between the predictions and the expected output and
reduces this error by updating the trainable parameters Θ that compose the neural network.
To optimize the parameters Θ, the gradient descent algorithm, or its derivative (e.g. stochastic
gradient descent), is employed (see Subsection 4.3.1). Let Θ[l]

(i) ∈ Θ be the trainable parameters
indexed at the lth layer such that, the (i+1)th iteration of the stochastic gradient descent algorithm
can be defined as below:

Θ[l]
(i+1) = Θ[l]

(i) − η · ∇Θ[l]
(i)
R̂(LRkL, FΘ(i)(T))

= Θ[l]
(i) − η ·

∑
k∈K
k 6=k∗

(
∇Θ[l]

(i)
sNa(FΘ(i) , k

∗)
∂R̂(LRkL, FΘ(i)(T))
∂sNa(FΘ(i) , k

∗)

+∇Θ[l]
(i)
sNa(FΘ(i) , k)

∂R̂(LRkL, FΘ(i)(T))
∂sNa(FΘ(i) , k)

)
, (7.8)

where η denotes the learning rate.
From Equation 7.4 and Equation 7.8, we can deduce the following equation,

∇Θ[l]
(i)
R̂(LRkL, FΘ(i)(T)) = −α

∑
k∈K
k 6=k∗

 1

1 + e
α

(
sNa (FΘ(i) ,k

∗)−sNa (FΘ(i) ,k)
)
(∇Θ[l]

(i)
sNa(FΘ(i) , k

∗)

−∇Θ[l]
(i)
sNa(FΘ(i) , k)

)
. (7.9)



7.2. ANALYSIS OF OPTIMAL MODEL 145

This derivative can be decomposed in two parts. First, computing the gradient of the empirical
risk combined with the ranking loss is equivalent to computing an ascent gradient of the score
sNa(FΘ, k

∗) and a gradient descent of sNa(FΘ, k). As mentioned in Subsection 7.1.2, the score value
is defined by the prediction before the softmax function. The training process updates the weights
to increase the score related to the secret key and reduces the score related to all the hypotheses
k ∈ K\{k∗}. Secondly, the norm of the gradient vectors is scaled by γα(sNa(FΘ, k

∗), sNa(FΘ, k)) =
α

1+eα(sNa (FΘ,k∗)−sNa (FΘ,k)) . Depending on the difference between sNa(FΘ, k
∗) and sNa(FΘ, k), the

resulted norm varies as below:

• If sNa(FΘ, k)� sNa(FΘ, k
∗), γα(sNa(FΘ, k

∗), sNa(FΘ, k)) tends to converge towards α, thus
the norm of the gradient vector related to each score is maximized.

• If sNa(FΘ, k) = sNa(FΘ, k
∗), γα(sNa(FΘ, k

∗), sNa(FΘ, k)) tends to converge towards α
2 , thus

the norm of the gradient vector related to each score is divided by 2.

• If sNa(FΘ, k)� sNa(FΘ, k
∗), γα(sNa(FΘ, k

∗), sNa(FΘ, k)) tends to converge towards 0, thus
the norm of the gradient vector related to each score is minimized.

Therefore, the ranking loss proposed in Equation 7.5 pushes the score of the secret key up and
pushes the score of the key hypotheses down via gradient ascent/descent on a pair of items. This
is equivalent to maximizing the success rate. For each pair (k∗, k)k∈K, there are two “forces” at
play. The force that each pair exerts is proportionate to the difference of their scores multiplied
with α. Consequently, α should be carefully configured during the training process. The force
applied on the secret key k∗ is equal to the sum of the forces exerted on each pair. Consequently,
using the ranking loss tends to order the secret key as the highest position which is equivalent to
maximizing the success rate.

Adapted from the “Learning to Rank” approach, the ranking loss penalizes the training pro-
cess depending on the distance between the scores related to the secret key and the other key
hypotheses included in K \ {k∗}. To the minimization of the empirical risk combined with the
ranking loss, the Evaluator wants to select a Θ-parametric function FΘ that maximizes the 1st
order success rate given Na attack leakage traces. Thus, the ranking loss is directly correlated
with the performance metric classically considered by the Evaluator to assess the robustness of
a cryptographic module against side-channel attacks. It notably allows to reduce the black-box
issue of the discriminative approach in deep learning based side-channel context.

SUM UP...

However, the Evaluator can question the suitability of the ranking loss with respect to the negative
log-likelihood from a performance perspective. The next section proposes to highlight the benefits
of the ranking loss from an information-theoretic purpose.

7.2 Analysis of Optimal Model
7.2.1 An Approximation of the Optimal Distinguisher
In [dCGRP19], de Chérisey et al. link the probability of success of an attack, denoted Ps, given
a distinguisher F and the mutual information between a leakage trace T and a sensitive targeted
variable Y ∈ Fn2 given a plaintext X ∈ Fn2 , denoted MI(T;Y |X).

Theorem 7.2.1.1. [dCGRP19, Theorem 1] The following inequality is always true for any dis-
tinguishing rule:

H(K)− (1− Ps) log2(2n − 1)−H2(Ps) ≤ Na ·MI(T;Y |X),
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where Ps = Pr[
∑
k∈K 1sNa (F,k)>sNa (F,k∗) = 0] and H2(Ps) denotes the binary entropy of the proba-

bility of success of an attack.

This inequality suggests that no attack can succeed to retrieve the secret key within
⌈

g(Ps)
MI(T;Y |X)

⌉
attack leakage traces, with g(Ps) = H(K) − (1 − Ps) log2(2n − 1) −H2(Ps). Following the work
provided by de Chérisey [Che18, Section 3.2.2], we can notice that (1−Ps) log2(2n−1)+H2(Ps) ≥
H(K|K̂). Consequently, minimizing (1− Ps) log2(2n − 1) + H2(Ps) (or equivalently, maximizing
Ps) is beneficial to converge H(K|K̂) towards 0. Therefore, finding a distinguisher that maximizes
the success rate can be beneficial to reduce the uncertainty on K. By reducing this uncertainty
for a given number Na of attack traces, we intuitively ease the ability of the Evaluator to recover
the secret key. In other words, finding a distinguisher that maximizes the success rate can be
beneficial to reduce the related number of attack traces. Through the consideration of the ranking
loss, the Evaluator wants to generate such a model. More importantly, a model that maximizes
the success rate can be linked with the optimal distinguisher. Indeed, following Objective 3.3.1.1
and Definition 3.3.1.4, a distinguisher F : T → P (Y) is defined as optimal if, for any dataset set
of Na leakage traces T = {t0, . . . , tNa−1}, the attack, that considers (F (ti))0≤i<Na , maximizes
the success rate.
As, in this chapter, the Θ-parametric ranking model FΘ : T → S, such that S ⊆ R|Y|, does not
output a normalized probability distributione, the Evaluator has to apply a softmax function on
the output scores in order to get an approximation of the true unknown Pr[Y |T]. This approxi-
mation is denoted by Pr[Y |T,Θ]. Once the related model finds the trainable parameters Θ, the
Evaluator can apply the distinguisher rule with respect to the log-likelihood distinguisher (see Def-
inition 3.3.3.4) in order to extract the secret key that has been manipulated by the cryptographic
module.

Definition 7.2.1.1 (Approximation of the Optimal Distinguisher). Given a set Ia of Na leakage
traces and a Θ-parametric conditional probability distribution of observing a sensitive crypto-
graphic primitive Y following a leakage T denoted as Pr[Y |T,Θ], we define the approximation of
the optimal distinguisher as:

DΘ (Ia, k) = max
Θ

Na−1∑
i=0

log (Pr [Y = f (xi, k) |T = ti,Θ]) (7.10)

= min
Θ

Na−1∑
i=0

log (1− Pr [Y = f (xi, k) |T = ti,Θ]) ,

where f (X, k) = Y is the sensitive information computed from a cryptographic primitive f :
X ×K → Y , a plaintext X, a key k ∈ K.

Once the approximation optimal distinguisher is performed, the Evaluator has to design the
related decision rule such that:

k̂ = arg min
k∈K

(
min

Θ

Na−1∑
i=0

log (1− Pr [Y = f (xi, k) |T = ti,Θ])
)
,

such that the attack process is considered as a success if k̂ = k∗.
When the empirical risk combined with the ranking loss is considered, the training process op-
timizes the Θ trainable parameters in order to maximize the score of the secret key sNa(FΘ, k

∗)
amongst each key hypothesis k ∈ K\k∗ for a given number Na of attack leakage. Thus, a ranking
model FΘ : T → S, such that S ⊆ R|Y|, considering the ranking loss and the softmax function,
that normalizes the output score vector to a probability distribution over Y , during the attack

eAs mentioned in Definition 7.1.2.1, the output score can also be characterized by P(Y) in order to
penalize the network with respect to the normalized probability distribution.
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phase is beneficial to fit with Definition 7.2.1.1. Furthermore, through Equation 7.10, we can ob-
serve that minimizing the error on the success rate is helpful to estimate the optimal distinguisher
defined in Definition 3.3.1.4. To converge towards the true distinguisher, some optimization al-
gorithms (e.g. the gradient-based algorithms, Subsection 4.3.1) shall be run in order to minimize
the error on Pr [Y |T,Θ] and find a local or a global minimum. When Θ is optimal, finding a
model FΘ that minimizes the error on the success rate is equivalent to generating a distinguisher
(DΘ (Ia, k))k∈K that converges towards the true (D (Ia, k))k∈K. Through Definition 2.5.2, we can
assume that minimizing the error on the success rate is equivalent to optimizing an estimation
of a mutual information between the sensitive information and the leakage trace. Indeed, given
a profiling set Ip of Np pairs (ti, yi)0≤i≤Np , a Θ-parametric ranking model FΘ and a number of
attack traces Na such that Na|Np, the following inequality holds:

H (Y ) +
∑
y∈Y

Pr [Y = y] Na

Np

Np/Na∑
i=1

max
Θ

Na−1∑
j=0

log2

(
Pr
[
Y = y|tj+Na·(i−1),Θ

])
≤ H (Y ) +

∑
y∈Y

Pr [Y = y]
∑
t∈T

Pr [T = t|y] log2 (Pr [Y = y|t]) = MI (Y ;T) . (7.11)

Hence, following Theorem 7.2.1.1, finding a ranking model FΘ that maximizes the success rate
aims at simultaneously minimizing an approximation of g(Ps) while maximizing an approximation
ofMI(T;Y |X). As mentioned in [DFS15, BHM+19], a higher mutual information implies a more
powerful maximum likelihood attack where the secret key k∗ can be extracted more efficiently. In
other words, the ranking model FΘ optimizes the number of attack leakage traces that are needed
to retrieve the secret key manipulated by the cryptographic module. Thus, from an evaluation
perspective, the ranking loss can be highly beneficial.

In contrast, the Evaluator can question the interest of this approach with respect to the negative
log-likelihood loss function combined with the softmax function.

7.2.2 The Negative Log-Likelihood as a Lower Bound of the
Ranking Loss

Recall on the negative log-likelihood minimization. In deep learning based side-
channel context, a classical model FΘ,NLL : T → P(Y) is selected from the minimization of
the empirical risk combined with the negative log-likelihood loss function. To solve the related
classification task, the Θ-parametric model FΘ,NLL uses the softmax activation function to learn
a probability distribution over |Y| labels conditioned on a leakage trace T. Indeed, given a set of
Np labeled leakage traces Ip = {(t0, y0), (t1, y1), . . . , (tNp−1, yNp−1)}, and a parametric model FΘ
estimating the true unknown Pr [Y |T], the empirical risk combined with the negative log-likelihood
loss function can be expressed as:

R̂(LNLL, FΘ,NLL) = − 1
Np

Np−1∑
i=0

log2

(
es1,i(FΘ,NLL,k

∗)∑
k∈K e

s1,i(FΘ,NLL,k)

)
, (7.12)

where s1,i(FΘ,NLL, k) denotes the score related to the key hypothesis k ∈ K such that a leakage
trace (ti)0≤i<Np is considered as input. Here, the score defines the value before the softmax
activation function.
Since the loss function is minimized by gradient descent based algorithms (e.g. stochastic gradient
descent, mini-batch gradient descent), the related derivative can be easily calculated as follows:

∂LNLL(FΘ,NLL, k
∗)

∂s1(FΘ, j)
=


1− es1(FΘ,NLL,j)∑

k∈K e
s1(FΘ,NLL,k) if j = k∗,

− es1(FΘ,NLL,j)∑
k∈K e

s1(FΘ,NLL,k) if j 6= k∗.

(7.13)



148 CHAPTER 7. RANKING LOSS: MAXIMIZING THE SUCCESS RATE

Thus, applying the negative log-likelihood loss function on a Θ-parametric model that considers
the softmax to approximate a probability distribution is helpful to penalize the trainable parame-
ters linked to each output class. However, contrary to the ranking loss that penalizes the training
process with respect to the relative order of each pair (k, k∗)k∈K, the negative log-likelihood with
the softmax function considers the absolute value of each score. Thus, in side-channel context,
the latter loss function can provide different sources of errors.

Difference on the penalization process. Comparing Equation 7.9 to Equation 7.13 gives
to the Evaluator an insight into how each approach impacts the trainable parameters Θ. Typically,
two scenarios can be observed:

• If j 6= k∗, ∂LNLL(FΘ,NLL,k
∗)

∂s1(FΘ,NLL,j) penalizes the training process with respect to the probability
related to the jth class. Thus, it does not reflect its relative order with the targeted output.
In opposition, for α = 1, the derivative of the ranking loss defined in Equation 7.9 can be
rewritten as follows:

−∂LRkL(FΘ, k
∗)

∂sNa(FΘ, j)
= − esNa (FΘ,j)∑

k∈{j,k∗} e
sNa (FΘ,k) . (7.14)

This penalization term is very similar to Equation 7.13. However a non-negligible distinction
can be made. While the ranking loss penalizes the trainable parameters of the jth class
with respect to the distance between its score and the one related to the correct output,
the negative log-likelihood loss updates its trainable parameters with respect to all key
hypotheses in K. Thus, the penalization term applied on the jth class can be overlooked if
the score s1(FΘ,NLL, j)� s1(FΘ,NLL, i) such that i ∈ K\{j, k∗}. Thus, even if the relative
order between s1(FΘ,NLL, j) and s1(FΘ,NLL, k

∗) is non-negligible, it will not be taken into
account during the training process. Hence, for a given iteration, the gradient descent-
based algorithms can only penalize a limited number of output classes if a large difference
is observed between their related scores. This result does not reflect what the Evaluator
wants to optimize and a blurred parametric model can be obtained. In opposition, the
ranking loss is not impacted by this scenario as it does not consider irrelevant classes for
updating the trainable parameters of a given class.

• If j = k∗, ∂LNLL(FΘ,NLL,k
∗)

∂s1(FΘ,NLL,j) penalizes the training process with respect to the probability er-
ror induced in the class k∗. Thus, it reflects the impact of each score (s1(FΘ,NLL, k))k∈K\{k∗}
on s1(FΘ,NLL, k

∗) which is beneficial from a success rate approximation perspective. On
the other hand, the derivative of the ranking loss is defined by the sum over K \ {k∗} of
the inverse of Equation 7.14. As mentioned in Subsection 7.1.4, the latter solution opposes
two “forces” for each pair (k∗, k)k∈K such that it penalizes the training process in order to
optimize the score related to k∗ with respect to each key hypothesis k ∈ K. Thus, both
solutions take into account (s(FΘ, k))k∈K\{k∗} to compute the gradient with respect to k∗.
They are intuitively useful to correctly optimize the score k∗ amongst all key hypotheses
which is necessary to perform a successful side-channel attack.

While the penalization process related to the scenario j = k∗ is useful for the maximization of
the score s(FΘ, k

∗), some limitations can be highlighted when the negative log-likelihood with the
softmax activation function is considered. Indeed, when j 6= k∗, the derivative ∂LNLL(FΘ,NLL,k

∗)
∂s1(FΘ,NLL,j)

does not adequately penalize the trainable parameters related to the jth class. Consequently, the
probability term induced in Equation 7.12 can be impacted by a wrong penalization conducted
on each (s1(FΘ,NLL, j))j∈K\k∗ . Consequently, the loss function may emphasize irrelevant sensitive
information. Thus, contrary to the ranking model obtained from the minimization of the empirical
risk combined with the ranking loss, the model selected from the minimization of the empirical risk
combined with the negative log-likelihood can be seen as an approximation of Pr[Y |T,Θ]. In the
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following, the distance between the probability distribution provided by FΘ,NLL and Pr[Y |T,Θ] is
called Approximation Error and is negligible if and only if the probability distribution associated
with FΘ,NLL is similar to the one related to the ranking model.

The link with the Mutual Information. As the approximation error suggests that a
ranking model is at least, as efficient as a model FΘ,NLL using the negative log-likelihood loss
function, the latter solution can be considered as a lower bound of the inequality introduced in
Equation 7.11:

H (Y ) +
∑
y∈Y

Pr [Y = y] 1
Np

Np∑
i=0

log2 (FΘ,NLL (ti) [y])

≤ H (Y ) +
∑
y∈Y

Pr [Y = y] Na

Np

Np/Na∑
i=1

max
Θ

Na−1∑
j=0

log2

(
Pr
[
Y = y|tj+Na·(i−1),Θ

])
≤ H (Y ) +

∑
y∈Y

Pr [Y = y]
∑
t∈T

Pr [T = t|y] log2 (Pr [Y = y|t]) = MI (Y ;T) . (7.15)

Consequently, when the negative log-likelihood is used as a loss function, the number of leakage
traces needed to reach a 1st order success rate is defined as an upper bound of the optimal solution
(see Theorem 7.2.1.1). Moreover, due to the approximation error, the number of attack leakage
traces needed to perform a successful attack on FΘ,NLL is defined as an upper bound of the num-
ber of attack leakage traces needed to perform a successful attack on a model selected from the
minimization of the empirical risk combined with the ranking loss. Thus, it illustrates that the
latter solution is more efficient than the current usual negative log-likelihood loss function used
in the side-channel context.

In the next section, we deeply analyze the errors made by the negative log-likelihood and we
compare them with the ranking loss.

7.2.3 Error Analysis
The negative log-likelihood in side-channel context. In [MDP19b], Masure et al.
study the theoretical soundness of the minimization of the empirical risk combined with the
negative log-likelihood in order to conduct side-channel attacks. They demonstrate that mini-
mizing this empirical risk is equivalent to maximizing an estimation of the Perceived Information
[RSVC+11] that is defined as a lower bound of the Mutual Information between a leakage trace
and the targeted secret [BHM+19]. Specifically, the perceived information is the amount of in-
formation that can be extracted from data with the help of an estimated model. Because the
perceived information is substituted to the mutual information, some source of imprecision could
affect the quality of the model FΘ. The gap between the estimation of the perceived information,
defined by the minimization of the empirical risk combined with the negative log-likelihood, and
the mutual information can be decomposed into three errorsf:

• Approximation error – it defines the deviation between the perceived information ob-
tained from a parametric model FΘ and the mutual information. In theory, the Kullback-
Leibler divergence [KL51] can be computed in order to evaluate this deviation. However,
the Evaluator faces the problem that the leakage Probability Density Function (PDF) is
unknown.

• Estimation error – the minimization of the empirical risk combined with the negative
log-likelihood maximizes the empirical estimation of the perceived information rather than
the real value of the perceived information. Therefore, the finite set of profiling leakage

fThe readers should notice that these errors differ from those introduced by Masure et al. in [MDP19b].
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traces may be too low to estimate the perceived information properly. Consequently, this
error can be quantified for a given number of profiling leakage traces.

• Optimization error – it characterizes the error induced by the learning process, such
as the choice of a restricted model space F that does not necessarily contain the optimal
model F ∗, and the ability of the gradient-based algorithm (e.g. stochastic gradient descent,
mini-batch gradient descent, Adam optimizer) to converge towards the optimal solution.

Section 7.3 emphasizes the impact of these error terms on different datasets. First, this section
recalls the gap between the negative log-likelihood loss function and the mutual information.
Then, we explain the theoretical benefits of the ranking loss through an error analysis between
the ranking loss, the negative log-likelihood and the mutual information. To assess the quality of
the ranking loss, we have to evaluate the tightness of the inequalities defined in Equation 7.15.
To ease the following analysis, let P̂ I(Y,T, Θ̂) and M̂I(Y,T, Θ̂) be defined as followsg:

P̂ I(Y,T, Θ̂) = H (Y ) +
∑
y∈Y

Pr [Y = y] 1
Np

Np∑
i=0

log2

(
FΘ̂,NLL (ti) [y]

)
.

M̂I(Y,T, Θ̂) = H (Y ) +
∑
y∈Y

Pr [Y = y] Na

Np

Np/Na∑
i=1

max
Θ̂

Na−1∑
j=0

log2

(
Pr
[
Y = y|tj+Na·(i−1), Θ̂

]) .
Error Analysis of the negative log-likelihood. Proposed in [MDP19b], this error de-
composition establishes the gap between the mutual information and the perceived information
that we are maximizing with the negative log-likelihood. To facilitate the comparison of our re-
sults with [MDP19b], we use the same notations. Let Θ̂ denotes an estimation of the trainable
parameters when a gradient descent-based algorithm is used (e.g. stochastic gradient descent,
mini-batch gradient descent) and Θ∗ the optimal trainable parameters obtained when a global
minimum of the loss function is reached and such that the optimal model F ∗ is selected. According
to Equation 7.15, this error gap can be decomposed into the three errors previously introduced:

P̂ I
(
Y ;T; Θ̂

)
−MI (Y ;T) =

(
P̂ I

(
Y ;T; Θ̂

)
− P̂ I (Y ;T; Θ∗)

)
(7.16)

+
(
P̂ I (Y ;T; Θ∗)− PI (Y ;T; Θ∗)

)
(7.17)

+ (PI (Y ;T; Θ∗)−MI (Y ;T)) . (7.18)

such that Equation 7.16 defines the optimization error, Equation 7.17 defines the estimation error
and Equation 7.18 denotes the approximation error.
The approximation error is negligible if and only if the Evaluator obtains the true distribution
Pr[Y |T] through the empirical risk minimization. Through Section 7.3, we will show that, even in
the simplest case, the approximation error can have a huge impact on the training process such
that some irrelevant features could be defined as points of interest. Consequently, these errors
could highly impact the performance of the network.

Error analysis of the ranking loss. In order to complete the latter analysis, we estimate
the errors generated when M̂I and MI are taken into consideration. Through Equation 7.15, it
can be easily observed that the gap between the estimated and the true mutual information can
be decomposed into an estimation error and an optimization error as below:

M̂I
(
Y ;T; Θ̂

)
−MI (Y ;T) =

(
M̂I

(
Y ;T; Θ̂

)
− M̂I (Y ;T; Θ∗)

)
(7.19)

+
(
M̂I (Y ;T; Θ∗)−MI (Y ;T)

)
. (7.20)

gThe notation M̂I(Y,T, Θ̂) differs from [BHM+19]. In this manuscript, this notation is used to
differentiate the probability distribution obtained from FΘ,NLL and a ranking model. It notably useful
to denote the inequality introduced in Equation 7.15.
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Indeed, Equation 7.19 defines the error related to the optimization of the model such that the
ranking loss is considered. Finally, Equation 7.20 characterizes the estimation error that can be
reduced when the number of profiling traces converges towards infinity [BHM+19]. In Subsec-
tion 7.3.2, we will experimentally see that this error is reduced by up to 23% when the ranking
loss is used compared to the classical categorical cross-entropy.

Error gap between the negative log-likelihood and the ranking loss. Finally, the
gap between the negative log-likelihood and the ranking loss can be divided into different error
terms. Here, we assume that the optimization error generated by both models is similar. This
strong assumption is useful to simplify our analysis and focus on the benefits of using the ranking
loss compared to the negative log-likelihood with softmax activation function. Consequently,

P̂ I
(
Y ;T; Θ̂

)
− M̂I

(
Y ;T; Θ̂

)
=
(
P̂ I

(
Y ;T; Θ̂

)
− P̂ I (Y ;T; Θ∗)

)
−
(
M̂I

(
Y ;T; Θ̂

)
− M̂I (Y ;T; Θ∗)

)
+
(
P̂ I (Y ;T; Θ∗)− M̂I (Y ;T; Θ∗)

)
=
(
P̂ I (Y ;T; Θ∗)− M̂I (Y ;T; Θ∗)

)
. (7.21)

Equation 7.21 defines that the difference of the models lies in the approximation error generated
between P̂ I (Y ;T; Θ∗) and M̂I (Y ;T; Θ∗). Indeed, the approximation error that defines the dis-
tance between the perceived information and the mutual information is removed when the success
rate is maximized. One of the most challenging issues, induced by this approximation error, is
then prevented when the ranking loss is considered.

Through this section, we demonstrate that a ranking model selected from the minimization
of the empirical risk combined with the ranking loss can be considered as an approximation
of the optimal distinguisher (see Definition 3.3.1.4). From this observation, we evaluate the
distinctions between the penalization process induced by the negative log-likelihood and the
ranking loss. While both approaches are useful to maximize the correct output with respect to
each key hypothesis k ∈ K \ k∗, the application of the negative log-likelihood does not properly
penalize the irrelevant classes. Consequently, the probability distribution provided by FΘ,NLL
induces an approximation error as its optimal model does not necessarily reflect the true unknown
probability distribution Pr[Y |T]. This error is prevented by the ranking loss function. Thus,
according to Theorem 7.1.3.1, a model obtained from the minimization of the empirical risk
combined with the ranking loss is at least as efficient as a model obtained from a classical deep
learning based side-channel approach.

SUM UP...

In the next section, we validate all the theoretical observations on unprotected and protected
implementations.

7.3 Exploitation of the Ranking Loss
Settings. The experiments are implemented in Python using the Keras library [Cho15] and
are run on a workstation equipped with 16GB RAM and a NVIDIA GTX1080Ti with 11GB
memory. All of the following architectures and hyperparameters are based on the results provided
in Section 6.3 and can be reproduced [ZBD+20a]. The attack leakage traces are randomly shuffled
and picked up from a set of attack leakage traces Ia. For a good estimation of Ntrank, 100
realizations are performed to give the average value denoted N̄trank. In the next sections, the
number Na of attack leakage traces considered to compute the ranking loss (see Definition 7.1.2.1),
is set to 1. Hence, the ranking loss tends to maximize the success rate when only 1 attack leakage
trace is considered.
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Comparison with the Cross-Entropy Ratio [ZZN+20, ISUH21]. In the following,
we compare the negative log-likelihood and the cross-entropy ratio (CER) loss functions with the
ranking loss on different publicly available datasets. Given a set Ip of Np elements such that
Ip = {(t0, y0), . . . , (tNp−1, yNp−1)} with (ti, yi)0≤i<Np ∈ (T ×Y), the empirical risk combined with
the cross-entropy ratio has been introduced to deal with imbalanced data issues such that it is
defined as:

R̂(LCER, FΘ) = R̂(LNLL, FΘ)
− 1
N

∑N−1
r=0 R̂(L(r)

NLL, FΘ)
,

where R̂(L(r)
NLL, FΘ) identifies the empirical risk combined with the negative log-likelihood such

that the labels are shuffled while keeping the leakage traces unchanged.

From a practical perspective, the generation of suitable architectures is known as a difficult task.
Hence, two scenarios can be considered. In Subsection 7.3.1, it is assumed that the Evaluator
selects a model that exploits a partial set of PoIs. In Subsection 7.3.2, models that exploit all
relevant information in the leakage traces are considered. This section evaluates the efficiency of
the ranking loss compared to the negative log-likelihood and the cross-entropy ratio in both cases
through various scenarios, notably in presence of high noise, masking and desynchronization.

7.3.1 A Partial Exploitation of the Leakages
For simplicity, we evaluate this case study with the ChipWhisperer dataset which is an unprotected
emulation of AES-128 implemented in software on a Chipwhisperer board [OC14] (see Section 3.6
for deeper information). To construct the model, we follow the recommendations provided in
Subsection 6.3.1. The implemented model is a CNN architecture with one convolutional block
of 2 filters of size 1 and one fully-connected layer with 2 nodes. When considering unprotected
implementation with low noise, all the models trained with different losses provide the same N̄trank
value (see Table 7.1 for small σ values). In Subsection 6.1.3, we propose to visualize the weights
corresponding to the flatten layer in order to evaluate the capacity of the network to extract
the relevant features. Through this visualization, the Evaluator is able to retrieve the points of
interest selected by a neural network. However, due to the effect of the convolutional block, the
number of weighted samples is divided by the value of the pooling stride (see Subsection 6.2.3).
Thus, the comparison of these visualizations with the SNR computation can be difficult. For ease
of visualization, we add padding on the weight representation in order to get the same x-axis on
each figures. In Figure 7.2, we compare the features retained by the negative log-likelihood (see
Figure 7.2a), the cross-entropy ratio (see Figure 7.2b) and the ranking loss (see Figure 7.2c) with
the classical SNR (see Figure 7.2d). In this section, the comparison with an univariate leakage
metric, such as SNR, is sufficient to assess the benefits of each loss as no interactions between the
time samples are induced in the convolutional part of the CNN (i.e. the length of the filters is set
to 1).
Interestingly, depending on the loss, the model does not select the same relevant features. The
Figure 7.2a, Figure 7.2b and Figure 7.2c do not show the same points of interest. While the SNR
computation reveals 4 high peaks between 0 and 200 samples, the models trained with the neg-
ative log-likelihood and the cross-entropy ratio losses detect only 2 high peaks in the same area.
Hence, only a partial set of leakages is exploited by these cross-entropy losses. In comparison,
the ranking loss extracts most of the sensitive information. Moreover, the negative log-likelihood
loss identifies a false-positive leakage while no irrelevant peak occurs when the ranking loss is
applied. This error underlines an important issue when the negative log-likelihood loss is used in
side-channel: the approximation error is non-negligible and some false-positive leakages can oc-
cur. If the Evaluator cannot find a more suitable neural network architecture, these noisy points
(i.e. irrelevant PoIs) could dramatically impact the performance of the network. As mentioned in
[DSVC14], the approximation (or assumption) error can be dramatic if the model, characterizing
the perceived information, does not converge towards the right distribution Pr [Y |T] defined by



7.3. EXPLOITATION OF THE RANKING LOSS 153

(a) Weight visualiza-
tion (Negative Log-
Likelihood (NLL))

(b) Weight visualization
(Cross-Entropy Ratio
(CER))

(c) Weight visualization
(Ranking Loss (RkL)
(α = 5.0))

(d) SNR of the Chipwhisperer
dataset

Figure 7.2: Visualization of the approximation error (Chipwhisperer)

the mutual information MI (Y,T). In Subsection 7.2.3, we have shown that the ranking loss pre-
vents the approximation error compared to the negative log-likelihood. Hence, when the ranking
loss is used, the related performance should be, at least, as good as a model trained with the
negative log-likelihood.

If the PoIs amplitude is low compared to the noise, the performance gap between a model trained
with the negative log-likelihood, the cross-entropy ratio and the ranking loss could increase. To
illustrate this phenomenon, we add Gaussian noise ND(0, σ · ID) such that σ defines the standard
deviation of the noise and D denotes the dimension of the leakage traces. Table 7.1 shows the
evolution of the N̄trank value depending on the added noise on the Chipwhisperer dataset. When
the additional noise level is low (i.e. σ ≤ 10−2), the feature detection is effective regardless of the
loss function and the performance gap is low (i.e. less than 9). However, for high noise level (i.e.
σ ≥ 10−1), the performance gap increases dramatically and reaches 1, 031 when we compare the
negative log-likelihood and the ranking loss and 885 when we compare the cross-entropy ratio and
the ranking loss. The ranking loss is clearly the most efficient loss function, even in the presence
of high noise levels.

Table 7.1: Evolution of N̄trank depending on σ (average over 10 converging models)

N̄trank

σ 0 10−6 10−5 10−4 10−3 10−2 10−1 Training time (seconds)

Negative Log-Likelihood 4 4 6 6 7 21 3,958 81 s
Cross-Entropy Ratio 4 5 6 8 17 20 3,812 143 s
Ranking Loss 3 3 3 3 3 13 2,927 294 s

In conclusion, if the Evaluator generates a model that does not exploit the entire set of leakages, he
shall use the ranking loss in order to obtain a model mitigating the approximation error. Indeed,
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depending on the level of the SNR peaks, this error can dramatically impact the performance
of a network. However, from a practical perspective, a model trained with the ranking loss can
also extract false-positive leakages due to the optimization error. But, if the hyperparameter
α is correctly configured, its overall error rate stays a lower bound of the error rate generated
by a model trained with the negative-log likelihood loss function (see Subsection 7.2.3) with the
assumption that the optimization errors are similar. The evaluation of the approximation error
was also made on the AES_HD and the ASCAD datasets but the architectures proposed in
Subsection 6.3.1 already give the same best solution for all the losses. For these datasets, we
can assume that the approximation error is negligible. Hence, we assume that all losses exploit
the entire set of relevant information. The next section evaluates the benefits of the ranking loss
against the negative log-likelihood and the cross-entropy ratio when all leakages are detected.
Remark 7.3.1.1. In this experiment, we noticed that when the noise level is high, the best value of
α used by the ranking loss decreases. Consequently, α is configured to obtain the most powerful
model when the noise level is high. Even if the resulted performance is similar for many values of α,
this observation illustrates that α should be correctly configured depending on the characteristic
of the traces (i.e. level of noise, number of profiling traces ...).

7.3.2 A Total Exploitation of the Leakages
As mentioned, given the architecture provided in Section 6.3, the entire set of PoIs is detected on
the AES_HD and the ASCAD datasets (see Figure 6.7 and Figure 6.8). Hence, we can assume
that the approximation error does not impact the overall performance of the model regardless of
the loss function used. When all the losses converge towards the same best solution, a comparison
method consists in the evaluation of the number of profiling leakage traces that are needed to
reach this performance. From the Evaluator point of view, it is more interesting to converge
faster towards the best solution because it is difficult to estimate a priori the number of profiling
leakage traces needed to reach the best performance. To highlight the benefits of each loss, we
decompose this experimental study into an Estimation Error Gap (EEG) and a performance
gap evaluation. When various losses are used, the EEG characterizes the difference between the
number of profiling leakage traces Np that are needed to reach a given N̄trank value. We note
EEG(Li,Lj) the EEG value between models obtained from the loss functions Li and Lj . For each
dataset, we average the performance results given by 10 models converging towards a constant
guessing entropy of 1. Then, we display the evolution of the average N̄trank value for different
levels of Np. When the number of profiling traces is low (i.e. Np ≤ 30, 000), some models do not
retrieve the sensitive information and the resulted N̄trank value cannot be estimated. In order to
fairly compare the losses, we only consider the models for which the N̄trank value can be computed
for all the learning metrics.

AES_HD. In Figure 7.3a, we compare the convergence capacity of each model depending on
the loss used. When the model is obtained from the ranking loss, only 20, 000 profiling leakage
traces are needed to perform a successful attack such that N̄trank = 2, 500. To reach the same
performance, a model trained with the negative log-likelihood needs 24, 700 profiling traces. Thus,
when N̄trank = 2, 500, EEG(LRkL,LNLL) = 4, 700. Similarly, if the Evaluator chooses the cross-
entropy ratio as loss function, he needs to increase its training set by 4, 800 traces to perform
similar attacks. When the ranking loss is used, the number of profiling traces needed to reach
a constant N̄trank solution is, in the worse case, similar to the cross-entropy propositions (i.e.
negative log-likelihood, cross-entropy ratio). Through Table 7.2, we compare the performance of
each loss for a given number of profiling traces. When Np is low (i.e. ≤ 30, 000), the performance
gap is relatively high (up to 8, 293 traces) between the ranking loss and the cross-entropy losses.
Hence, when the number of profiling leakage traces is limited (as often in practice), the ranking
loss is the most efficient loss function. However, as defined in [MDP19b], if the number of profiling
traces is large enough and no approximation error occurs, the performance gap is reduced and
the negative log-likelihood loss function generates a model that converges towards the same best
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solution (see Table 7.2). The same observation can be made if we consider the cross-entropy ratio
loss function. These experimental results confirm the theoretical propositions of Subsection 7.2.3
such that the ranking loss is, at least, as efficient as a model trained with a cross-entropy loss
function (e.g. negative log-likelihood, cross-entropy ratio).
Remark 7.3.2.1. In comparison with the negative log-likelihood function, the training time can be
impacted when the ranking loss is considered. Following Definition 7.1.2.1, the partial ranking loss
function has to be summed over K. Hence, the training time needed to reach a given number of
epochs could be increased depending on the leakage model (e.g. identity, Hamming Weight). The
lesser the number of classes (or key hypotheses), the lesser the training time is impacted. For the
AES_HD dataset, the worst-case scenario is considered when 8 bits are targeted (i.e. |K| = 256).
The best-case scenario will be considered in Chapter 8 (i.e. |K| = 2 and |K| = 3). In comparison
with the cross-entropy losses, the training time increased by 10s, when Np = 15, 000, and by up
to 145s for 45, 000 profiling leakage traces. In the worst-case scenario (i.e. Np = 45, 000), the
training time is multiplied by 4.

EEG

(a) AES_HD

EEG

(b) ASCAD

Figure 7.3: Evolution of N̄trank depending on Np (average over 10 converging models -
synchronized datasets)

Table 7.2: Evolution of N̄trank depending on the number of profiling traces Np (AES_HD
- average over 10 converging models)

N̄trank

Np 10, 000 15, 000 20, 000 25, 000 30, 000 35, 000 40, 000 45, 000

Negative Log-Likelihood >25,000 13,855 5,685 2,220 1,725 1,385 1,235 1,165
Cross-Entropy Ratio >25,000 19,591 5,158 2,390 2,115 1,397 1,259 1,206
Ranking Loss >25,000 11,298 2,443 1,805 1,370 1,280 1,210 1,115

Remark 7.3.2.2. The value α of the ranking loss needs to be adapted depending on the number
of profiling traces. For example, when Np is low, the risk of overfitting is a major issue. One
solution, to limit the overfitting effect, is to fix a higher learning rate [HHS17, ST17]. Hence,
following Equation 7.8 and Equation 7.9, α can be monitored as the learning rate, in order to
optimize the training process. For the AES_HD dataset, increasing α to 10 generates a more
powerful model than α equal to 1 (see Appendix B) when the number of profiling traces equals
20, 000.

ASCAD. In contrast with the previous datasets, ASCAD is a protected implementation with
1st-order masking and random-delay countermeasures. Figure 7.3b, Figure 7.4a and Figure 7.4b
provide a comparison between models trained with the different losses for synchronized and desyn-
chronized leakage traces. In Figure 7.3b, when the model is trained with the ranking loss, only
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15, 000 profiling traces are needed to perform a successful attack, such that N̄trank = 1, 700, while
18, 500 (resp. 20, 000) are needed to reach the same performance when the negative log-likelihood
(resp. cross-entropy ratio) loss is used for the training process. Consequently, if the Evaluator
chooses the negative log-likelihood (resp. cross-entropy ratio) as loss function, he needs to in-
crease its training set by 3, 500 (resp. 5, 000) profiling leakage traces on average. Thus, when
N̄trank = 1, 700, EEG(LRkL,LNLL) = 3, 500. Furthermore, when no desynchronization occurs, the
model converges faster towards the average best solution (i.e. N̄trank ≈ 260) when the ranking
loss is used (i.e. Np = 35, 000) compared to the negative log-likelihood or the cross-entropy ratio
losses (i.e. about 45, 000 profiling traces). The resulting EEG value equals 10, 000.
This estimation error gap is up to 6, 000 profiling traces when desynchronization occurs (see
Figure 7.4a and Figure 7.4b)h. Hence for the ASCAD dataset, EEG is not increased with the
desynchronization effect. Indeed, in comparison with synchronized traces, this countermeasure
only impacts the exploitation of the relevant information. Finding suitable CNN architectures
reduce the desynchronization effect (see Chapter 6) while preserving the same performance as a
model trained with synchronized traces.

EEG

(a) ASCAD (desynchronization 50)

EEG

(b) ASCAD (desynchronization 100)

Figure 7.4: Evolution of N̄trank depending on Np (average over 10 converging models -
desynchronized datasets)

Through Table 7.3, we confirm the observations on the AES_HD dataset. In our experiment,
for a small number of profiling traces Np (i.e. ≤ 25, 000), a model trained with the ranking
loss is, on average, more efficient than one trained with the negative log-likelihood or the cross-
entropy ratio. For synchronized and desynchronized traces, the Evaluator with a limited number
of profiling traces shall use the ranking loss.
When the entire set of PoIs is detected by the network, a model trained with the ranking loss
converges faster towards the best solution compared to the negative log-likelihood and the cross-
entropy ratio losses. From a theoretical perspective, we can assume that the estimation error is
reduced when the ranking loss is considered. However, when the number of profiling traces Np

is large enough, we validate that the impact of the estimation error can be negligible. However,
in practice, the number of profiling traces is limited. For that purpose, the ranking loss function
seems to be more appropriate with the assumption that the Evaluator does not have an infinite
number of traces in the profiling phase [PHG19]. Hence, the ranking loss is a solid alternative to
the negative log-likelihood for performing side-channel attacks.
Remark 7.3.2.3. As previously mentioned, depending on the number of classes, the training time
can be impacted when the ranking loss is considered. In comparison with the cross-entropy losses,
the training time is increased by 60s, when Np = 15, 000, and by up to 253s when 45, 000 profiling
traces are used for generating a network on the ASCAD dataset when no desynchronization occurs.

hNote that models trained with the cross-entropy ratio did not converge when desynchronization 100
is considered.
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Table 7.3: Evolution of N̄trank depending on the number of profiling traces Np (ASCAD
- average over 10 converging models)

N̄trank

Np 10, 000 15, 000 20, 000 25, 000 30, 000 35, 000 40, 000 45, 000

D
es
yn

c
0 Negative Log-Likelihood >8,000 2,135 1,054 705 471 435 318 270

Cross-Entropy Ratio >8,000 3,015 1,771 1,220 950 437 313 295
Ranking Loss >8,000 1,740 709 481 334 272 258 244

D
es
yn

c
50 Negative Log-Likelihood >8,000 4,172 2,342 1,041 792 656 577 337

Cross-Entropy Ratio >8,000 6,640 3,042 1,473 1,028 742 567 403
Ranking Loss >8,000 3,475 1,792 765 641 558 449 345

D
es
yn

c
10

0 Negative Log-Likelihood >8,000 7,593 3,343 1,175 756 570 473 371
Cross-Entropy Ratio >8,000 >8,000 >8,000 >8,000 >8,000 >8,000 >8,000 >8,000

Ranking Loss >8,000 4,883 2,216 696 584 496 390 325

In the worst-case scenario (i.e. Np = 45, 000), the training time is multiplied by 1.9. In addition,
when a random delay effect with a maximum amplitude of 100 samples is implemented (i.e.
“Desync 100”), the neural network architecture proposed in Section 6.3 is more complex than the
neural network architecture trained on the synchronized traces (16, 960 against 142, 044 trainable
parameters). In comparison with the cross-entropy losses, the model obtained from desynchronized
leakage traces increases the resulted training time by 97s, when Np = 15, 000, and by up to 290s
when 45, 000 profiling traces are considered. Hence, the training time is multiplied by 2 in the
worst-case scenario (i.e. Np = 45, 000). Hence, through this example, a more complex neural
network does not impact a lot the training time induced by the ranking loss. However, a further
study should be made to validate this observation on deeper networks.

Remark 7.3.2.4. As mentioned earlier, the value α of the ranking loss needs to be adapted de-
pending on the number of profiling traces. For example, when Np = 15, 000 traces, increasing α to
5 generates a more powerful model than α = 0.5 (see Figure B.1b) if the desynchronization effect
equals 100. Finally, as we can see in Figure 7.4b and Table 7.3, a model obtained from the cross-
entropy ratio does not converge towards a constant GE of 1 when the random-delay effect equals
100. However, the cross-entropy ratio aims at reducing the imbalanced effect [ZZN+20, ISUH21]
which is not considered in this manuscript.

7.4 Conclusion
This chapter proposes a new loss function which is derived from the success rate metric. In-
deed, we extend the work done by Masure et al. [MDP19b] that consists in the interpretation
and the explainability of the loss functions in the side-channel context. We use the learning to
rank approach in order to propose a new loss, called Ranking Loss. We theoretically demonstrate
that maximizing the success rate is equivalent to minimizing the ranking error of the secret key
compared to all other hypotheses. Hence, the ranking loss tends to maximize the success rate for
a given Na leakage traces and converges towards the optimal distinguisher introduced in Defini-
tion 3.3.1.4. Through this new proposition, we are more concerned with the relative order of the
relevance of the key hypothesis than their absolute value. This result notably allows preventing
the approximation error induced by the softmax function considered by the negative log-likelihood
loss function. While the minimization of the empirical risk combined with the ranking loss gen-
erates a model that converges towards the mutual information between the sensitive information
Y and the leakage trace T, its application is helpful to optimize the side-channel performance
metrics that are considered to assess the robustness of a cryptographic module.
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All these observations are experimentally validated through two scenarios. Firstly, if the Evalua-
tor does not generate a model exploiting all the sensitive information from a leakage trace, using
the ranking loss prevents the approximation error and provides a good alternative to the negative
log-likelihood loss function. Otherwise, if the Evaluator generates a model that exploits the entire
set of leakages, the model trained with the ranking loss converges faster towards the best solution
compared to the cross-entropy losses (i.e. negative log-likelihood and the cross-entropy ratio).
Hence, if the Evaluator deals with a limited number of traces, using the ranking loss should pro-
vide the most efficient model. Consequently, in all situations, the Evaluator shall consider the
ranking loss as a clear alternative to the negative log-likelihood.

As the ranking loss approximates the mutual information between a sensitive information Y and
a leakage trace T, its application in side-channel context sounds natural. However, as mentioned
in Section 7.3, the related training time can be impacted by the number of output classes.
Indeed, following Definition 7.1.2.1, a sum over K has to be performed in order to compute
the empirical risk combined with the ranking loss. To assess the suitability of the ranking loss
on a wide-range of side-channe use-cases, the following chapter proposes to target cryptographic
module implementing asymmetric algorithms (i.e. RSA and ECC). In such scenario, side-channel
attacks aim to recover a secret key using the least number of leakage traces. Thus, increasing an
attack’s accuracy is particularly important when the Evaluator targets public-key cryptographic
implementations where the recovery of each secret key bits is directly related to the model’s
accuracy. Commonly used in the deep learning field, ensemble models are a well suited method
that combine the predictions of multiple models to increase the ensemble accuracy by reducing
the correlation between their errors. One common solution to optimize ensemble models is to
maximize an approximation of the mutual information between the ensemble model and the
targeted sensitive information. From the knowledge acquired in this chapter, we extend the
notion of ranking loss to the ensemble model and enhance the related attack performance against
public-key cryptographic implementations.

WHAT’S NEXT?



Chapter 8

Efficiency through Diversity in
Ensemble Models
A common solution to enhance the performance of the deep learning approach consists in combin-
ing individual predictions from several parametric models via a consensus method (e.g. majority
vote, average vote) in order to reduce the global error. We study this technique, called Ensem-
bling, in order to defeat cryptographic module implementing asymmetric algorithms. First, we
recall the Evaluator’ restrictions occurring during the evaluation of such implementations. From
these observations, we motivate the need of accuracy gains and translate it to a drastic reduction
of the remaining time complexity of a side-channel attack. This scenario fits with the Ensembling
approach such that constructing ensemble models is beneficial to diversify the predictions induced
by each of its member and thus, enhancing the attack performance. Then, we propose a new loss,
namely Ensembling Loss, that generates an ensemble model which increases the diversity among
its members. Based on the mutual information between the ensemble model and its related label,
we theoretically demonstrate how this loss generates interaction between the ensemble members
during the training process. It is further beneficial from the Evaluator perspective because he
can reconsider the robustness of cryptographic module against side-channel attacks. We conclude
this chapter by validating our theoretical observations on diverse datasets and side-channel attack
scenarios. The solutions proposed in this chapter have been presented at CHES and published in
the journal IACR TCHES [ZBHV21b].
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8.1 Evaluation of Public-Key Cryptographic Imple-
mentations

8.1.1 Evaluator’s Restrictions
Targeting symmetric vs. asymmetric implementations. As explained in Subsec-
tion 3.3.4, the attack process differs depending of the targeted cryptographic algorithms. While
side-channel attacks against symmetric algorithm implementations usually target 8 bits, a key
recovery attack against asymmetric algorithm implementations is considered as successful if, for
one or few attack leakage traces, the Evaluator retrieves the whole private key sk∗ ∈ Fn2 . Indeed,
due to a careful combination of countermeasures (e.g. message blinding, modulus randomization,
exponent/scalar blinding, point blinding), the Evaluator must be able to recover most of the secret
bits from one or few leakage traces. Typically, two scenarios can be considered:

• N leakage traces exploitation – The Evaluator wants to recover the secret from a
set of N leakage traces that share the same secret exponent/scalar sk∗ . This use case
corresponds to ECDH (Elliptic Curve Diffie-Hellman) or RSA signature computations when
exponent/scalar blinding countermeasure is applied. In this scenario, the Evaluator wants
to recover the blinding factor related to each of those N leakage traces in order to recover
sk∗ (deeper details are provided in Subsection 8.1.2).

• 1 leakage trace exploitation – The Evaluator has access to only 1 leakage trace in
order to recover the secret exponent/scalar sk∗ . This use case corresponds to ECDSA
(Elliptic Curve Digital Signature Algorithm) targeting the scalar multiplication with a
random noncea.

Consequently, instead of aggregating the output probability of a Θ-parametric model FΘ over
multiple leakage traces, the Evaluator’s strategy consists in making use of the accuracy of FΘ
to retrieve each private key bit (sk∗ [i])0≤i<n. If FΘ does not correctly find each bit with 100%
accuracy, the Evaluator has to perform additional operations, called Remaining Operations (see
Definition 3.3.4.6), to retrieve the last bits of the private key. Hence, the accuracy of the attack
is crucial in order to lower the remaining operations required to find the entire secret key sk∗ .

Practicability and remaining brute-force complexity. To define the practicability
of an attack, the European SOG-IS schemeb introduces three complexity measures [SI20, Section
1.3]:

• Time complexity – This metric corresponds to the number of offline computations the
Evaluator can perform in order to extract the targeted data from the cryptographic mod-
ule. This notion does not consider the computation power available to the Evaluator (e.g.
parallelization). This term is characterized by the Remaining Operations introduced in
Definition 3.3.4.6.

• Memory complexity – This metric defines the amount of memory the Evaluator needs
to store the acquired leakage traces and perform the related attack.

• Data complexity – The metric quantifies the amount of interactions the Evaluator needs
with the targeted cryptographic module in order to perform his attack.

aNonce is the abbreviation of “number only used once”. It refers to any arbitrary random number and
it is useful to mitigate the impact of some attacks (e.g. replay attacks)

bAs remainder, the Senior Officials Group Information Systems Security (SOG-IS) agreement defines a
set of requirements and evaluation procedures related to cryptographic aspects of CC security evaluations
of IT products and mutually agreed by SOG-IS participants. The interested readers may find useful
information in https://www.sogis.eu/index_en.html.

https://www.sogis.eu/index_en.html
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While these three metrics can be combined following the Evaluator’s capability (e.g. the time
complexity can be reduced by increasing the memory or the data complexity), this manuscript
only considers the time complexity measure for assessing the practicability of an attack. Thus,
we put this chapter in a general context where no assumption is provided related to the Evalu-
ator’s capability. To measure the time complexity, the Evaluator considers the number Nop,α of
remaining operations depending on the accuracy α obtained from a Θ-parametric model FΘ. We
define the Attack Complexity as log2(Nop,α). In [SI20], the SOG-IS agreement considers that a
maximum attack complexity of around 100 (i.e. Nop,α = 2100 operations) is practical.

Hence, to fit with the Evaluator’s restrictions, the following sections consider this threshold to
evaluate if an attack becomes feasible. Furthermore, while no theoretical result links the accuracy
and the remaining operations, we experimentally evaluate how the accuracy impacts the final
attack complexity.

8.1.2 Complexity Measures
In this section, we consider three attack complexity measures, namely Naive complexity, 2b-
complexity and Alternate attack complexity, such that, depending on the targeted asymmetric
cryptographic implementations, we can assess how the gain of accuracy influences the resulted
side-channel attack complexity. The goal of the adversary is to recover a blinded secret key
composed by a secret exponent/scalar sk∗ (resp. blinded exponent/scalar) of bit-length n (resp.
r).

Naive complexity. In this scenario, the Evaluator guesses the bits related to sk∗ based on a
Θ-parametric model FΘ and a leakage trace T. While some of the guessed bits may be wrong,
the Evaluator cannot locate them among the n bits of sk∗ as he cannot perfectly distinguish the
process sk∗ [j] = 0 from sk∗ [j] = 1 for 0 ≤ j < n. The Naive complexity metric measures the
number of combinations the Evaluator has to perform in order to correctly recover sk∗ . Thus,
given a secret exponent/scalar sk∗ of n bits, a blinding exponent/scalar of bit-length r and an
error rate εbit ∈ [0, 1], the Naive Complexity, denoted CNC , is defined as:

CNC (n, r, εbit) = log2

d(n+r)×εbite∑
i=0

(
n+ r

i

) ,
where (n + r) × εbit denotes the number of erroneous bits related to the secret blinded expo-
nent/scalar of n+ r bits.
Indeed, as the Evaluator cannot identify the correct from the wrong predictions, he has to compute
all the possible combinations. This attack complexity metric considers the worst-case scenario.

2b-complexity. This scenario is similar to the naive complexity metric. However, while the
previous case suggests that the Evaluator cannot locate the wrongly guessed bits of sk∗ , this
scenario assumes that the Evaluator can locate the uncertain predictions. For example, given
a leakage trace T, the Evaluator defines the related predictions as uncertain if the probability
assigned to one hypothetical bit value does not exceed a given threshold. Thus, given a secret
exponent/scalar of n bits, a blinding exponent/scalar of bit-length r and a percentage of bits εbit
under a given threshold, the 2b-complexity, denoted C2b , is defined as the best-case scenario such
that:

C2b (n, r, εbit) = d(n+ r)× εbite.

Indeed, as each uncertain prediction has 2 possible values (i.e. {0, 1}), the resulted number of
remaining operations is 2d(n+r)×εbite. In the following, an attack that can be performed with
2b-complexity is called a 2b-attack.
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Alternate attack complexity. Introduced in [SW14], the Alternate Attack targets RSA
modular exponentiation protected with exponent blinding. Based on the Basic Attack and the
Enhanced Attack [SI11], the alternate attack retrieves the secret exponent bits from multiple
traces. This attack can be extended to Elliptic Curves [SW14] and RSA with CRTc [SW17].
However, some tricks are specific to each case study. In this manuscript, we only focus on the
application of the alternate attack on RSA without CRT. In particular, we formulate a complexity
equation for this alternate attack that is missing from the original paper.
In [SW14], Schindler and Wiemers define the blinded exponent s′k∗ with a blinding scalar R′ as:

s
′

k∗ = sk∗ +R′ · φ(N),

where sk∗ is the secret exponent and φ(N) defines the Euler totient function of the modulus N .
In the alternative attack scenario against RSA without CRT, it is assumed that the attacker
knows the upper halves of the binary representation of φ(N) because it is similar to N . Let n be
the bit-length of the secret exponent and sk∗ � j =

⌊ sk∗
2j
⌋
defines the bits of sk∗ shifted to the

right by j places. If j ≥ n
2 + r + 6, then

⌊ sk∗
2j
⌋
depends on the upper half of the bits of φ(N).

Given a secret blinding exponent s′k∗ , Schindler and Wiemers introduce α =
⌊
s
′
k∗

2n−1

⌋
and β such

that 0 ≤ β < 2n−1 < φ(N) to rewrite s′k∗ in such a way that the (r + 1) most significant bits
influence α while the (n− 1) least significant bits influence β. Then, the authors define (s′k∗ � j)
as:

(s′k∗ � j) =
⌊
sk∗ +R′ · φ(N)

2j
⌋

=
⌊
α2n−1 + β

2j

⌋
,

and,

(sk∗ � j) = (s′k∗ mod φ(N)� j) =
⌊
α2n−1(mod · φ(N)) + β − ωφ(N)

2j

⌋
=
⌊
α2n−1(modN) + β − ωN

2j

⌋
,

with high probability for an unknown ω ∈ {0, 1} and j ≥ n
2 + r + 6.

When the Evaluator captures the leakage traces, he guesses the randomized exponent to obtain
an estimation ŝ′k∗ of the true blinded exponent s′k∗ :⌊

ŝ
′

k∗

2j

⌋
=
⌊
s
′

k∗ ⊕ e
2j

⌋
=
⌊
α̂2n−1 + β̂

2j

⌋
,

where e expresses the guessing error induced by exponent ŝ′k∗ , ‘⊕’ denotes the bitwise XOR
operation, α̂ (resp. β̂, ω̂) is an estimation of α (resp. β, ω).
Given an error rate εbit, the Evaluator can estimate the number of erroneous bits in α̂. The idea
of the alternative attack against RSA without CRT is to generate all candidates for α (denoted
α̂c) and compute the resulted blinding factor candidates as R̂′c = (ŝ′k∗− ŝk∗)/N =

⌊
α̂c2n−1/N

⌋
+ω

with ω ∈ {0, 1}. Then, for each candidate α̂c and R̂
′

c, the Evaluator can compute an estimation
of the resulted error ê based on a guess on the secret exponent sk∗ such that:

ê =
(
R̂
′

cN +
⌊
ŝk∗

2j
⌋

2j
)
⊕
(
α̂c2n−1 + β̂

)
.

If
⌊
ŝk∗
2j
⌋

=
⌊ sk∗

2j
⌋
, a blinding factor estimation R̂′c is defined as a candidate for R′ if HW

(⌊
ê/2j

⌋)
≤

t0 with t0 a threshold configured by the Evaluator. A smaller t0 value induces a more restrictive
cThe Chinese Remainder Theorem (CRT) mode optimizes the modular exponentiation process which

is rather slow. Thus, the application of the CRT mode is beneficial from computational perspective as it
deals with larger key size in about 4 times faster than a classical RSA without CRT mode.
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candidate selection. The threshold t0 should be selected such that no false candidates for R′
are kept. More details on the alternative attack algorithm are provided in [SW14, Algorithm 4].
However, it is acceptable that some of the

⌊
ŝk∗/2j

⌋
candidates are wrongly guessed. Then, to

retrieve the remaining bits of φ(N), the adversary has to perform the Step 3 of the Enhanced
Attack introduced by Schindler and Itoh [SI11]. Of course, for a number Na of attack traces, we
expect qx0,t0N candidates for

⌊
s
′

k∗/2s
⌋
where,

qx0,t0 =

∑
i≤x0

(
r + 1
i

)
εibit (1− εbit)r+1−i

 ·
∑
i≤t0

(
n− 1− j

i

)
εibit (1− εbit)(n−1−j)−i

 ,
such that, the two brackets quantify the probabilities that α̂ and the most significant bits of β̂
contain at most x0 or t0 guessing errors, respectively [SW17]. Through all these components, we
can estimate the complexity of the resulted alternate attack for a given j and t0 values.
First, the Evaluator has to configure the j, t0 and Na values to perform successful attacks. Then,
for a given ŝ′k∗ = α̂2n−1 + β̂, the Evaluator has to generate all α̂c candidates that differ by x0 bits

from α̂ at most. Hence, there are M0 =
∑
i≤x0

(
r + 1
i

)
candidates for α.

The computation of each candidate R̂′c and êc depends on the number of α̂c elements. Therefore,
there are 2 · M0 candidates for R′, 2 · M0 · 2n−j candidates for e in the worst case (i.e. if⌊
ŝk∗/2j

⌋
6=
⌊
sk∗/2j

⌋
) or 2 ·M0 candidates for e otherwise (i.e. if

⌊
ŝk∗/2j

⌋
=
⌊
sk∗/2j

⌋
). In the

following, we only consider the worst-case scenario for the attack complexity estimation.
Given an n-bit secret exponent sk∗ , an r-bit blinding exponent, an error rate εbit and a number
of attack traces Na, the alternate attack complexity CAA is defined as:

CAA (n, r, εbit, Na) = log2

Na · 2n−j+1 ·
d(r+1)×εbite∑

i=0

(
r + 1
i

) ,
with t0 configured such that no false candidates for R′ are selected.
To consider the alternate attack has a success, the Evaluator has to define the number of attack
traces Na that are needed to recover the full bits of φ(N). Hence, to correctly estimate CAA, the
Evaluator has to perform the Step 3 of the enhanced attack [SI11] in order to find a correct
assumption about Na. We consider an alternate attack as ineffective if the success rate related to
φ(N) is less than 100% when 300 successive alternate attacks are performed.

Remark 8.1.2.1. In [SW17], Schindler and Wiemers set j = n− r+ 2 and t0 = 2 for r = 32. Even
if using the same parameters is restrictive when r = 64, these conditions respect the above result.
Thus, the alternate attack complexity considered in Subsection 8.4.1 employs those parameters.

All these complexity measures are helpful to evaluate the efficiency of an attack. These tools are
suited to highlight the impact of the accuracy on the resulted attack complexity. As εbit = 1−αbit,
with αbit denoting the accuracy of retrieving one bit of sk∗ , it can be observed that a slight im-
provement in αbit can drastically reduce all the attack complexity metrics introduced above. Thus,
a slight improvement in terms of accuracy is non-negligible from a side-channel perspective.

This result leads us to investigate the benefits of using Ensembling approach in side-channel
context in order to defeat asymmetric cryptographic implementations.

8.2 The Principle of Ensembling
In machine learning, ensemble methods combine individual predictions from parametric models
of a pool via a consensus method (e.g. majority vote, average) [HS90, Kun04, Zho12]. These
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approaches are useful when the models of the ensemble, known as committee members, learn
and predict uncorrelated errors. Hence, a simple consensus method can efficiently reduce the
global error of the system. However, in practice, the errors induced by the committee members
are correlated and the overall ensemble error reduction is hard. One solution to reduce this
correlation is to conduct a diversity investigation on the members in order to reduce the global
error and increase to some extent, the ensemble performance [Die00a]. The following sections
deeply characterize these observations.

8.2.1 A Source of Diversity
Reduction of the Global Error. In [TG96a, TG96b], Tumer and Ghosh provide theoretical
observations for analyzing the interest of ensembling to solve a classification problem. They ana-
lyze the classification errors that are added to the Bayes error (i.e. the lowest possible error rate
for any classifier of a random outcome) for an ensemble model. Let E = {FΘ0 , FΘ1 , · · · , FΘNc−1}
be a set (or committee) of Nc models (or members) with trainable parameter (Θn)0≤n<Nc . In
the following, FΘn will be denoted as Fn. The parametric models are assumed to have the samed
error rate such that Eadd denotes the expected added error of the individual members included
in E . In [TG96a, TG96b], Tumer and Ghosh show that the expected added error of the ensemble
committee, denoted Eadd,ens, can be expressed as:

Eadd,ens = Eadd

(1 + δ(Nc − 1)
Nc

)
, (8.1)

where δ is a correlation factor that quantifies the error dependence among the parametric models.
From Equation 8.1, we can easily evaluate the benefits of using ensemble methods to reduce
the global error. If δ is 0, then the errors induced by the parametric models are independent
and the ensemble expected added error is divided by Nc. Therefore, the global error will be Nc

times smaller than the individual error provided by each parametric model included in E . On
the other hand, if δ is 1, the errors induced by the parametric models are correlated and Eadd,ens
characterizes the average error of each classifier. To ensure uncorrelated errors, the classifiers
included in the ensemble model must be diverse [Die00a].

Ensemble Diversity Definitions. Diversity has been recognized as a very important con-
cept in parametric models combination [CC00, Lam00]. Indeed, it characterizes the difference
among individual members of a committee E . However, in the machine learning literature, there
are multiple techniques that serve the ensemble diversity. For example, bagging [Bre96] and
boosting [FS96] manipulate input data to promote diversity by choosing different subsets of input
during the training process while other approaches consist in diversifying the neural network ar-
chitectures considered by each parametric model in E . In this manuscript, the diversity is defined
as follows:

Definition 8.2.1.1 (Diversity). Given an ensemble model E composed by Nc committee members
(Fn)0≤n<Nc , the diversity is defined as a quantity measuring the difference among the elements of
E based of their predictions.

This definition is not new and was already considered by the machine learning community (e.g.
majority vote [MHA14], PAC-Bayesian theory [GMGA17], . . . ). From Definition 8.2.1.1, diversity
is greater when the parametric models that make wrong decisions for a given example spread their
decisions more evenly over the possible incorrect decisions. Indeed, the more uniformly distributed
the errors are, the greater the diversity. In [FR05], Fumera and Roli found that the performance of
ensembles depends on the performance of individual classifiers and their correlation. To efficiently
promote the ensemble diversity, the output of the ensemble model E can be decomposed into three

dThis strong hypothesis is proposed by Tumer and Ghosh in [TG96a, TG96b] to illustrate the benefits
of the ensembling approach.
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categories [XKS92, Kun04]. Let E = {F0, F1, · · · , FNc−1} be a set of Nc parametric models and
C = {c0, c1, · · · , c|K|−1} be a set of |K| labels (or classes). For a given input T, we can define these
categories as follows:

• Abstract level – Each parametric model (Fn(T))0≤n<Nc outputs unique value included
in C. Thus, the Nc predictions define a vector in CNc that characterizes the output of E .
Based on this vector, the Evaluator can define the diversity induced in E .

• Oracle level – The output of Fn(T) is 1 if T is correctly classified by Fn, and Fn(T) = 0
otherwise. This representation is called oracle because the Evaluator has to know the label
for each input in order to configure the output of E .

• Measurement level – The output of Fn(T) is defined by a vector of posterior probabilities[
Pr[c0|T],Pr[c1|T], · · · ,Pr[c|K|−1|T]

]
that quantifies the confidence in the prediction of each

class (ci)0≤i<|K|−1. Hence, the output of the ensemble model E is characterized by Nc

confidence vectors of size |K|.

The measurement level contains the highest amount of information while the abstract level con-
tains the lowest [XKS92]. In this manuscript, we want to precisely measure the diversity between
each parametric model of the committee E . For that purpose, we focus only on the posterior
probability representation to evaluate the performance and the diversity of an ensemble model
E . These probabilities will be combined following the Average Method [XKS92] to define the
overall performance of E but a comparison will also be provided with Voting in Subsection 8.4.3.
The average method consists in predicting the most likely class based on the average conditional
probability of observing each element of C over E .
Thus, based on the measurement level, the Evaluator has to design an ensemble model E such that
the diversity between the committee members is optimized. However, the diversity methods are
legion and it could be hard to categorize them. In [LWC+19], Liu et al. decompose the diversity
into three categories:

• Type I diversity characterizes the variety of committee members’ structure such as types
of neural network (e.g. multi-layer perceptrons, fully-connected neural networks, convolu-
tional neural networks, recurrent neural network, residual neural network), weight initial-
ization, training dataset, optimizer hyperparameters (e.g. optimizer algorithm, learning
rate, number of epochs).

• Type II diversity selects a subset of parametric models included in E that minimize their
errors correlation. Hence, the resulted ensemble model E ′ promotes independence between
its members and tends to reduce the related global error.

• Type III diversity forces the ensemble model E to decorrelate the errors generated by
each of its parametric model (Fn)0≤n<Nc during the training process. Hence, an error
decorrelation penalty term is incorporated in the loss function to create complementary
members and consequently, reduces the overall error.

The type II and the type III diversities are both defined and quantified based on the disagreement
among the parametric model included in E . While the type II diversity captures the disagreement
measure of each committee member after the training process for selecting a subset of parametric
models E ′ , the type III diversity considers the posterior probability representation to create and
promote interactions during the profiling phase. Hence, even if an ensemble model E is composed
by committee members with a high disagreement measure, applying the type III diversity is useful
to penalize the remaining error correlation and providing a slight improvement of the ensemble
model’s performance as recommended in Section 8.1. Consequently, we design a solution to satisfy
the type III diversity by proposing a new loss that promotes the penalization of correlated errors
during the training process. This metric is based on the mutual information between an ensemble
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model and its related labels.

The next section introduces the concept of mutual information ensemble diversity as a foundation
of our proposition. In addition, to efficiently evaluate the overall benefits of using ensemble
methods in side-channel context, we combine all types of diversity in Section 8.4.

8.2.2 Mutual Information Ensemble Diversity
Type III diversity can be characterized by the application of a specific loss function promoting
the diversity between committee members. Unlike the correlation that is classically employed to
measure the similarity between two entities, the mutual information captures non-linear statis-
tical dependencies between variables. Hence, this measurement can be used as a real source of
dependence information [KA14]. In [Bro09], Brown evaluates the benefits of using mutual infor-
mation to improve ensemble models. In [ZL10], Zhou rewrites the ensembling as a communication
channel problem such that it can be summarized as follows:

From an information theoretic point of view, let Y be a message sent through a communication
channel and X be the received value such that X should be decoded to recover the input message
Y . For that purpose, a decoding function g(.) is defined such that an estimation of the message
can be written as Ŷ = g(X). From a machine learning perspective, X is the set of features
characterizing the input of a learner g(.) and Y is the true unknown label. From ensembling
paradigm, the goal is to recover Y from a set of Nc models X0:Nc−1 = {X0, X1, . . . , XNc−1}
by a combination function g(.) such that during the training process, we want to minimize
Pr [g({X0, X1, . . . , XNc−1}) 6= Y ]. For any model g, [Fan61, HR70, Bro09] provide theoretical
bounds for Pr [g(X0:Nc−1) 6= Y ] such that:

H(Y )−MI(X0:Nc−1;Y )− 1
log(|Y |) ≤ Pr [g(X0:Nc−1) 6= Y ] ≤ H(Y )−MI(X0:Nc−1;Y )

2 .

Hence, to minimize Pr [g(X0:Nc−1) 6= Y ], we have to maximize the mutual information between
X0:Nc−1 and Y .

ENSEMBLING AND INFORMATION THEORY

In [Bro09], Brown proposes a solution to compute the mutual information between an ensemble
model E = {X0, X1, . . . , XNc−1} and a set of true unknown labels Y .

Definition 8.2.2.1 (Mutual Information Ensemble Diversity [Bro09, ZL10]). Given an ensemble
model E composed by Nc committee members (Fn)0≤n<Nc and a targeted sensitive variable Y ,
the mutual information ensemble diversity is defined as:

MI(E ;Y ) =
Nc−1∑
n=0

MI(Fn;Y )−
Nc−1∑
n=1

∑
En⊆E

MI({En}) +
Nc−1∑
n=1

∑
En⊆E

MI({En}|Y ), (8.2)

whereMI(Fn;Y ) is called relevancy,MI({Ei}) defines the redundancy andMI({En}|Y ) char-
acterizes the conditional redundancy. Note that

∑
En⊆E should be read as “sum over all possible

subsets En drawn from E” where En is of size n+ 1.

Example 8.2.2.1 (Case-study with Nc = 3.). If Nc = 3, the multivariate mutual information,
also known as Interaction Information, between the joint variable E = F0:Nc−1 and the targeted
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sensitive variable Y can be rewritten as follows:
MI(E ;Y ) = MI(F0;Y ) +MI(F1;Y ) +MI(F2;Y ) +MI({F0, F1, Y }) +MI({F0, F2, Y })

+MI({F1, F2, Y }) +MI({F0, F1, F2, Y })

=
2∑

n=0
MI(Fn;Y ) +

∑
E1⊆E

MI({E1 ∪ Y }) +MI({F0, F1, F2, Y })

=
2∑

n=0
MI(Fn;Y )−

∑
E1⊆E

MI({E1}) +
∑
E1⊆E

MI({E1}|Y )−MI({F0, F1, F2})

+MI({F0, F1, F2}|Y )

=
2∑

n=0
MI(Fn;Y )−

2∑
n=1

∑
En⊆E

MI({En}) +
2∑

n=1

∑
En⊆E

MI({En}|Y ).

This result is consistent with Equation 8.2.
The relevancy computes the mutual information between the nth parametric model of E and the
target Y . The redundancy is independent of the class label Y and measures the interactions
between all the models. Hence a large

∑Nc−1
n=1

∑
En⊆EMI({En}) indicates strong correlations be-

tween the parametric model induced in En. Finally,
∑Nc−1
n=1

∑
En⊆EMI({En}|Y ) indicates that a

strong class-conditional correlation is needed to perform an efficient ensemble model. However,
from a practical perspective, it is quite difficult to estimate higher-order interaction information.
Currently, there is no effective computational approach in the literature. Hence, Brown proposes
to simplify Equation 8.2 by considering only pairwise components as follows [Bro09]:

MI(E ;Y ) ≈
Nc−1∑
n=0

MI(Fn;Y )−
Nc−2∑
n=0

Nc−1∑
m=n+1

MI(Fn;Fm) +
Nc−2∑
n=0

Nc−1∑
m=n+1

MI(Fn;Fm|Y ), (8.3)

whereMI(Fn;Y ) computes the mutual information between the nth model of E and the target Y ,
MI(Fn;Fm) measures the mutual information between two models Fn and Fm andMI(Fn;Fm|Y )
measures the conditional redundancy between two models Fn and Fm knowing Y . Based on the
pairwise approach, Equation 8.3 omits higher-order components such that the interactions it in-
troduced are illustrated in Figure 8.1. Assuming that the Evaluator designs an ensemble model
such that E = {F0, F1, F2, F3, F4}, this figure illustrates the interactions induced by the parametric
model F1 (resp. each parametric model) with each other (see Figure 8.1a) (resp. see Figure 8.1b).
Indeed, through the computation of Equation 8.3, the Evaluator induces interactions between the
committee members such that each parametric model interacts with itself, in order to optimize
MI(Fn;Y ), and with each other, in order to maximize conditional redundancy while minimize
the redundancy.

However, from a practical perspective, the Evaluator cannot directly compute MI(E ;Y ) because
it is intractable. Thus, we have to find a loss function that penalizes a set of parametric models
included in E such that an approximation of this mutual information MI(E ;Y ) is maximized.
The following section proposes a solution to this issue.

8.3 Ensembling Loss: A Pairwise Ensemble Diversity
Metric

This section presents our solution: the Empirical Risk combined with the Ensembling Loss. In
Subsection 8.3.1, we first define three sub-empirical risks that are combined with three new losses,
namely Relevance Loss, Conditional Redundancy Loss and Redundancy Loss, derived from the
mutual information ensemble diversity. This decomposition allows us to define the Ensembling
Loss as a diversity learning metric. Then, Subsection 8.3.2 validates the theoretical aspects of the
ensembling loss through visualization techniques.
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(a) Interactions induced by the parametric
model F1 with each other.

(b) Interactions induced by the parametric
models included in E .

Figure 8.1: Mutual information ensemble diversity principle considering pairwise compo-
nents and an ensemble model E = {F0, F1, F2, F3, F4}.

8.3.1 Mutual Information Ensemble Diversity Estimation
This section proposes a new empirical risk derived from Equation 8.3 in order to maximize an
approximation of the pairwise mutual information MI(E ;Y ) and the diversity between the com-
mittee members. To this end, we propose three empirical risks combined with three losses namely
Relevance loss, Conditional Redundancy loss and Redundancy loss. In order to achieve
a general-purpose estimator, we base our propositions on the characterization of the mutual in-
formation as the Kullback-Leibler (KL-) divergence [KL51] between the joint distribution and the
product of the marginals. In Appendix D, we deeply explain the equations mentioned in this
section.

Relevance Loss. In Equation 8.3, the relevance MI(Fn;Y ) highlights the dependence of a
learner Fn ∈ E and a sensitive variable Y . Following [ZL10, Zho12], this term gives a bound
on the accuracy of the individual parametric models. In Chapter 7, we extend this result by
demonstrating that this term, also referred as theRanking Loss, is defined as an upper bound on
the success rate related to each individual parametric model. Hence, a large relevance is preferred
to maximize the performance of the ensemble model. As mentioned in Chapter 7, minimizing the
ranking loss is equivalent to maximizing an approximation of the mutual information MI(Fn;Y ).
The minimization of this loss function is exactly what the relevance quantifies in [Bro09]. Thus,
given a profiling set Ip of Np pairs (ti, yi)0≤i≤Np , a parametric model Fn and a number of attack
traces Na such that Na|Np, we define the empirical risk combined with the Relevance Loss function
as:

R̂(LReL, Fn) = Na

Np

Np/Na∑
i=1

∑
k∈K
k 6=k∗

(
log2

(
1 + e−α(sNa,i(Fn,k∗)−sNa,i(Fn,k))

))
, (8.4)

where sNa,i(Fn, k) =
∑Na
j=1 Fn

(
tj+Na·(i−1)

)
[f(xj , k)] defines the output score of the hypothesis

k ∈ |K| for a given plaintext (xj)1≤j≤Na while α approximates the sigmoid function needed for
estimating the success rate.
Minimizing Equation 8.4 tends to maximize the mutual information MI(Fn;Y ) through the min-
imization of the error induced by Pr[Y |Fn]. In other words, we want to penalize a model Fn when
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the correct label Y is not ranked as the highest hypothetical class. This penalization term is
monitored by the distance between the score associated with the correct label Y and the other
hypotheses. From a machine learning perspective, the maximization of MI(Fn;Y ) tends to gen-
erate compact clusters, one for each class. If False-Positives (FP) or False-Negatives (FN) appear
during the training process, the ensemble model will be overconfident on its predictions and the
resulted errors could be persistent. To reduce this effect, a solution is to provide diversity in order
to limit the impact of these FP, FN examples. Hence, other empirical risks defined below bring
more diversity during the training process.
Remark 8.3.1.1. The empirical risk combined with the relevant loss is actually the same as the
ranking loss introduced in Definition 7.1.2.1. We reformulate it to facilitate the comprehension
of the ensembling loss and the comparison with the mutual information ensemble diversity (see
Definition 8.2.2.1) introduced by Brown [Bro09].

Conditional Redundancy Loss. The conditional redundancy MI(Fn;Fm|Y ) quantifies
the dependence between Fn and Fm given a set of labels Y . This mutual information helps the
committee members to converge towards the correct label hypothesis with the same confidence.
Maximizing MI(Fn;Fm|Y ) is asymptotically equivalent to minimizing the error on Pr[Fn, Fm|Y ]
which defines the probability of observing Fn and Fm given Y (see Appendix D). In other words,
we want to minimize the distance between the scores of Fn and Fm given the correct class. Thus,
given a profiling set Ip of Np pairs (ti, yi)0≤i≤Np , a pair of parametric models (Fn, Fm) and a
number of attack traces Na such that Na|Np, we define the empirical risk combined with the
Conditional Redundancy Loss function as:

R̂(LCRL, Fn, Fm) = Na

Np

Np/Na∑
i=1
− log2

(
e−β|sNa,i(Fn,k

∗)−sNa,i(Fm,k∗)|
)
, (8.5)

where β is one hyperparameter that characterizes the impact of the distance on the penalization
term and sNa,i(Fn, k∗) defines the score related to the class k∗ given a set of Na traces and a
parametric model Fn.
Through Equation 8.5, we want to penalize the learning process when the score sNa,i(Fn, k∗) and
sNa,i(Fm, k∗) are different. Hence, we want to minimize the dissimilarity between the pairwise
model Fn and Fm knowing Y . This will have the effect of increasing the confidence of the network
on the True-Positive (TP) and True-Negative (TN) examples. Consequently, we consolidate the
good predictions with more persistency. However, this loss does not interact with the False-
Positive (FP) and False-Negative (FN) examples. The following redundancy loss reduces this
gap.

Redundancy Loss. The redundancyMI(Fn;Fm) measures the pairwise dependence between
all the committee members without considering the ground truth. A large mutual information
induces a strong correlation among the pairwise committee members and promotes similarities
which is not desired when we want to construct an efficient ensemble model. Hence, we want to
minimize this mutual information to improve the ensemble performance (see Appendix D). The
redundancy loss maximizes the distance between the score distribution of the models Fn and Fm.
Therefore, we propose a loss penalizing the training process when this condition does not hold.
Given a profiling set Ip of Np pairs (ti, yi)0≤i≤Np , a pair of parametric models (Fn, Fm) and a
number of attack traces Na such that Na|Np, we define the empirical risk combined with the
Redundancy Loss function as:

R̂(LRedL, Fn, Fm) = Na

Np

Np/Na∑
i=1

|K|−1∑
k=0

|K|−1∑
k′=0
− log2

(
1− e−γ|sNa,i(Fn,k)−sNa,i(Fm,k′)|

)
, (8.6)

where γ is one hyperparameter that characterizes the impact of the distance on the penalization
term.
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Minimizing MI(Fn;Fm) is equivalent to maximizing H(Fm|Fn). Consequently, we want to in-
crease the uncertainty of Fm given Fn. Through the minimization of Equation 8.6, we promote
the cluster scattering and reduce the global confidence of the committee members on the False-
Positives and False-Negatives to decrease their persistency.

Ensembling Loss. We integrate the mutual information ensemble diversity during the train-
ing process to promote the diversity between the committee members. Through our individual
losses provided in Equation 8.4, Equation 8.5 and Equation 8.6, we formulate an Ensembling Loss
(EL) that maximizes an estimation of the mutual information between an ensemble E and a label
Y . Indeed, based on Equation 8.3, this new empirical risk can be expressed as below.

Definition 8.3.1.1 (Empirical Risk combined with the Ensembling Loss). Given a profiling set
T of Np pairs (ti, yi)1≤i≤Np , a set of parametric models E = {F0, F1, · · · , FNc−1} and a number
of attack traces Na such that Na|Np, we define the empirical risk combined with the ensembling
loss function as:

R̂(LRel,LRedL,LCRL, E) = 1
Nc

Nc−1∑
n=0
R̂(LReL, Fn)

+ 2µ
Nc(Nc − 1)

Nc−2∑
n=0

Nc−1∑
m=n+1

(
R̂(LRedL, Fn, Fm) + R̂(LCRL, Fn, Fm)

)
,

where µ quantifies the impact of the diversity term during the training process.

We normalize each term of the empirical risk to reduce the impact of exploding gradient. Ap-
pendix E highlights the benefits of each individual loss from a training perspective. Through
this study, the reader can understand how the network would train if the conditional redundancy
loss or the redundancy loss is individually used. Finally, in the following sections, the number of
attack traces Na will be configured to 1 during the profiling phase as in Chapter 7.

Remark 8.3.1.2. Due to the wide range of hyperparameters (i.e. µ, α, β, γ), the empirical risk
combined with the ensembling loss seems difficult to tune. From a practical perspective, these
hyperparameters are dataset-dependent. Hence, it seems very challenging to define a generalized
configuration for all types of implementations because it highly depends on the number of classes
|K|, the noise induced in each trace, the implemented countermeasures and the targeted cryp-
tographic algorithm implementation (e.g. AES, RSA, ECC). However, during our experiments,
the tuning process was not a pitfall. Indeed, in the following section, α, β, γ values follow the
strategy observed in Appendix B. Hence, they are configured in [0.001, 0.1]. In opposition, µ is
not optimized in this manuscript and always equals 1.

Remark 8.3.1.3. As our framework is generic, we argue it is adequate to target private-key imple-
mentations, in particular AES and DES (i.e. |K| = 256). However, the training time increases
exponentially with the number of output classes |K|. Hence, from a practical perspective, the ap-
plication of the Ensembling Loss seems more suitable for low multiclass problems (i.e. |K| ≤ 5).
This proposition fits with asymmetric algorithm implementations which consider low multiclass
problems. Finally, even if this work is only focusing on the side-channel context, the Ensembling
Loss can be used to solve any machine learning problems (i.e. image classification, image recog-
nition, fraud detection, ...).

To validate the benefits of the ensembling loss, the following section investigates its impact on
the ensemble diversity through a concrete example.
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8.3.2 Enhancing the Features’ Diversity
Diversity among the committee members is deemed to be a key issue in ensemble learning and
should reduce the global error (see Subsection 8.2.1). In this section, we want to validate the
theoretical observations provided in Subsection 8.3.1. Hence, we analyze the diversity evolution
depending on the loss used during the training process. Three losses are considered in the rest
of this chapter: the Negative Log-Likelihood, the Ranking Loss and the Ensembling Loss. All
these learning metrics will be considered to select the most suited ensemble model such that three
processes can be considered to perform the learning process:

• Independent Learning Strategy – There is no interaction among the committee mem-
bers during the learning process. For example, each parametric model could be trained
on different training set to reduce the features’ correlation [Bre96]. Thus, they are inde-
pendently obtained such that their posterior probabilities are combined once the learning
process is fully performed on each committee member. This is the worst solution from the
Type III diversity perspective;

• Sequential Training – This strategy induces a set of parametric models such that the
learning process is sequentially performed on each committee member. This approach is
suited as, at the nth iteration, the posterior probabilities obtained from parametric models
(Fi)0≤i<n can be used to penalize the learning process related to the parametric model Fn;

• Simultaneous Ensemble Learning – a set of committee members are trained interac-
tively to promote uncorrelation and diversity during the learning process. This approach is
the most natural solution to provide Type III diversity.

As the minimization of the empirical risk combined with the ensembling loss perfectly fits with
the Simultaneous Ensemble Learning strategy, the rest of this chapter will be focused on this
solution for allowing interaction between the committee members during the training process.
Furthermore, it is helpful to promote the diversity between the members even if similar architec-
tures are used. Assessing the benefits of the ensembling loss can be illustrated through the t-SNE
visualization [vdMH08] and diversity measures [KW03].

Dataset setup for visualization. For that purpose, we use the secure RSA dataset pre-
sented in Section 3.6. As mentioned, the targeted index segfree value is defined in {0, 1, 2}.
Consequently, to solve a classification task that assigns an index value to a leakage trace, we have
to consider a multi-class classification problem with 3 outputs. Furthermore, the ensemble model
is configured with 5 parametric models, as illustrated in Figure 8.1, such that each of them has the
same neural network architecture. Generating 5 parametric models with the same architecture is
helpful to efficiently evaluate the suitability of the ensembling loss in contrast with the negative
log-likelihood and the ranking loss from a diversity perspective. These committee members are
convolutional neural networks with 1 convolutional block based on 2 filters of size 1 and an av-
erage pooling layer with stride 2. Then, a flatten layer is applied to reduce the space dimension
of the feature selection part. Finally, a predictive layer is applied with a softmax function. The
optimizer hyperparameters are set such that each neural network is trained during 40 epochs,
with a batch-size of 128, a learning rate set to 0.001 and the Adam optimizer [KB15].
Remark 8.3.2.1. A deeper investigation on the number of committee members is performed in
Subsection 8.4.3 to evaluate its impact on the ensemble accuracy.

t-distributed Stochastic Neighbor Embedding [vdMH08]. Introduced by van der
Maaten and Hinton, the t-SNE visualization tool maps high-dimensional data into two- or three-
dimensional space while preserving local structure and revealing important global structure (e.g.
clusters). t-SNE employs a nonlinear and iterative process to convert similarities between data
points to joint probabilities and tries to minimize the KL-divergence between the joint probabilities
of the low-dimensional embedding and the high-dimensional data. This representation is helpful
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to evaluate the ensemble model capacity to distinguish each class and validate the theoretical
approach presented in Subsection 8.3.1.

Figure 8.2: t-SNE embeddings. From left to right: Negative Log-Likelihood, Ranking
Loss, Ensembling Loss.

Figure 8.2 illustrates the t-SNE visualizations depending on the loss used during the training
process. When the negative log-likelihood is considered, we observe that the ensemble model
is not trained enough to efficiently discriminate each class. Indeed, there are many connections
between each class leading to a loss of the global performance. Hence, many FP and FN can badly
influence the global performance of the model. Through this visualization, we can question the
relevance of the negative log-likelihood as the best solution in our context when low complexity
models are considered. This observation is in accordance with the demonstration provided in
Subsection 7.2.2.
On the other hand, the ranking loss generates three separate clusters. As mentioned in Subsec-
tion 8.3.1, the ranking loss can be formulated as the relevance loss (see Equation 8.4). Through
the minimization of this function, we aim at approximating the mutual information between a
leakage trace T and a targeted label Y (see Subsection 7.2.1). In other words, we minimize the
conditional entropye H(Y |T ) which promotes the generation of three compact clusters. Figure 8.2
confirms this result as the ensemble model is overconfident in the features captured during the
learning process. Consequently, it makes discriminative decisions to avoid connections between
each cluster. However, following the t-SNE illustration, the FP and FN induced by the rank-
ing loss are persistent and seem difficult to detect. Indeed, these errors are fully included in a
wrong cluster. This result suggests that the ensemble model considering the ranking loss assigns
a similar confidence to correct and wrong predictions. This phenomenon can be explained by the
overfitting effect. Using more training examples could be useful to reduce this impact and reduce
the error rate. However, when the number of profiling traces is limited (as often in practice), a
solution has to be found to improve the ensemble model performance.
The best solution should create three separate clusters when the ensemble model is confident in its
prediction while, the errors or the uncertain predictions should converge towards the equidistant
point of the centroid of the clusters. These examples are called data uncertainty. Introduced
in [MMG20], data uncertainty is the irreducible uncertainty in predictions which arises due to
the complexity or noise in the data. In Figure 8.2, we can observe that the ensembling loss
converges towards this best solution. Indeed, the combination of the relevance loss, the conditional
redundancy loss and the redundancy loss creates three separate clusters (see Appendix E for
deeper details). When the ensemble model is confident in its predictions, it will assign the related
examples to the correct class. However, the ensembling loss creates some connections between the
clusters which seem defined by the data uncertainty. This result tends to reduce the number of
consistent FP and FN such that few errors can be detected on each cluster in contrast with the
negative log-likelihood or the ranking loss. While the Evaluator’s goal is to enhance the ensemble
diversity, the t-SNE tool does not provide information related to this requirement. To validate the

eIn our context, minimizing the conditional entropy H(Y |T ) is equivalent to minimizing H(Y |Fn) as
the related penalization term is similar.
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suitability of the ensembling loss regarding the evaluation perspective, we evaluate its diversity
growth against the negative log-likelihood and the ranking loss.

Diversity Measures. As explained in Subsection 8.2.1, diversity has a crucial impact on the
ensemble model’s performance. Conventionally the diversity measures can be decomposed into
two categories:

• Pairwise measures that compute the relationship between two parametric models, and
then average all the pairwise measurements to define the overall diversity of an ensemble
model E (Disagreement measure [Ska96, KH98], Q-statistic [UY00], Correlation coefficient
[SS73], κ-statistic [Coh60], Double-Fault measure [GR01], ...);

• Non-Pairwise measures that assess the ensemble diversity directly rather than by av-
eraging pairwise measurements (Kohavi-Wolpert Variance [KW96], Interrater agreement
[Die00b, FLP03], Entropy [CC00], ...).

One advantage of pairwise measures it that they can be easily visualized and interpreted. Choosing
a specific pairwise measure does not make significant difference in our experiments, so we chose
the fraction of disagreement as well as the κ-statistic as they are relatively easy to interpret.
Let Nab

n,m be a joint value between two parametric models Fn and Fm. Given a leakage trace T,
we denote a = 0 (resp. b = 0) if Fn (resp. Fm) assigns a wrong prediction to T and a = 1 (resp.
b = 1) otherwise. For example, N01

n,m defines the number of elements such that Fn provides a
wrong prediction for a given input T while Fm correctly predicts its related class.

Definition 8.3.2.1 (Disagreement Measure [Ska96, KH98]). Given two parametric models Fn
and Fm, the disagreement measure defines the proportion of inputs on which these parametric
models make different predictions:

Dis(Fn, Fm) =
N01
n,m +N10

n,m

N11
n,m +N10

n,m +N01
n,m +N00

n,m

.

This metric is 0 when two functions are making identical predictions, and 1 when they differ on
every single example in the test set. Hence, the larger the value, the larger the diversity. From
an ensembling perspective, we want to generate a set of parametric models E maximizing the
disagreement measure such that each individual model keeps a high performance for classifying
unseen examples. In [FHL19], Fort et al. propose to plot a normalized disagreement measure with
respect to the accuracy of each classifier. The diversity measure is normalized by the error rate to
prevent the case where random predictions provide the best diversity. From the set of parametric
models E , one member is randomly picked to be considered as the basis model. This model is
denoted as Fbasis. Then, we calculate the diversity measure of other ensembling members against
the basis model.
Figure 8.3 illustrates the diversity of each model of E against Fbasis. In this figure, the y-axis
characterizes the fraction of labels, returned by each model of E , which differs from Fbasis while
the x-axis defines their validation accuracy. Consequently, the sample with a 0 y-axis value defines
Fbasis. Three ensemble models are generated with the three losses used in order to investigate the
benefits of the ensembling loss. In [FHL19], Fort et al. propose a theoretical approach to explain
the results obtained in Figure 8.3. Let Fbasis and Fn be two committee members from E . If Fbasis
and Fn have identical validation accuracy and high diversity then, they converge towards different
local optimum with identical depth. In opposition, if Fbasis and Fn have identical validation
accuracy and a low diversity then, they converge towards the same local optimum. Consequently,
from a loss landscape perspective, it sounds beneficial to construct an ensemble model with high
diversity members such that their prediction distributions and their selected features differ from
each other. In contrast, the accuracy of individual models does not reflect the performance of
the ensemble committee. Indeed the combination of poor performance (i.e. weak), but perfectly
complementary, parametric models can generate a very effective ensemble model. While the same
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configuration with effective, but correlated, parametric models is not beneficial for an ensembling
approach (see Subsection 8.2.1). Consequently, an ensemble model composed by weak parametric
models can outperform a combination of effective correlated models.

Figure 8.3: Diversity versus label accuracy plots for 3 ensemble models trained on Negative
Log-Likelihood (NLL), Ranking Loss (RkL) and Ensembling Loss (EL).

The ensemble model trained with the ranking loss provides the worst diversity scenario. Even if
individual parametric models are more efficient than most of the other committee members (i.e.
validation accuracy > 94%), the lack of diversity is an issue for developing uncorrelated models.
Indeed, following [FHL19], all the committee members converge towards the same local optimum.
Hence, a lack of complementarity can be exposed when the adversary only considers the ranking
loss. Consequently, the resulted ensemble model performance should be equal to the average
accuracy of its members. For the negative log-likelihood loss function, the parametric models are
more diverse than the ranking loss ensemble model. Consequently, the resulted learners are less
correlated and the resulted probability combination should reduce the overall error. Finally, in
comparison with the negative log-likelihood and the ranking loss, the ensembling loss provides the
most diverse models. Indeed, in Figure 8.3, the normalized diversity measure is the highest for the
ensembling loss model. Interestingly, even if the committee members have the same architecture,
the ensembling loss provides a clear diversity benefit. Hence, from a loss landscape perspective,
the ensembling loss helps the committee members to converge towards independent local optimum
with different depths. However, as Figure 8.3 only provides the disagreement measure between a
model basis Fbasis and all parametric models of E , it does not provide the disagreement measure
for all pairs (Fn, Fm) in E . To mitigate this issue, we investigate the benefits of the κ-statistic
metric to highlight the pairwise diversity induced in E .

Definition 8.3.2.2 (κ-statistic [Coh60]). The κ-statistic measures the degree of agreement be-
tween two parametric models Fn, Fm as follows:

κ(Fn, Fm) =
2
(
N11
n,mN

00
n,m −N01

n,mN
10
n,m

)
(
N11
n,m +N10

n,m

) (
N01
n,m +N00

n,m

)
+
(
N11
n,m +N01

n,m

) (
N10
n,m +N00

n,m

) .
This metric is 1 when Fn and Fm correctly/wrongly predict the same examples, and 0 when their
predictions differ on every single example in the test set. Hence, the larger the value, the lower
the diversity. Based on the parametric models used for visualizing the t-SNE embeddings (see
Figure 8.2), we compute the κ-statistic metric for each scenario, i.e. application of the negative
log-likelihood, the ranking loss and the ensembling loss. Figure 8.4 illustrates the evolution of
this diversity metric depending on the loss used. When the ensembling loss is used, the overall κ-
statistic metric is reduced in comparison with the negative log-likelihood or the ranking loss. This
figure confirms that the ensembling loss decorrelates the errors between the committee members.
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Figure 8.4: κ-statistic. From left to right: Negative Log-Likelihood, Ranking Loss, En-
sembling Loss.

These observations validate the theoretical observations introduced in Subsection 8.3.1. Indeed,
using the ensembling loss increases the diversity between the parametric models in order to reduce
the correlation between their errors and propose an efficient ensemble model. In the next section,
we evaluate this diversity gain on the side-channel attack performance.

8.4 A Case Study on Asymmetric Implementations
To assess the benefits of the diversity on the side-channel attacks targeting public-key implemen-
tations, we conduct investigations on two datasets:

• Secure RSA dataset – Introduced in Section 3.6, this dataset targets the manipulation of
an index named segfree ∈ {0, 1, 2}. Thus, we have to solve a multiclass classification prob-
lem with 3 output classes. As this implementation considers a RSA signature computation
with blinding countermeasure, the resulted exploitation phase considers N leakage traces.

• Secure ECC dataset – Defined in Section 3.6, the attack consists in retrieving all the
conditional swap bits with a single leakage trace. Hence, we have to solve a binary classi-
fication problem such that the output classes denote the hypothetical value of one bit (i.e.
0 or 1).

As mentioned in Subsection 3.3.4 and Subsection 8.1.2, the Evaluator can consider the accuracy
as metric performance.

Evaluation metrics. We denote αbit the accuracy expressing the capacity of the parametric
model to retrieve the amount of correct bit values. Its related error rate is denoted εbit. As this
metric is natural to solve binary classification problems with a single leakage trace, the Evaluator
can consider this evaluation metric to assess the suitability of a parametric model to defeat the
Secure ECC implementations.
However, when the Secure RSA dataset is considered, the Evaluator does not directly predict the
bits related to the targeted private key. Indeed, he exploits the index segfree such that 3 values
can be assigned. We denote αlabel the accuracy expressing the capacity of the parametric model
to retrieve the correct value of segfree for a given leakage trace. This metric is used to mitigate
the underfitting and overfitting issues. However, while the Evaluator’s goal is to retrieve the bits
related to the private key, he has to convertf the balanced ternary representation (i.e. {0, 1, 2})
into a binary representation (i.e. {0, 1}). We also use the notation αbit to denote the ability of
the parametric model to retrieve the bits of the targeted private key.

fThe interested readers may refer to [CCC+19, Section 2.3] to get an insight into how this conversion
should be performed.
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Models’ notation. This section proposes an experimental comparison between the negative
log-likelihood, the ranking loss and the ensembling loss when ensemble models are considered.
Thus, in the following sections, NLLi,j (resp. RkLi,j , ELi,j) denotes an ensemble model trained
with the negative log-likelihood (resp. the ranking loss, the ensembling loss), composed by i
committee members such that the type j diversity is performed. Due to the interactions between
the committee members during the training process, the ensembling loss can be considered as the
only learning metric promoting the type III diversity.

Remark 8.4.1. In the following, we only consider convolutional neural networks because its benefit
has been demonstrated in the side-channel context (see Chapter 6). Obviously, the combination
of diverse neural network (e.g. multi-layer perceptrons, fully-connected neural networks, recurrent
neural networks, residual neural networks) can also be considered to promote diversity.

Remark 8.4.2. In [DDFP21], Destouet et al. investigate a solution that consists in the aggregation
of multiple models targeting different sensitive value (i.e. Hamming weight, first big-endian bit,
identity). In this thesis, we assume that all the learners are trained on the same single label.

In Subsection 8.4.1 (resp. Subsection 8.4.2), we evaluate the diversity of committee members
depending on the loss used when the Secure RSA dataset (resp. Secure ECC dataset) is considered.

8.4.1 Application on N Traces Exploitation
First, we design the neural network architecture that we used to construct the ensemble model.
This parametric model is repeated 5 times in order to constitute an ensemble E of 5 similar
committee members. This approach is beneficial to evaluate the complementarity of committee
members when the ensemble model is trained with the different losses. Then, we combine the type
I diversity with the different learning metrics to illustrate its impact of the resulted performance.
Finally, all the diversity types are combined to exploit the entire benefits of the ensemble methods
and highlight the improvement in the resulted side-channel attack complexity.

Neural Network Architecture. While the original network provided in [CCC+19] per-
forms very well on the Secure RSA dataset (= 99.91%), we decide to reduce its complexity while
preserving the performance. We use the methodology introduced in Subsection 6.3.1 such that
the related neural network is composed of one convolutional block with 2 filters of size 1 and an
average pooling layer. Then, a flatten layer is applied to connect the extracted points of interest
to a predicting layer configured with 3 outputs defining the value of segfree. Optimization is done
using the Adam optimizer [KB15] approach on a batch-size of 128 and the learning rate is set to
10−3. The batch-size and the learning rate follow the values provided in [CCC+19]. The opti-
mization of these hyperparameters is not considered in this study. We use the SELU activation
function to avoid vanishing and exploding gradient problems (see Equation 4.8). In the following
sections, we only keep the parametric model achieving its best performance (i.e. accuracy) over
100 epochs. This new parametric model has similar performance to the one proposed in [CCC+19]
(= 99.89%) while being much more efficient computational wise (i.e. 1, 950, 323 against 39, 015
trainable parameters). In this manuscript, we want to evaluate the suitability of the ensemble
models when the number of profiling traces is limited (as often in practice). Hence, we only use
30, 000 profiling traces and 3, 000 validation traces instead of using the 750, 000 traces considered
by [CCC+19]. However, when the Evaluator trains a parametric model with the 30, 000 raw pro-
filing traces of 13, 000 time samples, he already generates a classifier with very high performance
(= 98.30%). Hence to efficiently evaluate the suitability of the ensembling loss, we add Gaus-
sian noise N (0, σ2) on each time sample of the leakage traces such that σ defines the standard
deviation of the noise. Table 8.1 shows the evolution of the accuracy depending on the added
noise on the Secure RSA dataset. In the following sections, σ is set to 6 in order to evaluate
the benefits of the ensembling loss against the negative log-likelihood and the ranking loss. The
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model trained with the negative log-likelihood is considered as the state-of-the-art result because
it uses the classical learning metric in the side-channel context. This result will be considered as
our reference in order to highlight the performance provided by the ensembling loss.

Table 8.1: Evolution of accuracy depending on σ (30, 000 profiling traces & 3, 000 valida-
tion traces)

αbit

σ
0 10−3 10−2 10−1 1 6 8 10 50

Negative Log-Likelihood 98.30% 97.60% 97.77% 96.33% 95.70% 92.50% 85.80% 80.60% 41.77%

Learning ensemble diversity. To assess the diversity growth, we generate an ensemble
model composed of 5 committee members with the same neural network architecture introduced
in the previous paragraph. Consequently, the diversity provided by the following ensemble models
only depends on the loss used.
Table 8.3 illustrates the performance evolution depending on the diversity type and the learning
metric applied. If the Evaluator only considers the state-of-the-art result, he trains a unique
model with the negative log-likelihood (i.e. NLL1) to perform its attack. However, when he
applies the ranking loss function introduced in Chapter 7, the related attack performance is more
efficient than the negative log-likelihood (see Table 8.3). While a parametric model obtained from
the minimization of the empirical risk combined with the negative log-likelihood does not provide
a useful model from the Evaluator’s restrictions (i.e. C{NC,2b,AA} ≥ 100), using the ranking loss
the Evaluator can potentially break the Secure RSA implementation (i.e. C2b ≤ 100).
Finally, we can observe a meaningful improvement when the ensembling loss is performed on
the 5 committee members defined in E . Even if the training time is multiplied by 9 in the
worst case, it stays reasonable from a practical perspective. Indeed, αlabel is increased by up to
2.69% and the Evaluator can extend its attack scenario. Following the SOG-IS recommendations,
he can successfully perform an alternate attack while the state-of-the-art (i.e. NLL1) result
cannot. This result highlights the benefit of using the ensembling loss in terms of ensemble
performance. In addition, considering the ensembling loss reduces C2b by 25. Hence, the theoretical
features of the ensembling loss, which are validated through the visualizations of Subsection 8.3.2,
translate an actual gain in model accuracy as well as a realistic improvement for a full side-
channel attack scenario. The ensembling loss increases the overall diversity and reduces the
global error rate induced in the ensemble model. Hence, the ensembling loss is helpful to promote
the complementarity between the committee members.

Ensembling loss combined with type I diversity. As mentioned in Subsection 8.2.1,
the type I diversity refers to the heterogeneity between the committee members’ structure. This
diversity is employed by Perin et al. [PCP20] to argue the generalization improvement induced
by this ensemble method. In the following, we propose to combine the type I diversity with the
different loss functions to evaluate the resulted gain in attack complexity. For that purpose, we
randomly generate 5 networks with a wide range of hyperparameters (details are provided in
Appendix F Table F.1). In [Zho12], Zhou recommends the configuration of heterogeneous neural
network architectures with high individual performance. Even if this solution can be intuitive,
this is not necessarily the best one as discussed in Subsection 8.3.2.
From a diversity perspective, using efficient heterogeneous neural networks increase the uncorre-
lated errors. Through Figure 8.5, combining the type I diversity with the ensembling loss reduces
the overall κ-statistic metric. Following Definition 8.3.2.2, this observation confirms the gain in
diversity. This result can also be verified with the disagreement measure (see Figure 8.6).
From a performance perspective, the individual committee members do not exceed 94.33% for
retrieving the bits of blinding exponent when the ranking loss is considered (see Appendix F
Table F.1). However, applying the ensembling loss adjusts the efficiency of each learner to increase
their complementarity. Indeed, though Figure 8.6, the most powerful member finds 95.84% of all
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bits while the least significance one finds only 88.21% of all bits. The interaction between the
committee members during the training process tends to accentuate the discrepancy in order to
force the gain in diversity. Table 8.3 illustrates the benefits of combining the type I diversity
with the ensembling loss from a performance perspective. Adding type I diversity reduces the
remaining attack complexity regardless of the attack scenario.

Figure 8.5: κ-statistic. From left to right: Ensembling Loss, Ensembling Loss + Type I
diversity, Ensembling Loss + Type I + II diversity.

Finally, even if the resulted training time increases, it stays marginal related to the gain in
attack complexity. Indeed, depending on the scenario, the attack can be performed by up to 250

operations. In comparison with the previous state-of-the-art result (i.e. NLL1), the number of
operations is reduced by 258 while the training time is only increased by 10.

Combining all types of diversity. Introduced in [LWC+19], the type I+II diversity con-
sists of the selection of members from a pool such that the diversity measure is maximized between
all the committee members. These parametric models are selected by randomly picking out the
hyperparameters from ranges defined in Table 8.2. The resulted pool is composed by 100 mem-
bers. As recommended in [LWC+19], we retain a set of parametric models with high performanceg
(i.e. αlabel > 85%) such that their disagreement measure is maximized. The 5 selected neural
network architectures are identified in Appendix F Table F.2.

Table 8.2: Range of hyperparameters selection

Values

Nfilt. {2, 4, 8, 16, 32, 64}
Filter size {1, 5, 11, 21, 43}
Nconv.blocks {1, 2, 3, 4, 5}
Pooling operation {Average, Max}
Pooling stride {2, 4, 6}
NFC layers {0, 1, 2, 3}
Nnodes per FC layers {2, 4, 8, 16, 32, 64}

The type I+II diversity promotes the error uncorrelation between the individual committee mem-
bers. Following the κ-statistic measure (see Figure 8.5), the diversity brought by the type I+II is
significant in comparison with the previous experiments. Indeed, the overall κ-statistic measure
is reduced in comparison with the other approaches. This observation can also be made with the
disagreement measure (see Figure 8.6).

gIn some cases (e.g. boosting [CG16]), weak learners (i.e. models that are only slightly better than
random guessing) can be helpful to increase the performance of the ensemble model. The benefit of these
strategies is considered as out of our scope.
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Figure 8.6: Diversity versus label accuracy plots for ensemble models trained on Ensem-
bling Loss (EL), Ensembling Loss (EL) + Type I diversity and Ensembling Loss + Type
I + II diversities.

When the ranking loss or the negative log-likelihood is considered, even if no interaction is pro-
posed between the committee members during the training process, using the type I+II diversity is
useful to bring more diversity in the ensemble model. However, combining the type I+II diversity
with the ensembling loss accentuates the gain in diversity in order to generate a more powerful
model. From Table 8.3, we observe a significant improvement when the ensembling loss is used in
comparison to the ranking loss and the negative log-likelihood. Generating interactions between
the committee members provides more consistency during the training process. As mentioned
in Subsection 8.3.2, the ensembling loss leads to converge the uncertain predictions towards the
equidistant point of the centroid of the clusters. Thus, the impact of the FP and FN is reduced
when this loss function is performed. Combining all the diversity techniques provides the most
efficient model in terms of performance. While an ensemble model trained with the ranking loss
needs 256 operations to retrieve the remaining bits in the best-case scenario, the addition of the
ensembling loss with the type I+II diversity needs only 234 operations. Even if the resulted train-
ing time is multiplied by 3, the gain in performance is significant to justify the benefits of the
ensembling loss.

Table 8.3: Performance evaluation depending on the diversity’s type (Average over 10
physical traces of 1, 088 bits each). Green (resp. Red) cells are considered as practicable
(resp. unpracticable) following the SOG-IS recommendations.

Model αlabel αbit εbit CNC C2b CAA Training time (seconds)

NLL1 92.50%(±2.06%) 90.16%(±2.32%) 0.0984 500.08 108 102.74 86s
RkL1 94.03%(±1.85%) 91.26%(±2.21%) 0.0874 460.66 96 102.74 81s
NLL5 93.60%(±1.91%) 91.04%(±2.23%) 0.0896 467.39 98 102.74 450s
RkL5 94.33%(±1.81%) 91.66%(±2.16%) 0.0834 443.55 91 99.37 340s
EL5,III 95.19%(±1.67%) 92.45%(±2.07%) 0.0754 415.25 83 96.06 740s

NLL5,I 95.31%(±1.65%) 93.28%(±1.96%) 0.0672 381.96 74 92.43 688s
RkL5,I 95.93%(±1.55%) 94.48%(±1.79%) 0.0552 330.81 61 92.43 780s
EL5,I+III 96.57%(±1.42%) 95.49%(±1.62%) 0.0451 284.21 50 88.45 884s

NLL5,I+II 96.23%(±1.49%) 94.66%(±1.76%) 0.0534 322.58 59 88.45 2, 116s
RkL5,I+II 96.27%(±1.48%) 94.94%(±1.71%) 0.0506 310.01 56 88.45 1, 092s
EL5,I+II+III 97.33%(±1.26%) 96.96%(±1.34%) 0.0304 209.52 34 80.71 3, 392s

In conclusion, combining all the diversity techniques provides a clear advantage from a side-channel
point of view. Indeed, when the type I+II diversity techniques are combined with the ensembling
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loss (i.e. type III diversity), we promote the diversity between the parametric models included in
E in order to reduce the global error. In comparison with the previous state-of-the-art result (i.e.
NLL1), αbit is increased by 6.8% and the number of remaining operations is reduced by 2290.56

(resp. 274 and 222.03) when the adversary wants to perform a naive attack (resp. a 2b-attack and
an alternate attack). Even if the training time is increased by up to 39.44, it stays negligible
regarding the gain to perform the full attack. Indeed, following the SOG-IS recommendation and
the Evaluator’s restrictions (see Subsection 8.1.1), the previous state-of-the-art result considers
the RSA implementation as secure while combining the different diversity techniques leads the
Evaluator to reconsider its security assessment.

While the Evaluator has to deal with different attack scenario, we extend the application of the
diversity approach on the Secure ECC dataset that requires a single leakage trace to retrieve all
the private key bits.

8.4.2 Application on 1 Trace Exploitation
To emphasize the benefits of the ensembling loss, we evaluate its suitability on a classical binary
classification problem. While the secure RSA dataset can be defined as a multi-class classification
task (3 outputs), we perform the same experimental process on the Secure ECC dataset. Note
that remaining brute-force attacks that require Na exploitation traces, such as [SW14], cannot be
used in this context.

Neural Network Architecture. Similarly to the secure RSA dataset, we have to add
Gaussian noise N (0, σ2) to characterize the benefits of the ensembling loss. Table 8.4 shows
the evolution of the accuracy depending on the added noise and the loss used when 20, 000
profiling traces are used. To evaluate the suitability of each network, 2, 000 validation traces are
considered and the evolution of the accuracy is used to limit the overfitting/underfitting effect.
For our analysis, we set the added noise to σ = 30. Once again, we clearly evaluate the benefits
of the ranking loss when the added noise is high in comparison to the negative log-likelihood loss
function. Indeed, we increase by up to 3.5% the resulted performance.

Table 8.4: Evolution of accuracy depending on σ (20, 000 profiling traces & 2, 000 valida-
tion traces)

αbit

σ
0 10 20 30 50 100

Negative Log-Likelihood 99.43% 98.20% 93.63% 89.10% 83.87% 72.10%
Ranking Loss 99.47% 99.00% 96.77% 92.60% 86.15% 74.30%

Ensemble diversity. First, we validate the theoretical observations provided in Subsec-
tion 8.3.1 for the binary classification problem. For that purpose, we visualize the t-SNE maps
for the models trained with the different losses. Figure 8.7 confirms all the theoretical results
introduced in Section 8.3. The negative log-likelihood representation does not seem relevant to
efficiently discriminate each cluster. The resulted ensemble model seems to select joint patterns
such that many FP and FN can deteriorate the overall performance. In opposition, the model
trained with the ranking loss creates compact clusters such that the false positives and false nega-
tives can be considered as consistent. Finally, from a theoretical perspective, the ensembling loss
seems the most suitable. Indeed, the data uncertainty seems to converge towards the equidistant
point of the centroid of the clusters. Hence, the resulted ensemble model tends to gather the un-
certain examples towards a uniform probability distribution. Furthermore, using the ensembling
loss provides a clear benefit from a diversity perspective (see Figure 8.8).
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Figure 8.8: Diversity versus label accuracy plots for 3 ensemble models trained on Negative
Log-Likelihood (NLL), Ranking Loss (RkL) and Ensembling Loss (EL) for the binary
classification.

Figure 8.7: t-SNE embeddings. From left to right: Negative Log-Likelihood, Ranking
Loss, Ensembling Loss.

Through Table 8.5, we confirm the benefits of the ensembling loss for increasing the performance
of the ensemble model. In comparison with the previous state-of-the-art result (i.e. NLL1), the
accuracy expressing the performance to retrieve the conditional swap bit value is increased by
6.5% when the ensembling loss is combined with the type I and II diversities. From a side-channel
attack perspective, we reduce the overall number of remaining operations by 258.41 (resp. 216) for
naive attack (resp. 2b-attack). Hence, using the ensembling loss against a binary classification
problem still performs well.

Table 8.5: Performance evolution depending on the diversity applied (Average over 10
physical traces of 256 bits each). Green (resp. Red) cells are considered as practicable
(resp. unpracticable) following the SOG-IS recommendations.

Model αbit εbit CNC C2b Training time (seconds)

NLL1 89.10%(±2.44%) 0.109 120.91 28 27s
RkL1 92.60%(±2.05%) 0.074 90.72 19 28s
NLL5 91.60%(±2.17%) 0.084 101.45 22 440s
RkL5 92.63%(±2.04%) 0.0737 90.72 19 387s
EL5,III 93.33%(±1.95%) 0.0667 86.98 18 588s
NLL5,I+II 94.13%(±1.84%) 0.0587 79.24 16 618s
RkL5,I+II 94.70%(±1.75%) 0.053 71.1 14 750s
EL5,I+II+III 95.60%(±1.60%) 0.044 62.50 12 884s

From a naive attack perspective, an adversary using the previous state-of-the-art result (i.e.
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NLL1) considers the ECC implementation as secure following the SOG-IS’s recommendations
(CNC > 100). However, if the Evaluator combines all the diversity types, including the ensembling
loss, he can reconsider the security of the targeted device.

8.4.3 Discussion
This discussion evaluates the classical ensemble methods (i.e. Bagging [Bre96], Boosting [FS96,
CG16]), the parametric model fusion’s techniques (i.e. average accuracy, voting) and the impact
of the number of committee members.

Ensemble Methods. Traditionally, the methods considered in ensembling are the Boostrap
Aggregating [Bre96], also known as Bagging, and the Boosting [FS96, CG16] techniques. Through
this discussion, we evaluate the benefits of these techniques in addition to the current ensemble
models.
The bagging and boosting approaches are not new in side-channel context [MPP16, PSK+18,
PCP20]. While these algorithms are essentially performed with Random Forest (RF) [Bre01],
it can also be proposed for enhancing the performance of neural networks. The details on the
hyperparameters selection are provided in Appendix F Table F.3 for the bagging selection and
in Appendix F Table F.4 for the eXtreme Gradient Boosting (XGBoost) [CG16] and the CNN-
XGBoost [RGL+17].
The best results for all the models are reported in Table 8.6. In our experiment, this table
illustrates that bagging and XGBoost do not provide a clear advantage when they are added to
the standard proposition introduced in Table 8.3. However, if an improvement is observed, these
algorithms can be combined with those introduced in this chapter (i.e. Type I+II+III diversity)
in order to generate a more powerful ensemble model.

Table 8.6: αlabel for each ensemble method (Average over 10 physical traces of 1, 088 bits
each)

Bagging XGBoost & CNN-XGBoost
RMSE NLL5 RkL5 RMSE NLL5 RkL5 EL5,III

αlabel
84.97% 93.02% 93.70% 91.43% 93.70% 94.13% 94.77%

(±2.80%) (±1.99%) (±1.90%) (±2.19%) (±1.90%) (±1.84%) (±1.74%)
Training time (seconds) 4, 073s 315s 415s 7, 597s 481s 372s 775s

Remark 8.4.3.1. The ensembling loss cannot be considered when the bagging technique is applied.
Indeed, given a profiling set T , the Np pairs ((ti, yi)0≤i<Np) should be the same for all the com-
mittee members when the ensembling loss is computed. This condition is a limitation regarding
the application of the bagging algorithm.

Combination Methods. One major issue when ensemble model is considered is to find the
best way to combine the posterior probabilities of each committee member. There are several
consensus methods for combining the outputs of multiple learners. We compare the two most
useful combining methods:

• Averaging – This consensus is considered as a linear combining method. The average
prediction returned by the committee members is computed. An advanced combination
technique consists of weighting the average of each classifier to promote the order of the
classes. However, this method stays out of our scope.

• Voting – This method is considered as a non-linear decision-making based on ranked in-
formation. The majority voting process predicts the value with the highest number of
occurrences. Hence the collective decision has a major impact on the final prediction.
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Table 8.7: αlabel for each combination technique (Average over 10 physical traces of 1, 088
bits each)

NLL5 RkL5 EL5,III

Averaging 93.60%(±1.91%) 94.33%(±1.81%) 95.19%(±1.67%)
Voting 93.63%(±1.91%) 94.30%(±1.81%) 95.16%(±1.68%)

These results shown in Table 8.7 are closely correlated with those defined in the previous sections.
Hence, for the experiments investigated in this chapter, these aggregating functions do not impact
the performance of the ensemble model.

Number of Committee Members. The number of committee members can also be con-
sidered as an issue in ensemble methods. Indeed, no useful methods define a priori the best
number of committee members that maximize the ensemble model performance. In the following,
we explore this variable in order to identify its impact on the ensembling loss performance. To
that purpose, we increase the number of committee members up to 32 in order to evaluate the gain
in performance and the impact on the training time. Through Table 8.8, we can estimate the best
trade-off between the training time and the ensemble performance. For the RSA implementation,
the best αbit value is obtained for N = 10 committee members.

Table 8.8: Performance evolution depending on the committee members (Average over 10
physical traces of 1, 088 bits each)

Model αlabel αbit εbit CNC C2b CAA Training time (seconds)

EL2,I+II+III 96.77%(±1.38%) 95.12%(±1.69%) 0.0488 301.54 54 88.45 1, 482s
EL5,I+II+III 97.33%(±1.26%) 96.96%(±1.34%) 0.0304 209.52 34 80.71 3, 392s
EL10,I+II+III 97.43%(±1.24%) 97.33%(±1.26%) 0.0267 189.23 30 80.71 5, 460s
EL16,I+II+III 97.90%(±1.12%) 97.10%(±1.31%) 0.0290 199.47 32 80.71 6, 942s
EL32,I+II+III 97.37%(±1.25%) 96.67%(±1.40%) 0.0333 225.26 37 84.03 9, 548s

While increasing the number of members seems helpful to improve the ensemble model’s accuracy,
in our context we seem to reach the maximal possible performance. Adding too many learners
can reduce the diversity effect because some committee members can share the same errors and
promote irrelevant outputs. Furthermore, as illustrated in Figure 8.9, adding committee members
in E increases the computational complexity of the ensemble model and, consequently, the elapsed
time criterion. As no general consensus can be formulated, the best number of committee members
should be defined for each case study.

(a) Nc = 3. (b) Nc = 5. (c) Nc = 10. (d) Nc = 16.

Figure 8.9: Mutual information ensemble diversity principle considering pairwise compo-
nents with ensemble model E with different size Nc.
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8.5 Conclusion
This chapter proposes to deal with the Evaluator’s restriction when he has to perform an attack
against an asymmetric cryptographic implementation. In this context, the Evaluator has to
maximize the accuracy of retrieving each secret bit of the targeted private key such that, a slight
improvement can be non-negligible from a side-channel attack complexity perspective.
A classical solution to enhance the performance of the deep learning approach consists in combin-
ing individual predictions from several parametric models via a consensus method (e.g. majority
vote, average vote) in order to reduce the global error. This error reduction is known to be
correlated with the parametric model’s diversity. Following the work provided in [LWC+19], we
describe three types of diversity and assessing their suitability to perform a side-channel attack
under the Evaluator’s restriction. To enhance the evaluation of the robustness of cryptographic
module, we develop a new loss, namely the Ensembling Loss, that increases the performance of
ensemble models. Promoting the interactions between the committee members during the train-
ing process, this loss increases the resulted diversity to reduce the correlation between the errors
induced by the committee members. First, we link this new learning metric with the mutual
information between the ensemble model and its related label introduced by Brown in [Bro09].
Then, through the disagreement measure and the t-SNE visualization, we show that ensemble
models trained with the Ensembling Loss increase the diversity between the committee members.

To assess the benefits from a side-channel perspective, we evaluate the accuracy growth on the re-
maining attack complexity through multiple attack scenarios, namely Naive Attack, 2b-Attack and
Alternate Attack. This investigation shows that applying deep learning-based side-channel attacks
can be unadapted to defeat secure RSA/ECC implementations if the previous state-of-the-art is
considered (i.e. a single model trained with the negative log-likelihood loss function). Following
the SOG-IS security guidances, the improvement provided by the combination of different types
of diversity lead to a reconsideration of the targeted system’s security.

Furthermore, considering the Ensembling Loss outperforms all the current learning metrics clas-
sically used in side-channel analysis. Hence, this loss could be considered for generating efficient
ensemble models.
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Chapter 9

Conclusion & Perspectives

In this thesis, we focused on several current issues related to the deep learning-based side-channel
attacks, developing new neural network architectures in order to fit with the Evaluator’s restric-
tions as well as proposing new learning metrics for converging towards the optimal Adversary.
In this chapter, we conclude the contributions made in this manuscript according to two issues:
(i) the problem of modeling Side-Channel Attacks and (ii) the ability of the resulted models to
converge towards the optimal Adversary. For each of these two parts, we provide a summary of
the related contributions and discuss some perspectives arising from the results obtained.
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9.1 Modeling Side-Channel Attacks
Modeling side-channel attacks boils down to be able to model the relationship between a leakage
trace T and a targeted sensible variable Y which can be addressed by modeling the true unknown
condition distribution Pr[T|Y ]. The first part of this manuscript differentiates two traditional
approaches to approximate this distribution. While a classical deep learning approach consists
in considering discriminative models in order to directly estimate Pr[T|Y ], alternative solutions,
known as generative models, approximate Pr[Y |T] which can be simplified as Pr[T|Y ] up to an
additive constant if the logarithm representation is considered (see Subsection 3.3.3). This thesis
illustrates the benefits and the limitations of both solutions from an Evaluator point of view. While
the Deep Learning field is useful to mitigate the inconsistent choices made by the Evaluator during
the preprocessing phase and to provide a clear gain in attack efficiency, its lack of explainability
in the side-channel context remains a tremendous issue.

Generative models. To bridge the gap between Deep Learning and Side-Channel Analysis,
we describe a new generative model based on one of the most generic profiled attacks namely
stochastic attack. Through our investigations, we emphasize the similarities with the conditional
variational autoencoder and develop a new neural network architecture which derives from the
stochastic attack scenario. Through this approach, we approximate the targeted leakage model
ψ and emphasize the ability of the cVAE-ST to correctly assess the robustness of a cryptographic
module against side-channel attacks. Furthermore, in order to reduce the black box issues, some
visualization techniques are employed in order to assess the security flaws induced in the targeted
cryptographic module. Through this approach, the Evaluator can alert the Developer on potential
vulnerabilities and ease the development of adapted countermeasures. However, even if these
promising results suggest that generative models are suitable to perform side-channel attacks,
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some perspectives can be highlighted in order to enhance the state-of-the-art result. Indeed, an
open question relates to the ability of the cVAE-ST to efficiently prevent, or at least mitigate, the
countermeasures classically considered by the Developer namely data randomization and hiding
countermeasures.

Perspective 9.1.1 (Hiding countermeasure). Assessing the benefits of some neural cVAE-ST
properties to mitigate the hiding effect while preserving its interpretability and explainability.

Perspective 9.1.2 (Dimensionality reduction). Finding a dimensionality reduction technique in
order to focus the latent space V on informative time samples ( i.e. points of interest) while
preserving the interpretability and explainability of cVAE-ST.

A first step to enhance the state-of-the-art results consists in adding convolutional blocks as
mentioned in Subsection 5.4.2. Indeed, regarding the result obtained from the discriminative
models, the convolutional blocks can be useful to reduce the leakage trace dimension as well as
mitigating the desynchronization effect. The Evaluator can add those blocks to the encoder in
order to preprocess the leakage traces before the estimation of the true unknown leakage model
ψ. However, even if this solution can be suited for mitigating hiding countermeasures as well as
reducing the dimensionality of the leakages, some verification should be made in order to assess
the loss of interpretability and explainability.
Furthermore, in the black-box context, the Evaluator needs to exploit joint distribution of leak-
ages in order to exploit information that depend on two unknown random variables X and Y
(e.g. plaintext, output of the Sbox) [LDLL14, CR17]. In this scenario, the Evaluator has to deal
with a blinded environment such that, he does not know the variables manipulated by the crypto-
graphic module. This approach is similar to the Unsupervised learning approach. As mentioned
in Subsection 5.1.3, the generative approach can be useful to solve such problems and computing
Pr[k|X, Y ] which denotes the probability of observing a given key hypothesis k ∈ K knowing the
random variables X and Y .

Perspective 9.1.3 (Blind Side-Channel Attacks). Assessing the suitability of generative models
to conduct Blind Side-Channel Attacks.

This direction can then be extended to the non-profiled side-channel attacks.

Discriminative models. As demonstrated by Cagli et al. [CDP17a], the convolutional neu-
ral networks are highly beneficial to mitigate the hiding countermeasures. In Chapter 6, we
validate this observation by investigating the impact of some model’s hyperparameters, namely
filter size, pooling operation as well as the number of convolutional blocks. Through this study, we
design a new feature selection part in order to focus the interest of the network on the points of in-
terest only without altering the performance of the model. In comparison with the state-of-the-art
results, our neural network architecture suggests that a low complexity neural network can be suf-
ficient to defeat implementations considering first-order Boolean masking schemes and/or random
delay effect. Recently, this observation has been validated on other countermeasures namely code
polymorphism [MBC+20], Shamir’s Secret Sharing mechanism [Mag19a, Mag19b], 1-amongst-N
countermeasure [Mag19a, Mag19b] and shuffling protection [Mag19a, Mag19b]. However, instead
of the CNN, other neural network architectures (e.g. ResNets, RNNs, U-Nets, LSTM) have not
been widely investigated in the side-channel context. Even if those approaches show promising re-
sults [ZS19, Mag19a, MS21], their benefits are still unknown in comparison with the convolutional
neural networks.

Perspective 9.1.4 (Neural Network Architectures). Assessing the benefits of other neural net-
work architectures in comparison with convolutional neural networks.

For example, Cagli questions the feasibility of using Siamese Neural Networks in order to perform
collision attacks [Cag18].
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Table 9.1: cVAE-ST vs. Discriminative models from a SCA perspective.

cVAE-ST Discriminative models

Interpretability & Explainability 3 7

Automatically find the PoIs 3 3

Defeat hiding countermeasures ? 3

Perform HO-SCA without preprocessing 7 3

In addition, [Mag20, ZXF+19] introduce multi-task learning in the side-channel context. This
approach targets simultaneously multiple intermediate sensitive variables, subparts of the secret
key, or the binary representation of a given byte. The latter solution sounds highly beneficial to
conduct future works. Indeed, given a word of n bits, the Evaluator can design a neural network
with n outputs such that each of them is associated with a bit of the targeted word. Thus,
given a leakage trace T which captures the consumption related to this n-bit word, the Evaluator
can assign to it n labels. Applying the multi-task learning approach to such problem is useful
as the learning metrics assess the ability of the neural network to retrieve each bit of the word.
Consequently, the Evaluator can define a confidence level, characterized by a threshold, such that,
each bit with a score higher than this threshold is considered as a certain prediction implies that
the prediction is considered certain. Based on those certain bits, the Evaluator can reduce the
number of n-bit key candidates for a set of leakage traces. Furthermore, using the Ensemble
approach introduced in Chapter 8 should be highly beneficial in this context if the Evaluator
combines neural networks with different levels of certainty on bit predictions.
Perspective 9.1.5 (Multi-Task Learning). Assessing the benefits of the multi-task learning ap-
proach in order to target n-bit words such that n > 8.
For example, if the Evaluator targets an n-bit data bus where the secret key transits (e.g. the
bus between the microprocessor and the memory), he can use the multi-task learning approach in
order to simultaneously target each bit of the secret key. Then, based on the score related to each
bit, he expects to reduce the space of hypothetical keys in order to perform a practicable attack.

Hybrid discriminative-generative model. In Part II, we analyze the benefits and the
limitations of the cVAE-ST and the discriminative approach. Regarding the needs of the Evaluator
(i.e. interpretability, mitigating hiding countermeasures, points of interest selection and perform-
ing HO-SCAa without any preprocessing), we observe that both approaches are complementary
(see Table 9.1). Furthermore, following [Las08], one interesting property of the generative models
is that they independently learn each category (i.e. dependencies for a given label). Thus, if the
Evaluator wants to add one class to a given generative model, he keeps the one already trained and
just performs an additional learning phase for the new category. In opposition, for a discrimina-
tive model, the Evaluator has to start the learning process from scratch if an additional category
(e.g. class) is added to the model. Thus, considering the generative approach provides a more
flexible solution from an evaluation point of view. Moreover, following Chapter 5, the Evaluator
can use the cVAE-ST to retrieve an interpretable (Θ, φ)-parametric model FΘ,φ but cannot per-
form HO-SCA without preprocessing phase. In order to automatically find a combining function
defeating Boolean masking implementation, the Evaluator can consider the discriminative models
as illustrated over Chapter 6. Thus, the Evaluator can question the feasibility of combining both
approaches in order to preserve all the benefits introduced in Table 9.1.
In opposition to theGenerative Adversarial Network (GAN) which can be considered as aGenerative-
Discriminative modelb, our perspective suggests designing a Discriminative-Generative model.

aThis term refers to the High-Order Side-Channel Analysis described in Section 3.5
bDuring the training process, a GAN aims at finding the generative model’s configuration such that

the discriminative model cannot differentiate a fake data from a real one.
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Perspective 9.1.6 (Discriminative - Generative Model). Designing a Discriminative - Generative
model such that the Discriminative model automatically finds the best combining function while
the cVAE-ST aims at identifying some dependencies between the leakage trace and the targeted
unmasked variable Y .

Through this approach, the Evaluator keeps the interpretability induced by the cVAE-ST model
while defeating Boolean masking implementation at least. Considering this approach can be highly
beneficial from an evaluation point of view because the elapse-time criterion can be drastically
reduced if a deterministic solution exists to construct the discriminative model. This perspective
needs to develop a new paradigm in order to reduce even more the gap between Deep Learning
and Side-Channel Analysis fields.

On the other hand, this manuscript covers the optimal adversary’s topic. The following section
summarizes the contributions that have been made and it proposes some perspectives in order to
enhance the attack performance.

9.2 Converging Towards the Optimal Adversary
The second part of this manuscript focuses on reducing the errors induced in Θ-parametric func-
tions FΘ. In particular, we reduce the gap between Deep Learning and Side-Channel Analysis
by designing new loss functions that reduce the error induced by individual and collective Θ-
parametric functions.

Learning metric. While classical DLSCA considers the negative log-likelihood loss function
as suited to conduct the training process, we suggest an alternative, namely Ranking Loss, in order
to reduce the gap between Machine Learning metrics and those introduced in side-channel context.
Through this investigation, we highlight the correlation between the side-channel context and the
learning to rank paradigm such that minimizing the ranking loss is beneficial to maximizing the
Success Rate of a given neural network. This result suggests that a model trained with the ranking
loss aims at retrieving the trainable parameters Θ that fit with the Optimal Adversary introduced
in Objective 3.3.1.1. This new learning metric prevents the approximation error and performs,
in the worse case, similarly to a parametric function FΘ selected from the minimization of the
empirical risk considering the Negative Log-Likelihood loss function. When the Evaluator trains
a neural network, he generally computes Equation 7.5 such that Na = 1. In other words, he
wants to select the Θ-parametric function FΘ that performs the best when a single leakage trace
is considered during the attack phase. However, if Na > 1, the Evaluator can aggregate the score
sNa,i(FΘ, k) for each key hypothesis k ∈ K and update the trainable parameters Θ accordingly.

Perspective 9.2.1 (Configuration of the Ranking Loss with Na > 1). Assessing the benefits of
using Na > 1 leakage traces during the training phase when the ranking loss is considered and
evaluating the benefits and the limitations both from a practical and a performance perspective.

If this perspective eases the evaluation of the underfitting and overfitting issues on trivial sce-
narios, the Evaluator can question the feasibility of defining a bound on Na following the SNR
computation as suggested in [MSB16] for the CPA attack. It can be highly beneficial to perform
Early Stopping techniques based on the learning metrics without having to perform a full attack
[RZC+21].
On the other hand, Perspective 9.1.6 suggests the need of a new loss function in order to deal
with the hybrid discriminative-generative model.

Perspective 9.2.2 (Loss function for Discriminative - Generative Model). Identifying a loss
function which automatically finds a combining function that maximizes its dependency with the
targeted variable Y such that the generated leakage trace T̃, induced by the cVAE-ST, optimizes
its similarity with the combined leakage trace.
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Finding such solution can be helpful to combine the benefits of both approaches namely inter-
pretability and HO-SCA. The optimal goal of this research direction consists in finding a model
fully interpretable and explainable from a side-channel perspective such that HO-SCA can be
performed while facilitating the design of a suitable neural network based on the theoretical in-
vestigations provided in Chapter 5.

Uncertainties. To converge towards the Optimal Adversary, we also demonstrate the bene-
fits of combining the probability distributions provided by multiple parametric models in order to
reduce the global error induced in an ensemble model (see Chapter 8). More precisely, we design
a new loss function, namely Ensembling Loss, in order to promote interactions between the para-
metric models during the training process such that correlated errors are penalized. Constructed
from the mutual information between an ensemble model and the targeted sensitive variable, this
loss function is beneficial to differentiate certain from uncertain predictions. This eases the lo-
cation of uncertain bits and thus, promotes a full attack scenario (i.e. retrieving all the private
key bits) against asymmetric cryptographic implementations. However, to capture differentiation
between certain and uncertain predictions, the ensembling loss is confronted to the ability of
the Evaluator to design suitable neural network architectures. If the parametric models are not
suitably configured, the uncertain bits can be difficult to locate.

Perspective 9.2.3 (Number of Remaining Operations). Locating the uncertain predictions in
order to reduce the number of remaining operations and enhance full attack scenarios against
asymmetric cryptographic implementations.

Some methods have been investigated in the Machine Learning field in order to reduce the risks
of wrong diagnosis in personalized medicine or meteorological forecasting. First, the Calibration
method [KLM19] converts the scoresc assigned to each bit into frequentist reading. In other words,
the bits with a calibrated probability of p should have an observed frequency of belonging to the
correct class to be precisely p. Thus, this approach can be highly beneficial to define the score
threshold such that all the bits over this score are perfectly predicted. On the other hand, the
Conformal Prediction [CGD21] produces error bounds around the scores assigned to each private
key bit in order to define a confidence interval. Based on those techniques, the Evaluator can
reduce the number of remaining operations and eases the application of a full attack scenario
against asymmetric cryptographic implementations.

Mitigating the desynchronization effect. As mentioned in Chapter 6, the convolutional
neural networks are useful to defeat hiding countermeasures. However, through our investigations,
we observe that dealing with such countermeasures make the design of a Θ-parametric function
FΘ more complex. As the model hyperparameters space increases with the complexity of the
neural network architecture, the elapsed time criterion can be impacted during the evaluation
of a targeted cryptographic module. Furthermore, in [ZS19], Zhou and Standaert suggest that
the Evaluator needs to use alignment methods in order to preprocess the leakage traces and ease
the exploitation of security flaws. The results obtained in Chapter 6 are consistent with this
observation.

Perspective 9.2.4 (Automate the synchronization process). Finding solutions that automate
the alignment process in order to ease the construction of the neural network architecture and
optimizing the elapsed time criterion.

A solution, proposed in [SWES+19], consists in automatically learn a non-linear time warping
that can be applied on unseen leakage traces. Even if the Evaluator can question the benefits
of this approach to prevent or mitigate the hiding countermeasures classically implemented by
the Developer without any loss of information, using Deep Learning techniques on synchronized
leakage traces ease non-negligibly optimization process.

cHere, the score is characterized by the probability provided by the parametric model or the ensemble
model.
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Appendix A

Additional Simulations on Leakage
Model Estimation

To evaluate the benefits of the cVAE-ST to retrieve the correct basis, we simulate four sets of
10, 000 leakage traces through different scenarios (9, 000 for the profiling phase and 1, 000 for the
validation phase):

• Scenario 1 – We assume that each leakage trace is configured by 3 time samples such that
only 1 point of interest is considered. The leakage model induces the maximum amount of
interactions between bits (i.e. G9) such that all bits influencing the leakage model have the
same weighting. Hence, the ith time sample of the simulated trace T is defined as follows:

T[i] =



1 · Y [1] + 1 · Y [3] + 1 · Y [6]
+ 1 · ⊕1

b=0Y [b] + 1 · ⊕2
b=0Y [b] + 1 · ⊕3

b=0Y [b]
+ 1 · ⊕4

b=0Y [b] + 1 · ⊕5
b=0Y [b] + 1 · ⊕6

b=0Y [b]
+ 1 · ⊕7

b=0Y [b] + Z[i]

if i = 1,

Z[i] otherwise,

where ⊕nb=0Y [b] = Y [0]⊕ . . .⊕Y [n], Y [b] = Sbox[X⊕k∗][b] denotes the bth bit of the output
of the Sbox, and Z[i] is a Gaussian noise following N (0, σ2) such that σ2 ∈ {0.1, 1, 10}.

• Scenario 2 – We assume that each leakage trace is configured by 4 time samples such that
only 2 points of interest are considered. The leakage model does not induce interactions
between bits (i.e. d = 1 and G2) but differs from the location of the points of interest.
Hence, the ith time sample of the simulated trace T is defined as follows:

T[i] =


1 · Y [3] + 1 · Y [6] + Z[i] if i = 1,
1 · Y [1] + 1 · Y [7] + Z[i] if i = 2,

Z[i] otherwise,

where Y [b] = Sbox[X ⊕ k∗][b] and Z[i] is a Gaussian noise following N (0, σ2) such that
σ2 ∈ {0.1, 1, 10}.

• Scenario 3 – We assume that each leakage trace is configured by 3 time samples such
that only 1 point of interest is considered. The leakage model does not induce interactions
between bits (i.e. d = 1 and G2) such that all bits influencing the leakage model have the
same weighting. Hence, the ith time sample of the simulated trace T is defined as follows:

T[i] =

 1 · Y [3] + 1 · Y [6] + Z[i] if i = 1,
Z[i] otherwise,
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where Y [b] = Sbox[X ⊕ k∗][b] denotes the bth bit of the output of the Sbox and Z[i] is a
Gaussian noise following N (0, σ2) such that σ2 ∈ {0.1, 1, 10}.

• Scenario 4 – We assume that each leakage trace is configured by 3 time samples such
that only 1 point of interest is considered. The leakage model does not induce interactions
between bits (i.e. d = 1 and G2) such that all bits influencing the leakage model have
different weighting. Hence, the ith time sample of the simulated trace t is defined as follows:

T[i] =

 1 · Y [3] + 0.5 · Y [6] + Z[i] if i = 1,
Z[i] otherwise,

where Y [b] = Sbox[X ⊕ k∗][b] and Z[i] is a Gaussian noise following N (0, σ2) such that
σ2 ∈ {0.1, 1, 10}.

Different levels of noise are considered for all scenarios in order to get an overview into how
cVAE-ST performs depending on the SNR result (see Table A.1). Whatever the scenario, the
cVAE-ST can retrieve the leakage model (see Figure A.2, Figure A.3, Figure A.4 and Figure A.5).
Hence, the cVAE-ST can be used to evaluate the security flaws when large bits’ interactions are
observed, when the deterministic part is different for all PoIs and when different weighting occurs.
As a consequence, large use-cases can be considered when the cVAE-ST is applied. However, for
a high level of noise, the extraction of the leakage model becomes more difficult. To retrieve the
leakage model, the evaluator has to increase the number of profiling traces in order to reduce the
noise effect. While the impact of the noise highly depends on the underlying implementation, no
general rules can be formulated to predefine the number of profiling traces that are needed for a
given level of noise.

Table A.1: SNR value for each scenario

SNR value over 10, 000 simulated traces
σ2 = 0.1 σ2 = 1 σ2 = 10

Scenario 1 258.51 2.578 0.0577
Scenario 2 50.58 0.509 0.0319
Scenario 3 51.28 0.549 0.0368
Scenario 4 32.38 0.346 0.0262 Figure A.1: Legend.

σ2 = 0.1 σ2 = 1 σ2 = 10

Encoder Vector basis Vector basis Vector basis

Decoder Vector basis Vector basis Vector basis

Figure A.2: Weight visualization for Scenario 1 (Legend: see Figure A.1)
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σ2 = 0.1 σ2 = 1 σ2 = 10

Encoder Vector basis Vector basis Vector basis

Decoder Vector basis Vector basis Vector basis

Figure A.3: Weight visualization for Scenario 2 (Legend: see Figure A.1)

σ2 = 0.1 σ2 = 1 σ2 = 10

Encoder Vector basis Vector basis Vector basis

Decoder Vector basis Vector basis Vector basis

Figure A.4: Weight visualization for Scenario 3 (Legend: see Figure A.1)

σ2 = 0.1 σ2 = 1 σ2 = 10

Encoder Vector basis Vector basis Vector basis

Decoder Vector basis Vector basis Vector basis

Figure A.5: Weight visualization for Scenario 4 (Legend: see Figure A.1)



Appendix B

Impact of α on the Empirical Risk
combined with the Ranking Loss
Through this appendix, we evaluate the impact of α on the empirical risk combined with the
ranking loss. Given a profiling set Ip of Np pairs (ti, yi)0≤i≤Np , a Θ-parametric model FΘ and
a number of attack traces Na such that Na|Np, the empirical risk combined with ranking loss
function is defined as:

R̂(LRkL, FΘ) = Na

Np

Np/Na∑
i=1

∑
k∈K
k 6=k∗

(
log2

(
1 + e−α(sNa,i(FΘ,k

∗)−sNa,i(FΘ,k))
))
,

where sNa,i(FΘ, k) =
∑Na
j=1 FΘ

(
tj+Na·(i−1)

)
[f(xj , k)] defines the output score of the hypothesis

k ∈ |K| for a given plaintext (xj)1≤j≤Na while α denotes one hyperparameter related to the sig-
moid and approximates the identity function needed for estimating the success rate.

We select a wide range of α values in order to efficiently evaluate the impact of this optimizer
hyperparameter on the training process. Figure B.1 illustrates the impact of α on the loss function
depending on the dataset used for training the model. The architectures are the same as in
Section 7.3. For the Chipwhisperer dataset, if α is small (e.g. less than 10), the sigmoid function
approximates the indicator function less accurately [BZBN19]. Consequently, the minimization
of the empirical risk does not provide a Θ-parametric model with high performance. When α is
too large, the gradient tends to vanish (see Subsection 4.3.2) and the training process results in a
model with poor performance. It appears that a relatively small value of α could provide a good
trade-off between the learning optimization and the approximation of the indicator function.
The same observation can be made when the ASCAD-v1 with synchronized leakage traces (see
Figure B.1b) and AES_HD (see Figure B.1c) are considered. However, we have to note that
α should be carefully configured depending on the dataset and the score returned by the Θ-
parametric model.

(a) Chipwhisperer (b) ASCAD (Synchronized
traces)

(c) AES_HD

Figure B.1: Impact of α on the loss function during the training phase
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Appendix C

Bounds in Learning to Rank Metrics

In [CLL+09a], Chen et al. reveal the relationship between classical information retrieval mea-
sures (i.e. MAP, DCG, NDCG) and the loss functions used in “Learning to Rank” approach
(i.e. Pairwise and Listwise losses). In this appendix, we exploit their results in order to argue
the inequalities introduced in Equation 7.6 and Equation 7.7. Let sNa(gNa , i) be the score asso-
ciated with the key hypothesis ranked at the ith position in the ranking vector gNa , introduced
in Subsection 3.3.4. In [CLL+09a], the authors define a loss function, called essential loss, that
characterizes the sum of the classification error involved during the training process,

less (sNa(gNa , i)) ,
|K|−2∑
i=0

1−
|K|−1∏
j=i+1

1sNa (gNa ,i)>sNa (gNa ,j)

 .
First, the essential loss can be defined as an upper bound of (1−MAP@|K|) where |K| denotes
the number of key hypotheses and MAP@|K| is the mean average precision over the top |K|
relevant position in g.
Theorem C.1 (From item (2) of Theorem 1 [CLL+09a]). Given a 2-level rating data with n1
elements with the label 1 and n1 > 1, then, the following inequality holds,

1−MAP@|K| ≤ 1
n1

|K|−2∑
i=0

1−
|K|−1∏
j=i+1

1sNa (gNa ,i)>sNa (gNa ,j)

 .
Proof. See the proof of Theorem 1 in [CLL+09a]

Following Chen et al., the essential loss can also be defined as a lower bound of many ranking loss
functions (e.g. pairwise loss or listwise loss).
Theorem C.2 (From item (1) of Theorem 2 [CLL+09a]). The pairwise loss function is an upper
bound of the essential loss such as,

|K|−2∑
i=0

1−
|K|−1∏
j=i+1

1sNa (gNa ,i)>sNa (gNa ,j)

 ≤ |K|−2∑
i=0

|K|−1∑
j=0

gr(j)<gr(i)

log2

(
1 + e−α(sNa (FΘ,i)>sNa (FΘ,j))

)
.

Proof. See the proof of Theorem 2 in [CLL+09a]

Interestingly, combining the results obtained in C.1 and C.2 is helpful to distinguish a relation
between the classical learning to rank loss functions and the information retrieval measures used
to evaluate the training process. Indeed, this combination gives us the following result,

(1−MAP@|K|) ≤ 1
n1

|K|−2∑
i=0

|K|−1∑
j=0

gr(j)<gr(i)

log2

(
1 + e−α(sNa (FΘ,i)−sNa (FΘ,j))

)
,

where gr(i) defines the grade associated to the ith key hypothesis (i.e. 0 or 1).
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Appendix D

Approximation of the Pairwise
Mutual Information Ensemble
Diversity

In [Bro09], Brown proposes a solution to compute the mutual information between an ensemble
model composed by a set of parametric models E = {X0, X1, . . . , XNc−1} and a set of true unknown
labels Y . However, as mentioned in Subsection 8.2.2, it is quite difficult to estimate higher-order
interaction information. Thus, Brown proposes to simplify Equation 8.2 by considering only
pairwise components as follows:

MI(E ;Y ) ≈
Nc−1∑
n=0

MI(Fn;Y )−
Nc−2∑
n=0

Nc−1∑
m=n+1

MI(Fn;Fm) +
Nc−2∑
n=0

Nc−1∑
m=n+1

MI(Fn;Fm|Y ), (D.1)

whereMI(Fn;Y ) computes the mutual information between the nth model of E and the target Y ,
MI(Fn;Fm) measures the mutual information between two models Fn and Fm, andMI(Fn;Fm|Y )
measures the conditional redundancy between two models Fn and Fm knowing Y .

Based on an ensemble model composed by a set E of parametric models, we aim at approximating
MI(E ;Y ) such that each component of Equation D.1 are optimized during the training process.
In order to achieve a general-purpose estimator, we base our propositions on the characterization
of the mutual information as the Kullback-Leibler (KL-) divergence [KL51] between the joint
distribution and the product of the marginals such that, given two random variables X and Y ,
we have:

MI(X;Y ) = H(Y )−H(Y |X) = DKL(Pr[X, Y ]||Pr[X]Pr[Y ])

=
∑

(x,y)∈X×Y
Pr[X = x]Pr[Y = y|X = x] log

(Pr[Y = y|X = x]
Pr[Y = y]

)
. (D.2)

Furthermore, the conditional mutual information of random variables X and Y given Z can be
expressed as follows:

MI(X;Y |Z) = H(Y |Z)−H(Y |X,Z)

=
∑
z∈Z

Pr[Z = z]
∑

(x,y)∈X×Y
Pr[X = x, Y = y|Z = z] log

( Pr[X = x, Y = y|Z = z]
Pr[X = x|Z = z]Pr[Y = y|Z = z]

)
.

(D.3)

Based on these definitions, we develop a loss function for each term of Equation D.1.
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Approximation of MI(Fn;Y ). The mutual information MI(Fn;Y ) is used to compute the
relevancy term (i.e.

∑Nc−1
n=0 MI(Fn;Y )) such that, following Equation D.1 and Equation D.2, we

want to maximize the probability of Y knowing Fn. If Fn : T → S, such that S ⊆ R|Y|, we have
to solve a similar problem to the ranking loss defined in Chapter 7. Thus, given a profiling set
Ip of Np pairs (ti, yi)0≤i≤Np , a parametric model Fn and a number of attack traces Na such that
Na|Np, we define the empirical risk combined with the Relevance Loss function as:

R̂(LReL, Fn) = Na

Np

Np/Na∑
i=1

∑
k∈K
k 6=k∗

(
log2

(
1 + e−α(sNa,i(Fn,k∗)−sNa,i(Fn,k))

))
, (D.4)

where sNa,i(Fn, k) =
∑Na
j=1 Fn

(
tj+Na·(i−1)

)
[f(xj , k)] defines the output score of the hypothesis

k ∈ |K| for a given plaintext (xj)1≤j≤Na while α approximates the sigmoid function needed for
estimating the success rate.
The interested readers may refer to Subsection 7.1.2 in order to obtain more details on Equa-
tion D.4.

Approximation of MI(Fn;Fm|Y ). The conditional interaction information MI(Fn;Fm|Y )
is used to compute the conditional redundancy term (i.e.

∑Nc−2
n=0

∑Nc−1
m=n+1 MI(Fn;Fm|Y )), such

that, following Equation D.1 and Equation D.3, we want to maximize the probability of observing
Fn and Fm knowing the sensitive variable Y . This probability always equals 1 if Fn and Fm
provide the same score related to the class Y . Consequently, if Fn : T → S and Fm : T → S, such
that S ⊆ R|Y|, we want to find a solution that maximizes Pr[sNa,i(Fn, k∗) = sNa,i(Fm, k∗)]. In
other words, maximizing an approximation of MI(Fn;Fm|Y ) consists in minimizing the distance
between the scores sNa,i(Fn, k∗) and sNa,i(Fm, k∗). Following [IW18, Section 2.3], the probability
Pr[sNa,i(Fn, k∗) = sNa,i(Fm, k∗)] can be approximated as follows:

Pr [sNa,i(Fn, k∗) = sNa,i(Fm, k∗)] = 1√
2πσ2

e
− 1

2

(
|sNa,i(Fn,k∗)−sNa,i(Fm,k∗)|−µ

σ

)2

, (D.5)

such that the parameters σ = 1√
2π and µ = 0 respect the condition Pr [sNa,i(Fn, k∗) = sNa,i(Fm, k∗)] =

1 if and only if |sNa,i(Fn, k∗)−sNa,i(Fm, k∗)| = 0. Thus, Equation D.5 can be rewritten as follows:

Pr [sNa,i(Fn, k∗) = sNa,i(Fm, k∗)] = e−π|sNa,i(Fn,k
∗)−sNa,i(Fm,k∗)|

2
. (D.6)

Then, similarly to the ranking loss, we apply the binary cross-entropy in order to penalize the
deviation of the model probabilities from the desired prediction. In other words, we want to pe-
nalize the loss function when sNa(Fn, k∗) differs from sNa(Fm, k∗). Thus, we define the conditional
redundancy loss function LCRL(Fn, Fm, Y ) as:

LCRL(Fn, Fm, k∗) = −PFn,Fm,k∗ · log2

(
P̄Fn,Fm,k∗

)
− (1− PFn,Fm,k∗) · log2

(
1− P̄Fn,Fm,k∗

)
, (D.7)

where P̄Fn,Fm,k∗ = Pr [sNa(Fn, k∗) = sNa(Fm, k∗)] and PFn,Fm,k∗ defines the true unknown proba-
bility that sNa(Fn, k∗) equals sNa(Fm, k∗).
Similarly to the ranking loss, we assume that PFn,Fm,k∗ is deterministically known such that,
PFn,Fm,k∗ = 1

2(1+relFn,Fm,k∗) where relFn,Fm,k∗ ∈ {−1, 1} defines the relation between sNa(Fn, k∗)
and sNa(Fm, k∗) such that relFn,Fm,k∗ = 1 if sNa(Fn, k∗) equals sNa(Fm, k∗) and relFn,Fm,k∗ = −1
otherwise. As we want to force the equality between sNa(Fn, k∗) and sNa(Fm, k∗), we assume that
PFn,Fm,k∗ = 1. From Equation D.6 and Equation D.7, we can deduce the following conditional
redundancy loss function:

LCRL(Fn, Fm, k∗) = − log2

(
e−π|sNa,i(Fn,k

∗)−sNa,i(Fm,k∗)|
2)
. (D.8)
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However, from a computational perspective, a large gap between sNa,i(Fn, k∗) and sNa,i(Fm, k∗)
can be problematic to solve Equation D.8 as the exponential value converges quadratically to-
wards 0. To reduce this issue, we simplify the distance measurement such that the empirical
risk combined with the conditional redundancy loss function can be written as follows: given a
profiling set Ip of Np pairs (ti, yi)0≤i≤Np , a pair of parametric models (Fn, Fm) and a number of
attack traces Na such that Na|Np, we define the empirical risk combined with the Conditional
Redundancy Loss function as:

R̂(LCRL, Fn, Fm) = Na

Np

Np/Na∑
i=1
− log2

(
e−β|sNa,i(Fn,k

∗)−sNa,i(Fm,k∗)|
)
,

where β is one hyperparameter that characterizes the impact of the distance on the penalization
term and sNa,i(Fn, k∗) defines the score related to the class k∗ given a set of Na traces and a
parametric model Fn.

Remark D.1. Furthermore, through the maximization of the probability of observing Fn and Fm
knowing the sensitive variable Y , we force the ensemble model to assign similar score to the class
related to Y such that, the probability of observing Fn knowing Y is similar to the probability of
observing Fm knowing Y . Thus, we encourage each term of the denominator of Equation D.3 to
converge towards the same solution.

Approximation of MI(Fn;Fm). The mutual information MI(Fn;Fm) is used to compute
the redundancy term (i.e.

∑Nc−2
n=0

∑Nc−1
m=n+1 MI(Fn;Fm)) such that, following Equation D.1 and

Equation D.2, we want to minimize the probability of observing Fn knowing Fm. Following the
discussion provided on the conditional redundancy loss, we have to maximize the dissimilarity
between Fn and Fm. If Fn : T → S and Fm : T → S, such that S ⊆ R|Y|, we want to find a
solution that maximizes Pr[sNa,i(Fn, k) 6= sNa,i(Fm, k′)] for each pair (Yk, Yk′)(k,k′)∈K×K such that
Yk = f(X, k) (resp. Yk′ = f(X, k′)) for a given plaintext X, a cryptographic primitive f and a
key hypothesis k (resp. k′).
As Pr[sNa,i(Fn, k) 6= sNa,i(Fm, k′)] = 1− Pr[sNa,i(Fn, k) = sNa,i(Fm, k′)], we can reuse the results
obtained from the conditional redundancy loss in order to compute a partial redundancy loss,
denoted L(p)

RedL, such that:

L(p)
RedL(Fn, Fm, k, k′) = − log2

(
1− e−γ|sNa,i(Fn,k)−sNa,i(Fm,k′)|

)
,

where γ is one hyperparameter that characterizes the impact of the distance on the penalization
term. Then, as the partial redundancy loss function L(p)

RedL(Fn, Fm, k, k′) has to be performed on
each pair (k, k′) ∈ K×K, it is possible to generalize the result to compute the resulted empirical
risk. Indeed, given a profiling set Ip of Np pairs (ti, yi)0≤i≤Np , a pair of parametric models (Fn,
Fm) and a number of attack traces Na such that Na|Np, the empirical risk combined with the
Redundancy Loss function can be defined as:

R̂(LRedL, Fn, Fm) = Na

Np

Np/Na∑
i=1

|K|−1∑
k=0

|K|−1∑
k′=0
− log2

(
1− e−γ|sNa,i(Fn,k)−sNa,i(Fm,k′)|

)
.

Approximation of the pairwise mutual information ensemble diversity. Based
on Equation D.1, we can introduce a new empirical risk that maximizes an approximation of the
mutual information between a set of parametric models E = {F0, F1, · · · , FNc−1} and a targeted
information Y . Indeed, given a profiling set T of Np pairs (ti, yi)1≤i≤Np and a number of attack
tracesNa such thatNa|Np, we define the empirical risk combined with the ensembling loss function
as:
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R̂(LRel,LRedL,LCRL, E) = 1
Nc

Nc−1∑
n=0
R̂(LReL, Fn)

+ 2µ
Nc(Nc − 1)

Nc−2∑
n=0

Nc−1∑
m=n+1

(
R̂(LRedL, Fn, Fm) + R̂(LCRL, Fn, Fm)

)
, (D.9)

where µ quantifies the impact of the diversity term during the training process. We normalize
each term of the empirical risk to reduce the impact of exploding gradient. Appendix E highlights
the benefits of each individual loss from a training perspective. Through this study, the reader
can understand how the network would train if the conditional redundancy loss or the redundancy
loss is individually used.



Appendix E

t-SNE Ensembling Loss

Figure E.1 illustrates the evolution of the t-SNE visualizations [vdMH08] in order to evaluate the
impact of the Conditional Redundancy Loss and the Redundancy Loss during the training process.
First, as mentioned in Subsection 8.3.1, the ranking loss, introduced in Definition 7.1.2.1, can be
formulated as the relevance loss (see Equation 8.4). Through its minimization, we minimize the
conditional entropy H(Y |Fn) which promotes the generation of three compact clusters. Figure E.1
confirms this observation. The ensemble model is overconfident in the features captured during the
training process. Consequently, it detects discriminative patterns to avoid connections between
each cluster. However, following the t-SNE illustration, the False Positives (FP) and the False
Negatives (FN) induced by the ranking loss are persistent and seem difficult to detect. Indeed,
these errors are fully included in a wrong cluster. For a given number of profiling leakage traces,
a solution is to promote the interaction between the committee members in order to reduce this
overconfidence and enhance the ensemble model.
In Equation 8.5, the Conditional Redundancy Loss function minimizes (1− Pr [Fn, Fm|Y ]) which
defines the probability of observing the model Fn and Fm given Y . Hence, maximizing Pr [Fn, Fm|Y ]
is asymptotically equivalent to minimizing H (Fn, Fm|Y ). Therefore, we force the network to gen-
erate three compact clusters given the correct sensitive variable (i.e. label). This loss tends to
increase the confidence of the network on the True Positives (TP) and the True Negatives (TN)
while reducing the impact of the FP and the FN. This observation can be made on Figure E.1. In-
deed, adding the conditional redundancy to the ranking loss is helpful to distinguish TPs and FPs
for each cluster. Hence, each cluster is divided into two parts: a part with high level of confidence
in prediction and a part with uncertain predictions. This phenomenon highlights the benefits of
the conditional redundancy loss function to reduce the intra-class variance and makes an easier
distinction between confident and uncertain predictions. However, as illustrated in Figure E.1,
the conditional redundancy loss function does not clearly separate the confident and uncertain
predictions into different clusters. Hence, an additional partial loss should be considered in order
to increase the dissociation between these samples. This is provided by the Redundancy Loss
function.

Figure E.1: t-SNE embeddings. From left to right: Ranking loss, Ranking Loss + Condi-
tional Redundancy Loss, Ranking Loss + Redundancy Loss, Ensembling Loss (= Ranking
Loss + Conditional Redundancy Loss + Redundancy Loss).
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In Equation 8.6, the Redundancy Loss function minimizes Pr [Fm|Fn] which defines the output
probability of the model Fm given Fn. From an information theory perspective, this can be
considered as a minimization of H (Fm|Fn) In other words, we want to maximize the inter-class
variance between the models Fm and Fn. Hence, adding the redundancy loss to the ranking
loss should increase the distance between each cluster by diversifying the features representation
of each cluster. This observation can be validated thanks to Figure E.1. Indeed, the third t-
SNE visualization illustrates a model trained with the ranking and the redundancy losses. In
comparison with the first t-SNE visualization, we can highlight the benefits of the redundancy
loss to increase the distance between each cluster and make the FN and FP less persistent.
However, in some extent, this approach generates sparse representation of a given cluster and
also reduces the confidence of the networks on some TP. Hence a good trade-off has to be found
between maximizing the confidence of the TP (i.e. conditional redundancy loss) and minimizing
the persistence of the FP (i.e. redundancy loss). The Ensembling Loss aims at finding this
solution for given α, β, γ, µ values (see Equation D.9).
In Figure E.1, the combination of the relevance loss, the conditional redundancy loss and the
redundancy loss creates three separate clusters. When the network is confident in its predictions,
it will assign the related examples to the correct cluster. Thanks to the conditional redundancy
loss, we know that the predictions with a high level of confidence will be assigned to the same
compact cluster. However, the ensembling loss also creates some connections between the clusters
which seem defined by the data uncertainty. This result tends to reduce the number of consistent
FP and FN such that few errors can be detected on each cluster in contrast with the ranking loss.
This observation highlights the benefits of the redundancy loss during the training process. In
Figure E.1, the ensembling loss finds a good trade-off between maximizing the confidence of the
TP and minimizing the persistence of the FP.



Appendix F

Neural Network Architectures for
Enhancing Diversity

Type I diversity. The architectures used for the type I diversity are randomly selected such
that the number of convolutional layers and fully-connected layers (FC) do not exceed 2. Hence,
we evaluate the type I diversity with the restriction of small network complexity. We select 5
neural network architectures with high individual αlabel value (i.e. ≥ 85%) to limit the impact of
the outliers and preserve an overall good performance. All the architectures used for the type I
diversity investigation are detailed in Table F.1.

Table F.1: Architectures and performance related to the networks used for the type I
diversity (models trained with the ranking loss)

Type I diversity Model1 Model2 Model3 Model4 Model5

1st Conv. layer (+ BN) 2 filters (size 1) 10 filters (size 5) 5 filters (size 15) 2 filters (size 1) 2 filters (size 1)
1st Pool. layer Avg (stride 2) Avg (stride 5) Max (stride 5) Avg (stride 2) Max (stride 2)
2nd Conv. layer (+ BN) - - - 2 filters of size 25 -
2nd Pool. layer - - - Avg (stride 2) -
Flatten Yes Yes Yes Yes Yes
1st FC layer - 2 nodes - - 5 nodes
2nd FC layer - - - - 5 nodes
Prediction layer 3 classes 3 classes 3 classes 3 classes 3 classes
αlabel 94.03% 92.50% 93.80% 94.33% 89.87%
αbit 90.62% 89.24% 90.62% 91.73% 86.66%
CNC 483.93 531.28 483.93 440.07 611.61
Training time (seconds) 400s 140s 100s 60s 80s

Type I + II diversity. For the type I + II diversity study, we randomly generate 100
models from a range of hyperparameter selection introduced in Table 8.2. From the resulted pool
of classifiers, we pick out those with a high individual performance (i.e. αlabel ≥ 85%) such that
their pairwise diversity measure (i.e. disagreement measure or κ-statistic) is maximized. The
resulted architectures are details in Table F.2.
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Table F.2: Architectures and performance related to the networks used for the type I +
II diversity (models trained with the ranking loss)

Type I + II diversity Model1 Model2 Model3 Model4 Model5

1st Conv. layer (+ BN) 16 filters (size 11) 4 filters (size 5) 16 filters (size 11) 32 filters (size 21) 32 filters (size 1)
1st Pool. layer Max (stride 4) Avg (stride 2) Avg (stride 6) Avg (stride 2) Avg (stride 2)
2nd Conv. layer (+ BN) 64 filters (size 1) 16 filters (size 21) 32 filters (size 11) - -
2nd Pool. layer Avg (stride 6) Avg (stride 4) Avg (stride 2) - -
3rd Conv. layer (+ BN) - 8 filters (size 5) 64 filters (size 43) - -
3rd Pool. layer - Max (stride 2) Max (stride 6) - -
4th Conv. layer (+ BN) - - 32 filters (size 11) - -
4th Pool. layer - - Max (stride 6) - -
5th Conv. layer (+ BN) - - 16 filters (size 21) - -
5th Pool. layer - - Avg (stride 4) - -
Flatten Yes Yes Yes Yes Yes
1st FC layer 8 nodes - - 32 nodes -
2nd FC layer 8 nodes - - - -
3rd FC layer 16 nodes - - - -
Prediction layer 3 classes 3 classes 3 classes 3 classes 3 classes
αlabel 90.04% 95.43% 94.53% 92.83% 93.83%
αbit 83.16% 93.84% 93.01% 90.16% 89.79%
CNC 704.45 358.84 393.24 500.08 512.73
Training time (seconds) 940s 200s 400s 700s 540s

Bagging and Boosting Hyperparameters Selection The hyperparameter selection is
performed on Random Forest (RF) [Bre01] and Convolutional Neural Networks (CNN). Table F.3
(resp. Table F.4) identifies the ranges selected to configure the bagging (resp. boosting) mod-
els. Let Nsplit be the minimum number of samples required to split an internal node and the
boostraping factor r denotes the number of side-channel traces n used to train a classifier (i.e.
n = r ·Np with Np = 30, 000). For the Random Forest models, the nodes are expanded until all
leaves contain less than Nsplit samples.

Table F.3: Range of hyperparameters selection for Bagging models

Variables Values

R
F

Bootstraping factor (r) {0.5, 0.8, 1.0}
Objective function Root Mean Square Error (RMSE)
Number of trees {5, 10, 25, 50, 100, 500, 1, 000}

Nsplit {2, 3, 5, 10}
Depth until all leaves contain less than Nsplit samples

C
N
N

Bootstraping factor (r) {0.5, 0.8, 1.0}
Loss function {CCE,RkL}

Number of models {1, 2, 3, 4, 5}
Architecture same as Subsection 8.4.1
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Table F.4: Range of hyperparameters selection for XGBoost models

Variables Values
R
F

Objective function Root Mean Square Error (RMSE)
Number of trees {5, 10, 25, 50, 100, 500, 1, 000}
Learning rate {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1}

Depth until all leaves contain less than Nsplit samples

C
N
N
-X

G
B

Number of trees {5, 10, 25, 50, 100, 500, 1, 000}
Number of CNN {1}
Architecture same as Subsection 8.4.1
Learning rate {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1}
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