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Chapter 1

Introduction

1.1 Conversational Agents

Natural language is used every day by billions of humans who intend to communi-

cate between each other. Such languages usually evolvewith timewith the introduc-

tion of new concepts and ways of formulating such concepts or words disappearing

from the common tongue as they are used less and less often. While communication

can be achieved using words, there are also other ways to exchange knowledge with-

out using classical dictionaries. For example, emojis are ways of expressing an idea

which are constantly growing in usage 1. Every year, new emojis are introduced,

creating new ways of expressing an idea.

While languages fromdifferent countries share some common aspects, centuries

passed and languages all evolved differently. Even inside the same country, dialects

are different depending on the region. People with different ages also use different

words, as dialects evolved as they are passed from generation to generation. Such

fluctuations in the way people express themselves make languages hard to pin down

to a given set of rules.

Nonetheless, in our digital area, there is an urge to process contents expressed in

those ever-evolving and multiple languages. The most obvious way to answer this

need is to use algorithms running on computers so that contents can be classified,

sorted, clustered or even computer-generated. This field of Computer Science re-

search is known as Natural Language Processing (NLP). In this thesis, we will take

1https://blog.emojipedia.org/emoji-trends-that-defined-2020/
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Natural Language Processing (NLP) in a wide sense describing all computer manip-

ulations of natural languages.

Given the increasing amount of available online services, technologies using

NLP are becoming more and more widespread. This ranges from scanning emails

for spams up to, for instance, more complex tasks such as computer-generated news

generation or news feeds summarization. Not only are NLP technologies accessible

on a personal computer but they are also fingers away from the end users. People

using modern mobile phones are exposed with such technologies on a daily basis,

on a different level of awareness depending on the technology. For example, auto-

correction and next word prediction on amobile phone’s keyboard is considered as a

technology based on NLP, as it analyses correctly written sentences in order to make

the life of the end user easier.

One of the biggest challenges that NLP pursue is to provide comprehensive con-

versational agents that would be able to discuss with humans in order to assist them

in their activities – this work belongs to that frame of research. This thesis takes

place in an era of research in which there is a renewed interests and confidence to

build such agents thanks to neural architectures [52]. In this thesis, we will focus

on the application of NLP to Conversational Agents, one sub-domain of NLP. The

race for building an “intelligent” conversational agent started very early: in 1964,

ELIZA, the first conversational computed program was created by Joseph Weizen-

baum. This computer programwas based on a fixed set of rules, which gave the user

an illusion of being understood, an illusion of having a real conversation. In the con-

text of current digital economy, businesses are processing more than 265 billion 2

customer requests per year, representing businesses expenditures in a $1.3 trillion

ballpark. Using chatbots (another way to denote conversational agents in this work)

to process such requests could help save up to 30% of this cost2.

Froman application point-of-view, chatbots aremade both to understand queries

and to provide appropriate answers. One way to address the former is to perform in-

tent classification, which is trying to figure out what is the intent expressed in the

user’s query. For example, the classification model would have to separate ”I want

2https://www.ibm.com/blogs/watson/2017/10/how-chatbots-reduce-customer-service-costs-by-
30-percent/
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to order pizza” from ”I need to book a flight”. For the answering part, the conversa-

tional agent can either generate a response (generation-based model), or retrieve an

answer from a set of possible answers. In this thesis, we focus on the intent detection

task, which attempts to understand and categorize user queries into intents classes.

It is a special case of the standard text classification task, in which textual contents

are user-generated (which imply issues such as length heterogeneity, grammatical

and construct errors, slang, …) and classes are usually counted by dozens in prac-

tical settings (where a spam detection algorithm is a binary classifier for instance).

To build intent detection classifier, it is therefore expected to need a large amount

of training data since modern NLP approaches rely on Deep Artificial Neural Net-

works [52, 137, 33], which are data-hungry. With the fluctuations of the human lan-

guage discussed above, the variety of the different languages as well as their proper

dialects, and the fact that chatbots usually evolves with time as new features are in-

troduced, constructing a robust training dataset is not a simple task. On the contrary,

given annotation cost and the fact that such annotations may be irrelevant in a close

future due to the chatbot evolution, chatbots often face the case where not much

labeled data is available to train on. This thesis therefore investigates how to effec-

tively train intent detection for chatbots with a limited amount of data, which is a

training regime named as few-shot learning as described in Section 2.4. As few-shot

learning does alwaysmean no training data (this special scenario being referred to as

zero-shot learning [149] in the literature), we will briefly discuss in the next Section

the stakes and issues of data annotation.

1.2 Data Annotation

One of the first step when building a conversational agent is to gather a dataset. To

understand user queries, chatbots need samples of such queries associated to one

or more intent labels, in order to learn to classify user requests it will receive in

the future. The worldwide data volume increasing exponentially3 is good news for

this, as it means plenty of data is available. In the conversational agent context,

acquiring unlabeled data is quite cheap, as we just have to collect logs from past

conversations between users and the conversational agent. Unfortunately, this data

3https://www.statista.com/statistics/871513/worldwide-data-created/
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hungry, or to say the less, which performs “well enough” even if they do not have a

large amount of labeled data at hand. The appreciation of their performance gap is

task and context dependent. In this thesis, we are providing directions in order to

tackle the time and cost associated to data annotation by trying to explore relevant

and efficient ways to limit the need for human annotators. Not only does it aim at

lowering the cost of building intent detection module for chatbots, but the more we

alleviate using human in this process, the faster is the construction and iteration of

a learning algorithm dedicated to intent detection.

Since this thesis takes place in both an academic (Laboratoire Hubert Curien

UMRCNRS 5516) and a company (Meetic fromMatch Group) context, the next sec-

tion introduces some insights on the practical chatbot in which our contributions

can be instantiated. While none of our contributions are specific to this chatbot, it

provides an insights on the practical issues that motivates our research.

1.3 Lara, Meetic’s Chatbot

Meetic is a french dating website founded in 2001. With hundreds of thousands of

users using it daily, it is one of the most popular dating websites in France. Cre-

ated in 2016, Lara is Meetic’s conversational agent. As she interacts with users on

the mobile app, she covers multiple goals (Figure 1.2), including profile creation,

answering customer care related questions, or even profile recommendation. From

the very beginning of the user experience, she helps creating one’s profile. When

users encounter a problem, for example when they lose their password, Lara is here

to help them fix the issue. However, the core of her job is to act as a dating coach.

In this role, she helps user improve the quality of their profile (e.g. fill in the blanks,

choose the best picture), does profile recommendation (more than 70, 000 profiles
recommended per day), as well as provide customized dating tips. Overall, she rec-

ognizes more than 300 user intents spanning those different use cases (this indicates
the number of classes we consider in our intent detection algorithms). Those intents

evolve in number and scopewith time. At the beginning ofmy thesis, there were less

than 30. As the website’s features evolved, and the user behavior too, we gradually
added more and more intents to better capture what users were talking about. This

led to scenarios where we had the need for intent classificationmethods which were
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French

38%
English

16%

Spanish

15%

Italian

13%
Dutch

9%

German
9%

Figure 1.3: Language repartition of users interacting with Lara

1.4 Thesis Contributions

This section provides an overview of the contributions proposed in this thesis.

1.4.1 On the importance of sentence embeddings for Few-Shot

Learners

As a first contribution, we revisit the State-of-the-Art for the Few-Shot Intent Detec-

tion task, with surprising results. Approaches to learn representations for text, that

is learning to embed pieces of text into vectors, have quickly evolved in the past few

years 2.2. This embedding step is the primary resource for downstream NLP neu-

ral architectures that tackles specific application, and this includes intent detection

in a few-shot setting. In the meantime, the existing literature about few-shot intent

detection have been developed while text encoders have progressed. Consequently,

when a new few-shots intent detection method becomes the new state-of-the-art, it

is left unsaid if this progress is due to the new few-shot neural architecture or simply

introduced using of a more modern and efficient text encoder with respect to the

previous best performing few-shot intent detection algorithm. To avoid this biased

comparison, we first measure the impact fine-tuning a state-of-the-art text encoder
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on intent detection datasets in terms of embeddings quality. Then, we run experi-

ments to compare the various few-shot learningmethods proposed in the last decade

using the fine-tuned text encoder as input and we show that progress in this field is

mostly, if not entirely, due to progress by the text encoders. This shows that few-

shot intent detection remains a difficult task to tackle. This contribution has been

the subject of a long paper [37]. published at EACL’21.

1.4.2 A Folding/Unfolding method for Pseudo-Labeling

In a labeling framework, it is hard for the annotator to select the correct label if the

number of classes is high, and this is amplified if the available volume of data one

can annotate is high. An possible approach therefore consists in hypothesising a

label to an unlabeled data given its proximity in the representation space. This pro-

cess is called pseudo-labeling [5]. The resulting so-called pseudo-labels can then be

used for training, leaving the learning algorithm to deal with the associated uncer-

tainty, or the annotator can decide whether the given pseudo-label is appropriate – it

fosters the annotation process in this latter case. In this context, a second contribu-

tion we introduce is a new two-step pseudo-labeling algorithm that is stat-of-the-art

for intent detection. This method not only surpasses other baselines, it is also com-

plementary to existing approach so that aggregating existing pseudo-labeling tech-

niques with ours yield even better pseudo-labeling accuracy. This contribution has

been the subject of a long paper [38] published at COLING’20.

1.4.3 Extending Prototypical Networks using unlabeled data and di-

verse paraphrasing

As a last contribution, we introduce a novel method for end-to-end few-shot intent

detection. In the conversational agent domain, it is cheap and easy to gather a lot

of unlabeled user queries, as more and more users interact with the agent. Given a

few labeled data and some unlabeled data, we want to find a way to combine both

in order to get a robust model. First, we fine-tune a paraphrase generation model.

Then, we use this fine-tunedmodel to generate paraphrases, with different strategies

to enforce the diversity among the generated sentences. Finally, we introduce a novel

extension of Prototypical Networks leveraging both the knowledge from labeled data
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and the unsupervised knowledge fromunlabeled data and their diverse paraphrases.

Our novel techniques show great results in the few-shot intent detection task, even

out-performing the labeled baselines using less annotated data. This contribution

has been the subject of a long paper [36] published at ACL’21.

1.5 Conclusion

In this thesis, we approach the Intent Detection task in a few-shot setting. Chap-

ter 2 first starts by introducing all background knowledge required to understand

the contributions presented in the next chapters. As a first contribution, we will

measure the importance of the text encoder when dealing with Few-Shot text clas-

sification model Along with a revisited state-of-the-art on the matter (Chapter 3).

Then, we introduce a novel method of producing pseudo-labels on unlabeled data,

which helps the model generalize (Chapter 4). Finally, Chapter 5 presents a novel

approach to few-shot intent detection, using an unsupervised paraphrase generation

model, which yields competitive results even in an extremely low annotated data

regime. Chapter 6 concludes and provides insights on open direction for research.



Chapter 2

Background

2.1 Introduction

In this section, we will dive into all the background knowledge required to contex-

tualise this thesis’ contributions. First, we will describe the various sentence repre-

sentation methods and how they quickly evolved in the last few years. Secondly, we

will describe the intent detection task that we want to solve. Then, we will have a

look on the various few-shot learning methods which have been used in the past to

solve this problem. Finally, we will introduce all the intent detection datasets that

are used in the experiments of our contributions.

2.2 Word & Sentence Representations

Texts, in their most raw format (a string), cannot be directly processed by a com-

puter. Instead, we need a way to convert such texts to numerical values so that a

computer can accomplish a task using those texts. Sentence Representations [78, 68]

– or sentence embeddings, those terms are interchangeable –, are representations of

sentences in an 𝑛-dimensional vector space, such that two sentences sharing some
semantic similarities are close in such space. Embeddings are not just used for texts

– images, products, users can be embedded into vectors [147, 71] –, however in this

thesis we are only interested in text embedding techniques. The embedding of a

sentence is derived depending on the words it contains. From one-hot encoding to

Transformers, sentence embedding techniques quickly evolved in the recent years.

10 of 153
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In this section, we will describe those different techniques, how they came to be, as

well as their strengths and shortcomings. In what follow, we will refer to vocabu-

lary as the set of unique words that compose the language model we want to build.

2.2.1 One-hot encoding

The simplest way to represent words using numerical values is to one-hot-

encode [70] them. Using this method, each word is represented by a large vector of

the size of the vocabulary. In this vector, all values are 0 except a 1 at the word’s
index in the vocabulary. Given those individual representations of words, we

can derive a sentence representation as the average or all word representations it

contains. One-hot encoding treats all words equally, would they be very significant

or only serve a grammatical function.

An extension of this method, called TF-IDF [65] (Term Frequency - Inverse Doc-

ument Frequency), assigns weights to words. The more frequent a word is in a doc-

ument, the higher the weight. However, if this word is present in many documents,

then theweight increase is penalized (it ismost likely not a discriminator of the docu-

ments). Consequently, this inverse document frequency mechanism avoids putting

toomuchweight onwordswhich are too common (e.g. stop-words), and emphasises

rare – and hopefully, more important – words. Sentence representations obtained by

this extensions brought some great results on the text classification task [64], or even

sentiment analysis [94]. Still, while being superior than assigning boolean values,

this trick does not correct the following flaws of those vocabulary-based encoding

methods.

Word Similarity These one-encoding methods do not model the similarity be-

tween twowords. According to these embeddingmethods, there is no shared knowl-

edge between any two pair of words. Two given words will just have many 0’s in

common, and a different index at which they have a non-null value, no matter the

similarity between the two words. This means that, according to this representation

technique, there will not be more similarity between telephone and smartphone

than between telephone and snake.
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Scalability The size of vectors is the size of the vocabulary. According to a study 1,

there could be around 170, 000words currently in use in the English language. If we
are to represent each word with a 170, 000-dimension vector, the computer memory
tax is prohibitive.

Sparsity Vectors produced by thismethod are extremely sparse, hencemodelswill

have a hard time learning anything from such sparse data [14]. Moreover, if the

model sees a new word it has not previously seen, it will be unable to infer anything

from it.

Word Order Those methods do not take into account the words order in the

sentence. Using basic TF-IDF, both sentences `You know I do not like it'

and `I do not know it like you' will have the same representation, while

being very dissimilar in terms of meaning.

To overcome those issues, word embeddings were introduced, and will be cov-

ered by the next section.

2.2.2 Word Embeddings

Word embeddings map each words to a dense 𝑁-dimensional space. Depending on
the implementation, 𝑁 can vary from 50 to 1, 000. This dimension reduction com-
pared to the vocabulary size in the previousmethods solves the scalability issue. The

sparsity issue is also addressed as the target space is dense. Finally, the word sim-

ilarity issue is tackled by the training method of word embeddings, which aims at

bringing closer words which share a common meaning.

Word embeddings were first introduced by the Word2Vec [100] method. The

concept of this method was based on the distributional hypothesis, suggesting that

word occurring in the same linguistic context have a similar semantic meaning. Fol-

lowing this hypothesis, Word2Vec aims at finding a representation of words in the

N-dimensional space having similar words close to each other. Word2Vec introduces

two training methods: Skip-Gram and C-Bow. The former, tries to retrieve a word

given its surrounding words, defined as its context. On the opposite, C-Bow aims at

1https://englishlive.ef.com/blog/language-lab/many-words-english-language/
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Bi-directional LSTMs [57] networks are used in order to produce contextualised rep-

resentations. This bi-directional approach allows the model to learn how to read a

text in both ways, either predicting the next or the previous word based on context.

Finally, a linear combination of hidden layers – from both LSTMs as well as the out-

put of the convolutional layer – in order to have a robust and contextualised ELMo

representation of words within a sentence. The linear combination of the various

hidden layer is task-specific: this is where ELMo breaks away from the different

architectures. Indeed, downstream tasks are all different, and they all need to cap-

ture specific knowledge in a given sentence. After pre-training ELMo on a large text

corpus, only the weights assigned to the various layers need to be fine-tuned on a

specific task.

This novel way to embed words and sentences paved the way to major im-

provements for many NLP tasks, like Question Answering [118], Sentiment

Analysis [154], or Entity Disambiguation [125]. The main shortcomings of ELMo is

dependent to the two LSTMs (left to right and right to left word predictions): those

recurrent networks are slow to train and they have a tendency to “forget” (although

they are equipped with a forget gate which makes them better at capturing long-

term dependencies than standard Recurrent Neural Networks, they still struggle to

model long tokens dependencies). ELMo was later replaced by a novel architecture

called the Transformer which try to tackle this shortcomings.

2.2.4 Transformers

AttentionMechanism Until the Transformers era, sequence models were based

on complex recurrent and/or convolutional neural networks, often paired with an

attention mechanism. This attention mechanism was first introduced in [7] for

the Neural Machine Translation (NMT) task. NMT use an encoder to embed the

original piece of text in a given language (e.g. sentence) in a latent representation

space, and then a decoder that predicts the sequence of tokens in the target language

with respect to that latent representation used as an input. The two main issues for

NMT models is the need to encode variable-size sentences into fixed-width vectors

and the observation that the target language sentence may not be structured or may

not contain the same kind of tokens than the original one (from a vocabulary or

grammatical point of view). An overview of a NMT architecture is represented in
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Figure 2.4: The transformer architecture, taken from [137]
.
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layers. FF layers are very standard layers known since decades [103]. MHA is an at-

tention module similar to the attention mechanism described previously, only that

several attention are combined. More precisely, instead of using a single way to at-

tend to the inputs at each decoding steps, the Transformer learns several attention

modules (coined as “attention heads”) that each provides a different looking back

gaze on the original sentence. The reasons for having multiple attention heads are

as follows. First, each head tends to attend to the inputs in a different manner (e.g.

verbs vs nouns, close or long range dependencies, etc.), conditioned by their param-

eters random initialization [119]. Second, the training of each head is independent

of each other: it can be done in parallel, therefore with a limited training overhead.

Note that all attention heads are ultimately concatenated and transformed to fit the

required latent representation dimension through a linear combination.

By only using an attentionmechanism, this architecture does not require to read

a text sequentially, as RNNs would do. Nonetheless, as previously discussed in Sec-

tion 2.2.1, two sentences composed of the same words but in a different order might

have a completely different meaning. In order to take into account the token rank in

the original sentence, the authors introduce “positional encodings”, which are used

along with embeddings, so that the model gets a sense of where which word occur

in the sentence. Having no need to process a sentence sequentially provides some

benefits. Recurrent Neural Networks read a piece of text sequentially (from left to

right and/or right to left). This means that a given word cannot be processed before

previouswords are. This is a problemwhen pieces of text are very long, as processing

a full sentence might take a lot of time. Replacing LSTMs with CNNs [67] already

improved the processing time. In the Transformer architecture, each attention head

among a given layer can be processed in parallel. On a modern GPU, which is capa-

ble of running a lot of operations in parallel, this makes the training of transformer

easier. Because the training part can now be done “efficiently” using parallel com-

puting, transformers are constantly pushed to the limit, with a number of parameters

growing exponentially (see Figure 2.5).

BERT One famous transformer is BERT [33]. When it was released, its perfor-

mances yielded an outstanding 7.7% increase of accuracy on the General Language

Understanding Evaluation (GLUE [142]) benchmark. Unlike language models
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Figure 2.5: The exponentially increasing size of transformer models,
taken from a blog post: https://blog.tensorflow.org/2020/05/

how-hugging-face-achieved-2x-performance-boost-question-answering.

html.

which are trained to generate next tokens, BERT only uses an encoder. It was

trained using large textual corpus on two unsupervised task: Masked Language

Modeling and Next Sentence Prediction. In the former, the algorithm must learn

to retrieve words of a given sentence which have been masked. The latter is a

task where it is given two sentences 𝐴 and 𝐵, and must decide whether or not 𝐵
is the next sentence of 𝐴. Architecture-wise, it is composed of 12 MHA layers,

instead of 8 in the original transformer paper [137]. The popularity of BERT hinted

researchers to look for variants of this architecture, by optimizing the training

part [88, 74], making a compressed version of the model [63], or even by training a

language-specific variant [93, 77].

Other applications While transformers were originally designed for NLP tasks,

their unique self-attention mechanism can be used in many other machine learning

tasks. For example, transformers have been adapted to the Computer Vision field,

where they have shown promising results in object detection [20], image genera-

tion [109], or image classification [39]. In speech recognition, transformer-based

solutions [90, 35, 166] not only found application in both hybrid and end-to-end

systems but also turned out to be better than many other modern solutions!
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typos, was not seen during training, then it might be difficult to get a reasonable rep-

resentation of such word. Solution to overcome this problem have emerged, either

by analysing sub-words [66], using WordPiece [123, 33, 28], or even a more recent

study using a token-free model relying on bytes [152].

Informal language User-generated content, like tweets, is usually less formal

then other pieces of text which are often used in pre-training of language models,

like news articles. As an example, FastText [66] authors have pre-trained word vec-

tors for 294 different languages on Wikipedia3, which is a platform where content

is more rich and way more formal than standard user-generated content like tweets.

Overall, if the domain used for training a language model differs too much from the

domain of a given task, then the pre-trained representations might not be suited the

task. Several studies on domain adaptation [115, 41] have shown that the impact

of domain shifting can be quite high. To account for this domain shift loss, we will

study how further fine-tuning language model on a given task’s domain helps at

solving task 3.2.2.

Texts are short One other particularity of intent detection is that it deals with

very short texts. In practice, user queries contain about 10 words on average 2.5.

This is very different from other text classification tasks like news article classifica-

tion, where pieces of texts are much longer – usually a few hundred words long. In

practice, the more information you have about a piece of text, the easier it is to put a

label on it. When one have only a fewwords to workwith, it really limits the amount

of information that the algorithms can exploit.

Labels In intent detection, labels might be very close as well as very far to one

another. For example, Table 2.1 presents different samples for two close labels of

the BANKING77 [21] dataset, top_up_failed and top_up_reverted. The former

represents a general issue for an attempted top-up, while the latter is about the bank

reverting a successful top-up. While this slight difference might be exposed when

comparing examples A{1,2} to B{1,2}, it is very subtle, and examples {A, B}3 are even

more difficult. For A3, one could say that it belongs to the right class, at it exposes

3https://fasttext.cc/docs/en/pretrained-vectors.html
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Label Id Samples

top_up_failed A1 Can you tell me if my pop-up went through?
A2 My top up is giving me problems. What is wrong with it?
A3 Why was my top-up rejected?

top_up_reverted B1 Do you know if my top-up has been cancelled?
B2 Why was my top up cancelled?
B3 Why didn’t my top up work?

Table 2.1: Sample with close labels, extracted for the BANKING77 dataset

a rejection, not a reversion of the action. As for B3, one could argue that it could

belong to either of those classes. Text classification tasks like sentiment analysis,

question classification or even topic modeling rely on datasets which contain very

few classes (see Table 1 of [58]). As demonstrated in Section 2.5, intent detection

datasets usually contain a number of labels in a different order or magnitude.

2.4 Few-Shot Learning

In this section, wewill describe the few-shot learning problem and the differentways

to tackle it. Fist, we will introduce the meta-learning framework, where models

learn on training tasks, and are evaluated on testing tasks, where testing labels have

never been by the model during training. Then, we will look at the semi-supervised

learning approach, where both labeled and unlabeled data are used in order to im-

prove the model’s performances. Finally, we will talk about different data augmen-

tation techniques, which can be used to have a more robust model.

Few-shot learning is a particular case of machine learning when the amount of

labeled data is scarce. As exposed in Figure 2.8, this particular case has gained a lot

of traction in the last few years, and is still increasing exponentially. One reason be-

hind this recent interest is the cost of acquiring labeled data. Indeed, it is both time

and money consuming to annotate raw data from scratch. Ideally, we would like

models to learn from very few samples, given the pain of the labeling task (as dis-

cussed in Chapter 1). In a way, we would like computers to be able to learn from few

information, as human do. Deep learning models are often compared to a human

brain [56, 3]: the artificial neural network architecture was specifically designed to
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an episode-based process, with each time step corresponding to one episode. Here

are the steps for creating a training episode:

• Pick 𝐶 classes among 𝐶train
• For each class 𝑐 ∈ 𝐶:

– sample 𝐾 points belonging to this class. This will be the support set for

this class,

– sample 𝑄 points belonging to this class. This will be the query set for

this class.

The episode will hence be composed of 𝐶×(𝐾+𝑄) labeled points. Each episode
will be used as a task to train themodel, andmimics the few-shot scenario, including𝐶 classes with 𝐾 examples for each. For this given episode, the model will have to

predict the label of each query points based on the knowledge it can extract from

support points. This framework is often referred to as a 𝐶-way, 𝐾-shot problem: we
need to classify query points into 𝐶 classes, given only 𝐾 support points for each

class. In practice, 𝐾 is really important, and the larger 𝐾 is, the better the model is

expected to perform. Indeed, a model does better when it has more labeled samples

to work with. In practice, 𝐾 is usually picked in the {1, 5, 10} set. When 𝐾 = 1, this
process is called one-shot learning, as there is only one sample for each class. By

increasing the value of 𝐾, we can evaluate how the model would behave if it had a

little bit more labeled data to work with. The number of query samples per class 𝑄
does not matter as much as 𝐾, as it only corresponds to the amount of points we are
optimizing the model with at each step.

At each step of meta-learning, we update the parameters of the model based on

its performances of a randomly generated episode. The loss value of this model will

depend on its classification error on query points. The model is prompted with a

different task at each time step, hence it must learn how to discriminate data classes

in general, rather than a particular subset of classes. At test time, we want to eval-

uate the performances of the model, and this time we will select test tasks based on𝐶test, the set of test classes. Again, for each test task, we will evaluate the classifica-
tion performance of query points, given the knowledge from support points. In the

following, 𝑉 𝑠 (resp. 𝑉𝑞) will represent the vector representation of support points
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(resp. query points) of a given episode. When unlabeled data will be used, 𝑉𝑢 will
denote vector representations of such unlabeled points.

2.4.2 Few-Shot Learning methods

In this section, we will introduce the various few-shot learning methods which will

be used in this thesis. The different methods will be presented chronologically, from

the oldest to the newest. Funnily, this chronological order is also the complexity or-

der, as most recent methods are also more complex – in terms of number of parame-

ters – than older ones. In practice, few-shot learningmethods are directly plugged on

top of embeddings. These methods actually learns in different fashion a point repre-

sentative for each class – in a sense they quantifies the support points of an episode

support set into a single representative point that minimizes the error on the episode

query set. As such, when an episode ends, the encoder weights are updated.

2.4.2.1 Matching Networks

Matching Networks [139] were first introduced in 2016. While they were first ap-

plied in the computer vision field, they have also been successfully extended to NLP

tasks, such as entity alignment [148], reading comprehension [161], or chatbot re-

sponse selection [168]. An overview of how matching networks work is exposed in

Figure 2.10. The idea of matching networks is to “match” points from the query set

with points for the support set. To classify a query point 𝑥𝑞, we first compute its dis-
tances to all support points. The predicted label of 𝑥𝑞 ∈ 𝑉𝑞 is the label of the support
point 𝑥𝑠 ∈ 𝑉 𝑠 which is closest to 𝑥𝑞. In the original paper, the distance function used
for matching networks was the cosine distance. However, this distance function can

easily be swapped with another one, depending on which distance function better

suits the task.

As the original paper’s name indicates –Matching Networks for One Shot Learn-

ing–, Matching Networks were originally designed for one-shot learning. However,

they can easily be extended to cases where there are multiple shots per class (i.e.𝐾 > 1). Such an extension was used in other works [26] where, instead of looking in
a point-wise manner, authors think class-wise. To do so, they average the distance

to all supports points of a given class to obtain an “average distance” to that class.
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operator, 𝑓 (⋅) denotes the ReLU activation function, and 𝑤,𝑀1,𝑀2 are learnable
parameters. In this equation,

𝑠rel-base𝑖,𝑐 = ⟨𝑤,𝑀2 (𝑓 (𝑀1 (𝐶 (𝑣𝑖, 𝑝𝑐))))⟩ (2.1)

NTL Introduced by [130], theNeuralTensorLayer relationmodule uses interme-

diate learnable matrices 𝑀𝑡 ∈ ℝ𝑑,𝑑 to model the relation between support vectors
and prototypes. The idea is that different matrices may catch different similarities

between the vectors. This relation module computes one relation score for eachma-

trix𝑀𝑡, then aggregates those scores into a final score representing the relation be-
tween sample 𝑥𝑖 and class 𝑐. Computation of this relation score using this particular
relationmodule is obtained using Equation 2.2, where𝑤 is also learnable parameter.

𝑠rel-ntl𝑖,𝑐 = ⟨𝑤, 𝑧rel-ntl𝑖,𝑐 ⟩ , 𝑤 ∈ ℝℎ (2.2)

𝑧rel-ntl𝑖,𝑐,𝑡 = 𝑓 ((𝑣𝑖)𝑇 𝑀𝑡𝑝𝑐) , 𝑡 ∈ [[1, ℎ]] (2.3)

Using this relation module, increasing the number of matrices ℎ also increases
the amount of information themodel is able to capture in order tomodel the relation

score. However, it also introduces a lot of additional learnable parameters. In a

context of few-shot learning, where the amount of training data is quite limited, this

might become a problem. Indeed, as it is given more chances to fine-tune itself,

the model could quickly over-fit on the training task, leading to poor results on the

testing tasks. We will see how this few-shot learning approach will perform on the

intent detection task in Chapter 3

2.4.2.4 Induction Network

Induction network [49] were introduced in 2019. This time, it was first introduced in

theNLP field, on a text classification task. Becausemethods inNLP and computer vi-

sion are often borrowed from one another, they were also adapted to image process-

ing tasks like hyperspectral image classification [47] or abstract visual reasoning [59].

In the original paper, authors challenge the idea of representing a given class as the

average representation of its points, which was the de-facto method [129, 133] until
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This dynamic routing algorithm was first proposed in Capsule Networks [121],

and allowed the network to learn the invariants within each one of the different

classes. In a few-shot scenario, this dynamic routing allows to learn generalised

class-level representation from the few available samples, hopefully in a better way

than using the average representation.

The relation module used in induction networks is the NTL one, previously de-

scribed in the relation network section. Compared to all other previously described

approaches, induction networks are the having the most learnable parameters. As

wementioned earlier, adding toomuch learnable parameters could lead to problems

especially in the few-shot case, as we are giving more and more over-fitting chance

to the model.

Even though few-shot learning models are designed for tasks where the amount

of labeled data is limited, other methods also come handy in such situations. In

the following section, we will describe some semi-supervised learning approaches

which can be used to overcome the data scarcity.

2.4.3 Semi-Supervised Learning

Unsupervised learning is the case where we want to train models using only unla-

beled data. It remains one of the main challenges in machine learning, both in com-

puter vision [113] and NLP [29]. If models could learn by themselves, needing little

to no human supervision – this supervision can be in the form of labeled data –, then

it would be a huge milestone towards solving general artificial intelligence. While

unsupervised learning and general artificial intelligence are far from being solved,

researchers have made a great progress in the semi-supervised learning [22, 170]

field. This particular area of research lies in between supervised learning, where

models are trained on top of labeled datasets, and unsupervised learning, where no

labeled data are available.

Semi-supervised learning, that can be applicable to intent detection, can be ap-

proached in two different ways. The first one is to use some predictor to make as-

sumptions on unlabeled data in order to associate them to a pseudo-label that can be

later use in a supervised training scenario. An simple example of such an approach

is as follows: train a model using the available labeled data, then use that model to
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predict pseudo-labels for the available unlabeled data, and ultimately use both la-

beled and pseudo-labeled data to train a better model in a supervised way [16, 167].

Note that in the literature, pseudo labels are also referred to as weak labels, noisy

labels, or even proxy labels. The previous semi-supervision learning example is not

straightforward as it contains multiple steps (that is in this case, training several

models sequentially). Therefore, the second way to perform supervised learning is

to aim at solving the task in an end-to-end manner [150], using both labeled and

unlabeled data at the same time to train a robust model. In this section, we first re-

view the different approaches using pseudo-labels (Section 2.4.3.1), then we focus

on UDA [150], an end-to-end approach for training a model using semi-supervision

(Section 2.4.3.2).

2.4.3.1 Pseudo-labeling

Pseudo-labeling is the action of using a trained model to produce pseudo-labels on

unlabeled data. Pseudo-labels are not real labels: they are just a prediction of a given

model onunlabeled data. As such, theymight bewrong, hence a pseudo-labeled sen-

tence is not as useful as labeled one. However, depending on the scenario, acquiring

unlabeled data may be cheap, and therefore a large amount of unlabeled data with

pseudo-labels might help at solving the task. In the end, the ultimate goal is to make

a positive use of unlabeled data. While this sounds easy to do, mind that such a

technique is a double-edge sword. If pseudo-labels are wrong, first they make the

training much harder for the model since (pseudo)-labeled data may be incoherent

and a good hyper-plane to separate data harder to find, and second, the resulting

accuracy of the model can be much lower than the one trained only on labeled data

without the (wrong) pseudo-labels. It is therefore important that this process brings

significantly more correct pseudo-labels than wrong ones. In a sense, we want to

train a model using both labeled and unlabeled data, and we want this model to

be better than the model which is just using labeled data to train on (otherwise the

unlabeled data is just useless).

Self-training One approach to using unlabeled data along with labeled data is

self-training [157, 96]. Being one of the earliest approaches to semi-supervised learn-

ing, it is also the most straightforward method where a model learns from its own
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predictions. In self-training, a model is first trained on top of labeled data. Then,

it computes pseudo labels for each unlabeled data point. Finally, the model is re-

trained using both labeled and pseudo-labeled data. Ideally, only themost confident

pseudo labels will be used. If a pseudo-label is not confident enough, then training

on top of it might introduce too much noise and hence, confuse the model. To over-

come this issue, a threshold parameter 𝑡 is introduced, and pseudo-label are retained
only if their predicted probability is higher than this threshold. An overview of how

self-training works is available in Algorithm 2.

Algorithm 2 Self-training

Input:
Labeled data 𝐿 ← {(𝑥, 𝑦) ∈ 𝐿}
Unlabeled data 𝑈 ← {𝑥 ∈ 𝑈}
threshold 𝑡 ∈ (0, 1)

Output: Trained models𝑚
repeat

Train model𝑚 on 𝐿
for 𝑥 ∈ 𝑈 do

if max𝑖 [𝑚(𝑥)]𝑖 > 𝑡 then̂𝑦 = argmax𝑖 [𝑚(𝑥)]𝑖𝐿 ← 𝐿 ∪ {(𝑥, ̂𝑦)}
until 𝐿 stops increasing
While this self-training approach is easy to understand and quite straightfor-

ward, studies have shown it did not perform very well, for example on the sentiment

classification task [6]. The main drawback of this method is that once pseudo-labels

are integrated into 𝐿, the set of labeled samples, then the model cannot correct such
labels at any point in time. This means that if, at some point, the model has as-

signed an incorrect pseudo-label with a confidence higher than threshold 𝑡, then it
will have to deal with it until the end of the process. This can lead to a model com-

pletely shifting from the original objective, as it will learn of top of wrong labels, and

things will get worse as the process goes on. To overcome this issue, variants like co-

training [16] and tri-training [167] were introduced. We will develop those methods

in the next paragraphs.
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Co-training In co-training [16], two models are jointly used. In traditional self-

training, the model learns from its own predictions in an interactive manner. In co-

training, twomodels are trained, each one on half of the labeled data (those data sets

do not intersect). Then, each model computes its predictions on the unlabeled data.

Pseudo-labels are retained if and only if one of the model is confident for this pre-

diction, and the other one is not. Then, those pseudo-labels are added to the labeled

dataset of the other model. This co-training algorithm is detailed in Algorithm 3

Algorithm 3 Co-training

Input:
Labeled data 𝐿 = {(𝑥, 𝑦) ∈ 𝐿1 ∪ 𝐿2} with𝐿1 ∩ 𝐿2 = ∅
Unlabeled data 𝑈 = {𝑥 ∈ 𝑈}
threshold 𝑡 ∈ (0, 1)

Output: Trained models𝑚1, 𝑚2
repeat

Train model𝑚1 on 𝐿1
Train model𝑚2 on 𝐿2
for 𝑥 ∈ 𝑈 do

if max𝑖 [𝑚1(𝑥)]𝑖 > 𝑡 andmax𝑖 [𝑚2(𝑥)]𝑖 < 𝑡 then̂𝑦1 ← argmax𝑖 [𝑚1(𝑥)]𝑖𝐿2 ← 𝐿2 ∪ {(𝑥, ̂𝑦1)}
else if max𝑖 [𝑚1(𝑥)]𝑖 < 𝑡 andmax𝑖 [𝑚2(𝑥)]𝑖 > 𝑡 then̂𝑦2 ← argmax𝑖 [𝑚2(𝑥)]𝑖𝐿1 ← 𝐿1 ∪ {(𝑥, ̂𝑦2)}
else

skip 𝑥
until 𝐿1 and 𝐿2 stop increasing
By using this mechanism of two models with separate training sets, model 𝑚1

is not trained on top of its own predictions, but on predictions for which it is not

confident and the other model (𝑚2) is. Co-training has been extended to democratic
co-training [169], where multiple models are trained in parallel. In this extension,

pseudo-labels are integrated in the training data only if amajority ofmodels agree on

the pseudo-label. The goal here is to use models which are the most complementary

to each other.

Tri-training As its name suggest, tri-training [167] uses three different models.

Additionally, to create diversity, eachmodel𝑚𝑗 is trained on a subset 𝑆𝑗 of the labeled
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data. The idea is the same as in co-training: the three models must be as diverse as

possible, in order to infer treat data in different ways. The procedure of tri-training

is described in Algorithm 4. After models are first trained once on their respective

samples, pseudo-labels are added to the training set of a given model if and only if

the two other models agree on such pseudo-labels. Like other procedures described

earlier, this process stops when models stop evolving. In the end, we are left with

3 trained models. To make a prediction for a new data point, we predict its label

according to the 3 different models, and a majority vote is operated to derive the

final prediction. Unlike co-training, tri-training does not rely on a threshold 𝑡 to
decide whether a pseudo-label should be considered. This is a nice improvement as

having to find the correct values of hyper-parameters is hard, especially when the

amount of labeled data is scarce.

Algorithm 4 Tri-training

Input:
Labeled data 𝐿 ← {(𝑥, 𝑦) ∈ 𝐿}
Unlabeled data 𝑈 ← {𝑥 ∈ 𝑈}

Output: Trained models𝑚1, 𝑚2
for 𝑗 ∈ J1, 3K do

Sample 𝑆𝑗 from 𝐿
Train model𝑚𝑗 on 𝑆𝑗

repeat
for 𝑗 ∈ J1, 3K do𝐿𝑗 ← ∅

for 𝑥 ∈ 𝑈 do
if argmax𝑖 [𝑚𝑘(𝑥)]𝑖 = argmax𝑖 [𝑚𝑙(𝑥)]𝑖 (𝑘, 𝑙 ≠ 𝑗) then̂𝑦 ← argmax𝑖 [𝑚𝑘(𝑥)]𝑖𝐿𝑗 ← 𝐿𝑗 ∪ {(𝑥, argmax𝑖 [𝑚𝑘(𝑥)]𝑖)}

Train model𝑚𝑗 on 𝐿 ∪ 𝐿𝑗
until none of the pseudo-labeled sets {𝐿𝑗 | 𝑗 ∈ J1, 3K} change
Tri-training was introduced in 2005, a long time ago in the field of Computer

Science. Still, recent studies [120] have shown that it still remains a very strong

baseline in the semi-supervised learning domain. This strong baseline was further

extended in many forms: adding model disagreement [105] for part-of-speech tag-

ging, asymmetric tri-training [122] for unsupervised domain adaptation, or adapting

tri-training to the multi-task case [120].
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noise, making it more robust to changes in the input sentences. In the few-shot sce-

nario, as the knowledge from labeled data point is highly limited, using methods to

increase themodel’s robustness is of paramount importance. Indeed, the smaller the

amount of labeled data, the more prone the model will be to overfit. As this frame-

work is not model-specific, authors of this semi-supervised method experimented

on both text and image classification tasks, leading to very good results on both. For

the text classification tasks, authors have experimented with two different data aug-

mentation techniques: Back-translation and Word replacing. We will further detail

the different existing data augmentation techniques in Section 2.4.4.

2.4.4 Data Augmentation Techniques

Data augmentation has recently seen a surging interest in theNLP domain. With the

increasing easiness to use off-the-shelf pretrained models (highly due to the Hug-

gingFace [146] python library), more and more use cases for such models are ex-

plored on a daily basis. However, many of those tasks face the problem of acquiring

a significant labeled dataset. In such scenarios, data augmentation can have a huge

impact, as it improves performances of models [128]. Recent surveys [44, 10] ex-

posed the various data augmentation approaches specific to the NLP domain. An

overview of the taxonomy of such data augmentation methods, directly taken from

one of those surveys, is displayed in Figure 2.16. In this hierarchical grouping, we

separate data augmentationmethods in twomain categories: feature space and data

space methods. Methods operating in the feature space aim at transforming the fea-

ture representation of data. In [73], the authors add random multiplicative and ad-

ditive noise to the hidden space of the transformer. By artificially adding small per-

turbations to the hidden representation of a given data point, the authors train the

model at making abstraction of such small noise. Instead of operating at the feature

level, another family of data augmentation method aim at adding perturbations in

the data space. Such methods range operating at the document level, and up to the

most fine-grained level (character level). Several approaches [43, 11] to character-

level apply operation like randomly swapping letters, complete randomization of a

word, or even character insertion. Those operations were also applied to token-level
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Method Sentence

- I have lost my password
SR I have forgot my identification
RI I have identification lost my password
RS Have lost my I password
RD I lost my password

Table 2.2: Example of data augmented sentence using EDA operations

Random Swap (RS) Two random words from the sentence exchange positions.

RandomDeletion (RD) Eachword is the sentence is randomly removed, accord-

ing to a probability 𝑝.
We generated examples of sentences derived from the EDAmethods in Table 2.2.

All in all, methods performed by EDA are aimed to be complementary to each other.

Random swaps completely changes the order of words in a sentence, often resulting

in a sentence which is not grammatically correct. Adding synonyms using SR or RI

also enrich the dataset, as it adds newwords whichmight not be present in the train-

ing data. Last but not least, random deletion also changes the structure of a given

sentence, and often yields a non-correct sentence. One of themany strengths of EDA

is the ability to control the amount of perturbation applied to a given sentence. In-

deed, if one want more perturbations, one can increase the amount of tokens which

are replaced by their synonyms, or increase the amount of random swaps. Increas-

ing the amount of perturbation directly increases the difficulty of the task, because

more perturbed augmentation are more distance to original sentences. In practice,

this control mechanism is important, as the amount of perturbation we want to in-

troduce in order to benefit themost out of data augmentation can vary from one task

to another.

In the original paper, EDA has shown great results on 6 different text classifi-

cation tasks. Results are more impressive the lower the amount of training data, as

those are situationswheremanywords important to a given classification taskmight

not have their synonyms present in the training set. As this training set increases in

size, one could argue that the chances of having synonyms present in other train-

ing samples increases. Further research [144] have successfully applied EDA in a

curriculum learning [12], where the difficulty of the classification task artificially
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increases through time. In this research, authors voluntarily increase the difficulty

of the task by increasing the amount of perturbed tokens in the data augmentation

step, showing great results in the few-shot learning scenario.

In the following section, we will introduce all the datasets we will experiment

with in this thesis.

2.5 Datasets

In this section, we will describe the different datasets we will use in all our exper-

iments. Since the experiments presented in this thesis may differ depending on

the relevance of each datasets or their availability at the time of the experiment, I

decided to regroup their presentation in this preliminaries for practical reasons and

for the sake of a single point of reference about datasets for the reader.

All datasets are in English. First, we will introduce datasets which are about

the general task of text classification. Then, we will describe the intent detection

datasets, which is the task we are the most interested in. We summarize the main

statistics of the different datasets in Table 2.4.

2.5.1 Text Classification

Text classification is the task of classifying texts into categories. Given a piece of text,

the goal is to put the correct label on it. The task of text classification is very large, and

can take many shapes: detecting fake news [18], finding the sentiment in tweets [2],

or detecting abusive language [104]. Each of those sub-tasks have in common the

fact that they belong to the text classification category, and somemodel architectures

might be suited for many of those sub-tasks. However, it is not always granted: if a

model performswell on the sentiment analysis task, it is not certain that suchmodel,

trained on another text classification task, will perform well. We therefore usually

include in our intent detection experiments some limit-testing scenarios with text

classification, for which texts are usually much longer yet with fewer issues (less

issues, out of vocabulary words, no emojis, etc.). We introduce in what follows the

text classification datasets we used in our experiments.
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+

1⭐ 2⭐ 3⭐ 4⭐ 5⭐

Task #1 -
+Task #2 -
+Task #3 -

Figure 2.18: ARSCMeta-learning task construction. The (3+) vs (2-) task is missing,
as in [158].

2.5.1.1 ARSC

The Amazon Review Sentiment Classification (ARSC) dataset [15], as its name sug-

gest, is a sentiment classification dataset. It was created using reviews of product on

the Amazon website. Each review consists of a rating (from 1 to 5 stars), a review

text, a product type, and some additionalmetadata – whichwewill not use. This raw

dataset has been organised for the meta-learning task by multiple authors [158, 49].

In their work, authors consider 23 different product types, fromMusical Instruments

to Electronics. For each product type, they create three binary classification tasks,

each one having a different threshold on the rating. More precisely, each task has a

fixed threshold 𝑡, and consists in telling whether a given review text is positive (rat-

ing ≥ 𝑡) or negative (rating < 𝑡). The three thresholds considered for the three tasks
are 𝑡 ∈ (2, 4, 5). With 23 product types and 3 threshold values, this yields 23×3 = 69
binary classification tasks to work with. To avoid any overlap between training and

testing tasks, training and testing data are separated domain-wise. That is, the test-

ing tasks consists of 12 = 3 × 4 binary classification tasks from 4 domains: Books,

DVD, Electronics, Kitchen. By doing so, authors ensure there are no text reviews

which belong to both training and testing tasks. More importantly, it comes close

to the real-life scenario, where new domains are added and not much reviews are

available to train a model on.

2.5.1.2 R8

R8 is a news articles dataset, and a subset of the more famous Reuters-21578 [81]

dataset. It was originally collected and labeled by Carnegie Group, Inc. and Reuters,



Chapter 2. Background 46 of 153

Class # Samples Examples

earn 3915 mercantile stores co inc th qtr shr dlrs vs dlrs

acq 2285 ibc acquisition gets shares in tender to buy pct

crude 366 marathon to raise crude prices cts bbl tomorrow wti to dlrs

trade 312
volcker says more stimulus abroad needed for adjustments
in trade balances

money-fx 278 bank of france buys dollars at paris fixing dealers

interest 247 royal bank of canada lowers prime rate to pct down

money-supply 141 u k september m rises pct m up pct bank of england

ship 141
pentagon says u s warships begin escorting gulf tanker convoy
south from kuwait

Table 2.3: Classes of the R8 Dataset, with some examples.

Ltd. FromReuters-21578 toR8, only the 8most common classes are retained. Details

about the class repartition as well as some examples are showcased in Table 2.3.

Following thework of previous authors [165, 156] on the subject, wewill experiment

using only those 8 most common classes. This process ensures that we have enough

samples per class, and still yields an imbalanced dataset, as the most (resp. least)

represented class contains 3,915 (resp. 141) samples. As we are following the meta-

learning framework, we will split those 8 classes into train (3), validation (2), and

test classes (3) in our experiments.

2.5.2 Intent Detection

Now, we will introduce the intent detection datasets we will use in the different ex-

periments. We consider the DialoGLUE benchmark [97], a set of natural language

understanding benchmark for task-oriented dialogue, which contains three datasets

for intent detection: Banking77, HWU64 and Clinc150 – the three datasets were al-

ready available prior the release of DialoGLUE. We also consider a private dataset,

which contains utterances fromMeetic users when they talk to Lara, the dating chat-

bot.
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2.5.2.1 Lara

Lara is the dating chatbot of Meetic. She talks to thousands of users on a daily basis:

she provides dating tips, recommends profiles based on user criteria, helps users in

their dating journey, and much more. Users interact with Lara by written language

and not by voice. This can lead to a lot of typos as users type on their phone or

computer’s keyboards. Lara is available in multiple european countries, hence we

have data in multiple languages. However, for the sake of comparison with state-of-

the-art methods that are usually only based on English, we only use the English part

of the dataset in our experiments. Over the years, we have collected a large dataset of

conversations between users and Lara, which we have partially labeled. As of now,

there are more than 300 classes in the Lara dataset. However, a lot of classes contain

really small amounts of labeled data. In the experiments, we only retain the classes

which contain more than 20 samples per class. This filtering still yields 96 classes to

work with.

While some of this data come from raw user queries that we have manually an-

notated, this process has flaws. Indeed, if we want to add a new class corresponding

to the question “What’s the weather like today?”, but no users have asked this ques-

tion in the past, then we cannot just rely on past conversations to acquire annotated

data. To overcome this issue, we also collected data from amazon mechanical turk,

where we asked worker to reformulate some sentences with their own words. After

acquiring such reformulations, we manually annotated them in order to verify that

turkers 8 effectively reformulated the sentences they were prompted. As such, the

dataset is composed of both real users queries, and reformulations frommechanical

turk.

2.5.2.2 Snips

Snips [31] is a very popular intent detection dataset, and has been widely used in

many research experiments [51, 25, 55]. Aside from the intent detection part, this

dataset also contains slots to perform the task of slot filling. However, this related

task is outside of the scope of this thesis, as we will only focus on the intent de-

tection part. The dataset contains 7 different voice commands, like PlayMusic, or

8Turkers is the name given to Amazon Mechanical Turk workers
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GetWeather. One particularity of this dataset is that it is very large with respect to

the number of classes it contains: on average, there are about 2,000 samples per class.

While this is not usually the case in practice, this dataset is still interesting to use, as

its nature fit the real life scenario of popular voice command-based devices.

The low (7) number of classes of snips make it hard to use in a meta-learning

framework. In such framework, train, validation, and test classes are disjoint.

Hence, we will not be able to perform 5-way classification for example, as it would

imply having at least 5 classes in each split. Still, we will experiment with this

dataset in a C-way scenario, with C being small.

2.5.2.3 Clinc

TheClinc [76] dataset – or sometimes namedOOSdataset – is a large intent detection

dataset. It was artificially created for the out-of-scope prediction task. In a real life

scenario, users do not always ask for things that task-oriented bots were designed for.

For those specific cases where user queries are considered out-of-scope, it would

be nice if the model would directly recognise the query as out-of-scope. To do so,

authors introduce this novel out-of-scope prediction dataset. It is composed of 150

classes, each having 150 samples to work with. An additional class – the out-of-scope

class– is also introduced. It containsmany sentences (1,200) which do not fit the 150

other classes.

In this thesis, we are not particularly interested in the out-of-scope prediction,

but more on the core intent detection task. Still, this dataset is interesting, as its

large number of classes increase the difficulty of having a well separated embedding

space. To adapt this dataset to our needs, we discard the out-of-scope class, and only

keep the 150 other labeled classes to work with, as in other previous studies [97].

2.5.2.4 HWU64

HWU64 [151] classifies 25, 716 user utterances into 64 intents. It features intents
spanning across 21 domains (alarm, audio, audiobook, calendar, cooking, datetime,

…). When separating training, validation, and test labels, we ensure each domain

is represented only in one set of labels. This prevents the model from learning do-

main classification instead of intent classification. Additionally, as intents in a single
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domain are closer to each other, it makes the task a little bit harder.

2.5.2.5 BANKING77

BANKING77 [21] is a single-domain intent detection dataset. It is quite recent, as it

was released in 2020. This dataset is composed of 77 different intents, which, com-

pared to some other previously introduced datasets, makes it challenging. Having

this much different intents better reflect the real-life scenario. Compared to HWU64

and Clinc150 which spanmultiple domains, this dataset is about one single domain:

banking. Having 77 different intents in a single domain makes the task particularly

hard, as intents are very fine-grained.

2.5.2.6 Liu

Introduced in [151], this intent detection dataset consists of 54 classes. It was col-
lected on the Amazon Mechanical Turk platform, where workers were given an in-

tent and had to formulate queries for this intent with their own words. Hence, this

datasetwas artificially created, as annotatorswere given instructions and formulated

queries themselves. It is highly imbalanced: the most common class (query) holds5, 920 samples while the least common one (volume_other) 24 samples.
2.6 Conclusion

In this chapter, we introduced the background knowledge required to capture the

line of research explored in this thesis. First, we introduced the different methods

to embed pieces of text into machine-readable vectors. From one-hot encodings

to language models like transformers, we showcased how embedding techniques

evolved in the past few years. Those embedding methods evolve quickly, and the

best method today might be obsolete a few months from now. Still, by doing a his-

torical review of the various methods, I hope it helps the reader capture where the

works of this thesis are situated in NLP research. We also introduced the task that

we attempt to solve in this thesis, intent detection. Additionally, we detailed the

different methods of previous research to deal with Few-Shot Learning, a problem

which is becoming more and more important as the number of use cases which can
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Dataset Task Public? #sentences #classes #sentences/class #tokens/sentence

Snips ID ✓ 14, 484 7 2, 069±21 9.0±3.2
Clinc ID ✓ 23, 700 150 157±85 8.5±3.3
Liu ID ✓ 25, 478 54 472±823 7.5±3.4

BANKING77 ID ✓ 13, 083 77 170±33 11.7±7.6
HWU64 ID ✓ 11, 036 64 172.4±40.1 6.6±2.9
Lara ID ✗ 8, 142 96 84.8±123 5.2±3.6
R8 TC ✓ 7, 685 8 961±1, 303 102±117

ARSC SA ✓ 137, 928 27 × 3 × 2 999±1, 468 99±115
Table 2.4: Classification datasets we will use in our experiments. ID stands for Intent Detection, and TC stands for Text Clas-
sification, SA stands for Sentiment Analysis. For ARSC, the number of classes corresponds to 27 (product types) × 3 (rating
thresholds) × 2 (binary classification).
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be answered bymachine learning increase. Finally, we presented the different intent

detection datasets that we will use in the various experiments of this thesis.



Chapter 3

Few-Shot Text Classification

Reality Check

This chapter is based on the following publication [37]

Thomas Dopierre, Christophe Gravier, Wilfried Logerais. “A Neural Few-Shot

Text Classification Reality Check”. In Proceedings of the 16th Conference of the

European Chapter of the Association for Computational Linguistics (EACL2021),

pages 935–943, 2021.

3.1 Introduction

Text classification often requires a large number of mappings between texts and

target classes. It is therefore challenging to build few-shot text classification mod-

els [49]. With the recent advances of transformer-based models [33, 146] along with

their fine-tuning techniques [131], text classification has significantly improved.

As discussed in Section 3.3, few-shot methods based on these extracted text rep-

resentations have been historically made of semi-supervision, especially thanks to

pseudo-labeling [16, 99, 167], which aims at propagating known labels to unlabeled

data points in the representational space. Such methods depend on the number of

collected unlabeled data, which can also be costly to obtain [23], and also suffer

from the infamous pipeline effect in NLP [135], as cascade processing tends to make

errors accumulate. In order to address the hindrance of collecting unlabeled data,

52 of 153
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modern approaches include unsupervised data augmentation techniques [150].

It consists of generating samples through well-established text augmentation

techniques in Neural Machine Translation, such as back-translation [124, 40], and

then use a consistency loss, training the classifier to assign the same prediction

to all variations of the same sample text. While collecting new pseudo-labels can

therefore be overcome by manipulating the dataset (especially using data augmen-

tation techniques), the pipeline error accumulation effect instead calls for new

neural architectures supporting scarcity of labeled data in an end-to-end fashion.

Such end-to-end few-shot neural architectures for few-shot classification were

discovered in image processing – it includes Matching Networks [139], Prototypical

Networks [129] plus a follow-up known as Prototypical Networks++ [117], and

Relation Networks [133]. Ultimately Induction Networks [49] is a meta-learning

based method dedicated to few-shot text classification, supposedly the state-of-the-

art. Nonetheless, it is important to stress that most of these neural architectures

were originally devised to integrate image feature extractors. Despite both text

and image relying on features extractors, a paragraph or sentence of few words

hardly convey as much information as a full-fledged three-canals 600 × 400 image
(720, 000 numerical values intrinsically). It is therefore of the utmost practical

interest to validate and compare if what works best for end-to-end few-shot image

classification is the same for end-to-end few-shot text classification. Moreover,

when applying these end-to-end few-shot models to text, two main system com-

ponents are into action: the text feature extractor itself and the downstream part

of the neural network that provides a learning strategy over few shots. If we want

to compare these systems, we need to plug the same feature extractor (hopefully

the best one, that is transformer-based currently) into each end-to-end model. For

the time being, the literature on end-to-end few-shot text classification compare

aforementioned techniques using a different text extractor for each system, which is

the one available when the technique was discovered – these text encoding varying

greatly (Section 3.2). From that point-of-view, it is hardly possible to conclude if

the improvement over time in few-shot text classification is due to new end-to-end

few-shot learning techniques or plainly to the significant advances made by text

feature extractors that is included in this end-to-end learning scheme. The same

applies to vectors metrics: onemethod can use the cosine and another the euclidean
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distance, and that choice alone can impact conclusions made on the method being

the state-of-the-art, although it could well rely only on the metric at work.

With respect to these understudied factors for few-shot learning, our first contri-

bution described in this chapter are summarized as follows:

• We study the impact of fine-tuning a transformer language model on the in-

tent detection datasets in an unsupervised fashion (using masked language

modeling) before training the few-shot classification task,

• We revise different end-to-end neural architectures for few-shot text classifi-

cation using the same transformer-based feature extractor and we empirically

demonstrate thatmost of the recent advances usable for intent detectionmeta-

learning is based on text encoders improvements and hardly from new neural

meta-learning architectures themselves,

• We investigate how these re-implemented state-of-the-art solutions compete

with very simple baselines found to be yet very competitive for few-shot clas-

sification in the field of image-processing,

• We introduce an evaluation framework based on a number of intent detection

datasets which is significantly bigger than what is usually used as evaluation

in seminal papers transposing each of these architectures from image to text

classification,

• The entire framework used in this paper, including all the re-implemented

methods plugged with up-to-date transformers, is provided as an open-source

repository for further research.

In a nutshell, we will demonstrate that providing a transformer-based encoder

to a previously obsolete few-shot technique makes it the state-of-the-art again, that

standard baselines are surprisingly strong, and that Induction Networks, while per-

formingwell for binary sentiment classification, struggles to perform correctly in the

most common setups of few-shot text classification.
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3.2 Various sentence encoders

In previous works comparing few-shot text classification methods, sentence en-

coders were not always the same. This is a side effect of text encoding methods

evolving rapidly in the last few years. While some research works [158] use a

convolutional neural network on top of word embeddings, induction networks [49]

use a Bi-LSTM instead. Those differences make the results hard to compare since

they do not use the same method to convert sentences into vectors. Moreover, such

encoders have become quite obsolete with the arrival of the transformers [137, 33]

era, beating the state-of-the-art in most NLP tasks. In our experiments, in order to

reduce the encoder method selection bias, and since it is now the state-of-the-art in

many applications, we use a BERT [33] encoder, using models from the Hugging

Face [146] team.

While BERT can be used as-is, further fine-tuning the language model on a task

domain can greatly improve performances on the downstream task. This has been

shown in Definition Classification [62], where the model is trained to tell whether

a given sentence contains a definition or not. While this additional fine-tuning step

had a positive impact for this task, it cannot be automatically generalised and we

cannot conclude that it would be beneficial for any NLP task. To validate or invali-

date this hypothesis, we tried to evaluate the quality of embeddings when using an

off-the-shelf BERT model versus using a model which we have further fine-tuned

on our custom domain.

3.2.1 Language Model Fine-tuning details

As a starting point for our transformer, we pick an off-the-shelf bert-base-cased

model1. A large corpus of English datawas used to train thismodel. Two taskswhich

do not require having the data labeledwere considered: Masked LanguageModeling

(MLM) and Next Sentence Prediction (NSP). In the former, the model must learn to

recover masked words (15% of the total sentence) in a given sentence. To recover

such words, the model must rely on the context, in the form of other words which

have not been masked. In the latter tasks, NSP, the model is given two sentences

1https://huggingface.co/bert-base-cased
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which are concatenated together. The model then has to predict whether those sen-

tences were following each other in the original text or not.

To improve the quality of our sentence embeddings, we want to fine-tune this

language model on our intent datasets, which are custom domains. Each sample

of an intent detection dataset is composed of one sentence (the user query), and

one label (the associated intent). When fine-tuning the language model, we must

only use sentences, and we must not use labels (intents), as it would be cheating the

downstream few-shot classification problem. Additionally, we cannot consider the

NSP task, as each sample is only composed of one sentence, and not a piece of text

like a paragraph. Hence, we will fine-tune the language model on the MLM task.

We repeat this training process for each dataset, yielding one language model

per dataset. For each dataset, the data is first split into training and evaluation sets.

Samples are uniformly distributed among the two sets, no matter the label. The

learning rate is first set to 5𝑒−5, and linearly decreases during training. Every epoch,
the model is evaluated using the evaluation set. We retain the checkpoint for which

the evaluation loss is the lowest. The various intent detection datasets that we use

(introduced in Section 2.5) are quite small compared to the large amounts of data that

the transformer was initially trained on. As such, this custom domain fine-tuning is

quite fast: we are able to run 20 epochs in under an hour for almost all the datasets.

ARSC, the sentiment classification dataset, contains many samples, and took a lot

more time (about 5 days). All those training have been performed on a single Nvidia

GPU, either GTX 1080 Ti’s or Titan RTXs2.

3.2.2 Evaluating embedding quality

In order to decide which embedding model to use for the different few-shot clas-

sification models, we first have to evaluate them. To do so, for each embedding

model we consider, wemeasured the silhouette score3 of the datasets’ provided their

ground truth labels. The silhouette score is a clustering evaluation method repre-

senting how correct is each point’s assignment. For a given data point 𝑖 assigned
to cluster 𝐶𝑖, the method first computes a cohesion score 𝑎𝑖 (Equation 3.1), and a
separation score 𝑏𝑖 (Equation 3.2), and combines them in to a silhouette score 𝑠𝑖

2https://www.nvidia.com/fr-fr/deep-learning-ai/products/titan-rtx/
3https://en.wikipedia.org/wiki/Silhouette_(clustering)
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(Equation 3.3)

𝑎𝑖 = 1|𝐶𝑖| − 1 ∑𝑗∈𝐶𝑖 ,𝑖≠𝑗 𝑑(𝑖, 𝑗) (3.1)

𝑏𝑖 = min𝑘≠𝑖 1|𝐶𝑘| ∑𝑗∈𝐶𝑘
𝑑(𝑖, 𝑗) (3.2)

𝑠𝑖 = { 𝑏𝑖 − 𝑎𝑖
max {𝑎𝑖, 𝑏𝑖} if |𝐶𝑖| > 1
0 otherwise

(3.3)

In order to compare the transformers’ ability to separate classes using no su-

pervision, we compare their embeddings with embeddings derived from FastText4.

Such embeddings rely on exploiting sub-word knowledge, and the embedding of

a word is obtained by averaging the embeddings of its sub-words. Then, words

embeddings are averaged into sentence embeddings. We use the available pre-

trained model for English, which is publicly available5. In Figure 3.1, we display

the 2-dimensional representations of both Clinc and Snips datasets, obtained

by performing a T-SNE [91] transformation on embeddings derived from three

models: FastText, bert-base-cased and our fine-tunedmodel, bert-fine-tuned.

Interestingly, when comparing the two pre-trained off-the-shelf models, Fast-

Text appears to be going a better job at embedding our intent detection datasets

than bert-base-cased. This visual hint is confirmed by the silhouette score,

being better using FastText, especially on the Snips dataset. When using our

bert-fine-tuned model, this gap is more than compensated, as the silhouette

score is higher than the two other models. Visually, it is particularly impressive on

the snips dataset, where labels become very separated.

To visualize the impact of fine-tuning language models on our custom domains,

we asks suchmodels to perform the masked language modeling task on a few exam-

ples, displayed in Table 3.1. In this table, some sentences are written with a masked

token. Then, the different models, which have been fine-tuned on the correspond-

ing domains, were applied to predict the missing word under the mask, so we can

4https://fasttext.cc/
5https://fasttext.cc/docs/en/crawl-vectors.html
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bert-base-cased +BANKING77 +Clinc +HWU64

(1)“I want you to skip this [MASK].”

0.085 one 0.837 transaction 0.498 next 0.613 song
0.084 part 0.054 transfer 0.260 song 0.145 event
0.053 meeting 0.030 payment 0.059 slow 0.096 one
0.032 time 0.009 meal 0.040 play 0.019 music
0.027 thing 0.007 morning 0.027 current 0.014 alarm

(2)“Can you increase the [MASK] please?”

0.333 volume 0.131 currency 0.998 volume 0.431 volume
0.136 speed 0.099 charge 0.001 speed 0.344 lights
0.023 power 0.091 exchange 0.000 sound 0.164 light
0.020 pressure 0.089 fee 0.000 oven 0.029 brightness
0.016 number 0.086 rate 0.000 lights 0.023 lighting

(3)“List my [MASK] details”

0.297 contact 0.514 identity 0.821 insurance 0.226 contact
0.120 personal 0.258 personal 0.059 income 0.211 party
0.027 family 0.055 identification 0.019 location 0.147 job
0.026 career 0.030 address 0.011 health 0.112 calendar
0.017 biographical 0.026 account 0.010 bank 0.022 meeting

Table 3.1: Examples ofmaskedwords filled by our fine-tuned languagemodels. Each
column corresponds to a language model. The first one is the bert-base-cased

pre-trained model. The 3 others corresponds to language models which have been
fined tune on the 3 respective datasets. For each model, we output the 5 most likely
tokens, along with their probability.

see the impact of the custom domains on the predictions. In all the three exam-

ples, from “transaction” to “currency”, the BANKING77 models often fits banking-

related words in the mask spot. For the other two datasets, audio and music-related

tokens like “song” and “volume” often come up. This lexical field is very present in

those two datasets, as they contain labels such as “volume_up”, “volume_down” or

“play_music”. Additionally, we also see the term “insurance” chosen by the Clinc

model in the third example. This is directly due to the presence of both “insur-

ance” and “insurance_change” labels in this dataset. While fine-tuning the language

model on each dataset was very fast (about 1 hour per dataset on a single GPU, on

average), those examples illustrate how well language models have adapted to those

custom domains.

Now that we have introduced those fine-tuned language models, we will now

focus on the few-shot learning methods which we will plug on top of those models.



Chapter 3. Few-Shot Text Classification Reality Check 60 of 153

The central part of our experiments will be about comparing these methods when

they are equipped with the same transformer-based text encoder. These few-shot

learning methods have been detailed in Section 3.3. In the next section, we will

introduce a baseline and then very briefly remind the end-to-end few-shot learning

methods we will experiment on in this chapter.

3.3 Few-Shot Methods

In our experiments, we will compare a wide variety of few-shot learning methods,

on the text and intent classification tasks. As discussed earlier, meta-learning can

be seen as learning to learn. Given a set of training tasks, we want to learn a model

which is able to look at data in a certain way so that it will be able to perform well

on a set of testing tasks, which will be different. In this whole process, what we are

trying to fine-tune is the text encoder. While somemethods (Relation and Induction

networks) introduce additional learnable parameters, some others (Matching and

Prototypical networks) only rely on the text encoder’s embedding capacity.

In this section, we introduce two classifier baselines to solve the few-shot in-

tent detection task. Additionally, will briefly remind the different few-shot learning

methods which we will experiment with. For more details on each method, please

refer to Section 2.4.2 of Chapter 2.

3.3.1 Classifier Methods as baselines

Few-shot learningmethods were introduced becausemost existing solutions for text

classification were too data hungry, and did not work when the amount of labeled

data was too limited. However, with the developments of the attention mechanism

and their generalisation with Transformers [137, 33], most tasks have seen a lot of

changes in their state-of-the-art methods. This huge change in the way we look at

text, and the great improvements shown by having a lot of pre-trainingmakes us ask

ourselves how does a regular classifier perform when it is added on top of a state-

of-the-art transformer-based encoder. We will quickly describe a regular classifier

(called Baseline) and a variant of it (Baseline++) with which we will experiment
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3.3.2 Few-Shot Learning approaches

In this section, we briefly recap each of the few-shot learning method we consider.

We will describe them in chronological order, which is also the complexity order

(in terms of number of parameters). While this section acts as a quick reminder,

please note that the details about the origin and operation of each of these approach

is detailed in preliminaries Chapter, at Section 2.4.1 (p. 25).

Matching Network [139] This model computes the distances between support

and query points. The prediction is class with the lowest average cosine distance.

Prototypical Networks [129] For each class, a prototype is constructed as the

average embedding of all points of this class. Then, the predicted class is the one

closest prototype, in terms of euclidean distance.

Relation Network [133] This method uses the same prototype mechanism in-

troduced before. Then, query points are compared to prototypes using a learnable

Relation Module. We consider two types of relation modules: a shallow neural net-

work one, and the Neural Tensor Layer [130].

Induction Network [49] Induction networks follow the same idea of relation

networks, as they use the same relation module to compare prototypes to query

points. However, they change the way prototypes are computed: they are now ob-

tained through a dynamic routing algorithm, a capsule network mechanism intro-

duced by an older research study [121].

3.4 Experimental Setup

3.4.1 Few-Shot Evaluation Setup

Introduced by [139], few-shot classification corresponds to the case when a classi-

fier must adapt to new classes, denoted here as 𝒞𝑡𝑒𝑠𝑡, unseen during training, and
only given a few labeled examples of these new classes. To this end, the approaches
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assume that during training, a task-significant set of classes noted 𝒞𝑡𝑟𝑎𝑖𝑛 is avail-
able, alongwith an accordingly task-significant number of labeled data for each class𝑐𝑡𝑟𝑎𝑖𝑛𝑖 ∈ 𝒞𝑡𝑟𝑎𝑖𝑛. For each training episode, 𝐶 classes are sampled from 𝒞𝑡𝑟𝑎𝑖𝑛, 𝐶 ≪|𝒞𝑡𝑟𝑎𝑖𝑛|. Then, 𝐾 support examples and 𝑄 query examples are randomly drawn for

each of these classes. The model is then iteratively trained using both query and

support points.

At testing time, the same sampling strategy is made, this time drawing classes

among 𝒞𝑡𝑒𝑠𝑡, with 𝒞𝑡𝑒𝑠𝑡 ∩ 𝒞𝑡𝑟𝑎𝑖𝑛 = ∅. The model is then evaluated on its ability to
predict labels for the 𝑄 query samples, using the 𝐾 support samples (unless other-

wise stated, 𝐶, 𝑄, and 𝐾 values are the same at both testing and training time).

This training procedure is called𝐶-way𝐾-shot classification. Following previous
works on the subject [129, 49], we use 𝐾 = 𝑄 = 5 in our experiments. On the Lara
dataset, we run additional experiments using 𝐾 = 5, to compare models when they
are given only one sample per class. Concerning the value of 𝐶, it is fixed to 2 for
ARSC, as this dataset is already composed of binary classification tasks. Regarding

the intent detection datasets we introduce later (Section 5.4.1), in order to see the

shift between ARSC binary tasks and the more common 5-way evaluation [49, 117],
we measured performances of the different models with 𝐶 ranging from 2 to 5.
Datasets We briefly expose here the different datasets which will be used in the

experiments of this chapter. For more information about the characteristics of each

dataset, refer to Section 2.5. We first conduct experiments on the ARSC dataset (Ta-

ble 3.2). For this particular dataset, there are twelve evaluation tasks, and each of

these tasks comes with a number of support test samples (𝐾 = 𝑄 = 5 as stated pre-
viously). Nonetheless, in [158] the same 5 samples per testing class are fixed for all
experiments6, which leads to a significant selection bias towards these 5 randomly
selected samples used throughout the evaluation. In order to get more consistent

results, we ran additional experimental runs, each of them selecting randomly new

support samples. In Table 3.2, exposing the results on ARSC, this corresponds to the

last column (BERT + Sample shots). We also conduct experiments on three pub-

lic intent detection datasets: Liu, Clinc, and TREC28. We conduct a final round of

experiment on the Lara dataset.

6See labeled sampled in https://github.com/Gorov/DiverseFewShot_Amazon
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3.5 Observations

We report results for the ARSC dataset in Table 3.2, and results for the Intent Detec-

tion tasks in Table 3.4. We also ran experiments on the Lara dataset, and exposed

results in Table 3.5. We hereby provide our analysis of these results.

3.5.1 Baselines are surprisingly strong

Few-shot learning methods were originally used to overcome data scarcity. In those

situations, training a classifier on top of a small dataset – in our case, 5 samples per

class – can be hard. However, our experiments on ARSC show that the Baseline and

Baseline++, plain and simple classifiers, get surprisingly close to state-of-the-art re-

sults. Table 3.3 provides four correct and four incorrect classification examples for

the Baseline model. On the Lara dataset, when using 5 shots per class, the Base-

line++ also yields impressive results, with a 97.7% binary classification accuracy

(compared to 97.9% for Proto++).

While it fails to predict the correct text label for some shots, it is also able to cor-

rectly classify sentences such asWhat do I take home ? among the 50 test classes of
the Clinc dataset. On the ARSC dataset, it is also important to note that the Base-

line++ model is significantly better than the Baseline, and is even on par with all

other architectures, except Prototypical Networks. These great results confirm the

recent studies about GPT-3 [19], showing that very large language models succeeds

in learning from few shots. We attribute these capacities in our few shot intent detec-

tion task to the higher separability that a fine-tuned language model provides (Fig-

ure 3.1): the task becomes much simpler, hence boosting such baselines. Finally, on

the case of classifier baselines: note that for each testing episode, baselines are first

fine-tuned on the (very few) support samples of each episode. While most models

get a sense of the task they are trying to solve by iterating over training episodes,

they do not quite learn about the domain in which they are operating. By adding

this small fine-tuning step, baselines are capable of learning something on testing

domains, which gives them an advantage over their competitors.
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Configuration Mean binary accuracy

Model Metric Relation
module

Original
encoder † BERT as encoder (↗ or↘ w.r.t. original

encoder)

BERT +
Sample
shots

Matching Network
[139]

euclid. N/A − 81.2 82.9
cosine N/A 65.7 81.9 (↗) 83.3

Prototypical Network
[129]

euclid. N/A 68.2 80.0 (↗) 82.6
cosine N/A − 81.7 83.5

Proto++
[117]

euclid. N/A  82.4 84.0
cosine N/A  82.6 83.6

Relation Network
[133]

N/A base − 81.0 82.9
N/A ntl 83.1 81.7 (↘) 83.3

Induction Network
[49] N/A ntl 85.6 79.3 (↘) 80.3

Baseline N/A N/A  80.7 79.8

Baseline++
euclid. N/A − 81.9 82.2
cosine N/A  79.7 81.1

Table 3.2: Mean accuracy on the 12 ARSC binary classification test tasks. In column †, results are reproduced from the Induction
Networks seminal paper [49] (where applies), a dash (−) means that results for that encoder/metric pair were not reported, and
 denotes models only tested on computer vision tasks (first time applied to text in our contribution). The BERT column is our
implementation using the same 5 shots as the first column but using a BERT encoder for all methods. The last column is also
using BERT, but results are averaged over five runs, sampling different shots for each run. In the Configuration column, N/A
means that the configuration criteria does not apply to the model.
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Correct classification examples

S: Do I have enough in my boa account for a new pair of skis ?
P: balance

T: balance

S: What’s 15% of 68 ?
P: calculator

T: calculator

S: I need to know the nearest bank’s location.
P: directions

T: directions

S: What do I take home ?
P: income

T: income

Incorrect classification examples

S: On Tuesday you are supposed to have a meeting.
P: meeting_schedule

T: calendar

S: What are my insurance rewards ?
P: insurance

T: redeem_rewards

S: How much farther is Orlando from my location?
P: current_location

T: distance

S: Stop talking please.
P: change_speed

T: cancel

Table 3.3: Examples of Clinc query examples correctly and incorrectly predicted by
the Baseline method using 5 shots. 𝑆 (resp. 𝑃, 𝑇) is the sentence (resp. prediction
and true label).

3.5.2 Sample selection bias

The mean accuracy difference between the last and the second columns of Table 3.2

accounts for the difference of randomly selecting new support samples at each it-

eration (last column) as opposed to picking the same fixed pool of support samples

as done previously (second to last column). We can see that this difference alone
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is in the range of the increments brought by each model over time (baselines aside,

bringing from 1 point up to 2.6 points for Prototypical Networks). This significant
gap shows the importance of using evaluation tricks like cross-validation, instead of

evaluating only for one run over a fixed set of shots.

3.5.3 Impact of switching to transformers

One of the main contributions of this experiment is to compare few-shot learning

methods with the lowest bias possible. In our experiments, we reduce the bias by

equipping all methods with the same fine-tuned language model (see Section 3.2 for

more details). On the ARSC dataset, using transformers drastically changes the per-

formances of all methods. When feeding the same transformer-based encoder to all

few-shot methods, Prototypical Networks are now on top, whereas metric learning

approaches (Induction & Relation Networks) tend to struggle, almost reaching the

same performances as Matching Networks.

Such metric learning approaches rely on various weight matrices and parame-

ters, while more traditional approaches (Matching and Prototypical Networks) do

not use any additional parameter apart from the encoding step. This hints that the

upstream transformer does most of the learning and is able to model the embed-

ding space well enough such that no more additional metric learning is needed.

Moreover, the complexity brought by addingmore parameters tometric basedmeta-

learning approaches probably makes them harder to train especially in a few shot

setting. The massive increase in embedding quality brought by the BERT encoder

makes Prototypical Network approaches reclaim the state-of-the-art position.

3.5.4 The curious case of induction networks

When Induction Networks [49] were introduced, both the ARSC dataset and a pri-

vate intent detection dataset were used for evaluation (publicly unavailable). Evalu-

ating such model on this sentiment classification dataset as well as a private intent

detection dataset made it hard for us to acknowledge their results as is, so we in-

tended to evaluate thismodel on public datasets. As authors neither did release their

official code nor did respond my contact attempts, I re-implemented their code my-

self. Experiments of this method using my code on the ARSC dataset confirm those
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Metric
Relation

Module

Liu Clinc TREC28

2 3 4 5 2 3 4 5 2 3 4 5

Matching
euclid. - 96.6 93.7 91.1 89.1 99.2 98.7 98.1 97.7 89.4 81.6 76.6 69.6
cosine - 93.3 87.9 84.8 81.0 96.8 95.8 95.1 94.7 81.6 75.4 68.5 63.5

Proto
euclid. - 97.4 95.3 93.4 91.8 99.5 99.0 98.7 98.4 92.6 87.6 82.0 79.2
cosine - 94.6 90.4 88.5 85.6 97.6 97.3 96.9 96.5 85.6 79.1 74.5 71.3

Proto++
euclid. - 97.7 95.7 93.7 92.2 99.5 99.1 98.8 98.5 91.7 84.9 82.0 76.8
cosine - 94.0 90.9 87.9 85.4 97.5 97.3 97.0 96.5 83.8 78.1 71.0 65.9

Relation*
- base 88.2 76.5 71.8 65.1 91.1 86.0 79.9 77.9 80.8 66.3 61.7 51.8
- ntl 92.1 85.1 81.6 76.5 92.9 92.1 90.0 89.1 80.1 72.9 64.1 59.4

Induction* - ntl 88.4 81.3 74.3 70.1 92.3 88.7 85.7 80.4 78.3 65.7 57.3 51.3

Baseline - - 94.3 89.0 84.1 79.8 99.1 98.5 97.7 97.2 90.5 83.6 79.3 75.7

Baseline++
euclid. - 93.1 87.6 81.4 78.1 95.8 93.3 92.1 90.6 87.7 78.3 72.5 69.1
cosine - 93.1 86.8 81.0 75.1 98.9 97.9 96.8 96.1 86.7 78.2 72.1 70.0

Table 3.4: Mean accuracy of 𝐶-way 5-shot intent detection, with 𝐶 ranging between 2 and 5. For each column, the best method
is highlighted in bold. Each reported value is the average over five runs with different random seeds. Remark*: some of
those results are not the same as in the paper [37] associated to this chapter. This is after identifying a bug in the code. While the
corrected experiments gives better results for the victims of this bug – relation and induction networks –, all previous conclusions
still stands (the improvement of the corrected implementation is not enough).
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Metric
Relation

Module

Lara – 1 shot Lara – 5 shot

2 3 4 5 2 3 4 5

Matching
euclid. - 93.4 88.5 85.7 83.5 96.4 95.0 92.7 91.7
cosine - 92.0 87.8 85.2 82.0 95.9 92.5 90.4 88.5

Proto
euclid. - 93.1 89.8 86.3 84.0 97.6 96.5 95.2 94.1
cosine - 93.3 88.3 84.7 81.7 97.0 94.8 93.4 91.7

Proto++
euclid. - 95.9 93.3 90.4 87.8 97.9 96.6 95.5 94.6
cosine - 95.4 91.3 88.6 86.5 97.3 95.1 93.5 92.0

Relation
- base 79.6 67.8 61.9 58.1 85.2 77.1 68.2 63.7
- ntl 87.7 81.5 77.6 73.2 92.2 88.4 84.2 81.6

Induction - ntl 81.5 73.7 64.9 64.2 86.6 77.1 73.2 66.1

Baseline - - 90.3 83.9 77.9 73.6 95.7 92.4 89.4 86.6

Baseline++
euclid. - 91.3 86.1 81.3 78.1 97.7 95.8 94.2 92.4
cosine - 89.4 82.4 76.7 72.2 94.9 90.8 87.0 83.7

Table 3.5: Mean accuracy of 𝐶-way 𝐾-shot intent detection on the Lara dataset, with𝐶 ranging between 2 and 5, and𝐾 between 1 or 5. For each column, the best method
is highlighted in bold. Each reported value is the average over five runs with differ-
ent random seeds.

results in an acceptable range, even when trying to get more consistent results using

multiple random seeds. Nonetheless, the performances of this method are under-

performing on all three intent detection datasets, even when matching the binary

classification scenario using 𝐶 = 2. Such a big performance gap between sentiment
and intent classification tasks show that Induction Networks, while suited for the

former, are not applicable to any other classification task out of the box.

3.5.5 On metric choice

Prototypical Networks were originally designed to do better than Matching Net-

works. The two differences between them are the placement of the class average

step, and the choice of the metric (cosine for Matching, euclidean for Prototypical).

Our results show that metric choice yields a big gap in performances for both meth-

ods, this gap being larger than the gap caused by the model design. This hints that

when using a pre-defined metric – excluding the case of metric learning –, choosing

the right metric is of paramount importance. Moreover, while Matching Networks
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were designed to use the cosine distance, we found here that they perform signifi-

cantly better (on all datasets for all number of given test classes) when equippedwith

the Euclidean distance, the metric of choice in the Prototypical Networks seminal

paper. Retrospectively, this probably had been tested by the authors of Prototypi-

cal Networks in order to select the best metric for the architecture, though this was

not public knowledge. The choice of the metric is therefore the second most im-

portant choice when designing a meta-learning framework, after the text encoder

(Section 3.5.3).

3.5.6 On architectural choices

Overall, Prototypical Networks come on top of every intent detection dataset. More

importantly, their gap between other competing approaches is wider as the number

of classes increases. This result is important, as in practice, the number of classes

is likely to be higher than what is used in the literature – we remind here that our

private intent detection module at Meetic encompass 96 different classes at the time
of writing. The extended variant, Proto++, gets excellent results on the Lara dataset

(Table 3.5), especially in the 1-shot scenario, where it scores about than 3 points of ac-

curacy higher than the second-bestmethod (vanilla Prototypical Network). This per-

formance is not observed on the other intent detection datasets (Table 3.4), Proto++

gets more mixed results. While this shows that using unlabeled data can have some

benefits, we also observe that the Proto++ way of integrating this external knowl-

edge is perfectible. Ultimately, note that our results do not mirror Computer Vi-

sion results. Since few-shot learning methods are used on top of embeddings, we

could emit the hypothesis that they can be applied to any embeddings, regardless of

the field. However, while Relation Networks, for example, were performing well in

Computer Vision classification tasks – the tasks which they were originally designed

for – as well as text classification back in the days when transformers did not exist –,

this is not the case any longer. The drawback is that all methods are very sensitive

to the feature extractor used in prior steps.
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3.6 Conclusion

In this chapter, we first identified the need to have a fair and rigorous benchmark to

compare all few-shot learningmethods. The text encodingmethods used so far were

based on fixed word embeddings. Transformers have drastically changed the way

we work with text, and few-shot learning methods were yet to be tested using such

language models. First, we showed how we could fine-tune such language models

for short user utterances in an unsupervisedway, prior to solving the supervised task.

This additional step is cheap, as it does not require any labelling effort. Additionally,

in the conversational agent framework, collecting unlabeled data is easy, as we just

need to wait for real-life users to interact with the agent. Through an analysis of the

embedding space, we showed that fine-tuning the language model already helps at

separating classes, which means a better starting point for the downstream task of

text classification.

We then established a fair comparison of the various end-to-end neural few-shot

text classification methods discovered over the last few years. When they are all

equipped with a transformer-based text encoder, we showed that Prototypical Net-

works, which still stands as one of the most simple and straight-forward approach,

become the state-of-the-art again. We also found that a traditional classifiers trained

on few shots yields very competitive results. In terms of parameters, prototypical net-

works and baselines are not very heavy. Their good performances show that most

of the learning is done by language models, which are able to represent text into

vectors in a way that was not possible before. We also confirmed the impact of the

chosen metric. This difference in performances, which was already observed by the

authors of Prototypical Networks, is illustrated in our experiments with all methods

which require a pre-defined distance metric. Overall, we have found that euclidean

distance works better than the cosine one.

With this contribution, we not only revisit the state-of-the-art, but we also build

a complete setup in order to implement, test and compare further contributions with

respect to existingworks, whichwill be be of the utmost practical interests in this the-

sis and other researchers in the community. Reimplementing all the existing meth-

ods and prepare this meta-learning evaluation framework took a significant part of
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my first years of PhD. The complete source code (re-implementation and evalua-

tion framework) is publicly available7. To the best of my knowledge, this framework

is already used by Raphäel Chevasson, a second year PhD student at the laboratory

working on non auto-regressivemethod for text generation, andDina El Zein, aMas-

ter student from ENS Lyon in our team who worked on mitigating gender bias for

meta-learning frameworks. I hope this public contribution will help the community

to build upon consistent comparative experiments, and foster end-to-end few-shot

text classification.

7https://github.com/tdopierre/FewShotText



Chapter 4

Few-shot Pseudo-Labeling for

Intent Detection

This chapter is based on the following publication [38]

Thomas Dopierre, Christophe Gravier, Julien Subercaze, Wilfried Logerais.

“Few-shot Pseudo-Labeling for Intent Detection”. In Proceedings of the 28th In-

ternational Conference on Computational Linguistics (COLING2020), pages 4993–

5003, 2020.

4.1 Introduction

Labeling user utterances as intents is of paramount importance for chatbots. Intent

classes are usually engineered by a linguistic team, and these classes are likely

to evolve with time. The most frequent situations include: the addition of new

unanticipated intents found by dialogue traces analysis, the need to introduce new

intents that were previously handled using web forms, or the urge to split existing

intents into several new ones to support more fine-grained user interactions.

Regardless the rationale, each time the intent referential evolves, a significant

amount of new labeled data is required to train a decent intent detection model.

This calls for a time-consuming, error-prone, and overall expensive labeling process.

Consequently, intent detection systems need robust models in few-shot settings

in order to avoid to repeatedly suffer from labeling user utterances into intents.

74 of 153
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In the previous Chapter 3, we evaluated the different end-to-end few-shot intent

classification systems. Through extended experiments using recent text encoders,

we showed that simple approaches equipped with a transformer model yield the

best results – “simple is beautiful” for few-shots pseudo-labeling. In this Chapter

we build upon this observation and we provide an original and state-of-the-art

approach based on pseudo-labeling for few shot intent detection. Besides that first

observation, a second preliminary observation is as follows: while labeled data

are costly to obtain, unlabeled data are not. Indeed, when a conversational agent

interacts with real world users on a daily basis, a lot of raw data can be collected.

While those raw queries do not always match known labels, they contain some

knowledge that can be used. Answering the few-shot classification problem can

be done using those unlabeled data, by generating pseudo-labels for unlabeled

utterances. A pseudo-label is a label (intent class) automatically assigned to an

unlabeled utterance using the knowledge found in the set of labeled data. In the

literature, it is also sometimes called weak label, as such data are less confident

than human-annotated sentences. The resulting dataset composed of both labeled

and pseudo-labeled utterances is then used to train an intent classification model1.

Hopefully, using both labeled and pseudo-labeled data yields better results than

just using the labeled set. Most pseudo-labeling methods combine advances

in word representations [110, 17, 136] and then consider unsupervised clustering

algorithms [141] in order to propagate known labels to unlabeled data. Nonetheless,

there are major drawbacks to existing pseudo-labeling algorithms. First, since clus-

tering algorithms like k-means are used to partition user utterances representations,

it provides a pseudo-label to each unlabeled data point. When collecting unlabeled

data, one cannot entirely be sure that all those utterances match an intent for which

we have labeled data. For example, users might be asking out-of-scope questions,

like “What’s the weather like?” to a dating conversational agent, a question which

he might not be trained to answer. In such scenario, it would be better to simply

discard this data point instead of assigning it a pseudo-label of a known class, which

would inherently not be correct. Having wrong pseudo-labels makes it is much

harder to learn a discriminate hyperplane when training the downstream intent

detection models since some data are incorrectly labeled. Worse still, this grows

1Pseudo-labeling is described in chapter 2, more precisely in section 2.4.3.1 (p. 35)
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exponentially as the number of intents (classes) increases in practice as predicting

correct pseudo-labels then becomes even more difficult. A corollary is also that

confidence values in pseudo-labels is hard to produce: since cluster shapes are

unknown in advance, distances to centroids cannot reliably be used as a factor

a confidence in a pseudo-label. In Computer Vision, the same issues exist for

the image classification task and this lead to end-to-end systems like Prototypical

networks [129] that we already exploited in chapter 3 when we applied them to

intent detection – such end-to-end systems remain baselines in the contribution

described in this chapter.

In this chapter, we present different methods for pseudo-labeling utterances and

leverage their results for the downstream task of intent detection. We first assess

the correlation between good pseudo-labeling and the intent detection downstream

task, as well as assessing the robustness of various methods in one/few-shot config-

urations.

Using the advances in word representations [17, 136, 33], we consider unsuper-

vised algorithms to embed user utterances in order to propagate labels. Partitioning

user intents using hierarchical clustering has already been shown to be effective for

intent discovery [127]. Note that in intent discovery, we are looking to recover the

latent intent from user utterances. In our experiments, intent classes are known in

advance – domain-specific chatbots usually rely on linguists team to provides such

classes.

We introduce a new folding/unfolding hierarchical clustering algorithm for

pseudo-labeling, which can be considered as a dynamic hierarchical clustering al-

gorithm (Section 4.4). This original two-step algorithm is able, by design, to predict

a pseudo-label by organizing data points in a hierarchical manner. Interestingly, be-

cause some pseudo-labels may be incorrect, we introduce a normalized confidence

score based on a temperature weighting mechanism, to penalize pseudo-labels

which might be incorrect. Indeed, if there are too many incorrect pseudo-labels, we

might be left with a model which performs worse than the model only using the

labeled data, as we would add too much noise. That is the reason why we weight

the pseudo-labels depending on a confidence score. When training the downstream

intent detection model using both labeled and pseudo-labeled utterances, those
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weights are included in the cost function we want to minimize (Section 4.4.3).

In order to validate our pseudo-label approach, we evaluate its impact on the

downstream task of intent detection using four datasets and fine-tuned BERT-based

language models (Section 4.5.1). Overall, in few-shot configurations and even when

the number of classes is large, our proposed method is able to positively impact the

intent or text classification tasks accuracies (Section 4.5.2), beyond the state-of-the-

art. Additionally, our method is able to discard some unlabeled data points if its

confidence about such data points is too low. In a context where unlabeled data

might concern intent that are not supported (users asking out-of-scope queries),

having this discarding feature is great improvement to avoid adding to much noise

to the downstream classifier.

4.2 Philosophy and approach with respect to existing so-

lutions

A growing amount of work has been done on the Conversational AI domain [46]

over the recent years. There are different types of conversational agents: Question-

Answering systems [116], End-to-end Conversational Models [140, 116], or Task-

Oriented bots [92]. In the latter case, a central part of the process is the understand-

ing of user utterances, a special case of text classification. Convincing approaches

to this problem rely on neural networks [80], thus requiring large labeled datasets,

which are costly to obtain. In practice, as more users interact with the conversa-

tional agent, it is easy to collect a large amount of raw data. Having access to a small

labeled dataset along with a large unlabeled one calls for semi-supervised learning

solutions [22, 171] for which label propagation is of paramount importance. Many

solutions exist for this andwe provided an overview of themain family of approaches

in chapter 2, Section 2.4.3.1. Among them, one approach to this problem is self-

training [157, 99], where the model trains itself for multiple iterations, each time

adding its most confident prediction to the training data. This approach has multi-

ple weaknesses, the main one being the fact that the model cannot correct its own

mistakes. One way of dealing with such a problem is to use tri-training [167], a

framework where three models are trained iteratively. At each step, common pre-

dictions of two models are added to the training set of a third. This continues until
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all models reach a stationary state. A substantial body of works focus on the few-

shot classification problem, that is handling labeled data scarcity in the downstream

training phase exclusively [45, 129].

Fromabroader perspective, it isworthnoticing that semi-supervised learning (learn-

ing using both labeled and unlabeled data) has also received a lot of attention in com-

puter vision [139], where annotations are time-consuming and error-prone as well.

To overcome this problem, image-specific features – like coloration, pixel-level val-

ues – are used [84]. Given a distance matrix between data points, labels from known

samples are propagated to previously unlabeled data. Unfortunately this is hardly

applicable in NLP as complex features are hardly intrinsic to words but rather based

on distributional semantics. Indeed, inNLPwe usually rely on pre-trainedword em-

beddings [101] and build sentence representations by averaging word vectors [66] or

contextualized word embeddings [110, 30].

In this work, we therefore tackle the problem differently: we propagate the knowl-

edge we have on this small amount of data to unlabeled data points, before feeding

both truly labeled and pseudo-labeled data to the intent detection system. This in-

termediate step is of the utmost practical interest: firstly, propagating knowledge

on unlabeled points helps us understand how the data is structured. Secondly, in a

labeling framework, it allows us to select interesting samples for our in-house lin-

guists to label or correct given low pseudo-label confidence2 as a human-in-the-loop

approach, instead of selecting samples randomly. The more accurate the pseudo-

labels, the more efficient it is for linguists.

In this chapter, in addition to introducing a novel way to derive pseudo-labels

for unlabeled data points, we also show that our method work in complement with

other existing methods, the aggregation of them all providing a significantly even

better pseudo-labeling method for intent detection.

4.3 Baselines

In this section, we will name the various pseudo-labeling methods which we will

use as baselines in the experiments of this chapter. While some of them were not

particularly designed to assess the pseudo-labeling cased, any classifier can be

2The pseudo-label confidence value is the alpha value calculated in section 4.4.3.
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used to predict a pseudo-label for a given unlabeled data point. Pseudo-labeling

techniques can be directly plugged on top of sentence representations. These

sentence representations can be obtained in many different ways (see Section 2.2 in

Chapter 2). For consistency purpose in the various experiments showcased in this

thesis, we are using the same BERT models here than the ones used in Chapter 3.

As a reminder, this language model was an off-the-shelf bert-base-cased model,

which we fine-tuned using the masked language modeling task on each dataset

custom domains. This fine-tuning was done once for each dataset, thereby resulting

in one custom transformer per dataset.

From these sentence representations, labels from known utterances can be prop-

agated in different ways. First, we consider Prototypical Networks as a baseline. We

already proved their efficiency in Chapter 3, where they claimed the top spot for few-

shot text classification. Having the better accuracy in this task, those models should

also be very good at predicting correct pseudo-labels using the learnt class proto-

types. Additionally, we also considered their variant proto++ in our experiments,

as this variant was often slightly better than the vanilla version of prototypical net-

works.

Second, another baseline we consider is the following: for each unlabeled data

point and each class, we compute its average similarity to the known labeled samples

of this class. Then, we assign to this point the label forwhich this average similarity is

maximal, mapping all unlabeled data points to a pseudo-label. Comparing the aver-

age similarity to different classes is the essence of Matching Networks [139], which

were already described previously (see Section 2.4.2). We will denote this method

matching. However, we do not fine-tune this method in an end-to-end manner,

instead we clamp this prediction function on top of fixed word embeddings. This

comes from the fact that our method, which we will introduce later, does not predict

labels in a differentiable manner. As such, it cannot be used to fine-tune represen-

tations using traditional gradient descent.
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4.4 Two-fold Pseudo-Labeling

In this section, we describe our folding/unfolding pseudo-labeling method (Sec-

tion 4.4.1), as well as the aggregated approach (Section 4.4.2). We also introduce

a loss weighting scheme (Section 4.4.3), which is hopefully, able to mitigate the

impact of incorrect pseudo-labels on the intent detection downstream task. We

advocate that our algorithm is state-of-the-art (Section 4.5.2). Being state-of-the-art

and simple, this algorithm is an appealing and elegant solution for pseudo-labeling.

4.4.1 Folding/unfolding algorithm
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Figure 4.1: The two-fold Pseudo-Labeling process taking as an input embedded user
utterances from our fine-tuned transformer. First, a hierarchical clustering method
is applied from bottom to top, leading to a tree structure ((a) – folding). Second, from
top to bottom, nodes are expanded iff they contain multiple labeled sentences with
different labels ((b) – unfolding). Finally, retrieved pseudo-labels are used to train
an intent detection model (Section 4.5.1).

Our pseudo-labeling method, illustrated in Figure 4.1, is a folding/unfolding

algorithm, using hierarchical clustering. Its pseudo-code is also detailed in Algo-

rithm 5. We decompose our approach in two steps.

Step (a) – folding We start with all data points 𝑋 = 𝑋𝑙 ∪𝑋𝑢, mixing together both
labeled data points 𝑋𝑙 as well as unlabeled data points 𝑋𝑢. Those data points are
sentence representation, previously obtained using a text encoder. At the beginning

of the step, each data point is considered as an individual cluster, containing a single

sample. Iteratively, we construct a tree in a hierarchical way: at each iteration, we

select the two closest clusters, and bind them together into a new cluster. To choose

which clusters to merge, we use Ward’s method [143]. This method, also called the
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Algorithm 5 Two-Fold Pseudo-labeling

Input:
Labeled data 𝐿 ← {(𝑥, 𝑦) ∈ 𝐿}
Unlabeled data 𝑈 ← {(𝑥, None) ∈ 𝑈}

Output:
Pseudo-labeled data 𝑃 ← {(𝑥, ̃𝑦) ∈ 𝑃}
// Step (a): Folding𝑉 ← {{(𝑥, 𝑦)} ∣ (𝑥, 𝑦) ∈ 𝐿 ∪ 𝑈} ▷ Init. clusters as single data points

while |𝑉| > 1 do𝑣∗1 , 𝑣∗2 = argmin(𝑣1≠𝑣2)∈𝑉2Ward (𝑣1, 𝑣2) ▷ Find best couple of clusters

𝑣 ← 𝑣∗1 ∪ 𝑣∗2 ▷ Merge clusters together𝑉 ← (𝑉 ⧵ {𝑣∗1 , 𝑣∗2 }) ∪ {𝑣}
// Step (b): Unfolding𝑉 ′ ← ∅𝑃 ← ∅
while |𝑉| > 0 do

draw 𝑣 ∈ 𝑉 randomly𝐿𝑣 ← {(𝑥, 𝑦) ∣ (𝑥, 𝑦) ∈ 𝑣 ; 𝑦 ≠ None}𝑈𝑣 ← {𝑥 ∣ (𝑥, None) ∈ 𝑣}
if |𝐿𝑣| = 0 then

Do nothing. ▷ If no labeled samples, discard the cluster

else𝐶𝑣 ← uniques ({𝑦 ∣ (𝑥, 𝑦) ∈ 𝐿𝑣}) ▷ Unique labels of this cluster

if |𝐶𝑣| > 2 then𝑣1, 𝑣2 = unfold (𝑣) ▷ Unfold cluster𝑉 ← (𝑉 ⧵ {𝑣}) ∪ {𝑣1, 𝑣2}
else ̃𝑦 = 𝐶𝑣 [0] ▷ Derive the unique label of the cluster

for 𝑥 ∈ 𝑈𝑣 do𝑃 ← 𝑃 ∪ {(𝑥, ̃𝑦)} ▷ Apply pseudo-label
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Ward’s minimum variance method, minimizes the total within-cluster variance. At

each iteration, it selects the two clusters which, if merged, would yield the smallest

increment of total within-cluster variance. As each iteration consists in merging

two clusters, if we have 𝑁 data points at the beginning, the overall process will take𝑁 − 1 steps. The output of this folding step is a tree structure, obtained in a bottom-
up manner. In this tree, each non-leaf node has exactly two children, representing a

merge between two nodes at some iteration. The root of the tree corresponds to one

big cluster which contain all data points.

In traditional hierarchical clustering, the goal is to separate the data points into

clusters. Once the tree is constructed, one can either cut the tree at a chosen thresh-

old corresponding to the minimum distance between two clusters. The higher the

threshold, the less clusters it would yield. In our method, we are not particularly

interested on fixing a threshold or a given number of clusters. Indeed, having a con-

straint on either of those value would mean adding additional hyper-parameters.

While hyper-parameter search is doable, it is hardly applicable to the few-shot sce-

nario, where there are not much labeled data to find the parameters which would

yield the perfect results. Additionally, if anyone has to use few-shot methods be-

cause of the lack of labeled data, the hyper-parameters found in the literature on a

few datasets might not work for a particular dataset. As this first step, a standard

hierarchical clustering, is finished, we describe in the next section the more original

and second step of our algorithm: the unfolding step.

Step (b) – unfolding After doing the bottom-to-top process detailed previously,

we now operate in a top-to-bottom manner. The step (a) yielded one tree structure

containing all data points, with each node of this tree represents a merge of two

clusters. Iteratively, we are going to unfold the whole structure, by splitting clusters

given a specific condition. More precisely, each cluster will be split into its two sub-

clusters (which were merged at some point in step (a)) until all generated clusters

contain either no labeled data points (in this case all its data points, which are unla-

beled, are discarded), or some labeled data points with a unique label. In the latter

case, we assign this unique label to all the unlabeled data points also belonging to

the same cluster. Here is a more detailed overview of the different scenarios when

processing a given cluster:
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1. The cluster only contains unlabeled data points. In this case, as we have

no labeled information whatsoever about the cluster, we simply discard it.

2. The cluster contains only one labeled data point, and some unlabeled

data points. In this case, we assign to the unlabeled data points of the cluster

the the same pseudo-label as the labeled data point.

3. The cluster contains several labeled data points but with a unique la-

bel, and some unlabeled data points. This case is very close to the previous

one, except there are multiple labeled data points with the same label. Still,

we assign pseudo-labels the same way as in (2).

4. The cluster containsmultiple labeleddata pointswithmultipleunique

labels. In this case, it is hard to directly conclude on which label to assign to

unlabeled data points, as we have mixed signals. To overcome this issue, we

split the cluster into its two sub-clusters in order to have more precise infor-

mation about the data points.

5. The cluster contains no unlabeled data points. In this case, there is not

much to do, as we want to assign pseudo-labels to unlabeled data. If there are

no unlabeled data in the cluster, we decide to not make anything out of it.

This step is quite intuitive: if a cluster contains labeled data points with different

labels, then it is not easy to choose which of those label will be assigned to unlabeled

data points in this cluster. On the opposite, splitting clusters until only one label

is represented in each cluster improves the confidence when assigning the pseudo-

label to previously unlabeled data points. Additionally, we could push it a little fur-

ther, and only stop when only one labeled sample is left in the cluster (that means,

split a cluster event if it has a unique label, but multiple labeled data points). This

way, we would be more precise and increase the confidence of pseudo-labels. How-

ever, this deeper variant did not yield good results in our experiments, as it led to a

discard rate which was too high.

There are several underlying motivations for this fold/unfold approach. First,

unlikemost techniques, this approach does not require any hyper-parameter tuning,

apart from the method used to choose which clusters to merge in step (a). Having

little to no hyper-parameters make the method more robust to different datasets. In
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practice, when there is not much data to validate methods – this is the case in few-

shot learning –, this is very important. Secondly, thanks to its iterative hierarchical

process, it is able to model unusual cluster shapes, which makes it more robust to

sentence representations. Thirdly, the tree structure obtained via hierarchical clus-

tering is richer than a more traditional cluster output. By iteratively unfolding a

tree structure, it helps understanding the clustering process and how data points are

linked to each other. Lastly, unlike the matching pseudo-labeling method or proto-

typical networks, this method does not give pseudo-labels for all the unlabeled data

points, aswediscard clusterswhich only contain unlabeled data points. As discussed

earlier, in a real-world scenario, this is very important, as we cannot ensure that all

unlabeled data points – representing raw user utterances – belong to a known class.

It is also better to consider not labeling a data point that is very hard to pseudo-label

to avoid noise in the training data.

4.4.2 Aggregated pseudo-labeling approach

While pseudo-labelingmethods have their ownway of assigning pseudo-labels, they

can be aggregated to improve the quality of pseudo-labels. As such, we also exper-

imented with an aggregated method using common pseudo-labels obtained from

each of our single methods. Indeed, all pseudo-labeling schemes introduced ear-

lier have a unique way to represent data and assign pseudo-labels. Following the

unanimity vote for each given data point, we add an aggregated pseudo-labeling ap-

proach in our experiments. To do so, after retrieving pseudo-labels from the various

methods, we retain data points where all methods have assigned the same pseudo-

label, and discard the rest. If all methods agree on a pseudo-label, then there is a

higher chance of this pseudo-label being correct, but it’s not guaranteed. However,

the more methods we aggregate together, the less pseudo-labels we will have left to

train our intent classification system. This can be a problem, and there is a trade-off

between quality and quantity to assess. In order tomeasure the impact of each single

method in the aggregation step, wewill also conduct ablation experiments, wherewe

aggregate common predictions of all methods except one. By doing so for all meth-

ods, we will be able to measure the contribution of each method to the aggregation

(Section 4.5.3). If a method is orthogonal to the others, than its contribution to the

aggregation should be high. Conversely, if a method yields pseudo-labels which are
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quite similar to another method, then its contribution to the aggregation should be

small.

4.4.3 Loss weighting mechanism

We will later empirically demonstrate that pseudo-labeling methods are able to

recover most labels in one/few-shot configurations when the number of classes is

relatively small (Section 4.5.2). However, some pseudo-labels can be easier to assign

than others, depending on their distance to labeled data points in the embedding

space. When the number of labels is very high, generating correct pseudo-labels

while refraining to introduce incorrect pseudo-labels at the same time becomes

harder. As the number of intent classes grows, the effect of providing correct labels

issued by semi supervision is vastly reduced by incorrect pseudo-labels. This is

the case even if those incorrect pseudo-labels are provided in a lower amount than

correct ones, as it confuses the intent detection model and make the optimization

task unnecessarily harder/incorrect. In order to overcome this issue, we introduce

a confidence score in our algorithms so that the loss function used to train the

intent detection model penalizes mis-predictions on pseudo-labels with respect to

the confidence in the generated pseudo-label. More formally, given the similarity

matrix 𝑆, an unlabeled data point 𝑥𝑢 ∈ 𝑋𝑢 with pseudo-label ̂𝑦, for each class 𝑐, we
compute its logits 𝑧𝑢,𝑐 as follows:

𝑧𝑢,𝑐 = 1𝑛𝑙,𝑐
𝑛𝑙∑𝑖=11(𝑦𝑖 = 1)𝑆𝑖,𝑢 (4.1)

Then, using a softmax, we turn this 𝑧 vector into a probability vector 𝑃(𝑧) (that
is 𝑃(𝑧) = 𝜎(𝑧), where 𝜎(⋅) is the softmax function). From here, the last steps are

inspired from [84]. We apply a final transformation in order to increase the differ-

ences between logits. The reason behind this is that all logits, being an average of

similarity scores, are bounded between 0 and 1. Hence, if we just apply the soft-

max on those raw logits, the differences between classes will not be very significant.

As a consequence, to increase sparsity and enforce extreme weights, we define the

pseudo-label weight 𝛼 as follows (we set the variable 𝜏 = 10 in the experiments as
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in [84], and ̂𝑦 still denotes the pseudo-label):
𝛼 = exp (𝜏𝑧𝑢, ̂𝑦)∑𝑗≠ ̂𝑦 exp (𝜏𝑧𝑢,𝑗) (4.2)

We will further discuss the impacts of this weighting technique in Section 4.5.4.

4.5 Experiments

In this section, we first introduce the experimental setup for our contribution. This

includes datasets, experimental conditions, as well as a brief reminder about the

meta-learning framework. Then, we will showcase the results and provide our crit-

ical analysis of these results.

4.5.1 Setup

Methods Alongsidewith our contribution, the systemswe place under evaluation

are matching, Proto/Proto++, as introduced in Section 2.4.2. We implement the

matching method of predicting pseudo-labels, and for the Prototypical-based ap-

proaches, we use the code associated to the seminal Prototypical Network paper3,

using our fine-tuned transformer as our sentence encoder. For the Proto++ base-

line, to refine prototypes, we use 20 unlabeled samples per class both at training and

testing time, as Ren [117] showed that it yielded better performances. As suggested

by Chen [26], we do not fine-tune Prototypical Networks at test time, as it is reported

to decrease performances. Moreover, note that Prototypical Networks are impossi-

ble to fine-tune using a single shot for each class, which will be the case in some of

our experiments (one-shot learning scenarios).

Evaluation The evaluation of the different systems is two-fold. First, we will as-

sess the relevance of pseudo-labels retrieved from the different methods in few-shot

situations. While step measures the quality of pseudo-labels, it is not what we are

trying to achieve in the end. Indeed, our main goal is to have pseudo-labels posi-

tively impacting the performances of the training of an intent classifier. Hence, we

3https://github.com/renmengye/few-shot-ssl-public
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then evaluate the performances of the intent detection model (see paragraph 4.5.1)

trained using those pseudo-labels alongside with the few labeled data. In order to

measure the various performances, we use the weighted F1-score in all our experi-

ments.

Few-shot & Cross-validation setup As detailed earlier (see Section 2.4.1), we

experiment in the meta-learning framework, where datasets are split into training

and testing sets [133], with no overlapping classes between the sets. Since few-shot

regimes are highly dependent on the random initialisation of given shots, it is stan-

dard to repeat this process many times to create as many training/evaluation tasks

and report average accuracy values. More formally, for each training task, we sample𝐶 classes from the training classes 𝐶𝑡𝑟𝑎𝑖𝑛. For each class 𝑐 ∈ 𝐶, we sample 𝐾 sup-

port samples 𝑆𝑐 = {(𝑥𝑖, 𝑦𝑖 = 𝑐)}𝐾𝑖=1, as well as Q query samples 𝑄𝑐 = {(𝑥𝑖, 𝑦𝑖 = 𝑐)}𝑄𝑖=1.
Those samples will be used to train themodel for this task. This setup is often named𝐶-way 𝐾-shot settings. Test tasks are constructed in the same way, using the test
set. At test time, we will evaluate the quality of our utterance encoder on those new

classes𝐶𝑡𝑒𝑠𝑡, disjoint from classes themodel trained on. In our experiments, for each

dataset, we use a third of classes for each training, validation, and testing stages. We

also vary the number of shots 𝐾 to assess the robustness of the different systems.

In order to get a sense of consistency in the results, each reported metric is aver-

aged over 10 different cross-validation runs. For each run, the whole training set is

used to train the pseudo-labeling model (e.g. Prototypical Networks). Only 90% of

the test set is selected to assign pseudo-labels to query samples using support sam-

ples. The remaining 10% of the test set is used to evaluate the performance of the

text classification system which is trained on top of those pseudo-labels.

Datasets To measure the effectiveness of our method, we explore 5 intent detec-

tion datasets. Additionally, because our method is not specific to intent detection,

we also consider R8, a text classification dataset in order to have an insight of the ac-

curacy when the input text differ (see datasets statistics reported in 2.5 in Chapter 2

– p. 44).
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Sentence Encoder As in the previous Chapter, we use our fine-tuned the

bert-base-cased model [146] on its former task, masked language modeling.

Because this is an unsupervised task, we are able to use both labeled and unlabeled

utterances during training. As shown earlier, this additional fine-tuning greatly

increases the quality of embeddings. This fine-tuned model is then used as a

checkpoint upon which prototypical-based approaches are built. Additionally,

because prototypical networks benefit from a training on classification training

tasks, it would be unfair to prevent the other approaches – matching Fold/Unfold

– from benefiting from such a fine-tuning. To account for this difference, we further

fine-tune the BERT model obtained earlier on the classification task, using only

few shots – BERT-Fit. The encoding part of this model is then frozen, and sentence

embeddings used as input for both matching and Fold/Unfold methods. This

ensures that all methods benefit from a classification fine-tuning, only using the

few shots which they are given.

Intent Detection model Given the recent advances in NLP using transfer learn-

ing, we tried several methods for the intent detection model. We used pre-trained

ELMo [110], InferSent [30], FastText [17] and BERT [33] models. For ELMo (resp.

BERT), we use the last hidden vector of the last (resp. first) token as the sentence

embedding. All language models are fine-tuned with a last classification layer. We

compare thosemethods on the intent detection task, and found that BERTwas yield-

ing the best results. As in [131], we tried several variants for the BERTmodel – fine-

tuning the model in the Masked Language Modeling (MLM) task as well as freezing

or not freezing the transformer part. We find similar results as this paper: the vari-

ant which works best is obtained when fine-tuning on the MLM task, then further

fine-tuning on the classification task, without freezing any layer. Hence, we chose

this version as our intent detection model, in all our experiments.

We show that given a set of sentence representations, our method is the best

as propagating the knowledge from labeled to unlabeled data points. We conduct

additional experiments, where sentence embeddings are derived from a prototypical

network which has been trained on training tasks, and we will plug the different

pseudo-labelingmethods on top of those embeddings. Results for those experiments

are available at Table 4.4
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4.5.2 Results and Analysis

We first report samples of assigned pseudo-labels by the various methods in Ta-

ble 4.1. Sentences containing single digits numbers (sentences numbered 1, 2, 3

in that table) are often mistaken for RateBook, because those kind of tokens appear

in a lot of Book Rating utterances. In (3, 4), sentences contain time-related tokens,

which are informative for the BookRestaurant class. In (5), most methods predict

PlayMusic because of the “play” token, and only the hierarchical approach assigns

the correct pseudo-label. The sixth example (6) is interesting: in this sentence, “shiv-

ers in summer” is the name of a movie. While there could be a mis-understanding

caused by the word “summer” – which might refer to the GetWeather class–, the hi-

erarchical approach is able to see beyond this token and assign the correct pseudo-

label. Moreover, aggregating pseudo-labels from different methods will intuitively

discard a lot of pseudo-labels. This effect becomes more and more important as we

increase the amount of methods aggregated together. In our experiments, we ag-

gregate 4 methods: matching, Proto, Proto++ and our contribution, Fold/Unfold.

As shown in Table 4.2, using 5 shots, aggregating pseudo-labels yields a discard rate

of 10.2%, 25.1%, 47.8%, 45.5% for snips, Clinc, Liu and R8 datasets respectively. In

Table 5.3, we report all results from pseudo-labeling as well as intent detection per-

formance score. In order to measure the quality of pseudo-labels, we compute their

F1-score. For the intent detection part, we report the F1-score on the held-out 10%

of the testing data.To measure this trade-off between recall and precision of pseudo-

labels, we will further discuss the impacts on the intent detection performances for

each dataset. Additionally, we report results of the different pseudo-labeling meth-

ods using a fixed set of embeddings in Table 4.4. As showcased in this Table, our

fold/unfold method performs the best given the same fixed set of sentence represen-

tations. Also note that matching and Proto are equivalent in the 1-shot case: while

one compares the distance to the average embedding, the other compares the aver-

age distance to embeddings. When only one labeled sample is available, both these

techniques are equivalent.

Snips On the Snips dataset, even though our Folding/Unfolding approach outper-

forms all competitors, those results must be taken lightly. As we can see, with only

5 shots, we are able to recover pseudo-labels and build an intent detection model
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Sentence Matching Prototypical Hierarchical

(1) book for 8 am in massachusetts for
1

RateBook SearchCreativeWork BookRestaurant

(2) which movies are playing at b&b
theatres at 2 pm

RateBook SearchScreeningEvent SearchScreeningEvent

(3) in 1 hour and 1 minute find a cin-
ema nearest for films

RateBook BookRestaurant BookRestaurant

(4) forecast for wisconsin at 10 pm RateBook BookRestaurant BookRestaurant
(5) i want to play the game show me
the wonder

PlayMusic PlayMusic SearchCreativeWork

(6) when can i catch a screening of
shivers in summer

BookRestaurant BookRestaurant SearchScreeningEvent

Table 4.1: Some examples of disagreement on recovered labels for the three methods. For each
sentence, the correct label is in bold.

Dataset
Amount of given shots1 2 5

Snips 0.210 0.173 0.102
R8 0.642 0.513 0.455
Clinc 0.468 0.337 0.251
Liu 0.689 0.586 0.478

Table 4.2: Fraction (between 0 and 1) of discarded pseudo-labels by the aggregated
method.
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Pseudo-label F1 Intent Detection F1

shots 1 2 5 1 2 5
Sn
ip
s

Proto 0.914 0.915 0.948 0.913 0.921 0.947
Proto++ 0.862 0.898 0.920 0.863 0.899 0.920
BERT-Fit+matching 0.943 0.958 0.985 0.945 0.957 0.985
BERT-Fit+Fold/Unfold 0.986 0.982 0.992 0.988* 0.983 0.992
BERT-Fit+Fold/Unfold+weights - - - 0.987 0.983 0.992

aggregated 0.994 0.996 0.997 0.983 0.983 0.992
agg−BERT-Fit+matching 0.994 0.996 0.997 0.985 0.986 0.992

agg−Proto 0.993 0.988 0.996 0.984 0.980 0.991
agg−Proto++ 0.991 0.995 0.995 0.984 0.982 0.991
agg−BERT-Fit+Fold/Unfold 0.988 0.993 0.995 0.973 0.978 0.988

shots-only - - - 0.948 0.965 0.987

C
li
n
c

Proto 0.644 0.738 0.807 0.648 0.749 0.829
Proto++ 0.415 0.512 0.622 0.416 0.520 0.640
BERT-Fit+matching 0.723 0.831 0.895 0.725 0.837 0.902
BERT-Fit+Fold/Unfold 0.883 0.930* 0.939 0.878 0.932 0.945*
BERT-Fit+Fold/Unfold+weights - - - 0.880* 0.932* 0.944

aggregated 0.890 0.921 0.940 0.839 0.890 0.927
agg−BERT-Fit+matching 0.880 0.912 0.933 0.851 0.908 0.940

agg−Proto 0.856 0.899 0.925 0.848 0.890 0.929
agg−Proto++ 0.856 0.903 0.928 0.849 0.887 0.928
agg−BERT-Fit+Fold/Unfold 0.844 0.896 0.931 0.784 0.859 0.913

shots-only - - - 0.714 0.830 0.901

L
iu

Proto 0.513 0.618 0.697 0.515 0.624 0.694
Proto++ 0.467 0.534 0.605 0.472 0.535 0.605
BERT-Fit+matching 0.500 0.601 0.642 0.505 0.608 0.645
BERT-Fit+Fold/Unfold 0.587 0.668 0.763 0.537 0.636 0.728
BERT-Fit+Fold/Unfold+weights - - - 0.539 0.637 0.726

aggregated 0.852 0.895 0.902 0.585 0.686 0.747
agg−BERT-Fit+matching 0.829 0.887 0.905 0.590 0.702 0.778

agg−Proto 0.828 0.874 0.894 0.584 0.679 0.749
agg−Proto++ 0.824 0.864 0.874 0.572 0.678 0.740
agg−BERT-Fit+Fold/Unfold 0.722 0.819 0.840 0.576 0.665 0.715

shots-only - - - 0.443 0.620 0.756

R
8

Proto 0.575 0.629 0.709 0.598 0.650 0.725
Proto++ 0.556 0.620 0.647 0.566 0.607 0.628
BERT-Fit+matching 0.737 0.789 0.890 0.758 0.799 0.885
BERT-Fit+Fold/Unfold 0.816 0.837 0.901 0.817 0.834* 0.901
BERT-Fit+Fold/Unfold+weights - - - 0.817 0.831 0.902*

aggregated 0.890 0.921 0.940 0.813 0.824 0.894
agg−BERT-Fit+matching 0.880 0.912 0.933 0.806 0.815 0.900

agg−Proto 0.856 0.899 0.925 0.817 0.822 0.900
agg−Proto++ 0.856 0.903 0.928 0.808 0.822 0.893
agg−BERT-Fit+Fold/Unfold 0.844 0.896 0.931 0.767 0.790 0.895

shots-only - - - 0.738 0.780 0.892

Table 4.3: Evaluation of pseudo-labels for the label recovery and intent detec-
tion tasks. We separate results from single and aggregated methods, highlighting
in bold the best method in each category. If a single method is better than the best
aggregated one, it is highlighted with a wildcard (*). The agg−𝜆 line represents the
aggregation between all single methods except method 𝜆. For the different aggre-
gations, we underline the worst (i.e. stressing the method contributing the most to
the aggregation).
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Embedding PL method
BANKING77 HWU64
PL Acc. IC f1 PL Acc. IC f1

Prototypical - - 0.639 - 0.732
Prototypical Prototypical 0.595 0.590 0.691 0.680
Prototypical Matching 0.595 0.590 0.691 0.680
Prototypical Fold/Unfold 0.664 0.663 0.777 0.772

Table 4.4: 1-shot pseudo-label (PL) accuracy and intent classification (IC) f1-score
on BANKING77 and HWU64 datasets. The same sentence representations are fed
to each pseudo-labeling method.

with a 0.988 F1-score. Those huge performances clearly hint that this dataset is not
challenging: the t-SNE projection for this dataset in Figure 3.1 (p. 58) illustrates this

claim. Thismeans that we can hardlymake concluding remarks on how the systems

relatively perform onmore realistic datasets. Overall, the massive usage of SNIPS to

evaluate intent detection techniques in the literature [149, 51] is disturbing.

Clinc On the Clinc dataset, ourmethod largely comes out on top, both on pseudo-

label and intent detection results. On the intent detection part, our method is bet-

ter than the aggregated ones, showing that other methods penalize the aggregation.

This finding is very important, as it proves that using an ensemble of various meth-

ods do not always lead to better performances – introducing wrongly labeled utter-

ances strongly penalizes a learning process. Concerning the prototypical baselines,

this is the dataset where the Proto++ is the further away from its former version,

Proto. This comes from the fact that this dataset has the highest number of classes:

when doing a soft-KMeans step, if the number of classes is high, then it is as much

noise for the prototype refinement. Results on this dataset prove that our method

is not handicapped when using a large number of classes, making it more robust to

real-life scenarios. Additionally, we see that removing the BERT-Fit+nKNN from the

aggregation yields better results. This poor performance was not to be seen in the

pseudo-label results, as this baseline was performing second behind our approach.

This raises the importance of using this double experiment, and confirms that better

pseudo-labels do not directly imply a better model in the downstream task of intent

detection.
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Liu As explained in Section 2.5, this dataset is very imbalanced. Still, we get the

same results as the two previous datasets, which weremore balanced: ourmethod is

able to come out on top on both pseudo-labeling as well as intent detection results.

Additionally, the ablation study where we withdraw our method from the aggrega-

tion yields the worst results in almost every situation, hinting that we contribute the

most to this aggregation. This shows that our method is robust to various situations,

including the case of imbalanced datasets.

R8 On the R8 dataset, even though we now deal with text classification and much

longer sentences, we have similar results as on others intent detection datasets.

Our method comes out on top, even achieving better performances than aggregated

methods during the classification step. This hints that our Folding/Unfolding

method is robust, and not only suited for intent detection tasks, but also for the

more general subject of text classification.

4.5.3 Aggregated approach

On all datasets, aggregating pseudo-labels obtained from single methods always im-

proves the pseudo-label quality, at the cost of retrieving less pseudo-labels. How-

ever, this increment is not fully reflected in the intent detection performance results:

most of times, there is a single method which, when discarded from the aggregation,

yields better text classification results. This is important to consider in practice, and

to have in mind that better pseudo-labels does not necessarily imply better results

for the intent detection downstream task.

Overall, in the ablation study where we withdraw each single method from the

aggregation, the aggregation without our method is very often the worst. This ad-

ditional study shows that our method contributes the most to the aggregation, as

removing it is often the worst case.

4.5.4 Weighting mechanism

When training the intent detection model with pseudo-labels recovered by our

method, we can use or ignore the confidence weights. The goal of those weights

is to penalize pseudo-labels which might have been incorrectly assigned (i.e. with
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small confidence). We show that the weighting mechanism has a limited impact on

the classification task. Remember that our method does not assign a pseudo-label

to every unlabeled utterance: in step (b) 4.4.1, it can discard clusters which are

far from one another. Through this, our method intrinsically already discards

hard-to-predict utterances – we show that our framework is already close optimal in

this regard: a weighting scheme do not contribute to improving our algorithm. We

find this an strong advantage of our contribution since it therefore does not require

a weighting hyper-parameter, which makes it simpler to train and do not require

any grid search.

4.5.5 Proto and Proto++

We discuss here the performances of prototypical baselines. In our experiments, we

showed that the Proto++ variant performs less than its former version, Proto. Using

aBERTmodel only fine-tuned on themasked languagemodeling task directly for the

Proto++ also introduces a lot of noise: because embeddings are not well separated,

adding 20 unlabeled samples per class adds to much noise for the model to separate

classes. This effect is amplified on Clinc dataset, as the number of classes is high.

4.6 Conclusion

In this chapter we introduced a new state-of-the-art, hierarchical clustering inspired

method for pseudo-labeling intent detection datasets. This is of the utmost practical

interest in order to help linguists to faster provide new intent detection model as

the intent classes repository evolve with time. Our method, being hyper-parameter-

free, is robust to various situations, even when the number of classes is high. By

discarding clusters which are far from known classes, it is able to mitigate the noise

which would have been introduced in the unlabeled dataset. Through an ablation

study, we also show that our method is complementary to other baselines so that it

contributes to aggregated approaches significantly. We also demonstrated that if we

continue to evaluate intent detection using very easy – yet popular – datasets like

Snips, we are ultimately not solving the actual downstream task in practice, so we

encourage any intent detection researchers and practitioners to use it with caution.

Additionally, our method is not end-to-end, and as such, can be seen as complex.
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Indeed, we saw that the accuracy on pseudo-label predictions is not always perfectly

correlated with the accuracy on the downstream intent detection task. In practice,

as we do not have many label intent utterance in a few-shots settings, this can set

false expectations on the performance of the downstream model looking only on

pseudo-labels predictions. In the next chapter, we will introduce a semi-supervised

end-to-end system, which is a novel extension of prototypical networks making use

of unlabeled data.



Chapter 5

ProtAugment: Unsupervised

diverse short-texts paraphrasing

for intent detection

meta-learning

This chapter is based on the following publication [36]

Thomas Dopierre, Christophe Gravier, Wilfried Logerais. “ProtAugment: In-

tent Detection Meta-Learning through Unsupervised Diverse Paraphrasing”. In

Proceedings of the 59th Annual Meeting of the Association for Computational Lin-

guistics (ACL2021), pages 2454–2466, 2021.

5.1 Introduction

Training a classification model with very few labeled data is usually a problem.

For conversational agents, unlabeled utterances are fortunately cheap to acquire,

as users are interacting with the agent on a regular basis. While unlabeled data do

not always match known classes, they still contain knowledge to learn from. As

users have their own way of expressing themselves, and this can lead to difficulties

during training. However, if the model is able to figure out those ways of expressing

96 of 153
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requests, then it will surely help in solving the downstream task, even though the

initial data the model was trained on does not match the data used for this task.

This is what happens when using large pre-trained language models. When they

are trained on a large corpus of unlabeled data, the goal is to make the model under-

stand the language structure, and how sentences are constructed. Transfer learning

benefits from this pre-training, and ultimately, it leads to better performances on

many downstream tasks [33, 19].

We already studied how different few-shot end-to-end system performed on the

task of intent classification (Chapter 3). In those experiments, we found that pro-

totypical networks were the best approach to such problem. We then introduced a

novel pseudo-labeling method (Chapter 4) to make use of unlabeled data, which are

cheap to acquire. Our pseudo-labeling approach yields good results, and pseudo-

labels can then be verified by linguist teams. The better the quality of pseudo-labels,

the quicker the verification of pseudo-labels will be. Labeling utterances is a painful

job, hence if we canmake it quicker, it will hopefully be less sore andwith less errors.

As discussed in the conclusion of the last Chapter, this approach is nonetheless not

end-to-end, therefore prone to contribute to accumulate error in a NLP pipeline.

Consequently, our idea for this third and last contribution chapter was to focus

back on end-to-end system, but that is able to learn fromunlabeled samples. Starting

with the back-again state-of-the-art which are prototypical networks, we wanted to

explore howunlabeled data could be useful for such networks, in hope to further im-

prove it. A major challenge comes in the form of text diversity: ultimately we want

diverse data (labeled or unlabeled) to gather knowledge about given class. Yet, di-

verse datameans representations that are far from each other, hence it will be harder

to group them into clusters – most few shot neural approaches approaches actually

aim at clustering or quantifying data (Chapter 3). This diversity is also hard to man-

age in a context of small utterances like chatbots: small modifications to small texts

quickly lead to utterances with a different meaning, possibly falling into another

intent class without detecting it.

Inspired by [150], we introduce an unsupervised diverse paraphrasing loss in

the Prototypical Networks framework. A key idea is consistency learning: by aug-

menting unlabeled user utterances, our approach, which we call ProtAugment,

enforces a more robust text representation learning. Unfortunately, as we will see in
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this chapter, back-translation is a poor data augmentation strategy for short-texts.

Indeed, in our case, neural machine translation provides very similar (if not the

same) sentences to the original ones, which hinders its ability to provide diverse aug-

mentations (see Section 5.4.3). Consequently, in this work, we transfer a de-noising

autoencoder pre-trained on the sequence-to-sequence task [82] to the paraphrase

generation task and then use it to generate paraphrases. As fine-tuning is very effi-

cient for such a model, it is not easy to optimize it to generate diverse paraphrases.

[53] presents an approach for diverse paraphrasing that reorders the original sen-

tence to guide the conditional languagemodel to generate diverse sentences. The di-

versity in that work is provided by the reordering of the elements, which surprisingly

affects the attention mechanism. In [86], expression diversity is part of the unsu-

pervised paraphrasing system supported by simulated annealing. Both approaches

imply domain transfer, and consequently, as many diverse paraphrasing models to

maintain as the number of considered application domains, which do not scale very

well. In this work, we instead introduce diversity in the downstream decoding algo-

rithm used for paraphrase generation. Diverse decoding methods are mostly exten-

sions to the beam search algorithm, including noise-based algorithms [27], iterative

beam search [72], clustered beam search [134], and diverse beam search [138]. There

is no clear optimal solution, the choice is task-specific and dependent on one’s tol-

erance for lower quality outputs as a diversity/fluency trade-off [61]. While diverse

beam search allows controlling the diversity/fluency trade-off partially, we further

demonstrate that adding constraints to diverse beam search in order to generate to-

kens not seen in the input sentence (that is, constrained diverse beam search) is a sim-

ple yet powerful strategy to further improve the diversity of the paraphrases. Paired

with paraphrasing user utterances and its consistency loss incorporated in Prototyp-

ical networks, our model is the best method for intent detection meta-learning on 4

public datasets, with neither extra labeling efforts nor domain-specific conditional

language model fine-tuning. We also show that ProtAugment, having access to

only 10 samples of each class of the training data, still significantly outperforms a
Prototypical Network which is given access to all samples of the same training data.
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5.2 Notations (reminder)

We remind here the notations that we use relatively tometa-learning. Meta-learning

algorithms are trained using a specific procedure made of consecutive episodes. Let𝒞𝑒𝑝 be the set of 𝐶 classes sampled for the current training episode, such as 𝒞𝑒𝑝 ⊂𝒞𝑡𝑟𝑎𝑖𝑛, where 𝒞𝑡𝑟𝑎𝑖𝑛 is the set of all classes available for training. We note 𝒞𝑡𝑒𝑠𝑡, the
set of classes used for testing, with 𝒞𝑡𝑟𝑎𝑖𝑛∩𝒞𝑡𝑒𝑠𝑡 = ∅. Each class 𝑐 ∈ 𝒞𝑒𝑝 comes with𝐾 labeled samples, used as support. The set of 𝐶 × 𝐾 samples are usually referred

to as 𝒮, the support set, so that 𝒮 = {(𝑥1, 𝑦1),… , (𝑥𝐶×𝐾 , 𝑦𝐶×𝐾)}. We denote 𝑆𝑐 the set
of support examples labeled with class 𝑐. Each episode comes with a query set 𝒬,
which serves as the episode-scale optimization – the model parameters are updated

based on the prediction loss on𝒬, given 𝒮 as an input. 𝒬𝑐 is the set of query examples
labeled with class 𝑐.
5.3 ProtAugment

In this section, we present our semi-supervised approach ProtAugment. Along

with the labeled data randomly chosen at each episode in prototypical networks,

this approach uses 𝑈 , the set of unlabeled data randomly drawn from the whole

dataset – that is, data from training, validation, and test labels. We first do a data

augmentation step from this unlabeled data, where we obtain 𝑀 paraphrases for

each unlabeled sentence. The𝑚𝑡ℎ paraphrase of 𝑥 will be denoted ̃𝑥𝑚. Then, given
unlabeled data and their paraphrases, we compute a fully unsupervised consistency

loss (we do not enforce a given class to both samples, but instead we enforce that

they should belong to the same one). That loss is noted as 𝐿̃. Finally, we combine
both the supervised loss 𝐿̄ (the Prototypical Network loss using labeled data) and
unsupervised loss (𝐿̃) and run back-propagation to update the model’s parameters.
5.3.1 Generating augmentations through paraphrasing

The BART [82] model is a Transformer-based neural machine translation architec-

ture that is trained to remove artificially corrupted text from the input thanks to an

autoencoder architecture. While it is trained to reconstruct the original noised input,
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Using this fine-trained paraphrasing model, we can generate paraphrases of un-

labeled sentences, hopefully having paraphrases representing the same intents as

the original sentences. To add some diversity in the generated paraphrases, we use

Diverse Beam Search (DBS) instead of the regular Beam Search. As [138] has shown

in the original paper, adding a dissimilarity term during the decoding step helps the

model produce sequences that are quite far from each other while still retaining the

same meaning. The next section describes how we constrained this decoding to en-

force even more diversity among generated paraphrases in ProtAugment.

5.3.2 Constrained user utterances generation

While DBS enforces diversity between the generated sentences, it does not ensure

diversity between the generated paraphrases and the original sentences. It was for-

merly designed for tasks that do not need this diversity with the original sentence

(translation, image captioning, question generation). To enforce that, our generated

paraphrases are diverse enough, we further constraint DBS by forbidding using parts

of the original sentences. In the following paragraphs, we introduce two forbidding

strategies.

Unigram Masking. In this strategy, we randomly select tokens from the input

sentence which will be forbidden at the generation step. The goal here is to force the

model to use different words in the generated sentences than it saw in the original

sentences. Each word of the input sentence is randomly masked using a probability𝑝mask. The underlying assumption is that forbidding tokens at the beginning of a
sentence with a higher probability than the end of the sentence may have a greater

impact on the beam search algorithm. Indeed, as the decoding is a conditional task

based on prior generated tokens, masking the first tokens may significantly impact

diversity. We therefore introduce two additional variants: one where we put more

probability on the first tokens and the reverse where there is more weight in the last

tokens. To ensure that all three variantsmask the same amount of tokens on average,

we ensure the area under the curve of the three probability functions are equal to a

fixed value noted 𝑝mask.
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Bi-gram Masking Another strategy we consider is to prevent the paraphrasing

model from generating the same bi-grams as in the original sentence. This time,

we are not masking any single word but forcing the model to change the sentence’s

structure, which will, hopefully, increase the diversity of the generated paraphrases.

We could go take the strategies further, and introduce n-grammasking, wherewe

take 𝑛 > 2. However, notice that n-gram masking indirectly implies m-gram mask-

ing for all 𝑚 > 𝑛. For example, if bi-grams are forbidden, then indirectly, tri-grams
are also forbidden. Indeed, tri-grams are composed of two bi-grams. As such, we

only experimented with uni-gram and bi-gram masking, which are more restrictive

than tri-gram masking and any n-gram masking for 𝑛 > 2.
5.3.3 Unsupervised diverse paraphrasing loss

After generating paraphrases for each unlabeled sentence, we create unlabeled pro-

totypes. For each unlabeled sentence 𝑥𝑢 ∈ 𝑈 , we derive the unlabeled prototype𝑝𝑥𝑢 as the average embedding of the paraphrases of 𝑥𝑢 (Equation 5.1). Our goal is
to mimic the way prototypical networks work, but with unlabeled data.

𝑝𝑥𝑢 = 1𝑀 𝑀∑𝑚=1𝑓𝜙( ̃𝑥𝑚𝑢 ) (5.1)

After obtaining the unlabeled prototypes, we compute the distances between all

unlabeled samples and all unlabeled prototypes. Given such distances, we model

the probability of each unlabeled sample being assigned to each unlabeled proto-

type (Equation 5.2), as in the supervised part of the Prototypical Networks – except

this time, it is fully unsupervised. This probability should be close to 1 between an

unlabeled sample and its associated unlabeled prototype and close to 0 otherwise.

ℙ𝜙(𝑢 = 𝑣|𝑥𝑢) = softmax (−𝑑(𝑓𝜙(𝑥𝑢), 𝑝𝑥𝑣)) (5.2)

We remind here the notation we used to describe Prototypical Networks (Chap-

ter 2, Section 2.4.2.2): 𝑓𝜙 is an embedding functionwith learnable set of parameters𝜙
– this is the functionwewant to optimize. Moreover, 𝑑 is a distance function, usually
euclidean or cosine, and it is set to euclidean in our case as this yields the best results.
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Given assign probabilities between unlabeled samples and unlabeled prototypes,

we can compute a fully unsupervised cross-entropy loss 𝐿̃, training the model to
bring each sentence closer to its augmentations’ prototype and further from the pro-

totypes of other unlabeled sentences.

After obtaining both supervised loss 𝐿̄ and unsupervised loss 𝐿̃, we combine
them into the final loss 𝐿 using a loss annealing scheduler (see Equation 5.3), which
will gradually incorporate the unsupervised loss as training progresses.

𝐿 = 𝑡𝛼 × 𝐿̃ + (1 − 𝑡𝛼) × 𝐿̄ ; 𝑡 ∈ (0, 1) (5.3)

The goal here is to mainly use the supervised loss first so that the model gets a

sense of the classification task. Then, incorporatingmore andmore knowledge from

unlabeled samples will make the model more robust to noise, which is essential as

it is constantly tested on classes it has never seen before. We explore three different

strategies for gradually increasing the unsupervised contribution: a linear approach

(𝛼 = 1), an aggressive one (𝛼 = 0.25), and a conservative one (𝛼 = 4). In a sense, our
unsupervised loss can be viewed as a supervised loss using an unsupervised episode.

Indeed, it is as if we had an episode where each “class” is an unlabeled data point.

For each of those classes, the support points are 5 augmentations of this unlabeled

sentence. In this unsupervised episode, there is only one query point per class, and

this query point corresponds to the unlabeled sentence. By utilizing the samemech-

anism in both labeled and unlabeled losses, we are helping the model structure its

euclidean space in a good way, using both labeled and unlabeled data.

5.4 Experiments

5.4.1 Datasets

We consider the DialoGLUE benchmark [97], a set of natural language understand-

ing benchmark for task-oriented dialogue, which contains three datasets for intent

detection: Banking77, HWU64 and Clinc150 – the three datasets were already avail-

able prior the release of DialoGLUE. Additionally, we also consider the Liu57 intent

detection dataset, as it contains the same order of magnitude of intent classes and is

user-generated as well. All datasets are public and in English. We already presented
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these datasets previously (Chapter 2, Section 2.5), and we provide a quick reminder

on their main characteristics here.

Banking77 The Banking77 dataset [21] classifies 13, 083 user utterances related
to into 77 different intents. This dataset i) is specific to a single domain (banking)
and ii) requires a fine-grained understanding to classify due to intents being very

similar. Following [97] and contrary to [21], we designate a validation set along a

training and a testing set for that dataset (Table 2.4).

HWU64 HWU64 [151] classifies 25, 716 user utterances with 64 user intents. It fea-
tures intents spanning across 21 domains (alarm, audio, audiobook, calendar, cook-
ing, datetime, …). When separating training, validation, and test labels, we ensure

each domain is represented only in one set of labels. This ensures the model learns

to discriminate between both intents and domains.

Clinc This dataset [76] classifies 150 user intents in perfectly equally-distributed
classes. This chatbot-like style dataset was initially designed to detect out-of-scope

queries, though, in our experiments, we discard the out-of-scope class and only keep

the 150 labeled classes to work with, as in [97].
Liu57 Introduced by [87], this intent detection dataset is composed of 54 classes. It
was collected on AmazonMechanical Turk, where workers were asked to formulate

queries for a given intent with their own words. It is highly imbalanced: the most

(resp. least) common class holds 5, 920 (resp. 24) samples
5.4.2 Experimental settings

Conditional language model and language model. For the BART fine-tuning

process, we used the defaults hyper-parameters reported in [82], and we fine-tuned

the BART model for a single epoch (two hours on a Titan RTX GPU). Increasing

the number of epochs for fine-tuning BART degrades performances on the intent

detection task: the downstreamdiverse beam search struggles to find diverse enough

beamgroups since themodel perplexity has been lowerwith further fine-tuning (this

is also hinted in [13]). Our text encoder 𝑓𝜙 is a bert-basemodel, and the embedding
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of a given sentence is the last layer hidden state of the first token of this sentence.

For each dataset, this model is fine-tuned on themasked languagemodeling task for

20 epochs. Then, the encoder of our meta learner is initialized using the weights of

this fine-tuned model.

Datasets From a dataset point-of-view, we create two data profiles: full (all the

training dataset is available, the usualmeta-learning scenario) and low (only 10 sam-

ples are available for each training class, an even more challenging meta-learning

scenario in which a model meta-learns on very few samples per training class). All

experimental setups are run 5 times. For each run, we randomly select training, val-

idation, and testing classes, as well as the samples for the low setting. We train the

few-shot models for a maximum of 10, 000 C-way K-shots episodes, evaluating and
testing every 100 episodes, stopping early if the evaluation accuracy has not pro-

gressed for at least 20 evaluations. We evaluate and test using 600 episodes, as in
other few-shot works [129, 26]. We compare the systems in the following standard

few-shot evaluation scenarios: 5-way 1-shot, and 5-way 5-shots.
Paraphrasing. At each episode, we draw 𝑈 = 5 unlabeled samples to generate
paraphrases from. For the back-translation baseline, we use the publicly available3

translation models from the Helsinki-NLP team. We use the following pivot lan-

guages: fr, es, it, de, nl, which yields 5 augmentations for each unlabeled sen-
tence. We also considered EDA [145] as a data augmentation technique. For this

approach, we use the base parameters pointed by authors, which are 10% synonym

replacements, 10% random insertions, 10% random swaps, and 10% random dele-

tions. To generate augmentations with EDA, we use the publicly available code by

the authors 4. For our experimentswithDiverse BeamSearch, we generate sentences

using 15 beams, group them into 5 groups of 3 beams. In each group, we select the
generated sentence which is the most different from the input sentence using BLEU

as a metric for diversity. This yields 𝑀 = 5 paraphrases for each unlabeled sen-

tence, as in the back-translation baseline. DBS uses a diversity penalty parameter to

penalize words that have already been generated by other beams to enforce diver-

sity. As advised in the original DBS paper [138], we set the diversity penalty to 0.5
3https://huggingface.co/models?search=helsinki-nlp
4https://github.com/jasonwei20/eda_nlp/
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in our experiments, which provides diversity while limiting model hallucinations.

Our Unigram Masking strategy’s masking probability is set to 𝑝mask = 0.7 found by
linear search from 0 to 1 with steps of 0.1.
orig: How long will my transfer be pending for?
back: How long will my transfer be on hold?
dbs_0: How long will my transfer be pending? I am in first year.
dsb_1: When are all transfers coming up and how many days are they expected?
dbs_2: If I have a transfer for a while, how long should I wait for it?

orig: I am not sure where my phone is.
back: I don’t know where my phone is.
dbs_0: I am not really sure where my phone is located
dsb_1: How can I find the location of any Android mobile
dbs_2: I don’t know where is my cell phone

orig: can you play m3 file
back: can you read m3 file
dbs_0: M3 files: can I play the entire M3 file?
dsb_1: Is there any way to play 3M files on Earth without downloading it
dbs_2: Is there any way to play M3 files on Windows?

Table 5.1: Examples of sentences (orig) paraphrased using back translation (back),
vanilla diverse beam search – DBS (dbs_0), DBS with unigrammasking (dbs_1) and
DBS with bigram masking (dbs_2)..

5.4.3 Evaluation of paraphrase diversity

We evaluate the diversity of paraphrases for each method, and report results for two

representative datasets in Table 5.2. For each paraphrasingmethod and each dataset,

metrics are computed over unlabeled sentences and their paraphrases. To assess the

diversity of paraphrases generated by the different methods, the popular BLEUmet-

ric in NeuralMachine Translation is a poor choice [9]. We still report it for reference.

To better assess the paraphrase diversity, we use the bi-gram diversity (dist-2) met-

ric as proposed by [61], which computes the number of distinct 2-grams divided by

the total amount of tokens. We also report the average sentence similarity (denoted

use) within each sentence set, using the Universal Sentence Encoder as an indepen-

dent sentence encoder. The higher the sentence similarity, the less diverse the para-

phrases. Results show that paraphrases obtained with back-translation are too close

to each other, resulting in a high sentence similarity and low bi-gram diversity. On
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the other hand, paraphrases issued by DBS aremore diverse, and less similar to orig-

inal sentences. Ourmasking strategies strengthen this effect and yield evenmore di-

versity. While our methods allows to generate paraphrases which are more diverse,

we still have to find out if they are not too diverse. If they are, then they might add

toomuch noise to the classifier, resulting in a performance decrease. Wewill discuss

this effect in the results section, where we will find out measured diversity strongly

correlates with the average accuracy of the intent detection task (Table 5.3).

Dataset Method
Metrics

BLEU dist-2 use

BANKING77

back-translation 56.0 0.183 0.896
DBS 34.2 0.200 0.807
DBS+bigram 0.1 0.228 0.702
DBS+unigram 0.2 0.343 0.613

HWU64

back-translation 40.2 0.307 0.888
DBS 19.5 0.340 0.769
DBS+bigram 0.1 0.350 0.692
DBS+unigram 0.5 0.407 0.628

Liu

back-translation 47.7 0.268 0.892
DBS 19.7 0.293 0.750
DBS+bigram 0.4 0.293 0.664
DBS+unigram 0.5 0.351 0.596

Clinc

back-translation 43.9 0.205 0.903
DBS 22.3 0.236 0.805
DBS+bigram 0.2 0.257 0.717
DBS+unigram 0.3 0.323 0.644

Table 5.2: Paraphrase diversity evaluation on all 4 datasets. The unigram variant
exposed here is using the flat masking strategy with 𝑝mask = 0.7. Up arrow(resp.
down arrow) indicate that higher (resp. lower) value results in higher diversity.

5.4.4 Intent detection results

In this section, we discuss the accuracy results for the different meta-learners, for

the standard 5-way and {1, 5}-shotsmeta-learning scenarios, as provided in Table 5.3.

The reported metric is the accuracy on the test set at the iteration where the valida-

tion set’s accuracy is maximal. Our DBS+unigram strategy row corresponds to the
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Datasets Accuracy stats

Profile Method
Banking HWU Liu Clinc (𝐴𝑉𝐺 ± 𝑆𝑇𝐷)𝐾 = 1 𝐾 = 5 𝐾 = 1 𝐾 = 5 𝐾 = 1 𝐾 = 5 𝐾 = 1 𝐾 = 5 𝐾 = 1 𝐾 = 5

low
profile

Prototypical Network 82.20 91.57 74.37 86.48 80.06 89.62 94.29 98.10 82.73 ± 2.32 91.44 ± 1.92

ours w/ BT 83.83 92.16 78.70 89.36 80.84 90.87 94.06 97.62 84.36 ± 1.15 92.50 ± 0.94

ours w/ EDA 83.93 92.60 78.35 89.83 81.46 91.49 93.72 97.48 84.37 ± 1.29 92.85 ± 0.98

ours w/ DBS 83.10 92.56 80.06 90.21 82.31 91.64 93.70 97.83 84.80 ± 1.26 93.06 ± 0.99

ours w/ DBS+bigram 86.04 93.55 82.09 91.57 83.60 92.71 95.11 98.23 86.71 ± 1.14 94.01 ± 1.05

ours w/ DBS+unigram 87.23 94.29 83.70 91.29 85.16 93.00 95.92 98.56 88.00 ± 1.22 94.29 ± 0.76

full
profile

Prototypical Network 86.28 93.94 77.09 89.02 82.76 91.37 96.05 98.61 85.55 ± 2.20 93.24 ± 1.22

ours w/ BT 87.46 94.47 81.31 91.44 84.14 92.67 95.19 98.36 87.02 ± 1.36 94.23 ± 0.82

ours w/ EDA 87.55 94.74 81.13 91.20 84.62 92.86 94.95 98.27 87.06 ± 1.24 94.27 ± 0.74

ours w/ DBS 86.94 94.50 82.35 91.68 84.42 92.62 94.85 98.41 87.14 ± 1.36 94.30 ± 0.60

ours w/ DBS+bigram 88.14 94.70 84.05 92.14 85.29 93.23 95.77 98.50 88.31 ± 1.43 94.64 ± 0.59

ours w/ DBS+unigram 89.56 94.71 84.34 92.55 86.11 93.70 96.49 98.74 89.13 ± 1.13 94.92 ± 0.57

Table 5.3: 5-way 1-shot and 5-way 5-shots accuracy on the test sets for each dataset. The oursmethod is ProtAugment (unsu-
pervised consistency loss using diverse paraphrases) equipped with different paraphrasing strategies. For each dataset × C-way
K-shot setting, we compute the average and the standard deviation over the 5 runs (see Section 5.4.2), so that the last two columns
contains average accuracy and ± the average standard deviations. For each data profile, we highlight the best method in bold.
We underline the methods on the low profile which perform better than the Prototypical Networks on the full profile. We
trained 400 different meta-learners – 5methods, 2 data profiles, 4 datasets, 2meta-learning setup (𝐾 = 1, 5) and 5 runs for each
configuration.
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flat masking strategy, with 𝑝mask = 0.7. First, all methods augmented with un-
supervised diverse paraphrasing outperform prototypical networks. However, back

translation demonstrates only a limited improvement over the vanilla prototypical

network due to their narrow diversity for short texts. The same conclusions can be

derived for the EDAapproach, yielding about the same results than back-translation.

While thismay come from the fact thatweused small perturbations amount (i.e. 10%

perturbation for all techniques of EDA), we respected the values recommended by

authors of the EDA paper. Using paraphrases from DBS yields better results – about

0.5 points over BT, on average –, hinting that using diverse paraphrases in the unsu-

pervised consistency loss allows the few-shot model to build more robust sentence

representations and therefore provides improved generalization capacities. Those

results are consistent across the different datasets, except for Clinc for which accu-

racies are all very high, making all methods hardly separable. The dataset is not

challenging enough, or in other words, meta-learning is robust to unbalanced short

text classification problems given the nature of that dataset.

These results illustrate the need for unsupervised paraphrasing and show that us-

ing diverse paraphrases provide a significant performance leap. In the 1-shot (resp.

5-shot) scenario, our bestmeta-learner improves prototypical networks by 5.27 (resp.2.85) points on average. Remember that these improvements are made in an unsu-
pervised manner hence at no additional cost. Slightly different from to [150], we

do not find statistical differences depending on the rate at which 𝐿̃ is annealed in
ProtAugment loss (𝛼 ∈ {0.25, 1, 4}), which makes it easier to tune – our unsuper-
vised loss serves as a consistency regularization. Detailed results for this finding are

available at Table 5.4.

Datasets Accuracy stats

Banking HWU Liu Clinc (𝐴𝑉𝐺 ± 𝑆𝑇𝐷)𝛼 𝐾 = 1 𝐾 = 5 𝐾 = 1 𝐾 = 5 𝐾 = 1 𝐾 = 5 𝐾 = 1 𝐾 = 5 𝐾 = 1 𝐾 = 5
1 87.23 94.29 83.70 91.29 85.16 93.00 95.92 98.56 88.00 ± 1.22 94.29 ± 0.76

0.25 86.71 94.17 82.71 91.19 85.52 93.11 95.99 98.44 87.73 ± 1.09 94.23 ± 0.85
4 86.90 94.14 83.26 92.35 84.48 93.17 95.69 98.49 87.58 ± 1.64 94.54 ± 0.81

Table 5.4: Performances of DBS+unigram strategies with different values of the loss
annealing parameter 𝛼. All strategies use 𝑝mask = 0.7. Overall, there is no significant
difference when changing the value of 𝛼.
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Adding our masking strategies on top of DBS has a significant impact on all

datasets, with the unigram variant being up about 2 points over the vanilla DBS on

average. On all datasets except Clinc, given only 10 labeled samples per class (low

profile), it even outperforms the supervised baseline which is given the full training

data (full profile). This means that ProtAugment does better than prototypical

networks with much less – 15 times, and up to 47 times, depending on the dataset –
labeled sentences per class. Those results indicate that our method more than com-

pensates for the lack of labeled data and that no matter the amount of data available

for the training class, there is a performance ceiling you cannot overcome without

adding unsupervised knowledge from the validation and test classes. In the full

profile, when given all the training data, our method greatly surpasses the Prototyp-

ical Network – 3.58 points given 1 shot, on average. Moreover, ProtAugment is

not only suited for the case where very little training data is available (low profile):

when sampling shots from the entire training dataset (full profile), it outperforms a

fully supervised baseline. Furthermore, note that our method is consistently more

stable than the supervised baselines, as its average standard deviation over the dif-

ferent runs is much lower than the vanilla Prototypical Network.

5.4.5 Masking strategies

Datasets Accuracy stats

Method
Banking HWU Liu Clinc (𝐴𝑉𝐺 ± 𝑆𝑇𝐷)𝐾 = 1 𝐾 = 5 𝐾 = 1 𝐾 = 5 𝐾 = 1 𝐾 = 5 𝐾 = 1 𝐾 = 5 𝐾 = 1 𝐾 = 5

DBSu-flat 87.23 94.29 83.70 91.29 85.16 93.00 95.92 98.56 88.00 ± 1.22 94.29 ± 0.76
DBSu-down 87.43 94.14 83.06 92.14 84.87 93.33 95.93 98.61 87.82 ± 0.84 94.55 ± 0.71
DBSu-up 86.18 94.12 83.30 91.21 85.14 93.15 95.84 98.30 87.62 ± 1.23 94.20 ± 0.70

Table 5.5: Performances of DBS+unigram (noted DBSu in this table for the sake of
clarity) strategies putting eithermore chance tomask first tokens (down), last tokens
(up), or the same chance to all tokens (flat). All strategies use 𝑝mask = 0.7. Overall,
there is no significant difference between the three strategies.

We experimented with three variants of the unigram strategy (Section 5.3.2),

each assigning a different drop chance to each token depending on its position in the

input sentence. We reported the results for those experiments in Table 5.5. Overall,

as numbers reported in this table indicate, we did not observe any significant differ-

ence in performance when putting more weight on the first tokens (down), or last
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5.5 Conclusion & Future Work

Meta-learning is very significant for machine learning since it is inspired by how hu-

mans learn from sets of mini-batch tasks and how we then generalize to similar yet

different configurations. In this chapter, we proposed ProtAugment, an architec-

ture for meta-learning for the problem of finding the intent of user-generated short-

texts. We first introduced an unsupervised paraphrasing consistency loss in the pro-

totypical network’s framework to improve its representational power. This novel ex-

tensionmimics themethod of prototypical networks by training themodel to retrieve

the original sentence based on prototypes computed using paraphrases. On the para-

phrase generation part, we demonstrated the lack of diversity for paraphrases issued

by back-translation. While this technique has shown great results in other NLP re-

lated tasks, we found that it is not sufficient when used on short texts. Indeed, as

showcased by the similarity scores, back-translation of short texts usually yields the

same sentence as the original one, or very close to. When we used sentences aug-

mented by the EDAmethod, it did not yield a very significant improvement over the

prototypical network baseline. To generate paraphrases which are more diverse, we

studied the diverse beam search algorithm, which was created to generate diverse

caption for images. As we used it for paraphrase generation, we realised it was de-

signed to enforce diversity between the generated texts, and it does not ensure diver-

sity between the generated texts and the original sentences. Tomake up for the latter,

we introduce constraints in the diverse beam search generation, further increasing

the diversity. Our thorough evaluation demonstrates that ProtAugment offers a

significant leap in accuracy for themost recent and challenging datasets. ProtAug-

ment vastly outperforms prototypical networks, which was found to be the most

competitive few-shotmethod for short-texts [37] with unsupervised-extended Proto-

typical Networks [117], against Matching Networks [139], Relation Networks [133],

and Induction Networks [49], therebymaking ProtAugment the new state-of-the-

art for this task. We provide the source code of ProtAugment as well as code for

evaluations reported in this chapter on a public repository 5.

5https://github.com/tdopierre/ProtAugment



Chapter 6

Conclusions

In this thesis, we studied various ways to answer the few-shot intent classification

problem. In the first chapter, we introduced the thesis’ context, as well as why label-

ing datasets is both time and energy costly. A gap emerges between large pre-trained

modelswhich are hungry in data, and the fact that such huge labeled datasets are not

easy to gather. This calls for algorithms which are able to learn from small datasets,

sometimes as small as having classes with only one sample. We then extensively de-

scribed the technical background knowledge required to situate this thesis. Models

applied to text have seen a very big shift in the last few years, from bag of words,

to word embeddings, to transformers. With the increasing use of neural networks,

classifiers have also changed a lot, usually growing in complexity and reaching bet-

ter performances. We also completely defined the meta-learning framework, where

learning is done in an episode-based fashion. In this framework, models are trained

to quickly adapt to new tasks at test time, which fits real scenariis, where use-cases

are evolving on a regular basis.

While few-shot learningmodels havemade someprogress in the recent years, the

comparison between them is unfair, as they were not using the same text encoder

at the time they were introduced. As a first contribution, to overcome this unfair

comparison issue, we studied the performances of such few-shot learning models

when they are equipped with a unique and recent transformer-based text encoder.

Given this encoder, we showed that prototypical networks claim the state-of-the-art

spot back. This finding is true both on the ARSC datasets, as well as 4 public intent

detection datasets. Though few-shot learning methods were introduced because of

113 of 153
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the inability of standard classifiers to perform well in low data regimes, we found

that such traditional classifiers were not doing so poorly when used on top of trans-

formers. Finally, we highlighted the importance of the distancemetric, as our exper-

iments with either euclidean or cosine yielded significantly better performances for

the former. This finding must not be taken for granted: in the future, if a completely

novel architecture is used to embed texts, it might completely change the structure

of the embedding space. Given this new structure, another distance metric might

be more suited. While, for us, the euclidean distance worked best, it is not perfect,

and not all datasets are structured the same way. As a future line of research, one

could find a way to extend such the euclidean distance to the metric learning do-

main. While in our experiments we did not find metric learning approaches based

on relationmodules particularly effective, one could experiment with a distance like

the Mahalanobis 1, which could be initialised to be equivalent to the euclidean dis-

tance to favor the metric learning optimization.

As a second contribution, we focused on pseudo-labeling techniques. In a con-

text where a large unlabeled dataset is available, one can utilize this dataset to derive

pseudo-labels, and use both labeled and pseudo-labeled data to train a classification

model. This forms a two-step process: pseudo-label generation and then, model

training. We introduced a novel way to generate pseudo-labels, which is based on

the hierarchical clustering mechanism. Our method is able to recover high qual-

ity pseudo-labels, voluntarily omitting data points which are hard to pseudo-label,

hence which might correspond to noise. Additionally, it does not rely on any hyper-

parameter, making it robust to different configurations. Finally, our method highly

complements others when aggregating pseudo-labels from various techniques. Our

experiments considered only one round of pseudo-labeling, then trained an intent

classification model on top. Still, we could have experimented with our algorithm

by running more pseudo-labeling iterations like in self-training, co-training, or tri-

training (see Section 2.4.3.1). Note nonetheless that our method has to be adapted

to the self-training case. Indeed, after running one iteration of pseudo-labeling, run-

ning the folding stepwould give the same tree structure, as this step does not take the

labels into account, and sentence representations would be the same. Additionally,

our unfolding step would also yield the same decomposition, and ultimately, our set

1https://en.wikipedia.org/wiki/Mahalanobis_distance
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of pseudo-labels would not change. For co-training or tri-training, this would not be

an issue, as pseudo-labels would also be derived from other methods.

Finally, in Chapter 5, we studied end-to-end few-shot learning. As unlabeled

data are cheap to collect, the main idea was to design a end-to-end few-shot classi-

fier which was able to learn from this unlabeled data. We created ProtAugment,

a novel extension of prototypical networks. This method mimics the mechanism of

prototypical networks and applies it on unlabeled episodes, created from unlabeled

data and their paraphrases. We tested our model using common data augmenta-

tion techniques like back-translation or EDA. While it yielded some improvements,

they were marginal at best. We quickly realised the reason was that such augmen-

tation techniques generate sentences which are very close to the original ones. To

make things better, we trained our own paraphrase generation model, and added

constraints to increase the diversity of generated texts. Those paraphrases, used in

our novel framework, yielded significant improvements over the supervised base-

line, especially when the amount of training data is very limited. In some cases, it

even outclassed the supervised baselinewhichwas givenmore labeled samples. This

unlabeled episode mechanism is not exclusively usable by prototypical networks,

as we are just applying their mechanism on this episode. As a future line of re-

search, one could experiment with those unlabeled episodes on other episode-base

meta-learning methods. In our experiments using EDA as a paraphrasing method,

we did respect the values recommended by the EDA paper for the amount of per-

turbed tokens. As we concluded that diversity tends to correlate with performances

of the downstream classifier, we could spend some more experiments using EDA

with higher amounts of perturbed tokens. Additionally, while the paraphrases we

generated under constraints are highly diverse and positively contribute to improv-

ing the classification model’s performances, there is one major drawback to such

method: the language. Indeed, our paraphrase generation model was first a BART

model, trained on english corpora. Then, we adapted 3 english paraphrase detection

datasets to the task of paraphrase generation to make BART a paraphrase generation

model. This makes our model english-only, and experiments on other languages are

not possible as is. Finally, a line of research is within the text generation model for

diverse paraphrasing. In ProtAugment, we are using a auto-regressive model and
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the left-to-right generation makes it hard to set generation constraints while obtain-

ing fluent result with the beam search algorithm. It is possible that this task may be

more suitable to non auto-regressive text generation [162], which could better en-

force generation constraints, especially by setting must-have tokens. While this falls

in the scope of the PhD thesis of an ongoing student at the laboratory, I contributed

to such experimentsmostly about themeta-learning framework I developed and that

can be easily reused in this case.

Overall, this thesis extensively studied few-shot intent classification. Labeled

data are costly to obtain, especially in the case where domain experts are required to

label such data. As there are not a lot of those experts, labeling data can also take a lot

of time. Whennounlabeled data are available, we exposed (Chapter 3) a state-of-the-

art of the various methods which can be used to address this problem. If unlabeled

data are available, then others techniques can be applied. In a human-in-the-loop

approach, if methods automatically assign a pseudo-label (Chapter 4) to unlabeled

data, it is much more efficient for a human to confirm or inform the pseudo-label

than selecting the correct label themselves. As this process can still take a lot of

time, end-to-end systems which are able to learn from both labeled and unlabeled

data are an option. We showed (Chapter 5) that adding lots of noise to unlabeled

samples greatly benefits the downstream classifier, especially in the extreme case

where very few samples are available for each training class.

All code used to run experiments showcased in this thesis is available in my own

github repository 2, so that future research can build upon those methods.

2https://github.com/tdopierre/



Chapter 7

Version Française

7.1 Introduction

7.1.1 Agents conversationnels

Le langage naturel est utilisé chaque jour par des milliards d’êtres humains pour

communiquer entre eux. Ces langues évoluent généralement avec le temps, avec

l’introduction de nouveaux concepts et de nouvelles façons de formuler ces con-

cepts, ou avec des mots qui disparaissent de la langue commune car ils sont utilisés

de moins en moins souvent. Si la communication peut se faire à l’aide de mots, il

existe également d’autres moyens de partager de l’information sans recourir aux dic-

tionnaires classiques. Par exemple, les emojis sont des moyens d’exprimer une idée

dont l’usage ne cesse de croître 1. Chaque année, de nouveaux emojis sont introduits,

créant de nouvelles façons d’exprimer une idée.

Si les langues de différents pays partagent certains aspects communs, les siè-

cles passent et les langues évoluent toutes différemment. Même à l’intérieur d’un

même pays, les dialectes sont différents selon les régions. Des personnes d’âges

différents utilisent également des mots différents, car les dialectes ont évolué en se

transmettant de génération en génération. Ces fluctuations dans la façon dont les

gens s’expriment rendent les langues difficiles à cerner par un ensemble de règles.

Néanmoins, dans notre espace numérique, il existe un besoin de traiter des con-

tenus exprimés dans ces langues multiples et en constante évolution. La façon la

1https://blog.emojipedia.org/emoji-trends-that-defined-2020/
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plus évidente de répondre à ce besoin est d’utiliser des algorithmes opérés par or-

dinateurs afin de pouvoir classer, trier, regrouper ou même générer des contenus.

Ce domaine de recherche en informatique est connu sous le nom de traitement au-

tomatique du langage naturel (TALN, ou NLP en anglais).

Compte tenu du nombre croissant de services en ligne disponibles, les technolo-

gies utilisant le TALN sont de plus en plus répandues. Cela va de la recherche de

spams dans les courriers électroniques à des tâches plus complexes telles que la

génération de romans par ordinateur ou le résumé de flux d’informations. Les tech-

nologies de TALN sont non seulement accessibles sur un ordinateur personnel, mais

elles sont également à portée de main des individus. Les utilisateurs de téléphones

mobiles modernes sont exposés à ces technologies quotidiennement, consciemment

ou non selon la technologie. Par exemple, l’autocorrection et la prédiction du mot

suivant sur le clavier d’un téléphone portable sont considérées comme une tech-

nologie basée sur le TALN, car elles analysent les phrases correctement écrites afin

de faciliter la vie de l’utilisateur.

L’un des plus grands défis que le TALN poursuit est de fournir des agents con-

versationnels complets qui seraient capables de discuter avec les humains afin de

les assister dans leurs activités. Cette thèse s’inscrit dans cette ère de recherche

comprenant regain d’intérêt pour construire de tels agents grâce aux architectures

neuronales [52]. Dans cette thèse, nous nous concentrerons sur l’application du

TALN aux agents conversationnels. La course à l’élaboration d’un agent conversa-

tionnel “intelligent” a commencé très tôt : en 1964, ELIZA, le premier programme

informatique conversationnel a été créé par Joseph Weizenbaum. Ce programme

informatique était basé sur un ensemble fixe de règles, qui donnait à l’utilisateur

l’illusion d’être compris, l’illusion d’avoir une vraie conversation. Dans le contexte

de l’économie numérique actuelle, les entreprises traitent plus de 265 milliards 2

de demandes clients par an, ce qui représente des dépenses pour les entreprises de

l’ordre de 1,3 trillion de dollars. L’utilisation de chatbots (une autre façon de désigner

les agents conversationnels dans ce manuscrit) pour traiter ces demandes pourrait

permettre d’économiser jusqu’à 30% de ce coût2.

Du point de vue des applications, les chatbots sont conçus à la fois pour

2https://www.ibm.com/blogs/watson/2017/10/how-chatbots-reduce-customer-service-costs-by-
30-percent/
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comprendre les requêtes utilisateur et fournir des réponses appropriées. L’une des

façons d’aborder le premier point est d’effectuer une classification des intentions,

c’est-à-dire d’essayer de comprendre quelle est l’intention exprimée dans la requête

de l’utilisateur. Par exemple, le modèle de classification devrait séparer “Je veux

commander une pizza” de “Je dois réserver un vol”. Pour la partie réponse, l’agent

conversationnel peut soit générer une réponse (modèle basé sur la génération), soit

extraire une réponse d’un ensemble de réponses possibles. Dans cette thèse, nous

nous concentrons sur la tâche de détection d’intention, qui tente de comprendre

et de catégoriser les requêtes des utilisateurs en classes d’intentions. Il s’agit

d’un cas particulier de la tâche de classification de texte standard, dans lequel les

contenus textuels sont générés par les utilisateurs (ce qui implique des problèmes

tels que l’hétérogénéité de la longueur, les erreurs grammaticales et de construction,

l’argot, …) et les classes sont généralement comptées par dizaines. A l’inverse, un

algorithme de détection de spam fait de la classification binaire. Pour construire

un modèle de détection d’intention, il faut donc s’attendre à avoir besoin d’une

grande quantité de données d’entraînement, car les approches modernes du langage

naturel reposent sur des réseaux neuronaux artificiels profonds [52, 137, 33], qui

sont gourmands en données. Compte tenu des fluctuations du langage humain

évoquées ci-dessus, de la variété des différentes langues ainsi que de leurs dialectes

propres, et du fait que les chatbots évoluent généralement avec le temps au fur et

à mesure de l’introduction de nouvelles fonctionnalités, la construction d’un jeu

de données d’entraînement robuste n’est pas une tâche simple. Au contraire, étant

donné le coût de l’annotation et le fait que de telles annotations peuvent être non

pertinentes dans un futur proche en raison de l’évolution du chatbot, ces derniers

sont souvent confrontés au cas où peu de données étiquetées sont disponibles pour

l’entraînement. Cette thèse étudie donc comment entraîner efficacement unmodèle

de détection d’intention pour les chatbots avec une quantité limitée de données,

ce qui est généralement un régime appelé “apprentissage few-shot” (Few-Shot

Learning, en anglais) tel que décrit dans la Section 2.4. Comme l’apprentissage

few-shot signifie toujours avoir quelques données d’entraînement (le scénario

sans données d’entraînemenr étant appelé apprentissage zero-shot [149] dans la

littérature), nous aborderons brièvement dans la section suivante les enjeux et les

problèmes de l’annotation des données.
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que le nombre croissant d’applications basées sur l’apprentissage automatique né-

cessitant des données étiquetées, la diminution du nombre d’annotateurs conduit

à une impasse. Pire encore, les tâches de traitement automatique des langues de-

venant de plus en plus complexes, la durée du processus d’annotation augmente, ce

qui entraîne une augmentation rapide des coûts. La compréhension automatique en

est un exemple [114] : il faut du temps aux annotateurs pour lire et traiter un para-

graphe, puis pour sélectionner la réponse à une question donnée sur ce paragraphe.

Pour les tâches de classification de texte plus standard, comme nous nous tournons

vers des jeux de données de plus en plus difficiles afin d’entraîner des modèles capa-

bles de prendre en charge des scénarios plus sophistiqués au fur et àmesure que nous

progressons dans la recherche, nous attendons plus de subtilité, donc d’efforts, dans

le processus d’annotation. Cette complexité accrue pour les annotateurs humains

est significative, et elle est amplifiée par la nécessité d’avoir plusieurs humains qui

annotent les mêmes échantillons afin d’obtenir des étiquettes plus fiables mais aussi

d’identifier les travailleurs malveillants.

Pour surmonter ce problème, nous recherchons des algorithmes qui ne sont pas

très gourmands en données, ou pour le moins, qui sont suffisamment performants

même s’ils ne disposent pas d’une grande quantité de données étiquetées. Les écarts

de performances entre de tels models dépendent de la tâche et du contexte. Dans

cette thèse, nous explorerons des pistes afin de lutter contre les délais temps et coûts

associés à l’annotation des données en essayant d’explorer des moyens pertinents

et efficaces pour limiter le besoin d’annotateurs humains. Il s’agit d’une part de ré-

duire le coût de construction d’unmodule de détection d’intention pour les chatbots.

D’autre part, plus on allége le besoin d’avoir recours à l’humain dans le processus,

plus la construction et l’amélioration d’un algorithme d’apprentissage dédié à la dé-

tection d’intention est rapide.

Cette thèse s’inscrivant à la fois dans un contexte académique (Laboratoire Hu-

bert Curien UMR CNRS 5516) et dans un contexte d’entreprise (Meetic de Match

Group), la section suivante présente quelques idées sur le chatbot industriel sur

lequel nos contributions peuvent être instanciées. Bien qu’aucune de nos contri-

butions ne soit spécifique à ce chatbot, cette prochaine section donne un aperçu des

questions pratiques qui motivent notre recherche.
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7.1.3 Lara, le chatbot de Meetic

Meetic est un site de rencontres français fondé en 2001. Avec des centaines de mil-

liers d’utilisateurs qui l’utilisent quotidiennement, il est l’un des sites de rencon-

tre les plus populaires en France. Créée en 2016, Lara est l’agent conversationnel

de Meetic. Lorsqu’elle interagit avec les utilisateurs sur l’application mobile, elle

couvre plusieurs objectifs (Figure 7.2). Dès le début de l’expérience utilisateur, elle

aide à créer son profil. Lorsque les utilisateurs rencontrent un problème, par ex-

emple lorsqu’ils perdent leur mot de passe, Lara est là pour les aider à résoudre

le problème. Cependant, l’essentiel de son travail consiste à agir comme un coach

en matière de rencontres. À ce titre, elle aide les utilisateurs à améliorer la qual-

ité de leur profil (par exemple, en remplissant les champs vides ou en choisissant

la meilleure photo), recommande des profils (plus de 70000 profils recommandés
par jour) et fournit des conseils personnalisés. Dans l’ensemble, elle reconnaît plus

de 300 d’intentions d’utilisateurs couvrant ces différents cas d’utilisation (ceci in-
dique le nombre de classes que nous considérons dans nos algorithmes de détection

d’intentions). Ces intentions évoluent en nombre et en portée avec le temps. Au

début de ma thèse, il y en avait moins de 30. Au fur et à mesure que les fonction-
nalités du site web ont évolué, et le comportement des utilisateurs aussi, nous avons

progressivement ajouté de plus en plus d’intentions pour mieux capturer les propos

des utilisateurs. Cela a donné lieu à des scénarios dans lesquels nous avions besoin

de méthodes de classification des intentions qui s’adaptent rapidement : ces adapta-

tion en continu sont difficilement compatibles avec la reprise d’un processus complet

d’annotation des données à chaque fois que des classes sont ajoutées, supprimées ou

partiellement fusionnées.

Lara parle également 6 langues, comme le montre la Figure 7.3. Bien que la

collecte et l’annotation de données en anglais et en français étaient possibles –

mais pénibles – pour nous, faire de même dans toutes les langues est d’un ordre de

grandeur. En outre, les données annotées en anglais sont plus fréquentes sur leWeb,

mais il est beaucoup plus difficile de trouver des jeux de données qui pourraient

être utiles dans les autres langues. Bien que l’on puisse soutenir que les systèmes de

traduction automatique neuronale [7] peuvent apporter une solution à ce problème,

nous démontrerons plus tard (Section 5.4.3) qu’ils ne sont guère une solution pour la

détection de l’intention de l’utilisateur étant donné les caractéristiques spécifiques
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Figure 7.3: Répartition du langage parlé par les utilisateur interagissant avec Lara

du texte généré par l’utilisateur. Dans l’ensemble, le multilinguisme accroît le

besoin d’une méthode capable de s’adapter rapidement à un nouveau contexte de

détection d’intention à partir de quelques données étiquetées.

7.2 Contributions

7.2.1 Sur l’importance des représentations de phrases pour les mod-

èles de type Few-Shot

Cette section récapitule la contribution détaillée dans le chapitre 3, et se base sur la

publication suivante

Thomas Dopierre, Christophe Gravier, Wilfried Logerais. “A Neural Few-Shot

Text Classification Reality Check”. In Proceedings of the 16th Conference of the

European Chapter of the Association for Computational Linguistics (EACL2021),

pages 935–943, 2021.

Dans cette contribution, nous avons tout d’abord identifié le besoin de disposer

d’un point de référence équitable et rigoureux pour comparer toutes les méthodes

d’apprentissage few-shot. Lesméthodes d’encodage de texte utilisées jusqu’à présent

étaient basées sur des représentations vectorielles de mots non-contextuelles. Les
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transformers [137, 33] ont radicalement changé la façon dont nous travaillons avec

le texte, et les méthodes d’apprentissage few-shot n’avaient pas encore été testées

en utilisant de tels modèles de langue. Tout d’abord, nous avons montré comment

nous pouvions adapter ces modèles de langage pour des textes courts générés par

des utilisateurs de manière non supervisée, avant de résoudre la tâche supervisée.

Cette étape supplémentaire est peu coûteuse, car elle ne nécessite aucun effort

d’étiquetage. De plus, dans le cadre d’un agent conversationnel, la collecte de

données non étiquetées est facile, car il suffit d’attendre que des utilisateurs réels

interagissent avec l’agent. Grâce à une analyse des représentations vectorielles,

nous avons montré que l’adaptation du modèle de langue permet déjà de séparer

les classes, ce qui signifie un meilleur point de départ pour la tâche en aval de la

classification de texte.

Nous avons ensuite établi une comparaison équitable des différentes méthodes

neuronales de bout en bout de classification de textes en ”few-shot” découvertes au

cours des dernières années. Lorsqu’elles sont toutes équipées d’un encodeur de texte

basé sur un transformer, nous avonsmontré que les réseaux prototypiques [129], qui

restent l’une des approches les plus simples et les plus directes, redeviennent l’état

de l’art. Nous avons également constaté qu’un modèle de classification traditionnel

entraîné sur quelques exemples donne des résultats très compétitifs. En termes de

paramètres, les réseaux prototypiques ne sont pas très lourds. Leurs bonnes perfor-

mances montrent que la majeure partie de l’apprentissage est assurée par les mod-

èles de langue, qui sont capables de représenter le texte en vecteurs d’une manière

qui n’était pas possible auparavant. Nous avons également confirmé l’impact de la

fonction de distance. Cette différence de performances, déjà observée par les auteurs

des réseaux prototypiques, est illustrée dans nos expériences avec toutes les méth-

odes qui nécessitent une métrique de distance prédéfinie. Globalement, nous avons

constaté que la distance euclidienne fonctionne mieux que la distance en cosinus.

Avec cette contribution, nous revisitons non seulement l’état de l’art, mais nous

construisons également une configuration complète afin d’implémenter, de tester et

de comparer d’autres contributions par rapport aux travaux existants, ce qui sera du

plus grand intérêt pratique pour la reproductibilité cette thèse et d’autres chercheurs
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de la communauté. La réimplémentation de toutes les méthodes existantes et la pré-

paration de ce cadre d’évaluation du méta-apprentissage ont occupé une partie im-

portante de mes premières années de thèse. Le code source complet (réimplémen-

tation et cadre d’évaluation) est disponible publiquement 5. A ma connaissance, ce

code est déjà utilisé par Raphäel Chevasson, un doctorant de deuxième année du

laboratoire travaillant sur une méthode non auto-régressive pour la génération de

texte, et Dina El Zein, une étudiante de Master de l’ENS Lyon dans notre équipe qui

a travaillé sur l’atténuation du biais de genre pour les cadres de méta-apprentissage.

J’espère que cette contribution publique aidera la communauté à s’appuyer sur des

expériences comparatives cohérentes, et à favoriser la classification de textes de bout

en bout dans un cadre few-shot.

7.2.2 Une méthode de pliage/dépliage pour le pseudo-étiquetage

Cette section récapitule la contribution détaillée dans le chapitre 4, et se base sur la

publication suivante

Thomas Dopierre, Christophe Gravier, Julien Subercaze, Wilfried Logerais.

“Few-shot Pseudo-Labeling for Intent Detection”. In Proceedings of the 28th In-

ternational Conference on Computational Linguistics (COLING2020), pages 4993–

5003, 2020.

Dans un cadre d’étiquetage, il est difficile pour l’annotateur de sélectionner

l’étiquette correcte si le nombre de classes est élevé, et ceci est amplifié si le volume

de données à annoter est élevé. Une approche possible consiste donc à faire

l’hypothèse d’une étiquette à une donnée non étiquetée étant donné sa proximité

dans l’espace de représentation. Ce processus est appelé pseudo-étiquetage [5].

Les pseudo-étiquettes résultantes peuvent alors être utilisées pour l’apprentissage,

laissant l’algorithme d’apprentissage gérer l’incertitude associée, ou laissant

l’annotateur décider si la pseudo-étiquette donnée est appropriée – il améliore

le processus d’annotation dans ce dernier cas. Dans ce contexte, la deuxième

contribution que nous présentons est un nouvel algorithme de pseudo-étiquetage

5https://github.com/tdopierre/FewShotText
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en deux étapes pour la détection des intentions. Cette méthode, inspiré du clus-

tering hiérarchique, est d’un intérêt pratique extrême pour aider les linguistes à

fournir plus rapidement de nouveaux modèles de détection d’intention. Notre

méthode, étant sans hyper-paramètres, est robuste à diverses situations, même

lorsque le nombre de classes est élevé. En écartant les clusters qui sont éloignés

des classes connues, elle est capable d’atténuer le bruit qui aurait été introduit dans

l’ensemble de données non étiquetées. Par le biais d’une étude d’ablation, nous

montrons également que notre méthode est complémentaire aux autres méthodes

déjà existantes, de sorte qu’elle contribue de manière significative aux approches

agrégées. Nous avons également démontré que si nous continuons à évaluer la

détection d’intention en utilisant des ensembles de données très faciles – mais

populaires – comme Snips, nous ne résolvons finalement pas la tâche réelle en aval

dans la pratique, et nous encourageons donc tous les chercheurs et praticiens de la

détection d’intention à l’utiliser avec prudence.

7.2.3 Extension des réseaux prototypiques à l’aide de données non

étiquetées et de paraphrases diverses

Cette section récapitule la contribution détaillée dans le chapitre 5, et se base sur la

publication suivante

Thomas Dopierre, Christophe Gravier, Wilfried Logerais. “ProtAugment: In-

tent Detection Meta-Learning through Unsupervised Diverse Paraphrasing”. In

Proceedings of the 59th Annual Meeting of the Association for Computational Lin-

guistics (ACL2021), pages 2454–2466, 2021.

Dans le domaine des agents conversationnels, il est facile et peu coûteux

de recueillir un grand nombre de requêtes d’utilisateurs non étiquetés, car les

utilisateurs interagissent avec l’agent quotidiennement. Étant donné quelques

données étiquetées et des données non étiquetées, nous voulons trouver un moyen

de combiner les deux afin d’obtenir un modèle robuste. Le méta-apprentissage est

très important pour l’apprentissage automatique car il s’inspire de la façon dont les

humains apprennent à partir d’ensembles de mini-tâches et de la façon dont nous

généralisons ensuite à des configurations similaires mais différentes. En guise de
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dernière contribution, nous avons proposé ProtAugment, une architecture de

méta-apprentissage pour le problème de détection d’intention dans les textes courts

générés par les utilisateurs. Nous avons d’abord introduit une fonction de coût de

cohérence de paraphrase, non supervisée, dans le cadre du réseaux prototypique

afin d’améliorer son pouvoir de représentation. Cette nouvelle extension imite

la méthode de ce réseau en entraînant le modèle à retrouver la phrase originale

sur la base des prototypes calculés à partir des paraphrases. En ce qui concerne

la génération de paraphrases, nous avons démontré le manque de diversité des

paraphrases issues de la rétro-traduction [40]. Bien que cette technique ait montré

d’excellents résultats dans d’autres tâches liées au TAL, nous avons constaté qu’elle

n’est pas suffisante lorsqu’elle est utilisée sur des textes courts. En effet, comme

le montrent les scores de similarité, la rétro-traduction de textes courts produit

généralement la même phrase que l’original, ou une phrase très proche. Lorsque

nous avons utilisé des phrases augmentées par la méthode EDA [145], cela n’a pas

donné une amélioration très significative par rapport au réseaux prototypique de

base. Pour générer des paraphrases plus diversifiées, nous avons étudié l’algorithme

de recherche de faisceau diversifié (Diverse Beam Search [138]), qui a été créé

pour générer des légendes diversifiées pour les images. En l’utilisant pour la

génération de paraphrases, nous avons réalisé qu’il avait été conçu pour renforcer

la diversité entre les textes générés, et qu’il ne garantissait pas la diversité entre

les textes générés et les phrases originales. Pour compenser ce dernier point, nous

introduisons des contraintes dans la génération, ce qui augmente encore la diver-

sité. Notre évaluation approfondie démontre que ProtAugment offre un bond

significatif en termes de performances sur les jeux de données les plus récents et les

plus difficiles. ProtAugment surpasse largement les réseaux prototypiques, qui

s’est avéré être la méthode few-shot la plus compétitive pour les textes courts [37]

avec les réseaux prototypiques étendus non supervisés [117], contre les réseaux

d’appariement [139], les réseaux de relations [133], et les réseaux d’induction [49],

faisant ainsi de ProtAugment le nouvel état de l’art pour cette tâche. Nous

fournissons le code source de ProtAugment ainsi que le code pour les évaluations

rapportées dans ce chapitre sur un dépôt public 6.

6https://github.com/tdopierre/ProtAugment
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7.3 Conclusion

Dans cette thèse, nous avons étudié différentes manières de répondre au problème

de la classification d’intentions de type “few-shot”. D’abord, nous avons présenté

le contexte de la thèse, ainsi que les raisons pour lesquelles l’étiquetage des jeux de

données est à la fois coûteux en temps et en énergie. Un fossé émerge entre les

grands modèles pré-entraînés qui sont avides de données, et le fait que de tels en-

sembles de données étiquetées ne sont pas faciles à rassembler. Il faut donc des algo-

rithmes capables d’apprendre à partir de petits ensembles de données, parfois aussi

petits que des classes avec un seul échantillon. Nous avons ensuite décrit demanière

extensive les connaissances techniques de base nécessaires pour situer cette thèse.

Les modèles appliqués au texte ont connu un très grand changement au cours des

dernières années, du sac de mots, aux représentations continues de mots, aux trans-

formers. Avec l’utilisation croissante des réseaux de neurones, les modèles de classi-

fication ont également beaucoup changé, augmentant généralement en complexité

et atteignant de meilleures performances. Nous avons aussi complètement défini le

cadre du méta-apprentissage, dans lequel l’apprentissage se fait par épisodes. Dans

ce cadre, les modèles sont formés pour s’adapter rapidement à de nouvelles tâches

au moment du test, ce qui correspond aux scénarios réels, où les cas d’utilisation

évoluent régulièrement.

Bien que les modèles d’apprentissage de type few-shot aient fait des progrès

ces dernières années, la comparaison entre eux est injuste, car ils n’utilisaient

pas le même codeur de texte au moment de leur introduction. Dans un premier

temps, afin de surmonter ce problème de comparaison injuste, nous avons étudié

les performances de ces modèles d’apprentissage few-shot lorsqu’ils sont équipés

d’un encodeur de texte unique et récent basé sur un transformer. Compte tenu

de cet encodeur, nous avons montré que les réseaux prototypiques revendiquent

la place de l’état de l’art. Cette constatation est vraie à la fois sur les jeux de

données ARSC et sur quatre jeux de données publics de détection d’intention.

Bien que les méthodes d’apprentissage few-shot aient été introduites en raison

de l’incapacité des modèles de classification standard à être performants dans les

régimes de données faibles, nous avons constaté que ces modèles traditionnels ne

se comportaient pas si mal lorsqu’ils étaient utilisés avec des transformers. Enfin,
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nous avons souligné l’importance de la métrique de distance, car nos expériences

avec la distance euclidienne celle du cosinus ont donné des performances significa-

tivement meilleures pour la première. Ce résultat ne doit pas être considéré comme

acquis : à l’avenir, si une architecture complètement nouvelle est utilisée pour

représenter des textes, elle pourrait changer complètement la structure de l’espace

des représentations. Compte tenu de cette nouvelle structure, une autre métrique

de distance pourrait être plus adaptée. Si, pour nous, la distance euclidienne a

donné les meilleurs résultats, elle n’est pas parfaite et tous les ensembles de données

ne sont pas structurés de la même manière. Dans une future ligne de recherche,

on pourrait trouver un moyen d’étendre cette distance euclidienne au domaine

de l’apprentissage de métrique. Alors que dans nos expériences, nous n’avons

pas trouvé d’approches d’apprentissage de métrique basées sur des modules de

relations particulièrement efficaces, on pourrait expérimenter une distance comme

la distance de Mahalanobis 7, qui peut être initialisée pour être équivalente à la

distance euclidienne afin de favoriser l’optimisation lors de l’apprentissage.

Comme deuxième contribution, nous nous sommes concentrés sur les tech-

niques de pseudo-étiquetage. Lorsqu’un grand ensemble de données non étiquetées

est disponible, on peut utiliser cet ensemble de données pour obtenir des pseudo-

étiquettes, et utiliser les données étiquetées et pseudo-étiquetées pour entraîner un

modèle de classification. Il s’agit d’un processus en deux étapes : la génération de

pseudo-étiquettes, puis l’entraînement du modèle. Nous avons introduit une nou-

velle méthode pour générer des pseudo-étiquettes, qui est basée sur le mécanisme

de regroupement hiérarchique. Notreméthode est capable de récupérer des pseudo-

étiquettes de haute qualité, en omettant volontairement les points de données qui

sont difficiles à pseudo-étiqueter, et qui pourraient donc correspondre à du bruit.

De plus, elle ne dépend d’aucun hyperparamètre, ce qui la rend robuste à différentes

configurations. Enfin, notre méthode est très complémentaire des autres lorsqu’il

s’agit d’agréger des pseudo-étiquettes provenant de différentes techniques. Nos

expériences n’ont considéré qu’un seul tour de pseudo-étiquetage, puis ont entraîné

un modèle de classification d’intention par-dessus. Néanmoins, nous aurions pu

expérimenter notre algorithme en exécutant plus d’itérations de pseudo-étiquetage

comme dans le self-training [99], le co-training [16] ou le tri-training [167] (voir

7https://en.wikipedia.org/wiki/Mahalanobis_distance
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Section 2.4.3.1). Notez néanmoins que notre méthode doit être adaptée pour le

self-training. En effet, après avoir exécuté une itération de pseudo-étiquetage,

l’exécution de l’étape dite du “pliage” donnerait la même structure arborescente,

puisque cette étape ne prend pas en compte les étiquettes, et les représentations

des phrases seraient les mêmes. De plus, notre étape de “dépliage” donnerait

également la même décomposition et, au final, notre ensemble de pseudo-étiquettes

ne changerait pas. Pour le co-training ou le tri-training, ce n’est pas un problème,

car les pseudo-étiquettes sont également obtenues via d’autres méthodes.

Enfin, dans le chapitre 5, nous avons étudié l’apprentissage few-shot de bout

en bout. Les données non étiquetées étant peu coûteuses à collecter, l’idée princi-

pale était de concevoir un modèle de classification few-shot de bout en bout capable

d’apprendre à partir de ces données non étiquetées. Nous avons créé ProtAug-

ment, une nouvelle extension des réseaux prototypiques. Cette méthode imite le

mécanisme des réseaux prototypiques et l’applique sur des épisodes non étiquetés,

créés à partir de données non étiquetées et de leurs paraphrases. Nous avons testé

notre modèle en utilisant des techniques courantes d’augmentation des données

comme la rétro-traduction ou EDA [145]. Bien que nous ayons obtenu quelques

améliorations, celles-ci étaient au mieux marginales. Nous avons rapidement com-

pris que la raison en était que ces techniques d’augmentation génèrent des phrases

très proches des phrases originales. Pour améliorer les performances, nous avons

formé notre propre modèle de génération de paraphrases, et ajouté des contraintes

pour augmenter la diversité des textes générés. Ces paraphrases, utilisées dans notre

nouveaumodèle, ont donné des améliorations significatives par rapport à la ligne de

base supervisée, en particulier lorsque la quantité de données d’entraînement est très

limitée. Dans certains cas, elles ont même surclassé la ligne de base supervisée qui

a reçu plus d’échantillons étiquetés. Ce mécanisme d’épisode non étiqueté n’est pas

exclusivement utilisable par les réseaux prototypiques, car nous appliquons simple-

ment leur mécanisme à cet épisode. Dans une future ligne de recherche, on pour-

rait expérimenter avec ces épisodes non étiquetés sur d’autres méthodes de méta-

apprentissage basées sur des épisodes. Dans nos expériences utilisant EDA comme

méthode de paraphrase, nous avons respecté les valeurs recommandées par l’article

d’EDA pour la quantité demots soumis à des pertubations. Comme nous avons con-

clu que la diversité a tendance à être corrélée avec les performances du classificateur
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en aval, nous pourrions faire d’autres expériences enutilisant EDAavec des quantités

plus élevées de mots perturbés. De plus, si les paraphrases que nous avons générées

sous contraintes sont très diversifiées et contribuent positivement à l’amélioration

des performances du modèle de classification, il existe un inconvénient majeur à

cette méthode : la langue. En effet, notre modèle de génération de paraphrases a

d’abord été un modèle BART [82], entraîné sur des corpus anglais. Ensuite, nous

avons adapté trois jeux de données de paraphrases anglaises à la tâche de généra-

tion de paraphrases pour faire de BART un modèle de génération de paraphrases.

Cela rend notre modèle uniquement anglais, et les expériences sur d’autres langues

ne sont pas possibles en l’état. Enfin, une ligne de recherche se situe dans le mod-

èle de génération de texte pour la paraphrase diverse. Dans ProtAugment, nous

utilisons un modèle auto-régressif et la génération de gauche à droite rend difficile

l’établissement de contraintes de génération tout en obtenant un résultat fluide avec

l’algorithme de recherche de faisceau. Il est possible que cette tâche soit plus adaptée

à la génération de texte non auto-régressive [162], qui pourrait mieux appliquer les

contraintes de génération, notamment en définissant desmots obligatoires. Bien que

cela relève du champ d’application de la thèse d’un étudiant en cours au laboratoire,

j’ai contribué à ces expériences principalement grâce au cadre deméta-apprentissage

que j’ai développé et qui peut être facilement réutilisé dans ce cas.

Dans l’ensemble, cette thèse a étudié de manière approfondie la classification

d’intentions de type ”few-shot”. Les données étiquetées sont coûteuses à obtenir, en

particulier dans le cas où des experts du domaine sont nécessaires pour étiqueter

ces données. Comme il n’y a pas beaucoup de ces experts, l’étiquetage des données

peut également prendre beaucoup de temps. Lorsque aucune donnée non étiquetée

n’est disponible, nous avons exposé (Chapitre 3) un état de l’art des différentesméth-

odes qui peuvent être utilisées pour résoudre ce problème. Si des données non éti-

quetées sont disponibles, d’autres techniques peuvent alors être appliquées. Dans

une approche “human-in-the-loop”, si les méthodes attribuent automatiquement un

pseudo-étiquette (Chapitre 4) aux données non étiquetées, il est beaucoup plus effi-

cace pour un humain de confirmer ou d’infirmer la pseudo-étiquette que de sélec-

tionner lui-même l’étiquette correcte. Comme ce processus peut encore prendre

beaucoup de temps, les systèmes de bout en bout qui sont capables d’apprendre à

partir de données étiquetées et non étiquetées sont une option. Nous avons montré
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(Chapitre 5) que l’ajout de beaucoup de bruit aux échantillons non étiquetés prof-

ite grandement au classificateur en aval, surtout dans le cas extrême où très peu

d’échantillons sont disponibles pour chaque classe d’apprentissage.

Tout le code utilisé pour exécuter les expériences présentées dans cette thèse

est disponible sur mon compte github 8, afin que les recherches futures puissent

s’appuyer sur ces méthodes.

8https://github.com/tdopierre/
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