
HAL Id: tel-03722753
https://theses.hal.science/tel-03722753

Submitted on 13 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizing Property-Preserving Compilation
Son Tuan Vu

To cite this version:
Son Tuan Vu. Optimizing Property-Preserving Compilation. Computer Arithmetic. Sorbonne Uni-
versité, 2021. English. �NNT : 2021SORUS435�. �tel-03722753�

https://theses.hal.science/tel-03722753
https://hal.archives-ouvertes.fr

SORBONNE UNIVERSITY

DOCTORAL THESIS

Optimizing Property-Preserving
Compilation

Author:
Son Tuan VU

Supervisors:
Ms. Karine HEYDEMANN

Mr. Arnaud de GRANDMAISON
Mr. Albert COHEN

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Doctoral School of Computer Science, Telecommunication and Electronics
(EDITE) of Paris

Computer Science Department

March 11, 2021

https://www.sorbonne-universite.fr
https://www.edite-de-paris.fr
https://www.edite-de-paris.fr

iii

Abstract

Nowadays, software is of major importance to our societies: we use it in almost every as-
pect of our lives. The majority of software is written in high-level programming languages,
then automatically translated and often optimized by a compilation chain into low-level ma-
chine code executable on the processor. However, target programs may present vulnerabil-
ities, even when the source program was assumed or proven secure with regards to a given
property (such as the presence of a security protection or secure coding patterns), primarily
due to code optimizations performed during the compilation process. In order to ensure that
binary compiled from a secure source program is still secure when it runs, engineers have
to either try to preserve the security properties along the compilation flow, or verify these in
the machine code using various binary analysis techniques, or both.

On the one hand, binary analysis performed on compiled programs usually requires
properties about the program, for example ones describing the expected program behavior
under a considered attack. These properties are naturally expressible as logical predicates
referring to denotations defined in the source program; as a result, an instinctive way to
provide binary analysis tools with these properties is to attach them to the program then
request the compiler to preserve these down to the machine code. On the other hand, source-
level security protections also need to be preserved by the compiler in order to produce
binary as secure as the source program. In fact, these protections can be preserved if the
compiler understands and maintains the underlying property associated to these. To this
end, we need to instruct the compiler on the intention and preservation of these protections
by specifying the associated properties. Therefore, property preservation is an important
feature for compilers in order to ensure target program’s security guarantees.

Unfortunately, property preservation is also a complicated feature to implement. Com-
piler optimizations—which focus solely on achieving better program performance, typically
by reorganizing computation and removing “useless” code—are not suitable by design for
preserving extra properties. The difficulty primarily lies in the fact that this information
usually are not explicit in the high-level source language, thus compilers have no notion of
the link between the extra properties and the code they refer to, and have no means to con-
strain transformations to preserve this link or to update the properties to adjust to any code
transformation.

This thesis presents our proposed solutions to the problem of preserving properties in-
troduced at the source level down to the machine code, throughout an optimizing compila-
tion flow. The foundation of our approaches lies in the opacification technique, which hides
information about an atom of operational semantics from compiler optimizations. We pro-
pose two different approaches with varying degrees of freedom for compiler optimizations,
and provide a formal proof of correctness for the more lightweight (in terms of additional
transformation constraints introduced) approach, as the latter may sound more sensitive to
aggressive optimizations, so its effectiveness cannot directly be seen.

We implement both approaches in LLVM—an optimizing compilation framework widely-
used in production—showing that preserving properties does not necessarily require signif-
icant modifications to compilers. We validate our approaches and their implementations on
a range of security-sensitive benchmarks. The findings show that our approaches provide a
novel, yet reliable means to preserve security-related properties throughout the optimizing
compilation flow, while still allowing the compiler to perform aggressive optimizations. As
a result, the work described in this thesis proposes a solution to the fundamental open is-
sue in security engineering of preserving source-level countermeasures through optimizing
compilation.

v

Contents

Abstract iii

1 Introduction 1
1.1 Context and Motivation . 2

1.1.1 Program Properties and Binary Analysis 2
1.1.2 Program Properties and Security Countermeasures 4

1.2 Challenges . 5
1.3 Thesis Contributions . 6
1.4 Thesis Organization . 7

2 Related Work 9
2.1 Preserving Functional Properties . 9

2.1.1 Functional Properties for Performance Optimizations 9
2.1.2 Functional Properties for Critical Real-time Systems 10
2.1.3 Functional Properties for Security Binary Analysis 12

2.2 Preserving Security Properties . 13
2.2.1 Classification of Security Properties 13
2.2.2 Fully-Abstract Compilation . 16
2.2.3 Secure Compilation Against Side-Channel Attacks 19

2.2.3.1 Cryptographic Constant-Time Preservation 20
2.2.3.2 Secret Erasure Preservation 21
2.2.3.3 Preventing Side-Channel During Compilation 22

2.2.4 Secure Compilation Against Fault Injection Attacks 23
2.2.4.1 Data Integrity Protection 23
2.2.4.2 Protecting Against Instruction Skips 24
2.2.4.3 Loop Protection . 24

2.3 Discussion . 24

3 Tools and Security Use-Cases 27
3.1 LLVM Compilation Infrastructure . 28

3.1.1 LLVM Overview . 28
3.1.2 LLVM Intermediate Representation 29
3.1.3 LLVM Metadata . 30
3.1.4 LLVM Code Generator . 30

3.2 DWARF debug format . 32
3.2.1 DWARF Overview . 32
3.2.2 Debugging Information Entry . 32

3.2.2.1 Describing Data . 32
3.2.2.2 Describing Executable Code 33

3.3 Security Use-Cases . 33
3.3.1 Sensitive Memory Data Erasure 34
3.3.2 Masking Computation Order . 36
3.3.3 Step Counter Incrementation . 38

vi

3.3.4 Control and Data Flow Redundancy 39
3.3.5 Constant-Time Selection . 41

3.4 Discussion . 42

4 Automated Property Preservation at Compile-Time 43
4.1 Definitions . 44
4.2 An Approach for Preserving Functional Properties 46
4.3 Putting it to Work . 49

4.3.1 Functional Properties in Source Code 49
4.3.2 Functional Properties in Machine Code 49
4.3.3 Observed Variables: Multiple Definitions and Debug Informa-

tion . 50
4.3.4 Functional Properties in LLVM 52

4.3.4.1 Functional Properties in LLVM IR 52
4.3.4.2 Functional Properties in LLVM MIR 54

4.4 Experimental Validation . 55
4.4.1 Methodology . 55
4.4.2 Functional Validation . 55

4.4.2.1 Validating Mechanism Correctness 56
4.4.2.2 Automating Binary Analysis 56

4.4.3 Preserving Security Protections 57
4.4.3.1 Sensitive Memory Data Erasure 58
4.4.3.2 Masking Computation Order 59
4.4.3.3 Step Counter Incrementation 60
4.4.3.4 Control and Data Flow Redundancy 61

4.4.4 Performance and Compilation Overhead Evaluation 62
4.4.4.1 Performance . 62
4.4.4.2 Compilation Time . 63

4.5 Discussion . 64

5 Source-Level Directives for Preserving Property 67
5.1 Problem Definition . 68

5.1.1 Mini IR Syntax . 68
5.1.2 Mini Intermediate Representation (IR) Operational Semantics . . . 69
5.1.3 Mini IR Observation Semantics 71
5.1.4 Program Transformations . 73
5.1.5 Happens-Before Relation . 75

5.2 An Approach for Preserving Observations 77
5.2.1 Mini IR Extension: Opaque Expressions 77
5.2.2 Opaque Chains . 80
5.2.3 Observation in action . 87

5.2.3.1 Helper Patterns . 87
5.2.3.2 Robust Observation . 88
5.2.3.3 Address-Value Pair Observation 90
5.2.3.4 I/O-Barrier-Based Observation 91
5.2.3.5 Value Opacification . 92

5.3 Putting it to Work . 94
5.3.1 Observation and Opacification in Source Code 94
5.3.2 Observation and Opacification in LLVM 95

5.3.2.1 Observation and Opacification in LLVM IR 95
5.3.2.2 Observation and Opacification in LLVM MIR 96

vii

5.3.3 Observation and Opacification in Machine Code 96
5.4 Preserving Security Protections . 97

5.4.1 Sensitive Memory Data Erasure 98
5.4.1.1 Mask Swapping Computation Order 98
5.4.1.2 Step Counter Incrementation 99
5.4.1.3 Control and Data Flow Redundancy 100
5.4.1.4 Constant-Time Selection 101

5.5 Validation . 103
5.5.1 Functional Validation by Checking Value Integrity and Ordering103
5.5.2 Security Protection Preservation Validation 105

5.6 Experimental Evaluation . 107
5.6.1 Experimental Setup . 107
5.6.2 Comparing to Unoptimized Programs 108
5.6.3 Comparing to Reference Preservation Mechanisms 108
5.6.4 Comparing to Alternative Implementations 109
5.6.5 Compilation Time Overhead . 111

5.7 Discussion . 112

6 Conclusion 115
6.1 Conclusion . 115
6.2 Perspectives . 116

Personal References 119

Bibliography 121

ix

List of Figures

3.1 Components of a three-phase compiler. 28

4.1 Overview of the compilation flow extensions. Grey boxes represent
new components. 53

4.2 Executed instructions w.r.t. -O0 baseline (horizontal red line), ordered
by optimization level -O1, -O2, -O3, -Os, -Oz 63

4.3 Compilation-time w.r.t. original program without functional property
annotations (horizontal red line), ordered by optimization level -O1,
-O2, -O3, -Os, -Oz. 64

5.1 Grammar of our Mini IR. The terminals literal, ident, un-op, bin-op are
the same as the corresponding C lexical tokens. 69

5.2 Extension of Mini IR to implement event and happens-before preser-
vation. 78

5.3 Speed-up of our approach over unoptimized original programs—ordered
by compiler option -O1, -O2, -O3, -Os, -Oz. The horizontal red line rep-
resents a performance ratio of 1. 108

5.4 Speed-up of our approach over reference preservation approaches—
I/O-barrier-based property-preserving mechanism (Chapter 4) for ap-
plications on the left side of the dotted line and programming tricks
(Simon, Chisnall, and Anderson, 2018) for the ones on its right side—
ordered by compiler option -O1, -O2, -O3, -Os, -Oz. The horizontal red
line represents a performance ratio of 1. 108

5.5 Speed-up of our compiler-native implementation over inline-assembly-
based implementation—ordered by compiler option -O1, -O2, -O3, -Os,
-Oz. The horizontal red line represents a performance ratio of 1. 111

5.6 Compilation time overhead on the Intel platform, compared to com-
piling the original programs at the same optimization level. The hor-
izontal red line represents a performance ratio of 1. 112

xi

List of Tables

5.1 Validation of different security applications. 7 indicates the scheme
is applied to the program, N/A indicates the scheme is not relevant to
the program. 3 indicates the scheme is validated for the program. . . . 106

xiii

List of Abbreviations

ACSL ANSI/ISO C Specification Language
AES Advanced Encryption Standard
AST Abstract Syntax Tree
CFG Control Flow Graph
CFI Control Flow Integrity
CPI Code Pointer Integrity
DAG Directed Acyclic Graph
DIE Debugging Information Entry
DWARF Debugging With Attributed Record Formats
Frama-C Framework for modular analysis of C programs
IoT Internet of Things
IFP Information Flow Preserving
IR Intermediate Representation
ISA Instruction Set Architecture
LTO Link-Time Optimization
MIR Machine Intermediate Representation
MLIR Multi-Level Intermediate Representation
RISC Reduced Instruction Set Computer
RSA Rivest-Shamir-Adleman
SCI Step Counter Incrementation
SMT Satisfiability Modulo Theories
SSA Static Single Assignment
WCET Worst Case Execution Time
WYSINWYX What You See Is Not You eXecute

1

Chapter 1

Introduction

Software has become a crucial part of our everyday lives. It is ubiquitous: we use
it in entertainment services, construction, transportation and warehousing, accom-
modation and food services, finance and insurance, health care and for so much
more. The majority of software is written in high-level programming languages:
they are easier and more efficient for programmers because they are closer to natu-
ral languages, so that programmers can tell more easily what the program will do.
Programs written in human-readable high-level languages are then translated into
low-level machine code, which finally gets executed on the processor.

The piece of software that does the translation between the program input by the
programmer (called the source program) and the program to execute on the proces-
sor (called the target program) is called compiler. It is a crucial piece of software for
programmers: only a correct compiler can ensure that the program will run accord-
ing to what they have written. Moreover, over the course of its history, the duties of
a compiler have significantly increased, from mere language translation to include
program analysis, code optimization and so forth.

The concern with language translation is that programs written in high-level
source languages implement some security guarantees, which unfortunately may
not exist anymore in the translated programs. This problem usually comes from
two different sources: (1) high-level programming languages offer security features
to programmers in the form of type systems, module systems, encapsulation primi-
tives and so forth, while most low-level machine languages run in commodity com-
puters do not offer these same features; (2) programmers devise and implement se-
curity countermeasures to protect the programs against specific attacks, however
these countermeasures do not affect the programs’ behavior, and thus can be altered
or removed by optimizations, because after all, the main responsibility of compilers
remains translating a source program into a destination program that is equivalent
in terms of behavior. In short, the problem is that what the programmer believes
to be a secure program may become not secure once it is compiled. The question
is then how can we ensure that what is a secure high-level program is still secure
when it is compiled and it runs. To address this concern, a number of alternatives
exist, for example software monitoring, software verification or secure compilation.
This thesis is concerned with the two last ones. The first direction consists in verify-
ing the security guarantees in compiled programs, which has lead to development
of various analysis techniques to be performed on machine code; while the second
direction aims at preserving the security guarantees along the compilation flow.

As will be explained in Section 1.1.1, software verification performed on com-
piled programs usually requires additional properties about the program such as
the expected value of a loop counter at a loop exit or a range of possible values of
an input variable. These properties can be naturally expressed at the source level
by referring to denotations defined in the source program. However, they are not

2 Chapter 1. Introduction

meant to modify the program’s semantics and thus should be introduced externally
to the code itself, for example in the form of annotations or comments. Once the
additional properties have been attached to the program, compilers need to convey
these to the machine code.

Regarding secure compilation, as will be presented in Section 2.2.2, traditional
approaches aim at producing destination programs that are as secure as their source
counterparts, i.e. enjoys security properties such as confidentiality or integrity. How-
ever, we tackle the issue with a slightly different angle. We consider source programs
hardened with some countermeasure schemes, and address the problem of produc-
ing destination programs containing these countermeasure schemes, which in turn
enforce the security properties of confidentiality or integrity. To this end, we ex-
press implicit assumptions of a security countermeasure scheme as properties that
refer to different denotations from the source program, then instruct compilers to
preserve these down to machine code. These properties can usually be expressed in
the form of assertion-like boolean expressions verifying the expected values of some
variables at a specific program point. In contrast to the countermeasure schemes that
are embedded into the program, these properties are not inherent in the code and
should also be introduced externally to the program, in order to not interfere with
the original program.

As a consequence, the problem considered in this thesis is that how can we reli-
ably maintain and propagate source-level program properties, which are not part of
the program’s semantics, through the compilation process, down to machine code.
As a matter of fact, preserving these properties throughout the compilation process
is notoriously hard, notably in presence of optimizations. Optimizations have long
been introduced into the compilation flow to produce more efficient machine code,
and have since then improved the program’s performance by leaps and bounds, to
the point that they become compulsory in compilation. This is usually achieved by
cleverly reorganizing computation and constantly removing code that they assume
“unnecessary”. On the downside, perhaps unsurprisingly, optimizations are by de-
sign not suitable for preserving additional program properties. This thesis focuses
on the study of the interaction between compiler optimizations and the preservation
of program properties, and presents our approach to reliably preserve properties
throughout optimizing compilation flow. This chapter introduces the topic, explains
the motivation and the challenges of this work, and presents the organization of the
thesis.

1.1 Context and Motivation

In this section, we present the context and motivation of the work in this thesis from
two different angles. We first approach the matter by introducing the needs for func-
tional properties when carrying out analyses on executable binaries, then demon-
strate the urge of preserving security properties through the compilation process,
which has been a long-standing open issue in security engineering. This also ex-
plains the emphasis on security of the thesis.

1.1.1 Program Properties and Binary Analysis

Research in software engineering and computer security has led to new approaches
for analyzing code for bugs and security vulnerabilities. There is a significant body
of work devoted to testing, verifying and certifying the correctness of applications.

1.1. Context and Motivation 3

The focus of such work is to determine whether the program can reach a bad state.
The common approach is to perform static analysis on source code written in a high-
level language. However, this suffers from a major drawback, manifested practically
as the so-called What You See Is Not What You eXecute (WYSINWYX) phenomenon
(Balakrishnan and Reps, 2010): there is a mismatch between what a programmer in-
tends (expressed in the source code) and what is actually executed by the processor
(dictated by the binary code), notably due to compiler optimizations. As a conse-
quence, although analyzes that are performed on source code are indeed a powerful
approach to detect bugs and vulnerabilities, they fail to spot ones that are invisible
in the source code and can only be detected by examining the binary code. In such a
context, the importance of binary analysis is on the rise. In fact, in many situations,
binary analysis is the only possible way to prove (or disprove) properties about the
code that is actually executed. This explains the substantial amount of effort that the
security research community has invested in developing analysis techniques to iden-
tify flaws in binary programs (Shoshitaishvili et al., 2016). Such analysis techniques
vary widely in terms of the approaches used and the vulnerabilities targeted, but in
general they face a common problem that might not be noticed at first glance: spec-
ification of the program’s correct behavior in order to determine if it is robust with
respect to the considered vulnerability. Propositional logic predicates—referring to
denotations from the source program—provide a simple yet powerful way of ex-
pressing the soundness of a program and its behavior; we refer to these as functional
properties.

For example, this is particularly true for robustness analysis against fault in-
jection attacks. These attacks can alter the system’s correct behavior by means of
physical interference such as variations in the supply voltage, variations of the ex-
ternal clock, or lasers (Yuce, Schaumont, and Witteman, 2018; Bar-El et al., 2004).
On micro-controllers and embedded processors, it has been observed, on different
architectures and for different fault injection means, that such attacks can randomly
corrupt a general-purpose register or skip the execution of an assembly instruction
(Moro et al., 2013). In fact, the latter is a specific case of instruction replacement but
the most frequent in practice (Moro et al., 2013), and is actually a major threat for em-
bedded systems. As a countermove, various countermeasures have been proposed
to protect programs against fault injections (Lalande, Heydemann, and Berthomé,
2014; Barry, Couroussé, and Robisson, 2016; Proy et al., 2017). These countermea-
sures then need to be verified and explained for certification purposes (Common
Criteria, 2017). To this end, it is mandatory to have additional information about the
property that must holds to ensure that the countermeasure is indeed effective and
robust against the considered attack.

Let us consider a common smart-card application, shown in Listing 1.1. The
verifyPIN function implements an authentication service through the comparison of
an user-provided PIN code (userPin) against the fixed card PIN code (cardPin), by
calling the utility function byteArrayCompare that returns 1 if PIN codes match and 0
otherwise (line 4). The user is allowed for a limited number of trials (ptc), initialized
to 3 and reset upon authentication (line 5). The flag auth indicates whether the user
has been authenticated and is initialized to 0.

A fault attack is considered successful if, for instance, the user is authenticated
with an erroneous PIN. Assuming a 4-digit PIN code, the property describing the
correct behavior of the application can be expressed using the following logic predi-
cate (auth == 0)|| (auth == 1 && userPin[0] == cardPin[0] && ... && userPin[3]
== cardPin[3]) that needs to be verified right before the function returns, at the

program point denoted by the label verify_point (line 11). More precisely, when the

4 Chapter 1. Introduction

1 unsigned verifyPIN ()
2 {
3 if (ptc > 0) {
4 if (byteArrayCompare(userPin , cardPin) == 1) {
5 ptc = 3;
6 auth = 1;
7 } else {
8 ptc --;
9 }

10 }
11 verify_point: /* Property checkpoint */ ;
12 return auth;
13 }

LISTING 1.1: PIN authentication.

program is subjected to fault injections, if the predicate is evaluated at this program
point and yields true, one can conclude that the program is robust with respect to
the considered property.

It has been shown that the final assembly code placement and memory layout
are of high importance, as some fault attacks may take advantage of them (Kelly,
Mayes, and Walker, 2017). Therefore, to take these machine-level details into ac-
count, fault attack vulnerability assessment must be performed on the binary code
(Bréjon et al., 2019; Given-Wilson et al., 2017; Laurent et al., 2019). As a result, the in-
formation about the considered property needs to be conveyed to the binary analysis
evaluating the correctness or robustness of the program. Currently, these properties
are either inserted manually at binary level (Goubet et al., 2015; Bréjon et al., 2019;
Laurent et al., 2019)—which is tedious and error-prone—or communicated via code
instrumentation such as assert (Given-Wilson et al., 2017). On the one hand, it is
handy to express the program property at the source level, where programmers still
have access to the high-level details of the program. On the other hand, relying on
code instrumentation evaluating functional properties at run-time is only acceptable
for evaluation and test and clearly not suitable for code used in production. Further-
more, compilers can make use of the code instrumentation to further optimize the
program, which is not at all the intent of the programmer when writing the origi-
nal program. In other words, it would be most beneficial to have an automatic way
to provide binary analysis with direct access to the source-level properties, and this
in a manner such that the properties do not interfere with the program itself but
rather are external to the code. With that being said, the natural direction consists
in propagating the functional properties, expressed at the source level, through the
compilation pipeline down to machine code, in parallel with program transforma-
tions.

1.1.2 Program Properties and Security Countermeasures

Not only the WYSINWYX phenomenon justifies the needs for binary analysis, it also
explains the so-called correctness-security gap of optimizing compilers, which arises
when a compiler optimization preserves the functionality of but violates a security
guarantees made by source code (D’Silva, Payer, and Song, 2015).

Let us illustrate this correctness-security gap through a well-known cryptogra-
phy scenario. The leakage of sensitive data such as secret keys is a major threat,
hence, programmers need to ensure the security property assuming the confiden-
tiality of such a value in their applications. A common way to do this consists in
erasing sensitive data from memory once they are no longer needed (Percival, 2014),

1.2. Challenges 5

including keys, seeds of random generators, and temporary encryption or decryp-
tion buffers.

However, this may not be as easy as it seems: security engineers have been
painfully fighting optimizing compilers to achieve their goal (Percival, 2014; Simon,
Chisnall, and Anderson, 2018). Consider the example in Listing 1.2. The secret
buffer containing sensitive information is allocated on the stack and should be

erased before returning from the function; this security protection is implemented
through a call to memset(). However, compilers will spot that secret goes out of
scope, meaning that access after the function returns is an error or has unspecified
behavior, hence will consider the call to memset() as unnecessary, removing the era-
sure as part of “dead store elimination”. The source code is designed to be secure
against exploits that access values that persist in memory, while the compiled code
does not preserve this guarantee despite “dead store elimination” being a sound op-
timization and despite the code in process_sensitive having well-defined seman-
tics.

1 void process_sensitive(void) {
2 uint8_t secret [32];
3 ...
4 memset(secret , 0, sizeof(secret));
5 verify_point: /* Property checkpoint */ ;
6 }

LISTING 1.2: Erasing a secret buffer on the stack.

At this point, we would like to emphasize that the security protection implies
a property—expressed as the logic predicate secret[0] == 0 && ... && secret[31]
== 0—that needs to be verified right before the function returns, at the program

point denoted by the label verify_point (line 5). This thus hints at a more general
challenge of preserving specific values at specific points of the program execution.
These points and values are associated with protection schemes and countermea-
sures dictated by security concerns, and they have to be preserved for security rea-
son, while also be traced down to machine code for verification purposes.

As will be shown in Section 3.3, applications are commonly secured by inserting
protections at source level, but compilers may fail to implement the programmers’
intentions as these protections often do not alter the program observable behavior,
resulting in unsafe machine code. Interestingly, these protections usually involve
implicit associated properties; we refer to these as protection-derived properties. If com-
pilers manage to maintain these properties, then the corresponding security protec-
tions will also be preserved. With that being said, a natural approach to guarantee
the presence of a given countermeasure scheme in the executable binary consists
in specifying the protection-derived properties to the compiler and instructing the
latter to propagate these properties down to machine code.

1.2 Challenges

Designing and implementing a property-preserving compilation framework is eas-
ier said than done. In fact, for additional properties which usually take the form of
functional properties kept external to the code, besides propagating them through
the compilation flow, we also have to take care of their consistency with the code
undergoing transformations and optimizations, as well as their embedding into the
compiled binary without interfering with the executable code itself. Compilers tra-
ditionally care about functional correctness and I/O effects: they have no notion of

6 Chapter 1. Introduction

the link between the extra properties and the code they refer to; they thus have no
means to constrain transformations to preserve this link or to update the proper-
ties to adjust to any code transformation. Optimizing compilers tend to remove ev-
erything that is not behaviorally observable, and extra properties are obviously not
supposed to modify the program logic. Hence compilers do not know how to main-
tain such information through the compilation flow. To further complicate matters,
variables referenced in program properties may also be affected by compiler opti-
mizations: an unused variable may be optimized out, i.e. completely removed from
the transformed program, thus invalidating the semantics of a given property.

As for security properties, they are not naturally captured as logical expressions
of the source program variables in general. However, it is possible to preserve them
at the binary level by maintaining the source-level security countermeasures de-
signed to enforce these properties. Unfortunately, as will be detailed in Section 2.2.3,
Section 2.2.4 and Section 3.3, optimizing compilers are known to be unreliable on
this aspect. We argue that a plausible solution consists in (1) devising a careful en-
coding of the security protection-derived properties as functions of source-level de-
notations or state (i.e. functional properties), as shown in the example from Section
1.1.2, then (2) leveraging the same mechanism of functional property preservation
to preserve these down to machine code, thus preserving their associated security
countermeasures.

Clearly, one of the biggest, if not the biggest challenge of propagating and pre-
serving properties lies in the way we manage the interaction of properties with code
optimizations. Perhaps the most straightforward approach (conception-wise but not
implementation-wise) is to define new transformation rules for each optimization,
taken into account the properties defined in source program. However, this is not at
all suitable for implementing in realistic optimizing compilers, which generally in-
clude hundreds of different optimizations; tuning each and every one of these opti-
mizations would be infeasible. As a result, we want to take a different route, seeking
to design a generic, optimization-agnostic mechanism to preserve properties during
compilation, so that it can be implemented in modern optimizing compilers.

1.3 Thesis Contributions

As explained in Section 1.1, there is evidently a need for a compilation framework
that, given program properties expressed in the source level, propagates the infor-
mation through the whole compilation process until the executable binary. The goal
of such a framework is twofold: it provides (1) additional information—usually tak-
ing the form of functional properties external to the program itself—required by
various analyses performed on the executable binary, and (2) a way to reliably spec-
ify security protection-derived properties and constrain compiler optimizations to
preserve them, thus allowing effective implementation of the countermeasures.

The high-level contribution of this work is a property- and optimization-agnostic
approach for preserving program properties throughout the optimizing compila-
tion flow. Furthermore, we seek to build a property-preserving compilation frame-
work by integrating our approach into an open-source, widely-used production
compiler, for the use of a broader community including security and compilation.
More specifically, the contributions of this thesis are:

• The construction of a first mechanism to propagate functional properties down
to machine code, while still generating optimized code. To this end, we for-
mally define the notion of functional property, and its preservation through

1.4. Thesis Organization 7

program transformations. We further show that the problem of functional
property preservation can be reduced to preserving observations, and apply
this latter to security countermeasure preservation.

• The design of a more lightweight mechanism to preserve observations through-
out the compilation pipeline, with minimal interference with compiler optimiza-
tions. Similarly, we formally define the notion of observation and its preser-
vation through program transformations. Moreover, we also provide a formal
proof of the mechanism’s correctness using a simplified intermediate program
representation.

• The implementation of both mechanisms in a widely-used production com-
piler with no modification to individual optimization passes.

In fact, our observation preservation mechanism has a broad range of potential ap-
plications, some of which we explore in detail, others we only discuss. More specif-
ically, we focus on leveraging the mechanism to reliably (1) propagate properties
needed for testing, inspecting or verifying machine code and (2) maintain security
protection-derived properties as a means to preserve the latter in machine code. The
same mechanism can also be used to improve the debugging process, as will be dis-
cussed in Section 6.2.

1.4 Thesis Organization

Chapter 2 presents the existing work on preserving program properties during com-
pilation. This ranges from preserving functional properties for improving optimiza-
tions (Section 2.1.1) or program analysis at binary level (Section 2.1.2 and Section
2.1.3), to secure compilation (Section 2.2) that seeks to preserve security properties
down to machine code. Chapter 3 describes the background information required
to support this work, as well as the different security use-cases that illustrate the
open problem in security engineering that we try to solve in this thesis. Follow-
ing that, Chapter 4 (resp. Chapter 5) describes our mechanisms to propagate and
preserve functional properties (resp. observations) throughout an optimizing com-
pilation flow, down to machine code. We also detail the implementation of these
mechanisms in an existing compiler widely-used in academic and industrial set-
tings, and validate our work on the motivating security use-cases presented in Chap-
ter 3. Finally, Chapter 6 concludes the thesis and discusses different perspectives of
this work.

9

Chapter 2

Related Work

This chapter presents a non-exhaustive state-of-the-art research work proposing dif-
ferent approaches to preserve properties throughout compilation. This also high-
lights the features required for a property-preserving compilation framework that
we seek to design.

The first section presents preservation approaches dealing with functional prop-
erties, while the second section focuses on security properties. Finally, we conclude
by describing some choices we have made which further clarify the scope of this
work.

2.1 Preserving Functional Properties

Compilers have long used functional properties, usually in the form of hints and an-
notations, for various purposes. Generally speaking, this can be classified into three
different categories, based on the goals of these uses by compilers: performance,
safety analysis and security analysis.

2.1.1 Functional Properties for Performance Optimizations

An optimizing compiler is commonly structured as a sequence of passes. Each pass
has a source program, which is analyzed and transformed to a target program, which
then becomes the source for the next pass in the sequence. By augmenting the analy-
sis phase of an optimization pass with information from additional program invari-
ants, expressed as functional properties, it is possible to significantly enhance the
quality and the effectiveness of optimization passes. These invariants may be sup-
plied externally via a correctness proof or a static analysis of the source program. For
example, consider a program which uses McCarthy’s 91 function (Manna and Mc-
Carthy, 1969), which we write as M91(x). The original function is doubly recursive,
but has the simple property that, given an input x, the result is 91 if x ≤ 100, and
(x− 10) otherwise. Suppose that this invariant is supplied from a correctness proof,
external from the compiler analysis phase, a compiler may then replace an invoca-
tion of this function y = M91(x); with the following substantially simpler conditional
statement: y = (x <= 100)? 91 : (x - 10);.

As previously stated in Section 1.2, the key technical challenge is to accurately
propagate the properties through multiple optimization passes. The difficulty arises
because an optimization may alter program structure in arbitrary ways. For in-
stance, it can removes portions of the program, add fresh variables and statements,
or reorder statement executions. Therefore, a property, in order to be usable by
subsequent optimization passes, cannot simply be copied over unchanged from the
source to the target program of an optimization.

10 Chapter 2. Related Work

An approach has been proposed to (initially) show that a program transforma-
tion is correct by augmenting a transformation with an auxiliary witness generation
procedure (Namjoshi and Zuck, 2013). For every application of the transformation,
the witness generator constructs a witness relation, between the source and the tar-
get programs of the considered transformation, which guarantees the correctness of
that transformation instance. A witness relation connects the values of source and
target variables at corresponding program locations. Typically, it encodes invariants
about the source and target programs, which are enferred during the analysis phase
of an optimization. For instance, “constant propagation” generates assertions about
which variables of source program are constant at each program point, while “dead
code elimination” depends on a liveness analysis that generates assertions about the
live variables, also at each program point.

In passing, the authors leverage the witness relation to implement the propaga-
tion of externally supplied functional properties. They show that a source program
invariant (which may be supplied externally or computed internally as part of the
analysis phase of an optimization pass) can be propagated to the target program by
computing its pre-image with respect to the witness relation. An implementation
of the methodology in the LLVM compiler framework (Lattner and Adve, 2004) has
been later presented as a proof of concept (Namjoshi, Tagliabue, and Zuck, 2013).
It supports a limited set of instructions (enough to represent while programs over
the integers) and a small set of transformations (simple constant propagation, dead
code elimination and loop invariant code motion). The generated witnesses are
checked for validity with the Z3 Satisfiability Modulo Theories (SMT) solver (Moura
and Bjørner, 2008).

Since the proposed approach augments each optimization pass with a witness
generator, it requires that the optimization procedures be known and could be ex-
amined. In fact, witness generation is not expected to be performed automatically:
it assumes accesses to the optimization code and full knowledge of the optimization
procedure. Furthermore, once the externally supplied invariants are consumed by
a given optimization, and that no downstream optimizations will make use of these
invariants, they will not be propagated any further in the compilation flow. More-
over, it is unclear how the proposed approach prevents optimizations that invalidate
the semantics of invariants from happening. For instance, the witness relation only
provides correspondences of variables referred in invariants before and after a given
transformation, but does not actually forbid the transformation to remove such a re-
ferred variable but unused anywhere else in the program.

2.1.2 Functional Properties for Critical Real-time Systems

For hard real-time systems, it is not only crucial that the software computes the cor-
rect result, but also that this happens in a timely manner. One needs to determine
the Worst Case Execution Time (WCET) of critical parts of the software to get an em-
bedded system certified. WCET estimation has to be computed at the machine code
level, because the timing of processor operations can only be obtained at this level.
Information on program control flow is required to calculate WCET as accurately
as possible. This information is called flow facts and takes the form of source code
annotations about, for example, loop bound information (the maximum number of
times a loop iterates, regardless of the program input), infeasible paths and program
points that are mutually exclusive during the same run (aiT; Ballabriga et al., 2010).
Interestingly, the source code annotations have also been used to express additional
functional properties asserting some specific values of variables at a given program

2.1. Preserving Functional Properties 11

point (Schommer et al., 2018; Eder et al., 2016), which might allow for more accurate
WCET analysis.

Modern compilers translate high-level languages into binary code while apply-
ing hundreds of optimizations to deliver more performance. Some of them do not
challenge the consistency of flow facts, whereas others radically modify the program
control flow. As a result, it is usually very difficult to match the structure of the bi-
nary code with the original source code, and hence to port flow facts from high-level
to low-level representations. Even when the structure of the binary and source code
seem to match, there may be important changes of loop bound information, through
optimizations such as loop unrolling or loop re-rolling. Using the flow facts obtained
at the source code level or using best-effort methods for matching source code and
binary code may be misleading. It is thus required to transform the flow facts of the
program in accordance with the program compilation.

Various approaches have been proposed by the WCET community to address
the issue (Kirner, 2003). Using the available debug information of the compiler can
sometimes work as a simple mapping solution. In case of aggressive code optimiza-
tions, it is required to get additional support by the compiler. The simplest approach
would be to transform the flow facts manually from the source code to the binary
code (Li and Malik, 1997). This technique is simple to implement but hard to main-
tain in case of program updates and is potentially error-prone. Another approach
would be to let the compiler generate a code optimization and transformation trace
(Engblom, Ermedahl, and Altenbernd, 1998). However, this is too complex to sup-
port all types of optimizations. An alternative approach is to let the compiler do
the mapping and generation of the correct flow facts of the binary code (Kirner and
Puschner, 2001). This approach requires more compiler modifications but provides
the most flexible support for code optimizations, thus will be examined more closely
in the following.

Recently, a compiler framework (Li, Puaut, and Rohou, 2014), based on LLVM
version 3.4, in which annotations on the source code are transformed into annota-
tions on the binary level in the presence of compiler optimizations, has been pro-
posed. For each LLVM optimization that modifies the program Control Flow Graph
(CFG), a set of associated transformation rules (change rule, removal rule and addi-
tion rule) are defined in agreement to the CFG modifications. When the optimiza-
tion pass is executed, the corresponding rules are applied to transform flow facts
accordingly. As a consequence, this approach assumes deep understanding of the
considered optimization algorithm in order to determine the transformation rules
to be applied to flow fact annotations. Furthermore, only two types of flow facts
are covered: loop bounds and additional flow constraints that are linear relations on
execution counts of basic blocks. Therefore, other optimizations that do not modify
the program CFG are not concerned; the mechanism is then not directly applicable
to preserving functional properties in general.

Other work proposes an automatic mechanism to maintain annotations (express-
ing either flow facts or functional properties) from the source to the machine code
level (Schommer et al., 2018). This is implemented in CompCert compiler, a for-
mally verified and moderately optimizing compiler for C (Leroy, 2006; Leroy, 2009).
A __builtin_ais_annot builtin is introduced as an extension of the C language into
CompCert. Annotations via these builtins look like a call to a variadic function sim-
ilar to printf: the first argument contains the annotation and is also a format string.
It can contain format specifiers like %here or %ei, where the former will be replaced
with the absolute address of the annotation location in the final executable, while the

12 Chapter 2. Related Work

latter will be replaced with the location where the values of the ith additional argu-
ment resides. CompCert treats __builtin_ais_annot as a call to an external function.
No actual code is generated for the call, but the arguments of the builtin will be
evaluated. The execution of the call is modeled as producing an observable event
that includes the annotation string and the values of the arguments. CompCert’s
formal proof of semantic preservation guarantees that (1) annotations are not erased
during compilation, unless they occurred in parts of the code that are unreachable
during execution, and (2) they are neither reordered nor moved in the generated
code, relatively to each other and relatively to other observable actions (such as ex-
ternal function calls and accesses to volatile variables). At the end of the compi-
lation flow, CompCert collects all annotations contained in a compilation unit and
stores them in an encoded form in a special section of the object file. Clearly, this
approach seems to be a good solution to propagate functional properties from the
source to the machine code level. Nevertheless, some issues may arise. The mech-
anism does not rule out the possibility that optimizations would move annotations
around other non-observable computations. Although this is not the case for Com-
pCert’s optimizations, which are conservative and make no attempts to optimize
around calls to unknown functions, it would be a serious problem when consider-
ing more aggressive optimizations from modern production compilers. For instance,
classic loop optimizations would combine poorly with the annotation mechanism.
First, most optimizations over loop nests, such as loop interchange or loop blocking,
change the order in which iterations are performed. Therefore, they do not apply
if the loop body can perform observable operations such as __builtin_ais_annot.
Second, optimizations such as loop unrolling will modify the number of loop iter-
ations (unrolling by a factor of k divides the number of iterations by k), while not
being allowed to adjust the annotations, because this would change the observable
behavior of the annotation according to the formal semantics. In short, by model-
ing program properties as observable events, the approach also implicitly creates
barriers for many optimizations. Although our first proposed solution, described
in Chapter 4, also relies on observable events to prevent optimizations from elim-
inating program properties, in Chapter 5, we show that properties need not be so
restrictive (in terms of transformation constraints) in order to be preserved in opti-
mizing compilation pipeline.

The ENTRA (Whole-Systems ENergy TRAnsparency) project Deliverable D2.1
(Eder et al., 2016) describes a similar mechanism to transfer flow facts and func-
tional properties from source to machine code. Data and control flow properties are
encoded as comments written as inline assembly expressions, relying on the com-
piler to preserve the local variables listed as inputs to the inline assembly. These
expressions are declared as volatile I/O side-effecting to maintain their position in
control flow relative to other code. As a result, the mechanism prevents certain op-
timizations from happening. Furthermore, this work does not attempt to formalize
the preservation of properties as a correctness requirement, instead, the proposed
mechanism relies on known and implementation-specific limitations of the compiler.

2.1.3 Functional Properties for Security Binary Analysis

As previously stated in Section 1.1.1, additional information about the program’s ex-
pected behavior is required in order to carry out analysis assessing the correctness or
robustness of the binary program. However, this problem has never been thought-
fully studied, since it is usually considered only as a secondary problem for security
binary analysis frameworks. In general, program properties are given to the analysis

2.2. Preserving Security Properties 13

tools manually after a tedious and error-prone process of binary code inspection in
order to determine the locations, in the executable binary, where the values of dif-
ferent variables occurred in the program properties are stored (Goubet et al., 2015;
Bréjon et al., 2019; Laurent et al., 2019). Other work on automated process for detect-
ing fault injection vulnerabilities in binaries has considered alternative solutions to
such a manual approach (Given-Wilson et al., 2017). Properties to be validated and
checked are expressed as assert statements in the source code. However, this is not
satisfactory: assertions are only acceptable for executables in testing environments
and are not suitable for use in production, as they generate run-time checks and thus
consume extra execution time.

In short, the question of propagating additional properties down to machine
code has always been considered as a side problem in security binary analysis com-
munity and thus has been subject to little research. However, we consider this as
one of the main focuses of this thesis, and show that this allows for automated bi-
nary analysis (cf. Section 4.4.2.2).

2.2 Preserving Security Properties

Secure compilation is an emerging field aimed at developing compilers that preserve
the security properties of the source programs they take as input in the target pro-
grams they produce as output. In the broadest sense, the goal of secure compilation
research is to devise more secure compilation chains. Since there are many differ-
ent ways to define "more secure", there are also many different notions of secure
compilation. This section presents these different angles.

We first start by giving a broad classification of security properties widely-accept-
ed by the community. Next, we introduce formal approaches to secure compila-
tion with a focus on those that prove fully-abstract compilation, which has been
the criterion adopted by much of the literature thus far. We then discuss existing
work studying the interplay between side channels and secure compilers. Finally
we present work that covers compiler implementations tailored to addressing fault
injection attacks, but does not take a formal approach.

2.2.1 Classification of Security Properties

Computer security properties express what computer systems may and may not do.
For example, a security property might stipulate that a system may not allow a user
to read information that belongs to other users, or that a system may not delay too
long in making a resource accessible to a user. Security properties have long been
formulated in terms of a tripartite taxonomy: confidentiality, integrity and availability,
which is hence called the CIA taxonomy:

• Confidentiality is the protection of information and system resources from
unauthorized disclosure.

• Integrity is the protection of information and system resources from unautho-
rized modification.

• Availability is the protection of information and system resources from loss of
use.

Although this is an intuitive categorization of security requirements, unfortunately,
it is not supported by formal, mathematical theory: there is no formalization that si-
multaneously characterizes confidentiality, integrity and availability. Furthermore,

14 Chapter 2. Related Work

these elements are not completely orthogonal: for example, the requirement that a
system be unable to read a value could be interpreted as confidentiality or unavail-
ability of that value. Moreover, the CIA taxonomy provides little insight into how to
enforce security requirements, because there is no verification methodology associ-
ated with any of the taxonomy’s three categories.

This situation is similar to that of program verification in the 1970s. Many specific
properties of interest had been identified, such as partial and total correctness, mu-
tual exclusion, deadlock and starvation freedom, etc. But these properties were not
all expressible in some unifying formalism, as they also are not orthogonal. These
problems were addressed by the development of the theory of trace properties (Lam-
port, 1977; Alpern and Schneider, 1985). A trace is a sequence of execution states,
and a property is a first-order predicate (i.e. a boolean function) that either holds or
does not hold. Thus a trace property either holds or does not hold over an individual
execution sequence.

Some security properties are expressible as trace properties. For example, con-
sider the property stating that “the system may not write to the network before read-
ing from the terminal”. Formally, this is defined by the following set of traces:

{t = s0s1 . . . | ¬(∀i, j ∈N : i < j ∧ isNetworkWrite(si) ∧ isTerminalRead(sj))},

where isTerminalRead(s) and isNetworkWrite(s) are state predicates with the expected
meaning.

Another example is the trace property “access control” requiring every operation
to be consistent with its requestor’s rights:

{t = s0s1 . . . | (∀i ∈N : rights(si) ⊆ acm(si)[sub(si), obj(si)])},

where function acm(s) yields the access control matrix in state s, function sub(s)
yields the subject who requested the operation that led to state s, function obj(s)
yields the object involved in that operation, and function rights(s) yields the rights
required for the operation to be allowed.

As another example, “guaranteed service” is a trace property requiring that ev-
ery request for a service is eventually satisfied:

{t = s0s1 . . . | (∀i ∈N : isReq(si) =⇒ (∃j > i : isRespToReq(sj, si)))},

where predicate isReq(s) identifies whether a request is initiated in state s, and pred-
icate isRespToReq(s′, s) identifies whether state s′ completes the response to the re-
quest initiated in state s.

Unfortunately, trace properties are not expressive enough to capture a large class
of security properties, since some important security properties cannot be expressed
as properties of individual execution traces of a system. For example, “noninterfer-
ence”, as defined by Goguen and Meseguer (Goguen and Meseguer, 1982), is one
of the most common examples of information-flow security properties. It is a confi-
dentiality policy requiring that commands executed on behalf of users holding high
clearances have no effect on system behavior observed by users holding low clear-
ances. It is not a property of individual traces, because whether a trace is allowed
by the policy depends on whether another trace (obtained by for example deleting
command executions by high users) is also allowed. For another example, “stipu-
lating a bound on mean response time over all executions” is an availability policy
that cannot be specified as a property of individual traces, because the acceptability
of delays in a trace depends on the magnitude of delays in all other traces. Rather,

2.2. Preserving Security Properties 15

they are properties of sets of execution traces, also known as hyperproperties (Clark-
son and Schneider, 2010). Intuitively, a hyperproperty either holds or does not hold
over a set of traces. Thus, a hyperproperty can be defined by a set of sets of traces,
or equivalently a set of trace properties.

Let us now consider the example of information-flow security properties. These
properties express restrictions on what information may be learned by users of a
system. Users interact with systems by providing inputs and observing outputs. To
model this interaction, define ev(s) as the input or output event, if any, that occurs
when a system transitions to state s. Assume that at most one event, input or output,
can occur at each transition. For a trace t, let us extend this notation to ev(t), denot-
ing the sequence of events resulting from application of ev(·) to each state in trace
t. Further assume that each user of a system is cleared either at confidentiality level
L, representing low (public) information, or H, representing high (secret) informa-
tion, and that each event is labeled with one of these confidentiality levels. Define
evL(t) to be the subsequence of low input and output events contained within ev(t),
and evHin(t) to be the subsequence of high input events contained within ev(t). Ac-
cording to Goguen and Meseguer (Goguen and Meseguer, 1982), “noninterference”
requires that commands issued by users holding high clearances be removable with-
out affecting observations of users holding low clearances. Treating commands as
inputs and observations as outputs, it can be modeled as a hyperproperty requiring
a system to contain, for any trace t, a corresponding trace t′ with no high inputs yet
with the same low outputs as t. Formally, let TP denote the set of all trace properties,
“noninterference” is defined by the set of sets of traces:

{T ∈ TP | (∀t ∈ T : (∀t′ ∈ T : evHin(t
′) = ∅ ∧ evLout(t) = evLout(t

′)))}

A more generic variant of “noninterference” may require that commands issued
by users holding high clearances be different without affecting observations of users
holding low clearances. Still treating commands as inputs and observations as out-
puts, such security policy can be formally modeled as a set of sets of traces:

{T ∈ TP | (∀t ∈ T : (∀t′ ∈ T : evHin(t) 6= evHin(t
′) ∧ evLout(t) = evLout(t

′)))}

As another example of hyperproperty, consider the “service level agreement”
property which specifies acceptable performance of a system, using different statis-
tics such as mean response time (mean time elapsed between a request and a re-
sponse) or percentage uptime (percentage of time during which system is available
to accept and service requests). These statistics can be used to define properties
with respect to individual executions of a system or across all executions of a sys-
tem. In the former case, “service level agreement” would be a trace property. For
example, the property stating “the response time in each execution is less than 1
second” might not be satisfied by a system if there are executions in which some
response times are much than 1 second. Yet if these executions are rare, then the
system might still satisfy the property “the mean response time over all executions
is less than 1 second”. This latter “service level agreement” is not a trace property,
but it is a hyperproperty:

{T ∈ TP | mean

(⋃
t∈T

respTimes(t)

)
≤ 1},

16 Chapter 2. Related Work

where function mean(X) denotes the mean of a set X of real numbers, and respTimes(t)
denotes the set of response times (in seconds) from request/response events in trace
t.

Many security properties have been classified as trace properties or hyperprop-
erties (for even more examples, the interested reader is invited to read (Clarkson
and Schneider, 2010)). However, the relation between this formulation and the CIA
taxonomy is still an open question. In fact, the CIA taxonomy would seem to be
orthogonal to trace properties and hyperproperties, which have the advantages of
being formalized and providing a basis for expressing security properties. Further-
more, no verification methodology exists for CIA taxonomy, while there is such a
methodology for trace properties (Alpern and Schneider, 1985), which is also gener-
alized for hyperproperties (Clarkson and Schneider, 2010).

2.2.2 Fully-Abstract Compilation

Good high-level programming languages provide helpful abstractions for writing
secure code in the form of type systems, module systems, encapsulation primitives
and so forth. Unfortunately, most target languages do not offer the same security
features as high-level source languages, and, certainly, plain untyped assembly lan-
guages such as those that run in commodity computers do not. Indeed, the security
properties from the source language are generally not preserved when compiling a
program and linking it with adversarial low-level code (e.g., a library or a legacy ap-
plication). Linked low-level code that is malicious or compromised can for instance
read and write the compiled program’s data and code, jump to arbitrary instruc-
tions, or smash the stack, effectively violating security properties that the source
program written in a high-level language had.

Secure compilation is the discipline that studies compilation schemes that pre-
serve the security properties of source languages in their compiled, target-level coun-
terparts, which is broad in scope. In the traditional sense, secure compilation is
concerned with the security of partial programs, or components, and attackers are
modeled as the environment such programs interact with. Partial programs are pro-
grams that do not implement all the functionality they require to operate. Instead,
they are linked together with an environment, or context, that provides the missing
functionality in order to create a runnable whole program. We may think of the con-
text of a component as an attacker that interacts with the component, perhaps trying
to learn some sensitive information (Abadi, 1999). A secure compilation chain pro-
tects source-level abstractions all the way down, ensuring that even an adversarial
target-level context cannot break the security properties of a compiled program any
more than some source-level context could.

The secure compilation literature contains several examples of source-level se-
curity properties that can be violated by target-level attackers (Patrignani, Ahmed,
and Clarke, 2019). Attackers are often modeled as target-level programs, as this cap-
tures their ability to operate at that level. For example, consider an object-oriented
source language that enforces private fields. Classes are thus allowed to store con-
fidential data in private fields, making it inaccessible from other source-level code
outside the class declaring the data. However, if this code gets compiled to a target
language where memory locations are identified by natural numbers, such as an un-
typed assembly language, then the address where the confidential data is stored can
be read by attackers. By dereferencing the number associated with the location of the
data, attackers can violate the intended “confidentiality of private fields” property
of the program. Another well-known security property that a secure compiler needs

2.2. Preserving Security Properties 17

to preserve is “integrity of local variables”. Given a function defining a confidential
local variable, then calling a callback function that was passed in as a parameter, the
confidential variable is inaccessible to the code in the callback function at the source
level. However if this function is compiled to a target language that can manipulate
the call stack, the compiled callback function can access the confidential variable and
change its value.

To protect compiled components from attacker contexts, secure compilation uses
a variety of protection mechanisms, e.g., cryptographic primitives (Abadi, Fournet,
and Gonthier, 2000; Corin et al., 2008), types (Ahmed and Blume, 2008), address
space layout randomization (Abadi and Plotkin, 2012) protected module architec-
tures (Agten et al., 2012; Patrignani et al., 2015), tagged architectures (Juglaret et al.,
2017), etc. Once designed, researchers look to prove that such compilation schemes
are indeed secure, i.e. they must be proven to conform to some criterion that implies
secure compilation. A widely-used criterion for compiler security is full abstraction
(Abadi, 1999).

Informally, a compiler is fully-abstract when it translates equivalent source-level
components into equivalent target-level ones. Formally, a fully-abstract compiler
preserves and reflects observational equivalence between source and target programs.
Reflection of observational equivalence means that the compiler outputs target-level
components that behave as their source-level counterparts, which is generally a con-
sequence of the compiler correctness. Preservation of observational equivalence im-
plies that the source-level abstractions in the generated target-level output are not
violated by a target-level context. Notice that a fully-abstract compiler does not
eliminate source-level security flaws. A fully-abstract compiler is conservative, as
it introduces no more vulnerabilities at the target-level than the ones already ex-
ploitable at the source-level. Another point worth noting is, as previously discussed,
the definition of full abstraction involves applying the compiler only to a component
and not to the untrusted context in which it runs, which means that a fully-abstract
compiler may choose to achieve its protection goals by introducing just a single bar-
rier around the trusted part to protect it from the untrusted context (Juglaret et al.,
2017; Patrignani et al., 2015; Patrignani, Ahmed, and Clarke, 2019).

Most existing work instantiates observational equivalence with contextual equiv-
alence. Informally, two components P1 and P2 are contextually equivalent if they are
interchangeable in any context without affecting the observable behavior of the pro-
gram, i.e. they are indistinguishable just by looking at the outputs. Using contextual
equivalence, only what can be observed by the context is of any relevance. Contexts
can model malicious attackers that interoperate with the secure component, contex-
tual equivalence can thus be used to model security properties of source code such as
confidentiality or integrity (Abadi and Plotkin, 2012; Agten et al., 2012; Patrignani,
Ahmed, and Clarke, 2019). Indeed, the confidentiality of a value means that it can-
not be discerned by other code besides one allowed to manipulating it; a value v in a
program P is thus confidential if P is contextually-equivalent to P′ which is P with a
different value for v. Similarly, integrity of a value means that it cannot be modified
by other code besides one declaring it; a value v in a program P has integrity if P is
contextually-equivalent to P′ which is P where every interaction with other code is
followed by a check that the value of v is the same as before the interaction.

In short, the emerging field of secure compilation provides powerful formally-
proven means to protect high-level language abstractions in compiled code. How-
ever, one of the greatest challenges for secure compilation is the development of a se-
cure compiler for a realistic programming language. The existing approaches show

18 Chapter 2. Related Work

promising results, but the application of secure compilation techniques to main-
stream programming languages has not yet been achieved. In fact, fully-abstract
compilation assumes that the source language itself is secure, so that it makes sense
to define target-level security with respect to the semantics of the source language.
More specifically, fully-abstract compilation is not well-suited for source languages
with undefined behavior (e.g., C and LLVM IR): a possible approach consists in
changing the criterion for secure compilation. For instance, a family of so-called
robust criteria has been proposed recently (Abate et al., 2019). The authors thor-
oughly explore a large space of formal secure compilation criteria based on robust
property preservation, i.e., the preservation of properties satisfied against arbitrary
adversarial contexts. This includes various classes of trace properties such as safety
(stating that some bad thing does not happen during execution) or liveness (stating
that a good thing eventually happens during execution), of hyperproperties such
as noninterference, and of relational hyperproperties (which are predicates on the
behaviors of two or more programs) such as trace equivalence (which requires that
two programs produce the same set of traces). In fact, in various deterministic set-
tings, robust trace equivalence preservation coincides with preserving observational
equivalence, the security-relevant part of full abstraction. This leads to many new
secure compilation criteria, some of which are easier to practically achieve and prove
than full abstraction, and some of which provide strictly stronger security guaran-
tees. We refer the reader to the original survey for a detailed description of all these
criteria (Abate et al., 2019).

In order to attain fully-abstract compilation, compilers often insert dynamic chec-
ks in the generated code to detect target-level contexts that interact with compiled
code in ways that are impossible in the source language and respond to such inter-
actions securely, often by halting the execution. Unfortunately, fully-abstract compi-
lation is a very strong property, which preserves all source-level abstractions. This
means that the kind of protections one has to put in place for preserving observa-
tional equivalence will likely be an overkill. Consider a password manager written
in an object-oriented language, shown in the code snippet below, that is compiled to
an assembly-like language.

1 private db: Database;
2

3 public testPwd(user: Char[8], pwd: BitString) : Bool {
4 if (db.contains(user))
5 return db.get(user). getPassword () == pwd;
6 }

The source program exports the function testPwd to check whether a user’s stored
password matches a given password pwd. The stored password is in a local database,
which is represented by a piece of local state in the variable db. The details of db are
not important here, but the database is marked private, so it is not directly accessible
to the context of this program in the source language.

A fully-abstract compiler for the program above must generate code that checks
that the arguments passed to testPwd by the context are of the right type (Patrignani
and Garg, 2019). The code expects an array of characters of length 8. A parame-
ter of a different type cannot be passed in the source, so it must also be prevented
in the target. Since the target is untyped, code must be inserted to check the argu-
ment. Specifically, a fully abstract compiler will generate code similar to the follow-
ing (assuming that the arrays are passed as pointers and the base address is stored
in register r0).

2.2. Preserving Security Properties 19

1 label testPwd:
2 for i = 0; i < 8; ++i
3 load the memory word stored at address r0 + i into r1
4 test that r1 is a valid char encoding
5 ...

Basically, this code dynamically checks that the first argument is a character ar-
ray of length 8 because a type mismatch could lead to a violation of fully-abstract
compilation. Such a check can be very inefficient when the length is very long. This
example shows that stronger secure compilation criteria are harder (or even impos-
sible) to achieve efficiently. Even when efficiency is not a concern, stronger secure
compilation criteria are still harder to prove (Agten et al., 2012; Patrignani et al.,
2015). As a result, a new research path is recently envisioned. As mentioned pre-
viously, this consists in developing new secure compilation criteria other than full
abstraction that fine-tune the checks inserted by the compiler so that they only affect
code security (Abate et al., 2019; Patrignani and Garg, 2019; Patrignani and Garg,
2017).

Furthermore, research in secure compilation has primarily focused on identify-
ing and formalizing secure compilation criteria, and on developing effective formal
verification techniques, but has rarely considered the problem of securing compiler
optimizations (Patrignani, Ahmed, and Clarke, 2019). Investigating the interaction
between code optimization and security has been recently proposed but has not been
thoroughly carried out (D’Silva, Payer, and Song, 2015). As a result, it is an open
problem to determine how security properties preserved by fully-abstract compila-
tion would interact with various compiler optimizations. More specifically, studying
which optimizations violate security properties, typically by removing the dynamic
checks inserted by a secure compilation scheme, is an interesting research path for
secure compiler development.

2.2.3 Secure Compilation Against Side-Channel Attacks

Most existing work on secure compilation proves (or assumes) compiler correctness
and proves compiler full abstraction using the notion of contextual equivalence de-
scribed in the previous subsection. However, it has been shown that some intuitive
and interesting security properties are not necessarily preserved by such a compiler
(Patrignani and Garg, 2017). In fact, contextual equivalence has shown its limita-
tions both in the attacks it can express, the efficiency of the code it generates and
the complexity it introduces in proofs. Side-channel attacks, which abuse informa-
tion gained from observing physical behaviors of computer systems, cannot be ex-
pressed with contextual equivalence. These attacks are generally disregarded by
secure compilation techniques (Patrignani, Ahmed, and Clarke, 2019). Indeed, se-
cure compilers ensure that the compiled programs behave as intended by the source
programs according to the high-level language specifications, while these attacks are
based on behaviors not defined in the abstractions of language standards, e.g. power
consumption, execution time or cache behavior. Protections against side-channel at-
tacks seek to eliminate the information leakage from these physical channels. As
a result, the security properties associated with these protections cannot be under-
stood by standard compilers, and may be removed or compromised during program
transformations.

There is a large body of research and engineering work targeting at closing down
side-channels. There are two security properties that are particularly of interest:

20 Chapter 2. Related Work

preserving the secret independence guarantees of the source code (also known as
constant-time programming) and preserving the erasure of secret data.

2.2.3.1 Cryptographic Constant-Time Preservation

In order to close the timing side-channel, security engineers follow a very strict pro-
gramming discipline called constant-time programming. This name is a bit of a mis-
nomer, as they do not intend to make the programs they write literally constant-time,
but constant-time with regards to secrets, i.e., program’s execution times do not de-
pend on secrets. This is achieved by ensuring that neither control-flow (branchings)
nor memory access pattern of the programs depends on secrets, often by leverag-
ing bitwise operators. However, it has been reported that this style of code recom-
mended by cryptographers, when compiled for some architectures, produces binary
code that is actually not constant-time (Simon, Chisnall, and Anderson, 2018; Kauf-
mann et al., 2016).

Recent work has studied the question of whether the code generated by a com-
piler for a constant-time source program is itself provably constant-time (Barthe et
al., 2019). The authors address the challenges of secure compilation from the specific
angle of turning the formally-verified compiler CompCert into a formally-verified
secure compiler with regards to the specific property of constant-time.

Specifically, they first enrich the semantics of CompCert intermediate represen-
tations with a formal notion of constant-time. Intuitively, a program P is said to be
constant-time if two of its executions that differ only on their secret inputs induce
equal leakage. The leakages of P are modeled as a list of atomic leakages, where
an atomic leakage results from a single step of the program execution. An atomic
leakage is either the truth value of a condition, a pointer representing the address
of either a memory access, or a called function. The traces of input/output events
defined in CompCert are then enriched with leakages, represented as a new kind of
events. This way, the authors benefit from all the existing definitions and lemmas
about traces that they directly reuse in their proofs.

Given this semantics extension, they then identify transformation passes of Com-
pCert that do not preserve their constant-time policy. In particular, it has been re-
ported that the “instruction selection” pass introduced conditional branches in com-
piled code. The authors then modify CompCert so that the compilation does not
introduce conditional branches anymore by defining a new architecture-dependent
selection operation. The modified compiler only targets the x86 architecture, the
introduced selection operation is thus compiled down to the cmov instruction.

Finally, the authors design new proof techniques and apply these, together with
the proof structure already present in CompCert, to prove that 17 out of 20 compiler
passes in the modified CompCert preserve constant-time.

In short, this work specifies a machine-checkable proof that a mildly modified
version of a moderately optimizing compiler preserves a specific security property
of constant-time. The authors extensively study every compiler optimization pass in
order to identify ones that do not preserve constant-time and adjust them accord-
ingly, then formally prove that the modified version does indeed preserve constant-
time. However, this approach does not scale to more aggressively-optimizing com-
pilers used in industrial settings, which may contain up to hundreds of optimiza-
tions. Note that this open problem of designing a scalable property preservation
approach is one of the main motivations of this thesis.

2.2. Preserving Security Properties 21

2.2.3.2 Secret Erasure Preservation

The problem of preserving the secret erasure property has also been studied using
a similar approach to the work presented above (Besson, Dang, and Jensen, 2018).
The overall goal is to prevent information leaks from being introduced by the com-
pilation process. In other words, compiled code should be no more vulnerable to
passive side-channel attacks than the source code. Such side channels correspond to
an attacker who is granted physical memory access at specific observation points. At
the semantic level, side channels can be modeled using a leakage function exposing
a partial view of the program state to the attacker. The semantics of a program P is
given by a one-step deterministic transition relation→ which is either a silent tran-
sition, or a leaked transition indicating that the end state of the transition is leaked
to the attacker. From an initial memory m0, a trace of P is given by a sequence of
memories m0, m1, ... mn such that for every i < n, we have mi →i mi+1.

Given such a trace, the observation of the attacker is given by the sub-trace of
leaked memories, i.e. those memories resulting from a leaked transition. The secure
transformation of a source program into a target program, called Information Flow
Preserving (IFP) transformation, is then defined as follows. A source program P is
at least as vulnerable as a target program P′ if any observation O′ of a target trace
of P′ can always be matched by an observation O of a source trace of P such that O
leaks more information than O′. The notion of matching observation is formalized by
a function mapping observations from source to target trace.

Given the formal definition of IFP transformation, the authors identify a set of
sufficient conditions to prove that a transformation is IFP, and use them to study
two compiler transformations which are not a priori IFP: “dead store elimination”
and “register allocation”. They show how to make these two transformations IFP
and prove them sound using two different proof techniques.

Dead Store Elimination: Dead stores are typically identified using a liveness anal-
ysis which computes, for each program point, an over-approximation of live vari-
ables, i.e. variables that are necessary to compute the program result. Dually, dead
variables are those that are not live, and a dead store is a write to a memory address
where the value stored at this address is dead. A classic “dead store elimination”
performs a liveness analysis and removes dead stores. As shown in the example of
Listing 1.2 from Section 1.1.2, when a dead store has the security purpose of erasing
sensitive values from memory, “dead store elimination” introduces sensitive infor-
mation leaks. In order to make the transformation IFP, it is sufficient to slightly
modify the initial condition of the liveness analysis by imposing that, at the end of
the program, every address is live. The effect of this is that only dead stores that are
shadowed by a following store at the same address can be safely removed. In other
words, for a given address, the last store needs to be retained (whether it is dead or
not).

Register Allocation: As for this transformation which compiles source programs
using an unbounded number of variables into target programs using a limited num-
ber of hardware registers, the authors resort to an a posteriori approach using a certi-
fied validator which checks the IFP condition for a particular program and its “regis-
ter allocation” transformation. In fact, the resource allocation task may be impossible
due to a shortage of registers. In that case, a register may be spilled in the function
stack frame, i.e. its content copied, for later reuse. Furthermore, after the last use
of a spilled register, a conventional “register allocation” algorithm has no reason

22 Chapter 2. Related Work

to explicitly erase the stack location. This clearly breaks the IFP property, as it in-
troduces an information leak through the duplicated value spilled in the stack. To
ensure that “register allocation” is IFP, a variation of the translation validation ap-
proach is proposed. The condition says that for every non-constant address A′ of
the transformed program P′, there must exist a matching address A in the original
program P. A constant address is one which returns the same value for every exe-
cution of the program, while two addresses are in matching correspondence if they
contain the same value for every execution of the program. Conventional “register
allocation” pass keeps the memory mostly unchanged except for a limited number
of registers and spilled locations. The set of addresses is then partitioned into a sub-
set of named addresses affected by “register allocation” and a subset of unnamed
addresses untouched by the transformation. The validator thus needs to establish
a mapping between named addresses, while only needs to check that unnamed ad-
dresses have the exact same value before and after the transformation. Then, the
missing mappings of the validator which indicate the information flow leaks allows
recovering from certain validation failures. Closing these leaks can be done, during
a post-treatment, by inserting erasure instructions which zero all those registers and
spilled locations just before the attacker observation.

The implementation of these two IFP transformations are later experimented
within the CompCert compiler (Besson, Dang, and Jensen, 2019). In short, the pro-
posed approach provides a means for proving preservation of information-flow, and
also illustrates how to modify non-IFP transformations of a moderately optimizing
compiler accordingly so that they preserve information-flow. Similarly to work pre-
sented in Section 2.2.3.1, it is unclear how the same approach can be used when scal-
ing up to more aggressively-optimizing compilation flow, as it requires identifying
all non-IFP passes and potentially modifying each of them.

2.2.3.3 Preventing Side-Channel During Compilation

It is worth noting that these studies all try to answer the question of preserving se-
curity property during compilation. Indeed, the security of applications is devised
by the developers at the source level, which needs to be preserved through com-
pilation flow, all the way down to the binary code. Nonetheless, this is not the
only approach to secure compilation. Another idea consists in enforcing the pro-
gram security during compilation. Regardless of the input programs, the compiler
will always generate programs that satisfy a defined security policy. For instance,
to mitigate the problem of secret erasure caused by “dead store elimination” de-
scribed previously, a recent work proposes a modified version of the clang com-
piler that automatically erases all registers and the whole stack frame after returning
from a sensitive function (Simon, Chisnall, and Anderson, 2018). The same work
also demonstrates a solution to the problem of the compiler generating conditional
branches for the constant-time selection operation. The authors propose another
variant of clang that always compiles constant-time selections to conditional move
instructions (when available in the target architecture, such as IA32, x86-64 or var-
ious ARM architectures) or to sequences of bitwise operations implementing the
selection without conditional branches.

As previously stated, this falls into the category of security enforcement during
compilation rather than security preservation: it focuses on target-level enforcement
of specific policies but without any connection to source-level properties. Further-
more, the proposed implementation of constant-time selection happens at the start

2.2. Preserving Security Properties 23

of the compiler back-end, so it cannot avoid downstream optimizations of the back-
end. Theoretically, such an optimization might turn constant-time selections into
conditional branches. Although the presented benchmarks do not show any exam-
ple of this, the approach does not provide any formal statement of correctness. As for
the proposed solution to secure secret erasure, the instrumentation is implemented
in the compiler back-end after other back-end optimizations have taken place, which
gives stronger guarantees that the erasure is not altered. Nonetheless, systematically
erasing the whole stack frame and registers used in a sensitive function may not be
the most efficient approach. Intuitively, erasing only stack slots and registers con-
taining a copy of the secret data, annotated by the programmer in the source code,
before returning from the sensitive function would be more reasonable. However,
this requires that the compiler be able to correctly propagate the source annotation
beyond “register allocation”. Yet, practical experiments are needed to assess the ef-
fect of each approach on the quality of the generated code.

2.2.4 Secure Compilation Against Fault Injection Attacks

Other than side-channel attacks, sensitive data is also subject to fault injection at-
tacks. Secure elements widely used in smart phones or payment systems are com-
mon targets of such attacks. Furthermore, with the emergence of the Internet of
Things (IoT), personal data may be handled by a huge variety of devices, which are
also subject to fault attacks. These attacks aim at disrupting the execution of appli-
cations to extract sensitive information or grant restricted access permissions (Yuce,
Schaumont, and Witteman, 2018; Moro et al., 2013; Timmers, Spruyt, and Witteman,
2016; Bar-El et al., 2004). As a reaction, countermeasures have been proposed to
protect embedded systems against faults. In general, all of these approaches rely
on some form of spatial or temporal redundancy (Witteman, 2018). Unfortunately,
compilers have always been designed to optimize programs, mostly by eliminating
redundancy, which makes it notoriously hard to preserve these countermeasures
through compilation (Hillebold, 2014). Indeed, code hardening usually suffers from
compiler optimizations damaging or even completely removing the protections. Let
us now present these approaches and demonstrate the issue.

2.2.4.1 Data Integrity Protection

The first example is a countermeasure ensuring data integrity, implemented in the
LLVM compiler (Hillebold, 2014). New transformation passes are added to the com-
pilation pipeline to implement simple duplication, which aims at storing each vari-
able multiple times and performing computations on redundant data, and comple-
mentary redundancy, which aims at storing the binary inverse of the original val-
ues and performing complementary instructions on inverted data. As expected, the
redundancy introduced by these transformations is not preserved by downstream
optimization passes, notably in the compiler back-end. The authors thus have to
explicitly deactivate these passes which remove redundant computations. Further-
more, loading redundant constants is not straightforward. A given constant is only
loaded once using a move instruction, and the inverse constant is also generated from
the same source as the original constant by inverting the latter. This thus results in
detected successful attacks in their experiments for both duplication schemes, and
closing this leak against fault injections would require significant modification to the
compiler back-end, notably the instruction selector.

24 Chapter 2. Related Work

2.2.4.2 Protecting Against Instruction Skips

The second example is an implementation in the LLVM compiler (Barry, Couroussé,
and Robisson, 2016) of a formally-verified duplication scheme that protects low-level
code against faults inducing instruction skips (Moro et al., 2014), targeting exclu-
sively ARMv7-M/Thumb2 instruction set. The protection scheme consists in trans-
forming all machine instructions into a semantically-equivalent sequence of idem-
potent instructions, which will then be duplicated. An idempotent instruction is one
that can be re-executed without changing the resulting state of the program. This
means that if one of the duplicated instructions is faulted, resulting in an instruction
skip, the program is still correct. The authors modify the instruction selector and
register allocator to generate idempotent instructions. For other instructions that
need special treatments such as non-idempotent variant of store, branch-and-link,
or if-then block, new transformation passes have been inserted to turn them into
sequences of idempotent instructions. Finally, all instructions are duplicated. Un-
like the example from Section 2.2.4.1, instruction duplication is performed as late as
possible in the compiler back-end instead of in the compilation optimizer pipeline,
which gives stronger guarantees that the duplication is not removed.

2.2.4.3 Loop Protection

Loops in sensitive code are important targets of fault attacks. For example, it has
been shown that corrupting memcpy during the initialization of an embedded system
may allow an attacker to escalate privileges and execute arbitrary code (Timmers,
Spruyt, and Witteman, 2016). Other work also highlighted the need to protect the
iteration count of the memcmp-like PIN authentication (Dureuil et al., 2016). There
has been recent work to automatically harden sensitive loops at compile-time (Proy
et al., 2017). The authors state that a sensitive loop must always perform the ex-
pected number of iterations and take the right exit, otherwise an attack must be
reported. They implement, in the LLVM compiler, a generic loop hardening scheme
based on duplication of termination conditions and of the computations involved
in the evaluation of such conditions. The hardening is implemented as a transfor-
mation pass, run at the start of the compiler back-end, while still operating on the
target-independent IR of the compiler. This positioning of the pass requires a care-
ful analysis of the compilation flow, considering both the dependence on upstream
optimization passes providing the necessary information to implement the counter-
measure and the interferences with downstream passes. Nonetheless, the back-end
optimizations do alter the countermeasure scheme to some extent. As explained
in Section 2.2.4.1, the loading of constants cannot automatically be duplicated. Re-
solving this requires modification to the compiler instruction selector. Furthermore,
addresses of global variables are not available at IR level, hence it cannot be du-
plicated when loading the value of the variable. These interferences with back-end
passes result in a small amount of harmful undetected faults, which again highlights
the challenge of preserving security protections in an optimizing compilation flow.

2.3 Discussion

This chapter presents the existing work on preserving program properties of the
source program, through compilation, down to machine code. These properties can

2.3. Discussion 25

be used to enhance the compilation process—from augmenting optimizations to se-
curing generated programs—or to support automated analysis of binary code. Dif-
ferent approaches have been separately proposed to address the issue, considering
a single application field. Notably, this is an active research problem in the secure
compilation community.

More specifically, for critical real-time systems, the community has proposed
diverse mechanisms to propagate source-level properties describing flow facts—
required to perform WCET estimation at binary level—such as loop bound infor-
mation or infeasible paths. A direction consists in defining transformation rules
associated to every optimization that modifies the program CFG, which will update
the flow facts in concert with CFG modifications. Other work proposes to represent
property as a builtin that includes the values of variables referred in the property,
and is considered as an observable event by the compiler, so that it is not erased
during compilation.

As for the problem of preserving source-level security properties down to gen-
erated binary, secure compilation community has come up with various research
directions. Well-studied notion of fully abstract compilation—which preserves ob-
servational equivalence under an attacker model where attackers are target-level
contexts—provides a partial answer, ensuring the absence of target-level attacks like
control flow hijacks for example. Other work studies classes of security properties
other than observational equivalences, which may provide strictly stronger security
guarantees than full abstraction, or may be easier to practically achieve and prove.

Instead of preserving classes of security properties, another direction of research
seeks to prove that a compiler preserves security properties in very specific scenar-
ios, such as constant-timeness or information-flow preservation. To this end, a natu-
ral approach consists in leveraging pre-existing proof technique designed for prov-
ing compiler correctness. As a result, formally-verified compiler such as CompCert
is usually used to illustrate the approach, which can be basically broken down into
three steps: (1) identify the compiler passes that do not preserve the considered se-
curity property and adjust them accordingly; (2) formalize the considered security
for compiler intermediate representations; and (3) prove that all (modified) passes
preserve the property, according to the formalization developed in the previous step.

Lastly, there is other work that cover compiler implementations tailored to ad-
dressing specific attacks—notably fault injection—but which does not take a formal
approach. More specifically, countermeasure schemes against specific attack mod-
els are devised and implemented in modern optimizing compilers, such that code
hardening is automatically performed at compilation time.

Based on our observation, we have identified two major issues that need to be
addressed, which have lead to the research direction that we took in the work de-
scribed in this thesis.

First, there is a need for functional properties when carrying out analysis on ex-
ecutable binaries. These properties generally take the form of first-order predicate
involving variables or structures defined in the source program and should be eval-
uated at a specific program point. Clearly, directly expressing these properties at bi-
nary level is not ideal, because it is difficult for engineers to reason in machine code
and thus necessitates program reverse engineering. The alternative approach is to
introduce the properties at the source level and propagate them through the compi-
lation process. However, this is only thoroughly explored for conveying flow facts
required to compute WCET for hard real-time systems, and no existing work has re-
ally studied the problem for functional properties needed by other types of analysis.
As a result, our first axis of research aims at designing a compilation mechanism to

26 Chapter 2. Related Work

propagate and maintain source-level functional properties down to executable bi-
nary. Moreover, we strive to not simply propose a proof of concept—which may be
reused by subsequent research projects—but conceive a well-engineered solution to
contribute to a broader community. Therefore, we target source program written in
widely-used programming languages such as C, and we would like to implement
our proposed mechanism in widely-used production compilers such as LLVM or
gcc (Stallman and Community, 2009), which makes it infeasible to consider each op-
timization individually. In other words, we deliberately seek to devise a generic,
optimization-agnostic functional property preservation mechanism. This also im-
plies that handling future optimization passes introduced to the compilation flow
would be effortless, or even requires no modification at all. This axis will be dis-
cussed in Chapter 4.

As for security properties, and perhaps surprisingly, very little work has con-
sidered the problem of carrying these along modern optimizing compilation chains
used in industrial settings. More specifically, it has been reported that these compil-
ers did not understand the intentions of software-based countermeasures—generally
introduced to the program at the source level—and optimized them away as a re-
sult; nevertheless, to the extent of our knowledge, no previous work has proposed a
mechanism to prevent aggressively-optimizing compilers from invalidating or elim-
inating security countermeasures. As a consequence, the second goal of the work
described in this thesis is to devise such a mechanism. Convinced that there is no
“one-size-fits-all” solution for preserving different countermeasures against differ-
ent types of attacks that ensure security properties of different natures, we address
the challenges of secure compilation from a very specific angle of approach. First,
given a protection scheme, we identify the security protection-derived properties,
which are defined such that preserving them also implies the preservation of the
protection. We then devise a careful encoding of these as functional properties, so
that we can leverage the same functional property preservation mechanism to con-
serve security countermeasure, and this also in an optimization-agnostic manner.
This will be described in Section 4.4.3, and further detailed in Chapter 5.

The functional properties that we consider can be classified as trace proper-
ties. For instance, the property associated with the secret buffer erasure protection
scheme presented in Section 1.1.2 can be defined as the following set of traces:

{t = s0s1 . . . | (∃i ∈N : isVerifyPoint(si) ∧ isBufferZeroed(si, secret))},

where isVerifyPoint(s) is a state predicate indicating whether the state s is one de-
noted by the label verify_point in the program source, and isBufferZeroed(bu f , s) is
a state predicate identifying whether the whole buffer bu f is zeroed in state s.

However, as stated in Section 1.2, the particularity of the properties that we con-
sider is that they are not part of the program semantics, but are kept external to the
code itself. Therefore, the biggest challenge lies in the fact that compilers do not
know about these properties and certainly not how to maintain them along program
transformations. Furthermore, it is significantly harder to address this issue, notably
when we aim at targeting an aggressively-optimizing compilation flow. For exam-
ple, if a static variable is mentioned by name in a property but unused anywhere
else, optimizations will remove this variable and thus make the property meaning-
less. We will detail our proposed solution to the problem of preserving functional
properties, as well as its implementation in a modern optimizing compiler in Chap-
ter 4.

27

Chapter 3

Tools and Security Use-Cases

In this chapter, we present the important toolchains based on which we will develop
our property-preserving compilation frameworks, which will be described in Chap-
ter 4 and Chapter 5. Moreover, we further describe a set of security use-cases that
we will use to illustrate the application of our solutions to address the problem of
preserving source-level security countermeasures during compilation.

Recalling the goal of this thesis is to propose an property- and optimization-
agnostic approach for preserving program properties throughout optimizing com-
pilation flow, so that it can be implemented in an aggressively-optimizing compiler
and be made available to a broad community. Due to its widespread use in academic
and industrial settings, as well as its modularity and high reusability, we decided to
demonstrate our approach on the LLVM compiler toolchain, which will be presented
in Section 3.1.

Let us remind that the goal of our property-preserving compilation is twofold:
it provides (1) additional information—usually expressed as functional properties—
required by various analyses performed on the executable binary, and (2) a reliable
means to ensure the presence, in the machine code, of diverse security protections,
by preserving protection-derived properties. As explained in Section 1.1, both types
of properties are not actually part of the program functional semantics and need to
be kept external to the code itself. Furthermore, functional properties are meant to
be evaluated by binary analysis tools, it is mandatory to define a means for these
tools to retrieve the properties from the executable binary. As for protection-derived
properties, it is also useful to have some meta-information describing them at the
binary level. For instance, the meta-information may communicate how (e.g. which
variables need to be evaluated and how to look up their values) and when (e.g. at
which machine address during program execution) to evaluate these properties at
execution time, for validation purposes (this will be detailed further in Section 4.4.3
and Section 5.5.2). Clearly, this meta-information is not part of the program and have
to be externally attached to the machine code. As a consequence, we need to define
an interface to retrieve the extra information (i.e. properties for binary analysis or
meta-information describing protection-derived properties) from the executable bi-
nary.

Properties usually involve variables or structures defined by the programmers
in the source program. Thus, consumers of these properties at the binary level need
to figure out the corresponding representation of the variables or structures in the
executable binaries in order to carry out the analysis of the program, or to verify
these program properties. Interestingly, this problem shares some similarities with
the debugging process.

As a compiler reads and parses the source of a program, it collects a variety of
information about the program, such as the line numbers where a variable or func-
tion is declared or used, which will be useful later when the program is debugged.

28 Chapter 3. Tools and Security Use-Cases

Indeed, the task of a debugger is to provide the programmer with a view of the exe-
cuting program in an as natural and understandable fashion as possible. This means
that the debugger has to essentially reverse much of the compiler’s transformations,
converting the program’s data and state back into the terms that the programmer
originally used in the program’s source. To make this possible, debug information is
generated by the compiler for the purpose of communicating source location, type
and variable information to the debugger. It is thus very reasonable to extend the
debug information to represent properties in the binary. To this end, we use the
Debugging With Attributed Record Formats (DWARF) debug data format (Eager, 2007;
DWARF Debugging Information Format Commitee, 2017) that provides an easily
extensible description of how a program is translated into executable code: a debug-
ger (or any consumer of the debug data) can recognize and ignore an extension, even
if it might not understand its meaning. The DWARF debug format will be presented
in Section 3.2.

Finally, we describe in Section 3.3 our selected security use-cases demonstrating
different protection schemes against physical attacks (side-channel attacks and fault
injection attacks) that we later use to illustrate our approaches and validate their
implementations.

3.1 LLVM Compilation Infrastructure

In this section, we first start by presenting the overall architecture of traditional com-
pilers, which is also adopted by LLVM. We then describe the most important com-
ponent of the framework—the LLVM IR—as well as some of its key features needed
for our implementations, namely intrinsic functions and metadata. Finally, we detail
the LLVM code generator, presenting different compilation phases transforming the
IR into machine code.

3.1.1 LLVM Overview

This subsection discusses some of the design decisions that shaped the LLVM project,
which consists of several libraries and tools that, together, make a large compiler in-
frastructure.

Front-end
Source
Code

Binary
CodeAST or IR

Middle-end Back-end
IR

FIGURE 3.1: Components of a three-phase compiler.

The most popular design for a traditional compiler (like most C compilers) is the
three-phase design—shown in Figure 3.1—whose major components are the front-
end, the middle-end (also known as the optimizer) and the back-end (also known as
the code generator).

• Front-end: this is the compiler step that parses source code, checking it for
errors, and builds a language-specific Abstract Syntax Tree (AST) to represent
the input code. The AST may be optionally converted to a new representation
for optimizations.

• Middle-end: this is responsible for doing a broad variety of transformations to
try to improve the code’s running time, such as eliminating redundant compu-
tations, and is usually independent of source language and target architecture.

3.1. LLVM Compilation Infrastructure 29

• Back-end: this is the step that is responsible for code generation: it maps the
code onto the target instruction set. In addition, it also tries to generate target
code that takes advantage of specific features of the supported architecture.

With this design, porting the compiler to support a new source language re-
quires implementing a new front-end, but the existing optimizer and back-end can
be reused. As a result, the LLVM infrastructure also follows this design.

More specifically, the LLVM front-end first translates high level programming
languages into an internal code representation known as the LLVM IR. We will
consider in the following the clang project—the official LLVM frontend for C, C++
and Objective-C.

Next, the LLVM middle-end provides a modern source- and target-independent
optimizer: it takes LLVM IR as input, runs the specified optimizations on it, and
then outputs the optimized LLVM IR or the analysis results. In LLVM, the opti-
mizer is organized as a pipeline of distinct LLVM passes such as the inliner—which
substitutes the body of a function into call sites, instruction combining, CFG simpli-
fying, expression reassociation, loop invariant code motion, etc. Depending on the
optimization level, different passes are run: for instance, at -O0 (no optimization),
the compiler runs no passes, while at -O3 (all optimizations), it runs a series of 256
passes (as of LLVM 12.0.0). These optimizations are usually composed of analysis
and transformation passes: the former recognizes optimization opportunities and
generates the necessary data structures describing the analysis results that can later
be consumed by the latter.

Lastly, the LLVM code generator converts LLVM IR to target-specific assembly
code or object code binaries. Instruction selection, instruction scheduling, register al-
location, peephole optimizations and target-specific optimizations/transformations
all belong to the code generator.

3.1.2 LLVM Intermediate Representation

The LLVM IR is the backbone that connects front-ends and back-ends, allowing
LLVM to parse multiple source languages and generate code to multiple targets.
Front-ends produce the IR, while back-ends consume it. The IR is also the point
where the majority of LLVM target-independent optimizations takes place.

An IR in SSA: The LLVM IR uses the Static Single Assignment (SSA) form: there is
no value that is reassigned, each value has only a single assignment that defines it.
Each use of a value can immediately be traced back to the sole LLVM IR instruction
responsible for its definition. This has an immense value to simplify optimizations,
owing to the trivial use-def chains that the SSA form creates, that is, the list of defi-
nitions that reaches a user. As a consequence, it has an infinite number of registers.

IR extension using intrinsics: LLVM supports the notion of intrinsic functions1,
which have well known names and semantics and are required to follow certain re-
strictions. Overall, these intrinsics are used to convey high-level semantics to the
compiler, while representing an extension mechanism for the LLVM IR that does not
require changing all of the transformations in LLVM when adding to the IR. Ex-
amples of intrinsic functions range from supports for important standard C library
functions such as sqrt() or memcpy(), to supports for garbage collection, exception

1https://llvm.org/docs/LangRef.html#intrinsic-functions

30 Chapter 3. Tools and Security Use-Cases

handling or even vector horizontal reduction. The compiler knows how to best im-
plement the functionality in the most optimized way for these functions by replacing
them with a set of machine instructions for a particular back-end. Intrinsics require
the compiler to follow additional rules while transforming the program. These rules
are communicated to the compiler via the function attributes which specify the intrin-
sic’s behavior with regards to the program mutable state (such as memory, control
registers, other side-effects, etc.).

3.1.3 LLVM Metadata

LLVM IR allows metadata to be attached to different IR entities in the program such
as functions or instructions in order to convey extra information about the code to
the optimizer2. In fact, this metadata is typically used to influence optimization
passes. For example, metadata is added to the IR to describe a type system of a
higher level language, and this can be used to implement C/C++ strict type aliasing
rules. Another example of metadata use is to suggest an unroll factor to the loop
unroller using loop identifier metadata.

However, since all of these typical uses of LLVM metadata are to provide op-
tional information to the optimizer, there does not currently exist any mechanism
to maintain and propagate metadata in the back-end. The only exception to this
is debug information metadata. Debug information communicates source location
information, type information and variable information to the debugger3. This infor-
mation is not used during the execution of program and does not result in executable
code in the object file, but the back-end uses it to produce DWARF information. In
other words, debug information can be seen as a sort of side channel from the front-
end to the DWARF emitter in the back-end.

The idea of the LLVM debug information is to provide an LLVM user a rela-
tionship between generated code and the original program source code. To do this,
most of the debug information, such as descriptors for types, for variables, for func-
tions, for source files, . . . , is inserted by the front-end in the form of LLVM metadata.
LLVM optimizations are upgraded to be aware of debug information, allowing them
to update the debug information as they perform aggressive optimizations.

A subtle point about metadata (debug information or not) is that it was designed
to be ignored by the optimizer and can be discarded without affecting correctness.
This implies that metadata-based debug information is a best-effort feature: if meta-
data is dropped by optimizations, it just means that debug information quality is
reduced, it does not invalidate the debug information itself; which is an acceptable
(but should not be) behavior when debugging optimized code.

3.1.4 LLVM Code Generator

The back-end is comprised of the set of code generation analysis and transformation
passes that converts the LLVM IR into the machine code for a specified target—either
in assembly form or in binary object code format. There are several steps involved
in transforming the LLVM IR into target code. The IR is converted to a back-end-
friendly representation of instructions, functions and globals. This representation
changes as the program progresses through the back-end phases and gets closer
to the actual target instructions. This translation pipeline is composed of different
phases of the back-end:

2https://llvm.org/docs/LangRef.html#metadata
3https://llvm.org/docs/SourceLevelDebugging.html

3.1. LLVM Compilation Infrastructure 31

• Instruction Selection: this phase converts the three-address structure of the
LLVM IR to a Directed Acyclic Graph (DAG) form. The DAG nodes typically
represent instructions, while the edges encode a data-flow dependence among
them. The transformation to DAG is important to allow the LLVM back-end to
employ tree-based pattern-matching instruction selection algorithms. By the
end of this phase, the DAG has all of its LLVM IR nodes converted to target-
machine nodes, that is, nodes that represent machine instructions rather than
LLVM instructions.

• Scheduling and MIR Formation: this phase takes the DAG of target instruc-
tions produced by the instruction selection phase, determines an ordering of
the instructions while trying to explore instruction-level parallelism as much
as possible, then emits the instructions with that ordering. The output program
of this phase is represented using a machine specific representation called Ma-
chine Intermediate Representation (MIR). The LLVM MIR represents instructions
in their most abstract form: an opcode and a series of operands. This is de-
signed to support both an SSA representation for machine code, as well as a
register-allocated, non-SSA form.

• SSA-based Machine Code Optimizations: this optional phase consists of a
series of machine code optimizations, such as machine-level dead code elim-
ination or instruction combining, that operate on the SSA form produced by
the instruction selector.

• Register Allocation: this phase transforms an infinite set of virtual register
references into a finite (possibly small) set of physical target-specific registers.
If the number of physical registers is not enough to accommodate all the virtual
registers, some of them will have to be temporary stored into the stack. This
process is called “spilling” the registers.

• Late Machine Code Optimizations: this stage is responsible for implementing
optimizations that operate on final machine code, such as peephole optimiza-
tions and notably the post-register-allocation instruction scheduling. In fact,
since real register information is now available, the presence of extra hazards
and delays associated with certain types of registers can be used to improve
the instruction order.

• Code Emission: the final phase actually emits the code for the program, as well
as its debug information, either in the target assembler format or in machine
code.

In addition, target implementations can insert arbitrary target-specific passes into
the flow.

Intrinsics from LLVM IR are generally lowered into pseudo-instructions. These
are special MIR instructions that do not have machine encoding information and
must be expanded, at the latest, before code emission. This allows for generation of
optimized machine code implementing the intrinsics’ semantics. Just as for intrin-
sics in the IR, the high-level semantics as well as the behavior with regards to the
program mutable state of pseudo-instructions can be controlled via various instruc-
tion attributes. These define extra constraints that need to be respected by compiler
optimizations when transforming programs containing the pseudo-instructions.

32 Chapter 3. Tools and Security Use-Cases

3.2 DWARF debug format

This section describes the important features of the DWARF standard that we will
need for our extension to describe program properties at the binary level, while the
details about how we actually extend the standard will be presented in Section 4.3.2
and Section 5.3.3.

3.2.1 DWARF Overview

Most modern programming languages are block structured: each entity is contained
within another entity. For example, each file in a C program may contain multiple
variable definitions and multiple functions. Within each C function, there may be
several data definitions followed by executable statements. A statement may be a
compound statement that in turn can contain data definitions and executable state-
ments.

DWARF follows this model in that it is also block structured. Each descriptive
entity in DWARF, except for the topmost entity which describes the source file, is
contained within a parent entity and may contain children entities, which may rep-
resent types, variables, or functions for instance.

3.2.2 Debugging Information Entry

DWARF uses a series of basic descriptive entities called Debugging Information Entry
(DIE) to define a low-level representation of a source program. A DIE has a tag,
which specifies what the DIE describes and a list of attributes, which fill in details
and further describes the entity. A DIE, except for the top-most, is contained in or
owned by a parent DIE and may have children DIEs. Hence, a DIE, or a group of
DIE together, provide a description of a corresponding entity in the source program,
be it a function, a parameter, a variable or a label. Attributes may contain a variety
of values: strings (such as function or variable name), constants (such as the address
of a global variable), or references to another DIE (such as for the type of a variable).

DIEs can be split into two general types: those that describe data and those that
describe executable code. The former will be used to describe variables referred in
a property, while the latter will be use to represent the program point at which the
property needs to be evaluated or verified.

3.2.2.1 Describing Data

Variable DIEs have a name which represents a chunk of memory (or register) that
can contain some kind of values. This kind of values is described by the type DIE—
which specifies the encoding (such as signed binary integer), and the size in bytes—
associated to the variable. What distinguishes a variable is where its value is stored
and its scope.

The scope of a variable defines where the variable is known within the program
and is determined by where the variable is declared. This relation is naturally rep-
resented by declaring the variable DIE as a child of the DIE describing the scope
within which the variable is declared.

Most variable DIEs have a location attribute that describes where the variable
is stored. In the simplest of cases, a variable is stored in memory and has a fixed
address, or more precisely, one that is a fixed offset from where the executable is
loaded. But many variables, such as those declared within a C function, are dynam-
ically allocated on the stack, and locating them requires adding a fixed offset to a

3.3. Security Use-Cases 33

frame pointer. In other cases, the variable may be stored in a register. In either case,
DWARF uses location expressions to describe how to locate the data represented by
a variable. A location expression contains a sequence of operations (such as deref-
erencing, adding or subtracting) and values (such as a constant, or a register name)
which details how to locate the data. DIEs describing variables whose values are
constants and not represented by an object in the address space of the program do
not have a location attribute but a constant value attribute instead. The value of
this attribute is the actual constant value of the variable, represented as it would be
on the target architecture. Debuggers use variable’s location attribute to retrieve its
value at a given execution point.

3.2.2.2 Describing Executable Code

We now present two types of DIEs describing the executable code that are of partic-
ular interest, as will be explained in Section 4.3.2 and Section 5.3.3.

Functions: DWARF describes functions with so-called subprogram DIEs. Such a
DIE has a name, a source location triplet, and attributes that give the low and high
memory addresses that the subprogram occupies (if it is contiguous), or a list of
memory ranges (if the function does not occupy a contiguous set of memory ad-
dresses). The low PC address is assumed to be the entry point for the routine unless
another one is explicitly specified. Additionally, the subprogram’s return value is
given by the type attribute (functions that do not return values do not have this
attribute).

The subprogram DIE owns DIEs that further describe the function, such as vari-
able DIEs representing parameters or variables defined inside the function.

Labels: A label is a way of identifying a specific source location. It is represented
by a DIE which is owned by the DIE representing the scope within which the name
of the label could be legally referenced in the source program. The label DIE gen-
erally has a name attribute and an attribute whose value is the address of the first
executable instruction for the location identified by the label in the source program.

Now that we have described the LLVM compilation infrastructure and the DWARF
debugging format, on top of which we will later implement our property-preserving
compilation framework, let us present the security use-cases that highlight the needs
for preserving source-level countermeasures during compilation, and that will be
later used to illustrate our proposed solutions and validate their implementations
(cf. Chapter 4 and Chapter 5).

3.3 Security Use-Cases

As stated previously, we would like to emphasize on the pivotal beneficial contri-
bution of preserving properties through optimizing compilation flow in security en-
gineering. Hence, as will be shown in the next chapters, our proposed solutions
are validated and evaluated on a set of security countermeasures that would ben-
efit from property preservation. These countermeasures are commonly introduced
at the source level, but compilers may not understand their purpose and optimize
them away. As a workaround, security engineers currently attempt to confuse the

34 Chapter 3. Tools and Security Use-Cases

compiler by resorting to compiler-dependent coding tricks. Nevertheless, this is ob-
viously error-prone and not future-proof as compilers are getting better at spotting
and removing “unnecessary” code (Simon, Chisnall, and Anderson, 2018). Further-
more, in some cases, notably for countermeasures against fault attacks, there exists
no programming trick to reliably preserve source-level protections. As a last resort,
the current approach adopted by the community is to compile the application with
optimizations turned off.

In the following, we present each of these security use-cases using the same struc-
ture:

1. Presentation of the security threat as well as the source-level protection scheme;

2. Explicit statement of the security protection-derived properties that need to be
preserved by the compiler, in order to conserve the protection itself;

3. Explanation of the security issue introduced by compiler optimizations;

4. Description of existing programming tricks (when available) to prevent com-
pilers from altering the protection.

As a side note, we consider source programs written in C, since performance-
critical applications and firmware of embedded systems, which are usually targets
of physical attacks, are traditionally written in C. We use the informal semantics
of the C standard (ISO/IEC 9899-2011) (ISO C11 Standard, 2011) as reference. As
a simplifying assumption, we only consider deterministic, sequential C programs
with well defined behavior, avoiding cases where the compiler may take advantage
of undefined behavior to trigger optimizations. This assumption is consistent with
widespread coding standards for secure code.

3.3.1 Sensitive Memory Data Erasure

Use-case description: First, we consider the security issue of sensitive data leak-
age, described in Section 1.1.2, which has been extensively studied in secure com-
pilation, as illustrated in Section 2.2.3.2 and Section 2.2.3.3. This example is also
usually used to demonstrate the correctness-security gap of optimizing compilers
(Balakrishnan and Reps, 2010; D’Silva, Payer, and Song, 2015), as it is a major threat
for applications. A security countermeasure consists in erasing a secret buffer allo-
cated on the stack after usage. It will be illustrated in mbedTLS’s implementation
of Rivest-Shamir-Adleman (RSA) encryption and decryption (Bakker, 2019), called
erasure-rsa-enc and erasure-rsa-dec in the following.

Note that this countermeasure deals with leakage from sensitive data in memory
only. Leakage from data in registers or stack locations is not supported, because it in-
curs erasing any possible register or stack location where sensitive values may have
resided in a function, which is not easily expressed as a source or IR-level property
(Simon, Chisnall, and Anderson, 2018). This would also require an advanced data-
flow analysis scheme to determine the list of registers and stack slots to be erased.

Security protection-derived property: As stated in Section 1.1.2, the countermea-
sure scheme can be equivalently expressed as a write of the zero value to the secret
buffer, before returning from the function allocating the buffer. Therefore, the se-
curity protection-derived property stipulates that every element of the secret buffer
holds the zero value before the function returns; we refer to this property as secret
erasure property in the following.

3.3. Security Use-Cases 35

Security issue due to compiler optimizations: Most compilers will spot that the
buffer is not accessible after the function returns, removing the call to memset() as
part of “dead store elimination”.

Current solutions to preserve the protection: Existing work acknowledged this
issue and surveyed the different techniques used to effectively erase memory data
in C programs (Yang et al., 2017; Simon, Chisnall, and Anderson, 2018; Percival,
2014). The easiest way to ensure the security property is to replace the call to memset
() by another function that guarantees that memory will be erased such as Mi-
crosoft SecureZeroMemory or C11 memset_s. Unfortunately, this technique relies on
a platform-provided function which is not universally available. Worse, memset_s
which is part of the optional Appendix K of the C standard (ISO/IEC 9899-2011)
(ISO C11 Standard, 2011) has no mainstream support: it is not provided (yet) by
common C standard libraries. As a result, developers have to come up with backup
solutions.

Several techniques attempt to hide the semantics of the erasure operation from
the compiler. The intuition behind this is, if the compiler does not recognize that an
operation is erasing memory, it will not remove it. The simplest way to achieve this
is to implement the erasure operation in a separate compilation unit. However, this
is not reliable when Link-Time Optimization (LTO) is enabled, which can merge all the
compilation units into one, giving the compiler a global view of the whole program.
Compiler can then recognize the erasure operation and remove it. Another popular
technique for hiding erasure operation from the compiler is to call the erasure func-
tion via a volatile function pointer. This has been adopted by popular cryptographic
libraries such as OpenSSL (The OpenSSL Project, 2003) or mbedTLS (Bakker, 2019),
as shown in Listing 3.1. However, while the C11 standard requires the compiler to
read the value of volatile-qualified memset_func from memory, the compiler is not re-
quired to call memset if it can compute the same result by other means. For instance,
a compiler may still load memset_func into a register, comparing it to memset, and
perform the function call only if they differ.

1 typedef void *(* memset_t)(void *, int , size_t);
2 static volatile memset_t memset_func = &memset;
3 // Used in OpenSSL.
4 void OPENSSL_cleanse(void *ptr , size_t len) {
5 memset_func(ptr , 0, len);
6 }
7 // Used in mbedTLS.
8 void mbedtls_zeroize(void *buf , size_t len) {
9 memset_func(buf , 0, len);

10 }

LISTING 3.1: Erasure implementation using volatile function
pointer.

There exists other techniques attempting to force the compiler to include the era-
sure operation without hiding its nature. One way to achieve this consists in using
specially-crafted, complicated computation that obfuscates the code. Older version
of OpenSSL, shown in Listing 3.2, is such an example. This implementation read
and writes the global variable cleanse_ctr which provides garbage data to fill the
memory to be erased. Since accesses to global variables have a global impact on the
program, the compiler cannot determine that this function is useless without exten-
sive interprocedural analysis, which is expensive. However, this is overly compli-
cated and the generated code is less compact and slower. Furthermore, while this

36 Chapter 3. Tools and Security Use-Cases

appears effective in practice, there is no guarantee that compilers will not someday
be aware of this trick and optimized it away.

1 unsigned char cleanse_ctr = 0;
2

3 void OPENSSL_cleanse(void *ptr , size_t len) {
4 unsigned char *p = ptr;
5 size_t loop = len , ctr = cleanse_ctr;
6 while (loop --) {
7 *(p++) = (unsigned char)ctr;
8 ctr += (17 + ((size_t)p & 0xF));
9 }

10 p = memchr(ptr , (unsigned char)ctr , len);
11 if (p)
12 ctr += (63 + (size_t)p);
13 cleanse_ctr = (unsigned char)ctr;
14 }

LISTING 3.2: Erasure implementation using code obfuscation.

Lastly, one may try to force the compiler to perform erasure by using a volatile-
qualified data pointer. Older version of mbedTLS, shown in Listing 3.3, is one of
the implementations based on this idea. The memory to be erased is written via a
pointer-to-volatile p in the while loop. Similar to the obfuscation technique, this also
leads to slower code, as it writes zeros one byte at a time. Furthermore, this behavior
is implementation-specific, as it is actually not guaranteed by the C11 standard. In
fact, only accesses to an object that has volatile-qualified type are required to be
performed; accessing a non-volatile object via pointer-to-volatile may or may not
be considered such an access. To make matters worse, there is also no guarantee
that compilers will remain ignorant and not transform this idiom. For example, a
discussion among LLVM developers concluded that it was valid to remove volatile
stores if (1) the address is a stack allocation that does not escape and (2) the result of
the store can be proven never to be read (Simon, Chisnall, and Anderson, 2018).

1 void mbedtls_zeroize(void *buf , size_t len) {
2 volatile unsigned char *p = (volatile unsigned char *)buf;
3 while (len --)
4 *p++ = 0;
5 }

LISTING 3.3: Erasure implementation using volatile data pointer.

3.3.2 Masking Computation Order

Use-case description: Masking is one of the most widespread countermeasures
against power analysis attacks on cryptographic algorithms (Ishai, Sahai, and Wag-
ner, 2003; Rivain and Prouff, 2010). The idea is to combine the secret value with ran-
dom noise, then to perform intermediate computations using this masked value, and
to unmask the result at the end, so that all computations are statistically independent
of the original secret value. In order to further maintain this statistical independence
from the secret value, notably when only a limited set of masks is available, mask
swapping can be necessary at some point (Herbst, Oswald, and Mangard, 2006).
This mask swapping scheme is illustrated in Listing 3.4. The secret k is first masked
with m (line 1), then is re-masked with mpt, so that finally previous mask m can safely
be removed from k (line 3). This countermeasure will be illustrated in a masked im-
plementation of Advanced Encryption Standard (AES) (Herbst, Oswald, and Mangard,
2006), named mask-aes in the following.

3.3. Security Use-Cases 37

1 k ^= m;
2 ... // k, masked with m, can be safely used here
3 k = (k ^ mpt) ^ m;
4 ... // k, masked with mpt , can be safely used from here

LISTING 3.4: An example of mask swapping scheme.

Security protection-derived property: The effectiveness of this countermeasures
lies in the specific computation order: re-masking must take place before the re-
moval of the previous mask to avoid exposing the unmasked secret key value. In
other words, the protection-derived property requires that the computation order of
“re-masking then unmasking” is respected; we refer to this property as instruction
ordering property in the following.

Security issue due to compiler optimizations: Although the instruction ordering
property holds at the source level, it has been reported that compiler optimizations
can produce an semantically equivalent, yet unsafe program by swapping the ^ op-
erations such that the unmasking operation takes place before re-masking, i.e., turn-
ing line 3 into k = k ˆ(mpt ˆm), thus making the transformed program vulnerable to
power analysis attacks (Bayrak et al., 2013; Eldib and Wang, 2014). This happens be-
cause of the ^ operation’s associativity and that compilers have perfectly the right to
reorder associative operations, as programs before and after this transformation pro-
duce matching observable behaviors, with respect to the C standard. Note how the
programmer has intentionally put the parentheses to express the security property
saying k has to be re-masked with mpt before removing the previous mask m.

This example highlights the challenges for respecting the computation order of
associative operations, as explicitly written in the source code, with optimizing com-
piler. The C programming language is defined in terms of an abstract machine pro-
ducing observable behaviors. A compiler can optimize a conforming program as
long as the generated observable behaviors match the one from the C language ab-
stract machine; it is thus free to reorder associative operations, even with proper
parenthesizing. To make things worse, this is independent of the optimization level,
and programmers usually have no control over it.

Current solutions to preserve the protection: A mitigation trick is shown in List-
ing 3.5. One can first declare a volatile-qualified temporary variable tmp holding the
result of the re-masking operation (line 3), then later use it for unmasking (line 5).
Furthermore, to ensure that the result of re-masking has been stored into tmp before
it is loaded for unmasking, one can insert a memory barrier implemented by inline
assembly statement (line 4). Again, similar to some erasure techniques presented in
Section 3.3.1, this trick is implementation-specific, not future-proof and might also
result in slower code, as it prevents the compiler from caching values in registers,
and furthermore prevent optimizations from moving all memory accesses across the
introduced barrier.

1 k ^= m;
2 ... // k, masked with m, can be safely used here
3 volatile uint8_t tmp = k ^ mpt;
4 __asm__ __volatile__("" : : : "memory");
5 k = tmp ^ m;
6 ... // k, masked with mpt , can be safely used from here

LISTING 3.5: An example of mask swapping scheme.

38 Chapter 3. Tools and Security Use-Cases

3.3.3 Step Counter Incrementation

Use-case description: The next countermeasure is designed to enhance the resilience
against fault attacks that induce unexpected jumps to any location in the program
(Lalande, Heydemann, and Berthomé, 2014; Heydemann, Lalande, and Berthomé,
2019). More specifically, this source-level scheme aims at detecting harmful attacks
that disrupt the control flow by not executing at least two adjacent statements of C
programs. It deals with different high-level control flow constructs, namely straight-
line flow of statements, function calls, conditional constructs (if-then, if-then-else or
switch) and loop constructs. We refer to this technique as Step Counter Incrementa-
tion (SCI); it may be seen as a very fine-grained form of Control Flow Integrity (CFI).
This countermeasure will be illustrated in two well-known smart-card benchmarks:
PIN authentication (Dureuil et al., 2016) and AES encryption (Levin, 2007), called
sci-pin and sci-aes, respectively, in the following.

To secure the control flow integrity of a whole block of straight-line statements,
the latter is associated with a dedicated counter which is first initialized outside of
the block, then incremented after each C statement inside the block from the original
program. At the exit of the block, a check of the expected value of the counter is
performed and if this fails, the program execution stops.

To secure the control flow integrity of a conditional construct, two counters (for
each branch of the construct) and one extra variable holding the condition value
of the conditional flow are required. Their declarations and initializations are per-
formed outside the construct. Both counters are checked, according to the condition
value, at the exit of the conditional construct. Consider an example of this technique,
with the protection code automatically inserted as C macros using the script from the
original work, shown in Listing 3.6.

1 ...
2 unsigned short cnt_then = 0, cnt_else = 0;
3 if (cond) {
4 if (cnt_then != 0) killcard (); // CHECK_INCR expanded
5 cnt_then ++;
6 a = b + c;
7 if (cnt_then != 1) killcard (); // CHECK_INCR expanded
8 cnt_then ++;
9 }

10 if (!((cnt_then == 2 && cnt_else == 0 && cond) || // CHECK_END_IF_ELSE
11 (cnt_then == 0 && cnt_else == 0 && !cond))) // expanded
12 killcard ();

LISTING 3.6: An example of SCI scheme.

The protection first defines two step counters cnt_then and cnt_else associated
to each branch of the conditional construct (line 2). It then steps cnt_then after every
C statement of the branch “then”, including the test statement (lines 5 and 8). Before
any incrementation, a check of the expected value of cnt_then is performed (lines 4,
and 7). The branch “else” is actually empty, cnt_else is not incremented at all. cnt_
then and cnt_else are finally checked against their expected values at the exit of the
conditional construct, according to the value of the condition cond (lines 10 and 11).
Whenever an inserted check fails, a fault is detected and a handler killcard() is
called (lines 4, 7 and 12).

Similarly, to secure the control flow integrity of a loop construct, a counter and
an extra variable holding the value of the loop condition are required. The latter is
needed at the end of the loop to verify the correct execution of the loop body and the
correct termination of the loop.

3.3. Security Use-Cases 39

Security protection-derived property: In order for the protection to be effective,
two following protection-derived properties are crucial: (1) counters need to be cor-
rectly incremented and checked against their expected values; and (2) every incre-
mentation needs to be performed after the execution of the corresponding source
statement. Note that the latter also implies the former: incrementations have to be
preserved in the first place in order to be correctly scheduled later. In other words,
the proper interleaving of functional and protection code needs to be preserved; we
refer to this property as code interleaving property in the following.

Security issue due to compiler optimizations: Clearly, the countermeasure is frag-
ile against compiler optimizations which do not understand the intention of gener-
ating secure code. As long as faults are not modeled in compilers, counter checks
can be removed—their conditions are trivially true in a “fault-free” semantics of the
program—whereas counter incrementations can be grouped into a single addition
statement or even removed.

Current solutions to preserve the protection: Unfortunately, there currently ex-
ists no reliable workaround preventing optimizations from violating these secu-
rity properties. As a result, practitioners making use of this source-level hardening
scheme have to disable compiler optimizations to guarantee the protection’s effec-
tiveness.

3.3.4 Control and Data Flow Redundancy

Use-case description: The next countermeasure that we consider is the loop pro-
tection scheme already described in Section 2.2.4.3, which aims at ensuring the secu-
rity property stating that a sensitive loop must always perform the expected number
of iterations and take the right exit, even in presence of fault injections. The original
loop hardening algorithm (Proy et al., 2017) operates on the LLVM IR and the au-
thors has carefully investigated and analyzed different compilation passes in order
to select a beneficial position for the loop hardening pass in the compilation flow,
with respect to downstream and upstream passes, so that the countermeasure is
preserved in the generated binary. We argue that, if we are able to reliably maintain
the protection code during compilation, such an investigation is not mandatory and
can thus be dismissed. Indeed, we attempt to make the approach more generic by
implementing it at source level. We implemented the loop hardening scheme on the
core loop of PIN authentication (a memcmp-like function) (Dureuil et al., 2016), named
loop-pin in the following.

1 int memcmp(char *a1 , char *a2 , unsigned n) {
2 for (unsigned i = 0; i < n; ++i) {
3 if (a1[i] != a2[i]) {
4 return -1;
5 }
6 }
7 return 0;
8 }

LISTING 3.7: Original memcmp() implementation.

More specifically, given an implementation of memcmp() loop shown in Listing 3.7,
we apply the countermeasure scheme to this function and obtain secure_memcmp() in
Listing 3.8. We duplicate the loop counter i (as well as all computations involving it,

40 Chapter 3. Tools and Security Use-Cases

lines 2 and 3) and loop-independent variables being used in the loop body (n in this
case, line 2). Furthermore, we insert redundant computations of the exit condition at
every iteration of the loop (line 4), as well as at the loop exit (lines 7 and 14). We also
verify that the values of the duplicated loop-independent variables at every loop exit
are correct with respect to the values of their original counterparts (lines 9 and 16).

1 int memcmp(char *a1 , char *a2, unsigned n) {
2 unsigned i, i_dup , n_dup = n;
3 for (i = 0, i_dup = 0; i < n; ++i, ++ i_dup) {
4 if (i_dup >= n)
5 fault_handler ();
6 if (a1[i] != a2[i]) {
7 if (a1[i_dup] == a2[i_dup])
8 fault_handler ();
9 if (n_dup != n)

10 fault_handler ();
11 return -1;
12 }
13 }
14 if (i_dup < n)
15 fault_handler ();
16 if (n_dup != n)
17 fault_handler ();
18 return 0;
19 }

LISTING 3.8: Securing memcmp() loop.

Security protection-derived property: In order to ensure the loop iteration num-
ber integrity and guarantee that the right exit is always taken, the property that
needs to be preserved behind this protection scheme consists in the preservation of
duplicated variables i_dup and n_dup, as well as the computations and checks in-
volving these duplicates; we refer to this property as redundancy preservation property
in the following.

Security issue due to compiler optimizations: Since the approach relies on redun-
dant computations, the difficulty lies in preserving the protection from optimiza-
tions: redundant operations are ideal candidates to be optimized away by compilers.
Indeed, as detailed in Section 2.2.4.1 and Section 2.2.4.3, redundancy is eliminated
in various places in the compilation flow, from optional optimization passes such as
“instruction combining” or “dead code elimination”—which can be avoided by dis-
abling optimizations—to mandatory transformation passes such as “instruction se-
lection” which lowers IR instructions into machine specific representation and thus
cannot be bypassed.

Current solutions to preserve the protection: Although redundancy is commonly
used to implement countermeasures against fault injection attacks (Witteman, 2018),
there exists, perhaps surprisingly, no well grounded approach to preserve it through
optimizing compilation, other than introducing redundant instructions at the very
end of the compilation pipeline, as illustrated in Section 2.2.4.2. Unfortunately, this
is not always desirable, or even feasible, as some countermeasures require high-level
information about the program such as the CFG or loop structures. One may attempt
to preserve redundant variables by using the volatile keyword, but as explained
in Section 3.3.1 and Section 3.3.2, this technique is not future-proof and leads to
slower code by introducing extra loads and stores to the program. Furthermore,

3.3. Security Use-Cases 41

this is particularly undesirable for applications submitted to fault injections: it also
produces larger code and thus increases the overall attack surface, which in turn
increases the probability for an attacker to find and exploit vulnerabilities (Bréjon
et al., 2019).

3.3.5 Constant-Time Selection

Use-case description: Another well-known, yet hard to achieve example of secu-
rity property is selecting between different values, based on a secret selection vari-
able, in constant time. As shown in Section 2.2.3.1, this means the generated code for
the selection operation must not contain any jump or memory access pattern condi-
tioned by the secret selection variable, otherwise the execution time of the operation
will depend on which value is selected, thus leaking the secret selection variable.
Cryptography libraries resort to data-flow encoding of control flow, bitwise arith-
metic at source level to avoid conditional branches, but this fragile constant-time
encoding may be altered by an optimizing compiler. This security property will
be illustrated in mbedTLS’s RSA decryption (Bakker, 2019) and a self-written RSA
exponentiation using Montgomery ladder (Simon, Chisnall, and Anderson, 2018),
respectively called ct-rsa and ct-montgomery in the following.

1 uint32_t ct_select_vals_1(uint32_t x, uint32_t y, bool b) {
2 signed m = 0 - b;
3 return (x & m) | (y & ~m);
4 }

(a) Constant-time selection between two values, version 1

1 uint32_t ct_select_vals_2(uint32_t x, uint32_t y, bool b) {
2 signed m = 1 - b;
3 return (x * b) | (y * m);
4 }

(b) Constant-time selection between two values, version 2

1 uint64_t ct_select_lookup(const uint64_t tab[8], const size_t idx) {
2 uint64_t res = 0;
3 for (size_t i = 0; i < 8; ++i) {
4 const bool cond = (i == idx);
5 const uint64_t m = (-(int64_t)cond);
6 res |= tab[i] & m;
7 }
8 return res;
9 }

(c) Constant-time selection from lookup table

Listing 3.9: Constant-time selection attempts.

For example, consider different functions from Listing 3.9. Listing 3.9a and List-
ing 3.9b represent two implementations of constant-time selection between two val-
ues x and y based on a secret selection bit b, while Listing 3.9c shows an example
where the programmer wishes to select a value from the lookup table tab while hid-
ing the secret lookup index idx. All these functions are carefully designed to contain
no branch conditioned by the secret value: a bitmask m is created from the secret
value using arithmetic tricks, then is in turn used to select the wanted values.

Security protection-derived property: One can equivalently express the constant-
timeness as the preservation of the arithmetic idioms, which are guaranteed, to be

42 Chapter 3. Tools and Security Use-Cases

transformed into machine code with the same constant-timeness as the source pro-
gram; we refer to this property as constant-time selection property in the following.

Security issue due to compiler optimizations: It has been reported that these arith-
metic idioms are not preserved by LLVM, thus the code generated is not guaranteed
to be constant-time. For instance, the compiler introduces a conditional jump based
on the secret value when compiling, with optimizations enabled, the first two func-
tions for IA-32 (Simon, Chisnall, and Anderson, 2018), or the last function for both
IA-32 and x86-64 (LLVMdev, 2020). In fact, the compiler recognizes these arithmetic
idioms and transforms them into the ordinary selection operations, which in turn
can be lowered into conditional jumps, depending on the target architecture.

Current solutions to preserve the protection: The community is desperately in
search of a reliable way to prevent the compiler from spotting and optimizing the
constant-time idioms. As presented in Section 2.2.3.1, other workarounds introduce
to the compiler a specially-crafted operation that will be ultimately compiled into a
conditional move instruction (if available in the target architecture) (Simon, Chisnall,
and Anderson, 2018; Barthe et al., 2019). However, this solution is target-dependent
and lack of generalizability: it only supports the operation of selecting between two
values, and needs to be modified in order to implement the constant-time selection
from lookup table from Listing 3.9c for instance.

3.4 Discussion

In this chapter, we presented the LLVM compiler toolchain, on top of which we will
implement our property-preserving compilation framework. We detailed its overall
three-phase architecture as well as its key features needed for our implementations.
We also introduced the DWARF debug data format, which will be used to repre-
sent, at binary level, the properties propagated through the compilation process.
We finally described our selected security use-cases including different protection
schemes, which will be used for validation and evaluation of our approaches.

Having introduced the different basic blocks needed to explain our approaches,
in the next two chapters, we will detail our proposed solutions to preserve program
properties through optimizing compilation, their implementations in LLVM, how
we represent the propagated properties in the executable binary using the DWARF
format, and the validation of our two solutions on a reference suite of functional
properties, and notably on our selected set of security use-cases.

43

Chapter 4

Automated Property Preservation
at Compile-Time

The goal of this thesis is to devise a mechanism preserving, along an optimizing
compilation of C code to machine code, both the semantics of functional properties—
which are external to the program itself, and the security countermeasures intro-
duced in the source program to guarantee some security properties. Section 3.3 dis-
cusses some scenarios featuring different security countermeasure schemes, and for
each of these schemes, states the security protection-derived property which, if pre-
served during compilation, implies that the associated countermeasure will also be
preserved by the compiler. As will be shown in this chapter, these protection-derived
properties can be equivalently encoded as a special type of functional properties, so
that we can apply the same mechanism preserving functional properties to preserve
the protection-derived properties.

However, preserving external functional properties in an optimizing compilation
flow is hard. This boils down to (1) propagating the properties through the compila-
tion flow in parallel with program transformations, (2) maintaining their consistency
with the code undergoing transformations and (3) embedding the properties into the
compiled binary without interfering with the executable code itself. Furthermore, as
illustrated through various security scenarios presented in Section 3.3, we also need
to prevent optimizations from invalidating the properties by, for instance, removing
referred variables or reassociating expressions. In other words, we need a mech-
anism to maintain their presence in the code undergoing transformations. In this
chapter, we present our first proposed approach to address this problem, automati-
cally deployed at compile-time and relying on I/O side-effects. As a result, we refer
to this solution as I/O-barrier-based approach.

In this chapter, We first start by defining the notion of functional property and
what it actually means for the compiler. We also introduce the concept of observa-
tion trace and how it is used to define the preservation of functional properties in a
compilation flow.

Given these definitions, we next describe our compilation approach to preserve
functional properties. This involves (1) capturing and translating source-level prop-
erties through lowering passes and intermediate representations, such that data and
control flow optimizations will preserve their consistency with the transformed pro-
gram, and (2) carrying properties as debug information down to machine code. It is
worth noting that instead of trying to transform the properties in concert with pro-
gram transformations, for example by devising property transformation rules for
each compiler transformation—which is not feasible for a modern optimizing com-
piler including hundreds of optimizations—we propose an alternative approach that
introduces additional constraints that every transformation needs to respect. These

44 Chapter 4. Automated Property Preservation at Compile-Time

constraints ensure that all source denotations referred in program properties are pre-
served (i.e. not optimized out), thus maintaining the semantics of these properties.
Note that the constraints might prevent some optimizations from happening. For ex-
ample, while a property verifying the value of the loop count at each iteration does
not prevent “loop unrolling” from being performed, it will block transformation
such as “loop reversing” from turning an original counter-incremented loop into a
counter-decremented one. However, this is a performance-generalizability trade-off
that we deliberately accept, in order to devise an optimization-agnostic approach for
preserving program properties that can be implemented in an aggressively-optimizi-
ng compiler used in industrial settings.

To validate the soundness and efficiency of the approach, we implement the pro-
posed mechanism in LLVM and conduct experiments considering a reference suite
of functional properties as well as established security use-cases presented in Sec-
tion 3.3. Furthermore, we also illustrate the idea of automatically providing binary
analysis with additional properties by plugging our compilation framework into a
robustness analysis tool, thus automating the whole analysis process.

4.1 Definitions

Let us start by laying the foundation of our approach, introducing some required
definitions. In the following, the program may refer to any representation used by
different steps of the compilation process: source, IR or machine code level.

Definition 4.1.1 (Program state). A program state is defined by

• a distinguished value of the program counter π denoting a program point;

• a finite set V of (variable, value) pairs for all program-defined variables at π;

• a large but finite set M of (memory_location, value) pairs stored in main mem-
ory at π.

Definition 4.1.2 (Program partial state). A program partial state is a subset of a (com-
plete) program state. It is defined by a program counter π, a set V ′ ⊆ V and a set
M′ ⊆ M. A program partial state holds the (variable, value) pairs in V ′ and the
(memory_location, value) pairs in M′, both at π.

Note that Definition 4.1.1 (Program state) and Definition 4.1.2 (Program partial
state) refer to a generic notion of program variable, either a source-level denotation,
an SSA value, or a register in a low-level representation. As will be presented in Sec-
tion 4.3, we do not take into account the precise nature of the variable but maintain
a mapping from denotations referred in source-level functional properties to their
corresponding representations at any given compilation step.

Definition 4.1.3 (Functional property). A functional property specifies the program
behavior at a given program point by exclusively referencing its variables and mem-
ory locations. It takes the form of a pair (Formula, ObsPt), where Formula is a propo-
sitional logic formula expressing the behavioral properties of the program; ObsPt
denotes the program point called observation point at which property Formula is ex-
pected to hold.

Given a functional property (Formula, ObsPt), we call ObsVar and ObsMem the
sets of all observed variables and observed memory locations occurring in Formula. The

4.1. Definitions 45

functional property defines a partial state containing the (variable, value) pairs and
(memory_location, value) pairs of all observed variables and observed memory lo-
cations at observation point ObsPt.

1 k ^= m;
2 ...
3 mpt = get_val ();
4 tmp = k ^ mpt;
5 /* Property: tmp == k ^ mpt */
6 k = tmp ^ m;
7 ...

LISTING 4.1: An example of functional property for a mask swap-
ping scheme.

As an example of functional property, we consider the mask swapping scheme
from Section 3.3.2 again. The code shown in Listing 4.1 has been rewritten for illus-
tration purpose. Let us remind that the security property stipulates that all variables
must be statistically independent of the secret. Therefore, variables that depend on
secret must be masked throughout the whole program execution, in every compu-
tation involving those. The protection scheme implements a mask swapping op-
eration, and its effectiveness requires a protection-derived property ensuring that
re-masking must take place before the removal of the previous mask to avoid expos-
ing the unmasked secret key value. Thereby, the protection-derived property can
be expressed with the boolean expression tmp == k ^ mpt at a specific point (line 5),
and that this value of tmp is indeed used to compute the new value of k (line 6). In
contrast to the complete program state that includes pairs for variables k, tmp, mpt,
and m, the partial state defined by the considered functional property tmp == k ^ mpt
only contains pairs for k, tmp and mpt.

Intuitively, a functional property is preserved by a transformation when there
exists, in the transformed program, a program point where all variables from the
partial state defined by the property hold their expected values. As a result, func-
tional property must act as a barrier at ObsPt for all memory accesses to locations in
ObsMem and definitions of variables in ObsVar: no definition of a variable and no ac-
cess to a memory location observed by Formula may be moved across ObsPt through
program transformations.

It is worth noting that Definition 4.1.3 (Functional property) can be generalized
to invariant properties of a control flow region: the latter may be considered as a set
of functional properties (Formula, ObsPti) for all program points ObsPti belonging to
the region.

Definition 4.1.4 (Observational property). An observational property can be defined
as a special functional property which does not specify any program behavior but a
list of observed entities and an observation point ObsPt. The property thus defines
a partial state containing the (variable, value) pairs and (memory_location, value)
pairs of all these observed entities at ObsPt.

In short, observational properties specify to the compiler a list of values that
will be externally observed, and thus impose the preservation of these values on
program transformations. Observational properties are primarily used to encode
security protection-derived property, which, if preserved, allows for preservation of
the associated security protection. For instance, consider the example from Listing
4.1. In order to express the requirement of “re-masking before unmasking”, needed

46 Chapter 4. Automated Property Preservation at Compile-Time

for the effectiveness of the masking scheme, one only needs to ensure that tmp—
which holds the result of re-masking operation—is actually available at the obser-
vation point, and is indeed used in the subsequent unmasking operation. In other words,
instead of verifying the complete boolean expression tmp == k ^ mpt at the obser-
vation point, it is sufficient to observe tmp to make sure its value is available at this
point. We also need to ensure that the observed value of tmp is actually used for
unmasking. More details on the encoding of security protection-derived property as
observational property, as well as its application to security countermeasure preser-
vation will be discussed in Section 4.4.3.

Definition 4.1.5 (Observation trace). Given a finite set of functional properties FP,
an observation trace is a finite sequence of program partial states defined by the prop-
erties in FP. Again, we restrict ourselves to sequential, deterministic programs.

Definition 4.1.6 (Functional property preservation). Given a program P and a trans-
formation τ that applies to P producing a semantically equivalent program P′—i.e.
with the same I/O behavior—τ is said to preserve all functional properties in P if the
observation traces produced by P and P′, given the same input, are equal—i.e. they
have the same sequence of partial states.

This is a rather conservative definition as it does not allow any reordering of
partial states. We will relax it in the solution described in Chapter 5, but consider
this simpler definition for now, so that we can focus on explaining the principle of
our approach, before inspecting a more optimized solution.

Note that Definition 4.1.6 (Functional property preservation) does not define a
notion of program point preservation. Only pairs (Formula, ObsPt) are preserved, as
defined by the associated partial states in the observation traces of the original and
transformed programs. Still, a program transformation τ maps functional proper-
ties (Formulai, ObsPti) in a program P into functional properties (Formula′j, ObsPt′j) in
a program P′. One logic formula Formulai in P may correspond to one or more for-
mulas in P′ (for instance, when ObsPti is inside a loop and transformation τ is loop
unrolling, which would duplicate the loop body) up to the renaming of its variables
and the rearrangement of its memory locations, as long as evaluating the formula
at observation point ObsPt′j results in the same value at the same relative position in
the trace.

4.2 An Approach for Preserving Functional Properties

As explained previously, optimizations are free to remove variables, reorder or re-
move instructions as long as they do not change the program’s observable behavior
(cf. Chapter 1 and Section 2.2.4). Preserving functional properties according to Def-
inition 4.1.6 (Functional property preservation) implies (1) preventing the compiler
from removing any observed variable or memory location, (2) maintaining the corre-
spondence between the observed variables or memory locations and their values at
the associated observation points, and (3) blocking the movement of accesses to ob-
served memory locations and definitions of observed variables across the functional
property observing them (the barrier effect of functional properties). This section
describes our solution.

Production compilers such as gcc or LLVM generally have an IR in SSA form,
and we first describe our solution tailored for the SSA properties.

The SSA form ensures that any program point has a unique reaching definition
for live SSA variables. As a result, a source variable v is represented by multiple SSA

4.2. An Approach for Preserving Functional Properties 47

variables V = {v1, . . . , vn}. Note that multiple SSA variables corresponding to the
same source variable may be alive at a given program point.

A natural approach to propagate program functional properties consists in track-
ing reaching definitions of all observed variables across IRs. This would imply find-
ing, after each program transformation, an observation point at which all reaching
definitions of the observed variables exist. However, the existence of such program
point is not always guaranteed by compiler optimizations, or worse, a given reach-
ing definition might be optimized away. Hence we propose an approach that prop-
agates by construction both the observation point and the reaching definitions of the
observed variables defined in the source program or any IR.

Given a functional property, we need to ensure the correct values of the observed
variables and the values stored at the observed memory locations at the associated
observation point. For memory locations, one may enforce these constraints by in-
serting a compiler fence, i.e. an instruction with a memory side-effect, see e.g. Listing
3.5. Enforcing the same constraints for the observed variables implies preserving the
reaching definitions of every observed variable at the observation point: we have to
make sure that these definitions exist and take place before the observation point.
This is generally not guaranteed by optimizing compilers since optimizations such
as code motion do not know about such constraint on the presence of functional
property.

1 %k2 = xor %k1, %m
2 ...
3 %mpt = call get_val ()
4 %tmp = xor %k2, %mpt
5 // Prop: %tmp == %k2 ^ %mpt
6 %k3 = xor %tmp , %m
7 ...

(a) Functional property preserved

1 %k2 = xor %k1, %m
2 ...
3 %mpt = call get_val ()
4 %tmp = xor %k2, %m
5 // Prop: %tmp == %k2 ^ %mpt
6 %k3 = xor %tmp , %mpt
7 ...

(b) Functional property invalidated

Listing 4.2: An example of functional property for a mask swapping
scheme in SSA.

As an example, consider the property tmp == k ^ mpt from Listing 4.1. We illus-
trate the concern in Listing 4.2, which shows the same code example in SSA form: the
source variable k is translated into 3 different SSA variables %k1, %k2 and %k3, where
%k2 is the reaching definition of k for the observation point of the property. Similarly,
variable mpt from the source program is represented by %mpt, while tmp is now %tmp
. Variables in the property have also been renamed accordingly into %tmp, %k2 and
%mpt. The snippet in Listing 4.2a represents the program with the correct computa-
tion order with regards to the considered functional property, shown in green, while
one in Listing 4.2b shows a semantically-equivalent program but with the functional
property being invalidated, shown in red. Indeed, because the C standard does not
define a specific evaluation order for associative operators, compilers can arbitrarily
transform the original program into either SSA code, and this is done regardless of
whether optimizations are enabled (ISO C11 Standard, 2011).

The key idea of our solution is to tie together the reaching definitions of observed
variables and the observation point. We achieve this by inserting different instruc-
tions to the program.

Given a functional property, we first materialize the associated observation point
using an opaque, I/O side-effecting compiler fence. This guarantees that all memory
accesses—including ones to the observed memory locations—cannot be moved across

48 Chapter 4. Automated Property Preservation at Compile-Time

the observation point, which in turn ensures the correct values stored at these ob-
served memory locations at the observation point. In other words, the compiler
fence implements the barrier effect of functional properties for observed memory
locations. Furthermore, the compiler fence is opaque and I/O side-effecting, which
means that, not only it cannot be removed by compiler optimizations, but the rela-
tive order of different observation points (and thus functional properties) are guar-
anteed to be preserved.

Next, we need to implement the barrier effect of functional properties for ob-
served variables. To this end, for each such variable, we introduce an opaque, I/O
side-effecting identity function that takes the reaching definition of the variable as a
parameter, and produces another value. The function is opaque, meaning that the
compiler cannot analyze it and does not know about the identity relation between its
input parameter and its output result; the output value is hence statically unknown
to the compiler. We also replace the original value of the reaching definition, for
all of its uses in the subsequent code, by the opaque value produced by the iden-
tity function. We thus call these identity functions artificial definitions. The artificial
definitions are also I/O side-effecting, so that their relative ordering with respect to
the compiler fence cannot be altered by the compiler. As a result, program trans-
formations cannot move the artificial definition of any observed variable across the
compiler fence. It is thus guaranteed that the reaching definitions of observed vari-
ables will always be available at a given observation point.

Algorithm 1. Artificial definitions in SSA
input: Properties, list of functional properties

1 for (Formula, ObsPt) ∈ Properties do
2 ObsVar← variables of Formula;
3 CF← compiler fence associated with ObsPt;
4 for OV ∈ ObsVar do
5 RD← reaching definition of OV for ObsPt;
6 insertArtificialDefinition(RD, RD, After);

For every element in the set ObsVar of observed variables of a given functional
property, Algorithm 1 is in charge of inserting artificial definitions into the program.
Function insertArtificialDefinition(Dv, Inst, Before|After) creates an artificial defini-
tion producing an SSA variable v′ from an SSA variable v defined by Dv, inserts
it before (respectively after) instruction Inst and replaces all uses of v subsequent to
the insertion point by v′. Notice that Algorithm 1 inserts artificial definitions right
after the corresponding reaching definitions, which allows for maintaining the SSA
form of the program.

Applying the algorithm to Listing 4.3a yields the code in Listing 4.3b : all ob-
served variables in the property (%k2, %tmp and %mpt) have been renamed (respec-
tively %k2’, %tmp’ and %mpt’). Artificial definitions opaquely define new values for
these observed variables. The compiler cannot make assumptions about these val-
ues and is forced to assign concrete locations to hold them. As a result, artificial
definitions do prevent the elimination of the observed variables at the observation
point (they may still be optimized in the rest of the code). It is worth noting that
replacing subsequent uses of the original values of the observed variables (e.g. %tmp)
by the corresponding opaque values (e.g. %tmp’) is crucial here, as this ensures that
the unmasking operation actually uses the opaque value %tmp’ defined by the arti-
ficial definition, and thus indeed occurs after the re-masking operation, needed for

4.3. Putting it to Work 49

1 %k2 = xor %k1, %m
2

3 ...
4 %mpt = call get_val ()
5

6 %tmp = xor %k2, %mpt
7

8 // Prop: %tmp == %k2 ^ %mpt
9 %k3 = xor %tmp , %m

10 ...

(a) Original

1 %k2 = xor %k1, %m
2 %k2’ = call artificial_def(%k2)
3 ...
4 %mpt = call get_val ()
5 %mpt’ = call artificial_def(%mpt)
6 %tmp = xor %k2’, %mpt’
7 %tmp’ = call artificial_def(%tmp)
8 call obs_pt("%tmp’ == %k2’ ^ %mpt’")
9 %k3 = xor %tmp’, %m

10 ...

(b) Solution

Listing 4.3: Preserving functional property in SSA.

producing %tmp’ itself.

4.3 Putting it to Work

In this section, we first describe our proposed representation for functional proper-
ties in different program representation levels from source code, through compiler
IR, down to binary code, then detail how we implemented our mechanism for func-
tional properties preservation in an optimizing compiler. As stated in Section 3.4,
we consider source programs written in C, and choose to base our framework on
the LLVM compilation infrastructure.

4.3.1 Functional Properties in Source Code

We capture functional properties as source program annotations, and use boolean
expressions following C language syntax to represent functional properties. Our
annotations are written directly in C source files using the following GNU C attribute
syntax: l: __attribute__((annotate("str")));. The label l denotes the observation
point and the functional property is expressed by the boolean expression str. Note
that we do not restrict ourselves to this specific syntax, we believe that our solution
could be adapted to other annotation mechanisms such as pragmas, with only minor
modification.

4.3.2 Functional Properties in Machine Code

When attaching functional properties to machine code, one needs to make sure bi-
nary analysis tools are capable of extracting the corresponding representation of the
observed variables and memory locations.

Debug information is generated by the compiler for the purpose of communicat-
ing source location, type and variable information to the debugger. Therefore, it al-
ready provides machine code with a detailed description of source-level variables as
well as of memory locations. As mentioned in Section 3.2, it is thus very reasonable
to extend the debug information to represent functional properties in the binary: the
formulas expressing the functional properties are propagated and emitted into the
debug section of the binary, while the binary representations of observation points
and observed variables and memory locations are already provided by the standard
debug information.

50 Chapter 4. Automated Property Preservation at Compile-Time

To this end, we introduce to DWARF—a widely-used and easily-extensible de-
bug data format—new tags and attributes to represent source-level functional prop-
erties. A property obs_pt: __attribute__((annotate("tmp == k ^ mpt"))); from the
source program is represented by a DIE which contains:

• the formula string "tmp == k ^ mpt";

• a reference to the label DIE representing obs_pt which contains the machine
code address corresponding to the observation point (cf. Section 3.2.2.2);

• references to the DIEs representing the observed variables and memory lo-
cations, in this case tmp, k and mpt. Each of these DIEs contains the location
attribute allowing binary analysis tools to retrieve the values of these variables
(cf. Section 3.2.2.1)

The property DIE is owned by the subprogram DIE representing the function
containing the observation point at which the property occurs.

Unfortunately, it is common knowledge that debug information is a second-class
citizen of compiler validation, and may not be accurate, or even not available in the
presence of aggressive optimizations. For example, when a redundant calculation
is optimized out, preserving the information about its result (such as variable lo-
cations) is not possible. A fortunate side-effect of inserting artificial definitions is
to prevent most optimization passes from harming the observed variables’ debug
information, as artificial definitions actually preserves the values of such variables.
However, we still had to fix a few critical remaining bugs in LLVM code computing
and propagating the debug information, and filed bug reports for others (cf. Section
4.4.3). As an immediate benefit of leveraging (accurate) debug information, com-
piler passes do not have to worry about renaming variables observed in functional
properties: debug information takes care of tracking the mapping of source to IR
variables, down to machine code registers and stack locations.

4.3.3 Observed Variables: Multiple Definitions and Debug Information

Let us now consider the scenario where there exists multiple definitions for a given
observed variable. As it stands today, debug information can only provide a sin-
gle value for a source variable at a given line of code. When multiple live ranges
corresponding to the same source variable overlap at a given code region, only the
most recent one is reported in the variable location corresponding to the overlapping
code region, stored in the DIE describing the variable in question. In the same spirit,
when multiple live ranges get permuted, for a given program point, debug infor-
mation only refers to the last definition, irrespectively of the initial program order.
Such behavior may be observed after variable renaming and live range splitting, fol-
lowed by code motion. This simplification is consistent with the common usage of
debug information in debuggers, but it conflicts with our application to functional
property preservation. This is the reason why we have to forbid any transformation
from reordering definitions of different occurrences of the same source variable, as soon
as one of these occurrences is observed by a functional property.

To illustrate this issue, let us consider the mask swapping scheme from Section
3.3.2 again. We expand the snippet of code implementing the re-masking operation
with different assignments to mpt (lines 3, 5 and 10 from the source code snippet in
Listing 4.4a). As illustrated in the SSA code snippet in Listing 4.4b, two SSA vari-
ables %mpt1 and %mpt2 stemming from the same source variable mpt and defined be-
fore the functional property will have to remain there (before the observation point);

4.3. Putting it to Work 51

1 k ^= m;
2 ...
3 mpt = get_val1 ();
4 ...
5 mpt = get_val2 ();
6 tmp = k ^ mpt;
7 // Prop: tmp == k ^ mpt
8 k = tmp ^ m;
9 ...

10 mpt = 42;
11 ...

(a) Source program

1 %k2 = xor %k1, %m
2 ...
3 %mpt1 = call get_val1 ()
4 ...
5 %mpt2 = call get_val2 ()
6 %tmp = xor %k2, %mpt2
7 // Prop: %tmp == %k2 ^ %mpt2
8 %k3 = xor %tmp , %m
9 ...

10 %mpt3 = 42
11 ...

(b) IR program

Listing 4.4: Example of multiple definitions of an observed variable
for a mask swapping scheme.

conversely, SSA variables like %mpt3 corresponding to later live ranges of mpt can
only be defined after the functional property. As a sufficient condition to enforce
this additional constraint, as soon as one variable is observed by the property, Algo-
rithm 1 needs to be adjusted to actually preserve the relative order of “sibling” variable
definitions stemming from the same source variable1. This may sound as overkill
but it is currently necessary to prevent non-reaching definitions from clobbering the
variable observed by the functional property. On the bright side, one advantage of
this solution is that functional properties do not need to be transformed to rename the ob-
served variables along the compilation flow; this removes the burden of modifying
many compilation passes and also helps the interpretation of program binary anal-
ysis.

Algorithm 2. Artificial definitions considering debug information
input: Properties, list of functional properties

1 for (Formula, ObsPt) ∈ Properties do
2 ObsVar← variables of Formula;
3 CF← compiler fence associated with ObsPt;
4 for OV ∈ ObsVar do
5 ReachDefs← set of reaching definitions of OV for ObsPt;
6 PriorDefs← set of definitions of OV preceding any reaching

definition in ReachDefs in program order;
7 for PD ∈ PriorDefs do
8 insertArtificialDefinition(PD, PD, After);

9 for RD ∈ ReachDefs do
10 insertArtificialDefinition(RD, RD, After);

11 NextDefs← set of definitions of OV following ObsPt in program
order;

12 for ND ∈ NextDefs do
13 for O ∈ operands of ND do
14 insertArtificialDefinition(O, ND, Before);

These additional precautions are implemented in Algorithm 2. This time, all def-
initions of “sibling” variables are considered, through the iteration over all defini-
tions stemming from a given source variable in the functional property via renaming

1This is related to the program dependence web in classical compiler texts (Aho et al., 2006).

52 Chapter 4. Automated Property Preservation at Compile-Time

and live range splitting. Notice the “program order” requirement (lines 8 and 14)
that prevents reordering of live ranges.

1 %k2 = xor %k1, %m
2

3 ...
4 %mpt1 = call get_val1 ()
5

6 ...
7 %mpt2 = call get_val2 ()
8

9 %tmp = xor %k2, %mpt2
10

11 // Prop: %tmp == %k2 ^ %mpt2
12

13

14 %k3 = xor %tmp , %m
15 ...
16

17 %mpt3 = 42
18 ...

(a) Original

1 %k2 = xor %k1, %m
2 %k2’ = call artificial_def(%k2)
3 ...
4 %mpt1 = call get_val1 ()
5 %mpt1’ = call artificial_def(%mpt1)
6 ...
7 %mpt2 = call get_val2 ()
8 %mpt2’ = call artificial_def(%mpt2)
9 %tmp = xor %k2, %mpt2’

10 %tmp’ = call artificial_def(%tmp)
11 call obs_pt("%tmp’ == %k2’ ^ %mpt2’")
12 %tmp” = call artificial_def(%tmp’)
13 %m’ = call artificial_def(%m)
14 %k3 = xor %tmp”, %m’
15 ...
16 %42 = call artificial_def(42)
17 %mpt3 = %42
18 ...

(b) Solution

Listing 4.5: Preserving functional property considering debug infor-
mation.

Applying the revised algorithm to Listing 4.5a yields the code in Listing 4.5b.
Let us illustrate its application for the observed variable mpt from the source pro-
gram. We use debug information to retrieve all definitions of mpt in the IR, with
%mpt2 being the reaching definition for the observation point. To prevent any pre-
ceding definition (i.e. %mpt1) from being moved after %mpt2’s definition, Algorithm 2
inserts artificial definition (of %mpt1’) right after the definition of %mpt1 (line 4 from
Listing 4.5b). then artificial definition of %mpt2’ is inserted right after the definition
of %mpt2. %mpt2’ also ensures that the reaching definition of the observed variable
(%mpt2) cannot be optimized out (line 9 from Listing 4.5b). Similarly, artificial def-
initions are inserted to prevent all succeeding definitions of the observed variable
from being moved up before the observation point (lines 12, 13 and 16 from List-
ing 4.5b): e.g. %42’s definition is placed right before %mpt3. According to the use-def
property, and as the relative order of artificial definition (e.g. %mpt1’, %mpt2’, %42) and
the observation point cannot be altered (the I/O side-effecting property of artificial
definitions and observation points, cf. Section 4.2), it is guaranteed that the correct
value of the observed variable mpt will always reach the observation point (via the
variable %mpt2’). Helper function insertArtificialDefinition was described with Algo-
rithm 1 in Section 4.2; it is extended here to operate either on instruction operand or
definition of a variable, be it SSA variable or not.

4.3.4 Functional Properties in LLVM

Let us now introduce our modifications to LLVM to support property preservation.
Figure 4.1 gives an overview of the augmented framework. All developments took
place in the latest, continually updated version of clang and LLVM.

4.3.4.1 Functional Properties in LLVM IR

As presented in Section 3.1.3, the LLVM IR allows metadata to be attached to in-
structions, to convey additional information to optimizers and code generators. In

4.3. Putting it to Work 53

Fr
on

t-
en

d

P
ro

p
e
rt

y
 m

e
ta

d
a
ta

e
m

is
si

o
n

p
ro
p
e
rt
y
_o
b
s
e
rv
a
ti
o
n

e
m

is
si

o
n

M
id

d
le

-e
n
d

a
ri
ti
fi
c
ia
l_
d
e
fi
n
it
io
n

e
m

is
si

o
n

B
ac

k-
en

d

P
ro

p
e
rt

y
 D

IE
s

e
m

is
si

o
n

Source
Code

Binary
CodeIR IR

Optimized
IR

In
tr

in
si

cs
 l
o
w

e
ri

n
g

Property checking
 (can be turned off)

FIGURE 4.1: Overview of the compilation flow extensions. Grey
boxes represent new components.

particular, LLVM debug information is implemented as metadata. On the one hand,
it is generally maintained and updated by optimization passes. On the other hand,
as already mentioned, we want to emit functional properties as DWARF DIEs in the
binary. Therefore, it is natural to expand debug information metadata to represent
properties in the IR. To this end, we introduce a new type of metadata containing
the formula, to which we attach classical debug metadata representing the observed
variables and memory locations.

We created an LLVM library that parses our annotation language, which is used
by an extension of clang front-end to generate, from the GNU annotation attributes,
the appropriate property metadata. More specifically, clang first creates a property
metadata containing the property string as well as the information documenting
where the property is declared in the source file (i.e. (file, line, column) triplet). Next,
the property string is parsed to build the list of observed variables and memory
locations. This is in turn used to gather debug metadata corresponding to these
observed entities, which is finally attached to our property metadata.

We introduced two new intrinsics to the IR: property_observation representing
an observation point, as well as artificial_definition which acts as a live range
splitting mechanism constraining optimizations across the observation point.

Observation joint intrinsics: As explained in Section 4.2, property_observation
embeds a compiler fence to guarantee the correctness and ordering of the values

stored in the observed memory locations. In addition, it is declared as having side-
effects, so that it cannot be optimized out by optimizations.

Naturally, property metadata will be attached to the corresponding property_
observation. However, as previously pointed out in Section 3.1.3, a subtle point
about metadata is that while optimizations strive to maintain it—debug information
in particular, it is always safe to discard it without affecting correctness. Dropping
debug information metadata just means that less information is available to the de-
bugger, but it does not invalidate any remaining debug information. When it comes
to transmitting functional properties, we need to ensure the metadata presence and
its correctness even at the cost of losing some optimizations. We have to make sure
that no optimization removes metadata representing functional properties, observed
variables or memory locations.

To this end, instead of attaching the property metadata to a given property_
observation, we make it an operand of this I/O side-effecting instruction, which

54 Chapter 4. Automated Property Preservation at Compile-Time

in turn guarantees that property metadata is also maintained during compilation.
property_observation intrinsics are inserted to the program by clang, at the same
time as the latter creates property metadata from the GNU annotation attributes.

Artificial definition intrinsics: Given these observation points, we implemented
Algorithm 2—which creates and inserts artificial_definitions to the program—as
an IR pass. These intrinsics are also I/O side-effecting, so that their order—relative
to each other and relative to the observation point—is preserved by optimizations.
Our IR pass is scheduled to run before any optimizations, and thus works on LLVM
IR produced by clang, which is not in SSA form yet. This is because the LLVM
SSA construction pass (mem2reg) is run only after a few other optimizations, at which
point the pristine partial state at the observation point defined by a source-level
annotation may already be compromised.

4.3.4.2 Functional Properties in LLVM MIR

Later in the LLVM back-end, we modified the “instruction selection” and “MIR for-
mation” phases, such that our intrinsics are lowered into pseudo-instructions with
the same semantics. More specifically, property observation pseudo-instructions
behave as memory barriers and also have other I/O side-effects, while artificial
definition pseudo-instructions are only I/O side-effecting. Unlike other pseudo-
instructions, these are not expanded and do not emit any machine instruction, in-
stead they are completely removed during code emission. Moreover, to guaran-
tee the correct functional behavior of the generated program when removing these
pseudo-instructions, and to avoid generating additional costly mov instructions (whi-
ch also increases register pressure during “register allocation”), the artificial defini-
tion pseudo-instructions use the same source and destination register.

Finally, we modified the “code emission” phase of the compiler back-end so that
property DIEs are built from the property metadata, and emitted into the object
file’s debug section. Moreover, we also modified LLVM’s DWARF reader library
to support parsing and reading the property DIEs, which will be used by property
consumers such as debuggers or binary analysis tools. More precisely, the reader
provides an interface to communicate the information about the property to its con-
sumer: it retrieves the machine code address corresponding to the observation point,
and also reports the location information of all observed variables and memory lo-
cations of the property at this point.

Additionally, we implemented a mechanism to verify the presence and sanity of
functional properties throughout the compilation flow. Before performing any op-
timization, we insert a LLVM pass that registers all properties within the program
into the metadata section. Then, after each optimization pass, we insert a verification
pass checking the presence of the metadata representing the property, its observed
variables and memory locations. A warning informs the programmer if any verifi-
cation pass fails; she may react by annotating the program differently, or disabling
the optimization. This optional mechanism is only used for validation purposes and
is disabled in our evaluation process.

On a side note, let us discuss about the interaction of our implementation with
Link-Time Optimization (LTO) technique, i.e. program optimizations during linking.
In a nutshell, the linker—which pulls all object files together and combines them
into one program—can see the whole of the program and can therefore do whole-
program analysis and optimization. Modern compilers supporting LTO (such as

4.4. Experimental Validation 55

LLVM and gcc) usually generate special object files which also contain its interme-
diate representation of the program. Then the linker, extended via a plugin in gen-
eral, interfaces with the compiler to provide it with information about the files to be
linked, which in turn allows for the whole code base to be optimized. For LLVM,
all of this process happens on the LLVM IR, where our inserted intrinsics are still
available. As a result, our implementation is fully compatible with LTO technique.

4.4 Experimental Validation

We now present the experimental methodology that we used to validate our I/O-
barrier-based mechanism and its implementation, followed by functional validation
and applications to security properties. We then analyze the impact of preserving
source-code protections on the program performance and compilation time.

4.4.1 Methodology

Property preservation is defined as the equality of observation traces (cf. Definition
4.1.6 (Functional property preservation)). Our validation approach is based on com-
paring, for the same input data, the observation trace produced when executing the
binary compiled with our property-preserving compiler against a reference observa-
tion trace. Both observation traces are obtained using the debugger gdb version 8.3.

To obtain the reference trace, we instrument the original program without proper-
ties: instead of inserting annotations representing program properties, we introduce
C labels to model equivalent observation points, then later set breakpoints at these
labels in the debugger. We further mirror all the variables and memory locations
that should be observed into specially-named variables and dump their values, at
the breakpoints registered above, using the debugger. We compile the instrumented
program with optimizations disabled (-O0), so that the C labels are preserved, while
the mirrored variables are not optimized out. By doing so, we assume the debug
information generated by the compiler in the absence of optimization is correct, and
that -O0 preserves the state of the ISO C abstract machine. However, this is not the
case in general, as C does not fully specify the ordering of commutative and asso-
ciative operations, evaluation of function arguments, etc. We mitigate these ambi-
guities when generating the reference observation trace by linearizing, in the source
program, the expressions involved in functional properties to three-address form.
Note that instrumentation mirroring is only used for functional validation; it is not
activated in any performance or compilation time measurement.

For all other observation traces, we use the modified DWARF reader to retrieve
the addresses of the observation points (and set breakpoints at these points in the
debugger), as well as the location information (constant value, register number or
memory address) of the observed variables and memory locations. The binary is
then executed and the values of the observed variables and memory locations at the
different breakpoints are retrieved using the debugger.

4.4.2 Functional Validation

Let us now survey the validation of our approach. This consists in first validating
the correctness of our mechanism using the methodology described in Section 4.4.1,
then leveraging our mechanism to augment the analysis process of binary code.

56 Chapter 4. Automated Property Preservation at Compile-Time

4.4.2.1 Validating Mechanism Correctness

We first validate our implementation on the test suite of Framework for Modular Anal-
ysis of C programs (Frama-C) (Cuoq et al., 2012), a reference source code analysis
platform for C. Properties are written in ANSI/ISO C Specification Language (ACSL)
(Baudin et al., 2008) as program annotations. The test suite is designed to vali-
date different Frama-C analyses on a range of small C programs representative of
the language semantics. We restrict ourselves to boolean expressions as functional
properties, ignoring test cases referring to more advanced ACSL built-in constructs.
This results in 30 applicable test cases featuring 558 functional properties. Most of
these properties verify the expected values of different variables at a given program
point. These test cases, being small programs designed to validate the correctness of
Frama-C static analyses, are not meant to be evaluated as performance benchmarks.
Therefore, we only use them to validate the correctness of our implementation.

For the correctness validation, we target the x86-64 instruction set and compile
each of these test cases at 5 optimization levels -O1, -O2, -O3, -Os, -Oz. Using the
methodology described in Section 4.4.1, we verified that all 558 properties have been
correctly propagated to the binaries and produce identical observation traces to the
reference one, for all 5 optimization levels considered.

4.4.2.2 Automating Binary Analysis

We also illustrate the applicability of our functional property preservation mecha-
nism in the context of binary analysis. As mentioned in Section 1.1.1, Section 2.1.2
and Section 2.1.3, different analysis tools require additional properties in order to
carry out their analyses on executable binaries. For example, robustness analysis
framework, such as RobustB (Bréjon et al., 2019), evaluates the robustness of a code
region against fault attacks by verifying that a given property, associated to a code
region, holds when the latter is submitted to a fault attack.

More specifically, RobustB combines symbolic execution, static analysis and for-
mal verification to find vulnerabilities in all the possible executions of a binary
program subject to fault attacks. It models the vulnerabilities detection as formal
equivalence-checking formulas that are solved by a SMT solver. The input of the
framework consists in a binary code with the target region to be analyzed, together
with a property to be verified at the end of the analyzed region. In general, the
so-called security property describes the correct behavior of the code region in pres-
ence of injected faults, at the end of the region. As a result, it can be expressed using
functional property, as shown in the example from Section 1.1.1.

We have combined our compilation framework with RobustB in order to au-
tomate the communication of the property required to performed the robustness
analysis. We developed a new module to RobustB which basically consists of (1) our
modified DWARF reader and (2) our annotation parser library. RobustB uses the for-
mer to retrieve the property DIE from the binary debug section, which contains the
property string, while the latter is used to parse the string into a list of observed en-
tities. The DWARF reader is then used again to determine the memorizing elements
associated to the observed entities at the observation point, reported in the DIEs
representing these entities. Using this information, RobustB will be able to build
its logic formula that is further verified by a SMT solver. The verification is either
satisfiable—which means that a vulnerability invalidating the considered property
is detected—or unsatisfiable—implying that the fault has no effect on the program,

4.4. Experimental Validation 57

or it is caught by a fault detection mechanism. We target the ARMv7-M/Thumb-2
instruction set, which is representative of deeply embedded devices.

We validated our automated robustness analysis framework on different imple-
mentations of the PIN authentication from the benchmark suite dedicated to fault
injection analysis (Dureuil et al., 2016), compiled at different optimization levels.
The target code region is a function implementing an authentication service through
the comparison of an user-provided PIN code against the PIN code of the card. It
returns a value indicating whether the access is granted for a given user-provided
PIN. To carry out the analysis, we considered the vulnerability expressing the inval-
idation of the property described in Section 1.1.1: it describes the scenario where the
function returns the value granting the access while the entered PIN code is incor-
rect. This experiment (1) shows that our mechanism allows to maintain and prop-
agate functional properties throughout aggressively-optimizing compilation flow,
and (2) highlights the relevance of our property-preserving compilation framework
to improve the analysis flow performed on executable binaries.

4.4.3 Preserving Security Protections

Let us now consider the security use-cases described in Section 3.3 and illustrate
how we can leverage our property-preserving mechanism to preserve security pro-
tections.

Recalling that applications are commonly secured by inserting protections at the
source code level, however, compilers may not understand the programmers’ in-
tentions, missing the implicit link between secure code protections and the control
flow or machine state assumptions underlying its function, optimizing the protec-
tion away as a result. As previously stated, programmers devise complex coding
tricks to obscure their intentions, but compiler engineers find smarter ways to op-
timize code. As a result, compilers can optimize away the security protections that
they consider as doing no “useful” work.

Instead, we argue that programmers should be able to instruct compilers to pre-
serve the protections and enforce the associated security properties by encoding the
protection-derived property as functional property, which will then be propagated
and preserved throughout the compilation flow, even in the presence of optimiza-
tions. More specifically, we will illustrate our idea by considering 4 use-cases, pre-
sented in Section 3.3, covering the following security protection-derived properties,
necessary to the effectiveness of the associated countermeasures:

• secret erasure property (i.e. proper erasure of sensitive data in memory, cf.
Section 3.3.1);

• instruction ordering property (i.e. proper instruction ordering in masked secret
key operations, cf. Section 3.3.2);

• code interleaving property (i.e. proper fine-grained interleaving of functional
and protection code, cf. Section 3.3.3);

• redundancy preservation property (i.e. presence of redundant data and code
to detect fault injections, cf. Section 3.3.4).

To make our case, we thus need to encode the implicit assumptions underlying code
hardening techniques using functional properties of the source program. The key obser-
vation that hints at such smart functional encoding is that, for the considered se-
curity protections, which all introduce new variables to the program, preserving

58 Chapter 4. Automated Property Preservation at Compile-Time

these variables at some specific program point and ensuring their uses in the code
subsequent to that point suffice to ensure the preservation of the countermeasure
schemes. The only exception is SCI protection, which will be later explained in Sec-
tion 4.4.3.3. Our I/O-barrier-based mechanism allows preserving variables that are
part of partial states defined by functional properties. This means that it is possible
to preserve security protections by first encoding the protection-derived properties
as functional properties that refer to key variables of these protections, then lever-
age our I/O-barrier-based mechanism to preserve these variables, thus preserving
the associated protections. As pointed out in Section 4.1, these properties do not
necessarily encode any logical formula, and could be naturally expressed as the spe-
cial type of functional property, namely observational properties (c.f. Definition 4.1.4
(Observational property)).

In order to express observational properties, we extend the annotation language
with a minimalistic predicate called observe(). This predicate does not encode any
logical formula; it takes the variable to be observed as argument and simply includes
it into the partial state defined by the property and thus into the program observa-
tion trace. In other words, observe() provides a convenient interface to explicitly
specify the observed variables that need to be preserved by the compiler at the ob-
servation point.

In the following, for each security use-case, we detail how to encode the secu-
rity protection-derived property associated to the source-level protection scheme as
an observational property using the predicate observe(). We verify the property
preservation with our approach by comparing traces for all optimization levels -O1,
-O2, -O3, -Os, -Oz, following the methodology previously described in Section 4.4.1.
Again, similarly to Section 4.4.2.2, we target the ARMv7-M/Thumb-2 instruction
set, which is representative of deeply embedded devices. For the trace generation,
we emulate the execution of the applications with the QEMU emulator version 3.0.1,
monitored by the cross-compiled debugger gdb version 8.3.

4.4.3.1 Sensitive Memory Data Erasure

Let us now consider the scenario, described in Section 3.3.1, where a sensitive buffer
on the stack must be zeroed with a call to memset() to avoid leaking confidential
information in a cryptographic application. The code snippet shown in Listing 4.6a
illustrates the scenario.

1

2

3 ...
4 void process_sensitive(void) {
5 uint8_t secret [32];
6 ...
7 memset(secret , 0, 32);
8

9 }

(a) Original attempt

1 #define ANNOT(s)
2 __attribute__ ((annotate(s)))
3 ...
4 void process_sensitive(void) {
5 uint8_t secret [32];
6 ...
7 memset(secret , 0, 32);
8 obs_pt: ANNOT("observe(secret)");
9 }

(b) Using annotation

Listing 4.6: Example of sensitive memory data erasure.

In order to guarantee the secret erasure property of secret, we insert an obser-
vational property right after zeroing, before the function returns, as illustrated in
Listing 4.6b. The observe property instructs the compiler to insert an observation
point acting as a memory barrier (cf. Section 4.2), which in turn forces the effec-
tive zeroing of the whole secret buffer even with optimizations enabled. Note that

4.4. Experimental Validation 59

not only the compiler inserts a memory barrier to enforce the presence of memset()
in the program, but the address of the secret buffer will also be attached into the
property metadata, which is later emitted into the property DIE. The latter pro-
vides an easy mean to retrieve the information, needed for generating observation
traces during trace comparison. This is a simple example of combining hardening
code—by inserting a security protection (erasure of the buffer secret)—and an ob-
servational property—encoding the protection-derived property which allows for
preserving the protection (observing the content of secret)—to enforce a security
property (leakage prevention).

By comparing the reference trace and observation traces obtained by executing
the binary compiled at all optimization levels (cf. Section 4.4.1), we verified that the
whole buffer secret was correctly zeroed at the observation point, in all observation
traces.

4.4.3.2 Masking Computation Order

Let us now consider the scenario of mask swapping. Masking of secret value seeks
to ensure that all computations involving this value are statistically independent of
it, thus avoiding leaking confidential information in a cryptographic application. To
further maintain this statistical independence from the secret value, notably when
only a limited set of masks is available, mask swapping is introduced to the program
(cf. Section 3.3.2). The code snippet shown in Listing ?? illustrates the scenario.

The effectiveness of this mask swapping scheme requires that the re-masking
operation has to take place before the removal of the previous mask. Let us now il-
lustrate how our mechanism can be used to force the compiler to respect this specific
computation order.

1

2

3 ...
4

5

6 round_key[i] = (k[i] ^ mpt[i]) ^ m;

(a) Original attempt

1 #define ANNOT(s)
2 __attribute__ ((annotate(s)))
3 ...
4 uint8_t tmp = k[i] ^ mpt[i];
5 obs_pt: ANNOT("observe(tmp)");
6 round_key[i] = tmp ^ m;

(b) Using annotation

Listing 4.7: Respecting computation order in mask swapping opera-
tion.

Listing 4.7b shows our proposed solution to guarantee the instruction ordering
property. We first linearize the original expression to three-address form by defining
a temporary variable tmp to hold the result of re-masking (line 4), then later use it for
unmasking (line 6). We also insert the observational property observe(tmp) between
re-masking and unmasking operations (line 5), which forces the compiler to preserve
the value of tmp at the observation point, and use this exact value in the subsequent
unmasking operation.

For this use-case, the reference observation trace is generated by compiling, at -
O0, the version shown in Listing 3.5, which leverages coding trick involving volatile-
qualified temporary variable together with memory barrier implemented using in-
line assembly in order to guarantee the proper instruction ordering of re-masking
and unmasking operations. By comparing the reference trace and observation traces
obtained by executing the binary compiled at all optimization levels (cf. Section
4.4.1), we verified that the temporary variable at the observation point did hold the
expected result of the re-masking operation, in all observation traces.

60 Chapter 4. Automated Property Preservation at Compile-Time

4.4.3.3 Step Counter Incrementation

We now consider the SCI countermeasure scheme that aims at detecting fault attacks
that induce unexpected jumps to any location in the program (i.e. not executing
at least two adjacent statements in of C source programs). The protection defines
a step counter at each control construct, and steps the counter of the immediately
enclosing control construct after every C statement of the original source. Counters
are regularly checked against their expected values, calling a fault handler when it
fails (cf. Section 3.3.3). An example of the SCI technique is illustrated in Listing 4.8a.

As a reminder, in order for the SCI countermeasure scheme to be effective, one
needs to ensure the proper interleaving of original statements and counter incre-
mentations and checks—i.e. ensure the code interleaving property—which, unfor-
tunately, will be altered by compiler optimizations. In fact, as explained in Section
3.3.3, the compiler will be able to deduce the constant values of the counters c_then
and c_else at every check, thus optimize away these checks as it has no notion

of fault injection. As a consequence, the results of counter incrementations are not
needed in the program anymore, making incrementations ideal candidates for being
removed next.

1

2

3 ...
4 unsigned short c_then = 0;
5 unsigned short c_else = 0;
6 if (cond) {
7

8

9

10 if (c_then != 0) killcard ();
11 c_then ++;
12 a = b + c;
13

14

15

16 if (c_then != 1) killcard ();
17 c_then ++;
18 }
19

20

21

22 if (!((c_then == 2 &&
23 c_else == 0 && cond) ||
24 (c_then == 0 &&
25 c_else == 0 && !cond)))
26 killcard ();

(a) Original countermeasure scheme

1 #define ANNOT(s)
2 __attribute__ ((annotate(s)))
3 ...
4 unsigned short c_then = 0;
5 unsigned short c_else = 0;
6 if (cond) {
7 obs_pt1: ANNOT("observe(
8 c_then ,
9 c_else , cond , a, b, c)");

10 if (c_then != 0) killcard ();
11 c_then ++;
12 a = b + c;
13 obs_pt2: ANNOT("observe(
14 c_then ,
15 c_else , cond , a, b, c)");
16 if (c_then != 1) killcard ();
17 c_then ++;
18 }
19 obs_pt3: ANNOT("observe(
20 c_then , c_else , cond ,
21 a, b, c)");
22 if (!((c_then == 2 &&
23 c_else == 0 && cond) ||
24 (c_then == 0 &&
25 c_else == 0 && !cond)))
26 killcard ();

(b) Using annotation

Listing 4.8: Preserving code interleaving in SCI.

Consider Listing 4.8b, which shows our proposed solution to preserve the protec-
tion scheme. First, we protect counter incrementations and checks by inserting ob-
servational properties before every check (lines 7, 13 and 19). Each property observes
the variables involved in the evaluation of the associated check: c_then (lines 8, 14
and 20), c_else and cond (line 20). This implies the automatic insertion of artificial
definitions taking as parameter the original values of these variables and producing
the opaque values that replace the original ones in the subsequent code, i.e. the asso-
ciated check (cf. Section 4.2). As a result, the values of these observed variables are

4.4. Experimental Validation 61

hidden from the compiler when evaluating these checks. Moreover, in order to guar-
antee that the original and countermeasure instructions are correctly interlaced, we
leverage the barrier effect at the observation point of functional and observational
property with regards to accesses to observed memory locations and definitions of
observed variables (cf. discussion on Definition 4.1.3 (Functional property)). To this
end, the inserted properties also observe all other program variables and memory
locations containing valid values (lines 9, 15 and 21). In other words, we have to
observe the complete program state instead of a partial one, in order to ensure that no
other modifications to the complete program state have been introduced between
two given consecutive observational properties. We directly modified the macros
implementing the countermeasure schemes from the original work (cf. Section 3.3.3)
to insert our annotations before each check.

We verified at all optimization levels that all values are correct with respect to
their counterparts from the reference observation trace. However, for the sci-aes
benchmark, the debugger was unable to retrieve some values (all other values were
correct), always less than 0.2% (e.g. 9907 out of 8353591 at -O2 and -O3). The unavail-
able values are due to various bugs in LLVM’s back-end, which generate, incorrect
location information in the debug information describing the observed variables.
For example, the instruction scheduling pass may misplace or worse, remove the
debug pseudo-instructions which provide information when a source variable is set
to a new value. We have tried to fix some of these bugs, and reported some others2,3.
Since it is not feasible to find and fix all the bugs affecting the debug information cor-
rectness in LLVM, we did manually verify the presence of the observed variables for
all these unavailable values: indeed, while they do have their expected values stored
in a register or in memory, gdb does not know about it and reports the variables as
optimized out. This confirms that our mechanism does actually maintain and prop-
agate properties annotated in the source program, down to machine code.

4.4.3.4 Control and Data Flow Redundancy

Finally, we illustrate the preservation of the loop hardening scheme by encoding
the protection-derived property as observational one. The loop protection consists
in duplicating termination conditions and the computations involved in the evalua-
tion of such conditions (cf. Section 3.3.4), in order to ensure that the hardened loop
always performs the expected number of iterations and takes the right exit, even
in the presence of fault attacks. We consider an implementation of the source-level
loop protection on memcmp() function, shown in Listing 4.9a.

Listing 4.9b illustrates our proposed solution to preserve the redundancy preser-
vation property during optimizing compilation. To prevent optimizations from re-
moving the checks involving the duplicated loop counter i_dup (line 11 and 22) and
the duplicated loop-independent variable n_dup (lines 17 and 25), we observe the du-
plicated variable involved in the check, right before the latter (lines 10, 16 and 24).
Similar to the previous example, the values of the duplicated variables are hidden
from the compiler when evaluating these checks (thanks to the opaque values pro-
duced by artificial definitions, which are guaranteed to replace the original values in
these checks), thus preserving the latter.

We verified at all optimization levels that the duplicated variables at the observa-
tion points did hold the expected value, as found in the reference observation trace.
This confirms the preservation of the duplicated variables down to machine code.

2https://bugs.llvm.org/show_bug.cgi?id=37391
3https://bugs.llvm.org/show_bug.cgi?id=37149

62 Chapter 4. Automated Property Preservation at Compile-Time

1

2

3 ...
4 int memcmp(char *a1 , char *a2,
5 unsigned n) {
6 unsigned i, i_dup , n_dup = n;
7 for (i = 0, i_dup = 0;
8 i < n;
9 ++i, ++i_dup) {

10

11 if (i_dup >= n)
12 fault_handler ();
13 if (a1[i] != a2[i]) {
14 if (a1[i_dup] == a2[i_dup])
15 fault_handler ();
16

17 if (n_dup != n)
18 fault_handler ();
19 return -1;
20 }
21 }
22 if (i_dup < n)
23 fault_handler ();
24

25 if (n_dup != n)
26 fault_handler ();
27 return 0;
28 }

(a) Original attempt

1 #define ANNOT(s)
2 __attribute__ ((annotate(s)))
3 ...
4 int memcmp(char *a1 , char *a2 ,
5 unsigned n) {
6 unsigned i, i_dup , n_dup = n;
7 for (i = 0, i_dup = 0;
8 i < n;
9 ++i, ++i_dup) {

10 obs_pt1: ANNOT("observe(i_dup)");
11 if (i_dup >= n)
12 fault_handler ();
13 if (a1[i] != a2[i]) {
14 if (a1[i_dup] == a2[i_dup])
15 fault_handler ();
16 obs_pt2: ANNOT("observe(n_dup)");
17 if (n_dup != n)
18 fault_handler ();
19 return -1;
20 }
21 }
22 if (i_dup < n)
23 fault_handler ();
24 obs_pt3: ANNOT("observe(n_dup)");
25 if (n_dup != n)
26 fault_handler ();
27 return 0;
28 }

(b) Using annotation

Listing 4.9: Preserving redundancy in loop hardening.

4.4.4 Performance and Compilation Overhead Evaluation

Let us now analyze the run-time performance and compilation overhead for all con-
sidered security applications. We compare our versions with binaries generated with
(1) no optimizations at all—which is also a solution to preserving security protec-
tions, (2) with the common-practice (unreliable) programming tricks to prevent the
compiler from removing source-code protections (when available) and (3) to set an
upper bound on the achievable performance, with the insecure binaries compiled
without any property preservation mechanism. We target the ARMv7-M/Thumb-2
instruction set (Cortex-M3 embedded processor). The performance results are ob-
tained using ARM Fast Models (ARM, 2019).

4.4.4.1 Performance

We measure the program performance in terms of number of instructions executed
in the main program, using ARM Fast Models (ARM, 2019). In fact, this is a relevant
choice, given its consistency on the Cortex-M3’s very simple pipeline. Indeed, as
will be shown in Section 5.6.1, when comparing program performance for Cortex-
M3 processor, measurements of execution time (in number of clock cycles) give the
same results as measurements based on number of instructions executed. For each
application, Figure 4.2 presents the performance ratio of different versions compiled
at different optimization levels with respect to the original program compiled at -
O0, which serves as a baseline. The first version corresponds to the original code
without any modification, the second includes programming tricks described per
security use-case in Section 3.3, and the last one has source-code annotations in-
serted as described in Section 4.4.3. These three versions are referred as Insecure,

4.4. Experimental Validation 63

Tricks and Annotations respectively in Figure 4.2. It is worth noting that there are
no programming tricks to reliably preserve SCI and source-level loop hardening.

erasure-rsa-enc

erasure-rsa-dec
mask-aes

loop-pin
sci-pin

sci-aes

0

0.2

0.4

0.6

0.8

1

ex
ec
u
te
d
in
st
r.

ra
ti
o

Insecure Tricks Properties

FIGURE 4.2: Executed instructions w.r.t. -O0 baseline (horizontal red
line), ordered by optimization level -O1, -O2, -O3, -Os, -Oz

Results show that (1) the insecure versions yield to the fastest (but non-secure)
executables, since protections are modified or removed with optimizations enabled;
(2) compared to existing programming tricks, our compiler preserves the source-
level protections with similar, if not better performance (furthermore, programming
tricks are not a viable solution, as they are neither portable, nor future-proof); (3)
when no trick exists (loop-pin, sci-pin and sci-aes), our compiler provides con-
sistent performance improvement over programs compiled at -O0 while preserving
the source-level protection. The higher cost of preserving the protection of sci-pin
compared to the one of sci-aes can be traced back to the functional/protection

code ratio for these 2 programs. Indeed, sci-pin features about 4 times more pro-
tection code than functional code, with the functional code being too trivial to be
optimized within the boundaries of the protection statements; while sci-aes con-
tains only twice more protection code than functional code. Moreover, the func-
tional code of sci-aes is more complex, leaving potential for classical optimizations.
Finally, note that, as security engineers are in search of a mechanism to reliably pre-
serve source-level security protections throughout the compilation, performance is
not the primary motivation in these examples: anything better than -O0 is beneficial
to security engineers.

4.4.4.2 Compilation Time

Figure 4.3 shows the compilation-time overhead for all applications, compared to the
original program (without annotations), compiled with the same optimization flag.
The validation platform is a quad-core 2.5 GHz Intel Core i5-7200U CPU with 16 GB
of RAM. In general, the compilation overhead is under 10%, though it can some-
times be really important, when complete program state is constantly observed, as
in the case of the sci-pin and sci-aes benchmarks. Furthermore, the SCI protection
scheme introduces a large number of observation points (at least one annotation for
every functional C statement). As a result, this is really a worst case scenario. In
other words, the compilation-time overhead depends on the intended protections.
As noted earlier, security community is searching for the reliable preservation of
source-level security protections down to executable binary; the community thus is,

64 Chapter 4. Automated Property Preservation at Compile-Time

erasure-rsa-enc

erasure-rsa-dec
mask-aes

loop-pin
sci-pin

sci-aes

1

2

3

4
co
m
p
il
at
io
n
-t
im

e
ra
ti
o -O1 -O2 -O3 -Os -Oz

FIGURE 4.3: Compilation-time w.r.t. original program without func-
tional property annotations (horizontal red line), ordered by opti-

mization level -O1, -O2, -O3, -Os, -Oz.

in general, willing to pay the price of compilation time in exchange. Moreover, our
prototype is not yet tuned and optimized and we believe that compilation-time can
be reduced with additional algorithmic and engineering effort, which will be left for
future work if necessary.

4.5 Discussion

In this chapter, we defined the notion of functional property preservation and pro-
posed an I/O-barrier-based approach to translate and preserve functional properties
across all program representations through the optimizing compilation of C code to
machine code, such that optimizations will preserve the consistency of these prop-
erties. We implemented and validated our approach in the LLVM framework, with
no changes to existing optimization passes beyond bug fixes related to the prop-
agation of debug information. While the problem we consider may have general
applications in software engineering (as described in Chapter 1 and Chapter 2), our
proposal specifically addresses the fundamental open issue in security engineering
of preserving security countermeasures introduced at source program down to ma-
chine code. To this end, we extend the notion of property preservation to include
observational properties, which can be seen as a special case of functional proper-
ties.

Our I/O-barrier-based approach relies on the insertion of opaque and I/O side-
effecting instructions that the compiler cannot analyze, so that they cannot be re-
moved by optimizations. This also implies the preservation of the order of these
instructions, relative to each other and relative to other I/O side-effecting instruc-
tions of the original program. However, this ordering preservation is not required
by the preservation itself, and not even always desirable, as it introduces additional
constraints to compiler optimizations, which might hamper the generated code’s
performance. Furthermore, since our implementation takes full advantage of the
existing debug information collected and generated by LLVM, which does not cur-
rently handle the scenario where multiple live ranges corresponding to the same
source variable overlap, we have to insert additional I/O side-effecting instructions
to avoid such overlap. This inevitably inhibits more compiler optimizations, thus
making the generated code non-optimal.

4.5. Discussion 65

In the next chapter, we argue that such restrictions can be lifted with a more
fine-grained approach, solely leveraging the most essential information modeled by
almost every compiler transformation, namely data dependence. The programmer
will be granted a means to explicitly specify the wanted observational property in
the form of such a dependence, that is guaranteed to be preserved by compiler trans-
formations.

67

Chapter 5

Source-Level Directives for
Preserving Property

Chapter 4 provides two important observations: (1) for compilers, preserving source-
level functional properties—which, by definition, takes the form of assertion-like
boolean expressions that refer to some entities (variables or memory locations) from
the source program—can be reduced to preserving the expected values of these en-
tities at program points equivalent to where the properties occur in the source pro-
gram; and (2) the problem of security countermeasures preservation can be practi-
cally addressed by first devising smart encoding of the protection-derived proper-
ties associated with the countermeasures, which turns these properties into a spe-
cial type of functional properties—i.e. observational properties—involving impor-
tant variables from the countermeasures, and then preserving these observational
properties. As a result, the real problem we actually try to address is how to pre-
serve observational properties, or more precisely, how to preserve specific values,
that we refer to as observed values, at specific points of the program execution, i.e.
the so-called observation point.

To this end, we proposed an I/O-barrier-based solution in Chapter 4. For a
given observational property, we first represent the associated observation point
with an I/O side-effecting memory barrier—the compiler sees a memory-reading
instruction—in order to preserve the observed values of memory locations referred
in the property, and that the observation point cannot be removed by compiler op-
timizations. However, this introduces additional constraints for the compiler when
transforming the program. On the one hand, memory accesses cannot be moved
across the observation points. On the other hand, embedding I/O side-effects into
the observation point unintentionally establishes a total order of all observational
properties, including unrelated ones, i.e. ones observing different values, whether at
the same program point or not. Enforcing this total order is unnecessary in general,
while it may prevent further optimizations, notably during instruction scheduling.

As for preserving observed values of variables from the property, the key idea
behind our proposed solution from Chapter 4 lies in what we call opacification tech-
nique: given an observed value v, we hide it from compiler optimizations using a
special identity function—that we call artificial definition—taking v as its argument.
This identity function is opaque, which means that the compiler sees it as a func-
tion computing a completely unknown value v′ from v and assumes no correlation
between these two values. As a result, the compiler will consider that all different
artificial definitions of the same observed value are distinct. Nevertheless, this is not
always desirable: for instance, combining these artificial definitions whenever pos-
sible would result in more efficient code and become crucial for performance-critical
code. Furthermore, to guarantee that optimizations cannot eliminate the introduced

68 Chapter 5. Source-Level Directives for Preserving Property

artificial definitions, we also define these as I/O side-effecting. This constraints fur-
ther instruction scheduling unnecessarily.

In short, embedding volatile side-effects into the program during compilation is
rather constraining and too expensive. However, the I/O side-effects are needed to
ensure that observational properties and their observed values will not be eliminated
by compiler optimizations. Therefore, the natural question we seek to answer in this
chapter is whether it is possible to preserve observational properties solely using the
opacification technique and if not, what should be the bare minimum of I/O side-
effecting instructions required for effective preservation of observational properties.

To this end, this chapter first defines the notion of observation and its preser-
vation through program transformations and illustrates these on a simplified inter-
mediate program representation. We then describe an I/O-barrier-free mechanism to
preserve observations down to machine code and formally prove its correctness on
our simple IR. Next, we detail our LLVM-based implementation with insignificant
modification to individual optimization passes, and validate it on the security use-
cases presented in Section 3.3. Finally, we evaluate the performance and compilation
time impact of our approach, and further compare with our first solution, as well as
with an alternative implementation of our mechanism.

5.1 Problem Definition

Recalling that both functional and observational properties that we seek to preserve
throughout the compilation process are external to the program code and thus are
primarily not known to the compiler. As a consequence, we need to define the se-
mantics of these properties—which can be reduced to the notion of observation—in
the compiler IR. To this end, we first introduce the syntax (cf. Section 5.1.1) and
operational semantics (cf. Section 5.1.2) of a simple language, called Mini IR, rep-
resentative of the levels of IR typical of the compilation of imperative languages.
Next, we extend its semantics with the notion of observations (cf. Section 5.1.3), then
define the notion of program transformation (cf. Section 5.1.4), and notably the con-
cept of observation-preserving transformation, which specifies the constraints required
for preserving observations (cf. Section 5.1.5).

Our Mini IR models control flow at a relatively low level (linearized three-address
code) while supporting the usual memory abstractions, SSA values, intra- and inter-
procedural constructs. For the sake of simplicity, we will use it to model not only
optimizing compiler IR but also source code and assembly code.

5.1.1 Mini IR Syntax

Figure 5.1 presents the grammar of Mini IR, which will be extended to explain our
proposed solution described in Section 5.2.

In Mini IR, control flow is implemented as flat CFG of blocks and branches.
Unlike traditional CFG- and SSA-based compilers, such as gcc and LLVM, we use
branch and block arguments following continuation-passing style (Appel, 1998).
Like in Multi-Level Intermediate Representation (MLIR) (Lattner et al., 2020), single-
assignment variables are declared and scoped in a region (introduced by a function
or macro) and captured in dominated blocks; as a consequence, branch arguments
only need to carry SSA values, as opposed to explicitly carrying all live variables.
This choice makes use-def chains more uniform across an entire function without

5.1. Problem Definition 69

var ::= ident identifier for an SSA value

expr ::= literal literal constants
| un-op var unary operator
| var bin-op var binary operator
| ident (var∗) function application or macro expansion
| io(var , var∗) I/O effect with ordering descriptor
| snapshot(var+) identity function observing its arguments into

a partial state

instr ::= expr expression with no associated definition
| [var+ =] expr define a value from an expression
| ref <- var store a value to a reference
| var = ref load a value from a reference
| mem[var] <- var store a value to a memory address
| var = mem[var] load a value from a memory address
| br var , ident (var∗) branch with condition, target block identifier

and SSA value arguments
| return(var∗) return from function or macro

block ::= ident [(var∗)] : [instr ;]∗ block labeled by a unique identifier, composed
of arguments and an instruction sequence,
branch- or return-terminated

region ::= { block+ } return-terminated region with one or more
blocks

func-decl ::= function ident (var∗) region function definition

macro-decl ::= macro ident (var∗) region macro definition

FIGURE 5.1: Grammar of our Mini IR. The terminals literal, ident,
un-op, bin-op are the same as the corresponding C lexical tokens.

implicitly referring to control flow edges, which in turn simplifies our formalization
of a happens-before relation later in this subsection.

Note that we did not include indirect branches and calls in the syntax. Support-
ing these would include making identifiers first class and holding them as additional
SSA arguments of branch and call instructions. This however does not impact the
following formalization.

When clear from the context, we will write “instruction expr” when referring to
a instruction defining, assigning or returning a value from an expression expr.

5.1.2 Mini IR Operational Semantics

Let us now present the operational semantics of our Mini IR. All expressions and
instructions have fairly standard semantics, except for snapshot, which is in fact the
extension to the operational semantics of our language and will be presented in Sec-
tion 5.1.3.

As a simplifying assumption, we only consider sequential, deterministic programs
with well defined behavior. In particular, similarly to Chapter 4, we avoid cases where
the compiler may take advantage of undefined behavior to trigger optimizations.
This assumption is consistent with widespread coding standards for secure code.
Our formalization also assumes no exceptions at the source language level, but precise
machine exceptions at the instruction level are supported.

Definition 5.1.1 (Name-Value Domains). Every value manipulated during the exe-
cution of a program belongs to one of these four Name-Value domains:

70 Chapter 5. Source-Level Directives for Preserving Property

• V is a set of (Var, Val) pairs where Var is an SSA variable name (e.g. an SSA
value in LLVM IR or a variable in a functional language) and Val is the value
of Var; all uses of Var are dominated by an unique definition associating Var
with its value Val;

• C is a set of (Val, Val) pairs where Val is a constant value also standing as the
name of the constant;

• R is a set of (Ref , Val) pairs where Ref is a reference name (e.g. a C variable, a
reference in a functional language, or a register in a low-level representation)
and Val is the value referenced by Ref ;

• M is a set of (Mem, Val) pairs where Mem is a memory address and Val is the
value stored at Mem.

We define an operational semantics for our Mini IR in terms of a state machine,
where every IR instruction defines a transition referred to as an event.

Definition 5.1.2 (Program State). A program state is defined by a tuple (Vals, π) with
Vals = V ∪ C ∪ R ∪ M, where V ⊆ V , C ⊆ C, R ⊆ R, M ⊆ M, and the program
point π holds the value of the program counter pointing to the next instruction to be
executed.

Note that, in contrast to Definition 4.1.1 (Program state) defining a program state
with a generic notion of program variable (which may refer to either a source-level
denotation, an SSA value, or a register in a low-level representation), we deliber-
ately want to distinguish values from different Name-Value domains in order to
provide rigorous definitions of different relations between program events (cf. Defi-
nition 5.1.8 (Dependence Relation) for example).

Definition 5.1.3 (Event). An event e is a state machine transition, associated with the
execution of an instruction i, from a state σ into a state σ′. It is denoted by e = σ

i
 σ′.

For any given event e, let Inst(e) denote the instruction executed by event e.

Definition 5.1.4 (Program Execution). A program execution E is a (potentially infi-
nite) ordered sequence of program states and events:

E = σ0e0σ1e1σ2 . . . with e0 a special event defining all constant pairs (c, c) ∈ C,
σ0 the initial state, and

σk
ik σk+1, such that ∀k > 0, ik = Inst(ek)

When executing a non-branch, non-return instruction in a basic block, the next
state σk+1 points to the next instruction in the block. Executing a branch instruction
makes the next state point to the first instruction of the target block. Executing a
return instruction makes the next state point to the next instruction following the
function call instruction that led to the currently executing function. When executing
a function call instruction, the next state σk+1 points to the first instruction of the
function’s enclosed region.

Unlike a function call, macro expansion takes place in an earlier, offline stage,
prior to program execution. The macro’s region is expanded in place, with effec-
tive arguments substituted in place of the formal ones, renaming the region’s local
variables and references to avoid conflicts with variables and references of the parent

5.1. Problem Definition 71

region, and implementing return as copying some of the macro’s variables into vari-
ables defined in the parent. As a result, macro expansion never occurs on a program
execution.

In the following, Inputs (resp. Outputs) represent the sets of all possible inputs
(resp. outputs) of P, and Executions is the set of executions produced by P. Given an
input I ∈ Inputs, a program P produces an unique execution denoted by E [[P]](I).

Starting from an initial state σ0, the execution proceeds with calling the special
main function, taking no argument and returning no value. Instead the program
conducts input and output operations through I/O instructions involving the io
expression. The input and output of a given program is modeled as a (potentially
infinite) list of independent (potentially infinite) sets of values, each set identified
with an unique descriptor, the first argument of the io expression. Every value in an
I/O set is uniquely tagged to distinguish it from any other I/O value from the same
set.

The execution of an I/O instruction instantiates an I/O event. Every I/O event
reads or writes one or more values. For an I/O event e we note IO(e) its input or
output values.

The semantics of P is denoted by C[[P]](), which is a function computing the
outputs sets from input sets. Furthermore, the semantics of P also defines the total
ordering of I/O events, as defined below.

Definition 5.1.5 (I/O Relation). Any pair of distinct events associated with the exe-
cution of io instructions with the same descriptor are ordered by a so-called I/O order-
ing relation, denoted by io→. Formally, given an execution E = E [[P]](I) of P on some
input I ∈ Inputs, io→ is the reflexive and transitive closure of the following relation:

∀ . . . e1 . . . e2 . . . ∈ E,
(

Inst(e1) = io(desc, IO(e1)) ∧ Inst(e2) = io(desc, IO(e2))
)

=⇒ e1
io→ e2

This relation on events induces a relation on values in input and output sets, also
denoted by io→:

∀ . . . e1 . . . e2 . . . ∈ E,
(

Inst(e1) = io(desc, IO(e1)) ∧

Inst(e2) = io(desc, IO(e2)) ∧ e1
io→ e2

)
=⇒ IO(e1)

io→ IO(e2)

In addition, when a single I/O event reads or writes multiple values, they are
ordered from left to right in a given io instruction and sequentially over successive
io expressions associated with the same event.

The io→ relation on input and output data models streaming I/O as well as un-
ordered persistent storage in computing systems, and any middle-ground situations
such as locally unordered streaming I/O and locally ordered storage operations.

5.1.3 Mini IR Observation Semantics

Let us now consider the last expression in our Mini IR syntax. snapshot expres-
sions introduce a specific mechanism to observe values along the execution of the
program. In Section 4.1, we defined an observation trace as a sequence of program

72 Chapter 5. Source-Level Directives for Preserving Property

partial states—sets of (variable, value) and (address, value) pairs. To increase the
reach of compiler optimizations while preserving the user’s ability to attach logical
properties to specific values and instructions, we extend the observation semantics
to partially ordered observation states defined by the execution of instructions involving
snapshot expressions.

Definition 5.1.6 (Observation State). Any event involving a snapshot expression de-
fine an observation state of the operational semantics. These observation states are
modeled by the following observation function:

Obs : Events→ States

extracting from an event e an observation state (ObsV, ObsC, ObsR, ObsM, π) such that
π is the program point of the instruction associated with e and ObsV ⊆ V, ObsC ⊆ C,
ObsR ⊆ R, ObsM ⊆ M are the (name, value) pairs observed by all arguments of
snapshot expressions involved in event e.

In addition, an individual instruction involving a snapshot expression returns all
its arguments in addition to capturing these arguments’ (name, value) pairs into an
observation state.

Let us now define observation events associated with the execution of instructions
involving snapshot expressions.

Definition 5.1.7 (Observation Event). We call observation event any event associated
with the execution of an instruction involving a snapshot expression.

In contrast to our first approach which induces a total order of observations,
we allow programmers to specify an ordering between observation events. To this
end, the following definitions introduce the observation-ordering relation as a precise
tool in the hand of the programmers. This relation on observation events is derived
from def-use, reference-based and in-memory data-flow relations, and control de-
pendences.

Definition 5.1.8 (Dependence Relation). We define relations du→, rf→ and cd→ as par-
tial orders on def-use pairs, in-reference/in-memory data flow and control depen-
dences, respectively. Formally, let def (v, i) and use(v, i) be the predicates evaluating
to true if and only if instruction i defines variable v and instruction i uses variable v,
respectively, and let postdom denote the post-domination (Cytron et al., 1991) binary
predicate:

e1
du→1 e2 if and only if def (v, Inst(e1)) ∧ use(v, Inst(e2))

e1
rf→1 e2 if and only if(

Inst(e1) = (ref <- v) ∧ Inst(e2) = (var = ref) ∧
@es, E = . . . e1 . . . es . . . e2 . . . , Inst(es) = (ref <- v′)

)
∨

(
Inst(e1) = (mem[addr] <- v) ∧ Inst(e2) = (var = mem[addr]) ∧
@es, E = . . . e1 . . . es . . . e2 . . . , Inst(es) = (mem[addr] <- v′)

)
e1

cd→1 e2 if and only if ∃es, E = . . . e1 . . . es . . . e2 . . . ,
postdom(Inst(e2), Inst(es)) ∧ ¬postdom(Inst(e2), Inst(e1))

and

du→ =
(du→1

)∗ rf→ =
(rf→1

)∗ cd→ =
(cd→1

)∗

5.1. Problem Definition 73

The dependence relation, denoted by
dep→, is defined as the union of the def-use,

reference-based and in-memory data-flow, and control dependence relations:

dep→1 =
du→1 ∪ rf→1 ∪ cd→1 and

dep→ =
(dep→1

)∗
Definition 5.1.9 (Observe-From Relation). Given an execution E, observation events
induce a relation called observe-from and denoted by of→, mapping a definition to an
observation event eobs:

∀ . . . e1 . . . eobs . . . ∈ E,
(
Inst(eobs) = (_ = snapshot(_)) ∧ e1

du→1 eobs
)
=⇒ e1

of→ eobs

Definition 5.1.10 (Observation Ordering Relation). Any pair of distinct events as-
sociated with the execution of instructions involving snapshot expressions related
through a dependence relation are ordered by a so-called observation ordering rela-
tion denoted by oo→. Formally, given an execution E of P, oo→ is the restriction of

dep→ to
observation events:

∀ . . . e1 . . . e2 . . . ∈ E,
(
Inst(e1) = (_ = snapshot(_)) ∧

Inst(e2) = (_ = snapshot(_)) ∧ e1
dep→ e2

)
=⇒ e1

oo→ e2

We chose to only include data flow relations (through SSA values, references or
memory) and control dependences into oo→. This is a trade-off between providing
more means to the programmer to constrain program transformations to enforce
observation ordering, and freedom of code optimization left to the compiler in pres-
ence of such observations. Data-flow paths between snapshot expressions enable the
expression of arbitrary partial orders of observation events, and they are easily un-
der the control of programmers—if necessary by inserting dummy or token values
as we will see in the next section—hence they appear to be expressive enough for our
purpose. Note that control dependences are not directly useful at capturing partial
ordering (that would not be otherwise expressible using data dependences), and it is
sufficient to not make them dependent on the result of snapshot expressions to avoid
having to unduly constrain the ordering of observations (e.g., forbidding legitimate
hoisting of loop-invariant expressions). On the other hand, control dependences are
important to model the effect of program transformations converting data depen-
dences into control dependences: for example, boolean logic may be converted into
control flow, yielding a single static truth value for some boolean variables occurring
in a dependence chain linking two observations. Conversely, adding more relations
into oo→ such as non-data-flow write-after-write (memory-based) dependences would
not enhance the ability to represent more partial orders while severely restricting the
compiler’s ability to reorder loop iterations or hoist observations from loops.

Now that we have presented the operational and observation semantics of our
Mini IR, as well as different relations involving observations, we need to define the
notion of observation preservation for a program transformation.

5.1.4 Program Transformations

Let us first define a notion of program transformation, as general as possible, and
without considering validity (correctness) issues for the moment. This notion is in-
separable from a mapping that relates semantically connected events across program
transformations.

74 Chapter 5. Source-Level Directives for Preserving Property

Definition 5.1.11 (Program Transformation). Given a program P, a transformation τ
maps P to a transformed program P′. Every transformation τ induces an event map
∝τ relating some events before and after transformation. The event map notation
e ∝τ e′ reads as “τ maps e to e′”, or “e maps to e′” when τ is clear from the context, or
“τ preserves e” when the event after transformation does not need to be identified.
The mapping is partial and neither injective nor surjective in general, as events in P
may not have a semantically relevant counterpart in P′ and vice versa.

In the following, we will incrementally construct a ∝τ relation for an arbitrary
transformation τ. Being a constructive definition, it will serve as a tool to prove the
existence, ordering, and properties of values across program transformations. First,
let us define the notion of valid transformation.

Definition 5.1.12 (Valid Program Transformation). Given a program P, a program
transformation τ that applies to P is valid if it produces a program P′ = τ(P) such
that ∀I ∈ Inputs, C[[P]](I) = C[[P′]](I), i.e. P and P′ have the same I/O behavior.

The set of all valid transformations of P is denoted by T (P).

The set of hypotheses on what is considered a valid program transformation is
minimal, covering as many compilation scenarios as possible. This constitutes a
major strength of our proposal: we make no assumptions on the analysis and trans-
formation power of a compiler, covering not only the classical scalar, loop and inter-
procedural transformations (optimization, canonicalization, lowering), but also hy-
brid static-dynamic schemes, including control and value speculation. The only con-
straint on transformations is to preserve the I/O behavior of a program on all possible
inputs.

Let us now prove that I/O events as well as their relative ordering are preserved
by all valid program transformations. We first introduce a class of events that are
always related through ∝τ for any valid transformation τ, then prove I/O events
belong to this class.

Definition 5.1.13 (Transformation-Preserved Event). Given a program P and input
I, an event etp is transformation-preserved for execution E [[P]](I) if all valid program
transformations are guaranteed to preserve it.

Formally, etp ∈ E [[P]](I) is a transformation-preserved event if and only if

∀τ ∈ T (P), ∃e′tp ∈ E [[τ(P)]](I), etp ∝τ e′tp

The set of transformation-preserved events for a program P and input I is de-
noted by TP(P, I).

Let us now show that one may construct a ∝τ relation that preserves I/O events.

Lemma 5.1.1 (Unicity of Transformed I/O Events). For an execution E = E [[P]](I) of
a program P on some input I, an event e from E reading or writing a value v from/to an
input/output set, and a valid program transformation τ, there exists a unique event e′ ∈
E [[P′]](I) such that e′ reads or writes v.

Proof. By Definition 5.1.12 (Valid Program Transformation), v also belongs to an in-
put or output set associated with the transformed program P′ = τ(P). As a conse-
quence, E′ = E [[P′]](I) also holds an event e′ reading or writing v. Since v is uniquely
tagged among I/O values, semantical equality C[[P]](I) = C[[P′]](I) implies that e′ is
the only event reading or writing v in the execution E′.

5.1. Problem Definition 75

Definition 5.1.14 (Preservation of I/O Events). For an execution E = E [[P]](I) of a
program P on some input I and a valid program transformation τ, we define ∝τ to
include all pairs (e, e′) such that e is an I/O event in E reading or writing a value val
from/to an input/output set, and e′ is the unique I/O event in E [[P′]](I) such that e′

reads or writes val.

Lemma 5.1.2 (Preservation of I/O Event Ordering). Any valid program transformation
preserves the partial ordering on I/O events.

Proof. Consider the execution E of a program P on some input I, and a valid program
transformation τ. Given two events e1 and e2 in E, each of which is associated with
an io expression such that e1

io→ e2. From Definition 5.1.14 (Preservation of I/O
Events), there exists two events e′1 and e′2 in E′ = E [[τ(P)]](I) such that e1 ∝τ e′1
and e2 ∝τ e′2. By definition of io→ induced by I/O events on input and output sets,
any values v1 ∈ IO(e1) and v2 ∈ IO(e2) are such that v1

io→ v2. Since τ is a valid
transformation, events e′1 and e′2 also have to be ordered such that v1

io→ v2, hence
e′1

io→ e′2.

Finally, one may lift the notion of transformation preservation to a program in-
struction, collecting events associated with all or a subset of the executions of this
instruction.

Definition 5.1.15 (Transformation-Preserved Instruction). Given a program P, itp is
a transformation-preserved instruction of P if all valid program transformations are
guaranteed to preserve its associated events, for all inputs.

Formally, itp is a transformation-preserved instruction if and only if

∀τ ∈ T (P), ∀I ∈ Inputs, ∀etp ∈ E [[P]](I), itp = Inst(etp), ∃e′tp ∈ E [[τ(P)]](I), etp ∝τ e′tp

And ictp is transformation-preserved conditionally on the preservation of an instruction
ic if for all executions of P, the preservation of some event e associated with the
execution of i implies the preservation of any event ectp associated with the execution
of ictp.

Formally, ictp is conditionally transformation-preserved on ic if and only if

∀τ ∈ T (P), ∀I ∈ Inputs, ∀ectp ∈ E [[P]](I), ictp = Inst(ectp),
∃ . . . ectp . . . ec . . . ∈ E [[P]](I), ic = Inst(ec), ∃e′c ∈ E [[τ(P)]](I), ec ∝τ e′c

=⇒ ∃ . . . e′ctp . . . e′c . . . ∈ E [[τ(P)]](I), ectp ∝τ e′ctp

As will be shown in Section 5.2.3, we will use these notions to validate the preser-
vation of security protections, either unconditionally, or conditionally on the execu-
tion of a given key instruction of the protection scheme.

5.1.5 Happens-Before Relation

Given the definition of program transformation established in the last subsection, we
may now define the notion of observation-preserving transformation. Intuitively,
such a transformation has to preserve observation events as well as the associated
observed values, and furthermore preserve the relations involving observations such
as of→ and oo→. To this end, let us first define a partial order on both I/O and ob-
servation events, capturing not only the I/O semantics of the program but also its
associated observations.

76 Chapter 5. Source-Level Directives for Preserving Property

Definition 5.1.16 (Happens-Before Relation). For a given program execution E, one
may define a partial order hb→ over pairs of events called a happens-before relation. It
has to be a sub-order of the total order of events in E.

Definition 5.1.17 (Preservation of Happens-Before). Given a valid program trans-
formation τ, for any input I ∈ Inputs, P produces an execution E = E [[P]](I), and
the transformed program P′ = τ(P) produces an execution E′ = E [[P′]](I). τ is said
to preserve the happens-before relation if any events in happens-before relation in P
have their counterparts through ∝τ in happens-before relation in P′. Formally,

∀ei, ej ∈ E, ∀e′i, e′j ∈ E′, ei
hb→ ej ∧ ei ∝τ e′i ∧ ej ∝τ e′j =⇒ e′i

hb→ e′j

Definition 5.1.17 (Preservation of Happens-Before) defines the notion of happens-
before relation preservation, which is a property that has to be proven in general.
Depending on how sparse the ∝τ and hb→ relations are, it may be more or less dif-
ficult to enforce and establish. Hereinafter, we use the following happens-before
relation:

hb→ =
(io→ ∪ of→ ∪ oo→

)∗
Thanks to Lemma 5.1.2 (Preservation of I/O Event Ordering), one will only have to
prove the preservation of the of→ and oo→ components of hb→ in the following. On the
contrary, unlike I/O instructions, instructions involving snapshot are not preserved
by valid program transformations in general.

We now provide two important definitions to reason about the preservation of
observations.

Definition 5.1.18 (Observation-Preserving Transformation). Given a program P, a
transformation τ that applies to P is observation-preserving if it produces a program
P′ = τ(P) such that the four following conditions hold:

(i) it is a valid transformation (see Definition 5.1.12 (Valid Program Transforma-
tion));

(ii) it preserves the existence of observation events:

∀I ∈ Inputs, ∀e ∈ E [[P]](I), Inst(e) = (_ = snapshot(_))
=⇒ ∃e′ ∈ E [[P′]](I), Inst(e′) = (_ = snapshot(_)) ∧ e ∝τ e′

(iii) it preserves the observed values:

∀I ∈ Inputs, ∀e ∈ E [[P]](I), Inst(e) = (_ = snapshot(_)),
e′ ∈ E [[P′]](I), Inst(e′) = (_ = snapshot(_)) ∧ e ∝τ e′

=⇒ Obs(e) = Obs(e′)

(iv) it preserves all happens-before relations:

∀I ∈ Inputs, ∀e1, e2 ∈ E [[P]](I), e1
hb→ e2 =⇒ ∃e′1, e′2 ∈ E [[P′]](I), e′1

hb→ e′2

Given a program P, a transformation τ that applies to P is observation-preserving
conditionally on instruction ic in P if it produces a program P′ = τ(P) such that the
conditions (i), (iii) and (iv) above hold, and also:

5.2. An Approach for Preserving Observations 77

(iic) it preserves the existence of observation events conditionally on the preserva-
tion of ic:

∀I ∈ Inputs, ∀e ∈ E [[P]](I), Inst(e) = (_ = snapshot(_)),
∃ec ∈ E [[P]](I), ic = Inst(ec), ∃e′c ∈ E [[P′]](I), ec ∝τ e′c
=⇒ ∃e′ ∈ E [[P′]](I), e ∝τ e′

Note that a snapshot instruction is always transformed into a snapshot instruc-
tion observing the same observation state, by an observation-preserving transforma-
tion.

Let us now define a notion of observation that is preserved over all possible valid
transformations.

Definition 5.1.19 (Protected Observation). An observation in a program P is protected
if and only if all valid transformations that apply to P are observation-preserving.

An observation is protected conditionally on instruction ic if and only if all valid
transformations are observation-preserving conditionally on ic.

Note that the composition of two valid transformations yields a valid transfor-
mation, according to Definition 5.1.12 (Valid Program Transformation). As a conse-
quence, Definition 5.1.19 (Protected Observation) covers compositions of valid trans-
formations along a compilation pass pipeline.

In the next section, we will provide a constructive method to implement pro-
grams with protected observations complying with Definition 5.1.19 (Protected Obser-
vation). This will allow us to prove the preservation of hb→ on a class of programs
with special constructs carefully defined to protect snapshot expressions, as a partial
fulfillment of the requirements for a valid program transformation to be observation-
preserving.

5.2 An Approach for Preserving Observations

As noted earlier, valid transformations do not preserve the happens-before relation
in general. This section introduces a mechanism to achieve this, involving a mi-
nor extension of the Mini IR with expressions that are defined to be opaque to any
program analysis. As explained in Section 4.2, the intuition of this opacification
technique is to hide a given value from compiler optimizations, so that they cannot
reason about it and thus cannot optimize it out. The technique has been illustrated
through the introduction of artificial definitions. In this section, we will formalize
the notion of opacification and prove that it indeed allows for protected observa-
tions.

5.2.1 Mini IR Extension: Opaque Expressions

To implement the preservation of observation events and the associated happens-
before relation, we extend Mini IR with an opaque expression syntax. The opaque
keyword introduces a region of control flow, as shown in Figure 5.2. The opaque
expression syntax gets its name from the “opacity” of its enclosed region w.r.t. pro-
gram analyses and transformations. An instruction defining a value from an opaque
expression is called an opaque instruction.

When executing opaque, the associated event gathers the definitions and effects
of all instructions in its enclosed region, atomically and in isolation. We assume the

78 Chapter 5. Source-Level Directives for Preserving Property

extended-expr ::= expr
| opaque region atomic opaque region: make I/O, side-effects and definitions

visible atomically outside the region and vice versa;
the compiler sees statically unknown yet functionally
deterministic values

| yield(var∗) return from atomic opaque region

FIGURE 5.2: Extension of Mini IR to implement event and happens-
before preservation.

enclosed region is a terminating sequence of instructions. It proceeds with “internal”
state transitions without defining events and without exposing intermediate states.
When reaching a yield instruction, the program state serves as the resulting state of
the atomic event while also defining all values listed in the yield instruction. For-
mally, executing an opaque instruction o enclosing a region {i1; ...; in} on a state

σ yields the event e = σ
o
 σ′ where σ

i1 · · · in σ′. The last instruction in must be a
yield instruction. We authorize arbitrary (terminating) control flow in these regions,
including conditional memory access and I/O. As a result, the memory and I/O ef-
fects triggered by an opaque instruction are input-dependent. Since regions inside
opaque expressions always terminate, σ′ always exists. This definition guarantees
both atomicity and isolation, since states and transitions associated with individual
instructions {ik}1 ≤ k ≤n are not modeled in the operational semantics. Finally, the
semantics of nested opaque expressions is defined inductively from the inside out.

The compiler is very limited in what analyses it may perform on opaque expres-
sions:

• gathering the uses of an opaque expression;

• deciding whether an opaque expression has read or write side-effects;

• deciding whether an opaque expression performs I/O;

• deciding whether two opaque expressions are identical up to variable renam-
ing.

Yet the compiler is not allowed to determine the precise side-effects (references,
memory addresses) in an opaque expression (as will be shown in Definition 5.2.2
(Opaque Value Set), we will refer to the notion of identical instruction, and it would be
much more complicated to reason about this notion if the compiler has more analysis
capacity on opaque expressions), and it may not attempt to establish a correlation
between its uses (resp. loads from references or memory) and the values it defines
(resp. stores to references or memory).

On the other hand, a valid transformation τ may delete or duplicate an opaque
instruction, and even synthesize completely new ones. This may sound too pow-
erful, as without additional care τ may break the opacity and expose intermediate
states in an opaque expression. We will see in the following that the opacity prop-
erty itself prevents this from happening, thus maintaining opacity, atomicity and
isolation of opaque expressions across transformations.

Since opaque expressions can nest multiple instructions (and even nested re-
gions), we introduce a notation to denote the sequence of instructions executed
atomically within an event. Let InstList(e) denote the list of instructions associated
with event e; it is a single-element list for all events, except for those associated

5.2. An Approach for Preserving Observations 79

with opaque instructions where it is the sequence of instructions executing within
the region for this particular instance e of the opaque instruction. We will write
i ∈ InstList(e) to denote that an instruction i is associated with event e.

In the rest of the paper, we will use revised and extended versions of Defini-
tions 5.1.5–5.1.18 operating on sets of instructions in InstList(e) rather than a specific
instruction Inst(e). All equalities of the form i = Inst(e) in these equations should
be rewritten into i ∈ InstList(e). For convenience, we will also consider all I/O ex-
pressions as being opaque; this is consistent with the traditional assumptions about
compilers not being able to analyze across system calls.

Informally, opaque expressions have two important consequences on value and
event preservation across program transformations: (1) if a valid program transfor-
mation preserves an event using a value defined by an opaque instruction or stored
by an instruction from its associated region, then it must also preserve the event as-
sociated with the opaque instruction, and (2) a valid program transformation has
to preserve any value used in the opaque expression, as proceeding with down-
stream computation would otherwise involve some form of unauthorized guessing
of the opaque expression’s behavior. Formally, let the predicate Opaque(e) denote
that event e is associated with the execution of an opaque instruction; we restrict the
effects of program transformations in presence of opaque expressions as follows:

Definition 5.2.1 (Opaque Expression Preservation). Given a program P, an input I,
and valid transformation τ,

∀ . . . e1 . . . e2 . . . ∈ E [[P]](I), Opaque(e1), e1
dep→1 e2, ∃e′2 ∈ E [[τ(P)]](I), e2 ∝τ e′2

=⇒ ∃e′1 ∈ E [[τ(P)]](I), e1 ∝τ e′1 ∧ Opaque(e′1) ∧ e′1
dep→ e′2 (5.1)

(Preservation of Opaque Expression)

∀ . . . σee . . . ∈ E [[P]](I), ∀ . . . σ′ee
′. . . ∈ E [[τ(P)]](I),

Opaque(e), e ∝τ e′, use(v, Inst(e)) ∧ (v, val) ∈ σe

=⇒ ∃i′ ∈ InstList(e′), use(v′, i′) ∧ (v′, val) ∈ σ′e (5.2)
(Preservation of Value Used in Opaque Expression)

This restriction is taken as a definition, formally capturing the intuitive expecta-
tions about what the compiler has to enforce in the presence of opaque expressions.

Notice the transitive dependence relation e′1
dep→ e′2 in the transformed program

(rather than e′1
dep→1 e′2): the immediate dependence may be transformed into a series

of instructions (e.g., spilling a value to the stack).
Let us highlight a subtle point in this definition: i′ is an instruction belonging

to the transformed opaque expression’s region, not the opaque instruction itself. In-
deed, variable v′ may not be a free variable in Inst(e′), it may be bound to the opaque
expression’s internal region. For example, it is always correct to transform opaque {
use_of(v)} into the sequence t1 = not v; opaque { v’= not t1; use_of(v’)}. This

does not involve any analysis—which is explicitly disallowed—of the opaque ex-
pression’s semantics. While v’ remains part of the program state and retains the
value v had in the original program, it is not exposed as a variable captured by the
opaque expression.

In the following, we will only use snapshot within the region of an opaque ex-
pression. As a result, snapshot expressions will inherit all properties of opaque ex-
pressions, including the conditions for their preservation (Property Preservation of

80 Chapter 5. Source-Level Directives for Preserving Property

Opaque Expression) and the preservation of observed values (Property Preservation
of Value Used in Opaque Expression).

5.2.2 Opaque Chains

Let us now build dependence chains involving opaque instructions. These will
be called opaque chains and serve two purposes: (1) establishing a transformation-
preserved oo→ relation, and (2) linking observations to downstream transformation-
preserving events to preserve the former through program transformations. We first
need additional definitions and notations.

Definition 5.2.2 (Opaque Value Set). Given an execution E = E [[P]](I), consider a
chain of dependent events e1

dep→1 . . .
dep→1 en with n ≥ 2, an instruction/event ij =

Inst(ej), such that Opaque(ej), in the chain defining a value orig for a given variable
varj and some instruction/event ik = Inst(ek) in the chain, with 1 ≤ j < k ≤ n and

∀j < l < k,¬Opaque(el). Notice that we have e1
dep→ ek and not necessarily e1

dep→1 ek,
which means that orig is not necessarily used or read by ek.

Let σj = (Valsj, πj) be the program state ej transitions into.
Let OV j denote the set of all opaque values that varj may take according to its

data type: for example, an opaque expression yielding a value of boolean type will
have OV j = {true, false}.

We also lift this definition to the set of values used by a downstream expression
across a chain of dependent instructions. This expresses the sensitivity of an expres-
sion to a value produced by an upstream instruction in the dependent chain.

Consider an execution Ealt continuing after ej on program state σalt = (Valsalt, πj),
with the value set Valsalt containing an alternative value alt substituted for varj, i.e.

Valsalt = Valsj \ (varj, orig) ∪ (varj, alt), and an event ekalt ∈ Ealt such that ej
dep→ ekalt .

Let valuej,k denote the function mapping every value v ∈ OV j to a value defined as
follows:

• if v = orig, valuej,k(v) is the value used or read by ik;

• otherwise, if v 6= orig:

– valuej,k(v) is the value used or read by ik if ek ∈ Ealt;

– valuej,k(v) is the value used or read by an instruction ikalt = Inst(ekalt) along
the ej . . . ekalt sub-chain if ik and ikalt are identical expressions up to variable

renaming, and ∀e 6= ekalt s.t. ej
dep→ e

dep→ ekalt , ¬Opaque(e);

– valuej,k(v) is the special “undefined” value ⊥ otherwise.

We define the opaque value set OV j,k as valuej,k(OV j).

Let us paraphrase this definition to expose the intuitions behind it. When con-
sidering the orig value, the valuej,k function yields the value used or read by ik. When
substituting the value alt for the original value orig defined by the opaque expres-
sion ij, the valuej,k function also yields the value used or read by ik if the execution
path is not altered or if the altered path still reaches ik. If the altered path (when
considering the alt value) encounters an instruction ikalt identical to ik up to variable
renaming before encountering a dependent opaque instruction, it yields the value
used or read by ikalt (this accounts for program transformations capable of combin-
ing two identical instructions, more on this later). And if the altered path reaches an

5.2. An Approach for Preserving Observations 81

opaque instruction, or the execution terminates before reaching an identical instruc-
tion, valuej,k yields the “undefined” value ⊥.

Intuitively, the definition of valuej,k allows to reason on the cardinality of the
opaque value set OV j,k: whether this set is a singleton or not will tell whether the
dependent instruction/event ik = Inst(ek) is truly sensitive to the opaque value of
ij = Inst(ej). A non-singleton set means that evaluating the opaque instruction ij
cannot be avoided by a valid transformation, implying that the latter has to preserve
ij in order to preserve the resulting opaque value.

This notion of opaque value set lays the foundation for the definition of opaque
chain below, which will be later needed to preserve the

dep→ relations between opaque
expressions. Moreover, we will further illustrate this concept of opaque value set on
a handful of examples.

Definition 5.2.3 (Opaque Chain). Given an execution E = E [[P]](i), consider a chain
of dependent events e1

dep→1 . . .
dep→1 en; e1

dep→1 . . .
dep→1 en is an opaque chain linking e1 to

en if and only if

(i) i1 = Inst(e1) and in = Inst(en) are opaque instructions;

(ii) for any opaque instruction ik = Inst(ek) other than i1 (2 ≤ k ≤ n), let ij =
Inst(ej) its immediately preceding opaque instruction in the chain (1 ≤ j < k),
Card(OV j,k) ≥ 2.

We note e1
opaque
 en such an opaque chain.

As a corollary, any sub-chain of an opaque chain starting and ending with opaque
instructions is trivially an opaque chain itself.

The intuition behind the condition (ii) is the following. In order to not break the
opacity of the chain, the compiler must not be able to reason about any value defined
by every opaque instruction iopaque = Inst(eopaque) of the chain, so that it is enforced
to preserve the associated opaque event eopaque. To this end, for every opaque in-
struction ik of the chain other than i1, we consider all values that its immediately
upstream opaque instruction in the chain ij may define, according to its opaque re-
sult type. If the opaque value set OV j,k of possible values used or read by ik (which

is on a dependence relation with the value defined by ij, as ej
dep→ ek) contains at least

two elements, then the compiler has no other way to compute this value used or
read by ik than using the opaque value defined by ij. In other words, ik is truly de-
pendent on the opaque value of ij, and the presence of the ik actually requires the
presence of ij, given such dependence relation. The cardinality requirement of OV j,k
implies that either ik is control-dependent on ij and there exists an alternate execu-
tion from ej bypassing ik (or an identical instruction up to variable renaming), or ik
is data-dependent on ij and the set of values ik may use or read is not a singleton, or
both.

Opaque chains take the form of an alternating sequence of opaque instructions
and sub-chains of regular instructions, starting with an opaque instruction and end-
ing with an opaque instruction (remember I/O expressions are considered opaque).
The control- and data-dependence restrictions in condition (ii) serve as “information-
carrying” guarantees: the compiler does not have enough information about the
possible paths dependent on an opaque value or on the processing of opaque values
to break an opaque chain into distinct dependence chains.

Beyond opaque instructions, here are some important classes of instructions which
always belong to an opaque chain:

82 Chapter 5. Source-Level Directives for Preserving Property

• all instructions that only propagate existing values within or across name-
value domains; these include dereference, assignment, load, store, br on branch
arguments (not on the branch condition), call and return instructions, and in-
structions involving snapshot or io expressions;

• the same applies to the traditional C unary operators -, !, ~;

• any binary operator (resp. function call) where the operand (resp. arguments)
type or the value of the other operand (resp. other arguments) makes the op-
eration bijective; e.g., + on unsigned integers, * with the constant 1, etc.

• any binary operator (resp. function call) where all operands (resp. arguments)
are opaque, and where opaque operands (resp. arguments) are not correlated
(feeding multiple times the same opaque value or dependent expressions may
degenerate into a singleton value set, such as the subtraction of an opaque
value with itself);

More instructions may belong to an opaque chain provided specific constraints
hold on its inputs: e.g., left-shifting by 1 an uint32_t value if the compiler cannot
prove it is always greater than or equal to UINT_MAX/2, or dividing a value that the
compiler cannot statically analyze to be less than the divisor; in both cases the com-
piler is forced to consider that the image of the instruction on all possible inputs is
not a singleton.

Example 5.2.1. Let us demonstrate this definition on a simple example of opaque
chain. Consider the following code snippet, which simply outputs an input value
incremented by 1 (assuming in the following, io() expression performs the I/O op-
eration of printing an integer value to the terminal):

1 bb_entry:
2 integer_input = get_input ();
3 a = opaque {
4 yield(integer_input);
5 };
6 b = a + 1;
7 io(desc , b);

Consider a dependence chain of length three, comprising the following instruc-
tions/events:

• i1 = Inst(e1) is a = opaque { yield(integer_input); };;

• i2 = Inst(e2) is b = a + 1;;

• i3 = Inst(e3) is io(desc, b);.

Condition (i) holds because i1 and i3 are opaque instructions (recalling that I/O
expressions are also opaque). To reason about the condition (ii), consider the only
opaque instruction i3 (other than i1) of the chain, with i1 being its immediately pre-
ceding opaque instruction. e1

du→ e3 and the incrementation performed by i2 is a
bijective operation, thus does not modify the cardinality of the opaque value set
OV1 (i.e. the set of opaque values that a may take, which is 232, assuming an integer
of 32 bits). Hence, Card(OV1,3) = Card(OV1) = 232, i.e. the value b used by i3 is not
a singleton.

5.2. An Approach for Preserving Observations 83

1 bb_entry:
2 integer_input = get_input ();
3 a = opaque {
4 yield(integer_input);
5 };
6 b = a << 32;
7 io(desc , b);

Example 5.2.2. On the contrary, considering a counter-example of opaque chain be-
low:

The only change we have made here is that i2 now becomes b = a << 32;. As-
suming integer_input is of type uint32_t, shifting it by 32 bits to the left would allow
the compiler to deduce that b always takes the zero value, i.e. Card(OV1,3) = 1. As
a result, the compiler may further eliminate both the opaque instruction i1 and i2,
transforming the code into:

1 bb_entry:
2 io(desc , 0);

Indeed, the original dependence chain is not opaque, and valid transformations
are not required to preserve the opaque instruction i1, as there is no instruction really
sensitive to the value produced by i1.

Example 5.2.3. As a more complex example, the following code from illustrates
the conversion of control into data dependences and vice-versa, preserving opaque
chains in the process.

Consider Listing 5.1, both programs Pdata and Pcontrol form dependence chains
from the definition of c to the observation of v (for Pdata), or of 0 and 42 for Pcontrol.

1 bb_entry:
2 boolean_input = get_input ();
3 c = opaque {
4 yield(boolean_input);
5 };
6 br c, bb_true;
7 bb_false:
8 v = 0;
9

10

11 br true , bb_join;
12 bb_true:
13 v = 42;
14

15

16 bb_join:
17 opaque {
18 yield(snapshot(v));
19 };
20 ...

(a) Pdata

1 bb_entry:
2 boolean_input = get_input ();
3 c = opaque {
4 yield(boolean_input);
5 };
6 br c, bb_true;
7 bb_false:
8 opaque {
9 yield(snapshot (0));

10 };
11 br true , bb_join;
12 bb_true:
13 opaque {
14 yield(snapshot (42));
15 };
16 bb_join:
17

18

19

20 ...

(b) Pcontrol

Listing 5.1: Opaque chain preservation during data and control de-
pendences conversion.

More specifically, for Pdata from Listing 5.1a, we have two dependence chains
Cdata and C′data, each of length three, containing respectively:

• i1 = Inst(e1) is c = opaque { yield(boolean_input); };;

• i2 = Inst(e2) is v = 0;;

84 Chapter 5. Source-Level Directives for Preserving Property

• i3 = Inst(e3) is opaque { yield(v); };.

and:

• i′1 = Inst(e′1) is c = opaque { yield(boolean_input); };;

• i′2 = Inst(e′2) is v = 42;;

• i′3 = Inst(e′3) is opaque { yield(v); };.

Let us now reason about the opacity of Cdata. Condition (i) holds trivially because
i1 and i3 are opaque instructions. Card(OV1) = 2 as c is of type bool, and e1

cd→1 e2,
which creates two different execution paths, each of which defines a distinct value
for v (respectively 0 and 42). e2

du→1 e3, making Card(OV1,3) = 2, as the variable v
used by i3 also has two possible values. Following the same reasoning, C′data is also
an opaque chain.

Let us now consider Pcontrol from Listing 5.1b, which also defines two dependence
chains Ccontrol and C′control, each of length two, containing respectively:

• i1 = Inst(e1) is c = opaque { yield(boolean_input); };;

• i2 = Inst(e2) is opaque { yield(0); };.

and:

• i′1 = Inst(e′1) is c = opaque { yield(boolean_input); };;

• i′2 = Inst(e′2) is opaque { yield(42); };.

Let us now reason about the opacity of Ccontrol. Condition (i) holds trivially be-
cause i1 and i2 are opaque instructions. To reason about the condition (ii), we now
have to determine the opaque value set OV1,2. Consider the variable c of type bool,
Card(OV1) = 2, e1

cd→1 e2. As i2 lies in the bb_false block, orig takes the boolean
value false, thus the only alternative value alt equals true.

• Considering c = orig, value1,2(c) yields the value 0 used by i2;

• Substituting alt for orig, value1,2(c) yields the “undefined” value ⊥, as i2 and i′2
(which is the first opaque instruction in the alternative execution path) are not
identical: they consume two distinct values 0 and 42.

Therefore, OV1,2 = {0,⊥}, and Card(OV1,2) = 2; Ccontrol is indeed an opaque
chain. Following the same reasoning, for C′control, OV1,2 = {42,⊥}, Card(OV1,2) = 2,
and C′control is also an opaque chain.

In short, the transformations from Pdata to Pcontrol and vice-versa are both valid,
preserving observations (a data dependence is converted into a control dependence,
specializing values into constants, and vice-versa for the reverse transformation).
Whether it is the multiple values of v or the alternative path from the definition of c
to a consuming snapshot, it is impossible for the compiler to break the dependence.

Example 5.2.4. On the contrary, let us illustrate the restrictions on the multiplicity
of paths leading and not leading to ik or an identical opaque expression. Consider
Listing 5.2, where a program Porig (Listing 5.2a) forming a dependence chain from
the definition of c to the I/O instruction through a control dependence, and its trans-
formation into Ptrans (Listing 5.2b).

More specifically, Porig defines two opaque chains C and C′, each of length two,
containing respectively:

5.2. An Approach for Preserving Observations 85

1 bb_entry:
2 boolean_input = get_input ();
3 c = opaque {
4 yield(boolean_input);
5 };
6 br c, bb_true;
7 bb_false:
8 io(desc , 0);
9 br true , bb_join;

10 bb_true:
11 io(desc , 0);
12 bb_join:
13 ...

(a) Porig

1 bb_entry:
2 boolean_input = get_input ();
3 c = opaque {
4 yield(boolean_input);
5 };
6

7

8

9

10

11

12 io(desc , 0);
13 ...

(b) Ptrans

Listing 5.2: Non-opaque control dependence chain.

• i1 = Inst(e1) is c = opaque { yield(boolean_input); };;

• i2 = Inst(e2) is io(desc, 0); (from bb_false).

and:

• i′1 = Inst(e′1) is c = opaque { yield(boolean_input); };;

• i′2 = Inst(e′2) is io(desc, 0); (from bb_true).

Let us now reason about the opacity of C. Condition (i) holds trivially because i1
and i2 are opaque instructions. Similarly to the previous example, we have Card(OV1)

= 2, e1
cd→1 e2, the original value orig of c takes the boolean value false, while the

only alternative value alt equals true.

• Considering c = orig, value1,2(c) yields the value 0 used by i2;

• However, this time, by substituting alt for orig, value1,2(c) also yields the value
0 used by i′2, which is identical to i2.

Therefore, OV1,2 = {0}, and Card(OV1,2) = 1; C does not form an opaque chain.
Following the same reasoning, C′ is not an opaque chain either, as Card(OV1,2) = 1.
In other words, the dependent instruction i2 is not truly sensitive on the opaque
value defined by i1).

Indeed, for example, by applying the “tail merging” transformation to Porig, we
will obtain Ptrans which contains no dependence anymore. As a result, a further
“dead code elimination” transformation applied to Ptrans will remove the opaque
instruction c = opaque { yield(boolean_input); };, and this is completely valid, as
the control dependence chain in Porig is not an opaque one due to the identical val-
ues (constant 0) read by the I/O instruction on both paths leading to an identical
instruction.

We may now generalize Property Preservation of Opaque Expression to opaque
chains. If a valid program transformation preserves an event at the tail of an opaque
chain, then it must also preserve the event associated with the head of the opaque
chain. Formally:

86 Chapter 5. Source-Level Directives for Preserving Property

Lemma 5.2.1 (Preservation of Chained Opacity). Given a program P, input I, and valid
transformation τ,

∀ . . . e1 . . . en . . . ∈ E [[P]](I), e1
opaque
 en, ∃e′n′ ∈ E [[τ(P)]](I), en ∝τ e′n′

=⇒ ∃e′1 ∈ E [[τ(P)]](I), e1 ∝τ e′1 ∧ Opaque(e′1) ∧ e′1
dep→ e′n′

Proof. The
opaque
 relation implies e1 and en are opaque. The case of n = 1 is trivial.

Consider the case of n ≥ 2. Let ik = Inst(ek) be the immediately upstream opaque
instruction/event of en in the chain. Consider the ek . . . en sub-chain (which is triv-
ially an opaque chain). By definition of the

opaque
 relation, Card(OVk,n) ≥ 2. In other

words, the sub-chain (excluding ek and en) implements the function valuek,n and it
is sensitive to the value d defined by ek (i.e., non-constant along the values d may
take). Since the instructions in our Mini IR capable of implementing a non-constant
function are the definition, load, store and conditional branches, this implies the ex-
istence of a slice of events in E [[P]](I), spawning backward from en and including
an event eu using d. It is trivial that ek

dep→1 eu. The events associated with these
definition, load, store, branch instructions are exactly those building up

dep→. As a
result, from Property Preservation of Value Used in Opaque Expression, en being
opaque, the mapping of en to e′n′ implies that the same value valuek,n(d) is used by
e′n′ . As a result, there exists in τ(P) a function value′k′,n′ sensitive to d, which is in turn
computed by a slice in E [[τ(P)]](I) spawning backward from e′n′ . The sensitivity of
value′k′,n′ to the value of d implies that the backward slice holds an event e′u′ , such
that eu ∝τ e′u′ , using this latter. We may apply Property Preservation of Opaque Ex-

pression to ek
dep→1 eu and eu ∝τ e′u′ , which proves the existence of an opaque event

e′k′ ∈ E [[τ(P)]](I) such that ek ∝τ e′k′ and e′k′
dep→ e′n′ .

An induction on the length of the chain proves the preservation of e1 through
valid transformations for all chain lengths, and that the transformed events form a
dependence chain e′1

dep→ e′n′ .

Note that e1
opaque
 en does not necessarily imply e′1

opaque
 e′n′ , but does imply e′1

dep→ e′n′
instead. Indeed, as Opaque(e′1), e′1

dep→ e′n′ (Lemma 5.2.1 (Preservation of Chained
Opacity)), and Opaque(e′n′) (because en ∝τ e′n′), all we have to do to prove e′1

opaque
 e′n′

is the cardinality requirement. However, without details about other transformed
instructions of the chain, we cannot conclude whether the cardinality requirement
is met. Notice also that events associated with non-opaque expressions along the
chain are not necessarily preserved, so a kth event (k > 1) of the opaque chain in P
may be turned into the event number k′ of the dependence chain in τ(P).

As a corollary, let us now introduce an important theorem on the preservation of
opaque chains.

Theorem 1 (Preservation of Opaque Chains). Given a program P and input I, if e1 is
linked through an opaque chain to a transformation-preserved event en, then e1 is transforma-
tion-preserved, and for any transformation τ mapping e1 to e′1 and en to e′n′ , there is an
opaque chain linking e′1 to e′n′ . Formally,

e1
opaque
 en ∧ en ∈ TP(P, I)

=⇒ ∀τ ∈ T (P), ∃e′1, e′n′ ∈ E [[τ(P)]](I), e1 ∝τ e′1 ∧ en ∝τ e′n′ ∧ e′1
dep→ e′n′

5.2. An Approach for Preserving Observations 87

Notice that a typical case of transformation-preserved en is an I/O event, but
the lemma is not limited to opaque chains terminating in a consuming I/O event.
For example, an opaque chain can also terminate in a consuming instruction that
is transformation-preserved conditionally on some other instruction ic (more on this in
Theorem 2).

Unfortunately, as noted earlier, we have not been able to prove that an opaque
chain transforms into an opaque chain in general. Additional hypotheses on opaque
expressions or opaque chains are likely to be needed to prove this. We conjecture
these would not require modifying our definition of opaque chains, but we do not
have a definite answer at this point. Fortunately, we do not need to prove such
a strong preservation result: a weaker-yet-sufficient compositionality result can be
used as a work-around.

Lemma 5.2.2 (Transitive Preservation of Opaque Chains).

e1
opaque
 en ∧ en ∈ TP(P, I)

=⇒ ∀τ ∈ T (P), ∀τ′ ∈ T (τ(P)), ∃e′′1 , e′′n′ ∈ E [[τ′(τ(P))]](I),

e1 ∝τ′◦τ e′′1 ∧ en ∝τ′◦τ e′′n′ ∧ e′′1
dep→ e′′n′

Proof. The proof of transitive transformation preservation stems from the observa-
tion that τ ◦ τ′ is a valid transformation and the application of Theorem 1.

This weaker result may sound counter-intuitive at first. It seems like establishing
an opaque chain and applying τ then τ′ in sequence provides weaker observation
preservation guarantees than applying τ ◦ τ′ in one shot. This is not the case. What
happens is that after applying τ, we lose the ability to prove the original opaque
chains will remain enforceable in the transformed program, hence to tell anything
about the effect of τ′ on the associated observations. The fact is that any observation
τ preserves will also be preserved by τ ◦ τ′, or any valid transformation. In the
following, we will use Lemma 5.2.2 (Transitive Preservation of Opaque Chains) to
reason about the preservation of opaque events throughout the compilation flow by
composing transformations resulting from a sequence of compilation passes, rather
than considering the cumulative effects of individual compilation passes on opaque
chains.

5.2.3 Observation in action

Previously, in Listing 5.1, we have hinted at embedding snapshots into the region of
opaque expressions. However, this is only the most basic implementation of obser-
vations. Let us now show how to combining io, snapshot and opaque expressions
to create different observation schemes with varying degrees of freedom for the in-
struction scheduler and optimizations in general. These schemes are implemented
as patterns in our Mini IR, but can be generalized to allow programmers to spec-
ify observations as well as the hb→ order to be preserved by the compiler in source
program. First, let us start by defining some helper patterns needed to implement
observation patterns.

5.2.3.1 Helper Patterns

Let us now introduce a simple pattern implementing a “tokenizing” opaque expres-
sion.

88 Chapter 5. Source-Level Directives for Preserving Property

1 macro token(v1, ..., vk) { // pure , opaque unit -type value ,
2 // not associated with any resource;
3 // the compiler sees a statically unknown
4 // yet functionally deterministic value.
5 bb:
6 w = opaque {
7 use(v1, ..., vk); // variadic function using all its arguments
8 // and returns no value.
9 yield(unit_value);

10 };
11 return(w);
12 }

It is pure, functionally deterministic, and opaque to the compiler. Semantically,
the token pattern returns a value of the unit type—called a token—irrespectively of
the number of arguments. Yet it is not known to the compiler what values a token
can take, and in particular the compiler is not told it is a singleton set. As a result
one may use token as an opaque expression, and use the token type in dependent in-
structions forming an opaque chain. Unlike more general opaque expressions, token
values do not need hardware resources to store live token values when emitting as-
sembly code: we refer to the unique value unit_value of the unit-type to implement
“resource-less” opaque chains of tokens.

It may sound paradoxical to return the same unit_value in multiple tokens, yet
this is not visible to the compiler since it occurs in an opaque expression; the com-
piler must assume these are different, unpredictable values.

Furthermore, since the unit data type does not carry an informative value, we
define snapshot to ignore its token arguments, i.e., not to embed them into an obser-
vation state.

Next, we introduce a tailio pattern implementing a special case of the io instruc-
tion with no argument. It is typically used at the tail of opaque chains to prevent
them from being eliminated.

1 macro tailio () {
2 bb:
3 io(tagged_unit_unordered_set_descriptor);
4 return ();
5 }

The tailio pattern uses a dedicated descriptor of an unordered set of (tagged)
unit-valued outputs. Since it embeds an I/O instruction, it is preserved by trans-
formations, yet unlike the more general form of I/O, it does not incur any ordering
constraint w.r.t. other tailios in the same program.

5.2.3.2 Robust Observation

Based on the extended patterns, we may now define a series of observation patterns,
defining observation states that will be preserved over program transformations.
They are ordered by increasing degrees of freedom for optimizations.

Monolithic opaque expression: This is the simplest form of observation preserved
over program transformations: it is basically an opaque region containing a snapshot
instruction observing a variable number of values and an I/O instruction to guar-
antee the preservation of the whole region. The opaque region also returns a token,
implying that the observation does not require any physical resource to store the
return value.

5.2. An Approach for Preserving Observations 89

1 macro observe_monolithic(v1 , ..., vk) {
2 bb:
3 t2 = opaque {
4 w1 , ..., wk = snapshot(v1, ..., vk);
5 t1 = token(w1 , ..., wk);
6 tailio ();
7 yield(t1);
8 };
9 return(t2);

10 }

Lemma 5.2.3 (Preservation of Monolithic Observation Events). If (1) all instructions
involving snapshot expressions of a program P are introduced via observe_monolithic, and
if (2) the happens-before relation on observations in P is enforced through an opaque chain,
then observations in P are protected according to Definition 5.1.19 (Protected Observation).

Proof. Consider any valid transformation τ. We need to prove that τ preserves
monolithic observation event, according to Definition 5.1.18 (Observation-Preserving
Transformation).

Condition (i) trivially holds, as τ is a valid transformation.
The opaque expression’s atomic region expands a nested tailio pattern. As a re-

sult, Definition 5.1.14 (Preservation of I/O Events) guarantees that all events associ-
ated with the execution of such an opaque expression are transformation-preserved.
This proves condition (ii).

The opaque expression’s region holds a backward slice linking atomically the
(token) value t1—which is also the return value of the region—to the arguments
v1, . . . , vk to be observed. By Property Preservation of Value Used in Opaque Ex-
pression, any valid transformation must preserve the values of v1, . . . , vk along with
the definition events producing these values. This proves condition (iii) in Definition
5.1.18 (Observation-Preserving Transformation).

Let us now prove condition (iv)—the preservation of hb→. The preservation of of→
follows the same reasoning as the proof of condition (iii); yet the preservation of oo→
involves the traversal of opaque chains. Consider a pair of events eobs1 , eobs2 , each of
which is associated with the opaque expression expanded from observe_monolithic,
such that eobs1

oo→ eobs2 , and let e′obs1
, e′obs2

be their counterparts in P′ = τ(P); these

transformed events must exist as they involve I/O effects. Since eobs1

opaque
 eobs2 (from

the lemma statement), Theorem 1 applies to all opaque events on the opaque chain,
guaranteeing their mapping to events in P′ through τ, and that these events form a
dependence chain. This proves e′obs1

oo→ e′obs2
.

Notice that some arguments of observe_monolithic associated with eobs2 may be
converted by τ into constants, which are defined at the initial event e0. Still, at least
one argument will remain the target of the opaque chain linking eobs1 to eobs2 , since
the token-typed value produced by an upstream observation cannot be turned into
a constant.

Decoupled I/O region: Cutting out a specific I/O section allows to decouple event
preservation from event ordering. Rather than inserting an I/O instruction in every
observation, it is sufficient to consider a smaller non-empty set of I/O instructions,
and to chain this set backwards to the observations whose events they are meant to
preserve.

The programmer may use observe_decoupled pattern to organize observations,
setting partial ordering constraints among them using the resulting token t1. These

90 Chapter 5. Source-Level Directives for Preserving Property

1 macro observe_decoupled(v1 , ..., vk) {
2 bb:
3 u1 = opaque {
4 w1 , ..., wk = snapshot(v1, ..., vk);
5 t1 = token(w1 , ..., wk);
6 yield(t1);
7 };
8 return(u1);
9 }

10

11 macro observe_tailio(u1 , ..., uk) {
12 bb:
13 v = opaque {
14 u = token(u1, ..., uk);
15 tailio ();
16 yield(u);
17 };
18 return(v);
19 }

will be much less intrusive to compiler transformations than observe_monolithic
which systematically embeds an I/O instruction.

We can now adapt the Lemma 5.2.3 (Preservation of Monolithic Observation
Events) to the decoupled observation pattern.

Lemma 5.2.4 (Preservation of Decoupled Observation Events). If (1) all snapshot in-
structions of a program P are introduced via observe_decoupled, if (2) the happens-before
relation on observations in P is enforced through opaque chains whose tails are I/O events
introduced via observe_tailio, then observations in P are protected according to Definition
5.1.19 (Protected Observation).

Proof. Similarly to Lemma 5.2.3 (Preservation of Monolithic Observation Events), we
now need to prove that any valid transformation τ preserves decoupled observation
event, according to Definition 5.1.18 (Observation-Preserving Transformation).

Condition (i) trivially holds, as τ is a valid transformation.
Since observe_tailio includes a tailio instruction, Definition 5.1.14 (Preserva-

tion of I/O Events) guarantees that events associated with instances of the opaque
expression holding the tailio instruction are transformation-preserved. Theorem 1
applied to opaque chains linking observe_decoupled opaque expressions to a subse-
quent observe_tailio proves condition (ii).

The proof of condition (iv)—the preservation of hb→—in Lemma 5.2.3 (Preserva-
tion of Monolithic Observation Events) applies to observe_decoupled as it does not
refer to the tailio instruction.

The proof of condition (iii) is also identical to the proof of Lemma 5.2.3 (Preser-
vation of Monolithic Observation Events).

Note that, just as for tailio, observe_tailio typically occurs at the tail of an
opaque chain. Furthermore, a single observe_tailio may be used to close multiple
opaque chains, as it accepts a variable number of arguments.

5.2.3.3 Address-Value Pair Observation

When observing values in memory, several applications require observing not only
the value but also the memory address that holds this value. For example, this is
important when verifying and assessing the proper erasure of a buffer in memory,
to avoid leaking sensitive data. The following pattern provides such a functionality,
when associated with an observe_tailio pattern as in the decoupled scheme above.

5.2. An Approach for Preserving Observations 91

1 macro observe_pair(a) {
2 bb_macro:
3 u = opaque {
4 v = mem[a];
5 b, w = snapshot(a, v);
6 t = token(b, w);
7 yield(t);
8 };
9 return(u);

10 }

The observation of both the address a and the value stored at this address occurs
atomically, including these to the same observation state. One may use observe_pair
to check the value at a specific memory address, as required by the abovementioned
memory erasure example.

Lemma 5.2.5 (Preservation of Address-Value Pair Observation Events). If (1) all sna-
pshot instructions of a program P are introduced via observe_pair, if (2) the happens-before
relation on observations in P is enforced through opaque chains whose tails are I/O events
introduced via observe_tailio, then observations in P are protected according to Definition
5.1.19 (Protected Observation).

The proof of Lemma 5.2.5 (Preservation of Address-Value Pair Observation Events)
is exactly the same as for Lemma 5.2.4 (Preservation of Decoupled Observation
Events), as the only difference between two patterns observe_decoupled and observe
_pair is that for the latter, the opaque expression contains an additional memory
load instruction.

Of course, one may also define a version of this pattern for the monolithic scheme,
and versions with a variable number of address-value pairs.

5.2.3.4 I/O-Barrier-Based Observation

Let us now use our extended syntax to implement the I/O-barrier-based solution to
functional property preservation, described in Section 4.2. Recalling that preserv-
ing functional property is defined as the preservation of (1) values occurring in the
property predicates and (2) the program observation point at which the property
is evaluated. As such, the I/O-barrier-based mechanism is divided in two parts:
first, the observation point associated with a given functional property is material-
ized, then Algorithm 1 inserts artificial definitions for every definition reaching the
functional property. The former can be implemented with the following observe_cc
pattern, while the latter corresponds to the following artificial_def pattern.

For each program property, the observe_cc pattern is used to model the associ-
ated observation point, as it snapshots values of observed variables and observed
memory locations referred in the property’s predicate. Note that for each observed
memory location (i.e. a1, . . ., ak), the pattern reads the value stored at the location,
which is next snapshotted. This implements the compiler fence representing obser-
vation points, described in Section 4.2.

For each observed variable referred in the property’s predicate, the artificial_
def pattern is used to protect the value reaching the observation point, implementing
the so-called opacification mechanism by returning opaque values. Recalling that
these opaque values next replace the original ones in the subsequent code.

Notice that both artificial_def and observe_cc used for property preservation
contain an I/O instruction: this guarantees the existence of these expressions. Fur-
thermore, unlike the lightweight observe_decoupled pattern, these I/O instructions

92 Chapter 5. Source-Level Directives for Preserving Property

1 macro artificial_def_cc(v) {
2 bb_macro:
3 u = opaque {
4 io(ordered_set_descriptor);
5 yield(v);
6 };
7 return(u);
8 }
9

10 macro observe_cc(u1, ..., uk, a1, ..., ak) {
11 bb_macro:
12 opaque {
13 v1 = mem[a1];
14 ...
15 vk = mem[ak];
16 w1 , ..., wk = snapshot(u1, ..., uk , v1, ..., vk);
17 io(ordered_set_descriptor);
18 yield ();
19 };
20 }

are not introduced via tailio patterns—which do not incur any ordering constraint—
but define a relative ordering between different program properties (i.e. between
different observe_ccs), as well as between a given property and different definitions
of the observed values (i.e. different artificial_defs). These ordering constraints
are cumbersome, and not always wanted by the programmer but rather a downside
of the I/O-barrier-based approach.

5.2.3.5 Value Opacification

We have shown in Section 4.4.3 that it is possible to protect source-level security
protections by preserving the protection-derived properties, which can be encoded
as observational properties involving specific values key to the protections. As a
result, a common pattern to protect security countermeasures consists in opacifying
values, without modifying the data or control flow. In particular, rather than build-
ing an opaque chain of tokens—like observe_decoupled does—it is natural to chain
observations using the original values but hiding them from potentially harmful
transformations—i.e. building chains of opaque values produced by the observe_
opacify pattern below.

1 macro observe_opacify(v1 , ..., vk) {
2 bb_macro:
3 u1 = opaque {
4 w1 , ..., wk = snapshot(v1, ..., vk);
5 yield(w1);
6 }
7 return(u1);
8 }

This pattern implements the identity function on its first argument. Its other
arguments can be used to express data dependence relations with other instructions.
In addition, all arguments are observed. The compiler sees the result of observe
_opacify as a statically unknown yet functionally deterministic value, it thus can
assume that different observations (introduced via observe_opacify patterns) of the
same input value v would yield the same output value u. In the following, any
observation introduced via observe_opacify is called opacification.

Lemma 5.2.6 (Preservation of Value Opacification Events). If (1) all snapshot instruc-
tions of a program P are introduced via observe_opacify, if (2) the happens-before relation

5.2. An Approach for Preserving Observations 93

on opacifications in P is enforced through opaque chains whose tails are I/O events intro-
duced via observe_tailio, then opacifications in P are protected according to Definition
5.1.19 (Protected Observation).

Notice that observe_opacify only differs from observe_decoupled in the returned
value (the first argument rather than a token). As a consequence, the proof of Lemma
5.2.4 (Preservation of Decoupled Observation Events) applies directly to prove Lemma
5.2.6 (Preservation of Value Opacification Events).

Finally, to summarize different results shown in this section, the following the-
orem provides a methodology for protecting observation and opacification of any
value(s) or address-value pair(s) throughout program transformations, i.e. preserv-
ing their existence as well as enforcing any partial ordering among these observa-
tions and opacifications.

Theorem 2 (Observation/Opacification protection). Let P be a program implementing
observations and opacifications through a combination of observe_monolithic, observe_
decoupled, observe_pair and observe_opacify in opaque chains enforcing a programmer-
specified hb→ order, and such that any chain involving observe_decoupled, observe_pair
and observe_opacify leads to a downstream transformation-preserved instruction (such as
a trailing observe_tailio). Then all observations in P are protected according to Definition
5.1.19 (Protected Observation).

Let P be a program implementing observations and opacifications through a combina-
tion of observe_monolithic, observe_decoupled, observe_pair and observe_opacify in
opaque chains enforcing a programmer-specified hb→ order, and such that any chain involving
observe_decoupled, observe_pair and observe_opacify leads to a downstream instruc-
tion transformation-preserved conditionally on some instruction in a set Ic. Then all obser-
vations in P are protected conditionally on instructions in Ic according to Definition 5.1.19
(Protected Observation).

The theorem above directly relates to observation and opacification preserva-
tion. However, more generally, the presented patterns can also be leveraged to sup-
port the evaluation of functional properties, which usually take the form of first-
order logical formula. To this end, one may need to observe an arbitrary observation
state with a variable number of (name, value) pairs. The monolithic, decoupled and
value opacification patterns above all achieve this, by collecting all variable names
occurring in the logical property and atomically observing their name-value pairs.
Nonetheless, the most adapted pattern for functional property preservation is the
decoupled pattern, as it is lightweight (in contrast to monolithic pattern containing
I/O instruction for every property) and “resource-less” (as it returns a token, which
does not need hardware resources to actually store its value, in contrast to opacifi-
cation pattern, which returns the opaque value requiring the allocation of a physical
location).

Now that we have defined patterns implementing different observations and
opacification schemes, specifying various constraints for compiler optimizations, the
next section will describe how to implement some of these patterns in an optimizing
compiler in practice. We deliberately chose to illustrate this idea on observe_opacify
(for value observation and opacification), a variant of observe_pair (for memory

observation), and observe_tailio (for opaque chain creation).

94 Chapter 5. Source-Level Directives for Preserving Property

5.3 Putting it to Work

In this section, we first describe our proposed representation for observations in dif-
ferent program representation levels from source code, through compiler IR, down
to binary code, then detail how we implemented some of the patterns, presented in
Section 5.2.3, in the LLVM compilation infrastructure.

5.3.1 Observation and Opacification in Source Code

Recalling our first implementation, described in Section 4.3.1, which represents prop-
erties as annotations inserted in the source program. The compiler then transforms
these annotations into observation point intrinsics (implementing the observations
of observed variables and memory locations), and automatically inserts artificial
definition intrinsics (implementing the opacifications of observed variables). Un-
like this automated approach, we want to provide the programmers with a means
to explicitly specify to the compiler the observations and opacifications of different
values, directly in the source code.

To this end, we introduce language extensions to clang to support value obser-
vations and opacifications. We define three builtins __builtin_opacify, __builtin_
observe_mem and __builtin_io corresponding, respectively, to the observe_opacify,
a slightly different version of observe_pair and observe_tailio patterns defined in
Section 5.2.3.

• __builtin_opacify is a variadic function implementing both value observation
and opacification. It returns the same scalar value as its first argument, but
made opaque to the compiler. This opaque value may then replace the original
one in subsequent code (note that the replacement is no longer automatically
performed during compile-time, but is specified by the programmers in the
source program instead). All other arguments are optional and represent ad-
ditional data dependence relations to implement opaque chains constraining
program transformations. The builtin function also observes (snapshots) all its
arguments: this provides a means to validate the opacification mechanism by
tracing observed values down to the generated machine code.

• __builtin_observe_mem implements a memory observation. Unlike observe_
pair pattern which observes a single memory location at a time, __builtin_
observe_mem observes (reads) the whole memory region pointed to by its pointer-
typed argument and returns a token to implement downstream opaque chains.
This choice is driven by the “Sensitive Memory Data Erasure”, described in
Section 3.3.1), as the latter requires the observation of the whole secret buffer
(cf. Section 5.4.1). Nonetheless, implementing observe_pair pattern would not
particularly be a problem and is left for future work.

• __builtin_io is a variadic function implementing an I/O effect: the arguments
serve to extend opaque chains linking upstream observations to the I/O effect.
The function returns a token to implement downstream opaque chains.

These language extensions enable the programmer to define additional constrai-
nts when transforming the program, in the form of data dependences or ordering re-
lations. As unit type is not natively defined in C, we currently use integer-typed vari-
ables that are only defined and used by our builtins to represent tokens produced by
__builtin_observe_mem or __builtin_io. This has mainly two outcomes to the gen-
erated code. As will be detailed in Section 5.3.2.2, builtins (or more precisely, the

5.3. Putting it to Work 95

instructions corresponding to the high-level builtins) will be removed during code
emission (recalling Section 4.3.4, where we also remove pseudo-instructions repre-
senting observation points and artificial definitions from the final machine code). If
the removal of builtins eliminates all uses of a token variable, the latter is eliminated
as well and does not incur any resource overhead. If the token variable remains live
due to escaping values (in function call or return, or in memory), this variable, will
incur low resource usage in the generated machine code, most likely a single stack
slot for the whole function and no register usage beyond a short, temporary one
during token definition on a Reduced Instruction Set Computer (RISC) Instruction Set
Architecture (ISA). A better solution would be to implement a fully expressive token
type in LLVM: the current one is limited—it cannot be used in φ nodes—and has a
different, provenance-tracking purpose.

5.3.2 Observation and Opacification in LLVM

Let us now describe the transformation of our language extensions to two different
compiler intermediate representations: the IR on which the optimizers operate and
then the MIR which represents the final code to be emitted by the compiler.

5.3.2.1 Observation and Opacification in LLVM IR

As presented in Section 3.1.2, the LLVM IR supports intrinsic functions with compiler-
specific semantics. Intrinsics require the compiler to follow additional rules while
transforming the program.

To implement our preservation mechanism, we introduce three intrinsics to the
LLVM IR:

• llvm.opacify has the same semantics as __builtin_opacify. More specifically,
it opaquely produces a new SSA value from its first argument, so that com-
piler optimizations cannot reason about the relation between these two val-
ues, while other optional arguments produced by some preceding instructions
ensure that the latter are scheduled before the intrinsic. All these argument
values are also captured into the observation metadata (more on this later).

Furthermore, the intrinsic is pure, does not access memory and has no I/O or
other side-effects: it is valid to optimize away llvm.opacify if the opaque value
is not used in subsequent code.

• llvm.observe.mem has the same semantics as __builtin_observe_mem. More spe-
cifically, it reads (an unspecified amount) from the memory that its pointer-
typed argument points to. It returns a token represented as an SSA value.

Unlike llvm.opacify, llvm.observe.mem’s attributes let it read argument-pointed
memory. Other than such read, it has no I/O or other side-effects: it is valid to
optimize away llvm.observe.mem if the output token is not used in subsequent
code. Being able to access argument-pointed memory is actually an optimiz-
ing feature: this avoids having to generate instructions explicitly loading from
these memory locations.

• llvm.io has the same semantics as __builtin_io. More specifically, it takes
a variable number of SSA values as arguments and is defined as an I/O side-
effecting instruction, so that it cannot be removed by optimizations, thus makes
its argument values always live. It returns a token represented as an SSA value.

96 Chapter 5. Source-Level Directives for Preserving Property

We modified clang to map __builtin_opacify, __builtin_observe_mem and __bu-
iltin_io to llvm.opacify, llvm.observe.mem and llvm.io respectively, when generat-
ing LLVM IR from C code.

Similarly to properties in our first implementation (cf. Section 4.3.4), observa-
tions are represented in LLVM IR as metadata. However, unlike property metadata,
observation metadata is actually attached to the llvm.opacify or llvm.observe.mem in-
trinsic, instead of being passed as an operand of the intrinsic. Having no metadata
operand allows the compiler to combine different observations of the same observed
value. This is consistent with the semantics of opaque expressions defined in Sec-
tion 5.2.1: the opaque values produced by these expressions are defined as statically
unknown yet functionally deterministic values.

We also modify a few utility functions commonly used by different optimization
passes such as replaceAllUsesWith() and combineMetadata() to update (e.g. when
combining two intrinsics) and maintain (e.g. when duplicating the intrinsic) the
metadata attached to the intrinsic throughout the optimization pipeline.

5.3.2.2 Observation and Opacification in LLVM MIR

To preserve values throughout code generation we also need to implement our mech-
anism in the MIR. We achieve this by lowering the intrinsics llvm.opacify, llvm
.observe.mem and llvm.io respectively into OPACIFY, OBSERVE_MEM and IO pseudo-
instructions, with the same semantics and behaviors w.r.t. memory accesses and side
effects. Recalling pseudo-instructions are MIR instructions that do not have machine
encoding information and must be expanded, at the latest, before code emission.
Nevertheless, our mechanism should not interfere with the emitted machine code;
the pseudo-instructions introduced are thus not expanded but completely removed
during code emission. Similarly to artificial definition pseudo-instructions from Sec-
tion 4.3.4, the OPACIFY pseudo-instructions uses the same register as its first operand
to hold the opaque value, as a simple way to guarantee the correct functional behav-
ior of the program when removing the pseudo-instructions,

The preservation of observation metadata is nonetheless more challenging: LLVM
does not currently support attaching metadata to MIR instructions, we thus have to
transform IR metadata into an operand of OPACIFY and OBSERVE_MEM pseudo-instructi-
ons. As discussed above, having metadata operands would prevent optimizations
from combining pseudo-instructions with the same observed values but different
observation metadata. As a result, this may require modifications to passes in the
code generator to maintain and update the metadata while not preventing them
from optimizing the program. Fortunately we did not have to do so since we did
not find any such missed optimizations on our benchmark suite and on the different
back-ends considered.

Note that, similarly to our I/O-barrier-based approach, the implementation of
our I/O-barrier-free approach is fully compatible with LTO technique (cf. Section
4.3.4.2.

5.3.3 Observation and Opacification in Machine Code

At the final stage of the code generator, observation metadata is also emitted into
the executable binary. In fact, this also allows to communicate information about the
observed values to binary code utilities carrying out the validation of observation
and opacification mechanisms (such as the debugger, binary code verifiers, etc.).

5.4. Preserving Security Protections 97

To represent this information in machine code, we extend the DWARF format,
which provides an easily extensible description of the executable program (cf. Sec-
tion 3.2). More specifically, we introduce to DWARF new tags and attributes to rep-
resent user-defined observations/opacifications. An observation from the source
program is represented by a DIE which contains:

• the observation point, which is an attribute whose value is the address of
the first executable instruction for the location identified by the builtin in the
source program;

• references to the DIEs representing the observed values. Each of these DIEs
contains the location attribute allowing binary code utilities to retrieve the val-
ues of these variables (cf. Section 3.2.2.1).

Similarly to the property DIE described in Section 4.3.2, observation/opacifica-
tion DIE is owned by the subprogram DIE representing the function containing the
observation point at which the observation/opacification occurs.

However, the biggest difference of this implementation compared to the more
conventional approach, described in Section 4.3, which relies completely on debug
information generated by the compiler itself is that we maintain and update the
information of observed values ourselves. We track the operands of the observa-
tion/opacification intrinsics and pseudo-instructions throughout the whole compi-
lation flow and modify the “code emission” phase of the compiler back-end so that
not only observation/opacification DIEs are built from the corresponding metadata,
but new dedicated DIEs, exclusively used to represent the observed values for a
given observation/opacification, are also built and emitted during “code emission”.
The location attributes of these dedicated DIEs are computed using the tracked
operands of the observation/opacification pseudo-instructions. In short, we only
use DWARF for its standard encoding of the data, since it is already supported by
most binary code utilities, and do not rely on the quality of debug information gen-
erated by the compiler.

5.4 Preserving Security Protections

It has been shown that there is a correctness-security gap in compilation, which
arises when compiler optimizations preserves the functional semantics but violates
a security guarantee made by source program. As a consequence, security engineers
have been fighting with optimizing compilers for years by devising and introducing
complex programming tricks to the source code, though yet found a reliable way
to obtain secure binary code. In this section, we demonstrate how our lightweight
observation/opacification preservation mechanisms can be used to preserve secu-
rity protections through an optimizing compilation down to the generated binary.
More specifically, we will illustrate our idea by considering use-cases covering the
following security protection-derived properties, necessary to the effectiveness of
the associated countermeasures:

• secret erasure property (i.e. proper erasure of sensitive data in memory, cf.
Section 3.3.1);

• instruction ordering property (i.e. proper instruction ordering in masked secret
key operations, cf. Section 3.3.2);

98 Chapter 5. Source-Level Directives for Preserving Property

• code interleaving property (i.e. proper fine-grained interleaving of functional
and protection code, cf. Section 3.3.3);

• redundancy preservation property (i.e. presence of redundant data and code
to detect fault injections, cf. Section 3.3.4).

• constant-time selection property (i.e. presence of arithmetic idioms guaran-
teeing selection operation contains no jump or memory access pattern con-
ditioned by the secret variable, cf. Section 3.3.5).

5.4.1 Sensitive Memory Data Erasure

We first start with the sensitive memory data erasure protection, described in Section
3.3.1, where a sensitive buffer on the stack must be zeroed with a call to memset()
to avoid leaking confidential information in a cryptographic application. The code
snippet shown in Listing 5.3a illustrates the scenario.

1

2

3

4

5 ...
6 void process_sensitive(void) {
7 uint8_t secret [32];
8 ...
9 memset(secret , 0, 32);

10

11 }

(a) Original attempt

1 #define OB_MEM(x)
2 __builtin_observe_mem(x)
3 #define IO(x)
4 __builtin_io(x)
5 ...
6 void process_sensitive(void) {
7 uint8_t secret [32];
8 ...
9 memset(secret , 0, 32);

10 IO(OB_MEM(secret));
11 }

(b) Using observation

Listing 5.3: Example of sensitive memory data erasure.

To preserve the erasure, we insert an observation (more specifically an opaque
artificial read) of values stored in the buffer, after the call to memset(). We then use
the value produced by the observation in an I/O effecting operation, as shown in
Listing 5.3b. Therefore, a short opaque chain of length two links the observation
__builtin_observe_mem to the final I/O builtin __builtin_io, guaranteeing that the
former does not get removed (i.e the observation is protected, according to Defini-
tion 5.1.19 (Protected Observation)).

5.4.1.1 Mask Swapping Computation Order

Let us now consider the scenario of mask swapping. Masking of secret value seeks
to ensure that all computations involving this value are statistically independent of
it, thus avoiding leaking confidential information in a cryptographic application. To
further maintain this statistical independence from the secret value, notably when
only a limited set of masks is available, mask swapping is introduced to the program
(cf. Section 3.3.2). The code snippet shown in Listing 5.4a illustrates the scenario.

The effectiveness of this mask swapping technique requires that the re-masking
operation has to take place before the removal of the previous mask. Let us now il-
lustrate how our mechanism can be used to force the compiler to respect this specific
computation order.

In order to preserve the correct order in the mask swapping operation, we pro-
pose a solution based on opacification, as shown in Listing 5.4b. To prevent com-
piler optimizations from reodering the ^ operations, we opacify the result of the

5.4. Preserving Security Protections 99

1

2

3 ...
4

5 round_key[i] = (k[i] ^ mpt[i]) ^ m;

(a) Original attempt

1 #define OPC(x)
2 __builtin_opacify(x)
3 ...
4 round_key[i] = OPC(
5 OPC(k[i] ^ mpt[i]) ^ m);

(b) Using opacification

Listing 5.4: Respecting computation order in mask swapping opera-
tion.

re-masking operation, making it unknown to the compiler. The opaque value is next
used in the removal of the old mask m (line 5). In order to form an opaque chain,
the outer OPC (line 4) is introduced, making the definition of round_key[i] the tail
opaque expression of the chain. There is no need for a terminal I/O builtin since
we already know that the computation of round_key[i] is transformation-preserved,
round_key[i] being the value of interest in downstream computation. Notice also
that the cardinality constraint on values in opaque chains is trivially satisfied by the
bijectivity of the ^ operator. The opaque chain enforces the ordering constraint that
the opacified value of k[i] ^ mpt[i] will be computed before the unmasking opera-
tion.

As stated in Section 3.3.2, we validate our approach on a masked implementa-
tion of AES named mask-aes. In the following, we will also consider a self-written
application called mask-swap, which contains a loop of mask swapping operations
with the same security protection-derived property as mask-aes, together with I/O
instructions; the goal is to evaluate the performance overhead of our lightweight
mechanism relying on pure intrinsics without I/O side effects (i.e. I/O-barrier-free
mechanism).

5.4.1.2 Step Counter Incrementation

We now consider the SCI countermeasure scheme that aims at detecting fault attacks
that induce unexpected jumps to any location in the program (i.e. not executing
at least two adjacent statements in of C source programs). The protection defines
a step counter at each control construct, and steps the counter of the immediately
enclosing control construct after every C statement of the original source. Counters
are regularly checked against their expected values, calling a fault handler when it
fails. An example of the SCI technique is illustrated in Listing 5.5a.

In order for the SCI countermeasure scheme to be effective, one needs to en-
sure the proper interleaving of original statements and counter incrementations and
checks—i.e. ensure the code interleaving property—which, unfortunately, will be
altered by compiler optimizations (cf. Section 3.3.3).

We make use of our opacification mechanism to preserve the SCI protection, as
shown in Listing 5.5b. In fact, preserving the SCI protection boils down to (1) pro-
tecting counter incrementations and checks and (2) guaranteeing the proper inter-
leaving of functional and countermeasure statements. The former can be achieved
by opacifying counters at each of their incrementations (lines 11 and 15), so that
counter values can no longer be deduced or constant-propagated and must be incre-
mented instead. Note that in order to preserve the first check (line 9), we also have
to opacify the initialization of c_then (line 6). Similarly, we opacify the initialization
of c_else (line 7), so that the compiler always has to evaluate c_else when checking
the boolean conditions involving the latter at the exit of the conditional statement
(lines 18 and 20). As for guaranteeing the proper interleaving of functional and

100 Chapter 5. Source-Level Directives for Preserving Property

1

2

3

4

5 ...
6 unsigned short c_then = 0;
7 unsigned short c_else = 0;
8 if (cond) {
9 if (c_then != 0)

10 killcard ();
11 c_then ++;
12 a = b + c;
13

14 if (c_then != 1)
15 killcard ();
16 c_then ++;
17 }
18 if (!((c_then == 2 &&
19 c_else == 0 && cond) ||
20 (c_then == 0 &&
21 c_else == 0 && !cond)))
22 killcard ();

(a) Original countermeasure scheme

1 #define OPC(x)
2 __builtin_opacify(x)
3 #define OPC_ORD(x, y)
4 __builtin_opacify(x, y)
5 ...
6 unsigned short c_then = OPC (0);
7 unsigned short c_else = OPC (0);
8 if (cond) {
9 if (c_then != 0)

10 killcard ();
11 c_then = OPC(c_then) + 1;
12 a = OPC_ORD(b, c_then) +
13 OPC_ORD(c, c_then);
14 if (OPC_ORD(c_then , a) != 1)
15 killcard ();
16 c_then = OPC(c_then) + 1;
17 }
18 if (!((c_then == 2 &&
19 c_else == 0 && cond) ||
20 (c_then == 0 &&
21 c_else == 0 && !cond)))
22 killcard ();

(b) Using opacification

Listing 5.5: Preserving code interleaving in SCI.

countermeasure statements, we create additional data dependences between values
defined by the functional code (e.g. a) and counter values (e.g. c_then). To achieve
this, we opacify non-constant operands used in definitions of functional values (e.g.
b (line 12) and c (line 13) in the definition of a) and the condition expression used
in the security check from the protection code (e.g. c_then from line 14) and express
these artificial data dependences as token parameters of these opacifications, using
a variant of __builtin_opacify named OPC_ORD. This creates an opaque chain link-
ing every counter incrementation to the next counter use (in the functional code or
in the security check), and then again to the next incrementation until the termi-
nating fault handler killcard()—which is a transformation-preserved event—while
interleaving original program statements in the chain through the bundling of both
counter and original variables in opacification builtins. Notice that the opaque chain
includes a control dependence when linking with the fault handler.

5.4.1.3 Control and Data Flow Redundancy

Next, we illustrate the preservation of the loop hardening scheme using our opaci-
fication mechanism. The loop protection consists in duplicating termination condi-
tions and the computations involved in the evaluation of such conditions (cf. Section
3.3.4), in order to ensure that the hardened loop always performs the expected num-
ber of iterations and takes the right exit, even in the presence of fault attacks. Con-
sider an implementation of the source-level loop protection on memcmp() function,
shown in Listing 5.6a.

Listing 5.6b illustrates our proposed solution to preserve the redundancy preser-
vation property during optimizing compilation. To prevent optimizations from re-
moving the redundant data and code, we opacify every assignment to the duplicated
variable by the use of OPC (lines 7 and 11): the compiler can no longer detect the iden-
tity relation between the original and its corresponding duplicated variable. Like in
the previous example, the resulting opaque chains interleave original computations
with checks, and link to a terminating fault handler through a control dependence.

5.4. Preserving Security Protections 101

1

2

3 ...
4 int memcmp(char *a1 , char *a2 ,
5 unsigned n) {
6 unsigned i, i_dup;
7 unsigned n_dup = n;
8 for (i = 0, i_dup = 0;
9 i < n;

10 ++i, ++i_dup) {
11

12 if (i_dup >= n)
13 fault_handler ();
14 if (a1[i] != a2[i]) {
15 if (a1[i_dup] == a2[i_dup])
16 fault_handler ();
17 if (n_dup != n)
18 fault_handler ();
19 return -1;
20 }
21 }
22 if (i_dup < n)
23 fault_handler ();
24 if (n_dup != n)
25 fault_handler ();
26 return 0;
27 }

(a) Original attempt

1 #define OPC(x)
2 __builtin_opacify(x)
3 ...
4 int memcmp(char *a1 , char *a2 ,
5 unsigned n) {
6 unsigned i, i_dup;
7 unsigned n_dup = OPC(n);
8 for (i = 0, i_dup = 0;
9 i < n;

10 ++i, ++i_dup) {
11 i_dup = OPC(i_dup);
12 if (i_dup >= n)
13 fault_handler ();
14 if (a1[i] != a2[i]) {
15 if (a1[i_dup] == a2[i_dup])
16 fault_handler ();
17 if (n_dup != n)
18 fault_handler ();
19 return -1;
20 }
21 }
22 if (i_dup < n)
23 fault_handler ();
24 if (n_dup != n)
25 fault_handler ();
26 return 0;
27 }

(b) Using opacification

Listing 5.6: Preserving redundancy in loop hardening.

5.4.1.4 Constant-Time Selection

Finally, we illustrate the preservation of the arithmetic idioms, widely-used in const-
ant-time programming, that guarantees that the selection operation does not contain
any jump or memory access pattern conditioned by the secret selection variable.
However, it has been reported that these arithmetic idioms are not preserved by
some LLVM back-ends, thus the code generated is not guaranteed to be constant-
time (cf. Section 3.3.5). We consider different attempts at implementing constant-
time selection from Listing 5.7a. The first two functions implement constant-time
selection between two values x and y based on a secret selection boolean value b,
while the third one illustrates a scenario where the programmer wishes to select a
value from the lookup table t while hiding the secret lookup index idx. All these
functions use a mask m to select the wanted value without conditional statement
conditioned by the secret value (i.e. b or idx).

We propose in Listing 5.7b a solution to preserve the constant-time selection
property relying on our opacification mechanism. The intuition is to hide from the
compiler the correlation between the bitmask m and the secret values b and idx. This
prevents the compiler from recognizing the selection idioms and turning it into con-
ditional jumps: it embeds bitwise logic into an opaque chain linking selection argu-
ments to the return value.

Moreover, we do not assume calls to these constant-time selection functions to
be part of opaque chains; instead we create an opaque chain inside each function
and make sure that it terminates by an opaque expression by opacifying the return
value. This is an example of conditional transformation-preservation of instructions
(cf. Definition 5.1.15 (Transformation-Preserved Instruction)): individual selection
operations may or may not execute depending on (non-sensitive) program input,
but as soon as one of these executes, the constant-time expressions it encloses will be

102 Chapter 5. Source-Level Directives for Preserving Property

1

2

3 /// a . Constant−t ime s e l e c t i o n
4 /// between two va l ue s , v1
5 uint32_t ct_sel_val1(uint32_t x,
6 uint32_t y,
7 bool b) {
8 signed m = 0 - b;
9 return (x & m) | (y & ~m);

10 }
11

12 /// b . Constant−t ime s e l e c t i o n
13 /// between two va l ue s , v2
14 uint32_t ct_sel_val2(uint32_t x,
15 uint32_t y,
16 bool b) {
17 signed m = 1 - b;
18 return (x * b) |
19 (y * m);
20 }
21

22 /// c . Constant−t ime s e l e c t i o n
23 /// from lookup t a b l e
24 uint64_t ct_sel_lu(uint64_t t[8],
25 size_t idx) {
26 uint64_t res = 0;
27 size_t i = 0;
28 for (; i < 8; ++i) {
29 bool c = (i == idx);
30 uint64_t m = (-(int64_t)c);
31 res |= t[i] & m;
32 }
33 return res;
34 }

(a) Original attempt

1 #define OPC(x)
2 __builtin_opacify(x)
3 /// a . Constant−t ime s e l e c t i o n
4 /// between two va l ue s , v1
5 uint32_t ct_sel_val1(uint32_t x,
6 uint32_t y,
7 bool b) {
8 signed m = OPC(0 - b);
9 return OPC((x & m) | (y & ~m));

10 }
11

12 /// b . Constant−t ime s e l e c t i o n
13 /// between two va l ue s , v2
14 uint32_t ct_sel_val2(uint32_t x,
15 uint32_t y,
16 bool b) {
17 signed m = OPC(1 - b);
18 return OPC((x * (1 - m)) |
19 (y * m));
20 }
21

22 /// c . Constant−t ime s e l e c t i o n
23 /// from lookup t a b l e
24 uint64_t ct_sel_lu(uint64_t t[8],
25 size_t idx) {
26 uint64_t res = 0;
27 size_t i = 0;
28 for (; i < 8; ++i) {
29 bool c = (i == idx);
30 uint64_t m = OPC(-(int64_t)c);
31 res |= OPC(t[i]) & m;
32 }
33 return OPC(res);
34 }

(b) Using opacification

Listing 5.7: Preserving constant-time selection.

transformation-preserved due to the opaque chain forcing the compiler to compute
the bitmask (as well as its complement for the first function) then using it for the
selection.

Furthermore, for the third function, not only we want to ensure that the compiler
does not transform the selection inside the loop into a branch conditioned by the se-
cret index, but additionally we want to preserve the constant-timeness of the whole
loop by making sure that the | operation takes place at every iteration. If the array
contains a zero value, the compiler can assume that the result of the & operation will
always be zero, regardless of the value of m, thus not performing the | operation to
update res. As a result, we also opacify each element of the array.

It is worth noting that, unlike the traditional approach trying to reliably gen-
erate conditional move instruction whenever available, we accurately generate the
expected constant-time code from the programmer’s data-flow encoding of control
flow. Although this may result in slower code, this can be directly applied to other
constant-time operations involving value preservation.

Notice that for function ct_sel_val2() from Listing 5.7b, we also replace the mul-
tiplication x * b with x * (1 - m). In fact, since b is of type bool, the compiler knows
that x * b can only yield 0 or x, thus generates a conditional jump by enumerating
all possible values of b. As m is opacified, the compiler does not know about the cor-
relation between m and b, it is thus guaranteed that 1 - m will be computed and used
in the multiplication with x.

5.5. Validation 103

However, this example exposes the limit of our mechanism: we cannot rely on
data opacification and dependences to prevent optimization passes from introduc-
ing control-flow to the program. To the best of our knowledge, there exists no real
solution to this problem (yet): it has always been valid for compilers to modify the
program’s control-flow as long as this does not alter the program’s behavior, and
this is something we usually have no control over.

5.5 Validation

In this section, we describe the process used to validate our I/O-barrier-free ap-
proach and its implementation. We first validate the functional correctness of our
approach and implementation, then describe our security validation methodology
and use it to establish the preservation of the protections on the applications pre-
sented in Section 5.4.

5.5.1 Functional Validation by Checking Value Integrity and Ordering

According to Definition 5.1.18 (Observation-Preserving Transformation), establish-
ing the preservation of an observation event amounts to proving the existence of an
observation event (condition (ii)), for which all observed values are available (condi-
tion (iii)), at the proper memory address or associated with the appropriate variable,
and following the specified partial order (condition (iv)). This consists in check-
ing, for a given program execution, (1) the presence of all observation events, and
(2) that for each of these events, the observed values of the specified variables and
memory locations are the expected ones, and (3) that event ordering is compatible
with the specified partial order. To this end, we leverage the concept of observa-
tion trace, which is the sequence of program observation states defined by all obser-
vation events encountered during a given execution of the program (cf. Definition
4.1.5 (Observation trace)). Similarly to the functional validation methodology used
to validate our I/O-barrier-based approach, described in Section 4.4.1, the functional
validation for our observation-preserving mechanism also involves comparing, for
a given input of the program, two observation traces:

1. Reference trace: we execute the reference program compiled with optimiza-
tions disabled. The reference program is the original program (without our in-
trinsics) with printf inserted to generate the expected observed values. Again,
we assume -O0 preserves the observation events as well as the observation
state of the ISO C abstract machine (ISO C11 Standard, 2011) containing the
observed values of each event.

2. Optimized trace: we execute the program with builtins inserted, compiled
with our compilation framework at different optimization levels. We modify a
DWARF parser library (Eli Bendersky, 2019) to create a list of breakpoints con-
taining all observation addresses in the binary code, as reported in the DWARF
section. For each of these observation addresses, we record the locations where
the observed values are stored. We finally retrieve these values during pro-
gram execution, using a debugger.

To compare the traces, we associate each observation state defined by an observa-
tion event (printf in the reference program or intrinsic in our version) with a unique
identifier—a combination of line and column numbers at which the event is defined

104 Chapter 5. Source-Level Directives for Preserving Property

in the program source. We then verify using an offline validator (a small Python
program) that (1) each observation state in the reference trace has a corresponding
counterpart (having the same identifier) in the optimized trace, and inversely (2)
each observation state in the optimized trace has a correspondence in the reference
trace. The validator also verifies that all values in a given observation state from
the optimized trace match the expected values reported in its reference counterpart.
As a result, we refer to this validation scheme as value integrity verification in the
remainder.

We apply the process described above to validate the functional correctness of
our implementation on a subset of the test suite of Frama-C (Cuoq et al., 2012). This
time, we restrict ourselves to properties verifying the expected values of variables
at a given program point. These properties thus also include functional properties
that we considered for the validation of our I/O-barrier-based approach (cf. Section
4.4.2.1) and can easily be expressed as observation events with our intrinsics.

Now, this leaves us with the question of validating observation ordering: unlike
our I/O-barrier-based approach—which implicitly enforces a total ordering of pro-
gram properties—we only enforce a partial ordering on observation events. More
specifically, there is no particular constraint for the relative order of observation
events having no dependence relation. Therefore, due to code motion or reschedul-
ing during compiler optimizations, the reference and optimized traces might not be
identical.

Furthermore, in the considered programs, there is no partial ordering constraint
to be verified. As a consequence, we propose a validation methodology involving
two different sets of programs. From the original program, for every function con-
taining observation event(s), we derive (i) a totally ordered version where a unique
temporary variable is used as a written-to and read-from token to chain all observa-
tion events (in other words, all events consume and write to the same token), and
(ii) an unordered version where a distinct token is produced from every observation
event and all these tokens are next consumed in a single, common I/O instruction at
the end of the function (the I/O side-effects being decoupled from the observations
themselves, it thus does not constrain the ordering of observation events that are
not in dependence relation). The former is used to validate whether our implemen-
tation respects the simplest form of ordering, while the latter allows to verify the
preservation of all observation events in presence of optimizations.

Moreover, since we model observation events as side-effect free, pure functions,
different observations of the same values may be combined into a single one. As
such, during program execution, a single point observing a given value might actu-
ally correspond to multiple observations of the same value. Although the transfor-
mation is perfectly valid, it leads to false positives reported by the validator when
comparing observation traces. To eliminate these erroneous validation results, we
update instruction combining support functions in LLVM to embed the metadata
representing individual observations to be combined into a single combined obser-
vation (referencing both variable names, line numbers, etc.). These embedded ob-
servations will eventually be expanded when creating observation breakpoints for
the debugger, which allows the corresponding observation states to be logged into
the observation trace.

We compile each of these test cases at 6 optimization levels -O0, -O1, -O2, -O3, -Os,
-Oz. This results in two sets of 31 applicable test cases featuring 616 observations—
one set for totally ordered events (i) and one for unordered events (ii). Again, notice
that these test cases are not meant to be evaluated as performance benchmarks, we
only use them to validate the correctness of our implementation.

5.5. Validation 105

We automatically verified that in both sets, all 616 properties have been correctly
propagated to machine code. In the first set (i) we checked that the observation trace
is identical to the reference trace. In the second set (ii) we checked that values are
all present and correct, even when observation events are transformed by compiler
optimizations, but could not verify any partial ordering constraint (as there is none
to be checked). All of this, at all considered optimization levels.

5.5.2 Security Protection Preservation Validation

Let us now survey the validation process of the preservation of different security
protections described in Section 5.4. In fact, validating the preservation of security
protections is more challenging. While verifying value integrity is enough to prove
the preservation of observation events, it is only a necessary condition for preserv-
ing security protections. Hence, other than applying value integrity verification to
the security applications, we also define additional mechanisms to validate specific
components of the preserved protections.

Checking Value Utilization: In our security examples, opacification is used to (1)
protect key values of the security countermeasure which are subject to program
optimizations—such as duplicated variables from the loop hardening scheme or step
counters from SCI protection—from being optimized away, and (2) make sure that
the protected values are actually used in the subsequent code of the countermea-
sure (different security checks for instance). Clearly, value integrity verification only
guarantees the former, we need a second verification to assess the latter. To this end,
we perform a manual assembly code review in two phases. On the one hand, for
each opacified value, we determine its uses in the binary program, then verify that
these uses are indeed part of the original countermeasure in the source program. On
the other hand, we identify in the binary program the critical parts of each of the
security protections, such as the removal of the old mask from the masking oper-
ation, or various redundant checks. We then determine the operands of these key
computations and verify that they indeed are results of opacifications.

This verification is undoubtedly protection-dedicated, as important uses of the
opacified values really depend on the considered countermeasure scheme, and thus
requires manual inspection of the generated code. Nonetheless, such verification
of value utilization could be implemented as an automated two-phase data-flow
analysis (with both backward and forward analysis) at the program’s late MIR or
machine code, as long as the analysis tool knows about uses of the opacified values
crucial to the considered countermeasure.

Checking Statement Ordering: For SCI, other than preserving the step counter
incrementations and the security checks, we also need to guarantee the proper in-
terleaving of functional and countermeasure statements. This requires opacifying
operands of every statement of the protected program with an artificial dependence
of the result from previous statement, thus creating an opaque chain. We manually
inspect the generated code to verify that, given two consecutive C statements S1 and
S2, all MIR/assembly instructions between the opacification of the first evaluated
operand of S1 and the opacification of the first evaluated operand of S2 correspond
to S1 (cf. Section 5.4.1.2).

Notice that there would be an option to automate this verification of the proper
interleaving of functional and countermeasure statements, if one trusts the debug
information to be sound and accurate. We could verify the line numbers, mapping

106 Chapter 5. Source-Level Directives for Preserving Property

MIR/assembly instructions to the corresponding source statements and vice versa.
If (1) all MIR/assembly instructions between the opacification of the first evaluated
operand of a statement S1 and the opacification of the first evaluated operand of the
next statement S2 have the same line number, and (2) during the scan over every
MIR/assembly instructions of the program, the line number reported for each in-
struction (from the same basic block) is in an ascending order, it can be concluded
that functional and countermeasure statements are correctly interlaced. Unfortu-
nately debug information is not robust enough in general and we preferred to rely
on manual inspection for higher confidence.

Checking Constant-Time Selection: As explained in Section 5.4.1.2, a widely-ado-
pted, yet informal definition of constant-time selection is that there is no conditional
branch based on a secret selection boolean value. To validate the preservation of
constant-timeness using our opacification approach, we manually verify that none
of the following three values is used to compute branch conditions: a secret selec-
tion boolean value, a bitmask created from it, or its opacified value. Notice that a
conservative verification scheme could be implemented as a static data-flow anal-
ysis on the generated machine code, even though the automated determination of
whether the branch conditions depend on the secret selection boolean value might
be challenging, notably when the data flow involves memory accesses.

Validation Results: Table 5.1 summarizes the different validation schemes that we
apply for each application presented in Section 5.4, in order to verify the preserva-
tion of different security countermeasures.

erasure-* mask-* loop-pin sci-* ct-*
Value Integrity 7 3 7 3 7 3 7 3 7 3

Value Utilization N/A 7 3 7 3 7 3 7 3

Statement Ordering N/A N/A N/A 7 3 N/A
Constant-time Selection N/A N/A N/A N/A 7 3

TABLE 5.1: Validation of different security applications. 7 indicates
the scheme is applied to the program, N/A indicates the scheme is not
relevant to the program. 3 indicates the scheme is validated for the

program.

For each application we verified that the appropriate schemes yield the expected
results, validating our approach and implementation.

It is worth noting that we cannot directly leverage binary security analysis to
validate the preservation of security protections throughout the optimizing compi-
lation flow. In fact, the goal of security analysis is to evaluate the effectiveness of a
given security protection against some threat models, while our preservation mech-
anism only seeks to guarantee that the generated binary implements the same secu-
rity protection introduced in the source program and does not pretend to transform
an ineffective security protection from the source program into a more secure one in
the binary. In fact, properly assessing the effectiveness of security protections, such
as comparing the program’s robustness against fault injections between an unopti-
mized version (compiled at -O0) and an optimized with protection-preserved ver-
sion (compiled with our compiler at any optimization level) would be interesting
and is actually left for future work. As a result, in order to validate the correctness
of our I/O-barrier-free approach and its implementation in LLVM, we deliberately

5.6. Experimental Evaluation 107

devise the different validation schemes described in this section and verify the pres-
ence of the security protections in the generated binary programs.

5.6 Experimental Evaluation

Let us now evaluate our I/O-barrier-free mechanisms on the security applications
presented in Section 5.4, where we analyze the impact of our mechanisms on the
program’s performance and compilation time.

5.6.1 Experimental Setup

For each considered security applications, we first compare our opacified versions
against the unoptimized programs—which is also a solution to preserving security
protections—to quantify performance benefits.

We then compare our opacified versions against other available preservation
mechanisms, namely compiler-dependent programming tricks—that are currently
implemented in popular cryptographic libraries such as OpenSSL or mbedTLS—for
constant-time selection (Simon, Chisnall, and Anderson, 2018), and our I/O-barrier-
based approach for all other applications (cf. Chapter 4).

Eventually, we also compare our implementation of the I/O-barrier-free mech-
anism described in Section 5.3 with an alternative one that does not involve mod-
ifications to clang and LLVM but relying on inline assembly instead. This will be
described in details in Section 5.6.4. In the following, we will refer to the former as
compiler-native implementation, and the latter as inline-assembly-based implementation.

Finally, we present the compilation time overhead of our implementation.
For all benchmarks, we target two different instruction sets: ARMv7-M/Thumb-

2 which is representative of deeply embedded devices, and Intel x86-64 representa-
tive of high-end processors with a complex micro-architecture. In addition, since
it has been reported that the compilation of source-level constant-time selection
code on the IA-32 architecture contained secret-dependent conditional jumps (Si-
mon, Chisnall, and Anderson, 2018), we also consider IA-32 for the constant-time
applications ct-rsa and ct-montgomery.

Performance evaluation for the ARMv7-M/Thumb-2 ISA takes place on an MPS-
2+ board with a 32-bit Cortex-M3 clocked at 25 MHz with 8 Mb of SRAM, while
our Intel test bench has a quad-core 2.5 Ghz Intel Core i5-7200U CPU with 16 GB
of RAM. Note that for the ARMv7-M/Thumb-2 ISA, we also measure the program
performance in terms of number of instructions executed, using ARM Fast Models
(cf. Section 4.2), and obtain basically the same result (i.e. same performance ratio) as
comparing program execution time. This thus confirms the relevance of measuring
performance in terms of number of instructions executed from Section 4.2, given the
Cortex-M3’s very simple pipeline.

We use the Intel platform for compiling for either target. Changing the target
only concerns the back-end, a short part of the compilation pipeline, as a result, we
only report the compilation time evaluation results for the ARMv7-M/Thumb-2 ISA.

Our experiments cover all common optimization levels (-O1, -O2, -O3, -Os, -Oz).
Performance measurements are based on the average of 10 runs of each benchmark
and configuration.

108 Chapter 5. Source-Level Directives for Preserving Property

era
sur

e-r
sa-

enc

era
sur

e-r
sa-

dec

mas
k-a

es

mas
k-s

wap

loo
p-p

in
sci

-pi
n

sci
-ae

s
ct-

rsa

ct-
mon

tgo
mer

y0

2

4

6

8

10

12

ARMv7-M x86-64 IA-32

FIGURE 5.3: Speed-up of our approach over unoptimized original
programs—ordered by compiler option -O1, -O2, -O3, -Os, -Oz. The

horizontal red line represents a performance ratio of 1.

5.6.2 Comparing to Unoptimized Programs

Figure 5.3 presents the speed-up of our approach at different optimization levels
over unoptimized programs. For all benchmarks, speedup ranges from 1.2 to 12.6,
with an harmonic mean of 2.8. Clearly, our observation- and opacity-based approach
to preserving security protections enables aggressive optimizations with significant
benefits over -O0.

5.6.3 Comparing to Reference Preservation Mechanisms

era
sur

e-r
sa-

enc

era
sur

e-r
sa-

dec

mas
k-a

es

mas
k-s

wap

loo
p-p

in
sci

-pi
n

sci
-ae

s
ct-

rsa

ct-
mon

tgo
mer

y0

0.5

1

1.5

2

2.5

3

3.5
ARMv7-M x86-64 IA-32

FIGURE 5.4: Speed-up of our approach over reference preserva-
tion approaches—I/O-barrier-based property-preserving mechanism
(Chapter 4) for applications on the left side of the dotted line and pro-
gramming tricks (Simon, Chisnall, and Anderson, 2018) for the ones
on its right side—ordered by compiler option -O1, -O2, -O3, -Os, -Oz.

The horizontal red line represents a performance ratio of 1.

Figure 5.4 presents the speedup our approach compared to reference preser-
vation approaches, at different optimization levels. For erasure-rsa-enc, erasure-
rsa-dec, mask-aes, mask-swap, loop-pin, sci-pin and sci-aes, we compare our ap-
proach against our I/O-barrier-based property preservation mechanism described

5.6. Experimental Evaluation 109

in Chapter 4. Recalling we also introduced new intrinsics to implement their prop-
erty preservation mechanism, however, we relied heavily on the I/O side effects of
the intrinsics: not only we introduced I/O side-effecting intrinsics to model observa-
tion points so that these cannot be removed by optimizations, we also inserted I/O
side-effecting artificial definitions for every property-observed value to protect these
from being optimized out. Moreover, to ensure the correct values in memory at ob-
servation points, the former intrinsics also behave like memory fences, i.e. can read
from and write to memory. Furthermore, in order to guarantee the correct debug
information for these values, we inserted even more artificial definitions to prevent
multiple live ranges corresponding to the same source variable from overlapping.

As a consequence, our I/O-barrier-free approach with pure intrinsics (no side-
effects), accessing memory only when required, should enable more optimizations
and thus result in faster code. Our results clearly confirm this. For example, al-
though mask-swap contains the masking computation, the data used in the operation
is passed as function arguments instead of being declared as global variables in ref-
erence implementations; this clearly allows more optimizations when the function
is inlined (i.e. when compiled at -O2, -O3 or -Os), and especially when the function
call is inside a loop. More generally, optimizations such as “loop unrolling” and
“loop invariant code motion” are the main sources of benefits at these optimization
levels. On the contrary, for mask-aes, the data required for the masking computation
is stored in memory as global variables, there is almost no difference between two
versions: the masking operation contains loads and stores to the secret key as well
as the different masks in the order defined in the source program, as the protection
is correctly preserved.

As for erasure-rsa-enc and erasure-rsa-dec, the function implementing the pro-
tection only contains the erasure of the sensitive buffer, we thus observe almost no
difference compared to our I/O-barrier-based approach.

As for other applications (loop-pin, sci-pin and sci-aes), for both targets, we
note a clear improvement, ranging from 1.04 to 1.79, with an harmonic mean of 1.3.
Overall, I/O side-effecting intrinsics restrict compiler optimizations, thus inevitably
degrade the performance of generated code.

For ct-rsa, we compare our approach against the constant-time selection imple-
mentation of mbedTLS (Bakker, 2019), which is basically the same as the version
from Listing 3.9a.a, but with the computation of the bitmask (line 3) splitted into a
separate function. Furthermore, this function must not be inlined in order to pre-
vent the compiler from optimizing it away. As for ct-montgomery, we compare our
approach against the specially-crafted implementation of OpenSSL (The OpenSSL
Project, 2003). It is worth noting that general-purpose compilers offer no guaran-
tees of preserving constant-timeness: future versions of the same compiler may spot
the trick and optimize the constant-timeness away (Simon, Chisnall, and Anderson,
2018). Although our approach allows the functions implementing constant-time se-
lection to be inlined while still preserving constant-timeness, these only take a small
fraction of the execution time; we do not notice a clear difference compared to other
constant-time implementations.

5.6.4 Comparing to Alternative Implementations

Given our I/O-barrier-free observation-preserving mechanism, let us now survey
the alternative inline-assembly-based implementation to our compiler-native imple-
mentation described in Section 5.3.

110 Chapter 5. Source-Level Directives for Preserving Property

Compilers provide an inline assembly syntax to embed target-specific assembly
code in a function. The feature is regularly used by C programmers for low-level
optimizations and operating system primitives, and also for sensitive applications
to avoid interference from the compiler (Rigger et al., 2018). gcc-compatible com-
pilers implement an extension of the optional ISO C standard syntax for inline as-
sembly, allowing programmers to specify inputs or outputs for inline assembly as
well as its behavior with respect to memory accesses and I/O effects (Stallman and
Community, 2009). Compilers only care about this specification when performing
code transformation on the inline assembly and are completely agnostic to what
happens inside the inline assembly region. In other words, the assembly code region
is opaque to the compiler. We may thus leverage this feature to implement opaque
expressions. For example, to preserve the correct masking order in Listing 5.4b, the
call to __builtin_opacify at line 4 may be replaced by an inline assembly expression,
as shown in Listing 5.8.

1 k ^= m;
2 ...
3 uint8_t tmp = k ^ mpt;
4 __asm__ ("" : "+r" (tmp));
5 k = tmp ^ m;

LISTING 5.8: Secure masking using opacification based on inline
assembly.

The inline assembly region (line 4) is actually empty: the behavior exposed to
the compiler of the whole expression is specified by the "+r" (tmp) constraint. This
essentially means that tmp is both the input and output of the expression, and that the
expression neither accesses memory nor does it have any side-effect. As an output
of the inline assembly expression, tmp is now opaque to the compiler, just as if it was
defined by the __builtin_opacify.

This example can be generalized to implement any opaque region. In practice,
it is sufficient to implement a small set of builtins covering the typical opacification
scenarios. A set of preprocessor macros can be designed to cover these typical sce-
narios and thus can be provided as a portable interface across most compilers and
targets.

Note that this approach slightly complicates the implementation of observations,
carrying precise variable names, memory addresses, line numbers down to machine
code. Additional conventions and post-pass on the generated assembly code are
required to produce the appropriate DWARF representation, as described in Section
5.3.3.

Now, the natural question is to compare the performance of an inline-assembly-
based implementation with our compiler-native opaque regions. To this end, we
consider a subset of the applications presented in Section 3.3, containing erasure-
rsa-enc, erasure-rsa-dec, mask-aes, mask-swap, loop-pin, ct-rsa and ct-montgomery.
We exclude sci-pin and sci-aes, as these applications would require the manual
insertion of inline assembly expressions at every statement of C source programs,
which is impractical. Figure 5.5 presents the speedup of our compiler-native im-
plementation w.r.t. inline-assembly-based implementation, at different optimization
levels.

In the majority of cases, the two considered implementations generate the same
executable code. For ct-rsa and ct-montgomery, there is a slight difference in per-
formance due to discrepancies in register allocation. This is not visible in other

5.6. Experimental Evaluation 111

era
sur

e-r
sa-

enc

era
sur

e-r
sa-

dec

mas
k-a

es

mas
k-s

wap

loo
p-p

in
ct-

rsa

ct-
mon

tgo
mer

y0

0.2

0.4

0.6

0.8

1

1.2

1.4

ARMv7-M x86-64 IA-32

FIGURE 5.5: Speed-up of our compiler-native implementation over
inline-assembly-based implementation—ordered by compiler option
-O1, -O2, -O3, -Os, -Oz. The horizontal red line represents a perfor-

mance ratio of 1.

applications because these two programs are larger and demonstrate higher regis-
ter pressure. The only significant performance difference is for mask-swap compiled
with -O2 and -O3 for x86-64: our compiler-native implementation is 40% faster than
inline assembly. The core loop of the inline-assembly-based version happens not to
be unrolled, while compiler-native version’s is. Interestingly, this is only the case for
x86-64: the same loop is unrolled for both versions when compiling for ARMv7-M.
Indeed, the difference disappears when we force loop unrolling using the -funroll-
loops option together with #pragma unroll. As expected, inline assembly occasion-
ally interferes with compiler optimizations, despite the precise specification enabled
in its syntax, while compiler intrinsics allow for carrying more precise semantics to
the optimizers. Mitigations exist, and make the inline assembly approach interesting
to some multi-compiler development environments. The take away from this is that
both approaches are sound and leverage the same formalization and secure devel-
opment scenarios (for opacification purposes, not for observation purposes). Yet this
may not always be the case in the future: compilers are not forbidden to analyze in-
line assembly and take optimization decisions violating the opacity hypothesis; the
fact they do not do it today is no guarantee that secure code will remain secure in
future versions. On the contrary, our intrinsics in the source language and IR have a
explicit and future-proof opacification and observation semantics.

5.6.5 Compilation Time Overhead

Figure 5.6 shows the compilation time overhead compared to compiling the original
programs at the same optimization level. Note that the optimized original programs
are insecure, as protections have been stripped out or altered by optimizations. We
consider the Intel platform since it is used for both native and cross-compilation for
both targets.

In general, the compilation time overhead is insignificant (under 7%). Note that
in certain cases, the compilation time is even smaller, although marginally, when
compared to compiling the original programs at the same optimization level. This
is due to the imprecision in our time measurements on Intel platform. As for sci-
aes and sci-pin, the overhead ranges from 13% up to 70%. As discussed in Section

112 Chapter 5. Source-Level Directives for Preserving Property

era
sur

e-r
sa-

enc

era
sur

e-r
sa-

dec

mas
k-a

es

mas
k-s

wap

loo
p-p

in
sci

-pi
n

sci
-ae

s
ct-

rsa

ct-
mon

tgo
mer

y0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

-O1 -O2 -O3 -Os -Oz

FIGURE 5.6: Compilation time overhead on the Intel platform, com-
pared to compiling the original programs at the same optimization

level. The horizontal red line represents a performance ratio of 1.

4.4.4.2, the SCI protection represents a very important part of the whole applica-
tion (as counter incrementations are inserted after each C instruction), and it is com-
pletely stripped out from original programs when optimizations are enabled with-
out opacification. As a consequence, the code size of the insecure baseline is much
smaller than the secure code with fully-preserved countermeasures, which justifies
the important compilation time difference.

5.7 Discussion

In this chapter, we formally defined the notion of observation and its preservation
through program transformations. We instantiated this definition and preservation
mechanisms through multiple program representations, from C source code down
to machine code. The approach relies on two fundamental principles of compiler
correctness: (1) the preservation of I/O effects and (2) the interaction of data depen-
dences with program constructs that are opaque to static analyses. We also formally
proved the correctness of the approach on a simplified intermediate language, and
implemented it within the latest LLVM compilation infrastructure, with only mini-
mal change to existing compilation passes (more precisely, to some common utility
functions used by these passes).

We apply our approach to specifically address a fundamental open issue in secu-
rity engineering, namely the preservation of source-level security protections throug-
hout the optimizing compilation flow. We validated our approach and its implemen-
tation on a set of use-cases involving different security protections, notably against
side-channel and fault injection attacks. Nonetheless, perhaps the biggest shortcom-
ing of our work described in this chapter is the lack of automation in the security
validation process, which relies heavily on manual inspection of binary code. Un-
fortunately, as discussed in Section 5.5.2, the security validation process is really
sensitive to the considered protection schemes; it is thus complicated to design a
generic and automated validation process for all protections. This is actually an im-
portant problem that should be further studied, and will be discussed in the next
chapter. Another problem that we need to deal with is the relatively modest number
of examined security protections. This does not mean that our approach is unable

5.7. Discussion 113

to preserve other protections, but rather because collecting security protections suf-
fered from compiler optimizations is tedious and time-consuming, and we did not
have enough manpower to work on this issue.

Despite our emphasis on security in the considered examples and experimental
evaluation, the problem we consider as well as our proposed solution may have gen-
eral applications in software engineering. We will discuss these avenues for further
research in the next chapter.

115

Chapter 6

Conclusion

6.1 Conclusion

Target programs produced by an optimizing compilation process may present vul-
nerabilities, even when the source program was assumed or proven secure with
regards to a given security property. Therefore, either the security properties need
to be preserved along the compilation flow, or they need to be verified in compiled
programs—which requires the compiler to convey additional information (e.g. func-
tional properties describing the program’s expected behaviors) to these security ver-
ifications and analyses—or both. Typically, security properties are enforced by intro-
ducing countermeasure schemes at the source-level to protect the programs against
specific threat models. Interestingly, these protections can be preserved if compilers
manage to maintain the protection-derived properties associated with such protec-
tions.

As a result, modern compilers nowadays should not only perform mere transla-
tion from a source language to a target language, but also have to be responsible for
carrying security-related properties (i.e. functional properties to carry out security
analyses at binary level or protection-derived properties required for security pro-
tection preservation) to the target program, and this is becoming even more critical
over time.

Unfortunately, compiler optimizations—which focus solely on achieving better
program performance, typically by reorganizing computation and removing “un-
necessary” code—are not suitable by design for preserving the security-related prop-
erties. The difficulty primarily lies in the fact that this information usually cannot
be explicitly specified in the high-level source language, thus compilers have no no-
tion of the link between the extra properties and the code they refer to; they have no
means to constrain transformations to preserve this link or to update the properties
to adjust to any code transformation.

At root, this thesis is devoted to tackling this challenge by first investigating the
interaction between code optimization and security-related property preservation,
then by proposing compilation mechanisms to maintain and propagate security-
related properties down to machine code. Furthermore, one of our goals consists in
integrating our mechanisms into a widely-used production compiler, to contribute
to the security and compilation communities.

To this end, we first define the notion of functional property and its preservation
in compilation, and propose an I/O-barrier-based approach to preserve these prop-
erties across all program representations through the optimizing compilation of C to
machine code. This approach relies on the insertion, into the intermediate programs
throughout the compilation process, of opaque and I/O side-effecting instructions
that the compiler cannot analyze, and thus they cannot be removed by optimiza-
tions. These instructions are removed during code emission and not emitted to the

116 Chapter 6. Conclusion

final executable binary, thus minimizing the interference with the original program.
We further leverage this functional property preservation mechanism to preserve
security protection-derived properties—which, in general, can be equivalently en-
coded as observational properties, a special type of functional properties—thus pre-
serving the associated security protections throughout optimizing compilation flow.

Although we tried to minimize the negative impact of property preservation on
compiler optimizations, our I/O-barrier-based approach unintentionally, by design,
induces a total ordering, during program transformations, of these instructions, rel-
ative to each other and relative to other I/O side-effecting instructions of the origi-
nal program. However, this ordering constraint is not required by the preservation
itself, and is not even always desirable, as it might hamper the generated code’s
performance. As a result, we naturally seek to answer the question of whether it is
possible to lift the ordering constraint with a more fine-grained approach.

For that purpose, we first start with the remark that the problem of preserv-
ing functional properties (and thus observational properties) can be reduced to the
preservation of the observations of specific program values at program points cor-
responding to where the properties occur in the source program. We then formally
define the notion of observation and its preservation through program transforma-
tions and illustrate these notions on Mini IR, a simplified intermediate program rep-
resentation. Next, we propose an I/O-barrier-free mechanism to preserve observa-
tions down to machine code, which solely leverages the most essential information
modeled by nearly every compiler transformation: I/O side-effects and data depen-
dences. We control this information according to the specified observations through
the ability to hide information about an atom of operational semantics—we call this
technique opacification. Moreover, we formally prove the correctness of our mecha-
nism on Mini IR.

We implement both approaches in the LLVM framework, showing that preserv-
ing properties and observations does not necessarily require significant modifica-
tions to compilers. Furthermore, we extend the DWARF debug information stan-
dard to encode the preserved properties or observations in the executable binary, so
that binary analysis tools or validators can retrieve these and carry out their verifi-
cations and analyses.

We validate our approaches and implementations on a range of security use-
cases, featuring various source-level protection schemes, expressing the protection-
derived properties in terms of observations to be made at specific points of the com-
putation. The result shows that our approaches provide a reliable means to preserve
security-related properties throughout the compilation process, while still leaving
freedom to the compiler to perform aggressive optimizations. As such, our pro-
posals address the fundamental open issue in security engineering of preserving
source-level security countermeasures through optimizing compilation flow.

6.2 Perspectives

The primary focus of this thesis is to demonstrate the effectiveness of our property
preservation mechanisms for preserving source-level security protections. However,
property preservation can be used for far more than just security-related applications
and we have not exhausted the scope of our mechanisms even within this area. In
this section, we want to describe avenues for further research in the continuation of
the work presented in this thesis.

6.2. Perspectives 117

For security-related applications of our work, the most legitimate area of im-
provement consists in designing automated security validation process in order to
approve, with ease and high confidence, the preservation of security protections by
our compilation framework. We provided some suggestions on this topic in Section
5.5.2, by hinting at devising data-flow analysis, at late-MIR or binary level, to verify
that opacified values are actually used in subsequent code, or there is no conditional
branch based on a secret selection boolean value for example. Notice that in order
to carry out such analysis, the compiler (if the analysis is implemented at late-MIR
level) or the binary analysis tool (if the analysis is implemented at binary level) re-
quires additional information such as the opacified values, the important uses of
such values, or the secret selection boolean value. Interestingly, this extra informa-
tion can easily be determined and expressed at the source level (as programmers are
most comfortable working with denotations defined in source programs), and our
property-preserving compilation framework—which is designed to maintain and
propagate extra information—can be leveraged to convey the extra information to
the appropriate tool.

Another intriguing research direction in security-related applications of our work
consists in formalizing the idea of preserving source-level security protections by
identifying the associated protection-derived properties and encoding the latter as
observations, which in turn are guaranteed to be preserved by our proposed (i.e.
I/O-barrier-based and I/O-barrier-free) mechanisms. More specifically, it would be
interesting to answer the question of whether every security protection can be pre-
served using this approach and if not, what would be the criteria for a protection to
have an associated protection-derived property that can be encoded as observation.
This will allow for a classification of security protections and more importantly, pro-
vide a systematic approach to encode and translate security protections into equiva-
lent ones preservable using our proposed preservation mechanisms, whenever pos-
sible. As a consequence, this naturally eases the process of collecting more use-cases
where security protections can be preserved by our mechanisms.

Other than preserving source-level protections, our mechanisms can easily be
leveraged to protect security countermeasures introduced at compile-time, such as
the data integrity protection (cf. Section 2.2.4.1) or the original loop protection (cf.
Section 2.2.4.3), from being altered by downstream transformations in the compi-
lation pipeline. Furthermore, our mechanisms also enable the implementation of
novel countermeasure schemes. For instance, to completely mitigate the problem of
secret erasure caused by “dead store elimination”, not only the secret buffer has to
be erased before the return of the sensitive function, all potential copies of the secret
data also have to be cleared. Recent work has proposed to systematically erasing
the whole stack frame and registers used in the sensitive function (Simon, Chisnall,
and Anderson, 2018). However, as pointed out in Section 2.2.3.3, this may not be
the most efficient approach and can be improved by implementing a post-register-
allocation transformation that selectively erases stack slots and registers containing
a copy of the secret data at the end of the function. To this end, extra information
about the secret data is required, and this is exactly where our property preservation
mechanisms step in to provide the transformation with this information.

Concerning non-security-related applications of our work, an interesting trajec-
tory is to improve debugging and unit testing. In fact, source-level properties can be
a powerful debugging tool, helping enforce or detect violations through the develop-
ment and deployment process. This is similar to inserting (runtime) assertions, ex-
cept that the code does not have to carry these runtime checks when running in pro-
duction. Instead, the ability to propagate source-level properties down to machine

118 Chapter 6. Conclusion

code, allows a debugger to trace program execution and evaluate the properties in
a testing environment. This brings the promise of using the same executable code
in both testing and production environments. Unlike assertions, it is expected that
machine code annotations do not consume execution time. On the contrary, their
preservation through the compilation flow is not easy (as we have seen earlier in
secure applications) and may also force the compiler to occasionally restrain its full
optimization potential. We are not aware of any software engineering approach be-
ing currently pursued together with an aggressively optimizing compiler, precisely
because optimizations are prone to destroying the link between the high-level prop-
erties and the machine code where they are meant to be tested. And indeed, while
these are common issues related to the propagation of debug information through
optimization passes, the usual tradeoff in such a case is to preserve debug infor-
mation only as a best-effort strategy, which is insufficient for our debug-only-assert
scenario. Our observation and opacification techniques allow to handle exactly this
issue and thus can be leveraged to improve the debugging and testing process.

119

Personal References

The work described in this thesis has been subjected to the following publications
and presentations:

Preliminary Work

• Son Tuan Vu, Karine Heydemann, Arnaud de Grandmaison, Albert Cohen.
“Compilation et optimisation de code en présence d’annotations de sécurité”,
13ème Journée de Compilation, Jan. 2019, Dammarie Les Lys, France.

• Son Tuan Vu, Karine Heydemann, Arnaud de Grandmaison, Albert Cohen.
“Compilation and Optimization with Security Annotations”, European LLVM
Developers Meeting, Apr. 2019, Bruxelles, Belgium.

Chapter 4

• Son Tuan Vu, Karine Heydemann, Arnaud de Grandmaison, Albert Cohen.
"Secure delivery of program properties through optimizing compilation". CC
’20: 29th International Conference on Compiler Construction, Feb. 2020, San Diego,
CA, United States. pp.14-26, doi: 10.1145/3377555.3377897.

• Son Tuan Vu, Karine Heydemann, Arnaud de Grandmaison, Albert Cohen.
“Secure Delivery of Program Properties with LLVM ”, European LLVM Devel-
opers Meeting, Apr. 2020 (cancelled), Paris, France.

• Son Tuan Vu, Karine Heydemann, Arnaud de Grandmaison, Albert Cohen.
“Propagation et préservation de propriétés dans un flot de compilation opti-
misant et applications à la préservation de protections contre les attaques en
faute”, Journée thématique sur les Attaques par Injection de Fautes, Sept. 2020,
Paris, France.

Chapter 5

• Albert Cohen, Son Tuan Vu, Karine Heydemann, Arnaud de Grandmaison,
Christophe Guillon. “Secure Optimization Through Opaque Observations”,
Workshop on Principles of Secure Compilation, Jan. 2021, Online.

• Son Tuan Vu, Albert Cohen, Karine Heydemann, Arnaud de Grandmaison,
Christophe Guillon. “Secure Optimization Through Opaque Observations”,
Jan. 2021. arXiv:2101.06039 [cs.CR]

• Son Tuan Vu, Albert Cohen, Karine Heydemann, Arnaud de Grandmaison,
Christophe Guillon. “Secure Optimization Through Opaque Observations”,
Journée Groupe de Travail Méthodes Formelles pour la Sécurité, Mar. 2021, Online.

120 Chapter 6. Conclusion

Furthermore, the work in Chapter 5 is also being submitted for a journal article,
under the title “Reconciling Observation With Optimization in Secure Compilation”.

121

Bibliography

[AB08] Amal Ahmed and Matthias Blume. “Typed Closure Conversion Pre-
serves Observational Equivalence”. In: Proceedings of the 13th ACM SIG-
PLAN International Conference on Functional Programming. ICFP ’08. Vic-
toria, BC, Canada: Association for Computing Machinery, 2008, 157–168.
ISBN: 9781595939197. DOI: 10.1145/1411204.1411227. URL: https://
doi.org/10.1145/1411204.1411227.

[Aba+19] Carmine Abate, Roberto Blanco, Deepak Garg, Catalin Hritcu, Marco
Patrignani, and Jérémy Thibault. Journey Beyond Full Abstraction: Explor-
ing Robust Property Preservation for Secure Compilation. 2019. arXiv: 1807.
04603 [cs.PL].

[Aba99] Martín Abadi. “Protection in Programming-Language Translations”. In:
Secure Internet Programming: Security Issues for Mobile and Distributed Ob-
jects. Ed. by Jan Vitek and Christian D. Jensen. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1999, pp. 19–34. ISBN: 978-3-540-48749-4. DOI: 10 .
1007/3-540-48749-2_2. URL: https://doi.org/10.1007/3-540-
48749-2_2.

[Abs] AbsInt. aiT. https://www.absint.com/ait/index.htm. Accessed 19
May 2018.

[AFG00] Martín Abadi, Cédric Fournet, and Georges Gonthier. “Authentication
Primitives and Their Compilation”. In: Proceedings of the 27th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL ’00.
Boston, MA, USA: Association for Computing Machinery, 2000, 302–315.
ISBN: 1581131259. DOI: 10.1145/325694.325734. URL: https://doi.
org/10.1145/325694.325734.

[Aho+06] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Com-
pilers: Principles, Techniques, and Tools (2Nd Edition). Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2006. ISBN: 0321486811.

[AP12] Martín Abadi and Gordon D. Plotkin. “On Protection by Layout Ran-
domization”. In: ACM Trans. Inf. Syst. Secur. 15.2 (July 2012). ISSN: 1094-
9224. DOI: 10.1145/2240276.2240279. URL: https://doi.org/10.
1145/2240276.2240279.

[App98] Andrew W. Appel. “SSA is Functional Programming”. In: ACM SIG-
PLAN Notices 33.4 (1998), pp. 17–20. DOI: 10.1145/278283.278285. URL:
https://doi.org/10.1145/278283.278285.

[ARM19] ARM. ARM Fast Models. 2019. URL: https : / / developer . arm . com /
tools- and- software/simulation- models/fast- models (visited on
08/14/2019).

[AS85] Bowen Alpern and Fred Schneider. “Defining Liveness”. In: Inf. Process.
Lett. 21 (1985), pp. 181–185.

[Bak19] Paul Bakker. mbedTLS. Version 2.17.0. Mar. 19, 2019. URL: tls.mbed.org.

http://dx.doi.org/10.1145/1411204.1411227
https://doi.org/10.1145/1411204.1411227
https://doi.org/10.1145/1411204.1411227
http://arxiv.org/abs/1807.04603
http://arxiv.org/abs/1807.04603
http://dx.doi.org/10.1007/3-540-48749-2_2
http://dx.doi.org/10.1007/3-540-48749-2_2
https://doi.org/10.1007/3-540-48749-2_2
https://doi.org/10.1007/3-540-48749-2_2
https://www.absint.com/ait/index.htm
http://dx.doi.org/10.1145/325694.325734
https://doi.org/10.1145/325694.325734
https://doi.org/10.1145/325694.325734
http://dx.doi.org/10.1145/2240276.2240279
https://doi.org/10.1145/2240276.2240279
https://doi.org/10.1145/2240276.2240279
http://dx.doi.org/10.1145/278283.278285
https://doi.org/10.1145/278283.278285
https://developer.arm.com/tools-and-software/simulation-models/fast-models
https://developer.arm.com/tools-and-software/simulation-models/fast-models
tls.mbed.org

122 BIBLIOGRAPHY

[Bal+10] Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sain-
rat. “OTAWA: An Open Toolbox for Adaptive WCET Analysis”. In: Soft-
ware Technologies for Embedded and Ubiquitous Systems. Ed. by Sang Lyul
Min, Robert Pettit, Peter Puschner, and Theo Ungerer. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2010, pp. 35–46. ISBN: 978-3-642-16256-
5.

[Bar+19] Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin, Vincent
Laporte, David Pichardie, and Alix Trieu. “Formal Verification of a Constant-
Time Preserving C Compiler”. In: Proc. ACM Program. Lang. 4.POPL
(Dec. 2019). DOI: 10.1145/3371075. URL: https://doi.org/10.1145/
3371075.

[Bau+08] Patrick Baudin, Jean C. Filliâtre, Thierry Hubert, Claude Marché, Ben-
jamin Monate, Yannick Moy, and Virgile Prevosto. ACSL: ANSI/ISO C
Specification Language Version 1.4. May 2008. URL: https://frama- c.
com/download/acsl.pdf.

[Bay+13] Ali Galip Bayrak, Francesco Regazzoni, David Novo, and Paolo Ienne.
“Sleuth: Automated Verification of Software Power Analysis Counter-
measures”. In: Cryptographic Hardware and Embedded Systems - CHES 2013.
Ed. by Guido Bertoni and Jean-Sébastien Coron. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 293–310. ISBN: 978-3-642-40349-1.

[BCR16] Thierno Barry, Damien Couroussé, and Bruno Robisson. “Compilation
of a Countermeasure Against Instruction-Skip Fault Attacks”. In: Pro-
ceedings of the Third Workshop on Cryptography and Security in Computing
Systems. CS2 ’16. Prague, Czech Republic: ACM, 2016, pp. 1–6. ISBN: 978-
1-4503-4065-6. DOI: 10.1145/2858930.2858931. URL: http://doi.acm.
org/10.1145/2858930.2858931.

[BDJ18] Frédéric Besson, Alexandre Dang, and Thomas Jensen. “Securing Com-
pilation Against Memory Probing”. In: Proceedings of the 13th Workshop
on Programming Languages and Analysis for Security. PLAS ’18. Toronto,
Canada: Association for Computing Machinery, 2018, 29–40. ISBN: 9781450359931.
DOI: 10.1145/3264820.3264822. URL: https://doi.org/10.1145/
3264820.3264822.

[BDJ19] Frédéric Besson, Alexandre Dang, and Thomas Jensen. “Information-
Flow Preservation in Compiler Optimisations”. In: CSF 2019 - 32nd IEEE
Computer Security Foundations Symposium. Hoboken, United States: IEEE,
June 2019, pp. 1–13. URL: https://hal.inria.fr/hal-02180303.

[BE+04] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and
Claire Whelan. “The Sorcerer’s Apprentice Guide to Fault Attacks.” In:
IACR Cryptology ePrint Archive 2004 (2004), p. 100. URL: http://dblp.
uni-trier.de/db/journals/iacr/iacr2004.html#Bar-ElCNTW04.

[BR10] Gogul Balakrishnan and Thomas Reps. “WYSINWYX: What You See is
Not What You eXecute”. In: ACM Trans. Program. Lang. Syst. 32.6 (Aug.
2010), 23:1–23:84. ISSN: 0164-0925. DOI: 10.1145/1749608.1749612. URL:
http://doi.acm.org/10.1145/1749608.1749612.

[Bré+19] Jean-Baptiste Bréjon, Karine Heydemann, Emmanuelle Encrenaz, Quentin
Meunier, and Son Tuan Vu. “Fault attack vulnerability assessment of bi-
nary code”. In: 6th Workshop on Cryptography and Security in Computing

http://dx.doi.org/10.1145/3371075
https://doi.org/10.1145/3371075
https://doi.org/10.1145/3371075
https://frama-c.com/download/acsl.pdf
https://frama-c.com/download/acsl.pdf
http://dx.doi.org/10.1145/2858930.2858931
http://doi.acm.org/10.1145/2858930.2858931
http://doi.acm.org/10.1145/2858930.2858931
http://dx.doi.org/10.1145/3264820.3264822
https://doi.org/10.1145/3264820.3264822
https://doi.org/10.1145/3264820.3264822
https://hal.inria.fr/hal-02180303
http://dblp.uni-trier.de/db/journals/iacr/iacr2004.html#Bar-ElCNTW04
http://dblp.uni-trier.de/db/journals/iacr/iacr2004.html#Bar-ElCNTW04
http://dx.doi.org/10.1145/1749608.1749612
http://doi.acm.org/10.1145/1749608.1749612

BIBLIOGRAPHY 123

Systems (CS2). Valencia, Italy, Jan. 2019. ISBN: 978-1-4503-6182-8/19/01.
DOI: 10.1145/3304080.3304083.

[Cor+08] Ricardo Corin, Pierre-Malo Deniélou, Cedric Fournet, Karthikeyan Bhar-
gavan, and James Leifer. “A secure compiler for session abstractions”.
In: Journal of Computer Security 16 (Oct. 2008), pp. 573–636. DOI: 10.3233/
JCS-2008-0334.

[CS10] Michael R. Clarkson and Fred B. Schneider. “Hyperproperties”. In: J.
Comput. Secur. 18.6 (Sept. 2010), 1157–1210. ISSN: 0926-227X.

[Cuo+12] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien
Signoles, and Boris Yakobowski. “Frama-C: A Software Analysis Per-
spective”. In: 10th International Conference on Software Engineering and
Formal Methods. Thessaloniki, Greece, 2012, pp. 233–247. ISBN: 978-3-642-
33825-0. DOI: 10.1007/978-3-642-33826-7_16. URL: http://dx.doi.
org/10.1007/978-3-642-33826-7_16.

[Cyt+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F.
Kenneth Zadeck. “Efficiently Computing Static Single Assignment Form
and the Control Dependence Graph”. In: ACM Trans. Program. Lang.
Syst. 13.4 (Oct. 1991), 451–490. ISSN: 0164-0925. DOI: 10.1145/115372.
115320. URL: https://doi.org/10.1145/115372.115320.

[DPS15] Vijay D’Silva, Mathias Payer, and Dawn Song. “The Correctness-Security
Gap in Compiler Optimization”. In: 2015 IEEE Security and Privacy Work-
shops. 2015, pp. 73–87.

[Dur+16] Louis Dureuil, Guillaume Petiot, Marie-Laure Potet, Thanh-Ha Le, Aude
Crohen, and Philippe de Choudens. “FISSC: A Fault Injection and Simu-
lation Secure Collection”. In: Sept. 2016, pp. 3–11. ISBN: 978-3-319-45476-
4. DOI: 10.1007/978-3-319-45477-1_1.

[Eag07] Michael Eager. “Introduction to the DWARF Debugging Format”. In:
2007.

[Ede+16] Kerstin Eder, John P. Gallagher, Pedro López-García, Henk Muller, Zo-
rana Banković, Kyriakos Georgiou, Rémy Haemmerlé, Manuel V. Hermenegildo,
Bishoksan Kafle, Steve Kerrison, Maja Kirkeby, Maximiliano Klemen,
Xueliang Li, Umer Liqat, Jeremy Morse, Morten Rhiger, and Mads Rosendahl.
“ENTRA”. In: Microprocess. Microsyst. 47.PB (Nov. 2016), pp. 278–286.
ISSN: 0141-9331. DOI: 10.1016/j.micpro.2016.07.003. URL: https:
//doi.org/10.1016/j.micpro.2016.07.003.

[EEA98] Jakob Engblom, Andreas Ermedahl, and Peter Altenbernd. “Facilitat-
ing worst-case execution times analysis for optimized code”. In: Proceed-
ing. 10th EUROMICRO Workshop on Real-Time Systems (Cat. No.98EX168).
1998, pp. 146–153. DOI: 10.1109/EMWRTS.1998.685079.

[EW14] Hassan Eldib and Chao Wang. “Synthesis of Masking Countermeasures
Against Side Channel Attacks”. In: Proceedings of the 16th International
Conference on Computer Aided Verification - Volume 8559. Berlin, Heidel-
berg: Springer-Verlag, 2014, pp. 114–130. ISBN: 978-3-319-08866-2. DOI:
10.1007/978-3-319-08867-9_8. URL: https://doi.org/10.1007/978-
3-319-08867-9_8.

[GM82] Joseph A. Goguen and Jose Meseguer. “Security Policies and Security
Models”. In: 1982 IEEE Symposium on Security and Privacy (1982), pp. 11–
11.

http://dx.doi.org/10.1145/3304080.3304083
http://dx.doi.org/10.3233/JCS-2008-0334
http://dx.doi.org/10.3233/JCS-2008-0334
http://dx.doi.org/10.1007/978-3-642-33826-7_16
http://dx.doi.org/10.1007/978-3-642-33826-7_16
http://dx.doi.org/10.1007/978-3-642-33826-7_16
http://dx.doi.org/10.1145/115372.115320
http://dx.doi.org/10.1145/115372.115320
https://doi.org/10.1145/115372.115320
http://dx.doi.org/10.1007/978-3-319-45477-1_1
http://dx.doi.org/10.1016/j.micpro.2016.07.003
https://doi.org/10.1016/j.micpro.2016.07.003
https://doi.org/10.1016/j.micpro.2016.07.003
http://dx.doi.org/10.1109/EMWRTS.1998.685079
http://dx.doi.org/10.1007/978-3-319-08867-9_8
https://doi.org/10.1007/978-3-319-08867-9_8
https://doi.org/10.1007/978-3-319-08867-9_8

124 BIBLIOGRAPHY

[Gou+15] Lucien Goubet, Karine Heydemann, Emmanuelle Encrenaz, and Ronald
De Keulenaer. “Efficient Design and Evaluation of Countermeasures against
Fault Attack with Formal Verification”. In: 14th International conference
Smart Card Research and Advanced Applications (CARDIS). Vol. 9514. Lec-
ture Notes in Computer Science. Bochum, Germany: Springer Interna-
tional Publishing, Nov. 2015, pp. 177–192. DOI: 10.1007/978-3-319-
31271 - 2 \ _11. URL: https : / / hal . archives - ouvertes . fr / hal -
01220291.

[GW+17] Thomas Given-Wilson, Nisrine Jafri, Jean-Louis Lanet, and Axel Legay.
“An Automated Formal Process for Detecting Fault Injection Vulnera-
bilities in Binaries and Case Study on PRESENT”. In: 2017 IEEE Trust-
com/BigDataSE/ICESS. 2017, pp. 293–300. DOI: 10.1109/Trustcom/BigDataSE/
ICESS.2017.250.

[Hil14] Christoph Hillebold. “Compiler-Assisted Integrits against Fault injec-
tion Attacks”. MA thesis. University of Technology, Graz, 2014. URL:
http://chille.at/articles/master-thesis.

[HLB19] Karine Heydemann, Jean-François Lalande, and Pascal Berthomé. “For-
mally verified software countermeasures for control-flow integrity of
smart card C code”. In: Computers and Security 85 (Aug. 2019), pp. 202–
224. DOI: 10.1016/j.cose.2019.05.004. URL: https://hal.sorbonne-
universite.fr/hal-02123836.

[HOM06] Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. “An AES Smart
Card Implementation Resistant to Power Analysis Attacks”. In: Proceed-
ings of the 4th International Conference on Applied Cryptography and Net-
work Security. ACNS’06. Singapore: Springer-Verlag, 2006, pp. 239–252.
ISBN: 3-540-34703-8, 978-3-540-34703-3. DOI: 10 . 1007 / 11767480 _ 16.
URL: http://dx.doi.org/10.1007/11767480_16.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. “Private Circuits: Securing
Hardware against Probing Attacks”. In: Advances in Cryptology - CRYPTO
2003. Ed. by Dan Boneh. Berlin, Heidelberg: Springer Berlin Heidelberg,
2003, pp. 463–481. ISBN: 978-3-540-45146-4.

[Jug+17] Yannis Juglaret, Catalin Hritcu, Arthur Azevedo de Amorim, Boris Eng,
and Benjamin C. Pierce. Beyond Good and Evil: Formalizing the Security
Guarantees of Compartmentalizing Compilation. 2017. arXiv: 1602.04503
[cs.CR].

[Kau+16] Thierry Kaufmann, Hervé Pelletier, Serge Vaudenay, and Karine Ville-
gas. “When Constant-Time Source Yields Variable-Time Binary: Exploit-
ing Curve25519-donna Built with MSVC 2015”. In: Nov. 2016, pp. 573–
582. ISBN: 978-3-319-48964-3. DOI: 10.1007/978-3-319-48965-0_36.

[Kir03] Raimund Kirner. “Extending Optimising Compilation to Support Worst-
Case Execution Time Analysis”. PhD thesis. Technical University of Vi-
enna, May 2003.

[KMW17] Martin S. Kelly, Keith Mayes, and John F. Walker. “Characterising a CPU
fault attack model via run-time data analysis”. In: 2017 IEEE Interna-
tional Symposium on Hardware Oriented Security and Trust (HOST). 2017,
pp. 79–84. DOI: 10.1109/HST.2017.7951802.

http://dx.doi.org/10.1007/978-3-319-31271-2_11
http://dx.doi.org/10.1007/978-3-319-31271-2_11
https://hal.archives-ouvertes.fr/hal-01220291
https://hal.archives-ouvertes.fr/hal-01220291
http://dx.doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.250
http://dx.doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.250
http://chille.at/articles/master-thesis
http://dx.doi.org/10.1016/j.cose.2019.05.004
https://hal.sorbonne-universite.fr/hal-02123836
https://hal.sorbonne-universite.fr/hal-02123836
http://dx.doi.org/10.1007/11767480_16
http://dx.doi.org/10.1007/11767480_16
http://arxiv.org/abs/1602.04503
http://arxiv.org/abs/1602.04503
http://dx.doi.org/10.1007/978-3-319-48965-0_36
http://dx.doi.org/10.1109/HST.2017.7951802

BIBLIOGRAPHY 125

[KP01] Raimund Kirner and Peter Puschner. “Transformation of path informa-
tion for WCET analysis during compilation”. In: Proceedings 13th Eu-
romicro Conference on Real-Time Systems. 2001, pp. 29–36. DOI: 10.1109/
EMRTS.2001.933993.

[LA04] Chris Lattner and Vikram Adve. “LLVM: a compilation framework for
lifelong program analysis amp; transformation”. In: International Sympo-
sium on Code Generation and Optimization, 2004. CGO 2004. 2004, pp. 75–
86. DOI: 10.1109/CGO.2004.1281665.

[Lat+20] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy
Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasi-
lache, and Oleksandr Zinenko. MLIR: A Compiler Infrastructure for the
End of Moore’s Law. 2020. arXiv: 2002.11054 [cs.PL].

[Lau+19] Johan Laurent, Christophe Deleuze, Vincent Beroulle, and Florian Pebay-
Peyroula. “Analyzing Software Security Against Complex Fault Mod-
els with Frama-C Value Analysis”. In: 2019 Workshop on Fault Diagno-
sis and Tolerance in Cryptography (FDTC). Atlanta, United States: IEEE,
Aug. 2019, pp. 33–40. DOI: 10.1109/FDTC.2019.00013. URL: https:
//hal.univ-grenoble-alpes.fr/hal-02426133.

[Ler06] Xavier Leroy. “Formal certification of a compiler back-end, or: program-
ming a compiler with a proof assistant”. In: POPL 2006: 33rd sympo-
sium Principles of Programming Languages. ACM, 2006, pp. 42–54. DOI:
10.1145/1111037.1111042.

[Ler09] Xavier Leroy. “A Formally Verified Compiler Back-end”. In: J. Autom
Reasoning 43.363 (2009). https://doi.org/10.1007/s10817-009-9155-
4.

[Lev07] Ilya Levin. A byte-oriented AES-256 implementation. 2007. URL: http://
www.literatecode.com/aes256 (visited on 08/14/2019).

[LHB14] Jean-François Lalande, Karine Heydemann, and Pascal Berthomé. “Soft-
ware countermeasures for control flow integrity of smart card C codes”.
In: ESORICS - 19th European Symposium on Research in Computer Secu-
rity. Ed. by Miroslaw Kutylowski and Jaideep Vaidya. Vol. 8713. Lecture
Notes in Computer Science. Wroclaw, Poland: Springer International
Publishing, Sept. 2014, pp. 200–218. DOI: 10.1007/978-3-319-11212-
1_12. URL: https://hal.inria.fr/hal-01059201.

[LM97] Yau-Tsun S. Li and Sharad Malik. “Performance analysis of embedded
software using implicit path enumeration”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 16.12 (1997), pp. 1477–1487.
ISSN: 0278-0070. DOI: 10.1109/43.664229.

[LPR14] Hanbing Li, Isabelle Puaut, and Erven Rohou. “Traceability of Flow In-
formation: Reconciling Compiler Optimizations and WCET Estimation”.
In: Proceedings of the 22Nd International Conference on Real-Time Networks
and Systems. RTNS ’14. Versaille, France: ACM, 2014, 97:97–97:106. ISBN:
978-1-4503-2727-5. DOI: 10.1145/2659787.2659805. URL: http://doi.
acm.org/10.1145/2659787.2659805.

[MB08] Leonardo de Moura and Nikolaj Bjørner. “Z3: an efficient SMT solver”.
In: vol. 4963. Apr. 2008, pp. 337–340. DOI: 10.1007/978-3-540-78800-
3_24.

http://dx.doi.org/10.1109/EMRTS.2001.933993
http://dx.doi.org/10.1109/EMRTS.2001.933993
http://dx.doi.org/10.1109/CGO.2004.1281665
http://arxiv.org/abs/2002.11054
http://dx.doi.org/10.1109/FDTC.2019.00013
https://hal.univ-grenoble-alpes.fr/hal-02426133
https://hal.univ-grenoble-alpes.fr/hal-02426133
http://dx.doi.org/10.1145/1111037.1111042
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1007/s10817-009-9155-4
http://www.literatecode.com/aes256
http://www.literatecode.com/aes256
http://dx.doi.org/10.1007/978-3-319-11212-1_12
http://dx.doi.org/10.1007/978-3-319-11212-1_12
https://hal.inria.fr/hal-01059201
http://dx.doi.org/10.1109/43.664229
http://dx.doi.org/10.1145/2659787.2659805
http://doi.acm.org/10.1145/2659787.2659805
http://doi.acm.org/10.1145/2659787.2659805
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24

126 BIBLIOGRAPHY

[MM69] Zohar Manna and John McCarthy. “Properties of Programs and Partial
Function Logic”. In: 1969.

[Mor+13] Nicolas Moro, Amine Dehbaoui, Karine Heydemann, Bruno Robisson,
and Emmanuelle Encrenaz. “Electromagnetic Fault Injection: Towards
a Fault Model on a 32-bit Microcontroller”. In: 2013 Workshop on Fault
Diagnosis and Tolerance in Cryptography. 2013, pp. 77–88. DOI: 10.1109/
FDTC.2013.9.

[Mor+14] Nicolas Moro, Karine Heydemann, Emmanuelle Encrenaz, and Bruno
Robisson. “Formal verification of a software countermeasure against in-
struction skip attacks”. In: Journal of Cryptographic Engineering 4.3 (Sept.
2014), pp. 145–156. DOI: 10.1007/s13389- 014- 0077- 7. URL: https:
//hal-emse.ccsd.cnrs.fr/emse-00951386.

[NTZ13] Kedar S. Namjoshi, Giacomo Tagliabue, and Lenore D. Zuck. “A Wit-
nessing Compiler: A Proof of Concept”. In: Runtime Verification. Ed. by
Axel Legay and Saddek Bensalem. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 340–345. ISBN: 978-3-642-40787-1.

[NZ13] Kedar S. Namjoshi and Lenore D. Zuck. “Witnessing Program Transfor-
mations”. In: Static Analysis. Ed. by Francesco Logozzo and Manuel Fäh-
ndrich. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 304–
323. ISBN: 978-3-642-38856-9.

[PAC19] Marco Patrignani, Amal Ahmed, and Dave Clarke. “Formal Approaches
to Secure Compilation: A Survey of Fully Abstract Compilation and Re-
lated Work”. In: ACM Comput. Surv. 51.6 (Feb. 2019). ISSN: 0360-0300.
DOI: 10.1145/3280984. URL: https://doi.org/10.1145/3280984.

[Pat+15] Marco Patrignani, Pieter Agten, Raoul Strackx, Bart Jacobs, Dave Clarke,
and Frank Piessens. “Secure Compilation to Protected Module Architec-
tures”. In: ACM Trans. Program. Lang. Syst. 37.2 (Apr. 2015). ISSN: 0164-
0925. DOI: 10.1145/2699503. URL: https://doi.org/10.1145/2699503.

[Per14] Colin Percival. How to zero a buffer. 2014. URL: http://www.daemonology.
net/blog/2014- 09- 04- how- to- zero- a- buffer.html (visited on
07/14/2019).

[PG17] Marco Patrignani and Deepak Garg. “Secure Compilation and Hyper-
property Preservation”. In: 2017 IEEE 30th Computer Security Foundations
Symposium (CSF). 2017, pp. 392–404. DOI: 10.1109/CSF.2017.13.

[PG19] Marco Patrignani and Deepak Garg. Robustly Safe Compilation or, Effi-
cient, Provably Secure Compilation. 2019. arXiv: 1804.00489 [cs.PL].

[Pro+17] Julien Proy, Karine Heydemann, Alexandre Berzati, and Albert Cohen.
“Compiler-Assisted Loop Hardening Against Fault Attacks”. In: ACM
Trans. Archit. Code Optim. 14.4 (Dec. 2017), 36:1–36:25. ISSN: 1544-3566.
DOI: 10.1145/3141234. URL: http://doi.acm.org/10.1145/3141234.

[Rig+18] Manuel Rigger, Stefan Marr, Stephen Kell, David Leopoldseder, and
Hanspeter Mössenböck. “An Analysis of X86-64 Inline Assembly in C
Programs”. In: SIGPLAN Not. 53.3 (Mar. 2018), 84–99. ISSN: 0362-1340.
DOI: 10.1145/3296975.3186418. URL: https://doi.org/10.1145/
3296975.3186418.

http://dx.doi.org/10.1109/FDTC.2013.9
http://dx.doi.org/10.1109/FDTC.2013.9
http://dx.doi.org/10.1007/s13389-014-0077-7
https://hal-emse.ccsd.cnrs.fr/emse-00951386
https://hal-emse.ccsd.cnrs.fr/emse-00951386
http://dx.doi.org/10.1145/3280984
https://doi.org/10.1145/3280984
http://dx.doi.org/10.1145/2699503
https://doi.org/10.1145/2699503
http://www.daemonology.net/blog/2014-09-04-how-to-zero-a-buffer.html
http://www.daemonology.net/blog/2014-09-04-how-to-zero-a-buffer.html
http://dx.doi.org/10.1109/CSF.2017.13
http://arxiv.org/abs/1804.00489
http://dx.doi.org/10.1145/3141234
http://doi.acm.org/10.1145/3141234
http://dx.doi.org/10.1145/3296975.3186418
https://doi.org/10.1145/3296975.3186418
https://doi.org/10.1145/3296975.3186418

BIBLIOGRAPHY 127

[RP10] Matthieu Rivain and Emmanuel Prouff. “Provably Secure Higher-Order
Masking of AES”. In: Cryptographic Hardware and Embedded Systems, CHES
2010. Ed. by Stefan Mangard and François-Xavier Standaert. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2010, pp. 413–427. ISBN: 978-3-642-
15031-9.

[SC09] Richard M. Stallman and GCC Developer Community. Using The Gnu
Compiler Collection: A Gnu Manual For Gcc Version 4.3.3. Paramount, CA:
CreateSpace, 2009. ISBN: 144141276X, 9781441412768.

[SCA18] Laurent Simon, David Chisnall, and Ross Anderson. “What You Get is
What You C: Controlling Side Effects in Mainstream C Compilers”. In:
2018 IEEE European Symposium on Security and Privacy (EuroS&P). Apr.
2018, pp. 1–15. DOI: 10.1109/EuroSP.2018.00009.

[Sch+18] Bernhard Schommer, Christoph Cullmann, Gernot Gebhard, Xavier Leroy,
Michael Schmidt, and Simon Wegener. “Embedded Program Annota-
tions for WCET Analysis”. In: WCET 2018: 18th International Workshop on
Worst-Case Execution Time Analysis. Vol. 63. Barcelona, Spain: Dagstuhl
Publishing, July 2018. DOI: 10.4230/OASIcs.WCET.2018.8. URL: https:
//hal.inria.fr/hal-01848686.

[Sho+16] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario
Polino, Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christo-
pher Kruegel, and Giovanni Vigna. “SoK: (State of) The Art of War: Of-
fensive Techniques in Binary Analysis”. In: (2016).

[TSW16] Niek Timmers, Albert Spruyt, and Marc Witteman. “Controlling PC on
ARM Using Fault Injection”. In: 2016 Workshop on Fault Diagnosis and
Tolerance in Cryptography, FDTC 2016, Santa Barbara, CA, USA, August
16, 2016. 2016, pp. 25–35. DOI: 10.1109/FDTC.2016.18. URL: http:
//dx.doi.org/10.1109/FDTC.2016.18.

[Wit18] Marc Witteman. Secure Application Programming in the Presence of Side
Channel Attacks. Tech. rep. 2018.

[Yan+17] Zhaomo Yang, Brian Johannesmeyer, Anders Trier Olesen, Sorin Lerner,
and Kirill Levchenko. “Dead Store Elimination (Still) Considered Harm-
ful”. In: Proceedings of the 26th USENIX Conference on Security Symposium.
SEC’17. Vancouver, BC, Canada: USENIX Association, 2017, 1025–1040.
ISBN: 9781931971409.

[YSW18] Bilgiday Yuce, Patrick Schaumont, and Marc Witteman. “Fault Attacks
on Secure Embedded Software: Threats, Design, and Evaluation”. In:
Journal of Hardware and Systems Security 2.2 (2018), pp. 111–130. ISSN:
2509-3436. DOI: 10.1007/s41635-018-0038-1. URL: https://doi.org/
10.1007/s41635-018-0038-1.

[Agt+12] Pieter Agten, Raoul Strackx, Bart Jacobs, and Frank Piessens. “Secure
Compilation to Modern Processors”. In: 2012 IEEE 25th Computer Secu-
rity Foundations Symposium. 2012, pp. 171–185. DOI: 10.1109/CSF.2012.
12.

[Com17] Common Criteria. Common Methodology for Information Technology Secu-
rity Evaluation, Version 3.1, revision 5. https://www.commoncriteriaportal.
org/. 2017.

http://dx.doi.org/10.1109/EuroSP.2018.00009
http://dx.doi.org/10.4230/OASIcs.WCET.2018.8
https://hal.inria.fr/hal-01848686
https://hal.inria.fr/hal-01848686
http://dx.doi.org/10.1109/FDTC.2016.18
http://dx.doi.org/10.1109/FDTC.2016.18
http://dx.doi.org/10.1109/FDTC.2016.18
http://dx.doi.org/10.1007/s41635-018-0038-1
https://doi.org/10.1007/s41635-018-0038-1
https://doi.org/10.1007/s41635-018-0038-1
http://dx.doi.org/10.1109/CSF.2012.12
http://dx.doi.org/10.1109/CSF.2012.12
https://www.commoncriteriaportal.org/
https://www.commoncriteriaportal.org/

128 BIBLIOGRAPHY

[DWA17] DWARF Debugging Information Format Commitee. DWARF Debugging
Information Format Version 5. 2017. URL: https://dwarfstd.org/doc/
DWARF5.pdf.

[Eli19] Eli Bendersky. pyelftools - Python library for parsing ELF files and DWARF
debugging information. Version 0.26. Dec. 5, 2019. URL: https://github.
com/eliben/pyelftools.

[ISO11] ISO C11 Standard. C11 Standard. ISO/IEC 9899:2011. 2011. URL: /bib/
iso/C11/n1570.pdf.

[LLV20] LLVMdev. Side-channel resistant values. 2020. URL: http://lists.llvm.
org/pipermail/llvm-dev/2019-September/135079.html (visited on
09/12/2020).

[Lam77] Leslie Lamport. “Proving the Correctness of Multiprocess Programs”.
In: IEEE Transactions on Software Engineering SE-3.2 (1977), pp. 125–143.
DOI: 10.1109/TSE.1977.229904.

[The03] The OpenSSL Project. “OpenSSL: The Open Source toolkit for SSL/TLS”.
www.openssl.org. 2003.

https://dwarfstd.org/doc/DWARF5.pdf
https://dwarfstd.org/doc/DWARF5.pdf
https://github.com/eliben/pyelftools
https://github.com/eliben/pyelftools
/bib/iso/C11/n1570.pdf
/bib/iso/C11/n1570.pdf
http://lists.llvm.org/pipermail/llvm-dev/2019-September/135079.html
http://lists.llvm.org/pipermail/llvm-dev/2019-September/135079.html
http://dx.doi.org/10.1109/TSE.1977.229904
www.openssl.org

	Abstract
	Introduction
	Context and Motivation
	Program Properties and Binary Analysis
	Program Properties and Security Countermeasures

	Challenges
	Thesis Contributions
	Thesis Organization

	Related Work
	Preserving Functional Properties
	Functional Properties for Performance Optimizations
	Functional Properties for Critical Real-time Systems
	Functional Properties for Security Binary Analysis

	Preserving Security Properties
	Classification of Security Properties
	Fully-Abstract Compilation
	Secure Compilation Against Side-Channel Attacks
	Cryptographic Constant-Time Preservation
	Secret Erasure Preservation
	Preventing Side-Channel During Compilation

	Secure Compilation Against Fault Injection Attacks
	Data Integrity Protection
	Protecting Against Instruction Skips
	Loop Protection

	Discussion

	Tools and Security Use-Cases
	LLVM Compilation Infrastructure
	LLVM Overview
	LLVM Intermediate Representation
	LLVM Metadata
	LLVM Code Generator

	DWARF debug format
	DWARF Overview
	Debugging Information Entry
	Describing Data
	Describing Executable Code

	Security Use-Cases
	Sensitive Memory Data Erasure
	Masking Computation Order
	Step Counter Incrementation
	Control and Data Flow Redundancy
	Constant-Time Selection

	Discussion

	Automated Property Preservation at Compile-Time
	Definitions
	An Approach for Preserving Functional Properties
	Putting it to Work
	Functional Properties in Source Code
	Functional Properties in Machine Code
	Observed Variables: Multiple Definitions and Debug Information
	Functional Properties in LLVM
	Functional Properties in LLVM IR
	Functional Properties in LLVM MIR

	Experimental Validation
	Methodology
	Functional Validation
	Validating Mechanism Correctness
	Automating Binary Analysis

	Preserving Security Protections
	Sensitive Memory Data Erasure
	Masking Computation Order
	Step Counter Incrementation
	Control and Data Flow Redundancy

	Performance and Compilation Overhead Evaluation
	Performance
	Compilation Time

	Discussion

	Source-Level Directives for Preserving Property
	Problem Definition
	Mini IR Syntax
	Mini IR Operational Semantics
	Mini IR Observation Semantics
	Program Transformations
	Happens-Before Relation

	An Approach for Preserving Observations
	Mini IR Extension: Opaque Expressions
	Opaque Chains
	Observation in action
	Helper Patterns
	Robust Observation
	Address-Value Pair Observation
	I/O-Barrier-Based Observation
	Value Opacification

	Putting it to Work
	Observation and Opacification in Source Code
	Observation and Opacification in LLVM
	Observation and Opacification in LLVM IR
	Observation and Opacification in LLVM MIR

	Observation and Opacification in Machine Code

	Preserving Security Protections
	Sensitive Memory Data Erasure
	Mask Swapping Computation Order
	Step Counter Incrementation
	Control and Data Flow Redundancy
	Constant-Time Selection

	Validation
	Functional Validation by Checking Value Integrity and Ordering
	Security Protection Preservation Validation

	Experimental Evaluation
	Experimental Setup
	Comparing to Unoptimized Programs
	Comparing to Reference Preservation Mechanisms
	Comparing to Alternative Implementations
	Compilation Time Overhead

	Discussion

	Conclusion
	Conclusion
	Perspectives

	Personal References
	Bibliography

