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A time will come to ride the wind and cleave the waves, I’ll set

my cloudlike sail to cross the sea which raves
— Li Bai ’Hard is the way of the world’





Abstract

Image classification, which consists of predicting a single class for each input

image, is a core subject in the computer vision community. And as one of

its tasks, material classification from an image is challenging for humans but

also for computer systems because materials may have various appearances

depending on their surface properties, lighting geometry, viewing geometry,

camera settings, etc.

In the beginning, first material image datasets are created with these

dependencies well controlled and known. In addition to images and their

categories, dependencies information is also provided as complementary fea-

tures. Many works have been proposed, which achieve high performance on

the classification task. However, their generality to real-world application is

limited because only a few of material instances represent a material cate-

gory. Furthermore, some methods use dependencies as features. They must

be measured before the classification and that leads inevitably less efficiency.

In the recent years, new material datasets tend to be in large scale and

to be without any dependencies. All the images are taken in real-world en-

vironment, instead of the laboratory. These datasets, no doubt, are more
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challenging than ever and a closer fit to real-world application. Moreover,

a revolutionary image classification architecture, Convolutional Neural Net-

work(CNN), has emerged and has shown high performance in large-scale

image datasets, like ImageNet, which is dedicated to object classification in

the real word. This architecture makes real-world material classification of

high accuracy possible. This thesis investigates how to implement appropri-

ately the CNN, which is pretrained by ImageNet, into material classification

task. Generally, we call this process transfer learning because we transfer the

knowledge learned in ImageNet to our task.

To this end, our two approaches are reported. They all work on aggregat-

ing features extracted by the CNN into a more powerful representation for

classification, however both are in totally different ways. The first one con-

sists in selecting more discriminative features from all the candidates with a

criterion, called confidence score, showing how confident the classifier is to its

prediction. We assume that features with high confidence score are more dis-

criminative. Fisher vector is a state-of-the art feature aggregation approach.

The second approach ameliorates the fisher vector representation when ap-

plied to CNN’s features. With some modification, we embed it as a module

into the CNN and allow it and other components of the CNN to be trained

together under the classification supervision. To validate our solutions, we

test them on the several widely-used datasets and compare them with recent

state-of-the art approaches, showing their competitive performance. We also

conduct ablation studies in order to study how our solutions achieve good

performance.

key words: Image classification, material classification, orderless pool-

ing, transfer learning, confidence score, fisher score, sparse coding
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Chapter 1

Introduction

Material classification is a visual recognition task closely related to texture

classification and dedicated to classify input texture/material images into

categories such as fabrics, water, steel, foliage, ... (see Fig. 1.1).

As one of basic visual perceptions, studying how human vision system

behaves to process real-world material has a long history since the 1960’s [7].

Having an obvious difference with object recognition, material recognition’s

input concerns visual information coming from surfaces, instead of objects [8].

Figure 1.1 – Examples of material images and their categories. Images from

the Flickr Material Database [1].

1



Figure 1.2 – Object and material recognition systems explain an image from

different perspectives

The illustration from Fig 1.2 shows the different outputs provided by an ob-

ject and a material recognition systems. We can see that, object recognition

system considers the target as a ’desk’ and material system detects some

piece of ’wood’ appearing in the image. Obviously, these two tasks are dif-

ferent but enrich each other since knowing the material of one surface could

help to recognize the object and vice versa. As explained below, the main

difference between these two tasks is that global shape and spatial organi-

zation of local features are interesting elements for object recognition while

material recognition requires accurate local texture features.

Being able to recognize materials in an image is challenging but very

useful for many computer vision tasks. Reading a language dictionary and

a supermarket’s promotion brochure, you may find many stuff words, like

’meat’, ’tea’, ’sky’, ’soil’, ’skin tissue’, ... and each word may relate to one

material recognition applications, like food texture classification [9], satellite

or aerial imagery [10, 11], ground terrain recognition and detection [12, 13]
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and medical image analysis [14, 15, 16]. Furthermore, material recognition

algorithms can be implemented into robotic visual systems which allow prod-

uct search, object manipulations or autonomous navigation on the surface

made of specific material [13]. Also material classification is a key step of

automatic waste sorting.

Material classification study starts in the 1960’s and focuses on describing

material with expert-defined features. Julesz introduced his pioneering work

about texton theory [17, 18] where, texture or material’s descriptors, called

textons, are defined as elementary local conspicuous features, such as edges or

corners. After that, researchers began to work on how to design efficient filter

banks to extract texture features [19, 20, 21, 22, 23, 24]. Besides the study

of local feature extraction, a number of approaches, like bags-of-textons [25],

were proposed to aggregate local features into a global representation which

can more effectively depicts material images. At the physical level, ma-

terial appearances were collected under controlled conditions which means

that the parameters such as lighting color, or direction and viewing direction

were strictly set and recorded. With these controlled input conditions and

appearances, some models, such as BRTF (Bi-directional Reflection Trans-

mittance Function) and BTF (Bidirectional Texture Function) can be built

to characterize the appearance of material instances. These models provide

instance-level features which are more useful to identify material instances

rather than material categories. Material appearance images, condition pa-

rameters and instance models are collected as databases [26, 3, 27]. A key

characteristic for material images is that target material occupied the whole

region of an image and no clutter background was involved.

In 2012, AlexNet a Convolutional Neural Network [28] (CNN) broke the

image classification accuracy record in ImageNet ILSVRC [29], a very large

3



object recognition dataset. For material classification research, CNNs pre-

trained on ImageNet replace expert-designed filters, relying on their pro-

duced high discriminative features, which were originally designed for object

recognition [30, 31]. At the same time, some new material datasets were

created in which images were acquired under uncontrolled conditions and

target material did not necessarily fill them. Some background information

is also included [1, 32, 33, 34, 12, 35]. Solving material classification on these

new datasets became very challenging but new learning-based approaches al-

ready found smart and original solutions. Since these solutions are all based

on deep neural networks, we have built our contributions on such architec-

tures. The first section of this chapter introduces the general workflow of the

deep neural networks and the second one presents the motivations and main

ideas of our contributions.

1.1 Image classification with CNN

Image classification is one of the most fundamental research fields in the

computer vision community, and its spur progress always influences greatly

not only itself but also other visual recognition tasks, like video classifica-

tion, image segmentation, medical image analysis. And it even has impact

on other domains, such as natural language processing or brain-computer in-

terface. Convolutional Neural Networks (CNN) represent a breakthrough in

computer vision, since AlexNet [28] clearly outperformed the state-of-the-art

in ImageNet ILSVRC competition [29]. This achievement is considered as

one of the milestones both for deep learning and computer vision.

This thesis mainly deals with research fields based on CNN networks for

material recognition, so a brief presentation about image classification based

4



on a CNN network seems necessary. We propose to present below, the basic

feedforward propagation, the main modules of a classical architectures and

the backward propagation.

1.1.1 Feedforward propagation

For a multi-class image classification task over K classes, the goal is to cor-

rectly classify an image I into its ground-truth category y ∈ Y = {1, ..., K}.

Feedforward propagation of a CNN can be abstracted as a function f that

projects an image into a prediction vector ẑ ∈ RK :

ẑ = f(I). (1.1)

Then, this prediction ẑ is transformed into a probability vector p̂ with a

softmax function:

p̂ = softmax(ẑ). (1.2)

Precisely, each element p̂k of p̂ is evaluated as:

p̂k =
exp (ẑk)∑K
i exp (ẑi)

, (1.3)

where p̂k represents the probability that I belongs to the kth class. We

notice that each value in p̂ can not exceed 1 and that all the values sum to

1 (
∑K

k=1 p̂k = 1), thus assimilating this vector to a probability distribution.

And the index of the element with the highest probability is picked as

the predicted category ŷ:

ŷ = argmax
k∈Y

p̂k. (1.4)

In the case of a correct prediction, the predicted category is equal to the

groud-truth class:

ŷ = y. (1.5)
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1.1.2 Deep learning network structure

In the previous section, a deep CNN is defined as a function f . Now we look

into its structure in detail. Note that deep CNN architecture engineering

is still under study and there exist many different architectures. Here, we

introduce a general structure which refers to AlexNet [28] or VGG [36] net-

works. These networks were also adopted in our experiments, as detailed in

the following chapters.

If we look into the function f of a CNN, its structure is a stack of layers.

According to their properties, we regrouped these layers into three sequential

components: convolution, pooling and classification, as shown in Fig 1.3, and

respectively viewed as functions: fconv(.), fpool(.) and ffc(.).

Figure 1.3 – A classical architecture of a CNN.

Suppose that the input of a deep CNN is an image I. The convolution

component’s job is to extract local features from I:

X = fconv(I) (1.6)

The output X ∈ RC×W×H is a 3D tensor containing a set of local feature

vectors X:,w,h at 2-D spatial position: (w ∈ {1, ...,W}, h ∈ {1, ..., H}), where

X:,w,h ∈ RC and C, W , H are respectively the number of channels, the width
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and the height. In the convolution component, the extraction is realised

with repeated convolution layers plus local pooling layers in a hierarchical

way. This means that the first layers extract low-level primitive features,

such as edges or colors while the last layers combine these low-level features

into high-level semantic features, such as hands, wheels or trees.

Next, located inside the red bounding box of Fig 1.3, the global pooling

component aggregates the local features from X into one global and compact

feature vector:

a = fpool(X) (1.7)

where a ∈ RC . For example, after extracting features of a nose, a mouth and

eyes with convolution component, features after pooling component is able

to represent a face.

Lastly, fully connected layers and a softmax function (see Eq. 1.2) consti-

tute the classification component which provides the predicted probabilities

for the considered categories:

p̂ = softmax(ffc(a)) (1.8)

For more details about these three components, please see Appendix A.

1.1.3 Backward propagation

To consistently make correct predictions, a training process, described in Al-

gorithm 1, is needed to learn CNN’s ensemble of every lth layer’s parameters{
θl|l = 1, ..., L

}
with a training dataset D, consisting of N samples defined

by a pair of values corresponding to the image and its ground-truth category

D =
{

(I1, y1), ..., (IN , yN)
}
.

Concretely, at each iteration of the training process, a mini batch DB
with B samples is randomly drawn from D and we optimize an objective
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Algorithm 1: Network training
Input : Training dataset D, CNN function f with parameters{

θ1, ...,θL
}

Output : CNN function f with parameters
{
θ1, ...,θL

}
for DB ∈ D do
DB =

{
(I1, y1), ..., (IB, yB)

}
% Step 1: Feedforward Propagation

Eq. 1.1 and Eq. 1.2–>
{
p̂1, ..., p̂B

}
% Step 2: Backward Propagation

Eq. 1.11–>
{
∂Lce

∂θ1 , ...,
∂Lce

∂θL

}
% Step 3: Parameter update

Eq. 1.10–>
{
θ1, ...,θL

}
end

function, namely the cross entropy loss:

Lce = − 1

B

B∑
n=1

log(p̂nk=yn), (1.9)

where p̂k is obtained with Eq. 1.3, with performing Stochastic Gradient De-

scent (SGD) or its variants to update every ith layer’s parameters θl:

θl = θl − ∂Lce

∂θl
lr (1.10)

where the scalar variable lr represents the learning rate, determining how

’aggressively’ we update the parameter values with their gradients ∂Lce

∂θl .

Practically, the chain rule is used to calculate the partial derivative ∂Lce

∂θl :

∂Lce

∂θl
=
∂Lce

∂p̂

∂p̂

∂XL+1

∂XL+1

∂XL
...
∂Xl+2

∂Xl+1

∂Xl+1

∂θl
(1.11)

where Xl+1 is the output of lth layer. The gradients in the chain rule, i.e. ∂Lce

∂p̂
,
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∂p̂
∂XL+1 , ∂Xl+1

∂Xl and ∂Xl+1

∂θl , are accessible because the corresponding functions

in each layer, such as Eq. 1.9, Eq. 1.3, are almost differentiable1.

As observed in Eq. 1.11, the order (from output to input) of the gradient

calculation is in the inverse direction of Feedforward Propagation (FP), thus

gradient calculation process is called Backward Propagation (BP).

In the following chapters 3 and 4, we mainly use three popular CNNs:

ResNet-50 [37], VGG-16 [36] and AlexNet [28]. Although there exist some

differences among them, e.g., skip connection of ResNet-50 (see Fig. A.1),

their respective structure and training process basically conforms to the de-

scription in this subsection.

We have already underlined that the main goal of material clas-

sification systems is to extract a global feature vector that accu-

rately represents the most relevant local features without paying

attention to their spatial distribution. From the previous general

presentation, it is clear that the main step on which we should con-

centrate is the pooling component: fpool(.), whose aim is to evaluate

a global feature vector from a set of local features (see Eq. 1.7). In

this thesis, we are presenting two main contributions around the

global pooling layer, as introduced in the next section and detailed

in the chapters 3 and 4.

1.2 Contributions

The goal of this thesis is to improve material classification performance

based on CNNs and real-world datasets. To meet this goal, we concen-

trate on two key steps of the classification framework that are parts of the

1In practice, some exceptions, like ReLU function, do not affect network training

9



global pooling module, namely local feature selection and orderless pooling.

The motivations and main ideas of the proposed solutions are introduced

below and detailed in Chapters 3 and 4, respectively.

1.2.1 Feature selection

Today, as mentioned in the previous section, in most of the CNN archi-

tectures, after stacked convolutional layers extracting local features from the

input image, a Global Average Pooling (GAP) layer is considered as fpooling(.)

in Eq.1.7 and it merges all the local features into a single global feature vec-

tor [37]. Then, a fully connected layer predicts the image class based on this

global feature vector. With this classical approach, each local feature vec-

tor equally contributes to the final decision through the averaging operation.

However, when large areas of the images are ambiguous or when useful infor-

mation is mainly provided by fine image details in some tiny areas, averaging

all the local features could be sub-optimal. And we will show that this is all

the more true in the images of materials. An illustrative example is shown in

Fig.1.4: On the left column, some small but informative parts of the images

are masked and it makes the class prediction very difficult with the remain-

ing large and ambiguous areas. Once one has access to these details (right

column), class prediction becomes much easier.

However, how to choose key discriminative areas and eliminate ambiguous

features is not trivial and this is the question we address in Chapter 3.

At the first glance, we have run a naive experiments in order to measure

the impact of the context of the considered objects on the classification per-

formances. To do so, we used a benchmark material dataset, called Flickr

Material Database (FMD) [1] which provides binary masks covering material

region, as shown in Fig. 1.5. This dataset has 10 different categories.
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Class = stone ? Class = leather

Class = plastic ? Glass ? Class = water

Figure 1.4 – Images from the Flickr Material Dataset [1], showing that, some-

times, some details are essential to predict the correct class while large areas

are ambiguous.

Figure 1.5 – With the provided masks, we are able to create three images from

each sample image: the material image (without backgound), the context

image (only background) and the full image.

Thus, with these data, we were able to conduct different classification

experiments by changing the inputs of the networks:

• Training and testing only on the context images,

• Training and testing only on the material images,

• Training and testing on the full images.

The resulted accuracies averaged over 5 runs are provided in Table 1.1.

There, we can see that i) the context provides few interesting features to clas-
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Table 1.1 – Background context’s impact on material classification accuracy.

Average accuracy over 5 runs

Train/Test on the context only 27.1

Train/Test on the material only 68.0

Train/Test on the full images 71.4

sify the images (27.1% accuracy for 10 categories), ii) the material provides

much better features than the context (68.0% accuracy) and iii) the context

and the material sometimes provides complimentary information since work-

ing with the full images (71.4% accuracy) improves over the tests with the

material only (68.0%). So it can be concluded that the impact of context to

material classification is positive and it is not appropriate to simply select

features only from material areas by eliminating image’s context.

In order to automatically select the most informative local feature vec-

tors, we will propose in Chapter 3 to use confidence scores that represents

the usefulness of local feature vectors on each image area. By exploiting a

very recent and successful approach, designed for global failure prediction [6],

we propose to predict the local feature confidence with an additional branch

in the network. Only the local feature vectors with higher confidence predic-

tions are preserved and averaged into a global feature vector. In Chapter 3

we will provide both quantitative and qualitative results on three material

datasets and will demonstrate that our method not only augments classifica-

tion accuracy but also improves the calibration of the output probabilities.
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Figure 1.6 – Left: an object image from Stanford Cars Dataset [2]. The

car’s parts, marked by red bounding boxes, have stable spatial relation-

ship (marked by blue lines). Right: a material image from Flickr Material

Dataset [1]. No specific spatial arrangement is presented among different

instances.

1.2.2 Orderless pooling

As discussed at the beginning of this chapter, compared to object recognition

tasks, material recognition has its own properties. One of these properties,

is its spatial orderless arrangement. As illustrated in Fig 1.6, as an object,

the discriminative parts of a car, like wheels, windows, have strong spatial

and topological relationships. For example, wheels are arranged on the same

horizontal level and windows are beyond the wheels. For material images,

such predefined relationships between surface areas do not exist and should

not be accounted for in the final global feature vector.

Orderless pooling emerges recently and becomes attractive for material

classification tasks because it aggregates material features without taking into

account their spatial locations in the image. For example, one of the simplest

orderless pooling methods is the global average pooling which averages over

all the local features. It is widely used in the recent deep neural network
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architectures such as the ResNets [37].

Actually, before CNNs, orderless pooling was already well developed in

the bags of visual words (BOW) [38], the VLAD [39] or the Fisher Vec-

tors [40], and they have provided good results when applied to CNN fea-

tures for texture or image classification [31, 41]. Among them, the Fisher

Vectors (FV) are the most promising because it generalizes the VLAD and

BOW and uniquely appends second order statistics. Later, few works em-

bedded aforementioned orderless poolings as a learnable component into a

CNN [42, 43, 44]. This implementation allowed an end-to-end training in

which all the parameters in the CNN, including those of the orderless pool-

ing component, can be learned under the supervision of the target task.

Nevertheless, embedding orderless pooling in a deep architecture has two

main disadvantages from our point of view. First, since the deep features lie

in high dimensional spaces, specific tools are required to accurately model

their distributions. For example, Liu et al. show that a classical Gaussian

Mixture Model requires too many gaussian centers to accurately model high-

dimensional deep features [45]. Hence, they propose a sparse coding solution

that is not embedded in a deep architecture. Taking inspiration from this

approach, we have proposed to insert a trainable module in a deep neural

network that is able to sample gaussian centers from a subspace in order to

accurately model the deep features.

Second, dealing with second order statistics such as those provided by the

Fisher Vectors is not easy and requires successive normalization steps [46].

Nevertheless, the solutions suggested in [46] require Symmetric Positive Def-

inite (SPD) matrices as input, which is not the case of our Fisher repre-

sentation. Consequently, we have proposed a new and original approach to

normalize any matrix (not squared or symmetric) that represents second or-
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der statistics. To the best of our knowledge, it is the first time that matrix

normalization applied to Fisher-based representation.

These two main contributions are embedded in a deep architecture so

that the final network is trainable end-to-end with the single classification

loss.

1.3 Organization of the thesis

The remainder of the thesis is organized as follows. First, we describe related

works in Chapter 2, including classical material classification solutions and

CNN-based approaches. We also decide to concentrate on two main points,

confidence prediction and orderless pooling that are important to understand

our contributions. Some parts of this chapter refer to our survey paper

published in International Conference on Big Data, Machine Learning and

Applications (BIGDML) conference in 2019.

Chapter 3 presents our first main contribution, briefly introduced in the

section 1.2.1. Some parts of this chapter refer to our conference paper pub-

lished in International Conference on Image and Vision Computing, New

Zealand (IVCNZ) in 2020.

Our second main contribution, briefly introduced in the section 1.2.2, is

precisely discussed in Chapter 4. Some parts of this chapter, related to sparse

coding, refer to our conference paper published in International Conference

on Computer Analysis of Images and Patterns (CAIP) in 2021. An extended

version of this paper with normalization has been submitted in July 2021 for

publication to Computer Vision and Image Understanding.

Lastly, Chapter 5 draws conclusions, reveals actual challenges and trends

in the material classification, and suggests perspectives for future works.
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Chapter 2

Related works and datasets

In this chapter, we explore and present the most remarkable works in the

context of material classification, starting from hand-crafted features to deep-

CNN solutions. This analysis reveals that orderless pooling and end-to-end

learning are two essential elements for material classification. Also, it allows

to discover the main limitations of the current state-of-the-art approaches.

These remarks will be the starting points of our original solutions detailed

in the next chapters. In this chapter, we also present, the numerous image

material datasets. Some of them will be used in the experimental tests of

the next chapters.

2.1 Handcrafted features

In the 60’s, the earliest work about material analysis reveals that material or

texture can be perceived spontaneously if proximate pixels of uniform bright-

ness form a specific connectivity [7]. In the 80’s, to further explain human

perception of material, Julesz introduced texton theory [17, 18]. He argued
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that textures can be perceived if elementary local conspicuous features, called

textons, are present, such as crossing, corners, etc. He also stated that only

first-order statistics of these textons are meaningful. In other words, spon-

taneous perception cannot be triggered if the probability of every texton in

one material region is equal.

As for local conspicuous features extraction, expert-designed filter banks,

like Gabor filters [19, 20, 21, 22], Gabor wavelets [23], Differences of Gaus-

sians [24], serving as sliding windows, can produce local features from the

input material image. Based on texton theory, a series of works [47, 48,

49, 50, 51] tried to mathematically model textons and consequently, Bags-

of-words [52] and Bags-of-textons [25] were proposed to aggregate features

into a histogram representation over a given texton dictionary. By the end of

the last century, researchers concentrate on the extraction of invariant feature

representation. Some types of features are more robust than others to certain

variations, such as background illumination or object size. The most notable

invariant features include Local Binary Pattern (LBP) [53], Speeded Up Ro-

bust Feature (SURF) [54] and Scale Invariant Feature Transform (SIFT) [55].

Besides material classification, they dominated visual recognition field before

the deep learning era.

2.2 Deep learning features

Impressed by the outstanding results provided by the deep neural networks,

many research teams began to use CNNs pretrained on ImageNet [29] for

their own studies. Indeed, it appeared that the knowledge learned from a

large image dataset for classification tasks, can be helpful for other datasets

and tasks. This is called ’transfer learning’ and has been widely used in the
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context of material classification.

In a first study, Wieschollek and Lensch simply collects material features

extracted by a network pretrained on ImageNet and trains a classifier with

these features [30]. This simple method outperforms alternatives based on

handcrafted features with an evident margin, showing that generic deep fea-

tures are transferable to material classification.

2.3 Orderless pooling

Using a pretrained CNN allows to extract a group of local features from ma-

terial images. These local features are aggregated to a global feature vector

thanks to a pooling module, as explained in A.2. This global representation

of the image can be used as input for the following classifier. As mentioned

earlier in this thesis, the local features of the material images do not have

specific spatial arrangement that could help for the classification task. Thus,

in this context, orderless pooling is preferred for these images, because it

combines local features while omitting their spatial position in the image, as

shown in Fig 2.1. The representation given by an orderless pooling can be

more relevant to material and thus improve the classification performance.

The second useful property of orderless pooling is its ability to handle

feature vector sets of undefined size [31], which means that we can feed

the network with images of more flexible sizes. For classical networks such

as AlexNet [28] or VGG-16 [36], the extracted feature map is directly sent

to a Fully Connected (FC) layer with a predefined neuron number, which

means that the input image should have a predefined and fixed size. This is

particularly inappropriate when the network works with features over many

different image areas [56, 57].
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Figure 2.1 – Illustration of the orderless pooling. Best viewed in color. Sup-

pose there are three feature vectors (shown here with blue, green and yellow

false colors) extracted from three image areas (marked by bounding box of

the same color). If these feature vectors are input into orderless pooling in

different orders, then pooled representations are identical.

The third advantage of this orderless pooling is that it allows to decrease

the number of trainable parameters by a large margin. Indeed, since the

neurons of the first FC layer are connected to all the input cells of the feature

map, reducing the dimensions (by skipping the spatial dimensions) of this

feature map, reduces the number of inputs a lot, and thus, the number of

weights to learn. This is a good way to reduce overfitting [37].

2.3.1 Basic deep modules

The simplest orderless pooling methods are global average pooling and global

max pooling, where local features X =
{
x1, ...,xN |xi ∈ RD

}
per feature

channel j are pooled with the average operation:

aj =
1

N

(
N∑
i=1

xi,j

)
, (2.1)
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or by the max operation:

aj = max
i=1,...,N

xi,j, (2.2)

where aj is the jth element of the pooled representation: a ∈ RD

In particular, the series of ResNet [37] use a Global Average Pooling

(GAP) layer that merges all the local features into a single global feature

vector before the FC classifier.

2.3.2 Non-embedded methods

Let first introduce a group of orderless pooling methods, which are not em-

bedded in a neural network, which means that they are trained separately

from the used classifier. In other words, these methods can not be used in

an end-to-end trainable network. So, these pooling methods are trained with

the deep features provided by a pretrained network. Then their outputs are

fed to a classifier that is trained in a later step.

For ones who are not very familiar with orderless pooling meth-

ods, such as Bag of Words(BOW), Fisher Vector(FV) and Vector of

Locally Aggregated Descriptors(VLAD), an introduction in more

details can be found in section 4.3.2.

Bags-of-Textons.

After the texton theory introduced in the works [17, 18], Leung and Malik

define texton in a more practical way [25] as a cluster center in the filter

response space. One of the consequences of this definition is that it allows

to learn a universal texton dictionary for a set of images. Then, the pooled

representation of an image is a histogram over this texton dictionary. This
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pooling technique is referred as Bag-of-Textons (BoT) [25, 24]. It is order-

less because the histogram counts feature vectors closed to every textons in

the dictionary. BoT was later generalized to more visual recognition tasks,

namely Bag-of-Features (BoF) or Bag-of-words (BoW) [52].

Fisher Vector based methods.

One of the drawbacks of BoW is that it only counts the occurrences of the

visual words in one image. This 0th order statistics representation ignores the

distribution of the local features around their cluster center. Fisher Vector

methods extend BoW and produce representation of higher orders. The clas-

sical Fisher Vector [40] method models the distribution of the training data

with a Gaussian Mixture Model (GMM). Then, it characterizes each data

point with the derivatives over the model parameters, i.e, means, weights

and covariances of each Gaussian component in the GMM. This coding ap-

proach is referred below as Gaussian Mixture Model based Fisher Vector

(GMMFVC).

As deeply discussed in this Thesis (see Chapter 4), it was found that

the normalization plays an important role in fixing the ’burstiness’ issue of

Fisher vector, where discriminative but relatively rare visual features are

overwhelmed by those frequently appearing [58]. Thus, Perronin et al. pro-

posed element-wise signed square rooting and L2-normalization to cope with

this problem [58]. Although there exist other alternatives [59, 60] to improve

GMMFVC (which show comparable or even better performances in certain

cases), the GMMFVC with such normalization outperforms the BoW in many

applications, including material recognition [31, 61].

Cimpoi et al. used pretrained CNN to extract features on an image at

multiple scales and aggregated them to GMMFVC [31]. This direct im-
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plementation of GMMFVC produced state-of-art results on several material

classification datasets. Song et al. further improved the work of [31] by cre-

ating a Locally-transferred Fisher Vector (LFV) module, which transforms

the Fisher vector into a more discriminative representation [61].

A complete Fisher vector is composed of derivatives over every parameter

of the GMM model. Its size is sometimes too large and this inconvenience

was firstly found in the image search on a very large scale dataset where

features have to be saved. To obtain more compact representation, Jegou et

al. proposed the Vector of Locally aggregated descriptors (VLAD) [62]. It

aggregates the residuals between the local features and their nearest visual

words (1st order statistic). That algorithm can be seen as a simplified calcu-

lation of the derivatives over the means of GMM. Although it is simple, it’s

great performance is validated [41, 63].

The main disadvantage of Fisher Vector or VLAD is that they rely on a

limited number of codewords or Gaussian centers, which prevents accurate

modeling of the data distribution in high-dimensional deep feature spaces.

Liu et al. proposed a smart solution to overcome this problem which consists

in sampling the center of each Gaussian from a subspace [45]. It therefore

benefits from an infinite number of Gaussians to fit the data distribution.

The authors showed that this problem can be solved by a classical sparse

coding method, which is a regression with L1 norm regularization (called

LASSO regression). Another interesting solution to cope with this problem

was proposed by Dixit et al who computed Fisher vectors from a Mixture of

Factor Analyzers (MFA) instead of the classical GMM [64]. The idea of MFA

is to approximate the data manifold by low dimensional linear spaces and, in

this sense, is similar to the idea of sparse coding [45]. As shown in Chapter 4,

these solutions are not adapted for end-to-end material classification and one
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of our contribution is to deal with the high dimension of deep features with

an end-to-end pooling module (presented in Chapter 4).

2.3.3 Finetunable methods

End-to-end learning.

Finetunable pooling methods enable an end-to-end learning of the network.

As mentioned in section 1.1.3, during the training phase of a CNN, loss

function’s gradients are backpropagated from the last layer l = L to the first

one l = 1, with respect to an ensemble of every layer’s parameters
{
θ1, ...,θL

}
where L is the number of layers in the CNN. Consequently, all the parameters

can be updated with their own gradients. This learning process is called ’end-

to-end’, since parameters from one end (output) to the other end (input) are

learned jointly under the same supervision of the current classification task.

The advantages of end-to-end learning are obvious: First, instead of in-

dependently training every module one by one, the training phase is unified

into only one step. Thanks to this simplification, the features collection

step is thus cancelled. The large memory, which was necessary to save the

features, is not needed anymore. Second, though it is proven that features

made by pretrained CNNs are transferable into material recognition tasks,

an end-to-end learning can further improve the performance of the classifier

by finetuning the network and fitting the features for the target task. This

end-to-end finetuning contributes to further reduce the loss of the objective

function.

In this section, finetunable pooling methods are regrouped into three

families of methods. Several state-of-the art approaches will be presented for

each family.
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Fisher Vector and BOW methods

Motivated by the advantages of BoW or Fisher Vectors, some researchers

proposed end-to-end trainable versions [65, 42, 43, 44, 63, 66, 67]. Passalis

and Tefas inserted a Bag-of-Features pooling in deep neural networks thanks

to radial basis function neurons [65]. The output of the pooling module is

a histogram of the visual words (0th order statistic) learned from the train-

ing set. NetVLAD was the first network that transforms VLAD into a deep

module which allows an end-to-end training [42]. It was later improved by

Zhang et al. with Deep Ten [43]. It was shown that first order statistics are

more accurate to characterize images in classification tasks and the Fisher

vectors go further by using first and second order statistics. Deep Fisher-

Net is an embedded implementation of the GMM Fisher vector [44]. Lin

et al. introduced NetFV which extends NetVLAD by appending second or-

der statistics [63]. Li et al. embedded the MFA fisher vector [64] in a deep

network which is end-to-end trainable [66]. In a recent study, Brendel and

Bethge also proposed to aggregate the class activation of each local patch in

the image in a global feature vector [67].

Bilinear Pooling

Bilinear model was firstly introduced by Tenenbaum et al in [68] to separate

style and contents. Lin et al. [69] extended it with a pooling layer plugged at

the end of the last convolutional layer. The pooling layer aggregates feature

vectors X =
{
x1, ...,xN |xn ∈ RD

}
of the last convolutional layer by average-

pooling their outer products:

A =
1

N

(
N∑
n=1

xnx
T
n

)
(2.3)
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where the feature map X contains n feature vectors of D dimensions. As

an orderless pooling method, bilinear pooling pools input feature vectors

into a fixed-size output A ∈ RD×D. Furthermore, opposite to Fisher Vec-

tor based methods which need an extra dictionary, bilinear pooling can be

non-parametric. Moreover, it extracts also second order statistics, as Fisher

vectors do. This second aggregation method, though simpler than Fisher

Vector based methods, shown its efficiency for multiple processing tasks, like

texture synthesis [70], style transfer [71], segmentation [72] or visual ques-

tion answering [73, 74]. In particular, according to results provided by the

work [63], bilinear pooling shows superior performance on several classifica-

tion tasks, like fine-grained classification, indoor classification and material

classification.

Following the pioneer work [69], other improvements were proposed to

improve bilinear pooling in different aspects. Wang et al. [75] proposed

G2DeNet containing a Gaussian embedding, which combines bilinear pooling

information (Gaussian’s covariance) and first order information (Gaussian’s

center). This fusion between different order information enables to achieve

better performance than original bilinear pooling. Kernel Pooling (KP) [76]

extends bilinear pooling to higher order pooling and concatenates weighted

representations of the first four orders into a more relevant global represen-

tation.

Another improvement track tries to find compact bilinear pooling solu-

tion. In the work [69], since the feature vector dimension D is equal to 512,

the number of elements in the output matrix A ∈ RD×D is more than 250.000.

Such a cumbersome representation is not practical in many aspects. One of

them is leading to a heavy classifier, containing numerous weights and bias.

Moreover, in the first place, feature vector’s dimension D becomes bigger
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in more recent CNN architectures and this is a well-known tendency in the

deep learning’s network engineering field. As an example, D can reach 2048

for ResNet50 [37]. Dimension reduction for bilinear representation should be

consequently considered. Gao et al. applied existing kernel approximations

such as Random Maclaurin and Tensor Sketch, to produce approximated bi-

linear representations in lower dimension [77]. The authors show that the

dimension can be reduced about 32 times while keeping almost identical per-

formance as the original. Kong and Fowlkes considered a low-rank bilinear

SVM to run classification based on bilinear representation [78]. The key

advantage of this approach is that it avoids to explicitly compute the bilin-

ear representation A (defined in the previous equation). Yu and Salzmann

proposed SMSO that uses a 1× 1 convolution layer and a global `2 pooling

operation to obtain an approximated compact bilinear representation [79]. It

leads output bilinear representation to be Gaussian-distributed which were

shown to be favorable for better classification accuracy.

As the output of the bilinear pooling, bilinear matrix A is Symmetric

Positive Definite (SPD) it lies in the Riemannian manifold and training a

linear classifier in such manifold [69] is clearly sub-optimal. Indeed, the linear

classifiers work more efficiently for features lying in the Euclidean space. In

order to map the SPD matrix manifold into a Euclidean space, multiple works

suggested using matrix-logarithm [80, 72, 81]. They reported improvement

with linear classifiers for semantic segmentation and image classification. The

logarithm scales the eigenvalues of the Singular Value Decomposition (SVD)

of a SPD matrix A by log(A) = U log(Σ)UT . This normalization involves a

SVD explicit computation which runs inefficiently on GPUs [46]. If we plug

the normalization into the deep learning network, it slows down the inference

speed of the network. Lin and Maji also proved that the alternative approach,

27



CHAPTER 2. RELATED WORKS AND DATASETS

matrix square-root of a SPD A: A1/2 = UΣ1/2UT has similar performance

and that A1/2 can be approximated by a variant of Newton iterations which

speeds up this normalization on GPUs [46]. Hence, after this high-speed

matrix square-root normalization is integrated into the network, the network

can be end-to-end trained easily and benefits from normalized features as

well.

iSQRT [82] further introduces Newton iterations into the backward prop-

agation of the network so it speeds up the training process with normalized

bilinear pooling. After coping with the slow training problem, Li et al. [83] ap-

plied iSQRT to deeper CNN, such as ResNet-101 [37] and DenseNet-201 [84],

and trained the networks from scratch on ImageNet and Place365 large-scale

dataset providing an obvious improvement over original networks. Hence,

the second order information is no longer limited to small-scale classification

tasks and can also help for general large-scale visual recognition.

In summary, there are two tracks to improve original bilinear pooling.

One track is to obtain a more Compact Bilinear Pooling (CBP) and the

other one is bilinear matrix normalization. More recently, exploring how

to conceive an algorithm which incorporates these two techniques has been

explored. However, Lin et al. concluded that the matrix normalization can-

not be easily computed in the space of CBP made by kernel approximation

approaches, such as Tensor Sketch [85]. In other words, directly running

some matrix normalization on the CBP features is rather difficult. So the

authors proposed to use the γ democratic algorithm which equalizes the con-

tribution of each outer product xnx
T
n in the final representation A with a

scalar weight. They argued that this algorithm has a similar effect as ma-

trix normalization while working with CBP using Tensor Sketch. Gou et al.

proposed an alternative where the local feature map X is transformed into
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another map Y on which a bilinear pooling is applied so that this output is

the normalized bilinear representation of X [86]. Y has the same size as X

and preserves the original matrix structure. Hence, compact bilinear pool-

ing, such as tensor sketch, can directly work with it. One drawback of this

approach is that a SVD computation is still involved in the transformation,

with the known drawbacks of SVD computation on GPUs. To solve the SVD

issue, Yu et al. normalized X into Y with their faster and simpler RUN algo-

rithm, which, however, only normalizes the maximum eigenvalue [87]. They

later improved the CBP’s Random Maclaurin (RM) with a Shifted Random

Maclaurin (SRM) [88]. SRM needs smaller binary (+1,−1) projection ma-

trices and performs CBP faster.

Compared to the BoW, Fisher vectors or VLAD representations, the bi-

linear pooling does not fit any distribution on the training data and maybe

ignore some relevant features from the training set, as shown in Chapter 4.

However, since it extracts second order statistics, we can exploit some in-

teresting results provided by these approaches to improve our Fisher vector

features (see Chapter 4).

2.3.4 Multi-level outputs

All the methods described above extract features from the last convolutional

layer. However, as the input image goes through the network layer by layer,

features extracted from different levels also contain complementary and rich

information. For material classification, both primitive information (like tex-

ture on a piece of material) and semantic information (like the object cate-

gory) could be combined together in a more discriminative representation, as

illustrated in Fig 2.2. In the following, we present some representative works

which leverage features from different layers.
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Figure 2.2 – If we just crop a local patch (surrounded in blue) from a coffee

cup, the patch appearance suggests a smooth white material, so maybe it

belongs to the “ceramic” class or to the “paper” class. But, if we scale up the

view until we see the surrounding context, anyone will be pretty sure that

the patch on the left image corresponds to a “ceramic”, due to the shape and

the reflectance properties of the object to which it belongs, meanwhile for

the patch on the right image we could state that this patch belongs to the

“paper” category.

Cimpoi et al. not only proposed to pool local features of the last convolu-

tional layer of VGG-19 into orderless representation, but also found that after

combining orderless representation with penultimate Fully Connected layer’s

output, there is an obvious increase of the classification accuracy [31]. The

authors explained that the FC layer can be considered as a pooling method

which is not orderless and which is able to capture the overall shape of the

object present in the image. Shape features can be seen as complementary

features to the orderless representation.

Andrearczyk and Whelan designed a network architecture called Texture

CNN (T-CNN) where features from different layers are respectively average-
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pooled into a compact feature vector and then all the compact vectors are

concatenated into a global one [89].

Inspired by the findings in the work [31], Xue et al. extended the Deep

Texture module [43] to the Deep Encoding Pooling Network (DEP) that feeds

the output of the last convolutional layer of ResNet into two branches: Deep

Texture module and global average pooling layer [13]. The outputs from the

two branches are then fused with a bilinear operation. Hu et al. encapsulated

the two-branch structure of the work [13] into a Learnable Encoding Module

(LEM) and plugged it to the end of basic blocks in the ResNet-50 in order

to encode multi-level texture representations [90].

In the bilinear pooling community, Dai et al. combined first-order features

computed by average pooling and second order features computed by CBP

with a simple concatenation [91]. They also tried to fuse multi-level features

to get a better performance. Herarchical Bilinear Pooling [92] runs bilinear

pooling on local features across different layers and thus enhances bilinear

representation by capturing inter-part feature relations.

Ghose et al. explicitly modeled the extent-of-texture (EOT) and extent-

of-shape (EOS) on a local group of feature vectors [93]. According to the

EOT (resp. EOS), feature vectors are split into two groups and are encoded

separately into a global representation for each group. In the end, with the

guide of EOT (resp. EOS), two global representations are combined and

finally aggregated into an image-wise representation with bilinear pooling.

Unlike these previous methods which concatenate pooled features from

several layers, Zhai et al. propose to concatenate multi-layer feature maps [94,

95]. Then, in the work [94], they applied a module with a cascade structure,

in which global image representation at actual level should guide the next

level representation. At the end, a fusion module is introduced to jointly
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exploit each level’s global representation and to make strong classification

prediction. In the work [95], they designed a different encoding module that,

first generates multiple texture primitives and then encodes texture primi-

tives at one position by its correlations to other local neighbors. Note that,

at the end, the output is an orderless pooled representation and it is finally

integrated with spatial ordered information.

2.4 Conclusions about the related works

All these works around material classification clearly show relevant trends

while revealing clear weaknesses.

Indeed, the most accurate approaches are based on an end-to-end learning

process that allows to make the different modules of the deep architecture

cooperating towards a single goal, which is to minimize the current classifi-

cation loss.

Furthermore, the pooling module is a key element of the workflow and

orderless pooling is currently the main solution proposed in the state-of-the-

art approaches. However, this module ignores that some parts of material

images can be more relevant than others and it seems interesting to be able

to weight the contribution of each local feature vector before pooling it in the

global feature representation. This is the main idea proposed in Chapter 3

of this Thesis.

Also, fitting the training data with a parametric distribution seems to be

adapted to our task and the Fisher Vectors clearly outperform the alterna-

tives among the orderless pooling. However, since the deep features lie in

a very high dimensional space, solutions have to be proposed to accurately

model the data distribution. Sparse coding appears as a smart and accu-
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rate solution [45], but should be designed to be embedded in an end-to-end

trainable architecture. This is one contribution proposed in Chapter 4 of this

Thesis.

Furthermore, we have seen that normalizing such matrices of second order

statistics is crucial before the classification step. Especially, many smart

solutions have been proposed for the output of the bilinear pooling. However,

since the output matrices of our Fisher vector pooling are not PSD, these

solutions have to be adapted. In Chapter 4 of this Thesis, we propose an

accurate and fast normalization for the Fisher matrix.

Finally, we have noticed that exploiting the outputs of several layers im-

prove the classification performances and this is also one idea we propose to

exploit in our solutions.

In order to assess the quality of our contributions and to compare with

these previous works, we need to study the existing material image datasets,

in the next section.

2.5 Material Datasets

To study and validate material recognition methods described in the previ-

ous sections, material databases are always needed and we investigate them

thoroughly in this section. In our opinion, they can be roughly grouped into

three types and we consider their past, their present and their future. In the

next three subsections, the three types will be presented according to this

timeline.
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2.5.1 Datasets taken under controlled conditions

Before the deep learning era, when deep neural networks weren’t used to per-

form large scale image classification, the first group of material datasets were

created with the goal of characterizing the appearance of material instances.

BRTF (Bi-directional Reflection Transmittance Function) and BTF (Bidi-

rectional Texture Function) are widely used models to output parameterized

visual appearance with lighting and viewing condition inputs. In order to

build BRTF/BTF models for real-world material instances, images in these

kinds of datasets were collected under controlled conditions in labs, and the

parameters of these conditions were provided.

Because these datasets focus on the study of material instances, for one

instance, images with different visual appearance need to be extremely col-

lected. Hence, the resulting BRTF/BTF model is able to perfectly describe

this material instance and enables to produce synthesized images. On the

other hand, in each category, the number of instances is rather limited and

instances were carefully chosen by the dataset creators. In one words, this

type of datasets can be well exploited to build instance-level features, that

are invariant to different conditions, but these features may be less transfer-

able to other instances of the same category which are not included in the

dataset.

Below are the representative datasets in this category:

• Columbia-Utrecht Reflectance and Texture Database (CUReT) [26]:

61 material samples taken from 205 different lighting and viewing con-

ditions. As only a single material instance is provided per class, no

generalization can be done to classify object categories, due to a lack

of intra-class variation.
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Figure 2.3 – Left: example of image acquisition setup for taking images under

controlled conditions. From view point V , we measure BTF values (or take

images) of a sample with different illumination sources (I), lighting directions

{θi, φi} and viewing directions {θv, φv}. Right: In each row, four samples of a

category from KTH-TIPS2 [3] are shown. From top to bottom: aluminium,

corduroy, cotton. Intra-class variation is dependent of the category.

• KTH-TIPS2 [3] was created to extend the CUReT database by provid-

ing variations in scale, as well as in pose and in illumination, and by

imaging other samples for each category. As only four samples are pro-

vided per category, this still limits the representation of the intra-class

variance of materials observed in real-world scenarios.

• UBO 2014 [27]: a larger dataset taken under controlled conditions ,

which consists of 7 material categories (carpet, fabric, felt, leather,

stone, wallpaper, wood), each of which contains 12 material instances

for being capable to represent the corresponding intra-class variances.

Full BTF measurements were done using a bi-directional sampling of

151 viewing directions and of 151 lighting directions.
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2.5.2 Real-world datasets

In contrast to datasets taken under controlled conditions, in real-world datasets,

images are taken in the wild and therefore, the material visual appearances

are more varied. It depends on unseen material instance, natural light,

stochastic pose, etc. Moreover, images no longer necessarily show only the

material but context information surrounding the target. Based on the fact

that material images are collected from multiple online sources and images

are taken under random conditions, it becomes possible to exploit invariant

features of material categories. Most of the recent research studies, based

on deep learning network to extract invariant features, can achieve good

classification results with these datasets.

The representative datasets in this category are (refer to the gallery in

the Fig 2.4):

• Flickr Material Dataset (FMD) [1] is a small but popular real-world

material dataset, containing 10 categories and 100 images per category.

Images were downloaded from flickr.com and they were carefully chosen

to cover a wide range of visual appearance in one category. Masks,

locating material region, are also provided for every image. They are

helpful for studies where masking out clutter background is needed (e.g.

when the influence of background context impacts the classification

performance).

• DTD (Describable Textures Dataset) [32] is not a typical material

dataset, because instead of defining categories by material name, like

wood, water, a collection of images having the same texture attributes

(e.g: dotted) is viewed as a category, as illustrated in Fig 2.4. Accord-

ing to earlier work [96], the authors believe that this way to describe
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material is more apt to model human’s perception of textures. The

dataset contains 47 key attributes for a total of 5,640 images, most of

them have limited surrounding background.

• Open Surfaces (OS) dataset [33]. OS comprises 25,357 images, each

containing a number of high-quality texture/material segments. Many

of these segments are annotated with additional attributes such as the

material name, the viewpoint, the BRDF, and the object class. Mate-

rial classes are highly unbalanced and for some of them, only tens of

images are available.

• MINC-2500 (Materials in Context Database) [34] is a subset of MINC.

Its large size makes it very suitable for training a deep CNN. Images

correspond to patches cropped manually from material segments in the

wild. Abundant background context appearing around target mate-

rial makes this dataset quite challenging, see Fig 2.4. It contains 23

commonly-seen material categories and 2500 images per category.

• GTOS (Ground Terrain in Outdoor Scenes) [12]: a dataset for the

study of ground terrain recognition, which can be implemented into

autonomous driving systems to detect current ground terrain’s condi-

tion. This dataset is challenging because some inter-class boundaries

are ambiguous. For example, GTOS owns ’mud’ and ’mud puddle’

categories which are visually similar, as shown in Fig 2.5. The dataset

consists of 30.000 images covering 40 common classes in outdoor scenes.

• COCO (Common Objects in context) dataset [97]: A dataset of images

semantically segmented with 163K images (118K for training, 5K for

validation, 20K for testing, 20K for challenging tests) with annotations

for 91 stuff classes and 1 ’other’ class. It contains several material
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classes, some of them are classified further into more accurate classes,

like water whose instances appear in ‘see’, ‘river’, etc.

• 4D-Light [35] is the first medium-size dataset for light-field images.

Different from RGB images, light-field images are taken with plenoptic

camera, which not only captures light intensity and color in a scene,

as a conventional camera does, but also records light directions with

multi-view points. Light-field images can be seen as an alternative

way to determine materials when it is difficult to determine a material

with its surface reflectance or BTF. As in our study case we limited

our investigations to RGB input images, light-field information was not

investigated in our experiments. This dataset consists of 12 categories

with 100 images per category.

2.5.3 Synthesized database

Material, or texture rendering technique, is widely used in computer graphics.

As material databases are not abundant, and as synthesized material images

can be generated quickly and annotated with no effort, synthesized database

seems to be a good way to enrich existing database.

As discussed in subsection 2.5.1, UBO 2014 [27] contains BTF measure-

ments for all of its 84 samples (7 categories × 12 samples per category).

Combined with environment lighting maps (6 natural lights × 5 directions,

taken from the work [98]) and 42 viewing points, a virtual camera can take

1260 synthesized images (30 illuminations x 42 viewing points). To each cat-

egory corresponds 15.120 images (1260 images per sample x 12 samples per

category). The number of images generated is therefore of 105.840 images

(15.120 images per category x 7 categories).
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Figure 2.4 – Examples of image categories from Real-world datasets. Names

of ’categories’ from left to right: (a) fabric, foliage, glass, leather, metal,

paper, plastic, stone, water, wood; (b) banded, braided, dotted, chequered,

cracked, flecked, grid, knitted, scaly, zigzagged; (c) Painting, sand, mud pud-

dle, stone asphalt, metal cover, paper, ice mud, stone brick, wood chips,

plastic; (d) leather, fire, sponge, wood, fabric, ceramic, brick, hair, food,

wicker; (e) fabric, foliage, glass, leather, metal, paper, plastic, stone, water,

wood; (f) fabric, foliage, fur, glass, leather, metal, paper, plastic, sky, stone,

water, wood.

Weinmann et al. conducted some experiments using synthesized images [27].

A classifier was trained and applied to a test dataset containing also real-

world images. Thanks to its large scale, a synthesized training dataset can

achieve a comparable performance to a small dataset containing real-world

images only. Combining these two dataset together can consistently boost

the classification accuracy. As reported in the work [27], synthesized images

can be considered as a good complementary training data if the size of the
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Figure 2.5 – In the GTOS dataset, some images from different categories may

look very similar, like mud puddle images and puddle images. The subtle

difference can be perceived by water’s reflection in the ’Mud Puddle’ image.

real-world images training dataset is too small.

Another application happens in semantic segmentation [4]. Like the

COCO dataset, this dataset contains many stuff segments (see the Fig 2.6).

The input source is a video game: “Grand Theft Auto 5” where a virtual

world is created in a way to imitate real world’s scenes. It cannot be directly

used as a material database, but as synthesized images [27] do not included

clutter background, it is a good start to study how to collect synthesized ma-

terial segments with a virtual “wild” background. These material segments

can be seen as complementary training samples. Unfortunately, to the best

of our knowledge, so far there is no such material database which simulates

materials in the wild.

As this thesis concerns material recognition in the wild, only some datasets

discussed in the subsection 2.5.2 were used in the works presented in the fol-

lowing chapters.

Moreover, to demonstrate that the contributions proposed in this PhD
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Figure 2.6 – We can crop material segments from the ’wild’ from a COCO

dataset image (top) or a synthesized image (bottom) described in [4]. Es-

pecially for the synthesized dataset, almost infinite samples can be cropped

and annotated with no effort.

can be generalized into other recognition tasks, some other datasets, such as

CUB-200 2011 [99] for fine-grained classification and MIT-67 [100] for indoor

classification will be also involved. The details about these datasets will be

introduced in the following chapters.

2.6 Conclusion

In this chapter, we have presented most of the works dealing with mate-

rial image classification, starting from the first handcrafted features to deep

features. We have emphasized the strengths and weaknesses of the state-of-

the-art solutions. Indeed, orderless pooling on top of a parametric training

distribution fitting seems to be the recent trend providing high classification

performances. Nevertheless, these steps could be highly improved by:
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• weighting the contribution of each local feature vector in the global

pooling, thus taking advantage of the specificity of the material images

that shows highly discriminative local areas next to very common (not

discriminative) areas,

• paying attention to the quality of the deep feature distribution fitting,

which lie in a high dimensional space,

• normalizing the second order statistic representation before applying

the classification step.

We propose to exploit these ideas in the next chapters. The last section of

this chapter was devoted to the different material datasets, which we have

proposed to classify according to their characteristics that meet different

demands in each epoch of material classification’s history. Then, we decided

to use real-world datasets for experiments, considering their suitability for

CNN-based approaches. In the following two chapters, we will respectively

dive into our main contributions.
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Chapter 3

Confidence-based Local Feature Selection

For Material Classification

As discussed earlier in this Thesis, the solutions based on Convolutional

Neural Networks (CNN) have shown outstanding performances in the mate-

rial classification task. Many well-known state-of-the-art CNN architectures,

such as the ResNet family, are applying a Global Average Pooling (GAP, see

Eq. 2.1) as pooling component to aggregate local feature vectors. Most of

the time, this pooling operation helps to prevent overfitting but we claim

that it has a serious weakness for specific images where small details are

crucial to predict their category, such as material images. In this case, the

details are lost in the global average, providing non accurate global features.

Hence, we decided to find a way to select the most important local features

before applying the GAP. However, it is not trivial to select local features,

e.g., as shown by the results of Table 1.1, only keeping features of material

areas (and removing background features) would not improve classification

performance. In this chapter, we choose to add a branch in the classification
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network that predicts the confidence the network should have in each local

feature vector. The less confident features are filtered out before applying

the GAP. Experimental results on three of the material datasets introduced

in section 2.5 show that our approach, in terms of classification accuracy and

output probability calibration, outperforms recent alternatives. We present

these results in Section 3.2.2

3.1 Introduction

Image classification consists in predicting a single class for each input image.

Today, many successful approaches rely on automatic extraction of local fea-

tures with deep neural networks followed by a Global Average Pooling (GAP)

layer that merges all the local features into a single global feature vector [37].

Then, a fully connected layer predicts the image class from this global fea-

ture vector. Because each local feature vector is evenly averaged with others,

every vector equally contributes to the final decision. Consequently, when

large areas of the images are ambiguous and useful information is mainly

provided by a small part of feature vectors, averaging all the local features

could lead to bad predictions.

This phenomenon has already been exemplified in Fig. 1.4 of chapter 1.

Large parts of an image can be ambiguous when it comes to identifying the

material of the pictured object which can lead to bad predictions. On the

other hand, some other areas are very informative and should be emphasized.

On the left column of Fig. 1.4 some small parts of the images are masked

making the class prediction very difficult. When one has access to these

details (right column), class prediction becomes much easier.

In this chapter, we propose a method to automatically select the most
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Figure 3.1 – The workflow of the proposed approach. See text for details.

informative local feature vectors before applying the GAP layer. The ob-

jective is to ensure that the most relevant features contribute to the final

decision while the less informative ones are ignored. We hypothesize that

the usefulness of each local feature vector is related to the confidence of the

network when predicting the image class from this feature vector. Thus, we

trained a two-branch network to output local predictions, as well as associ-

ated confidences. These predicted confidences are used to filter out the local

feature vectors having lower confidence predictions before averaging all local

features into a global feature vector (see Fig. 3.1).

Our contributions, detailed in the following section, are multiple:

• we address the problem of Global Average Pooling in the context of

material classification by weighting local features;

• we adapt a very recent and successful approach, designed for global

failure prediction [6], to local feature confidence prediction;

• we improve the calibration of the output probabilities for material clas-

sification;

• we provide both quantitative and qualitative results on three datasets.
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3.2 Related works on model uncertainty and

confidence

Since the works related to material classification have been largely discussed

in the previous chapter, we concentrate here on the different approaches

dealing with the confidence or uncertainty of the deep models.

3.2.1 Model uncertainty

Although modern neural network architectures bring big improvement to pre-

diction accuracy, including CNN structure used for image classification task,

their real-world implementation also bring safety concerns [101], especially

when incorrect predictions may cause serious consequences in some applica-

tions, such as autonomous driving [102, 103] or in the nuclear domain with

a monitoring system for critical infrastructure [104]. Hence, to avoid such

disasters, an uncertainty or confidence output value made by the model is de-

sirable, in order to show how uncertain or confident the actual prediction is.

With such a confidence measure, safety systems are able to decide whether

to rely on a model’s prediction or to hand the input over to a human. This

is part of a research field called failure prediction.

Model uncertainty is also commonly applied in active learning. Labelling

data is an essential obstacle for many machine learning applications since

it is laborious and costly. Active learning is a framework where a model

learned from a small amount of labeled data provides a confidence value on

unlabelled data. The data with low confidence would be labelled in the next

iteration because for this data, the actual trained model is not confident

about its prediction and it would be more likely to gain more improvement
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if trained with this data. After several iterations of labelling limited by a

budget, a model of good performance can be expected. Approaches based

on uncertainty or confidence define and calculate the value of uncertainty or

confidence, to select data points before labelling them.

In the next sections, we present state-of-the-art methods in failure pre-

diction and active learning, which define and measure model uncertainty.

3.2.2 Class probability based approaches

Suppose that in the case of image classification, with an input image, a

trained CNN outputs its prediction probability vector p̂ ∈ RK according

to Eq. 1.1 and Eq. 1.2. A track of confidence or uncertainty prediction

study is to deduce model’s confidence or uncertainty value, denoted in the

following by conf or unc, from p̂. In this group of approaches, Maximum

Class Probability and entropy methods are widely used. There also exists lots

of task-agnostic improved version, dedicated to human pose estimation [105],

image segmentation [106] or object detection [107], to name a few.

Maximum Class Probability (MCP)

One intuitive way to define a scalar confidence value conf about the CNN’s

prediction on I is just to pick the maximum probability in the predicted

vector:

conf = max
∀k∈Y

p̂k (3.1)

Although MCP method is quite simple, it was demonstrated to be effective

in active learning [108] and selective classification [109]. It is considered as a

baseline of failure prediction [110].
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Entropy

Entropy method, widely used in active learning [111, 112] defines the entropy

of p̂ as model uncertainty (unc):

unc = −
K∑
k=1

p̂k log p̂k (3.2)

Intuitively, a model feels confident about its prediction when the distribution

of p̂ is peaky, i.e. when the entropy value is small. On the other hand, the

model hesitates among different classes when the distribution is flat, i.e.

when the entropy value is high.

In this case, the confidence value is:

conf = logK − unc = logK +
K∑
k=1

p̂k log p̂k (3.3)

Unlike the confidence of MCP which is bounded in [0, 1], the confidence’s

range for the entropy method is [0, logK]. It performs well in [113, 114] and

is used as a baseline in [115, 116].

3.2.3 Confidence calibration

MCP and entropy are baselines to estimate confidence but more accurate

solutions exist. Guo et al. discovered that for modern deep models, the

prediction output is poorly calibrated [5, 117] and sensitive to adversarial

attacks [118, 119]. Consequently some meaningless images used for attacks

can be classified with high confidence value.

In order to introduce the notion of output calibration, we extracted two

plots from the work [5] shown in Fig. 3.2. Suppose that we have N inputs,

then we define {yi, ŷi, conf i)i=1,...,N} where yi is the ground-truth category of

the image Ii and ŷi is its predicted category (Eq. 1.4). The confidence value
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Figure 3.2 – Reliability diagrams for a 5-layer LeNet (left) and a 110-layer

ResNet-110 (right) on CIFAR 100 dataset. These two plots are extracted

from [5].

conf i can be obtained with one of the confidence prediction methods, such as

MCP for example (Eq. 3.1). Then, according to their confidence values, the

inputs are grouped into M equally-spaced bins (M = 10 in the two diagrams

of Fig 3.2). In each bin m, Bm represents a set of indices of predictions whose

confidence values fall into an interval (m−1
M
, m
M

]. And the height of blue bars

in Fig 3.2 represents acc(Bm), i.e. the classification accuracy within bin m:

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(yi == ŷi). (3.4)

The average confidence conf(Bm) is:

conf(Bm) =
1

|Bm|
∑
i∈Bm

conf i. (3.5)

In the case of a well calibrated model, the average accuracy should be

similar to the average confidence for every bin m ∈ {1, ...,M} and visually

the diagrams should plot an identity function (shown as gray dash lines in

Fig 3.2). Fig. 3.2 shows a typical example illustrating that early deep models

such as LeNet [120] from 1998 (left plot) provide well calibrated outputs

whereas modern networks such as ResNet-110 (right plot) are over-confident.
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It seems that the decrease of the error rate from 44.9% to 30.6% between

these two networks comes at the cost of a reduction of the quality of the

output calibration.

From this finding, Guo et al. [5] listed and tested a number of calibration

approaches to remedy it. Among them, a simple extension of Platt Scal-

ing [121], called temperature scaling, appears to be the most reliable. It

introduces a scalar hyper-parameter, namely the temperature T , into the

softmax operation (Eq. 1.2) so that the output is expressed as:

p̂ = softmax(ẑ, T ) (3.6)

where the kth element p̂k is defined as:

p̂k =
exp (ẑk/T )∑K
i exp (ẑk/T )

. (3.7)

When T > 1, the temperature is softening the softmax operation and

thus making the distribution of p̂ more flat. For example, in the extreme

case where T →∞, p̂ follows a uniform distribution and all the elements p̂k

are equal to 1/K. Adding this scaling in the softmax operation, is decreasing

the confidence of the network and, thus provides more calibrated outputs.

Since T does not change the maximum index of softmax in the Eq. 1.4, it

is worth mentioning that this temperature scaling does not affect the model

prediction accuracy.

Temperature scaling was proven effective in object detection [117] and

viewed as an important ingredient to the method ODIN (Out-of-DIstribution

detector for Neural networks) for detecting out-of-distribution samples [122].

3.2.4 Monte-Carlo Dropout

Recently, uncertainty prediction with Bayesian neural networks has gained

a lot of interests [123, 115, 124, 125, 126]. Here, we present a representative
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work, called Monte-Carlo Dropout [123, 115]. Initially, dropout is a reg-

ularization method which zeros out some activation outputs of some layer

when training a CNN, and which is able to mitigate the overfitting prob-

lem [127, 128]. Monte-Carlo Dropout is a recent approach to approximate

inference of Bayesian CNNs with the use of dropout. Different from the CNNs

presented before, in Bayesian CNNs, some prior probability distribution is

placed over the set of every layer’s parameters Θ =
{
θ1, ...,θL

}
:

Θ ∼ P (Θ) (3.8)

Furthermore, output p̂ becomes:

p̂k = P (y = k|I,Θ) (3.9)

According to Eq. 3.8, Θ =
{
θ1, ...,θL

}
does not contain parameters of fixed

values but all of them follow a prior distribution. In other words, we only

have access to probabilities to estimate their values. For example, with the

same input image I, a Bayesian CNN samples its parameters Θ with the

prior distribution and the output p̂k can vary between two inferences. And

if the number of inferences is large enough, we can observe p̂k following a

distribution of Eq. 3.9. The uncertainty is thus measured from the variance

of the output’s distribution P (y = k|I,Θ). More formally, variance of the

distribution over p̂k can be related to an uncertainty value:

unc =
1

K

K∑
k=1

√
EP (Θ)[P (y = k|I,Θ)2]− E2

P (Θ)[P (y = k|I,Θ)] (3.10)
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and the expectation EP (Θ)[P (y = k|I,Θ)] can be approximated by Monte-

Carlo Dropout:

EP (Θ)[P (y = k|I,Θ)] =

∫
P (y = k|I,Θ)P (Θ)dΘ

≈
∫
P (y = k|I,Θ)Q(Θ)dΘ

≈ 1

S

S∑
s=1

P (y = k|I, Θ̂s)

(3.11)

with Θ̂s ∼ Q(Θ) where Q(Θ) is the Dropout distribution. In practice,

dropout operation is added after each layer l. For an image I, we run its

inference S times and the average output is the expectation in Eq. 3.11. For

more details, please refer to the works [123, 115].

3.2.5 True Class Probability

Although MCP is simple and effective, it suffers from poorly calibrated is-

sue [5]. In a recent work [6], another inconvenient property for failure predic-

tion was pointed out: some failure examples with high MCP value overlap

with successful examples (see Fig 3.3, left), making the distinction between

them difficult. This problem occurs because of the overconfidence of modern

deep models. Consequently, Corbiere et al. proposed to use the True Class

Probability (TCP) as a confidence measure [6]. The right plot of Fig 3.3

shows that this measure helps to discriminate between the success and fail-

ure cases. They conclude that TCP is a better choice in term of confidence

value.

More precisely, TCP is the probability prediction value of the ground-

truth class y in p̂:

conf = p̂k=y (3.12)

Unlike MCP, the ground-truth class y is required to evaluate the TCP. So it
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Figure 3.3 – Best viewed in color. Image samples in test dataset of CIFAR

100 are regrouped into confidence bins. Y-axis represents the percentage

of the number of samples in one bin to the total number of samples. Left:

confidence measured by MCP. Right: confidence measured by TCP. These

plots are extracted from the work [6].

can be evaluated only for training data for which the ground-truth category

is available. For test data, Corbiere at al. proposed to train a network to

predict this value [6] and add a branch in their current network whose output

is the predicted TCP value. During the training, when a minibatch of N

input data points in one iteration is {(Ii, yi)i=1,...,N} (where yi is category

label of image Ii) in addition to cross entropy objective function defined by

Eq 1.9 for classification, a mean square error objective function supervises

the branch for accurate confidence prediction:

Lconf =
1

N

N∑
i=1

( ˆconf
i
− p̂k=y)2, (3.13)

where ˆconf
i
is predicted TCP value for image Ii.

Sharing the same idea, Terrance DeVries et al. uses TCP predicted by

neural networks to detect Out-of-Distribution samples [129]. Donggeun Yoo

et al. predicted loss for active learning [130], where loss is equal to − log p̂k=y.

So the approach can be considered as a variant of TCP prediction.
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3.2.6 Other alternatives

Applied to detect Out-of-Distribution samples, an idea of De Vries and Taylor

consists in letting the network have partial access to ground truth information

during training. How much the information the network needs is related

to prediction uncertainty [129]. Jiang et al. proposed a new confidence

measure, called ’Trust score’ which is the ratio between the distance from

a test sample to its second nearest class cluster and the distance to the

predicted class cluster [131]. Dan Roth and Kevin Small introduced a similar

method but measured a margin between probabilities of predicted class and

second predicted class [132]. For SVM classifiers, uncertainty or confidence

can be defined with the use of a decision boundary [133, 134, 135]. In the

speech recognition field, bi-directional lattice RNN is adapted for confidence

prediction [136, 137]. Finally, another group of methods is based on multiple

independent models, such as several CNNs trained separately for the same

task, to measure disagreement among them in term of uncertainty [138, 139,

140, 141]. While effective, the computational burden is also heavier than

approaches based on a single model.

3.2.7 Conclusions

Finally, in this section, we have presented many alternatives to estimate the

confidence of a deep neural network. Because the True Class Probability

(TCP) is easy to get from the ground-truth and provides good results in the

work [6], we propose to leverage this information to weight the contribution

of each local feature vector of our feature map, before applying the Global

Average Pooling. Note that none of the previous papers have used the con-

fidence to select local features, but instead mainly propose to exploit the
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confidence to predict failure in the classification task.

Similar to our idea, Qiu proposed to weight the contribution of each

local feature vector and to compute a Global Weighted Average Pooling

(GWAP) [142]. The main problem of this solution is that it increases the

number of trainable parameters without adding any supervision, increasing

the risk of overfitting. Indeed, the weights in the work [142] are learned by

back-propagating the gradient of the classification loss and are not related

to the confidence of the network. On the contrary, our solution consists in

supervising the weight learning with a confidence map, as detailed in the

next section. We will show in the experimental section, that our approach

outperforms the GWAP proposed by Qiu.

3.3 Our approach

3.3.1 Deep neural network with Global Average Pooling

Let us denote a training sample as (I, y) where I ∈ RW×H×3 is an RGB image

and y ∈ Y = {1, ..., K} is its ground truth category. Recent deep networks

such as the ResNet series can be decomposed into three parts:

• the feature extractor fconv constituted by convolutional layers;

• the Global Average Pooling (GAP) favg that discards any spatial infor-

mation;

• a fully-connected (FC) layer fFC followed by a Softmax function.

Hence, the output is the predicted distribution p̂ of the probabilities over

all the classes:

p̂ = Softmax(fFC(favg(fconv(I)))). (3.14)
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Note that p̂ is a K-dimensional vector p̂ = [p̂1, p̂2, ..., p̂K ].

While training the network, the parameters are updated in order to mini-

mize the cross-entropy loss (over a batch of images) Lce (see Eq. 1.9) between

the ground-truth category y and the predicted p̂.

Since the FC layer and the GAP layer are linear transforms, they can be

switched in the process so that the FC layers are applied before the GAP.

The predicted probabilities are then:

p̂ = Softmax(favg(fFC(fconv(I)))). (3.15)

Obviously, in this case, the fully-connected layer is applied individually to

each local feature vector returned by fconv, in the form of 1x1 convolutions,

as shown in the left workflow of Figure 3.5. This formulation is interesting for

our approach since it represents individual processing of each feature vector.

This architecture has shown very good results in many classification ap-

plications, but it might not be the optimal solution for material image clas-

sification. Indeed, as discussed in the introduction and confirmed in many

successful orderless aggregation solutions proposed for this task, large areas

of material images can be ambiguous about the class of the considered image,

while some details appear to be very discriminative. A simple average of all

the local features into a global vector can lead to loss of useful information.

This is illustrated with the two images from Fig. 3.4, where we propose to

have a look at the map prediction provided by the network without applying

the GAP:

P̂ = Softmax(fFC(fconv(I))), (3.16)

where each local feature vector vi is associated with one local prediction at

the ith location in the map as follows:

p̂i = P̂:,i. (3.17)
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Input image Maximum probabilities Confidence-weighted

Class = Leather Metal (0.32) Leather (0.56)

Wood (0.29) Metal (0.21)

Leather (0.26) Wood (0.18)

Class = Metal Water (0.71) Metal (0.60)

Metal (0.14) Water (0.34)

Leather (0.06) Glass (0.03)

Fabric  Foliage  Glass  Leather  Metal  Paper  Plastic   Stone   Water   Wood

Figure 3.4 – Local decision maps for two different images. The two right

columns show the categories and scores of the locally maximum probabilities

before (second column) and after (third column) weighting them with the

corresponding local confidences.

The first column of this figure shows two images with their ground truth

category. The second column shows, for each local feature vector vi, the

category ŷi that locally has the maximum score as well as its score (p̂i)ŷi :

ŷi = argmax
k∈Y

(p̂i)k, (3.18)

(p̂i)ŷi = max
k∈Y

(p̂i)k. (3.19)

As shown at the bottom of the figure a false color is associated to each
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category. The lightness of these colors is proportional to the score of the cor-

responding category (p̂i)ŷi , i.e. dark colors mean that the associated proba-

bility is low whereas lighter colors represent high probabilities.

Below each illustration, we mention the three most probable categories

provided by the whole network, including the GAP. In this classical case,

each image gets a single global probability vector and these three mentioned

categories are the ones that get the highest probabilities. We can see that,

for both examples, the most probable category is not the ground truth one,

leading to an incorrect classification for these images. We can also notice that

most of the local predictions are associated with very light colors, showing

that the network is overconfident in most of the cases, even for non-correct

predictions.

As illustrated in the last column of Fig. 3.4, our aim is to select the most

important local feature vectors, and remove the least important ones, before

applying the GAP in the network. We propose to relate the "importance"

of each local feature vector to its associated class prediction confidence.

3.3.2 Predicting local confidences

In order to select the most important local feature vectors, we propose to

train a branch of our network to predict the confidence of the category pre-

diction related to each local feature vector. In this aim, we take inspiration

from [6] that deals with failure prediction in image classification task. In this

paper, the authors tried to find out which images are potentially misclassi-

fied by estimating the True Class Probability (TCP) along with the category

prediction. We propose to adapt this approach in order to predict local TCP

that help us to select the most confident local feature vectors.

As defined in [6], the TCP is the predicted probability of the ground truth
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category y of the considered image:

TCP = p̂k=y (3.20)

Given a local feature vector, a high TCP means that this vector leads to

a prediction that has a high probability to be the correct class, which means

that we should trust it. On the contrary, if the TCP of a local feature vector

is low, this means that it predicts a low probability for the correct class and,

so, should not be considered in the final global decision.

Obviously, at test time, the ground truth category is not available and

therefore neither is the TCP. Thus, we propose to add a branch fconf in our

network whose the aim is to predict the TCP of each local feature vector.

As illustrated on the right of Fig. 3.5, the input of this branch is the feature

map extracted from the image and its output is a predicted TCP map:

T̂CP = fconf (fconv(I)) (3.21)

First step Second step

Figure 3.5 – The two successive training steps. See text for details.

The idea of this new branch is that the network is learning if some lo-

cal features are rather ambiguous or not with respect to the category they

predict. The details about the structure of fconf are available in the next

section.

Thus, if the network is able to automatically predict the TCP of each

local feature vector, we can use these predictions as the confidence we should
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Table 3.1 – The two steps of the proposed learning scheme.

Step Loss Frozen parameters Learned parameters

Step 1 Lce fconf+fconv fFC

Step 2 Lconf fconv + fFC fconf

have in each vector and select the most confident ones before applying their

average (see Fig. 3.1).

In order to illustrate the intuition behind our idea, we show in the last

column of Fig. 3.4 how the local probabilities are transformed when they are

weighted by their corresponding confidence (TCP). It is worth mentioning

that this weighting scheme is just presented for illustration. In practice, the

confidences are used to select the most confident local feature vectors, with

a threshold, as detailed below.

3.3.3 The training process

The whole training process is composed of two steps as shown in Fig 3.5.

During the first step, the classification network is trained with the cross-

entropy loss Lce. After reaching convergence, the parameters of the trained

network are frozen and the confidence prediction branch is trained. To this

end, we feed the classification network with images and their ground truth

category in order to evaluate their ground-truth TCP map TCP (confidence

map). Then, we train the confidence prediction branch fconf so that it is

able to automatically predict the TCP map for each image by minimizing

Lconf , the mean square error between the ground truth map TCP and the

predicted one T̂CP. A summary of the two training steps is provided in

Table 3.1.

60



CHAPTER 3. CONFIDENCE-BASED LOCAL FEATURE SELECTION
FOR MATERIAL CLASSIFICATION

3.4 Experiments

In this section, we present the experimental results provided by our approach

in a material classification task. The tests are conducted over three datasets

and the results are compared with recent alternatives.

3.4.1 The datasets

Three classical material datasets are used for testing (see Fig. 2.3 and Fig. 2.4

for image examples). The Flickr Material Dataset (FMD) [1] is a popular

benchmark material dataset which contains 10 categories with 100 images

per category. KTH-TIPS-2b [3] (called hereafter KTH) has 11 categories

with 432 images for each category. The 4D-light dataset [35] is a light-field

material dataset which consists of 12 categories with 100 images per category.

For FMD and 4D-Light, we run a 5-fold experiment by splitting the

dataset into 5 non-overlapping subsets. For each run, 4 subsets were used for

training and 1 for testing. For KTH, following the experiments from [43], we

randomly chose half of the images for training (216 per category) and half

for testing. The results are also averaged over 5 runs.

3.4.2 Tested approaches

Our method is compared with several recent and classical approaches. Here,

a brief presentation to each of them are given (see more details about the

approaches in the section 3.2.2)

The baseline is a classical network without weighting scheme as illus-

trated in the left of Fig. 3.5 (first step).

Since output probability calibration is one aim of our framework, we pro-
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pose to compare our results with the temperature scaling solution [5]. As

recommended by the authors, this approach required a validation set to fix

the temperature. Thus, for this method, about 10% of the images for each

category were randomly extracted from the training set to constitute the

validation set. The test set is the same for all the approaches for fair com-

parison. The baseline was also tested on this reduced training set (mentioned

as "90% Training" in the Tables) for information.

The entropy of the predicted class probabilities could be seen as a con-

fidence score and is used in some recent papers [115, 116]. Indeed, a peaky

prediction vector (low entropy) means that the network is confident in its pre-

diction, while a flat probability vector (high entropy) shows that the network

is hesitating between the different classes. In our experiment, we propose to

compare our method with a local selection based on the entropy of each local

classification prediction. In the experiment, we have chosen the threshold

that performs best for this approach. We have also tested the maximum

probability (MaxProb) as a confidence measure.

The Monte-Carlo Dropout approach [123] is denoted MCDropout in

the Tables.

The Global Weighted Average Pooling (GWAP) is similar to our ap-

proach, except that it predicts a score map without any additive supervision

than the classification loss [142]. In this case, the architecture is similar

to our proposed solution with two branches that are simultaneously trained

with a single cross-entropy loss Lce.

Finally, we are also presenting the results of state-of-the-art approaches

for each of the three material datasets used. Even if the architectures are

different, the results inform us about the best current results provided on

these datasets.
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3.4.3 Experimental settings

For all the tested models, the network backbone is ResNet-50 [37] pretrained

on the ImageNet dataset [143].

Our confidence prediction block fconf is composed of 3 successive 3x3

convolutional layers with respectively 384 kernels with ReLu, 192 kernels

with ReLu and 1 kernel with a Sigmoid. The input of this block is the

concatenation of the feature maps from the two last convolutional blocks of

the backbone.

As previously explained, the aim of our solution is to filter out the least

confident local feature vectors before applying the GAP. One threshold has

to be fixed in order to decide which vectors should be discarded. For all our

experiments, we have chosen to remove the feature vectors whose associated

predicted confidence is lower than 0.2. This threshold is fixed for all the runs

and all the datasets.

For all the approaches, channel-wise normalization is applied (zero mean

and unit variance) as a pre-processing. For data augmentation, all images

are resized to 384x384. 8% to 100% of the area of each image is randomly

cropped, transformed with a random aspect ratio between 3
4
and 4

3
of the

original aspect ratio, and resized to 352x352. Additionally, random horizontal

and vertical flip with a probability of 50% is applied to each image. At test

time, we just use the images with their original sizes.

We use Adagrad as optimization algorithm with a mini-batch size of 8.

The learning rate starts from 0.01 at step 1 and from 0.001 at step 2 and is

divided by 10 after 5 epochs with no improvement about minimizing training

loss at step 1 and after 30 epochs at step 2.
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3.4.4 Results

The first results are presented in Table 3.2, where three criteria are provided:

the classification accuracy, the Expected Calibration Error (ECE) [144] and

the Negative Log Likelihood (NLL) [5].

ECE calculates the weighted average difference between classification ac-

curacy and average confidence in each bin. As mentioned in the sec 3.2.3,

samples in the test dataset can be regrouped into each bins m ∈ {1, ...,M}

and we can calculate acc(Bm) and conf(Bm), following respectively Eq. 3.4

and Eq. 3.5. The ECE value of these predictions is:

ECE =
M∑
m=1

|Bm|
N
|acc(Bm)− conf(Bm)| (3.22)

where |Bm| is the number of predictions in Bm. The smaller the ECE value,

the better is the confidence calibration. And the minimum ECE value is

zero with perfect calibration, i.e. acc(Bm) == conf(Bm) for every bin m ∈

{1, ...,M}.

And NLL is refered to cross entropy loss (see Eq. 1.9) in the context of

deep learning and is considered as a standard criteria for the quantity of

probability prediction given by a model [145]. Its low value demonstrates

well-calibrated probabilities.

In Table 3.2, we can see that the temperature scaling overall actually

improves the output calibration over the baseline with the same settings,

while preserving the accuracy. Indeed, the single aim of this approach is

to calibrate the output probabilities of the network without modifying the

classification accuracy of the baseline, since the probability ranking is not

modified by this scaling. Nevertheless, for the KTH dataset, we can see that

the scaling does not improve the calibration. We think that it is due to the

high diversity within each category of this dataset, that makes it difficult
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Table 3.2 – The results of the tested approaches on the three

datasets. Averages over 5 runs.

FMD KTH 4D-Light

Approaches ECE NLL Accc ECE NLL Accc ECE NLL Accc

Baseline 0.080 0.517 83.2 0.060 0.54 82.1 0.074 0.537 83.1

Baselinea 0.087 0.543 83.1 0.064 0.55 81.9 0.061 0.535 83.0

Temperatureb0.071 0.529 83.1 0.120 1.20 81.9 0.049 0.532 83.0

Entropy 0.070 0.510 83.1 0.060 0.54 82.1 0.073 0.537 83.1

MaxProb 0.079 0.517 83.2 0.060 0.54 82.1 0.074 0.537 83.1

MCDropout 0.081 0.516 83.0 0.060 0.54 82.2 0.073 0.537 83.0

GWAP 0.067 0.525 83.3 0.063 0.55 81.7 0.063 0.529 84.0

Our 0.061 0.470 84.8 0.058 0.52 83.1 0.058 0.527 84.8

a 90% Training
b 90% Train./10% Val.
c Acc: abbreviation of Accuracy(%)
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Table 3.3 – Comparison of the classification accuracy (%) with the state-of-

the-art solutions on the three datasets.

Approaches FMDKTH4D-Light

LFV+FC-CNN [61] 83.5 83.1 -

Deep Ten [43] 80.2 82.0 84.1

FV-CNN [31] 82.4 81.1 82.6

B-CNN [63] 80.5 80.2 84.3

Confidence prediction (Our) 84.8 83.1 84.8

to estimate the temperature scaling on the validation set. Interestingly, the

entropy-based approach also reduces the calibration error on FMD but does

not improve the accuracy over the baseline. Overall, entropy- and maxi-

mum probability-based approaches have very small impacts on the results.

The GWAP approach provides inconsistent improvement ’for the calibration

quality and slightly improves the accuracy. We can notice that our approach

clearly outperforms all the tested methods for the three criteria. Indeed, by

discarding the least confident local feature vectors, our model is able to pre-

dict calibrated and accurate probabilities. It is worth mentioning that the

architectures of our solution and GWAP are identical. This clearly shows

that supervising the second branch with the True Class Probabilities is a

good solution to predict accurate confidences and select the best local fea-

tures.

Finally, we propose to compare the accuracy provided by our method

with state-of-the-art solutions designed for material classification (see Ta-

ble 3.3). The reported results have been extracted from the published pa-

pers, when available. Despite the simplicity of our approach, we notice that
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Incorrect local predictions Correct local predictions

Figure 3.6 – Confidence prediction versus the maximum predicted probability

for the FMD test set.

it outperforms all the recent state-of-the-art solutions designed for material

classification. These results confirm that it is very interesting to concentrate

the category decision on specific areas of material images and that predicting

the confidence of each local feature vector is an effective way to do that.

3.4.5 Predicted confidence analysis

In this section, we propose to look deeper at the maximum probabilities and

associated predicted confidences by analysing the two plots of Fig. 3.6. Each

point of these plots is associated with one local feature vector. The vertical

axis is the confidence predicted by our confidence-branch for this vector and

the horizontal axis is the value of the maximum probability (maxk∈Y p̂k, see

Eq. 3.19) predicted by our classification-branch. If this maximum probability

corresponds to the true category of the feature vector, the point is drawn on

the right plot. Otherwise, it is drawn on the left plot. Thus, on the left plot,

even if the maximum probability is high, the associated predicted confidence

should be low, because the category prediction is not correct. On the right
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plot, the predicted confidence should follow the maximum probability value.

For each plot, we have drawn in red the average trend of confidence. We can

see that the confidence we are predicting is rather stable at a low value for the

incorrect predictions and that it is almost linearly increasing with the max

probability for correct predictions. These plots show that our confidence-

branch predicts accurate confidences that allow to remove ambiguous local

feature vectors.

3.4.6 Threshold analysis

As described in the previous subsection 3.4.3, for all the tests, we set a

threshold value and only input those local feature vectors with associated

predicted confidence higher than that value into the next average pooling.

In this section, with the FMD dataset, the impact of threshold value on

the classification accuracy is analyzed. The results are shown in Fig 3.7,

where horizontal axis is the threshold value, increasing from 0 to 1, and ver-

tical axis is classification accuracy(%). According to this figure, the highest

accuracy peak can be found when the threshold is around 0.2. Hence, the

threshold of 0.2 is used in our approach. It should be mentioned that, in the

case where all the feature vectors are eliminated in one image, the average

pooling will take all the feature vectors as input. Consequently, the accuracy

value with the threshold 1 is equal to the one obtained when the threshold

is 0.

3.4.7 Binary or non-binary weights

In our approach, selection procedure plus average pooling could be viewed

as a special case for weighted average pooling where each feature vector is

weighted by a binary value, i.e. ‘0’ or ‘1’. ‘1’ means to select the feature vector
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Figure 3.7 – Classification accuracy(%) versus threshold for the FMD test

set

and ‘0’ indicates that corresponding vector should be eliminated. And this

value is derived from binarizing predicted confidence value, i.e. T̂CP , with

a threshold:

weight =

1, if T̂CP ≥ threshold

0, otherwise

In this section, we investigate our approach’s performance if weighting

each feature vector directly with its associated predicted confidence. The re-

sults with binary and non-binary weights are provided in Table 3.4. Accord-

ing to this table, both binary and non-binary method improve classification

performance over baseline. However, non-binary method has mixed perfor-

mance for probability calibration, showing that it is recommended to keep

and to delete feature vectors rather than to weight them with soft weights.

In other words, feature vectors with medium confidence are as important
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Table 3.4 – The results of our approach with binary and non-

binary weights

FMD KTH 4D-Light

Approaches ECE NLL Accc ECE NLL Accc ECE NLL Accc

Baseline 0.080 0.517 83.2 0.060 0.54 82.1 0.074 0.537 83.1

Binary 0.061 0.470 84.8 0.058 0.52 83.1 0.058 0.527 84.8

Non-binary 0.052 0.479 84.7 0.090 0.57 83.0 0.072 0.554 84.3

c Acc: abbreviation of Accuracy(%)

as those with high confidence for probability calibration. Furthermore, fea-

ture vectors with low confidence are harmful for probability calibration and

should be removed.

3.4.8 Performance on large-scale dataset

In the previous experiments, we have validated our proposed approach on

three small-scale material datasets. And in this section, we choose a large-

scale material dataset, MINC-2500, containing 23 categories and 2500 images

per category. We run a 5-fold experiment with the splits provided by dataset’s

developers. The experimental settings are the same as those in the subsec-

tion 3.4.3. As for learning scheme, the whole network without confidence

prediction branch is learned in order to obtain the results of baseline. Then,

we build confidence prediction network by copying the baseline network as

the main branch and by adding a confidence prediction branch with randomly

initialized parameters. We first train the confidence prediction branch and

then finetune the whole network with target ture class probability maps TCP

produced by the baseline network.
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The results are shown in the Table 3.5. This time, our approach (third

row) is not as good as baseline (second row). In particular, we found that

the values of ECE and NLL are much bigger than those given by the base-

line. In order to find out the reason, we did two tests based on our approach

and recorded their results (fourth and fifth rows). Speaking of the tests,

we cheated the selection procedure and we removed (resp. kept) bad (resp.

good) local feature vectors by comparing their associated ground-truth con-

fidence scores with the threshold. Here, ’good’ local feature vector means its

corresponding local classification prediction is correct and ’bad’ local feature

vector means wrong local prediction. According to the results of the two

tests, if bad local feature vectors were all well detected, our approach would

have greatly improved the performance in comparison with the baseline. In

other words, these results imply that our approach has difficulties in giving

low enough confidence score to these bad vectors so as to delete them later.

The reason is that, when training the confidence prediction network, most

of training samples given by the baseline network are either good local fea-

ture vectors with peaky probability distribution of their prediction or bad

ones with relatively uniform probability distribution. Consequently, the con-

fidence prediction network cannot be fully trained with hard samples which

have bad local feature vector with peaky probability distribution. However,

during the test phase, for each image, the baseline network learns to select

certain local feature vectors and let them dominate the final classification

prediction after global average pooling. To to be dominant, the probabil-

ity distribution of corresponding local predictions become peaky. But unlike

what happens in the training phase, the hard samples appear more often in

the wrongly-classified images. Due to insufficient training with hard sam-

ples, the confidence prediction network is not able to detect them and to
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Table 3.5 – The results of our approach and baseline for MINC-2500

Approaches ECE NLL Accuracy(%)

baseline 0.0702 0.7594 78.57

ours 0.1539 1.2990 78.36

ours(bad local vectors removed) 0.0124 0.2459 95.49

ours(good local vectors kept) 0.1352 1.0862 80.11

give them low enough confidence scores. Even worse, those hard samples are

not deleted but can be further emphasized if other less salient local feature

vectors are detected and deleted. Hence, after processed by our approach and

GAP, wrong final predictions risk being more wrong and encourage ECE and

NLL to simultaneously have high values.

3.5 Conclusions

In this chapter, we have proposed an original solution for material classifica-

tion. Since material images present large ambiguous areas that do not help or

even influence the classification process, our idea consists in removing these

parts from the feature maps before taking the average final decision. To this

end, we have proposed to add a branch in the classical network in order to

predict the confidence associated with each local feature vector. This branch

is trained to predict the True Class Probability (TCP) during the learning

step. This TCP can be seen as a confidence and allows us to filter out am-

biguous or disturbing local feature vectors before applying Global Average

Pooling. Experimental results on three small-scale datasets show that our

solution outperforms other alternatives and classical models for both the ac-
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curacy of the network and the output probability calibration. In order to

select the most confident feature vectors, a fixed threshold has been used in

this chapter, it has been set empirically. Future works will consist to train

the network to predict this value.
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Chapter 4

Sparse coding and normalization for deep

Fisher score representation

In Chapter 3, we have proposed a solution to select the most relevant local

features from an image before pooling them in a global representation. In

this Chapter, we propose to pay attention to the pooling step itself. Among

the orderless pooling strategy, the Fisher Scores have been shown to outper-

form many alternatives on classification tasks. However, they require to fit a

model on the training data and their performances are very dependent on the

quality of this model and on the normalization steps applied to these second

order statistics. In this chapter, we propose to embed the Fisher scores in an

end-to-end trainable deep network by concentrating on two crucial elements:

adapting the encoding to the deep features and normalizing the extracted

second order statistics. Therefore, we propose to make use of a deep sparse

coding module that allows to sample the center of each Gaussian function

from the learned subspace and thus to better fit the high dimensional data

distribution. Second, we introduce a new normalization module that com-

75



CHAPTER 4. SPARSE CODING AND NORMALIZATION FOR DEEP
FISHER SCORE REPRESENTATION

putes an approximate square root matrix normalization well adapted to the

Fisher vectors. These processing steps are embedded in a deep network so

that all the modules work together for the sole purpose of improving clas-

sification performance. Experimental results show that this solution clearly

outperforms the existing approaches in the context of material, indoor scenes

or fine-grained image classification.

4.1 Introduction

Deep neural networks have emerged as an essential solution for performing

classification tasks. In these networks, convolutional layers extract accurate

local features that are pooled to a global feature vector which is sent to fully

connected layers for classification. The first networks neglected the pooling

step and directly sent the set of local features in the dense layers [36], while

the series of ResNet apply a global average pooling to decrease the dimension

of the global feature vector and hence reduce the number of parameters of

the network [37]. Orderless pooling was widely used before convolutional

neural networks (CNN) with bags of visual words (BOW) [38], VLAD [39]

or Fisher Vectors [40] and has shown to provide good results when applied

to CNN features [31, 41]. Among them, Fisher Vectors (FV) were the most

promising because they generalize VLAD and BOW. The main idea of FV is

to model the distribution of the training data with a Gaussian mixture and to

characterize each data point with the derivatives over the model parameters.

It appears that two main steps are crucial in such an approach [40]: the

data distribution has to be accurately fitted by the Gaussian mixture and

the provided second order statistics have to be carefully normalized. In this

chapter, we propose to embed the Fisher representation in an end-to-end
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trainable network by concentrating on these two steps.

First, a Gaussian Mixture Model (GMM) seems not to be well adapted

to the deep local features since they are lying in a very high dimensional

space and the deep local features require too many Gaussians to be accu-

rately modeled [45]. Liu et al. proposed a smart solution to overcome this

problem which consists in sampling the center of each Gaussian from a sub-

space and therefore benefiting from an infinite number of Gaussians to fit

in the data distribution [45]. The authors showed that this problem can be

solved by a classical sparse coding method. Unfortunately, their approach

cannot take advantage of end-to-end training of the feature extraction, the

pooling and the classification layers. To cope with this problem, we propose

in this chapter, to make use of the deep sparse coding module introduced in

the work [146].

Second, a recent study has shown that the normalization of the second

order statistics has a strong impact on the classification performance [46].

The authors proposed in particular to use a square-root matrix normalization

combined with element-wise square-root and l2 normalization for bi-linear

pooling. Unfortunately, unlike the bi-linear pooling used in the work [46],

our Fisher representation does not provide a square matrix, thus rendering

the solution from the work [46] unusable. Thus, in this chapter, we propose

to adapt the square-root matrix normalization to non square matrices and

to embed this original module in a deep network.

By combining these two main contributions, we propose an original end-

to-end trainable deep network that:

• extracts accurate features from the images ;

• pools them into a deep Fisher representation ;
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• normalizes these statistics.

By backpropagating the gradient of the classification loss, we are able to

make all these modules collaborate, with the sole objective of improving the

performance of the classification task. Experimental tests on three different

datasets and three different backbone architectures showed that our solution

outperforms many alternatives.

4.2 Related work

4.2.1 Orderless pooling

As detailed in Chapter 2, orderless pooling was widely used before the emer-

gence of the CNN-based solutions. The most popular approaches were based

on bags of visual words (BOW) [38], VLAD [39] or Fisher Vectors [40]. In-

spired by these early methods, some works evaluated the Fisher vectors or

VLAD from deep features for texture or image classification [31, 41]. They

showed improvements over the SIFT-based counterparts but, in their work-

flow, the dictionary or Gaussian mixture model were learned independently

from the deep features and from the classifier, providing opportunities for

significant improvements.

As a consequence, more recent works focused on embedding orderless

pooling in deep networks to allow end-to-end training. Passalis and Tefas

inserted a Bag-of-Features pooling in deep neural networks thanks to radial

basis function neurons [65]. The output of the pooling module is a histogram

of the visual words (0th order statistics) learned on the training set.

Instead of counting the occurrences of the visual words in one image,

VLAD-based approaches aggregate the residuals between the local features
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and their nearest visual words (1st order statistics). NetVLAD is the first

network that solves this task with an end-to-end training [42] and was later

improved by Zhang et al. with Deep Ten [43]. It has been shown that first or-

der statistics are more accurate to characterize images in classification tasks.

Furthermore, the Fisher vectors go further by using first and second order

statistics. Deep FisherNet is an embedded implementation of the GMM

Fisher vector [44]. Lin et al. introduced NetFV which extends NetVLAD

by appending the second order statistics [63]. The main disadvantage of

all these approaches is that they rely on a limited number of codewords or

Gaussian centers, which prevents accurate modeling of the data distribution

in high-dimensional deep feature spaces [45].

One interesting solution to cope with this problem was proposed by Li

et al. [66]. The authors compute Fisher vectors from a Mixture of Factor

Analyzers (MFA), instead of the classical GMM. Their solution is embedded

in a deep network which is trainable end-to-end. The idea of MFA is to

approximate the data manifold by low dimensional linear spaces and, in this

sense, is similar to the idea of sparse coding [45]. Nevertheless, even if the

MFA module is embedded in a deep network, the authors showed that an

accurate initialization of the weights of the network is required to obtain

good performance. This initialization consists in running an Expectation-

Maximization algorithm on the set of local features that have to be saved in

memory. Furthermore, it appears that this second order representation has

high computation costs and requires a high number of parameters to learn.

Moreover, it occupies a very large memory space (500k dimensions which is

more than the image itself) [147].

Another group of second-order pooling works is based on bilinear coding,

such as BCNN [63] which is also an end-to-end trainable network. It aggre-
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gates feature vectors by sum-pooling their outer products. Since this pooled

representation always has a large size, SMSO [79] proposed to compress the

bilinear pooled features while simultaneously improving the classification per-

formance.

Our method is inspired by the work of Liu et al. [45] detailed in the next

section. More recently, they also proposed an improved version of their work

, called HSCFV [148]. It uses two dictionaries to code input features and

consequently, doubles the dimension size of the Fisher vector. Nevertheless,

their approach is not embedded in a deep CNN for end-to-end training.

Our method combines all the benefits of these previous solutions:

• it is embedded in an end-to-end trainable network;

• it samples an infinite number of Gaussian centers from a learned sub-

space;

• it does not require any heavy computation or storage to initialize the

weights.

4.2.2 Normalization

As a post-processing step after orderless pooling, normalization plays an

important role in improving the performance of the classifier. Perronin

et al. observed that the representation pooled by Fisher vectors is de-

graded by burstiness issues where discriminative but relatively rare visual

features are overwhelmed by those that are more frequent [58]. To alleviate

this problem, some papers propose element-wise signed square rooting and

L2-normalization [58, 59]. This normalization combination is also widely

adopted in several successive orderless pooling works [42, 63, 45].
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Besides the burstiness issue, Lin and Maji argued that the output of bi-

linear pooling should be normalized by matrix-logarithm functions in order

to preserve the distances between elements in the manifold [46]. Such nor-

malization has been applied successfully with linear classifiers for semantic

segmentation and image classification [80, 72, 81] . The logarithm scales

the eigenvalues in the Singular Value Decomposition (SVD) of a Symmetric

Positive Definite (SPD) matrix A such as log(A) = Q log(Σ)QT . Unfortu-

nately, as the SVD decomposition is computed inefficiently on GPUs [46],

it slows down the network’s inference speed. Nevertheless, Lin and Maji

proposed a fast alternative approach with comparable performance. It is

based on a variant of Newton iterations [46]. This solution approximates the

matrix square-root and can be embedded in a network that can be trained

end-to-end.

Unfortunately, this approach is exclusively designed for SPD matrices,

such as the outputs of the bilinear pooling, and it cannot directly be applied

to our Fisher representations that are rectangular and non symmetric matri-

ces. Therefore, we propose, in this chapter, a new normalization step for such

second order statistics matrices. This normalization can also be embedded

in a deep network.

4.3 Deep sparse coding Fisher vector

Fig. 4.1 illustrates the complete workflow of our solution whose successive

steps are detailed in this section. Our network starts with a pre-trained

backbone of convolutional layers, on top of which a dictionary sparse coding

with a LISTA module is applied. Then, the Fisher vectors are extracted from

these features and normalized before being sent to a fully connected layer.
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Local feature
extraction

(conv. layers)

Sparse Coding
(LISTA)

Fisher vector
coding

Classification
(FC. layers)

Image

Figure 4.1 – Workflow of the proposed solution.

4.3.1 Mean Vector Subtraction

As shown in Fig. 4.1, the network backbone provides a feature map X ∈

RD×H×W where D,H,W are its depth, height and width. As only orderless

pooling is discussed in this chapter, the feature map is reshaped to a 2D

matrix X ∈ RD×N where N = HW . Therefore, its spatial arrangement is

omitted and the column i of the matrix represents a D-dimensional local

feature vector xi = X:,i. Before applying the proposed dictionary encoding,

it is worth mentioning that these local feature vectors xi are centered to zero

mean:

x′i = xi −
1

N

(
N∑
i=1

xi

)
. (4.1)

Thanks to this pre-processing, the following sparse coding process does

not need to waste its effort to first estimate this global offset, and thus spares

more resources (i.e. atoms in the dictionary) on more accurate feature space

modeling. We noticed that the classification performances are improved when

adding this step (see more details in the section 4.5.4). For simplicity, in

the rest of this chapter, we omit the prime on the xi so feature

vector xi and feature map X are always the results after mean

vector subtraction.
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Figure 4.2 – Illustrating the ideas of BoW, VLAD and FV. (a) BoW: counting

the number of local feature vectors (hollow circles) around their respective

nearest codeword (filled circles). (b) VLAD: sum pooling residual vectors

between each codeword and its assigned local feature vectors. (c) FV: gradi-

ent vectors which update Gaussian Mixture Model to better fit local feature

space.

4.3.2 Codewords based approaches

Given a group of local feature vectors X extracted by the network, codewords

based approaches encode them into an aggregated representation in 2 steps.

First step is codebook generation procedure in which, with local features

of training images, a set of prototype features, i.e. codewords, is learned

to model feature space. Second step is feature encoding which maps each

local feature vector xi into one or a number of codewords and calculates its

encoded vector. Then the sum pooling of encoded vectors in one image is

the aggregated representation.

In this section, we will briefly resume former state-of-the-art methods:
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Bag of Words (BoW) [52, 38], Fisher score vector [40] and Vector of Locally

Aggregated Descriptor (VLAD) [39] in order to better understand how this

group of approaches works. Their respective ideas are also illustrated in the

Fig. 4.2.

Bag of Words (BOW)

In the codebook generation procedure, BoW learns a set of codewords, called

codebook {wk}Kk=1, by kmeans clustering. Then in the second step, each local

feature vector x is assigned to its nearest codeword wj and its encoded vector

is a one-hot vector v where only its jth element is 1 and others are zero:

vj =


1, if j = argmin

k
||wk − x||

0, otherwise
(4.2)

After the sum pooling of encoded vectors in one image, BoW representa-

tion is a histogram counting the number of local feature vectors assigned to

each codeword (see also Fig. 4.2a)

Fisher Vector encoding and GMM-based model

As one of the most common Fisher vector encoding approaches, Gaussian

Mixture Model based Fisher Vector Coding (GMMFVC) first learns a code-

book, called Gaussian Mixture Model (GMM) and estimates a probability

density function:

P (x|θ = {wk,µk,σk}Kk=1) =
K∑
k=1

wkNk(x|µk,σk), (4.3)

where θ is a set of the model’s parameters and consists of each kth Gaus-

sian component Nk parameters: Gaussian center vector µk, diagonal vector
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of Gaussian covariance matrix σk and the mixture weight wk. Compared to

kmean clustering, GMM considers not only cluster centers but also covari-

ances which describe the shape of clusters (see also Fig. 4.2c)

In the feature encoding step, we compute gradients of the likelihood func-

tion with respect to GMM model parameters θ on each data points. Then,

we sum up the gradients on the data points and concatenated the results into

a vector gX
θ :

gX
θ = [gX

wk
,gX

µk
,gX

σk
]Kk=1,

= [
N∑
i=1

∇wk
logP (xi|wk),

N∑
i=1

∇µk
logP (xi|µk),

N∑
i=1

∇σk
logP (xi|σk)]

K
k=1.

(4.4)

This output gX
θ , called Fisher Score, is related to the direction in which

the parameters θ should be updated in order to make the model globally

better fit the feature sparce after adding xi ∈ X [40] in one image.

Note that the Fisher Vector representation is the Fisher Score gX
θ scaled

by inverse square root of Fisher Information Matrix (FIM). Since this FIM

plays not a very significant role in the image classification task [58], usually

the Fisher Score representation is used to describe an image. Hence, in the

rest of the chapter, the Fisher Vector refers to the Fisher Score.

Vector of Locally Aggregated Descriptor (VLAD)

The VLAD can be considered as a simplified version of Fisher vector. Its

codebook generation is done by kmeans clustering rather than GMM. And

each local feature vector x is encoded into a concatenation of residual vectors:

[v1, ...,vK ]. In the concatenation, only the difference to its nearest codeword

wj is recorded into the corresponding jth vector vj and other elements are
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zero.

vj =


x−wj, if j = argmin

k
(||wk − x||)

0, otherwise
(4.5)

Lastly, the VLAD representation for one image is obtained by accumu-

lating the concatenation of different local feature vectors(see also Fig. 4.2b)

Problematic

Among the three approaches, Fisher Vectors (FV) are the most promising

because VLAD and BOW are special cases of FV. BoW can be considered

as the gradient w.r.t the mixture weight parameters and VLAD is the gra-

dient w.r.t the model’s Gaussian centers. Although FV is performant, as

each Gaussian component is only able to cover a local area of the whole

feature space, the number of Gaussian components are related to the size of

the feature space. Deep learning features in the last layers always have high

dimensions. Their feature space is so large that numerous Gaussian compo-

nents are needed. This consequently makes the code generation procedure

and the following classification difficult, due to the increase of the number of

learned parameters. In the following section, we will introduce an approach

which can effectively increases the number of Gaussians.

4.3.3 From subspace sampling to sparse coding

In order to increase the number of Gaussians that model the distribution of

the data, we take advantage of the idea from [45] that samples the Gaussian

mean vectors in a subspace spanned by a set of bases. Each mean vector is

coded in this "dictionary" B ∈ RD×C with a code u ∈ RC drawn from a zero-
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Gaussian Mixture Sparse Coding

Figure 4.3 – Some data in a high dimensional space (illustrated by the

sphere). Left: With GMM the data distribution is not well fitted because of

the limited number of Gaussians. Right: With Sparse Coding, the Gaussian

centers are coded sparsely in an adapted basis (green arrows) allowing to

create unlimited number of Gaussians and so to fit better in the data dis-

tribution. The sparsity is illustrated by the low number of basis required to

code each center position (lines, planes or parallelograms).

mean Laplacian distribution (to enforce sparsity). Then, each local feature

vector x extracted from the images, associated with the code u, is drawn

from a Gaussian distribution N (Bu,σ) centered on Bu. Fig. 4.3 illustrates

this approach.

Assuming that the covariance matrix is diagonal, and that its diagonal

elements are constant σ, then using pointwise maximum to approximate

the integral of the distribution, Liu et al. showed that the logarithm of the

likelihood of x can be estimated as [45]:

log(P (x|B)) = min
u

1

σ2
||x−Bu||22 + λ||u||1, (4.6)

where λ is the scale parameter of the Laplacian distribution of u.

Interestingly, this equation represents the classical problem of sparse cod-
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ing. Liu et al. proposed to use an off-the-shelf sparse coding solver to learn

the dictionary B and infer the code u [45]. Obviously, making use of such

independent solver is a good solution to minimize the reconstruction error of

xi with a sparse code, but it neglects the main goal which is to improve the

performance in the classification task.

Hence, we propose in the next section to embed a sparse coding module

in a deep neural network that is trained end-to-end. The main advantage of

such an approach is that it is learning a dictionary and sparse codes that are

accurate to discriminate the different categories in the current dataset.

4.3.4 Embedding sparse coding with LISTA

Our aim is to find a solution for the following equation:

min
u
f(u) + λ||u||1 (4.7)

where f(u) = ||x − Bu||22, x is a data point, B the dictionary and u the

sparse code of x.

One way to solve this equation is to resort to an Iterative Shrinkage

Thresholding Algorithm (ISTA) [149] that iteratively approximates the so-

lution with:

uk = Tλtk(uk−1 − tk∇f(uk−1)), (4.8)

where Tα(.) is a component-wise vector shrinkage function such that [Tα(h)]i =

(|hi| − α)+sign(hi), tk is the step size at iteration k and ∇ is the gradient

operator.
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ISTA block diagram Learned ISTA block diagram

Figure 4.4 – Block diagrams of ISTA and LISTA. LISTA is an unfolded

version of ISTA (3 iterations here).

Evaluating the gradient of f(u) defined above, we get:

uk = Tλtk(uk−1 − 2tkB
T (Buk−1 − x)),

= Tλtk((I− 2tkB
TB)uk−1 + 2tkB

Tx),

= Tλtk(Suk−1 + Wx),

where S = I− 2tkB
TB and W = 2tkB

T .

As mentioned in the work [146], this equation can be illustrated as a

recurrent block diagram as in Fig. 4.4, left. Fortunately, Gregor and Lecun

proposed a fast approximation of ISTA called Learned ISTA (LISTA) [146].

This is an unfolded version of ISTA, with a fix number of iterations K, that

can be plugged into a neural network to provide a sparse code u = uk=K

(K = 3 in Fig.4.4, right). Embedding this LISTA module in our CNN

is an effective solution to learn a dictionary and sparse codes that help to

discriminate between the categories of the current task.

4.3.5 Dictionary based Fisher coding

When a classical GMM is used to model the data distribution, the Fisher

code is based on the partial derivatives of the posterior probabilities with

respect to the weights, the mean and the standard-deviation parameters of

the model [40]. In our case, the model is based on a learned dictionary.
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Moreover, we use a particular Fisher coding, as in the work [45], evaluated

as the partial derivative of the log probability of the local features with

respect to the dictionary itself:

∂log(P (x|B))

∂B
=
∂ 1
σ2 ||x−Bu||22 + λ||u||1

∂B
= (x−Bu)u

T

, (4.9)

where u = uK , i.e. output of K-iterations LISTA. Then, the Fisher Score

representation of feature map X can be calculated through:

A =
1

N

(
N∑
i=1

(xi −Bui)u
T

i

)
, (4.10)

where ui is the sparse code of ith local feature vector xi in the feature map

X.

This module is very easy to insert in our deep network and provides the

pooled features from the input image. These features are then sent to the last

fully connected layers for classification. All these modules are constituting

our CNN which can be trained end-to-end (see Fig. 4.1).

4.4 Fisher vector normalization

As mentioned earlier, the second order statistics tend to excessively empha-

size very few coordinates, ignoring potential discriminative features [46]. To

cope with this problem, many normalization solutions have been proposed.

In this chapter, we take advantage of the approach proposed in the paper [46]

to normalize our Fisher vectors. Below, we first detail the solution [46] and

then, explain its extension to non-square matrices.

4.4.1 Bilinear square matrix normalization

Assuming that the network backbone provides a feature map X ∈ RD×N ,

where N and D are its spatial resolution and depth. This set of local feature
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vectors xi ∈ RD can be orderless pooled into a global feature vector by using

bilinear pooling [77]. The output of the bilinear pooling is evaluated as:

A =
1

N

(
N∑
i=1

xix
T
i

)
. (4.11)

A is a (D ×D) symmetric positive definite (SPD) matrix.

While element-wise square-root normalization helps in improving the per-

formance of the complete framework, Lin and Maji have shown that the re-

sults can be further boosted by applying a spectral normalization, i.e. scaling

the eigenvalues of the associated covariance matrix [46]. One way to do that

is to transform the matrix A to its square-root A1/2 = QΣ1/2QT , where

A = QΣQT is the singular value decomposition (SVD) of A.

However, the computation of SVD is poorly supported on GPUs and

Lin et al. [46] suggest applying a variant of the Newton’s method to solve

f(Z) = Z2 −A = 0 where one iteration k is:

Yk+1 =
1

2
Yk(3I− ZkYk),Zk+1 =

1

2
(3I− ZkYk)Zk (4.12)

By initializing Y0 = A and Z0 = I, Yk and Zk converge to A1/2 and A−1/2

in very few iterations (even one) and requires only matrix multiplications (no

inverse).

The process is illustrated in Fig. 4.5 and 4.6.

Iteration 1 Iteration n...

Figure 4.5 – Overview of the Newton’s method .
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++

+
+

Figure 4.6 – Workflow of the iteration k of the Newton’s method.

4.4.2 Matrix Normalization for Fisher score represen-

tation

Going back to our Fisher representation (eq. 4.10), we start with a second-

order matrix expressed as:

A =
1

N

(
N∑
i=1

(xi −Bui)u
T

i

)
, (4.13)

where B ∈ RD×C is a dictionary having C atoms and ui ∈ RC is the sparse

code of centered xi by Eq. 4.1.

From Eq. 4.10, we notice that A ∈ RD×C is not square and not symmetric,

so the normalization presented above for bilinear square matrices cannot be

directly applied to the Fisher representation. Indeed, since A is not SPD,

its SVD is given as A = QΣVT , where Q 6= V and where Σ ∈ RD×C is not

square.

In order to apply spectral normalization, we are looking for a so-called

pseudo square root matrix A
1/2
pseudo defined as:

A
1/2
pseudo = QΣ

1/2
pseudoV

T , (4.14)

where Σ
1/2
pseudo is calculated by square rooting the diagonal elements of Σ

(there is no matrix Σ1/2 such that Σ = Σ1/2Σ1/2).

Likewise [46], in order to avoid SVD computation, we turn to Newton’s

method to evaluate such a A
1/2
pseudo matrix. As Newton’s method only accepts
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SPD square matrix as input, A is first transformed into the square SPD

matrix D evaluated as:

D = ATA,

= VΣTQTQΣVT ,

= VΣTΣVT ,

(4.15)

which is independent of Q.

Since Σ is asymmetric, we introduce a temporary matrix H = [IC |0]T ∈

RD×C and decompose Σ as:

Σ = HΣ̃, (4.16)

where Σ̃ is a square diagonal matrix and IC is a C × C identity matrix.

Hence, Eq.4.15 can be derived into:

D = VΣTΣVT ,

= VΣ̃THTHΣ̃VT

= VΣ̃2VT .

(4.17)

This equation is the SVD of the matrix D.

Feeding the previous Newton workflow with D and an identity matrix,

we obtain D1/2 = VΣ̃VT and D−1/2 = VΣ̃−1VT and feeding again this

workflow with D1/2 and an identity matrix, we obtain D1/4 = VΣ̃1/2VT and

D−1/4 = VΣ̃−1/2VT .
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Finally, we have access to A
1/2
pseudo thanks to:

AD−1/4 = QΣVTVΣ̃−1/2VT ,

= QΣΣ̃−1/2VT ,

= QHΣ̃Σ̃−1/2VT

= QHΣ̃1/2VT

= QΣ
1/2
pseudoV

T

= A
1/2
pseudo.

(4.18)

Hence, without any SVD computation, this solution allows us to spec-

trally normalize a non SPD matrix A as A
1/2
pseudo very efficiently. Further-

more, this workflow can be easily embedded in a end-to-end trainable deep

network.

4.5 Experiments

In order to show that our solution generally helps the classification perfor-

mance, we run experiments on three datasets, which present strong differ-

ences in terms of tasks and scales. The three datasets and their experimental

settings are detailed in section 4.5.1 and 4.5.2. Next, the training strategy of

our network is shown in section 4.5.3. In section 4.5.4, results and compar-

isons are presented and discussed.

4.5.1 Datasets

We run experiments on three datasets to demonstrate the versatility of our

solution for different image classification tasks. Note that we always make

use of official training-test splits released with the datasets.
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Table 4.1 – Pretrained backbone network’s layera after which our DPM is plugged.

MIT-67 CUB-200 MINC-2500

AlexNet VGG-16 ResNet-50 AlexNet VGG-16 ResNet-50 ResNet-50

position FC-6 conv5-3 conv5-3b conv5 conv5-3 conv5-3b conv5-3b

1 Activation function included
2 name of the network’s residual block

As introduced in Chapter 2, the dataset MINC-2500 [34] contains 23

commonly-seen material categories and 2, 500 images per category, and is

a challenging large-scale dataset as material classes show great intra-class

variability in the real-word environment (see image examples in Fig. 2.4).

MIT Indoor 67 [100] is a medium but widely accepted benchmark for indoor

scene classification task with 67 indoor categories and 100 images in each

category. CUB-200-2011 [99] provides 11, 788 images of 200 bird species

and is considered as a fine-grained classification dataset because inter-class

difference between bird species is subtle and sometime barely noticeable.

In our experiments, although object bounding box and part annotation are

available, only bird images are used as input and no more information is

exploited.

4.5.2 Experimental settings

Deep Pooling Module (DPM) - Our DPM is composed of a 1× 1 convo-

lution layer, a LISTA module with two iterations, the Fisher encoding layer

and normalization process which includes matrix normalization (see section

3.1), element-wise square root and l2 normalization. Then DPM is followed

by a fully connected layer with softmax activation for classification.

Depending on dataset scales and for fair comparison with other works,
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we use different backbones and training strategies.

MIT-67 and CUB-200 2011 settings - We adopt the settings of state-

of-the-art methods [79, 63]. The input image size is 448x448 and the back-

bone networks are either the pretrained VGG-D (a.k.a VGG-16) or Alexnet.

Our DPM is plugged after ReLU function of the last convolutional layer or

of Fully Connected layer(see Table 4.1). The 1 × 1 convolutional layer in

the DPM keeps the input feature size and the sparse code in LISTA has 100

elements.

MINC-2500 settings - The network backbone is the pretrained ResNet-

50 [37](see Table 4.1). With the 1 × 1 convolutional layer in the DPM, the

input feature size is reduced into 128 and the size of sparse code in LISTA

is 32. While training, we follow the data augmentation settings of [13]. The

input image is resized to 256x256. 8% to 100% of the area of the of image is

cropped with a random aspect ratio between 3
4
and 4

3
and the crop is resized

to 224x224. Random horizontal and vertical flip with a probability of 50% is

applied to each image. At test time, we use central crop of 224x224 as input.

4.5.3 Training details

In the training phase, three consecutive steps are conducted. First, we run

a PCA on a small subset of feature vectors (around 10, 000) extracted from

the backbone outputs and initialize the 1×1 convolutional layer of our DPM

with these PCA parameters. Second, inspired by the work [150], we apply a

warming-up process that consists in training our DPM and FC layer (while

the backbone is frozen) with an objective function which is the sum of the

cross-entropy loss and the sparse coding loss (see Eq. (4.6)). Finally, the

whole network is fine-tuned end-to-end under the supervision of the sole

cross-entropy loss.
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The optimization algorithm is a gradient descent with a mini-batch size

of 64, a weight decay of 5e−4 and a momentum of 0.9. The learning rate

is 0.004 during the warming-up. During the end-to-end finetuning, it starts

from 0.004 and is divided by 10 after every 40 epochs.

4.5.4 Results

Comparison with state-of-the-art - The top-1 classification accuracy of

our approach and many alternatives are presented in Table 4.2. The results

of the related works are extracted directly from the papers that are referenced

in this table. Note that our CNN is trained on single-scale images while many

state-of-the-art approaches are trained on multi-scales, so we have carefully

selected the results that allows fair comparisons, but still some results in

Table 4.2 are from multi-scale training (see Table 4.2’s comments).

The methods called ’Off-the-shelf’ use independent modules that are not

fine-tuned together while the ’End-to-End’ group contains approaches that

use end-to-end trainable networks. We notice that the results provided by

fine-tuned networks overall outperform those of the Off-the-shelf solutions.

This shows that it is always better to make the modules work together to

optimize the same loss instead of independently optimizing them. Besides

end-to-end learning attribute, our approach is built upon Deep Fisher Score

Representation via Sparse Coding (SCFVC) which produces more discrimi-

native second-order pooled features than the classical Fisher vector or VLAD.

The proposed effective combination of these two advantages make our method

outperform the alternatives for all the datasets and backbones.

Solution analysis - In order to assess the added advantage of our dif-

ferent contributions, we conduct several experiments by varying the hyper-

parameters and by ablating some modules. The study was done with the

97



CHAPTER 4. SPARSE CODING AND NORMALIZATION FOR DEEP
FISHER SCORE REPRESENTATION

Table 4.2 – Comparison of the classification accuracy (%) with closed-related alterna-

tives on three datasets and three backbone architectures.

Approaches MIT MIT MIT CUB CUB CUB MINC

AlexNet VGG16 ResNet50 AlexNet VGG16 ResNet50ResNet50

O
ff-
th
e-
sh
el
f Baseline 58.4[151] 53.3[151] 60.4[63]

GMMFVC 64.3[45] 72.6a[148] 61.7[45] 70.1a[148]

SCFVC 68.2[45] 77.6a[148] 66.4[45] 77.3a[148]

HSCFVC 79.5a[148] 80.8 [148]

E
nd

-t
o-
en
d

Baseline 64.51[79] 76.45[79] 70.4[63] 76.45[79] 79.1[79]

Deep Ten 71.3[13] 80.4[13]

NetVLAD 81.9[63]

NetFV 78.2[63] 79.9[63]

FisherNet 76.4[66]

MFAFVNet 69.89b[66] 78.01b[66]

B-CNN 77.6[63] 84.0[63] 79.05[79]

SMSO 79.45[79] 79.68[79] 85.01[79] 85.77[79] 81.3[79]

Our 70.15 80.22 84.85 76.8 84.28 84.47 81.5

Our(+norm) 70.60 81.24 85.52 77.49 85.8 87.38 81.8

a These methods were trained with VGG19 (not VGG16) with 2 scales, whereas the other approaches

from the column are trained with a single scale.
b Since MFAFVNet works on patches and not on images, we have selected in [66] the results provided

with the nearest patch scale from our settings (160× 160).
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Table 4.3 – Ablation study of our workflow on the MIT-67 dataset

LISTA Warming Up Sub-Mean Matrix Norm Accuracy

76.72

X 77.16

X X 80.22

X X X 80.60

X X X 80.67

X X X X 81.24

MIT-67 dataset and the VGG-16 network and the results are summarized in

the Tables 4.3, 4.4 and 4.5.

In Table 4.3, we start from the baseline network and consecutively add the

proposed modules, in order to assess their individual impact on the results.

When the LISTA module is not in the network, it is replaced by a 1 × 1

convolutional layer providing the codes ui.

As introduced in the section 4.3, warming up is one of the three steps in

the training phase. The goal is to train the newly added DPM and FC layers

before fine-tuning the whole network. According to Table 4.3, this warming

up step boosts the performance from 77.16% to 80.22%, showing that an

accurate initialization is important for our DPM and classifier.

Likewise, we notice that the proposed matrix normalization and mean

subtraction also provide improvements of the results. For example, the ma-

trix normalization increases the accuracy from 80.60% to 81.24%.

Finally, the impact of the LISTA module is measured with two different

tests. Starting from the baseline and adding LISTA improves the results from

76.72% to 77.16% and adding LISTA to the whole process helps to increase
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Table 4.4 – Impact of the number of iterations in LISTA on the accuracy.

LISTA linear i=1 i=2 i=3 i=4 i=5

Accuracy 80.67 81.04 81.24 81.34 81.04 80.30

Table 4.5 – Impact of the dictionary size on the accuracy.

N◦ codewords 50 100 200 300 400 512

Accuracy 80.37 81.24 80.90 80.00 80.22 80.22

from 80.67% to 81.24%.

LISTA is composed of several iterations which unfold ISTA loop process

to solve a sparse coding problem. We investigate the performance of the

LISTA across different numbers of iterations from 0 to 5 in Table 4.4, where

0 means that the LISTA module is replaced by a 1 × 1 convolutional layer.

In this Table, we notice that 2 or 3 iterations provide the best performance.

After 3 iterations, the results start decreasing. Our intuition is that too

many iterations of LISTA produce better sparse codes but neglect the aim of

the whole process which is to get perfect classification performances. For all

the tests conducted in this chapter, the default value of 2 iterations provides

good results.

We also conducted an analysis on the number of codewords required in

the LISTA module. We measure the classification accuracy for a range of

codeword numbers from 50 to 512 in Table 4.5. Note that the dimension 512

is the same as the last convolutional layer’s output dimension. We notice

that, due to overfitting, when the number of codewords is higher than 100,

lower accuracy is observed.
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These experimental results have shown that the proposed approach out-

performs many alternatives for different classification tasks. They also help

to understand the impact of each contribution on the whole process.

4.6 Conclusion

Classical Fisher vectors are strong pooled representations for classification

but require many Gaussians when applied on high-dimensional deep features.

One way to cope with this problem is to code sparsely the Gaussian centers

in an adapted basis in order to increase the number of available Gaussians

and better fit in the data distribution. In this chapter, we have shown that

this coding can be embedded in a deep network allowing to adapt the basis

and sparse code such that they optimize the classification performance. To

further improve the fisher representation power, a new matrix normalization

and mean subtraction have been implemented into our approach. We have

also proposed a training strategy that can easily but effectively initialize the

network parameters before finetuning. With the support of the end-to-end

learning and a powerful Fisher score representation, our method outperforms

the tested alternatives on three different datasets.

Like almost all the previous GMM-based approaches, our approach uses

only diagonal covariance matrices for the Gaussians to fit the data. As future

works, we would like to learn non-diagonal matrices in order to further refine

the training data fitting.

Today, many works are exploiting bi-linear pooling in many different

tasks, but since these second order statistics lie in very high-dimensional

space, the recent trend consists in compacting these features. Nevertheless,

normalizing the matrices of compact bi-linear pooled features is not easy and
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not efficient. We think that the normalization proposed in this chapter can

help in normalizing compact bi-linear representations. This is the topic of

our current research.
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Chapter 5

Conclusion, Limitations and Perspectives

5.1 Conclusion

Material image classification is one crucial task in computer vision because

it is involved in many real applications such as robotics or automatic waste

sorting, and because it can help in many other problems such as fine-grained

image classification. It consists in correctly classifying images with target

material from one given category. In the beginning of 2010s, thanks to their

superior performances, the deep convolutional neural networks (CNN) arise

and become a promising tool to solve many computer vision problems, in-

cluding image classification. Deep networks have also been introduced into

material classification. By simply transferring a network pretrained on a

large-scale image classification task, better accuracy is achieved than former

state-of-the-arts. However, unlike object recognition, classifying materials

require some specific processing. In this thesis, we mainly focus on two pe-

culiarities of material images:
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• Large areas of material surface are visually ambiguous and discrimina-

tive information mainly resides in tiny areas, e.g. Fig 1.4.

• In contrast to objects, material instances in one image show spatial

orderless arrangement, e.g. Fig 1.6.

Thus, directly transferring the CNN architectures, initially designed for ob-

jects classification, is inevitably sub-optimal. Specifically, referring to the

two properties described above, we identified two drawbacks of actual CNNs:

• For one of the most popular architecture of CNNs, called ResNet, its

Global Average Pooling aggregates local feature vectors. This oper-

ations overwhelms relevant but small features by ambiguous and nu-

merous local regions, consequently producing less discriminative global

features.

• We have demonstrated classification improvement by using more so-

phisticated orderless pooling, like classical Fisher Vectors. Unfortu-

nately, inaccurate estimation about data distribution occurs in the con-

text of high-dimensional deep features, because the number of Gaus-

sians in the Gaussian Mixture Model is limited.

In this PhD we contributed to solve them in the following ways:

• In order to identify features coming from ambiguous or discriminative

regions, we proposed to add in a classical network a branch which

predicts confidence values, deduced from the True Class Probability

(TCP), associated with each local feature vector. Then, we exploit

these TCP values to filter out ambiguous local features, i.e. the ones

associated with lower confidences. Consequently, a more powerful rep-

resentation is obtained after applying the Global Average Pooling to the
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rest of the local features. According to experimental results on three

real-world material datasets, our approach outperforms other classi-

cal models on the criteria of both classification accuracy and output

probability calibration.

• To fix the issue of limited Gaussians, we noticed that sparsely cod-

ing the Gaussian centers in an adapted basis is a promising way to

increase the number of available Gaussians because it can better fit

the data distribution. In Chapter 4, to take one more step than pre-

vious works, we implemented this coding process into a deep learning

network. This allows the basis and sparse code to be optimized for

improving the classification performance. Furthermore, a new normal-

ization and mean subtraction were also embedded into our approach.

We demonstrated that our approach further enhances the discrimina-

tion power of the produced Fisher score representations. In practice,

we also proposed a training strategy which facilitates initializing pa-

rameters in the embedded coding module. With the support of an

end-to-end learning of these accurate Fisher score representations, our

method outperforms state-of-the arts on three different datasets.

5.2 Limitations

For both solutions we have proposed, the training process is composed of

two stages which is one weakness of these approaches. Indeed, for the local

feature selection (Chapter 3), we need to train the classifier in the first stage

and then freeze it during the second stage, while training the TCP predictor.

Although this strategy produces stable TCP values, it is clear that separately

training the classifier and the TCP prediction branch is slightly complicated.
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Likewise, for our end-to-end Fisher vectors (Chapter 4), adding a warming-

up training step before training the whole network is helpful as shown in Ta-

ble 4.3. Compared to the related method in [66], our approach is obviously

more adapted to deep CNN’s training and needs less computational memory,

but it still requires a two-stages training process to get the best results.

Choosing hyper parameters is another limitation for both solutions. In

Chapter 3, the ambiguous local features are filtered out based on their pre-

dicted TCP values when they are lower than a threshold and this threshold

has been empirically fixed. Although this value has not a strong impact on

the results on the different tested datasets, it may not be optimal for every

image. A similar situation happens in Chapter 4 with more hyper-parameters

such as the size of the sparse codes, or the number of iterations in the LISTA

module. Although we discussed their impact to the accuracy in Tables 4.4

and 4.5, in practice, facing a new task, it would be better if our method could

automatically deduce them from the task rather than requiring them to be

set manually.

Furthermore, our feature selection approach in the chapter 3 is more adap-

tive to small datasets where only the classifier is trained. Our approach is a

good alternative way to realise the selection process when using pretrained

feature extractor layers. Once these layers can learn themselves to select the

most important feature vectors, our approach is less effective. On the con-

trary, our end-to-end Fisher vectors approach can be applied to either large

or small datasets.
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5.3 Perspectives

Bilinear pooling is also a second-order pooling to our Fisher vectors (Chap-

ter 4). However, it does not require to fit the data distribution and as a

result, it is a non-parametric pooling method. Despite its simplicity, it out-

performs many state-of-the-art orderless pooling methods in several tasks of

fine-grained images classification as shown in the work [69]. As discussed in

Section 2.3, there are two research lines to improve bilinear pooling, where

one is to obtain compact representation and the other one is its normaliza-

tion. Incorporating these two techniques becomes a new research trend. The

main limitation is that directly running matrix normalization on the com-

pact bilinear pooling (CBP) features is proven infeasible [85]. Even if some

solutions have been proposed [85, 86, 87, 88], the problem is only partially

solved and strong limits remain.

For example, Gou et al. proposed to transform the input feature matrix

to a "pseudo square-root", so that a classical bilinear pooling can be applied

on it and directly provide a normalized bilinear representation [86]. Unfor-

tunately, the computation of this matrix requires to apply the singular value

decomposition (SVD) on the input matrix and we know that SVD is not well

supported on GPU. One interesting future work could be to make use of our

GPU-supported Newton method from Chapter 4 to efficiently calculate this

pseudo square-root matrix.

In the case of material image classification with small datasets, another

direction is to conceive a hybrid method which takes advantages of our two

methods, as they respectively improve material classification at different

steps of the workflow. Indeed, the selection of the most relevant features

is a good way to decrease the computational load of the extraction of the
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second order statistics which require to compute many outer products be-

tween the local feature vectors. Besides the gain of efficiency, the selection

solution is expected to delete noisy local feature vectors, and thus helps to

extract a more accurate global Fisher score representation.
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Appendix A

Details of CNN’s three components

A.1 Convolution component

Let denote input 3D-tensor of the layer l as Xl ∈ RCl×Wl×Hl and every

spatially local feature vector at spatial position(w, h) is represented as xlw,h ,

Xl
:,w,h ∈ RCl , where Cl,Wl, Hl are the number of channels, width, and height.

For instance, input image can be denoted as X1 ∈ RC1×W1×H1 and C1 = 3 as

color images are defined by red, green, blue channels. On the image, x1
w,h is

a pixel located at (w,h).

Convolution layer l is equipped with Cl+1 convolution kernels

E l ∈ RCl+1×Cl×KWl×KHl (A.1)

where KWl and KHl are kernel’s width and height. These kernels extract

local features as their window size is smaller than input features: KWl < Wl

andKHl < Hl. Every cth kernel El
c , E lc,:,:,: ∈ RCl×KWl×KHl now proceeds to

convolution by making dot product at the position (w, h) with a combination
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of xlw,h and it’s neighbors:

xl+1
w,h = [El

1 � φ(xlw,h), ...,E
l
Cl+1
� φ(xlw,h)] ∈ RCl+1 (A.2)

where � is dot product operation and 3D-tensor φ(xlw,h) ∈ RCl× KWl×KHl

is created by cropping all the neighboring feature vectors centered at (w, h)

within a window of size KWl ×KHl.

For simplicity, previously, we omit the description of bias and activation

function. lth layer’s bias parameters, denoted as bl = [bl1, b
l
2, ..., b

l
Cl+1

], are

added in an element-wise way to the results obtained after the convolution

operated by the kernels E l:

xl+1
w,h = [El

1 � φ(xlw,h) + bl1, ...,E
l
Cl+1
� φ(xlw,h) + blCl+1

] ∈ RCl+1 (A.3)

As observed in the Eq A.3, every element in the xl+1
w,h is the result of linear

combination of a kernel, local feature vectors and a bias value. The rule of

activation function is to separate two linear convolution layers by introducing

non-linearity. ReLU (Rectified Linear Unit) is a common choice of activation

function:

xl+1
w,h = [ReLU(El

1 � φ(xlw,h) + bl1), ..., ReLU(El
Cl+1
� φ(xlw,h) + blCl+1

)],

= [max(El
1 � φ(xlw,h) + bl1, 0), ...,max(El

Cl+1
� φ(xlw,h) + blCl+1

, 0)] ∈ RCl+1 ,

(A.4)

The layer l repeats the operation of Eq.A.4 at every position on the input

Xl. As a consequence, a collection of results is lth layer’s output or (l+ 1)th

layer’s input Xl+1.
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A.1.1 Local Pooling Layer

It should mention that multiple convolution layers form a block. Between

two consecutive blocks, in order to decrease computation burden and increase

the kernel’s receptive field, there is a local pooling layer which can be viewed

as a convolution layer with a down-sampling kernel. It slides over Xl and

spatially reduce the input into Xl+1 of smaller size.

A.1.2 Residual Connection and Batch Normalization.

Besides AlexNet and VGG networks, we also did some experiments with

ResNet networks [37] which contain two supplementary elements in the con-

volution component. Skip connection structure connects two tensors at dif-

ferent layers with element-wise addition. This structure is very useful to solve

vanishing gradient problem while training a network with numerous layers.

ResNet network always use batch normalization [152] at the end of Eq. A.3

which aims at normalizing feature tensors by re-centering and re-scaling and

consequently making the whole network training faster and more stable.

In resume, an example of convolution component’s structure is schema-

tized by the Fig A.1.

A.2 Pooling component

In the previous description related to convolution layers, there exists already

a type of pooling layer: local pooling layer which is performed locally on the

input feature tensor. On the contrary, pooling component works globally

on the whole input tensor. It is dedicated to aggregating Xl into a feature

vector representation al+1 ∈ RCl+1=Cl , visualized as schema blocks in the red
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Figure A.1 – These schemas describe the first block of convolutional com-

ponents, which is composed of multiple convolution layers and one pooling

layer. Every convolution layer applies Eq A.4 to its input and the pooling

layer downsamples feature tensor Xl. Note that batch normalization is not

explicitly drawn here since it can be fused as a part of convolution layer.

bounding box of Fig 1.3.

We can take advantage of downsampling techniques used in the local

pooling layer, such as max pooling and average pooling, but this time in a

global manner. Moreover, there exist many other state-of-the-art pooling

methods, dedicated to producing more discriminative global representation.

Deeper explanations are given in the section 2.3.

A.3 Fully connected component

In a CNN, Fully Connected (FC) layer transform feature vector a(l) ∈ RCl

into another feature vector. In particular, the output of the last FC layer is a

class prediction vector, or called the output of a CNN: f(I) = ẑ ∈ RK . K is

the number of given categories. Generally speaking, a FC layer can be seen

as a convolution layer whose kernel width KW and height KH are equal to

1 :

E l ∈ RCl+1×Cl×KWl=1×KHl=1 (A.5)
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And the output can be calculated by:

al+1 = [ReLU(El
1 � φ(al) + bl1), ..., ReLU(El

Cl+1
� φ(al) + blCl+1

)],

= [max(El
1 � φ(al) + bl1, 0), ...,max(El

Cl+1
� φ(al) + blCl+1

, 0)] ∈ RCl+1 ,

(A.6)

Note that there is no ReLU activation function for the last FC layer. Instead,

using softmax to the last layer’s output ẑ can transformed it into probability

output p̂, as conformed in the Eq 1.2.
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Figure B.1 – Exemples d’images de matériaux et leurs catégories. Images de

Flickr Material Database(FMD) [1].

B.1 Introduction

La classification des matériaux est une tâche de reconnaissance visuelle étroite-

ment liée à la classification des textures et dédié à classer les images de tex-

tures/matériaux en catégories telles que les tissus, l’eau, l’acier, le feuillage, ...

(voir Fig. B.1). En tant qu’une des perceptions visuelles de base, la reconnais-

sance des matériaux a une différence évidente avec la reconnaissance d’objets

parce que son entrée concerne des informations visuelles provenant de sur-

faces, au lieu d’objets [8]. Apprendre un système à reconnaître les matériaux

dans une image est un challenge mais très utile pour de nombreuses tâches

de vision par ordinateur, comme la classification des aliments [9], l’imagerie

satellitaire ou aérienne [10, 11] , la reconnaissance de terrain au sol et l’analyse

d’images médicales [14, 15, 16]. De plus, des algorithmes de reconnaissance

de matériaux peuvent être implémentés dans des systèmes visuels robotiques

qui permettent la recherche de produits, la manipulation d’objets ou la nav-

igation autonome sur la surface constituée d’un matériau spécifique [13].

En 2012, un réseau de neurones convolutifs [28] (Convolutional Neural

Network(CNN) en anglais) a battu le record de l’accuracy de classification
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d’images dans ImageNet ILSVRC [29], une très grande base de données de

reconnaissance d’objets. Pour la recherche sur la classification de matériaux,

les CNNs pré-entrainés sur ImageNet remplacent les filtres conçus par des

experts, en s’appuyant sur leurs caractéristiques hautement discriminantes

pour la reconnaissance d’objets [30, 31]. Plus récemment, de nouvelles ap-

proches ont déjà trouvé des solutions intelligentes et originales pour mieux

s’adapter au classification de matériaux.

Puisque ces solutions sont toutes basées sur des réseaux de neurones pro-

fonds, nous avons construit nos contributions sur de telles architectures. La

première section de ce chapitre présente le workflow général des réseaux de

neurones profonds et la seconde présente les motivations et les idées princi-

pales de nos contributions.

B.1.1 Classification des images avec CNN

propagation avant

Pour une tâche de classification d’images sur K classes, le but est de classer

correctement une image I dans sa catégorie de vérité terrain y ∈ Y =

{1, ..., K}. La propagation avant d’un CNN peut être abstraite comme une

fonction f(.) qui projette une image dans un vecteur de prédiction ẑ ∈ RK :

ẑ = f(I). (B.1)

Ensuite, cette prédiction ẑ est transformée en un vecteur de probabilité

p̂ avec une fonction softmax(.) :

p̂ = softmax(ẑ). (B.2)

l’indice de l’élément avec la probabilité la plus élevée est choisi comme
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catégorie prédite ŷ :

ŷ = argmax
k∈Y

p̂k. (B.3)

Dans le cas d’une prédiction correcte, la catégorie prédite est égale à la

classe de vérité terrain :

ŷ = y. (B.4)

Structure d’un réseau de neurones convolutifs

Si nous regardons la fonction f d’un CNN, sa structure est une sequence

de couches. Selon leurs propriétés, nous avons regroupé ces couches en trois

composants séquentiels : convolution, pooling et classification.

Dans le composant de convolution, l’extraction sur une image en entrée

est réalisée avec des couches de convolution répétées plus des couches de

pooling locales. Elles sont empilées de manière hiérarchique. Cela signifie

que les premières couches extraient des caractéristiques primitives de bas

niveau, telles que des bords ou des couleurs, tandis que les dernières couches

combinent ces caractéristiques de bas niveau en caractéristiques sémantiques

de haut niveau, telles que des mains, des roues ou des arbres. Ensuite,

le composant de pooling agrège les caractéristiques locales du composant

de convolution en un vecteur de caractéristiques. Enfin, le composant de

classification fournit les probabilités prédites pour les catégories considérées.

B.1.2 Contributions

L’objectif de cette thèse est d’améliorer les performances de classi-

fication des matériaux sur la base des CNN. Pour atteindre cet objectif,

nous nous concentrons sur deux étapes clés qui font partie de la composante

de pooling, à savoir la sélection de caractéristiques locales et le pooling sans

ordre.
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Feature selection

Aujourd’hui, comme mentionné dans la section précédente, dans la plupart

des architectures CNN, après des couches convolutives empilées extrayant les

caractéristiques locales de l’image d’entrée, en tant qu’un composant de pool-

ing utilisé souvent, la couche Global Average Pooling (GAP) fusionne toutes

les caractéristiques locales en un seul vecteur de caractéristiques global [37].

Ensuite, le composant de classification prédit la classe d’images en fonc-

tion de ce vecteur global de caractéristiques. Avec cette approche classique,

chaque vecteur de caractéristiques locales contribue également à la décision

finale grâce à l’opération de moyennage. Cependant, lorsque de grandes

zones des images sont ambiguës ou lorsque des informations utiles sont prin-

cipalement fournies dans certaines zones minuscules, la moyenne de toutes

les caractéristiques locales peut être sous-optimale. Et nous montrerons que

cela est d’autant plus vrai dans les images de matériaux. Un exemple il-

lustratif est montré sur la Fig. 1.4: dans la colonne de gauche, certaines

parties petites mais informatives sont masquées et cela rend la prédiction de

classe très difficile avec les zones grandes et ambiguës. Une fois que l’on a

accès à ces détails (colonne de droite), la prédiction de classe devient beau-

coup plus facile. Cependant, comment choisir des zones discriminantes et

éliminer les caractéristiques ambiguës n’est pas facile. Dans le chapitre 3,

afin de sélectionner automatiquement les vecteurs de caractéristiques locales

les plus informatifs, nous proposerons d’utiliser un score de confiance qui

représente l’utilité des vecteurs de caractéristiques locales sur la zone de

chaque image. En exploitant une approche très récente et réussie, conçue

pour la prédiction des défaillances, nous proposons de prédire la confiance

des caractéristiques locales avec une branche supplémentaire dans le réseau.

Seuls les vecteurs de caractéristiques locales avec des prédictions de confiance
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plus élevées sont conservés et moyennés dans un vecteur de caractéristiques

global. Nous fournirons aussi des résultats quantitatifs et qualitatifs sur trois

bases de données de matériaux et démontrerons que notre méthode augmente

non seulement l’accuracy de la classification, mais aussi améliore également

le calibrage des probabilités en sortie.

Pooling sans ordre

Par rapport aux tâches de reconnaissance d’objets, la reconnaissance de

matériaux a ses propres propriétés. L’une de ces propriétés est son arrange-

ment spatial sans ordre. Comme illustré sur la figure 1.6, en tant qu’un objet,

les parties discriminantes d’une voiture, comme les roues, les vitres, ont de

fortes relations spatiales et topologiques. Pour les images de matériaux, de

telles relations prédéfinies entre les surfaces n’existent pas et ne doivent pas

être prises en compte dans le vecteur global de caractéristiques.

Le pooling sans ordre est apparue récemment et devient intéressante pour

les tâches de classification des matériaux car elle agrège les caractéristiques

sans prendre en compte leurs arrangements spatiaux dans l’image. Néan-

moins, l’intégration du pooling sans ordre dans une architecture profonde

présente deux inconvénients principaux de notre point de vue. Première-

ment, parce que les caractéristiques profondes se trouvent dans des espaces

de grande dimension, des outils spécifiques sont nécessaires pour modéliser

avec précision leurs distributions. En nous inspirant de l’approche de [45],

nous avons proposé de l’implémenter comme un module entraînable dans un

réseau de neurones profonds afin de modéliser avec précision les caractéris-

tiques profondes.

Deuxièmement, le traitement des statistiques de second ordre telles que

celles fournies par les vecteurs de Fisher n’est pas facile et nécessite des
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étapes de normalisation successives [46]. Par conséquent, nous avons proposé

une approche nouvelle et originale pour normaliser les matrices non carrées

ou symétriques qui représentent des statistiques de second ordre. À notre

connaissance, c’est la première fois que la normalisation matricielle s’applique

à une représentation basée sur Fisher.

Ces deux contributions principales sont intégrées dans une architecture

profonde afin que le réseau final puisse être entraîné de bout en bout avec la

fonction objectif de classification.

B.1.3 Organisation de la thèse

Le reste de la thèse est organisé comme suit. Tout d’abord, nous décrivons

les travaux connexes dans le chapitre B.2 , y compris les solutions classiques

de classification des matériaux et les approches basées sur CNN. Certaines

parties de ce chapitre font référence à notre étude publiée dans la conférence

International Conference on Big Data, Machine Learning and Applications

(BIGDML) en 2019.

Le chapitre B.3 présente notre première contribution principale, briève-

ment introduite dans la section B.1.2. Certaines parties de ce chapitre ren-

voient à notre papier publié dans International Conference on Image and

Vision Computing, New Zealand (IVCNZ) en 2020.

Notre deuxième contribution principale, brièvement introduite dans la

section B.1.2, est précisément discutée au chapitre B.4. Certaines parties de

ce chapitre, liées au sparse coding, renvoient à notre papier publié dans Inter-

national Conference on Computer Analysis of Images and Patterns (CAIP)

en 2021. Une version étendue de cet article avec normalisation a été soumise

en juillet 2021 pour publication au journal Computer Vision and Image Un-

derstanding.
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Enfin, le chapitre B.5 tire des conclusions, révèle les défis et tendances

actuels dans le domaine de la classification des matériaux et propose des

perspectives pour les travaux futurs.

B.2 Chapitre 2

Dans ce chapitre, nous explorons et présentons les travaux les plus remar-

quables dans le contexte de la classification des matériaux, en commençant

par les caratéristques conçus par les experts [7, 17, 18, 19, 20, 21, 22, 23, 24,

53, 54, 55] jusqu’aux solutions basées sur Deep-CNN [30, 40, 58, 59, 60, 31, 61,

62, 41, 45, 64]. Les articles les plus récentes [65, 42, 43, 44, 63, 66, 67, 69, 77]

révèlent que le pooling sans ordre et l’apprentissage de bout en bout sont

deux éléments essentiels pour la classification des matériaux. Les approches

les plus performantes sont basées sur un processus d’apprentissage de bout

en bout qui permet de faire coopérer les différents modules de l’architecture

profonde vers un seul objectif, qui est de minimiser la perte de classification

actuelle. Et le pooling sans ordre, qui est actuellement la principale solution

proposée dans les états de l’art, exploite efficasement une des propriétés des

matériaux: l’arrangement spatial sans ordre sur une image. Néanmoins, les

deux groupes de méthodes pourraient être grandement améliorées par :

• pondérer la contribution de chaque vecteur de caractéristiques locales

dans le pooling global, profitant ainsi de la spécificité des images des

matériaux qui montrent des zones locales très discriminantes à côté de

zones très communes (non discriminantes),

• faire attention à la qualité de l’estimation de distribution de caractéris-

tiques profondes, qui se situe dans un espace de grande dimension,
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• normaliser la représentation statistique de second ordre avant d’appliquer

l’étape de classification.

Ces remarques seront les points de départ de nos solutions originales détaillées

dans les prochains chapitres(B.3 et B.4).

Parce que nos contributions devraient être confrontées aux travaux ré-

cents, nous proposons également, dans ce chapitre, de présenter et de classer

les nombreuses bases de données de matériaux. Specifiquement, les bases

de données de matériaux (voir Fig 2.4) nous utilisons dans les prochaines

chapitres ont été créés dans lesquels les images ont été acquises dans des con-

ditions non contrôlées et n’étaient pas nécessairement remplies par le matériel

cible, y compris les informations contextuelles.

B.3 Chapitre 3

Aujourd’hui, de nombreuses approches réussies reposent sur l’extraction au-

tomatique de caractéristiques locales avec des réseaux de neurones profonds

suivis d’une couche du pooling. Spécifiquement, dans ce chapitre, c’est

«Global Average Pooling(GAP)» qui fusionne toutes les caractéristiques lo-

cales en un seul vecteur de caractéristiques. Ensuite, une couche de classifica-

tion prédit la classe d’image à partir de ce vecteur de caractéristiques. Parce

que chaque vecteur de caractéristiques locales est uniformément moyenné

avec les autres, chaque vecteur contribue également à la décision finale. Par

conséquent, lorsque de grandes zones des images sont ambiguës et que les

informations utiles sont principalement fournies par une petite partie des

vecteurs de caractéristiques, la moyenne de toutes les caractéristiques locales

pourrait conduire à de mauvaises prédictions. C’est surtout le cas pour la

classificaiton des matériaux.
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Dans ce chapitre, nous faissons une hypothèse que l’utilité de chaque

vecteur de caractéristiques locales est liée à la confiance du réseau lors de la

prédiction de la classe d’images à partir de ce vecteur de caractéristiques. Et

la confidence est définit par ’True class probability(TCP)’ qui est la proba-

bilité prédite de la catégorie de vérité terrain. Nous avons appris un réseau

à deux branches pour produire des prédictions locales, ainsi que des confi-

dences associées. Ces confiances prédites sont utilisées pour supprimer les

vecteurs de caractéristiques locales ayant des confiances inférieures avant de

faire la moyenne de toutes les caractéristiques locales(voir la figure 3.1).

Nous présentons les résultats expérimentaux fournis par notre approche

pour la classification de matériaux. Les tests sont menés sur trois bases

de données (KTH [3],Flickr Material Dataset(FMD) [1] et 4D-Light [35])

et les résultats sont comparés avec des alternatives récentes qui sont ’tem-

perature scaling’ [5], ’Entropy’ [115, 116], ’MaxProb’ [108, 109, 110], ’MC-

Dropout’ [123] et GWAP [142].

Les premiers résultats sont présentés dans le tableau 3.2, où trois critères

sont fournis : l’accuracy de la classification, Expected Calibration Error(ECE)

[144] et Negative Log Likelihood(NLL) [5]. ECE et NLL mesurent le de-

gré de mauvais calibrage des probabilités de sortie. Ils sont faibles pour

des probabilités bien calibrées. On peut remarquer que notre approche sur-

passe nettement toutes les méthodes testées pour les trois critères. En effet,

en supprimant les vecteurs de caractéristiques locales les moins sûrs, notre

modèle est capable de prédire des probabilités calibrées et précises. Il est à

noter que les architectures de notre solution et GWAP sont identiques. Cela

montre clairement que la supervision de la deuxième branche avec les TCPs

est une bonne solution pour prédire des confiances précises et sélectionner

les meilleures fonctionnalités locales. Enfin, nous proposons de comparer
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l’accuracy apportée par notre méthode avec des solutions des etats de l’art

pour la classification des matériaux (voir tableau 3.3). Malgré la simplic-

ité de notre approche, nous remarquons qu’elle surpasse toutes les solutions.

Ces résultats confirment qu’il est très intéressant de concentrer la décision

de catégorie sur des zones spécifiques d’images de matériaux et que prédire

la confiance de chaque vecteur de caractéristiques locales est un moyen intel-

ligent de le faire.

B.4 Chapitre 4

Après avoir amélioré Global Average Pooling au chapitre B.3, nous nous con-

centrons maintenant sur un autre algorithme de pooling : Fisher Scores qui se

sont avérées être des caractéristiques globales précises pour la classification.

L’idée principale de FV est d’estimer la distribution des données avec un

modèle de mélange de gaussiens et de caractériser chaque point de données

avec les dérivées sur les paramètres du modèle. Cependant, un modèle de

mélange de gaussiens ne semble pas bien adapté aux caractéristiques locales

profondes car elles se situent dans un espace de très grande dimension et né-

cessitent trop de gaussiennes pour estimer cet espace avec précision [45]. Liu

et al. ont proposé une solution intelligente pour surmonter ce problème qui

consiste à échantillonner le centre de chaque gaussienne à partir d’un sous-

espace et donc de bénéficier d’un nombre infini de gaussiennes pour s’adapter

à la distribution des données. Malheureusement, leur approche ne peut pas

profiter de l’intérêt principal du CNN, à savoir apprendre de bout en bout

les couches de l’extraction de caractéristiques, du pooling et de classification.

Pour résoudre ce problème, nous avons proposé d’implémenter la méthode

comme un module entraînable dans un réseau de neurones profonds par un

148



APPENDIX B. FRENCH TRANSLATIONS

algorithme proposé dans [146].

Deuxièmement, une étude récente a montré que la normalisation des

statistiques de second ordre a un fort impact sur les performances de clas-

sification [46]. Malheureusement, contrairement au pooling bilinéaire utilisé

dans [46], notre représentation de Fisher ne fournit pas de matrice carrée,

et il rend ainsi la solution de [46] inutilisable. Ainsi, dans ce chapitre, nous

proposons d’adapter la racine carrée d’une matrice aux matrices non carrées

et d’intégrer ce module original dans un réseau profond.

Nous menons des expériences sur trois bases de données, qui présentent de

fortes différences en termes de tâches et d’échelle. L’accuracy de classification

top-1 de notre approche et de nombreuses alternatives sont résumées dans le

tableau 4.2. Les méthodes appelées « Off-the-self » utilisent des modules de

pooling qui sont entraînées avec les caractéristiques fournies par un réseau

pré-entraîné et leurs sorties sont transmises à un classificateur qui est entraîné

à une étape suivante. Le groupe « end-to-end » contient des approches qui

utilisent des réseaux entraînables de bout en bout. Nous remarquons que les

résultats fournis par les réseaux « End-to-End » surpassent globalement ceux

des solutions sur « Off-the-shelf ». Cela montre qu’il est toujours préférable

de faire fonctionner les modules ensemble pour optimiser la même fonction

objectif au lieu de les optimiser indépendamment.

Outre l’attribut d’apprentissage de bout en bout, notre approche est basée

sur [45] qui produit les caractéristiques en second ordre plus discriminantes

que le vecteur de Fisher classique ou VLAD. La combinaison intelligente pro-

posée de ces deux avantages fait que notre méthode surpasse les alternatives

pour tous les bases de données et les backbones.
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B.5 Chapitre 5

B.5.1 Conclusion

La classification des images des matériaux est une tâche cruciale en vision

par ordinateur car elle est impliquée dans de nombreuses applications réelles

telles que la robotique ou le tri automatique des déchets, et parce qu’elle peut

aider dans de nombreux autres problèmes tels que la classification d’images

finement granuleuses. Elle consiste à classer correctement les images avec

des matériaux cibles d’une catégorie donnée. Au cours des dernières années,

grâce à leurs performances supérieures, les réseaux de neurones convolutifs

(CNN) sont apparus et sont devenus un outil prometteur pour résoudre de

nombreux problèmes de vision par ordinateur, y compris la classification

d’images. Les réseaux profonds ont également été introduits dans la classifi-

cation des matériaux. En transférant simplement un réseau pré-entraîné sur

une tâche de classification d’images à grande échelle, un meilleur accuracy

est obtenu que l’ancien état de l’art. Cependant, contrairement à la recon-

naissance d’objets, la classification des matériaux nécessite un traitement

spécifique. Dans cette thèse, nous nous intéressons principalement à deux

particularités des images matérielles :

• Les grandes zones de la surface des matériaux sont visuellement am-

biguës et les informations discriminantes résident principalement dans

des zones minuscules, voir Fig 1.4.

• Contrairement aux objets, les instances de matériaux dans une image

montrent un arrangement spatial sans ordre, voir Fig 1.6.

Ainsi, transférer directement les architectures CNN, initialement conçues

pour la classification d’objets, est inévitablement sous-optimal. Plus pré-
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cisément, en se référant aux deux propriétés décrites ci-dessus, nous avons

identifié deux inconvénients des CNN réels:

• Pour l’une des architectures les plus populaires de CNN, appelée ResNet,

son Global Average Pooling agrège les vecteurs de caractéristiques lo-

cales. Ces opérations font que des caractéristiques pertinentes mais

petites sont submergées par des régions locales ambiguës mais nom-

breuses, produisant par conséquent des caractéristiques globales moins

discriminantes.

• Nous avons démontré une amélioration de la classification en utilisant

un pooling sans ordre plus sophistiqué, comme les vecteurs de Fisher

classiques. Malheureusement, une estimation inexacte de la distribu-

tion des données se produit dans le contexte de caractéristiques pro-

fondes de grande dimension, car le nombre de gaussiennes dans le mod-

èle de mélange gaussien est limité.

Dans cette thèse, nous avons contribué à les résoudre des manières suivantes:

• Afin d’identifier des caractéristiques provenant de régions ambiguës ou

discriminantes, nous avons proposé d’ajouter dans un réseau classique

une branche qui prédit des valeurs de confiance: la probabilité de classe

de vérité térrain (TCP), associée à chaque vecteur de caractéristiques

locales. Ensuite, nous exploitons ces valeurs TCP pour filtrer les car-

actéristiques locales ambiguës qui sont associées à des confiances plus

faibles. Par conséquent, une représentation plus puissante est obtenue

après avoir appliqué le Global Average Pooling au reste des caractéris-

tiques locales. Selon les résultats expérimentaux sur trois bases de

données de matériaux, notre approche surpasse les autres modèles clas-

siques sur les critères de précision de la classification et de calibrage de
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la probabilité de sortie.

• Pour résoudre le problème des gaussiennes limitées, nous avons remar-

qué que le sparse coding des centres gaussiens dans une base adap-

tée est un moyen prometteur d’augmenter le nombre de gaussiennes

disponibles car il peut mieux s’adapter à la distribution des données.

Dans le chapitre B.4, pour franchir un pas de plus que les travaux précé-

dents, nous avons implémenté ce processus de codage dans un réseau

d’apprentissage profond. Cela permet d’optimiser la base et le sparse

code pour améliorer les performances de classification. De plus, une

nouvelle normalisation et une soustraction moyenne ont également été

intégrées à notre approche. Nous avons démontré qu’ils améliorent en-

core le pouvoir de discrimination des représentations du score de Fisher.

En pratique, nous avons également proposé une stratégie d’apprentissage

qui facilite l’initialisation des paramètres dans le module du sparse cod-

ing. Avec le soutien d’un apprentissage de bout en bout de ces représen-

tations précises du score de Fisher, notre méthode surpasse l’état de

l’art sur trois bases de données différents.

B.5.2 Limites

Pour les deux solutions que nous avons proposées, le processus d’apprentissage

est composé de deux étapes, ce qui est une faiblesse de ces approches. En

effet, pour la sélection de caractéristiques locales (Chapitre B.3), nous devons

entraîner le classifieur dans la première étape puis le geler pendant la deux-

ième étape, quand on entraîne le prédicteur TCP. Bien que cette stratégie

produise des valeurs TCP stables, il est clair qu’entraîner séparément le clas-

sificateur et la branche de prédiction TCP est légèrement compliqué. De
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même, pour nos vecteurs Fisher de bout en bout (Chapitre B.4), l’ajout

d’une étape d’entraînement d’échauffement avant d’entraîner l’ensemble du

réseau est favorable pour la classfication, comme indiqué dans le tableau 4.3.

Par rapport à la méthode associée dans [66], notre approche est évidemment

plus adaptée à l’entraînement de CNN et nécessite moins de mémoire de cal-

cul, mais elle nécessite toujours un processus d’entraînement en deux étapes

pour obtenir les meilleurs résultats.

Comment choisir les hyper paramètres est une autre limitation pour les

deux solutions. Dans le chapitre B.3, les caractéristiques locales ambiguës

sont filtrées en fonction de leurs valeurs TCP prédites lorsqu’elles sont in-

férieures à un seuil et que ce seuil a été fixé de manière empirique. Bien que

cette valeur n’ait pas un fort impact sur les résultats des différentes bases de

données testés, elle n’est peut-être pas optimale pour chaque image. Une sit-

uation similaire se produit dans le chapitre B.4 avec plus d’hyper-paramètres

tels que la taille des sparse codes , ou le nombre d’itérations dans le module

LISTA. Bien que nous ayons discuté de leur impact sur l’accuracy dans les

tableaux 4.4 et 4.5, en pratique, face à une nouvelle tâche, il serait préférable

que notre méthode puisse les déduire automatiquement de la tâche plutôt

que de demander à les définir manuellement.

B.5.3 Perspectives

Etant également un pooling de second ordre, le pooling bilinéaire est égale-

ment intéressant par rapport à nos vecteurs de Fisher (Chapitre B.4), car il

n’est pas nécessaire de s’adapter à la distribution des données et, par con-

séquent, il s’agit d’une méthode de pooling non paramétrique. Malgré sa

simplicité, il surpasse de nombreuses méthodes du pooling sans ordre dans

plusieurs tâches de classification d’images finement granuleuses, comme in-
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diqué dans [69]. Comme discuté dans la Section 2.3, il existe deux pistes de

recherche pour améliorer le pooling bilinéaire, l’un consistant à obtenir une

représentation compacte et l’autre à sa normalisation. L’intégration de ces

deux techniques devient une nouvelle tendance de recherche. La principale

limitation est que l’exécution directe de la normalisation matricielle sur les

caractéristiques du pooling bilinéaire compact (CBP) s’avère infaisable [85].

Même si quelques solutions ont été proposées [85, 86, 87, 88], le problème est

partiellement résolu et de fortes limites subsistent.

Par exemple, Gou et al. a proposé de transformer la matrice de carac-

téristiques d’entrée en une "pseudo racine carrée", afin qu’un pooling bil-

inéaire classique puisse y être appliqué et fournir directement une pooling

bilinéaire normalisée [86]. Malheureusement, le calcul de cette matrice néces-

site d’appliquer la décomposition en valeurs singulières (SVD) sur la matrice

d’entrée et nous savons que SVD n’est pas bien supporté sur GPU. Un travail

futur intéressant pourrait être d’utiliser notre méthode de Newton supportée

par GPU du chapitre B.4 pour calculer efficacement cette matrice de pseudo

racine carrée.

Une autre perspective est de concevoir une méthode hybride qui tire les

avantages de nos deux méthodes, car elles améliorent respectivement la clas-

sification des matériaux à différentes étapes du flux de travail. En effet, la

sélection des caractéristiques les plus pertinentes est un bon moyen de dimin-

uer la charge de calcul de l’extraction des statistiques de second ordre qui

nécessitent de calculer de nombreux produits externes entre les vecteurs de

caractéristiques locales. Outre le gain d’efficacité, la solution de sélection

devrait supprimer les vecteurs bruyants de caractéristiques locaux, et ainsi

aider à extraire une représentation globale du score de Fisher plus précise.
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