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Introduction

Numerous human activities are supported by software of increasing size and complexity. Over
the years, concurrent programming has become an essential component of software develop-
ment, but at the cost of more and more di�cult programming abstractions. In concurrency, pro-
grams are not made of one linear sequence of actions any more. They are composed of several
processes instead, which may execute their actions sequentially, independently from each other,
create new processes, and synchronise with other processes. The order of execution of the ac-
tions of such a program is thus not fully speci�ed, in particular when two or more processes are
run in parallel, this is called parallelism. In practice, this parallelism can be implemented in hard-
ware, this is the case on multi-core architectures, or in software, typically by a scheduler. These
two kinds of parallelism serve not only a performance purpose (running independent tasks in
parallel saves times) but also address an intrinsic need of nowadays computers (an operating
system has to run the di�erent programs of its potentially numerous users concurrently, handle
IO communications, etc).

An important problem of concurrency is to ensure that such programs are correct. This ques-
tion has been studied since the 60s in the context of concurrency theory [Pet62; Hoa78; Mil80].
Numerous techniques have been proposed to analyse concurrent programs (model-checking,
statistical analysis, automated testing, etc.) but they all face the same problem of “combinatorial
explosion” of the state-space or “state-explosion”. This refers to the fact that the number of possi-
ble executions of such a program grows quickly with its size and this is due to the freedom in the
order of execution of its actions. This thesis is part of a long-time project of quantitative analysis
of this phenomenon combining viewpoints from concurrency and combinatorics. Our approach
consists in modelling fundamental objects of concurrency as combinatorial classes so that we
can analyse them using the tool-set of analytic combinatorics [FS09]. One aspect of this work
is to study core program combinators, such as the parallel composition [BGP12; BGP16], the
non-deterministic choice [BGP13] and some form of synchronisation [Die17; BDGP17a]. These
notions were studied independently from each other in previous work and are integrated into
a single uni�ed framework in this thesis. An important notion underlying the structure of the
state-space is that of partial orders. Partial orders o�er good formalism for representing the con-
trol �ow of concurrent programs since they allow to encode scheduling constraints (as ordering
relations) without specifying the full execution order (as a total order). This approach has al-
ready been suggested in [BDGP19]. A second research direction we explore is to study the class
of partial order as a whole by using directed acyclic graphs as a tractable approximation.
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INTRODUCTION 2

Tooling: the framework of (analytic) combinatorics

An essential aspect of our work is that we express concurrent problems in the framework of
analytic combinatorics. The main interest of this framework is that it o�ers powerful tools to
study precisely quantitative phenomenons such as the explosion of the state-space of programs,
its typical shape or the number of syntactic programs themselves. A key component of analytic
combinatorics is the use of generating functions, that is formal power series encoding integer
sequences. They serve two purposes. First, they allow to express recurrence relations between
these sequences in a concise and e�cient way, thus allowing to perform high-level computations
over them directly rather than reasoning in terms of recurrences. We use this encoding exten-
sively in Chapter 1 to encode counting information on the state-space of programs and e�ectively
implement counting algorithms. Second, these generating functions can be interpreted as func-
tions of the complex variable whose analytic properties re�ect the asymptotic behaviour of the
initial sequences themselves. We also use this idea in Chapter 1 to obtain various quantitative
results on the state-space of programs.

Another key idea of [FS09] is to describe the objects under study using a so-called “admissi-
ble” combinatorial speci�cation. These speci�cations are context-free grammars augmented with
a few operators speci�c to combinatorics, which give a high level description of the objects at
play. In addition, this formalism allows to obtain equations satis�ed by the relevant generating
functions, in a systematic way, using a dictionary mapping each construction of the language of
speci�cations to a functional operation. This connection between speci�cations and generating
functions is at the heart of [FS09]. It allows to use techniques from complex analysis and forms
a powerful framework to tackle the quantitative problems encountered in this thesis.

The �eld of combinatorics also provides a fertile ground for random generation which is
omnipresent in our work. In particular, we use the systematic approach of [NW78] and [FZV94],
called the “recursive method” to write many of the random samplers described in the thesis,
though we need to adapt their complexity results to our slightly di�erent paradigm. Another
well-known random generation framework which we use here is that of Boltzmann sampling
from [DFLS04]. This technique o�ers less control than the recursive method over the size of the
generated objects but, in return, allows to generate larger structures.

Concurrency: from syntax to semantics

One of the goals of concurrency theory, and semantics in particular, is to give syntactic objects
(i.e. programs) a meaning by mapping them to semantic objects (e.g. executions). We examine
the two sides of this process in this work.

Semantics: analysing the state-space of concurrent programs First, we consider a class
of programs combining the most fundamental operators of concurrency. We build on top of pre-
vious work where several key notions have been separately studied already, such as parallelism,
seen as increasing labellings [BGP16], non-determinism, seen as partial labellings [BGP13], and
synchronisation as constrained labellings. The starting point of our approach is to �nd a suitable
combinatorial interpretation of these operators or, said di�erently, we express their semantics in
combinatorial terms. A contribution of this thesis is to integrate these various interpretations, as



INTRODUCTION 3

well as a new interpretation for loops, into a single combinatorial speci�cation. We thus provide a
uni�ed framework for studying these operators and their interactions within a single language.
This is a signi�cant leap forward in terms of expressiveness, not only because of the presence
of loops, but also because we integrate the non-determinism in a non-trivial language with syn-
chronisation. A notable aspect of the formalism developed here is that it treats speci�cations as
dynamic objects. That is to say that our algorithm builds a new speci�cation at runtime for each
input program. This di�ers from a common scenario in combinatorics where the focus is set
on one speci�cation and where solving a problem means analysing one particular combinatorial
class. As a consequence, the size of the speci�cations we encounter becomes a parameter to be
taken into account and forces us to re�ne some classical complexity results.

On the analytical side, expressing the semantics of programs as combinatorial classes allows
us to study quantitative properties of their state-space. As an example, we quantify precisely
the number of execution paths induced by the choice operator in the average case, thus giving a
key witness of its expressiveness. Another example of such quantitative results is the study of
the typical shape of the state-space of programs via the precise estimation of their number of
executions pre�xes.

At a more practical level, the framework we develop here is also an interesting source of al-
gorithmic investigation, which is the main concern of this thesis. The �rst algorithmic problem
we study is that of counting the number of executions (of bounded length, when in the pres-
ence of loops) of the programs. This is the question one has to answer to quantify the so-called
state-explosion phenomenon, and this is an important building block of our algorithmic toolbox.
Unfortunately, counting executions of concurrent programs is hard in the general case. It has
been shown in [BDGP19] that, even for simple programs only allowing barrier synchronisation,
counting executions is a #P-complete5 problem. A second problem is caused by non-determinism
because for each non-deterministic choice we have to select a unique branch of execution. More-
over, choices can be nested so that the number of possibilities can grow exponentially. In this
thesis we opt for fork-join parallelism, which enables a good balance between tractability and
expressiveness by enforcing some structure in the state-space. Moreover, another contribution
is to provide an e�cient encoding of the state-space as generating functions, allowing to count
executions without expanding the choices. Of course counting executions has no direct practical
application, but it is an essential requirement for us to build two complementary and more in-
teresting analysis techniques. First, we develop a uniform random sampler of executions (again,
of bounded length in the presence of loops). Without prior knowledge of the state-space, the
uniform distribution yields the best coverage and thus o�ers a good default exploration strategy
of the state-space. As a second and alternative approach, we provide a uniform random sampler
of execution pre�xes, o�ering a more �exible tool to explore the state-space of programs, while
remaining in control over the distribution of the sampled objects. A fundamental characteristic
of all the algorithms presented here is that they work on the syntactic representation of the pro-
grams, thus avoiding the explicit construction of the state-space. This allows to analyse systems
with a large state space.

5A problem is in #P if it consists in counting the number of accepting paths of a polynomial-time non-
deterministic Turing machine. It is #P-complete if, in addition, every other problem in #P reduces to it in polynomial
time.
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Syntax: DAGs as an approximation of programs A second and complementary aspect of
this work is the study of syntactic objects. Here, rather than analysing the state-space of one
particular program, we propose to dive into the class of programs themselves. A �rst step in this
process is to de�ne the class of programs to consider. A natural abstraction to model concurrent
program is the set of partial orders. Partial orders are well suited to represent a set of atomic
actions and a set of scheduling constraints on these actions, they encode the control graph of the
program. This is the direction taken by [BDGP19] (in our line of work) where a decomposition
of partial orders is proposed and used to count the number of possible executions of programs.
Unfortunately, the decomposition is ambiguous and cannot be used in conjunction with analytic
combinatorics tools to study the class of partial orders itself. This class is in fact hard to grasp
combinatorially. A common simpli�cation consists in approximating them by various classes of
directed acyclic graphs (or DAGs) [JCB00; Cor+10; CEH19; 10], which thus provide an alternative
encoding of the control graph. This motivates the second main contribution of this thesis which
is to study DAGs and, in particular, a new class of DAGs called directed ordered acyclic graphs
(or DOAGs).

The class of labelled DAGs, that is DAGs in which each vertex is identi�ed by an integer,
often presents itself as the default model when it comes to studying and generating DAGs. The
presence of such a labelling is necessary to break symmetries which simpli�es the analysis of
these objects and, most importantly, makes their uniform random generation tractable. How-
ever, this labelling is not motivated by concurrency considerations or partial order theory. Our
contribution is to introduce and study a new model of unlabelled DAGs (DOAGs) equipped with
an ordering of their outgoing edges. We suggest this ordering as an alternative way to break sym-
metries. In terms of concurrency, this can be interpreted as ordering the sub-processes forked by
a process. Although this is an information that one sometimes wants to ignore when modelling
programs, this ordering does re�ect a practical reality. In Unix for instance, this takes the form of
a parent-child relationship: when a process forks, one of the two resulting execution threads is
the parent and the other one is the child. Moreover, the bias introduced by this ordering favours
DAGs with vertices of high degree. This has an important consequence: this bias is easier to
grasp than the one introduced by labelling the vertices, and it can thus be balanced by bounding
the out-degree of the graph, which we can easily achieve with our approach.

In order to count and sample DOAGs, we describe here a recursive decomposition of these
objects which is of a di�erent kind compared to previous approaches used in the DAG �eld
(see [Rob73] and [Ges95] for instance). This decomposition allows us to describe an e�cient
uniform sampler of DOAGs o�ering a full control over the number of edges and vertices of the
generated objects. We also show that the decomposition applied here can be adapted to recover
some earlier results on the class of labelled DAGs and to enhance the state of the art in terms
of random generation. In particular, we obtain new recursive formulas that are amenable to
e�cient random sampling with a �xed number of vertices and edges for the class of labelled
DAGs.

Another, more exploratory, contribution of this thesis in the �eld of DAG theory is the study
of a multi-graph variant of DOAGs. That is a model where several edges may appear between
two given vertices. Using a re�nement of the decomposition mentioned before, we manage to
obtain an e�cient recursive counting formula and an e�cient uniform random sampler. This
model, as well as the DOAG model also have applications outside of concurrency. For instance,
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directed graphs with an ordering on the outgoing edges occur naturally in some applications
such as the history of a �le in the Git version control system [8, page 17]. Another natural
use case of such objects is for modelling the memory layout of partially compacted tree-like
structures. For instance, it is common in functional programming to share some common sub-
trees of persistent data-structures to save space. This technique is called hash-consing [Ers58;
Got74]. For this particular use case, the multi-graph model is more suited since it allows to
encode more partially compacted trees than the DOAG model.

Practical algorithmic considerations regarding random generation

In addition to providing quantitative results and algorithmic solutions to the problems exposed
above, studying concurrency under the lens of combinatorics also raises several auxiliary ques-
tions which sometimes go beyond the area of concurrency.

In particular, the starting point of our approach is always to describe how to decompose
the objects under study into smaller objects. In Chapter 1, this is expressed as a combinatorial
speci�cation, which is one the most powerful ways to achieve this since it automatically gives
access to several results from [FS09]. In Chapter 2, this takes the form of a bijection describing
more explicitly how to “break” the objects into smaller pieces. In the second case in particular,
some of the smaller pieces are elementary and rather common combinatorial objects, such as
combinations or variations. Incidentally, algorithms for sampling or unranking these objects are
building blocks, not only for our use cases, but also in many other contexts so that studying how
to implement them e�ciently is a central question.

We dedicate the last chapter of this thesis to implementing and enhancing common algo-
rithms or general-purpose algorithms which are used in the rest of our work, but also have a
broader impact. Our main concern is set on the e�ciency of the algorithms, especially when it
comes to sampling primitive combinatorial objects. Our contributions in this direction are the de-
velopment of a linear uniform sampler of variations and the improvement of classical algorithms
to unrank combinations. In particular, the techniques used to improve the existing algorithms
are not speci�c to the objects considered here and can be easily adapted to other algorithms.
We also dive into the practical implementation of Boltzmann samplers which have been used for
some experiments of Chapter 1. Boltzmann sampling is a general-purpose framework for obtain-
ing approximate-size e�cient random samplers from combinatorial speci�cations. Although the
technique is not new and has a rich literature, the details of their implementation are usually not
covered. One of our contributions is to describe precisely a generic Boltzmann sampler imple-
mentation as well as new optimisations. Most importantly, we describe a technique to let the
users of a Boltzmann sampling library specify how to build the generated objects so as to make
such a library more easy to integrate into an existing code-base.



Notations and generalities

We present here brie�y a restricted list of notations and results that are used throughout the
thesis.

Multiplication function

Many algorithms in this thesis involve arithmetic computations over unbounded integers. The
bit-complexity of these algorithms, that is their complexity in terms of bitwise operations, of
the di�erent arithmetic operations over unbounded integers vary signi�cantly from one algo-
rithm to the other. Even the theoretical optimal bit-complexity of the multiplication is still an
open problem. For these reasons, it is convenient to express some complexity bounds using a
“multiplication function” (n) which expresses the bit-complexity of the multiplication of two
integers with at most n bits. We assume three properties of this function [Bos+17].

1. It is at least linear n ≤ (n).
2. It is super-additive (n1) +(n2) ≤ (n1 + n2).
3. And �nally it is at most quadratic (n) = O(n2), that is the algorithm at use it at least as

good as the naive multiplication algorithm.
In fact, the bit-complexity (n) of the multiplication is conjectured to be of order O(n ln n)

by Schönhage and Strassen in [SS71], but in practice a variety of algorithms are used (depending
on the value of n) ranging from the naive “text-book” algorithm (of complexity O(n2)) to the
Schönhage–Strassen algorithm (of complexity O(n ln n ln ln n)).

A particular case of interest of integer multiplication is when one of the operands is signif-
icantly larger than the other. In this case, we use the following upper-bound for the cost of the
multiplication.

Lemma 1. The bit-complexity of the multiplication of two integers with respectively n1 and n2 bits
with n1 < n2 is bounded by

⌈
n2
n1 ⌉

(n1) + O(n2).

Proof. This bound is obtained by decomposing the second number in base 2n1 and in performing
the multiplication in this base. This incurs ⌈n2/n1⌉ multiplications of numbers with at most n1
bits and the decomposition and carry propagation incurs an extra linear term.

6



NOTATIONS AND GENERALITIES 7

Basic probability distributions

The random sampling algorithms presented in this thesis will make use of a few basic primitives
for generating integers and Boolean variables.

The Unif function takes an integer interval of the form Jn;mK as an argument and returns a
uniform integer from this interval. This function consumesO(log(m−n)) random bits in average.

The Bern function takes a real number p ∈ [0; 1] as an argument and returns true with prob-
ability p and false with probability (1 − p). If the (potentially in�nite) binary representation of p
is known, or if p is given in the form of a fraction, generating a Bernoulli variable of parameter p
costs O(1) random bits in average.

The Geom function takes a real number p ∈ [0; 1] as an argument and generates integers
following the geometric distribution, that is ℙ[Geom(p) = k] = (1 − p)kp. Similarly, the Pois
function takes a real number � > 0 as an argument and generates integers following the Poisson
distribution of parameter �, that is ℙ[Pois(�) = k] = �ke−�

k! . Both functions can be implemented
using Algorithm 1, by using a di�erent sequence pk in each case. The values of pk should be
computed on the �y.

Algorithm 1 Common algorithm of the generation of geometric and Poisson variables
r ← Uniform real number from [0; 1]
k ← 0
while r ≥ pk do

r ← r − pk
k ← k + 1

return k

Geometric distribution:
p0 = p and pk+1 = (1 − p)pk

Poisson distribution:
p0 = e−� and pk+1 = �pk

k+1

On-line Encyclopedia of Integer Sequences

In some places, we will refer to sequences stored in the On-line Encyclopedia of Integer Se-
quences (https://oeis.org) or OEIS for short. Such a sequence will be referred to using its
identi�er in the OEIS with is of the form AXXXXXX, for instance: A007526.

https://oeis.org
https://oeis.org/A007526


Chapter 1

Statistical analysis of
non-deterministic fork-join programs

This chapter is devoted to the �rst facet of this thesis: the analysis of the state-space of concurrent
programs via random generation. The approach presented here as well as some of the results
have been published in the paper [GPP20]1.

The outline of this chapter is as follows. In Section 1.2, we present a �rst version of the pro-
gram class of non-deterministic fork-join programs. We introduce the notion of global choice,
which characterises the in�uence of non-determinism in this class and we provide precise quan-
titative results on this notion. We then describe a counting algorithm and a uniform random
sampler of executions for such programs. In Section 1.3, we extend the model with loops and of-
fer an alternative approach to random generation. Finally, in Section 1.4, we study the execution
pre�xes of programs with loops, both from a quantitative and an algorithmic point of view. At
the end of each section, we support all the proposed algorithms with an experimental evaluation
of their performance, thus establishing the tractability of our approach.

1.1 Context and related work

Analysing the state-space of concurrent programs is a notoriously di�cult task, if only because
of the infamous state explosion problem. Several techniques have been developed to mitigate this
explosion: symbolic encoding of the state-space, partial order reductions, exploiting symmetries,
etc.

An alternative approach is to adopt a probabilistic point of view, by developing statistical
analysis techniques such as [Den+12]. The basic idea is to generate random executions from
program descriptions, sacri�cing exhaustiveness for the sake of tractability. This idea of em-
powering formal veri�cation with probabilistic tools has been �rst presented in [GS05] where
the authors introduce the notion of Monte-Carlo model-checking. An important question raised
in [GS05] is: how to control the distribution of the sampled objects? There is indeed a cru-
cial di�erence between generating an arbitrary execution and generating a controlled random

1[GPP20] “Statistical Analysis of Non-Deterministic Fork-Join Processes” has been published in the proceedings
of the ICTAC conference in 2020. A longer version of this paper has been submitted to the TCS journal this year.

8
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execution according to a known (typically the uniform) distribution. Only the latter allows to
estimate the coverage of the state-space of a given analysis. Moreover, the uniform distribution
plays an important role for that matter as it a priori gives the best coverage in the absence of
any further information. Later the authors of [Oud+11] developed a uniform random sampler of
lassos, which are linked to the veri�cation of temporal-logic properties over potentially in�nite
executions, thus enabling uniform Monte-Carlo model-checking. However, their approach relies
on the explicit, costly construction of the whole state-space, hence making it impractical except
for small processes.

Our study combines viewpoints and techniques from concurrency theory and combinatorics.
A similar line of work exists for the so-called “true concurrency” model (by opposition to the
interleaving semantics that we use in our study) based on the trace monoid using heaps combi-
natorics (see [KMM02; AM15]). To our knowledge these only address the parallelism issue and
not non-determinism per se. In [BMS17], the authors cover the problem of the uniform ran-
dom generation of words in a class of synchronised automata. This approach is able to cover a
slightly more expressive set of programs but this comes at the cost of the construction of a prod-
uct (synchronizing) automaton of exponential size in the worst case. Finally [DPRS10] studies
the random generation of executions in a model similar to the one we cover by extending the
framework of Boltzmann sampling. Although Boltzmann samplers are usually fast, they turn
out to be impractical in this context because of the heavy symbolic computations imposed by
the interplay between parallelism and synchronisation.

The approach developed in this thesis builds on top of previous work on this topic where
di�erent operators of concurrency have been studied independently. Pure parallelism, in the
absence of non-determinism and without synchronisation was analysed thoroughly in [BGP12]
and [BGP16]. These two articles give precise quantitative results on the typical shape of the
process behaviours and the average number of executions of the modelled programs. The ques-
tion of the uniform random generation of executions is treated using a fast, ad hoc algorithm
exploiting a hook-length formula counting the number of executions of a given process. Non-
determinism, �rst discussed in [BGP13], is a simple model with only parallelism and without
any form of synchronisation either. The article introduces algorithmic tooling for encoding the
state-space in polynomial space and gives �rst quantitative results on the expressiveness of the
non-deterministic choice operator. Whereas we could use similar tools to tackle the loop-free
fragment of our language, we show in this chapter that this approach hits a wall when introduc-
ing loops and requires a new encoding of the state-space for the non-determinism to be studied
in a more expressive language. A form of synchronisation similar to the one we have here has
been studied in [BDGP17a] and [Die17], though in the absence of non-determinism. Our ap-
proach in Section 1.2 of the present Chapter consists in untangling the non-determinism from
the other features of the language so that part of the sampling process can be delegated to the
algorithm developed in [BDGP17a]. Once again, this process does not scale to the introduction
of loops in the language in Section 1.3 and we need to develop a di�erent approach.
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1.2 A combinatorial interpretation of non-deterministic
fork-join programs

The goal of this section is to introduce the combinatorial tools that will be used throughout the
chapter and to study a �rst class of concurrent programs featuring a fork-join programming
style with non-determinism. The interest of this class is that it showcases how di�erent fea-
tures of concurrency such as the interleaving semantics of the pure merge operator [BGP16],
series-parallel synchronisation [BDGP17a] and non-determinism [BGP13] can be integrated and
studied in a uni�ed framework.

In Section 1.3, this class will be extended with a loop construction in order to gain more ex-
pressiveness. This extension has several technical implications on the combinatorial framework
at use here, which will be discussed.

1.2.1 Non-deterministic Fork-Join processes (without loops)

De�nition 1 (Non-deterministic fork-join programs). Given a set of symbols representing the
“atomic actions” of the language, we de�ne the class of non-deterministic fork-join programs (over
this set ), denoted NFJ as follows:

P, Q ∶∶= P ‖ Q parallel composition
| P ;Q sequential composition
| P + Q non-deterministic choice
| a ∈  atomic action

It is important to mention now that we will not specify further what the content of the
atomic actions is. We treat them as black boxes and assume all action names within a term to
be di�erent. We also consider programs up to injective relabelling, so that (a ‖ b) and (d ‖ c)
represent the same program. Our focus is set on the order in which these actions can be �red
and scheduled by the di�erent operators of the language. In other words, we study the control-
�ow of concurrent programs as an approximation of their behaviour. In all our examples we use
lower-case Roman letters as unique identi�ers to distinguish between actions.

We give NFJ an interleaving semantics, which means that an execution is seen as a sequence
of small atomic steps and that the executions of P ‖ Q are all the possible interleavings of an
execution of P and an execution of Q. We start by de�ning a “step” relation of the form P

a
→ P ′

between two programs and an atomic action describing one small computation step. When we
have P a

→ P ′, we say that “program P reduces to P ′ by �ring a”. The inference rules de�ning
the step relation are given in Figure 1.1 on the following page.

As a convenience, we allow the program on the right-hand-side of the step relation to be
either a regular NFJ program or a special symbol 0 representing a program that has completed
its execution. We also consider the following rewriting rules allowing to use 0 with the parallel
and sequential composition operators in the conclusions of rules (Lpar), (Rpar) and (seq):

(0; P ) = P
(P ‖ 0) = (0 ‖ P ) = P
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a
a
→ 0

(act)
P

a
→ P ′

P ‖ Q
a
→ P ′ ‖ Q

(Lpar)
Q

a
→ Q′

P ‖ Q
a
→ P ‖ Q′

(Rpar)

P
a
→ P ′

P ;Q
a
→ P ′;Q

(seq)
P

a
→ P ′

P + Q
a
→ P ′

(Lchoice)
Q

a
→ Q′

P + Q
a
→ Q′

(Rchoice)

Figure 1.1: Semantic of NFJ given as a set of inference rules de�ning a step relation

We are now equipped to de�ne the executions of the language as a sequence of steps ending
on the empty program 0.

De�nition 2 (Execution). An execution of an NFJ program P0 is a sequence of steps of the form

P0
a1→ P1

a2→ P2…
an−1→ Pn−1

an→ Pn = 0

where for all i, the step Pi−1
a
→ Pi is a proof-tree, that is it contains all the applied rules and not

simply its conclusion. We refer to the set of all possible executions of a program as its state-space.

In the absence of ambiguity, which is the case in this section, a proof-tree can be safely
identi�ed with its conclusion. As an example, an execution of the program P = (a; b) ‖ (c + d)
may �re either a, c or d at the �rst step. The proof-trees corresponding to these three possible
�rst steps are given below.

a
a
→ 0

(act)

a; b
a
→ b

(seq)

(a; b) ‖ (c + d)
a
→ b ‖ (c + d)

(Lpar)

c
c
→ 0

(act)

c + d
c
→ 0

(Lchoice)

(a; b) ‖ (c + d)
c
→ a; b

(Rpar)

d
d
→ 0

(act)

c + d
d
→ 0

(Rchoice)

(a; b) ‖ (c + d)
d
→ a; b

(Rpar)

De�nition 2 gives a natural semantics to NFJ. However it does not highlight the in�uence
of non-determinism in the structure of the state-space. It is interesting to separate the applica-
tion of the choices from the interleaving semantics of the fork-join core of the language and,
to this end, we use the notion of global choice. Informally, a global choice of a program P is a
program obtained by selecting one of the two alternatives in each sub-term of the form P1 + P2
and removing the other.
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De�nition 3 (Global choices). The set of global choices of P , denoted choices(P ) is a set of choice-
free programs obtained from P inductively as follows:

choices(a) = {a}
choices(P + Q) = choices(P ) ∪ choices(Q)
choices(P ‖ Q) =

{
(P ′ ‖ Q′) | P ′ ∈ choices(P );Q′ ∈ choices(Q)

}

choices(P ;Q) =
{
(P ′;Q′) | P ′ ∈ choices(P );Q′ ∈ choices(Q)

}

With this notion at hand, the non-determinism can be untangled from the interleaving se-
mantics since an execution can now be seen as the combination of a global choice and an exe-
cution of this global choice. The selection of the global choice carries all the non-determinism
coming from the choices of the program whereas the execution of this global choice contains
all the expressiveness of the interleaving semantics. Moreover, it is easy to prove that an execu-
tion of a choice-free program �res every atomic action in the program exactly once. Therefore a
global choice containing n atomic actions only has executions of length n and such an execution
can be identi�ed to a labelling of its actions with integers from the interval J1; nK corresponding
to their position in the sequence of steps.

For instance, the program P = m; (w ‖ ((t + (c; g)); (s + n); p)); e models the beverage vending
machine pictured in Figure 1.2 on the next page. One of its possible executions corresponds
to �ring the following sequence of actions (in this order) m, t, n, w, p, e and the global choice
corresponding to this execution is P ′ = m; (w ‖ (t ; n; p)); e. Figure 1.2 on the following page gives
a graphical representation of this execution as a labelling of P ′. In the rest of this section, we
will rely on this second point of view on executions to reason about them. To this end, we now
introduce the combinatorial tools that we will need to model both the class of NFJ programs as
a whole, and the set of executions of a given program, as combinatorial objects. This will enable
us to analyse them using tools from analytic combinatorics.

1.2.2 The combinatorial toolset part 1: modelling programs

We introduce here the notions of combinatorial class, combinatorial speci�cation, and generating
function. This is a brief introduction as we limit ourselves to the tools that are necessary to tackle
the problems covered in the present thesis. An in depth presentation of the techniques used here
can be found in [FS09].

De�nition 4 (Combinatorial class). A combinatorial class  is a set of objects equipped with a size
function | ⋅ | ∶  → ℕ such that for all n ∈ ℕ the set n = {c ∈  | |c| = n} of objects of size n of 
is �nite.

For example, one combinatorial class of interest for us is the class of all NFJ programs where
the size |P | of a program P is de�ned as the number of atomic actions it contains, that is:

|(P ‖ Q)| = |(P + Q)| = |(P ;Q)| = |P | + |Q|
|a| = 1

Table 1.1 on the next page gives the list of all NFJ programs of size at most 3 and their number.
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Figure 1.2: A simple beverage vending machine modelled by P = m; (w ‖ ((t + (c; g)); (s +n); p)); e,
one of its 4 global choices and one of the 4 possible labellings of this global choice, representing
the �ring sequence m, t, n, w, p, e. This program has 18 executions in total.

Table 1.1: All NFJ programs of size at most 3 and their number

n all programs of size n number

1 a 1
2 (a + b), (a ‖ b), (a; b) 3
3 (a + (b + c)), (a + (b ‖ c)), (a + (b; c)), ((a + b) + c), ((a ‖ b) + c), ((a; b) + c) 18

(a ‖ (b + c)), (a ‖ (b ‖ c)), (a ‖ (b; c)), ((a + b) ‖ c), ((a ‖ b) ‖ c), ((a; b) ‖ c)
(a; (b + c)), (a; (b ‖ c)), (a; (b; c)), ((a + b); c), ((a ‖ b); c), ((a; b); c)

Since the number of elements of a given size of a combinatorial class  is �nite, it is possible
to de�ne its generating function C(z) as the formal power series C(z) = ∑n≥0 cnzn where cn is the
cardinality of n, that is the number of objects of size n in . The reason behind considering a
generating function rather than working on the sequence cn directly is twofold. First, generating
functions behave nicely with respect to high-level operations on combinatorial classes, like the
Cartesian product or the disjoint union. This often allows to obtain recurrence relations on the
sequences — and even sometimes an explicit formula — in a systematic and elegant way with few
manual computations. Second, this enables the use of analytic techniques when this function
converges, allowing to obtain information on the asymptotic behaviour of the sequences via
complex analysis. This approach has been used successfully in a variety of contexts and has
been popularised by the book [FS09].

As we just mentioned, generating functions behave nicely with respect to some high-level
operations on combinatorial classes. For instance we de�ne the disjoint union  of two classes 
and , denoted by  =  + , as the combinatorial class whose underlying set is the disjoint



CHAPTER 1. STATISTICAL ANALYSIS OF NFJ PROGRAMS 14

union of the elements of  and the elements of  and whose size function | ⋅ | is such that

|c| =

{
|c| if c ∈ 
|c| if c ∈ 

where
| ⋅ | is the size function of ;
| ⋅ | is the size function of .

It is easy to check that the generating function C(z) of the class  =  +  satis�es the for-
mula C(z) = A(z) + B(z) where A(z) and B(z) denote the generating functions of  and . Using
similar notations, we can also de�ne the Cartesian product  =  ×  of two combinatorial
classes  and  where the size of an element (a, b) of  is |(a, b)| = |a| + |b|. Hence, the set n
of objects of  of size n is

{
(a, b) | a ∈ i , b ∈ j , i + j = n

}
. As a consequence the cardinality cn

of n is ∑i+j=n aibj where ai is the cardinality of i and bj is the cardinality of j . Thus, we
obtain a simple expression for the generating function of , that is C(z) = A(z) ⋅ B(z).

It follows that if one is able to describe a combinatorial class using only these constructions
(and possibly recursion), then it is straightforward to obtain an equation satis�ed by the gener-
ating function of the class. Such a description is called a combinatorial speci�cation. The process
of �nding a speci�cation for the system under study and then applying automatic rules to derive
its generating function is called the symbolic method. Table 1.2 gives a few of the constructions
we will need in this section and their translations in terms of generating functions. The neutral
class  is not useful for this section but will be later in the next section.

Table 1.2: Some constructions of the symbolic method

 C(z)

Neutral class: one element of size 0  1
Atomic class: one element of size 1  z
Disjoint union  +  A(z) + B(z)
Cartesian product  ×  A(z)B(z)

As an example of application, it is not too di�cult to obtain a speci�cation of the class 
of NFJ programs:

 =  +  ×  +  ×  +  ×  . (1.1)

This speci�cation makes use of the disjoint union, the Cartesian product and a new construc-
tion  called the atomic class. This is the class containing only one element of size one. Here
it represents the atomic actions of the language, indeed the program made of only one action
has size one and there is only one such program (up to relabelling). The other three terms rep-
resent the three other constructions of the language. A program that is not reduced to a single
action is either a parallel composition, a sequential composition or a choice between two pro-
grams. Moreover these three sets are disjoint, hence the disjoint union. Also, note that the equal
sign here denotes an isomorphism rather than an equality, in the sense that there is a bijection
between the two sides of the equality that preserves the size. The equal sign, when used in a
speci�cation, will always denote an isomorphism rather than a strict equality.

From equation (1.1) and using the transformation rules of the symbolic method recalled in
Table 1.2, we obtain that the generating function f of NFJ programs satis�es f (z) = z + 3f (z)2.
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This equation can be solved explicitly so that we have a closed formula for f :

f (z) =
1 −

√
1 − 12z
6

. (1.2)

This leads us to our �rst result on the number of NFJ programs.

Theorem 1 (Number of NFJ programs). For n > 0, the number fn of NFJ programs containing
exactly n atomic actions is given by fn = 3n

12n−6(
2n
n ). Moreover we have fn ∼

n→∞
12n−1√
n3�

.

Proof. Recall that the number fn of programs of size n is the coe�cient of degree n in the gener-
ating function f (z), which we denote by [zn]f (z). Moreover we have that

√
1 − u = −∑

n≥0

4−n

2n − 1(
2n
n )u

n

hence 1 −
√
1 − 12z = ∑

n≥1

3n

2n − 1(
2n
n )z

n

and therefore fn =
3n

12n − 6(
2n
n ).

The equivalent for fn is then obtained by applying Stirling’s formula.

The number of NFJ programs is not interesting as such, but we give it here for two reasons.
First it gives an example of application of the symbolic method which demonstrates how quickly
one can get to a counting formula, and an asymptotic estimation, using this approach. And
second, we need this result as an auxiliary result to prove a more insightful quantitative theorem
on the class of NFJ programs: an NFJ program has, in average, relatively few global choices.

The natural intuition is that, since a global choice can be any combination of local choices,
the typical number of global choices of a program should grow exponentially with the size of the
program. This intuition is correct, but what is less natural is that the growth rate of the number
of global choices is quite small. In Theorem 2 we prove that the typical number of global choices,
that is their average number over all programs of size n, grows as fast as about 1.11438n.

Theorem 2 (Average number of global choices). The average number of global choices of an NFJ
program of size n is equivalentA⋅Bn when n → ∞ for some constantsA and B such thatA ≈ 6.89446
and B = 49

27+12
√
2 ≈ 1.11438.

The practical implication of this somewhat surprising result is that, for an average program of
reasonably small size, it might be possible to enumerate all global choices because their number
is such a “small” exponential. As an example, the average number of global choices for programs
of size n = 100 is approximatively 348 261.

Proof of Theorem 2. The idea to prove Theorem 2 is to count programs annotated with one of
their global choices. In other words, we consider the combinatorial class  of all the pairs of the
form (P, P ′) where P ′ ∈ choices(P ) and where the size function of  is de�ned by |(P, P ′)| = |P |.



CHAPTER 1. STATISTICAL ANALYSIS OF NFJ PROGRAMS 16

The number of objects of size n in  is therefore the sum, over all programs of size n, of their
number of global choices. In order to get the average number of global choices given in the
statement of the theorem, it will su�ce to divide this quantity by the number of programs of
size n obtained in Theorem 1.

The class  can be speci�ed as follows:

 =  +  ×  +  ×  + ( ×  +  × ). (1.3)

And the combinatorial interpretation of the above formula is the following:
• A single action has only one global choice. Hence, there is only one annotated pro-

gram (P, P ′) in  where P = a. This is speci�ed by .
• A global choice of P ‖Q is by de�nition the parallel composition of a global choice of P and a

global choice of Q. Hence, the set of annotated programs where the outermost constructor
is ‖ is isomorphic to a Cartesian product of  with itself.

• The same reasoning applies to the sequential composition.
• Finally, the most interesting case is that of the choice construction. A global choice of a

program of the form P + Q is either a global choice of P or a global choice of Q. Hence,
the set of pairs of the form (P + Q, R) in  are such that (P, R) ∈  (or (Q, R) ∈ ) and the
second programQ (or P ) is a regular, non-annotated, NFJ program. Therefore the sub-class
of such terms is isomorphic to  ×  +  × .

From (1.3) we obtain that the generating function g(z) of annotated programs satis�es the
following equation where f is the generating function of regular (non-annotated) NFJ program:

g(z) = z + 2g(z)2 + 2g(z)f (z). (1.4)

Again, this equation can be solved explicitly which yields g(z) = 1−2f (z)−
√
Δ(z)

4 where Δ is given
by Δ(z) = (1 − 2f (z))2 − 8z expands to 1

9 (5 − 84z + 4
√
1 − 12z). Obtaining an explicit formula for

the number gn of annotated programs would require to extract the coe�cient of degree n in the
power series expansion of g(z), which would be extremely tedious.

Instead we resort to singularity analysis. The functionΔ is well-de�ned and decreasing in the
interval [0; 112 ] and Δ( 112 ) = −

2
9 < 0 so there exists a unique �g in this interval such that Δ(�g) = 0.

Let u =
√
1 − 12�g , we have that 9Δ(�g) = 5 − 7(1 − u2) + 4u = 0, which we can solve explicitly

and yields u = 3
√
2−2
7 and therefore 12�g = 27+12

√
2

49 < 1. This allows to write:

g(z) =
1 − 2f (z)

4
− ℎ(z)

√
1 −

z
�g

where ℎ(z) =

√

Δ(z)(1 −
z
�g)

−1

is analytic in
{
z ∈ ℂ | |z| <

1
12

}

Therefore the transfer theorem from [FS09, Thm. VI.3 p. 390] applies to g(z) and its n-th coef-
�cient gn satis�es gn ∼

ℎ(�g )
2
√
� n

− 32 �−ng . Furthermore, we have that ℎ(�g) =
√
−�gΔ′(�g) which can

be computed explicitly. This allows us to conclude the proof since the average number of global
choices over programs of size n is gn/fn ∼ 6ℎ(�g) ⋅ (12�g)n.
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The impact of symmetries

A natural question to ask, regarding Theorem 2 and its proof, is “how would commutativity and
associativity a�ect this result?”. We can indeed see in Table 1.1 on page 13 that even for small
sizes, many programs can be obtained from one another by �ipping the operands of the parallel
or the choice operator for instance, and it is clear from the semantics of NFJ that doing so does not
change the state-space of programs. It is actually possible to answer this question using similar
tools as before, although the proofs become signi�cantly more technical. In this sub-section we
state the analogue of Theorem 2 in a re�ned model which takes the aforementioned symmetries
into account.

We now consider all three constructions of the language to be associative so that for in-
stance (a ‖ (b ‖ c)) = ((a ‖ b) ‖ c), which we will now write (a ‖ b ‖ c). Moreover we consider the
parallel composition operator and the choice operator to be commutative so that (a ‖ (b; c)) =
((b; c) ‖ a) for instance. This has the consequence that there are fewer NFJ programs of given
size in this model than in the simpler one, and that programs with many symmetries will be
given less importance when computing the average number of global choices. We establish the
following result.

Theorem 3. The average number of global choices for programs with n atomic actions, taken up
to commutativity and associativity is equivalent to A ⋅ Bn when n → ∞ where B ≈ 1.11275.

It is extremely common in analytic combinatorics that going from ordered to unordered col-
lections (in our context: from non-commutativity to commutativity) does not change the form
the result but only the constants appearing in it. So the fact that the average number of global
choices in this new model has the same behaviour is not surprising. However it is interesting
that the new growth rate of the number of global choices is this close to the one we obtained in
Theorem 2, and that it is slightly smaller. It is also possible to approximate the constant A but is
extremely tedious and of little interest.

Taking these symmetries into account in the counting process requires to write new speci-
�cations for the class  of NFJ programs and for the class  of annotated NFJ programs, that is
the set of pairs (P, P ′) where P ∈  and P ′ is a global choice of P . In these speci�cations, asso-
ciativity is expressed using n-ary rather than binary operators whereas commutativity requires
to introduce two operators that we have not seen so far, the multi-set operator and an unusual
“replication” operator.

Speci�cation of the set of program Let  denote the class of NFJ programs, taken up to
associativity and commutativity, and let ;, ‖ and + denote the sub-classes of  containing
programs whose outermost constructors are respectively a sequence, a parallel composition and
a choice.

The class ; for instance contains all programs of the form (P1; P2) for any two programs P1
and P2. But there is an ambiguity issue with this representation when one of P1 or P2 is itself
of the form (P3; P4), because there are at least two possible ways to represent the program. To
circumvent this issue, we “�atten” nested sequence operators and say that an element of ; is
of the form P1; P2; … ; Pk where k ≥ 2 and for all 1 ≤ i ≤ k we have Pi ∉ ;. This yields the
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speci�cation ; = Seq≥2( ⧵ ;) or, equivalently, ; = Seq≥2( + ‖ + +), where Seq≥2(⋅) denotes
a sequence of at least 2 elements and is formally de�ned below.

De�nition 5. Given a combinatorial class  with no element of size 0, we de�ne the class of
sequences of elements of as:

Seq() = ⋃
j≥0

 × ×⋯ × (j times)

For k ≥ 0, we denote by Seq≥k(), the restriction of the above union to j ≥ k.

Proposition 1. Let  be a combinatorial class with no element of size 0 and let A(z) denote its
generating function. The generating function of Seq≥k() is given by

A(z)k

1 − A(z)
⋅

For + and ‖ we handle associativity the same way, but this does not solve the commuta-
tivity issue. The idea to express commutativity is to see the operands of a choice (resp. parallel
composition) as a multi-set of programs rather than a sequence since the order in which they
are written does not matter. Note that we do need a multi-set and not a set since two programs
that are equal (up to renaming of the actions) may be used as two branches of a choice or may
be composed in parallel. In combinatorics multi-sets are speci�ed using the MSet(⋅) operator,
de�ned below, which allows to write + = MSet≥2( ⧵ +) for instance. The treatment of this
kind of operators relies on what is known as Pólya theory and is covered by the book [PR12].

De�nition 6. Given a combinatorial class with no element of size 0, we de�ne the class of multi-
sets of elements of, denoted byMSet(), as the quotient of Seq() by the following equivalence
relation:

(a1, a2,… , ak) ∼ (a′1, a
′
2,… , a′� )⇔ (k = � ) ∧ ∃� ∈ Sk , ∀ 1 ≤ i ≤ k, a� (i) = a′i

where Sk denotes the set of permutations of J1; kK.
The size of an element of MSet() is de�ned as the sum of the sizes of its components (this is

independent of the ordering). Moreover, for k ≥ 0, the class MSet≥k() is de�ned as the sub-class
ofMSet() whose elements have at least k components, that isMSet≥k() = Seq≥k()/ ∼.

Proposition 2. Let  be a combinatorial class with no element of size 0 and let A(z) denote its
generating function. The generating function of the multi-setMSet() is given by

exp
(
∑
j≥1

A(zj)
j )

.

Putting together the two constructions introduced above, we get a speci�cation for NFJ ex-
pressing associativity and commutativity.

 =  + ; + ‖ + +
; = Seq≥2( ⧵ ;)
‖ = MSet≥2( ⧵ ‖)
+ = MSet≥2( ⧵ +)

(1.5)



CHAPTER 1. STATISTICAL ANALYSIS OF NFJ PROGRAMS 19

From this speci�cation, one can derive a system of equations on the generating functions of these
four classes and the singularity analysis of these functions yields the following theorem.

Theorem 4. The asymptotic number fn of NFJ programs, up to associativity and commutativity,
satis�es

fn =
n→∞

n−
3
2 �−n(1 + O(n−1))

where � ≈ 0.13793576712500258 and  ≈ 0.12607642812680533.

The value of �−1 ≈ 7.25 here has to be compared with the growth rate 12which we obtained in
Theorem 1. A heuristic argument which partly explains this value is that each syntactic program
of size n is made of n − 1 binary operators and that about 2

3 of them are choices or parallel
composition. Moreover, it is unlikely that the two operands of a binary operator are isomorphic
so each of these 2

3 (n − 1) commutative operators induce a symmetry. In total this accounts for
about 2 23n symmetries. In turns out that 12/2 23 ≈ 7.56 which is somewhat close to �−1, the rest of
the di�erence correspond to the associativity and the rough approximations of this argument.

Proof of Theorem 4. We follow here a similar proof to that of Theorem 2. That is we explicit the
behaviour of the generating function f (z) of NFJ programs near its dominant singularity and we
deduce the number of programs using the transfer theorem from [FS09, Thm. VI.3 p. 390]. There
is a major di�erence from Section 1.2 here though, which is that we do not look for an explicit
solution to the functional equations. Instead we use complex analysis to describe the behaviour
of the solution near its dominant singularity which is actually enough to get precise asymptotic
results.

The translation of speci�cation (1.5) in terms of generating functions yields the following
system by the symbolic method. Note that by symmetry, + and ‖ have the same number of
elements of each size so their respective generating functions f‖ and f+ are equal and we only use
the former.

f (z) = z + f;(z) + 2f‖(z)

f;(z) =
1

1 − (f (z) − f;(z))
− 1 − (f (z) − f;(z))

f‖(z) = exp(
∑
j≥1

f (zj) − f‖(zj)
j )

− 1 − (f (z) − f‖(z))

To simplify this system, we �rst observe that f; can be expressed as a function of f only,
more precisely f;(z) = f (z)2(1 + f (z))−1. Hence f; has the same radius of convergence as f . For f‖
however no such simpli�cation is possible and we resort to a classical argument for this kind of
operators. First note that f and f‖ have the same radius of convergence � and that � < 1. This
can be proved for instance by observing that  ×; ⊂ ‖ and ( + ‖)2 ⊂ ‖ and by enumerating
the programs belonging to the subset of  described by  ′

; =  ×  ′
; and ‖ = ( + ;)2. As

a consequence, we have that for all j > 1, the radius of convergence of f (zj) (and thus f‖) is at
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least √� > �. Hence, the exponential in the above formula can be split in two:

f‖(z) = ef (z)−f‖(z)e�1(z) − 1 − (f (z) − f‖(z))

where �1(z) = ∑
j≥2

f (zj) − f‖(zj)
j

is analytic in
{
z | |z| < √�

}
.

As a consequence, we get that f‖(z) = ln 1
1+f (z) + f (z) + �1(z) and �nally f (z) = �2(z) + �(f (z))

where � is the analytic function de�ned below and �2(z) = z + 2�1(z). Note that � has no terms
of degree 0 and 1, this will be important in the following.

�(u) =
u2

1 + u
+ 2 ln

1
1 + u

+ u = ∑
n≥2

(−1)n (1 +
2
n)

un.

In order to get the asymptotic behaviour of f near its singularity, we �rst study the functional
equation y(x) = x + �(y(x)) which admits a unique analytic solution in a neighbourhood of 0.
By unicity of the solution, we get that f (z) = y(�2(z)) and that the radius of convergence � of f
is the unique z > 0 such that �2(z) is equal to the radius of convergence of y.

We solve the equation y = x + �(y) by applying the Theorem 2.19 from [Drm09] after a
simple change of variable so that it �ts the hypotheses of the Theorem. Note that we actually
need the weaker version of the theorem exposed in Remark 2.20 from the same book because our
function � has negative coe�cients in its expansion. By introducing ỹ = y

x −1we can reformulate
the equation as in:

ỹ =
1
x
�(x(1 + ỹ)) = F (x, ỹ).

The hypotheses of the Remark 2.20 of [Drm09] apply to this equation. In particular we �nd
that x0 = y0 − �(y0) and ỹ0 = �(y0)

x0 where y0 =
√
3−1
2 is the unique solution of )ỹF (x, ỹ) = 1 on

the positive real axis. Hence, by [Drm09] there exists a unique solution ỹ to this equation, it
is analytic for |x | < x0 and furthermore there exist two functions ℎ̃1 and ℎ̃2 which are analytic
around x = x0 and such that locally around x = x0 we have:

ỹ(x) = ℎ̃1(x) − ℎ̃2(x)
√
1 −

x
x0

besides, ℎ̃1(x0) = ỹ0 and ℎ̃2(x0) =

√
2x0)xF (x0, ỹ0)
)ỹ2F (x0,ỹ0)

=

√
2(y0�′(y0) − �(y0))

x20�′′(y0)
.

As a consequence f is analytic in |�2(z)| < x0 and its dominant singularity � is the unique z > 0
such that �2(z) = x0. Moreover, there exist two analytic functions ℎ1 and ℎ2 such that locally
around z = � we have

f (z) = ℎ1(z) − ℎ2(z)
√
1 −

z
�

= y0 − x0ℎ̃2(x0)
√
�� ′2 (�)
x0

√
1 −

z
�
+ O(� − x).

Finally, the transfer theorem (see [FS09, Thm. VI.3 p. 390]) allows us to deduce the asymptotic
behaviour of the sequence fn, counting the number of NFJ programs of size n, when n tends to
the in�nity.
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Numerical estimation of the constants Some arguments exposed above are not con-
structive. In particular the constant � is de�ned as the solution of an equation involving f (zj)
and f‖(zj) for all j ≥ 2, for which we have no expression. In addition, the value of  depends on
the value of � and � ′2 (�), this function being implicitly de�ned. It is however possible to numeri-
cally evaluate these constants with extremely good precision using a method explained in [FS09,
Section VII.5], which we detail in this section.

The method is actually based on a simple idea. One starts by computing the �rst terms
of the expansion in power series of f and f‖ up to some degree m, this yields two polynomi-
als f [m] and f [m]‖ of degreem. Then one uses these two expansions to approximate the �2 function
by � [m]2 (z) = z + 2∑m

j=2 j−1(f [m](zj) − f
[m]
‖ (zj)) and we get an approximation of � by solving nu-

merically the equation � [m]2 (z) = x0 = ln(
2+

√
3

2 )−
3
√
3−5
2 . Note that the function � [m]2 is increasing

on the positive real axis so the equation � [m](z) = x0 can be numerically solved by dichotomy.
Finally, we let m grow until the approximation stabilises. Since the solution � of �2(z) = x0 lies
inside the disc of convergence of �2, the approximation of �2(z) by � [m]2 (z) converges quickly and
the approximation of � is extremely precise even for small values of m.

There is one subtlety though in the computation of the �rst terms of the expansion of f‖
and f;. We did not give a formula for computing the �rst terms of MSet() given the �rst terms
of . The usual approach to obtain such a relation is to exploit the formula for the derivative of
the generating function of MSet() which has a more convenient expression. In our case, we
want to the �rst terms of f‖(z) = exp(f (z) − f‖(z) + �1(z)) − 1 − (f (z) − f‖(z)) whose derivative is:

f ′‖ = (f
′ − f ′‖ + �

′
1 ) exp(f − f‖ + �1) − (f

′ − f ′‖ )

= (f ′ − f ′‖ + �
′
1 )(f + 1) − (f

′ − f ′‖ )

= (f ′ − f ′‖ + �
′
1 ) ⋅ f + �

′
1

with � ′1 (z) = ∑
j≥2

zj−1(f ′(zj) − f ′‖ (z
j)).

One can then obtain a recurrence relation for the coe�cient of degree n of f ′‖ by extracting
the term of degree n from both sides of the last equality. Since f (0) = 0 and since the sum starts
at j = 2 in � ′1 , only coe�cients of f ′ and f ′‖ of degree less than n appear on the right-hand-side
of the relation.

Getting a recurrence relation to compute the n-th term of f; is more straightforward as there
is no exponential to deal with. One can for instance use the following formula (note that both
operands of the product are null at 0):

f;(z) = f (z)(f (z) − f;(z)).

Using the approach described above, one quickly gets a good approximation of � and � ′2 (�),
this second value being necessary to compute  . As a rough indication of the speed of conver-
gence of this approximation scheme, with our implementation using double precision �oats, the
sequence m ↦ �[m] is stationary after m = 16 as we hit the limit of representatble numbers.
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Speci�cation of the set of annotated program Like in the proof of Theorem 2, in order to
count the average number of global choices of programs of size n, one �rst counts the number
of pairs (P, P ′) where P is a program of size n and P ′ is one of its global choices. We call such a
pair an annotated program and we de�ne its size as the size of its �rst component P .

Let  denote the class of annotated programs of size n and let ;, + and ‖ denote the classes
of annotated programs whose outermost operator is respectively a sequential composition, a
choice or a parallel composition. The equations de�ning , ; and ‖ are straightforward to
obtain as they follow closely their non-annotated counterparts  , ; and ‖:

 =  + ; + ‖ + +
; = Seq≥2( ⧵ ;)
‖ = MSet≥2( ⧵ ‖).

(1.6)

The case of the choice however, requires more work as we need to express the fact that one of
the branches of the choice is executed and the others are not. In order to specify this, we reason on
the executed branch of the choice and on the sub-set of the other branches which are isomorphic
to it. The executed branch (P0, P ′0) belongs to ( ⧵+) for the same reason the branches of regular
(non-annotated) choice programs + belonged to ( ⧵ +) in the previous section. Moreover,
among the other branches, k ≥ 0 branches P1, P2,… , Pk may be isomorphic to P0, that is to say
that all of the Pi are copies of P0 with di�erent atom names. Although the choice operator is
associative in this section, we have to specify that the program P = P0+P1 +P2 +⋯+Pk has (k +1)
distinct choices (one of each Pi) according to our speci�cation. One way to achieve this at the
speci�cation level, is to arti�cially partition the branches of P into two sets. We �x an arbitrary
ordering of the Pi and we distinguish between the Pi that are “before” P0 and those that are
“after” P0. Thus, an annotated choice program in + is composed of an annotated branch (P0, P ′0) ∈
 ⧵ +, a possibly empty set of copies of P0 considered to be before P0, a possibly empty set of
copies of P0 considered to be after P0 and a possibly empty multi-set of other branches (di�erent
from P0). As a consequence + is speci�ed by:

⋃
(P0,P ′0)∈⧵+

MSet({P0}) ×
{
(P0, P ′0)

}
×MSet({P0}) ×MSet( ⧵ + ⧵ {P0}) ⧵

{
(P0, P ′0)

}
.

Note that the removal of the term
{
(P0, P ′0)

}
on the right captures the fact that a choice term

cannot be reduced to one single branch. Also note that the termMSet({P0})×MSet( ⧵ + ⧵ {P0})
can be simpli�ed to MSet( ⧵ +). This can be interpreted by saying that the copies of P0 con-
sidered to be after P0 can be grouped together with the multi-set of other branches (di�erent
from P0) so that it forms one single multi-set of non-annotated programs. Furthermore, the re-
maining terms can be simpli�ed too by observing that the j remaining copies of P0 can be grouped
together with (P0, P ′0) and that the (j+1)-tuples of the form (P0, P0,… , P0, (P0, P ′0)) ∈  j × have the
same size as the (j + 1)-tuples of the form ((P0, P ′0), (P0, P ′0),… , (P0, P ′0)) ∈ j+1 and are trivially in
bijection with them. We introduce a “replication” operator which can specify this kind of tuples.

De�nition 7. Let be a combinatorial class with no element of size 0, we de�ne the class of replicas
of elements of  as

Repl() = ⋃
j≥1

{
(x, x,… , x)
j components

| x ∈ 
}
. (1.7)
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Proposition 3. Let  be a combinatorial class with no element of size 0 and let A(z) denote the
generating function of. The generating function of Repl() is given by

∑
j≥1

A(zj).

Finally, we can also note that MSet( ⧵ +) = + + ( ⧵+) +  from (1.5). Hence we get the
simpler speci�cation of + given by:

+ = Repl( ⧵ +) × ( + ) ⧵ ( ⧵ ). (1.8)

Here again, the speci�cations (1.6) and (1.8) translate into a system of equations on the generating
functions of , +, ;, ‖ and  . The analysis of these functions leads to Theorem 3 and is detailed
below.

Proof of Theorem 3. In terms of generating functions, the speci�cations (1.6) and (1.8) of the an-
notated NFJ programs translate into the following system of equations. Note that the equations
satis�ed by g; and g‖ are similar to the equations satis�ed by f; and f‖ so we do not repeat the
explanations.

g(z) = z + g;(z) + g‖(z) + g+(z)

g;(z) =
g(z) − g;(z)

1 − (g(z) − g;(z))
=

g(z)2

1 + g(z)

g‖(z) = exp(
∑
j≥1

(g − g‖)(zj)
j )

− 1 − (g − g‖)(z)

= g(z) + ln
1

1 + g(z)
+∑

j≥2

(g − g‖)(zj)
j

g+(z) = (
∑
j≥1

g(zj) − g+(zj))
(1 + f (z)) − (g(z) − g+(z)).

Let �g denote the radius of convergence of g. Each program has at least one global choice so
there are at least as many elements of size n in as in and thus �g ≤ �. Using the same argument
as above, one can show that g(zj) is analytic in a disc of radius larger than �g whenever j ≥ 2.
Hence, the rightmost term in the expression of g‖, which we denote by �3(z) = ∑j≥2

(g−g‖)(zj )
j , is

analytic in a disc of radius larger than �g . For the same reasons, �4(z) = ∑j≥2 g(zj) − g+(zj) is
analytic in the same disc and we can write g+ = �4 + f

1+f g.
Finally, by merging all equations together, we get

g(z) = �5(z) + (1 + f (z)) (g(z))

with  (z) =
z2

1 + z
+ z + ln

1
1 + z

= ∑
n≥2

n + 1
n

(−z)n

and �5(z) = (1 + f (z))(z + �3(z) + �4(z)).
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As for f , the key to get the precise behaviour of g near its main singularity, and therefore
to get an approximation scheme for �g , is to show that the functional equation y = y(x, u) =
x + u (y) has a unique solution, which we are able to describe, and to conclude by unicity
that g(z) = y(�5(z), 1 + f (z)). To this end, we use an extension of Theorem 2.21 from [Drm09].
This requires to apply the simple change of variables ỹ = y−x

ux and ũ = u
1+f (�g ) so that the equation

ful�ls the requirements of the theorem (except for the non-negativity of the coe�cients of  ).
The equation then becomes:

ỹ = F (x, ỹ, ũ) =
1
x
 (x(u1ũỹ + 1)) where u1 = 1 + f (�g). (1.9)

Remark 2.20 from [Drm09] (which is related to Theorem 2.19 in the book) can actually
be adapted to Theorem 2.21. So in order to prove the existence of an analytic continuation
of “square-root” type for the unique solution of (1.9), it is enough to show that there exists a
pair (x1, ỹ1) in the domain of convergence of F such that

ỹ1 = F (x1, ỹ1, 1)
1 = )ỹF (x1, ỹ1, 1)
0 ≠ )xF (x1, ỹ1, 1)
0 ≠ )2ỹF (x1, ỹ1, 1).

In our case, we have )ỹF (x, ỹ, ũ) = u1ũ ′(x(u1ũỹ + 1)) and  ′(z) = 2 − 1
1+z −

1
(1+z)2 . First

we solve u ′(z) = 1 which yields a unique positive solution y1(u) = 2√
1+4(2−u−1)−1

− 1 which is a
decreasing function of u and thus satis�es y1(1) > y1(u) ≥ y1(u1) ≥ y1(1 + f (�)) for 1 < u ≤ u1.
Note that we have y1(1) =

√
5−1
2 ≈ 0.618 and y1(1 + f (�)) = y1( 1+

√
3

2 ) ≈ 0.366.
Thus, a solution (x1, ỹ1) of the above system necessarily satis�es x1(u1ỹ1 + 1) = y1(u1).

Then we solve ỹ1 = F (x1, ỹ1, ũ) by injecting the later equality in the de�nition of F which
yields x1(u) = y1(u) − u (y1(u)) in the general case and thus x1 = y1 − u1 (y1(u1)). The two
non-nullity conditions are then easily checked since )xF (x1, y1, 1) = (u1x1)−1 and )2yF (x1, y1, 1) =
x1u21 ′′(y1(u1)) > 0.

We thus obtain that equation (1.9) has a unique solution ỹ which is analytic near x = 0
and u = 1. Furthermore, this function admits a representation of the following form near x = x1
and u = 1 where ℎ̃3 and ℎ̃4 are analytic functions:

ỹ(x, ũ) = ℎ̃3(x, ũ) − ℎ̃4(x, ũ)
√
1 −

x
x1(u1ũ)

⋅

From the unicity of the solution, we get that g(z) = y(�5(z), 1 + f (z)) and thus, for some
analytic functions ℎ3(z) and ℎ4(z), we have:

g(z) = ℎ3(z) − ℎ4(z)

√

1 −
�5(z)

x1(1 + f (z))
⋅ (1.10)

The singularity �g of g is thus the minimum positive real number in the interval [0; �] such
that �5(�g) = x1(1 + f (�g)). Numerically we get that �g ≈ 0.12 < � so in a neighbourhood of �g we
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have

g(z) = ℎ3(z) − ℎ5(z)
√
1 −

z
�g

where ℎ5(z) = ℎ4(z)

√

(1 −
�5(z)

x1(1 + f (z)))(1 −
z
�g)

−1

is analytic near �g .

As a consequence, the number gn of annotated programs is equivalent to n−
3
2 �−ng for some

constant g > 0. The numerical evaluation of the constants �g and g is similar to the evaluation
of � and  so it is not repeated here. Numerically, we get �g ≈ 0.122854753.

This concludes the study of the class NFJ itself and of its number of global choices. The
outcome of this sub-section is that we can still obtain an equivalent of the average number of
global choices in programs of size n when programs are considered up to commutativity and
associativity. Unsurprisingly, this equivalent is of the same form as in the simple case without
taking the symmetries into account, though the constants are di�erent. Although it is more
satisfactory to take these symmetries into account for quantifying the average number of global
choices, this result comes at the expense of a considerably more technical analysis. We now turn
to the counting and random sampling of executions until the end of Section 1.2.

1.2.3 The combinatorial toolset part 2: executions as partial increasing
labellings

In order to study the set of executions of a program, and in particular in order to count it, we
need to give it a combinatorial interpretation too. As mentioned earlier, the idea is to see an
execution as a labelling of the actions of the programs. Before formalising this approach, we
present a graphical representation of NFJ programs that will help us picture these labellings.
This representation yields graphs similar to those of Figure 1.2 on page 13, though with a little
more detail so as to remain generic.

De�nition 8 (Control graph). To every NFJ program we associate a control graph with three kinds
of nodes: actions (a), fork-join nodes (◦) and choices nodes (+). The control graphG(P ) of a program P
is inductively de�ned as follows:

G(a) = a

G(P ‖ Q) =

◦

G(P ) G(Q)

◦

G(P ;Q) =
G(P )

G(Q)

G(P + Q) =

+

G(P ) G(Q)

+

As mentioned above, we can see an execution of an NFJ program as a two-step process. First,
select a global choice, that is select which branch of each choice should be run, and second, label
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the actions of this global choice using the integers from J1; nK according to the order in which
they are �red. The integer n is the number of actions in the global choice here. Figure 1.3 pictures
the same example as in Figure 1.2 on page 13 using this representation. In the middle picture,
one branch of each + node has been selected and the other has been discarded (coloured in light
grey). In the rightmost picture, the remaining actions of the graph have been labelled such that,
whenever there is an edge between two actions, the action on the upper end of the edge has a
smaller label than the action at the bottom. We call this an increasing labelling of the graph since
every path from the top of the graph to the bottom is increasingly labelled.

m

◦

w

+

t c

g

+

+
s n

+

p

◦

e

select a choice
⟶

m

◦

w

+

t c

g

+

+
s n

+

p

◦

e

label
⟶

1

◦

4

+

2 c

g

+

+
s 3

+

5
◦

6

Figure 1.3: Two-step decomposition of an execution of program P = m; (w ‖ ((t+(c; g)); (s+n); p)); e

The key idea to study the executions of NFJ programs is to see the set of possible executions
of a single program as its own combinatorial class. To this end we will need a labelled variant
of the formalism presented above. Informally, a labelled combinatorial class is a special case of
combinatorial class in which the size n of an object corresponds to a number of “atoms” in the
object (typically graph nodes or tree nodes) and where each of these atoms are assigned a unique
label from the set J1; nK. A typical example of labelled class is the set of permutations which can
be seen as a linear arrangement of n atoms labelled from 1 to n. In our case, the labelled class of
interest is that of the executions of a program, which are seen as a labelled global choice.

More formally, labelled combinatorial classes can be seen as sets of pairs of a regular “unla-
belled” object and a permutation representing a labelling.

De�nition 9 (Labelled combinatorial class). Let S = ⋃n≥0Sn denote the set of all �nite permu-
tations. A combinatorial class  is a labelled combinatorial class if it is of the form  ⊆ C × S
for some set C and if for all elements (c, � ) of  the size |(c, � )| of the element is the unique n such
that � ∈ Sn.

As for unlabelled classes, the study of such a class can be made more systematic when one
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is able to specify it. There exist several operators of the symbolic method which are speci�c to
labelled classes, in addition to those presented in Table 1.2 on page 14. Here we will only need
two, the labelled product and the ordered product. The labelled product (denoted by ⋆) of two
objects is de�ned as the set of all possible interleavings of their respective labellings. Formally,
we �rst de�ned the labelled product of two objects:

(a, �a) ⋆ (b, �b) = {((a, b), � ) | � is an interleaving of �a and �b}

that is

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

� ∈ S|a|+|b|

∀i, j ≤ |a|, � (i) < � (j)⇔ �a(i) < �a(j)
∀i, j > |a|, � (i) < � (j)⇔ �b(i) < �b(j)

Said di�erently, the restriction of � to J1; |a|K is a labelling of a using |a| distinct labels from the
interval J1; |a|+ |b|K. Similarly, the restriction of � to J1+ |a|; |a|+ |b|K is the labelling of b using the
remaining labels. The labelled product of two classes is then de�ned as a union over all possible
pairs:

 ⋆  = ⋃
a∈,b∈

a ⋆ b

Although the de�nition is a bit technical, it captures a natural idea in the context of con-
currency since it mimics the interleaving semantics of the parallel composition operator. As
an example, consider two programs P and Q and two possible executions of these programs eP
and eQ . Since the rules Lpar and Rpar commute in the semantics given at the beginning of this
section, it is easy to see that any interleaving of eP and eQ is a valid execution of P ‖ Q and that
any execution of P ‖ Q is the interleaving of some executions of P and Q. Hence, if  and 
denote the set of all possible executions of P and Q, seen as labelled objects, then  ⋆  is the
set of possible executions of P ‖ Q.

The ordered product  F  of two labelled classes  and  has a simpler de�nition, although
it is less common. Unlike the labelled product, it does not appear in [FS09]. Resources on this
operator and its unlabelled counterpart can be found in [BDGP17b]. It is de�ned by

 F  =

{

((a, b), � ) | (a, �a) ∈ , (b, �b) ∈ , � (i) =

{
�a(i) if i ≤ |a|
�b(i − |a|) + |a| otherwise

}

.

The ordered product simply shifts the labelling �b of its second component b so that it does not
overlap with the labelling �a of its �rst component a. More eloquently, in an ordered product,
the �rst component always has the smallest labels and the second component has the largest. In
the context of concurrency, this captures the semantics of the sequential composition operator.

In fact, all the constructions of the NFJ language can be mapped to one of the combinatorial
constructions we have seen so far. Hence, we can de�ne a combinatorial speci�cation of the
set of the executions of any program P by induction on the syntax. However, in order to add
more information in the speci�cation, which will become useful later for random generation, we
introduce a last notion, markers. A marker is a combinatorial class that contains only one object
of size 0 and whose purpose is only to distinguish one position in the objects or one subset of the
objects (e.g. those that contains the markers by opposition to those that do not). For instance, if
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we consider again two NFJ programs P and Q and their respective sets of possible executions 
and , the set of the executions of (P +Q) can be speci�ed by � ⋆ +r ⋆ where � (resp. r )
is a marker class marking the executions of (P + Q) taking the P branch (resp. the Q branch). In
a sense this is a more precise speci�cation than  + since it carries more information.

The function S mapping a program to the speci�cation of its executions is inductively de�ned
in Table 1.3. As a convenience, we assume that all the choices in the program are given a unique
identi�er i (this is pictured by +i in all the formulas) so that we can assign them two marker
classes i,� and i,r marking respectively the executions taking their left branch and their right
branch.

Table 1.3: Recursive combinatorial speci�cation of the set of executions of a program and its
corresponding generating function

Language construction Speci�cation Generating function
P S(P ) P (z)

a  z
P ‖ Q S(P ) ⋆ S(Q) P (z)} Q(z)
P ;Q S(P ) F S(Q) P (z)Q(z)
P +i Q i,� × S(P ) + i,r × S(Q) yi,�P (z) + yi,rQ(z)

where ∑n≥0 anzn }∑n≥0 bnzn = ∑n≥0∑
n
k=0 (

n
k)akbn−kz

n.

The generating functions given in the third column of Table 1.3 is the generating function of
the executions of the program. It is actually a function of several variables: the main variable z
counting the number of atoms in the program and the marker variables (yi,� , yi,r , . . . ) marking
the di�erent choices. It generalises the generating functions with one variable introduced above
so that if y⃗ is a product of yi,� and yi,r variables (where each variable may appear at most once),
then the coe�cient in front of zny⃗ in the series is the number of execution of size n of the
program such that for all i, yi,� (resp. yi,r ) appears in y⃗ if and only if the left (resp. right) branch
of choice number i is taken. In short, the markers encode the local choices while the atomic
class  encodes the number of actions of the execution.

The operation denoted by P (z) } Q(z) is called the coloured product and is introduced
in [BDGP17b]. The symbol } originally denotes an operation on combinatorial speci�cation
and we overload it here to denote an operation on generating functions.

Remark 1. The reader familiar with combinatorics might �nd it odd that we use ordinary gen-
erating functions (OGF) rather than exponential ones (EGF) which are generally more suitable for
labelled classes. The reason behind this choice is that we are actually facing operators from both
worlds here. The ordered product F expresses in the labelled terms an operation which behaves
better in the unlabelled world, and it indeed gives a nice formula in terms of OGF but not in terms
of EGF. On the other hand the labelled product ⋆ is intrinsically labelled and behaves well only in
terms of EGF. Since there is no obvious choice here between the two, we opt for ordinary generating
functions for implementation reasons. They require integer arithmetic whereas EGFs would require
to deal with rational numbers, which would be less e�cient in practice.
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The generating function P (z) of S(P ) captures insightful counting information about the pro-
gram. For instance, the total number of executions of P is obtained by substituting 1 for every
variable in P (z). Finer-grained information can also be obtained. For example, given an integer i,
the generating function of the subset of the execution of P taking the left branch at choice i is
obtained by substituting 1 for yi,� and 0 for yi,r . The number of such executions can then be
obtained by substituting 1 for the remaining variables.

As an example, for the beverage vending machine P = m; (w ‖ ((t+1(c; g)); (s+2n); p)); e, whose
control graph is pictured in Figure 1.3 on page 26, we get the speci�cation S(P ) =  F (⋆((1,� ⋆
+1,r ⋆ ( F )) F (2,� ⋆+2,r ⋆) F )) F . From this speci�cation we get the following
generating function by applying the rules of the symbolic method described in Table 1.3 on the
previous page: P (z) = 4y1,� (y2,� + y2,r )z6 + 5y1,r (y2,� + y2,r )z7. The number of executions taking
the left branch of choice 1, that is choosing tea over co�ee, is obtained by substituting 0 for y1,r
and 1 for all the remaining variables. This yields 8 whereas the number of executions taking
the right branch of choice is 10. This tiny example already shows that sampling executions by
choosing one branch of each choice with probability 1

2 and scheduling the rest of the actions
introduces some bias in the generation. While this bias is harmless on such a small example, it
can be dramatic in terms of coverage for larger programs as we demonstrate in Section 1.4.

1.2.4 Statistical analysis

We now tackle the problem of exploring the state-space of a given process through random gen-
eration. To this end we describe a uniform sampler of executions which relies on the counting
information contained in the generating function of the program. Our random sampler thus
requires the computation of this function as a pre-processing step, which can be done in poly-
nomial time and space. We thus do not need to need the explicit, costly construction of the
state-space.

Preprocessing: the generating function of executions

As explained in the previous section, the symbolic method gives a systematic way of computing
the generating function of the class S(P ) of the executions of a program P . However, some care
must be taken on the memory representation of this function. Fortunately for us, since the state-
space is �nite, the generating function of the executions of a program is a polynomial and not
an in�nite power series, but it has multiple variables encoding the di�erent local choices. We
also saw in Theorem 2 that this number of global choices was exponential so fully expanding the
generating function of S(P ) would yield an exponential number of terms which constrains us to
seek a more compact representation.

A more suitable representation is to only expand on the z variable, that is we represent the
generating function of S(P ) as a dense polynomial in z whose coe�cients are arithmetic ex-
pressions stored as trees sharing some common sub-structures. More precisely, an arithmetic
expression is a binary tree whose internal nodes store a �ag indicating whether the node cor-
responds to an addition or a multiplication, and whose leaves are either a pair of the form (i, s)
indicating a yi,s variable or an integer. Moreover, the implementation of these coe�cients must
use hash-consing (see [Got74]). That is to say that when an expression (resulting from previous
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computations) is used several times, it should not by copied but referenced by a pointer. Note
that this is di�erent from optimal compaction where common sub-terms are systematically com-
pacted. Finally, the generating function of S(P ) is stored as an array of such coe�cients such that
the coe�cient at position i is the coe�cient of degree i in z. An example of such a polynomial
is pictured in Figure 1.4.

0 0 0 0

×

y2,�

0

×

y2,r+

y1,r

3

×

2 y1,�

Figure 1.4: The compact tree-based memory representation of y2,� (2y1,� + y1,r )z3 + y2,r (2y1,� +
y1,r )z4 + 3z7. Note that the common sub-term (2y1,� + y1,r ) is shared by two expressions.

A straightforward application of the symbolic method leads to Algorithm 2 for computing
the generating function of the executions of a program. In the algorithm, the multiplications and
additions of two coe�cients are implemented as the allocation of a new tree node whose two
children are the two operands.

Algorithm 2 Computation of the generating function of the executions of an NFJ program
Input: An NFJ program P
Output: The generating function of S(P )
function gfun(P )

if P = a then return z
else if P = (Q ‖ R) then return gfun(Q) } gfun(R)
else if P = (Q; R) then return gfun(Q) ⋅ gfun(R)
else if P = (Q +i R) then return yi,�gfun(Q) + yi,rgfun(R)

where ∑n≥0 anzn }∑n≥0 bnzn = ∑n≥0∑
n
k=0 (

n
k)akbn−kz

n.

The coloured product } used in the parallel composition case can be implemented similarly
to the “text-book” polynomial multiplication using the formula given in the algorithm. Note
however that computing each binomial coe�cient individually incurs a non-negligible cost since
they require big-integer arithmetic and cannot be obtained in constant time. This cost can be
reduced signi�cantly by re-using the value of the last-computed binomial coe�cient at each
iteration step using the formula ( n

k+1) = (nk)
n−k
k+1 . The whole procedure is presented in Algorithm 3

and the trick used to compute the binomial coe�cient faster is at line 7. This technique allows to
lower the cost of computing one binomial coe�cient to only one multiplication and one division
of a big integer by a small integer �tting in a machine word.
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Algorithm 3 Computation of the coloured product of two polynomials
Input: Two polynomials P and Q of respective degrees dP and dQ
Output: The coloured product of P and Q

1: function }(P, Q)
2: R ← array of length dP + dQ + 1
3: for n from 0 to dP + dQ + 1 do
4: b ← 1
5: c ← P[0] ⋅ Q[n]
6: for k from 1 to n do ⊳ Invariant: upon entering the loop b = ( n

k−1)
7: b ← b ⋅ (n − k + 1)/k
8: c ← c + P[k] ⋅ Q[n − k] ⋅ b
9: R[n]← c

10: return R

Theorem 5 (Complexity of Algorithm 2). Algorithm 2 can be implemented in complexity O(|P |2)
in terms of memory allocations and arithmetic operations on big integers, where |P | denotes the
number of atomic actions in P .

Proof. For all programs P , let C(P ) denote the number of arithmetic operations on coe�cients
performed by gfun(P ). All the binary operators of NFJ have a cost that is at most of the order of
one polynomial multiplication. Moreover, note that the degree of the generating function of P
(which, recall, is a polynomial) is at most |P |. Hence, there exists a constant � ≥ 1 such that for
all P, Q we have C(P ;Q), C(P + Q), C(P ‖ Q) ≤ 2� |P ||Q| + C(P ) + C(Q).

We prove by induction on the syntax of programs that C(P ) ≤ � |P |2. This is trivially true
when P = a and if ∙ denotes any of the three other operators, we have C(P ∙ Q) ≤ 2� |P ||Q| +
�(|P |2 + |Q|2) ≤ �(|P | + |Q|)2 = � |P ∙ Q|2.

Note that it is crucial to use hash-consing for this results to hold. Said di�erently, one arith-
metic operation on expressions must only consist in the allocation of a new tree node and must
not perform any deep copy.

1.2.5 Random sampling of executions

Our random sampling algorithm builds on ideas from the so-called recursive method, which is
due to Nijenhuis and Wilf [NW78]. We use a two-step process to generate uniform executions.
First, we select one of the global choices of the program with probabilities depending on the
number of labellings of each global choice. Second, once a global choice has been selected, we
draw one of the possible labellings of this choice uniformly at random. In other words, at the
�rst step we bias our generation of a global choice so that the overall process remains uniform
in terms of executions.

In order to sample a global choice, we �rst choose the size of the choice to be sampled. To
this end, recall that the coe�cient of degree k of the generating function encodes all execu-
tions of length k and that they correspond to global choices of size k. Besides, the coe�cient
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of degree k of the generating function can be seen as the generating function of the size-k ex-
ecutions of the program. Thus, substituting 1 for every variable occurring in it yields the to-
tal number of size-k executions. The size of the global choice to be sampled must therefore
be chosen with a probability proportional to the full evaluation of its corresponding coe�-
cient. This is implemented in Algorithm 4. For example, for the beverage vending machine,
we have P (z) = 4y1,� (y2,� + y2,r )z6 + 5y1,r (y2,� + y2,r )z7 which has two coe�cients. Substituting 1
for all y variables yields P (z) = 8z6 + 10z7, which tells us that the global choice to be sampled
must have size 6 with probability 8

8+10 =
4
9 and size 7 with probability 5

9 .

Algorithm 4 Random sampling of a coe�cient of the generating function of P
Input: The generating function P (z) of the executions of a program P

function sample_size(P (z))
for c ⋅ zd ∈ P (z) do

Wd ← eval_coeff(c)
m ← rand_unif([1;∑Wd ])
d ← the minimum index d s.t. m ≤ ∑d′≤d Wd′

return d

Now, recall that a coe�cient is an arithmetic expression encoded as a tree whose internal
nodes are sums (+) or products (×). Once a coe�cient has been selected, we traverse this coe�-
cient recursively, from top to bottom and, select only one child of each sum node we encounter,
and collect y variables along the way. The idea is to construct a global choice from these y vari-
ables since each one of them encodes a local choice. More precisely, at each sum node e1 + e2 in
the traversal, we compute the total number of executions, e1(1) and e2(1), encoded by both terms
and we choose the term i (for i ∈ {1, 2}) with probability ei (1)

e1(1)+e2(1) . Conversely, at each prod-
uct node we traverse recursively both children since they contribute to two “parts” of the same
executions whereas the children of a sum node contribute to two disjoint sets of executions. In
the end, the set of y variables that we have seen in the process are interpreted as follows: yi,�
corresponds to choosing the left branch of choice i and yi,r corresponds to choosing the right
branch. This is described in more detail in Algorithm 5 which returns a list of y variables.

The function eval_coeff used in both Algorithms 4 and 5 fully evaluates an expression by
substituting 1 for all its variables. It is given in Algorithm 6 for the sake of completeness.

Finally, once the local choices returned by Algorithm 5 are applied to the program, that is
to say that all the unused branches are removed, there remains to sample a uniform execution
of the remaining choice-free program. This has been covered in [BDGP17a] which proposes, in
particular, an algorithm that is optimal in terms of random bits. We do not recall this algorithm
here. The complete procedure for sampling a uniform execution in P is given in Algorithm 7.
Naturally, the pre-processing step at line 2 must only be done once if one wishes to sample
several executions for the same program.

If we set aside the complexity of the pre-processing step, which has already been covered in
Theorem 5, most of the remaining cost of the generation is hidden in the sample_size and sam-
ple_choice functions. First, these functions need to evaluate the coe�cients of the generating
functions. Since these evaluations, as well as the evaluations of some of their sub-terms, are to
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Algorithm 5 Random sampling of a global choice of a given size
Input: An arithmetic expression e
Output: A list of local choices

function sample_choice(e)
if e = e1 + e2 then

p1 ← eval_coeff(e1)
p2 ← eval_coeff(e2)
if Bernoulli( p1

p1+p2 ) then return sample_choice(e1)
else return sample_choice(e2)

else if e = e1 × e2 then return concat(sample_choice(e1), sample_choice(e2))
else if e = yi,s then return [yi,s]
else if e = e′/n then return sample_choice(e′)
else if e = n then return [] ⊳ empty list

Algorithm 6 Full evaluation of an expression
Input: An arithmetic expression e encoded as a tree
Output: An integer

function eval_coeff(e)
if e = e1 + e2 then return eval_coeff(e1) + eval_coeff(e2)
else if e = e1 × e2 then return eval_coeff(e1) ⋅ eval_coeff(e2)
else if e = yi,s then return 1
else if e = n then return n

Algorithm 7 Full procedure for the uniform sampling of executions in NFJ
Input: an NFJ program P
Output: a uniform execution of P

1: function sample_exec(P )
2: P (z)← gfun(P )
3: k ← sample_size(P (z))
4: e ← the coe�cient of degree k of P (z)
5: y⃗ ← sample_choice(e)
6: P ′ ← apply the global choice y⃗ to P
7: return sample_choicefree(P ′) ⊳ See [BDGP17a] for sample_choicefree

be re-used later in the generation process, they must be cached using a dynamic programming
approach. This implies that the memory layout presented in Figure 1.4 on page 30 should be
adapted to reserve some space for one big-integer in each tree node. Second, these functions
need to traverse a whole coe�cient and to draw Bernoulli random variables. Since the evalua-
tion and caching part must only be done once too, it can be performed during the pre-processing
step. Moreover, each node of each coe�cient incurs one arithmetic operation on big integers,
so the complexity of this part of the algorithm in terms of arithmetic operations is of the same
order as the space complexity of Algorithm 2. In addition, the traversal of a coe�cient requires



CHAPTER 1. STATISTICAL ANALYSIS OF NFJ PROGRAMS 34

a similar number of memory accesses and a linear number of calls to the generator of Bernoulli
variables. Theorem 6 summarises these remarks and is the main result of this section.

Theorem 6 (complexity of the random sampling algorithm). Sampling uniform random execu-
tions of a program P requires:

• a pre-processing step of complexity O(|P |2) in terms of memory allocations and arithmetic
operations on big integers;

• the generation of a linear number of Bernoulli variables and O(|P |2) memory accesses.
Moreover, all the big integers at play here are bounded by |P |! so their bit-size is bounded

by |P | log2 |P |.

Proof. The complexity of the pre-processing and of the random generation have already been
discussed and only the bit-size of the integers remains to prove. All the integers we manipulate
in the algorithms are bounded by the maximum possible number of executions of a program. A
straightforward induction shows that for any programs P and Q, the total number of executions
of (P ;Q) and of (P +Q) is upper-bounded by the total number of executions of (P ‖ Q). Hence, the
maximum possible number of executions of a program of size n is obtained when the program
is made only of atomic actions and parallel compositions, which corresponds to n!.

1.2.6 Experimental study

In order to assess experimentally the e�ciency of our method, we put into use the algorithms
presented here and demonstrate that they can handle systems with a signi�cantly large state
space. We generated a few NFJ programs at random using a Boltzmann random generator. All
the polynomial operations and coe�cients were implemented in OCaml.

Note that we did not optimize our code for e�ciency nor ran extensive benchmarking, hence
the numbers we give should be taken as a rough estimate of the performance of our algorithms.
For the sake of reproducibility, the source code of our experiments is available on a Gitlab repos-
itory2at https://gitlab.com/ParComb/libnfj.

Table 1.4 on the following page reports the runtime of the preprocessing phase (Algorithm 2),
the runtime of the random sampler (Algorithm 7) and the number of executions of various pro-
grams. For the runtime of the counting algorithm, every measurement was performed 7 times
and we reported the median of these 7 values. For the random sampler, every measure was
performed 101 times and for each one we report the median of these values as well as the in-
terquartile range (IQR)3, which gives an idea of the dispersion of the measures. We use these
metrics rather than the mean and the variance to reduce the importance of extremal values and
give a precise idea of what runtime the user should expect when running our sampler. The time
reported is the CPU time. The state-space column indicates the total number of executions. Fi-
nally, the mem. size column reports the amount of memory occupied by the generating function
of executions computed by gfun.

2All the benchmarks were run on a standard laptop with an Intel Core i7-8665U and 32G of RAM running
Ubuntu 20.10 with kernel version 5.8.0-48-generic. We used OCaml version 4.08.1 and GMP version 6.2.0.

3The interquartile range of a set of measures is the di�erence between the third and the �rst quartiles. Compared
with the value of the median, it gives a rough estimate of the dispersion of the measures.

https://gitlab.com/ParComb/libnfj
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Table 1.4: Quick benchmark of the counting and random sampling functions of executions for
loop-free programs

size # executions mem. size gfun UnifExec IQR

100 1.168 ⋅ 2108 65.30K 0.000091s 0.010ms 0.001ms
200 1.956 ⋅ 2199 235.12K 0.000245s 0.022ms 0.001ms
500 1.249 ⋅ 2645 2.21M 0.004563s 0.091ms 0.007ms
1000 1.012 ⋅ 2903 5.92M 0.011524s 0.135ms 0.008ms
2000 1.354 ⋅ 22381 50.40M 0.076030s 0.429ms 0.093ms
3000 1.682 ⋅ 26331 591.75M 0.987996s 1.562ms 0.309ms
5000 1.464 ⋅ 210085 1.92G 2.959532s 3.239ms 0.413ms

1.3 Extending the model with loops

This section is devoted to extending our model with loops. This is a signi�cant improvement in
terms of expressiveness, but has major implications on the state-space of programs.

First, programs may now have an in�nite number of executions, and as a consequence, there
is no uniform distribution over their executions any more. To circumvent this issue, we turn to
the uniform generation of executions of a given length n where n is given as an input of the
problem. Such a sampler can also be used, in conjunction with a particular procedure to select
a length at random according to some particular distribution, for instance to sample uniform
executions of length at most n.

A second, more signi�cant, consequence of adding loops is that it interacts with the non-
deterministic choices, as a choice may occur inside a loop and thus may be duplicated multiple
times as we unroll the loop. Thus, the notion of global choice we have de�ned in the previous
section, allowing us to decide of all the choices at once and then executing the rest of the program,
does not extend well in the presence of loops. In a way, by introducing loops, we trade the clean
separation we had between the non-determinism and the interleaving semantics of NFJ for more
expressiveness.

As a consequence, we must take another approach to random sampling in this section. We
will use the structure of the program to guide the generation rather than the structure contained
in a multi-variate generating function as before.

1.3.1 Non-deterministic fork-join processes with loops

We start by extending the model from the previous section with a loop construction expressing
that a program may be executed any number of times. Also, the empty program 0 used in the
semantics of Section 1.2 as a convenience, is now usable in the syntax. The complete updated
grammar of NFJ terms is given below. Note that only the two last lines are new.
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P, Q ∶∶= P ‖ Q parallel composition
| P ;Q sequential composition
| P + Q non-deterministic choice
| a ∈  atomic action
| P⋆ loop
| 0 empty program

As in the previous section, programs are considered up to alpha-equivalence and atomic
actions are assumed to occur only once within a term. Again, since we only model the control-
graphs of concurrent processes, the loop construction expresses that the body of the loop may
be executed any number of times but does not state under which condition we exit the loop.
Informally, the loop P⋆ may have either no iteration, in which case it behaves as 0, or at least
one, in which case it behaves as (P ; P⋆). We introduce the empty program in the grammar here,
not only as a convenience, but also because it provides a slight gain of expressiveness, as it allows
to write program such as (0 + P ) which express optional computations.

The semantics of programs must be updated to express the behaviour of loops. We �rst de�ne
a nullable predicate which indicates whether a program may terminate without �ring any action.
We can start the next iteration of a loop only if the current iteration is nullable.

nullable(P ‖ Q) = nullable(P ) ∧ nullable(Q)
nullable(P ;Q) = nullable(P ) ∧ nullable(Q)
nullable(P + Q) = nullable(P ) ∨ nullable(Q)

nullable(0) = true
nullable(a) = false
nullable(P⋆) = true

The reduction relation P a
→ P ′ introduced in the �rst section is then extended to loops. Note

that we also need to modify the reduction rule for the sequential composition. Since we now have
non-empty programs which may terminate without �ring any action (the nullable programs),
we now want to allow the right-hand-side of a sequence to start its execution whenever the
left-hand-side is nullable. The full new list of reduction rules is given below in Figure 1.5.

P
a
→ P ′

P ‖ Q
a
→ P ′ ‖ Q

(Lpar)
Q

a
→ Q′

P ‖ Q
a
→ P ‖ Q′

(Rpar)
P

a
→ P ′

P ;Q
a
→ P ′;Q

(Lseq)

nullable(P ) Q
a
→ Q′

P ;Q
a
→ Q′

(Rseq)
P

a
→ P ′

P + Q
a
→ P ′

(Lchoice)
Q

a
→ Q′

P + Q
a
→ Q′

(Rchoice)

a
a
→ 0

(act)
P

a
→ P ′

P⋆
a
→ P ′; P⋆

(loop)

Figure 1.5: Semantic of NFJ with loops

We call “execution step” a proof-tree built from the above rules and we de�ne an execution
as a sequence of such steps leading to a nullable term.
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De�nition 10 (Execution). An execution of an NFJ program P0 is a sequence of steps of the
form P0

a1→ P1
a2→ P2…

an→ Pn, such that nullable(Pn) holds, and where for all i, Pi−1
ai→ Pi is

a proof-tree, that is it contains all the applied rules and not simply its conclusion.
We refer to the set of all possible executions of a program as its state-space.

As an example the program a⋆⋆ has two executions of length 2, both �ring a twice. One
corresponds to the case where the outer loop is only unrolled once (i.e. the (loop) rule is only
applied once) but the inner loop twice. The other corresponds to the case where the outer loop is
unrolled twice and the two occurrences of the inner loop once. The �rst step of both executions
is the same and is depicted below:

a
a
→ 0

(act)

a⋆
a
→ 0; a⋆

(loop)

a⋆⋆
a
→ (0; a⋆); a⋆⋆

(loop)

Then the second step of the two executions are the following. On the left, the inner loop �res a
second a while, on right, the �rst iteration of the inner loop terminates (we apply the (Rseq) rule
at the top level) and a second iteration of the outer loop starts.

nullable(0)

a
a
→ 0

(act)

a⋆
a
→ 0; a⋆

(loop)

0; a⋆
a
→ 0; a⋆

(Rseq)

(0; a⋆); a⋆⋆
a
→ (0; a⋆); a⋆⋆

(Lseq)
nullable(0; a⋆)

a
a
→ 0

(act)

a⋆
a
→ 0; a⋆

(loop)

a⋆⋆
a
→ (0; a⋆); a⋆⋆

(loop)

(0; a⋆); a⋆⋆
a
→ (0; a⋆); a⋆⋆

(Rseq)

We will take the following program as a running example for the rest of the section: P0 =
((a + (b ‖ c))⋆ ‖ (d + 0))⋆; (e + (f ‖ g)). This program has one length-1 execution �ring only e and
four length-2 executions respectively �ring f g, gf , ae and de.

1.3.2 Combinatorial interpretation

From a combinatorial point of view, the introduction of loops in the language has two levels of
implication.

Syntax At the syntactic level �rst, it is still possible to interpret the set of NFJ programs as
a combinatorial class but this requires to choose a more adequate notion of size. Recall that a
combinatorial class is given by a set of objects and a size function such that there is a �nite
number of objects of size n for all integers n. The number of actions contained in a program is
not eligible as a size function since there is an in�nite number of (syntactic) programs with one
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action, for instance a, a⋆, a⋆⋆, etc. A more adequate notion of size is the number of constructors
used to build a program, that is

|P ;Q|c = |P + Q|c = |P ‖ Q|c = 1 + |P |c + |Q|c
|P⋆|c = 1 + |P |c
|a|c = |0|c = 1.

(1.11)

We use the notation |P |c to denote this new size function in order to avoid confusion with the
number of atoms of a program |P |. Using, this size function, the class  of NFJ programs can be
speci�ed by

 =  ×  × 
+ ×  × 
+ ×  × 
+
+ × 
+.

(1.12)

Two di�erences must be noted compared to Section 1.2. First, the size function is di�erent so
that both the atomic action and the empty program have size 1 (hence the two ), and each
constructor “costs” one  since they are counted in the size. The second di�erence is that we
have two more terms, one for the empty program , and one for loop terms  ×  . From this
speci�cation, we get that the generating function f of NFJ programs satis�es f (z) = z(2 + f (z) +
3f (z)2). This equation can be solved explicitly and we get

f (z) =
1 − z −

√
(1 − z)2 − 24z2

6z
⋅ (1.13)

By studying the behaviour of this function near its main singularity � = (1 + 2
√
6)−1, we can

obtain the asymptotic number of program of size n using the transfer theorem from [FS09]. See
the proof of Theorem 1 in the previous section for a similar but more detailed proof. This leads
to the following result.

Theorem 7. The number of NFJ programs (with loops) of size n is equivalent to Cn−
3
2 �−n when n

tends to the in�nity, where �−1 = 1 + 2
√
6 ≈ 5.898979 and C =

1
18

√
�

√
4 +

√
2/3 ≈ 0.068789.

This can be compared with Theorem 1 using the property that a binary tree with n leaves
has n − 1 internal nodes. This implies that if a program is built only using the constructors from
the previous section and has n atomic actions, then it is made of 2n−1 constructors. Thus, when n
denotes the number of constructors, the exponential factor in Theorem 1 becomes

√
12n (for odd

values of n) and
√
12 ≈ 3.464 < 5.899.

Executions As in the previous section, we de�ne a speci�cation S(P ) of the class of the execu-
tions of a program P . Some di�erences must be noted with the previous section. First, we need
a new operator, the ordered set operator, modelling a sequence of increasingly labelled objects,



CHAPTER 1. STATISTICAL ANALYSIS OF NFJ PROGRAMS 39

which expresses the semantics of the loop. Like the ordered product F , this is an uncommon op-
erator, which has been studied in [BDGP17b]. Another di�erence is that the presence of the loop
and the empty program makes possible for non-trivial programs to have the empty execution as
a valid execution. Although this seems innocuous, it forces us to handle carefully some special
cases in our speci�cation to avoid counting the same execution twice. Finally, the generating
function of the executions of S(P ) which we refer to as the generating function of the execu-
tions of P is not a polynomial any more, but is an in�nite (but convergent) formal power series.
The recursive de�nition of S(P ) and its generating function are given in Table 1.5. A detailed
explanation of the di�erent constructions is given below.

Table 1.5: Simpli�ed recursive combinatorial speci�cation of the set of executions of a program
and its corresponding generating function

Language construction Speci�cation Generating function
P S(P ) P (z)

0  1
a  z
P ‖ Q S(P ) ⋆ S(Q) P (z)} Q(z)
P ;Q S(P ) F S(Q) P (z)Q(z)
P + Q when nullable(P ) ∧ nullable(Q) S(P ) + (S(Q) ⧵ ) P (z) + Q(z) − 1
P + Q otherwise S(P ) + S(Q) P (z) + Q(z)
P⋆ when nullable(P ) OSet(S(P ) ⧵ ) (1 − (P (z) − 1))−1

P⋆ otherwise OSet(S(P )) (1 − P (z))−1

where ∑n≥0 anzn }∑n≥0 bnzn = ∑n≥0∑
n
k=0 (

n
k)akbn−kz

n.

The empty program 0 and the atomic action a have only one execution, of length 0 and 1
respectively. This is modelled combinatorially by the neutral class  — the class containing only
one element of size 0 — and the atom class  — the class with only one element of size 1.

As before, the executions of P ‖ Q are made of any interleaving of one execution of P and
one execution of Q. For instance if P = a + (b; c) and Q = d⋆, then P admits for instance an
execution �ring b and then c (denoted by bc for short) and Q admits an execution �ring two ds
(denoted by dd for short). Then all the 6 possible interleavings of these executions are executions
of P ‖ Q: bcdd , bdcd , bddc, dbcd , dbdc and ddbc (again, we only denote the executions by
their �ring sequences for conciseness). Although the interpretation of these interleavings using
increasing labellings is less obvious than is the previous section, the notion at play here is still
well captured by the labelled product of combinatorics, denoted by ⋆.

The executions of P ;Q are given by an execution of P followed by an execution of Q. So for
instance, using the same example programs P and Q as above, bcdd is an execution of (P ;Q) but
not dbcd . So they can be seen as a pair of an execution of P and an execution of Q, which is still
expressed using the ordered product F .

The set of executions of P + Q is the union of the executions of P and Q. Moreover this
union is “almost” disjoint in the sense that the only execution that these programs may have in
common is the empty execution, hence the two cases in the de�nition. Combinatorially, the fact



CHAPTER 1. STATISTICAL ANALYSIS OF NFJ PROGRAMS 40

that nullable(P ) holds corresponds to the fact that the class of its executions contains one object
of size 0, the empty execution. It is in fact important that we can express this in terms of disjoint
unions because they �t in the framework of analytic combinatorics whereas arbitrary unions are
more di�cult to handle4.

Finally, the executions of P⋆ are sequences of executions of P or, equivalently, sequences of
non-empty executions of P . This second formulation leads to a non-ambiguous speci�cation as
the unique class ′ satisfying ′ = ++ F  ′, where+ denotes the non-empty executions of P .
This implicitly de�ned class  ′ is denoted OSet(+) and is called the sequence of +. Once again
we must distinguish whether nullable(P ) holds or not in the de�nition of + to avoid ambiguities
and thus double-counting.

The S function described above maps each program to a combinatorial speci�cation of its
executions. As an example, for our example program P0 introduced above, we have S(P0) =
OSet(OSet( + ( ⋆)) ⋆ ( + ) ⧵ ) F ( + ( ⋆ )). The generating function of the exe-
cutions of a program, i.e. of the class S(P ), constitutes a condensed summary of the counting
information of its state space. Our uniform random sampler of executions for NFJ programs
with loops will use the generating function of each sub-term of P to generate an execution of P .

Before diving into the description of our random sampler, we want to give another example
of application of analytic combinatorics, by showing how a few manipulations on polynomials
can lead to interesting algorithmic applications and precise quantitative results. We already
showed in Theorems 1 and 2 how to get the asymptotic number of programs and the average
number of global choices of loop-free programs using this kind of techniques. Here, we study
the generating function P0(z) of the example program P0 given above, which we recall here
for convenience: P0 = [(a + (b ‖ c))⋆ ‖ (d + 0)]⋆; [e + (f ‖ g)]. Let P0(z) = ∑n≥0 pnzn denote the
expansion in power series of the generating function of S(P0) and recall that its n-th coe�cient pn
is the number of executions of P0 of length n. By applying the rules from Table 1.5 on the previous
page we obtain that:

P0(z) = [(1 − z − 2z2)
−1
} (z + 1)]

−1
⋅ [z + 2z2]

=
(2z + 1)(2z − 1)2(z + 1)2z
1 − 4z − 4z2 + 6z3 + 8z4

⋅

The second line of the above formula is obtained by applying the calculus rule5 z } A(z) =
z d(zA(z))dz . From this formula we derive two applications. First, from the denominator of this
rational expression we deduce that for all n > 6 we have pn − 4pn−1 − 4pn−2 + 6pn−3 + 8pn−4 = 0.
The obtained recurrence formula can be used to compute the number of executions of length n
of P0 in linear time. On the analytic side, P0(z) being a rational function, we can do a partial
fraction decomposition to obtain P0(z) as a sum of four terms of the form Ci(1 − z�−1i ) (plus a
polynomial). Each of these terms expands as ∑n≥0 Ci�−ni zn, hence the number of executions of P0
of length n satis�es pn = C ⋅ �−n ⋅ (1 + o(1)) for some constants C and � and with an exponentially

4Grammar descriptions involving non-disjoint unions are referred to as “ambiguous” and lack most of the bene-
�ts, if not all, of the symbolic method, essentially because some objects may be counted multiple times when applying
the method.

5This is the only “non-standard” computation rule we use in this example. All the rest is usual polynomial
manipulations. Some more rules for computing A(z)} B(z) will be given in Section 1.4.2.
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small error term hidden in the o(1). In this case we have � ≈ 0.221987, C ≈ 0.146871 and the
error term is of the order of 0.327950n. Table 1.6 compares the values of pn — computed using
the aforementioned linear algorithm — and of the proposed approximation for a few values of n.
One can see that already for small values of n, the relative error of this approximation is rather
low.

Table 1.6: Value of pn, of its approximation C ⋅ �−n and of the relative error |pn − C ⋅ �−n |/pn for
small values of n

n 6 7 8 9 10 . . . 30

pn 1226 5528 24904 112196 505424 . . . 5985551205783341568
approx 1227 5529 24907 112199 505429 . . . 5985551205783353055
rel. err. 8.16e-4 1.81e-4 1.2e-4 2.67e-5 9.89e-6 . . . 1.92e-15

1.3.3 Statistical analysis algorithms

We now study the problem of exploring the state-space of a given program through random
generation. In the presence of loops, programs can have an in�nite number of executions and
there is thus no uniform distribution over executions. However, programs still have a �nite
number of executions of a given length, so we propose a uniform sampler of executions of �xed
length. This sampler can be used to target executions of speci�c length n or, in conjunction with
a procedure to sample a size, to sample a uniform execution of length bounded by n for instance.
In Section 1.4, we will see an alternative approach for exploring the state-space, based on the
generation of execution pre�xes.

Preprocessing: the generating function of executions

As explained above, the symbolic method gives a systematic way of computing the generating
function of the class of the executions of a program P from its speci�cation S(P ). The compu-
tation rules are given in Table 1.5 on page 39. Since we are in presence of in�nite spate-spaces,
these generating functions are not polynomials any more and become (convergent) formal power
series. For the algorithms to remain practical, we only compute the (n + 1) �rst terms of these
series, hence allowing us to sample uniform executions of length k for all k ≤ n. Algorithm 8
implements the computation of the n �rst terms of the generating functions of all sub-terms of
a program. The resulting (partial) generating functions must be stored in the tree representation
of the program.

The coloured product} used in the parallel composition case can be implemented using the
“naive” algorithm as in the previous section. There is a more e�cient approach here though, be-
cause we are using integer coe�cients rather than expressions. The idea is to use the combinato-
rial Laplace and Borel transforms to express this operation as a regular product. This is achieved
by the formula A}B = ((A) ⋅(B)), where the Borel transform  is de�ned by (∑n≥0 anzn) =
∑n≥0

an
n! z

n and the Laplace transform  is de�ned by (∑n≥0 anzn) = ∑n≥0 n!anzn. More details
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Algorithm 8 Computation of the generating function of the executions of an NFJ program, and
all its sub-terms, up to degree n
Input: An NFJ program P and a positive integer n.
Output: The �rst n + 1 terms of the generating function of P

function gfun(P, n)
if P = 0 then return 1
else if P = a then return z
else if P = Q ‖ R then return gfun(Q, n) } gfun(R, n) mod zn+1
else if P = Q; R then return gfun(Q, n) ⋅ gfun(R, n) mod zn+1
else if P = Q + R then

q(z)← gfun(Q, n), r(z)← gfun(R, n)
return q(z) + r(z) − q(0)r(0)

else if P = Q⋆ then
q(z)← gfun(Q, n)
return (1 − (q(z) − q(0)))−1 mod zn+1

on the coloured product, the Borel and Laplace transform and their applications can be found
in [BDGP17b].

To be implemented e�ciently using only integer rather than rational arithmetic, the coe�-
cients of the result of the Borel transform should share n! as a common denominator where n is
the degree of the polynomial and the division by n! should be postponed to the last moment. So
if A(z) = ∑n

k=0 akzk and B(z) = ∑m
k=0 bkzk , then

(A) =
1
n!

n
∑
k=0

n!
k!
akzk =

1
n!
Ã(z) (B) =

1
m!

m
∑
k=0

m!
k!
bkzk =

1
m!

B̃(z)

and
A(z)} B(z) =

1
n!m!

(Ã(z) ⋅ B̃(z)).

Thus, the coloured product can be implemented as in Algorithm 9 where the polynomial multi-
plication at line 13 is where most of the computational cost lies. The advantage of this approach
is that it leaves the choice of the polynomial multiplication algorithm open and we can thus ben-
e�t from existing �ne-tuned implementations of the algorithms from the literatures. The FLINT
library [9] for instance provides such algorithms.

The computation of (1 − (q(z) − q(0)))−1 at the last line of Algorithm 8 can be carried out ef-
�ciently using the so-called Newton method (see [VG13, p. 259] and [PSS12] for instance). The
algorithm consists in computing the sequence Si+1(z)← Si(z)+Si(z)⋅((q(z)−q(0))⋅Si(z)−(Si(z)−1)),
starting fvom S0(z) = 1, and until the (n + 1) �rst coe�cients of Si(z) are the same as those
of (1 − (q(z) − q(0)))−1. The intuition behind this formula comes from the �eld of numerical anal-
ysis where the Newton method is used to get fast-converging approximations of real constants.

The key feature of this approximation scheme is that the error term, that is the di�erence
between Si(z) and its limit (1 − (q(z) − q(0)))−1, is squared at each iteration. As a consequence,
the number of correct terms in Si(z) doubles at each iteration and only a logarithmic number of
iterations of the formula is necessary to compute the (n + 1) �rst terms of the solution. To make
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Algorithm 9 Fast implementation of the coloured product for integer polynomials
Input: Two integer polynomialsA(z) and B(z) of respective degrees n andm and stored as arrays

of integers
Output: The coloured product A(z)} B(z) of A and B
function colprod(A, B)

Ã, B̃← copies of A and B
f ← 1
for k from n down to 1 do

Ã[k]← Ã[k] ⋅ f
f ← f ⋅ k

Ã[0]← Ã[0] ⋅ f
g ← 1
for k from m down to 1 do

B̃[k]← B̃[k] ⋅ g
g ← g ⋅ k

B̃[0]← B̃[0] ⋅ g
R ← Ã ⋅ B̃
for k from 0 to m + n do R[k]← R[k]/(f ⋅ g)
return R

this argument more formal, let q̃(z) = q(z) − q(0), let S(z) = (1 − q̃(z))−1 and let Ei(z) denote the
error term of Si(z), that is Ei(z) = S(z) − Si(z). By observing that S(z) = 1 + q̃(z)S(z), we have that

Si+1(z) = Si(z) + Si(z)(Si(z)q̃(z) − (Si(z) − 1))
= Si(z) + Si(z)(S(z) − 1 − Ei(z)q̃(z) − S(z) + 1 + Ei(z))
= S(z) − Ei(z) + (S(z) − Ei(z))Ei(z)(1 − q̃(z))
= S(z) − (1 − q̃(z))Ei(z)2

hence Ei+1 = (1 − q̃(z))Ei(z)2.

Since E0(0) = 0, we have that the �rst term of the expansion of E0(z) is zero and by induction
the 2i �rst terms of Ei(z) are zero. As a consequence, the 2i �rst terms of Si(z) are the same as
the 2i �rst terms of S(z). Algorithm 10 implements this scheme. Note that in the formula at line 5,
it is only necessary to compute the two products up to degree 2i.

Assume we have a so-called multiplication function  ∶ ℕ → ℕ as de�ned in the “gener-
alities” Chapter on page 6. The following lemma expresses the complexity of Algorithm 10 as a
function of (n).

Lemma 2. Algorithm 10 can be implemented in O((n)) arithmetic operations on integers.

Proof. At each iteration of the loop, two multiplication of polynomials of degree 2i are performed
(the terms of higher degrees can be safely ignored). Thus, the total cost of the multiplications
is 2(n)+2(n/2)+2(n/4)+2(n/8)⋯ ≤ 2(2n) = O((n)). The additions only contribute
to a lower order term.
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Algorithm 10 Computing the n + 1 �rst terms of the quasi inverse of a polynomial using the
Newton method
Input: A polynomial q(z)
Output: The n + 1 �rst terms of (1 − q(z) + q(0))−1 as a polynomial of degree n

1: function qinv(q)
2: S(z)← 1
3: i ← 1
4: while i < n + 1 do
5: S(z)← S(z) + S(z)(S(z)(q(z) − q(0)) − (S(z) − 1))
6: i ← 2i
7: return S(z)

Theorem 8. Let P be an NFJ program and let |P |c denote its syntactic size as de�ned in (1.11).
Algorithm 8 can be implemented to compute the �rst n coe�cients of the generating function of
the executions of P in O(|P |c(n)) operations on big integers, where(n) is the complexity of the
multiplication of two polynomials of degrees at most n.

Proof. The proof of Theorem 8 follows from the above discussion: each constructor incurs one
polynomial operation among addition, multiplication, coloured product and quasi-inverse and
all of them can be carried out in O((n)).

An important question which complements Theorem 8 is that of the cost of one arithmetic
operation. Since this cost is a function of the bit-size of the integers, this can be reformulated into:
what is the size of the integers at play? Theorem 9 gives an upper bound on these coe�cients.
This upper bound is expressed using the height of a program, that is its maximum number of
nested operators, which is recursively de�ned by

ℎ(a) = ℎ(0) = 0
ℎ(P ‖ Q) = ℎ(P + Q) = ℎ(P ;Q) = 1 + max(ℎ(P ), ℎ(Q))
ℎ(P⋆) = 1 + ℎ(P ).

Theorem 9. Let P be an NFJ program and let n ≥ 0. The number pn of length-n executions of P is
at most 2ℎ(P )n and its bit-size ⌈log2(pn)⌉ is thus bounded by ℎ(P )n.

Proof. This upper bound can be proven by induction on P .
• It is trivially true for the base cases P = 0 and P = a.
• The number of length-n executions of (P ;Q) is upper-bounded by the number of length-n

executions of (P ‖ Q), which is itself bounded, by induction hypothesis, by
n
∑
k=0

(
n
k)

2ℎ(P )k+ℎ(Q)(n−k) = (n + 1)2max(ℎ(P ),ℎ(Q))n ≤ 2(1+max(ℎ(P ),ℎ(Q)))n.

• For n ≥ 1, the number of length-n executions of (P +Q) is bounded by induction by 2ℎ(P )n +
2ℎ(Q)n ≤ 2ℎ(P+Q)n.
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• Finally, if pi denotes the number of executions of length i of P , then the number of execu-
tions of P⋆ is given by

n
∑
k=1

∑
i1,i2,…,ik>0
i1+i2+⋯+ik=n

pi1pi2 ⋯ pik ≤
n
∑
k=1

∑
i1,i2,…,ik>0
i1+i2+⋯+ik=n

2ℎ(P )(i1+i2+⋯+ik )

=
n
∑
k=1

∑
i1,i2,…,ik>0
i1+i2+⋯+ik=n

2ℎ(P )n

= 2ℎ(P )n ⋅ 2n−1 ≤ 2ℎ(P
⋆)n

To give a rough idea of the performance that can be achieved by Algorithm 8, we computed
the generating function of P0 up to degree n = 10000 — and thus its number of executions of
length k for all k ≤ 10000 — in less that 4s on a standard PC. A more detailed benchmark of
Algorithm 8 is given in Section 1.3.4.

Random sampling of executions

In order to sample a uniform execution directly from the syntax of the program, we use the
so-called “recursive method”, as introduced in [NW78] and integrated into the analytic combi-
natorics framework in [FZV94]. It operates in a similar fashion to the symbolic method, that
is by induction on the speci�cation, by combining the random samplers of the sub-structures
with simple rules depending on the grammar construction. For the sake of clarity we represent
executions as sequences of atomic actions in the presentation of the algorithm. This encoding
does not contain all the information that de�nes an execution, typically it does not re�ect in
which iteration of a loop an atomic action is �red for instance. However it makes the presenta-
tion clearer and the algorithm can be easily adapted to a more faithful encoding. Our uniform
random sampler of executions is described in Algorithm 11 and the detailed explanations about
the di�erent constructions are given below.

Choice The simplest rule of the recursive method is that of the disjoint union used at line 4
of Algorithm 11. If qn and rn denote the number of length-n executions of Q and R, then a
uniform random length-n execution of P = Q + R is a uniform length-n execution of Q with
probability qn/(qn + rn) and a uniform length-n execution of R otherwise. One way to draw the
Bernoulli variable is to draw a uniform random big integer x in J0; qn + rnJ and to return true if
and only if x < qn. As an example, consider the programs Q = (a + (b ‖ c)) and R = d⋆. We count
that Q has two executions of length two: bc and cb and R has only one: dd . Hence, to sample a
length-2 execution in (Q + R), one must perform a recursive call on Q with probability 2/3 and
on R with probability 1/3.

Parallel composition The other rules build on top of the disjoint union case. For instance, the
set of length-n executions of P = Q ‖ R can be seen as 0⋆n+1⋆n−1+⋯+n⋆0 where k
(resp. k) denotes the set of length-k executions of Q (resp. R). By generalising the previous
rule to disjoint unions of (n + 1) terms, and using the fact that the number of elements of k ⋆
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Algorithm 11 Uniform random sampler of executions of given length
Input: A program P and an integer n such that P has length n executions.
Output: A list of atomic actions representing an execution

1: function UnifExec(P, n)
2: if n = 0 then return the empty execution
3: else if P = a then return a
4: else if P = Q + R then
5: if Bernoulli( qn

qn+rn ) then return UnifExec(Q, n)
6: else return UnifExec(R, n)
7: else if P = Q ‖ R then
8: draw k ∈ J0; nK with probability (nk)qkrn−k/pn
9: return shuffle(UnifExec(Q, k), UnifExec(R, n − k))

10: else if P = Q; R then
11: draw k ∈ J0; nK with probability qkrn−k/pn
12: return concat(UnifExec(Q, k), UnifExec(R, n − k))
13: else if P = Q⋆ then
14: draw k ∈ J1; nK with probability qkpn−k/pn
15: return concat(UnifExec(Q, k), UnifExec(P, n − k))
The lower case letters pn, qk , rn−k etc. indicate the number of executions of length n, k, n − k of
programs P , Q and R.

n−k is qkrn−k(nk), one can select in which one of these terms to sample by drawing a random
variable which is k with probability qkrn−k(nk)/pn. Then it remains to sample a uniform element
of k , a uniform element of n−k and a uniform shu�ing of their labellings among the (nk)
possibilities. This is described at line 7 of Algorithm 11. We do not detail the implementation
of the shu�ing function here, an optimal algorithm in terms of random bits consumption, can
be found in [BDGP17a]. As an example, consider the same programs as above: Q = (a + (b ‖ c))
and R = d⋆. The number of length-3 executions of (Q ‖ R) is 1 ⋅ 1 ⋅ (31) + 2 ⋅ 1 ⋅ (

3
1) = 9 using the

decomposition Q1 ⋆ R2 + Q2 ⋆ R1. Say k = 1 is selected (with probability 1/3), then the recursive
calls to (Q, 1) and (R, 2) necessarily return a and dd and the shuffle procedure must choose a
shu�ing uniformly between add , dad and dda.

Sequential composition The case of the sequential composition is similar (see line 10 of Al-
gorithm 11). We use the same kind of decomposition, using the Cartesian product × in place of
the labelled product ⋆. This has the consequence of removing the binomial coe�cient in the for-
mula for the generation of the k random variable. Once k is selected, we generate an execution
of Qk , an execution of Rn−k and we concatenate the two.

Loop Finally, the case of the loop is a slight adaptation of the case of the sequential composition
using the fact that the executions of Q⋆ are the executions of (0 +Q;Q⋆). However, care must be
taken to avoid issues related to double-counting. More speci�cally, when sampling an execution
of (Q;Q⋆) we must not choose an execution of length 0 for the left-hand-side Q. This is related
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to the same reason we had to specify the executions of Q⋆ as all the sequences of non-empty
executions of Q. This is presented at line 13 of Algorithm 11, note that k > 0. As an example, for
sampling a length-3 execution in (a + (b; c))⋆, one may select k = 1 with probability 2/3, which
yields abc or aaa depending on the recursive call to (Q⋆, 2) or k = 2, with probability 1/3, which
yields bca.

Generation of random variables We did not give details on how to generate the random
variable k for the parallel, sequential and loop case. In has been shown in [FZV94; Mol05;
MM04] that good performance can be achieved by using the so-called boustrophedonic order.
For instance, in the case of the sequential composition P = (Q; R), the idea is to generate a ran-
dom integer x in the interval J0; pnJ and to �nd the minimum number � such that the sum of �
terms q0rn + qnr0 + q1rn−1 + qn−1r1 + q2rn−2 + ⋯ (taken in this particular order) is greater than x .
Then k is such that the last term of this sum is qkrn−k . The key idea of this algorithm is that the
worst case of this algorithm corresponds to choosing k close to n/2 which yields a divide and
conquer scheme.

Theorem 10. Using the boustrophedonic order, the complexity of the random generation of an
execution of length n in P in terms of arithmetic operations on big integers is O(n ⋅min(ln(n), ℎ(P )))
where ℎ(P ) refers to the height of P .

Contrary to the classical context of random generation that we have in analytic combina-
torics (like in [FZV94; MM04; Mol05]), the grammar enumerating the executions to be sampled
is not a constant but rather a parameter of the problem. Hence its size cannot be considered con-
stant and the complexity analysis needs to be carefully crafted to take this variable into account.

Proof. The O(n ln(n)) bound follows from Theorem 11 of [FZV94]. We obtain the other bound
by re�ning the result of Theorem 12 from [Mol05].

The combinatorial classes we are considering are built from the ⋆, ×, + and Seq(⋅) operators
without recursion, they hence fall under the scope of iterative classes for which Molinero proved
a linear complexity in n. However the proof given in [Mol05] does not give an explicit bound for
the multiplicative constants, which actually depend on the size of the grammar and which we
cannot consider constant in our context. Let C(P, n) denote the cost of UnifExec(P, n) in terms
of arithmetic operations on big integers. We show that C(P, n) ≤ �nℎ(P ) by induction for some
constant � to be speci�ed later.

• The base cases have a constant cost.
• The case of the choice only incurs a constant number c of arithmetic operations in addition

to the cost of the recursive calls. HenceC(Q+R, n) is bounded by c+� max(C(Q, n), C(R, n)).
By induction, this quantity is then bounded by c+�nmax(ℎ(Q), ℎ(R)) = c+�n(ℎ(Q +R)−1)
and thus, if � ≥ c, then C(Q + R, n) ≤ �nℎ(Q + R).

• The parallel composition case incurs a number of arithmetic operations of the form c′ ⋅
min(k, n − k) where k is the random variable generated using the boustrophedonic order
technique. Hence C(Q ‖ R, n) is bounded by c′min(k, n − k) + C(Q, k) + C(R, n − k) and by
induction by c′min(k, n − k) + �kℎ(Q) + �(n − k)ℎ(R) ≤ �nℎ(Q ‖ R) + c′min(k, n − k) − �n.
The last term on the right is bounded by 0 if � ≥ c′.
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• Sequential composition is treated using the same argument as for parallel composition.
• Finally, the loop must be handled by reasoning “globally” on the total number of unrollings.

Say the loop Q⋆ is unrolled r times. Then its cost is bounded by c′∑r
i=1min(ki , ki+1 + ⋯ +

kr )+∑r+1
i=1 C(Q, ki). The �rst sum is bounded by c′n and the second is bounded by induction

by ∑r+1
i=1 �kiℎ(Q)which simpli�ed to �nℎ(Q). Hence, reusing the bound � ≥ c′ and the fact

that ℎ(Q⋆) = 1 + ℎ(Q), we get C(Q⋆, n) ≤ �nℎ(Q⋆) which terminates the proof.

1.3.4 Experimental study

In order to assess experimentally the e�ciency of our method, we put into use the algorithms
presented here and demonstrate that they can handle systems with a signi�cantly large state
space. We generated a few NFJ programs at random using a Boltzmann random generator. In its
basic form, the Boltzmann sampler would generate a high number of loops and a large number
of sub-terms of the form P + 0 in the programs which we believe is not realistic so we tuned it
using [BBD18] so that the number of both types of nodes represent only 10% of the size of the pro-
gram in expectation. We rely on the FLINT library (Fast Library for number theory [9]) to carry
all the computations on polynomials except for the coloured product and the quasi-inversion
using Newton iteration which we implemented ourselves. The former was not provided natively
by the library and the latter was feasible using FLINT’s primitives but slow compared to the
Newton method.

Note that besides the choice of the algorithms, we did not optimize our code for e�ciency nor
ran extensive benchmarking, hence the numbers we give should be taken as a rough estimate
of the performance of our algorithms. For the sake of reproducibility, the source code of our
experiments is available on a Gitlab repository6at https://gitlab.com/ParComb/libnfj.

Table 1.7 on the following page reports the runtime of the preprocessing phase (Algorithm 8),
the runtime of the random sampler (Algorithm 11) and the number of executions of length n of
various programs of various values of n. For the runtime of the counting algorithm, every mea-
surement was performed 7 times and we reported the median of these 7 values. For the random
sampler, every measure was performed 101 times and for each one we report the median of these
values as well as the interquartile range (IQR)7, which gives an idea of the dispersion of the mea-
sures. We use these metrics rather than the mean and the variance to reduce the importance of
extremal values and give a precise idea of what runtime the user should expect when running our
sampler. The time reported is the CPU time as measured by C’s clock function. The state-space
column indicates the number of executions of length n. Finally, the mem. size column reports
the amount of memory occupied by the generating functions of executions computed by gfun.

1.4 Execution pre�xes generation

In this section, we describe a complementary tool to explore the state-space of a program: a
uniform random sampler of execution pre�xes. Execution pre�xes o�er a more �ne-grained tool

6All the benchmarks were run on a standard laptop with an Intel Core i7-8665U and 32G of RAM running
Ubuntu 20.10 with kernel version 5.8.0-48-generic. We used FLINT version 2.6.3-2 and GMP version 6.2.0

7The interquartile range of a set of measures is the di�erence between the third and the �rst quartiles. Compared
with the value of the median, it gives a rough estimate of the dispersion of the measures.

https://gitlab.com/ParComb/libnfj


CHAPTER 1. STATISTICAL ANALYSIS OF NFJ PROGRAMS 49

Table 1.7: Quick benchmark of the counting and random sampling functions of executions

size len # executions mem. size gfun UnifExec IQR

100 500 1.370 ⋅ 21119 898.98K 0.015s 0.241ms 0.020ms
100 1000 1.690 ⋅ 22234 3.32M 0.053s 0.521ms 0.059ms
500 500 1.071 ⋅ 21589 2.84M 0.087s 0.359ms 0.069ms
500 1000 1.093 ⋅ 23102 10.38M 0.538s 1.094ms 0.133ms
1000 500 1.096 ⋅ 22374 8.75M 0.289s 0.496ms 0.068ms
1000 1000 1.579 ⋅ 24756 33.19M 1.645s 1.842ms 0.177ms
2000 500 1.336 ⋅ 22273 10.42M 0.355s 0.914ms 0.293ms
2000 1000 1.551 ⋅ 24624 39.20M 1.890s 1.119ms 0.128ms

to explore the state-spaces as a sampler of pre�xes can be combined with other tools or with
custom heuristics to bias the random generation toward regions of interest of the state space.
We see this algorithm as a building block to construct exploration strategies and the fact that it
is uniform over pre�xes of a given length implies that is still gives control over the distribution
of the sampled values.

Note that sampling a uniform pre�x of a given length is di�erent from sampling a uniform
execution of larger length and truncating it. For instance, the program P = a⋆ + (b + c)⋆ has
three execution pre�xes of length 1, namely a, b and c but the probability that an execution of
length n has a as a pre�x is only 1/(1 + 2n). The pre�x a will thus statistically never appear
among executions of large length. This trivial example illustrates that in order to achieve a good
coverage on the set of pre�xes of a given length of a program, a dedicated sampler is necessary. At
the end of this section we will compare our sampler experimentally to another classical random
sampling technique, called isotropic sampling, and used for instance in [GS05].

We start by de�ning formally the notion of pre�x. Then we apply the methodology that
we have developed in the previous sections to tackle the problem of the uniform generation
of pre�xes: specify the objects to be sampled, count them and use the counting information
to sample. We also show a quantitative result on the number of pre�xes of a program and its
relation to the number of full executions.

De�nition 11 (execution pre�xes). An execution pre�x of an NFJ program P is any, possibly
empty, sequence of executions steps starting from P of the form P

a1⇒ P1
a2⇒ P2⋯

an⇒ Pn. Note
that Pn is not necessarily nullable here.

1.4.1 Speci�cation of the pre�xes

As for the uniform random generation of execution in the previous sections, we start by re-
formulating the problem into combinatorial terms. Just like we have described a combinatorial
speci�cation S(P ) of the class of the executions of a program P , we describe here how to compute
a combinatorial speci�cation Sp(P ) of the class of the execution pre�xes of P . Interestingly, this
speci�cation can be seen as the speci�cation of the executions of a new program pref(P ) whose
full executions are in bijections with the execution pre�xes of P . More eloquently, for each pro-
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gram P , we can de�ne a new program pref(P ) such that Sp(P ) = S(pref(P )). The recursive rules
used to compute pref(P ) as well as Sp(P ) and its generating function are given in Table 1.8. The
combinatorial interpretation of each rule is detailed below.

Table 1.8: Recursive rules for the computation of (1) the program pref(P ) whose executions are
in bijection with the execution pre�xes of P , (2) the speci�cation Sp(P ) of the execution pre�xes
of P and (3) its generating function P̄ (z)

Prog. Pre�x program Speci�cation Generating function
P pref(P ) Sp(P ) P̄ (z)

0 0  1
a 0 + a  + 1 + z
P ‖ Q pref(P ) ‖ pref(Q) Sp(P ) ⋆ Sp(Q) P̄ (z)} Q̄(z)
P + Q pref(P ) + pref(Q) Sp(P ) + (Sp(Q) ⧵ ) P̄ (z) + Q̄(z) − 1
P ;Q pref(P ) + (P ; pref(Q)) Sp(P ) + S(P ) F (Sp(Q) ⧵ ) P̄ (z) + P (z)(Q̄(z) − 1)
P⋆ P⋆; pref(P )  + S(P⋆) F (Sp(P ) ⧵ ) 1 + P̄ (z)−1

1−(P (z)−P (0))

First of all, remark that our de�nition of execution pre�xes includes the empty pre�x, having
zero execution steps, as well as all the full executions of the program. So for all P , we must
have  ⊂ Sp(P ) and S(P ) ⊂ Sp(P ).

For instance, the program a consisting of only one atomic action has two execution pre�xes,
the empty pre�x and the pre�x �ring a. Hence, its set of pre�xes is modelled by  +  which
also corresponds to the executions of the program 0+ a. The empty program only has the empty
pre�x.

Another simple case is that of the parallel composition. The execution pre�xes of P ‖ Q
are exactly all the possible interleavings of a pre�x of P and a pre�x of Q. Hence, its set of
pre�xes is Sp(P ) ⋆ Sp(Q) which corresponds to the executions of pref(P ) ‖ pref(Q). Similarly,
the pre�xes of P + Q are simply the union of the respective pre�xes of P and Q. Moreover, the
intersection of these two sets always contains exactly one element, the empty pre�x. Hence the
pre�xes of P + Q are unambiguously speci�ed by Sp(P ) + (Sp(Q) ⧵ ), which corresponds to the
executions of pref(P )+pref(Q). Recall that combinatorial speci�cations need to be unambiguous
for the symbolic method, that is the set of rules dictating how to compute the generating function
of Sp(P ), to apply.

The case of the sequential composition is more interesting. We distinguish between the
pre�xes of executions of P ;Q which only �re actions from P , and those which have �red at least
one action from Q. Said di�erently, the former correspond to the pre�xes which always use
the (Lseq) rule of the semantics to P ;Q and the latter correspond to those which use the (Rseq)
rule at some point. The pre�xes �ring only actions from P are speci�ed by Sp(P ) and the ones
�ring at least one element from Q are made of a full execution of P followed by a non-empty
pre�x from Q, that is S(P ) F (Sp(Q) ⧵ ). Note that it is necessary to only consider non-empty
pre�xes of Q in this second case, so as to ensure that the two speci�cations do not overlap. The
program pref(P ) + (P ; pref(Q)) has the same executions.

Finally, the case of the loop is a generalisation of the above reasoning. All the pre�xes of P⋆,
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at the exception of the empty pre�x, are made of any sequence of full non-empty executions of P ,
corresponding to full iterations of the loop, followed by a non-empty pre�x of P , corresponding
to the last, possibly partial, iteration. Note that a sequence of non-empty executions of P is
actually an execution of P⋆.

With this speci�cation at hand, we can derive two kinds of results on the set of execution
pre�xes of a program. First, we show that the number of execution pre�xes of length n of a
program is of the same order as its number of executions of length n (provided it has at least one
such execution). This means that pre�xes are, in average, shared by many executions. Second,
on the algorithmic side, we describe a uniform random sampler of execution pre�xes in the same
fashion as the random sampler of execution of Section 1.3.

1.4.2 Quantitative analysis

The number of execution pre�xes of length n of a program is trivially lower-bounded by its
number of executions of length n. A natural question to ask is how many more pre�xes than
executions a program has. In this sub-section we quantify the number of pre�xes of programs
precisely and we prove that, in most cases, the number of pre�xes of length n of a program
is asymptotically of the same order as its number of executions of length n. We describe the
di�erent possible con�gurations.

The results of this section build on the following technical result, which states that the gen-
erating functions of the executions and of the pre�xes have the same asymptotic behaviour.

Theorem 11. Let P be an NFJ program containing at least one loop. Let P (z) denote its generating
function of executions and let P̄ (z) denote its generating function of execution pre�xes. We have
that P (z) and P̄ (z) have the same radius of convergence 0 < � ≤ 1. Furthermore, there exist three
constants C̄ ≥ C > 0 and � ∈ ℕ∗ such that near � we have P (z) ∼ C

(�−z)� and P̄ (z) ∼ C̄
(�−z)� .

Note that a program has an in�nite number of executions if and only if it contains at least
one loop (the pattern 0⋆ being forbidden). We thus only reason on programs having an in�nite
state-space here. Since the generating function P (z) (resp. P̄ (z)) is rational, its coe�cients can be
written as a linear combination of geometric terms of the form rn, with polynomial coe�cients,
where r is a pole of P (z) (resp. P̄ (z)).

[zn]P (z) =
k
∑
i=1

pi(n)rni deg(pi) = degree of the pole ri in P (z)

[zn]P̄ (z) =
�
∑
i=1

p̄i(n)r̄ni deg(p̄i) = degree of the pole r̄i in P̄ (z)

From Theorem 11, we also know that the dominant terms in both sequences are of the same
order n�−1�−n. So the behaviour of the number of executions and and the number of pre�xes of
length n should be of the order of n�−1�−n. But, because these functions might have several poles
of modulus �, there might be periodic compensations in these sequences.

For instance, the program P = (a ‖ b)⋆ only has executions of even length so that its number of
executions is pn = 1{2|n}

√
2n. However, its number of pre�xes is p̄n = 1{2|n}

√
2n + 21{2|n−1}

√
2n−1,
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which is thus of the order of pn only for even value of n. A precise description of the possible
behaviours of such sequences is given in [FS09, Theorem V.3] but we only focus on a corollary
here, which is more insightful in our context.

Corollary 1. Let P be an NFJ program with an in�nite state-space (thus with at least one loop),
let Pn denote its number of executions of length at most n and let P̄n denote its number of executions
pre�xes of length at most n. There exists a constant � > 0 such that we have Pn ≤ P̄n ≤ �Pn.
Moreover, if � and � denote the constants from Theorem 11, we have that Pn = Θ(n�−1�−n) if � < 1
and Pn = Θ(n� ) otherwise.

Considering the number of executions of length at most n has advantage of mitigating the
periodic e�ects described above and thus describes more faithfully the growth rate of the state-
space. This corollary establishes that, in the sense given above, a program has roughly the same
number of execution pre�xes as it has executions.

The rest of the sub-section is dedicated to the proof of Theorem 11. The proof of Theorem 11
is done by induction on the syntax of the program and is actually straightforward, except for the
case of the coloured product, for which we must establish some analytical properties. Lemma 3
gives a calculus formula for the coloured product of a polynomial with any function and Lem-
mas 5 and 4 gives formulas for computing the coloured product of any two rational functions.
We only characterise the properties of the coloured product over rational functions here since
the generating function of the executions and the pre�xes of an NFJ program are necessarily
rational.

Lemma 3. Let A(z) = ∑n≥0 anzn be a formal power series and let k be a non-negative integer. We
have the identity zk } A(z) = zk

k!
dk
dzk (z

kA(z)), which holds both formally and analytically in the
domain of convergence of A.

Proof. By de�nition we have that zk } A(z) = ∑n≥0 an(
n+k
k )zn+k . Moreover, the k-th deriva-

tive dk
dzk (z

n+k) of zn+k is given by (n + k)(n + k − 1)⋯ (n + 1)zn = (n+kk )k!zn, hence the result of the
lemma.

Using Lemma 3, we obtain that if A is a rational function, then zk }A(z) has the same poles
as A and these poles have the same degree as in A, incremented by k. In Lemmas 5 and 4 below
we give two formulas allowing to compute the product of any two rational functions.

Lemma 4. Let a be a complex number, we have that (1 + az)k }
1

1 − az
=

1
(1 − az)k+1

⋅

Before going over the proof of this lemma, observe that this formula has a combinatorial
interpretation, in terms of rational languages, when a is an integer. Let Σ be an alphabet with a
letters and let Σ1,Σ2,… ,Σk be k distinct copies of Σ. The left-hand-side of the equality given in
the lemma is the generating function of the rational language L1 obtained as the shu�e of (� +
Σ1).(� + Σ2) … (� + Σk) with Σ⋆. The right-hand-side of this equality is the generating function of
the language L2 = Σ⋆1 .Σ⋆2 …Σ⋆k .Σ⋆. The equality of the generating functions is explained by the
following bijection between the two languages. A word w in L1 can be uniquely decomposed
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as w = wi1ui1wi2ui2 ⋯wi�ui�w′ where 0 ≤ � ≤ k, wi1 ,… , wi� , w′ ∈ Σ⋆ and uij ∈ Σij for all j. Since Σij
is a copy of Σ, wij can be mapped to a unique word w′

ij in Σij and thus w can be mapped to a
unique word w′

i1ui1w
′
i2ui2 ⋯w′

i�ui�w
′ in L2. Furthermore, all the words of L2 can be obtained in

such a way. The general case is given by a computational proof.

Proof of Lemma 4. By de�nition we have

(1 + az)k }
1

1 − az
= ∑

n≥0

n
∑
j=0 (

n
j)(

k
j)

ajan−jzn = ∑
n≥0(

n
∑
j=0 (

n
j)(

k
k − j))(az)

n.

And by Vandermonde’s identity ∑n
j=0 (

n
j)(

k
k−j) = (n+kk ), we have

∑
n≥0(

n
∑
j=0 (

n
j)(

k
k − j))(az)

n = ∑
n≥0(

n + k
k )(az)

n = (
1

1 − az)
k+1

.

Lemma 4 allows to decompose a pole of any degree as a polynomial and a simple pole. We
need one last identity allowing to compute the coloured product of two simple poles.

Lemma 5. Let a and b be two complex numbers, we have
1

1 − az
}

1
1 − bz

=
1

1 − (a + b)z
⋅

Again, this identity has a simple combinatorial interpretation when the numbers a and b are
positive integers. In this case, consider two disjoint alphabets Σ and Σ′ of respective cardinal-
ity a and b. The left-hand-side of this equality is the generating function of the shu�e of the
languages Σ⋆ and Σ′⋆ and the right-hand-side is the generating function of the language (Σ ∪ Σ′)⋆,
both languages being trivially equal. The proof in the general case is computational.

Proof of Lemma 5. We have by de�nition

1
1 − az

}
1

1 − bz
= ∑

n≥0

n
∑
k=0

(
n
k)

akbn−kzn = ∑
n≥0

(a + b)nzn =
1

1 − (a + b)z
⋅

Note that, in particular, 1
1−az }

1
1+az = 1.

Using the identities presented above, one can compute the coloured product of any two poles
as follows:

(
1

1 − az)
k
} (

1
1 − bz)

�
= ((1 + az)k−1 } (1 + bz)�−1)}

1
1 − (a + b)z

=
k+�−1
∑
j=1

�k,� ,j(a, b)
(1 − (a + b)z)j

(1.14)

where the �k,� ,j(a, b) are computable coe�cients. In particular, the coe�cient of highest de-
gree �k,� ,k+�−1(a, b) is given by ak−1b�−1

(a+b)k+�−2 (
k+�−2
k−1 ).
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More generally, using the partial fraction decomposition of two rational functions, one can
compute their coloured product using (1.14). This shows that rational functions are stable by
coloured product, thus proving that the generating function of the executions and the generating
function of the pre�xes of a program are rational.

In the particular case where both functions are generating functions, this also gives us that,
if their respective dominant singularities are �1 and �2 of degrees �1 and �2, then the dominant
singularity of their coloured product is (�−11 + �−12 )

−1 and is of degree �1 + �2 − 1. We will use this
fact in the proof of Theorem 11.

Proof of Theorem 11. We prove by induction that, if P is an NFJ program with an in�nite state-
space, then its generating function of executions P (z) and its generating function of pre�xes P̄ (z)
have the same radius of convergence � and satisfy P̄ (z) ∼ �P (z), for some constant � > 0,
when z → �. Recall that P (z) and P̄ (z) are rational.
Parallel composition. If P = (Q ‖ R) and P has an in�nite state-space, then at least one of Q
or R has an in�nite state-space too. Assume, without loss of generality, that this is the case for Q.
Then, by induction hypothesis, Q(z) and Q̄(z) have the same radius of convergence �1 and we
have Q̄(z) ∼ �1Q(z) ∼ C̄1

(1−z/�1)�1
, for some positive constants �1, C̄1 and �1 when z → �1.

• If R has a �nite state-space, it is easy to see that R(z) and R̄(z) are polynomials and that
they have the same degree k. Then, using Lemma 3, one can prove that P has the same
poles as Q with the same degrees increased by k. Thus, the radius of convergence of P (z)
and P̄ (z) is �1 and near �1 we have P̄ (z) ∼ �P (z) ∼ C̄

(1−z/�1)�1+k
for some positive constants �

and C̄ .
• If R has an in�nite state-space too, then by induction hypothesis R(z) and R̄(z) have the

same radius of convergence �2 and we have near �2 R̄(z) ∼ �2R(z) ∼ C̄2
(1−z/�2)�2

for some
positive constants �2, C̄2 and �2. By using Lemma 5 and Lemma 4 to compute the partial
fraction decomposition of P (z) and P̄ (z), we can show that they have the same radius of
convergence � = (�−11 + �−12 )

−1 and that near � we have P̄ (z) = �1�2P (z) ∼ C̄
(1−z/�)�1+�2−1 for

some computable constant C̄ .

Non-deterministic choice. If P = (Q + R) and P has an in�nite state-space, then at least one
ofQ or R has an in�nite state-space too. Similarly as before, we assume without loss of generality
that this is the case for Q and we apply the induction hypothesis to Q with the same notations.

• First consider the case where either R has a �nite state-space, or R has an in�nite state-
space but with �2 > �1 or with �1 = �2 and �2 < �1. In this case of the radius of convergence
of P̄ (z) and P (z) is �1 and near �1 we have P̄ (z) ∼ Q̄(z) ∼ �Q(z) ∼ �P (z) since R(z) = o(Q(z)).

• The symmetric case is similar by commutativity, so it only remains to handle the case
where �1 = �2 and �1 = �2. In this case we have P̄ (z) ∼ C̄1+C̄2

(1−z/�1)�1
and P (z) ∼ �−11 C̄1+�−12 C̄2

(1−z/�1)�1
,

which allows to conclude.

Sequential composition. If P = (Q; R) and P has an in�nite state-space, then at least one
of Q and R have an in�nite state-space too. We have that P̄ (z) = Q̄(z) +Q(z)(R̄(z) − 1) and P (z) =
Q(z)R(z). Again, we use the same notations as above.
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• We �rst consider the case where Q has an in�nite state-space and either the state-space
of R is �nite or is in�nite but is such that �2 > �1. Thus, the dominant singularity of P (z)
and P̄ (z) is �1 and when z → �1 we have P̄ (z) ∼ (�1 + R̄(�1) − 1)Q(z) and P (z) ∼ R(�1)Q(z).
As a consequence P̄ (z) ∼ �1+R̄(�1)−1

R(�1) P (z).
• In the symmetric case, that is either the state-space of Q is �nite or is in�nite but such

that �1 > �2, we have that the radius of convergence of P̄ (z) and P (z) is �2. Besides, near �2
we have P̄ (z) ∼ Q(�2)R̄(z) ∼ Q(�2)�2R(z) and P (z) ∼ Q(�2)R(z). Thus P̄ (z) ∼ �2P (z).

• Finally, if both Q and R have an in�nite state-space and �1 = �2, then the radius of conver-
gence of P (z) and P̄ (z) is �1 and near �1 we have P̄ (z) ∼ Q(z)R̄(z) ∼ Q(z)�2R(z) ∼ �−11 C̄2C̄1

(1−z/�1)�1+�2
and P (z) ∼ Q(z)R(z), which allows to conclude.

Loops. If P = Q⋆, then we have P (z) = (1 − (Q(z) − Q(0)))−1 and there is a unique � > 0 such
that Q(�) − Q(0) = 1. If Q has an in�nite state-space, then we have that � is smaller than the
radius of convergence of Q(z) (and Q̄(z), by induction hypothesis). In a neighbourhood of � we
have Q(z) − Q(0) = 1 − (� − z)Q′(�) + o(� − z)2, with Q′(�) > 0, and thus P (z) ∼ Q′(�)−1

�−z . Finally,
observe that P̄ (z) = 1 + P (z)(Q̄(z) − 1) ∼ P (z)(Q̄(�) − 1) near �.
Base cases. There is nothing to prove for P = 0 or P = a. Informally, the “real” base cases of
this induction, that is the cases where P has an in�nite state-space but all its sub-terms have a
�nite one, is the case where P = Q⋆ and Q ≠ 0 contains no loop.

1.4.3 Uniform random sampling of pre�xes

We now tackle the problem of sampling a uniform pre�x of a given length n, of a given program.
We �rst describe in Algorithm 12 how to compute the generating functions of the pre�xes of
all the sub-terms of a given NFJ program recursively. As for the generating function of the
executions, the algorithm must store each resulting generating function in its corresponding
AST node. Moreover, we assume that Algorithm 8 has already been called on a program P before
running Algorithm 8 on it, so that the generating functions of the executions of the necessary
sub-terms of P are available.

Algorithm 12 Computation of the generating function of the pre�xes of a program up to de-
gree n.
function prefGfun(P, n)

if P = 0 then return 1
else if P = a then return 1 + z
else if P = Q + R then return prefGfun(Q, n) + prefGfun(R, n) − 1
else if P = Q ‖ R then return prefGfun(Q, n)} prefGfun(R, n)
else if P = Q; R then

q(z)← gfun(Q, n) ⊳ should have been pre-computed
return prefGfun(Q, n) + q(z) ⋅ (prefGfun(R, n) − 1)

else if P = Q⋆ then
p(z)← gfun(P, n) ⊳ should have been pre-computed
return 1 + p(z) ⋅ (prefGfun(Q, n) − 1)
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Random sampling is then straightforward, the methodology is the same as in the previous
section. Algorithm 13 describes a uniform random sampler of pre�xes based on the generating
functions of pre�xes computed in Algorithm 12.

Algorithm 13 Uniform random sampling of pre�xes of a given length
Input: An NFJ program P and a length n
Output: A uniform pre�x of execution of P of length n
function UnifPref(P, n)

if n = 0 then return the empty pre�x
else if P = a then return a
else if P = Q + R then

if Bernoulli( q̄n
q̄n+r̄n ) then return UnifPref(Q, n)

else return UnifPref(R, n)
else if P = Q ‖ R then

draw k ∈ J0; nK with probability (nk)q̄k r̄n−k/p̄n
return shuffle(UnifPref(Q, k), UnifPref(R, n − k))

else if P = Q; R then
if Bernoulli( q̄np̄n ) then return UnifPref(Q, n)
else

draw k ∈ J0; nK with probability qk r̄n−k/(pn − q̄n)
return concat(UnifExec(Q, k), UnifPref(R, n − k))

else if P = Q⋆ then
draw k ∈ J0; n − 1K with probability pk q̄n−k/pn
return concat(UnifExec(P, k), UnifPref(Q, n − k))

The complexity analysis of Algorithm 13 is the same as that of Algorithm 7 in the previous
section, and arrives to the same conclusion. We do not repeat it here.

1.4.4 Experimental study

Performance evaluation

In order to assess experimentally the e�ciency of our method, we put into use the algorithms
presented here and demonstrate that they can handle systems with a signi�cantly large state
space. We generated a few NFJ programs as described in Section 1.3.4 and conducted a similar
experiment on the same machine. We quickly recall the main points of our setup below.

Table 1.9 on the following page reports the runtime of the preprocessing phase (Algorithm 12),
the runtime of the random sampler (Algorithm 13) and the number of pre�xes of length n for
various programs and various values of n. Here again, for the runtime of the counting algorithm,
every measurement was performed 7 times and we reported the median of these 7 values. For
the random sampler, every measure was performed 101 times and for each one we report the
median of these values as well as the interquartile range (IQR)8, which gives an idea of the dis-

8The interquartile range of a set of measures is the di�erence between the third and the �rst quartiles. Compared
with the value of the median, it gives a rough estimate of the dispersion of the measures.
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Table 1.9: Quick benchmark of the counting and random sampling functions of execution pre�xes

|P |c n # pre�xes mem. size prefGfun UnifPrefix IQR

100 500 1.841 ⋅ 21128 1.77M 0.025s 0.250ms 0.013ms
100 1000 1.123 ⋅ 22244 6.67M 0.087s 0.635ms 0.662ms
500 500 1.640 ⋅ 21611 5.75M 0.173s 0.372ms 0.024ms
500 1000 1.034 ⋅ 23124 20.90M 1.002s 1.098ms 0.069ms
1000 500 1.047 ⋅ 22462 17.84M 0.563s 0.526ms 0.041ms
1000 1000 1.523 ⋅ 24844 67.14M 3.223s 1.962ms 0.191ms
2000 500 1.685 ⋅ 22381 21.43M 0.673s 0.475ms 0.047ms
2000 1000 1.098 ⋅ 24732 79.98M 3.630s 1.155ms 0.038ms

persion of the measures. We use these metrics rather than the mean and the variance to reduce
the importance of extreme values and give a precise idea of what runtime the user should expect
when running our sampler. The time reported is the CPU time as measured by C’s clock func-
tion. The state-space column indicates the number of pre�xes of length n. The mem. size column
reports the amount of memory occupied by the generating functions of the executions and that
of the executions pre�xes. Recall that both generating functions are necessary for the random
sampling routine.

The take-away of this experiment is that (1) the preprocessing phase can be carried out for
systems with a state-space of size ≈ 218000 in a time of the order of the minute and that (2) once
this is done, sampling a uniform pre�x in this set is a matter of a few milliseconds.

Pre�x covering

We present another experimentation here that highlights the importance of the uniform distri-
bution for the purpose of state-space exploration. The problem is the following. We consider
given an NFJ program and we sample random pre�xes of a given length n of this program using
two di�erent algorithms:

• our random sampler which is globally uniform among all pre�xes of length n;
• a more “naive” sampler that repeatedly generates one execution step uniformly at random

among the legal steps, until we get a length n pre�x. This strategy is called locally uniform
or isotropic.

The question is: in average, how many random pre�xes must be generated in order to dis-
cover a given proportion of the possible pre�xes? This question actually falls under the scope of
the Coupon Collector Problem, which is treated in depth in [FGT92]. Table 1.10 on the next page
gives numerical answers for both exploration strategies for a random NFJ program of size 25 and
for a target coverage of 20% of the possible pre�xes.

Expectedly the uniform strategy is faster but what is interesting to see is that the speed-up
compared to the isotropic method grows extremely fast. The more the state-space grows, the
more the uniform approach is unavoidable.

Unfortunately, the formula given in [FGT92] for the isotropic case involves the costly com-
putation of power-sets which makes it impractical to give values for larger programs and pre�x
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Table 1.10: Expected number of pre�xes to be sampled to discover 20% of the pre�xes of a random
program of size 25 with either the isotropic or the uniform method

Pre�x length 1 2 3 4 5
# pre�xes 11 18 30 60 128

Isotropic 2.1 4.45 11.17 35.09 1.28 ⋅ 1014
Uniform 2.1 3.18 6.57 13.26 27.69

Gain 0% 40% 70% 165% 4.61 ⋅ 1014%

lengths. However, these small-size results already establish a clear di�erence between the two
methods. It would be interesting to have theoretical bounds to quantify this explosion or to
investigate more e�cient ways to compute these values but this falls out of the scope of this
work.



Chapter 2

Directed Ordered Acyclic Graphs and
Multi-Graphs

In this chapter, we dive into a second aspect of this thesis: the study of some classes of directed
acyclic graphs (DAGs). This work is motivated by the use of DAGs as a simpler encoding of
the control �ow of programs than partial orders. Some of the results presented here have been
published in the paper [GPV21]1.

The outline of this chapter is as follows. In Section 2.2 we introduce the model of Directed
Ordered Acyclic Graph (DOAG) and describe a recursive decomposition which is amenable to
e�cient enumeration and recursive random sampling. In Section 2.3, we show that the same de-
composition scheme is applicable to the classical model of labelled DAGs and we obtain new re-
currence formulas for counting them. This new decomposition of labelled DAGs yields a straight-
forward recursive sampler of labelled DAGs with a given number of vertices, edges and sources,
which is a new result. Finally, in Section 2.4, we study a natural extension of DOAGs which
consists in allowing multiple edges to exist between two vertices.

2.1 Context and related work

DAGs usually come in two di�erent �avours: labelled and unlabelled. In a labelled DAG, the
vertices are all distinguishable and usually identi�ed by an integer. Labelled DAGs are thus
adequate to encode a set of relations between a set of known elements (the vertices). On the
other hand, unlabelled DAGs are de�ned as labelled DAGs taken up to a relabelling, that is an
edge-preserving permutation of the vertices. They thus “forget” the distinction between the
vertices and only retain the structure of the graph.

Counting The �rst results on labelled DAG enumeration were obtained by Robinson [Rob73]
and Stanley [Sta73] in the 1970s using two di�erent approaches. Stanley obtained his count-
ing formula by manipulations on generating functions and on the chromatic polynomials while

1[GPV21] “Unlabelled ordered DAGs and labelled DAGs: constructive enumeration and uniform random sam-
pling” has been accepted for publication in the proceedings of the LAGOS conference in 2021.

59



CHAPTER 2. DIRECTED ORDERED ACYCLIC GRAPHS AND MULTI-GRAPHS 60

Robinson described a recursive “layer-by-layer” decomposition of DAGs. Robinson’s decompo-
sition consists in removing all the sources of a DAG at once and counting the number of possible
outcomes of this operation if the initial DAG had k sources and n vertices. This is pictured in
Figure 2.1. The case of unlabelled DAGs was also solved by Robinson in [Rob77] using the same
decomposition and resorting to Burnside’s lemma and the inclusion-exclusion principle to take
the symmetries into account. In all three articles DAGs are counted by number of vertices and
the number of edges of the graphs is not taken into account. In the 1990s Gessel [Ges95; Ges96]
used a similar kind of generating functions as Stanley, called graphic generating functions, to
provide a more precise enumeration including more parameters. In particular [Ges96] counts
labelled DAGs by sources, sinks, vertices, and edges. Gessel’s approach also relies on Robinson’s
“layer-by-layer” decomposition so that [Sta73] is the only notable exception where the prob-
lem is tackled from a di�erent angle. In this chapter we take a slightly di�erent approach too
and decompose the graphs by removing only one source at a time. Although this is a minor dif-
ference, this leads to new recurrence formulas with important applications in terms of random
generation.
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Figure 2.1: Robinson’s layer-by-layer decomposition of labelled DAGs. Edges are implicitly ori-
ented from top to bottom. In order to make a DAG with n vertices, including k “top” sources, out
of a smaller DAG with (n − k) vertices, including s “lower” sources, one needs to connect each of
the s lowers sources to at least one top source, hence the (2k − 1)s term. In addition, there might
be an edge from any the of k top sources to any of the (n − k) other vertices.

Randomgeneration The recurrence formula obtained by Robinson for the labelled case being
based on a recursive decomposition, it naturally leads to a random sampler by the recursive
method. This was �rst noted by [MDB01] but the authors of the papers assumed this approach to
be ine�cient. Instead, they developed an alternative approach based on a Markov chain which
adds and removes edges at random. Later [KM15] made progress on the two methods. First
they proved that the recursive approach is actually e�cient, especially in comparison with the
Markov chain from [MDB01]. And second, they described a second Markov chain with a faster
convergence rate. A way of bounding the number of edges of the generated DAGs is discussed
in [MDB01]. However, a common limitation of both approaches is that it only o�ers little control
over this number of edges. On one hand, the recursive method only samples uniform DAGs



CHAPTER 2. DIRECTED ORDERED ACYCLIC GRAPHS AND MULTI-GRAPHS 61

with n vertices, which yields dense graphs with about n2
4 edges in average. On the other hand,

the Markov chain approach o�ers more control as it can be constrained to sample DAGs with
a given maximum number of edges. However, no study of the speed of convergence of such a
chain is provided.

A second limitation of the above approaches is that it only allows to sample labelled DAGs.
Indeed, for the purpose of approximating partial orders and, ultimately, generating programs,
unlabelled DAGs are more appropriate since the goal is to generate di�erent program structures.
For instance, the two unlabelled DAGs with 4 vertices pictured below correspond respectively 12
and 24 distinct labelled DAGs. As a consequence, uniformly generating labelled DAGs rather
than unlabelled ones introduces a bias towards structures with fewer symmetries. In our example
the DAG on the right has twice as much chance of being drawn.

12 = 4!/2 distinct labellings 24 = 4! distinct labellings

The fact that unlabelled DAGs have symmetries is actually what makes them di�cult to handle.
Having a labelling of the vertices can be seen as a pragmatic way to break those symmetries so
that we have some algorithms we can use in practice. In the present chapter we consider an
alternative way to break symmetries by introducing an ordering of the outgoing edges.

In a di�erent line of work, [FN13] describes a uniform random sampler of acyclic determin-
istic automata. These objects have a similar structure to the directed ordered acyclic graphs
(DOAG) we introduce in this chapter, in the sense that the labels on the transitions of the au-
tomata induce an order on the outgoing edges of each state. However, DOAGs form a strictly
larger class so that the algorithm developed there does not directly apply. The approach used
in [FN13] also follows the layer-by-layer decomposition schemes and is based on the recursive
method.

Asymptotic results More recently, asymptotic results were obtained for the number of op-
timally compacted binary trees in [EFW21]. Compacted trees are trees where common sub-
structures are shared so that they are naturally in correspondence with DAGs. Moreover, these
trees are plane: the order of their children matters. As a consequence, these objects form a sub-
class of the directed ordered acyclic graphs we consider in this chapter. Although our primary
focus is on random generation rather than asymptotic enumeration, the novel techniques devel-
oped in the article are a candidate of choice to tackle some problem left open in Section 2.4.

In another line of work, analytic methods have been recently developed to tackle asymptotic
enumeration problems related to directed graphs (see [PD19] and the pre-prints [PD20; Pan+20]
for instance). In particular these articles enrich the symbolic method of analytic combinatorics
with a new construction adapted to digraph enumeration. Their approach shows promising re-
sults and, although it does not seem to apply to DOAGs at the moment, it is a source of inspiration
for future developments.
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2.2 Directed Ordered Acyclic Graphs

We now present the �rst contribution of this chapter by introducing and studying the class
of directed ordered acyclic graphs (DOAG). In Section 2.2.1 we present the class of DOAGs and
describe a “vertex-by-vertex” decomposition scheme allowing us to obtain recursive formulas for
counting these objects by vertices and edges. Then, in Section 2.2.3 we cover some computational
aspects of their enumeration and describe a uniform random sampler of DOAGs with a given
number of vertices and edges based on the recursive decomposition.

Finally, as an extension, we provide a more e�cient counting formula and a more e�cient
random sampler for DOAGs with n vertices and an arbitrary number of edges. In Section 2.2.4 we
present an encoding of DOAGs as integer matrices and exhibit asymptotic bounds for the number
of DOAGs of size n, based on this encoding. Then, using a combinatorial interpretation of these
bounds, in Section 2.2.5 we describe an e�cient uniform random sampler for these objects which
does not require the costly pre-computation of their counting sequence.

An implementation of the counting algorithms and the recursive random samplers pre-
sented in this section is available on Github as a C library at the address https://github.
com/Kerl13/randdag.

2.2.1 De�nition and recursive decomposition

We introduce a model of directed acyclic graphs called “Directed Ordered Acyclic Graphs” (or
DOAGs) which is similar to the classical model of unlabelled DAGs but where, in addition, we
have a total order on the outgoing edges of each vertex.

De�nition 12 (DOAG). A directed ordered graph is a triple (V , E, (≺v)v ∈V ∪{∅}) where:
• V is a �nite set of vertices;
• E ⊂ V × V is a set of edges;
• for all v ∈ V , ≺v is a total order over the set of outgoing edges of v;
• and ≺∅ is a total order over the set of sources of the graph, that is the vertices without any
incoming edge.

Two such graphs are considered to be equal if there exists a bijection between their respective sets
of vertices that preserves both the edges and the order relations ≺v and ≺∅. Finally, a DOAG is a
directed ordered graph (V , E, (≺v)v ∈V ∪{∅}) with only one sink and such that (V , E), as a directed
graph, is acyclic.

The restriction we put on the number of sinks is a way to ensure the weak connectivity of
the graph. Moreover, although we study this class as a whole, we believe that the DOAGs with
only one source are of higher interest, in particular for the purpose of modelling programs which
generally have a single starting point. As an example, all the DOAGs with one source and up
to 4 edges are pictured in Fig. 2.2.

We describe a canonical way to recursively decompose a DOAG into smaller structures. The
idea is to remove vertices one by one in a deterministic order, starting from the smallest source
(with respect to their ordering ≺∅). Formally, we de�ne a decomposition step as a bijection
between the set of DOAGs with at least two vertices and the set of DOAGs given with some
extra information. Let D be a DOAG with at least 2 vertices and consider the new graph D′

https://github.com/Kerl13/randdag
https://github.com/Kerl13/randdag
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0 edge 1 edge 2 edges 3 edges 4 edges

Figure 2.2: All DOAGs with one source and up to 4 edges. All edges are implicitly oriented from
top to bottom and the order of the outgoing edges of each vertex is indicated by the thinner blue
arrows (always from left to right here).

obtained from D by removing its smallest source v and its outgoing edges. We also need to
specify the ordering of the sources of D′. We consider the ordering where the new sources of D′
(those that have been uncovered by removing v) are considered to be in the same order (with
respect to each other) as they appear as children of v and all larger than the other sources. The
additional information necessary to reconstruct D from D′ is the following:

1. the number s of sources of D′ which have been uncovered by removing v;
2. the set I of internal (non-sources) vertices of D′ such that there was an edge in D from v

to them;
3. the function f ∶ I → J1; s + |I |K identifying the positions, in the list of outgoing edges of v,

of the edges pointing to an element of I .
In fact, this decomposition describes a bijection between DOAGs with at least 2 vertices

and quadruples (D′, s, I , f ) where D′ is a DOAG with k′ sources, I is a subset of its internal
vertices, 0 ≤ s ≤ k′ is a non-negative integer, s + |I | > 0 and f ∶ I → J1; s + |I |K is an injective
function. Indeed, the inverse transformation is as follows. Create a new source v with s + |I |
outgoing edges such that the i-th of these edges is connected to f −1(i) when i ∈ f (I ) and is
connected to one of the s largest sources of D′ otherwise. The s largest sources of D′ must
be connected to the new source exactly once and in the same order as they appear in the list
of sources of D′. Note that the order in which the vertices are removed when iterating this
process corresponds to a BFS-based topological sort of the graph. Fig. 2.3 pictures the �rst 3
decomposition steps of an example DOAG.

→ → →

1

1 2 3 1 2

3
4

1

2
3

Figure 2.3: Recursive decomposition of a DOAG by removing sources one by one in a breadth
�rst search (BFS) fashion. The edges are implicitly oriented from top to bottom and the order of
the outgoing edges of each vertex is indicated by the thinner blue arrows (always from left to
right here). The integer labels at each stage indicate the ordering of the sources.

This decomposition can be used to establish a recursive formula for counting DOAGs, which
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is given below. Let Dn,m,k denote the number of DOAGs with n vertices, m edges and k sources,
then we have:

D1,m,k = 1{m=0 ∧ k=1}
Dn,m,k = 0 when k ≤ 0

Dn,m,k =
min(n−k,m+2−n)

∑
p=1

p

∑
i=0

Dn−1,m−p,k−1+p−i(
n − k − p + i

i )(
p
i)

i! otherwise,
(2.1)

where p = s + i corresponds the out-degree of the smallest source, the term (n−k−p+ii ) = (n−k−si )
accounts for the choice of the set I and the term (pi)i! accounts for the number of injective func-
tions f ∶ I → J1; pK. The bounds on p in the sum is justi�ed by two combinatorial arguments.
First, since p is the out-degree of the smallest source, it cannot be zero and it is upper bounded by
the number of vertices it might have an outgoing edge to, that is the number (n−k) of non-source
vertices of the graph. The second upper bound is obtained by observing that all vertices but the
sink have at least one outgoing edge, hence the total number of edges m is at least p + (n − 2).

Remark 2. Since p = i + s is the out-degree of the removed source, the sequence D(d)n,m,k counting the
DOAGs of maximum out-degree bounded by a given constant d can easily be obtained by replacing
the bound over p by min(n − k,m + 2 − n, d) in the outermost sum.

2.2.2 Computational aspects of the enumeration

We consider the problem of computing Dn,m,k for all n,m and k up to a given bound. This can
be achieved easily using equation (2.1) and a dynamic programming approach. We do not give
the algorithm here as it is a straightforward implementation of the above formula. But in this
section we give some details on its computational aspects. First, in Lemma 6 we characterise the
indices n,m, k such that Dn,m,k > 0. This can be used to avoid unnecessary recursive calls and
to choose a memory-e�cient data-structure for storing the results. Then in Theorem 12 we give
the complexity of the counting procedure in terms of bitwise operations.

Lemma 6. For n > 1, we have Dn,m,k ≠ 0 if and only if 1 ≤ k < n and n − 1 ≤ m ≤ (n2) − (k2).

Proof. There is always at least one source in a DOAG. Furthermore, since n > 1, the unique sink
cannot be a source, thus 1 ≤ k < n is a necessary condition for Dn,m,k to be positive.

Now let n and k be such that 1 ≤ k < n and consider n vertices labelled from 1 to n. The
maximum possible of edges in a DOAGs with k sources is obtained by putting an edge from
vertex i to vertex j if and only if i < j and j > k as pictured below.

⋯ ⋯
1 2 k k + 1 n

✔

7

sources⇒ no incoming edges

This corresponds to (n2)−(
k
2) edges since there are (n2) pairs (i, j) such that i < j and (k2) pairs (i, j)

such that i < j ≤ k. Furthermore, it is possible to remove any number of edges from this maximal
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case while keeping the DOAG weakly connected as long as the total number of edges remains
greater or equal to (n − 1). If m < n − 1, the graph is necessarily disconnected.

In Theorem 12 we get a straightforward upper bound on the number of arithmetic opera-
tions necessary to compute all the Dn,m,k up to certain bounds. As it is usual in combinatorial
enumeration, there is a hidden cost factor in the size of the numbers at stake: the more they grow
the more costly arithmetic operations become. To account for this cost we also give an upper
bound on the bit-size of all numbers being multiplied.

Theorem 12. Let N ,M > 0 be two integers. Computing Dn,m,k for all n ≤ N , m ≤ M and all
possible k can be done with O(N 4M) multiplications of integers of size at most O(M lnM).

The �rst part of Theorem 12 is straightforward but we need a bound on the value of Dn,m,k
for the second part, which is the purpose of Lemma 7.

Lemma 7. For all n,m, k, we have Dn,m,k ≤ (
(n2) − (k2)

m ) ⋅ (m − n + 2)!

Proof. This upper bound is based on two combinatorial arguments. Consider a sequence of n
vertices obtained by decomposing a DOAG D with k sources and m edges. The �rst k vertices
of this sequence thus correspond to the k sources of D.

First, the set of edges of D is a subset of size m of the set of all pairs of vertices that are
not made of two sources. Note that not all such subsets form a valid DAG however. Hence,
the number of ways to choose the m edges of D is bounded above by ((

n
2)−(k2)
m ). Second, the

number of ways to order the outgoing edges of all the vertices is bounded by d1!d2!⋯ dn!where dj
denotes the out-degree of the i-th vertex. Finally, this product is bounded by (m − n + 2)!, which
corresponds to the case where all the dj with i < n but one are equal to 1, dn = 0 and the remaining
one is equal to (m − n + 2).

This bound on the number of DOAGs is rough but it is precise enough to get an estimation
of the bit-size of these numbers.

Corollary 2. There exists a constant c > 0 such that for all n,m, k we have log2(Dn,m,k) ≤ c ⋅ m ⋅
log2m.

Proof. Let L = (n2) − (k2). By Lemma 7, we have that:

Dn,m,k ≤
L(L − 1)(L − 2)⋯ (L −m + 1)

m!
⋅ (m − n + 2)! ≤ L(L − 1)(L − 2)⋯ (L −m + 1) ≤ Lm.

Hence, log2(Dn,m,k) ≤ m log2(L). Moreover log2(L) ≤ log2(n2) = 2 log2(n) and since n ≤ m + 1 we
have log2(n) = O(log2(m)).

We now have enough information to prove Theorem 12.
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Proof of Theorem 12. Since Dn,m,k = 0 for k > n, we need to compute O(N 2M) numbers. More-
over, computing each Dn,m,k requires to compute a sum of at most n2 terms, each of which is the
product of a number of bit-length O(m lnm) with a coe�cient of the form C(j, p, i) = (j+ii )(

p
i)i!

(for some j, p, i ≤ n) of bit-length O(n ln n). Overall this accounts for O(N 4M) multiplications of
bit-complexity (M lnM).

There remains to measure the cost of computing the coe�cients C(j, p, i). They can be
obtained at a small amortized cost using the relation C(j, p, i) = C(j, p, i − 1) ⋅ (j+i)(p−i+1)i (for
all 1 < i ≤ p) to get the value of the coe�cient at i from its value at i−1when summing the terms
of (2.1) for increasing values of i. Clearly, the cost of multiplying numbers of bit-length n ln n
and ln n is bounded by (n ln n) and therefore (M lnM) since n ≤ M + 1.

2.2.3 Counting and sampling algorithms

In this section we describe a uniform random sampler of DOAGs based on the recursive de-
composition given in the previous section. Our algorithm is based on the so-called “recursive
method” from [NW78] in the way we select the parameters of the sub-structures. However, un-
like what we would expect in the systematised framework from [FZV94], the substructures are
not independent. Once the sub-DOAG D′ accounted for by Dn−1,m−p,k−1+p−i has been selected,
the set I and the injective function f ∶ I → J1; |I | + sK accounted for by (n−k−p+ii )(pi)i! cannot be
sampled independently from D′.

Our random sampler is given in Algorithm 14. We �rst give a high-level description of the
algorithm here for the sake of readability. Implementation considerations are discussed below,
and in particular in Algorithm 15 we give a fast algorithm for the generation of the outgoing
edges of the new source at each step of the global random sampling procedure.

Algorithm 14 Recursive uniform sampler of DOAGs
Input: Three integers (n,m, k) such that Dn,m,k > 0
Output: A uniform random DOAG with n vertices (including k sources) and m edges

1: function UnifDOAG(n,m, k)
2: if n ≤ 2 then generate the (unique) DOAG with n vertices
3: else

4: pick (p, i) with probability Dn−1,m−p,k−1+p−i(
n − k − p + i

i )(
p
i)

i!/Dn,m,k

5: D′ ← UnifDOAG(n − 1, m − p, k − 1 + p − i)
6: I ← a uniform subset of size i of the inner vertices of D′
7: I ′ ← a uniform permutation of I
8: E ← a uniform shu�ing of I ′ with the s = p − i largest sources of D′
9: return the DOAG obtained by adding a new source toD′ with E as its list of outgoing

edges

The pick instruction at line 4 implements the “recursive method” scheme: pick the param-
eters of the sub-structures using the pre-computed counting information. One possible way to
implement this is to draw a random variable r ← Unif(J0;Dn,m,k −1K) and to compute the partial
sum of the terms Dn−1,m−p,k−1+p−i(n−k−p+ii )(pi)i! (in any order independent of r ) until the sum is
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greater than r . The indices p and i of the last term of the sum are the ones to pick. Independently
of the summation order, this procedure has complexity O(n2) in the worst case in terms of multi-
plications of big integers. An interesting order of summation is the one where the pairs (p, i) are
taken in lexicographic order. In this case the complexity of the pick function can be expressed
as O(p2) which is more informative about the cost of sampling the whole DOAG since p is the
out-degree of the new source. We consider that this order is used here.

Once we have sampled the sub-DOAG D′, sampling I is straightforward and the injective
function f is obtained as a permutation of S (thus deciding of the order of the elements of I as
children of the new vertex) shu�ed with the largest (p − i) sources of D′. The correctness and
complexity of this procedure in terms of integer multiplications are stated in Theorem 13.

Theorem 13. Algorithm 14 computes a uniform random DOAG of given parameters n,m and k by
performing O (∑v d2v) multiplications where v ranges over the vertices of the resulting graph and
dv is the out-degree of v.

Proof. The complexity result is a straightforward consequence of the above discussion. Uni-
formity is proven by induction. Let D be a DOAG of parameters (n,m, k) and let (D′, s, I , f )
denote the result of one decomposition step of D. Then the probability that D is returned
by UnifDOAG(n,m, k) is

ℙ[D′] = ℙ[(p, i)] ⋅ ℙ[D′|p, i] ⋅ ℙ[I |D′, i] ⋅ ℙ[f |I , p, i]

where, by induction we have ℙ[D′|p, i] = 1/Dn−1,m−p,k−1+p−i and by de�nition:

ℙ[(p, i)] = Dn−1,m−p,k−1+p−i(
n − k − p + i

i )(
p
i)

i!/Dn,m,k

ℙ[I |D′, i] = (
n − k − p + i

i )

−1

ℙ[f |I , p, i] = (i!(
p
i))

−1

.

In the end, we get that ℙ[D′] = 1/Dn,m,k .

Note that the sum ∑v d2v is of the order of m2 in the worst case but can be signi�cantly
smaller if the out-degrees of the vertices are evenly distributed. In the best case we have dv ∼ m

n
for most of the vertices and as a consequence ∑v d2v ∼ m2/n.

We have decomposed the generation of the new source into several steps in Algorithm 14
(lines 5 to 8) to make the role of each term in the counting formula apparent, and help stating the
uniformity. However there is a faster way to implement this part of the Algorithm by sampling I
and its ordering together using a variant of the well-known Fisher–Yates algorithm (see [FY48])
using the property that the �rst i terms of a uniform permutation form a uniform ordered subset
of size i of its elements. This is described in Algorithm 15 which can substitute lines 5 to 8 in
Algorithm 14 in a practical implementation.

The �rst loop of Algorithm 15 (at line 4) implements the Fisher–Yates algorithm with an
early exit after i iterations rather than �T . After this, the �rst i elements of T represent the set I
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Algorithm 15 Optimised uniform sampler of new sources with given parameters
Input: Two non-negative integers i and s, an array S of length �S ≥ s vertices playing the role

of sources and an array T of length �T ≥ i vertices playing the role of internal vertices.
Output: An array v of i + s vertices, representing a new vertex with s out-edges to the s last

elements of S (appearing in the same order as in S) and i edges to elements of T , chosen
uniformly at random.

1: i′ ← i
2: s′ ← s
3: v ← new array of length (i + s)
4: for j = 0 to i − 1 do
5: r ← Unif(Jj; �T − 1K)
6: T [j]↔ T [r]

7: while i′ + s′ > 0 do
8: if Ber(i′/(i′ + s′)) then
9: v[i′ + s′ − 1]← T [i′ − 1]

10: i′ ← i′ − 1
11: else
12: v[i′ + s′ − 1]← S[�S − s + s′ − 1]
13: s′ ← s′ − 1

and their ordering is uniform. The second loop (at line 7) implements the shu�ing of I with the
last s elements of S. We populate the array v in reverse order so as to ensure that the elements
coming from S remain sorted.

This algorithm achieves linear complexity in p = (i + s) in terms of memory accesses and
number of calls to the random number generator, but needs to modify T in place. Since T rep-
resents the internal vertices of a DOAG, this means that we must choose a data structure for
DOAGs that is not sensitive to the order of its internal vertices.

The idea is to represent a DOAG with n vertices and k sources as an array of vertices where
the �rst k elements are the sources, sorted in increasing order, and the other n − k elements are
the internal nodes stored in an unspeci�ed order. Vertices are represented as pointers to arrays
of vertices, the order of the elements encodes the order of the edges.

One can then allocate a single array of size n before the �rst call to the sampler and populate
it from right to left in the recursive calls. The invariant is that, after each recursive call of the
form UnifDOAG(n′, m′, k′), the n′ last elements of the array represent its resulting DOAG D′ of
size n′. Algorithm 15 is then used by taking the n′ − k′ last elements of the array as T and the k′
elements preceding them as S, without making any copy. Finally the newly generated source is
stored at index n − n′, just before the n′ vertices representing D′. The advantage of this memory
layout is that after this point, the s former sources that have been turned into internal nodes are
already at the right place. The memory representation discussed above is pictured in Figure 2.4
on the following page.

Remark 3. If the sequence D(d)n,m,k from Remark 2 is used in place of Dn,m,k in the algorithm, and
without any further change, we obtain a uniform random sampler of DOAGs of maximum out-
degree bounded by d . A large uniform random DOAG with bounded out-degree, sampled using this
algorithm, is shown in Figure 2.5 on page 70.
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Figure 2.4: The memory layout used for storing DOAGs during the generation. The labels on
the vertices of the DOAG on the left correspond to the order in which they are consumed by the
decomposition. Each vertex on the left corresponds to a cell of the main array on the right. Each
cell (except for the last one) has a pointer to an array of vertices representing its outgoing edges
(here represented as integers for readability but stored as pointers to the corresponding array
of outgoing edges in practice). For instance the cell labelled 1 has three outgoing edges to the
vertices labelled 7, 8 and 4.

2.2.4 Counting DOAGs by vertices only: asymptotic results

In this section, we introduce the notion of labelled transition matrices to give an alternative point
of view on DOAGs. Approaching the counting problem from this angle, we manage to provide
lower and upper bounds on the number of DOAGs with n vertices (and any number of edges).
These bounds are precise enough to give a good intuition on the asymptotic behaviour of these
objects. Building on this same approach, we provide an e�cient uniform sampler of DOAGs
with n vertices in the next section.

The decomposition scheme described in Section 2.2.1 corresponds to a traversal of the DOAG.
This allows to label its vertices from 1 to n and to consider its transition matrix using these labels
as indices. Usually, the transition matrix of a directed graph D is de�ned as the matrix (ai,j)1≤i,j≤n
such that ai,j is 1 if there is an edge from vertex i to vertex j in D, and 0 otherwise. This repre-
sentation encodes the set of the edges of a DAG but not the edge ordering of DOAGs. In order
to take this into account, we use a slightly di�erent encoding.

De�nition 13 (Labelled transition matrix). Let D be a DOAG with n vertices. We identify the
vertices of D to the integers from 1 to n corresponding to their order in the vertex-by-vertex decom-
position. The labelled transition matrix of D is the matrix (ai,j)1≤i,j≤n with integer coe�cients such
that ai,j = k > 0 if and only if there is an edge from vertex i to vertex j and this edge is the k-th
outgoing vertex of i. Otherwise ai,j = 0.

An example DOAG and its transition matrix are pictured in Figure 2.6 on page 71, the mean-
ing of the thick line and of the grey cells will be explained later. Let � denote the function
mapping a DOAG to its transition matrix. This function is clearly injective. In the rest of this
section we will rely on this representation to work on DOAGs and provide asymptotic results.
We begin with the characterisation of the image of �.

First, observe that by de�nition of the traversal of the DOAG, the labelled transition matrix
of a DOAG is strictly upper triangular. Moreover, the non-zero values of row i encode the ordered
set of outgoing edges of vertex i. We state below a property of these rows. Note that in column j,
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Figure 2.5: A random DOAG sampled uniformly at random among all DOAGs with m = 1000
edges and with maximum out-degree bounded by 10, that is such that all vertices have at most 10
outgoing edges. This DOAG contains 272 vertices. The colours of the vertices represent their
out-degrees and have been picked according to the following colour map (lowest degree on the
left and highest degree on the right).

0 1 2 3 4 5 6 7 8 9 10
out-degree

the non-zero element with the highest index i, that is in the lowest position on the picture, has
a spacial role: it corresponds to the last edge pointing to j when decomposing the DOAG. These
elements are highlighted by a grey background in Figure 2.6 on the next page. As a consequence,
when such cells occur on the same line i in the matrix, this means that when removing the i-
th vertex in the decomposition, we uncover several new sources at once. By de�nition of the
traversal, these sources are ordered according to the total order of the outgoing edges and thus,
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Figure 2.6: An example DOAG and its labelled transition matrix, the zeroes are not represented.

the values of these cells of the matrix must be ordered increasingly from left to right. For instance,
observe that there are three grey cells in the �rst row of the matrix in Figure 2.6. Indeed, when
removing the �rst source of the DOAG on the left, we uncover three new sources which are
respectively in �rst, second and fourth position in the children of the removed source. Hence,
the three grey cells in the �rst row of the matrix are 1, 2 and 4 which are indeed increasing.

Another property of the labelled transition matrix of a DOAG is that if there are several
grey cells in the same row, they are necessarily consecutive. Indeed, these cells corresponds to
edges pointing to newly uncovered sources upon removing one vertex of the DOAG during its
traversal. By de�nition, these vertices get consecutive indices.

The outcome of the above discussion is summarised below and is actually the most di�cult
part of the characterisation the image of �.

Proposition 4. Let A = (ai,j)1≤i,j≤n be the labelled transition matrix of some DOAG. For all j ∈
J1; nK, let bj denote the largest i ≤ n such that ai,j > 0 if such an index exists and 0 otherwise. We
have that

• the sequence j ↦ bj is weakling increasing;
• whenever bj = bj+1, we have that abj ,j < abj ,j+1.

Proof. For proving the �rst point, one must observe that for all j, bj is the step at which the j-th
vertex becomes a source. As a consequence, since the sources are processed by the decomposition
in the same order as they are discovered, the sequence j ↦ bj is necessarily weakly increasing.

The second point is a consequence of the above discussion: two vertices which become
sources at the same time get labels in the same order as their position as children of their par-
ent.

The thick line in Figure 2.6 is the path obtained by drawing horizontal lines at coordi-
nates (bj , j) for all j and connecting these lines using vertical lines. Proposition 4 states that
the cells that are above the horizontal steps of this line must contain non-zero values and that
consecutive such cells should contain increasing values.

Theorem 14. Let A = (ai,j)1≤i,j≤n be a strict upper triangular matrix of natural integers. Then A is
the labelled transition matrix of a DOAG if and only if
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• each row contains at least one non-zero number;
• each non-zero number is used at most once in a given row;
• the set of the non-zero numbers of a row form an interval whose lower bound is 1;
• Proposition 4 holds.
Moreover, the number of sources of the DOAG whose image by � is A is the number of leading

zeros on the �rst row of A, and its number of edges is the number of non-zero values in the matrix.

The �rst three conditions of the theorem can be reformulated as: for each i ∈ J1; n − 1K,
the sequence (ai,j)i<j≤n is a variation of size (n − i). Variations are de�ned and studied, from a
combinatorial and a random-sampling perspectives, in Section 3.3.

Proof of Theorem 14. By de�nition, the labelled transition matrix of a DOAG satis�es the three
�rst conditions of the theorem and the fourth has been proven in Proposition 4.

There remains to prove that the inverse transformation is possible. Given a matrix satisfying
the four conditions of the theorem, we build a directed ordered graph as follows:

• consider the set V = J1; nK as a set of vertices;
• for each v ∈ V , put an edge from v to u if and only if av,u > 0 in the matrix and order the

outgoing edges of v so that (v, u) ≺v (v, u′) if and only if av,u < av,u′ ;
• Finally, order the sources of the graph so that v ≺∅ v′ if and only if v < v′ as integers.

The directed graph described here is acyclic since the matrix is upper-triangular. Moreover,
it is easy to check that its transition matrix is exactly the initial matrix, which concludes the
proof.

This characterisation of the labelled transition matrices of DOAGs gives a more global point
of view on them compared to the decomposition given earlier, which was more local. In par-
ticular this helps establishing simple, though precise, lower and upper bounds on their number.
Let Dn = ∑m Dn,m,1 denote the number of DOAGs with one source and any number of edges.
A trivial upper bound on Dn is given by the number of upper-triangular matrices satisfying all
the conditions of Theorem 14 except for the last one. Said di�erently, the number of DOAGs of
size n is upper-bounded by the number of (n − 1)-uples of variations of sizes 1, 2, . . . , (n − 1). We
have the number of variations of size k is given by vk = k!∑k−1

p=0
1
p! ≤ e ⋅ k! (see Section 3.3 for

instance), hence

Dn ≤
n−1
∏
i=1

vn−i ≤ ¡n − 1! ⋅ en−1 (2.2)

where ¡k! = ∏k
i=0 i! denotes the super factorial of k. The term “super factorial” seems to have

been coined by Sloane and Plou�e in [SP95, page 228].
Obtaining a lower bound on Dn requires to �nd a subset of the possible labelled transition

matrices described in Theorem 14 that is both easy to count and large enough to capture a large
proportion of the DOAGs. One possible such set is that of the labelled transition matrices which
have non-zero values on the super-diagonal (ai,i+1)1≤i<n. In such matrices, the constraints ex-
plained in Proposition 4 are trivially satis�ed and this leaves a lot of free space on the right of
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that diagonal to encode a large number of possible DOAGs. In such a matrix, the i-th row con-
tains p ≤ n − i non-zero values, which can be in any position provided that one of them occupies
the position (i + 1). Hence, the number of such possible rows is

n−i
∑
p=1(

n − i − 1
p − 1 )p! = (n − i − 1)!

n−i−1
∑
p=0

n − i − p
p!

= vn−i − vn−i−1
= e ⋅ (n − i − 1)(n − i − 1)! + o(1).

As a consequence we have

Dn ≥
n−1
∏
i=1
(vi − vi−1) ≥

A
n
⋅ ¡n − 1! ⋅ en−1 for some A > 0. (2.3)

Although they are not precise enough to obtain an asymptotic equivalent for the sequenceDn,
these two bounds already give us a good estimate of the behaviour of Dn. First of all, they let
appear a “dominant” term of the form ¡n−1!, which is uncommon in combinatorial enumeration.
And second, it tells us we only make a relative error of the order of O(n)when approximating Dn
by ¡n−1! ⋅en−1. Numerical experiments allow to conjecture that the behaviour of Dn is strictly be-
tween these two bounds. Before presenting these experimentations we give a recurrence formula
that is more e�cient to implement that the general formula on Dn,m,k presented in Section 2.2.1
since we do not account for the number of edges here.

Let Dn,k denote the number of DOAGs with n vertices (including k sources and one sink) and
any number of edges. Using the same decomposition as above and applying the same combina-
torial arguments we get

Dn,k = ∑
i+s>0

Dn−1,k−1+s(
s + i
s )(

n − k − s
i )i!

= ∑
s≥0

Dn−1,k−1+s ⋅  (n − k − s, s)

where
 (a, b) = 1{b≠0} +∑

i>0 (
b + i
b )(

a
i)
i!

The above sum gives an explicit way to compute  , but there is a computationally more
e�cient way to do so using recursion and memoisation:

 (a, b) = 0 when a < 0 or b < 0
 (0, b) = 1{b>0}
 (a, b) =  (a, b − 1) + a ⋅  (a − 1, b) + 1{b=1} + a ⋅ 1{b=0} otherwise.

(2.4)

Using this recurrence formula with memoisation, the numbers Dn,k for all n, k ≤ N can
be computed in O(N 3) arithmetic operations on big integers. Note that the Dn sequence de-
�ned above corresponds to Dn,1. Using the numbers computed by this algorithm, we plotted the
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�rst 200 values of the sequence n ↦ Dn
√
n

¡n − 1!en−1 which seems to converge quickly to a constant.

The plot is given in Figure 2.7. We do not have an explanation for the √
n term besides the fact

that a plot in log-log scale of the sequence Dn¡n−1!en−1 suggested to normalise by this value.

0 25 50 75 100 125 150 175 2000
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Figure 2.7: The �rst values of the sequence n ↦ Dn
√
n

¡n − 1!en−1 .

We can thus state the following conjecture on the asymptotic behaviour of Dn.

Conjecture 1. Asymptotically we have

Dn ∼
C
√
n
⋅ ¡n − 1! ⋅ en−1

for some constant C ≈ 0.30256.

2.2.5 Uniform sampling of DOAGs by vertices only

The knowledge from the previous section on the asymptotic number of DOAGs with n vertices
can be interpreted combinatorially to devise an e�cient uniform random sampler of DOAGs
based on rejection. The main idea of this section is that the upper bound we described on Dn
corresponds to counting objects that are computationally cheap to sample, namely variations.
Hence, a possible approach to sample uniform DOAGs is to sample uniform matrices made of (n−
1) variations of sizes 1, 2, . . . , (n−1) and reject them when they do not correspond to valid DOAGs.
The probability of rejection of such a sampler is 1 − Dn

¡n − 1! ⋅ en−1 and thus, the expected number

of rejections is provably linear by (2.3) and is only of the order of √n if Conjecture 1 is true.

De�nition 14 (Variation matrix). We call a variation matrix of size n a strict upper triangular
matrix (ai,j)1≤i,j≤n of non-negative integers such that for all 1 ≤ i < n, the sequence (ai,j)i<j≤n is a
non-empty variation (of size n − i).

As already presented above, all the labelled transition matrices of DOAGs are variation ma-
trices, and the number of such matrices of size n is given by:

An =
n−1
∏
k=1

vk = Θ(¡n − 1! ⋅ en−1) = O(nDn) (2.5)
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In the rest of this section, we describe a uniform random sampler of variation matrices. The �rst
key step towards this goal, is to describe a uniform random sampler of variations. This is done
separately in Section 3.3. Given a sampler of variations, we can then easily obtain a sampler of
variation matrices by calling the sampler with the arguments 1, 2, 3,… , n − 1 and arranging the
results in a matrix. This is presented in Algorithm 16.

Algorithm 16 Uniform random sampler of variation matrices
Input: An integer n > 0
Output: A uniform variation matrix of size n

function UnifVarMat(n)
A = (ai,j)1≤i,j≤n ← a zero-�lled n × n matrix
for i from 1 to n do

T ← UnifVariationR(n − i)
copy T to (ai,j)i<j≤n

return A

Finally, deciding whether an arrangement matrix is a valid labelled transition matrix can be
implemented in quadratic time in n. We give such a decision procedure in Algorithm 17. In fact,
in order to be more e�cient, the array b computed in Algorithm 17 should be computed directly
inside Algorithm 16 to avoid the extra traversal of the array. We keep it separated here for the
sake of clarity.

Algorithm 17 Procedure deciding whether an arrangement matrix is a valid labelled transition
matrix
Input: An arrangement matrix A = (ai,j)1≤i,j≤n
Output: true if and only if A is a labelled transition matrix

function IsLabTransitionMatrix(A)
b ← zero-�lled array of length n
for i from 1 to n do

for j from i + 1 to n do
if ai,j > 0 then

b[j]← i
for j from 1 to n − 1 do

if b[j] > b[j + 1] then return false
if (b[j] = b[j + 1] > 0) ∧ (ab[j],i > ab[j],i+1) then return false

return true

Combining Algorithm 16 with a rejection procedure based on Algorithm 17, we �nally get
a uniform random sampler of labelled transition matrices, as presented in Algorithm 18. Theses
matrices can then be transformed to DOAGs by applying �−1. To give a rough idea of the perfor-
mance of this algorithm, our implementation allows to sample DOAGs of size n = 2000 in a few
seconds on a standard laptop. Note that a DOAG of size n is actually a matrix of n2 elements.
Hence, for n = 2000 the “real” size of the sampled object is of the order of the million and the
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complexity in terms of memory access of such a sampler is lower-bounded by Ω(n2). Also note
that we have log2(Dn) ∼ n2 log2(n). As a consequence, the complexity in terms of random bits
consumption of an uniform random sampler of DOAGs is in Ω(n2 ln(n)). An open question re-
garding our sampler is: can we get closer to these bounds, for instance by checking the validity
of the matrix on the �y and using early rejection?

Algorithm 18 Uniform random sampler of DOAGs with n vertices
Input: A positive integer n
Output: A uniform random DOAG with n vertices

function UnifDOAGn(n)
A← UnifArgMat(n)
while not IsLabTransitionMatrix(A) do

A← UnifArgMat(n)
return �−1(A)

2.3 Vertex-by-vertex decomposition of labelled DAGs

In this section we demonstrate the applicability of our method by establishing a new count-
ing formula for the classical model of vertex-labelled DAGs with k sources and one sink. This
corresponds to a sequence obtained by Gessel in [Ges96] using generating functions. The dif-
ference here is that our formula does not make use of the inclusion-exclusion principle and is
thus amenable to e�ective random sampling. To our knowledge, this is the �rst such formula for
labelled DAGs.

Another possible application of our method would be to count DAGs labelled on their edges
rather than their sources. Such a labelling induces a natural ordering to the outgoing edges of
each vertex, which allows to apply the same decomposition as in the previous sections. We do
not detail this here for brevity and focus on vertex-labelled DAGs, which we believe are of greater
interest.

2.3.1 Recursive decomposition

In a �rst attempt to decompose regular vertex-labelled DAGs, one might be tempted to devise a
decomposition similar to DOAGs by removing the smallest source at each step. However, in this
case this makes the recurrence di�cult to express. Instead we count vertex-labelled DAGs with
a distinguished source (this operation is called pointing), which makes the decomposition much
simpler as we do not have to maintain an ordering. As for DOAGs, we only consider DAGs with
one sink to ensure that they remain weakly connected.

Let Vn,m,k denote the number of vertex-labelled DAGs with n vertices (including k sources
and the unique sink) and m edges. The number of such DAGs with a distinguished (or pointed)
source is given by k ⋅Vn,m,k since any of the k sources may be distinguished. LetD denote one such
DAG and let v denote its distinguished source. Removing the distinguished source in D yields
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a regular vertex-labelled DAG D′ with n − 1 vertices. Moreover, the three pieces of information
that are necessary to reconstruct the source are the following:

1. the label of the source v which has been removed;
2. the set S of sources of D′ which have been uncovered by removing v;
3. the set I of internal (non-sources) vertices of D′ that were pointed to by an outgoing edge

of v.
The reconstruction is then straightforward as one simply has to create a new (distinguished)
source v with edges to S and I . This leads to the following recursive formula where p = i + s
denote the out-degree of v.

V1,m,k = 1{m=0 ∧ k=1}
V1,m,k = 0 when k ≤ 0

k ⋅ Vn,m,k = n
min(n,m)

∑
p=1

p

∑
q=0

Vn−1,m−p,k−1+q(
n − q − k
p − q )(

k − 1 + q
q ) otherwise.

(2.6)

Computing the �rst terms of this sequence with k = 1, we get back that values from A165950
related to the papers [Ges95; Ges96] where the sequence is obtained via a generating function
enumeration related to the Tutte polynomial. The complexity of the straightforward dynamic
programming algorithm implementing this formula to compute the �rst terms of Vn,m,k is similar
to that of DOAGs from the previous section.

Theorem 15. Let N ,M > 0 be two integers. Computing Vn,m,k for all n ≤ N , m ≤ M and all
possible k can be done with O(N 4M) multiplications of integers of size at most O(N 2).

Proof. The only di�erence with DOAGs is in the size of the integers at play. As a rough upper-
bound on the numbers Vn,m,k is obtained by considering the total number of labelled DAGs with n
vertices, that is O(n!2(

n
2)�−n) for some constant � > 0. Taking the logarithm of this number

yields that O(N 2) bits are enough for storing the numbers we manipulate here. Moreover, better
estimations of the number of DAGs are given in [BRRW86], which proves, in particular, that
when m ∼ (n2)

1
2 the logarithm of the number of DAGs with n vertices and m edges is lower-

bounded by Ω(n2).

2.3.2 Random generation

A random sampling algorithm similar to Algorithm 14 can be obtained from formula (2.6). The
major di�erence with the previous section is that one has to deal with the marking of the sources
here and thus the division by k at the third line of (2.6). In fact it can be handled, at every
recursive call, by �rst generating a DAG with a distinguished source (counted by k ⋅ Vn,m,k)
and then forgetting which source was distinguished. Since the recursive formula for k ⋅ Vn,m,k
has no division, the uniform sampler of marked DAGs is obtained in a similar way as in the
previous section. Moreover, forgetting which source was marked does not introduce bias in the
distribution since all sources have the same probability to be marked. As side node: a similar
technique (�rst pointing and then forgetting the pointed node) will be used in Chapter 3 in the

https://oeis.org/A165950
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Algorithm 19 Uniform random sampler of vertex-labelled DAGs.
Input: Three integers (n,m, k) such that Vn,m,k > 0
Output: A uniform random vertex-labelled DAG with n vertices (including k sources and one

sink), and m edges
function UnifLDAG(n,m, k)

if n ≤ 1 then generate the (unique) DAG with 1 vertices
else

pick (p, s) with probability Vn−1,m−p,k−1+s(
n − k − s
p − s )(

k − 1 + s
s )/Vn,m,k

D′ ← UnifLDAG(n − 1, m − p, k − 1 + q)
I ← a uniform subset of size (p − s) of the inner vertices of D′
Q ← a uniform subset of size s the sources of D′
pick a uniform � ∈ J1; nK
relabel D′ by adding one to all of its labels � ′ such that � ′ ≥ �
add a new source to D′ labelled � and with S ∪ I as its outgoing edges
return D′

context of Boltzmann sampling. A uniform random sampler of vertex-labelled DAGs with n
vertices (including k sources and one sink) and m edges is described in Algorithm 19.

This algorithm being very similar to Algorithm 14, it has the same complexity in terms of
arithmetic operations on big integers, that is O(∑v d2v) where v ranges over the vertices of the
resulting graph and dv denotes the out-degree of v.

2.4 Multi-graphs

We study here a variant of DOAGs where multi-edges are allowed, that is where there might be
several edges with the same source and destination.

De�nition 15 (DOAMG). A directed ordered multi-graph is a triple (V , E, (≺v)v ∈V ∪{∅}) where:
• V is a �nite set of vertices;
• E ∶ V × V → ℕ is a �nite multi-set of edges;
• for all v ∈ V , ≺v is a total order over the multi-set of outgoing edges of v, that is a �-
nite sequence (u1, u2,… , udv ) such that for all u ∈ V , the number of occurrences of u in the
sequence ≺v is the value of E((v, u));

• and ≺∅ is a total order over the set of sources of the multi-graph, that is the vertices without
any incoming edge.

Two such multi-graphs are considered to be equal if there exists a bijection between their respective
sets of vertices that preserves the edges and the orders ≺v . Finally, a DOAMG is a directed ordered
multi-graph (V , E, (≺v)v ∈V ∪{∅}) with only one sink and such that (V , E), as a directed multi-graph,
is acyclic.

DOAMGs are a generalisation of DOAGs in the sense that all DOAGs are DOAMGs. This
kind of objects is suitable for representing partially compacted tree-like structures, typically
appearing when using hash-consing [Ers58; Got74]. Contrarily to DOAGs, these objects may
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Figure 2.8: Example DOAMG and the �rst steps of its decomposition. The tiny arrows indicating
the order of the outgoing edges are omitted for clarity, all outgoing edges are implicitly ordered
from left to right.

have multiple edges between the same two vertices, which may naturally occur in this context.
An example DOAMG is pictured in Figure 2.8.

2.4.1 Edge-by-edge decomposition scheme

We describe a similar decomposition as for DOAGs, starting from the source and removing one
source after the other in an order dictated by the ordering of the outgoing edges of each vertex.
However, in order to obtain a recurrence formula, we adopt here a “�ner grained” decomposition
by removing each source “edge-by-edge” rather than all at once. More formally, we describe what
is left of such a graph if one removes the smallest edge of its smallest source. The edge-by-edge
decomposition of these objects is the bijection de�ned as follows. A DOAMG D with at least two
edges is mapped to a triple (D′, v, b) such that:

• D′ is a DOAMG obtained from D be removing the smallest outgoing edge of the smallest
source u of D′, if u had out-degree 1 in D, it is removed from D′;

• v is the vertex of D′ to which the removed edge was pointing;
• b is a Boolean equal to true if and only if u had degree 1 in D (and thus has been removed).
It is clear that this mapping is injective and one can check that any triple of the form (D′, v, b)

such that v is either an internal vertex ofD′ or is the largest source ofD′ is the image of a DOAMG
by this mapping. It follows that the number D′n,m,k of DOAMGs with n vertices (including k
ordered sources) and m edges satis�es the following recurrence relation. The �rst two terms
of the second equality in (2.7) correspond to the case where v is an internal vertex of D′ (there
are (n−k) such vertices, hence the (n−k) factor) and the two other terms correspond to the cases
where v is the largest source of D′. Depending on whether the smallest source of D had degree 1
or not, a source is removed from D in D′.

D′n,1,k = 1{n=2 ∧ k=1}
D′n,m,k = (n − k)(D

′
n,m−1,k + 1{k>1}D

′
n−1,m−1,k−1) + D

′
n−1,m−1,k + D

′
n,m−1,k+1.

(2.7)



CHAPTER 2. DIRECTED ORDERED ACYCLIC GRAPHS AND MULTI-GRAPHS 80

This formula can be used to compute all the coe�cients D′n,m,k up to some bounds N and M
in polynomial time using a dynamic programming approach. The procedure is straightforward
and is not detailed here. The complexity of such a procedure is given in Theorem 16.

Theorem 16. Let N ,M > 0 be to integers. Computing D′n,m,k for all n ≤ N , m ≤ M and for all
possible k can be achieved in O(N 2M) arithmetic operations. Moreover, the bit-complexity of these
operations is at most O(M ⋅(log2(N ))) where (x) is the bit-complexity of the multiplication2

of two integers of bit-size x .

Proof. There are O(N 2M) coe�cients D′n,m,k such that n, k ≤ N and m ≤ M and computing each
one of them requires a constant number of arithmetic operations. So the �rst part of the theorem
is clear.

Estimating the cost of the arithmetic operations requires to establish an upper bound on
the numbers at play. By induction we have that D′n,m,k ≤ (4N )m and thus log2(D′n,m,k) ≤ 2M +
M log2(N ). Then, we can observe that the only arithmetic operations in (2.7) are additions and
multiplications of a small integer by a large integer. The additions have a linear cost in the size of
their operands, that isO(M log2(N )). For the case of the multiplication, we have that log2(n−k) ≤
log2(N ) and log2(Dn,m,k) = O(M log2(N )), hence, by Lemma 1 on page 6, they have a cost of at
most O(M ⋅(log2(N ))).

2.4.2 Random sampling

The above decomposition of DOAMGs (2.7) naturally translates into a recursive random sampler.
Recall that the formula is based on a case analysis of the di�erent scenarios when one removes the
smallest edge of the smallest source. As a consequence, the algorithm follows a similar pattern,
that is add one edge to a DOAMG sampled recursively of one of the four types described in the
decomposition (and with the appropriate probability). The four types correspond to choosing
whether the edge should point to an internal vertex or a source and whether it should be added
to the smallest source or to a new source. This is described more precisely in Algorithm 20.

The complexity analysis of this algorithm is rather straightforward as it makes a linear num-
ber of recursive calls, each triggering the generation of one integer and a constant number of
arithmetic operations.

Theorem 17. Algorithm 20 called with the parameters n, m and k, makes O(m) arithmetic oper-
ations of bit-complexity O(m log2(n)) and O(m) calls the Unif function.

Proof. The algorithm makes m recursive calls and the cost of the arithmetic operations has al-
ready been analysed in Theorem 16.

2.4.3 Bijection with decorated north-east paths

Here we establish a bijection, inspired by (2.7), between DOAMGs and a class of pairs of walks in
the quarter plane. Although we have not established any asymptotic results yet on this class, we

2See the generalities Chapter page 6
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Algorithm 20 Uniform recursive random sampler of DOAMGs
Input: Three integers n, m and k such that D′n,m,k > 0
Output: A uniform DOAG with n vertices (including k sources) and m edges

function UnifDOAMG(n,m, k)
if m = 1 then return the unique DOAMG with 1 edge
x ← Unif(J0;D′n,m,k − 1K)
if x < (n − k)D′n,m−1,k then

D′ ← UnifDOAMG(n,m − 1, k)
v ← a uniform internal node of D′
Add an edge from the smallest source of D′ to v, in �rst position

else if x < (n − k)(D′n,m−1,k + D
′
n−1,m−1,k−1) then

D′ ← UnifDOAMG(n − 1, m − 1, k − 1)
v ← a uniform internal node of D′
Add a new source to D′ with a unique outgoing edge to v

else if x < (n − k)(D′n,m−1,k + D
′
n−1,m−1,k−1) + D

′
n−1,m−1,k then

D′ ← UnifDOAMG(n − 1, m − 1, k)
v ← the largest source of D′
Add a new source to D′ with a unique outgoing edge to v

else
D′ ← UnifDOAMG(n,m − 1, k + 1)
v ← the largest source of D′
Add an edge from the smallest source of D′ to v, in �rst position

return D′

believe this combinatorial interpretation can the starting point to such a study, and potentially
write an improved sampler.

We �rst describe a mapping � from the class of DOAMGs to the words on the in�nite alpha-
bet Σ = {(, )}×ℕ. For a DOAMG D with at least 2 edges, let dec(D) = (D′, b, v) denote the results
of its decomposition as described in Section 2.4.1. For any words w and w′ on Σ, let ww′ denote
the concatenation of the two words. We de�ne � as follows.

�(D) =

{
() if D has only one edge
�(D′)�1(b)�2(D′, v) otherwise where dec(D) = (D′, b, v)

(2.8)

where
• �1(true) = (;
• �1(false) is the empty word;
• if v is an interval vertex of D′, �2(D′, v) is the position of v, starting from 0, among the in-
ternal vertices of D′, taken in the order induced by the decomposition;

• if v is the largest source of D′, �2(D′, v) = ).
Note that there is some structure in the image of �. For instance an instance of ( is always

followed by another letter which is di�erent from (. Another property of these words is they are
almost well-parenthesised in the sense that in every pre�x, the number of opening parentheses
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Figure 2.9: Example DOAMG, and its images by � and  ◦ �.

greater or equal to the number of closing parentheses. In addition, every integer appearing in
a word must be preceded by more occurrences of ) than its value. Actually, these properties
characterise the image of �, this is stated in Theorem 18.

De�nition 16. Let  denote the set of words w on the in�nite alphabet {(, )} ∪ℕ satisfying the
following constraints:

1. w starts by (;
2. if w = w′w′′ then w′ contains at least as many occurrences of ( as occurrences of );
3. if w = w′(w′′, then w′′ is non-empty and does not start by (;
4. if w = w′iw′′ for some i ∈ ℕ, then w′ contains at least (i + 1) occurrences of (.

Theorem 18. The function � de�ned in (2.8) is a bijection from the set of all DOAMG to the
language described in De�nition 16. Moreover, if �(D) = w and if n,m and k denote the number
of vertices, edges and sources of D, then:

• w contains n − 1 opening parentheses (;
• w contains n − k closing parentheses );
• w has length m + n − 1.

Proof. The second property on the number of occurrences of (, ) and the length of �(D) is the
result of a straightforward induction which is omitted here.

In order to prove that � is a bijection, we de�ne a function �′ from  to the set of DOAMGs
and prove that this is the inverse of �. First observe that because of point 3 of De�nition 16, the
last letter of a word of  is either an integer or (. We de�ne the function �′ recursively by a
case analysis on the last two letters of its argument and using the above observation. Let w ∈
and let p and q denote respectively its number of ( and ).

• If w = (), we de�ne �′(w) as the unique DOAMG with one edge.
• If w is of the form w = w′(i, then w′ ∈ since it cannot end with ( so that we can take its

image D′ = �′(w′) by �′ (recursively de�ned). We have by induction that D′ has p vertices
and (p − q) sources. We de�ne �′(w) as the DOAMG obtained by adding a new vertex
to D′ with only one edge to the i-th internal vertex of D′. This is well de�ned since D′
has p − (p − q) = q internal vertices and by point 4 of De�nition 16 we have i < q.
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• Ifw is of the formw = w′(), thenw′ ∈ since it cannot end with ( so that we can take its
image D′ = �′(w′) by �′ (recursively de�ned). We have by induction that D′ has p vertices
and (p − q + 1) sources. We de�ne �′(w) as the DOAMG obtained by adding a new vertex
to D′ with only one edge to the largest source of D′.

• If w is of the form w = w′i and w′ does not end with (, then w′ ∈  and we can take its
image D′ = �′(w′) by �′ (recursively de�ned). We have by induction that D′ has (p + 1)
vertices and (p − q + 1) sources. We de�ne �′(w) as the DOAMG obtained by adding a new
edge in D′ from its smallest source to its i-th internal vertex. This is well de�ned since D′
has (p + 1) − (p − q + 1) = q internal vertices and by point 4 of De�nition 16 we have i < q.

• Finally, if w is of the form w = w′) and w′ does not end with (, then w′ ∈  and we
can take its image D′ = �′(w′) by �′ (recursively de�ned). We have by induction that D′
has (p + 1) vertices (p − q + 2) sources. We de�ne �′(w) as the DOAMG obtained by adding
a new edge in D′ from its smallest source to its largest source. This does not introduce a
loop since D′ has (p − q + 2) ≥ 2 sources (we have that p ≥ q by point 2 of De�nition 16).

We have thus de�ned a function �′ from  to the set of DOAMGs, which is clearly injective.
Finally, one can conclude the proof, either using by considering the restrictions of � and �′ to
objects with �xed parameters (number of vertices, edges, (, etc.) and invoking the �niteness of
the sets, or by observing that � and �′ are the inverse of each other.

The bijection � allows to encode DOAMGs as words. The properties of these words, which we
have described in De�nition 16, are well-suited for a more visual representation using decorated
paths in the quarter plane. More precisely, we map the words of the image of � to pairs of
walks (W1,W2) in the quarter plane such that

• W1 starts from (0, 0) and is made only of “north” (0, +1) and “east” (+1, 0) steps;
• W2 starts from (1, 0), is also made of north and east steps, and in addition the east steps

are “decorated” with an integer;
• W1 and W2 have the same length and do not cross.

The mapping  from words to walks is described below as procedure. The auxiliary function � is
necessary to alternate between one step on the �rst walkW1 and one step on the second walkW2.

 (w) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

do nothing if w = �
add a north step to W1 and execute � (w′) if w = (w′

add an east step to W1 and execute � (w) otherwise

� (w) =

{
add a north step to W2 and execute  (w′) if w = )w′

add an east step, decorated with i, to W2 and execute  (w′) if w = iw′

An example application of  is represented in Figure 2.9 on the previous page. Note that
the properties of the words of  translate naturally to properties of the walks. For instance, in
the �gure, the integer i decorating each horizontal step of W2 is represented as a cross in the
“cell” located below it at distance i. One can prove that this integer i is smaller than the ordinate
of the step is corresponds to. Also observe that the length of both walks is m, the �nal height
of W1 is (n − 1), and the �nal height of W2 is (n − k) where m, n and k are respectively the
number of edges, vertices and sources of the original DOAMG. Moreover, another consequence
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of Theorem 18 is that the walk W1 must remain above of W2 and their intersection must not
contain any edge (but may contain single points).



Chapter 3

Algorithmic considerations related to
random generation

This last chapter is dedicated to algorithmic and practical considerations regarding random sam-
plers and unranking algorithms. We focus in particular on two aspects: practical e�ciency and
usability. Some of the results presented in this chapter (in Section 3.2) have been published in
the paper [GP21]1 and the ideas exposed in Section 3.4 have lead to the implementation of a fast
and generic Boltzmann sampling library [6] for Python.

We start this chapter by providing some historical context on the topic of random generation
in Section 3.1. Then in Section 3.2, we study a basic combinatorial object, which is omnipresent
as a building block for more complex data structures, namely: combinations. In particular we
focus on the problem of the lexicographical unranking of combinations for which we propose two
contributions. First we give a new point of view on the problem, based on the factoradic numeral
system, allowing to see this problem as a special case of permutation unranking. And second,
we propose to re�ne the complexity model that is traditionally used to analyse such algorithms.
In light of this new model, we propose an optimisation that can be applied to all the algorithms
from the literature as well as ours and which gives a signi�cant performance improvement. In
Section 3.3, we turn to the uniform random generation of variations2. Our contribution is a linear
random sampler based on the rejection method which does not require the pre-computation of
counting sequences like in the recursive method. Note that the choice of combinations and
variations is not innocuous as they both play a central role in DAG enumeration and random
sampling in Chapter 2. In fact, the complexity of some of our DAG samplers is directly linked to
the complexity results from the present chapter.

Finally, in Section 3.4, we turn to Boltzmann sampling, which is a general purpose frame-
work to write random samplers of combinatorial structures based on their speci�cations. This
type of sampler has been used, in particular, to generate the random NFJ programs used in the
experimentations from Chapter 1. Traditionally, this formalism is presented from a high level
point of view and one of the contributions of this chapter is to dive deeper into the practical
aspects of its implementation. In particular, we present an optimisation which has a signi�cant

1[GP21] “Lexicographic unranking of combinations revisited” has been published in the Algorithms journal.
2Variations are also sometimes called k-permutation or arrangements
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impact in practice as well as a formalism to give the user of such a library full control on how
the generated objects are constructed in memory.

3.1 A review of random generation techniques

We give here an overview of some random sampling techniques and principles to set up the
algorithmic context in which the present work takes place. As a consequence, we only give a
restricted overview of the random sampling landscape and do not intend to be exhaustive. In
particular, we focus on uniform random generation, which is a central aspect of this thesis.

We start by giving a classical example of a so-called ad hoc algorithm, designed for a speci�c
combinatorial class. Although they are, by de�nition, very speci�c, such ad hoc algorithms form
a solid background showcasing a wealth of techniques and ideas which can be applied, not only
to other speci�c algorithms, but also to more general frameworks. The algorithm presented here
introduces one such idea: the rejection principle.

Then we present the so-called “recursive method” from [NW78] which gives general princi-
ples to obtain uniform samplers for decomposable combinatorial structures. The idea is to follow
a recursive decomposition of the structures to be generated into objects of smaller sizes. This
approach relies on counting information on the objects at play, typically available under the
form of sequences or generating functions, to weight some decision during the generation. Fi-
nally, we introduce the more recent framework of Boltzmann sampling [DFLS04], which takes
a rather di�erent approach. Here, the value of the generating functions (at some well-chosen
real number) are used rather than their coe�cients. Furthermore, Boltzmann samplers are able
to generate larger structures thanks to their better complexity in exchange for a slight loss of
precision of the size of the generated objects. Indeed, they generate structures of approximate
size, that is close to a target size (rather than structures of exact size).

3.1.1 Ad hoc algorithms and the rejection method

In order to illustrate the rejection principle, we present a simpli�ed version of the uniform ran-
dom sampler of combinations of k elements among n from [NW78] (these are called k-subsets
in the book). The problem is the following: how to sample, uniformly at random, a subset of
size k of the set J0; n − 1K of size n. A possible solution is to pick elements from this uniformly
at random until k distinct ones have been found. This is described in Algorithm 21.

Algorithm 21 Ad hoc uniform random sampler of combinations
Input: Two integers n and k such that 0 ≤ k ≤ n
Output: A uniform subset S of size k of J0; n − 1K

1: function UnifCombination(n)
2: S ← ∅
3: while |S| < k do
4: i ← Unif(J0; n − 1K)
5: if i ∉ S then add i to S
6: return S
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Note that this is a simpler algorithm than the one given in [NW78] because we ignore the
cost of checking whether i ∈ S at line 5 and the cost of adding one element to this set. Here, for
an illustrative purpose, we only focus on the number of times this check is performed.

The rejection principle is materialised here in the fact that the new elements that are added
to S are not sampled from J0; n−1K⧵S. Instead we pick an element of J0; n−1K uniformly at random
and, if this element is in S already, we reject it and pick another one. An important question with
such algorithms is: how much time do we waste in rejections? In this case, this corresponds to
the coupon collector problem [Fel50, p. 213] which states that the expected number of trials is
given by

En = n (
1
n
+

1
n − 1

+⋯ +
1

n − k + 1)
= n(Hn − Hn−k+1)

where Hn denotes the n-th harmonic number. By symmetry of the problem, we can assume
that k ≤ n

2 (otherwise, it is more e�cient to call the algorithm with (n − k) instead of k and to
take the complement of the result). In this case, since Hn = ln(n) + O(1), we have that

En = n ln(
n

n − k + 1)
+ O(n) = O(n).

A large class of algorithms make use of this technique. For instance, it is used in our random
sampler of variations in Section 3.3 (later in this chapter) and in the uniform DOAG sampler built
on top of it in 2.2.5. This is also an essential component of Boltzmann sampling, a generic frame-
work developed later in the history of random sampling and which is described in Section 3.1.4
below.

3.1.2 Recursive random sampling

An obvious drawback of ad hoc algorithms is that for every new combinatorial class, one must
develop a new algorithm. It is natural to try to extract general principles from existing ad hoc
algorithms to develop generic random sampling methods. This is the approach proposed by
Nijenhuis and Wilf in [NW78]. After describing a few ad hoc algorithms in the �rst part of the
book, the authors describe a general scheme that is applicable to all the objects presented before,
and more. The common property shared by these objects, and which is at the core of the method
is that they are decomposable.

We illustrate this again on the example of combinations. Let n,k denote the set of the
combinations of k elements among n. An element of n,k either contains n − 1, in which case
its k−1 other elements form a combination of k−1 elements among the n−1 elements of J0; n−2K,
or does not contain n − 1, in which case it belongs to n−1,k . This leads to the following identity
which “decomposes” n,k in two smaller classes:

n,k = n−1,k−1 × {n − 1} +n−1,k . (3.1)

Note that the cardinality of n,k is given by the binomial coe�cient (nk). The above identity
thus allows to recover the well-known Pascal formula (nk) = (n−1k−1) + (n−1k ). A recursive random
sampler can be obtained from this decomposition. The idea is to make a random choice between
the two sides of the disjoint union in (3.1) and to weight this choice using their cardinality.
Concretely this means choosing n−1,k−1 ×{n−1}with probability (n−1k−1)/(

n
k) =

k
n and n−1,k with
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probability n−k
n . This is implemented in Algorithm 22 below by the function Bern generating a

Bernoulli variable.

Algorithm 22 Recursive uniform random sampler of combinations
Input: Two integers n and k such that 0 ≤ k ≤ n
Output: A uniform subset S of size k of J0; n − 1K

1: function UnifCombinationRec(n, k)
2: if k = 0 then return ∅
3: else if n = k then return J0; n − 1K
4: else if Bern( kn) then return UnifCombinationRec(n − 1, k − 1) ∪ {n − 1}
5: else return UnifCombinationRec(n − 1, k)

A large variety of combinatorial structures admit such a decomposition. For instance, a per-
mutation � of J0; n−1K can be identi�ed to a permutation � ′ of J0; n−2K and the position in � ′ at
which (n−1) should be inserted to obtain � . A di�erent kind of decomposition is used for the NFJ
programs from Chapter 1: they are described by a context-free grammar. An NFJ program is ei-
ther an atomic action (this is the base case) or is made of two smaller programs combined using
one of the three operators of the language. Binary trees, plane trees, series-parallel circuits, etc.
admit a similar kind of decomposition.

Automation

Whereas the general principles of the recursive method were given in [NW78], it took a signi�-
cant leap forward with [FZV94] which formally describes a systematic way to obtain a uniform
random sampler for any class admitting an combinatorial speci�cation. With [FZV94], the recur-
sive method moves from a set of general principles to the rank of a proper framework.

A key feature of these speci�cations is that they translate into relations between generating
function which can be used to compute, systematically, the sequences of integers needed for
the random generation. This is an essential pre-processing step. In addition, and more impor-
tantly, [FZV94] describes a set of rules to map each construction of a speci�cation to an algorithm
combinator. We give the more important ones here.

Disjoint union The simplest rule of the recursive method is that of the disjoint union. If a
�nite set  is de�ned as a disjoint union +, then for drawing a uniform element of  one has
to draw a uniform element of  with probability ||

| | and a uniform element of  otherwise. In
terms of combinatorial classes, if  =  +  is a combinatorial class and if an, bn and cn denote
the number of elements of size n of ,  and , then a uniform element of  of size n must be a
uniform element of size n of  with probability an

cn . This translates to Algorithm 23.

Cartesian product The case of the Cartesian product  =  × of two combinatorial classes
builds on the same principle. If n (resp. n, n) denotes the set of elements of size n of 
(resp. , ), then the idea is to express n as follows:

n = 0 × n +1 × n−1 +⋯ +n−1 × 1 +n × 0.
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Algorithm 23 Recursive method for the disjoint union
Input: A non-negative integer n
Output: A uniform element of size n of  =  + 

function Unif(n)
if Bern( ancn ) then return Unif(n)
else return Unif(n)

If follows that in order to sample a uniform element of n, one may use the same method as
explained above to select k ∈ J0; nK and then a uniform element of k and a uniform element
of n−k , as detailed in Algorithm 24.

Algorithm 24 Recursive method for the Cartesian product
Input: A non-negative integer n
Output: A uniform element of size n of  =  × 

1: function Unif(n)
2: k ← drawn from J0; nK with probability ℙ[k] = akbn−k

cn
3: return (Unif(k),Unif(n − k))

The performance of Algorithm 24 is closely tied to the generation of the random variable k
as line 2. A natural algorithm would be to sample a uniform integer r in J0; cn −1K and to �nd the
minimum k ≥ 0 such that ∑k

i=0 aibn−i > U . This corresponds to considering the terms kn−k
in lexicographic order. However it has been shown in [FZV94] that a better complexity can be
obtained by using the so-called boustrophedonic order, which consists in summing those terms in
the following order a0bn +b0an +a1bn−1+an−1b1+⋯. The two methods are given in Algorithm 25.

Algorithm 25 Generation of the index k for case of the Cartesian product
Using the lexicographic order

U ← Unif(J0; cn − 1K)
S ← 0 k ← 0
while S ≥ akbn−k do

S ← S − akbn−k
k ← k + 1

Using the boustrophedonic order

U ← Unif(J0; cn − 1K)
S ← 0 k ← 0
while S ≥ akbn−k + an−kbk do

S ← S − akbn−k − an−kbk
k ← k + 1

if S ≥ akbn−k then k ← n − k
return n − k

At the level of one Cartesian product, the two methods for drawing k are in fact equivalent. In
both cases, n additions or subtraction and n+1multiplications are made. The di�erence between
the two lies in the recursive calls in the worst case. Using the boustrophedonic order, the worst
case corresponds to k = n

2 whereas it is k = n using the lexicographic order. This has an important
impact when the above rules are used recursively to sample a structure described by a recursive
speci�cation. The worst case of the boustrophedonic order is associated to recursive calls to the
sampler with n

2 as argument which mimics a “divide-and-conquer” scheme. This balances the
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e�ect of the “costly” generation of k when this happens. Using this approach, sampling a uniform
element of given size for a speci�able class is quasi-linear, as stated in Theorem 19.

Theorem 19 (Boustrophedonic random generation ([FZV94, Theorem 4.1])). Any decompos-
able structure has a random generation routine that uses pre-computed tables of size O(n) and
achieves O(n log(n)) worst-case time complexity.

The pre-computation mentioned by the theorem corresponds to computing the number of
elements of size k of the classes involved for all k ≤ n. The proof of the time complexity is given
in [FZV94, page 15]. For the purpose of giving a quick overview of the recursive method, we have
only given its most basic rules but the above theorem applies for a large class of combinatorial
speci�cations using a wide range of operators. The full list is available in [FZV94].

Example: NFJ programs Finally, in order to illustrate this introduction, we apply it to the
uniform random generation of syntactic NFJ programs without loops from Chapter 1. For con-
venience, we recall the speci�cation of this class  below. Recall that the three terms of the
form  × respectively correspond to programs of the form (P ‖Q) (parallel composition), (P +Q)
(non-deterministic choice), and (P ;Q) (sequential composition). The  term accounts for the
atomic actions of the language.

 =  +  ×  +  ×  +  × 

The generating function f (z) of the class  satis�es f (z) = z + 3f (z)2. This equation can be
used to compute the coe�cients fn of f (z) recursively or, as we saw in Chapter 1 in Theorem 1,
to establish the explicit formula fn = 3n

12n−6(
2n
n ), which we will use here. Applying the rules

described in this section, a uniform sampler of NFJ programs is given by Algorithm 26.

Algorithm 26 Recursive sampler of NFJ programs
Input: A positive integer n
Output: A uniform NFJ program of size n

function UnifNFJ(n)
if n = 1 then return a fresh atom
else

U ← Unif(J0; fn2 − 1K), i ← Unif(J1; 3K), S ← 0, k ← 0
while S ≥ 2fkfn−k do

S ← S − 2fkfn−k
k ← k + 1

if S ≥ fkfn−k then k ← n − k
if i = 1 then return (UnifNFJ(k) ‖ UnifNFJ(n − k))
else if i = 2 then return (UnifNFJ(k) + UnifNFJ(n − k))
else if i = 3 then return (UnifNFJ(k);UnifNFJ(n − k))
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3.1.3 Unranking (and ranking)

A problem closely related to random generation is the unranking problem. Given a total order
over the elements (say of given size) of a combinatorial class and given a rank u, it consists
in answering the question: “what is the u-th element of this class?”. Unranking allows for a
simple form of random generation: rather than drawing a uniform object directly, draw a uniform
rank u in the interval of valid ranks and unrank the object of rank u. Moreover, unranking
algorithms describe bijections between families of combinatorial objects and integer intervals.
This bijection can be used to represent combinatorial objects as integers, which is a more compact
and sometimes handy format for storing and manipulating them. The inverse operation, which
maps combinatorial structures to their rank, is called ranking.

The authors of [NW78] studied this question and proposed some algorithms for a few struc-
tures. Later, Molinero developed in [Mol05, Part II] a framework, similar to that of [FZV94] for
the random generation problem, to rank and unrank combinatorial structures based on a com-
binatorial speci�cation. Many practical aspects and performance heuristics are considered in
this work. We present here brie�y the basic rules for unranking unlabelled structures and the
interested reader may refer to [Mol05] for a more thorough introduction.

Disjoint union Let  =  +  be a combinatorial class de�ned as the disjoint union of two
other classes. If a total order is given on the elements  (resp. ), then a total order on the
elements of size n of  is obtained by considering that the elements of  are greater than the
elements of . Using this order, a simple unranking procedure of  is given in Algorithm 27.

Algorithm 27 Unranking algorithm for the disjoint union
Input: An size n and a rank 0 ≤ u < cn where cn = |n |
Output: The u-th elements of 

function Unrank(n, u)
if u < an then return Unrank(n, u)
else return Unrank(n, u − an)

Cartesian product Let  =  ×  be the Cartesian product of two combinatorial classes.
We saw in Section 3.1.2 that the decomposition n = ⋃n

k=0k × n−k could be used to treat the
Cartesian product  × using a similar rule to the disjoint union case. It turns out that the two
algorithms we proposed for the generation of the index k correspond, in the unranking world,
to two distinct total orders on . The lexicographic algorithm corresponds to the lexicographic
ordering where whenever k < � then the elements of k × n−k are smaller than the elements
of � ×n−� . Likewise, the boustrophedonic ordering corresponds to ordering the sets k ×n−k
like 0 × n < n × 0 < 1 × n−1 < n−1 × 1 < 2 × n−2 < ⋯. As for the random sampling
problem, the boustrophedonic order achieves better performance and should be used unless the
lexicographic ordering is a requirement of the application using the algorithm. The unranking
procedure for the boustrophedonic order is given in Algorithm 28.
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Algorithm 28 Unranking procedure for the Cartesian product in the boustrophedonic order
Input: A size n and a rank 0 ≤ u < cn
Output: The u-th element of  =  ×  for the boustrophedonic order

function Unrank(n, u)
k ← 0
while u ≥ akbn−k + an−kbk do

u ← u − akbn−k + an−kbk
k ← k + 1

if u ≥ akbn−k then
u ← u − akbn−k
k ← n − k

return (Unrank(k, ⌊ u
bn−k ⌋),Unrank(n − k, u mod bn−k))

3.1.4 Boltzmann sampling

The recursive method presented above, as well as the framework from [Mol05] for unranking
combinatorial structures, relies on counting information in the form of sequences or generating
functions. E�cient methods were described to implement this pre-processing (see [PSS12] in
particular). However, the computation and the storage of the large integers at play limits the
size of the objects that can be generated to a few thousand nodes in general. This motivated a
change of paradigm in [DFLS04] which brought two novel ideas. First, rather than considering
the coe�cients of some generating functions, one may evaluate these functions at well-chosen
points on the real axis, which is computationally cheaper. And second, one may generate much
larger objects by relaxing the size constraint and allowing objects of size close to n rather than
exactly n, which is enough for some applications like random testing for instance.

We recall here the principles of Boltzmann sampling and the main results from [DFLS04].

The Boltzmann model

The main idea of Boltzmann sampling is to draw objects from a combinatorial class according to
the probability distribution given below, called the Boltzmann model. This comes by opposition
to the usual paradigm which consists in sampling a uniform element of given size.

De�nition 17 (Boltzmann model, Boltzmann sampler). Let  denote a combinatorial class and
let A(z) denotes its ordinary generation function (OGF). Let z > 0 such that A converges at z. The
Boltzmann model of parameter z over is de�ned by:

ℙ[a ∈ ] =
z |a|

A(z)

where |a| denotes the size of a. A Boltzmann sampler Γ[](z) for  is an algorithm sampling
elements of  according to this probability distribution.

The probability of an element of  depends only on its size and on the value of the param-
eter z. Thus, for a given value of z, two elements of the same size have the same probability of
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being drawn. Besides this property, the Boltzmann model has two main interests which give it
a special place in the random generation landscape. First, Boltzmann samplers have composi-
tional properties similar to that of generating functions, which make them especially relevant
for combinatorial classes admitting a speci�cation. Moreover, Boltzmann samplers can be used
to e�ciently sample objects of size close to a desired value.

Remark 4. We limit ourselves to the unlabelled model here in order to keep the presentation simple
but everything presented in this section can be adapted to the labelled case.

Composition rules

Since the Boltzmann model is closely tied to the generating function of the class at play, it com-
poses well with the classical operators of analytic combinatorics. For instance, let  and  be
two combinatorial classes and let c = (a, b) be an element of their Cartesian product  =  × .
Then the probability of c is given by

ℙ[c] =
z |c|

C(z)
=

z |a|+|b|

A(z)B(z)
= ℙ[a] ⋅ ℙ[b].

As a consequence, it is straightforward to obtain a Boltzmann sampler for  given a Boltzmann
sampler for  and : simply make two independent calls to the  and  samplers and return
the two results as a pair.

Similarly if  =  +  is a disjoint union, then the probability of c ∈  is given by:

ℙ[c] =
z |c|

C(z)
=

{
A(z)

A(z)+B(z)ℙ[c] if c ∈ 
B(z)

A(z)+B(z)ℙ[c] if c ∈ .
(3.2)

Hence, a Boltzmann sampler for  + is obtained by generating a Bernoulli variable of param-
eter A(z)

A(z)+B(z) and calling a Boltzmann sampler for either  or  depending on the outcome.
Similar composition rules can be obtained for the other usual operators of analytic com-

binatorics. Some of them are recalled in Table 3.1 and more are given in [DFLS04], [FFP07]
and [BFKV11].

Table 3.1: Classical unlabelled operators of the symbolic method and their Boltzmann sam-
plers Γ[]

Class Spec. OGF. C(z) Boltzmann sampler Γ[](z)

Neutral  1 �
Atom  z z
Union  +  A(z) + B(z) if Bern(

A(z)
A(z)+B(z)) then Γ[](z) else Γ[](z)

Product  ×  A(z) ⋅ B(z) (Γ[](z), Γ[](z))
Sequence Seq() (1 − A(z))−1 k ← Geom(1 − A(z)); (Γ[](z))1≤i≤k
Multi-set MSet() exp(∑j>0

A(zj )
j ) cf. Algorithm 29
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Algorithm 29 Boltzmann sampler for the multi-set construction MSet()
function Γ[MSet()](z)

M ← empty multi-set
k0 ← drawn according to ℙ[k] = exp ( 1kA(z

k))/ exp (∑j>0
1
j A(z

j))
for j from 1 to k0 − 1 do

for i from 1 to Pois(A(x
j )

j ) do
 ← Γ[](zj )
M ← M ∪ { ,  ,… , } ( duplicated j times)

for i from 1 to Pois≥1(A(x
k0 )

k0 ) do
 ← Γ[](zk0 )
M ← M ∪ { ,  ,… , } ( duplicated k0 times)

return M

These composition rules can be used to write, in a systematic way, a Boltzmann sampler for
any combinatorial class described by a combinatorial speci�cation. For instance, we recall here
the speci�cation of the class  of NFJ programs without loops given in (1.1) in Section 1.2.2.

 =  +  ×  +  ×  +  ×  . (3.3)

It is straightforward to obtain a Boltzmann sampler for  by applying the rules from Table 3.1
on the previous page, and with the use of recursion to deal with the occurrences of  on the
right-hand-side of (3.3). This sampler is given in Algorithm 30. We will keep using the class 
as a running example in this section.

Algorithm 30 Example Boltzmann sampler for the class  described in (3.3)
function Γ[ ](z)

U ← Unif([0; f (z)])
if U < z then return a fresh atom
else if U < z + f (z) then return (Γ[ ](z) ‖ Γ[ ](z))
else if U < z + 2f (z) then return (Γ[ ](z) + Γ[ ](z))
else return (Γ[ ](z); Γ[ ](z))

where f (z) = 1−
√
1−12z
6 .

Note that the Boltzmann samplers de�ned here can sample objects of any size, they operate
“freely” under the in�uence of the parameter z and, as such, are called free samplers. They have
linear complexity, in the size of their output, in terms of arithmetic operations on real numbers.
We explain below how they can be constrained to sample objects of size close to a target size n
and how to choose the value of z to maximise the probability to get such an object.

Approximate-size sampling

The usual way to generate structures close to a target size is to combine a free Boltzmann sam-
pler with a rejection procedure. More precisely, here we consider given a target size n and a
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tolerance � > 0, and we de�ne a random sampler of structures whose size belongs to the inter-
val I (n, �) = [(1− �)n; (1+ �)n] as described in Algorithm 31. We call such an algorithm a rejection
sampler and the distribution of its outcome is the Boltzmann model conditioned to only yield
objects of size in I (n, �).

Algorithm 31 Rejection sampler for the class 
Input: A target size n, a tolerance � and a parameter z
Output: An random element of  of size in I (n, �) in the Boltzmann model

function Γ[](z, n)
 ← Γ[](z)
while | | ∉ I (n, �) do  ← Γ[](z)
return 

The e�ciency of rejection samplers depends on two major factors. First, the value of the pa-
rameter z must be chosen carefully so that the probability that a free Boltzmann sampler yields
an object of size close to n is large. To this end, a good heuristic is obtained by computing
the expectation Ez[N ] of the size N of the outcome of a free sampler and solving the equa-
tion Ez[N ] = n. If A(z) denotes the generating function of the class at play, a straightforward
computation shows that Ez[N ] = z A

′(z)
A(z) . This quantity is a non-decreasing function and, in the

(rather common) case where it tends to ∞ when z tends to the radius of convergence � of A(z),
the equation A(z)n = zA′(z) admits a solution for all n. The problem of solving this equation
and computing the value of A(z) at this point is often referred to as the “tuning” of the sam-
pler and can be delegated to an external procedure called a “tuner” or an “oracle”. The problem
of writing an e�cient and numerically stable oracle is a research problem in itself and several
solutions have been proposed, notably a fast approximation procedure based on the Newton
iteration method [Piv08; PSS12] and a reformulation of the problem as a convex optimisation
problem [BBD18]. In our Boltzmann sampling library, we rely on existing implementations of
these two techniques in [11] and [3].

Unfortunately, the choice of the value of z is not the only factor in the performance of a
rejection sampler Γ[](z, n) and the shape of the distribution of the size in the Boltzmann model
of  is crucial too. This is closely tied to the generating function A(z) and its behaviour near its
dominant singularity �. The authors of [DFLS04] classify the possible distributions of the size in
three categories:

• bumpy distributions for which the rejection sampler succeeds in one trial with high prob-
ability, in that case the complexity of approximate size sampling is O(n) without further
modi�cation;

• �at distributions for which the rejection sampler succeeds in a constant number of trials
in average, in that case the complexity of approximate size sampling is O(n) too, this is
typically the case for rational speci�cations;

• and �nally, peaked distributions for which the rejection sampler is not linear as such be-
cause most of the weight of the distribution is concentrated on small sizes, this is typically
the case for tree-like structures such as binary trees.

Two techniques are proposed in [DFLS04] to address the issue of the peaked case. A �rst tech-
nique consists in modifying the grammar using the so-called “pointing” operator so that the new
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grammar belongs to the �at category. This basically corresponds to the considering the class ∙

of objects of  where one of the atoms of the structure is distinguished. This does not introduce
any bias in the generation but has the e�ect of di�erentiating the generating function and hence
changing the type of its dominant singularity. An alternative technique consists in choosing the
special value z = � as the parameter of the distribution to maximise the probability to generating
large structures. In this case, one must also implement an early rejection procedure, that is to say
that during the generation of an object, a global counter keeps track of the number of already
generated atoms so that the generation can be aborted as soon as this number becomes larger
than (1 + �)n.

The di�erent cases brie�y exposed here are discussed in depth in [DFLS04] and the overall
conclusion of the article is that linear complexity can be achieved in all cases provided that the
value of z is chosen carefully and the type of the distribution of the sizes is taken into consid-
eration. In addition, a detailed comparative study of the two proposed solutions for the peaked
case is done in [BGR15].

This concludes this quick overview of the random generation landscape. From now on and
until the end of this last chapter of the thesis, we present our contributions to the �eld of random
sampling.

3.2 Faster lexicographic unranking of combinations

In this section we dive into the topic of lexicographic combinations unranking. A combination
of k elements among n is a subset of size k of J0; n − 1K. We represent these sets as increasing
(�nite) sequences of k elements so that we can compare them using the lexicographic order. We
consider the problem of unranking combinations lexicographically, that is to say: “given two
integers 0 ≤ k ≤ n and a rank 0 ≤ u < (nk), what is the u-th combination of k elements among n
according to the lexicographic order?” The results we present in this section have been published
in [GP21].

Combination unranking is an old problem, we start by giving an overview of the historical
approaches and recall their main results in Section 3.2.1. Then, in Section 3.2.2, we present a new
point of view on the problem based on a numerical systems called “factoradics” and describe an
algorithm based on this point of view. We analyse this algorithm using tools from analytic com-
binatorics, which actually give a systematic way to study all the algorithms form the literature in
a uni�ed framework. Finally, in Section 3.2.3, we demonstrate experimentally that the classical
complexity model at use to analyse such algorithms is not realistic enough as it underestimates
the cost of large integer arithmetic. In light of this, we revise our implementation to minimise
the cost of arithmetic operations and propose a re�ned complexity analysis. The outcome of this
section is a signi�cantly faster algorithm than the historical ones, whose experimental runtime
�ts the complexity established in our re�ned complexity model.

3.2.1 Historical context and classical results

The problem of unranking combinations dates back to the 1970s but some closely related ques-
tions were studied before. Several algorithms were developed to solve this problem, which re-
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volve around two main ideas: the recursive method and the use of a special numeral system
called “combinadics”.

Unranking via the recursive method

As we explained in the introduction of the present chapter, one natural solution to generate or
unrank a combinatorial object is to rely on a recursive decomposition. If n,k denotes the set
of the combinations of k elements among n, then we have that n,k = n−1,k−1 × {n − 1} +
n−1,k . This decomposition naturally allows to unrank combinations in reverse co-lexicographic
order (denoted ≺rev colex). This order is similar to the lexicographic order (≺lex) but the combi-
nations are read from right to left (reverse) and the order on the integers is used backwards
(co-lexicographic). This is formally de�ned as follows:

(ui)1≤i≤k ≺rev colex (vi)1≤i≤k ⇔ (n − 1 − uk+1−i)1≤i≤k ≺lex (n − 1 − vk+1−i)1≤i≤k .

All the combinations from n−1,k−1 × {n − 1} are smaller than those from n−1,k for ≺rev colex.
Hence, a lexicographic unranking algorithm is obtained by �rst unranking a combination in
reverse co-lexicographic order using the straightforward algorithm from [NW78], and then ap-
plying the transformation (ui)1≤i≤k ↦ (n − 1 − uk+1−i)1≤i≤k .

The general principles to write such an algorithm are given in [NW78], an iterative imple-
mentation is given in [Rus03, page 65] and we provide a recursive implementation in [GP21].
We only explain the reverse-lexicographic core of the algorithm in Algorithm 32. The idea of
the algorithm is simple in this case as we only use the “disjoint union” rule of the recursive
method. The base cases of the algorithm are those where k = 0, in which case the only com-
bination is the empty sequence, and k = n, in which case the only combination is the com-
plete sequence (i)0≤i<n. In the general case, if the rank u is smaller than the number of elements
of n−1,k−1 × {n − 1}, that is (n−1k−1), then we unrank the u-th element of this set. Otherwise, “skip”
the elements of n−1,k−1 × {n − 1} by subtracting (n−1k−1) from the rank and we unrank an element
of n−1,k .

Algorithm 32 Reverse co-lexicographic unranking of combinations (recursive method)
Input: Three integers n, k and u such that 0 ≤ k ≤ n and 0 ≤ u < (nk)
Output: The u-th combination of k among n elements in reverse co-lexicographic order
function RevCoLexUnrank(n, k, u)

if k = 0 then return the empty sequence
else if k = n then return (0, 1, 2,… , n − 1)
else if u < (n−1k−1) then

C ← RevCoLexUnrank(n − 1, k − 1, u)
add n − 1 at the end of C
return C

else return RevCoLexUnrank(n − 1, k, u − (n−1k−1))



CHAPTER 3. ALGORITHMIC CONSIDERATIONS RELATED TO RANDOM GENERATION 98

Unranking via combinadics

An alternative and rather di�erent approach comes from Lehmer who studied the inverse prob-
lem of ranking in [Pól+64, page 27]. Given a combination, what is its lexicographic rank?
Lehmer’s approach is based on a numeral system called “combinatorial number system” or “com-
binadics”, which had already appeared in the literature in 1887 in [Pas87] and allows to decom-
pose integers as sums of binomial coe�cients. More precisely, given an integer 0 ≤ u < (nk),
there exists a unique sequence 0 ≤ c1 < c2 < ⋯ ck < n such that

u = (
c1
1)

+(
c2
2)

+⋯ +(
ck−1
k − 1)

+(
ck
k)

. (3.4)

The sequence (c1, c2,… , ck) is called the combinadic of u.
This decomposition describes a bijective mapping between the interval J0; (nk) − 1K and the

set of the increasing sequences of k elements from the set J0; n − 1K or, put di�erently, the set of
combinations. Lehmer used this bijection to develop a ranking algorithm and an algorithm im-
plementing the reverse mapping was published later in 1977 in [BL77]. This is very close to the
algorithm used in Matlab [But15]. Alternative algorithms, also based on the combinadic decom-
position of the rank, were published later, notably [Er85] and [KS99, page 47] (also appearing
later in the MSDN article [McC04]).

For the sake of conciseness, we only recall the algorithm from [BL77] in Algorithm 33. The
complete list of the algorithms mentioned here is given and analysed in more detail in our pa-
per [GP21]. The idea of Algorithm 33 is that for decomposing u in combinadics as in (3.4), one
must �nd the largest m such that (mk) ≤ u. By de�nition, we then have that u < (m+1k ) and, as a
consequence, u′ = u − (mk) < ( m

k−1). Hence, we can decompose u′ in combinadics as an integer
of J0; (mk) − 1K so that u′ = ∑k−1

i=1 (cii ) and we conclude by setting ck = m. The while loop in
Algorithm 33 implements the search for the right value of m.

Algorithm 33 [BL77]’s algorithm for unranking combinations (combinadic approach)
Input: Three integers n, k and u such that 0 ≤ k ≤ n and 0 ≤ u < (nk)
Output: The u-th combination of k among n elements in lexicographic order
function UnrankViaCombinadics(n, k, u)

L← [0,… , 0] (k components), r ← 0
for i from 0 to k − 2 do

if i ≠ 0 then L[i]← L[i − 1] else L[i]← −1
while true do

L[i]← L[i] + 1
b ← (n−L[i]−1k−i−1 )
r ← r + b
if r > u then exit the loop

r ← r − b
L[k − 1]← L[k − 2] + u − r + 1
return L
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Complexity results

All the algorithms presented above need to compute binomial coe�cients during their execution.
The usual way to evaluate the e�ciency of such algorithms is to count the number of times the
function computing binomial coe�cients is called (see [Rus03, page 66], [BL77] and [Er85] for
instance). In this complexity model, all the aforementioned algorithms have been proven to be
linear in average. More precisely, given 0 ≤ k ≤ n, for all these algorithms, the average (over
all the possible ranks 0 ≤ u < (nk)) of the number of binomial coe�cients computed during an
execution is of the form n +O(1) where the O(1) error term is uniform in k. Note that this is also
the worst case.

Although this seems satisfactory, we will see in Section 3.2.3 that this complexity model
does not re�ect the actual runtime of these algorithms. We will then provide a more realistic
complexity analysis and show that there is still room for improvement in these algorithms.

3.2.2 Factoradics

We present here an third approach to the unranking problem, using a di�erent numeral system
called factorial number system or “factoradic”. While the term “factoradic” is more recent, this
system already appears in the literature at the end of the 19-th century in [Lai88] and is also
mentioned in [Knu97, page 209].

De�nition 18. Let u ≥ 0 and let n be the unique non-negative integer satisfying (n − 1)! ≤ u <
n! (adopting the convention than (−1)! = 0). Then, there exists a unique sequence (f� )0≤�<n such
that 0 ≤ f� ≤ � for all � and

f0 ⋅ 0! + f1 ⋅ 1! + f2 ⋅ 2! +⋯ + fn−1 ⋅ (n − 1)! = u.

The �nite sequence (f0, f1,… , fn) is called the factoradic decomposition of u (or just factoradic of u
for short).

Just like combinadics are linked with combinations, factoradics are closely related to permu-
tations. Indeed, the factoradic decomposition (f1, f2,… , fn) of an integer can be converted into
a permutation by using the ideas from the Fisher–Yates algorithm [FY48; Dur64]. It consists
in selecting the �rst element �1 of the permutation uniformly at random in the set J0; n − 1K,
then selecting the second element �2 uniformly at random in J0; n − 1K ⧵ {�1}, then the third one
in J0; n − 1K ⧵ {�1, �2}, etc. Here, the idea is to use the factoradic decomposition to choose which
element to select rather than selecting it at random. This is described in Algorithm 34.

The idea to unrank combinations using factoradics is to encode them as permutations. Then,
unranking the u-th combination of k elements among n consists in (1) converting the combina-
tion rank u into the permutation rank of the corresponding permutation and (2) unranking this
permutation. The encoding is de�ned below.

De�nition 19. Let n and k be two integers such that 0 ≤ k ≤ n. We de�nen,k as the function which
maps the combination (�0, �1,… , �k−1) ∈ n,k to the size-n permutation (�0, �1,… , �k−1, dk ,… , dn−1)
where the integers di appear in increasing order and where {�0, �1,… , �k−1, dk ,… , dn−1} = J0; n − 1K.
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Algorithm 34 Lexicographic unranking of permutations based on factoradics
Input: Two integers n ≤ 0 and u such that 0 ≤ u < n!
Output: The u-th permutation in lexicographic order, as an array

function UnrankPerm(n, u)
(f� )0≤�≤n ← factoradic decomposition of u (padded with zeros at the end if necessary)
S ← {0, 1, 2,… , n − 2, n − 1}
P ← [0, 0, 0,… , 0, 0] (n components)
for i from 0 to n − 1 do

P[i]← the (fn−i)-th element of S
Remove P[i] from S

return P

In order to express the conversion from combination rank to permutation rank, we �rst
characterise the factoradic decompositions which form the image of n,k .

Lemma 8. Let n and k be two integers such that 0 ≤ k ≤ n. The function n,k is a bijection
fromn,k to the set of size-n permutations whose pre�x of length k and su�x of length n−k are both
increasingly sorted. Moreover, the permutations in the image ofn,k have a factoradic decomposition
of the form (0, 0,… , 0, fn−k , fn−k+1,… , fn−1) where n − k ≥ fn−k ≥ fn−k+1 ≥ ⋯ ≥ fn−1 ≥ 0.

Proof. The function n,k is injective since the length k pre�x of the image of a combination is
the combination in question. Moreover, there is only one way to complete this pre�x with the
remaining values of J0; n − 1K in increasing order. Hence, n,k is a bijection.

Now, let u be an integer whose factoradic is (0,… , 0, fn−k ,… fn−1). Due to the constraint n−k ≥
fn−k ≥ fn−k+1 ≥ ⋯ ≥ fn−1 ≥ 0, the permutation corresponding to u has for pre�x of length k the
sequence (fn−1, fn−2 + 1, fn−3 + 2,… , fn−k + k − 1) which is increasingly sorted. Moreover, since
the remaining indices of the factoradic are only zeros, the rest of the permutation (the su�x of
length n − k) corresponds to the increasing sequence of elements of J0; n − 1K that have not yet
been taken. Hence, the permutation encoded by u corresponds to a combination via −1

n,k .
Conversely, let (�0, �1,… , �k−1) ∈ n,k be a combination. The factoradic of its image by n,k

is given by (0, 0,… , 0, �k−1 − (k − 1), �k−2 − (k − 2),… , �0), which satis�es the conditions of the
lemma.

Before giving a �rst version of our unranking algorithm, note that the proof of Lemma 8
gives us a direct way to unrank a permutation in the image of n,k , once its factoradic is known.
Indeed, we have an explicit formula for the pre�x of length k of the permutation whose factoradic
is (0,… , 0, fn−k , fn−k+1,… , fn−1). In addition, for the sole purpose of unranking a combination, we
do not need to compute the (n − k) remaining values of the permutation as they are discarded
by −1

n,k . As a consequence, the only di�cult part of our unranking algorithm is the conversion
from combination rank to permutation rank and the decomposition in factoradic.

Since the components of the factoradic decomposition of a partition are read from right to
left, the lexicographic unranking of combinations is achieved by �rst considering the sequences



CHAPTER 3. ALGORITHMIC CONSIDERATIONS RELATED TO RANDOM GENERATION 101

of the form (0,… , 0, fn−k , fn−k+1,… , fn−1) such that fn−1 = 0, then those such that fn−1 = 1, etc. To
do this e�ciently, we use the following combinatorial argument.

Lemma 9. For any non-negative integers m, n and k, the number of sequences (fi)0≤i<k satisfy-
ing n ≥ f0 ≥ f1 ≥ ⋯ ≥ fk−1 ≥ m is given by (n−m+kk ).

Proof. Such a sequence can be encoded as a word of length (n − m + k) on the alphabet {a, b}
with exactly k occurrences of b where the i-th occurrence of b (1 ≤ i ≤ k) encodes the value
of fn−i as m plus the number of occurrences of a preceding this b. For instance, for m = 0, n = 5
and k = 4, the sequence (4, 2, 1, 1) is encoded by the word abbabaaba. All such words correspond
to a unique sequence and their number is given by (n−m+kk ).

Using Lemma 9, we can for instance get that the number of factoradic decompositions cor-
responding to combinations of n,k and such that fn−1 = m is given by (n−m−1k−1 ). We use this
argument to recursively determine all the fn−i in Algorithm 35.

Algorithm 35 Lexicographic unranking of combinations using the factoradic approach
Input: Three integers n, k and u such that 0 ≤ u < (nk)
Output: The u-th combination of k elements among n in lexicographic order

function CombUnrankFact(n, k, u)[1]
C ← [0,… , 0] (k components), i ← 0, m ← 0
while i < k do

b ← (n−1−m−ik−1−i )
if u < b then

C[i]← m + i
i ← i + 1

else
u ← u − b
m ← m + 1

return C

The correction of Algorithm 35 is ensured by Lemma 9 and the above discussion. We �rst
assess the e�ciency of Algorithm 35 in terms of binomial coe�cient evaluations, which is equiv-
alent to count the number of iterations of the while loop. Since the value of (m + i) increases at
each iteration and can be at most (n − 1), the worst case complexity of the algorithm is n and is
obtained for all the combinations whose maximum element is (n−1). In Theorem 20 we establish
the average complexity of this procedure.

Theorem 20. Let un,k denote the cumulative number of binomial coe�cients evaluated while un-
ranking all the combinations of k elements among n using Algorithm 35. We have that

un,k = (
n
k)

k
k + 1

(n + 1).
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Proof. We �rst establish a recurrence formula satis�ed by un,k by reasoning on the �rst iterations
of the while loop. First note that if k = 0 or if k > n, then un,k = 0. For all the other values of k,
one coe�cient is evaluated upon entering the while loop and depending of the outcome of the
comparison at line 5, two things can happen.

• If u < b, then the �rst component of the combination is 0 and the rest of the execution of
the algorithm boils down to unranking a combination of (k −1) elements among the (n−1)
elements of J1; n−1K. The cumulated cost of the rest of the evaluation for all the ranks u < b
is thus un−1,k−1.

• Conversely, if u ≥ b, then then smallest elements of the combinations is not 0 and the rest
of the evaluation boils down to unranking a combination of k elements among the (n − 1)
elements of J1; n − 1K. The cumulative cost of the rest of the evaluation for all those ranks
is thus un−1,k .

As a consequence, the sequence un,k satis�es un,k = (nk) + un−1,k−1 + un−1,k where the �rst terms
accounts for the systematic evaluation of a binomial coe�cient for all the ranks 0 ≤ u < (nk).

Let U (z, y) be the generating function associated with the sequence (un,k), that is U (z, y) =
∑n,k≥0 un,kznyk . Using the recurrence relation we have just established, we have that

U (z, y) = ∑
0<k≤n

(
n
k)

znyk + zyU (z, y) + zU (z, y) =
1

1 − (1 + y)z
B(z, y)

where
B(z, y) = ∑

0<k≤n
(
n
k)

znyk = ∑
n>0
((1 + y)n − 1)zn =

1
1 − (1 + y)z

−
1

1 − z
⋅

The last step of the proof consists in extracting the coe�cient un,k in the expansion ofU (z, y).
First we extract the coe�cient in front of zn:

[zn]U (z, y) =
n−1
∑
�=0
[z� ]

1
1 − (1 + y)z

⋅ [zn−� ]B(z, y) =
n−1
∑
�=0

(1 + y)� ⋅ ((1 + y)n−� − 1)

= n(1 + y)n −
1 − (1 + y)n

y
⋅

This equality gives the distribution of the costs as a function of k ∈ J0; nK and �nally, the value
of un,k is obtained by extracting the coe�cient in front of yk :

[znyk]U (z, y) = n(
n
k)

−(
n

k + 1)
= (

n
k)

k
k + 1

(n + 1)⋅

A consequence of Theorem 20 is that the average cost of unranking a combination is given
by un,k(nk)

−1 = k
k+1 (n + 1) =

k(n+1)
(k+1)nn, which is close to the worst case n. In particular as soon

as k → ∞ we have: un,k
(nk)

=
n→∞
k→∞

n + o(n).

Our algorithm is thus on par with the existing ones mentioned in Section 3.2.1 and sim-
ply provides an alternative point of view on the problem. However, we will now see that the
complexity model used here is not realistic enough and provide a �ner complexity analysis.
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3.2.3 Realistic complexity analysis and algorithmic improvements

Here we challenge the assumption that computing a binomial coe�cient can be considered to
be of unit cost. This may be true if one limits itself to bounded integers or if n and k are small
enough so that all the binomial coe�cients can be pre-computed and stored in memory, but this
assumption fails for large values of n. We highlight this using two experiments.

First, we measure the runtime of unranking combinations of k = n
2 elements among n when n

varies. More precisely, we measure the total runtime of the unranking algorithm for 500 input
ranks drawn uniformly at random in J0; (nk) − 1K, for each pair (n, k), and where n is ranging
from 250 to 10 000 by steps of 250 and k = n/2. The results are presented in Figure 3.1a. Expect-
edly, this shows that the runtime of Algorithm 35 is super-linear which suggests that the cost of
computing one binomial coe�cient grows with n.

Then, in a second experiment, we �x n = 10 000, and we measure the total runtime of unrank-
ing 500 uniform combinations for each value of k ranging from 250 to 9 750 by steps of 250. The
results of this experiment are presented in Figure 3.1b. This shows a rather di�erent evolution
from what one could expect from the complexity result exposed above. In fact the experimental
worst case (in terms of runtime) seems to be at k = n

2 unlike the theoretical worst case (in terms
of binomial coe�cients evaluations) which is at k = n. Moreover, the complexity result presented
above only showed a small dependence in k. Here we see that the runtime of the algorithm is
signi�cantly higher for k = n

2 than for k close to 0 or close to n.
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(a) Runtime of the unranking of 500 combina-
tions of n

2 elements among n
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(b) Runtime of the unranking of 500 combina-
tions of k elements among 10 000

Figure 3.1: Experimental study of the naive unranking algorithm

Avoiding the computation of binomial coe�cients

The complexity of computing one binomial coe�cient is actually a complicated question. One
common choice is to exploit the formula (nk) = (n−1k−1)

n
k to compute (nk) recursively in only k mul-

tiplications and k divisions of a large integer (a binomial coe�cient) by a small integer (smaller
than n). An asymptotically faster approach consists in computing the product n(n−1)⋯ (n−k+1)
and the factorial k! independently using a divide and conquer approach similar to [Bos+17,
page 275] and to compute the binomial coe�cient using the formula (nk) = n(n−1)⋯(n−k+1)

k! . In
the experiment from Figure 3.1 we used the GMP [7] library for the computation of the binomial
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coe�cients, which implements several algorithms and tries to choose the best one depending on
the values of n and k.

Here, in the light of our experimental study, we propose an alternative unranking algorithm
which avoid as much as possible the computation of binomial coe�cients “from scratch” by
re-using previously computed values. More precisely, every time a new binomial coe�cient is
needed, instead of forgetting the last computed one and calling a dedicated procedure to compute
the new one, we use the two following identities to compute the new one from the last one:

(
n
k)

= (
n − 1
k − 1)

n
k (

n
k)

= (
n − 1
k )

n
n − k

⋅

This is possible and e�cient thanks to the fact that from one iteration of the loop of Algorithm 35
to the next one the values of (n − 1 − m − i) and (k − i) change by at most 1. As an example, at
the very �rst iteration of the loop, the variable b holds the value (n−1k−1). If the condition u < b
is satis�ed i is incremented by one and at the next iteration b will hold the value (n−2k−2). Rather
than calling the procedure computing the binomial coe�cient from scratch, the new value of b
can be computed by the instruction b ← (b ⋅ (k − 1)) / (n − 1). Similarly, if the condition u < b is
not satis�ed at the �rst iteration, then m gets incremented by 1 and b will hold the value (n−2k−1)
at the next iteration. This value can be obtained by b ← (b ⋅ (n − k)) / (n − 1). The new algorithm,
exploiting this trick to accelerate the unranking, is given in Algorithm 36. Note that in addition
to using this trick, we also save a few computations by deducing the value of the last component
of the combination directly from the rank at line 13.

Algorithm 36 Optimised lexicographic unranking of combinations using the factoradic ap-
proach
Input: Three integers n, k and u such that 0 ≤ u < (nk)
Output: The u-th combination of k elements among n in lexicographic order

1: function CombUnrankFactOptimised(n, k, u)[1]
2: C ← [0,… , 0] (k components), i ← 0, m ← 0
3: b ← (n−1k−1)
4: while i < k − 1 do ⊳ Loop invariant: b = (n−m−i−1k−i−1 )
5: if u < b then
6: C[i]← m + i
7: b ← b ⋅ (k − i − 1) / (n −m − i − 1)
8: i ← i + 1
9: else

10: u ← u − b
11: b ← b ⋅ (n −m − k) / (n −m − i − 1)
12: m← m + 1
13: if k > 0 then C[k − 1]← n + u − b ⋅ (n −m − k + 1)
14: return C
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Complexity analysis

The improved version of our unranking algorithm presented in Algorithm 36 allows to reduce
the cost of computing one binomial coe�cient to one multiplication and one division of a large
integer by a small integer. Here we quantify this cost precisely by counting the number of bitwise
operations spent in arithmetic operations by the algorithm. To this end, we re-use the earlier
result from Theorem 20 which states that both in average and in the worst case, about n iterations
of the loop are performed. Here we give an upper bound on the cost of the arithmetic operations
at lines 7 and 11 in Algorithm 36.

Lemma 10. Let � ∈ ℝ such that 0 < � < 1. If n → ∞ and k ∼ �n, then we have

log2(
n
k)

∼ n ⋅ L(�) where L(�) = (1 − �) log2
1

1 − �
+ � log2

1
�
⋅

Proof. By Stirling’s formula, we have that log2(n!) = n log2(n) + O(n), hence

log2(k!) = k log2(k) + O(k) = �n log2(�n) + o(n log2(n))
log2((n − k)!) = (1 − �)n log2((1 − �)n) + o(n log2(n))

log2(
n
k)

= log2(n!) − log2(k!) − log2((n − k)!)

∼ n ⋅ ((� + (1 − �)) log2(n) − � log2(�n) − (1 − �) log2((1 − �)n))

∼ n ⋅ ((1 − �) log2
1

1 − �
+ � log2

1
� ).

Finally, we can use the fact that all the binomial coe�cients used in the algorithm are upper-
bounded by (nk) and combine Lemma 10 with Lemma 1 on page 6 from the “Generalities” chapter.
This yields an upper bound on the bit-complexity of Algorithm 36.

Theorem 21. The number of bitwise operations spent in arithmetic computations in Algorithm 36,
when called with k ∼ �n, admits an upper bound of the form

C ⋅ L(�) ⋅
n2

log2(n)
⋅(log2(n))

for some constant C independent from � and where (s) is the cost of one multiplication3 of two
integers of bit-size at most s.

Proof. All the binomial coe�cients manipulated by the algorithm are upper-bounded by (nk).
Moreover, by Lemma 1 on page 6, the cost of one multiplication of a number of bit-size at
most log2(n) by a number of bit-size at most nL(�) is at most nL(�)

log2(n)
(log2(n)) + O(n/ log2(n)).

Finally the algorithm performs a linear number of operations in the worst case (and in aver-
age). Also note that the cost of computing the initial binomial coe�cient at line 3 is negligible
compared to n2.

3See the “generalities” Chapter on page 6
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Note that the presence of the term (log2(n)) in the statement of the theorem corresponds
to multiplications of small integers (bounded by n), which we must take into account in our
complexity model. However, in practice these terms will always �t in a machine word so that
the “practical” cost of the multiplication of a binomial coe�cient by a small integer is in fact of
the order of L(�)n operations on machine words. This implies the runtime one should observe in
practice should behave like O(n2).

In order to validate our result, we compare the experimental runtime of Algorithm 36 for a
�xed n when k varies from 0 to n, with the theoretical upper-bound of the form k ↦ Cn ⋅ L(k/n)
established in Theorem 21. The constant Cn has been chosen numerically so that the two curves
coincide at k = n/2. The results of this experiment are give in Figure 3.2. We can see on this plot
that Theorem 21 re�ects faithfully the actual runtime of the algorithm. Besides, we can observe
that the algorithm runs signi�cantly faster than the previous version without the optimisation
related to binomial coe�cients.

0 2000 4000 6000 8000 100000

0.5

1

1.5

k

runtime (s)

experimental

theoretical

Figure 3.2: Comparison between the runtime of the unranking of 500 combinations of k elements
among 10 000 and the theoretical complexity established in Theorem 21

As a �nal remark in this section, we would like to highlight that the optimisation we de-
scribed here is not only applicable to the speci�c problem of unranking combinations but also
to many other algorithms manipulating big integers. As an example, in Algorithm 9 on page 43
in Chapter 1, we use the exact same trick for the computation of the coloured product of two
polynomials. Similarly, the complexity results regarding the enumeration of DOAGs in Chap-
ter 2 (Theorem 12 on page 65) relies on a similar technique being used so that the evaluation of
the binomial coe�cients and factorials in the sum are negligible. Finally, a more sophisticated
application of this principle is also available in the next section in Algorithm 40 on page 117.
There, no binomial coe�cients are involved but the same idea applies: if a recursive formula is
available to re-use computations from the last iteration of the loop, we can save computation
time.
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3.3 Uniform random sampling of variations

A basic, though fundamental combinatorial class is the class of variations. In this section, we
brie�y recall the notion of variation and we describe an e�cient uniform random sampler and
an unranking procedure for this class.

3.3.1 De�nition and enumeration

De�nition 20 (Variation). We call a variation of size n a �nite sequence of n non-negative integers
such that:

• the non-zero integers may occur at most once in the sequence;
• if i > 0 occurs in the sequence, then for all 0 < j < i, j occurs in the sequence.

A variation is said to be non-empty if there is at least one positive number is the sequence.

For instance, the sequence v = (6, 2, 3, 0, 0, 1, 4, 0, 5) is a variation of size 9. In this section, we
only consider non-empty variations and from now on we refer to them as “variations”. One of the
earliest references to these objects dates back to 1659 in Izquierdo’s Pharus scientiarum [Izq59,
Disputatio 29]. They also appear in Stanley’s book in the Twelvefold Way [Sta86, page 31], a
collection of twelve basic counting problems arising frequently in practice. In our context, the
random generation of variations is a key component of our rejection-based random sampler of
DOAGs in Section 2.2.5.

Another way to present variations is to describe them as the interleaving of a permutation
with a sequence of zeros. As a consequence, the combinatorial class of variations  admits the
following labelled speci�cation

 = Seq≥1() ⋆ Set().

In this speci�cation, the labelled sequence starting from 1 represents a non-empty permutation
and the labelled set represents the zeros of the variation. This corresponds to an encoding of
variations where the zeros are replaced by an increasing sequence of integers, all larger than the
integers used for the permutation. We will re-use this encoding later in this section to describe
our uniform random sampler.

The exponential generating function of variations is thus given by z
1 − z

exp(z) and a formula
for the number vn of variations of size n can be obtained by extracting the n-th coe�cient of this
series. Hence, we have

vn = n![zn]
z

1 − z
exp(z) = n!

n
∑
p=0
[zn−p]

z
1 − z

[zp] exp(z) = n!
n−1
∑
p=0

1
p!
= e ⋅ n! − 1 − O(

1
n)

. (3.5)

This sequence also has a simple recurrence formula allowing to e�ciently compute the n �rst
terms of the sequence. For all n > 0, we have vn = n ⋅ (vn−1 +1). The combinatorial interpretation
behind this formula is that a variation of size n can be decomposed as:

• the position j of its largest element in the sequence;
• and the sequence of integers obtained by removing its j-th element, which can be either a

variation of size (n − 1) or a sequence of zeros.
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Using this recurrence, we computed the �rst terms of vn which corresponds to the sequence
stored under the reference A007526 in the OEIS. The 10 �rst terms of the sequence are: 1, 4, 15,
64, 325, 1956, 13699, 109600, 986409, 9864100.

The algorithm computing the n �rst terms of the sequence vn has to deal with big-integer
arithmetic since vn ∼ e ⋅ n! diverges quickly and hence only �ts in a machine word for small
values of n. A good measure of complexity for such algorithms is given by the number of bitwise
operations rather than the number of arithmetic operations on integers. In this model, the com-
plexity of the addition of two numbers with at most n bits is linear in n and we denote by (n)
the complexity of one multiplication (see the generalities chapter at page 6).

Theorem 22 (Counting). Computing the values of vk for all k ≤ n can be achieved in complex-
ity O(n2(log2(n))) in terms of bitwise operations. Moreover, storing the binary representations of
these numbers requires Θ(n2 log2(n)) bits in memory.

Proof. We have that log2(vk) ∼ k log2(k), hence the number (vk−1+1) has a bit-size ofO(k log2(k))
and k has a bit-size ofO(log2(k)). By Lemma 1 on page 6, the cost of the multiplication of (vk−1+1)
by k is thus in O(k(log2(k))). Hence, the cumulated cost of computing all these numbers up
to k = n is O(n2(log2(n))). Finally, since the bit-size of vn is of the order of n log2(n), the total
space required to store all these numbers is of the order of ∑n

k=1 k log2(k) = Θ(n2 log2(n)).

Note that in practice n is likely to �t in a machine word so that the multiplications accounted
for by (log2(k)) are simple multiplications on machine words and the overall procedure only
performs n2 log2(n) such operations. To give a rough idea of the performance of this algorithm,
its straightforward implementation in C using the GMP library for big-integer arithmetic is able
to compute the n = 50000 �rst terms of the sequence in about a second.

3.3.2 Random sampling

The recursive method

A natural approach to sample objects that have a recursive decomposition as described above is
to resort to the recursive method explained above in Section 3.1. In our case, in order to sample
a uniform variation of size n, the idea is to:

1. �rst draw the position of the largest element of the sequence uniformly at random (this
corresponds to the factor n in the recursive formula);

2. and then either �ll the rest of the sequence with zeros or with a uniform variation of
size (n−1) (this is accounted for by (vn−1+1)). The decision to stop the generation and �lling
the rest of the sequence with zeros is based on a Bernoulli variable of parameter 1

1+vn−1 ,
This procedure is given in Algorithm 37. It assumes that the numbers vn have been pre-computed
or are computed lazily using a dynamic programming approach.

In order to implement the insertion of (j + 1) at position p as described at line 6 in the algo-
rithm, it is advisable not to use a array to represent the variations. For instance, a more e�cient
representation is to use a binary tree constructed recursively as follows.

https://oeis.org/A007526
https://oeis.org/
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Algorithm 37 Uniform random sampler of variations using the recursive method
Input: An integer n > 0
Output: A uniform random variation of size n

1: function UnifVariationRec(n)
2: p ← Unif(J0; n − 1K)
3: if Bern( 1

1+vn−1 ) then
4: v ← UnifVariationRec(n − 1)
5: j ← maximum element of v
6: insert (j + 1) at position of the p-th zero of v
7: else
8: v ← [0, 0,… , 0] ⊳ length n
9: v[p]← 1

10: return v

• The root stores the smallest non-zero element � of the array, the number of zeros of the
array, a sub-tree constructed recursively from the element on the left of � in the array, and
a second sub-tree constructed recursively from the element on the right of � in the array.

• If an array only contains zeros, then it is represented by a leaf only storing the length of
the array.

Inserting an element at the position of the p-th zero in this data-structure is similar to inserting
an element in a binary search tree and is thus logarithmic in average. The insertion of an element
in the tree representation of an example variation is given in Figure 3.3.

3 210 4 0 0 0 0 5
1

3 2
54

1 0

1 2

1 0

3 210 4 0 6 0 0 5
1

3 2
54

1 0

1

1 0
6

0 1

insert 6 at pos. 2⟶

Figure 3.3: Insertion of the element 6 at position 2 (counting from 0) in an example variation
based on its binary tree representation. The leaves of the trees are represented as squares and
the number of zeroes they encode in written inside the squares.

Theorem 23 (Complexity of Algorithm 37). Algorithm 37 can be implemented so as to per-
form O(n log(n)) memory accesses and to consume O(n log(n)) random bits, in expectation.

Proof. The O(n log(n)) memory accesses can be achieved using the memory layout discussed
above for the remaining indices. The O(n log(n)) bound for the number of random bits con-
sumed comes from the fact that each call to the Unif function consumes at most ⌈log(n)⌉ bits
and generating each Bernoulli variable account for a constant number of bits in expectation.

The major drawback of this algorithm is that it requires the pre-computation of a large num-
ber of big integers. This requires a signi�cant amount of space and has a super-quadratic cost on
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→1 037 4 0 6 0 5 2 1 1037 4 8 6 9 5 2 p = 3

Figure 3.4: A variation of size 10 and its corresponding pair (�, p) of a permutation and an integer
by Proposition 5.

the computation time. In the following, we describe a better algorithm which does not require
any pre-computation and is linear in expectation.

Rejection-based sampling

Another strategy for generating combinatorial objects uniformly at random in a given class is to
sample uniform objects in a super-set of the targeted class until a valid object is obtained. This is
particularly relevant when the super-set in question is both easily amenable to uniform random
sampling and not too big compared to the targeted class. This technique is called the rejection
principle and has been introduced in Section 3.1. To this end, we �rst present an alternative
representation of variations in Proposition 5. An example variation of size 10 and its alternative
representation are pictured in Figure 3.4.

Proposition 5. The set of non-empty variations of size n is in bijection with the set of pairs (�, p)
of a permutation � of size n and of an integer p ∈ J0; n − 1K such that the p largest elements of �
appear in increasing order in � .

Proof. Given a non-empty variation V , we de�ne p as the number of zeros of V and � as the
permutation obtained by replacing the zeros of V by the numbers n − p + 1, n − p + 2, . . . , n in
increasing order.

Conversely, given a pair (�, p) as described in the statement of the theorem, we de�ne its
corresponding variation as the sequence obtained by replacing the p largest values of � by 0.

Using this representation, the class n of the variations of size n can be seen as a sub-set
of Sn × J0; n − 1K. This latter set is a good candidate for rejection-based sampling since sampling
one of its elements uniformly at random is computationally easy. The idea of the algorithm is
to sample an integer p ∈ J0; n − 1K and a permutation � ∈ Sn independently and to start over
if the p largest elements of the permutation are incorrectly sorted. The generation of the per-
mutation can be done using the Fisher-Yates algorithm [FY48] which is asymptotically optimal.
Moreover, the probability that a uniform such pair corresponds to a variation is vn

n⋅n! ∼
e
n . Hence,

in expectation, a linear number of rejections will occur before a valid variation is obtained. Since
the Fisher-Yates algorithm is linear in terms of memory accesses and is O(n ln(n)) is terms of ran-
dom bits consumption, the overall procedure described here performs O(n2) memory accesses
and consumes O(n2 ln(n)) random bits in expectation.

In its naive form, the algorithm we just described is thus less e�cient than Algorithm 37.
However, it can be improved signi�cantly by using early rejection. Early rejection consists in
aborting the generation as soon as we can decide that the object being generated will not result
in a valid variation. In our case, this consists in aborting as soon as two integers larger than n−p
are encountered in the wrong order.
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In fact, the algorithm can be made even faster by �rst sampling the relative ordering of these p
elements, and then sampling the rest of the permutation. Since only one ordering is valid, this
actually boils down to sampling a Bernoulli variable of parameter 1

p! and aborting the generation
if it is equal to 0. If this test passes, the resulting variation is obtained by shu�ing an array
containing all the integers from 1 to n − p and p zeros. This is described in Algorithm 38.

Algorithm 38 Uniform pre-computation-free random sampler of variations based on the rejec-
tion principle.
Input: An integer n > 0
Output: A uniform random variation of size n

function UnifVariationRej(n)
p ← Unif(J0; n − 1K)
for q from p down to 2 do

if not Bern(1/q) then return UnifVariationR(n)
return UnifPermBounded(n, p)

Input: Two integers n and p such that 0 ≤ p < n
Output: A uniform permutation of size n whose p largest elements are replaced by zeros

function UnifPermBounded(n, p)
T ← [1, 2, 3,… , n − p, 0, 0,… , 0]
for i from 0 to n − 2 do

j ← Unif(Ji; n − 1K)
T [i]↔ T [j] ⊳ swap

Note that Algorithm 38 implements the Bernoulli variable of parameter 1
p! by sampling (p−1)

Bernoulli variables of parameters 1
p , 1

p−1 , . . . , 12 in order to avoid the costly computation of the
factorial. Thanks to the early rejection principle, Algorithm 38 draws less random variables
than its naive counterpart (which samples full permutations before the validity check), and only
performs (n−1) swaps. In fact, this algorithm is asymptotically optimal (in expectation), as stated
by Theorem 24.

Theorem 24 (Complexity of Algorithm 38). To sample a variation of size n, Algorithm 38 per-
forms (n − 1) swaps and consumes n log2(n) + O(n) random bits in expectation.

Since we have log2(vn) = n log2(n) + O(n), the number of random bits necessary to sam-
ple a uniform variation is asymptotically lower bounded by n log2(n), hence the optimality of
Algorithm 38. Similarly, at least n memory accesses are necessary to write a variation.

To give a rough idea of the performance of this algorithm, our implementation can generate
permutations of size n = 107 in about 0.16 seconds on a standard personal laptop. This is signif-
icantly better than the approach based on the recursive method. A more precise benchmark is
given in Figure 3.5. For n ranging from 0 to 107 by steps of 105 we computed the average runtime
of Algorithm 38 over 100 samples.
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Figure 3.5: Runtime of the rejection-based uniform random sampler of variations (Algorithm 38).

Proof of Theorem 24. The shu�ing part of the algorithm, which is implemented in functionUnif-
PermBounded, consumes n log2(n) +O(n) random bits in expectation. So we have to prove that
the �rst part of the algorithm is linear.

The number of rejections of the �rst part follows a geometric distribution of parameter pn
where the probability of rejection pn satis�es:

pn =
1
n

n−1
∑
p=0

1
p!
=
e
n
+ O(

1
(n + 1)!)

.

Hence, the expected number of rejections is 1
pn ∼

n
e . Furthermore, the cost in terms of random

bits consumption of the for loop sampling several Bernoulli variables is bounded by

C +
C
p
+

C
p(p − 1)

+⋯ +
C

p(p − 1)(p − 2)⋯ 3
= O(1)

where C is the (constant) cost of sampling the Bernoulli variables.

3.3.3 Lexicographic unranking

We now turn to the problem of unranking variations lexicographically. We recall that a vari-
ation v = (vi)1≤i≤n is said to be lexicographically smaller than another variation v′ = (v′i )1≤i≤n
if there exists an index i0 such that vi = v′i for all i < i0 and vi0 < v′i0 . We will only compare
variations of the same size in this section. As an example, Table 3.2 on the next page lists all
variations of size 3 in lexicographic order.

In order to unrank variations in lexicographic order, we need to know the number of varia-
tions starting by j for all j ∈ J0; nK. In addition, once we know the �rst element j of a variation,
the remaining (n − 1) elements can be reinterpreted as a variation with at least (j − 1) non-zero
elements. Thus, we also need to know the number of (possibly empty) variations with at least p
non-zero elements. Both quantities are given in Proposition 6 below.

Proposition 6. Let n, p and j three integers such that 0 ≤ j, p ≤ n and n > 0. Let vn,p denote the
number of (possibly empty if p = 0) variations with at least p non-zero elements and let v(j)n,p denote
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Table 3.2: All variations of size 3 and their rank for the lexicographic order

rank variation

0 (0, 0, 1)
1 (0, 1, 0)
2 (0, 1, 2)
3 (0, 2, 1)
4 (1, 0, 0)

rank variation

5 (1, 0, 2)
6 (1, 2, 0)
7 (1, 2, 3)
8 (1, 3, 2)
9 (2, 0, 1)

rank variation

10 (2, 1, 0)
11 (2, 1, 3)
12 (2, 3, 1)
13 (3, 1, 2)
14 (3, 2, 1)

the number of such variations starting by j. We have that

vn,p = vn−p,0 ⋅ n ⋅ (n − 1) ⋅ (n − 2)⋯ (n − p + 1) (3.6)
vn,0 = 1 + vn (3.7)
v(0)n,p = 1{p<n} ⋅ vn−1,p (3.8)
v(j)n,p = vn−1,max(j−1,p−1) when j > 0 (3.9)

Proof. A variation with at least p non-zero elements can be decomposed in two parts: its p largest
elements on one hand, and the remaining of the variation on the other hand. The �rst part is
counted by n ⋅ (n − 1)⋯ (n − p + 1) because the largest element can be anywhere in the array (n
options), the second largest can be anywhere in the (n − 1) remaining positions, etc. The rest of
the variation forms a possibly empty variation of size (n − p). Hence the formula (3.6).

A possibly empty variation of size n is either an array of zeros (there is only one of them) or
a non-empty variation, hence (3.7).

A variation may start by a zero only if it is not full, that is if p < n. Moreover, the (n − 1)
remaining elements form a variation of size (n−1)whose number of non-zero elements is also p.
Hence (3.8).

Finally, the (n − 1) remaining elements of a variation starting by j > 0 can be seen as a
variation of size (n − 1) by decrementing by 1 all of its elements that are larger than j. This
variation has at least (j − 1) non-zero elements since all the integers from 1 to (j − 1) must be
present. Moreover, if the overall variation of size n has at least p non-zero elements, then the
sub-variation of size (n − 1) has at least (p − 1) of them. Hence (3.9).

The idea for unranking a variation of size n, with at least p non-zero elements, and of rank u
(with 0 ≤ u < vn,p) is the following. First we �nd the �rst element of the variation, this is achieved
by computing the smallest j such that r < ∑j

i=0 v
(i)
n,p . Then we unrank a variation of size (n − 1),

with max(p − 1, j − 1) non-zero elements and of rank r −∑j−1
i=0 v

(i)
n,p and we increment by one the

elements of this variation that are greater or equal to j. Finally, we insert j in the �rst position
of this variation. We start with p = 1 to get a non-empty variation at the end of the procedure.

A straightforward implementation of this procedure, written in an imperative style, is pre-
sented in Algorithm 39. For the sake of clarity, we give here a naive though easy to understand
algorithm. At the end of this section, we will introduce several optimisations to make this pro-
cedure signi�cantly faster. Note that rather than inserting j at the current position and incre-
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menting the latter occurrences of integers greater than j, as described above, we maintain a set
of not-yet-inserted integers from which we pick the j-th element.

Algorithm 39 Lexicographic unranking of variations
Input: Two integers n and r such that 0 ≤ r < vn
Output: The r-th variation of size n in lexicographic order
function UnrankVar(n, r )

V ← [0, 0,… , 0] (of length n), S ← {1, 2,… , n}, p ← 1
for i from 1 to n do

j ← 0
C ← v(j)n,p
while r ≥ C do

r ← r − C
j ← j + 1
C ← v(j)n,p

if j = 0 then V [i − 1]← 0
else

V [i − 1]← the j-th smallest element of S (counting from 1)
remove V [i] from S
p ← max(j − 1, p − 1)

return V

This algorithm requires to compute many coe�cients of the form v(j)n,p , which can be costly.
One option is to pre-compute them all to have access to them in constant time. This is relevant
if one needs to unrank many variations but this requires a signi�cant amount of memory which
can quickly become limiting.

We �rst establish the complexity of this algorithm in terms of number of coe�cient evalua-
tions. This is a valid measure of complexity as it also corresponds to the number of comparisons
and to the number of arithmetic operations (subtractions) on r . At the end of this section, we
describe an optimised implementation where no pre-computations are necessary and where the
coe�cients are computed on the �y at the cost of O(n ⋅(log2 n)) bitwise operations.

Theorem 25 (Complexity of Algorithm 39). The number of coe�cients of the form v(j)n,p evaluated
by Algorithm 39 for unranking a variation of size n is n2+3n

2 in the worst case and n2+5n−1
4 + o(1) in

average.

Proof. The worst case corresponds to the last variations, that is v = (n, n − 1, n − 2,… , 1). In
that case, at iteration i of the for loop (starting from i = 1), the algorithm evaluates 1 coe�cient
before the while loop and (n+1− i) coe�cients in the while loop before �nding that vi = n+1− i.
Hence, the cost of this execution is ∑n

i=1(n − i + 2) = ∑n+1
i=2 i = n2+3n

2 ⋅.
For studying the average complexity of the algorithm, we �rst compute the cumulated num-

ber of coe�cients evaluated by the algorithm while unranking all variations of size n and with
exactly p non-zero components. Let un,p denote this number. For unranking such a varia-
tion v = (vi)1≤i≤n, the algorithm �rst needs to determine the value of v1. To achieve this, it
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�rst evaluates one coe�cient before the while loop and then it performs v1 iterations of the
while loop to �nd v1. This accounts for (1 + v1) coe�cient evaluations. Then, the rest of the
execution corresponds to unranking the variations v′ = (v′i )2≤i≤n where v′i = vi − 1 if vi > v1 > 0
and v′i = vi otherwise. Note that the two following statements hold:

• When v describes all the variations of size n, with p non-zero components, and such
that v1 = 0, then v′ describes all variations of size n − 1 with p non-zero components.

• When v describes all the variations of size n, with p non-zero components, and such
that v1 = j > 0, then v′ describes all variations of size n − 1 with p − 1 non-zero com-
ponents.

Finally, note that the total number of variations of size n with p non-zero components is given
by p!(np), and the number of such variations starting with v1 = j > 0 is (p − 1)!(n−1p−1). As a
consequence we have that for all n > 0

un,p = p!(
n
p)

+ un−1,p +
p

∑
j=1 (

j ⋅ (p − 1)!(
n − 1
p − 1)

+ un−1,p−1)

= p!(
n
p)

+
(p + 1)!
2 (

n − 1
p − 1)

+ un−1,p + p ⋅ un−1,p−1.

(3.10)

In order to simplify the end of the computations, we introduce the following generating
functions:

U (x, y) = ∑
n>0

n
∑
p=0

un,p
p!

xnyp

A(x, y) = ∑
n>0

n
∑
p=0((

n
p)

+
p + 1
2 (

n − 1
p − 1)) xnyp .

From (3.10), we get:

U (x, y) = A(x, y) + xU (x, y) + xyU (x, y) =
A(x, y)

1 − x(1 + y)
⋅

Moreover

A(x, y) =
x(1 + y)

1 − x(1 + y)
+∑
n>0

n
∑
p=1(

n − 1
p − 1)

xnyp +∑
n>0

n
∑
p=1

p − 1
2 (

n − 1
p − 1)

xnyp

=
x(1 + y)

1 − x(1 + y)
+

xy
1 − x(1 + y)

+∑
n≥0

n
∑
p=0

p
2(

n
p)

xn+1yp+1

=
x + 2xy

1 − x(1 + y)
+∑
n≥0

n
∑
p=0

n + 1
2 (

n
p)

xn+2yp+2

=
x + 2xy

1 − x(1 + y)
+

x2y2

2(1 − x(1 + y))2

so that �nally:

U (x, y) =
x + 2xy

(1 − x(1 + y))2
+

x2y2

2(1 − x(1 + y))3
⋅
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We recover un,p by extracting the coe�cient in front of xnyp in the above equality. This yields:

un,p
p!

= n(
n − 1
p ) + 2n(

n − 1
p − 1)

+
n(n − 1)

4 (
n − 2
p − 2)

= (
n
p)(n − p + 2p +

p(p − 1)
4 ) .

In order to get the average complexity of the algorithm, we need to sum the contributions of all
the variations with p non-zero components for all p > 0, that is

n
∑
p=1

un,p =
n−1
∑
p=0

un,n−p =
n
∑
p=0

n!
p! (

2n − p +
(n − p)(n − p − 1)

4 )

=
n
∑
p=0

n!
p! (

n2 + 7n
4

−
n + 1
2

p +
p(p − 1)

4 )

=
n2 + 7n
4

vn −
n + 1
2

(vn − n) +
1
4
(vn − n2)

=
n2 + 5n − 1

4
vn +

n2 + 2n
4

⋅

We can then conclude the proof by dividing by the total number of variations of size n, which
yields an average complexity of

n2 + 5n − 1
4

+
n2 + 2n
4vn

=
n2 + 5n − 1

4
+ O(

1
(n − 2)!)

.

Faster unranking by reusing computations

In order to speed up the generation in a memory-limited context, or when n is too large for
the pre-computations to be tractable, we need to compute the v(j)n,p coe�cients on the �y. If com-
puted naively using our recurrence formulas, computing v(j)n,p requiresO(n2(log2 n)) arithmetic
operations.

The idea to reduce the cost of one evaluation is to re-use the result from the previous evalu-
ation. This is possible due to the fact that the parameters n, p and j vary only by one (at most)
from one evaluation to the following. The relations we give below on coe�cients with close
parameters allow to take advantage of this fact in the algorithm.

Proposition 7. For all n > 1 and p such that 0 ≤ p < n, we have:

vn,p = n ⋅ vn−1,p +
n!

(n − p)!
= vn,p+1 +

n!
(n − p)!

Proof. Let n > 1 and 0 ≤ p < n. The variations with at least p non-zero elements either have
exactly p non-zero elements or have at least (p + 1) of them. The former is counted by n ⋅ (n −
1)⋯ (n − p + 1)4 and the latter is counted by vn,p+1 = n ⋅ vn,p .

4This is also called the number of p-arrangements of n.
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Using the relations from Proposition 7, we can compute the values of v(j)n,p quickly in Algo-
rithm 39 by re-using the value of C from one evaluation to the next and by keeping a product
of the form n!

(n−p)! = n ⋅ (n − 1)⋯ (n − p + 1) in an auxiliary variable P . Each time p, j or i are
modi�ed, the variables C and P are updated at the cost of a constant number of multiplications
or divisions by a small integer. This optimisation is presented in Algorithm 40.

Algorithm 40 Optimised unranking procedure of variations
Input: Two integers n and r such that 0 ≤ r < vn
Output: The r-th variation of size n in lexicographic order
function UnrankVar(n, r )

V ← [0, 0,… , 0], S ← {1, 2,… , n} ⊳ both of length n
p ← 1, C ← vn−1, P ← 1
for i from 0 to n − 2 do ⊳ Invariants: (1) C = vn−1−i,p (2) P = ∏n−1−i

k=n+1−p−i k
if r < C then

V [i]← 0
if p > 0 then P ← P ⋅ (n − i − p)

else
r ← r − C , j ← 1
if p > 0 then C ← C + P
while r ≥ C do ⊳ Invariant: P = ∏n−i−1

k=n−i−max(j,p)+1
r ← r − C
if j ≥ p then

C ← C − P
P ← P ⋅ (n − j − i)

j ← j + 1
V [i]← the j-th smallest element of S (counting from 1)
remove V [i] from S
p ← max(p, j) − 1

C ← (C − P )/(n − i − 1) ⊳ At this point we have P = ∏n−i−1
k=n−p−i k

if p > 0 then P ← P/(n − i − 1)
if p = 1 ∨ r = 1 then V [n − 1]← the smallest element of S
else V [n − 1]← 0
return V

As we saw before, the cost of the multiplication of an integer of bit-size bounded by log2(n)
with an integer of size O(n log2(n)) is in O(n(log2(n))) by Lemma 1 on page 6. Hence, since in
the worst case we have O(n2) such operations (according to Theorem 25), the bit-complexity of
Algorithm 40 is O(n3(log2(n))).

As a �nal remark, note that in practice the integers of bit-size bounded by log2(n) will �t in
a machine word so that the cost of one multiplication is in fact of the form O(n log2(n)) in terms
of arithmetic operations on machine words. As a consequence, the runtime of algorithm can be
expected to behave like n3 log2(n) in practice.
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3.4 Usainboltz: fast and generic Boltzmann sampling

In this section we study the implementation of Boltzmann samplers from a practical perspec-
tive. The Boltzmann sampling framework is usually presented from a high level perspective as
a compiler which takes a speci�cation as an input and, following simple rules, produces an al-
gorithm. Although this point of view works well for writing a sampler for a particular class, a
more “dynamic” approach is preferable for the purpose of writing a generic Boltzmann sampling
library.

The �rst contribution of this section is to describe in detail how to implement a generic
general-purpose Boltzmann sampler which takes a speci�cation as an input and outputs objects
directly without needing a compilation phase. This approach is not new and is already used in
practice, e.g. in [2] and [5]. However the low level aspects of its implementation have never been
described in detail and Section 3.4.1 is meant as a guide on how to implement such an algorithm.
Moreover, we also present here some implementation details and new optimisations which pro-
vide a signi�cant speed-up in practice. A second aspect of writing a Boltzmann sampling library
is to make it easy to integrate into an other code-base. To this end, we introduce the notion
of builders which takes advantage of the recursive nature of Boltzmann samplers and borrows
ideas from functional programming [MFP91] to give the end-user a convenient way to control
how the generated objects are built. This is presented in Section 3.4.2.

The ideas presented here have led to the implementation of a Python Boltzmann sampling
library usainboltz: Uniform SAmplINg with BOLTZmann [6] by Matthieu Dien and the author of
this thesis. It is based on a fast C++ core and o�ers a generic interface allowing to integrate it,
in particular, into the Sagemath [4] computer algebra system. Some ideas were also borrowed
to [5] which served as a playground for testing alternative implementations and experimenting
ideas.

3.4.1 Practical implementation

We start by formalising the objects that we will use as an input. The base objects on which we
will work in this section are systems of recursive combinatorial speci�cations of the form

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

1 = Ψ1(,1,2,… ,k)
2 = Ψ2(,1,2,… ,k)
…
k = Ψk(,1,2,… ,i)

(3.11)

where the Ψi(,1,… ,k) are any functional terms involving only the usual constructors of
analytic combinatorics {+, ×,  , Seq,…} and the classes  ,  and i . In order to prepare the
ground for the introduction of builders later in Section 3.4.2, we make this a little more formal. We
�rst de�ne inductively a setF(Z, Z1, Z2,… , Zk) of terms built on the list of symbolsZ, Z1, Z2,… , Zk
and E. They are de�ned in Figure 3.6 on the next page. Those are purely syntactic objects. We
then see the speci�cations appearing in (3.11) as an interpretation of these syntactic expressions
(see below).
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Z ∈ F(Z, Z1, Z2,… , Zk) E ∈ F(Z, Z1, Z2,… , Zk) Zi ∈ F(Z, Z1, Z2,… , Zk)

Ψ,Ψ′ ∈ F(Z, Z1, Z2,… , Zk)
Ψ + Ψ′ ∈ F(Z, Z1, Z2,… , Zk)

Ψ,Ψ′ ∈ F(Z, Z1, Z2,… , Zk)
Ψ × Ψ′ ∈ F(Z, Z1, Z2,… , Zk)

Ψ ∈ F(Z, Z1, Z2,… , Zk) Constr ∈ {Seq,MSet}
Constr(Ψ) ∈ F(Z, Z1, Z2,… , Zk)

Figure 3.6: Inference rules de�ning the set of syntactic expressions F(Z, Z1, Z2,… , Zk).

E(,1,… ,k) = 
Z (,1,… ,k) = 
Zi(,1,… ,k) = i

Seq(Ψ)(,1,… ,k) = Seq(Ψ(,1,… ,k))
MSet(Ψ)(,1,… ,k) = MSet(Ψ(,1,… ,k))
(Ψ + Ψ′)(,1,… ,k) = Ψ(,1,… ,k) + Ψ′(,1,… ,k)
(Ψ × Ψ′)(,1,… ,k) = Ψ(,1,… ,k) × Ψ′(,1,… ,k)

Figure 3.7: Interpretation of an expression Ψ ∈ F(Z, Z1,… , Zk) as a combinatorial class.

Given k combinatorial classes 1,2,… ,k and an expression Ψ ∈ F(Z, Z1,… , Zk), we de�ne
the combinatorial class Ψ(,1,… ,k) inductively by interpreting each of the Z and Zi symbols
as  and i and the constructions +, ×, . . . appearing in Ψ, as the disjoint union, the Cartesian
product of analytic combinatorics, etc. This is described in Figure 3.7. This gives a formal de�ni-
tion to the combinatorial system (3.11) and the syntactic expressions Ψi give a convenient base
for de�ning builders in Section 3.4.2. Our goal, from now on is to describe an algorithm taking
such a speci�cation as an input and generating elements of 1 in the Boltzmann model.

We have already mentioned early rejection, which consists in aborting the generation as
soon as we know that its result will be “too big”, as a way to remedy the default of performance
of rejection samplers in the case of peaked distributions. In fact, implementing it always has a
positive impact on performance, whatever the type of objects. Here we present a second optimi-
sation, which does not appear in the original article [DFLS04] and does not seem to be present
in existing implementations such as [2].

Simulation

As we mentioned earlier, in most cases of interest, rejection samplers will reject several structures
before �nding one with a size in the target interval I (n, �). In [DFLS04], the complexity measure
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used to establish the linearity of these samplers is the number of arithmetic operations on real
numbers. However, in practice and especially in the context of garbage-collected languages,
most of the runtime is spent in the construction of the objects in memory, whereas arithmetic
computations remain cheap. While the number of memory allocations and accesses is linear
too, it can be reduced from O(n) to exactly n by �rst “simulating” the generation, that is only
computing the size N of the objects being generated rather than actually constructing them in
memory. Once a size N ∈ I (n, �) has been obtained, the pseudo-random number generator5

(PRNG) used for the generation must be reset to its state just before the simulation and actual
Boltzmann generating can take place using the free version of the sampler.

Similarly to free Boltzmann samplers, a simulation algorithm can be derived automatically
from the speci�cation of a class using simple rules. This is described in Table 3.3.

Table 3.3: Classical unlabelled operators of the symbolic method and their Boltzmann simula-
tors Sim[]

Class Spec. Boltzmann simulator Sim[](z)

Neutral  0
Atom  1
Union  +  if Bern(

A(z)
A(z)+B(z)) then Sim[](z) else Sim[](z)

Product  ×  Sim[](z) + Sim[](z)
Sequence Seq() k ← Geom(1 − A(z));∑k

i=1 Sim[](z)
Multi-set MSet() cf. Algorithm 41

Algorithm 41 Simulator for the multi-set construction MSet()
function Sim[MSet()](z)

M ← 0
k0 ← drawn according to ℙ[k] = exp ( 1kA(z

k))/ exp (∑j>0
1
j A(z

j))
for j from 1 to k0 − 1 do

for i from 1 to Pois(A(x
j )

j ) do M ← M + j ⋅ Sim[](zj )
for i from 1 to Pois≥1(A(x

k0 )
k0 ) do M ← M + k0 ⋅ Sim[](zk0 )

return M

For instance, for the case of NFJ programs speci�ed by (3.3), the simulation algorithm derived
using the rules from Table 3.3 is given in Algorithm 42.

Note that some extra arithmetic operations on real numbers are incurred by this process
since the �nal generation happens twice: �rst in the form of a simulation, and then by actually

5In the case where a “true” source of randomness is used in place of a PRNG, resetting the source of randomness
to its previous state is not possible. In that case, as an alternative strategy, the outcome of the random variable
generators (Bern, Geom, . . . ) dictating the generation can be stored in memory so that they can be replayed later.
This approach has the important drawback that numerous memory accesses are still being performed during the
simulation, however this is still more memory e�cient than explicitly constructing trees structures.
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Algorithm 42 Simulation algorithm for NFJ programs
Input: A number z ∈ [0; 1/12].
Output: The size of an NFJ program generated from the Boltzmann model of parameter z
function Sim[ ](z)

if Bern( 6z
1−

√
1−12z ) then return 1

else return Sim[ ](z) + Sim[ ](z) ⊳ The three other cases are similar

constructing the object. In practice, this trade-o� is bene�cial as memory allocations are several
order of magnitude more expensive than integer arithmetic.

A generic stack-machine

As mentioned earlier, the usual way to present the framework of Boltzmann sampling is to
present it in a meta-programming style, that is as a way to generate an algorithm from a gram-
mar. This algorithm can then be run to generate objects described by the grammar. This is also
the approach taken by [2], using the compile sub-command.

For the purpose of implementing Boltzmann samplers as a generic library, we propose here a
slightly di�erent presentation as a single algorithm which dynamically decides which rule from
Table 3.1 on page 93 to apply by recursively traversing the speci�cation. Moreover, in order to
avoid any stack-explosion issue due to recursion, we propose an iterative implementation, which
we present in the form of two stack-machines, one for the simulation and one for the generation.

The simulation stack-machine operates on pairs of the form of ⟨S, N ⟩mj where:
• N is an integer counting the number of already-generated atoms;
• m is an upper bound on the size: if N becomes larger than m, the simulation is aborted;
• j is an integer corresponding to the current multiplicity of the atoms;
• S is a stack of expressions or integers, that is:

S ∶∶= ∅
| Ψ∶S where Ψ ∈ F(Z, Z1,… , Zk)
| j∶S where j ∈ ℕ⋆

where ∅ represents the empty stack, x∶S represents the stack whose �rst element is x and
whose remaining elements are in S, and the Zi are “non-terminal” symbols representing
the classes i .

The behaviour of the simulation machine is fully speci�ed by the rewriting rules given in Ta-
ble 3.4 on the following page. The simulation of the generation of an element of i starts at
the term ⟨Zi , 0⟩m1 and consists in applying the rewriting rules until an integer is obtained. The
resulting integer is the size of the objects whose generation has been simulated and must be
discarded if it exceeds m.

Note that the simulation needs to evaluate some expressions of the form Ψ(!), which we
de�ne here. Given k combinatorial classes i and given a number z, the evaluation Ψ(!) of
an expression Ψ ∈ F(Z, Z1,… , Zk) at ! and for these classes is de�ned as the evaluation of the
generating function of Ψ(,1,… ,k) at !. From a practical perspective, this requires that the
values of the generating functions Fi(z) of the i at z (and possibly at zj for all j > 0) are known.
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Table 3.4: Rewriting rules for the simulation stack-machine

Finish ⟨∅, N ⟩mj → N
Multiplicity ⟨j∶S, N ⟩mi → ⟨S, N ⟩mj
Neutral ⟨E∶S, N ⟩mj → ⟨S, N ⟩mj
Atom ⟨Z∶S, N ⟩mj → if N + j > m then N + j else ⟨S, N + j⟩mj
Recursion ⟨Zi∶S, N ⟩mj → ⟨Ψi∶S, N ⟩mj
Union ⟨(Ψ + Ψ′)∶S, N ⟩mj → if Bern(

Ψ(zj )
Ψ(zj )+Ψ′(zj )) then ⟨Ψ∶S, N ⟩mj else ⟨Ψ′∶S, N ⟩mj

Product ⟨(Ψ × Ψ′)∶S, N ⟩mj → ⟨Ψ∶Ψ′∶S, N ⟩mj
Sequence ⟨Seq(Ψ)∶S, N ⟩mj → let k = Geom(1 − Ψ(zj)) in ⟨Ψ∶Ψ∶⋯∶Ψ∶S, N ⟩mj (k times)
Multi-set cf. Figure 3.8

⟨MSet(Ψ)∶S, N ⟩m� → draw k0 according to ℙ[k] = exp ( 1kA(z
k))/ exp (∑j>0

1
j A(z

j))
S′ ← �∶S
for j from 1 to k0 − 1
S′ ← (j ⋅ � )∶Ψ∶Ψ∶⋯∶Ψ∶S′ (Pois(A(x

j )
j ) times)

S′ ← (k0 ⋅ � )∶Ψ∶Ψ∶⋯∶Ψ∶S′ (Pois≥1(A(x
k0 )

k0 ) times)
⟨S′, N ⟩m�

Figure 3.8: Rewriting rule for the simulation of MSet(Ψ)

The generation stack-machine has a similar behaviour but it must also actually build trees.
It di�ers from the simulation machine on two aspects. First, rather than operating on an integer
representing a size, it operates on a stack of already-built sub-trees. Theses trees correspond
to sub-structure that would be produced by the recursive calls of the naive sampler before they
are recombined as �nal objects. And second, we need to extend the set of symbols used in the
stack S with four special symbols: a symbol PROD indicating that a pair must be formed with the
two last generated trees, a symbol LIST(k) indicating that a list must be formed with the k last
generated trees, a symbol SET(k) indicating that a set must be formed with the k last generated
trees, and a symbol DUP(k) indicating that the last generated tree must be duplicated k times.
The machine is described in Table 3.5 on the following page as a system of rewriting rules on
pairs of the form ⟨S, T⟩j where:

• S is a stack of special symbols or expression from F(Z, Z1,… , Zk);
• T is a stack of nested pairs, lists, and sets of two special values z and �, encoding trees;
• j is a positive integer corresponding to the current multiplicity of the atoms.

The free generation of an element of i is achieved by starting from ⟨Zi∶∅,∅⟩1 and applying the
rewriting rules from Table 3.5 on the next page until a tree is obtained.

The two stack-machines we presented above can be combined to write an algorithm which
takes a combinatorial speci�cation, a target size n, and a tolerance � as an input and returns
an object as described by the speci�cation of size in I (n, �). This is presented in Algorithm 43.
The tuning part of the algorithm, that is the pre-processing step which consists in �nding a good
value for the parameter z and computing the values of the di�erent generating functions at these
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Table 3.5: Rewriting rules for the generation stack-machine

Finish ⟨∅, t∶∅⟩j → t
Multiplicity ⟨j∶S, N ⟩i → ⟨S, N ⟩mj
Build pair ⟨PROD∶S, t1∶t2∶T⟩j → ⟨S, (t1, t2)∶T⟩j
Build list ⟨LIST(k)∶S, t1∶t2∶⋯∶tk∶T⟩j → ⟨S, [t1, t2,… , tk]∶T⟩j
Build set ⟨SET(k)∶S, t1∶t2∶⋯∶tk∶T⟩j → ⟨S, {t1, t2,… , tk}∶T⟩j
Neutral ⟨E∶S, T⟩j → ⟨S, �∶T⟩j
Atom ⟨Z∶S, T⟩j → ⟨S, z∶T⟩j
Recursion ⟨Zi∶S, T⟩j → ⟨Ψi∶S, T⟩j
Union ⟨(Ψ + Ψ′)∶S, T⟩j → if Bern(

Ψ(zj )
Ψ(zj )+Ψ′(zj )) then ⟨Ψ∶S, T⟩j else ⟨Ψ′∶S, T⟩j

Product ⟨(Ψ × Ψ′)∶S, T⟩j → ⟨Ψ∶Ψ′∶PROD∶S, T⟩j
Sequence ⟨Seq(Ψ)∶S, T⟩j → let k = Geom(1 − Ψ(zj)) in

⟨Ψ∶Ψ∶⋯∶Ψ∶LIST(k)∶S, T⟩j (k times)
Multi-set cf. Figure 3.9

⟨MSet(Ψ)∶S, T⟩� → draw k0 according to ℙ[k] = exp ( 1kA(z
k))/ exp (∑j>0

1
j A(z

j))
draw pk0 according to Pois≥1(A(x

k0 )
k0 )

for j from 1 to k0 − 1 draw pj according to Pois(A(x
j )

j )
S′ ← k∶SET(∑ j ⋅ pj)∶S
for j from 1 to k0
S′ ← (j ⋅ � )∶Ψ∶DUP(j)∶Ψ∶DUP(j)∶…∶Ψ∶DUP(j)∶S′ (pj times)

⟨S′, T⟩�
Figure 3.9: Rewriting rule for the generation of MSet(Ψ)

points, is delegated to an external tool such as [3] or [11] and is omitted here.

3.4.2 Generic Boltzmann sampling with builders

We now turn to another practical aspect of Boltzmann sampling which is to make it easy to
integrate within an existing code-base. In the algorithms we have presented so far, as well as
in the current implementations of Boltzmann samplers, the generated objects have a uniform
tree-like imposed representation. This means that users willing to use their own data-structure
with an existing Boltzmann sampling library has to �rst generate an object and then traverse it
again to convert it to the desired type.

In this section, we present a mechanism which allows the user to specify data construc-
tors, in the form of functions, to be used during the generation. As a consequence, objects of
the desired type are generated directly, without using an intermediate data-structure. We call
these user-speci�ed constructors “builders”. The mechanism presented here borrows ideas from
functional programming with recursion schemes [MFP91], to describe recursive functions from
simple combinators.
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Algorithm 43 Fast rejection sampler using the stack-machines from Table 3.4 on page 122 and
Table 3.5 on the preceding page
Input: A speci�cation  in the form of (3.11), a target size n and a tolerance �
Output: A random element described by  following the Boltzmann distribution conditioned

to have its size in I (n, �)
function GenInInterval( , n, �)

s ← a copy of the PRNG state
N ← execute the simulation machine from the state ⟨Z1∶∅, 0⟩(1+�)n1
while |N /n − 1| > � do

s ← a copy of the PRNG state
N ← execute the simulation machine from the state ⟨Z1∶∅, 0⟩(1+�)n1

restore the state of the PRNG to s
t ← execute the generation machine from the state ⟨Z1∶∅,∅⟩1
return t

Let Ψ ∈ F(Z, Z1,… , Zk) be an expression. The combinatorial class Ψ(,1,… ,k) obtained
by substitution can be seen as the composition of the combinatorial classΨ(,1,… ,k) (where
the i are k distinct atoms) with 1 × 2 × ⋯ × k . A property of Boltzmann samplers is
that sampling an element from Ψ(,1,2,… ,k) is equivalent to (1) sampling an element  
from Ψ(,1,… ,k) with the appropriate probability distribution and (2) for each i and for
each occurrence of zi ∈ i in  , sampling an independent element from i . The main idea of
the builder mechanism is to take advantage of this property to apply a transformation after each
recursive call generating an element of i .

More precisely, let X1, X2,… , Xk be any k sets, consider given a combinatorial system of the
form (3.11), and say that every time we generate an object described by i we want it to be an
element of Xi . One way to achieve this is to de�ne k functions fi ∶ Ψ(, X1, X2,… , Xk) → Xi
and to apply fi to the result of each call to the i sampler (which thus yields elements of Xi).
Concretely, an execution of the i sampler becomes:

1. generate an element  of Ψi(,1,… ,k);
2. substitute each zj in  with an independent element of Xj (and not i) generated recur-

sively using the j sampler ( now belongs to Ψ(, X1, X2,… , Xk));
3. apply fi to  .

Note that the builders fi implement a conversion from i to Xi without explicitly traversing
the structure. They only perform one step of the conversion and the handling of the recursion is
delegated to the generation algorithm. The generation algorithm thus implements a “fold” whose
argument functions are the builders. Using the vocabulary from [MFP91], this corresponds to
a catamorphism on the data-type i . An important aspect of the builder mechanism is that the
builders are applied on the �y during the generation.

We �rst illustrate the use of builders on a few examples and then we present how to modify
the stack-machine introduced before to implement them.



CHAPTER 3. ALGORITHMIC CONSIDERATIONS RELATED TO RANDOM GENERATION 125

Builders in action

Generating syntactic NFJ programs Consider again the example of the set of NFJ programs
from Chapter 1 and recall that their speci�cation is  =  +  ×  +  ×  +  ×  . Say, we use
the following system of expressions to describe  :

Ψ1 = Z + Z2 + Z3 + Z4 Ψ2 = Z1 × Z1 (parallel composition)
Ψ3 = Z1 × Z1 (sequential composition) Ψ4 = Z1 × Z1 (non-deterministic choice)

Assume we have four data constructors Atom, Par, Seq and Choice for the four construc-
tions of the NFJ language and denote by X the set of the programs written using these construc-
tors. Note that  denotes the combinatorial class modelling NFJ programs and that X is a set of
syntactic programs. Here we want to generate elements of X . In order to achieve this we can
let X1 = X2 = X3 = X4 = X and use the following builders

f1 =

{
 + X + X + X → X
x ↦ Atom if x = z and x otherwise

f2 =

{
X × X → X
x = (y, z)↦ Par(y, z)

f3 =

{
X × X → X
x = (y, z)↦ Seq(y, z)

f4 =

{
X × X → X
x = (y, z)↦ Choice(y, z)

Computing statistics without constructing the objects Another possible application of
builders is to compute some statistics on the objects directly, without actually constructing them.
For instance, in the case of NFJ programs, one can count the number of global choices of a
program on the �y without generating it. This can be used to study the average number of
global choices of NFJ programs experimentally without losing time in allocations. This can be
achieved using the following builders and using X1 = X2 = X3 = X4 = ℕ.

f1 =

{
 +ℕ +ℕ +ℕ → ℕ
n ↦ 1 if x = z and x otherwise

f2 = f3 =

{
ℕ ×ℕ → ℕ
(n, n′)↦ n ⋅ n′

f4 =

{
ℕ ×ℕ → ℕ
(n, n′)↦ n + n′

On this example, we can see that no trees are ever constructed and that only integers are manip-
ulated.

Applying bijections on the �y We end this series of examples with another possible applica-
tion of builders. It is common in combinatorics that several combinatorial classes are counted by
the same sequence. One of the most famous such sequences is the sequence of Catalan numbers
referenced under A000108 in the OEIS. One way of proving that two classes are counted by the
same sequence is to establish a bijection preserving the size between them. Here we give two
examples of families of objects, namely Dyck words and Plane Forests, which are counted by the
Catalan sequence and can be generated using the same speci�cation simply by using builders to
apply the bijection on the �y.

The set  of Dyck words is de�ned as the set of well-parenthesised words on the alpha-
bet {(, )}. More formally, this is the set of words w ∈ {(, )}⋆ containing as many opening and
closing parentheses and such that all the pre�xes of w contain at least as many ( as ). A Dyck

https://oeis.org/A000108
https://oeis.org/
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word w ∈  is either empty or can be uniquely decomposed as w = (w′)w′′ where w′ and w′′

are Dyck words too. As a consequence, taking the number of opening parentheses as the size of
a word, we have the following speci�cation 1 =  +  × 1 × 1, which is also the speci�ca-
tion of binary trees. A Boltzmann sampler generating Dyck words directly rather than tree-like
structures is thus obtained by using the expression Ψ1 = E +Z ×Z1 ×Z1 as a speci�cation and the
following builder:

f1 =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

 + × × → 

x ↦

{
the empty word if x = �
(w′)w′′ if x = (z, w′, w′′)

Again, note that f1 takes already built Dyck words as an input and only applies the �nal step of
the construction of the word.

Now, more interestingly, the class  of plane forests is usually de�ned using a di�erent
speci�cation but is in bijection with the class of Dyck words. A plane forest is de�ned as a
possibly empty list of plane trees and a plane tree is de�ned as a node with a possibly empty list
of children, or equivalently, a forest of children. Hence, taking the number of nodes of the forest
as its size, the classes  and  of forests and trees are speci�ed by:

 = Seq( )
 =  × 

In order to see the bijection with the class of Dyck words, we need to present an alternative
decomposition of plane forests. A forest s = [t1, t2,… , tk] ∈  is either empty (k = 0) or can be
seen as a pair made of its �rst tree t1 and the list of its remaining trees [t2,… , tk]. Moreover, the
�rst tree t1 can itself be seen as a forest (with a node on top). This yields a natural bijection �
between Dyck words and Plane Forests:

� =

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

 → 

w ↦

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

the empty forest if w is the empty word

[[t′1,… , t′� ], t′′1 ,… , t′′k ] if w = (w′)w′′ where
[t′1,… , t′� ] = �(w′)
[t′′1 ,… , t′′k ] = �(w

′′)

Note that this bijection is de�ned recursively based on the decomposition of Dyck words
presented above. It is thus possible to express it in the builder mechanism and to generate plane
forest directly from the Dyck words generator. To this end, take X1 =  and use the following
builder instead of the Dyck words builder.

f1 =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

 + ×  ×  → 

x ↦

{
the empty forest if x = �
[[t′1,… , t′� ], t′′1 ,… , t′′k ] if x = (z, [t′1,… , t′� ], [t′′1 ,… , t′′k ])
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Implementation of the builder mechanism

In order to implement the builder mechanism in the stack-machine from Table 3.5 on page 123, we
need to add a new instruction BUILD(i) which calls the i-th builder on the last generated object.
Moreover, the rule that handles the Zi symbols must insert BUILD(i) in the stack of instructions
so that it appears on top of the stack right after the object has been generated. The new rule and
the updated rule for Zi are given in Table 3.6.

Table 3.6: Rewriting rules implementing the builder mechanism in the sampling stack-machine

Build ⟨BUILD(i)∶S, t∶T⟩j → ⟨S, fi(t)∶T⟩j
Recursion ⟨Zi∶S, T⟩j → ⟨Ψi∶BUILD(i)∶S, T⟩j
Tag ⟨TAG(i)∶S, t∶T⟩j → ⟨S, t (i)∶T⟩j

In addition to adding a builder instruction, it is also convenient for the user, when they write
their builders, to have an indication of which alternative was chosen at each disjoint union +.
Typically, on the example of NFJ programs, if one wants to use the simpler expression Ψ =
Z+Z1×Z1+Z1×Z1+Z1×Z1 to model the class , then one needs some extra information at the level
of the builder to know from which of the three Z1×Z1 terms each pair is generated. To circumvent
this issue, we “tag” each element sampled from a disjoint union with an integer indicating from
which operand it is sampled. In the case of the expression Ψ from above, we thus produce either
an atom z(1) tagged with 1 or a pair of terms (x, y)(i) tagged with an integer 2 ≤ i ≤ 4. At the
implementation level, this involves the addition of a new instruction TAG(i). The rule associated
with this instruction is also presented in Table 3.6.

Moreover, for the convenience of the user, we also provide a helper function UnionBuilder
which hides the plumbing related to these tags by taking a variable number of builder arguments
and returning a new builder which accepts a tagged object and calls the right builder on it. More
explicitely, UnionBuilder is de�ned as in Algorithm 44.

Algorithm 44 The UnionBuilder helper
Input: Any number k of builders f1, f2,… , fk
Output: A builder taking an object tagged with 1 ≤ i ≤ k

function UnionBuilder(f1, f2,… , fk)
function build(x)

y(i) ← x ⊳ Match on the tag
return fi(y)

return build

For example, in the case of the expression Ψ = Z + Z1 × Z1 + Z1 × Z1 + Z1 × Z1 represent-
ing NFJ programs, the following builder can be used to generate an expression of X using only
the constructors Atom, Par, Seq and Choice:

f =

{
 + X × X + X × X + X × X → X
x ↦ UnionBuilder(z ↦ Atom, f‖, f;, f+)

f‖ = (x, y)↦ Par(x, y)
f; = (x, y)↦ Seq(x, y)
f+ = (x, y)↦ Choice(x, y)



Conclusion

Contributions

Throughout this thesis we exposed several contributions revolving around the analysis of the
control graph of concurrent programs via analytic combinatorics and random generation. We
covered several aspects of this topic, starting from more theoretical results obtained through
analytic techniques and leading to various algorithmic applications, especially in the �eld of
uniform random generation.

One of our main contributions is the thorough analysis of a class of concurrent programs
featuring non-determinism, a fork-join style of synchronisation and loops. To this end, we devel-
oped a framework, based on combinatorial speci�cations and on analytic combinatorics. Using
this framework, we obtained two types of results. First, on the analytical side, we established
quantitative properties of fork-join programs, related to their number of global choices (in the
loop-free fragment) and on their typical number of executions pre�xes. Second, and more im-
portantly, we described e�cient uniform random samplers of executions and execution pre�xes
allowing to explore the state-space of programs without explicitly constructing it. These algo-
rithms thus provide a tractable way to tackle the state explosion problem.

A second major contribution of this thesis is the introduction and the study of a new class
of directed acyclic graphs (directed ordered acyclic graphs or DOAGs). This class provides an
alternative model to labelled graphs as an approximation of partial orders, which are the heart
of concurrency since they represent faithfully the control �ow of concurrent programs. In order
to analyse this class, we use a recursive decomposition scheme of a slightly di�erent kind from
the traditional decomposition used in DAG enumeration. Based on this decomposition we are
able to sample DOAGs with a given number of vertices and edges uniformly at random and to
study a multi-graph variant of this model. Moreover, using a similar approach, we exhibit new
counting formulas for the classical model of labelled DAGs allowing to count them by number
of vertices and edges without resorting to inclusion-exclusion. This allows to describe a uniform
sampler for this class, with control over the number of vertices and edges, which is a new result.

Finally, our work covers various practical aspects of random generation. This includes pro-
viding better algorithms for the generation of basic combinatorial objects such as combinations.
A key point of this contribution is the use of a more realistic complexity model which allows
to see why our new algorithm outperforms the state of the art. In the same line of work, we
develop a uniform random sampler of variations with a better complexity than the sampler ob-
tained from the generic framework of recursive method. We also developed a generic and fast
Boltzmann sampling library. Our contribution regarding Boltzmann generation is the precise
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description of how to implement such samplers in practice, including some optimisations, as
well as a formalism to make them easily integrable with other code bases.

Perspectives

Gaining expressiveness by expanding only problematic choices We have made a signif-
icant leap forward in terms of expressiveness in Chapter 1, compared to previous works, regard-
ing the uniform random generation of program executions. However, the class of programs we
consider is still constrained and, in a sense, too “well-behaved” to model all real-life programs.
In fact, a limitation of our approach is that it is a requirement for a program construction (or said
di�erently, an operator) to be well-behaved so that we can analyse it using analytic combina-
torics.

A direction we wish to explore is to relax the kind of synchronisation we allow to a signif-
icantly more expressive model such as e.g. one-safe Petri nets [Pet62]. A Petri net is a bipartite
directed graph used to model concurrent systems. It has two types of nodes:

• places, pictured as circles, which may contain any number of tokens;
• and transitions, pictured as rectangles, which represent the actions of the language.

A transition is enabled if all of the places that have an edge to it contain at least one token. And
�ring an enabled transition consists in removing a token for each of these places and adding one
token to all the places to which the transition has an edge. The semantic of a net is expressed
as the set of �ring sequences that are accessible from an initial marking. One-safe Petri nets
are such nets for which it is not possible to have more than one token on every place (from a
given initial marking). An example of such net, with its initial marking (only one token in the
uppermost place) is given on the left-hand-side of Figure 3.10.
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part. unfold.
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Figure 3.10: An example Petri net and one of its partial unfoldings. The executions of the left-
most net are partitioned into two sets, those that �re the transition c and correspond to the �rst
unfolding, and those that �re d and correspond to the second unfolding.
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This model is way too expressive to be analysed using the techniques developed in this the-
sis. Indeed, even in the absence of cycles, one-safe Petri nets are strictly more expressive than
partial orders, for which the counting problem is #P-complete and the approach based on ana-
lytic combinatorics is not tractable [BDGP19]. However, a possible approach to tackle this kind
of programs would be to expand (or rather unfold, using the Petri net nomenclature) some of the
choices of such a net, until the program falls into a class we know how to handle, such as NFJ
programs. As an example, consider the program given on the left-hand-side of Figure 3.10. It
has two places (indicated by thicker circles) that informally correspond to a choice, because they
have multiple outgoing edges. The rightmost choice is not “problematic” in the sense that it
does not interfere with any synchronisation. However, the other choice on whether the e and
the f transitions can be �red. One can expand this choice, which yields two Petri nets. The
�rst one encodes all the executions that take the c choice, and the second one encodes all the
executions that take the d choice. On this example, the resulting two nets both “fall” in the NFJ
class in the sense that their executions are in bijections with executions of two NFJ programs.
The �rst net corresponds to the program a; ((b; c; e; g) ‖ (i + j)) and the second one corresponds
to a; ((b; d) ‖ (i + j)); f ; g. This allows to count the number of executions of both nets and, based
on this information, to sample a uniform execution of the initial net. This is achieved by choos-
ing one of the two expanded nets with the right probability (available by the aforementioned
counting) and to sample a uniform execution of this net.

Towards a statistical model checker Another natural direction to explore from here is to
apply the techniques developed in the present thesis in a statistical model checker. This implies
replacing the atomic actions of the NFJ languages by actual program instructions so that our
programs can compute and not simply encode a control �ow. Our approach would be to give
a semantic to these actions for which we can also implement a random sampler. A statistical
model checker built on top of this would �rst sample a uniform scheduling of the actions (using
the algorithms developed here), then check whether the sampled scheduling is realisable based
on the semantics of the actions, and �nally sample an execution in the scheduled program. A
possible candidate for the language used in place of the atomic actions is given by [GM03] whose
semantics can be expressed as a regular language. The advantage of regular languages is that
e�cient random generation is possible for them, at the cost of explicitly constructing a deter-
ministic �nite automata recognising them [BG12].

Exploiting the rationality of the generating function of execution The generating func-
tion of the executions of an NFJ program is always rational. Moreover, it is actually possible to
recursively compute a rational expression of the form A(z)

B(z) , where A and B are polynomials, for
this generating function. The recursive rules for computing this expression are clear for all the
operators of the NFJ language except for the parallel composition. For instance, if A(z)

B(z) and C(z)
D(z)

denote the generating functions of executions of two programs P and Q, then the generating
function of the executions of (P + Q) is given by

A(z)D(z) + C(z)B(z)
B(z)D(z)

−
A(0)C(0)
B(0)D(0)
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and that of P⋆ is given by
B(z)

B(z) − A(z) + B(z)A(0)
B(0)

⋅

The case of the parallel composition requires to compute the coloured product A(z)
B(z) }

C(z)
D(z) of

two rational functions. In fact, the rules developed in Section 1.4.2 (in particular Lemma 4 on
page 52 and Equation (1.14) on page 53) are enough to compute such a product provided that a
partial fraction decomposition of the functions is known. Of course, this method is not construc-
tive since such a decomposition requires to factor polynomials. However, it allows to prove that
the zeros of the denominator of the resulting fraction are of the form (�−1 + �−1)−1 where � is a
root of B(z) and � is a root of D(z) (with known multiplicities). Put di�erently, this means that
the resulting denominator is a divisor of the resultant of ydBB(1/y) and (z − y)dDD(1/(z − y)) with
respect to y where dB and dD are the degrees of B and D. This resultant can be computed in
polynomial time from the expansion of B and D. Finally, an explicit upper bound on the degree
of the numerator of A(z)

B(z) }
C(z)
D(z) can be given so that its (irreducible) fraction decomposition can

be obtained in polynomial time in the size of A(z), B(z), C(z) and D(z).
This approach has a major drawback however. The degree of the denominator of A(z)

B(z) }
C(z)
D(z)

is the product of the degrees of B and D (modulo cancellations). Hence this degree grows quickly
with the number of coloured products. As a consequence, computing a rational expression for
the generating function of the executions of a program is actually exponential in the size of the
program. On the other hand, for small programs for which this remains tractable, having a ra-
tional expression has important advantages. In particular, this gives a linear recurrence relation
on the number of executions of size n of the program which could potentially accelerate signi�-
cantly the pre-computation phase of our algorithms. An important question left open here is: to
what extent is this approach tractable in practice?

Using the �oating point optimisation At the moment, the bottleneck of our random gen-
erator of executions is the pre-computation of the coe�cients of the generating functions. The
complexity of this pre-processing is due to two factors. First, it requires to perform a large num-
ber of polynomial multiplications which is a costly operation. The ideas exposed above regarding
the rationality of the generating functions at play addresses this issue by suggesting a cheaper
approach, though it is only tractable for small-size programs. The second major factor of com-
plexity is due to big integer arithmetic which becomes more and more costly as the size of the
integers grow. A way to mitigate this cost has been proposed in [DZ99] where the idea is to
resort to certi�ed �oating point arithmetic. In fact, two approaches are proposed.

A �rst possibility to make the random generation more e�cient is to only use �oating point
numbers for manipulating and storing the coe�cients of the generating functions. The authors
of [DZ99] provide theoretical error bounds allowing to quantify the default of uniformity of
this approach. Moreover, they also explain how to compute more precise error bounds during
the generation and, according to their experiments, these bounds seem much better than the
theoretical ones. This approach provides a trade-o� between uniformity and performance, which
can be reasonable in practice.

Another approach proposed by [DZ99] is to remain perfectly uniform by using the (theo-
retical or dynamically computed) errors bounds to decide which algorithm to use for the gen-
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eration. The key idea here is that most of the time, approximate values are enough for making
exact choices. In the few cases where this is not the case, the solution consists in either resort-
ing to the exact algorithm using integer arithmetic, or to re�ne our approximations by doubling
the precision. Let us illustrate this concretely on an example. Most of the time, the random-
ness of our algorithms lies in the generation of a Bernoulli variable. Say one needs to generate
a Bernoulli variable X ← Bern(p) of parameter p and that one only has an approximation p̄
of p such that |p − p̄| < �. One solution consists in drawing a uniform real number U ∈ [0; 1] (it
can be represented by a lazy in�nite sequence of bits). If U < p̄ − �, then U < p and X = true.
Similarly, if U > p̄ + �, then U > p and we have X = false. The only problematic cases are those
where |U − p̄| < �. In that case, we need to compute a better approximation of p to be able to
conclude.

Note that in both approaches, the sizes of the numbers at play require us to use a special
representation with at least a larger exponent than the one provided by default in most pro-
gramming languages. This can be achieved, for instance, using the extendable precision format
speci�ed by the IEEE 754 standard [1].

More e�cient and precise analysis of the isotropic method In Section 1.4.4 we compared
the coverage provided by our uniform sampler of pre�xes with that of the isotropic method for
a simple program. Unfortunately we could only do this for a program of small size because of
the prohibitive cost of computing the coverage rate of the isotropic method. This raises two
questions that have been left open.

First, is there a more e�cient way of assessing the coverage of the isotropic method? The
formula we used is due to [FGT92] and is rather general. It seems reasonable to hope for a simpler
formula in our context where the probabilities of the pre�xes are obtained by decomposing a
tree-like object.

Second, and as an alternative to a more e�cient algorithm, theoretical bounds on the cost
of the isotropic method would be rather helpful too. In particular, a lower bound on the time
necessary to achieve a given coverage would allow to invalidate the isotropic method on more
than a simple example. This would reinforce the need for samplers with a controlled probability
distribution, and in particular the uniform distribution.

Typical properties of DOAGs For now, we have focused mostly on the uniform random
sampling problem for the class of DOAGs. It would be interesting to study some parameters of
these graphs in average such as the distribution of their degrees, the height, etc. In particular,
the quantity ∑v d2v , where v ranges over the vertices of a graph and dv denotes the out-degree
of v, is of particular interest since it appears in the complexity of our random sampler of DOAGs
in Section 2.2.3.

Another related question is to know the number of sparse DOAGs (say when m = O(n)) and
their behaviour. A classical question in graph and digraph enumeration is to describe the phase
transition between disconnectedness and connectedness (see [Pan+20] for the digraph case). A
�rst step towards this, in our context, would be to de�ne a more general class of DOAGs that are
not necessarily (weakly) connected and to study the proportion of (weakly) connected DOAGs
as a function of the number m of edges.
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Asymptotic number of DOAGs with n vertices We stated a conjecture on the number Dn,1
of DOAGs with n vertices, one source and any number of edges in Section 2.2.4 (Conjecture 1 on
page 74). We recall here the recurrence satis�ed by the sequence Dn,k of DOAGs with n vertices
and k sources for convenience:

Dn,k = ∑
s≥0

Dn−1,k−1+s ⋅  (n − k − s, s) (for k > 0 and n > 1) (3.12)

where
 (a, b) = 1{b≠0} +∑

i>0 (
b + i
b )(

a
i)
i!

This conjecture is based on the upper and lower bounds we established on Dn,1 in Sec-
tion 2.2.4. In fact, similar bounds can be found for Dn,k for any value of k and with a sim-
ilar precision (of the order of O(n)) provided that k remains small. Moreover, we can show
that  (a, b) = (a+b)!

b! (exp ( b
a+b) + o(1)) when min(a, b) → ∞. A natural lead to proving Conjec-

ture 1 would be to plug these approximations into (3.12) and try to re�ne them.
A similar approach has already been used in [BGGW20] to study a family of weakly increas-

ing trees. The idea is to identify the terms that contribute the most to the sum, normalise the
sum by the expected �rst order (here ¡(n − 1)!en−1 = ∏n−1

k=1 e ⋅ k!) and simplify the summand so
as to make a functional equation or a di�erential equation appear. If the approximations made
in the process are precise enough, this yields upper and lower bounds on the initial sequence
allowing to conclude.

Studying the asymptotic number of DOAMGs Understanding, even roughly, the asymp-
totic behaviour of the sequence (Dn,1)n>0 counting the number of DOAGs with n vertices had
led us to a fast pre-computation-free sampler for these objects. A natural question, which is left
open by Section 2.4 is: what can be say about the asymptotic number of DOAMGs (Directed
Acyclic Ordered Multi-Graphs)? As a starting point in this direction, we would like to study the
sequence m ↦ D′m = ∑n D′n,m,1 counting DOAMGs with m edges and any number of vertices.

As a preparatory experiment, we plotted the ratios D′m
D′m−1

and D′m
m⋅D′m−1

on Figure 3.11 on the
next page. It is typical for sequences counting unlabelled objects that the former ratio converges
to a constant whereas, for labelled objects, the latter generally tends to a constant. While the
sequence D′m clearly does not belong to the unlabelled world according to the plot, it is not
obvious either whether the second ratio converges or not. A convergence to 0 would indicate a
rather unusual behaviour of the sequence. A more likely scenario is that this sequence shares a
common property with the sequence counting the number of compressed binary trees: having a
stretched exponential [EFW21]. More eloquently having an asymptotic behaviour of the form

D′m = C ⋅ n� rn exp(�n� )n! (with 0 < � < 1)

would explain this slow convergence.
One strong argument in favour of this hypothesis is that the objects counted by D′m and

in [EFW21] are very similar: compacted binary trees are DOAMGs with some extra constraints,
in particular degree constraints. Moreover, the bijection we established in Section 2.4.3 on
page 80 involving decorated paths have similarities too with the bijection used in [EFW21] to
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Figure 3.11: Preparatory experimental study of the sequence D′m.

simplify the counting problem. We believe this bijection is a good starting point to study D′m,
notably because:

• counting pairs of non-intersecting (non-decorated) walks is tractable since they admit a
context-free grammar;

• the authors of [EFW21] have developed heuristics and techniques to study horizontally
decorated walks.

The problems thus boils down to: can we combine the two techniques to study D′m? This is at
the moment an open question.

Amore e�cient sampler of DOAMGs? In Section 2.2.5 on page 74 we have developed a fast,
pre-computation-free, uniform sampler of DOAGs with n vertices. This key idea was to consider
its transition matrix and sample a product of (n − 1) variations (each representing one line of
the matrix) until they form a valid DOAG transition matrix. Combined with an early rejection
procedure, this approach has proved to be e�cient in practice.

A natural question we wish to investigate is: can we do the same for DOAMGs? While the
notion of transition matrix does not neatly generalise to multi-graphs, the bijection we estab-
lished in Section 2.4.3 on page 80 with pairs of non-intersecting decorated paths seems to be a
good candidate for a similar sampler. As a future work, we want to develop a uniform sampler of
horizontally decorated path and to combine it with a uniform sampler of non-decorated path to
sample DOAMGs. Preventing the two paths from intersecting can be done using rejection and
we hope for this method to be e�cient if the rejection is made as soon as possible during the
generation of the two paths.

Adding pointing (and enhanced pointing?) to usainboltz Although our usainboltz li-
brary [6] has already reached a usable stage for basic algebraic use cases, we wish to extend
its feature set. In particular, at the moment the preferred way to achieve linearity in usainboltz
while sampling structures described by an algebraic grammar is using singular sampling. The
pointing technique described in [DFLS04] has not yet been automated so that a user wishing
to use it has to derive the grammar manually. An important future work is to automate this
derivation and the reconstruction of the objects after the pointing has taken place.
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Moreover, another potential application of pointing, which to our knowledge has never been
mentioned before, is to make the Seq operator appear as the outermost element of the grammar
so that the “leap frogging” technique from [DFLS04, page 613] can apply. This is better explained
with an example.

Consider the grammar of binary trees  =  +  ×  × . The grammar for pointed binary
trees ∙ can be obtained using the recursive rules from [DFLS04, page 610], which yields:

∙ = ∙ ×  ×  + × ∙ ×  + ×  × ∙ (3.13)

The combinatorial interpretation of this speci�cation is that a binary tree with one pointed (or
“distinguished”) node is either:

• a pointed root (∙) with two regular trees () as children;
• a regular root () with a pointed tree (∙) on the left and a regular tree () on the right;
• a regular root () with a regular tree () on the left and a pointed tree (∙) on the right.

In [DFLS04], the authors prove that using this grammar to generated binary trees by forgetting
which node was pointed in the end yields better performance than sampling trees from  =
 + ×  ×  directly.

There is actually a second way of specifying ∙ which allows to use the “leap-frogging”
technique and thus to potentially accelerate the generation further. Since the right-hand-side
of (3.13) is a�ne in ∙, it can be modi�ed as follows:

∙ = ∙ ×  ×  × Seq( ×  + × )
=  × Seq( ×  + × ) (since ∙ is in bijection with )

Thus, generating a pointed binary tree whose size is in some size interval I (n, �) = [(1 − �)n; (1 +
�)n] can be achieved by the following algorithm:

1. sample a �rst tree of size s1 ≤ (1 + �)n;
2. sample a sequence of trees from ( ×  + × ) using the leap-frogging algorithm (more

eloquently, keep sampling elements of the sequence until their total size reaches (1 − �)n −
s1);

3. at the end, check whether the total size is below (1 + �)n and start over if not.
The trick we used to make a sequence appear in the speci�cation of ∙ actually applies to

other classes of trees. It is actually known from the functional programming community as a
technique to de�ne zippers [Hue97]. Zippers are e�cient data structures for representing trees
where the focus is set of one particular sub-tree and where the basic operations of moving the
focus to neighbouring sub-trees is cheap. The idea consists in turning the tree “inside out” so as
to have access to (1) the sub-tree of interest and (2) the sequence of ancestors of that sub-tree
starting from the closest one. The parallel between the two worlds is as follows.

• The pointing operation from analytic combinatorics corresponds to setting the focus on
one sub-tree of a tree-like structure.

• And the “inside-out” representation used for zippers corresponds to factoring the occur-
rences of the pointed class as a sequence as we did for binary trees above.

We wish to implement this idea as part of usainboltz. However, work remains to be done to
establish whether the leap-frogging technique actually out-performs basic pointing or not and
to quantify it. Moreover, we need to make this process automatic and invisible to the user.
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Handling autonomous di�erential equations in usainboltz We only covered unlabelled
Boltzmann sampling in Section 3.4 on page 118 but our usainboltz library is also able to handle
labelled speci�cations. One of the lesser-known operators of labelled speci�cations is the boxed
product �⋆. Given two labelled combinatorial classes  and , the class �⋆ is the sub-set
of the elements of  ⋆  such that the smallest label (1) is on the left object. This operator also
has an interpretation in terms of generating functions since the exponential generating function
(EGF) of �⋆ is given by ∫ z

0 A′(t)B(t)dt where A(t) and B(t) represent the EGFs of  and .
More details on this operator can be found in [FS09, page 139].

It has been shown in [BRS12] that the �rst-order di�erential speci�cations arising from the
use of the boxed product can be integrated in the Boltzmann framework. In fact, the approach
developed there can be applied to higher order di�erential equations too [Die17, page 60]. One
major inconvenience of this approach however is that it is computationally demanding on the
oracle side as one has to compute integrals with di�erent bounds at each recursive call. How-
ever, both [BRS12] and [Die17] note that, in the autonomous case, that is when the di�erential
equation is of the form f ′(z) = T (f (z)), these computations are not required.

We wish to add support for autonomous di�erential speci�cations in usainboltz, which im-
plies to formally describe the general case and to handle the labelling of such structures e�-
ciently.
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