
HAL Id: tel-03722855
https://theses.hal.science/tel-03722855v1

Submitted on 13 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Representation learning and forecasting for inter-related
time series

Jingwei Zuo

To cite this version:
Jingwei Zuo. Representation learning and forecasting for inter-related time series. Machine Learning
[cs.LG]. Université Paris-Saclay, 2022. English. �NNT : 2022UPASG038�. �tel-03722855�

https://theses.hal.science/tel-03722855v1
https://hal.archives-ouvertes.fr

T
H

E
S
E

D
E

D
O

C
T

O
R
A
T

N
N

T
:2

02
2U

PA
SG

03
8

Apprentissage de représentations et prédiction
pour des séries-temporelles inter-dépendantes

Representation learning and forecasting for inter-related
time series

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦ 580, Sciences et Technologies de l’Information et de la
Communication (STIC)

Spécialité de doctorat: Informatique
Graduate School: Informatique et sciences du numérique

Référent: Université de Versailles-Saint-Quentin-en-Yvelines (UVSQ)

Thèse préparée dans l’unité de recherche DAVID (Université Paris-Saclay, UVSQ),
sous la direction de Karine ZEITOUNI, Professeure,

le co-encadrement de Yehia TAHER, Maître de conférences.

Thèse soutenue à Versailles, le 9 mai 2022, par

Jingwei ZUO

Composition du jury

Antoine Cornuéjols Président
Professeur des universités, AgroParisTech
Angela Bonifati Rapportrice & Examinatrice
Professeure, Université Claude Bernard Lyon 1
Engelbert Mephu Nguifo Rapporteur & Examinateur
Professeur, Université Clermont Auvergne
Romain Tavenard Examinateur
Maître de conférences (HDR), Université de Rennes 2
Karine Zeitouni Directrice de thèse
Professeure, UVSQ, Université Paris-Sacaly

Titre: Apprentissage de représentations et prédiction pour des séries-temporelles inter-dépendantes

Mots clés: Séries temporelles, Apprentissage des représentations, Flux de données, Apprentissage
semi-supervisé, Séries temporelles géolocalisées, Prévision de trafic

Résumé: Les séries temporelles sont un type
de données endémique dans de nombreux do-
maines d’applications, telles que l’analyse finan-
cière, la surveillance de l’environnement ou en-
core l’astronomie. Du fait de leur structure com-
plexe, les séries temporelles amènent à de nou-
veaux défis dans le traitement et l’extraction de
motifs de ces données. La représentation des
séries temporelles joue un rôle déterminant dans
les méthodes d’apprentissage et les tâches de
fouille de données. Peu de méthodes tiennent
compte des interdépendances entre séries tem-
porelles différentes.

Dans cette thèse, nous étudions différentes
approches de représentation de séries tem-
porelles capables de s’adapter pour diverses

tâches de fouille de séries temporelles et à cap-
turer ces interdépendances. Nous étudions la
représentation des séries temporelles pour la
classification, l’apprentissage semi-supervisé et
la prédiction pour des séries temporelles col-
lectées à partir de diverse applications sous
différentes formes, i.e, flux de séries tem-
porelles, séries temporelles multivariées (MTS)
et séries temporelles géolocalisées (GTS). Nos
principales contributions sont les suivantes: (i)
l’apprentissage dynamique de la représentation
de séries temporelles dans un contexte de flux;
(ii) l’apprentissage semi-supervisé de représen-
tation de séries temporelles multivariées; (iii)
l’apprentissage de la représentation de séries
temporelles géolocalisées pour la prévision du
trafic.

Title: Representation Learning and Forecasting for Inter-related Time Series

Keywords: Time series, Representation learning, Data stream, Semi-supervised learning, Geo-
located time series, Traffic forecasting

Abstract: Time series is a common data type
that has been applied to enormous real-life ap-
plications, such as financial analysis, environ-
mental monitoring, and astronomical discovery.
Due to its complex structure, time series raises
several challenges in their data processing and
mining. The representation of time series plays
a key role in data mining tasks and machine
learning algorithms for time series. Yet, a few
methods consider the interrelation that may ex-
ist between different time series.

In this thesis, we will study different time se-
ries representation approaches that can be used

in various time series mining tasks, while cap-
turing the relationships among them. Partic-
ularly, we study the time series representation
for classification, semi-supervised learning and
forecasting tasks on the time series collected
from various application contexts under differ-
ent forms, i.e., time series stream, multivariate
time series (MTS) and geo-located time series
(GTS). For these tasks, our main contributions
are the following: (i) dynamic time series rep-
resentation learning in a streaming context; (ii)
semi-supervised representation learning in mul-
tivariate time series; (iii) geo-located time series
representation learning for traffic forecasting.

Acknowledgement

This thesis benefited from the kind support and help from many people.

Before all, I would like to express my sincere and deep gratitude to my advisors,
Karine Zeitouni, professor of UVSQ, Universté Paris-Saclay and Yehia Taher, As-
sociated professor of UVSQ, Universté Paris-Saclay, for their guide and help during
my three years of thesis work as well as during my master’s end-of-study internship.
Their patience, kindness and generosity have solved many problems both techni-
cally and emotionally. Both of them have been great role models as researchers
and mentors. In particular, I admire Karine deeply for her dedication to research
and impressive depth/width of knowledge, while Yehia has been of great help for
promoting my research work always in simple language and for overcoming many
technical issues.

I am very lucky to work in a friendly and pleasant environment within the ADAM
research team in DAVID Lab. I would specially thank Dr. Zoubida Kedad for her
help during my master’s and Ph.D. study. I also want to thank Dr. Stéphane Lopes,
Dr. Laurent Yeh, Dr. Nicoleta Preda, Dr. Zaineb Chelly Dagdia, and Dr. Béatrice
Finance for their help on both technical issues and constant encouragement during
my thesis. I would like to thank all the staff members at the DAVID Lab. I sincerely
thank our team assistants, Catherine Le Quere and Chantal Ducoin, for helping me
with many administration processes.

Great gratitude is also given to Prof. Philippe Pucheral and Dr. Nicolas Anciaux
in Inria Saclay. They led me into the field of Data Science when I decided to continue
my master’s study in Versailles. I also want to thank Dr. Iulian Sandu Popa for his
support during my master’s and Ph.D. study.

This dissertation would not have been possible without the support, contribution,
and friendship of all my colleagues in DAVID Lab. I am really grateful to meet them
for their enthusiasm and their valuable and enjoyable time, in particular: Hafsa
EI Hafyani, Mohamad Rihany, Alaa Zreik, Souheir Mehanna, Julien Loudet, Zoé
Chevallier, Alexandros Kontarinis, Redouane Bouhamoum, Mohammad Abboud,
Li Zhang, Mariem Brahem, Ahmad ktaish, Baudouin Naline, Riham Badra, Lívia
Almada Cruz, Hadi Dayekh, Perla Hajjar, Robin Carpentier, Ludovic Javet, Julien
Mirval, Riad Ladjel.

I would like to warmly thank jury members in my PhD defense including the two
reviewers Prof. Angela Bonifati (Université Claude Bernard Lyon 1), Prof. Engel-
bert Mephu Nguifo (Université Clermont Auvergne) and Prof. Antoine Cornuéjols
(AgroParisTech), Dr. Romain Tavenard (Université de Rennes 2).

I would like to thank L’Institut DATAIA for granting me the scholarship for this
Ph.D. and for the support for attending conferences and seminars. I would like to

thank Jean Zay project from IDRIS for providing computational resources for the
StreamOps project.

I would also like to thank my friends, in France and China, for their mental
support and helpful discussions: these are really important to me.

Last but not least, I am grateful for the continuous support and love of my
parents and brother. Their unwavering faith and confidence in me and my abilities
have shaped me into the person I am. I will do my best to recompense for their
support and comprehension on years of my absence from their side even though they
will never be repayable.

Résumé en Français
Les séries temporelles sont un type de données endémique dans de nombreux do-
maines d’applications, telles que l’analyse financière, le diagnostic médical, la surveil-
lance de l’environnement ou encore l’astronomie. Du fait de leur structure complexe,
les séries temporelles amènent à de nouveaux défis dans le traitement et l’extraction
de connaissances de ces données. La représentation des séries temporelles joue un
rôle déterminant dans les méthodes d’apprentissage et les tâches de fouille de don-
nées. Cependant, peu de méthodes tiennent compte des interdépendances entre
séries temporelles différentes. De plus, la fouille de séries temporelles nécessite de
considérer non seulement les caractéristiques des séries temporelles en termes de
complexité des données, mais également les contextes particuliers des applications
et la tâche de fouille de données à effectuer. Cela nous permet de construire des
représentations spécifiques à la tâche.

Dans cette thèse, nous étudions différentes approches de représentation de séries
temporelles capables de s’adapter à diverses tâches de fouille de séries temporelles,
tout en capturant les relations entre elles. Nous nous concentrons spécifiquement sur
la modélisation des interdépendances entre séries temporelles lors de la construction
des représentations, qui peuvent être la dépendance temporelle au sein de chaque
source de données ou la dépendance inter-variable entre des sources de données
différentes. En conséquence, nous étudions les séries temporelles collectées dans
diverses applications sous différentes formes. Tout d’abord, pour tenir compte de
la dépendance temporelle entre les observations, nous apprenons la représentation
de série temporelle dans un contexte de flux dynamique, où la série temporelle est
générée en continu à partir de la source de données. Quant à la dépendance inter-
variable, nous étudions les séries temporelles multivariées (MTS) avec des données
collectées à partir de plusieurs sources. Enfin, nous étudions le MTS dans le contexte
de la ville intelligente, où chaque source de données est associée à une localisation
spatiale. Par conséquent, le MTS devient une série temporelle géo-localisée (GTS),
pour laquelle la modélisation de la dépendance inter-variable requière la prise en
compte de l’information spatiale sous-jacente. De ce fait, pour chaque type de séries
temporelles collectées dans des contextes différents, nous proposons une méthode de
représentation adaptée aux dépendances temporelles et/ou inter-variables.

Outre la complexité des données provenant des interdépendances des séries tem-
porelles, nous étudions diverses tâches d’apprentissage automatique sur des séries
temporelles afin de valider les représentations apprises. Les tâches d’apprentissage
étudiées dans cette thèse consistent en la classification de séries temporelles, la prévi-
sion de séries temporelles et l’apprentissage semi-supervisé de séries temporelles.
Nous montrons comment les représentations apprises sont exploitées dans ces dif-
férentes tâches d’apprentissage de séries temporelles et pour des applications dis-
tinctes.

Plus précisément, nos principales contributions sont les suivantes. En premier
lieu, nous proposons un modèle d’apprentissage dynamique de la représentation
des séries temporelles dans le contexte du flux de données, où nous considérons à
la fois les caractéristiques des séries temporelles et les défis des flux de données.
Nous affirmons et démontrons que le motif de Shapelet, basé sur la forme, est la
meilleure représentation dans le contexte dynamique. Par ailleurs, nous proposons
un modèle semi-supervisé pour l’apprentissage de représentation dans les séries tem-
porelles multivariées (MTS). Ce modèle considère la dépendance inter-variable dans
l’hypothèse réaliste où les annotations de données sont limitées. Enfin, nous pro-
posons un modèle d’apprentissage de représentation de séries temporelles géolocal-
isées (GTS) dans le contexte de la ville intelligente. Nous étudions spécifiquement
la tâche de prévision du trafic routier avec un focus sur le traitement intégré des
valeurs manquantes.

Abstract
Time series is a common data type that has been applied to enormous real-life ap-
plications, such as financial analysis, medical diagnosis, environmental monitoring,
astronomical discovery, etc. Due to its complex structure, time series raises several
challenges in their data processing and mining. The representation of time series
plays a key role in data mining tasks and machine learning algorithms for time series.
Yet, a few methods consider the interrelation that may exist between different time
series when building the representation. Moreover, the time series mining requires
considering not only the time series’ characteristics in terms of data complexity but
also the concrete application scenarios where the data mining task is performed to
build task-specific representations.

In this thesis, we will study different time series representation approaches that
can be used in various time series mining tasks, while capturing the relationships
among them. We focus specifically on modeling the interrelations between different
time series when building the representations, which can be the temporal relation-
ship within each data source or the inter-variable relationship between various data
sources. Accordingly, we study the time series collected from various application
contexts under different forms. First, considering the temporal relationship between
the observations, we learn the time series in a dynamic streaming context, i.e., time
series stream, for which the time series data is continuously generated from the data
source. Second, for the inter-variable relationship, we study the multivariate time
series (MTS) with data collected from multiple data sources. Finally, we study the
MTS in the Smart City context, when each data source is given a spatial position.
The MTS then becomes a geo-located time series (GTS), for which the inter-variable
relationship requires more modeling efforts with the external spatial information.
Therefore, for each type of time series data collected from distinct contexts, the in-
terrelations between the time series observations are emphasized differently, on the
temporal or (and) variable axis.

Apart from the data complexity from the interrelations, we study various ma-
chine learning tasks on time series in order to validate the learned representations.
The high-level learning tasks studied in this thesis consist of time series classifica-
tion, semi-supervised time series learning, and time series forecasting. We show how
the learned representations connect with different time series learning tasks under
distinct application contexts. More importantly, we conduct the interdisciplinary
study on time series by leveraging real-life challenges in machine learning tasks,
which allows for improving the learning model’s performance and applying more
complex time series scenarios.

Concretely, for these time series learning tasks, our main research contributions
are the following: (i) we propose a dynamic time series representation learning
model in the streaming context, which considers both the characteristics of time

series and the challenges in data streams. We claim and demonstrate that the
Shapelet, a shape-based time series feature, is the best representation in such a
dynamic context; (ii) we propose a semi-supervised model for representation learning
in multivariate time series (MTS). The inter-variable relationship over multiple data
sources is modeled in a real-life context, where the data annotations are limited; (iii)
we design a geo-located time series (GTS) representation learning model for Smart
City applications. We study specifically the traffic forecasting task, with a focus on
the missing-value treatment within the forecasting algorithm.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 General Objectives . 4

1.3 Contributions . 5

1.3.1 Dynamic Representation Learning on Time Series Stream 5

1.3.2 Semi-supervised Learning on Multivariate Time Series 7

1.3.3 Geo-located Multivariate Time Series Forecasting with Missing Values 8

1.4 Organization of the Thesis . 10

1.5 List of Publications . 11

2 State of the art 13

2.1 Time Series Data Mining . 13

2.1.1 Definition and taxonomy . 14

2.1.2 Representation Learning on Time Series . 18

2.1.3 Data Stream and Time Series . 27

2.1.4 Semi-supervised Learning on Time series . 30

2.2 Time Series Representation for Classification . 31

2.2.1 Raw Sequence as Representations . 32

2.2.2 Statistic Features as Representations . 34

2.2.3 Local patterns as Representations . 35

2.2.4 Deep Representations . 37

2.2.5 Ensemble Representations . 38

2.2.6 Univariate versus Multivariate Time Series . 39

CONTENTS

2.3 Geo-located Time Series Representation for Forecasting 40

2.3.1 Definitions . 41

2.3.2 Geo-located time series forecasting . 42

2.4 Conclusion . 46

3 Dynamic Feature Learning on Time Series Stream 49

3.1 Introduction . 49

3.2 Background and State-of-the-art . 51

3.2.1 Definitions and Notations . 51

3.2.2 Time Series Feature Representations . 52

3.2.3 Matrix Profile in Time Series Mining . 53

3.3 Problem Statement . 54

3.4 Our proposals . 55

3.4.1 Shapelet extraction on MAtrix Profile (SMAP) for TSC 55

3.4.2 Incremental SMAP (ISMAP) . 59

3.5 Experiments and Results . 66

3.5.1 Experimental design . 66

3.5.2 RQ1: Incremental learning with ISMAP . 68

3.5.3 RQ2: Adaptive learning with ISMAP . 70

3.6 Conclusion . 71

4 Semi-supervised Learning on Multivariate Time Series 73

4.1 Introduction . 74

4.2 State-of-the-art . 75

4.2.1 Multivariate Time Series Representation Learning 76

4.2.2 Semi-supervised Learning on Time Series . 77

4.3 Problem Formulation . 77

4.3.1 Spatio-temporal Representation for MTS . 78

4.3.2 Semi-Supervised Learning on MTS . 78

4.4 Proposal: SMATE . 79

4.4.1 Global Structure of SMATE . 79

CONTENTS

4.4.2 Spatial Modeling Block (SMB) . 80

4.4.3 Spatio-Temporal Encoding on MTS . 80

4.4.4 Joint Model Optimization . 81

4.5 Experiments . 83

4.5.1 Experimental setup . 84

4.5.2 RQ 1: Classification Performance Evaluation 87

4.5.3 RQ 2: Semi-supervised Classification Performance 89

4.5.4 RQ 3: Visualization & Interpretation of the Representation Space 90

4.5.5 RQ 4: Performance of Spatial Modeling Block (SMB) 92

4.5.6 RQ 5: Efficiency Analysis . 94

4.5.7 Discussion . 96

4.6 Conclusion . 97

5 Geo-located Multivariate Time Series Forecasting with Missing Values 99

5.1 Introduction . 100

5.2 Related Works . 102

5.2.1 Graph Convolutional Networks for Traffic Forecasting 102

5.2.2 Missing value processing . 102

5.3 Problem Formulation . 103

5.4 Proposal: GCN-M . 103

5.4.1 Model Architecture . 104

5.4.2 Multi-scale Memory Network . 104

5.4.3 Dynamic Graph Construction . 107

5.4.4 Temporal Convolution Module . 109

5.4.5 Dynamic Graph Convolution . 110

5.4.6 Output Forecasting Module . 110

5.5 Experiments . 111

5.5.1 Experimental settings . 111

5.5.2 Baseline Approaches . 112

5.5.3 RQ 1: Performance on complete datasets . 113

5.5.4 RQ 2: Complex scenarios of missing values . 115

CONTENTS

5.5.5 RQ 3: Dynamic Graph Modeling . 118

5.5.6 Discussions . 120

5.6 Conclusion . 121

6 Conclusion and Perspectives 123

6.1 Conclusion . 123

6.2 Perspectives . 125

Bibliography 127

Chapter 1

Introduction

Contents
1.1 Motivation . 1

1.2 General Objectives . 4

1.3 Contributions . 5

1.3.1 Dynamic Representation Learning on Time Series Stream 5

1.3.2 Semi-supervised Learning on Multivariate Time Series . . 7

1.3.3 Geo-located Multivariate Time Series Forecasting with Miss-
ing Values . 8

1.4 Organization of the Thesis 10

1.5 List of Publications . 11

1.1 Motivation

Internet of Things (IoT), which connects a variety of ubiquitous sensors, devices, and ma-
chines together, is currently gaining substantial attention in both academia and industry.
Particularly, sensors positioned on various objects such as household appliances, industrial
machines, vehicles, even human bodies, etc., continuously produce real-valued data, which
are performed over time. A collection of these organized observations forms a time series
(TS). Beyond the IoT context, time series can be collected from almost every scientific
field, including finance, astronomy, health monitoring, images, etc.

Besides, data mining [1] is a process of discovering knowledge or extracting patterns in
datasets via several mining techniques, including those in machine learning, statistics, and
database systems. Data mining is an interdisciplinary domain of computer science and
statistics with an overall goal of extracting information (with intelligent methods) from

1

2 CHAPTER 1. INTRODUCTION

a dataset and transforming the information into a comprehensible structure (i.e., repre-
sentation) for further use, such as anomaly detection, classification, clustering, predictive
analysis, etc. A good understanding of the data and the mining objective is necessary for
building a reliable data mining model.

Time series mining [2] is a sub-field of data mining that has been studied for decades.
With countless applications, time series mining can be applied in financial analysis, indus-
trial monitoring, medical assistance, astronomy discovery, smart city management, envi-
ronmental monitoring, etc. Time series has a complex structure with strong dependencies
between the observations; it is necessary to build or learn an operable representation from
such complex data and apply the general mining techniques accordingly for different appli-
cation tasks. For instance, time series classification task outputs a single prediction [3] for
the whole sequence, where the representation is learned from each local observation; time
series forecasting task predicts future values from the past [4], where the learned represen-
tation is generally biased towards the recent observations in the sequence. Therefore, the
time series mining requires considering not only the time series’ characteristics in terms of
data complexity but also the application scenarios where the data mining task is performed
to build a task-specific representation.

The inter-relationship between the observations is the main characteristic of the time
series data. When a time series instance is collected from one single data source, we call
it univariate time series (UTS), otherwise multivariate time series (MTS). UTS and MTS
are two general concepts for sequential data in various application contexts. The inter-
relationship can happen on the temporal axis, e.g., the past observations in time series
may affect the recent ones, or on the variables, e.g., one data source may interact with the
others to generate the data at each timestamp. Considering the inter-relationship in time
series is thus of upmost importance in various time series mining tasks.

Moreover, in a dynamic streaming context, the temporal relationship between the ob-
servations can be even more complex. For instance, a smart sensor continuously generates
real-valued data. An off-line dataset can be easily operated and explored to build a stable
data representation for further use. When the data is continuously generated, the dynamic
data source leads to a streaming context, for which learning the temporal relationship be-
comes more challenging. The time series with streaming features is a common data type in
real-life applications, especially in the IoT context where many sensors infinitely generate
observations in real-time if there is no external intervention. An automatic data mining
process on such data allows deploying the mining models without a human in the loop,
thus leading to an intelligent system that can be self-adaptive to the new environment.

The inter-variable relationship is another characteristic in time series, specifically, in
multivariate time series (MTS). For instance, the human activity can be detected by mul-
tiple body sensors in an MTS; the relationship between the sensors reflects the physical
interactions between different body parts. Learning such inter-variable relationships from
the observations helps build a reliable time series representation. Moreover, the inter-
variable relationship can be learned from external variable information. For instance, the

1.1. MOTIVATION 3

positions of body sensors can provide additional information for learning their relationships.
Similar data sources like the traffic sensors deployed in Smart City inherently integrate a
spatial location for each data source. The multivariate time series with the spatial lo-
cation of each variable is generally called Geo-located Time Series (GTS), for which the
inter-variable relationship can be learned not only from the observations but also from the
external information related to the data sources.

Apart from the data complexity, the actual application scenarios or the time series
mining tasks require building the time series representation accordingly. Specifically, the
time series mining can be related to various application scenarios with different research
purposes. One classic research problem is Time Series Classification (TSC) which intends
to predict the label of a new input TS instance (i.e., testing data) by extracting the
knowledge from the collected data (i.e., training data with labels). TSC has a large range
of application scenarios, including medical diagnosis, human activity recognition, industrial
troubleshooting, etc. In these applications, the data requires careful labeling, conducted
either during or after the data collection process. One typical example of the former one is
the activity recognition task; according to the observed activity, the human can annotate
the activity TS accordingly. The observation-based labeling raises several challenges for
the data collection process, such as the enormous time cost, the human effort for projecting
the observation into a concrete label, etc. Most of the labeling activities are conducted
after the data collection process (i.e., post-labeling); the human is capable of labeling the
data with (few) domain knowledge. This is quite common for the data under some specific
forms, such as images or texts, for which the labels can be easily inferred or identified.
However, time series require a more significant labeling effort. The real-valued sequence
does not provide explicit information related to its labeling. An expert with specific domain
knowledge is necessary to conduct the post-labeling on this type of data. This limits the
availability of labeled time series for the purpose of supervised learning.

Overall, the time series data can be collected from various data sources and can be
processed with different mining objectives. With enormous real-life applications, time
series mining has attracted widespread attention from researchers of multiple domains.
The interdisciplinary study on time series is usually envisaged to improve the model’s
performance or broaden the application scenarios. For instance, we can consider the time
series in the streaming context, with label constraint, or with a complex inter-relationship
between the observations under some specific application contexts, etc. Learning a task-
specific representation of these data raises different challenges. A thorough exploration of
the data characteristics and a deep understanding of the application context are critical
for building a reliable mining model on time series.

4 CHAPTER 1. INTRODUCTION

1.2 General Objectives

As described in the previous section, representation learning on time series covers a wide
range of downstream learning tasks; there are various real-life challenges on each. There-
fore, we divide the representation learning task into three main objectives:

1. Supervised Learning in streaming context: As the data are continuously gen-
erated in the real world, the first objective is to learn the dynamic representations
of Time Series in the streaming context, which capture the temporal relationship
between the observations. Compared to the static representation learning from a
constant Time Series database, dynamic representation learning provides the ex-
pert and the user an adaptive model to learn from the new coming data without
re-training the model from scratch. In addition, the adaptive model should be des-
gined with a high interpretability, which is two-fold: a) for the expert, the learning
process should be explainable and can be traced for any learning issues; b) for the
user, the learned dynamic representations should be interpretable in the streaming
context.

2. Learning weakly labeled Multivariate Time Series: Apart from the temporal
relationships, Multivariate Time Series (MTS) has a strong inter-variable relation-
ship. The post-labeling of Multivariate Time Series (MTS) is much more costly than
classic data (e.g., images, text, etc.) due to the low interpretability over the real-
valued sequence. Therefore, most MTS data, such as sensor readings, are labeled
during the data collection process. Nevertheless, the label shortage is a practical
constraint for learning from MTS. The second objective is to learn the MTS repre-
sentation in a semi-supervised manner, preserving the interpretability of the learned
representations to the users. Moreover, We should explore the difference for learn-
ing representations from Univariate Time Series and Multivariate Time Series (i.e.,
inter-variable relationship).

3. Geo-located Time Series analysis: The third objective is to consider complex
Time Series in the Smart City context. Specifically, we aim to learn the inter-
variable relationship with the help of the spatial locations of the variables (e.g.,
geo-located sensors). Moreover, we need to consider the real-world challenge of
missing values for learning the representations from the geo-located Multivariate
Time Series. One of the application scenarios is Traffic Forecasting, for which the
sensors are deployed on the road network providing extra spatial information for
learning the representations to forecast the traffic situation in the future. In reality,
the traffic data usually contains missing values due to sensor or communication
errors. The Spatio-temporal feature in traffic data leads to a complex missing-value
context: 1) in temporal axis, the values can be randomly or consecutively missing;
2) in spatial axis, the missing values can happen on one single sensor or multiple
sensors simultaneously. A model considering the complex missing-value context can

1.3. CONTRIBUTIONS 5

give reliable results when forecasting on Geo-located Multivariate Time Series.

1.3 Contributions

Therefore, this thesis tackles the three objectives mentioned above. We first present the
related state-of-the-art approaches for each of these goals. We then show our contributions
in each of the three following topics: (i) We first consider the case of dynamic represen-
tation learning on Time Series Stream, which corresponds to the objective of supervised
learning in streaming context; (ii) We then explore the case of semi-supervised represen-
tation learning on Multivariate Time Series, regarding the objective of learning weakly
labeled Multivariate Time Series; (iii) Finally, we learn the representations for forecasting
task on the geo-located Multivariate Time Series with missing values, which is related to
the objective of geo-located Time Series analysis.

1.3.1 Dynamic Representation Learning on Time Series Stream

We start by introducing the contribution related to the Supervised Time Series Represen-
tation Learning task in the streaming context. In the real world, the time series data are
usually generated continuously; for instance, the city sensors constantly monitor the city’s
situations (e.g., traffic, air pollution, etc.), thus generating infinite time series with stream-
ing characteristics. The database can be continuously enriched with newly arrived time
series samples, for which the temporal relationships may evolve over time. Considering the
supervised features in the dynamic time series, an incremental and adaptive representation
learning model allows the experts and users to explore the system’s evolution without extra
training effort, thus improving both the research and economic efficiency.

1.3.1.1 Limitation of Current Approaches

Most time series classification (TSC) approaches are biased towards learning from an off-
line time series dataset, with the assumption that data instances are independently and
identically distributed (i.i.d) within a particular concept, but rarely consider the streaming
context, where a gradual change of the concept happens along with the input of TS stream,
that is Concept Drift [5]. For instance, the most accurate ensemble classifiers [6, 7] for time
series are not good options in the streaming context due to their complex architecture.
Lazy classifiers on time series such as Nearest Neighbor (1-NN) [8], and dictionary-based
approaches [9] are applicable for streaming context. However, every input instance will be
considered to adjust the inner concept, which potentially requires an ample buffer space
and will bring a considerable computation cost. Recent Deep Neural Network (DNN)
approaches [3, 10, 11, 12] on TSC tasks are capable of tuning the model incrementally
but always stay in an awkward position for the lack of explainability, which is required by

6 CHAPTER 1. INTRODUCTION

domains like healthcare where questions of accountability and transparency are particularly
important.

1.3.1.2 SMAP

First, we propose SMAP, a scalable approach based on Matrix Profile [13] for extracting
Shapelet features from large Time Series. SMAP is applicable to certain fields in Big
Data context, where the TS features and their extraction process should be interpretable.
It improves the state of the art solutions by proposing a scalable and highly efficient
method to classify TS based on characteristic subsequences (i.e., shapelets). This work is
biased towards raw time series processing which has a higher accuracy performance but a
relatively high time complexity [14]. Traditional TSC algorithms on raw TS data are not
applicable for big data context due to their low scalability. Unlike some hardware-based
implementations, such as using GPUs to accelerate the similarity calculation [15], we focus
on the scalability of TSC based on shapelet extraction with a distributed framework named
Spark. Here are our contributions in this work:

• We propose a novel method to assess the importance of shapelets in batches.

• We introduce a scalable engine to extract the shapelets with Spark framework.

• Based on the scalable engine, we propose an optimization strategy to speed up the
shapelets extraction.

1.3.1.3 ISMAP

Second, considering the dynamic temporal relationship between time series instances in
the streaming context, we propose ISMAP, an incremental and adaptive approach for
learning representations from Time Series Stream. ISMAP fills the gap between Time
Series Classification and data streams processing, where TS features and models can be
updated with consideration of Concept Drift, without retraining the model from scratch.
The incremental version of SMAP under Spark framework allows us to further explore
the Test-then-Train strategy, to evaluate the learning model constantly on newly input
instances, then update the model regarding the evaluation result. The cached information
under the old concept will be eliminated gradually by an elastic caching mechanism, which
deals with the challenge of infinite streaming instances.

The main contributions of this work are the following:

• Scalability: Our algorithm conserves the scalability of Shapelet Extraction [16] in
the streaming context, which is always parallelizable in a remote Spark cluster with
a minimum communication cost between distributed nodes.

1.3. CONTRIBUTIONS 7

• Shapelet Evaluation: We propose a novel strategy to evaluate Shapelet, which
shows the first attempt of transferring the techniques in time series community to
data stream community.

• Test-then-Train: The novel strategy, not only accelerates the incremental Shapelet
extraction in a stable-concept context, but also helps with detecting Concept Drift
in the streaming context by Test-then-Train technique.

• Explainability: The algorithm shows not only interpretability of extracted features
(i.e., Shapelets), but also a strong explainability of Shapelet Evolution in dynamic
source context.

• Traceability: The system allows to trace and explain the learning model at different
time ticks, which gives us a possibility to supervise the system and back up the
historical features.

1.3.2 Semi-supervised Learning on Multivariate Time Series

We now show the contributions related to the semi-supervised learning task on Multivariate
Time Series (MTS). On the one hand, the label shortage is a real-life problem for learning
from any type of data. This problem becomes even more critical in the MTS context due to
the low interpretability over the real-valued sequence, for which more efforts are required
for the data annotations compared to the classic data (e.g., images, text, etc.). On the
other hand, the MTS has a complex data structure on both temporal relationship and
inter-variable relationship, which requires more processing techniques than the Univariate
Time Series (UTS).

1.3.2.1 Limitation of Current Approaches

Recent studies usually learn the representations on Multivariate Time Series in an unsu-
pervised manner. For instance, [17] uses triplet loss to form the embedding space; then
even an SVM classifier is powerful enough on the learned representation [18]. However,
existing techniques suffer from three major issues. First, the relationships between the
MTS variables are generally computed on the entire 1-D series, ignoring the fact that the
local relationships at the sub-sequence level may evolve in the dynamic sequence, that is
spatial dynamics. Second, the representation learned in a purely unsupervised manner
depends mainly on the loss function selection. As no label information is utilized to learn
the representation [17], there is a risk that it deviates from the true features, thus affecting
the classifier performance. Third, they rather employ deep learning as a blind box and do
not focus on the interpretability of the learned representation.

8 CHAPTER 1. INTRODUCTION

1.3.2.2 SMATE

To handle both the label shortage problem and the complex relationships between MTS
observations, we propose SMATE, Semi-supervised Spatio-temporal representation learn-
ing on MultivAriate Time SEries. The auto-encoder-based structure allows mapping
the MTS samples from raw features space X to low dimensional embedding space H. A
Spatial Modeling Block combined with a multi-layer convolutional network captures the
spatial dynamics, whereas a GRU-based structure extracts the temporal dynamic features.
Thereby, SMATE is capable of compressing the essential Spatio-temporal characteristics
of MTS samples into low-dimensional embeddings. On top of this embedding space H,
we propose a semi-supervised three-step regularization process to bring the model to learn
class-separable representations, where both the labeled and unlabeled samples contribute
to the model’s optimization. This regularization process comes with the capability of
visualization at each step, making SMATE interpretable.

We summarize the main contributions in this work as follows:

• Spatio-temporal dynamic features in MTS: We claim and demonstrate that
the temporal dependency and the evolution of the variable interactions (spatial dy-
namics) are important for building a reliable MTS embedding.

• Weak supervision on learning representations: With limited labeled data,
SMATE can learn reliable class-separable MTS representations for downstream tasks,
such as MTS classification (MTSC).

• Interpretable MTS embedding learning: SMATE allows for visual interpretabil-
ity, not only from the class-separable representations but also in each step of the
semi-supervised regularization process.

• Extensive experiments on the MTS datasets: The experiments are carried out
on various MTS datasets from different application domains. The detailed evaluation
with 13 supervised baselines and four semi-supervised works is provided, which shows
the effectiveness and the efficiency of SMATE over state of the art.

1.3.3 Geo-located Multivariate Time Series Forecasting with
Missing Values

We now describe the contributions related to the forecasting task on the geo-located Mul-
tivariate Time Series (MTS) with missing values. The geo-located MTS provides external
spatial information for the data sources (i.e., variables) with primary applications in the
Smart City context. On the one hand, a thorough exploration of the spatial information
is able to help us better capture the inter-variable relationships, thus improving the model
performance. On the other hand, the geo-located MTS is usually accompanied by complex
missing values. Considering theses two characteristics, the learned model can be applied

1.3. CONTRIBUTIONS 9

to various real-life applications, not limited to Traffic Forecasting, but also on crowd flow
forecasting [19], weather and air pollution forecasting [20], etc.

1.3.3.1 Limitation of Current Approaches

Recent work [21, 22, 23, 24, 25] tend to jointly consider the missing values and the fore-
casting modeling during the training step (i.e., one-step processing) and declared a better
performance than the two-step processing. However, the above-mentioned work suffers
from three major issues. First, the missing and zero values are usually considered indif-
ferent, leading to unnecessary, even harmful data imputations, thus contradicting the raw
data information. Second, most of the work [21, 22, 24, 25] considers missing values from
the temporal aspect, ignoring the rich information from the spatial perspective. Third,
they are generally designed for processing the missing values in some basic scenarios, such
as random missing or temporal block missing, but lack of power for the complex scenar-
ios. In the real-world, the missing values in traffic data occur on both long-range (e.g.,
device power-off) and short-range (e.g. device errors) settings, on partial (e.g., local sen-
sor errors) and entire transportation network (e.g., control center errors). The complex
scenarios require a holistic approach for handling various types of missing values together.

1.3.3.2 GCN-M

Therefore, to handle both the Spatio-temporal patterns and complex missing-value sce-
narios in traffic data, we propose GCN-M, Graph Convolutional Networks for Traffic
Forecasting with Missing Values. The graph neural network-based structure allows jointly
modeling the Spatio-temporal patterns and the missing values in one-step processing. We
construct local statistic features from spatial and temporal perspectives for handling short-
range missing values, which is further enhanced by a memory module to extract global
historical features for processing long-range missing blocks. The combined local-global
features allow not only identifying the missing measures from the inherent zero values but
also enriching the traffic embeddings, thus generating dynamic traffic graphs to model the
dynamic spatial interactions between traffic nodes. The missing values on a partial and
entire network can then be considered from spatial and temporal perspectives.

We summarize the contributions in this work as follows:

• Complex missing value modeling: We study the complex scenario where missing
traffic values occur on both short & long ranges and partial & entire transportation
networks.

• Spatio-temporal memory module: We propose a memory module that can be
used by GCN-M to learn both local Spatio-temporal features and global historical
patterns in traffic data for handling the complex missing values.

10 CHAPTER 1. INTRODUCTION

• Dynamic graph modeling: We propose a dynamic graph convolution module that
models the dynamic spatial interactions. The dynamic graph is characterized by the
learned local-global features at each timestamp, which not only offset the missing
values’ impact but also help learn the graph.

• Joint model optimization: We jointly model the Spatio-temporal patterns and
missing values in one-step processing, which allows processing missing values specif-
ically for traffic forecasting tasks, thus bringing better model performance than two-
step processing.

• Extensive experiments on real-life data: The experiments are carried out on
two real-life traffic datasets. We provide detailed evaluations with 12 baselines, which
show the effectiveness of GCN-M over the state-of-the-art.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows.

In Chapter 2, we review the state of the art and formulate the research problems. First,
we introduce basic definitions and taxonomy related to the representation learning on Time
Series mining (Section 2.1). Then, we review the state-of-the-art approaches of learning
Time Series Representations for both classification (Section 2.2) and forecasting (Section
2.3).

In Chapter 3, we discuss the supervised representation learning task on Time Series
Stream. First, we show the positioning of our work in state-of-the-art and the limitations
of previous work related to our research problem. Then, we introduce two approaches for
supervised representation learning on large time series. We first show SMAP, an off-line
approach for extracting Shapelet features from large Time Series in a distributed manner.
We then describe ISMAP, an online version of SMAP which allows learning the Time
Series Representation in a streaming context. Finally, we show the experimental results
on real-life datasets under the streaming context.

In Chapter 4, we discuss the semi-supervised representation learning task on Multivariate
Time Series. We first describe the limitations of the current state-of-the-art approaches
when learning representations from Multivariate Time Series. Then, we introduce SMATE
(Section 4.4), a semi-supervised Spatio-temporal representation learning model on Multi-
variate Time Series. We finally show an extensive experimental analysis (Section 4.5) on
MTS datasets from various application domains under both supervised and semi-supervised
settings.

In Chapter 5, we discuss the forecasting task on the geo-located Multivariate Time Series
(MTS) with missing values. Specifically, we adopt the Traffic Forecasting scenario for
the learning task. First, we show the limitation of previous Traffic Forecasting work when

1.5. LIST OF PUBLICATIONS 11

considering both Spatio-temporal structure and the complex missing-value scenario. Then,
we describe GCN-M (Section 5.4), a graph convolutional network-based model for traffic
forecasting with missing values. Finally, we show the experimental results on real-life traffic
data and compare them with the state-of-the-art approaches.

1.5 List of Publications

• J. Zuo, K. Zeitouni, Y. Taher, S. G. Rodriguez: Graph Convolutional Networks for
Traffic Forecasting with Missing Values. [Under Review]

• H. El Hafyani, M. Abboud, J. Zuo, K. Zeitouni and Y. Taher: Learning the Micro-
environment from Rich Trajectories in the context of Mobile Crowd Sensing -Application
to Air Quality Monitoring. [Under Review]

• J. Zuo, K. Zeitouni, Y. Taher: Semi-supervised Spatio-Temporal Representation
Learning on Multivariate Time Series, IEEE ICDM, Virtual Conference (2021)

• H. El Hafyani, M. Abboud, J. Zuo, K. Zeitouni and Y. Taher: Tell Me What Air You
Breath, I Tell You Where You Are, demonstration track, SSTD, Virtual Conference
(2021)

• M. Abboud, H. El Hafyani, J. Zuo, K. Zeitouni and Y. Taher: Micro-environment
Recognition in the context of Environmental Crowdsensing, BMDA@EDBT, Virtual
Conference (2021)

• J. Zuo, K. Zeitouni, Y. Taher: Incremental and Adaptive Feature Exploration over
Time Series Stream, IEEE BigData, Los Angeles, USA (2019)

• J. Zuo, K. Zeitouni, Y. Taher: ISETS: Incremental Shapelet Extraction from Time
Series Stream, demonstration track, ECML-PKDD, Würzburg, Germany (2019)

• J. Zuo, K. Zeitouni, Y. Taher: Exploring Interpretable Features for Large Time
Series with SE4TeC, demonstration track, EDBT, Libon, Portugal (2019)

• J. Zuo: Time Series meet Data Streams: Perspectives of the Interdisciplinary Colli-
sion and Applications, PhD symposium, BDA, Lyon, France (2019)

Chapter 2

State of the art

Contents
2.1 Time Series Data Mining 13

2.1.1 Definition and taxonomy 14

2.1.2 Representation Learning on Time Series 18

2.1.3 Data Stream and Time Series 27

2.1.4 Semi-supervised Learning on Time series 30

2.2 Time Series Representation for Classification 31

2.2.1 Raw Sequence as Representations 32

2.2.2 Statistic Features as Representations 34

2.2.3 Local patterns as Representations 35

2.2.4 Deep Representations . 37

2.2.5 Ensemble Representations 38

2.2.6 Univariate versus Multivariate Time Series 39

2.3 Geo-located Time Series Representation for Forecasting 40

2.3.1 Definitions . 41

2.3.2 Geo-located time series forecasting 42

2.4 Conclusion . 46

2.1 Time Series Data Mining

Time Series Mining is a classical research problem in the data mining community, which
has been studied for decades. Due to the complex data structure and board application
domains of the time series, various mining activities [26] have been conducted on top of

13

14 CHAPTER 2. STATE OF THE ART

the time series, such as classification, clustering and forecasting, studied by the machine
learning community, or indexing, segmentation considered by the database community,
etc. This chapter introduces the necessary background for mining time series data from
the perspective of the representation learning [27]. We start by introducing briefly the
basic definitions related to time series mining. Then, we pick two downstream learning
tasks (classification, forecasting) and present the state-of-the-art work.

2.1.1 Definition and taxonomy

Definition 2.1. (Time series). A time series (TS) x ∈ RT×M is a sequence of real-valued
vectors: x=(x1, x2, ..., xt, ..., xT), where xt ∈ RM , M is the variable number. When
M = 1, we call it univariate time series (UTS), otherwise we call it multivariate time
series (MTS).

Definition 2.2. (Subsequence). Given a time series x of length T , a subsequence xt,m
of x is a continuous subset of values from x of length m ≤ T starting from index t:
xt,m = (xt, xt+1, ..., xt+m−1), where t ∈ [0, n−m+ 1].

Definition 2.3. (Time series representation). Given a time series x ∈ RT×M , a time
series representation r ∈ RT ′×M ′ is a summarised (i.e., T ′ ×M ′ < T ×M) feature set of
the original time series x, which closely approximates x.

Definition 2.4. (Time series similarity measure). The similarity measure D(x, x′) of time
series x and x’ is a function taking two time series as inputs and returning the distance
between these series.

Time series data differs from static data in a way that the ordering of the data attribute
in time series data is critical in finding the best discriminating features.

The purpose of time series mining is to extract all meaningful knowledge from complex
temporal data. As shown in Figure 2.1, according to the mining activities on time series, we
roughly organize the time series mining into two categories: (i) Learning-based activities,
where the typical machine learning tasks are conducted to explore the valuable knowledge in
time series; (ii) Non-learning-based activities, where the high-level mining tasks specifically
designed for time series data are studied. These tasks are usually defined as theoretical
objectives, and the actual applications may cover multiple tasks simultaneously. In other
words, the intersections between the mining activities are practically common depending
on the concrete context. For instance, the Anomaly Detection in time series is defined
differently according to the context: when the anomaly’s nature is known in advance, e.g.,
a subsequence, then it is related to a Indexing-Query problem in the time series database;
when the anomaly is unknown, one consensus [28] is to consider the rare motif in the
sequence as an anomaly, then it is related to the Motif Discovery task. In the rest of this
section, we describe the mining activities briefly within each category.

2.1. TIME SERIES DATA MINING 15

Time Series
Mining

Learning-based

Query & Pattern
mining-based

Supervised
Learning

Segmentation

Indexing
Query by Content

Motif Discovery

Frequent Motifs

Rare Motifs

Anomaly Detection

Point-based

Segment-based

Semi-supervised
Learning

Unsupervised
Learning

Classification

Regression

Forecasting

Clustering

Dimensionality
Reduction

Whole Sequence

Figure 2.1: Taxonomy of time series mining activities

2.1.1.1 Learning-based Time Series Mining

Definition 2.5. (Time series classification). Given a training set D = {x(i), y(i)}Ni=1 with
N time series x(i) and their associated label (target variable) y(i), where y(i) is a categorical
value, we aim to learn a classification model f such that f(x(i)) = y(i), in order to predict
correctly the labels of new testing time series.

Definition 2.6. (Time series regression). Given a training set D = {x(i), y(i)}Ni=1 with N

time series x(i) and their associated label (target variable) y(i), where y(i) is a continues
scalar value, we aim to learn a regression model f such that f(x(i)) ≈ y(i), in order to
predict precisely the labels of new testing time series.

Definition 2.7. (Time series forecasting). Given a training set D = {x(i)
1:T , y

(i)}Ni=1 with
N time series x(i)

1:T = (x(i)1 , x(i)2 , ..., x(i)t , ..., x(i)T) and their associated label (target variable)
y(i) = (x(i)T+1, ..., x(i)T+τ), we aim to learn a forecasting model f such that f(x(i)) ≈ y(i), in
order to forecast precisely the future values of a new testing time series. The time point
T +1 is referred to as forecast start time and τ ∈ N>0 is the forecast horizon. When τ = 1,
we call it single-step forecasting, otherwise we call it multi-step forecasting.

16 CHAPTER 2. STATE OF THE ART

Time series classification, regression, and forecasting are supervised learning tasks that
learn the relationship between a target variable and an input time series representation.
The main difference between the learning tasks is related to the target variables. For the
classification tasks, we predict a categorical value for a data instance that categorizes the
data into some finite categories; for the regression tasks, the model outputs a continuous
value; for the forecasting tasks, the model predicts a value or a sequence in the future. We
should note that these learning tasks are mutually convertible. For instance, the Regression
tasks become Classification tasks when the predicted values are discretized into some finite
labels for the data. Similarly, the Forecasting tasks can become Regression tasks when we
set the forecast horizon to 1, i.e., single-step forecasting.

Definition 2.8. (Semi-supervised time series learning). Given a weakly labeled TS dataset
D = {Dl,Du} which contains both labeled and unlabeled TS samples:

Dl = {x(i), yi}N∗r
i=1 , Du = {x̂(i)}N∗(1−r)

i=1

where r (0 ≤ r ≤ 1) indicates the ratio of the labeled samples in D of size N, yi is the
annotation of the labeled instance x(i), the semi-supervised time series learning aims at
training a model to predict successfully the label of a testing time series, adopting the
supervised training from Dl and further unsupervised adjustment/optimization from Du.

Definition 2.9. (Unsupervised time series learning). Given an input set D = {x(i)}Ni=1

composed of N time series x(i) without any target variables, the unsupervised learning
on time series aims to build representations of the input D that can be used for decision
making, predicting future inputs, etc.

Two classic examples of unsupervised time series learning are time series clustering [29]
and time series dimensionality reduction [30], in which a time series representation [31] is
learned to conserve the primary features in time series.

2.1.1.2 Query & Pattern mining-based Time Series Mining

Unlike the learning-based activities, the Query & Pattern mining on time series are gener-
ally high-level mining tasks that cover various specific techniques for processing time series
data.

Definition 2.10. (Time series segmentation). Given a Time Series x=(x1, x2, ..., xt, ...,
xT), time series segmentation aims to construct a model f which divided x into a sequence
of K discrete segments f(x)= {r(i)}Ki=1 such that f(x) closely approximates x, where r(i)

is a linear segment.

2.1. TIME SERIES DATA MINING 17
A:8 P. Esling and C. Agon

(a) (b)

Fig. 4. Example of application of a segmentation system. From (a) usually noisy time series containing a very large number
of datapoints, the goal is to find (b) the closest approximation of the input time series with the maximal dimensionality
reduction factor without loosing any of its essential features.

segmentation system. Section 4.2 will show that most time series representations try to solve this
problem implicitly.

Definition 3.9. Given a time series T = (t1, ..., tn), construct a model T̄ of reduced dimensiona-
lity d̄ (d̄⌧ n) such that T̄ closely approximates T . More formally |R(T̄)�T | < er, R(T̄) being the
reconstruction function and er an error threshold.

The objective of this task is thus to minimize the reconstruction error between a reduced repre-
sentation and the original time series. The main approach that have been undertaken over the years
seems to be Piecewise Linear Approximation (PLA) [Shatkay and Zdonik 1996]. The main idea
behind PLA is to split the series into most representative segments, and then fit a polynomial model
for each segment. A good review on the most common segmentation methods in the context of PLA
representation can be found in [Keogh et al. 2003]. Three basic approaches are distinguished. In sli-
ding windows, a segment is grown until it exceeds some error threshold [Shatkay and Zdonik 1996].
This approach has shown poor performance with many real life datasets [Keogh et al. 2003]. The
top-down approach consists in recursively partitioning a time series until some stopping criterion is
met [Li et al. 1998]. This approach has time complexity O

�
n2
�

[Park et al. 1999] and is qualitatively
outperformed by bottom-up. In this approach, starting from the finest approximation, segments are
iteratively merged [Keogh and Pazzani 1998]. [Himberg et al. 2001] present fast greedy algorithms
to improve previous approaches and a statistical method for choosing the number of segments is
described in [Vasko and Toivonen 2002].

Several other methods have been introduced to handle this task. [Palpanas et al. 2008] introduced
a representation of time series that implicitly handles the segmentation of time series. They proposed
user-specified amnesic functions reducing the confidence to older data in order to make room for
newer data. In the context of segmenting hydrological time series, [Kehagias 2004] proposed a
maximum likelihood method using an HMM algorithm. However, this method offers no guarantee
to yield the globally optimal segmentation without long execution times. For dynamic summary
generation, [Ogras and Ferhatosmanoglu 2006] proposed an online transform-based summarization
techniques over data streams that can be updated continuously. The segmentation of time-series
can also be seen as a constrained clustering problem. [Abonyi et al. 2003] proposed to group time
points by their similarity, provided that all points in a cluster come from contiguous time instants.
Therefore, each cluster represents the segments in time whose homogeneity is evaluated with a local
PCA model.

3.5. Prediction
Time series are usually very long and considered smooth, i.e. subsequent values are within predic-
table ranges of one another [Shasha and Zhu 2004]. The task of prediction is aimed at explicitly
modeling such variable dependencies to forecast the next few values of a series. Figure 5 depicts
various forecasting scenarios.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: M YYYY.

(a) the raw time series

A:8 P. Esling and C. Agon

(a) (b)

Fig. 4. Example of application of a segmentation system. From (a) usually noisy time series containing a very large number
of datapoints, the goal is to find (b) the closest approximation of the input time series with the maximal dimensionality
reduction factor without loosing any of its essential features.

segmentation system. Section 4.2 will show that most time series representations try to solve this
problem implicitly.

Definition 3.9. Given a time series T = (t1, ..., tn), construct a model T̄ of reduced dimensiona-
lity d̄ (d̄⌧ n) such that T̄ closely approximates T . More formally |R(T̄)�T | < er, R(T̄) being the
reconstruction function and er an error threshold.

The objective of this task is thus to minimize the reconstruction error between a reduced repre-
sentation and the original time series. The main approach that have been undertaken over the years
seems to be Piecewise Linear Approximation (PLA) [Shatkay and Zdonik 1996]. The main idea
behind PLA is to split the series into most representative segments, and then fit a polynomial model
for each segment. A good review on the most common segmentation methods in the context of PLA
representation can be found in [Keogh et al. 2003]. Three basic approaches are distinguished. In sli-
ding windows, a segment is grown until it exceeds some error threshold [Shatkay and Zdonik 1996].
This approach has shown poor performance with many real life datasets [Keogh et al. 2003]. The
top-down approach consists in recursively partitioning a time series until some stopping criterion is
met [Li et al. 1998]. This approach has time complexity O

�
n2
�

[Park et al. 1999] and is qualitatively
outperformed by bottom-up. In this approach, starting from the finest approximation, segments are
iteratively merged [Keogh and Pazzani 1998]. [Himberg et al. 2001] present fast greedy algorithms
to improve previous approaches and a statistical method for choosing the number of segments is
described in [Vasko and Toivonen 2002].

Several other methods have been introduced to handle this task. [Palpanas et al. 2008] introduced
a representation of time series that implicitly handles the segmentation of time series. They proposed
user-specified amnesic functions reducing the confidence to older data in order to make room for
newer data. In the context of segmenting hydrological time series, [Kehagias 2004] proposed a
maximum likelihood method using an HMM algorithm. However, this method offers no guarantee
to yield the globally optimal segmentation without long execution times. For dynamic summary
generation, [Ogras and Ferhatosmanoglu 2006] proposed an online transform-based summarization
techniques over data streams that can be updated continuously. The segmentation of time-series
can also be seen as a constrained clustering problem. [Abonyi et al. 2003] proposed to group time
points by their similarity, provided that all points in a cluster come from contiguous time instants.
Therefore, each cluster represents the segments in time whose homogeneity is evaluated with a local
PCA model.

3.5. Prediction
Time series are usually very long and considered smooth, i.e. subsequent values are within predic-
table ranges of one another [Shasha and Zhu 2004]. The task of prediction is aimed at explicitly
modeling such variable dependencies to forecast the next few values of a series. Figure 5 depicts
various forecasting scenarios.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: M YYYY.

(b) the segmented time series

Figure 2.2: (Figure taken from [2]) Example of the time series segmentation.

As shown in Figure 2.2, the time series segmentation generates an accurate approxi-
mation of the raw time series. The segmentation operation can be considered either as
a discretization problem [32] or as a preprocessing step for various mining tasks, such as
time series classification [33], time series clustering [34], etc. The most common approach
for segmenting time series is Piecewise Linear Approximation (PLA) [35]. The main idea
behind PLA is first to split the series into most representative segments, then to fit a
polynomial model for each segment. A good review on the splitting and fitting techniques
based on PLA can be found in [32].

Definition 2.11. (Time series indexing). The time series indexing aims to build a scheme
that efficiently organizes time series data for quick retrieval/query in large time series
databases.

Most time series indexing approaches involve a dimensionality reduction process in
order to index the low-dimensional time series representations (a.k.a., summarization). A
classical review of time series representations for dimensionality reduction can be found in
[31], which suggests that the querying speed (i.e., efficiency) and the quality of querying
results (i.e., effectiveness) are two main issues when building the indexing scheme. To
support efficient querying (a.k.a., similarity search) in a time series database, the design of
distance measure and summarization techniques is critical. A detailed review for handling
efficient time series querying can be found in [36].

Definition 2.12. (Motif Discovery). Given a long Time Series x of length T , the Time
series motif discovery is to extract the approximately repeated subsequence from x.

Originally defined in [37], time series motifs are typical non-overlapping subsequences,
which can be frequently repeated, such as the common heartbeat ECG recordings (less than
once per second) [38] of a specific patient, or infrequently repeated, such as the repeating
earthquake source [39] in Sonoma County, California, that has a frequency of about once
per 13.6 years.

Definition 2.13. (Time series anomaly detection). A time series anomaly is an observa-
tion or a sequence of observations that deviates remarkably from the general distribution
of data. The set of anomalies forms a tiny part of the dataset. Given a Time Series x

18 CHAPTER 2. STATE OF THE ART

of length T , the anomaly detection aims to identify the location of the abnormal obser-
vation (point-based anomaly) or sequence of observations (segment-based/whole sequence
anomaly) in x.

There are two main characteristics of anomalies: (i) The distribution of the anomalies
deviates remarkably from the general distribution of the data; (ii) The big majority of the
dataset consists of normal data points. The anomalies form only a tiny part of the dataset.
The time series anomaly detection is a high-level mining activity covering various mining
tasks depending on the techniques and concrete context. For instance, knowing a-priori
which kind of anomaly the data light contain, converts the detection task as an Indexing-
Query problem in the time series database; In contrast, if the anomaly is unknown, it can
be related to the Rare Motif Discovery task [40], Time Series Forecasting task [41], or
Time Series Clustering task [42] after segmenting the time series [32].

2.1.2 Representation Learning on Time Series

Definition 2.14. (Time series representation learning). Also known as time series feature
learning, given x ∈ RT×M , it aims to build a model f, to learn a representation r = f(x) ∈
RT ′×M ′ (T ′×M ′ < T ×M) of the time series x, which conserves the key characteristics of
x and can be applied to one or multiple downstream learning tasks, such as classification,
regression, forecasting, clustering, etc.

Time series has a high dimensionality, the observation at each timestamp can be con-
sidered as an individual dimension. Therefore, the data mining algorithms that work
directly on raw time series can be computationally expensive and storage costly. The main
motivation of constructing or learning a data representation is to emphasize the essential
characteristics of the data in a concise way. With an appropriate representation, the mining
tasks obtain improvements not only on the model efficiency but also on the model’s effec-
tiveness [31]. Additional benefits obtained are efficient data/model storage [43], removal
of random noise [44], and the possibility of processing multi-model data under a unified
view [27]. For instance, the time series representation integrating the key characteristics
(e.g., temporal ordering features) allows applying the algorithms designed for static data
for various downstream time series mining tasks (e.g., classification, clustering, etc.). The
data representation can be considered as a transformation of the complex input data into
a unified processing unit. These basic properties lead to the following requirements for any
time series representation techniques: (i) the data dimensionality should be significantly
reduced; (ii) the essential time series characteristics should be conserved; (iii) the repre-
sentation should be computationally efficient; (iv) the representation should be insensible
to noise or be capable of handling noisy time series.

The time series representation is a primary research issue in time series mining. There
are various representation techniques designed for different purposes in the literature. We
organise the representation techniques into three basic categories: transformation-based

2.1. TIME SERIES DATA MINING 19

Time Series
Representation

Transformation-
based

Local-pattern-
based

Model-based

Statistic
modeling

Neural
networks

ARIMA

Hidden Markov Model
(HMM)

Data adaptive

Non-data
adaptive

Shapelet-based

Motif patterns

Markov Chains

Wavelet-based

Random Mappings

Spectral Decomposition

PAA-based

DFT

DCT

CHEB

Inherently data-adaptive

SVD

APCA

PLA-based

Symbolic
Representation

Rule-based selection

Supervised Shapelet

Unsupervised Shapelet

Supervised structure

Unsupervised structure

Extraction-based

Learning-based

SPIRAL

SFA

Clippings

SAX

Auto-encoders (AEs)

Generative models

Contrastive models

Figure 2.3: Taxonomy of time series representation approaches

20 CHAPTER 2. STATE OF THE ART

representations, local pattern-based representations, and model-based representations. Fig-
ure 2.3 shows a taxonomy for building a time series representation.

2.1.2.1 Transformation-based Representations

In transformation-based representations, a set of rules are applied to transform the en-
tire time series into a low-dimensional representation, which roughly conserve the global
characteristics of the time series. According to [31], the rules-based representations can be
divided into two basic categories: Non-Data Adaptive and Data Adaptive.

Non-Data Adaptive. The non-data adaptive representation applies identical parameters
or operations for transforming every time series in the database regardless of its nature.

The most commonly used techniques are based on the Piecewise Aggregate Approxima-
tion (PAA) [45, 46] (also called Piecewise Constant Approximation in [47]), which represent
the time series by using the mean values of consecutive fixed-length segments. Authors
in [48] propose an extended version called Adaptive Piecewise Constant Approximation
(APCA), in which the length of each segment is adaptive to the shape of the time series.
In addition, [49] proposes Multi-resolution PAA which constructs the representation at
various resolution levels. Instead of using mean values, [50] adopts the segmented sum of
variation (SSV) to represent each segment, while [51] proposes extracting and concatenat-
ing the amplitude-levelwise local features (ALF) of each local segments to represent the
whole series. Furthermore, a bit-level approximation is proposed by [52, 53], which uses a
bit to represent each data point. Authors in [54, 55, 56] adopt a set of statistic features
as the time series representations, which can be extracted from each segment or the entire
series.

Random Projection [57] is another technique for transforming time series. The main
idea is to apply k random vectors on the time series to compute the convolution products.
In this way, the time series are projected into k sub-spaces leading to a larger feature space
for downstream learning tasks, e.g., classification, clustering, etc. This technique has been
adopted by [58] for doing statistic queries in streaming time series, and by [12, 59] for
classifying time series with thousands of fixed convolutional kernels. Similarly, the kernel
methods such as the Random Warping Series (RWS) [18], Wasserstein Time Series Kernel
(WTK) [60], and Generic RepresentAtIon Learning (GRAIL) [61] have great promise for
learning time series features with non-linear models by implicitly projecting the time series
into rich-feature representations.

The methods, as mentioned above, transform time series in time domain directly.
Transforming time series in the spectral domain is another large family of approaches.
Spectral decomposition allows decomposing the time series with various basis signals and
corresponding coefficients. For instance, the Discrete Fourier Transforms (DFT) [62] adopts
a sin and cosine function basis [63], the Discrete Cosine Transform (DCT) [64] uses only a
cosine basis, and [65] applies Chebyshev polynomials (CHEB) as a basis. These methods

2.1. TIME SERIES DATA MINING 21

consider the global characteristics of the time series, which are applicable for stationary
time series. The wavelet-based approaches are capable of conducting time-frequency anal-
ysis which allows extracting the local frequency characteristics of different intervals in
non-stationary time series. For instance, the Discrete Wavelet Transform (DWT) has been
found to be effective in replacing DFT [66], which uses a scaled and shifted version of a
basic wavelet function. In addition, various wavelet functions have been investigated by
researchers, such as Haar [67], Daubechies [68] or Coiflets [69]. Authors in [70] provide a
detailed comparison between different wavelet functions. Besides, [71] compares DFT and
DWT for the similarity search task in the time series database. Finally, a combination of
DFT and DWT is applied in [72] to extract both local and global frequency characteristics
in time series.

All the non-data adaptive methods apply the same function or operation with identical
parameters to transform the time series in the database. Authors in [31] show that these
methods are generally less efficient than the data adaptive approaches as they do not adapt
to each individual data.

Data Adaptive. In data adaptive approaches, the transforming function or operation
parameters are dynamic according to the time series instance.

First, when considering an additional data-sensitive selection step, almost all non-data
adaptive methods can become data adaptive. For instance, the data-adaptive version of
DFT [73] and DWT [74] allows selecting the best Fourier or Wavelet coefficients on the
individual time series samples. As for the data-adaptive methods based on PAA, authors
in [75] propose Piecewise Vector Quantized Approximation (PVQA), which partitions each
sequence into equal-length segments and uses vector quantization to represent each segment
by the closest codeword from a codebook of key-sequences. Based on PVQA, the Multi-
resolution Vector Quantized Approximation (MVQA) [76] keeps both local and global
information about the original time series in a hierarchical mechanism, processing the
original time series at multiple resolutions.

Second, some methods are inherently data adaptive. For instance, the Singular Value
Decomposition (SVD) proposed in [64] considers the time series database as a huge data
matrix that can be decomposed into low-dimensional matrices. However, SVD is com-
putational and storage costly [31] thus untenable for large datasets. Similarly, a recent
work named SPIRAL [77] takes the entire dataset of time series with various lengths and
converts it into an instance-feature matrix, where the feature is represented by the simi-
larity between the time series instances. Instead of considering the interrelation between
time series instances as the representation, another set of studies works directly on each
individual time series. The Adaptive Piecewise Constant Approximation (APCA) [48] ap-
proximates each time series by a set of constant value segments of varying lengths such that
their individual reconstruction errors are minimal. The Piecewise Linear Approximation
(PLA) [35] is a widely used representation for the time series segmentation task. Each
linear segment in PLA is represented by a set of polynomial coefficients and can be ob-
tained either by interpolation [78] or regression [79]. A large number of PLA variants have

22 CHAPTER 2. STATE OF THE ART

been proposed for different purposes. For instance, [80] extends PLA to a multi-resolution
setting; [81] proposes an Indexable PLA to accelerate the time series indexing process; [82]
extends PLA into the context of streaming time series, which prioritizes the recent queries
compared to the old ones.

Finally, instead of discretizing the time series into numeric segments, it is also possi-
ble to transform the sequence into a set of symbols. The symbolic representations would
allow researchers to avail of the wealth of data structures and algorithms from the text
processing and bioinformatics communities [83]. For instance, [84] encodes the shape of
time series into an alphabet of characters and then to treat them as text; [79] transforms
time series into symbol strings using change ratio between contiguous data points which
allow building a suffix tree to index all suffixes of the symbol strings. An early review of
the symbolization or symbolic time series analysis can be found in [85]. However, these
methods did not define a distance measure in the symbolic space, which is correlated with
the distance measures defined on the original time series, thus providing no lower bounding
guarantee for efficiently manipulating the symbolic representation. The Symbolic Aggre-
gate approXimation (SAX) [86] first transforms the data into the Piecewise Aggregate
Approximation (PAA) representation [45] and then symbolizes the PAA representation
into a discrete string. In this way, the symbolic distance measure defined in SAX would
allow lower bounding the PAA distance. Various SAX extensions have been proposed in
the literature. For instance, apart from considering the mean values of the time series
segments when building PAA, the extended SAX (ESAX) [87] uses additional two new
points, that is, max and min points, for segment approximation; 1d-SAX [88] integrates
the slope value of the segment for modeling the time series trend, which is followed by
[89] for improving the trend distance measure. Instead of using PAA representation as the
first transformation step, the Symbolic Fourier Approximation (SFA) [90] symbolizes the
time series over its DFT representations [62]. Recent work [9, 44] adopt the "bag-of-words"
concept from the text mining community to represent the symbolized time series, two typi-
cal representations are Bag-of-SAX-Symbols [9, 91] and Bag-of-SFA-Symbols (BOSS) [44].
Another possibility to symbolize the series is via a grid-based representation [92], which
places a two-dimensional grid over the time series and generates a bit string describing
which values were kept and which bins they were in. A similar idea has been applied in
[52, 93] which define a clipping threshold to generate a bit over each data point indicating
whether the series is above or below the threshold. Clipping-based methods have a tight
lower bounding guarantee as the clipped series allows comparing directly with the raw time
series.

To summarize, the transformation-based methods apply a set of rules or operations to
transform the entire time series into a low-dimensional representation. The parameters in
the rules can be constant (i.e., non-data adaptive) or dynamic (i.e., data adaptive) over
each time series instance. We should note that each data point in the series contributes to
constructing the transformed representation, thus leading to relatively complete conserva-
tion of the series’ information and a low reconstruction error.

2.1. TIME SERIES DATA MINING 23

2.1.2.2 Local pattern-based Representations

For most real-world problems, such as time series classification or clustering, we usually
expect the time series samples to be equal in length, with no presence of significant noise
and missing values or intervals, etc. The representation built from the entire sequence
with such imperfect properties will greatly limit the downstream mining tasks. Therefore,
instead of considering the entire time series for building the representation, another set of
work [94, 95, 96, 97] suggest that the local patterns or their combinations can show great
power for representing the entire sequence. These representations are usually related with
specific mining tasks, such as classification or clustering.

A new primitive named Shapelet was proposed in [14] as a typical local pattern-based
representation for time series. Initially designed for time series classification task, the
Shapelet was defined as a subsequence that is maximally representative of a class and can
discriminate one class from the others. This representation can be considered as a step
forward towards bridging the gap between time series and shape analysis, which has a
big advantage on interpretability. A large amount of work extends the Shapelet represen-
tations from local-based patterns to the global features of the time series. For instance,
[98] applies rule-based modeling on a set of Shapelets and select the best Shapelet com-
bination as the representation; [97] applies Shapelets as individual feature attributes and
represents the time series as a set of attribute values containing the distance from the
Shapelet to the original series. Instead of extracting Shapelets from the raw time series
with high time complexity [14], recent work [99, 100, 101] tend to learn a Shapelet rep-
resentation from scratch to reduce the complexity while conserving the interpretability.
Either the extraction-based [14, 16, 97] or learning-based [101, 99, 102] Shapelet represen-
tations (usually) show big advantage on the shape-based interpretability. Not limited to
the supervised classification task, Shapelet can also be applied to the unsupervised clus-
tering task. Authors in [94] propose Unsupervised Shapelet (U-Shapelet), which adopts
the subsequence (i.e., Shapelet) with appropriate distance with other samples to represent
the whole series. A scalable version is proposed in [95] which selects Shapelets based on
the SAX representation to accelerate the distance computation. This work is followed by
[103] for processing uncertain time series.

Similar to the Shapelet representation, the recurrent local pattern (i.e., motifs [37])
is capable of representing a long, repetitive time series. The main difference between the
Shapelets and motifs lies in the repetitive characteristics of the data. Authors in [104]
detect local patterns in repetitive time-series via fitting local polynomial functions of arbi-
trary degrees on each sliding window. [96] discovers the motif patterns of variable length
and selects the most frequent pattern as the output representation. All these approaches
can be combined with the transformation-based representations (e.g., SAX) to accelerate
the local-pattern discovery.

24 CHAPTER 2. STATE OF THE ART

2.1.2.3 Model-based Representations

In the model-based representations, we usually assume that the observed time series is
generated by an underlying model. The parameters of such a model can be considered as
a representation. In this categories, we organize the approaches into two classes: statistic
modeling and neural network-based modeling.

For statistic modeling-based representations, several parametric temporal models have
been considered in the literature. For instance, the Auto-Regressive Integrated Moving
Average (ARIMA) allows modeling the statistic features (i.e., trend, cycle, stochastic per-
sistence components, and random elements) of a time series with a set of coefficients (e.g.,
the orders of the seasonal auto-regressive and moving average components, the order of
seasonal differencing, etc.). Authors in [105] applies ARIMA model’s coefficients as time
series representations for time series clustering task. Similar techniques such as learning
Markov Chain (MCs) representations [106] of the dynamic process in the time series, which
is represented as a transition probability matrix, or learning the Hidden Markov Model
(HMM) [107] representation for clustering the time series.

The (deep) representations modeled by neural networks have attracted widespread
attention recently [17, 108, 109, 30, 29, 110, 111, 112, 113, 11]. A neural network is a graph
of computing units (called neurons) structured in layers, which apply a non-linearity on
a linear combination of input values [114]. The output of each layer can be considered
as a representation that integrates the key characteristics of the input data. The specific
domain knowledge (e.g., temporal features, shape-based features) of time series can be
used to help design the network for learning representations [27]. Depending on whether
the data annotations are used, we categorize the representation methods into two classes:
supervised and unsupervised representation learning.

Supervised neural representations. Most of the neural representations of time series
in the literature are learned in a supervised manner. With the help of data annotations,
the supervised representations are usually learned for specific tasks, such as classification
[115, 116], regression [117], forecasting [4], or even time series retrieval [110]. The main
difference between them lies in the final layers of the network and the choice of loss functions
for optimizing the model parameters. The first layers of the network can be considered
as a feature extractor which can be designed differently with the assumptions or prior
knowledge about the time series data. For instance, the convolutional neural networks
(CNNs) or recurrent neural networks (RNNs) are two basic modules that can be used to
extract time series features from different aspects (e.g., local features from CNNs, temporal
features from RNNs). A huge amount of time series networks are built on these two basic
units with the inspirations from the computer vision (CV) and natural language processing
(NLP) communities. Typical techniques such as adding residual connections (i.e., ResNet
[118]) between CNN blocks in [119], adopting the inception structure [120] to combine
multi-scale convolution kernels in [121, 122, 123], considering the attention mechanism
[124] on CNNs [125, 111] or RNNs [10], etc. The networks can also be designed with

2.1. TIME SERIES DATA MINING 25

the help of the classical time series analysis. For instance, [126] combines the statistic
features extracted from time series with a multi-layer perceptron (MLP) neural network
to learn the representation; [127] applies a frequency-filter on the input series to feed the
multi-frequency signals to the network; [11] adopts the idea of wavelet decomposition to
build frequency-aware neural networks; [128] leverages traditional auto-regressive model
with CNN-RNN networks to discover long- and short-term temporal patterns.

The supervised networks for learning the time series representation are usually task-
specific approaches. In other words, the representations designed for one learning task (e.g.,
classification) is not always applicable for another one (e.g., forecasting), as they emphasize
different characteristics of time series. For instance, the CNN-based models [12, 59] achieve
satisfying results on time series classification tasks as the local convolutional features
can be easily weighted or combined to output a single prediction [3], whereas the time
series forecasting models [4] are biased towards modeling the long- or short-term temporal
patterns to find the correlation between future and historical values, the model structures
are generally based on the temporal convolutional networks (TCNs) [129, 130], RNNs
[131, 132], or transformers [133, 134].

Unsupervised neural representations. Different from the supervised neural represen-
tations, which are task-specific, the unsupervised neural models learn general representa-
tions which are ready to be used for a variety of learning tasks.

The first powerful family to learn the unsupervised representations is based on the
auto-encoder (AE) [135] structure. The main idea is to train an encoder and a decoder
simultaneously, such that the encoded data can be successfully reconstructed. If so, the
encoded data integrates the essential characteristics of the input data as its representation.
The sequence-to-sequence (seq2seq) auto-encoder [136] is designed for sequential data and
has been widely adopted in recent studies [113, 137] for time series representation learn-
ing. Various work improved the seq2seq structure in the time series context. For instance,
the Deep Temporal Clustering Representation (DTCR) [29] integrates the temporal recon-
struction and K-means objective into the seq2seq model to learn cluster-specific temporal
representations. This model is further extended by [109] for learning time series with miss-
ing values. As shown in [113] by their experiments, if the general representations learned
with a seq2seq model are fine-tuned using the downstream classification task, it can sig-
nificantly improve the performance. Recent studies tend to use only the encoder part in
the seq2seq architecture and show that it allows learning more general representations for
a multitude of tasks, such as classification, regression, imputation, forecasting, etc. For
instance, [111] adopts an CNN-based encoder, [138] adopts a transformer-based encoder.
The main focus of these works lies in the design of loss function or the ground truth
selection from the data themselves. In addition, using only an encoder allows reducing
about half the model parameters, which leads to computational and learning benefits (e.g.,
avoiding overfitting).

The second category for learning the unsupervised representations is the generative
models. The principle is to learn a latent probability distribution that approximates the

26 CHAPTER 2. STATE OF THE ART

data. For instance, based on the auto-encoder structure, the variational auto-encoder
(VAE) allows regularizing the representations by introducing a fixed prior on the latent
distribution. In this manner, given a distribution (e.g., Gaussian), the model is capable of
decoding the regularized representation into a generated sample. Authors in [30] learn tem-
poral representations of time series based on a joint learning of a discrete variational auto-
encoder (VAE) [139], an self-organizing map (SOM) [140] latent space and a Markov tran-
sition model [141]. The learned model shows high interpretability over the two-dimensional
representations. Another set of time series generative models [142, 143, 144, 145, 146, 147]
are based on the generative adversarial networks (GANs) [148, 149, 150]. GAN learns the
data distribution by playing an adversarial game of fooling and discriminating. The gen-
erator and discriminator keep improving their performance during the adversarial game.
In this way, the GAN-based models are capable of learning and explaining the underlying
structure of the input data even without labels. The original study (C-RNN-GAN) [142]
applies LSTM on both generator and discriminator for generating music songs. RCGAN
[143] adopts Conditional GANs [151] with additional information (e.g., class labels) to
guide the sequential data generation process. TimeGAN [144] models the time series on
latent representation space, then enhances the temporal dynamics on the generated data
based on the concept of Adversarial Auto-encoder [152]. More related studies extend the
aforementioned models on time series anomaly detection [145], time series generation [146],
or time series imputation [147].

Recently, contrastive learning [153] has become popular for learning time series repre-
sentations. Being part of the self-supervised learning [154], the contrastive learning adopts
the data itself as the supervision, and aims to learn an embedding space in which similar
sample pairs stay close to each other while dissimilar ones are far apart. In other words,
given an anchor time series sample in the learned representation space, the similar (i.e.,
positive) samples should stay close to the anchor; in contrast, the dissimilar (i.e., negative)
samples need to stay away from the anchor. For unsupervised representation learning on
time series, the key questions are how to define the positive/negative samples and how to
build the contrastive training objective. Inspired by the classic word representation learn-
ing method known as word2vec [155], authors in [17] propose a novel triplet loss for time
series, where the positive samples are down-sampled from the anchor samples, the negative
samples are randomly chosen from the data set. This method is extended by [108] with
consideration of non-stationary time series, and by [156] which further minimizes the dis-
tance between positive (negative) samples to accelerate model’s convergence and improve
model’s stability.

To conclude, time series representation learning is a big topic covering almost all the
time series mining tasks as shown in Figure 2.1. It has attracted wide attention from the
community of database, statistical modeling, machine learning, and so forth to manage
and learn the complex time series data. The taxonomy defined in Figure 2.3 provides an
overview of the time series representation approaches and their theoretical bases. However,
in practice, the representations do not always belong to one single category. For instance,

2.1. TIME SERIES DATA MINING 27

the SAX-based U-Shapelet [95] is a transformation-based and local pattern-based repre-
sentation. The adversarial Shapelet [101, 157] is a local pattern-based and model-based
representation. A hybrid representation applies to the complex context where multiple
requirements are raised, such as computational/storage cost, interpretability, etc.

2.1.3 Data Stream and Time Series

When we talk about time series mining, we generally consider the mining activities on a
static time series database. In practice, the time series are usually collected in a dynamic
context, where the data comes continuously with the characteristics of the data stream.

Definition 2.15. (Data stream). A data stream S is a continuous input data where each
instance can by any type of data, such as row data, image, text, etc.: S=(x1, x2, ..., xN),
where N increases along with the time.

One important notion in the data stream is concept, which refers to the data distribution
of the streaming instance. It can be the distribution p(x), conditional distribution p(y|x),
or joint distribution p(x, y), where x is the streaming instance, y is the related label (if
available). We take the Time Series Classification (TSC) as an example. In TSC tasks, we
intend to predict the label of a new input TS instance by extracting the knowledge from the
collected data. The optimization of TS feature extraction and model construction process
allows us to strive for a low prediction error, and approach to Time Series’ nature Concept,
i.e., the conditional distribution p(y|x). When the research context extends to the data
streams, the knowledge base is no longer constant and evolves gradually with new input
data. The challenges here can be represented by the following five intrinsic characteristics
of Data Stream [158, 159, 160]:

• Infinite Length: The continuous streaming data is infinite, thus more requirements
for analyzing the data are raised, such as computational efficiency, model/data stor-
age cost, etc.

• Feature Evolution: The feature space changes over time, new features become
useful and old ones may become redundant. The learning model is intended to
extract the latest features to approach the inner concept of the data source.

• Concept Drift: The prediction target or the conditional data distribution p(y|x)
evolves over time, the learning model must be capable of adjusting itself gradually
to the most recent data by an effective process of Concept Drift detection.

• Label Constraint: In practice, it is usually hard, even impossible, to annotate all
the streaming instances in real-time. Therefore, part of the data may be unlabeled.

• Concept Evolution: Non-labeled instances with novel classes may emerge in the
future, which should be recognized and separated from existing classes.

28 CHAPTER 2. STATE OF THE ART

In the literature, many works consider the streaming characteristics for time series
analysis, which covers a huge amount of real-life applications. However, due to the vast
time series mining activities as shown in Figure 2.1 and the complex characteristics of the
data stream, it is hard to have a clear idea about how the analysis on the intersection of
these two domains (i.e., time series and data stream) works, and in which contexts they are
applicable [161]. Therefore, in this section, we divide the related work into two categories
according to the data format, for which we give two formal definitions: time series stream
and streaming time series.

2.1.3.1 Time series stream

Definition 2.16. (Time series stream). A time series stream STS is a continuous input
data stream where each instance is a Time Series: STS=(T1, T2, ..., TN), where N increases
along with the time.

For Time series stream, the information should be extracted from each new input TS
instance and be merged with the existing learning model. By considering various challenges
in Data Streams, we are capable of launching the analysis from different contexts: 1) Within
a stationary concept, the learning model tries to make the learned concept stay as close
as the real one. Feature Evolution concerns the incrementality of the learning algorithm,
which is the necessary condition for the stream learning system; 2) Further consideration
of the non-stationary concepts, like Concept Evolution and Concept Drift, which can be
respectively adopted in more dynamic contexts where data instances are weakly labeled,
or prediction target evolves over time.

[Application Scenarios] In typical TS learning tasks, such as TS classification [115], the
analysis process is launched from an off-line dataset, without considering the context of a
dynamic data source. Dynamic or streaming data sources usually result from monitoring
applications, but require online training, that said Training online, Monitoring online. For
instance, domains like health care look to enrich the database gradually with more medical
cases, i.e., Feature Evolution; In astronomy, with human’s growing knowledge about the
universe, the theoretical basis for labeling the light curves (TS) will change, i.e., Concept
Drift, meanwhile, the light curves collected from unknown supernovas may be imported
into the dataset, i.e., Concept Evolution. Most Time Series data, such as sensor readings,
are labeled during the data collection process. The post-labeling on TS is much more
costly than classic data (e.g., image, text, etc.) due to the low interpretability over the
real-valued sequence, i.e., Label Constraint. The techniques applied in an off-line fully
labeled TS dataset are then not adaptable in such dynamic scenarios, that said streaming
context.

Most of the work [162, 163, 164, 9] related to time series stream in the literature
considers the classification problem. For instance, authors in [162] apply Nearest Neighbor
(NN) algorithm for classifying time series stream with humans in the loop. The costly NN

2.1. TIME SERIES DATA MINING 29

model can be interrupted anytime, which would be more accurate with more time being
consumed. This work was extended in [164] which buffers a set of streaming instances as
the learned model. A scoring function is used to estimate the intermediate result quality
of an incoming instance. In this manner, the model buffer can be updated accordingly. To
improve the model efficiency, Kasetti et al. [163] represents the time series as bitmaps, [9]
transforms the time series instance to a SAX dictionary [91].

2.1.3.2 Streaming time series

Definition 2.17. (Streaming time series). A streaming time series S is a continuous input
data stream where each instance is a real-valued data: S=(t1, t2, ..., tN), where N increases
with the time.

We consider Time Series as a local collection of real-valued data from an online
streaming source generating a never-ending data flow, then Streaming Time Series repre-
sents such an online streaming source. Different from Time Series Stream, mining from
Streaming Time Series has distinct objectives: 1) A learning model is usually built upon
an off-line labeled data set to monitor the data flow coming in real-time, that said Train-
ing off-line, Monitoring (or inference) online; 2) The model is learned from the data flow
coming in real-time, which is followed by immediate inference. We call it Training online,
Monitoring (or inference) online.

[Application Scenarios] For the Training off-line, Monitoring online mode, the applica-
tions like patient’s ECG monitoring, a known ECG (TS) feature set is learned or known in
advance, which allows the system to focus on the real-time processing [165] on the input
data; the activity recognition [166] is another typical application, where the pre-known
activity patterns (i.e. motif) serve to recognize in real-time the activities over Streaming
TS. In these scenarios, we usually focus on how to improve the model efficiency for pro-
cessing the fast-coming data stream. For the Training online, Monitoring online mode,
the streaming time series data can be either labeled (supervised) or unlabeled (unsuper-
vised). First, for supervised tasks, since considering the individual real-valued data point
(or instance) as a supervised object is meaningless, the annotations are usually given to
the streaming segments. This leaves the research problem being equivalent to the
supervised learning on the time series stream; Then, for unsupervised tasks, one
typical scenario is the online motif discovery, where the frequency of the repeated pat-
terns (i.e., subsequence) evolves along time, i.e., Feature Evolution. One particular mining
activity on streaming time series is online forecasting, which can be considered either as
supervised (the annotations, i.e., future values are required), or unsupervised (no external
annotations are needed). One way to train such an online model is to regularly cache the
most recent samples as the annotations for past data.

Most of the work [167, 165, 168] in the literature studied the Training off-line, Mon-
itoring online mode for streaming time series. For instance, [167] queries a subsequence

30 CHAPTER 2. STATE OF THE ART

in the streaming time series by designing an optimal distance measure; Similarly, [165]
transforms the data with PAA representation [45] to improve the query’s efficiency; [168]
parallelizes the querying process with the popular distributed frameworks (Kafka, Spark
Streaming). As for the the Training online, Monitoring online mode, the work usually
studies the online motif discovery task, where the TS patterns (or motifs) can be detected
and updated on the fly [169]. For instance, [170] just find the motifs based on the most
recent data in streaming time series; instead of considering the frequent motifs, [40] only
find any pair of repeated patterns (i.e., rare motifs). One particular work in [171] consid-
ers both unsupervised motif discovery task and supervised classification task on streaming
time series. The authors designed an active learning [172] model with humans in the loop.
The system firstly discovers the frequent motif and asks for human for a label. The labeled
motif is considered as a local pattern-based representation of the data, which is added into
the model and serves to monitor the newly coming data. In this way, the unsupervised
motif discovery and supervised classification is linked up with the human in the loop.

2.1.4 Semi-supervised Learning on Time series

In this section, we present the basic concepts related to semi-supervised learning (SSL).
Specifically, we review the work of semi-supervised learning on time series data.

Definition 2.18. (Semi-supervised learning). The semi-supervised learning (SSL) aims
at training a learner f (e.g., classifier, regressor, etc.) to predict successfully the label of
a testing sample, adopting the supervised training from the labeled samples and further
unsupervised adjustment/optimization from unlabelled samples.

The main advantage of the semi-supervised learning is that it requires less human
effort for the costly data labeling and generally achieves higher accuracy than only using
the labeled data. There are many semi-supervised learning methods in the literature,
which can be organized into six categories: SSL with generative models, SSL with low-
density separation, graph-based methods, co-training methods, self-supervised methods,
and self-training methods [173]. We specifically review works that have related to the
semi-supervised time series classification.

The complex time series data, such as sensor readings, are labeled during the data
collection process. The post-labeling of time series is much more costly than classic data
(e.g., image, text, etc.) due to the low interpretability over the real-valued sequence. As
a result, there have been extensive efforts to apply semi-supervised learning algorithms
explicitly designed for time series classification [173, 174, 175, 176, 177, 178].

The pioneering work [173, 174] on Semi-supervised TS Learning are based on self-
training or Positive Unlabeled Learning [175] with the Nearest-Neighbor (1NN) classifier
and a carefully designed distance, such as DTW [173] or DTW-D [174], and optimized
stopping criterion [176] for importing the pseudo-labels. Though not mentioned in their
papers, the self-training framework is extensible from the univariate time series (UTS) to

2.2. TIME SERIES REPRESENTATION FOR CLASSIFICATION 31

the multivariate time series (MTS) by using an adapted distance measure, such as DTWI

[179], DTWD [179] or DTWA [180]. However, under more complex scenarios nowadays,
such as 128 UCR UTS datasets [181] and 30 UEA MTS datasets [182] collected from
different domains, the distance-based classifiers show limited performance and are rather
used as baselines by recent studies [115, 116].

Beyond the self-training methods, the authors of [183] proposed a graph theoretic SSL
algorithm that constructs graphs relating all samples based on different distance measures
such as DTW or Wavelet Transform [67], and consequently propagates labels from the
neighbors. Another work [177] applies shapelet learning [99] on both labeled and unlabeled
time series data. The learned shapelets are used to classify the unlabeled samples, thereby
producing pseudo-labels. A coordinate descent solver wraps the optimization process by
iteratively solving for the classification of labeled samples, pseudo-labels, and shapelet
learning, respectively. Authors in [184] adopt the concept of Transfer Learning [185] and
apply the domain adaptation on the weakly labeled data. Specifically, given the labeled
data in source domain and the unlabeled data in target domain, the knowledge that we
learned from the source domain can be transferred to the target domain with an unsu-
pervised domain adaptation. This is especially practical for complex time series datasets
having high variability between domains. By adopting the concepts of Multi-Task Learning
(MTL) [186] and self-supervised learning [154], authors in [178] learns the self-supervised
UTS features from an auxiliary forecasting task, which help improve the classification
performance of time series. The recent work Semi-TapNet [187] proposes an Attentional
Prototype Network to learn from the unlabeled samples, for which the pseudo-labels are
predicted by intermediate-trained classifiers.

Recent studies tend to learn meaningful time series representations [27] in a weakly
supervised setting and have drawn much attention in the domain. Unsupervised Scalable
Representation Learning (USRL) described in [17] combines causal dilated convolutions
[129] with triplet loss for contrastive learning [153]. On the one hand, it learns a better
representation of univariate time series than the traditional supervised CNN model [119].
On the other hand, a single SVM on the learned multivariate time series representation
offers higher accuracy than a DTWD-based classifier [179].

2.2 Time Series Representation for Classification

In this section, we review the work which builds or learns time series representation for a
concrete classification task. As mentioned in Section 2.1.2, the time series representation
can be in single form of transformation-based, local pattern-based or model-based, or a
combination of them for different research purposes in a complex context.

It the literature of the time series classification (TSC) [115, 116], various TSC ap-
proaches have been proposed by researchers in recent years which are suitable for different
contexts along with dissimilar TS feature representations. The time series representations

32 CHAPTER 2. STATE OF THE ART

can be generally divided into five categories:

• Raw time series representation: including the global feature of entire series [188]
for One Nearest Neighbor (1-NN) classifier, which is usually combined with various
distance measures [189, 190, 188, 191].

• Statistic summary representation: the raw time series is transformed into the sum-
mary statistic features (e.g., mean, deviation, slope, etc.) extracted from every
sub-series or the entire sequence. Various classifiers [192, 193, 194] can be built on
top of the statistic features.

• Local pattern representation: the local pattern in the time series can contain the key
characteristics of the entire sequence; thus, the raw time series can be represented
by one or a combination of local patterns.

• Deep representations: the last layer of a neural network classifier [3] embeds the TS
features, various neural network structures are designed with the inspirations from
the classic time series analysis and recent advances of computer vision (CV) and
natural language processing (NLP) communities.

• Ensemble representations: various time series representations (e.g., global feature-
based, frequent motif-based, Shapelet-based, etc.) can be assembled to characterize
the time series from different aspects, i.e., ensemble approaches [188, 7, 195].

In the following sections, we review the previous time series classification work in each
of those categories.

2.2.1 Raw Sequence as Representations

When we adopt the raw sequence as the TS feature representation, the model considers
the global sequence feature based on various distances to measure the similarity between
different time series. Once the distances are defined, they can be combined with multiple
machine learning models such as Nearest neighbor classifiers for specific tasks. We present
here several classic distance measures for time series data.

2.2.1.1 Euclidean distance

The Euclidean distance (ED) is the most commonly used distance to measure the similarity
between two time series. Given two time series x, x′ of the same length n, their Euclidean
Distance is defined as follows:

EDx,x′ =

√√√√
n∑

i=1

(xi − x′i)
2 (2.1)

2.2. TIME SERIES REPRESENTATION FOR CLASSIFICATION 33

The Euclidean distance with the nearest neighbor classifier is always adopted as the baseline
of the TSC tasks. It considers the time series as a general data vector and provides an
exact mapping between each time point in two time series with time complexity O(n).
Consequently, the temporal information is essentially ignored. In general, this distance
requires the time series to be equal-length when applying the nearest neighbor classifier.
For time series with different lengths, it can be done by measuring the distance between
the closest subsequence pairs, which introduces extra computational cost with a sliding
window technique.

2.2.1.2 Dynamic time warping (DTW)

The Euclidean distance does not consider the temporal information in time series. Pre-
cisely, the temporal scaling or the local distortions of the time series make the Euclidean
distance inapplicable in most real-life applications. Dynamic time warping (DTW) [196] is
an elastic similarity measure for the sequential data, which can provide an elegant solution
to tackle those problems. As shown in Figure 2.4, the DTW measure allows warping of
the time axis by finding an optimal alignment between two time series. Specifically, a dis-
tance matrix is defined where DTW aims to find the shortest warping path as the optimal
alignment. A warping path W is a set of contiguous matrix indices defining a mapping
between the time points in two time series. In the distance matrix, there are enormous
possible warping paths, and the optimal path is the one that minimizes the global warping
cost/distance. DTW can be computed using dynamic programming [196] with quadratic
time complexity O(n2), where n is the length of time series.

Figure 2.4: DTW example for two series X and Y: optimal warping path (left) and
alignment (right).

Since DTW provides an elastic mapping between sequence values, it can be applied

34 CHAPTER 2. STATE OF THE ART

to align two time series with different lengths. Due to its quadratic complexity, DTW
is considered as a costly distance measure compared to the Euclidean distance. A large
set of works have improved DTW for better efficiency performance, which are generally
based on lower bounding measures. In other words, it is possible to put a restriction on
the amount of the allowed warping. A maximum allowable distance between any pairs of
indexes is defined to lower bound the warping path. For instance, authors in [197] propose
the notion of the upper and lower envelope that represents the maximum allowed warping
in the distance matrix. The complexity then becomes O(n). The FastDTW proposed in
[198] calculates the warp path in a multi-resolution manner, which recursively projects a
warp path to a higher resolution and then refines it. The multi-resolution approach allows
a linear-time computation of DTW but with an exchange of information loss leading to a
second optimal warping path. Many other DTW variants improve the DTW measure to
tackle various practical problems, such as noisy time series. For instance, [199] proposes
Derivative Dynamic Time Warping (DDTW) that first transforms the series into a series
of first differences. Precisely, given a series x = {x1, x2, . . . , xn}, the difference series is
x′ =

{
x′2, x

′
3, . . . , x

′
n−1

}
where x′i is defined as the average of the slopes between xi−1 and

xi with another average value between xi+1 and xi−1, i.e. x′i =
(xi−xi−1)+(xi+1−xi−1)/2

2 .

2.2.2 Statistic Features as Representations

Being part of non-data adaptive representations, the statistic features can be extracted from
the time series at the sequence level or the interval level. For the statistic representations
in the sequence level, the summary features are extracted from the entire series. For
instance, authors in [126] started to discuss the extraction of basic features such as max,
min, skewness over the whole series, which can be combined with various classifiers such
as the Support Vector Machine (SVM) or multi-layer perceptron (MLP) neural network to
conduct the predictions; Similarly, [200] extracts the wavelet features as the global feature
representations to feed a neural network classifier; [201] extract the general patterns such
as the peak values to represent the whole series, which can be combined with the decision
trees to do interpretable predictions. An extensive work [202] even collects more than
9000 features generated from various algorithms that have been discussed in fields such as
medicine, astrophysics, finance, mathematics, climate science, industrial applications, and
so on. A Python library named FATS is proposed in [203] which facilitates and standardizes
feature extraction for time series data. Even though FATS initially focuses on the feature
extraction for astronomical light curve data, it is generalizable for other time series data.
The statistic feature representations are always applied with a feature selection process and
can be combined with various classifiers. For instance, a greedy forward feature selection
[204] can be adopted, which grows a set of important features incrementally by optimizing
the classification performance on the training data.

The statistic representations can be built as well at the interval level. Similar features,
as mentioned previously, can be extracted from each time series interval. For instance,

2.2. TIME SERIES REPRESENTATION FOR CLASSIFICATION 35

the time series forest (TSF) [192] used measures of mean, standard deviation, and slope in
local equal-length intervals of time series to build a set of decision trees within the random
forest architecture, where a decision tree is built on a random selection of interval features.
Similar to TSF, the Time Series Bag of Features (TSBF) [193] extracts the statistical
features from the intervals with different lengths. The interval features are considered as
the new attributes of the original time series.

2.2.3 Local patterns as Representations

As mentioned in Section 2.1.2.2, the local time series patterns can be adopted to represent
the whole series. For the time series classification (TSC) tasks, two types of patterns are
studied in the literature: Shapelet-based and motif-based.

2.2.3.1 Shapelet-based representation for TSC

Shapelet [14] is the most commonly used local pattern for classifying time series. The
shape-based representation is defined as a sub-series that is maximally representative of a
class and can discriminate one class from the others. As shown in Figure 2.5, the shapes
of the projectile points can be converted to the time series using the angle-based method
[205]. The initial Shapelet work [14] builds a Shapelet dictionary composed of the Shapelets
of different classes with their optimal split point values. Figure 2.5 show two Shapelets
extracted respectively from the Clovis and Avonlea classes. A binary decision tree classifier
can then be built on the class-specific Shapelets. For instance, given a time series x, if
its distance with the shapelet-Clovis is smaller than 11.24, x belongs to the Clovis class;
otherwise, if its distance with the shapelet-Avonlea is smaller than 85.47, x belongs to the
Avonlea class; otherwise, the time series x belongs to an unknown class.

Table 9: Predicting the class label of a testing object
Predict (shapelet decision tree classifier C, testing time series T)
1
2
3
4
5
6
7
8
9
10
11

If C is the leaf node
Return label of C

Else
SÅ shapelet on the root node of C
split_pointÅ split point on the root of C
If SubsequenceDistanceEarlyAbandon (T, S) < split_point

Predict (left substree of C, T)
Else

Predict (right substree of C, T)
EndIf

EndIf

5. EXPERIMENTAL EVALUATION
We begin by discussing our experimental philosophy. We have
designed and conducted all experiments such that they are easily
reproducible. With this in mind, we have built a webpage [15]
which contains all of the datasets and code used in this work,
together with spreadsheets which contain the raw numbers
displayed in all of the figures, and larger annotated figures
showing the decision trees, etc. In addition, this webpage contains
many additional experiments which we could not fit into this
work; however, we note that this paper is completely self-
contained.

5.1 Performance Comparison
We test the scalability of our shapelet finding algorithm on the
Synthetic Lightning EMP Classification [6], which, with a
2,000/18,000 train/test split, is the largest class-labeled time series
dataset we are aware of. It also has the highest dimensionality,
with each time series object being 2,000 data points long. Using
four different search algorithms, we started by finding the shapelet
in a subset of just ten time series, and then iteratively doubled the
size of the data subset until the time for brute force made the
experiments untenable. Figure 11 shows the results.

Figure 11: The time required to find the best shapelet (left) and
the hold-out accuracy (right), for increasing large databases sizes

The results show that brute force search quickly becomes
untenable, requiring about five days for just 160 objects. Early
abandoning helps reduce this by a factor of two, and entropy
based pruning helps reduce this by over two orders of magnitude.
Both ideas combined almost linearly to produce three orders of
magnitude speedup.
For each size data subset we considered, we also built a decision
tree (which can be seen at [15]) and tested the accuracy on the
18,000 holdout data. When only 10 or 20 objects (out of the
original 2,000) are examined, the decision tree is slightly worse
than the best known result on this dataset (the one-nearest
neighbor Euclidean distance), but after examining just 2% of the
training data, it is significantly more accurate.

5.2 Projectile Points (Arrowheads)
Projectile point (arrowhead) classification is an important topic in
anthropology (see [15] where we have an extensive review of the

literature). Projectile points can be divided into different classes
based on the location they are found, the group that created them,
and the date they were in use, etc. In Figure 12, we show some
samples of the projectile points used in our experiments.

Figure 12: Examples of the three classes of projectile points in
our dataset. The testing dataset includes some broken points, and
some drawings taken from anthropologist’s field notes

We convert the shapes of the projectile points to a time series
using the angle-based method [8]. We then randomly created a
36/175 training/test split. The result is shown in Figure 13.

Figure 13: (top) The dictionary of shapelets, together with the
thresholds dth. (bottom) The decision tree for the 3-class projectile
points problem

As shown in Figure 13 and confirmed by physical anthropologists
Dr. Sang-Hee Lee and Taryn Rampley of UCR, the Clovis
projectile points can be distinguished from the others by an un-
notched hafting area near the bottom connected by a deep concave
bottom end. After distinguishing the Clovis projectile points, the
Avonlea points are differentiated from the mixed class by a small
notched hafting area connected by a shallow concave bottom end.
The shapelet decision tree classifier achieves an accuracy of
80.0%, whereas the accuracy of rotation invariant one-nearest-
neighbor classifier is 68.0%. Beyond the advantage of greater
accuracy, the shapelet decision tree classifier produces the
classification result 3×103 times faster than the rotation invariant
one-nearest-neighbor classifier and it is more robust in dealing
with the pervasive broken projectile points in most collections.

5.3 Mining Historical Documents
In this section we consider the utility of shapelets for an ongoing
project in mining and annotating historical documents. Coats of
arms or heraldic shields were originally symbols used to identify

Avonlea Clovis Mix

11.24

85.47

Shapelet Dictionary

(Clovis)

(Avonlea)

I

II

0 100 200 300 400

0
0.5
1.0
1.5

Arrowhead Decision
Tree

I

21

II

0

Clovis Avonlea

0

1 *105

2 *105

3 *105

4 *105

5 *105

Brute Force

16010 20 40 80

Early Abandon Pruning
Entropy Pruning
Combined Pruning

About 5 days

10 20 40 80 320

0.80

0.85

0.90

0.95

1.00

se
co
nd
s

ac
cu
ra
cy

Currently best
published
accuracy 91.1%

|D|, the number of objects in the database |D|, the number of objects in the database
160

Figure 2.5: Shapelets (in red) from [14]. The projectile points can be converted into
the time series, where the class-specific Shapelets are extracted with their optimal splitting
points (i.e., 11.24 for Clovis and 85.47 for Avonlea). A binary decision tree can be built
on the Shapelets and the splitting points to classify the time series.

36 CHAPTER 2. STATE OF THE ART

The Shapelets extracted from the raw time series usually show great interpretability
over the shape-based representations but with high time complexity O(N2T 4, where N is
the number of training instances, and T is the length of the TS instance. Various work
has improved the extraction-based Shapelets either on the efficacy or on the efficiency.
For the efficacy aspect, [98, 97, 206] combine a set of Shapelets as the representation,
[207, 208] propose the advanced quality measures for evaluating and selecting the Shapelets;
as for accelerating the Shapelet extraction process, the (local pattern-based) Shapelet
representation is always combined with the transformation-based representation on time
series. For instance, Fast Shapelet (FS) [209] adopts SAX [86] and random projections
[210] to accelerate the Shapelets’ extraction. The transformation-based representation
helps reduce the data dimensionality of time series, thus leading to a better efficiency
performance. However, these efficiency improvements are usually obtained at the cost of
a lower classification accuracy [115].

In order to tackle the high time complexity issue of the extraction-based Shapelet, the
learning-based Shapelet is studied in recent work [99, 100, 101, 157]. The landmark work
[99] shows that the Shapelet can be learned from scratch with a gradient-descent-based
optimization algorithm. Figure 2.6 shows the model’s optimization process when learning
the Shapelets. The Shapelets can be considered as a set of parameters to be learned. The
idea is to jointly learn the optimal shapelets and the optimal linear hyper-plane W (i.e., a
logistic regression classifier) that minimizes the classification objective.

0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

M
1

M
2

a) Iteration 0

Y=0
Y=1
W

5 15 25 35

−0.3

0

0.3

S
1
 (It. 0)

Time
5 15 25 35

−1.5

0

1.5

S
2
 (It. 0)

Time

0.2 0.4 0.6 0.8

0.1

0.3

0.5

0.7

M
1

M
2

b) Iteration 400

Y=0
Y=1
W

5 15 25 35

−2

−0.5

1

S
1
 (It. 400)

Time
5 15 25 35

−2

0

2

S
2
 (It. 400)

Time

0.2 0.53 0.87 1.2

0.2

0.4

0.6

0.8

M
1

M
2

c) Iteration 800

Y=0
Y=1
W

5 15 25 35

−2

−0.5

1

S
1
 (It. 800)

Time
5 15 25 35

−2

0

2

S
2
 (It. 800)

Time

Figure 5: Learning Two Shapelets on the Gun-Point Dataset: Parameters L = 40, η = 0.01,λW = 0.01,α = −100

In fact, the conversion to one-vs-all sub-problems will be useful
for the operation of the logistic regression classifier. The output of
the logistic regression for a binary problem can be perceived as a
confidence probability. Therefore, the index of the most confident
among the C-many classifiers is selected as the predicted categori-
cal value of a test instance.

5.2 Interactions among Shapelets having Var-
ious Lengths

Capturing interactions among shapelets having various lengths
is another aspect of the extended method. Our generalized model
learns R different scales of shapelet lengths starting at a minimum
Lmin as {Lmin, 2Lmin, . . . , RLmin}. The shapelets therefore will be
defined as S ∈ RR×K×∗, where S ∈

⋃R

r=1 RK×rLmin
, and repre-

sent K-many shapelets for each scale R, i.e. totally KR shapelets.
The length of a shapelet at scale r ∈ {1, . . . , R} is r · Lmin.
Consequently, the number of segments in a time series depends
on the scale of the shapelet’s length to be matched against and is
J(r) = Q− r · Lmin + 1.

5.3 Generalized Objective Function
The objective function of the generalized model is presented in

Equation 16, which is a regularized logistic regression loss between
the true targets and the predicted ones shown in Equation 17. The
notation Mr,i,k identifies the minimum distance of the i-th series
to the k-th shapelet of scale r, i.e. to Sr,k ∈ Rr·Lmin

. In addition,
the weight Wc,r,k identifies the class c classifier and the weight of
the k-th shapelet at scale r.

argmin
S,W

F =
I∑

i=1

C∑

c=1

L(Y b
i,c, Ŷ

b
i,c) + λW ||W ||2 (16)

Ŷ b
i,c = Wc,0 +

R∑

r=1

K∑

k=1

Mr,i,kWc,r,k (17)

5.4 Classification of Test Instances
Once the model is learned, a test instance indexed t is classified

as the one-vs-all classifier which yields maximum confidence, as
presented in Equation 18. The algorithmic complexity of classify-
ing a test instance is O(CRKJ(·)), but since C,R,K are asymp-

totically smaller values than J(·), the big-O notation complexity is
O(J(·)).

Ŷt ← argmax
c∈{1,...,C}

σ
(
Ŷ b
t,c
)
, ∀t ∈ {1, . . . , ITest} (18)

5.5 Generalized Soft-Minimum
The soft minimum function can be trivially generalized to in-

clude the notation for the scales r as shown in Equation 19. The
distance between the k-th shapelet at scale r and the j-th segment
of time series i is denoted as Dr,i,k,j in Equation 20.

Mr,i,k ≈ M̂r,i,k =
∑J(r)

j=1 Dr,i,k,j e
αDr,i,k,j

∑J(r)
j′=1 e

αDr,i,k,j′
(19)

Dr,i,k,j = 1
r · Lmin

r·Lmin∑

l=1

(Ti,j+l−1 − Sr,k,l)2 (20)

5.6 Gradients of Generalized Objective Func-
tion

The objective function can be split per each instance i and the
loss of each one-vs-all classifier c and denoted in Equation 21 as
Fi,c.

Fi,c = L(Y b
i,c, Ŷ

b
i,c) + λW

IC

R∑

r=1

K∑

k=1

Wc,r,k
2 (21)

5.6.1 Shapelet Gradients
The derivative of the per-cell objective Fi,c with respect to each

shapelet Sr,k,l is shown in Equation 22.

∂Fi,c

∂Sr,k,l
= −

(
Y b
i,c − σ

(
Ŷ b
i,c

)) ∂M̂r,i,k

∂Sr,k,l
Wc,r,k (22)

Moreover, the derivative of the minimum distances with respect
to the generalized shapelets is defined in Equations 23-24.

Figure 2.6: (Figure taken from [99]) Two Shapelets learned from the Gun-Point dataset
[181]. The Shapelets can be progressively learned at each training iteration to reduce the
loss error of a logistic regression classifier.

Learning Shapelet (LS) has a time complexity of O(N2m3), where N is the number of
TS instances in the training set, m is the length of the Shapelet to be learned. LS shows
higher accuracy and lower time complexity compared to the extraction-based Shapelets.
However, the learned Shapelets are not always similar to the sub-series in the original TS,
thus losing the interpretability. Therefore, various work [101, 157, 211] studied how to
learn interpretable Shapelets from scratch. For instance, the Robust Learning Time-series

2.2. TIME SERIES REPRESENTATION FOR CLASSIFICATION 37

Shapelets (RLTS) [211] modifies the feature vector of LS by adding Robust Losses to model
the influence of unreliable instances, a shapelet regularizer is proposed for approximating
the learned shapelets to the best-matching segments of the reliable TS instances. Authors
in [101, 157] adopt similar adversarial training techniques to filter the learned Shapelets
which are dissimilar to the segments in raw TS, thus guiding the Shapelet learning process.

2.2.3.2 Motif-based representation for TSC

When the time series represents a repetitive pattern, it is called repetitive time series. The
recurrent local pattern (i.e., motif) is capable of representing such a long and repetitive
time series. For a real-world time series, it may be fully repetitive or partly repetitive.
Depending on the repetitive features in time series, the motif-based representation can
be divided into two classes: (i) top-k frequent motifs as representations; (ii) dictionary
representations with a set of motifs and their frequencies.

Authors in [96] discover the motif patterns of variable length. The method, referred to
as Representative Pattern Mining (RPM), combines with SAX representation to accelerate
the finding of the repetitive patterns and considers the most frequent (i.e., top-k) motifs
as the time series representation. Another set of work [104, 9] constructs a dictionary of
the motifs to capture the global frequency distribution over various motifs. For instance,
authors in [104] detect local repetitive patterns in time-series via fitting local polynomial
functions of arbitrary degrees on each sliding window. The coefficients of the polynomial
functions are converted into symbolic forms (i.e., alphabet words). A histogram of the
frequencies of the words is constructed from each time series. The nearest neighbor clas-
sifier is applied with the Euclidean distance, which computes the difference between the
histograms. Similarly, [9] firstly transforms the time series to a SAX representation, then
constructs a SAX-word histogram with the related frequency.

2.2.4 Deep Representations

As a powerful feature extractor, the neural networks have been validated in classification
tasks for various data, such as image [212], text [213], or medical data [214]. The neural
networks have been greatly studied for time series classification tasks. The classic time
series analysis [26] can be considered as a guideline to design the network structure. For
instance, temporal features such as the trend, seasonality are critical for modeling the fi-
nancial time series. The classic techniques such as the time series decomposition [215] can
be adopted, which decomposes the time series into trend components and seasonal compo-
nents. The neural networks can be designed accordingly using the recurrent structure (e.g.,
RNNs) to extract the temporal patterns. When time series is collected from the context
(e.g., medical data) where the frequency features are representative, the frequency-aware
networks [11] can be designed accordingly.

Enormous network architectures have been recently developed for time series classifi-

38 CHAPTER 2. STATE OF THE ART

cation (TSC). The convolutional neural networks (CNNs) and recurrent neural networks
(RNNs) are two basic modules that are combined with various techniques to build the
network architectures. These techniques are inspired either by the classic time series anal-
ysis [26] to explore the time series’ characteristics from different aspects, or by advanced
network structures which have been validated in other domains, such as computer vision
(CV), natural language processing (NLP). However, the most advanced TSC networks
[59, 121] usually consider a set of techniques to design a generalizable model to various
application domains, such as the 128 UTS datasets in UCR archive [181].

The classical time series analysis provides great inspiration for designing the TSC
networks. For instance, [126] combines the statistic features (e.g., max, min, skewness) ex-
tracted from time series with a multi-layer perceptron (MLP) neural network to learn the
representation; [127] firstly decomposes the time series into multi-frequency signals with a
frequency filter, then applies multi-channel network to extract and combine the features
from each of the signals; Similarly, the spectral analysis has been applied in [11], which
adopts the idea of wavelet decomposition to build frequency-aware neural networks; the re-
cent CNN-based models (e.g., ROCKET [12, 59] apply thousands of random convolutional
kernels to explore thoroughly the local features in time series.

The advanced network architecture from other domains (e.g., CV, NLP) can help build
a time series representation for a better prediction performance. For instance, authors in
[119] apply the residual connections (i.e., ResNet [118]) between CNN blocks to eliminate
the gradient vanishing issue when training the network; [121, 122, 123] adopt the inception
structure [120] to combine multi-scale convolution kernels to explore the local features from
different scales; Furthermore, the attention mechanism [124] can be adopted to optimize
the network structure. Based on the attention mechanism, [125, 111] consider weighting the
local time series features extracted by CNNs, authors in [10] weight the temporal features
extracted by RNNs in each time point.

2.2.5 Ensemble Representations

The ensemble representation is a set of time series representations that are learned from
various aspects. An ensemble of classifiers is built on the individual time series represen-
tation to output a single prediction. In contrast, the hybrid representation that we men-
tioned previously builds a single representation on top of various TS representations. For
instance, Fast Shapelet (FS) [209] adopts SAX [86] (transformation-based representation)
and Shapelet [14] (local pattern-based representation) to learn a single hybrid representa-
tion. A single classifier is applied over the hybrid representation.

The ensemble representation combined with various ensemble models usually gets bet-
ter generalization performance than individual representations. For instance, the elastic
ensemble (EE) [188] combines 11 one-nearest-neighbor (1NN) classifiers with various sim-
ilarity measures, such as Euclidean distance, Dynamic time warping (DTW) [196] or its
variants. Essentially, EE is based on the raw TS representation with various classifiers.

2.2. TIME SERIES REPRESENTATION FOR CLASSIFICATION 39

Similarly, the temporal dictionary ensemble (TDE)[216] combines various dictionary-based
TS classifiers (BOSS [44], cBOSS [217], S-BOSS [218], WEASEL [219]), for which the rep-
resentations are either Symbolic representation (e.g., SFA [90]) or Spectral decomposition-
based representation (e.g., DFT [62]). The collection of transformation ensembles (COTE)
[6] adopts 35 base classifiers to have a single prediction on several TS representations:
raw representation, DFT [62], and Shapelet [14]. The hierarchical Vote Collective of
Transformation-Based Ensembles (HIVE-COTE) [7] is built on top of several ensemble
models leading to a hierarchical structure. The recent HIVE-COTE versions [220, 221]
replace the outdated ensemble modules with the state-of-the-art ensemble methods, to
reduce the computational complexity and increase the prediction accuracy.

For ensemble representations, the classification models are biased towards the selection
of the TS representations and the techniques for assembling the representations. The clas-
sifier’s performance strongly depends on the individual classifiers and the complementary
between the selected time series representations.

2.2.6 Univariate versus Multivariate Time Series

From Univariate Time Series (UTS) to Multivariate Time Series (MTS), the key research
question is how to capture the interactions between the variables. Traditional methods usu-
ally combine the compact and effective features from different variables; in other words,
the representation approaches developed earlier on UTS [31] can be further extended to
the MTS context. For instance, authors in [222] explored Singular Value Decomposition
(SVD) with multi-view learning to find the consistency and interactions between vari-
ables. Similarly, [223, 102] combine Shapelet representation from different variables to build
an ensemble-like learner. Symbolic Representation for Multivariate Time Series (SMTS)
[224] adopts the Bag-of-Patterns concept, considering all variables simultaneously, and
constructs a code-book to model the variable relations. Finally, WEASEL+MUSE [225]
extend WEASEL [219] from UTS to MTS by creating a histogram of feature counts to
capture the local and global changes in relationships between variables.

The deep learning models [121, 12] designed for UTS classification can be naturally
adapted for MTS classification. Specifically, the input channel size of the network should
be adjusted to the variable numbers of the MTS. However, such models do not explicitly
consider the variable relationships in MTS. In other words, the variables are equally consid-
ered for building a classifier. Recent neural network models start modeling the variable in-
teractions with different techniques. For instance, the Multi-Channels Deep Convolutional
Neural Networks (MC-DCNN) [226] extract firstly 1D-CNN features from each variable,
then combine them with a Fully Connected (FC) Layer. Whereas the authors in [227] aban-
don the combination strategy but apply directly 1D-CNN to all variables. The 2D-CNN
features with the cross-attention mechanism in CA-SFCN [125] enhanced the dependencies
captured by 1D-CNN on both temporal and spatial axes. Besides, the recurrent models
are widely applied to sequential data. A modified Gated Recurrent Unit (GRU) described

40 CHAPTER 2. STATE OF THE ART

in [21] models MTS with missing values, where each multivariate step is memorized into
state units, then the recurrent structure captures the temporal dependencies. Another
group of works [228, 229] adopt Graph Neural Networks (GNNs) to model the spatial in-
teractions, which usually rely on external information (e.g., the road networks) between
the variables. Last but not least, the hybrid LSTM-CNN structure is capable of extracting
both local and long-term features. Various work such as the Squeeze-and-Excitation block
in MLSTM-FCN [230] or the multi-view learning-like module in TapNet [187], enhanced
the hybrid structure via modeling the variable interactions with a multi-view learning-like
structure [222].

2.3 Geo-located Time Series Representation for Fore-
casting

Different from the time series classification task, time series forecasting tends to find the
correlation between future values and past observations. As a classical research problem,
the forecasting task has been studied for decades by researchers from various domains,
e.g., statistic modeling, machine learning, etc. The proposed forecasting models have
been widely deployed to countless real-life applications [231], such as energy consumption
prediction [232], financial analysis [233], sales forecasting [234], weather forecasting [235],
air quality prediction [236], traffic forecasting [237], etc. From the classic statistic models to
recent deep learning models, a huge amount of studies have been conducted for data from
various domains. Readers are invited to check the recent surveys of the classic statistic
forecasting models in [238] and the deep learning models in [239, 4] to have a general
understanding of the techniques for time series forecasting. In a nutshell, the model-based
representations as shown in Figure 2.3 are usually adopted for time series forecasting tasks.

Recently, several open-source frameworks have been built which help users to quickly
get started with existing forecasting algorithms. For instance, pmdarima [240] is a Python
& Cython wrapper of several different statistical and machine learning libraries (statsmod-
els [241] and scikit-learn [242]), and operates by generalizing all ARIMA (AutoRegressive
Integrated Moving Average) models [238] into a single class; PyFlux [243] is a forecast-
ing framework integrating various probabilistic models, such as Vector Auto-Regressions
(VARs) [244], Gaussian state space models [245], Generalized Autoregressive Score (GAS)
models [246, 247], etc.; The recent proposed Darts [248] is a Python library for easy ma-
nipulation and forecasting of time series. It contains a variety of models, from classics
such as ARIMA [238], Prophet [249] to deep neural networks, such as TCNs (Temporal
Convolutional Networks) [129], TFTs (Temporal Fusion Transformers) [133].

Theses frameworks integrates the models for general forecasting problems on time se-
ries. However, the forecasting task on a concrete context requires considering certain
specific characteristics of data, which help improve the model’s performance. For instance,
the forecasting models can be designed for: (i) short-term or long-term forecasts; (ii) uni-

2.3. GEO-LOCATED TIME SERIES REPRESENTATION FOR FORECASTING41

variate or multivariate time series; (iii) stationary or non-stationary time series; (iv) time
series with or without missing values; (v) time series with or without external information;
and so on. Therefore, the problem definition is always the most difficult but important
part of forecasting [238]. Defining the problem carefully requires an understanding of the
collected data and the way the forecasts will be used, who requires the forecasts, and in
which context the forecasting will be applied.

In this section, we fix our attention on the Smart City context where the time series
is collected from the geo-located sensors. For which the research problem is formulated
as geo-located time series forecasting. We first give the relevant definitions of the
forecasting problem. Then, we present the related work in the literature for geo-located
time series forecasting.

2.3.1 Definitions

Definition 2.19. (Geo-located time series). A geo-located time series (GTS) X={Xt}Tt=1 ∈
RN×F×T is essentially a multivariate time series tensor with data collected from a spatial
network G = {V, E}, where V = {v1, ..., vN} is a set of N spatial nodes and E = {e1, ..., eE}
is a set of E edges connecting the nodes. Each spatial node includes T time points each
containing F features.

The main difference between the geo-located time series (GTS) and multivariate time
series (MTS) is that GTS considers the spatial locations of the time series. The univariate
time series in GTS can be collected from the same or different spatial location (node). The
spatial node network will introduce external information or characteristics for defining
the correlations between the variables. Therefore, the representation learning on GTS
requires not only considering the essential features of MTS but also modeling the spatial
correlations introduced by the spatial network. A typical application scenario is the traffic
forecasting [250], where the sensor nodes capture the traffic features (e.g., traffic flow,
speed, occupancy) from different locations. At a certain time point, the traffic features
in one node are hugely impacted by that in other nodes. The spatial distance and node
connections are critical factors affecting node interactions.

Definition 2.20. (Geo-located time series forecasting). Given a training setD = {X (i)
1:T , y

(i)}Ki=1

with K geo-located time series X (i)
1:T = (X(i)

1 , X(i)
2 , ..., X(i)

t , ..., X(i)
T), their associated label

(target variable) y(i) = (X(i)
T+1, ..., X(i)

T+τ), and a spatial network G, we aim to learn a fore-
casting model f such that f(X (i)) ≈ y(i), in order to forecast precisely the future values of
a new testing geo-located time series. The time point T + 1 is referred to as forecast start
time and τ ∈ N>0 is the forecast horizon. When τ = 1, we call it single-step forecasting,
otherwise we call it multi-step forecasting.

The geo-located time series is a kind of Spatio-temporal data that records tempo-
ral information on fixed spatial locations. In the literature, the geo-located time series

42 CHAPTER 2. STATE OF THE ART

forecasting and Spatio-temporal forecasting are usually used interchangeably, even though
the latter covers many more contexts with various Spatio-temporal data. In general, the
Spatio-temporal forecasting can refer to (i) the geo-located time series forecasting only with
time series data on fixed locations [237]; (ii) the geo-located time series forecasting with
rich contextual features, such as traffic flow forecasting with external factors of weather
conditions [251], public holidays [252], or POIs (Point-of-Interests) features [253]; (iii) the
trajectory location prediction [254, 255], where the data has dynamic spatial locations at
different time stamps; (iv) the image series forecasting, it can be the satellite image [256],
and radar wave photo [257] which adopt the geographical locations as spatial information,
or the video images [258] which consider the objects’ relative positions as spatial informa-
tion; and so on. In the next section, we briefly present the literature of the Spatio-temporal
forecasting on geo-located time series, where the time series data are collected from fixed
spatial nodes. If not specifically mentioned, the Spatio-temporal forecasting in this thesis
indicates the geo-located time series forecasting.

2.3.2 Geo-located time series forecasting

Accurate geo-located time series forecasting has played a critical role in various information
systems, such as intelligent transportation, retailing goods distribution, and public risk
prevention. For example, people flow prediction can help the supply chain and retailers
to schedule the delivery and manage the stocks; traffic volume prediction can help the
transportation department better manage and control the traffic to ease traffic congestion.

Geo-located time
series forecasting

Non Graph-based
models

Graph-based
models

Statistic models

Neural networks

Predefined graphs

Learnable graphs

Connection-based graph

Distance-based graph

Static graph

Dynamic graphs

General MTS
forecasting models

Grid-based models

Figure 2.7: Taxonomy of geo-located time series forecasting approaches

Different from many multivariate time-series (MTS) forecasting problems, geo-located

2.3. GEO-LOCATED TIME SERIES REPRESENTATION FOR FORECASTING43

time series forecasting relies on the strong dependencies along both spatial and temporal
axis. For instance, the traffic flow around the commercial center evolves during the day
(temporal axis) and is impacted by the traffic congestion from nearby areas and the compe-
tition from the rival commercial centers (spatial axis). The widely accepted fact is that the
spatial correlation significantly affects forecasting performance. Recent studies [237, 130]
have shown that models that explicitly account for the underlying relationships across mul-
tiple MTS outperform models that forecast each TS in isolation. How to model the spatial
correlation has become a fundamental research problem that recent studies are dedicated
to solving, especially in the contexts where the data has strong spatial dependencies, such
as forecasting traffic data, air pollution, weather, etc.

There are mainly two classes of work for geo-located time series forecasting: graph-
based and non graph-based models. The latter considers the spatial network as a graph
and adopts the graph neural networks (GNNs) [259] for modeling the spatial interactions.
We show a taxonomy of the related forecasting approaches in Figure 2.7.

2.3.2.1 Non Graph-based Models

The general MTS forecasting models can be adopted for geo-located time series forecasting.
A huge amount of work [128, 260, 132, 134] have conducted their experiments on the Spatio-
temporal datasets. However, they generally ignore the spatial information in the data to
conduct the general time series forecasting. As mentioned previously, when integrating
spatial information, the model is capable of combining rich external information to improve
its performance. A powerful family of approaches [261, 262, 256, 263, 264] adopt the spatial
information by converting the spatial network into a grid-based representation as shown
in Figure 2.8. The geo-located time series data at each timestamp can be projected into a
data matrix, thus converting the data into a matrix sequence while conserving the spatial
information.

To tackle these challenges, we propose a deep spatio-
temporal residual network (ST-ResNet) to collectively pre-
dict inflow and outflow of crowds in every region. Our con-
tributions are four-fold:

• ST-ResNet employs convolution-based residual networks
to model nearby and distant spatial dependencies between
any two regions in a city, while ensuring the model’s pre-
diction accuracy is not comprised by the deep structure of
the neural network.

• We summarize the temporal properties of crowd flows
into three categories, consisting of temporal closeness, pe-
riod, and trend. ST-ResNet uses three residual networks to
model these properties, respectively.

• ST-ResNet dynamically aggregates the output of the three
aforementioned networks, assigning different weights to
different branches and regions. The aggregation is further
combined with external factors (e.g., weather).

• We evaluate our approach using Beijing taxicabs’ trajec-
tories and meteorological data, and NYC bike trajectory
data. The results demonstrate the advantages of our ap-
proach compared with 6 baselines.

Preliminaries
In this section, we briefly revisit the crowd flows prediction
problem (Zhang et al. 2016; Hoang, Zheng, and Singh 2016)
and introduce deep residual learning (He et al. 2016).

Formulation of Crowd Flows Problem
Definition 1 (Region (Zhang et al. 2016)) There are many
definitions of a location in terms of different granularities
and semantic meanings. In this study, we partition a city into
an I⇥J grid map based on the longitude and latitude where
a grid denotes a region, as shown in Figure 2(a).

Figure 2: Regions in Beijing: (a) Grid-based map segmenta-
tion; (b) inflows in every region of Beijing

Definition 2 (Inflow/outflow (Zhang et al. 2016)) Let P
be a collection of trajectories at the tth time interval. For a
grid (i, j) that lies at the ith row and the jth column, the
inflow and outflow of the crowds at the time interval t are
defined respectively as

xin,i,j
t =

X

Tr2P
|{k > 1|gk�1 62 (i, j) ^ gk 2 (i, j)}|

xout,i,j
t =

X

Tr2P
|{k � 1|gk 2 (i, j) ^ gk+1 62 (i, j)}|

where Tr : g1 ! g2 ! · · · ! g|Tr| is a trajectory in P,
and gk is the geospatial coordinate; gk 2 (i, j) means the
point gk lies within grid (i, j), and vice versa; | · | denotes
the cardinality of a set.

At the tth time interval, inflow and outflow in all I ⇥ J
regions can be denoted as a tensor Xt 2 R2⇥I⇥J where
(Xt)0,i,j = xin,i,j

t , (Xt)1,i,j = xout,i,j
t . The inflow matrix

is shown in Figure 2(b).
Formally, for a dynamical system over a spatial region

represented by a I ⇥ J grid map, there are 2 types of flows
in each grid over time. Thus, the observation at any time can
be represented by a tensor X 2 R2⇥I⇥J .

Problem 1 Given the historical observations {Xt|t =
0, · · · , n � 1}, predict Xn.

Deep Residual Learning
Deep residual learning (He et al. 2015) allows convolution
neural networks to have a super deep structure of 100 layers,
even over-1000 layers. And this method has shown state-of-
the-art results on multiple challenging recognition tasks, in-
cluding image classification, object detection, segmentation
and localization (He et al. 2015).

Formally, a residual unit with an identity mapping (He et
al. 2016) is defined as:

X(l+1) = X(l) + F(X(l)) (1)

where X(l) and X(l+1) are the input and output of the lth

residual unit, respectively; F is a residual function, e.g., a
stack of two 3⇥3 convolution layers in (He et al. 2015). The
central idea of the residual learning is to learn the additive
residual function F with respect to X(l) (He et al. 2016).

Deep Spatio-Temporal Residual Networks
Figure 3 presents the architecture of ST-ResNet, which
is comprised of four major components modeling tempo-

Figure 3: ST-ResNet architecture. Conv: Convolution;
ResUnit: Residual Unit; FC: Fully-connected.

(a) Grid-based segmentation

To tackle these challenges, we propose a deep spatio-
temporal residual network (ST-ResNet) to collectively pre-
dict inflow and outflow of crowds in every region. Our con-
tributions are four-fold:

• ST-ResNet employs convolution-based residual networks
to model nearby and distant spatial dependencies between
any two regions in a city, while ensuring the model’s pre-
diction accuracy is not comprised by the deep structure of
the neural network.

• We summarize the temporal properties of crowd flows
into three categories, consisting of temporal closeness, pe-
riod, and trend. ST-ResNet uses three residual networks to
model these properties, respectively.

• ST-ResNet dynamically aggregates the output of the three
aforementioned networks, assigning different weights to
different branches and regions. The aggregation is further
combined with external factors (e.g., weather).

• We evaluate our approach using Beijing taxicabs’ trajec-
tories and meteorological data, and NYC bike trajectory
data. The results demonstrate the advantages of our ap-
proach compared with 6 baselines.

Preliminaries
In this section, we briefly revisit the crowd flows prediction
problem (Zhang et al. 2016; Hoang, Zheng, and Singh 2016)
and introduce deep residual learning (He et al. 2016).

Formulation of Crowd Flows Problem
Definition 1 (Region (Zhang et al. 2016)) There are many
definitions of a location in terms of different granularities
and semantic meanings. In this study, we partition a city into
an I⇥J grid map based on the longitude and latitude where
a grid denotes a region, as shown in Figure 2(a).

Figure 2: Regions in Beijing: (a) Grid-based map segmenta-
tion; (b) inflows in every region of Beijing

Definition 2 (Inflow/outflow (Zhang et al. 2016)) Let P
be a collection of trajectories at the tth time interval. For a
grid (i, j) that lies at the ith row and the jth column, the
inflow and outflow of the crowds at the time interval t are
defined respectively as

xin,i,j
t =

X

Tr2P
|{k > 1|gk�1 62 (i, j) ^ gk 2 (i, j)}|

xout,i,j
t =

X

Tr2P
|{k � 1|gk 2 (i, j) ^ gk+1 62 (i, j)}|

where Tr : g1 ! g2 ! · · · ! g|Tr| is a trajectory in P,
and gk is the geospatial coordinate; gk 2 (i, j) means the
point gk lies within grid (i, j), and vice versa; | · | denotes
the cardinality of a set.

At the tth time interval, inflow and outflow in all I ⇥ J
regions can be denoted as a tensor Xt 2 R2⇥I⇥J where
(Xt)0,i,j = xin,i,j

t , (Xt)1,i,j = xout,i,j
t . The inflow matrix

is shown in Figure 2(b).
Formally, for a dynamical system over a spatial region

represented by a I ⇥ J grid map, there are 2 types of flows
in each grid over time. Thus, the observation at any time can
be represented by a tensor X 2 R2⇥I⇥J .

Problem 1 Given the historical observations {Xt|t =
0, · · · , n � 1}, predict Xn.

Deep Residual Learning
Deep residual learning (He et al. 2015) allows convolution
neural networks to have a super deep structure of 100 layers,
even over-1000 layers. And this method has shown state-of-
the-art results on multiple challenging recognition tasks, in-
cluding image classification, object detection, segmentation
and localization (He et al. 2015).

Formally, a residual unit with an identity mapping (He et
al. 2016) is defined as:

X(l+1) = X(l) + F(X(l)) (1)

where X(l) and X(l+1) are the input and output of the lth

residual unit, respectively; F is a residual function, e.g., a
stack of two 3⇥3 convolution layers in (He et al. 2015). The
central idea of the residual learning is to learn the additive
residual function F with respect to X(l) (He et al. 2016).

Deep Spatio-Temporal Residual Networks
Figure 3 presents the architecture of ST-ResNet, which
is comprised of four major components modeling tempo-

Figure 3: ST-ResNet architecture. Conv: Convolution;
ResUnit: Residual Unit; FC: Fully-connected.

(b) Traffic inflow matrix

Figure 2.8: (Figures taken from [261]) Grid-based data representation of the traffic flow
data in Beijing city: (a) the map segmentation of the spatial network, (b) the traffic inflow
matrix at one single time point.

44 CHAPTER 2. STATE OF THE ART

With the grid-based representation of the geo-located time series, a local CNN module
can be applied to extract the spatial information at each timestamp which can be combined
with other temporal units (e.g., RNN) to output the Spatio-temporal representations of the
geo-located time series. Various work [256, 257, 261, 262, 263, 264, 265, 266, 267, 268, 269]
designed their models based on this methodology and consider the characteristics of geo-
located time series from different aspects. For instance, ConvLSTM [256] replaces the dot
product in LSTM (Long Short-Term Memory) by a convolutional operation in both the
input-to-state and state-to-state transitions, which better models the local spatial features
than a fully-connected LSTM. Similar to ConvLSTM, TrajGRU [262] learn the location-
variant structure for the recurrent connections in GRU (Gated Recurrent Unit) where the
spatial correlations can be dynamic at different time stamps. DMVST-Net [264] propose
to use a multi-view framework to model both spatial and temporal relations. Specifically,
it consists of three views: temporal view (modeling correlations between future values
with near time points via LSTM), spatial view (modeling local spatial correlation via local
CNN), and semantic view (modeling correlations among regions sharing similar temporal
patterns). The three views can be combined via a Fully Connected (FC) layer to output the
Spatio-temporal representation. Instead of modeling the temporal decency via an RNN-like
module, various work combines directly the Spatio-temporal features extracted from each
timestamp. ST-ResNet [261] applies a ResNet [118] architecture with CNN blocks on each
of the data matrices with more attention to the recent observations. The output of each
timestamp is merged with the contextual features as the Spatio-temporal representation.
Based on ST-ResNet, DeepSTN+ [263] further models the long-range spatial dependence
among the geo-located TS in different regions. A two-channel structure for extracting the
spatial features is adopted. One CNN-based channel extracts the local (short-range) spatial
relationship; another fully-connected channel captures long-range spatial dependence.

2.3.2.2 Graph-based Models

The spatial network in geo-located time series can be essentially considered as a graph. In
recent years, graph neural networks (GNNs) have been introduced and have achieved state-
of-the-art performance in a series of Spatio-temporal forecasting problems [250]. Given
a spatial network G = {V, E}, where V = {v1, ..., vN} is a set of N spatial nodes and
E = {e1, ..., eE} is a set of E edges connecting the nodes, the spatial topology construction
in GNNs is an essential step for building the model. In general, the graph (network)
can be converted into a N × N adjacency matrix containing the edge weights between
the node pairs. The edge weight reflects the spatial interactions between nodes i and j.
Both the nodes and the edges represent different attributes in different GNN problems.
In the literature, various graph structures are designed to model the geo-located time
series forecasting problem, which can be divided into two classes: pre-defined graphs and
learnable graphs.

For pre-defined graphs, the adjacency matrix can be either connection-based or distance-
based. First, the connection-based matrix is commonly used to represent the connectivity

2.3. GEO-LOCATED TIME SERIES REPRESENTATION FOR FORECASTING45

between the spatial nodes. The matrix has a binary format, with an element value of 1
if connected and O otherwise. A typical example is related to the road network in the
Spatio-temporal traffic data. The connection-based matrix is adopted where two regions
are reachable by different modes of transport, such as motorway, highway, or subway. Var-
ious work builds the GNNs based on the connectivity matrix. For instance, ASTGCN
[270] applies an attention mechanism on both spatial and temporal dimensions. Specifi-
cally, a graph convolution is involved in the spatial dimension, capturing spatial depen-
dencies from the neighborhood. A temporal convolution is applied along the temporal
dimension, exploiting temporal dependencies from nearby time points. Instead of using
separate components to capture spatial and temporal correlations, STSGCN [271] cap-
tures the localized Spatio-temporal correlations in heterogeneous Spatio-temporal data.
This Spatio-temporal correlation is further enhanced by STFGNN [272] which measures
the similarity between spatial nodes to enhance the spatial correlations. The similarity
is calculated with DTW distance on the time series data of different locations. Second,
the widely used distance-based matrix represents the spatial closeness between the graph
nodes. It can be applied in the context where there is no evident connection between
the spatial nodes, such as air pollution or weather conditions in different areas. A huge
amount of work [237, 253, 273, 274, 130] belong to this category. For instance, DCRNN
[237] considers the directed distance between the traffic node pairs and applies diffusion
convolutions with the adjacency matrix for each direction, a GRU module is applied to
capture the temporal dependency; STGCN [130] considers the absolute (undirected) dis-
tance between the nodes and applies a temporal CNN for capturing the temporal features;
ST-Metanet [253] adopts the contextual features and the distances as meta-data for adding
attentions to weight the graph network; Similarly, GMAN [273] applies attention mecha-
nism to weight the Spatio-temporal features but with attention scores calculated on the
time series data themselves; ST-GRAT [274] utilizes the spatial and temporal self-attention
in a transformer-based model.

Instead of using the pre-defined graph, which requires prior knowledge about the spa-
tial data, we can also consider the spatial structure as something to be learned. Recent
studies [275, 276, 277] show that the cross-region dependence does exist for those nodes
which are not physically connected or physically far apart but share similar patterns. The
learnable graphs can be either static or dynamic. The static graphs are commonly studied
for Spatio-temporal forecasting in the literature [278, 275, 276, 279, 280]. For instance,
based on DCRNN, Graph WaveNet [278] learns another adjacency matrix with the pre-
defined graphs and integrates diffusion graph convolutions with temporal convolutions;
MTGNN [276] adopts a learnable graph and integrates mix-hop propagation layers in the
graph convolution module. Moreover, it designed the dilated inception layers in temporal
convolutions; AGCRN [279] learns an adaptive graph and integrates with recurrent graph
convolutions with node adaptive parameter learning; GTS [280] learns a probabilistic graph
which is combined with the recurrent graph convolutions to do traffic forecasting. Different
from the static graph, which considers the spatial correlations between the nodes are fixed,
one can imagine the dynamic interactions between the spatial nodes. Therefore, the adja-

46 CHAPTER 2. STATE OF THE ART

cency matrix should be dynamic along with time. For instance, in traffic forecasting tasks,
the complex relations between roads and vehicles in the spatial dimension play important
roles. The temporal state of each node has an impact on other nodes in the network.
For instance, the nodes around the entertainment venues and working places have differ-
ent effects on each other during the working and leisure hours, that is Dynamic Spatial
Correlations. Recent work shows that learning dynamic spatial correlations brings better
model performance than static correlations. For instance, ASTGNN [281] employs the self-
attention calculated from the dynamic data to adjust a static adjacency matrix. In this
manner, the graph is continuously learned with the dynamic data. Similarly, DGCRN [277]
designed the dynamic filters from the dynamic node measurements to adjust a predefined
static graph.

2.4 Conclusion

In this chapter, we reviewed the literature of the general time series mining activities
with the extension to broader relevant research domains, such as semi-supervised learning
and data streams. The time series representation plays a critical role in almost all time
series mining tasks, such as classification, clustering, forecasting, etc. We build a taxon-
omy for the time series representation approaches in the literature, which can be applied
separately or in a combined manner, depending on the requirements of the concrete con-
text. We present as well two classic time series mining activities: time series classification,
geo-located time series forecasting, and have reviewed the previous work on learning the
representations for such activities.

Time series mining is an extensive research domain with countless real-life applica-
tions. A good understanding of the time series’ characteristics helps us construct or learn
a robust time series representation for various downstream learning tasks. However, in
most complex real-life contexts, the cross-domain research based on time series is always
envisaged. The real-world applications enrich the time series with more characteristics
and apply it to various complex contexts. The interdisciplinary domain raises more re-
quirements on modeling time series for specific tasks. For instance, the time series can be
learned in a dynamic streaming context, where the time series representation should be
dynamic with time. It is practically common as most time series sources (i.e., IoT sen-
sors) generate data continuously and infinitely. An intersection between time series
and data stream learning can be considered for such a context; the time series can be
multivariate and not fully annotated. In the real world, the time series data is usually
collected synchronously from multiple sources, i.e., multivariate time series (MTS). The
MTS generally requires a considerable annotation effort for human experts as the real-
valued sequence is not as interpretable as the classic data (e.g., image, text). Therefore,
an intersection of MTS analysis and semi-supervised learning happens in this
context; the MTS can be collected from multiple sources on different spatial locations, the
time series data then becomes geo-located, i.e., geo-located time series. The representation

2.4. CONCLUSION 47

learning on such domain-specific time series should consider not only the concrete learning
task (e.g., forecasting) but also the factors which impact the task, such as the spatial in-
formation, the imperfect data, etc. An intersection between time series forecasting
and spatial/imperfect data analysis can be considered.

Many more intersections between time series learning and other research domains exist
in real life, as the time series data is widely available in real-world applications but under
various contexts with distinct requirements. In the following chapters, we present our con-
tributions on three interdisciplinary studies: (i) (Chapter 3) time series representation
learning in streaming context (time series & data stream); (ii) (Chapter 4) multivariate
time series learning in a weakly supervised manner (time series & semi-supervised learn-
ing); (iii) (Chapter 5) geo-located time series forecasting with missing values (time series
& spatial data & imperfect data).

Chapter 3

Dynamic Feature Learning on Time
Series Stream

Contents
3.1 Introduction . 49

3.2 Background and State-of-the-art 51

3.2.1 Definitions and Notations 51

3.2.2 Time Series Feature Representations 52

3.2.3 Matrix Profile in Time Series Mining 53

3.3 Problem Statement . 54

3.4 Our proposals . 55

3.4.1 Shapelet extraction on MAtrix Profile (SMAP) for TSC . 55

3.4.2 Incremental SMAP (ISMAP) 59

3.5 Experiments and Results 66

3.5.1 Experimental design . 66

3.5.2 RQ1: Incremental learning with ISMAP 68

3.5.3 RQ2: Adaptive learning with ISMAP 70

3.6 Conclusion . 71

3.1 Introduction

Time Series features, or Time Series representation learning is a classic research problem
with enormous real-life applications. To explore the supervised features in Time Series,
we usually adopt the classification as the learning task. Time Series Classification (TSC)

49

50 CHAPTER 3. DYNAMIC FEATURE LEARNING ON TS STREAM

is intended to predict the label of a newly input TS instance by extracting the knowledge
from collected data. Various TSC approaches have been proposed by researchers in recent
years which are suitable for different contexts along with dissimilar TS features. One
Nearest Neighbor (1-NN) classifier for whole series similarity measure is a typical baseline
of TSC research, which is usually combined with various distance measures [189, 190,
188, 191]. Instead of considering the global feature of entire series, summary statistic
features (e.g., mean, deviation, slope, etc.) can be extracted from every sub-series to
build diverse ensemble classifiers [192, 193, 194]. With the emergence of TS dimensionality
reduction techniques (e.g., PAA [45], SAX [86], etc.), TS instances can be represented by
high-dimensional vectors so that various techniques [77] from classic data analysis can be
adapted into TS context. For instance, in case that motifs or frequent patterns are what
characterize a given class, the dictionary based approaches [9, 91, 282] borrowed from
Text Mining and Information Retrieval community can be adopted. As for the scenario
that the occurrence of specific sub-series determines a class, TS can then be represented
by such shape-based features, namely Shapelet [14]. Various Shapelet-based approaches
have been proposed to optimize both the accuracy [97, 99] and the efficiency [209, 100] of
the classification. Another remarkable attempt [6, 7, 195] adopting ensemble approaches
on several TS representations (e.g., Shapelet-based, similarity-based, interval-based etc.)
shows a superior accuracy to one single representation classifiers, where TS features are
from different representation domains, and can not be presented in a single form.

The optimization of TS feature extraction and model construction process allows us to
strive for a low prediction error, and stay as close as possible to Time Series’ nature Concept
[283], which refers to the target variable that the learning model is trying to predict. Most
TSC approaches are biased towards learning from an off-line Time Series dataset, with the
assumption that data instances are independently and identically distributed (i.i.d) within
a particular concept, but rarely consider the streaming context, where a gradual change
of the concept happens along with the input of TS stream, that is Concept Drift. For
instance, the most accurate ensemble classifiers [6, 7] are not good options in streaming
context due to their complex architecture. Lazy classifiers on Time Series such as Nearest
Neighbor (1-NN) [8] and dictionary based approaches [9] are applicable for streaming con-
text. However, every input instance will be considered to adjust the inner concept, which
requires potentially a large buffer space and will bring a huge computation cost. Recent
Deep Neural Network (DNN) approaches [3, 10, 11, 12] on TSC are capable of tuning the
model incrementally, but stay always in an awkward position for the lack of explainabil-
ity, which is required by domains like healthcare where questions of accountability and
transparency are particularly important.

Shapelet, as a shape-based feature in TS, which is widely adopted by the community
for its reliability and interpretability, provides a possibility to fulfil the aforementioned
requirements. However, the high degree of coupling inside classical Shapelet extraction
algorithm [14] leads to the problem of not being able to parallelize. Even though some
speed-up techniques such as Early Abandoning [14] are proposed, the Euclidean Distance-

3.2. BACKGROUND AND STATE-OF-THE-ART 51

based algorithm for extracting the Shapelets remains resource costly with a time complexity
of O(N2n4).

To fill the gap between Time Series Classification and data streams processing, in this
chapter, we propose a TS stream learning framework, where TS features and models can
be updated with consideration of Concept Drift. First, we propose an offline algorithm
SMAP, which allows extracting the Shapelet features in a distributed manner under Spark
framework while conserving the model’s interpretability. Then, we propose an incremental
version of SMAP, namely ISMAP, allowing us to further explore the Test-then-Train strat-
egy, to evaluate the learning model constantly on newly input instance, then update the
model regarding to the evaluation result. The cached information under old concept will
be eliminated gradually by an elastic caching mechanism, which deals with the challenge
of infinite streaming instances.

The rest of this chapter is organized as follows. First, we give the necessary notations
used in this chapter. Then, we review the state-of-the-art approaches which are useful for
our research problems. We describe later our proposals: (i) SMAP for extracting Shapelet
in an offline manner; (ii) ISMAP for extracting Shapelet online in both TS stream contexts
of stable concept and drifting concept. Next, we shows an empirical evaluation of our
proposals on real-life datasets. Finally, we give our conclusions and perspectives for future
work.

3.2 Background and State-of-the-art

3.2.1 Definitions and Notations

We start with defining the notions used in the chapter:

Definition 3.1. (Time Series). Time Series T is a sequence of real-valued numbers T=(t1,
t2, ..., ti, ..., tn), where n is the length of T .

Definition 3.2. (Time Series Stream). Time Series Stream STS is a continuous input
data stream where each instance is a Time Series: STS=(T1, T2, ..., TN , ...). Notice that
N increases with each new time-tick.

Definition 3.3. (Time Series Chunk). Time Series Chunk Ct,w is a Time Series micro-
batch at time-tick t with window size w in STS : Ct,w=(Tt−w+1, Tt−w+2, ..., Tt).

Definition 3.4. (Cached Dataset). A Cached Dataset Dt is a set of time series Ti, and
class label ci, collected after time tick t. Formally, Dt= ⟨Tt, cjt⟩, ⟨Tt+1, cjt+1⟩, ..., ⟨TN , cjN ⟩,
where N is the time-tick of the most recent input instance. C = c1, c2, ..., c|C| is a collection
of class labels, where |C| denotes the number of labels.

Definition 3.5. (Subsequence). A subsequence Ti,m of Time Series T is a continuous
subset of values from T of length m starting from index i: Ti,m = (ti, ti+1, ..., ti+m−1),
where i ∈ [0, n−m+ 1].

52 CHAPTER 3. DYNAMIC FEATURE LEARNING ON TS STREAM

Definition 3.6. (Shapelet). Shapelet ŝ is a time series subsequence which is particularly
representative of a class. As such, it shows a shape which can distinguish one class from
the others.

Definition 3.7. (Z-Normalized Time Series). Z-Normalized Time Series is a formal rep-
resentation of Time Series, which is defined as:

Normal(T) =
T − µ

σ
(3.1)

where µ is the sample mean, σ is the standard deviation:

µ =
1

n

n∑

i=1

ti, σ2 =
1

n

n∑

i=1

t2i − µ (3.2)

Z-Normalization allows us to focus on the structural feature of T , rather than its amplitude
value. It addresses the problem of data stability. For instance, assume that the Euclidean
Distance(ED) between two time series T , T ′ of the same length n is expressed as follows:

EDT,T ′ =

√√√√
n∑

i=1

(ti − t′i)
2 (3.3)

Some little changes (e.g., the noise) will cause an evident bias for the result, Z-Normalization
is a way of smoothing the bias value.

3.2.2 Time Series Feature Representations

Various TSC approaches have been proposed by researchers in recent years which are
suitable for different contexts along with dissimilar TS features:

• The global feature of entire series [188] for One Nearest Neighbor (1-NN) classifier,
which is usually combined with various distance measures [189, 190, 188, 191].

• The summary statistic features (e.g., mean, deviation, slope, etc.) extracted from
every sub-series to build diverse ensemble classifiers [192, 193, 194].

• Pattern [91] features when the specific patterns or the pattern combinations charac-
terize a class, including but not limited to PAA [45], or SAX [86] based TS dimen-
sionality reduction techniques [77].

– in case that the frequent patterns are what characterize a given class, the dictio-
nary based approaches [9, 91, 282] borrowed from Text Mining and Information
Retrieval community are usually adopted.

3.2. BACKGROUND AND STATE-OF-THE-ART 53

– if the occurrence of specific sub-series determines a class, TS can then be repre-
sented by such shape-based features, namely Shapelet [14]. Various Shapelet-
based approaches have been proposed to optimize both the accuracy [97, 99]
and the efficiency [209, 100] of the classification.

• Deep representation features: the last layer of a neural network classifier [3] embeds
the TS features, which lack interpretability and are hard to be explored.

• Feature combinations (e.g., global feature-based, frequent motif-based, Shapelet-
based, etc.) via ensemble approaches [188, 7, 195]. Despite of a superior accuracy
to one single feature representation classifiers, the ensemble approaches focus more
on the learning model but not the features themselves.

In this work, we focus our attention on the Shapelet [14] feature, which provides an
interpretable way to show the learned representations under both offline and online context.

3.2.3 Matrix Profile in Time Series Mining

Matrix Profile, firstly proposed in [13], has be becoming a popular technique for generalising
the time series mining problems into a unified processing framework. It has implications
for time series motif discovery, time series joins, shapelet discovery (classification), density
estimation, semantic segmentation, visualization, rule discovery, clustering, etc. All the
downstream mining tasks are based on the two following concepts:

Definition 3.8. (Distance Profile). Distance Profile DPi is a vector which stores the
Euclidean Distance between a given subsequence/query Ti,m in source T and every sub-
sequences T ′

j,m of target T ′. Formally, DPm
i = (DPm

i,1, ..., DPm
i,j , ..., Tm

i,n′−m+1), where
DPm

i,j = dist(Ti,m, T ′
j,m), ∀j ∈ [0, n′ −m+ 1], n′ is the length of T ′.

Each element in DPi is calculated by Euclidean Distance between z-normalized sub-
sequences [16]. From Fig. 3.1(a), we can visually obtain the position of Query’s Nearest
Neighbor (1NN) in T ′ from the lowest point in DPi. In general, we slide the window of
size m in the target T ′ to obtain the Euclidean Distance between the query and target
subsequence, leading to a time complexity of O(nm2) to compute the distance profile.

Authors in [13] propose MASS which is considered as the fastest exact distance mea-
sure between two Time Series. MASS computes Distance Profile based on Fast Fourier
Transform (FFT), which requires only O(nlogn) time and is independent of query’s length,
instead of O(nm2) [14] by classical sliding window measure.

54 CHAPTER 3. DYNAMIC FEATURE LEARNING ON TS STREAM

Quer Ti,m

1NN T’j ,m
T ’

T

DPi

0 n’

m

OFFSET in T’

(a) Distance Profile DPi

OFFSET in T

MP

0 n

m

Ta,m Tb,m

T

T ‘

(b) Matrix Profile MP

Figure 3.1: (a) Distance Profile between Query Ti,m and target time series T ′, where n′

is the length of T ′. Obviously, DPi,j can be considered as a meta TS annotating target T ′;
(b) Matrix Profile between Source time series T and Target time series T ′, where n is the
length of T . Intuitively, MPi shares the same offset as source T

Definition 3.9. (Matrix Profile). Matrix Profile MP is a vector of distance between every
subsequence Ti,m in source T and its nearest neighbor T ′

j,m in target T ′. Formally, MPm

=(MPm
1 , ..., MPm

i , ..., MPm
n−m+1), where MPm

i = min(DPm
i), i ∈ [0, n −m + 1], n is

the length of T .

Unlike the distance profile, the matrix profile is a meta TS annotating the source TS.
As shown in Fig. 3.1(b), the lowest point in MP show the position of query which has
the most similar matching in target TS.

3.3 Problem Statement

First, the previous work for extracting Shapelets [14] is along with a high degree of coupling
, leading to the problem of not being able to parallelize. The speed-up method such as
Early Abandoning [14] is based on classical Euclidean Distance measure, which has a
time complexity of O(N2n4) with several orders of magnitude higher than MASS [13]:
O(N2n3logn). Another common trick played by previous work [14]: If we know ŝ is
a low-quality candidate, then any similar subsequence ŝ′ to ŝ must also result in a low
quality and therefore, a costly computation of the distance set Dŝ′ (evaluation of ŝ′) can
be skipped. However, a candidate shapelet is evaluated by its quality ranking among all
candidates of the same length. Assume that the distributed nodes have generated from
dataset a collection of candidates ŝl, an aggregation operation between nodes is required
to extract the candidate with the best quality. Extra aggregations will be made along with
the iteration of candidate length. Apparently, the acceleration from the classical pruning
techniques can be easily offset by the communication cost caused by the aggregation.

Second, even though the Shapelet-based approaches allows learning an interpretable
representation for TSC task, they are limited to the off-line learning from a constant Time
Series dataset, in which the data instances are independently and identically distributed

3.4. OUR PROPOSALS 55

(i.i.d) within a stable concept. The real-life streaming context raises more challenges for
learning the interpretable representations: (i) the Shapelet-based models are generally
not incremental with the newly input instances, in other words, the model needs to be
re-trained once the database is updated; (ii) the models are not eligible to consider the
gradual change of the concept along with the streaming instances, i.e., Concept Drift ; (iii)
with limited storage space, the models are not applicable when the streaming instances
are infinite.

3.4 Our proposals

In this section, we present our proposals under both offline and online mode for extracting
TS features for downstream classification tasks. We start by introducing the offline SMAP
algorithm. With the help of the Big Data framework (e.g., Spark), SMAP allows extracting
the Shapelet features in a distributed manner based on the Matrix Profile concept. Then,
we describe the online framework ISMAP, which learns the dynamic TS representations in
the streaming context.

3.4.1 Shapelet extraction on MAtrix Profile (SMAP) for TSC

The main idea of our system is that the calculation should be shared and executed in-
dependently, less communication between the nodes, more powerful the algorithm would
be. The conventional Time Series classification problems are usually tackled with nearest
neighbor (kNN) algorithm [14] due to its easy-design feature. The processing of labelled
Time Series data requires to be flexibly arranged for nodes in the cluster, where the ex-
ecutors share the CPU/memory resource. To this end, a suitable algorithm is applied here
allowing assignment of computing tasks which are relatively independent of each other.

3.4.1.1 General Idea

We start by introducing two extended concepts of Matrix Profile which are proposed for
extracting features for TS classification:

Definition 10: Representative Profile RPC
T is a vector of representative power of

subsequences in T for class C: RPC
T = (RPC

T1
, ..., RPC

Ti
, ...RPC

Tn−m+1
)

The representative power of subsequence Ti in class C is defined as:

RPC
Ti

= avg(MPTi,T ′) (3.4)

where T ′ ∈ DC
t . Intuitively, RPC

Ti
is a normalized distance between Ti and global TS

instance cluster of class C, it represents the relevance between the subsequence Ti (i.e., the
candidate Shapelet) and the class. As shown in Fig. 3.2 (b)(d), a threshold can be set to
show the starting index area in T , where the subsequences are representative for class C.

56 CHAPTER 3. DYNAMIC FEATURE LEARNING ON TS STREAM

Definition 11: Discriminative Profile DiscmPT is a vector of discriminative power of
subsequences in T :

DiscmPT = RPNonC
T −RPC

T (3.5)

The discriminative power of Ti in dataset shows the difference of representative power of
candidate Shapelet from its own class to the others (OVA, one-vs-all), which follows similar
heuristics in [284], where authors proved OVA strategy in Shapelet quality assessment
performs better than traditional Decision Tree approach [14] in both accuracy and efficiency
metrics. Intuitively, Discriminative Profile can give a global view of the important patterns’
positions over a Time Series. As shown in Fig. 3.2 (f)(g), the highest point in the profile
shows the position of the sub-series in T , which has the biggest skewing of relevance between
class C and other classes. Through setting a power threshold, the discriminative pattern,
that is the candidate Shapelet, can be visually identified in T by their discriminative power.

...

T

RPT
C

0 1,000

Threshold

0 1,200

...

1,000

Threshold

RPT
Non-C

0 1,000 0 400

DiscmPT
C

Discriminative Pattern

0

0 1,000 0 1,000

MPT,T’

For T’ ϵ DC

MPT,T’

For T’ ϵ DNon-C
(a)

(b) (c)

(d) (e)

(f) (g)

Figure 3.2: (a) Time Series T with class C. (b,c) Matrix Profile set for T with TS
instances in different classes. (d,e) Representative Profile of T in different classes. A
threshold can determine the representative area in T. (f) Discriminative Profile of T in
dataset. The highest point in DiscmPC

T identifies the most discriminative pattern’s in T .

Matrix profile [13] provides a meta-data which facilitates the representation of a com-
plex correlation between two time series. With the help of the Discriminative Profile, we
can then identify the candidate Shapelets in each TS instance as well as their discriminative
power of the classes.

3.4.1.2 Distributed Algorithm Design

As shown in Algorithm 1, considering time series as the smallest processing unit between
Spark nodes, SMAP firstly broadcasts the dataset to distributed nodes (line 3) in order
to reduce the communication cost from repetitive access of common data. Then, each
cluster partition shares the computing tasks for a set of TS (line 4), and extracts the most

3.4. OUR PROPOSALS 57

discriminative sub-series of various length in each processing unit (line 7). Each extracted
sub-series can be considered as a candidate Shapelet, which is assigned a distance threshold
defined by its representative power in its own class. To put it simply, the representative
power of a subsequence in class C, is its normalized distance to the global instance cluster of
class C. Intuitively, it represents the relevance between the subsequence (i.e., the candidate
shapelet) and the class. Therefore, the threshold can determine the inclusion between the
candidate Shapelet and a TS. A strategy to check if T contains a candidate Shapelet ŝ can
be defined as the following:

Inclusion(T, ŝ) =

{
true, if dist(T, ŝ) ≤ ŝ.distThresh

false, otherwise
(3.6)

A quality Normalization in line 8 is made which allows to assess the discriminative
power for the candidate shapelets of different length in an uniform way. Similar as the
concept Information Gain [14], but discriminative profile is a technique more interpretable
serving to assess the candidate shapelets. Moreover, in this manner, a threshold distance
for deciding the TS-Shapelet inclusion can be given directly, instead of iterating every
possible distance and deciding the best one with the highest Information Gain, in time
O(N2n2).

Each TS unit is assigned an unique Hash ID to reduce the volume of transferred data
between nodes. The TS ID, as well as the discriminative power and threshold distance of
its contained candidate Shapelets, will be output as the computing results of the partition
(line 10). Finally, a single aggregation process between nodes (line 11) is required to
obtain the Shapelet result of different classes. As shown in Fig. 3.2, the whole extraction
process can be visualized with a strong explainability, and generates high interpretable
results.

3.4.1.3 Optimization Strategy

The pruning function in line 9 is capable of eliminating the number of candidate shapelet,
and then reducing the communication cost during the aggregation process. We can simply
take the "TopK" strategy, which extracts the biggest K values of the Discrimination Profile.
However, such a technique is far from lightening the computation during MapPartition
process.

Since each processing unit should be independent from each other, a tenable technique
for updating the profile of a long range query could be adopted. The Lower Bounding
distance [285] is defined to estimate a minimal possible Z-Normalized Euclidean Distance
between two subsequences Ti,l+k and Tj,l+k, based on the distance already computed be-
tween Ti,l and Tj,l. Compared to a linear time complexity of computing the exact distance,
LB Distance Profile can be calculated in a constant time, which can accelerate greatly
the computation of Matrix Profile in Figure 4. For example, from shapelet length l = m

to m + 1, the time complexity of computing the distance dl+1
i,j is O(nm(m−1)

2 m), where

58 CHAPTER 3. DYNAMIC FEATURE LEARNING ON TS STREAM

Algorithm 1: SMAP (Shapelet extraction on MAtrix Profile on Spark)

Input: Dataset D, classSet Ĉ, k
Output: Ŝ

1 lmin ← 0.1 ∗ getMinLen(D), lmax ← 0.5 ∗ getMinLen(D),
2 DiscmP ← [], distThresh ← [], Ŝ ← ∅
3 D.broadcast(); //each TS has an unique ID
4 MapPartition (Set of ⟨ID, T ⟩ : Tset)
5 for ⟨ID, T ⟩ ∈ Tset do
6 for m← lmin to lmax do
7 DiscmP [m], distThresh[m]← computeDiscmP (T,D,m)

8 DiscmP [m]← DiscmP [m] ∗
√
1/m

9 DiscmP, distThresh ← pruning(DiscmP, distThresh)
10 emit(ID,DiscmP, distThresh)

11 MapAggregation (class, (ID,DiscmP, distThresh))
12 for c ∈ Ĉ do
13 Ŝ ′ ← getTopk(DiscmP [c], distThresh[c], k)

14 Ŝ ← Ŝ ∪ Ŝ ′

15 return Ŝ

3.4. OUR PROPOSALS 59

j ∈ [0, nm(m−1)
2] which represents the number of subsequences in D, n is the number of

instance in D, m is the length of the longest instance in D. Accordingly, LB distance takes
O(nm(m−1)

2) which shows an apparent advantage when the query length is relatively long.
Lower Bounding distance [285] is defined as:

LB(dl+k
i,j) =

√
l

σj,l

σj,l+k
, ifqi,j ≤ 0√

l(1− q2i,j)
σj,l

σj,l+k
, otherwise

(3.7)

where qi,j =
∑l

p=1

(tj+p−1ti+p−1)

l
−µi,lµj,l

σi,lσj,l

Empirically, the matching subsequence Tj,l which is the nearest neighbor of Ti,l, can de-
duce a longer subsequence Tj,l+1, which is probably the nearest neighbor of Ti,l+1. Assume
that the matching subsequence keeps in the same position in Ttarget when query Ti,l length
increases, then the time complexity for computing the minimal distance between Ti,l and
Ttarget is O(l), other than O(l(n− l+ 1)). As mentioned previously, MPm

i = min(DPm
i),

the main idea here is to utilize LB Distance to accelerate the computation of min(DPm
i),

rather than computing the entire DPi in a higher time complexity.

To sum up this section, Discriminative Profile provides a possibility to extract the in-
terpretable patterns in an explainable manner. The adoption of MASS when computing
the distance profile essentially accelerates the extraction process compared to using prun-
ing techniques based on brute force approach[14]. SMAP provides a parallel processing
mechanism to conduct the extraction in a minimum communication cost on Spark clus-
ter. In the next section, we will show an advanced algorithm which, when applied on
Spark cluster, is capable of updating Shapelet results by adopting an incremental model
in dynamic source context.

3.4.2 Incremental SMAP (ISMAP)

In this section, we start by studying the incrementality of SMAP, which is a necessary
condition for learning in streaming context. Then we propose the evaluation strategies to
accelerate incremental learning process and adapting it to streaming context considering
Concept Drift.

Typically, a non-incremental algorithm requires to re-pass the existing dataset and
conduct a large amount of redundant computations. In Algorithm 2, we show Incremental
Shapelet extraction on Matrix Profile on Spark (ISMAP), which avoids essentially the
repetitive computations on existing dataset. As in Spark environment, the communication
cost between distributed nodes is a key factor of system’s efficiency. The computing task
in each Spark partition should be relatively independent without frequent exchange of
intermediate results with other partitions. In light of this, we need to make use of the
parallel mechanism to well manage the allocation of computing tasks.

As shown in Algorithm 2, we assume that each Spark partition keeps a set of Time

60 CHAPTER 3. DYNAMIC FEATURE LEARNING ON TS STREAM

Algorithm 2: ISMAP(Incremental Shapelet extraction on MAtrix Profile
on Spark)
Input: Partition [ID, T,DiscmP, distThresh], New input TN ,

classSet Ĉ, k
Output: Ŝ

1 lmin ← 0.1 ∗ getMinLen(D), lmax ← 0.5 ∗ getMinLen(D),
2 DiscmP ← [], distThresh← [], Ŝ ← ∅
3 ⟨IDN , TN⟩.broadcast();
4 MapPartition ([ID, T,DiscmP, distThresh])
5 /* 1. compute the Matrix Profile between TN and all TS in dataset */
6 /* 2. update the current DiscmP of all TS in dataset */
7 /* 3. prepare MPTN

elements to compute DiscmPTN
*/

8 for m← lmin to lmax do
9 MPT [m]← computeMP (T, TN ,m)

10 MPTN
[m]← computeMP (TN , T,m)

11 DiscmP [m], distThresh[m]←
updateDiscmP (DiscmP [m], distThresh[m],MPT [m])

12 DiscmP, distThresh← pruning(DiscmP, distThresh)
13 emit(ID, T,DiscmP, distThresh,MPTN

)

14 MapAggregation (∗, (ID, T,DiscmP, distThresh,MPTN
))

15 DiscmPTN
, distThreshTN

= computeDiscmP (collect(MPTN
))

16 DiscmPTN
← DiscmP ∗

√
1/m

17 DiscmPTN
, distThreshTN

← pruning(DiscmPTN
, distThreshTN

)
18 cache(IDTN

, DiscmPTN
, distThreshTN

)

19 MapAggregation (class, (ID,DiscmP, distThresh))
20 for c ∈ Ĉ do
21 Ŝ ′ ← getTopk(DiscmP [c], distThresh[c], k)

22 Ŝ ← Ŝ ∪ Ŝ ′

23 return Ŝ

3.4. OUR PROPOSALS 61

Series with their Discriminative Profiles and corresponding Threshold Distance sets. The
newly input Time Series TN will be broadcast to each distributed node. Information in
TN should be extracted and merged to existing knowledge base, which can be carried out
into two steps:

1. Update existing Shapelets: With newly input instance TN , existing candidate
Shapelets should update their representative power in each class, and discriminative
power in current dataset.

2. Evaluate new candidate Shapelets: TN will introduce new candidate Shapelets
of various length, which should be evaluated and placed into Shapelet ranking list
by their discriminative power.

Step (1) is shown in line 9,11, from the Formula 3.4 and 3.5, we can observe that the
linearity of Discriminative Profile makes the fact that each existing TS only need one single
Matrix Profile computation with TN to update the candidate Shapelets. As for Step (2),
the Discriminative Profile computing of TN is shared on different Spark partitions, where
Matrix Profiles with existing TS instances are computed in line 10, an aggregation process
in line 14-18 extracts the discriminative patterns in TN , which will be aggregated with
existing candidate Shapelets and update the output results in line 19-22.

Like classical incremental algorithms, ISMAP takes all input instances into account,
which means every input TS instance will be imported into the system to update the
Shapelet, even if the computing imports no valuable information into the system, that is,
the information contained in the instance is repetitive with that in the knowledge base.
Evidently, we are capable of avoiding the redundant information’s computation by adopting
an interleaved Test-then-Train strategy [5] with an extra Shapelet evaluation process over
input instances.

3.4.2.1 Shapelet Evaluation

The intuition behind the evaluation procedure is that once we have a bad evaluation
result, we need to import the instance batch into Shapelet Extraction process, to update
the output Shapelet result. As the evaluation time O(n − m + 1) for a TS instance is
much less than that of extraction computing (O(Nn3logn)), then an evaluation module
can improve the system’s efficiency by preventing the computation of certain valueless
instances. However, how to define that an instance is valueless stays a problem to resolve.

The classical Shapelet-based approach [14] supposes that a Time Series T can be clas-
sified by the inclusion of a class-specified Shapelet ŝ. (i.e. if dist(T, ŝ) ≤ ŝ.distthresh, then
T.class = ŝ.class). The threshold distance of Shapelet gives a split point to decide the
TS-Shapelet inclusion. As shown in [208], various approaches (e.g, Information Gain (IG),
Kruskal-Wallis (KW) and Mood’s Median (MM)) can be applied for both Shapelet assess-
ment and split point decision. Representative Profile and Discriminative Profile achieve the

62 CHAPTER 3. DYNAMIC FEATURE LEARNING ON TS STREAM

same effect with these techniques but in a more interpretable manner. Intuitively, we are
capable of deciding whether to import a TS instance into Shapelet Extraction process by
evaluating its prediction results on current learning model. The Loss Measure is intended
to detect the shift between the learning model and the inner concept of data source. In the
context of Shapelet, the distance between the learned Shapelets and input instance is able
to represent the loss to some extent. Typically, the distance is compared with Shapelets’
threshold distance, which derives the 0-1 Loss Function:

L(Y, h(T)) =

{
0, Y = h(T)
1, Y ̸= h(T)

(3.8)

where

h(T) =

{
C, if dist(T, ŝ) ≤ ŝ.distThresh

nonC, otherwise

However, by TS-Shapelet inclusion technique, two Time Series with similar distance
to a Shapelet may obtain different classes. In addition, a good prediction result of input
TS instance with current Shapelets doesn’t mean that the instance contains no useful
information for adjusting the learning model. The 0-1 Loss Function analyzes the surface
phenomenon of the prediction but ignored the deep information behind the arbitrary split
point technique. A loss measured by a crisp 0-1 Loss Function is then ill-adapted.

When dist(T, ŝ) ≤ ŝ.distThresh, the prediction result is relatively acceptable. The
problem then becomes how to find a balance between time efficiency and TS informa-
tion checking (i.e., the exhaustive information extraction). The distance between TS and
Shapelets describes the shift between real and learned concept, a small distance leads to
a reliable prediction result. As the distance measure is usually data-dependent, and the
absolute distance value varies with datasets, then a normalized measure describing the
shift scale is required. To this end, can we just convert the TS-Shapelet inclusion problem
to the possibility that a TS contains the Shapelet?

As extracted Shapelets try to separate one class to others, TSs in different classes tend
to be concentrated on the split point, which causes the main error in prediction. Then we
assume that dist(T, ŝ) satisfies Gaussian distribution, as shown in (3.9), the loss can be
smoothed by Sigmoid function by considering distance distribution. The split point of ŝ
defines the expectation σ of the distribution.

L(Y, h(T)) =
1

1 + e−(x−σ)
, σ = ŝ.distThresh

x = min(dist(TC , ŝ)), ŝ ∈ ŜC
(3.9)

As shown in Fig. 3.3, the smaller the loss, the greater the possibility that T will contain
the Shapelet. Intuitively, a loss threshold ∆ can be set by user for ISMAP to control
the extraction from input instance, and update incrementally the Shapelet to approach
the real concept of data source. When ∆ is set to 0.5, it has the same effect as 0-1 Loss
Function.

3.4. OUR PROPOSALS 63

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

Dist(TS, Shapelet)

0.0

0.2

0.4

0.6

0.8

1.0

L
o
s
s
V
a
lu
e

Dist. Threshold of Shapelet

Sigmoid Loss Function

0-1 Loss Function

TS Loss by Sigmoid

TS Loss by 0-1 Loss Func.

Figure 3.3: Loss measure of Time Series by Sigmoid Function and 0-1 Loss Function,
Time Series in different classes are distributed around the split point of Shapelet

However, a stable concept does not hold in several real-life scenarios. For instance, with
the soundness of the knowledge in a particular domain, the labeling of newly input instances
may evolve gradually, leading to a concept drift. Therefore, the most recent training
instances should contribute more than the oldest ones to the target prediction. Then the
problem becomes the Concept Drift detection in a Time Series Stream by monitoring the
loss function. Conserving the interpretability and explainability of the algorithm, ISMAP
can be extended to the context of TS Stream by extracting adaptive features.

3.4.2.2 Adaptive feature extraction from Time Series Stream

As shown in Fig. 3.4, the system of extracting adaptive Shapelets from Time Series
Stream is composed by Shapelet Extraction, Evaluation Bloc and Caching Mechanism.
We take TS Chunk Ct,w as minimum input unit which contains a number of continuous
TS instances: Ct,w=(Tt−w+1, Tt−w+2, ..., Tt), where t is the time-tick, w is the window size.
By adopting the Test-then-Train strategy, the main idea here is to evaluate continuously
the shift between learned concept and real concept in data source (i.e., Test). Once a
Concept Drift is detected, the input chunk will be imported into Shapelet Extraction bloc
to update the learning model (i.e., Train). Both Shapelet initialization and updating
process are parallelizable on Spark cluster, which makes use of RAM as caching unit to
lower the I/O cost.

64 CHAPTER 3. DYNAMIC FEATURE LEARNING ON TS STREAM

Figure 3.4: System Structure in TS Stream context with Concept Drift

1) Shapelet Extraction:

The computing process follows the same methodology with ISMAP, which allows TS
instances in the input chunk to be partitioned on various Spark nodes, the discriminative
patterns in each partition will be extracted individually and merged between partitions
by their ranking power. The Shapelet ranking list is then composed by power-updated
existing Shapelets and newly imported candidates.

2) Learned Concept Evaluation:

As aforementioned, the loss of a Shapelet on input instances can describe its shift to
real concept of data source. With the same methodology, once a concept drift is detected in
data stream, the analysis tends to be more complicated. The challenge here is to distinguish
the measured loss from two aspects:

• Incomplete Extraction: As main constraint in Shapelet Extraction, insufficient
training instances (i.e., under-fitting) will bring a relative high loss. More data will
make the learning model approach more the inner concept.

• Concept Drift: The measured shift can only reflect the distance to a stable concept,
a big shift will be observed using out-of-date learning model.

In light of these challenges, an advanced analysis on detecting the Concept Drift from
measured loss is required. That is, not only to measure the loss from each TS Chunk, but
also to propose a strategy to analyse the loss. Based on the loss definition in (3.9), we
define the average loss for a TS chunk CN,w:

LC(N) =
1

w

w∑

k=1

L(YN−w+k, h(TN−w+k)) (3.10)

3.4. OUR PROPOSALS 65

Concept Enrichment: As mentioned in 3.4.2.1, an user-defined loss threshold ∆ can
be set to decide whether to import the chunk into the system to enrich the concept. That
is: ImportChunk = True if LC(N) ≤ ∆.

Concept Drift detection: Page-Hinkley test (PH) [5] is a typical technique used
for change detection in signal processing. It allows a loss tolerance for the signal. The
sequential test on the variance which considers that normal operation corresponds to a
certain variance and a drift being characterized by an increase in this variance. Here
we define a cumulative difference between the observed loss and their mean up until the
current time:

mN =

N∑

t=0

(LC(t)− Lavg(t)− δ) (3.11)

where Lavg(t) is the average loss until the current time tick t, δ specifies the tolerable
magnitude of changes. The minimum value of mN is defined as MN = min(mt, t = 1...N).
PH test will measure the difference between MN and mN :

PHN = mN −MN (3.12)

Intuitively, the difference reflects the degree of Concept Drift, when it exceeds a user-
specified threshold λ, then the Concept Drift is detected.

3) Caching Mechanism:

Figure 3.5: Elastic Caching Mechanism for streaming instance chunk in memory

As the discriminative power of a candidate Shapelet is based on its global distribution
in dataset, the fact that TS instances should be cached in memory is then a necessary
condition of Shapelet Extraction. This is the main difference compared to Concept Drift
detection in classical data streams, where it’s possible to have one single pass on input
instance. Then the main challenge here is to bridge the gap between TS and data stream
analysis, that is, to consider the nature of Shapelet in Time Series Stream (i.e., part of
data instances need to be cached), and propose a Shapelet-based caching mechanism in
streaming context, meanwhile the caching volume should not increase indefinitely along
with the never-ending TS Stream.

66 CHAPTER 3. DYNAMIC FEATURE LEARNING ON TS STREAM

As Concept Drift is the fact that the prediction targets at different time tick are
different, the previous learned concept is inapplicable to current input data. Conversely
speaking, the fresh extracted concept doesn’t match previous prediction target. This fact
opens a path to optimize proactively the data caching procedure in memory. Considered as
a complement to the global system shown in Fig. 3.4, the caching mechanism is detailed
in Fig. 3.5. Once a Concept Drift is detected in TS stream, the TS chunk will be cached
into memory. As mentioned in ISMAP, newly input chunk will generate its Matrix Profile
set, and update those of previously cached chunks, which eventually leads to the update
of Shapelet list in the learned concept. When there is a state transition in Concept Drift
detection, the extraction of a fresh concept is then finished which is applicable for streaming
instances coming afterwards. The detection of this transition state triggers then a cache
elimination procedure.

The elimination procedure is based on the fact that the prediction target of an old TS
Chunk is not compatible with the fresh learned concept. By evaluating the cached chunks
chronologically, we aim at finding the transition border where historical chunk starts to
match the fresh updated concept, which is a reverse process to the detection of cache
elimination trigger. We assume that Ct,w is the oldest chunk cached in memory, after
a trigger is detected, the evaluation will be conducted from Ct,w to more recent chunks
using the fresh learned concept. If the prediction target in Ct,w matches the fresh concept,
that means Ct,w is in the frame of the fresh concept, the chunks in later time ticks also
contributes to the concept’s tuning, which can be kept in memory. Otherwise, Ct,w should
be removed from cache to eliminate the negative effect to the fresh learned concept. The
process will not stop until a transition border is detected. By this proactive mechanism, the
system is capable of caching a stable volume of data in TS Stream context, and generating
adaptive Shapelets in the frame of drifting concept.

3.5 Experiments and Results

All the programs are implemented under Python 3.6. The source code, as well as the
demonstration videos [16, 286] can be found in our project page1. The Shapelet Exploration
process can be either conducted at local or on a remote Spark cluster. We provide also
an 1-click cluster based on Docker, to facilitate the replay of the distributed test offline by
the user.

3.5.1 Experimental design

The experiment is conducted by two steps: A). We test the incremental feature and reliabil-
ity of ISMAP after adopting Shapelet Evaluation process in Test-then-Train strategy. We
evaluate the improvement of Shapelet Extraction in both efficiency and accuracy on data

1https://github.com/JingweiZuo/TSStreamMining

https://github.com/JingweiZuo/TSStreamMining

3.5. EXPERIMENTS AND RESULTS 67

source with stable concept; B). We check the reliability of adaptive Shapelet Extraction
from TS stream with Concept Drift.

In brief, the experiments were designed to answer the following research questions
(RQs):

RQ 1 Incremental learning with ISMAP. How well our ISMAP model performs in an
incremental manner when learning from the stable-concept Time Series Stream?

RQ 2 Adaptive learning with ISMAP. How successful is ISMAP in learning the adaptive
features in Time Series Stream with concept drift?

-Datasets: UCR Archive [181] is the most complete TS collection in the community, where
the datasets are collected from diverse domains, such as readings from Image Outlines,
Sensor Readings, Motion captures, spectrograph, and so forth. Each domain matches to
certain problem type, which can be best tackled by a specific approach. Authors in [115]
studied in detail the approaches and their matching problem types, and pointed out that
Shapelet-based method performs relatively better in readings of Sensor data, ECG data,
Border-converted images, etc. To this end, we conduct our first incremental experiments
on 14 shapelet-characterized datasets in UCR Archive, instead of testing all datasets under
various problem types.

However, when we switch to streaming context where Concept Drift happens in TS
flow, to the best of our knowledge, currently, the community doesn’t collect the dataset
which reflects a such phenomenon, due to the fact that the problem hasn’t been studied
before. Therefore, we generate synthetic datasets by manually adjusting the data source
to comply the test scenario. Instead of generating data from scratch to comply Shapelet
features, the synthetic data is based on the datasets Trace and ECG5000 (see Table 3.1)
from two domains, which have a high reliability in Shapelet-based approaches and eligible
for simulating the Concept Drift scenario by changing the class within some chunks on
different time ticks.

-Data Augmentation: Public datasets, especially those commonly used with shapelets,
have relatively small size if we compare them to typical dataset in data mining2. A larger
number of instances is required for Concept Drift assessment in the streaming TS context.
Adding noise is a typical way for data augmentation, as ISMAP extracts a range of patterns
from each Discriminative Profile and then merge them by their discriminative power, a
range-based extraction [287] rather than a single top value is noise resistant. We augment
the data volume by randomly putting noise in TS instances with a random duration. The
augmentation degree is set to 10 times of original volume. We put 3 Concept Drifts equally

2Especially for TS Classification, hundreds or thousands of TS instances can be considered as
BIG DATA, due to the high time complexity of algorithms in the domain which are based on
exact distance measure. Our algorithm has a time of O(N2n3logn), N: number of instances, n: TS
length.

68 CHAPTER 3. DYNAMIC FEATURE LEARNING ON TS STREAM

distributed on time axis. The total labelled instances are sampled into 3 equal-sized subsets
with different concepts.

-Reproducibility and Parameters: The initial Shapelet Extraction algorithm is based
on [16], where the Shapelet length m ∈ [0.1n, 0.5n] with a step of 0.25m, where n is
TS length. The advanced MASS algorithm (mass_v2) [288] for similarity measure is
re-implemented under Python3, where flat subsequences (i.e., those where all values are
equal) are ignored by the algorithm, as such a subsequence is meaningless from the def-
inition of Shapelet, and will produce an error during MASS computation due to the
empty value of its standard deviation. The threshold in Discriminative Profile is re-
placed by a top-K selection in the profile, which follows the same value as final extracted
Shapelet number k (k = 10 for each class). As for the loss threshold for Shapelet Eval-
uation, ∆ ∈ {0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50}. For Concept Drift Detection, we take
the loss threshold ∆ which brings the highest accuracy in raw dataset. The tolerance
δ ∈ {0.10, 0.15, 0.30}, PH threshold λ = 0.4. The TS chunk size is fixed at 5.

3.5.2 RQ1: Incremental learning with ISMAP

Table 3.1: Shapelet Datasets in UCR Archive used for Incremental Test (ISMAP)

Type Name Train/Test Class Length IG KW MM ISMAP(best) Para. (∆) Comp. Ratio

Simulated SyntheticControl 300/300 6 60 0.9433 0.9000 0.8133 0.7007 0.35 46.7%

Sensor

Trace 100/100 4 275 0.9800 0.9400 0.9200 1 0.5, 0.45 26.0%
MoteStrain 20/1252 2 84 0.8251 0.8395 0.8395 0.9169 0.45 60.0%
SonyAIBO.I 20/601 2 70 0.8453 0.7281 0.7521 0.9151 0.4 95.0%
SonyAIBO.II 27/953 2 65 0.8457 - - 0.8583 0.4 63.0%
ItalyPower. 67/1029 2 24 0.8921 0.9096 0.8678 0.9466 0.45 25.4%

ECG
ECG5000 500/4500 5 140 0.7852 - - 0.9109 0.4 9.4%
ECGFiveDays 23/861 2 136 0.7747 0.8721 0.8432 0.9826 0.4 51.2%
TwoLeadECG 23/1189 2 82 0.8507 0.7538 7657 0.9337 0.5 47.8%

Images
Symbols 25/995 6 398 0.7799 0.5568 0.5799 0.8113 0.35 96.0%
Coffee 28/28 2 286 0.9643 0.8571 0.8671 0.9286 0.4 78.6%
FaceFour 24/88 4 350 0.8409 0.4432 0.4205 0.9886 except 0.45 62.5%
DiatomSize. 16/306 4 345 0.7222 0.6111 0.4608 0.8758 0.5 50.0%

Motion GunPoint 50/150 2 150 0.8933 0.9400 0.9000 0.9733 0.45 42.0%

Based on the explainable approach proposed in [16], we test firstly the incremental
feature of ISMAP by adopting interleaved Test-then-Train strategy with an evaluation
procedure. The loss threshold ∆ ∈ [0.2, 0.5], with a step of 0.05, which controls the
sensitivity of system for importing TS instance into Shapelet Extraction process.

Baselines: We focus on the feature itself, that is, to select the best quality Shapelets
from data source. Therefore, to test the reliability of ISMAP, we take the Shapelet Tree
methods as baselines, rather than considering classifiers learned over shapelet-transformed
data[97]3. The Shapelet Tree methods utilize different quality measures to extract the

3Nevertheless, the extracted high quality Shapelets can be concatenated with Shapelet Trans-
form methods for a higher accuracy, though it’s not our focus here.

3.5. EXPERIMENTS AND RESULTS 69

Figure 3.6: Results of Incremental Test (ISMAP) by adopting an extra Shapelet Evalu-
ation procedure

Shapelet and predict target instance: a) Information Gain (IG)[14], b) Kruskall-Wallis
(KW) [208], c) Mood’s Median (MM) [208]. As quality measure’s calculation is negligible
compared to the total time cost, the computation time should remain at the same level
when they adopt the same distance measure (e.g., MASS), and when ISMAP doesn’t adopt
a Test-then-Train strategy.

Table 3.1 shows the accuracy performance comparison between baselines and our ap-
proach. Obviously, ISMAP achieved the top performance on accuracy metric on more
datasets than any other classifier (12 of 14). Specifically for sensor, motion and ECG data,
ISMAP performs no doubt better than other approaches, and achieved more than 20%

accuracy improvement in ECG5000.

Besides the accuracy advantage compared to the baselines, the incrementality of ISMAP
allows a flexible adjustment between accuracy and time cost. Table 3.1 shows as well
the parameter ∆ which brings the best accuracy performance. The parameter sets a
loss threshold for Shapelet evaluation during incremental extraction process, and decides
whether the input TS instance contains useful information for updating existing Shapelets.
The Compression Ratio is defined by the proportion of imported valuable instances over
total training instances: Comp.Ratio =

nbr.instanceimported

nbr.instancetraining
, the ratio below 1 brings a better

performance in both time and memory cost. Fig. 3.6 shows a global view of accuracy and
time cost tested by ISMAP under different loss thresholds.

In general, we consider that a high loss threshold ∆ leads to a high efficiency at the
expense of certain accuracy. However, from the result in Table 3.1, for most of the datasets,
ISMAP gets the highest accuracy in range ∆ ∈ [0.4, 0.45], which is reasonable from Fig.
3.3. On the one hand, a threshold loss close to or greater than 0.5 will skip a large number
of instances which are around the split point and don’t make any quality improvement
for current Shapelets. Instead, the instances contain valuable information for adjusting

70 CHAPTER 3. DYNAMIC FEATURE LEARNING ON TS STREAM

the quality of current Shapelets and could introduce new candidates. Then classifier will
be overfit on small number of instances. On the other hand, the accuracy performance is
affected by random input order of TS instances, the first extracted candidate Shapelets will
affect the evaluation of later TS instances, which brings a small uncertainty for the number
of instances to be imported into the system. For instance, in FaceFour dataset, time cost
increases when ∆ changes from 0.3 to 0.35, that means more instances are imported into
system even with the increase of threshold. Which is caused by the uncertainty. A small loss
threshold in early stage will be biased towards the initial randomly imported TS instances
and extracted Shapelets, and reduce the acceptation space for true discriminative Shapelets
coming afterwards.

Nevertheless, most of the time the accuracy keeps on a relative stable stage even with
the increase of ∆, which can be explained by the fact that the instances from the same
class are highly consistent, and share the common Shapelet features. Therefore, the system
efficiency can be largely improved with an exchange of a negligible decrease of accuracy.

3.5.3 RQ2: Adaptive learning with ISMAP

For sake of clarity, we have selected for these experiments datasets where Shapelet-based
approach has a strong reliability. Due to space limit, we only show the exploration results
for two testing contexts: ECG5000 dataset in the original space and Trace dataset in the
augmented space. We focus on the explainable detection process of Concept Drift and the
reliability of the adaptive Shapelets around drift areas.

Fig. 3.7 shows the Concept Drift detection process on the two datasets under different
loss tolerance level. For ECG5000, two drifts were put at time tick 167 and 333. The
Concept Drifts were detected by the system within the time periods [170, 195] and [340,
390], which are in strong accordance with the true drifts in the dataset. The extracted
Shapelets before each drift period contain overall information of previous subset. During
the drift periods, TS chunks are evaluated to update the current learned concept. A small
adjustment time period (i.e., 25 and 50 for two drifts respectively) over the entire subset size
proved the strong adaptability of the system. For augmented Trace dataset, two drifts were
put at time tick 333 and 667. The drift detection mechanism stays reliable under different
loss tolerances, which lead to different time periods for adjusting the learned concept. A
high tolerance is capable of relieving the effect of outliers or excessive feedback, and allows
only a continuous high loss to be considered as a Concept Drift. Therefore, less chunks
are imported into the system which leads to less time cost. From the memory and time
plot on right Fig. 3.7, at the end of each drift adjustment area, the cached information
is largely eliminated, finally only 65 of 500 instances of ECG5000 dataset, 100 of 1000
(δ = 0.15) or 50 of 1000 (δ = 0.30) instances of Aug. Trace dataset, are cached in the
memory. The proactive caching elimination mechanism shows its elastic feature. Besides,
the later imported chunks requires usually longer calculation time (the step becomes longer
in the time plot), as more chunks have been cached.

3.6. CONCLUSION 71

Figure 3.7: Results of Concept Drift Detection on ECG5000 dataset and augmented
Trace dataset

In Table 3.2, we show the reliability of the Extracted Shapelets on 4 time ticks at the
beginning/end of each drift area4. The extracted Shapelets perform the same accuracy
at the two middle time ticks, which can be explained by the fact that no chunks were
imported since the learned Concept 2 was deemed enough reliable. Globally, the adaptive
Shapelets show a high accuracy in such a streaming context with Concept Drift, although
the accuracy is a little lower than that in Table 3.1, as the training on the subsets gets
less information than that on the entire dataset.

3.6 Conclusion

In this chapter, we studied the dynamic feature exploration over Time Series Stream, which
is based on the interpretable Shapelet features and an explainable Shapelet extraction pro-

4We recall that the Trace testing dataset were augmented in the same manner, where drifts
were manually added.

72 CHAPTER 3. DYNAMIC FEATURE LEARNING ON TS STREAM

Table 3.2: Evaluation in datasets with manually added drift

Dataset - i(Con. 1) ii(Con. 2) iii(Con. 2) iv(Con. 3)

Aug.Trace
(δ = 0.15)

Time tick 345 380 670 790
Test Accu. 0.9600 0.9900 0.9900 0.9800

Aug.Trace
(δ = 0.30)

Time tick 350 365 675 700
Test Accu. 0.9600 0.9800 0.9800 0.9700

ECG5000
(δ = 0.10)

Time tick 170 195 340 390
Test Accu. 0.9018 0.8783 0.8783 0.8927

cess. Multiple temporal relationships between time series instances are considered, which
can be either under a stable concept or with a concept drift. First, an incremental Shapelet
extraction under stable concept with a novel Shapelet evaluation process is proposed, which
improved largely the system’s efficiency with an exchange of a negligible decrease of accu-
racy. Then, for a non-stable concept data source, we adjust the conventional strategies of
Concept Drift detection into the context of Time Series Stream, which opens the path for
a proactive elimination of data cached in the memory. The system can be applied in the
scenario where an existing dataset should be enriched with new knowledge but without
human loop in the middle.

As future work, we aim at exploring more challenging scenarios where TS instances are
weakly labelled. In addition, we will consider the TS data with more complex structures,
such as the multivariate time series (MTS). We continued this research by considering both
the complex MTS data and the label constraint in real-life scenarios. However, due to the
limitations of the extraction-based Shapelet, such as the high computational cost, we will
switch to another TS representation in next chapter for learning MTS with label constraint
issues.

Chapter 4

Semi-supervised Learning on
Multivariate Time Series

Contents
4.1 Introduction . 74

4.2 State-of-the-art . 75

4.2.1 Multivariate Time Series Representation Learning 76

4.2.2 Semi-supervised Learning on Time Series 77

4.3 Problem Formulation . 77

4.3.1 Spatio-temporal Representation for MTS 78

4.3.2 Semi-Supervised Learning on MTS 78

4.4 Proposal: SMATE . 79

4.4.1 Global Structure of SMATE 79

4.4.2 Spatial Modeling Block (SMB) 80

4.4.3 Spatio-Temporal Encoding on MTS 80

4.4.4 Joint Model Optimization 81

4.5 Experiments . 83

4.5.1 Experimental setup . 84

4.5.2 RQ 1: Classification Performance Evaluation 87

4.5.3 RQ 2: Semi-supervised Classification Performance 89

4.5.4 RQ 3: Visualization & Interpretation of the Representa-
tion Space . 90

4.5.5 RQ 4: Performance of Spatial Modeling Block (SMB) . . 92

4.5.6 RQ 5: Efficiency Analysis 94

4.5.7 Discussion . 96

73

74 CHAPTER 4. SEMI-SUPERVISED LEARNING ON MTS

4.6 Conclusion . 97

4.1 Introduction

Most Multivariate Time Series (MTS) data, such as sensor readings, are labeled during
the data collection process. The post-labeling of MTS is much more costly than classic
data (e.g., image, text, etc.) due to the low interpretability over the real-valued sequence,
leading to a considerable constraint for MTS classification in real-life scenarios.

Weakly supervised learning becomes an alternative option for the fully supervised al-
gorithm by learning from the unlabeled samples. The previous studies on weak-label Time
Series (TS) learning are usually based on self-training [173] or Positive Unlabeled Learning
[175] with a carefully designed distance measure [174] or stopping criterion [176] to learn
the pseudo-labels. Besides, they mostly focus on the Univariate Time Series (UTS) with
the One-Nearest-Neighbor (1NN) classifier on raw data space, which is widely outpaced
by today’s advanced approaches [116], such as Deep Neural Networks (DNNs) [119] or
ensemble methods [289].

From Univariate Time Series (UTS) to Multivariate Time Series (MTS), traditional
methods usually combine the compact and effective features from different variables, such
as Shapelet Ensemble [223, 102, 98], global discriminative patterns [290], or bag-of-patterns
[224, 225]. However, the predefined features usually fail to capture MTS essentials: the
temporal dependency and the interactions of multiple variables (i.e., spatial interactions,
we use the term spatial in this chapter for the variable axis). Recently, some deep learning-
based methods were proposed to capture the MTS features with various network structures
[230, 226, 21, 291], showing promising performance on MTS classification tasks. However,
the above-mentioned methods are mostly fully supervised, and rarely consider the label
shortage issue when building the MTS classifier.

The recent research turns to Representation Learning [292] when handling weakly la-
beled MTS, which allows learning low dimensional embeddings in an unsupervised manner,
such as using triplet loss [17] to form the embedding space, then even an SVM classifier
is powerful enough on the learned representation [18]. However, existing techniques suffer
from three major issues. First, the interactions between the MTS variables are generally
computed on the entire 1-D series, ignoring the fact that the local spatial interactions
at the sub-sequence level may evolve in the dynamic sequence, that is spatial dynamics.
Second, the representation learned in a pure unsupervised manner depends mostly on the
loss function selection. As no label information is utilized to learn the representation [17],
there is a risk that it deviates from the true features, thus affecting the classifier perfor-
mance. Third, they rather employ deep learning as a blind box and do not focus on the
interpretability of the learned representation.

Therefore, to handle both the MTS complex structure and the label shortage prob-

4.2. STATE-OF-THE-ART 75

lem, we propose SMATE, Semi-supervised Spatio-temporal representation learning on
MultivAriate Time SEries. The auto-encoder based structure allows mapping the MTS
samples from raw features space X to low dimensional embedding spaceH. A Spatial Mod-
eling Block combined with a convolutional network captures the spatial dynamics, whereas
a GRU-based structure extracts the temporal dynamic features. Thereby, SMATE is ca-
pable of compressing the essential Spatio-temporal characteristics of MTS samples into
low-dimensional embeddings. On top of this embedding space H, we propose a semi-
supervised three-step regularization process to bring the model to learn class-separable
representations, where both the labeled and unlabeled samples contribute to the model’s
optimization. This regularization process comes with the capability of visualization at each
step, making SMATE interpretable.

We summarize our main contributions as follows:

• Spatio-temporal dynamic features in MTS: We claim and demonstrate that the
temporal dependency and the evolution of the spatial interactions (spatial dynamics)
are important for building a reliable MTS embedding.

• Weak supervision on learning representations: With limited labeled data,
SMATE can learn reliable class-separable MTS representations for downstream tasks,
such as MTS classification (MTSC).

• Interpretable MTS embedding learning: SMATE allows for visual interpretabil-
ity, not only from the class-separable representations but also in each step of the
semi-supervised regularization process.

• Extensive experiments on the MTS datasets: The experiments are carried out
on various MTS datasets from different application domains. The detailed evaluation
with 13 supervised baselines and four semi-supervised work is provided, which shows
the effectiveness and the efficiency of SMATE over the state of the art.

The rest of this chapter starts with a review of the most related work. Then, we
formulate the research problems. Later, we present in detail our proposal SMATE, which
is followed by the experiments on real-life datasets and the conclusion.

4.2 State-of-the-art

We begin by discussing the related work on learning MTS representation with the main
extension to MTS Classification (MTSC) tasks. Then, we briefly review the previous work
on semi-supervised Time Series learning. Table 4.1 shows the comparison of the methods
for learning MTS representation.

76 CHAPTER 4. SEMI-SUPERVISED LEARNING ON MTS

4.2.1 Multivariate Time Series Representation Learning

Firstly, we give two primary definitions.

Definition 4.1. (univariate time series). A univariate time series x ∈ RT is a sequence of
real-valued numbers: x=(x1, x2, ..., xi, ..., xT), where T is the sequence length.

Definition 4.2. (multivariate time series). A multivariate time series x ∈ RT×M is a
sequence of real-valued vectors: x=(x1, x2, ..., xi, ..., xT), where xi ∈ RM , M is the
variable numbers.

A natural way to learn MTS representation is to extend the representation approaches
developed earlier on Univariate Time Series (UTS) [31]. This is the case in [222] where the
authors further explored Singular Value Decomposition (SVD) with multi-view learning
to find the consistency and interactions between variables. Similarly, [223][102] combine
Shapelet representation from different variables to build an ensemble-like learner. Sym-
bolic Representation for Multivariate Time Series (SMTS) [224] adopts the Bag-of-Patterns
concept, considering all variables simultaneously and constructs a code-book to model the
variable relations. Finally, WEASEL+MUSE [225] extend WEASEL [219] from UTS to
MTS by creating a histogram of feature counts to capture the local and global changes in
relationships between variables.

Different from the interpretable feature-based representations, various deep learning
models are proposed to capture the variable (i.e., spatial) interactions in MTS. Multi-
Channels Deep Convolutional Neural Networks (MC-DCNN) [226] extract firstly 1D-CNN
features from each variable, then combine them with a Fully Connected (FC) Layer.
Whereas the authors in [227] abandon the combination strategy but apply directly 1D-CNN
to all variables. The 2D-CNN features with the cross-attention mechanism in CA-SFCN
[125] enhanced the dependencies captured by 1D-CNN on both temporal and spatial axes.
Besides, the recurrent models are widely applied to sequential data. A modified Gated
Recurrent Unit (GRU) described in [21] models MTS with missing values, where each
multivariate step is memorized into state units, then the recurrent structure captures the
temporal dependencies. Another group of works [228, 229] adopt Graph Neural Networks
(GNNs) to model the spatial interactions. However, they are generally designed for fore-
casting tasks (e.g., traffic forecasting), and most rely on external information (e.g., the
road networks) between the variables. Last but not least, the hybrid LSTM-CNN struc-
ture is capable of extracting both local and long-term features. Various work such as the
Squeeze-and-Excitation block in MLSTM-FCN [230] or the multi-view learning-like mod-
ule in TapNet [187], enhanced the hybrid structure via modeling the spatial interactions.
However, the interactions are generally computed at the sequence level, ignoring the fact
that the local spatial interactions at the sub-sequence level may evolve in the dynamic
sequence, i.e., spatial dynamics. Moreover, they are all fully supervised, requiring huge
labels during the training process. Also, the learned representations are result-oriented
(e.g., pursuing higher accuracy), with less focus on the interpretability, considered by the
data mining community.

4.3. PROBLEM FORMULATION 77

Table 4.1: Existing methods for learning MTS Representation

SM
T

S

M
U

SE

Sh
ap

el
et

U
SR

L

Ta
pN

et

M
LS

T
M

-F
C

N

C
A

-S
FC

N

1N
N

-D
T

W

S
M

A
T

E

Temporal Dynamics - - - ✓ ✓ ✓ ✓ - ✓
Spatial Dynamics - - - - - - ✓ - ✓
Interpretable Representation ✓ ✓ ✓ - ✓ - - - ✓
Label Shortage - - - ✓ ✓ - - ✓ ✓

4.2.2 Semi-supervised Learning on Time Series

The pioneering work [173, 174] on Semi-supervised TS Learning are based on self-training
or Positive Unlabeled Learning [175] with the Nearest-Neighbor (1NN) classifier and a
carefully designed distance, such as DTW [173] or DTW-D [174], and optimized stopping
criterion [176] for importing the pseudo-labels. Those work are followed by [177, 178]
for wider contexts. Though not mentioned in their papers, the self-training framework is
extensible from the UTS to the MTS setting by using an adapted distance, such as DTWI

[179], DTWD [179] or DTWA [180]. However, under more complex scenarios nowadays,
such as 30 UEA MTS datasets [182] collected from different domains, the distance-based
classifiers show limited performance and are rather used as baselines by recent studies
[116].

Learning meaningful MTS representations [292] in a weakly supervised setting draws
much attention recently. Unsupervised Scalable Representation Learning (USRL) de-
scribed in [17] combines causal dilated convolutions with triplet loss for contrastive learn-
ing. On the one hand, it learns better UTS representation than the traditional supervised
CNNs [119]. On the other hand, a single SVM on the learned MTS representation offers
higher accuracy than a DTWD-based classifier [179]. Similarly, authors in [178] adopt
Multi-Task Learning (MTL) to learn the self-supervised UTS features from an auxiliary
forecasting task. The recent work Semi-TapNet [187] proposes an Attentional Prototype
Network to learn from the unlabeled samples. However, the above-mentioned approaches
do not explore thoroughly both the labeled samples and the Spatio-temporal dynamics in
MTS.

4.3 Problem Formulation

In this section, we formulate firstly the Spatio-temporal dynamics learning problem in
MTS. Then, we give a formal definition of a semi-supervised classification problem for
MTS. Table 4.2 summarizes the notations used in the chapter.

78 CHAPTER 4. SEMI-SUPERVISED LEARNING ON MTS

4.3.1 Spatio-temporal Representation for MTS

Table 4.2: Notation

Notation Description
D,Dl,Du dataset, labeled portion, unlabeled portion
T , M , N MTS length, variable numbers, dataset size
L,D embedding length, embedding dimension size
m,P temporal window size, embedding pool size
x, h MTS instance, latent embedding
s variable/spatial interaction
θ general parameters to be optimized

The Spatio-temporal modeling of MTS requires considering both the temporal depen-
dency p(xt′ |xt) (t′ > t) and the spatial interactions between the variables. Previous studies
[187, 230] usually consider the spatial interactions at the sequence level: s = {xi ⋊⋉ xj} ∈
RM , where xi,xj ∈ RT×1, ⋊⋉ indicates the interactions between the variables. However, the
local spatial interactions at the subsequence level st = {xi

t−m/2,t+m/2 ⋊⋉ xj
t−m/2,t+m/2} ∈

RM may evolve in the dynamic sequence, where m is the window size. To illustrate, given
the system status at time t in MTS, it is not only decided by the local value xt ∈ RM

given a temporal status, but also by its neighbor values
[
xt−m/2 : xt+m/2

]
∈ RM×m, which

brings a spatial correlation matrix on temporal neighbors and spatial variables given a
spatial status st ∈ RM . Unlike the work such as DCRNN [229] relying on external infor-
mation (e.g., the road networks) to model the spatial dependency between the variables,
we aim at exploring the inherent spatial/variable interactions only on the MTS data.

Therefore, given a sample x ∈ RT×M in raw space X , the Spatio-temporal representa-
tion learning for MTS is to learn a low-dimensional representation h ∈ RL×D on embed-
ding space H, integrating both temporal dynamic p(xt′ |xt) and spatial dynamic p(st′ |st).
The item dynamic refers to the unstable system status within the evolving multivariate
sequential data.

4.3.2 Semi-Supervised Learning on MTS

Definition 4.3. (weak-label MTS dataset). A weakly labeled MTS dataset D = {Dl,Du}
contains both labeled and unlabeled MTS samples:

Dl = {xi, yi}N∗r
i=1 , Du = {x̂i}N∗(1−r)

i=1

where r (0 ≤ r ≤ 1) indicates the ratio of the labeled samples in D of size N, yi is the
annotation of the labeled instance xi.

The semi-supervised MTS learning aims at training a classifier to predict successfully
the label of a testing MTS sample, adopting the supervised training from Dl and further
unsupervised adjustment/optimization from Du.

4.4. PROPOSAL: SMATE 79

FC
 L

ay
er

G
R

U

FC
 L

ay
er

C
on

v1
D

BN
+R

eL
U

Sp
at

ia
l M

od
el

lin
g

Bl
oc

k

G
R

U

G
R

U

C
on

v1
D

BN
+R

eL
U

Sp
at

ia
l M

od
el

lin
g

Bl
oc

k

C
on

v1
D

BN
+R

eL
U

Sp
at

ia
l M

od
el

lin
g

Bl
oc

k

C
on

ca
te

na
te

1-
d

Po
ol

in
g

1-
d

Po
ol

in
g

U
pS

am
pi

ng
1D

G
R

U

G
R

U

G
R

U

Regularized
Embedding

C1

C2

C3

Class centroid
Labeled sample
Unlabeled sample

Unsupervised
Embedding

Unlabeled sample
Inherent classes

Three-Step Regularization

Reconstruction Loss

Spatio-Temporal Encoding

Decoding

Input MTS
% ∈ ℝ4×2

Reconstructed MTS
M% ∈ ℝ4×2

Figure 4.1: Model Structure of SMATE

4.4 Proposal: SMATE

In this section, we introduce SMATE, which captures the essential characteristics of Mul-
tivariate Time Series (MTS) and allows learning an interpretable representation space in a
semi-supervised manner. This section is organized as follows. First, we introduce the global
model structure of SMATE. Then, we describe how the Spatio-temporal representation is
learned from the raw MTS data space. Finally, we give the joint model optimization, which
coordinates the weak supervision and the embedding learned via a three-step regularization
process.

4.4.1 Global Structure of SMATE

SMATE is based on an asymmetric auto-encoder structure, integrating three key compo-
nents: Spatio-temporal dynamic encoder, sequential decoder, and semi-supervised three-
step regularization of the embedding space.

Given the fact that extracting features from a high-dimensional space generally requires
additional attention compared to restoring data from a low-dimensional space [292], the
encoding and decoding process in SMATE adopts different weight matrix (i.e., asymmetric
auto-encoder) to capture the inner structure of MTS data. Although recent work [293] does
represent the temporal dynamics of MTS via a sequence to sequence (seq2seq) model, they
do not encompass the complex Spatio-temporal structure of MTS. As shown in Figure 4.1,
SMATE adopts a two-channel encoder exploring both spatial and temporal dynamics and
embeds the input MTS into a low-dimensional representation space, where the embedded
samples are sparsely distributed with the reconstruction-based optimization. On the un-
supervised embedding space, a three-step regularization is applied to learn class-separable
embeddings. The class centroids are regularized by labeled and unlabeled samples, show-

80 CHAPTER 4. SEMI-SUPERVISED LEARNING ON MTS

ℎ ∈ ℝ!×#

FC
 L

ay
er

Po
ol

in
g

Po
ol

in
g

Po
ol

in
g

Po
ol

in
g

FC
 L

ay
er

Spatial
Interactions

window size m

ℎ′ ∈ ℝ!×#
ℎ

𝑠

…

ℎ$

ℎ%

ℎ#

ℎ&

…

𝑠! ∈ ℝ"×$
!

𝑠% ∈ ℝ"×$ 𝑠 ∈ ℝ"×$

Figure 4.2: The Spatial Modeling Block (SMB)

ing interpretability over the representation space. Finally, the model is jointly optimized
by the reconstruction objective and the regularization objective.

4.4.2 Spatial Modeling Block (SMB)

Firstly, we introduce a novel module, Spatial Modeling Block (SMB), to capture the spatial
interactions at subsequence levels. As shown in Figure 4.2, SMB takes as input an MTS
representation h = {hi}Ti=1 ∈ RT×d (d = M for the first block in spatial encoding channel),
followed by a one-dimensional average pooling layer on each variable hj ∈ RT×1, encoding
the temporal neighbors into the horizontal system status sH(i)=avg(

[
hi−m/2 : hi+m/2

]
),

where i is the time tick, m is the window size. Then the Fully Connected (FC) layers
allow firstly the interaction of the horizontal system status sH in the vertical direction via
a low-dimensional compression sV ∈ RT×d′ , then remapping it to the initial data space
to decide the spatial interaction weights at each one-dimensional segment. We define the
spatial interactions s = {si}Ti=1, where si ∈ Rd, representing the interaction weights for
the vector hi ∈ Rd. The output of SMB is described by h′=h ⊙ s, with the calibrated
weights for each 1-D TS segment, where ⊙ is the element-wise multiplication.

4.4.3 Spatio-Temporal Encoding on MTS

Given x ∈ RT×M , the low-dimensional representation h ∈ RL×D embeds the Spatio-
temporal features of x by a neural network-based function fθ(x). The low-dimensional
embedding brings dramatic improvement on both the efficiency and accuracy for classifi-
cation tasks [187], owning to the fact that the classifier is not distracted by the redundant
information in raw data.

As shown in Figure 4.1, we adopt a two-channel structure to encode the spatial and
temporal features in MTS, respectively. For the temporal channel, among different variants

4.4. PROPOSAL: SMATE 81

of the recurrent neural networks (RNN), we specifically consider Gated Recurrent Units
(GRUs) [21] that mitigate the vanishing gradient problem. An update gate zt and a reset
gate rt control the hidden state ht ∈ Rdg with the observation xt ∈ RM and the previous
hidden state ht−1 ∈ Rdg , where dg is the output dimension of GRUs. The update functions
are as follows:

rt = σ(Wrxt + Urht−1 + br) (4.1)

zt = σ(Wzxt + Uzht−1 + bz) (4.2)

ht = (1− zt)⊙ ht−1 + zt ⊙ tanh(Whxt + Uh(ht−1 ⊙ rt) + bh) (4.3)

where Wx, Ux, bx (x ∈ [r, z, h]) are model parameters, σ is the sigmoid function, ⊙ is the
element-wise multiplication. Three GRUs are cascaded with a 1-D pooling layer to output
h(T) ∈ RL×dg , where L=T/P, P is the pool/sampling size1.

For the spatial channel, we define the convolutional module:

h′(l) = SMB(h(l)) (4.4)

h(l + 1) = ReLU(BN(W ⊗ h′(l) + b) (4.5)

where l (0 ≤ l < 3) is the module number, h(0)=x ∈ RT×M , h(l) ∈ RT×dc , dc is the filter
number, W is the 1-D convolutional kernel of size m, ⊗ is the convolution operator. Within
each of the three modules, the SMB firstly calibrates the interaction weights for each 1-
D segment and outputs h′ ∈ RT×d. Then a 1-D convolutional layer concatenated with
Batch Normalization [294] and Rectified Linear Units (ReLU) [295] is deployed. The 1-D
kernels match with the window size m in their neighboring SMB, as the convolution product
W⊗

[
h′i−m/2 : h

′
i+m/2

]
requires considering the spatial interactions captured by SMB within

the same interval. Similar to the temporal channel, a 1-D pooling layer is applied after
the last convolutional block to output h(S) ∈ RL×dc . Finally, we output the combined
spatial and temporal features hconcat = concat(h(T), h(S)) ∈ RL×(dg+dc) and apply two
FC layers to get the Spatio-temporal embedding h ∈ RL×D. The matrix representation
allows the maximal preservation of the Spatio-temporal features and facilitating the MTS
restoration. The detailed parameter settings can be found in Section 4.5.1.2.

4.4.4 Joint Model Optimization

As shown in Figure 4.1, since the representation learned via an autoencoder-based struc-
ture generally has a sparse distribution of class-specific samples [292], the unsupervised
training derived from the reconstruction objective does not consider thoroughly the inner
relation between class-specific samples but focus on the restoration performance from the
embeddings. To address the issue, we propose a joint model optimization that integrates

1Note that the pool/window size m in SMB and P are different parameters.

82 CHAPTER 4. SEMI-SUPERVISED LEARNING ON MTS

the temporal reconstruction and the three-step regularization objectives. Specifically, the
joint optimization combines both the labeled and unlabeled samples to learn the class-
specific clusters on the embedding space.

Firstly, we define the temporal reconstruction loss as:

LR =
∑

t
∥xt − x̃t∥2 (4.6)

where xt, x̃t ∈ RM , corresponding to the observations in the raw and reconstructed
MTS instances x and x̃.

Then, we introduce the three-step regularization combining both labeled and unlabeled
samples to foster the model adaptation of class-separable embeddings. The regularization
approaches the embeddings within the class-specific clusters to the virtual class centroids,
which are trained progressively.

Step 1 -Supervised Centroids Initialization: The class centroids are initialized by
the class-specific embeddings. Given the labeled training set Dl = {Xk}Kk=1 where K is the
class number, Xk ∈ RNk×T×M is a sample collection of class k, Nk is the sample number
of class k. Then the embedding set Hk=fθ(X

k) ∈ RNk×L×D initializes the class centroid
ck by:

ck = mean(Hk), ck ∈ RL×D (4.7)

Step 2 -Supervised Centroids Adjustment: Once the centroids are initialized, we
can make the supervised adjustment since the distance-based class probability allows to
assess the contribution of individual samples on the centroid’s decision. In other words,
the centroid ck is affected by larger contribution weights brought by nearby samples of
class k. Let xk

i ∈ RT×M be a time series of class k, we define the weight of xk
i to ck as the

inverse Euclidean Distance (ED) between the embedding hk
i = fθ(x

k
i) ∈ RL×D and the

centroid ck:

Wk,i = 1− ED(hk
i , ck)∑K

j=1ED(hk
i , cj)

(4.8)

Then the class centroid ck can be adjusted accordingly by the labeled samples within the
class-specific cluster:

ck =
∑Nk

i=1
Wk,i · hk

i , hk
i ∈ Hk (4.9)

Step 3 -Unsupervised Centroids Adjustment: Given the unlabeled samples Du =

{x̂i}N∗(1−r)
i=1 , where r is the labeled data ratio. Apart from the optimization from the

reconstruction objective, the unlabeled sample x̂i is capable of adjusting the centroid ck
via the propagated label from the distance-based class probability defined as:

p̂θ(y = k|x̂i) = 1− ED(fθ(x̂i), ck)∑K
j=1ED(fθ(x̂i), cj)

(4.10)

4.5. EXPERIMENTS 83

The unlabeled sample x̂i will be then integrated into the class-specific cluster with the
highest probability. We can further adjust the class centroid ck considering the unlabeled
samples:

ck =
Nk

Nk + N̂k

Nk∑

i=1

Wk,i · hk
i +

N̂k

Nk + N̂k

N̂k∑

i=1

p̂k,i · ĥk
i (4.11)

where ĥk
i = fθ(x̂

k
i), N̂k is the number of samples of class k in Du with the propagated

label.

The class centroids are initialized and adjusted by both labeled and unlabeled samples
on the embedding space, from which we formalize the regularization loss derived from the
labeled samples as follows:

LReg(θ) = −
∑

k
logWθ(y = k|x) (4.12)

As both the reconstruction and regularization losses are normalized, we define the
global optimization objective as:

minθ(LR + λLReg) (4.13)

where λ ≥ 0 is a hyperparameter that balances the two losses. Importantly, LReg is
included such that the embedding process not only serves to reduce the dimensions – it
is actively conditioned to facilitate the encoder in learning class-separable embeddings. In
practice, SMATE is not sensitive to λ (see Fig. 4.3 in Section 4.5.2.3); then for all the
experiments, we set λ = 1.

4.5 Experiments

In this section, we evaluate the performance of the Spatio-temporal representation learned
by SMATE. Firstly, we show the experimental setup, including the dataset information,
hyperparameters’ setting, baseline descriptions, and evaluation metrics. Then we evalu-
ate the performance of the model with different baselines on both supervised and semi-
supervised learning tasks. Finally, we analyze the Spatial Modeling Block regarding its
ability to model the dimensional interactions in MTS. The model was trained using the
Adam optimizer [296] on a single Tesla V100 GPU of 32 Go memory with CUDA 10.2. The
authors are devoted to promoting reproducibility. Therefore, the source code, datasets, and
instructions are publicly available2.

2https://github.com/SMATE2021/SMATE

84 CHAPTER 4. SEMI-SUPERVISED LEARNING ON MTS

4.5.1 Experimental setup

We evaluate the learned MTS representation on both classification and semi-supervised
classification tasks. As SMATE allows learning class-separable representations, then an
SVM classifier is powerful enough [18] to validate the learned representations. For the
classification task, we firstly adopt the full labeled training set to learn the class-separable
representations, then we train an SVM classifier with radial basis function kernel on the
embedding space. For the semi-supervised aspect, we apply different portions of training
labels to train the semi-supervised representation model, serving to learn the SVM classifier
with the propagated labels from the distance-based class probability.

In brief, the experiments were designed to answer the following research questions
(RQs):

RQ 1 Classification Performance. How well our SMATE model performs on the classifi-
cation tasks when adopting the complete annotations?

RQ 2 Semi-supervised Classification Performance. How successful is SMATE in semi-
supervised learning when adopting part of labels for learning the representation?

RQ 3 Interpretation over the Representation Space. How the learned representation space
can be interpreted?

RQ 4 Performance of Spatial Modeling Block (SMB). How well the proposed SMB module
performs for modeling the variable interactions?

RQ 5 Model Efficiency. How efficient is SMATE compared to the previous models?

4.5.1.1 Datasets description

We evaluate our proposed method on the newly released UEA archive [182], including 30
MTS datasets from various application domains3, which have a big difference in dimension
size (2 ∼ 963), sample length (8 ∼ 3000) and the number of training samples (12 ∼ 7494).
Readers can find information about the selected datasets sin Table 4.3. We adopt the
default train/test split of the archive. All 30 datasets are chosen for supervised analysis,
whereas the datasets {ArticularyWordR., Epilepsy, Heartbeat, SelfRegulationSCP1} from
four different domains are adopted for semi-supervised study.

4.5.1.2 Hyperparameters Setting

[Network Architecture] As shown in Table 4.4, we set 3 GRU layers with a hidden
dimension size of 128 for the Temporal Channel. Two 1-D Average Pooling layers are
applied for Temporal and Spatial Channels, respectively, where we give the pool size,

3The datasets can be found in www.timeseriesclassification.com

4.5. EXPERIMENTS 85

Table 4.3: MTS dataset information

Domain Dataset Samples Dim. (M) Length (T) Class

Human
Activity

BasicMotions 40/40 6 100 4
Cricket 108/72 6 1197 12
Epilepsy 137/138 3 206 4
ERing 30/270 4 65 6

Handwriting 150/850 3 152 26
Libras 180/180 2 45 15

N/ATOPS 180/180 24 51 6
RacketSports 151/152 152 30 4

UWaveGestureLibrary 120/320 6 30 4

Motion

ArticularyWordR. 275/300 9 144 25
CharacterTrajectories 1422/1436 3 182 20

EigenWorms 128/131 6 17984 5
PenDigits 7494/3498 2 8 10

ECG AtrialFibrillation 15/15 2 640 3
StandWalkJump 12/15 4 2500 3

EEG/
MEG

FaceDetection 5890/3524 144 62 2
FingerMovements 316/100 28 50 2

HandMovementDirection 160/74 10 400 4
InsectWingbeat 30000/20000 200 30 10
JapaneseVowels 270/270 12 29 9
MotorImagery 278/100 64 3000 2

SelfRegulationSCP1 268/293 6 896 2
SelfRegulationSCP2 200/180 7 1152 2

Audio
Spectra

DuckDuckGeese 50/50 1345 270 5
Heartbeat 204/205 61 405 2
Phoneme 3315/3353 11 217 39

SpokenArabicDigits 6599/2199 13 93 10

Others
EthanolConcent. 261/263 3 1751 4

LSST 2459/2466 6 36 14
PEMS-SF 267/173 963 144 7

86 CHAPTER 4. SEMI-SUPERVISED LEARNING ON MTS

Table 4.4: Network Architecture of SMATE

Module Layer Type

Temporal Channel

1 GRU (128)
2 GRU (128)
3 GRU (128)
4 AveragePooling1D(P , P , 0)

Spatial Channel

1 SMB1 + Conv1D(8,1,0) -128 filters +
Batch Norm + ReLU

2 SMB2 + Conv1D(5,1,0) -256 filters +
Batch Norm + ReLU

3 SMB3 + Conv1D(3,1,0) -128 filters +
Batch Norm + ReLU

4 AveragePooling1D(P , P , 0)

FC 1 FC (128) + Batch Norm + LeakyReLU
2 FC (128) + Batch Norm

SMB1

1 AveragePooling1D(8, 1, 0)
2 FC (d′) + ReLU
3 FC (M) + Sigmoid

SMB2

1 AveragePooling1D (5, 1, 0)
2 FC (8) + ReLU
3 FC (128) + Sigmoid

SMB3

1 AveragePooling1D (3, 1, 0)
2 FC (16) + ReLU
3 FC (256) + Sigmoid

Decoder

1 UpSampling1D (P)
2 GRU (128)
3 GRU (128)
4 GRU (M)

stride and padding in the bracket. We provide the kernel size, stride, and padding in the
brackets of Conv1D. The SMBs are configured with consistent parameters of their neighbor
Conv1D.

However, as the datasets are collected from different domains with a big difference in M,
T, and N, it is impractical to apply a unified parameter setting on all datasets. The kernel
size m of the three convolution modules is set to (8,5,3), except the PenDigits dataset for
which the kernels are set to (4,1,1) as it is infeasible to apply our default kernel size “8”
into an 8-length time series. The hidden dimension size p′ in SMB and pool size P are set
as follows:

d′ =

M/10, 100 ≤ M
M/4, 10 ≤ M < 100
M, M < 10

,P =

T/20, 1000 ≤ T
T/10, 50 ≤ T < 1000
T/4, T < 50

(4.14)

[Experiment Parameters] The Adam optimizer is set with the learning rate of 0.00001
and the default exponential decay rate in Keras. As there are limited training samples in
most of the UEA datasets, it is not feasible to separate a validation set from the small size
of training samples. For instance, the dataset “StandWalkJump” contains only 12 training
samples for three classes. It is impractical to split the small training samples into training
and validation sets. Therefore, for the datasets with less than 100 training samples, we

4.5. EXPERIMENTS 87

define the stop condition based on the training loss. For the rest, the validation split is set
to 0.2. We set the stop condition to hold when the difference of training/validation loss
between epochs is less than a small threshold, 0.0001 for three consecutive steps.

4.5.2 RQ 1: Classification Performance Evaluation

We use the accuracy as the default metric for the supervised tasks, which is the default
criterion in Time Series Classification work [116]. We also report the number of Win/Ties
and the average rank [187] of different methods.

4.5.2.1 Comparison Methods

We compare the performance of a classification task with 13 benchmark approaches, in-
cluding both classical data mining and recent deep learning methods. We adopt the default
parameter settings described in each paper for testing. The methods are summarized as
follows:

• Distance-based Nearest Neighbor (1NN) on non-normalized (non-norm) or nor-
malized (norm) MTS [179]. 1NN-ED (non-norm & norm): Euclidean Distance;
1NN-DTWI (non-norm & norm): Sum of Dynamic Time Warping (DTW) dis-
tance [180] on each variable; 1NN-DTWD (non-norm & norm): DTW distance
applied directly on multi-variate vectors; 1NN-DTWA (norm): Adaptive distance
selected between DTWI and DTWD with higher accuracy at run time.

• Bag-of-patterns classifier. WEASEL+MUSE[225]: the logistic regression classifier
on top of the bag of discriminative features that are extracted from different variables.

• Deep Learning-based classifier. USRL [17]: SVM classifier on the representation
learned via unsupervised temporal encoding, the Contrastive Learning on Triplet
Loss is adopted for adjusting the representation space; TapNet [187]: a Softmax
function over MTS embeddings, which are learned from a set of variable combina-
tions (i.e., multi-view on the variables); MLSTM-FCN [230]: a multi-layer percep-
tron (MLP) with Softmax function over the concatenated LSTM and CNN layers,
capturing the spatial interactions between 1-D series; CA-SFCN [125]: Cross At-
tention Mechanism on both temporal and spatial axes, working with Fully Convolu-
tional Networks; SMATENR: SMATE without supervised Regularization, instead,
a Softmax layer is applied on the embedding.

4.5.2.2 Results Analysis

Table 4.5 shows the accuracy results comparison between our proposition and the 13 base-
lines mentioned above. We show as well the average rank and the number of Wins/Ties

88 CHAPTER 4. SEMI-SUPERVISED LEARNING ON MTS

Table 4.5: Performance Comparison for MTS classification over UEA MTS archive

D
at

as
et

SM
A
T

E
SM

A
T

E
N

R
U

SR
L

Ta
pN

et
M

LS
T

M
-F

C
N

C
A

-
SF

C
N

W
E

A
SE

L
+

M
U

SE
1N

N
-

E
D

1N
N

-
D

T
W

I

1N
N

-
D

T
W

D

1N
N

-
E

D
(n

or
m

)

1N
N

-
D

T
W

I

(n
or

m
)

1N
N

-
D

T
W

D

(n
or

m
)

1N
N

-
D

T
W

A

(n
or

m
)

A
rt

ic
ul

ar
yW

or
dR

.
0.

99
3

0.
98

7
0.

98
7

0.
98

7
0.

97
3

0.
97

0.
99

0.
97

0.
98

0.
98

7
0.

97
0.

98
0.

98
7

0.
98

7
A

tr
ia

lF
ib

ri
lla

ti
on

0.
13

3
0.

13
3

0.
13

3
0.

33
3

0.
26

7
0.

33
3

0.
33

3
0.

26
7

0.
26

7
0.

2
0.

26
7

0.
26

7
0.

22
0.

26
7

B
as

ic
M

ot
io

ns
1

1
1

1
0.

95
1

1
0.

67
5

1
0.

97
5

0.
67

6
1

0.
97

5
1

C
ha

ra
ct

er
Tr

aj
ec

to
ri

es
0.

98
4

0.
99

7
0.

99
4

0.
99

7
0.

98
5

0.
98

8
0.

99
0.

96
4

0.
96

9
0.

99
0.

96
4

0.
96

9
0.

98
9

0.
98

9
C

ri
ck

et
0.

97
2

0.
96

4
0.

98
6

0.
95

8
0.

91
7

0.
97

2
1

0.
94

4
0.

98
6

1
0.

94
4

0.
98

6
1

1
D

uc
kD

uc
kG

ee
se

N
/A

N
/A

0.
67

5
0.

57
5

0.
67

5
N

/A
0.

57
5

0.
27

5
0.

55
0.

6
0.

27
5

0.
55

0.
6

0.
56

7
E

ig
en

W
or

m
s

N
/A

N
/A

0.
87

8
0.

48
9

0.
50

4
N

/A
0.

89
0.

55
0.

60
3

0.
61

8
0.

54
9

N
/A

0.
61

9
N

/A
E

pi
le

ps
y

0.
96

4
0.

94
6

0.
95

7
0.

97
1

0.
76

1
0.

98
6

1
0.

66
7

0.
97

8
0.

96
4

0.
66

6
0.

97
8

0.
96

4
0.

97
9

E
R

in
g

0.
97

0.
90

4
0.

88
0.

90
4

0.
94

1
0.

85
6

0.
96

4
0.

93
0.

93
0.

93
0.

93
0.

93
0.

93
0.

93
E

th
an

ol
C

on
ce

nt
ra

ti
on

0.
37

3
0.

37
3

0.
23

6
0.

32
3

0.
37

3
0.

32
3

0.
43

0.
29

3
0.

30
4

0.
32

3
0.

29
3

N
/A

0.
32

3
0.

31
6

Fa
ce

D
et

ec
ti

on
0.

56
3

0.
54

5
0.

52
8

0.
55

6
0.

54
5

N
/A

0.
54

5
0.

51
9

0.
51

3
0.

52
9

0.
51

9
0.

5
0.

52
9

0.
52

9
F
in

ge
rM

ov
em

en
ts

0.
59

0.
55

0.
54

0.
53

0.
58

0.
59

0.
49

0.
55

0.
52

0.
53

0.
55

0.
52

0.
53

0.
50

9
H

an
dM

ov
em

en
tD

.
0.

52
7

0.
37

8
0.

27
0.

37
8

0.
36

5
0.

32
4

0.
36

5
0.

27
9

0.
30

6
0.

23
1

0.
27

8
0.

30
6

0.
23

1
0.

22
4

H
an

dw
ri

ti
ng

0.
42

6
0.

33
5

0.
53

3
0.

35
7

0.
28

6
0.

32
2

0.
60

5
0.

37
1

0.
50

9
0.

60
7

0.
2

0.
31

6
0.

28
6

0.
60

1
H

ea
rt

be
at

0.
72

7
0.

61
9

0.
73

7
0.

75
1

0.
66

3
0.

75
6

0.
72

7
0.

62
0.

65
9

0.
71

7
0.

61
9

0.
65

8
0.

71
7

0.
57

1
In

se
ct

W
in

gb
ea

t
N

/A
N

/A
0.

16
0.

20
8

0.
16

7
N

/A
N

/A
0.

12
8

N
/A

0.
11

5
0.

12
8

N
/A

N
/A

N
/A

Ja
pa

ne
se

V
ow

el
s

0.
97

8
0.

96
7

0.
98

9
0.

96
5

0.
97

6
0.

97
3

0.
97

3
0.

92
4

0.
95

9
0.

94
9

0.
92

4
0.

95
9

0.
94

9
0.

95
9

Li
br

as
0.

84
9

0.
83

4
0.

86
7

0.
85

0.
85

6
0.

89
0.

87
8

0.
83

3
0.

89
4

0.
87

2
0.

83
3

0.
89

4
0.

87
0.

87
9

LS
ST

0.
59

1
0.

57
5

0.
55

8
0.

56
8

0.
37

3
0.

67
4

0.
59

0.
45

6
0.

57
5

0.
55

1
0.

45
6

0.
57

5
0.

55
1

0.
55

1
M

ot
or

Im
ag

er
y

0.
59

0.
59

0.
54

0.
59

0.
51

N
/A

0.
51

0.
39

N
/A

0.
5

0.
51

N
/A

0.
5

0.
5

N
/A

T
O

P
S

0.
88

3
0.

85
0.

94
4

0.
93

9
0.

88
9

0.
95

6
0.

87
0.

86
0.

85
0.

88
3

0.
85

0.
85

0.
88

3
0.

88
3

P
E

M
S-

SF
0.

76
3

0.
75

1
0.

68
8

0.
75

1
0.

69
9

N
/A

N
/A

0.
70

5
0.

73
4

0.
71

1
0.

70
5

0.
73

4
0.

71
1

0.
73

P
en

D
ig

it
s

0.
98

0.
98

0.
98

3
0.

98
0.

97
8

0.
97

5
0.

94
8

0.
97

3
0.

93
9

0.
97

7
0.

97
3

0.
93

9
0.

97
7

0.
97

7
P

ho
ne

m
e

0.
17

7
0.

19
0.

24
6

0.
17

5
0.

11
0.

19
0.

19
0.

10
4

0.
15

1
0.

15
1

0.
10

4
0.

15
1

0.
15

1
0.

15
1

R
ac

ke
tS

po
rt

s
0.

82
9

0.
81

6
0.

86
2

0.
86

8
0.

80
3

0.
87

5
0.

93
4

0.
86

8
0.

84
2

0.
80

3
0.

86
8

0.
84

2
0.

80
3

0.
85

8
Se

lfR
eg

ul
at

io
nS

C
P

1
0.

88
7

0.
87

4
0.

84
6

0.
73

9
0.

87
4

0.
73

4
0.

71
0.

77
1

0.
76

5
0.

77
5

0.
77

1
0.

76
5

0.
77

5
0.

78
6

Se
lfR

eg
ul

at
io

nS
C

P
2

0.
55

6
0.

53
3

0.
55

6
0.

55
0.

47
2

N
/A

0.
46

0.
48

3
0.

53
3

0.
53

9
0.

48
3

0.
53

3
0.

53
9

0.
53

9
Sp

ok
en

A
ra

bi
cD

ig
it

s
0.

98
2

0.
96

7
0.

95
6

0.
98

3
0.

99
0.

98
2

0.
98

2
0.

96
7

0.
96

0.
96

3
0.

96
7

0.
95

9
0.

96
3

0.
96

3
St

an
dW

al
kJ

um
p

0.
53

3
0.

4
0.

4
0.

4
0.

06
7

0.
2

0.
33

3
0.

2
0.

33
3

0.
2

0.
2

0.
33

3
0.

2
0.

33
3

U
W

av
eG

es
tu

re
Li

br
ar

y
0.

89
7

0.
86

9
0.

88
4

0.
89

4
0.

89
1

0.
8

0.
91

6
0.

88
1

0.
86

8
0.

90
3

0.
81

0.
86

8
0.

90
3

0.
9

Av
g.

R
an

k
3.

80
5.

93
5.

7
4.

83
7.

33
5.

41
4.

93
9.

07
7.

52
6.

4
9.

5
7.

81
6.

85
6.

25
W

in
s

(T
ie

s)
11

3
6

5
2

6
8

0
2

2
0

2
1

2

4.5. EXPERIMENTS 89

of each method. “N/A” indicates the model is not applicable due to memory overflow.
Overall, SMATE defends its reliability with 11 Wins/Ties and the highest average rank
of 3.85 among all the baselines. The current state-of-the-art deep learning method (Tap-
Net, CA-SFCN) and the powerful data mining method (WEASEL+MUSE) have close
ranks (4.73/5.45/4.66). CA-SFCN performs the best on five datasets but is not applica-
ble on seven datasets due to memory overflow. WEASEL+MUSE performs among the
best in Human Activity Recognition tasks (BasicMotions, Criket, Epilepsy), as the class-
discriminative patterns can be directly extracted from the raw data space. Besides, the
unsupervised representation learning method (USRL) performs much worse than SMATE
with the same SVM classifier, confirming the reliability of our supervised regularization
on the embedding space. Moreover, SMATE achieves the best performance among the
baselines on all the datasets of EEG/MEG applications [182] (FaceDetection, Finger-
Movements, HandMovementDirection, MotorImagery, SelfRegulationSCP1, SelfRegulation-
SCP2), where the signals (i.e., variables) generally have strong and dynamic dependencies
with each other. The spatial dynamic interactions could be essential characteristics that
SMATE has successfully captured. SMATENR performs much worse than SMATE, proving
that the supervised regularization process helps to build the class-separable embeddings.

However, SMATE produces visibly low accuracy on some datasets, e.g., 0.133 on Atri-
alFibrillation, 0.177 on Phoneme, on which the baselines perform poorly as well. This is
probably caused by the original data source.

4.5.2.3 Parameter effects on model performance

We analyse the effects of window/kernel size m, pool size P and regularization weight λ on
the example dataset SelfRegulationSCP1. In Fig. 4.3, we observe that a larger m brings
higher model accuracy, as it creates a larger receptive field captured by both SMB and
Conv1D block. Furthermore, the early convolutional modules are more sensitive to m as
they keep close to the raw input features. A larger pool size P will reduce the embedding
size, thus affecting the preserved embedding features and the training efficiency. SMATE
is not sensitive to λ. It can be explained by the fact that a stable reconstruction process
makes the model focus more on the regularization of the embedding space. When λ=0, no
regularization is applied, leading to sparsely distributed embeddings with poor prediction
performance.

4.5.3 RQ 2: Semi-supervised Classification Performance

For semi-supervised tasks, we evaluate the classifier’s accuracy at different supervision lev-
els by varying the labeled samples in the training set. We select the datasets {Articulary-
WordR., Epilepsy, Heartbeat, SelfRegulationSCP1} from 4 different application domains.
For comparison, we applied one classic model 1NN-DTW-D [174] and three recently pro-
posed semi-supervised deep learning models: USRL [17], Semi-TapNet [187] and MTL

90 CHAPTER 4. SEMI-SUPERVISED LEARNING ON MTS

5 10 15
m

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

1st conv. (m, 5, 3)
2nd conv. (8, m, 3)
3rd conv. (8, 5, m)

0.0 0.1 0.2 0.3 0.4 0.5
/T

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Accuracy
100

110

120

130

140

150

160

170

Time (s)

0.0 0.2 0.4 0.6 0.8 1.00.5

0.6

0.7

0.8

0.9

1.0

Accuracy

Figure 4.3: Parameter effects: left) the kernel/window size m at each convolutional
module; mid) The pool size P for building the embedding; right) the hyperparameter λ
which weights the regularization loss.

[178]. Since 1NN-DTW-D and MTL are initially designed for UTS, we adapt them by:

• Adopting DTWD
4 [179] as distance in 1NN-DTW-D.

• Updating the MTS network optimization metrics in MTL.

Figure 4.4 shows the classification accuracy at different supervision levels. In a Motion
Recognition task (ArticularyWorkR.), from 10% labeled training set to fully labeled one,
the accuracy of SMATE varies only by 0.046, compared to INN-DTW-D (0.264), USRL
(0.286), Semi-TapNet (0.151) and MTL(0.225), showing that SMATE is capable of learn-
ing a class-separable representation under weak supervision and gives a better prediction
than other classifiers under intense supervision. This conclusion is also demonstrated
in EEG/MEG applications (SelfRegulationSCP1), with 10% labeled samples, SMATE
is capable of obtaining a higher accuracy (0.781) than fully supervised 1NN-DTW-D
(0.775), USRL (0.771), Semi-TapNet (0.739) and MTL (0.730). In Human Activity do-
main (Epilepsy), Semi-TapNet performs the worst with low supervised ratios, which can
be explained by the fact that the limited labels restrain the intermediate-trained TapNet
classifier for predicting the pseudo-labels. In an Audio Spectra task (Heartbeat), though
the fully supervised accuracy of SMATE (0.741) is not as good as Semi-TapNet (0.751), the
weakly supervised SMATE with 10% labeled samples performs the best among all semi-
supervised models, indicating the reliability of the semi-supervised representation learned
by SMATE.

4.5.4 RQ 3: Visualization & Interpretation of the Represen-
tation Space

Apart from the thorough exploration of the weakly labeled samples, the representation
space learned via SMATE shows good interpretability compared to the traditional Deep

4DTW-D and DTWD are two different distance measures designed respectively for Univariate
and Multivariate Time Series

4.5. EXPERIMENTS 91

0.0 0.2 0.4 0.6 0.8 1.0
Supervised Ratio r

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

USRL
Semi-TapNet
SMATE

1NN-DTW-D
MTL

(a) ArticularyWordR. (Motion)

0.0 0.2 0.4 0.6 0.8 1.0
Supervised Ratio r

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

USRL
Semi-TapNet
SMATE

1NN-DTW-D
MTL

(b) Epilepsy (Human Activity)

0.0 0.2 0.4 0.6 0.8 1.0
Supervised Ratio r

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

USRL
Semi-TapNet

SMATE
1NN-DTW-D

MTL

(c) Heartbeat (Audio Spectra)

0.0 0.2 0.4 0.6 0.8 1.0
Supervised Ratio r

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

USRL
Semi-TapNet

SMATE
1NN-DTW-D

MTL

(d) SelfRegulationSCP1 (EEG/MEG)

Figure 4.4: Semi-supervised performance comparison on datasets from different domains

92 CHAPTER 4. SEMI-SUPERVISED LEARNING ON MTS

Learning models [226, 227, 125, 230] where the intermediate representations are not intu-
itively explainable.

We show in Figure 4.5 that t-SNE visualization of the representation space for the
Epilepsy dataset, which contains four human activities: Walking while gesturing, Walking
slowly, Walking fast, Walking normally. The 137 samples in the training set are projected
to the representation space with 10% labels adopted for training. We show respectively the
space visualization at each regularization step. The results suggest that: 1) the embeddings
obtained only with the autoencoder’s reconstruction objective are sparsely distributed, as
the auto-encoder focuses more on the overall restoration from the embeddings, but less on
the inner difference between the class-specific samples; 2) with the regularization step 1,
the class centroids initialized by the 10% labeled samples tend to assemble the embeddings
with the same inherent labels. The assembling ability is further enhanced by the supervised
adjustment in regularization step 2. 3) the unlabeled samples are thoroughly explored in
regularization step 3 to foster the class-specific clusters, which allow building a simple but
reliable classifier such as SVM. 4) the representation space is interpretable for not only the
effect of the weak supervision but also the classification results. For instance, in Figure
4.5d, three samples of Walking while gesturing stay close to the class centroid of Walking
fast, which may lead to the misclassification of certain samples in the two classes. To
improve the classifier, more labels of the two classes in the training set can be added.

4.5.5 RQ 4: Performance of Spatial Modeling Block (SMB)

To validate the Spatial Modeling Block (SMB), firstly, we compare the classification ac-
curacy of SMATE with or without integrating SMB on the 27 datasets that SMATE has
successfully executed. Then we rebuild SMATE by replacing SMB with the following
modules in the state-of-the-art work which learn the variable relationships of MTS: Ran-
dom Dimension Permutation (RDP) in TapNet [187] and Squeez-and-Excitation
(SE) in MLSTM-FCN [230]. Briefly, SMATE-SMB achieves [17 Wins|8 Ties|2 Losses] to
SMATE-NonSMB, indicating that SMB contributes to a better MTS representation.

In Figure 4.6, we give a one-to-one comparison between SMB and SE/RDP on the
27 datasets. We find that SMATE performs better than other modules on modeling the
spatial interactions: [14 Wins|8 Ties|5 Losses] to SE, [12 Wins|9 Ties|6 Losses] to RDP.
RDP performs relatively better than SE, as a set of grouped variables produced by RDP
provides various MTS views, allowing exploring the interactions between the subsets of all
variables more thoroughly. However, extra parameters for variable groups are introduced.
SE is a parameter-free module but considers each variable has a unique and stable state
when interacting with others, which ignores the dynamic features in time series. SMB
answers both the questions of the parameter-free settings and the dynamic interactions.
The results show that capturing the spatial dynamic interactions at the sub-sequence level
performs better than modeling the variable interactions at the sequence level [187, 230].

4.5. EXPERIMENTS 93

100 75 50 25 0 25 50 75
100

75

50

25

0

25

50

75

Walking while gesturing
Walking fast

Walking slowly
Walking normal

(a) Without any regularization

100 50 0 50 100
100

50

0

50

100

Walking while gesturing
Walking fast

Walking slowly
Walking normal

(b) Regularization step 1: supervised
initialization of the class centroids

10 5 0 5 10

10

5

0

5

Walking while gesturing
Walking fast

Walking slowly
Walking normal

(c) Regularization step 2: supervised
adjustment of the class centroids

15 10 5 0 5 10

6

4

2

0

2

4

Walking while gesturing
Walking fast

Walking slowly
Walking normal

(d) Regularization step 3: unsupervised
adjustment of the class centroids

Figure 4.5: The t-SNE visualization of the representation space for the Epilepsy dataset.
We set the supervised ratio to 0.1. The colors of the embeddings represent their inherent
labels, which are not fully adopted for training. The class centroids are marked by ⋆.
(a) The representation space obtained only by the reconstruction objective without any
regularization. (b) Regularization step 1: 10% labeled samples in the training set are
adopted to initialize the class centroids. (c) Regularization step 2: the same labeled
samples are deployed to adjust the class centroids. (d) Regularization step 3: the rest
unlabeled samples are deployed to adjust the class centroids.

94 CHAPTER 4. SEMI-SUPERVISED LEARNING ON MTS

14 Wins,8 Ties,5 Losses

0.0 0.2 0.4 0.6 0.8 1.0

SMATE with SMB

0.0

0.2

0.4

0.6

0.8

1.0

S
M
A
T
E
w
it
h
S
E SE is better here

SMB is better here

12 Wins,9 Ties,6 Losses

0.0 0.2 0.4 0.6 0.8 1.0

SMATE with SMB

0.0

0.2

0.4

0.6

0.8

1.0

S
M
A
T
E
w
it
h
R
D
P

RDP is better here

SMB is better here

Figure 4.6: Accuracy performance comparison between left) SMB & SE, right) SMB &
RDP, which are are integrated separately into SMATE.

4.5.6 RQ 5: Efficiency Analysis

As the classical data mining classifiers do not benefit from the GPU’s acceleration, it is
unfair to compare them with the deep learning models on different hardware. Here, we
compare SMATE with the deep learning models {MLSTM-FCN [230], CA-SFCN [125],
USRL [17], and TapNet [187]}. Table 4.6 shows the models’ parameter numbers on Artic-
ularyWordR.. Nevertheless, they do not represent the models’ efficiency.

Table 4.6: Parameter numbers of deep learning models on MTSC

ArticularyWordR. SMATE MLSTM-FCN CA-SFCN USRL TapNet
Param. number 564585 597865 685965 368655 635285

Figure 4.7 shows the computational efficiency concerning the different factors: (a)
the number of training epochs, we take the dataset ArticularyWordRecognition with
(Ntrain, M , T) = (275, 9, 144); (b) the TS length, we select EthanolConcentration with
(Ntrain, M , T) = (261, 3, 1751), and do random re-samplings over raw sequences; (c) the
number of TS instance in the training set, we choose LSST with (Ntrain, M , T) =
(2459, 6, 36) and randomly re-sample the TS instances; (d) the number of variables,
we select PEMS-SF with (Ntrain, M, T) = (267, 963, 144) and randomly re-sample the
TS variables. With the models’ default parameter settings mentioned in their papers, we
set 2000 training steps for USRL, 3000 training epochs for others during the tests on the
factors (b)(c)(d).

Figure 4.7 shows that the training time of the deep learning models tends to be linear
in the four factors. More specifically, the results suggest that: 1) SMATE is generally
much more efficient on short TS (with T <∼ 500), and more costly than MLSTM-FCN

4.5. EXPERIMENTS 95

102 103

Number of Epochs

101

102

103

Ti
m
e
(s
ec

on
d)

SMATE
CA-SFCN
TapNet

MLSTM-FCN
USRL

(a) ArticularyWordRecognition:
(Ntrain,M ,T) = (275,9,144)

102 103
TS Length

102

103

Ti
m
e
(s
ec
on

d)
SMATE
CA-SFCN
TapNet

MLSTM-FCN
USRL

(b) EthanolConcentration: (Ntrain,M ,T)
= (261,3,1751)

102 103

Number of TS Instances

102

103

Ti
m
e
(s
ec

on
d) SMATE

CA-SFCN
TapNet
MLSTM-FCN
USRL

(c) LSST : (Ntrain,M ,T) = (2459,6,36)

102 103

Number of Variables

103

Ti
m

e
(s

ec
on

d) SMATE
CA-SFCN
TapNet

MLSTM-FCN
USRL

(d) PEMS-SF : (Ntrain,M,T) =
(267,963,144)

Figure 4.7: Training time on four datasets with regard to: (a) the number of training
epochs; (b) the TS length T; (c) the number of TS instance Ntrain; (d) the number of
variables M. We did not report the results of CA-SFCN [125] for M > 200 in (d) due to
the memory overflow.

96 CHAPTER 4. SEMI-SUPERVISED LEARNING ON MTS

on long TS (see Figure 4.7b). As an MTS instance x ∈ RT×M with larger T brings a
sequence embedding h ∈ RL×D with a larger L in SMATE, the regularization on a lager
embedding space becomes more costly. 2) SMATE is generally more efficient than the
competitors, but tends to be more sensitive to the variable numbers M than USRL and
TapNet (see Figure 4.7d). To explain this, first, Triplet Loss adopted in USRL requires
intensive distance computations between the embeddings, which offsets the effect of larger
input space. This can be also demonstrated in Figure 4.7b & 4.7c, where USRL is not
sensitive to the TS length T, but highly sensitive to the number of TS instances Ntrain.
Second, the efficiency of SMATE is greatly affected by the input and output space of the
auto-encoder, which is more sensitive to the variable numbers than the Random Dimension
Permutation (RDP) block in TapNet, which works only on the input space.

Overall, USRL [17] is an order slower than SMATE due to its mini-batch optimization
strategy and huge distance computations required by Triplet Loss. CA-SFCN [125] per-
forms less than SMATE because of its costly cross attention mechanism on both temporal
and spatial axes. However, MLSTM-FCN [230] and TapNet [187] outperform SMATE for
long TS length (T > 500) or huge variable numbers (M > 300).

4.5.7 Discussion

Our approach has several advantages. First, owing to the Spatio-Temporal dynamic en-
coder, SMATE allows exploring more thoroughly the essential characteristics of MTS.
TapNet [187] and MLSTM-FCN [230] generally consider the correlation between the en-
tire 1-D series, while USRL [17] processes indifferently the MTS and UTS, they all ignore
the fact that the interactions between 1-D segments may evolve in the dynamic sequence,
which is especially important in certain domains (e.g., EEG/MEG applications).

Second, SMATE explores thoroughly the unlabeled samples, which contributes not
only to the autoencoder’s reconstruction objective, but also to the regularization process
on the embedding space. While Semi-TapNet [187] considers unlabeled data only with
the pseudo-labels predicted by intermediate-trained classifiers, which is less reliable when
there are limited labels. USRL [17] trains the representation without any supervision,
which shows less advantage for the classification task.

Third, the representation space learned via SMATE is interpretable for showing the
effect of the three-step regularization process and explaining the classification results, which
allows taking further actions to improve the classifier.

Finally, SMATE allows an efficient representation learning and classification for MTS.
On the one hand, from the distance-based approaches (e.g. 1NN-based classifiers [179])
to the bag-of-patterns classifier (e.g., WEASEL+MUSE [225]), the classic data mining
methods always show a high time complexity [116]. On the other hand, the deep learning-
based approaches show no significant efficiency advantage to SMATE due to their larger
parameter space to optimize.

4.6. CONCLUSION 97

4.6 Conclusion

In this Chapter, we proposed SMATE, to learn the Spatial-temporal representation on
weakly-labeled multivariate time series. Different from our proposals in the last chap-
ter, here we considered not only the temporal relationships between the observations but
also the inter-variable relationships between the data sources. Specifically, inside the
autoencoder-based structure, the Spatial-temporal encoder maps the temporal dynamic
features and the spatial dynamic interactions into a low dimensional embedding space.
A semi-supervised three-step regularization process is proposed to compel the model in
learning class-separable representation. The weak supervision on the embedding space
allows building a reliable classifier, which is extremely valuable in real-life scenarios with
label shortage issues. The results show that the evolving variable interactions (i.e., spatial
dynamics) play an essential role in modeling multivariate time series. Moreover, SMATE
allows for visual interpretability in both the learned representation and the semi-supervised
representation learning process.

A recent experimental study on MTSC models has been conducted in [116]. It concludes
that MTSC is still at an earlier stage of development than univariate TSC. For instance,
existing approaches do not consider typical features of real-world data, such as missing
values and unequal length time series. Hence, our future work will be oriented towards
extending SMATE to support multivariate time series with practical issues, e.g., missing
values. Further, it is also possible to improve the model by, e.g., incorporating insights
from CoDATS [297] with time series domain adaptation, and from ROCKET [12] with
random convolutional kernels for feature extraction.

Precisely, we continued this research in the next chapter by considering both the prac-
tical Smart City scenario of MTS and the missing-value issue in the data.

Chapter 5

Geo-located Multivariate Time Series
Forecasting with Missing Values

Contents
5.1 Introduction . 100

5.2 Related Works . 102

5.2.1 Graph Convolutional Networks for Traffic Forecasting . . 102

5.2.2 Missing value processing 102

5.3 Problem Formulation . 103

5.4 Proposal: GCN-M . 103

5.4.1 Model Architecture . 104

5.4.2 Multi-scale Memory Network 104

5.4.3 Dynamic Graph Construction 107

5.4.4 Temporal Convolution Module 109

5.4.5 Dynamic Graph Convolution 110

5.4.6 Output Forecasting Module 110

5.5 Experiments . 111

5.5.1 Experimental settings . 111

5.5.2 Baseline Approaches . 112

5.5.3 RQ 1: Performance on complete datasets 113

5.5.4 RQ 2: Complex scenarios of missing values 115

5.5.5 RQ 3: Dynamic Graph Modeling 118

5.5.6 Discussions . 120

5.6 Conclusion . 121

99

100 CHAPTER 5. GEO-LOCATED MTS FORECASTING

5.1 Introduction

Traffic forecasting has played a critical role in intelligent transportation systems, which
helps the transportation department better manage and control traffic congestion. Gen-
erally represented by geo-located Multivariate Time Series (MTS), traffic data not only
shows the typical characteristics of MTS [298], i.e., temporal dependency, but also inte-
grates the spatial information of the traffic network, i.e., the spatial dependency between
the sensor traffic nodes over the road network.

In recent years, by leveraging the spatial-temporal patterns in traffic data, many deep
learning models based on recurrent neural network (RNN) [237], temporal convolutional
network (TCN) [278], graph convolutional networks (GCN) [277], etc., have been applied
in traffic forecasting task and achieved the state-of-the-art performance. They all have a
strong assumption that the data is complete or has been well-preprocessed [130]. However,
since the traffic data are generally collected from the geo-located sensors, sensor failures
or communication errors will result in missing values in the collected data, which will
deteriorate the performance of the forecasting model. We should remark that the missing
measures are usually marked as zero in traffic data [277], which should be distinguished
from the non-missing measures but with zero values. A typical example comes to the traffic
flow data: no vehicles are detected during the night, then the traffic measures are marked
as zero instead of being considered as missing.

The missing values can either be ignored in the learning model when calculating the
loss function [275] or be considered before or during the training process. Apparently,
ignoring the missing values hinders the model from benefiting from the rich data informa-
tion for better performance, especially when the missing ratio is high. When considering
the missing values in traffic data, most work [299] conduct data imputation during the
preprocessing step, then import the completed data into the training step, i.e., two-step
processing. Recent work [21, 22, 23, 24, 25] tend to jointly consider the missing values and
the forecasting modeling during the training step (i.e., one-step processing) and declared
a better performance than the two-step processing. However, the above-mentioned work
suffer from three major issues. First, the missing and zero values are usually considered
indifferent, leading to unnecessary, even harmful data imputations, thus contradicting the
raw data information. Second, most of the work [21, 22, 24, 25] considers missing val-
ues from the temporal aspect, ignoring the rich information from the spatial perspective.
Third, they are generally designed for processing the missing values in some basic scenar-
ios, such as random missing or temporal block missing, but lack of power for the complex
scenarios as shown in Fig. 5.1. In the real-world, the missing values in traffic data occur
on both long-range (e.g., device power-off) and short-range (e.g. device errors) settings,
on partial (e.g., local sensor errors) and entire transportation network (e.g., control center
errors). The complex scenarios require a holistic approach for handling various types of
missing values together.

Therefore, to handle both the Spatio-temporal patterns and complex missing-value

5.1. INTRODUCTION 101

Figure 5.1: Missing measures of traffic speed data from METR-LA dataset [237]. left)
long-range missing on entire network (i.e., Spatio-temporal block) and partial network
(i.e., temporal block); right) short-range random missing on partial network (i.e., temporal
values) and entire network (i.e., Spatio-temporal vectors).

scenarios in traffic data, we propose GCN-M, Graph Convolutional Networks for Traffic
Forecasting with Missing Values. The graph neural network-based structure allows jointly
modeling the Spatio-temporal patterns and the missing values in one-step processing. We
construct local statistic features from spatial and temporal perspectives for handling short-
range missing values, which is further enhanced by a memory module to extract global
historical features for processing long-range missing blocks. The combined local-global
features allow not only identifying the missing measures from the inherent zero values but
also enriching the traffic embeddings, thus generating dynamic traffic graphs to model the
dynamic spatial interactions between traffic nodes. The missing values on a partial and
entire network can then be considered from spatial and temporal perspectives.

We summarize our main contributions as follows:

• Complex missing value modeling: We study the complex scenario where missing
traffic values occur on both short & long ranges and on partial & entire transportation
network.

• Spatio-temporal memory module: We propose a memory module that can be
used by GCN-M to learn both local Spatio-temporal features and global historical
patterns in traffic data for handling the complex missing values.

• Dynamic graph modeling: We propose a dynamic graph convolution module that
models the dynamic spatial interactions. The dynamic graph is characterized by the
learned local-global features at each timestamp, which not only offset the missing
values’ impact but also help learn the graph.

• Joint model optimization: We jointly model the Spatio-temporal patterns and
missing values in one-step processing, which allows processing missing values specif-
ically for traffic forecasting tasks, thus bringing better model performance than two-
step processing.

102 CHAPTER 5. GEO-LOCATED MTS FORECASTING

• Extensive experiments on real-life data: The experiments are carried out on
two real-life traffic datasets. We provide detailed evaluations with 12 baselines, which
show the effectiveness of GCN-M over the state-of-the-art.

The rest of this chapter starts with a review of the most related work. Then, we formulate
the research problems of the chapter. Later, we present in detail our proposal GCN-M,
followed by the experiments on real-life datasets and the conclusion.

5.2 Related Works

5.2.1 Graph Convolutional Networks for Traffic Forecasting

Graph Convolutional Network (GCN) is a special kind of Convolutional Neural Network
(CNN) generalized for graph-structured data. Most of the GCN-related work focuses on
graph representation, which learns node embedding by integrating the features from the
node’s local neighbors based on the given graph structure, i.e., adjacency matrix. The
traffic data shows strong dependencies between the spatial nodes, for which GCN can
be naturally suitable. Various work [237, 276, 130, 275] empowered by GCN achieved
remarkable performance when doing traffic forecasting tasks. However, they either rely
on spatial and temporal completion of the data or calculate loss function for non-zero
entries, i.e., only calculate the loss on entries that contain valid sensor readings, which
may introduce derivations when modeling the Spatio-temporal relations between the sensor
nodes. In other words, missing values may hinder the traffic graph learning [277], especially
for dynamic graph learning [281] where non-missing measures are required to characterize
the dynamic graph at each timestamp.

5.2.2 Missing value processing

The simplest solution of processing missing values in MTS would be data imputation such
as statistic imputation (e.g., mean, median), EM-based imputation, K-nearest neighbor-
hood, and matrix factorization. It’s generally believed that those methods fail to model
temporal dynamics of time series [25]. In other words, they are not applicable for han-
dling long-range missing values. Recent generative models [300] show reliable performance
for long-range time series imputation. However, isolating the imputation model from the
forecasting model leads to a two-step processing and may generate sub-optimal results
[299]. To handle this issue, recent studies [21, 25] jointly model the missing values and
forecasting task in one-step processing. For instance, GRU-D [21] considers the nearby
temporal statistical features to do imputations inside GRUs, whereas LSTM-I [22] infers
missing values at current time step from preceding LSTM cell states and hidden states,
SGMN [23] improved the state transition process via a Graph Markov Process. Limited to
short-period missing context, those methods are further enhanced by LGnet [25] with the

5.3. PROBLEM FORMULATION 103

global temporal dynamics to handle the long-range missing issue, and by LSTM-M [24]
with multi-scale modeling to better explore historical information. However, the above-
mentioned models handle missing values with a focus on the temporal aspect without
considering the complex Spatio-temporal features in traffic data. Specifically, the strong
spatial connections between the sensor nodes should provide us with more information to
handle the missing values. Moreover, the one-step processing models are generally designed
for single-step forecasting without considering the multi-step settings. Table 5.1 shows the
method comparison for traffic forecasting with missing values.

Table 5.1: Existing methods for Traffic Forecasting with missing values

Imputation-based GRU-D LSTM-I LSTM-M LGnet SGMN GCN-M

Short-range missing ✓ ✓ ✓ ✓ ✓ ✓ ✓
Long-range missing - - - ✓ ✓ - ✓
Multi-scale modeling - - - ✓ - - ✓

Spatial modeling - - - - - ✓ ✓
One-step processing - ✓ ✓ ✓ ✓ ✓ ✓

Multi-step forecasting ✓ - - - ✓ - ✓

5.3 Problem Formulation

We aim to predict the traffic data in the future by leveraging historical traffic data. The
traffic data can be represented as multivariate time series on the traffic network. Let the
traffic network G = {V, E}, where V = {v1, ..., vN} is a set of N traffic sensor nodes and
E = {e1, ..., eE} is a set of E edges connecting the nodes. Each node contains F features
representing traffic flow, speed, occupancy, etc. We use X={Xt}τt=1 ∈ RN×F×τ to denote
all the feature values of all the nodes over τ time slices, Xt = (x1

t , ...,xN
t) ∈ RN×F denotes

the observations at time t, where xi
t ∈ RF is the i-th variable of Xt. We define a mask

sequence M={Mt}τt=1 ∈ RN×F×τ , Mt = (m1
t , ...,mN

t) ∈ RN×F , mi
t ∈ {0, 1}F denotes

the features’ missing status for the i-th variable. To simplify, we adopt xit ∈ R and mi
t ∈ R

to denote respectively the observation and mask value of one single feature for the i-th
variable of Xt. We take mi

t = 0 if xit is missing, otherwise mi
t = 1.

We aim to build a model f , which can take an incomplete traffic sequence {X , M}
and the traffic network G as input, to predict the traffic data for the next Tp time steps
Y = {yτ+1, ..., yτ+Tp} ∈ RN×Tp .

5.4 Proposal: GCN-M

The traffic data are collected under complex urban conditions. Apart from the Spatio-
temporal patterns in the traffic data, we also consider the scenarios of complex missing
values. We design a solution that models the local Spatio-temporal features and global

104 CHAPTER 5. GEO-LOCATED MTS FORECASTING

M
ul

ti-
sc

al
e

M
em

or
y

N
et

w
or

k
m

od
ul

e

𝑠!

𝑠"

𝑠#

𝑠$
𝑠%

𝑠!

𝑠"

𝑠#

𝑠$
𝑠%

𝑠!

𝑠"

𝑠#

𝑠$
𝑠%
..
.

Time

..
.

(𝑋!,𝑀!)

..
.

..
.

..
.

Traffic observations: 𝒳 ∈ℛ&×(×)
Mask sequence: ℳ ∈ℛ&×(×)

ObservedMissing

ℋ*
+

Dynamic Graph
Construction

Dynamic Graph
Convolution

Dilated
Conv

𝐴!"# 𝐴!"$ 𝐴!..
.

Dilated
Conv

×

tanh

𝜎

Temporal Convolution +

Dynamic Graph
Construction

Dynamic Graph
Convolution

Dilated
Conv

𝐴!"#! 𝐴!..
.

Dilated
Conv

×

Outputs: Y ∈ ℛ&×,&

𝜎

Temporal Convolution ...

...

+

Dynamic Graph
Construction

Dynamic Graph
Convolution

Dilated
Conv

𝐴!

Dilated
Conv

×

tanh

𝜎

Temporal Convolution

ST Block 1 ST Block 2 ST Block l

Output Forecasting
Module

Pre-defined
Graph

Static Node
Embeddings

tanh

(𝑋!"$, 𝑀!"$)(𝑋!"#, 𝑀!"#)

ℋ- ℋ. ℋ/

Skip connection
Skip connection

Skip connectionSkip connection

Pre-defined
Graph

Static Node
Embeddings

Pre-defined
Graph

Static Node
Embeddings

Figure 5.2: Main architecture of GCN-M

historical patterns in a dynamic manner. The complex missing values are considered when
building the forecasting model, i.e., one-step processing.

5.4.1 Model Architecture

The global structure of GCN-M is shown in Fig. 5.2, integrating a Multi-scale Memory
Network module, an Output Forecasting module, and l Spatio-Temporal (ST) blocks. Each
ST block integrates three key components: Temporal Convolution, Dynamic Graph Con-
struction, and Dynamic Graph Convolution. The input traffic observations X ∈ RN×F×τ

and the mask sequence M ∈ RN×F×τ are fed into the multi-scale memory network to
extract the local statistic features and global historical patterns thus enriching the traffic
embeddings. On the one hand, the enriched embeddings Hi on each ST block are used
to mark the dynamic traffic status, thus generating dynamic graphs by combining both
static node embeddings and predefined graph information. On the other hand, the learned
dynamic graphs are combined with the temporal convolution module via a dynamic graph
convolution to capture temporal and spatial dependencies in the traffic embeddings. We
adopt residual connections between the input and output of each ST block to avoid the
gradient vanishing problem. The output forecasting module takes the skip connections on
the output of the final ST block and the hidden states after each temporal convolution for
final prediction.

5.4.2 Multi-scale Memory Network

To extract the local statistic features and global historical patterns then form an en-
riched embedding, we adopt the concept of memory network, which was firstly proposed
in [301] with primary application in Question-Answer (QA) systems. As shown in Fig.
5.3, the main idea of our memory network is to learn from historical memory components
which conserve the long-range multi-scale patterns, i.e., recent, daily-periodic, and weekly-
periodic dependencies. The scale range depends on the data characteristics. Specifically,
we first extract local Spatio-temporal features as keys to query the memory components;

5.4. PROPOSAL: GCN-M 105

𝑠!

𝑠"

𝑠#

𝑠$
𝑠%

𝑠!

𝑠"

𝑠#

𝑠$
𝑠%

𝑠!

𝑠"

𝑠#

𝑠$
𝑠%
...

Time

...

𝑡 − 𝜏 𝑡 −1 𝑡...

Local
features

.........
𝐙%

A
tte

nt
io

n
sc

or
e

𝑛&𝜏

…

𝜏

……

𝜏

𝑛'𝜏

…

𝜏

……

𝜏

𝑛(𝜏

…

𝜏

……

𝜏

Historical
set {𝐗)}𝑊&

𝑞%

Q
ue

ry

Softmax

𝑊'

𝑊(

Weighted Sum

𝑜%

𝑚)

𝑐)

Time...
...Input traffic observations

and mask sequence

Enriched traffic
embeddings
ℋ = {ℎ𝑡}

In
pu

t
m

em
or

y
O

ut
pu

t
m

em
or

y

Embed

Embed

Observed
Missing

𝑡𝑡 − 𝜏 𝑡 − 1

Figure 5.3: Memory module enriches traffic embeddings with multi-scale global features

the weighted historical long-range patterns will be cooperated with the local statistic fea-
tures to eliminate the side effect from the missing values. Then, the local-global features
will be output as the enriched traffic embeddings.

5.4.2.1 Local Spatio-temporal features

We first extract the Spatio-temporal features using the contextual information from ob-
served parts of the time series. Unlike prior studies [21], we consider both temporal and
spatial aspects for generating the following statistic features of every timestamp:

Empirical Temporal Mean: The mean of previous observations reflects the recent traffic
state and serves as a contextual knowledge of xit. Therefore, for a missing value xit ∈ R,
we construct its temporal mean using L observed samples xi∗ before time t:

x̄it =
t−1∑

l=t−L

mi
lx

i
l/

t−1∑

l=t−L

mi
l (5.1)

Last Temporal Observation: we adopt the assumption in [21] that any missing value
inherits more or less the information from the last non-missing observation, in other words,
the temporal neighbor stays close to the current missing value. We use ẋit to denote the
last temporal observation of xit, their temporal distance is defined as δ̇it.

Empirical Spatial Mean: Another contextual knowledge of xit is from the nearby nodes,
which reflects the current local traffic situation. For each missing value xit, we construct
its empirical spatial mean using S observed samples x∗t nearby the sensor node i:

¯̄xit =

S∑

s=1

ms
tx

s
t/

S∑

s=1

ms
i (5.2)

Nearest Spatial Observation: typically, the state of a graph node remains relatively
similar to its neighbors, especially in a traffic graph where the nearby nodes share similar

106 CHAPTER 5. GEO-LOCATED MTS FORECASTING

traffic situation. We define ẍit as the nearest spatial observation of xit, their spatial distance
is denoted as δ̈it.

Generally, when δ̇it or δ̈it is smaller, we tend to trust ẋit or ẍit more. When the spa-
tial/temporal distance becomes larger, the spatial/temporal mean would be more repre-
sentative. Under this assumption, we model the temporal and spatial decay rate γ as

γt(δ̇
i
t) = exp{−max(0, wiδ̇it + bi} (5.3)

γs(δ̈
i
t) = exp{−max(0, wtδ̈

i
t + bt} (5.4)

where wi, wt, bi and bt are model parameters that we train jointly with other parameters of
the traffic forecasting model. We chose the exponentiated negative rectifier [21] so that the
decay rates γt and γs decrease monotonically in the range between 0 and 1. Considering
the trainable decays, our proposed model incorporates the spatial/temporal estimations to
define the local features of xit:

zit = mi
tx

i
t + (1−mi

t)(γtẋ
i
t + γsẍ

i
t + (1− γt)x̄

i
t + (1− γs)¯̄x

i
t) (5.5)

Therefore, for Xt ∈ RN×F , we can get its local features Zt ∈ RN×F .

5.4.2.2 Multi-scale Memory Construction

The global historical patterns play a critical role in building an enriched traffic embedding.
The historical observations in multiple scales (e.g., hourly, daily, weekly) can be embedded
into memory as complement information for the local features Zt ∈ RN×F . The main idea
is to adopt local features to query similar historical patterns in the memory and output a
weighted feature representation for the current timestamp. In this manner, the enriched
multi-scale historical and local features allow not only eliminating the side effect of missing
values but also improving the current feature embeddings. At time t, the query qt of Xt

can be embedded from the local features Zt ∈ RN×F :

qt = ZtWq + bq ∈ RN×d (5.6)

where Wq ∈ RF×d, bq ∈ RN×d are parameters, d is the embedding dimension.

The input memory components are the temporal segments of multiple scales:

• The recent (e.g., hourly) segment is: Xh = {Xi}t−1
i=t−τ ∈ RN×F×nhτ , with nh recent

periods (e.g., hours) before t, each period contains τ observations.

• The daily-periodic segment is: Xd = {Xi} ∈ RN×F×ndτ with i ∈ [t−ndTd−τ/2 : t−
ndTd+τ/2] ∥ [t−(nd−1)Td−τ/2 : t−(nd−1)Td+τ/2] ∥ ... ∥ [t−Td−τ/2 : t−Td+τ/2],
we store τ samples around time t for each of the past nd days. Td denotes the sample
number during one day, ∥ indicates the concatenation operation.

5.4. PROPOSAL: GCN-M 107

• The weekly-periodic segment is: Xw = {Xi} ∈ RN×F×nwτ with i ∈ [t − nwTw −
τ/2 : t − nwTw + τ/2] ∥ [t − (nw − 1)Tw − τ/2 : t − (nw − 1)Tw + τ/2] ∥ ... ∥
[t − Tw − τ/2 : t − Tw + τ/2], we store τ samples around time t for each of the
past nw weeks. Tw denotes the sample number during one week, ∥ indicates the
concatenation operation.

The input set of {Xi} = [Xh∥Xd∥Xw] ∈ RN×F×(nd+nw+nh)τ are embedded into the input
memory vectors {mi} and output memory vectors {ci}:

mi = XiWm + bm ∈ RN×d (5.7)

ci = XiWc + bc ∈ RN×d (5.8)

where Wm,Wc ∈ RF×d, bm, bc ∈ RN×d are parameters.

In the embedding space, we compute the attention score between the query qt and each
memory mi by taking the inner product followed by a softmax:

pt,i = Softmax(qTt mi) (5.9)

The attention score represents the similarity of each historical observation to the query.
Any pattern with a higher attention score is more similar to the context of targeting
missing value. As shown in Fig. 5.3, the response vector from memory is then a sum over
the output memory vectors, weighted by the attention score from the input:

ot =
∑(nd+nw+nh)τ

i=1 cipt,i ∈ RN×d (5.10)

We can finally integrate both local Spatio-temporal and global multi-scale features and
output the enriched traffic embeddings:

ht = (qt∥ot)Wh + bh ∈ RN×d (5.11)

where Wh ∈ R2d×d, bh ∈ Rd are parameters, and ∥ denotes the concatenation operation.
Therefore, for input X = {Xt}τt=1 ∈ RN×F×τ , we can get its enriched traffic embeddings
H = {ht}τt=1 ∈ RN×d×τ .

5.4.3 Dynamic Graph Construction

A predefined graph is usually constructed with the distance or the connectivity between
the spatial nodes. However, recent studies [275, 276, 277] show that the cross-region de-
pendence does exist for those nodes which are not physically connected but share similar
patterns. Learning dynamic graphs should probably show better performance than learn-
ing static graphs or adopting the predefined graphs. Considering the missing values in
traffic data, instead of using the raw traffic observations to mark the dynamic traffic status
[277, 302], we construct dynamic graphs (i.e., adjacency matrix) with the enriched traffic

108 CHAPTER 5. GEO-LOCATED MTS FORECASTING

Time𝑡𝑡-1𝑡 − 𝜏! ...

...

Enriched traffic
embeddings ℋ!

Dynamic Filter
Generation

Pre-defined
Graph 𝒢

Dynamic Graph Filters

...

ℱ!"# ! ℱ!"$ ℱ!
...

Hybrid Node Embeddings

...
𝐸#!"# ! 𝐸#!"$ 𝐸#!

Static Node
Embeddings 𝐸

𝐴!"# ! 𝐴!"$ 𝐴!
Dynamic Graphs

...

Hybrid Node Embedding
Construction Graph Construction

...

Figure 5.4: Dynamic Graph Construction from the enriched traffic embeddings

embeddings Hi at each ST block, which integrates both local and global multi-scale pat-
terns at each time step, allowing capturing the spatial relationship between traffic nodes
robustly. As shown in Fig. 5.4, the main idea here is to generate dynamic filters from the
predefined graphs G and the traffic embeddings Hi ∈ RN×d×τi (τi is the sequence length at
the i-th ST block), which are applied on the static randomly initialized node embeddings
to construct dynamic adjacency matrix. In more detail, the core steps in Fig. 5.4 are
illustrated as follows:

[Dynamic Filter Generation] Given Hi = {ht} ∈ RN×d×τi , the traffic embedding ht at
time t is firstly combined with the predefined adjacency matrix AG ∈ RN×N to generate
dynamic graph filters via a diffusion convolution layer as proposed in [237]:

Ft =
∑K

k=0 PkhtWk ∈ RN×d (5.12)

where K denotes the diffusion step, Pk= AG/rowsum(AG) represents the power series of
the transition matrix [278], and Wk ∈ Rd×d is the model parameter matrix.

[Hybrid Node Embedding Construction] Considering both the source and target
traffic node, we initialise two random node embeddings E1, E2 ∈ RN×d, representing the
static node features [275] which are not reflected in the observations but learnable during
training. Thus, two dynamic filters are applied over the static node embeddings:

Ê1
t = tanh(α(F1

t ⊙ E1)) ∈ RN×d

Ê2
t = tanh(α(F1

t ⊙ E2)) ∈ RN×d
(5.13)

where ⊙ denotes the Hadamard product [278]. Ê1
t and Ê1

t are hybrid node embeddings
combining both static and dynamic settings of the traffic data.

[Graph Construction] Following [276], we extract uni-directional relationships between
traffic nodes. The dynamic adjacency matrix is constructed from the hybrid embeddings:

At = ReLU(tanh(α(Ê1
t Ê

2
t
T − Ê2

t Ê
1
t
T
))) ∈ RN×N (5.14)

Therefore, we can construct the dynamic graphs ADi = {At} ∈ RN×N×τi for the enriched
traffic embeddings Hi ∈ RN×d×τi at the i-th ST block.

5.4. PROPOSAL: GCN-M 109

Dilated
Conv

Dilated
Conv

tanh

𝜎

Temporal Convolution
Module

× Dynamic Graph
Convolution (DGC)

𝐴𝒟!
(𝑡)

ℋ"

𝐡"(𝑡)
∗

Dynamic Graphs

𝐡"

Dynamic graphs

𝐴"𝐴"#$ 𝐴"#% 𝐴"#& 𝐴"#' 𝐴"#(𝐴"#) 𝐴"#*

𝐴"𝐴"#% 𝐴"#' 𝐴"#)

𝐴"𝐴"#'

𝐴"

Temporal Dilated Convolution, 𝑘 = 2
(Dilated Conv.)

ℎ#$% ℎ#$& ℎ#$' ℎ#$(ℎ#$) ℎ#$* ℎ#$+ ℎ#

l=1
d=1

l=2
d=2

l=3
d=4

⋆ ℱ+ ⋆ ℱ+ ⋆ ℱ+ ⋆ ℱ+

⋆ ℱ*⋆ ℱ*

⋆ ℱ)

DGC

DGC

DGC

DGC

Figure 5.5: Temporal Convolution module with Dynamic Graph Convolution

5.4.4 Temporal Convolution Module

The temporal convolution network (TCN) [129] consists of multiple dilated convolution
layers, which allows extracting high-level temporal trends. Compared to RNN-based ap-
proaches, dilated causal convolution networks are capable of handling long-range sequences
in a parallel manner. The output of the last layer is a representation that captures tem-
poral dynamics in history. As shown in Fig. 5.5, considering the temporal dynamics in
traffic data, we adopt the temporal convolution module [278] with the consideration of the
gating mechanism over the enriched traffic embeddings Hi. One dilated convolution block
is followed by a tangent hyperbolic activation function to output the temporal features.
The other block is followed by a sigmoid activation function as a gate to determine the
ratio of information that can pass to the next module.

Given the enriched traffic embeddings Hi = {ht} ∈ RN×d×τi , a filter F ∈ R1×K, K is
the temporal filter size, K = 2 by default. The dilated causal convolution operation of Hi

with F at time t is represented as:

Hi ⋆ Fi(t) =
∑K

s=0Fi(s)Hi(t− d× s) ∈ RN×d×τi+1 (5.15)

where ⋆ is the convolution operator, d is the dilation factor, d is the embedding dimension
size, τi+1 is the new sequence length after the convolution operation, which equals to one
on the last layer. Fig. 5.5 shows a three-layer dilated convolution block with K = 2,
d ∈ [1, 2, 4]. Considering the gating mechanism, we define the output of the temporal
convolution module:

hi = tanh(WF1 ⋆Hi)⊙ σ(WF2 ⋆Hi) ∈ RN×d×τi+1 (5.16)

where WF1 , WF2 are learnable parameters of convolution filters, ⊙ denotes the element-
wise multiplication operator, σ(·) is the sigmoid function.

A classic temporal convolution module stacks the temporal features at each time step
t. Therefore, the upper layer contains richer information than the lower layer. The gating
mechanism allows filtering the temporal features on the lower layers by weighting features
on different time steps without considering the spatial node interactions at each time step.
Moreover, the spatial interactions in traffic data always show a dynamic nature [276].

110 CHAPTER 5. GEO-LOCATED MTS FORECASTING

To this end, the gating mechanism from a dynamic spatial aspect is envisaged to better
capture the Spatio-temporal patterns.

5.4.5 Dynamic Graph Convolution

Spatial interactions between the traffic nodes could be used to improve traffic forecasting
performance. The dynamic spatial interaction leads to considering a dynamic version of
graph convolution to conduct it on different graphs at different timestamps. Different
from previous work [277] which uses raw traffic observations to mark the dynamic traffic
status, we adopt the enriched traffic embeddings, which consider the missing-value issues
to generate robust dynamic graphs.

As shown in Fig. 5.5, we apply the dynamic graph convolution on hi, i.e., the output of
the temporal convolution module, to further select the features at each time step from the
spatial perspective. As mentioned in Section 5.4.3, the dynamic graphs ADi ∈ RN×N×τi

are generated from the enriched traffic embeddings Hi ∈ RN×d×τi at the i-th ST block.
At reflects the spatial relationships between nodes at time t. The temporal features hi(t)

aggregate spatial information according to the adjacency matrix At. Inspired by DCRNN
[237], we consider the traffic situation as the diffusion procedure on graph. The graph
convolution will generate the aggregated spatial information at each time step:

H′
i(t) =

∑K
k=0 (ADi(t))

k hi(t)Wk ∈ RN×d (5.17)

where K denotes the diffusion step, Wk is the learnable parameter matrix. We adopt
the residual connection [118] between the input and output of each ST block to avoid the
gradient vanishing issue in model’s training. Therefore, the input of the (i+1)th ST block
is defined as:

Hi+1(t) = Hi(t) +H′
i(t) (5.18)

5.4.6 Output Forecasting Module

The outputs hi ∈ RN×d×τi+1 of the middle temporal convolution modules and Hl ∈
RN×d×1 of the last ST block are considered for the final prediction, which represent the
hidden states at various Spatio-temporal levels. We add skip connection on each of the
hidden states which are essentially 1 × τi+1 standard convolutions, τi+1 denotes the se-
quence length at the output of the i-th ST block. the concatenated output features are
defined as follows:

O = (h0W
0
s + b0s)∥...∥(hiW

i
s + bis)∥...∥(hl−1W

l−1
s + bl−1

s) ∥(HlW
l
s + bls) (5.19)

where O ∈ RN×ld, W i
s , bis are learnable parameters for the convolutions. Two fully-

connected layers are added to project the concatenated features into the desired output
dimension:

Ŷ = W 2
fc(W

1
fcO + b1fc) + b2fc ∈ RN×Tp (5.20)

5.5. EXPERIMENTS 111

where W 1
fc, W

2
fc, b

1
fc, b

2
fc are learnable parameters for the fully-connected layers, N is the

node number, Tp denotes the forecasting steps.

Given the ground truth Y ∈ RN×Tp and the predictions Ŷ ∈ RN×Tp , we use mean
absolute error (MAE) as our model’s loss function for training:

L =
1

NTp

∑N
n=1

∑Tp

t=1|Ŷ
n
t −Yn

t | (5.21)

5.5 Experiments

In this section, we demonstrate the effectiveness of GCN-M 1 with real-life traffic datasets.
The experiments were designed to answer the following research questions (RQs):

RQ 1 Performance on complete datasets: How well our model performs on traffic datasets
without missing values?

RQ 2 Complex scenarios of missing values: How successful is our model in forecasting
traffic data considering the complex missing values scenarios?

RQ 3 Dynamic graph modeling: How our method performs on dynamic graph modeling
considering the missing values?

5.5.1 Experimental settings

[Datasets] We base our experiments on the public traffic datasets: PEMS-BAY and
METR-LA released by [237], which are widely used in the literature. PEMS-BAY records
six months of traffic speed on 325 sensors in the Bay Area. METR-LA records four months
of traffic flow on 207 sensors on the highways of Los Angeles County. Both datasets con-
tain some zero/missing values, though PEMS-BAY has been pre-processed by the domain
experts from the data provider [303] to interpolate most of the missing values. Following
[237], the datasets are split with 70% for training, 10% for validation and 20% for testing.
We use recent τ= 12 timestamps as input to predict the next Tp timestamp. Considering
that the missing values are marked as zeros, we scale the input by dividing with the max
speed of the training set instead of applying Z-score normalization, which avoids changing
the zero values and removing the missing markers. Table 5.2 shows the summary statistics
of the datasets.

[Evaluation metrics] The forecasting accuracy of all tested models is evaluated by three
metrics, including mean absolute error (MAE), root mean square error (RMSE) and mean

1The source code is publicly available in https://github.com/GCN-M/GCN-M

112 CHAPTER 5. GEO-LOCATED MTS FORECASTING

Table 5.2: Summary statistics of PEMS-BAY and METR-LA

Data #Nodes #Edges Length Sample Rate Observations Zero ratio

PEMS-BAY 325 2369 52 116 5 mins 16 937 179 0.0031%
METR-LA 207 1515 34 272 5 mins 6 519 002 8.11%

absolute percentage error (MAPE).

MAE(Y, Ŷ) =
1

NTp

∑N
n=1

∑Tp

t=1|Ŷ
n
t −Yn

t |

RMSE(Y, Ŷ) =

√
1

NTp

∑N
n=1

∑Tp

t=1|Ŷ
n
t −Yn

t |2

MAPE(Y, Ŷ) =
1

NTp

∑N
n=1

∑Tp

t=1|
Ŷn

t −Yn
t

Yn
t
|

(5.22)

where N denotes the node numbers, Tp represents the forecasting steps.

[Execution and Parameter Settings] The proposed model is implemented by PyTorch
1.6.0 and is trained using the Adam optimizer with a learning rate of 0.001. All the models
are tested on a single Tesla V100 GPU of 32 Go memory. In the multi-scale memory
module, L, S are set to 12 and 5. nh, nd, nw are all set to 2. We apply four ST blocks in
which the Temporal Convolution module contains two dilated layers with dilation factor
d ∈ [1, 2]. The embedding dimension d is set to 32.

5.5.2 Baseline Approaches

We only compare with the baseline models whose source code is publicly available. We
follow the default parameter settings described in each paper for training. According to
the strategy for handling missing values, the baseline models can be organized into two
categories:

1. Jointly model the missing values and forecasting task, i.e., one-step processing

• GRU [304]: Gated Recurrent Unit (GRU) can be considered as a basic structure
for traffic forecasting.

• GRU-I [21]: A variation of GRU, which infers the missing values with the
predictions from previous steps.

• GRU-D [21]: Based on GRU, GRU-D incorporates the missing patterns, includ-
ing the masking information and time intervals between missing and observed
values, to help improve the prediction performance.

• LSTM-I [23]: Based on LSTM, LSTM-I is similar to GRU-I for inferring the
missing values.

5.5. EXPERIMENTS 113

• LSTM-M [24]: Based on LSTM, LSTM-M is designed for traffic forecasting on
data with short-period and long-period missing values.

• SGMN [23]: Based on the graph Markov process, SGMN incorporates a spectral
graph convolution to do traffic forecasting on data with random missing values.

2. Ignore the missing values when optimizing the model:

• DCRNN [237]: Based on the predefined graphs, DCRNN integrates GRU with
dual directional diffusion convolution.

• STGCN [130]: Based on the predefined graphs, STGCN combines graph con-
volution into 1D convolutions.

• Graph WaveNet [278]: Graph WaveNet learns an adaptive graph and integrates
diffusion graph convolutions with temporal convolutions.

• MTGNN [276]: MTGNN learns an adaptive graph and integrates mix-hop
propagation layers in the graph convolution module. Moreover, it designed the
dilated inception layers in temporal convolutions.

• AGCRN [279]: AGCRN learns an adaptive graph and integrates with recurrent
graph convolutions with node adaptive parameter learning.

• GTS [280]: GTS learns a probabilistic graph which is combined with the re-
current graph convolutions to do traffic forecasting.

Note: In practice, any model can ignore the missing values in their optimiza-
tion process. We list here some classic models and the most recent models
designed specifically for traffic forecasting.

5.5.3 RQ 1: Performance on complete datasets

Recently, a lot of traffic forecasting models [250] have been proposed, achieving remarkable
performance on the benchmark datasets PEMS-BAY and METR-LA. Our objective is not
to beat all the models in terms of forecasting accuracy but to validate our proposal for
jointly modeling missing values and forecasting. Therefore, it’s essential to know how GCN-
M performs in a primary setting, i.e., on the original datasets without or with a few missing
values. We pick three classic models (DCRNN [237], STGCN [130] and Graph WaveNet
[278]) and three most recent models (MTGNN [276], AGCRN [279] and GTS [280]), which
focus on the Spatio-temporal modeling of traffic data and generally ignore the missing
values when training the model. We consider as well the group of works [21, 23, 24] which
are specifically designed for modeling the missing values in the forecasting model, i.e.,
one-step processing models.

Table 5.3 and 5.4 show the performance comparison on the complete PEMS-BAY and
METR-LA datasets, respectively. It should be noted that the original datasets already
contain missing values (0.0031% missed in PEMS-BAY, 8.11% missed in METR-LA). We

114 CHAPTER 5. GEO-LOCATED MTS FORECASTING

Table 5.3: Performance comparison on complete PEMS-BAY dataset

PEMS-BAY Horizon=1 (5 mins) Horizon=3 (15 mins) Horizon=6 (30 mins) Horizon=12 (60 mins)
Models MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

DCRNN 0.96 1.63 1.81% 1.38 2.95 2.90% 1.74 3.97 3.90% 2.07 4.74 4.90%
STGCN 0.98 1.84 1.98% 1.44 2.88 3.16% 1.85 3.82 4.20% 2.21 4.52 5.09%

GraphWaveNet 0.91 1.56 1.72% 1.31 2.75 2.73% 1.65 3.75 3.74% 1.99 4.62 4.78%
MTGNN 0.87 1.57 1.70% 1.33 2.80 2.80% 1.65 3.75 3.70% 1.95 4.49 4.56%
AGCRN 0.95 1.81 1.94% 1.37 2.92 2.94% 1.69 3.87 3.82% 1.99 4.61 4.62%

GTS 0.91 1.64 1.77% 1.32 2.80 2.75% 1.63 3.74 3.63% 1.90 4.40 4.44%

GRU 1.29 2.46 2.54% 1.89 3.53 3.98% 2.27 4.24 5.02% 2.65 4.90 5.92%
GRU-I 1.30 2.57 2.57% 1.89 3.52 3.99% 2.26 4.22 4.99% 2.62 4.89 5.87%
GRU-D 5.40 9.25 13.83% 5.34 9.25 13.76% 5.42 9.26 13.85% 5.41 9.27 13.85%
LSTM-I 1.71 2.69 2.80% 1.97 3.45 4.08% 2.57 5.52 5.62% 2.74 5.00 6.21%
LSTM-M 1.35 2.31 2.71% 1.87 3.39 3.95% 2.33 4.33 5.17% 3.45 8.32 7.29%
SGMN 0.98 1.85 1.88% 1.63 3.40 3.32% 2.29 4.91 4.88% 3.31 6.86 7.32%

GCN-M (ours) 0.91 1.57 1.75% 1.33 2.72 2.76% 1.62 3.64 3.64% 1.95 4.40 4.61%

Table 5.4: Performance comparison on complete METR-LA dataset

METR-LA Horizon=1 (5 mins) Horizon=3 (15 mins) Horizon=6 (30 mins) Horizon=12 (60 mins)
Models MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

DCRNN 2.45 4.21 5.99% 2.77 5.38 7.30% 3.15 6.45 8.80% 3.60 7.60 10.50%
STGCN 2.58 4.32 6.22% 3.04 5.48 8.00% 3.60 6.51 9.97% 4.21 7.37 11.61%

GraphWaveNet 2.41 4.29 5.93% 2.68 5.14 6.87% 3.06 6.14 8.23% 3.52 7.25 9.77%
MTGNN 2.24 3.92 5.39% 2.68 5.16 6.86% 3.05 6.16 8.19% 3.50 7.24 9.83%
AGCRN 2.41 4.27 6.08% 2.86 5.54 7.66% 3.22 6.55 8.92% 3.58 7.45 10.24%

GTS 2.32 4.15 6.12% 2.72 5.42 7.11% 3.11 6.47 7.49% 3.52 7.49 10.07%

GRU 2.83 4.56 6.78% 3.48 5.80 9.02% 3.97 6.74 10.72% 4.65 7.86 13.00%
GRU-I 2.80 4.52 6.70% 3.49 5.83 9.05% 3.97 6.74 10.75% 4.60 7.88 12.80%
GRU-D 7.46 11.82 24.55% 7.43 11.85 24.62% 7.45 11.84 24.62% 7.47 11.86 24.68%
LSTM-I 2.86 4.57 6.77% 3.57 5.88 9.05% 4.10 6.85 10.94% 4.78 8.13 13.34%
LSTM-M 3.15 5.58 7.03% 3.46 5.74 8.75% 4.08 6.86 10.89% 4.63 7.83 12.92%
SGMN 3.11 6.02 7.01% 4.23 8.54 9.89% 5.46 10.88 13.01% 7.37 13.78 17.81%

GCN-M (ours) 2.34 3.89 5.88% 2.74 5.21 6.94% 3.12 6.18 8.25% 3.54 7.12 10.01%

5.5. EXPERIMENTS 115

train the models for single-step (horizon=1) and multi-step (horizon =3,6,12) forecasting.
We report the evaluation errors on each horizon step. We observe from the results that
no model achieved evident better performance than the others. However, the first group
of works (e.g., DCRNN) performs better than the one-step processing models, which is
not surprising as they incorporate the advanced graph models (e.g., mix-hop propagation
[276]) and training techniques (e.g., curriculum learning [276]) to improve the Spatio-
temporal forecasting performance. Among the one-step processing models, surprisingly,
GRU-D [21] shows much worse performance than the others, which is probably due to the
fact that it has been designed for health care applications, whose data have a more stable
status than the dynamic traffic data. LSTM-M [24] and SGMN [23], that are designed
for traffic forecasting with missing values, show relative good performance in PEMS-BAY
especially on single-step forecasting. However, they did not show a clear advantage to the
first group of works. The one-step processing models are generally designed for single-step
forecasting; their performance gap with the first group of works becomes larger under a
multi-step forecasting setting. Even though GCN-M belongs to the one-step processing
models, its performance remains close to the first group of works. Moreover, the advanced
graph models and training techniques in recent work [276] can be considered to improve
the performance of GCN-M further.

5.5.4 RQ 2: Complex scenarios of missing values

In this section, we demonstrate the power of GCN-M in handling complex scenarios of
missing values for the purpose of traffic forecasting.

As mentioned previously in Figure 5.1, there are several scenarios of missing values
in real-life traffic datasets (e.g., METR-LA): short-range or long-range missing; partial or
entire network missing. The results in Table 5.3 and 5.4 did not show the superiority of
GCN-M over other models on the original datasets with a low missing rate. Therefore, to
test the model’s capability of handling complex missing values, we design three scenarios
with various missing rates (10%, 20%, and 40%) and remove the observations from the
datasets accordingly. We use X̂ ∈ Rn×f×t to represent each of the observations to be
removed from X ∈ RN×F×τ . Then, we design the scenarios of:

• Short-range missing: we randomly set n ∈ [1, ..., N], f = F , t = 1

• Long-range missing: we randomly set n ∈ [1, ..., N], f = F , t = τ

• Mix-range missing: we randomly set n ∈ [1, ..., N], f = F , t ∈ [1, ..., τ]

In Table 5.5 and 5.6, we show the performance comparison on the PEMS-BAY and
METR-LA datasets under various missing value scenarios. We highlight the best results
among the one-step processing models (underlined values) and all the models (bold val-
ues). Globally, GCN-M shows the best performance under all the settings compared to the

116 CHAPTER 5. GEO-LOCATED MTS FORECASTING

Table 5.5: Performance comparison on the incomplete PEMS-BAY dataset with various
random settings on missing values. The results show a one-hour (12-step) average of the
forecasting errors. The underlined values represent the best results among the one-step
processing models, the bold values represent the best results among all the models.

Missing Rate = 10% Missing Rate = 20% Missing Rate = 40%
Models MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

Sh
or

t-
ra

ng
e

m
is

si
ng

DCRNN 1.76 3.94 3.94% 1.82 3.96 4.01% 1.85 4.26 4.04%
STGCN 1.82 4.11 4.25% 1.91 4.18 4.41% 1.97 4.33 4.42%
GraphWaveNet 1.69 3.79 3.81% 1.74 3.75 3.75% 1.79 3.87 3.90%
MTGNN 1.58 3.42 3.33% 1.72 3.78 3.83% 1.83 4.03 3.94%
AGCRN 1.65 3.81 3.78% 1.66 3.81 3.79% 1.72 3.96 3.95%
GTS 1.65 3.86 3.74% 1.65 3.86 3.76% 1.69 3.92 3.86%

GRU 2.60 4.64 5.75% 2.67 4.78 5.90% 2.86 5.10 6.37%
GRU-I 2.29 4.28 5.06% 2.31 4.31 5.09% 2.41 4.47 5.38%
GRU-D 5.38 9.29 13.84% 5.46 9.36 13.96% 7.20 11.58 16.91%
LSTM-I 2.35 4.33 5.22% 2.82 6.63 6.05% 3.06 7.47 6.56%
LSTM-M 2.47 4.55 5.50% 2.56 4.70 5.74% 3.34 7.09 7.68%
SGMN 2.32 4.96 4.94% 2.34 5.01 5.00% 2.45 5.20 5.23%
GCN-M (ours) 1.62 3.67 3.60% 1.63 3.73 3.68% 1.75 3.81 3.90%

Lo
ng

-r
an

ge
m

is
si

ng

DCRNN 1.83 4.07 4.22% 1.96 4.22 4.42% 2.07 4.45 4.67%
STGCN 1.92 4.22 4.42% 2.03 4.37 4.72% 2.14 4.52 4.76%
GraphWaveNet 1.74 3.96 4.03% 1.87 4.09 4.18% 1.94 4.21 4.33%
MTGNN 1.65 3.68 3.72% 1.89 4.01 4.17% 2.01 4.42 4.61%
AGCRN 1.72 3.78 3.94% 1.84 4.11 4.13% 1.90 4.18 4.31%
GTS 1.68 3.86 3.91% 1.78 4.12 4.97% 1.88 4.17 4.22%

GRU 2.93 5.12 6.32% 3.06 5.31 6.63% 3.35 5.78 7.03%
GRU-I 2.52 4.51 5.33% 2.53 4.57 5.73% 2.71 4.82 5.51%
GRU-D 9.33 14.51 22.31% 9.89 13.94 22.86% 11.07 15.88 23.13%
LSTM-I 2.65 4.65 5.88% 3.13 6.35 6.82% 3.62 9.53 7.12%
LSTM-M 3.93 7.25 9.17% 5.45 10.06 13.67% 5.57 10.12 14.59%
SGMN 8.86 12.57 14.54% 11.45 14.56 18.31% 14.62 17.23 23.13%
GCN-M (ours) 1.70 3.75 3.74% 1.73 3.88 3.92% 1.79 4.07 4.14%

M
ix

-r
an

ge
m

is
si

ng

DCRNN 1.81 4.01 4.15% 1.91 4.16 4.31% 2.02 4.36 4.52%
STGCN 1.85 4.13 4.21% 1.98 4.31 4.56% 2.11 4.43 4.68%
GraphWaveNet 1.72 3.92 3.96% 1.83 4.06 4.14% 1.89 4.11 4.21%
MTGNN 1.69 3.77 3.78% 1.86 4.03 4.11% 1.98 4.32 4.44%
AGCRN 1.67 3.85 3.88% 1.72 3.95 3.99% 1.80 4.10 4.13%
GTS 1.70 3.96 3.92% 1.75 3.98 3.89% 1.79 4.09 4.09%

GRU 2.71 4.88 6.03% 2.82 5.08 6.28% 3.05 5.43 6.82%
GRU-I 2.31 4.30 5.11% 2.34 4.39 5.18% 2.40 4.50 5.37%
GRU-D 8.90 13.71 20.03% 9.46 14.50 21.04% 10.21 15.19 22.44%
LSTM-I 2.46 4.51 5.49% 2.75 5.85 6.02% 3.39 9.15 6.88%
LSTM-M 3.86 7.06 8.93% 5.19 9.71 13.15% 5.27 9.74 13.29%
SGMN 7.41 10.91 13.47% 9.95 13.49 17.56% 13.10 16.96 22.58%
GCN-M (ours) 1.65 3.67 3.69% 1.66 3.72 3.62% 1.69 3.79 3.83%

5.5. EXPERIMENTS 117

Table 5.6: Performance comparison on the incomplete METR-LA dataset with various
random settings on missing values. The results show a one-hour (12-step) average of the
forecasting errors. The underlined values represent the best results among the one-step
processing models, the bold values represent the best results among all the models.

Missing Rate = 10% Missing Rate = 20% Missing Rate = 40%
Models MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

Sh
or

t-
ra

ng
e

m
is

si
ng

DCRNN 3.31 6.61 9.47% 3.44 6.80 9.57% 3.50 6.90 9.68%
STGCN 3.53 7.08 9.73% 3.59 7.25 10.25% 3.66 7.45 10.41%
GraphWaveNet 3.28 6.60 9.11% 3.36 6.74 9.50% 3.45 6.81 9.57%
MTGNN 2.98 6.03 8.35% 3.19 6.44 8.69% 3.26 6.59 9.07%
AGCRN 3.19 6.47 8.81% 3.24 6.60 9.01% 3.25 6.61 9.19%
GTS 3.08 6.40 8.59% 3.14 6.52 7.58% 3.12 6.56 8.61%

GRU 4.20 7.09 11.27% 4.27 7.16 11.42% 4.45 7.41 11.94%
GRU-I 4.02 6.83 10.89% 4.03 6.88 10.83% 4.09 6.91 10.88%
GRU-D 7.50 11.87 24.69% 7.45 11.86 24.66% 7.53 11.91 24.76%
LSTM-I 4.12 6.89 11.04% 4.18 6.98 11.10% 4.21 7.08 11.26%
LSTM-M 4.10 6.92 10.91% 4.15 6.98 11.03% 4.26 7.18 11.44%
SGMN 5.54 10.93 13.17% 5.61 10.99 13.35% 5.81 11.18 13.83%
GCN-M (ours) 3.17 6.33 8.72% 3.23 6.47 8.99% 3.26 6.35 8.98%

Lo
ng

-r
an

ge
m

is
si

ng

DCRNN 3.46 6.78 9.62% 3.54 6.96 9.75% 3.62 7.02 9.89%
STGCN 3.71 7.20 9.91% 3.76 7.39 10.42% 3.88 7.66 10.67%
GraphWaveNet 3.43 6.64 9.07% 3.57 6.92 9.62% 3.61 7.03 10.71%
MTGNN 3.19 6.32 8.48% 3.39 6.85 9.21% 3.50 6.95 9.74%
AGCRN 3.31 6.54 8.94% 3.33 6.68 8.98% 3.33 6.78 9.45%
GTS 3.25 6.61 8.93% 3.29 6.74 8.85% 3.46 6.86 9.37%

GRU 4.37 7.28 12.54% 4.47 7.44 11.72% 4.76 7.81 12.71%
GRU-I 4.20 6.91 11.78% 4.09 6.97 15.42% 4.21 7.03 11.43%
GRU-D 7.59 11.94 24.72% 7.82 12.46 25.67% 7.96 12.45 26.12%
LSTM-I 4.20 7.09 11.08% 4.25 7.12 11.32% 4.36 7.32 11.56%
LSTM-M 4.53 7.47 11.88% 5.21 8.84 15.34% 6.08 10.02 18.13%
SGMN 9.47 14.30 20.72% 11.49 16.01 24.55% 13.97 18.24 29.10%
GCN-M (ours) 3.18 6.39 8.71% 3.23 6.56 8.78% 3.27 6.68 9.12%

M
ix

-r
an

ge
m

is
si

ng

DCRNN 3.33 6.69 9.53% 3.47 6.85 9.64% 3.56 6.95 9.78%
STGCN 3.56 7.12 9.81% 3.64 7.28 10.33% 3.73 7.51 10.62%
GraphWaveNet 3.28 6.51 9.02% 3.43 6.78 9.52% 3.51 6.94 9.62%
MTGNN 3.04 6.18 7.84% 3.14 6.72 9.07% 3.44 6.82 9.12%
AGCRN 3.19 6.49 8.77% 3.21 6.56 8.95% 3.26 6.65 8.98%
GTS 3.12 6.51 8.61% 3.22 6.61 8.84% 3.34 6.72 8.86%

GRU 4.30 7.14 11.47% 4.35 7.31 11.68% 4.65 7.72 12.58%
GRU-I 4.05 6.83 10.94% 4.01 6.86 10.83% 4.11 6.97 10.98%
GRU-D 7.53 11.89 24.74% 7.71 12.32 25.43% 7.89 12.34 25.63%
LSTM-I 4.15 6.94 11.06% 4.19 7.01 11.18% 4.30 7.18 11.35%
LSTM-M 4.40 7.38 11.91% 5.14 8.77 14.92% 6.02 9.92 17.88%
SGMN 9.33 14.16 20.47% 11.42 15.87 24.40% 13.84 18.13 28.97%
GCN-M (ours) 3.08 6.34 8.59% 3.12 6.42 8.71% 3.23 6.50 8.76%

118 CHAPTER 5. GEO-LOCATED MTS FORECASTING

one-step processing models, in which the graph-based model SGMN [23] performs much
worse than other one-step processing models under long-range and mix-range missing set-
tings, indicating that it applies only on simple missing scenarios, i.e., short-range random
missing. GCN-M does not always show superiority compared with the first group of works,
especially in the short-range missing scenario, where MTGNN and GTS usually show good
performances. Besides, MTGNN typically performs better than GCN-M when the missing
rate is low (10%), except under the mix-range missing scenario of PEMS-BAY. We can
draw an interesting conclusion from this observation: a robust Spatio-temporal forecasting
model can offset the impact of the missing values to some extent, as it allows exploring the
information thoroughly from the observed measures. GCN-M becomes the best forecast-
ing model when the missing rate gets higher, as the missing values become a more critical
factor that impacts the forecasting model than Spatio-temporal pattern modeling.

Compared to the short-range missing scenario, GCN-M shows a more robust perfor-
mance under long-range and mix-range missing scenarios, where the recent temporal values
and the nearby nodes’ values are not always observed. The multi-scale memory block in
GCN-M allows enriching the traffic embedding at each timestamp, thus making the model
robust in the two complex scenarios. The memory block searches for the periodic global
patterns from historical data and the valuable local features from nearby nodes or recent
observations at each timestamp. When nearby nodes values are unobserved, GCN-M fa-
vors more on recent observations and vice versa. The memory module with the periodic
historical patterns can distinguish the inherent zero values from the missing values, as
the zero values usually show periodicity while missing values show contingency [303]. The
current node readings combined with the historical patterns will eliminate the effect from
missing values but conserve that of zero values.

In Figure 5.6, we show the effects of the memory module’s parameters L and S on
the model’s performance. The two parameters represent the searching range of the local
temporal and spatial features, respectively. We report the model’s evaluation errors with
various missing rates. From the results in Figure 5.6, we observe that when the searching
range becomes more extensive, the model’s performance decreases more. This can be
explained by the fact that the mean value of a larger space and the less recent observations
will lead to a weaker information dependency with the current timestamp, thus affecting
the information enrichment of the traffic embedding. In real-life datasets, we can set the
parameters from a small value, such as considering local features during the last one hour
(L=12) with five nearest sensor nodes (S=5).

5.5.5 RQ 3: Dynamic Graph Modeling

In the dynamic traffic system, the spatial dependency can be considered as a dynamic
system status, which evolves along time [302]. The traffic observations at each timestamp
are always adopted to characterize the dynamic traffic status and help learn the dynamic
graphs [277]. However, due to the missed observations, the traffic status at certain times-

5.5. EXPERIMENTS 119

12 24 36 48 60
L

2

3

4

5

6

7

8

9

10

M
AE

, R
M
SE

3.08 3.11 3.14 3.15 3.17

6.34 6.32 6.38 6.41 6.40

MAE RMSE

8.0

8.2

8.4

8.6

8.8

9.0

M
AP

E
(%

)8.59
8.64

8.89 8.87 8.88
MAPE

(a) Missing Rate =10% (L)

12 24 36 48 60
L

2

3

4

5

6

7

8

9

10

M
AE

, R
M
SE

3.12 3.17 3.19 3.20 3.20

6.42 6.46 6.48 6.49 6.48

MAE RMSE

8.0

8.2

8.4

8.6

8.8

9.0

M
AP

E
(%

)

8.71
8.76

8.80 8.81 8.79MAPE

(b) Missing Rate =20% (L)

12 24 36 48 60
L

2

3

4

5

6

7

8

9

10

M
AE

, R
M
SE

3.23 3.31 3.33 3.33 3.32

6.50 6.61 6.62 6.61 6.61

MAE RMSE

8.0

8.2

8.4

8.6

8.8

9.0

M
AP

E
(%

)

8.76

8.89 8.91 8.88 8.89
MAPE

(c) Missing Rate =40% (L)

5 10 15 20 25
S

2

3

4

5

6

7

8

9

10

M
AE

, R
M
SE

3.08 3.13 3.15 3.17 3.16

6.34 6.39 6.44 6.43 6.43

MAE RMSE

8.0

8.2

8.4

8.6

8.8

9.0
M
AP

E
(%

)8.59

8.73
8.78 8.81 8.80MAPE

(d) Missing Rate =10% (S)

5 10 15 20 25
S

2

3

4

5

6

7

8

9

10

M
AE

, R
M
SE

3.12 3.14 3.19 3.18 3.29

6.42 6.47 6.48 6.49 6.48

MAE RMSE

8.0

8.2

8.4

8.6

8.8

9.0

M
AP

E
(%

)

8.71 8.74 8.76 8.76 8.75
MAPE

(e) Missing Rate =20% (S)

5 10 15 20 25
S

2

3

4

5

6

7

8

9

10

M
AE

, R
M
SE

3.23 3.27 3.31 3.30 3.32

6.50 6.58 6.57 6.59 6.61

MAE RMSE

8.0

8.2

8.4

8.6

8.8

9.0

M
AP

E
(%

)

8.76
8.85

8.94
8.89 8.92

MAPE

(f) Missing Rate =40% (S)

Figure 5.6: Parameters effects: we report the model errors of GCN-M on METR-LA
dataset considering a,b,c) L observed samples before current timestamp for constructing
the Empirical Temporal Mean in equation 5.1; d,e,f) S observed samples nearby current
node for constructing the Empirical Spatial Mean in equation 5.2.

tamps can not be characterized, thus affecting the dynamic graph learning process.

This issue can be handled by the enriched traffic embeddings proposed in GCN-M.
It allows considering the local static features and global historical patterns to avoid the
deviation introduced by the missing values and help learn the dynamic graphs. To validate
the performance of the learned dynamic graphs, we designed the following variants of our
GCN-M model:

• GCN-M-obs: instead of using the enriched traffic embeddings, the raw traffic obser-
vations [277] are adopted to construct dynamic graphs.

• GCN-M-adp: instead of learning dynamic graphs and applying dynamic convolution,
an adaptive static graph [278] is learned to do the graph convolution.

• GCN-M-pre: instead of learning graphs from the traffic embedding or observations,
the predefined graphs [237] calculated with by the directed distances between traffic
nodes are adopted for doing graph convolution.

• GCN-M-com: combine both predefined and learned static graphs [278] to do the
graph convolution.

We show in Table 5.7 the performance comparison on various model variants of the
spatial graph modeling. We report the model errors on multiple horizons. We consider
the complex scenario of mix-range missing values with a missing rate of 40% on both

120 CHAPTER 5. GEO-LOCATED MTS FORECASTING

Table 5.7: Performance comparison on graph module in mix-range missing value scenario
with missing rate = 40%

Horizon=3 (15 mins) Horizon=6 (30 mins) Horizon=12 (60 mins)
Models MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

P
E

M
S-

B
A

Y GCN-M-obs 1.63 3.48 3.53% 1.93 4.16 4.31% 2.25 4.81 5.10%
GCN-M-adp 1.53 3.11 3.14% 1.82 3.93 4.03% 2.14 4.72 4.92%
GCN-M-pre 1.61 3.27 3.21% 1.87 4.05 4.11% 2.18 4.74 5.03%
GCN-M-com 1.54 3.13 3.11% 1.79 3.92 3.97% 2.11 4.62 3.91%
GCN-M 1.45 3.03 3.09% 1.70 3.81 3.89% 2.06 4.64 4.86%

M
E

T
R

-L
A GCN-M-obs 2.97 5.68 7.71% 3.31 6.57 8.78% 3.71 7.54 10.07%

GCN-M-adp 2.84 5.51 7.44% 3.19 6.41 8.59% 3.68 7.34 9.96%
GCN-M-pre 2.92 5.56 7.64% 3.23 6.42 8.63% 3.72 7.42 10.04%
GCN-M-com 2.84 5.52 7.45% 3.17 6.4 8.63% 3.68 7.41 9.97%
GCN-M 2.82 5.47 7.42% 3.16 6.38 8.55% 3.58 7.31 9.92%

PEMS-BAY and METR-LA datasets. The results in Table 5.7 suggest that the dynamic
graphs learned from the enriched traffic embeddings perform the best compared to other
variants. In contrast, the model obtains the worst performance when learning the dynamic
graphs from the raw observations, which is mainly due to the missing values hindering the
graph learning process in inferring the dynamic traffic status. GCN-M-obs perform even
worse than GCN-M-adp in which the static graph is learned from the entire observations,
eliminating the effect from local missing values.

5.5.6 Discussions

Our approach has several advantages. First, starting from the real-world data, GCN-M
considered the complex scenarios of missing values in traffic data. Different from the previ-
ous work [21, 23, 24] which consider the missing value from a part of the real-life scenarios:
either under the short-range or long-range missing settings, under partial or entire network-
ing missing settings. GCN-M considers the complex mix-missing value context covering
various real-life scenarios for missing values.

Second, GCN-M is capable of handling such complex missing value scenarios with a
multi-scale memory module which combines local Spatio-temporal features (short-range
missing, partial and entire network missing) and global historical patterns (long-range
missing) to generate the enriched traffic embeddings; the embeddings allow distinguishing
the inherent zero values from the missing values. In this way, GCN-M jointly models the
Spatio-temporal patterns and missing values in one-step processing, which generally allows
a better model performance than two-step processing [23].

Third, GCN-M allows generating reliable dynamic graphs from the enriched traffic
embeddings, which opens a path for learning robust dynamic graphs under missing value
settings. Moreover, the generated dynamic graphs can corporate with various advanced

5.6. CONCLUSION 121

graph convolution modules [276] to improve the model’s performance further.

Last but not least, even though GCN-M is designed for traffic forecasting, it is ap-
plicable to wider application domains sharing similar Spatio-temporal characteristics and
missing-value scenarios, such as crowd flow forecasting [19], weather and air pollution fore-
casting [20], etc. The Spatio-temporal patterns in those data and the missing values caused
by the sensor issues or control center errors form similar research problems to our work.

Table 5.8: Model efficiency: training time per epoch (s)

Models PEMS-BAY METR-LA Models PEMS-BAY METR-LA

DCRNN 468.22 178.23 GRU 3.65 2.45
STGCN 55.32 27.70 GRU-I 4.22 3.67

GraphWaveNet 118.77 48.16 GRU-D 7.82 5.43
MTGNN 86.20 38.70 LSTM-I 4.32 4.64
AGCRN 67.40 32.9 LSTM-M 8.12 5.76

GTS 191.4 62.3 SGMN 3.45 2.38
GCN-M (ours) 241.69 118.65 - - -

However, GCN-M does have a limitation in terms of computational efficiency. Table
5.8 shows the per epoch training time comparison on the full datasets between GCN-M
and the baseline models. The one-step processing baseline models are much more efficient
than other models. This is basically because of their simple structure without integrating
the costly graph convolution modules. GCN-M still performs better than DCRNN, but
worse than other forecasting models. This is mainly caused by two factors: 1) generating
the enriched traffic embeddings requires a huge computation cost on the attention score’s
calculation in the memory module; 2) generating the dynamic graphs for graph convolution
requires learning a large number of parameters, thus increasing computation cost. Possible
solutions might be to reduce the time complexity for calculating the attention with Prob-
Sparse Attention proposed in [134] and to apply more efficient dynamic graph convolution
such as graph tensor decomposition [302].

5.6 Conclusion

In this chapter, we propose GCN-M, a graph convolutional network-based model for han-
dling complex missing values in traffic forecasting. Different from the general multivariate
time series (MTS), traffic data is an MTS with geo-locations for each variable (i.e., data
source), a.k.a., geo-located time series. GCN-M allows modeling the temporal and inter-
variable relationships between traffic data under real-world context.

Precisely, we studied the complex scenario where missing traffic values occur on both
short & long ranges and on partial & entire transportation network. The enriched traf-
fic embeddings learned by a Spatio-temporal memory module allow handling the complex
missing values and constructing dynamic traffic graphs to improve the model’s perfor-

122 CHAPTER 5. GEO-LOCATED MTS FORECASTING

mance. A joint model optimization is applied to consider missing values and traffic fore-
casting in one-step processing. We compare GCN-M with the one-step processing models,
which are specifically designed for processing incomplete traffic data and the recent ad-
vanced traffic forecasting models. The extensive experiments on two benchmark traffic
datasets with 12 baselines demonstrate that GCN-M shows a clear advantage under var-
ious scenarios of complex missing values, as compared to the advanced traffic forecasting
models, while at the same time it maintains comparable performance on complete traffic
datasets. These experiments also provide an up-to-date comparison of the traffic forecast-
ing models would it be with or without missing values. In future work, we will explore the
aforementioned optimizations to reduce computational costs. From a longer-term perspec-
tive, one can consider noisy data or external events that may impact the predictions.

Chapter 6

Conclusion and Perspectives

6.1 Conclusion

Time series mining is a big research domain with countless real-life applications. The
representation learning on time series is a key element for bridging the time series mining
and classic machine learning approaches. The time series representation can be divided into
three categories: transformation-based, local pattern-based and model-based. Each category
is along with various research purpose and concrete research problems with the time series
data. From the time series representation, we conduct three interdisciplinary studies on
wider time series contexts: (i) representation learning on time series in dynamic streaming
context; (ii) representation learning on multivariate time series with label constraint; (iii)
representation learning on geo-located time series with imperfect data.

For learning the time series representation in the streaming context, we claim and
demonstrate that the Shapelet, a local pattern-based representation, is the best choice to
answer the question of interpretability in the dynamic streaming context. Different from
the learning-based Shapelets [99, 100, 101], we base our proposal on the extraction-based
Shapelets [14] which are the shape-based features extracted directly from the original time
series and naturally interpretable. Despite being an interpretable feature, the Shapelet
can not usually be extracted in an explainable manner. For this reason, we designed
SMAP (Shapelet extraction on MAtrix Profile), an explainable extraction process with
the help of the Matrix Profile, which is integrated into a distributed framework based on
Spark to accelerate the extraction process. For the dynamic streaming context, the Matrix
Profile-based framework is applicable to two different streaming scenarios. First, the time
series stream may come continuously within a stable data distribution (i.e., no Concept
Drift). This is quite common in real-life applications. For instance, the medical database
can be continuously enriched with more patient cases. The learning model needs to be
continuously updated without being re-trained from scratch. To this end, we propose
ISMAP (Incremental SMAP), which is capable of avoiding the redundant information’s

123

124 CHAPTER 6. CONCLUSION AND PERSPECTIVES

computation by adopting an interleaved Test-then-Train strategy [5] with an extra Shapelet
evaluation process over input instances. In this manner, ISMAP significantly improves the
system’s efficiency with an exchange of a negligible decrease of accuracy. Second, the
time series stream can come continuously under a dynamic data distribution (i.e., Concept
Drift). We adjust the conventional strategies of Concept Drift detection into the context
of Time Series Stream, which allows a proactive elimination of the outdated data cached in
the memory. The system can be applied in the scenario where an existing dataset should
be enriched with new knowledge but without a human loop in the middle.

The lack of annotation is a critical issue in machine learning. It becomes even more
challenging when learning from time series (especially multivariate time series). The real-
valued sequence is not as interpretable as the classic data (e.g., image, text) for humans.
Therefore, the post-labeling on time series is usually more costly than classic data. When
considering the label constraint in multivariate time series learning, we should explore at
the same time the characteristics of the multivariate time series and the techniques of
semi-supervised learning on time series. On the one hand, from univariate time series
to multivariate time series, one key challenge is how we can model the interactions be-
tween the variables. We designed a simple but powerful module named Spatial Modeling
Block (SMB), which models the dynamic variable interactions at a local-segment level.
SMB shows a higher performance than previous work, which generally considers the fixed
sequence-level interactions. This module is parameter-free and can be easily integrated into
various advanced frameworks for multivariate time series learning. On the other hand, con-
sidering the label constraint when learning from time series, we proposed a semi-supervised
model named SMATE based on the auto-encoder structure. SMATE allows learning the
Spatial-temporal representation on weakly-labeled multivariate time series. Specifically,
a Spatial-temporal encoder maps the temporal dynamic features and the spatial dynamic
interactions into a low dimensional embedding space. A semi-supervised three-step regular-
ization process is proposed to compel the model in learning class-separable representation.
The weak supervision on the embedding space allows building a reliable classifier, which
is extremely valuable in real-life scenarios with label shortage issues. In addition, SMATE
allows for visual interpretability in both the learned representation and the semi-supervised
representation learning process.

Finally, even though the multivariate time series has a complex structure, the concrete,
real-life contexts may introduce auxiliary information on the variables to help model the
interactions. For instance, in the Smart City context, the sensor data with spatial in-
formation can be represented as geo-located time series. The representation learning on
geo-located time series should consider more realistic problems, such as imperfect data with
missing values. Meanwhile, we are capable of modeling the variable interactions with the
external spatial information. To this end, we conduct the representation learning on the
geo-located time series with missing values. Specifically, we consider a popular application
of geo-located time series: traffic forecasting. In addition, since the real-world traffic data
always comes with data quality issues, such as missing values. To this end, we propose

6.2. PERSPECTIVES 125

GCN-M, a graph convolutional network-based model for handling complex missing val-
ues in traffic forecasting tasks. Different from the two-step processing approaches, which
tackle missing values and forecasting tasks separately, GCN-M allows jointly modeling the
Spatio-temporal patterns and the missing values in one-step processing, leading to a better
forecasting performance. On the one hand, we studied the complex missing scenario where
the values can be missing on both short & long ranges and on partial & entire variables
(i.e., transportation network). Specifically, we designed a Spatio-temporal memory module
based on the memory network [301] to handle the complex missing values. The memory
module first constructs local statistic features from spatial and temporal dimensions to
handle short-range missing values. Then, the global historical features are extracted for
processing long-range missing blocks. The combined local-global features allow not only
identifying the missing measures from the inherent zero values but also enriching the traffic
embeddings (i.e., geo-located time series representation). On the other hand, we propose
to learn a dynamic graph for modeling the evolving interactions between the spatial nodes.
One key advantage of our proposal is that the dynamic graph can be learned from the traf-
fic data with complex missing values. We compare GCN-M with other one-step processing
models, which are specifically designed for processing incomplete traffic data and the re-
cent advanced traffic forecasting models. GCN-M shows a clear advantage under various
scenarios of complex missing values. Compared to the most advanced traffic forecasting
models in the literature, GCN-M maintains comparable performance on complete traffic
datasets. Our experiments also provide an up-to-date comparison of the traffic forecasting
models would it be with or without missing values.

6.2 Perspectives

Beyond our current work, the representation learning on time series has a wide range of
applications. It allows bridging the complex time series analysis and advanced machine
learning models in the state of the art. Here, we give some perspectives on our current
contributions.

First, in the streaming context, one possible extension is to handle the multivariate time
series (MTS) stream. The Shapelet representation in MTS can be either a combination of
the Shapelets extracted asynchronously from each variable [223, 98], or a multidimensional
Shapelet extracted directly from the MTS, which is rarely studied in the literature. The key
question here is how to build the Shapelet representation in MTS via Matrix Profile, which
is designed to support the streaming context. Since the Matrix Profile supports only the
operations between the univariate time series, a careful design (e.g., pattern combination)
for modeling the multivariate patterns is envisaged. Authors in [305] tend to extract the
sub-dimensional motif in MTS via Matrix Profile, which is inspiring for us to extract the
Shapelets in MTS. The sub-dimensional Shapelet can be a multidimensional subsequence
for which only a subset of dimensions is selected. The MTS can then be represented by a
(set of) sub-dimensional Shapelet(s) extracted with a k-dimensional Matrix Profile.

126 CHAPTER 6. CONCLUSION AND PERSPECTIVES

Second, there are several possible extensions for our semi-supervised model for multi-
variate time series representation learning. The first one is to improve further the modeling
of the dynamic interactions between the variables. It can be done with the idea in our
proposal GCN-M, which applied a dynamic graph neural network to model the spatial
interactions between the spatial nodes. The variables in a normal MTS can be considered
as a set of spatial nodes with implicit spatial interactions. Recent work [276, 279] learn
an implicit graph from the traffic data and show it achieves a comparable or even better
performance than that with a predefined graph. In this manner, even without external
spatial information, we are capable of learning a dynamic graph to represent the dynamic
interactions between the variables. Another possible extension is to improve the perfor-
mance of the semi-supervised learning framework. It can be done with the time series
domain adaptation [297]. The main idea is to pre-train a representation of time series data
from other (similar) domains, which learns the shared general time series characteristics.
The pre-trained representation can be adapted or fine-tuned to our target domain with
the weakly-labeled MTS. In this way, the information in our weakly-labeled MTS can be
maximally explored to train the model.

Finally, we aim to improve the efficiency of GCN-M and apply GCN-M to a broader
context. The computational efficiency is the main limitation of GCN-M, which is mainly
caused by the attention mechanism in the memory module and the dynamic graph con-
volution on the enriched traffic embeddings. On the one hand, calculating the attention
score is costly as it requires computing the dot products of every query-key pair (local
Spatio-temporal statistic features and global historical patterns). This issue can be tack-
led by recent efficient attention mechanisms, such as ProbSparse Attention proposed in
[134], which allows each key only to attend to a certain number of dominant queries. On
the other hand, since the graph convolution is conducted on each of the dynamic graphs
and its relevant traffic embedding, the computational cost is multiple times that of learning
with a static graph. One possible solution is to adopt the graph tensor decomposition [302],
which represents the graphs at all time slots as a tensor. The tensor decomposition allows
simplifying the model and exploiting the low-rank characteristic of the dynamic spatial
dependencies.

Bibliography

[1] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques. Elsevier,
2011.

[2] P. Esling and C. Agon, “Time-series data mining,” ACM Computing Surveys
(CSUR), vol. 45, no. 1, pp. 1–34, 2012.

[3] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller, “Deep learning
for time series classification: a review,” Data mining and knowledge discovery, vol. 33,
no. 4, pp. 917–963, 2019.

[4] B. Lim and S. Zohren, “Time-series forecasting with deep learning: a survey,”
Philosophical Transactions of the Royal Society A, vol. 379, no. 2194, p. 20200209,
2021.

[5] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A survey on
concept drift adaptation,” ACM computing surveys (CSUR), vol. 46, no. 4, pp. 1–37,
2014.

[6] J. Lines, J. Hills, and A. Bagnall, “The Collective of Transformation-Based En-
sembles for Time-Series Classification,” IEEE Transactions on Knowledge and Data
Engineering, vol. 27, no. 9, pp. 2522–2535, 2015.

[7] J. Lines, S. Taylor, and A. Bagnall, “Hive-cote: The hierarchical vote collective of
transformation-based ensembles for time series classification,” in 2016 IEEE 16th
international conference on data mining (ICDM). IEEE, 2016, pp. 1041–1046.

[8] K. Ueno, A. Xi, E. Keogh, and D. J. Lee, “Anytime classification using the near-
est neighbor algorithm with applications to stream mining,” Proceedings - IEEE
International Conference on Data Mining, ICDM, no. December, pp. 623–632, 2006.

[9] J. Lin, R. Khade, and Y. Li, “Rotation-invariant similarity in time series using bag-
of-patterns representation,” Journal of Intelligent Information Systems, vol. 39, no. 2,
pp. 287–315, 2012.

[10] F. Karim, S. Majumdar, H. Darabi, and S. Chen, “LSTM Fully Convolutional Net-
works for Time Series Classification,” IEEE Access, vol. 6, pp. 1662–1669, 2017.

127

128 BIBLIOGRAPHY

[11] J. Wang, Z. Wang, J. Li, and J. Wu, “Multilevel wavelet decomposition network
for interpretable time series analysis,” in Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, 2018, pp. 2437–
2446.

[12] A. Dempster, F. Petitjean, and G. I. Webb, “Rocket: exceptionally fast and accu-
rate time series classification using random convolutional kernels,” Data Mining and
Knowledge Discovery, vol. 34, no. 5, pp. 1454–1495, 2020.

[13] C.-C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau, D. F. Silva,
A. Mueen, and E. Keogh, “Matrix profile i: all pairs similarity joins for time series:
a unifying view that includes motifs, discords and shapelets,” in 2016 IEEE 16th
international conference on data mining (ICDM). Ieee, 2016, pp. 1317–1322.

[14] L. Ye and E. Keogh, “Time series shapelets: a new primitive for data mining,”
in Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2009, pp. 947–956.

[15] K.-W. Chang, B. Deka, W.-M. W. Hwu, and D. Roth, “Efficient pattern-based time
series classification on gpu,” in 2012 IEEE 12th International Conference on Data
Mining. IEEE, 2012, pp. 131–140.

[16] J. Zuo, K. Zeitouni, and Y. Taher, “Exploring interpretable features for large time
series with se4tec.” in EDBT, 2019, pp. 606–609.

[17] J.-Y. Franceschi, A. Dieuleveut, and M. Jaggi, “Unsupervised scalable representation
learning for multivariate time series,” Advances in Neural Information Processing
Systems, vol. 32, pp. 4650–4661, 2019.

[18] L. Wu, I. En-Hsu, Y. J. Yi, F. Xu, Q. Lei, and M. J. Witbrock, “Random Warping
Series: A Random Features Method for Time-Series Embedding,” in AISTATS, 2018.

[19] P. Xie, T. Li, J. Liu, S. Du, X. Yang, and J. Zhang, “Urban flow prediction from
spatiotemporal data using machine learning: A survey,” Information Fusion, vol. 59,
pp. 1–12, 2020.

[20] J. Han, H. Liu, H. Zhu, H. Xiong, and D. Dou, “Joint air quality and weather
prediction based on multi-adversarial spatiotemporal networks,” in Proceedings of
the 35th AAAI Conference on Artificial Intelligence, 2021.

[21] Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu, “Recurrent neural networks
for multivariate time series with missing values,” Scientific reports, vol. 8, no. 1, pp.
1–12, 2018.

[22] Z. Cui, R. Ke, Z. Pu, and Y. Wang, “Stacked bidirectional and unidirectional lstm
recurrent neural network for forecasting network-wide traffic state with missing val-
ues,” Transportation Research Part C: Emerging Technologies, vol. 118, p. 102674,
2020.

BIBLIOGRAPHY 129

[23] Z. Cui, L. Lin, Z. Pu, and Y. Wang, “Graph markov network for traffic forecasting
with missing data,” Transportation Research Part C: Emerging Technologies, vol.
117, p. 102671, 2020.

[24] Y. Tian, K. Zhang, J. Li, X. Lin, and B. Yang, “Lstm-based traffic flow prediction
with missing data,” Neurocomputing, vol. 318, pp. 297–305, 2018.

[25] X. Tang, H. Yao, Y. Sun, C. Aggarwal, P. Mitra, and S. Wang, “Joint modeling
of local and global temporal dynamics for multivariate time series forecasting with
missing values,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, no. 04, 2020, pp. 5956–5963.

[26] E. Keogh and S. Kasetty, “On the need for time series data mining benchmarks: a
survey and empirical demonstration,” Data Mining and knowledge discovery, vol. 7,
no. 4, pp. 349–371, 2003.

[27] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and
new perspectives,” IEEE transactions on pattern analysis and machine intelligence,
vol. 35, no. 8, pp. 1798–1828, 2013.

[28] R. Wu and E. Keogh, “Current time series anomaly detection benchmarks are flawed
and are creating the illusion of progress,” IEEE Transactions on Knowledge and Data
Engineering, 2021.

[29] Q. Ma, J. Zheng, S. Li, and G. W. Cottrell, “Learning representations for time series
clustering,” Advances in neural information processing systems, vol. 32, pp. 3781–
3791, 2019.

[30] V. Fortuin, M. Hüser, F. Locatello, H. Strathmann, and G. Rätsch, “Som-vae: Inter-
pretable discrete representation learning on time series,” in International Conference
on Learning Representations (ICLR 2019). OpenReview. net, 2019.

[31] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and E. Keogh, “Ex-
perimental comparison of representation methods and distance measures for time
series data,” DMKD, 2013.

[32] E. Keogh, S. Chu, D. Hart, and M. Pazzani, “Segmenting time series: A survey and
novel approach,” in Data mining in time series databases. World Scientific, 2004,
pp. 1–21.

[33] H. El Hafyani, K. Zeitouni, Y. Taher, and M. Abboud, “Leveraging change point de-
tection for activity transition mining in the context of environmental crowdsensing,”
in Actes de la conférence BDA 2020, 2020, p. 64.

[34] D. Hallac, S. Vare, S. Boyd, and J. Leskovec, “Toeplitz inverse covariance-based
clustering of multivariate time series data,” in Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2017, pp. 215–
223.

130 BIBLIOGRAPHY

[35] H. Shatkay and S. B. Zdonik, “Approximate queries and representations for large
data sequences,” in Proceedings of the Twelfth International Conference on Data
Engineering. IEEE, 1996, pp. 536–545.

[36] K. Echihabi, K. Zoumpatianos, T. Palpanas, and H. Benbrahim, “The lernaean hydra
of data series similarity search: An experimental evaluation of the state of the art,”
Proceedings of the VLDB Endowment, vol. 12, no. 2, 2020.

[37] P. Patel, E. Keogh, J. Lin, and S. Lonardi, “Mining motifs in massive time se-
ries databases,” in 2002 IEEE International Conference on Data Mining, 2002.
Proceedings. IEEE, 2002, pp. 370–377.

[38] E. A. Maharaj and A. M. Alonso, “Discriminant analysis of multivariate time series:
Application to diagnosis based on ecg signals,” Computational Statistics & Data
Analysis, vol. 70, pp. 67–87, 2014.

[39] Y. Zhu, Z. Zimmerman, N. S. Senobari, C.-C. M. Yeh, G. Funning, A. Mueen,
P. Brisk, and E. Keogh, “Matrix profile ii: Exploiting a novel algorithm and gpus to
break the one hundred million barrier for time series motifs and joins,” in 2016 IEEE
16th international conference on data mining (ICDM). IEEE, 2016, pp. 739–748.

[40] N. Begum and E. Keogh, “Rare time series motif discovery from unbounded streams,”
Proceedings of the VLDB Endowment, vol. 8, no. 2, pp. 149–160, 2014.

[41] A. Deng and B. Hooi, “Graph neural network-based anomaly detection in multivariate
time series,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
no. 5, 2021, pp. 4027–4035.

[42] J. Audibert, P. Michiardi, F. Guyard, S. Marti, and M. A. Zuluaga, “Usad: Unsu-
pervised anomaly detection on multivariate time series,” in Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
2020, pp. 3395–3404.

[43] H. Kondylakis, N. Dayan, K. Zoumpatianos, and T. Palpanas, “Coconut: a scalable
bottom-up approach for building data series indexes,” Proceedings of the VLDB
Endowment, vol. 11, no. 6, pp. 677–690, 2018.

[44] P. Schäfer, “The boss is concerned with time series classification in the presence of
noise,” Data Mining and Knowledge Discovery, vol. 29, no. 6, pp. 1505–1530, 2015.

[45] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, “Dimensionality reduction
for fast similarity search in large time series databases,” Knowledge and information
Systems, vol. 3, no. 3, pp. 263–286, 2001.

[46] B.-K. Yi and C. Faloutsos, “Fast time sequence indexing for arbitrary lp norms,” in
Proceedings of the 26th International Conference on Very Large Data Bases, 2000,
pp. 385–394.

BIBLIOGRAPHY 131

[47] E. J. Keogh and M. J. Pazzani, “A simple dimensionality reduction technique for
fast similarity search in large time series databases,” in Pacific-Asia conference on
knowledge discovery and data mining. Springer, 2000, pp. 122–133.

[48] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, “Locally adaptive dimen-
sionality reduction for indexing large time series databases,” in Proceedings of the
2001 ACM SIGMOD international conference on Management of data, 2001, pp.
151–162.

[49] J. Lin, M. Vlachos, E. Keogh, D. Gunopulos, J. Liu, S. Yu, and J. Le, “A mpaa-based
iterative clustering algorithm augmented by nearest neighbors search for time-series
data streams,” in Pacific-Asia Conference on Knowledge Discovery and Data Mining.
Springer, 2005, pp. 333–342.

[50] S. Lee, D. Kwon, and S. Lee, “Dimensionality reduction for indexing time series based
on the minimum distance,” Journal of Information Science and Engineering, vol. 19,
no. 4, pp. 697–711, 2003.

[51] J. Aßfalg, H.-P. Kriegel, P. Kröger, P. Kunath, A. Pryakhin, and M. Renz, “Similarity
search in multimedia time series data using amplitude-level features,” in International
Conference on Multimedia Modeling. Springer, 2008, pp. 123–133.

[52] C. Ratanamahatana, E. Keogh, A. J. Bagnall, and S. Lonardi, “A novel bit level
time series representation with implication of similarity search and clustering,” in
Pacific-Asia conference on knowledge discovery and data mining. Springer, 2005,
pp. 771–777.

[53] A. Bagnall, C. Ratanamahatana, E. Keogh, S. Lonardi, G. Janacek et al., “A bit
level representation for time series data mining with shape based similarity,” Data
mining and knowledge discovery, vol. 13, no. 1, pp. 11–40, 2006.

[54] D. Tiano, A. Bonifati, and R. Ng, “Feature-driven time series clustering.” in EDBT,
2021, pp. 349–354.

[55] ——, “Featts: Feature-based time series clustering,” in Proceedings of the 2021
International Conference on Management of Data, 2021, pp. 2784–2788.

[56] ——, “Human-centered clustering for time series data,” in 3rd Workshop on Data
Science with Human in the Loop@ KDD 2021, 2021.

[57] P. Indyk, N. Koudas, and S. Muthukrishnan, “Identifying representative trends in
massive time series data sets using sketches,” in 26th International Conference on
Very Large Data Bases, VLDB 2000, 2000, pp. 363–372.

[58] G. Reeves, J. Liu, S. Nath, and F. Zhao, “Managing massive time series streams with
multi-scale compressed trickles,” Proceedings of the VLDB Endowment, vol. 2, no. 1,
pp. 97–108, 2009.

132 BIBLIOGRAPHY

[59] A. Dempster, D. F. Schmidt, and G. I. Webb, “Minirocket: A very fast (almost)
deterministic transform for time series classification,” in Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021, pp. 248–
257.

[60] C. Bock, M. Togninalli, E. Ghisu, T. Gumbsch, B. Rieck, and K. Borgwardt,
“A wasserstein subsequence kernel for time series,” in 2019 IEEE International
Conference on Data Mining (ICDM). IEEE, 2019, pp. 964–969.

[61] J. Paparrizos and M. J. Franklin, “Grail: efficient time-series representation learning,”
Proceedings of the VLDB Endowment, vol. 12, no. 11, pp. 1762–1777, 2019.

[62] R. Agrawal, C. Faloutsos, and A. Swami, “Efficient similarity search in sequence
databases,” in International conference on foundations of data organization and
algorithms. Springer, 1993, pp. 69–84.

[63] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, “Fast subsequence matching
in time-series databases,” ACM Sigmod Record, vol. 23, no. 2, pp. 419–429, 1994.

[64] F. Korn, H. V. Jagadish, and C. Faloutsos, “Efficiently supporting ad hoc queries in
large datasets of time sequences,” Acm Sigmod Record, vol. 26, no. 2, pp. 289–300,
1997.

[65] Y. Cai and R. Ng, “Indexing spatio-temporal trajectories with chebyshev poly-
nomials,” in Proceedings of the 2004 ACM SIGMOD international conference on
Management of data, 2004, pp. 599–610.

[66] K.-P. Chan and A. W.-C. Fu, “Efficient time series matching by wavelets,”
in Proceedings 15th International Conference on Data Engineering (Cat. No.
99CB36337). IEEE, 1999, pp. 126–133.

[67] F.-P. Chan, A.-C. Fu, and C. Yu, “Haar wavelets for efficient similarity search of
time-series: with and without time warping,” IEEE Transactions on knowledge and
data engineering, vol. 15, no. 3, pp. 686–705, 2003.

[68] I. Popivanov and R. J. Miller, “Similarity search over time-series data using wavelets,”
in Proceedings 18th international conference on data engineering. IEEE, 2002, pp.
212–221.

[69] D. E. Shasha and Y. Zhu, High performance discovery in time series: techniques and
case studies. Springer Science & Business Media, 2004.

[70] P. K. Dash, M. Nayak, M. R. Senapati, and I. W. Lee, “Mining for similarities in time
series data using wavelet-based feature vectors and neural networks,” Engineering
Applications of Artificial Intelligence, vol. 20, no. 2, pp. 185–201, 2007.

BIBLIOGRAPHY 133

[71] Y.-L. Wu, D. Agrawal, and A. El Abbadi, “A comparison of dft and dwt based
similarity search in time-series databases,” in Proceedings of the ninth international
conference on Information and knowledge management, 2000, pp. 488–495.

[72] K. Kawagoe and T. Ueda, “A similarity search method of time series data with
combination of fourier and wavelet transforms,” in Proceedings Ninth International
Symposium on Temporal Representation and Reasoning. IEEE, 2002, pp. 86–92.

[73] M. Vlachos, C. Meek, Z. Vagena, and D. Gunopulos, “Identifying similarities, pe-
riodicities and bursts for online search queries,” in Proceedings of the 2004 ACM
SIGMOD international conference on Management of data, 2004, pp. 131–142.

[74] Z. R. Struzik and A. Siebes, “Measuring time series similarity through large singular
features revealed with wavelet transformation,” in Proceedings. Tenth International
Workshop on Database and Expert Systems Applications. DEXA 99. IEEE, 1999,
pp. 162–166.

[75] V. Megalooikonomou, G. Li, and Q. Wang, “A dimensionality reduction technique for
efficient similarity analysis of time series databases,” in Proceedings of the thirteenth
ACM international conference on Information and knowledge management, 2004, pp.
160–161.

[76] V. Megalooikonomou, Q. Wang, G. Li, and C. Faloutsos, “A multiresolution symbolic
representation of time series,” in 21st International Conference on Data Engineering
(ICDE’05). IEEE, 2005, pp. 668–679.

[77] Q. Lei, J. Yi, R. Vaculin, L. Wu, and I. S. Dhillon, “Similarity preserving represen-
tation learning for time series clustering.” in IJCAI, vol. 19, 2019, pp. 2845–2851.

[78] E. J. Keogh and M. J. Pazzani, “An enhanced representation of time series which
allows fast and accurate classification, clustering and relevance feedback.” in Kdd,
vol. 98, 1998, pp. 239–243.

[79] Y.-W. Huang and P. S. Yu, “Adaptive query processing for time-series data,” in
Proceedings of the fifth ACM SIGKDD international conference on Knowledge
discovery and data mining, 1999, pp. 282–286.

[80] C.-S. Perng, H. Wang, S. R. Zhang, and D. S. Parker, “Landmarks: a new model for
similarity-based pattern querying in time series databases,” in Proceedings of 16th
international conference on data engineering (cat. no. 00cb37073). IEEE, 2000, pp.
33–42.

[81] Q. Chen, L. Chen, X. Lian, Y. Liu, and J. X. Yu, “Indexable pla for efficient similarity
search,” in Proceedings of the 33rd international conference on Very large data bases,
2007, pp. 435–446.

134 BIBLIOGRAPHY

[82] T. Palpanas, M. Vlachos, E. Keogh, D. Gunopulos, and W. Truppel, “Online am-
nesic approximation of streaming time series,” in Proceedings. 20th International
Conference on Data Engineering. IEEE, 2004, pp. 339–349.

[83] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing sax: a novel symbolic
representation of time series,” Data Mining and knowledge discovery, vol. 15, no. 2,
pp. 107–144, 2007.

[84] H. André-Jönsson and D. Z. Badal, “Using signature files for querying time-series
data,” in European Symposium on Principles of Data Mining and Knowledge
Discovery. Springer, 1997, pp. 211–220.

[85] C. S. Daw, C. E. A. Finney, and E. R. Tracy, “A review of symbolic analysis of
experimental data,” Review of Scientific instruments, vol. 74, no. 2, pp. 915–930,
2003.

[86] J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A symbolic representation
of time series, with implications for streaming algorithms,” Proceedings
of the 8th ACM SIGMOD workshop on Research issues in data mining
and knowledge discovery - DMKD ’03, p. 2, 2003. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=882082.882086

[87] B. Lkhagva, Y. Suzuki, and K. Kawagoe, “Extended sax: Extension of symbolic
aggregate approximation for financial time series data representation,” DEWS2006
4A-i8, vol. 7, 2006.

[88] S. Malinowski, T. Guyet, R. Quiniou, and R. Tavenard, “1d-sax: A novel sym-
bolic representation for time series,” in International Symposium on Intelligent Data
Analysis. Springer, 2013, pp. 273–284.

[89] Y. Sun, J. Li, J. Liu, B. Sun, and C. Chow, “An improvement of symbolic aggregate
approximation distance measure for time series,” Neurocomputing, vol. 138, pp. 189–
198, 2014.

[90] P. Schäfer and M. Högqvist, “Sfa: a symbolic fourier approximation and index for sim-
ilarity search in high dimensional datasets,” in Proceedings of the 15th international
conference on extending database technology, 2012, pp. 516–527.

[91] P. Senin and S. Malinchik, “Sax-vsm: Interpretable time series classification using
sax and vector space model,” in 2013 IEEE 13th international conference on data
mining. IEEE, 2013, pp. 1175–1180.

[92] J. An, H. Chen, K. Furuse, N. Ohbo, and E. Keogh, “Grid-based indexing for large
time series databases,” in International Conference on Intelligent Data Engineering
and Automated Learning. Springer, 2003, pp. 614–621.

http://portal.acm.org/citation.cfm?doid=882082.882086

BIBLIOGRAPHY 135

[93] A. Bagnall, G. Janacek, and M. Zhang, “Clustering time series from mixture poly-
nomial models with discretised data,” 2003.

[94] J. Zakaria, A. Mueen, and E. Keogh, “Clustering time series using unsupervised-
shapelets,” in 2012 IEEE 12th International Conference on Data Mining. IEEE,
2012, pp. 785–794.

[95] L. Ulanova, N. Begum, and E. Keogh, “Scalable clustering of time series with u-
shapelets,” in Proceedings of the 2015 SIAM international conference on data mining.
SIAM, 2015, pp. 900–908.

[96] X. Wang, J. Lin, P. Senin, T. Oates, S. Gandhi, A. P. Boedihardjo, C. Chen, and
S. Frankenstein, “Rpm: Representative pattern mining for efficient time series clas-
sification.” in EDBT, 2016, pp. 185–196.

[97] J. Lines, L. M. Davis, J. Hills, and A. Bagnall, “A shapelet transform for time series
classification,” in Proceedings of the 18th ACM SIGKDD international conference
on Knowledge discovery and data mining, 2012, pp. 289–297.

[98] R. Mousheimish, Y. Taher, and K. Zeitouni, “Automatic Learning of Predictive CEP
Rules: Bridging the Gap between Data Mining and Complex Event Processing,” in
DEBS, 2017, p. 158–169.

[99] J. Grabocka, N. Schilling, M. Wistuba, and L. Schmidt-Thieme, “Learning time-
series shapelets,” in Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining, 2014, pp. 392–401.

[100] Z. Fang, P. Wang, and W. Wang, “Efficient learning interpretable shapelets for accu-
rate time series classification,” in 2018 IEEE 34th International Conference on Data
Engineering (ICDE). IEEE, 2018, pp. 497–508.

[101] Y. Wang, R. Emonet, E. Fromont, S. Malinowski, and R. Tavenard, “Adversarial
regularization for explainable-by-design time series classification,” in 2020 IEEE 32nd
International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, 2020,
pp. 1079–1087.

[102] J. Grabocka, M. Wistuba, and L. Schmidt-Thieme, “Fast classification of univariate
and multivariate time series through shapelet discovery,” Knowledge and Information
Systems, vol. 49, no. 2, pp. 429–454, 2016.

[103] V. S. S. Fotso, E. M. Nguifo, and P. Vaslin, “Frobenius correlation based u-shapelets
discovery for time series clustering,” Pattern Recognition, vol. 103, p. 107301, 2020.

[104] J. Grabocka, M. Wistuba, and L. Schmidt-Thieme, “Scalable classification of repet-
itive time series through frequencies of local polynomials,” IEEE Transactions on
Knowledge and Data Engineering, vol. 27, no. 6, pp. 1683–1695, 2014.

136 BIBLIOGRAPHY

[105] K. Kalpakis, D. Gada, and V. Puttagunta, “Distance measures for effective clustering
of arima time-series,” in Proceedings 2001 IEEE international conference on data
mining. IEEE, 2001, pp. 273–280.

[106] P. Sebastiani, M. Ramoni, P. Cohen, J. Warwick, and J. Davis, “Discovering dynamics
using bayesian clustering,” in International Symposium on Intelligent Data Analysis.
Springer, 1999, pp. 199–209.

[107] A. Panuccio, M. Bicego, and V. Murino, “A hidden markov model-based ap-
proach to sequential data clustering,” in Joint IAPR international workshops on
statistical techniques in pattern recognition (SPR) and structural and syntactic
pattern recognition (SSPR). Springer, 2002, pp. 734–743.

[108] S. Tonekaboni, D. Eytan, and A. Goldenberg, “Unsupervised representation learning
for time series with temporal neighborhood coding,” in International Conference on
Learning Representations, 2020.

[109] Q. Ma, C. Chen, S. Li, and G. W. Cottrell, “Learning representations for incom-
plete time series clustering,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, no. 10, 2021, pp. 8837–8846.

[110] D. Song, N. Xia, W. Cheng, H. Chen, and D. Tao, “Deep r-th root of rank super-
vised joint binary embedding for multivariate time series retrieval,” in Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2018, pp. 2229–2238.

[111] J. Serrà, S. Pascual, and A. Karatzoglou, “Towards a universal neural network en-
coder for time series.” in CCIA, 2018, pp. 120–129.

[112] A. Hyvarinen and H. Morioka, “Unsupervised feature extraction by time-contrastive
learning and nonlinear ica,” Advances in Neural Information Processing Systems,
vol. 29, 2016.

[113] P. Malhotra, V. TV, L. Vig, P. Agarwal, and G. Shroff, “Timenet: Pre-
trained deep recurrent neural network for time series classification,” arXiv preprint
arXiv:1706.08838, 2017.

[114] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous
activity,” The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115–133, 1943.

[115] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh, “The great time series
classification bake off: a review and experimental evaluation of recent algorithmic
advances,” Data Mining and Knowledge Discovery, vol. 31, no. 3, pp. 606–660, 2017.

[116] A. P. Ruiz, M. Flynn, J. Large, M. Middlehurst, and A. Bagnall, “The great mul-
tivariate time series classification bake off: a review and experimental evaluation of
recent algorithmic advances,” Data Mining and Knowledge Discovery, vol. 35, no. 2,
pp. 401–449, 2021.

BIBLIOGRAPHY 137

[117] C. W. Tan, C. Bergmeir, F. Petitjean, and G. I. Webb, “Time series extrinsic re-
gression,” Data Mining and Knowledge Discovery, vol. 35, no. 3, pp. 1032–1060,
2021.

[118] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in CVPR, 2016, pp. 770–778.

[119] Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch with deep
neural networks: A strong baseline,” in IJCNN, 2017.

[120] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-resnet
and the impact of residual connections on learning,” in Thirty-first AAAI conference
on artificial intelligence, 2017.

[121] H. Ismail Fawaz, B. Lucas, G. Forestier, C. Pelletier, D. F. Schmidt, J. Weber, G. I.
Webb, L. Idoumghar, P.-A. Muller, and F. Petitjean, “Inceptiontime: Finding alexnet
for time series classification,” Data Mining and Knowledge Discovery, vol. 34, no. 6,
pp. 1936–1962, 2020.

[122] K. Kashiparekh, J. Narwariya, P. Malhotra, L. Vig, and G. Shroff, “Convtimenet: A
pre-trained deep convolutional neural network for time series classification,” in 2019
International Joint Conference on Neural Networks (IJCNN). IEEE, 2019, pp. 1–8.

[123] W. Tang, G. Long, L. Liu, T. Zhou, J. Jiang, and M. Blumenstein, “Rethink-
ing 1d-cnn for time series classification: A stronger baseline,” arXiv preprint
arXiv:2002.10061, 2020.

[124] D. Bahdanau, K. H. Cho, and Y. Bengio, “Neural machine translation by jointly
learning to align and translate,” in 3rd International Conference on Learning
Representations, ICLR 2015, 2015.

[125] Y. Hao and H. Cao, “A New Attention Mechanism to Classify Multivariate Time
Series,” in IJCAI, 2020, pp. 1999–2005.

[126] A. Nanopoulos, R. Alcock, and Y. Manolopoulos, “Feature-based classification of
time-series data,” International Journal of Computer Research, vol. 10, no. 3, pp.
49–61, 2001.

[127] Z. Cui, W. Chen, and Y. Chen, “Multi-scale convolutional neural networks for time
series classification,” arXiv preprint arXiv:1603.06995, 2016.

[128] G. Lai, W.-C. Chang, Y. Yang, and H. Liu, “Modeling long-and short-term tem-
poral patterns with deep neural networks,” in The 41st International ACM SIGIR
Conference on Research & Development in Information Retrieval, 2018, pp. 95–104.

[129] C. Lea, M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager, “Temporal convolutional
networks for action segmentation and detection,” in CVPR, 2017, pp. 156–165.

138 BIBLIOGRAPHY

[130] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional networks: A deep
learning framework for traffic forecasting,” in IJCAI, 2018.

[131] Y. Qin, D. Song, H. Chen, W. Cheng, G. Jiang, and G. W. Cottrell, “A dual-stage
attention-based recurrent neural network for time series prediction,” in IJCAI, 2017.

[132] D. Xu, W. Cheng, B. Zong, D. Song, J. Ni, W. Yu, Y. Liu, H. Chen, and X. Zhang,
“Tensorized lstm with adaptive shared memory for learning trends in multivariate
time series,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
no. 02, 2020, pp. 1395–1402.

[133] B. Lim, S. Ö. Arık, N. Loeff, and T. Pfister, “Temporal fusion transformers for inter-
pretable multi-horizon time series forecasting,” International Journal of Forecasting,
vol. 37, no. 4, pp. 1748–1764, 2021.

[134] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang, “Informer: Be-
yond efficient transformer for long sequence time-series forecasting,” in Proceedings
of AAAI, 2021.

[135] W. Yu, I. Y. Kim, and C. Mechefske, “Analysis of different rnn autoencoder vari-
ants for time series classification and machine prognostics,” Mechanical Systems and
Signal Processing, vol. 149, p. 107322, 2021.

[136] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural
networks,” Advances in neural information processing systems, vol. 27, 2014.

[137] A. Sagheer and M. Kotb, “Unsupervised pre-training of a deep lstm-based stacked
autoencoder for multivariate time series forecasting problems,” Scientific reports,
vol. 9, no. 1, pp. 1–16, 2019.

[138] G. Zerveas, S. Jayaraman, D. Patel, A. Bhamidipaty, and C. Eickhoff, “A
transformer-based framework for multivariate time series representation learning,”
in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining, 2021, pp. 2114–2124.

[139] A. Van Den Oord, O. Vinyals et al., “Neural discrete representation learning,”
Advances in neural information processing systems, vol. 30, 2017.

[140] T. Kohonen, “Self-organized formation of topologically correct feature maps,”
Biological cybernetics, vol. 43, no. 1, pp. 59–69, 1982.

[141] C. J. Geyer, “Practical markov chain monte carlo,” Statistical science, pp. 473–483,
1992.

[142] O. Mogren, “C-rnn-gan: Continuous recurrent neural networks with adversarial train-
ing,” arXiv preprint arXiv:1611.09904, 2016.

BIBLIOGRAPHY 139

[143] C. Esteban, S. L. Hyland, and G. Rätsch, “Real-valued (medical) time series gener-
ation with recurrent conditional gans,” arXiv preprint arXiv:1706.02633, 2017.

[144] J. Yoon, D. Jarrett, and M. Van der Schaar, “Time-series generative adversarial
networks,” Advances in Neural Information Processing Systems, vol. 32, 2019.

[145] D. Li, D. Chen, B. Jin, L. Shi, J. Goh, and S.-K. Ng, “Mad-gan: Multivariate anomaly
detection for time series data with generative adversarial networks,” in International
Conference on Artificial Neural Networks. Springer, 2019, pp. 703–716.

[146] K. Nikolaidis, S. Kristiansen, V. Goebel, T. Plagemann, K. Liestøl, and M. Kankan-
halli, “Augmenting physiological time series data: A case study for sleep apnea detec-
tion,” in Joint European Conference on Machine Learning and Knowledge Discovery
in Databases. Springer, 2019, pp. 376–399.

[147] Y. Luo, X. Cai, Y. Zhang, J. Xu et al., “Multivariate time series imputation with
generative adversarial networks,” Advances in neural information processing systems,
vol. 31, 2018.

[148] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” Advances in neural
information processing systems, vol. 27, 2014.

[149] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen,
“Improved techniques for training gans,” Advances in neural information processing
systems, vol. 29, 2016.

[150] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Improved
training of wasserstein gans,” Advances in neural information processing systems,
vol. 30, 2017.

[151] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv preprint
arXiv:1411.1784, 2014.

[152] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Adversarial autoen-
coders,” arXiv preprint arXiv:1511.05644, 2015.

[153] N. Saunshi, O. Plevrakis, S. Arora, M. Khodak, and H. Khandeparkar, “A theoret-
ical analysis of contrastive unsupervised representation learning,” in International
Conference on Machine Learning. PMLR, 2019, pp. 5628–5637.

[154] X. Liu, F. Zhang, Z. Hou, L. Mian, Z. Wang, J. Zhang, and J. Tang, “Self-supervised
learning: Generative or contrastive,” IEEE Transactions on Knowledge and Data
Engineering, 2021.

[155] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed rep-
resentations of words and phrases and their compositionality,” Advances in neural
information processing systems, vol. 26, 2013.

140 BIBLIOGRAPHY

[156] G. Li, B. Choi, J. Xu, S. S. Bhowmick, K.-P. Chun, and G. L. Wong, “Shapenet:
A shapelet-neural network approach for multivariate time series classification,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 9, 2021,
pp. 8375–8383.

[157] Q. Ma, W. Zhuang, S. Li, D. Huang, and G. Cottrell, “Adversarial dynamic shapelet
networks,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
no. 04, 2020, pp. 5069–5076.

[158] A. Haque, L. Khan, and M. Baron, “Sand: Semi-supervised adaptive novel class de-
tection and classification over data stream,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 30, no. 1, 2016.

[159] M. M. Masud, Q. Chen, J. Gao, L. Khan, J. Han, and B. Thuraisingham, “Classifica-
tion and novel class detection of data streams in a dynamic feature space,” in Joint
European conference on machine learning and knowledge discovery in databases.
Springer, 2010, pp. 337–352.

[160] A. Haque, L. Khan, M. Baron, B. Thuraisingham, and C. Aggarwal, “Efficient han-
dling of concept drift and concept evolution over stream data,” in 2016 IEEE 32nd
International Conference on Data Engineering (ICDE). IEEE, 2016, pp. 481–492.

[161] J. Zuo, K. Zeitouni, and Y. Taher, “Time series meet data streams: Perspectives
of the interdisciplinary collision and applications,” in PhD Symposium, Actes de la
conférence BDA 2019, 2019.

[162] K. Ueno, X. Xi, E. Keogh, and D.-J. Lee, “Anytime classification using the near-
est neighbor algorithm with applications to stream mining,” in Sixth International
Conference on Data Mining (ICDM’06). IEEE, 2006, pp. 623–632.

[163] S. Kasetty, C. Stafford, G. P. Walker, X. Wang, and E. Keogh, “Real-time classifica-
tion of streaming sensor data,” in 2008 20th IEEE International Conference on Tools
with Artificial Intelligence, vol. 1. IEEE, 2008, pp. 149–156.

[164] J. Shieh and E. Keogh, “Polishing the right apple: Anytime classification also benefits
data streams with constant arrival times,” in 2010 IEEE International Conference
on Data Mining. IEEE, 2010, pp. 461–470.

[165] A. Marascu, S. A. Khan, and T. Palpanas, “Scalable similarity matching in streaming
time series,” in Pacific-Asia Conference on Knowledge Discovery and Data Mining.
Springer, 2012, pp. 218–230.

[166] L. Liu, Y. Peng, S. Wang, M. Liu, and Z. Huang, “Complex activity recognition
using time series pattern dictionary learned from ubiquitous sensors,” Information
Sciences, vol. 340, pp. 41–57, 2016.

BIBLIOGRAPHY 141

[167] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover, Q. Zhu, J. Za-
karia, and E. Keogh, “Searching and mining trillions of time series subsequences un-
der dynamic time warping,” in Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2012, pp. 262–270.

[168] H. Hamooni and A. Mueen, “Dispatch: Distributed pattern matching over streaming
time series,” in 2018 IEEE International Conference on Big Data (Big Data). IEEE,
2018, pp. 2890–2899.

[169] Z. Zimmerman, N. S. Senobari, G. Funning, E. Papalexakis, S. Oymak, P. Brisk, and
E. Keogh, “Matrix profile xviii: time series mining in the face of fast moving streams
using a learned approximate matrix profile,” in 2019 IEEE International Conference
on Data Mining (ICDM). IEEE, 2019, pp. 936–945.

[170] A. Mueen and E. Keogh, “Online discovery and maintenance of time series motifs,”
in Proceedings of the 16th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2010, pp. 1089–1098.

[171] Y. Hao, Y. Chen, J. Zakaria, B. Hu, T. Rakthanmanon, and E. Keogh, “Towards
never-ending learning from time series streams,” in Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery and data mining, 2013,
pp. 874–882.

[172] J. Michael, “Where’s the evidence that active learning works?” Advances in
physiology education, 2006.

[173] L. Wei and E. Keogh, “Semi-supervised time series classification,” in KDD, 2006, p.
748–753.

[174] Y. Chen, B. Hu, E. Keogh, and G. E. Batista, “DTW-D: Time Series Semi-Supervised
Learning from a Single Example,” in KDD, 2013, p. 383–391.

[175] M. N. Nguyen, X. L. Li, and S. K. Ng, “Positive unlabeled learning for time series
classification,” in IJCAI, 2011, p. 1421–1426.

[176] C. A. Ratanamahatana and D. Wanichsan, “Stopping Criterion Selection for Effi-
cient Semi-supervised Time Series Classification,” Soft. Eng., Arti. Intel., Net. &
Para./Distri. Comp., pp. 1–14, 2008.

[177] H. Wang, Q. Zhang, J. Wu, S. Pan, and Y. Chen, “Time series feature learning with
labeled and unlabeled data,” Pattern Recognition, vol. 89, pp. 55–66, 2019.

[178] S. Jawed, J. Grabocka, and L. Schmidt-Thieme, “Self-supervised learning for semi-
supervised time series classification,” Advances in Knowledge Discovery and Data
Mining (PAKDD), vol. 12084, p. 499, 2020.

[179] M. Shokoohi-Yekta, J. Wang, and E. Keogh, “On the Non-Trivial Generalization of
Dynamic Time Warping to the Multi-Dimensional Case,” in SDM, 2015.

142 BIBLIOGRAPHY

[180] M. Shokoohi-Yekta, B. Hu, H. Jin, J. Wang, and E. Keogh, “Generalizing DTW to
the multi-dimensional case requires an adaptive approach HHS Public Access,” Data
Min Knowl Discov, vol. 31, no. 1, pp. 1–31, 2017.

[181] H. A. Dau, E. Keogh, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi, C. A.
Ratanamahatana, Yanping, B. Hu, N. Begum, A. Bagnall, A. Mueen, and G. Batista,
“The ucr time series classification archive,” October 2018, https://www.cs.ucr.edu/
~eamonn/time_series_data_2018/.

[182] A. B. Hoang, A. Dau, J. Lines, M. Flynn, J. Large, A. Bostrom, P. Southam, and
E. Keogh, “The UEA multivariate time series classification archive,” Tech. Rep.,
2018.

[183] Z. Xu and K. Funaya, “Time series analysis with graph-based semi-supervised learn-
ing,” in 2015 IEEE International Conference on Data Science and Advanced Analytics
(DSAA). IEEE, 2015, pp. 1–6.

[184] G. Wilson, J. R. Doppa, and D. J. Cook, “Multi-source deep domain adaptation
with weak supervision for time-series sensor data,” in Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020,
pp. 1768–1778.

[185] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on
knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359, 2009.

[186] C. Doersch and A. Zisserman, “Multi-task self-supervised visual learning,” in
Proceedings of the IEEE International Conference on Computer Vision, 2017, pp.
2051–2060.

[187] X. Zhang, Y. Gao, J. Lin, and C.-T. Lu, “Tapnet: Multivariate time series classifica-
tion with attentional prototypical network,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, no. 04, 2020, pp. 6845–6852.

[188] J. Lines and A. Bagnall, “Time series classification with ensembles of elastic distance
measures,” Data Mining and Knowledge Discovery, vol. 29, no. 3, pp. 565–592, 2015.

[189] T. Górecki and M. Łuczak, “Using derivatives in time series classification,” Data
Mining and Knowledge Discovery, vol. 26, no. 2, pp. 310–331, 2013.

[190] T. Górecki and M. Łuczak, “Non-isometric transforms in time series classification
using dtw,” Know.-Based Syst., vol. 61, pp. 98–108, 2014.

[191] C. A. Ratanamahatana and E. Keogh, “Three Myths about Dynamic Time Warping
Data Mining,” in Proceedings of the 2005 SIAM International Conference on Data
Mining, 2005, pp. 506–510.

[192] H. Deng, G. Runger, E. Tuv, and M. Vladimir, “A time series forest for classification
and feature extraction,” Information Sciences, vol. 239, pp. 142–153, 2013.

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

BIBLIOGRAPHY 143

[193] M. G. Baydogan, G. Runger, and E. Tuv, “A bag-of-features framework to classify
time series,” IEEE transactions on pattern analysis and machine intelligence, vol. 35,
no. 11, pp. 2796–2802, 2013.

[194] M. Gokce Baydogan, G. Runger, and E. B. Keogh Mustafa Gokce Baydogan,
“Time series representation and similarity based on local autopatterns,” Data
Mining and Knowledge Discovery, vol. 30, pp. 476–509, 2016. [Online]. Available:
https://link.springer.com/content/pdf/10.1007%2Fs10618-015-0425-y.pdf

[195] A. Shifaz, C. Pelletier, F. Petitjean, and G. I. Webb, “Ts-chief: a scalable and ac-
curate forest algorithm for time series classification,” Data Mining and Knowledge
Discovery, vol. 34, no. 3, pp. 742–775, 2020.

[196] D. J. Berndt and J. Clifford, “Using dynamic time warping to find patterns in time
series.” in KDD workshop, vol. 10, no. 16. Seattle, WA, USA:, 1994, pp. 359–370.

[197] E. Keogh and C. A. Ratanamahatana, “Exact indexing of dynamic time warping,”
Knowledge and information systems, vol. 7, no. 3, pp. 358–386, 2005.

[198] S. Salvador and P. Chan, “Toward accurate dynamic time warping in linear time and
space,” Intelligent Data Analysis, vol. 11, no. 5, pp. 561–580, 2007.

[199] E. J. Keogh and M. J. Pazzani, “Derivative dynamic time warping,” in Proceedings
of the 2001 SIAM international conference on data mining. SIAM, 2001, pp. 1–11.

[200] G. G. Yen and K.-C. Lin, “Wavelet packet feature extraction for vibration monitor-
ing,” IEEE transactions on industrial electronics, vol. 47, no. 3, pp. 650–667, 2000.

[201] P. Geurts, “Pattern extraction for time series classification,” in European conference
on principles of data mining and knowledge discovery. Springer, 2001, pp. 115–127.

[202] B. D. Fulcher and N. S. Jones, “Highly comparative feature-based time-series classi-
fication,” IEEE Transactions on Knowledge and Data Engineering, vol. 26, no. 12,
pp. 3026–3037, 2014.

[203] I. Nun, P. Protopapas, B. Sim, M. Zhu, R. Dave, N. Castro, and K. Pichara, “Fats:
Feature analysis for time series,” arXiv preprint arXiv:1506.00010, 2015.

[204] T. Hastie, R. Tibshirani, and J. H. Friedman, The elements of statistical learning:
data mining, inference, and prediction. Springer, 2009, vol. 2.

[205] E. Keogh, L. Wei, X. Xi, S.-H. Lee, and M. Vlachos, “Lb_keogh supports exact
indexing of shapes under rotation invariance with arbitrary representations and dis-
tance measures,” in Proceedings of the 32nd international conference on Very large
data bases. Citeseer, 2006, pp. 882–893.

https://link.springer.com/content/pdf/10.1007%2Fs10618-015-0425-y.pdf

144 BIBLIOGRAPHY

[206] M. F. Mbouopda and E. M. Nguifo, “Uncertain time series classification with shapelet
transform,” in 2020 International Conference on Data Mining Workshops (ICDMW).
IEEE, 2020, pp. 259–266.

[207] J. Zuo, K. Zeitouni, and Y. Taher, “Incremental and adaptive feature exploration
over time series stream,” in 2019 IEEE International Conference on Big Data (Big
Data). IEEE, 2019, pp. 593–602.

[208] J. Lines and A. Bagnall, “Alternative quality measures for time series shapelets,” in
International Conference on Intelligent Data Engineering and Automated Learning.
Springer, 2012, pp. 475–483.

[209] T. Rakthanmanon and E. Keogh, “Fast shapelets: A scalable algorithm for discover-
ing time series shapelets,” in proceedings of the 2013 SIAM International Conference
on Data Mining. SIAM, 2013, pp. 668–676.

[210] J. Buhler and M. Tompa, “Finding motifs using random projections,” Journal of
computational biology, vol. 9, no. 2, pp. 225–242, 2002.

[211] A. Yamaguchi, S. Maya, and K. Ueno, “Rlts: Robust learning time-series shapelets,”
in Joint European Conference on Machine Learning and Knowledge Discovery in
Databases. Springer, 2020, pp. 595–611.

[212] L. Perez and J. Wang, “The effectiveness of data augmentation in image classification
using deep learning,” arXiv preprint arXiv:1712.04621, 2017.

[213] S. Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chenaghlu, and J. Gao,
“Deep learning–based text classification: a comprehensive review,” ACM Computing
Surveys (CSUR), vol. 54, no. 3, pp. 1–40, 2021.

[214] O. Stephen, M. Sain, U. J. Maduh, and D.-U. Jeong, “An efficient deep learning ap-
proach to pneumonia classification in healthcare,” Journal of healthcare engineering,
vol. 2019, 2019.

[215] X. Wang, K. Smith, and R. Hyndman, “Characteristic-based clustering for time series
data,” Data mining and knowledge Discovery, vol. 13, no. 3, pp. 335–364, 2006.

[216] M. Middlehurst, J. Large, G. Cawley, and A. Bagnall, “The temporal dictionary
ensemble (tde) classifier for time series classification,” in Joint European Conference
on Machine Learning and Knowledge Discovery in Databases. Springer, 2020, pp.
660–676.

[217] M. Middlehurst, W. Vickers, and A. Bagnall, “Scalable dictionary classifiers for time
series classification,” in International Conference on Intelligent Data Engineering and
Automated Learning. Springer, 2019, pp. 11–19.

BIBLIOGRAPHY 145

[218] J. Large, A. Bagnall, S. Malinowski, and R. Tavenard, “On time series classification
with dictionary-based classifiers,” Intelligent Data Analysis, vol. 23, no. 5, pp. 1073–
1089, 2019.

[219] P. Schäfer and U. Leser, “Fast and Accurate Time Series Classification with
WEASEL,” in CIKM, 2017.

[220] A. Bagnall, M. Flynn, J. Large, J. Lines, and M. Middlehurst, “On the usage and
performance of the hierarchical vote collective of transformation-based ensembles
version 1.0 (hive-cote v1. 0),” in International Workshop on Advanced Analytics and
Learning on Temporal Data. Springer, 2020, pp. 3–18.

[221] M. Middlehurst, J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall, “Hive-
cote 2.0: a new meta ensemble for time series classification,” Machine Learning, vol.
110, no. 11, pp. 3211–3243, 2021.

[222] S. Li, Y. Li, and Y. Fu, “Multi-View Time Series Classification: A Discriminative
Bilinear Projection Approach,” in CIKM, 2016.

[223] M. S. Cetin, A. Mueen, and V. D. Calhoun, “Shapelet ensemble for multi-dimensional
time series,” in SDM, 2015, pp. 307–315.

[224] M. Gokce Baydogan, G. Runger, M. G. Baydogan, and G. Runger, “Learning a
symbolic representation for multivariate time series classification,” Data Min Knowl
Disc, vol. 29, pp. 400–422, 2015.

[225] P. Schäfer and U. Leser, “Multivariate Time Series Classification with
WEASEL+MUSE,” in AALTD, 2018.

[226] Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao, “Time series classification using
multi-channels deep convolutional neural networks,” in WAIM, 2014, pp. 298–310.

[227] J. Yang, M. N. Nguyen, P. P. San, X. L. Li, and S. Krishnaswamy, “Deep convolu-
tional neural networks on multichannel time series for human activity recognition,”
in IJCAI, 2015, p. 3995–4001.

[228] Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, and C. Zhang, “Connecting the Dots:
Multivariate Time Series Forecasting with Graph Neural Networks,” in KDD, 2020.

[229] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion Convolutional Recurrent Neural
Network: Data-Driven Traffic Forecasting,” in ICLR, 2018.

[230] F. Karim, S. Majumdar, H. Darabi, and S. Harford, “Multivariate lstm-fcns for time
series classification,” Neural Networks, vol. 116, 2019.

[231] Z. Ouyang, P. Ravier, and M. Jabloun, “Stl decomposition of time series can ben-
efit forecasting done by statistical methods but not by machine learning ones,”
Engineering Proceedings, vol. 5, no. 1, p. 42, 2021.

146 BIBLIOGRAPHY

[232] C. Deb, F. Zhang, J. Yang, S. E. Lee, and K. W. Shah, “A review on time series
forecasting techniques for building energy consumption,” Renewable and Sustainable
Energy Reviews, vol. 74, pp. 902–924, 2017.

[233] O. B. Sezer, M. U. Gudelek, and A. M. Ozbayoglu, “Financial time series forecast-
ing with deep learning: A systematic literature review: 2005–2019,” Applied soft
computing, vol. 90, p. 106181, 2020.

[234] Z.-L. Sun, T.-M. Choi, K.-F. Au, and Y. Yu, “Sales forecasting using extreme learning
machine with applications in fashion retailing,” Decision Support Systems, vol. 46,
no. 1, pp. 411–419, 2008.

[235] S. D. Campbell and F. X. Diebold, “Weather forecasting for weather derivatives,”
Journal of the American Statistical Association, vol. 100, no. 469, pp. 6–16, 2005.

[236] X. Yi, J. Zhang, Z. Wang, T. Li, and Y. Zheng, “Deep distributed fusion network
for air quality prediction,” in Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining, 2018, pp. 965–973.

[237] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent neural
network: Data-driven traffic forecasting,” in ICLR, 2018.

[238] R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and practice.
OTexts, 2018.

[239] N. K. Ahmed, A. F. Atiya, N. E. Gayar, and H. El-Shishiny, “An empirical compar-
ison of machine learning models for time series forecasting,” Econometric reviews,
vol. 29, no. 5-6, pp. 594–621, 2010.

[240] T. G. Smith et al., “pmdarima: Arima estimators for Python,” 2017–. [Online].
Available: http://www.alkaline-ml.com/pmdarima

[241] S. Seabold and J. Perktold, “statsmodels: Econometric and statistical modeling with
python,” in 9th Python in Science Conference, 2010.

[242] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn: Machine learning in
python,” the Journal of machine Learning research, vol. 12, pp. 2825–2830, 2011.

[243] R. Taylor, “PyFlux: An open source time series library for python,” 2016–. [Online].
Available: https://pyflux.readthedocs.io/en/latest/index.html

[244] H. Lütkepohl and M. Krätzig, Applied time series econometrics. Cambridge uni-
versity press, 2004.

[245] J. Durbin and S. J. Koopman, “A simple and efficient simulation smoother for state
space time series analysis,” Biometrika, vol. 89, no. 3, pp. 603–616, 2002.

http://www.alkaline-ml.com/pmdarima
https://pyflux.readthedocs.io/en/latest/index.html

BIBLIOGRAPHY 147

[246] D. Creal, S. J. Koopman, and A. Lucas, “Generalized autoregressive score models
with applications,” Journal of Applied Econometrics, vol. 28, no. 5, pp. 777–795,
2013.

[247] A. C. Harvey, Dynamic models for volatility and heavy tails: with applications to
financial and economic time series. Cambridge University Press, 2013, vol. 52.

[248] J. Herzen, F. Lässig, S. G. Piazzetta, T. Neuer, L. Tafti, G. Raille, T. V. Pottelbergh,
M. Pasieka, A. Skrodzki, N. Huguenin, M. Dumonal, J. Kościsz, D. Bader, F. Gusset,
M. Benheddi, C. Williamson, M. Kosinski, M. Petrik, and G. Grosch, “Darts: User-
friendly modern machine learning for time series,” 2021.

[249] S. J. Taylor and B. Letham, “Forecasting at scale,” The American Statistician, vol. 72,
no. 1, pp. 37–45, 2018.

[250] W. Jiang and J. Luo, “Graph neural network for traffic forecasting: A survey,” arXiv
preprint arXiv:2101.11174, 2021.

[251] A. Koesdwiady, R. Soua, and F. Karray, “Improving traffic flow prediction
with weather information in connected cars: A deep learning approach,” IEEE
Transactions on Vehicular Technology, vol. 65, no. 12, pp. 9508–9517, 2016.

[252] X. Zhang, C. Huang, Y. Xu, L. Xia, P. Dai, L. Bo, J. Zhang, and Y. Zheng, “Traffic
flow forecasting with spatial-temporal graph diffusion network,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 35, no. 17, 2021, pp. 15 008–15 015.

[253] Z. Pan, Y. Liang, W. Wang, Y. Yu, Y. Zheng, and J. Zhang, “Urban traffic prediction
from spatio-temporal data using deep meta learning,” in Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
2019, pp. 1720–1730.

[254] L. A. Cruz, K. Zeitouni, and J. A. F. de Macedo, “Trajectory prediction from a
mass of sparse and missing external sensor data,” in 2019 20th IEEE International
Conference on Mobile Data Management (MDM). IEEE, 2019, pp. 310–319.

[255] L. A. Cruz, K. Zeitouni, T. L. C. da Silva, J. A. F. de Macedo, and J. S. d. Silva,
“Location prediction: a deep spatiotemporal learning from external sensors data,”
Distributed and Parallel Databases, vol. 39, no. 1, pp. 259–280, 2021.

[256] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo, “Convolutional
lstm network: A machine learning approach for precipitation nowcasting,” Advances
in neural information processing systems, vol. 28, 2015.

[257] Y. Wang, M. Long, J. Wang, Z. Gao, and P. S. Yu, “Predrnn: Recurrent neural
networks for predictive learning using spatiotemporal lstms,” Advances in neural
information processing systems, vol. 30, 2017.

148 BIBLIOGRAPHY

[258] S. Oprea, P. Martinez-Gonzalez, A. Garcia-Garcia, J. A. Castro-Vargas, S. Orts-
Escolano, J. Garcia-Rodriguez, and A. Argyros, “A review on deep learning tech-
niques for video prediction,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2020.

[259] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph
neural network model,” IEEE transactions on neural networks, vol. 20, no. 1, pp.
61–80, 2008.

[260] S.-Y. Shih, F.-K. Sun, and H.-y. Lee, “Temporal pattern attention for multivariate
time series forecasting,” Machine Learning, vol. 108, no. 8, pp. 1421–1441, 2019.

[261] J. Zhang, Y. Zheng, and D. Qi, “Deep spatio-temporal residual networks for citywide
crowd flows prediction,” in Thirty-first AAAI conference on artificial intelligence,
2017.

[262] X. Shi, Z. Gao, L. Lausen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-c. Woo, “Deep
learning for precipitation nowcasting: A benchmark and a new model,” Advances in
neural information processing systems, vol. 30, 2017.

[263] Z. Lin, J. Feng, Z. Lu, Y. Li, and D. Jin, “Deepstn+: Context-aware spatial-temporal
neural network for crowd flow prediction in metropolis,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 33, no. 01, 2019, pp. 1020–1027.

[264] H. Yao, F. Wu, J. Ke, X. Tang, Y. Jia, S. Lu, P. Gong, J. Ye, and Z. Li, “Deep
multi-view spatial-temporal network for taxi demand prediction,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

[265] Y. Wang, Z. Gao, M. Long, J. Wang, and S. Y. Philip, “Predrnn++: Towards a
resolution of the deep-in-time dilemma in spatiotemporal predictive learning,” in
International Conference on Machine Learning. PMLR, 2018, pp. 5123–5132.

[266] Y. Wang, L. Jiang, M.-H. Yang, L.-J. Li, M. Long, and L. Fei-Fei, “Eidetic 3d lstm:
A model for video prediction and beyond,” in International conference on learning
representations, 2018.

[267] Y. Wang, J. Zhang, H. Zhu, M. Long, J. Wang, and P. S. Yu, “Memory in memory: A
predictive neural network for learning higher-order non-stationarity from spatiotem-
poral dynamics,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2019, pp. 9154–9162.

[268] Y.-a. Geng, Q. Li, T. Lin, L. Jiang, L. Xu, D. Zheng, W. Yao, W. Lyu, and Y. Zhang,
“Lightnet: A dual spatiotemporal encoder network model for lightning prediction,”
in Proceedings of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining, 2019, pp. 2439–2447.

BIBLIOGRAPHY 149

[269] Z. Lin, M. Li, Z. Zheng, Y. Cheng, and C. Yuan, “Self-attention convlstm for
spatiotemporal prediction,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 07, 2020, pp. 11 531–11 538.

[270] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention based spatial-temporal
graph convolutional networks for traffic flow forecasting,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 33, no. 01, 2019, pp. 922–929.

[271] C. Song, Y. Lin, S. Guo, and H. Wan, “Spatial-temporal synchronous graph convolu-
tional networks: A new framework for spatial-temporal network data forecasting,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 01, 2020,
pp. 914–921.

[272] M. Li and Z. Zhu, “Spatial-temporal fusion graph neural networks for traffic flow
forecasting,” in Proceedings of the AAAI conference on artificial intelligence, vol. 35,
no. 5, 2021, pp. 4189–4196.

[273] C. Zheng, X. Fan, C. Wang, and J. Qi, “Gman: A graph multi-attention network for
traffic prediction,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, no. 01, 2020, pp. 1234–1241.

[274] C. Park, C. Lee, H. Bahng, Y. Tae, S. Jin, K. Kim, S. Ko, and J. Choo, “St-
grat: A novel spatio-temporal graph attention networks for accurately forecasting
dynamically changing road speed,” in Proceedings of the 29th ACM International
conference on information & knowledge management, 2020, pp. 1215–1224.

[275] X. Wang, Y. Ma, Y. Wang, W. Jin, X. Wang, J. Tang, C. Jia, and J. Yu, “Traffic
flow prediction via spatial temporal graph neural network,” in Proceedings of The
Web Conference 2020, 2020, pp. 1082–1092.

[276] Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, and C. Zhang, “Connecting the dots:
Multivariate time series forecasting with graph neural networks,” in KDD, 2020, pp.
753–763.

[277] F. Li, J. Feng, H. Yan, G. Jin, D. Jin, and Y. Li, “Dynamic graph convolutional
recurrent network for traffic prediction: Benchmark and solution,” arXiv preprint
arXiv:2104.14917, 2021.

[278] Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, “Graph wavenet for deep spatial-
temporal graph modeling.” in IJCAI, 2019.

[279] L. BAI, L. Yao, C. Li, X. Wang, and C. Wang, “Adaptive graph convolutional re-
current network for traffic forecasting,” Advances in Neural Information Processing
Systems, vol. 33, 2020.

[280] C. Shang, J. Chen, and J. Bi, “Discrete graph structure learning for forecasting
multiple time series,” in International Conference on Learning Representations, 2020.

150 BIBLIOGRAPHY

[281] S. Guo, Y. Lin, H. Wan, X. Li, and G. Cong, “Learning dynamics and heterogeneity of
spatial-temporal graph data for traffic forecasting,” IEEE Transactions on Knowledge
and Data Engineering, 2021.

[282] P. Schäfer, “The BOSS is concerned with time series classification in the presence of
noise,” Data Min Knowl Disc, vol. 29, pp. 1505–1530, 2015.

[283] A. Bifet, G. Holmes, B. Pfahringer, P. Kranen, H. Kremer, T. Jansen, and T. Seidl,
“Moa: Massive online analysis, a framework for stream classification and clustering,”
in Proceedings of the First Workshop on Applications of Pattern Analysis. PMLR,
2010, pp. 44–50.

[284] A. Bostrom and A. Bagnall, “Binary shapelet transform for multiclass time series clas-
sification,” in Transactions on Large-Scale Data-and Knowledge-Centered Systems
XXXII. Springer, 2017, pp. 24–46.

[285] M. Linardi, Y. Zhu, T. Palpanas, and E. Keogh, “Matrix profile x: Valmod-
scalable discovery of variable-length motifs in data series,” in Proceedings of the
2018 International Conference on Management of Data, 2018, pp. 1053–1066.

[286] J. Zuo, K. Zeitouni, and Y. Taher, “ISETS: Incremental Shapelet Extraction from
Time Series Stream,” ECML-PKDD, pp. 790–793, 2019.

[287] S. Gharghabi, S. Imani, A. Bagnall, A. Darvishzadeh, and E. Keogh, “An ultra-
fast time series distance measure to allow data mining in more complex real-world
deployments,” Data Mining and Knowledge Discovery, vol. 34, pp. 1104–1135, 2020.

[288] A. Mueen, Y. Zhu, M. Yeh, K. Kamgar, K. Viswanathan, C. Gupta, and E. Keogh,
“The fastest similarity search algorithm for time series subsequences under euclidean
distance,” August 2017, http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.
html.

[289] J. Lines, S. Taylor, and A. Bagnall, “HIVE-COTE: The Hierarchical Vote Collective
of Transformation-based Ensembles for Time Series Classification,” in IEEE ICDM,
2016.

[290] A. Dorle, F. Li, W. Song, and S. Li, “Learning Discriminative Virtual Sequences for
Time Series Classification,” in CIKM, 2020, p. 2001–2004.

[291] Y. Bai, L. Wang, Z. Tao, S. Li, and Y. Fu, “Correlative Channel-Aware Fusion for
Multi-View Time Series Classification,” in AAAI, 2021.

[292] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and
new perspectives,” IEEE TPAMI, pp. 1798–1828, 2013.

[293] Q. Ma, J. Zheng, S. Li, and G. W. Cottrell, “Learning Representations for Time
Series Clustering,” in NeurIPS, 2019.

http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html
http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html

BIBLIOGRAPHY 151

[294] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” in International conference on machine learning.
PMLR, 2015, pp. 448–456.

[295] V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted Boltzmann
Machines,” in ICML, 2010.

[296] D. P. Kingma and J. Lei Ba, “Adam: A Method for Stochastic Optimization,” in
ICLR, 2015.

[297] G. Wilson, J. R. Doppa, and D. J. Cook, “Multi-source deep domain adaptation
with weak supervision for time-series sensor data,” in Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020,
pp. 1768–1778.

[298] J. Zuo, K. Zeitouni, and Y. Taher, “Smate: Semi-supervised spatio-temporal
representation learning on multivariate time series,” in 2021 IEEE International
Conference on Data Mining (ICDM). IEEE, 2021, pp. 1565–1570.

[299] R.-G. Cirstea, B. Yang, and C. Guo, “Graph attention recurrent neural networks for
correlated time series forecasting,” MileTS19@ KDD, 2019.

[300] J. Yoon, D. Jarrett, and M. Van Der Schaar, “Time-series Generative Adversarial
Networks,” in NeurIPS, 2019.

[301] J. Weston, S. Chopra, and A. Bordes, “Memory networks,” arXiv preprint
arXiv:1410.3916, 2014.

[302] L. Han, B. Du, L. Sun, Y. Fu, Y. Lv, and H. Xiong, “Dynamic and multi-faceted
spatio-temporal deep learning for traffic speed forecasting,” in KDD, 2021, pp. 547–
555.

[303] “An introduction to the caltrans performance measurement system (pems),” https:
//pems.dot.ca.gov/PeMS_Intro_User_Guide_v5.pdf, 2015.

[304] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated re-
current neural networks on sequence modeling,” in NIPS 2014 Workshop on Deep
Learning, 2014.

[305] C.-C. M. Yeh, N. Kavantzas, and E. Keogh, “Matrix profile vi: Meaningful multidi-
mensional motif discovery,” in 2017 IEEE international conference on data mining
(ICDM). IEEE, 2017, pp. 565–574.

https://pems.dot.ca.gov/PeMS_Intro_User_Guide_v5.pdf
https://pems.dot.ca.gov/PeMS_Intro_User_Guide_v5.pdf

	Introduction
	Motivation
	General Objectives
	Contributions
	Dynamic Representation Learning on Time Series Stream
	Semi-supervised Learning on Multivariate Time Series
	Geo-located Multivariate Time Series Forecasting with Missing Values

	Organization of the Thesis
	List of Publications

	State of the art
	Time Series Data Mining
	Definition and taxonomy
	Representation Learning on Time Series
	Data Stream and Time Series
	Semi-supervised Learning on Time series

	Time Series Representation for Classification
	Raw Sequence as Representations
	Statistic Features as Representations
	Local patterns as Representations
	Deep Representations
	Ensemble Representations
	Univariate versus Multivariate Time Series

	Geo-located Time Series Representation for Forecasting
	Definitions
	Geo-located time series forecasting

	Conclusion

	Dynamic Feature Learning on Time Series Stream
	Introduction
	Background and State-of-the-art
	Definitions and Notations
	Time Series Feature Representations
	Matrix Profile in Time Series Mining

	Problem Statement
	Our proposals
	Shapelet extraction on MAtrix Profile (SMAP) for TSC
	Incremental SMAP (ISMAP)

	Experiments and Results
	Experimental design
	RQ1: Incremental learning with ISMAP
	RQ2: Adaptive learning with ISMAP

	Conclusion

	Semi-supervised Learning on Multivariate Time Series
	Introduction
	State-of-the-art
	Multivariate Time Series Representation Learning
	Semi-supervised Learning on Time Series

	Problem Formulation
	Spatio-temporal Representation for MTS
	Semi-Supervised Learning on MTS

	Proposal: SMATE
	Global Structure of SMATE
	Spatial Modeling Block (SMB)
	Spatio-Temporal Encoding on MTS
	Joint Model Optimization

	Experiments
	Experimental setup
	RQ 1: Classification Performance Evaluation
	RQ 2: Semi-supervised Classification Performance
	RQ 3: Visualization & Interpretation of the Representation Space
	RQ 4: Performance of Spatial Modeling Block (SMB)
	RQ 5: Efficiency Analysis
	Discussion

	Conclusion

	Geo-located Multivariate Time Series Forecasting with Missing Values
	Introduction
	Related Works
	Graph Convolutional Networks for Traffic Forecasting
	Missing value processing

	Problem Formulation
	Proposal: GCN-M
	Model Architecture
	Multi-scale Memory Network
	Dynamic Graph Construction
	Temporal Convolution Module
	Dynamic Graph Convolution
	Output Forecasting Module

	Experiments
	Experimental settings
	Baseline Approaches
	RQ 1: Performance on complete datasets
	RQ 2: Complex scenarios of missing values
	RQ 3: Dynamic Graph Modeling
	Discussions

	Conclusion

	Conclusion and Perspectives
	Conclusion
	Perspectives

	Bibliography

