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AbstRact

To be or not be—who are we? That is the question
You might us ask: to bleed or not to bleed, for we are metal

— The Metal Shakespeare Company, To Bleed or not to Bleed

This dissertation studies the status of word embeddings, i.e, vectors pro-

duced by NLP systems, insofar they are relevant to linguistic studies. We more

specifically focus on the relation between word embeddings and distributional

semantics—the field of study based on the assumption that context correlates

to meaning. We question whether word embeddings can be seen as a practical

implementation of distributional semantics.

Our first approach to this inquiry consists in comparing word embeddings

to some other representation of meaning, namely dictionary definitions. The as-

sumption underlying this approach is that semantic representations from distinct

formalisms should be equivalent, and therefore the information encoded in dis-

tributional semantics representations should be equivalent to that of definitions.

We test this assumption using two distinct experimental protocols: the first is

based on overall metric space similarity, the second relies on neural networks.

In both cases, we find limited success, suggesting that either distributional se-

xxxi
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mantics and dictionaries encode different information, or that word embeddings

are not linguistically coherent representations of distributional semantics.

The second angle we adopt to study the relation between word embeddings

and distributional semantics consists in formalizing our expectations for distri-

butional semantics representations, and comparing these expectations to what

we observe for word embeddings. We construct a dataset of human judgments

on the distributional hypothesis, which we use to elicit predictions on distribu-

tional substitutability from word embeddings. While word embeddings attain

some degree of performance on this task, their behavior and that of our human

annotators are found to drastically differ. Strengthening these results, we ob-

serve that a large family of broadly successful embedding models all exhibit ar-

tifacts imputable to the neural network architecture they use, rather than to any

semantically meaningful factor.

Our experiments suggest that, while we can formally delineate criteria we

expect of distributional semantics models, the linguistic validity of word embed-

dings is not a solved problem. Three main conclusions emerge from our experi-

ments. First, the diversity of studies in distributional semantics do not entail that

no formal statements regarding this theory can be made: we saw that distribu-

tional substitutability provides a very convenient handle for the linguist to grasp.

Second, that we cannot easily relate distributional semantics to another lexical

semantic theory questions whether the distributional hypothesis actually pro-

vides an alternative account of meaning, or whether it deals with a very distinct

set of facts altogether. Third, while the gap in quality between practical imple-

mentations of distributional semantics and our expectations necessarily adds on

to the confusion, that we can make quantitative statements about this gap should
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be taken as a very encouraging sign for future research.





RÉsumÉs en fRanÇais

Vive Henri IV, vive ce Roi vaillant!
Ce diable à quatre a le triple talent
De boire et de battre, et d’être un vert-galant.
De boire et de battre, et d’être un vert-galant.

— Boisson Divine, Vive Henri IV

Résumé court

Cette thèse s’intéresse au statut des plongements lexicaux (ou « word embed-

dings »), c’est-à-dire des vecteurs de mots issus de modèles de Traitement Au-

tomatique des Langues. Plus particulièrement, notre intérêt se porte sur leur

valeur linguistique et la relation qu’ils entretiennent avec la sémantique distri-

butionnnelle, le champ d’étude fondé sur l’hypothèse que le contexte est cor-

rélé au sens. L’objet de notre recherche est d’établir si ces plongements lexicaux

peuvent être considérés comme une implémentation concrète de la sémantique

distributionnelle.

Notre première approche dans cette étude consiste à comparer les plonge-

ments lexicaux à d’autres représentations du sens, en particulier aux définitions

xxxv
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telles qu’on en trouve dans des dictionnaires. Cette démarche se fonde sur l’hy-

pothèse que des représentations sémantiques de deux formalismes distincts de-

vraient être équivalentes, et que par conséquent l’information encodée dans les

représentations sémantiques distributionnelles devrait être équivalente à celle

encodée dans les définitions. Nous mettons cette idée à l’épreuve à travers deux

protocoles expérimentaux distincts : le premier est basé sur la similarité glob-

ale des espaces métrisables décrits par les vecteurs de mots et les définitions, le

second repose sur des réseaux de neurones profonds. Dans les deux cas, nous

n’obtenons qu’un succès limité, ce qui suggère soit que la sémantique distribu-

tionnelle et les dictionnaires encodent des informations différentes, soit que les

plongements lexicaux ne sont pas motivés d’un point de vue linguistique.

Le second angle que nous adoptons ici pour étudier le rapport entre séman-

tique distributionnelle et plongements lexicaux consiste à formellement définir

ce que nous attendons des représentations sémantiques distributionnelles, puis

à comparer nos attentes à ce que nous observons effectivement dans les plonge-

ments lexicaux. Nous construisons un jeu de données de jugements humains

sur l’hypothèse distributionnelle. Nous utilisons ensuite ce jeu pour obtenir des

prédictions sur une tâche de substituabilité distributionnelle à partir de modèles

de plongements lexicaux. Bien que nous observions un certain degré de perfor-

mance en utilisant les modèles en question, leur comportement se démarque très

clairement de celui de nos annotateurs humains. Venant renforcer ces résultats,

nous remarquons qu’une large famille de modèles de plongements qui ont ren-

contré un franc succès, ceux basés sur l’architecture Transformer, présente des

artéfacts directement imputables à l’architecture qu’elle emploie plutôt qu’à des

facteurs d’ordre sémantique.
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Nos expériences suggèrent que la validité linguistique des plongements lex-

icaux n’est aujourd’hui pas un problème résolu. Trois grandes conclusions se

dégagent de nos expériences. Premièrement, la diversité des approches en sé-

mantique distributionnelles n’implique pas que ce champ d’étude est voué aux

approches informelles: nous avons vu que le linguiste peut s’appuyer sur la sub-

stituabilité distributionnelle. Deuxièmement, comme on ne peut pas aisément

comparer la sémantique distributionnelle à une autre théorie lexicale, il devient

nécessaire d’étudier si la sémantique distributionnelle s’intéresse bien au sens,

ou bien si elle porte sur une série de faits entièrement distincte. Troisièmement,

bien que l’on puisse souligner une différence entre la qualité des plongements

lexicaux et ce qu’on attend qu’ils puissent faire, la possibilité d’étudier cette dif-

férence sous un angle quantitatif est de très bon augure pour les travaux à venir.

Résumé long

Lorsque les auteurs qui s’intéressent aux plongements lexicaux établissent un

parallèle avec un cadre théorique linguistique, il s’agit invariablement d’études

tirées du domaine de la sémantique distributionnelle. Ce domaine est issu des

travaux de Harris (1954), et se fonde sur l’hypothèse que le contexte linguis-

tique suffit pour caractériser le sens d’un mot. Ce champ d’étude n’est cepen-

dant pas défini de manière formelle, et il est courant que les chercheurs adoptent

une définition pratique : par exemple Boleda (2020) spécifie qu’un modèle de

sémantique distributionnelle doit correspondre à un ensemble de vecteurs dans

un espace continu calculés à partir de co-occurrences linguistiques. Malgré cela,

les études en sémantique distributionnelle font preuve d’une extrême diversité
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dans leurs outils, entre réseaux de neurones artificiels et matrices de compte de

co-occurrence. Cette hétérogénéité est si impressionnante qu’il est discutable de

considérer toutes ces études comme faisant partie d’une même théorie.

En somme, le statut non-formel de la sémantique distributionnelle complique

la tâche à qui veut y voir un cadre théorique cohérent. Si l’on cherche à établir

ce qu’est la sémantique distributionnelle, on ne saurait aisément dire de quels

faits elle relève, quelles prédictions elle fait, ou à quel autre cadre on peut la

comparer. Les applications du réseau profond de plongements contextualisés

BERT (Devlin et al., 2019) sont par exemple très distinctes de ce que l’on peut

étudier et apprendre du modèle LSA (Landauer et Dumais, 1997), calculé à partir

de tabulations d’occurrences dans des documents.

Pour surmonter ces limites, nous nous intéresserons plus particulièrement à

déterminer si la sémantique distributionnelle peut être considérée comme ce que

nous appelons ici une théorie de sémantique lexicale. Par ce terme de « théorie de

sémantique lexicale » (ou plus simplement « théorie lexicale »), nous entendons

deux caractéristiques :

(i) que le cadre en question fasse l’hypothèse d’un nombre de propositions,

qui, prises ensemble, produisent une définition générale du concept de sens

tel qu’il s’applique aux mots du lexiques ;

(ii) qu’à cette définition générale du sens corresponde une méthode concrète

pour assigner un sens à tout mot en particulier.

Dans cette perspective, la sémantique distributionnelle serait la théorie lexicale

(i) qui suppose que le sens d’un mot est dérivé du contexte linguistique dans

lequel il apparaît, et (ii) qui pour assigner un sens à un mot emploie généralement
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des plongements lexicaux.

Ce concept de théorie de sémantique lexicale a deux conséquences impor-

tantes. Premièrement, si l’on peut assigner un sens à chaque mot, alors on doit

pouvoir répéter cette procédure pour la totalité du lexique. En d’autres termes, à

toute théorie lexicale doit correspondre une ou plusieurs implémentations con-

crètes ; pour ce qui est de la sémantique distributionnelle, ces implémentations

seront les modèles de plongements lexicaux.

Secondement, ce concept de théorie lexicale peut s’appliquer à d’autres cadres

non-formels. En particulier, la lexicographie (que nous définissons ici comme

l’étude et la pratique de l’élaboration de dictionnaires) correspond aussi à notre

concept. Dans cette grille d’analyse, l’hypothèse fondamentale de la lexicogra-

phie est que le sens d’un mot peut être décrit à l’aide de la langue, et plus partic-

ulièrement à l’aide de définitions. En pratique, on peut implémenter cette théorie

à l’aide de dictionnaires. Dans cette thèse, nous utilisons la lexicographie comme

un étalon pour jauger la sémantique distributionnelle. Ces deux définitions im-

plicites de ce que doit être le sens du mot peuvent ne pas être compatibles ; étudier

si et comment elles entrent en conflit est l’un des enjeux majeurs de notre étude.

Nous ne pouvons évidemment pas comparer ces deux théories lexicales de

manière directe : puisqu’il ne s’agit pas de cadres formels, nous ne pouvons com-

parer leurs portées en les plaçant toutes deux dans le champ abstrait des mathé-

matiques. Il nous faut à la place comparer expérimentalement leurs implémen-

tations — d’où notre insistance à ce qu’une théorie lexicale possède une manière

concrète d’assigner un sens à un mot. Même cette comparaison d’implémentations

s’avère difficile, puisque les définitions lexicographiques et les plongements lex-

icaux sont deux types d’objets différents, les premiers étant des séquences de
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mots, et les seconds des vecteurs de nombres réels.

En somme, cette thèse a pour but d’étudier si la sémantique distributionnelle

peut être conçue comme une théorie de sémantique lexicale. Quels éléments à

charge ou à décharge pouvons-nous établir ? Y a-t-il des caractéristiques com-

munes aux représentations distributionnelles et aux implémentations d’autres

théories lexicales, tels que les dictionnaires ? Que nous révèle l’examen des

plongements lexicaux eux-mêmes ?

Dans la première partie de cette thèse, nous donnons une vue d’ensemble de

l’état de l’art pertinent pour notre objet de recherche. Le Chapitre 1 contient une

présentation générale de la sémantique distributionnelle. Nous y discutons des

développements historiques de la sémantique distributionnelle et des modèles

qui y sont associés, depuis la création de ce champ d’études jusqu’aux évolutions

les plus récentes. Nous soulignons aussi la grande diversité de ce domaine, mar-

qué à la fois par la variété des modèles et par l’hétérogénéité des méthodologies

proposées pour leur évaluation. Dans le Chapitre 2, nous nous penchons sur la

lexicographie. Nous définissons brièvement ce qu’est un dictionnaire, avant de

présenter les usages qu’ils ont trouvés dans le TAL.

La deuxième partie de cette thèse aborde de front notre problématique. Nous

y comparons dictionnaire et plongements lexicaux. Dans le Chapitre 3, nous

essayons de les comparer en nous basant sur les notions de distance qu’ils en-

codent : distance d’édition entre deux définitions, et distance vectorielle entre

deux plongements. Il ressort de cette première série d’expérience que de nom-

breux facteurs peuvent perturber nos analyses. Ceci nous amène à adopter une

méthodologie différente dans le Chapitre 4, où nous étudions si les réseaux de

neurones artificiels nous permettent d’implémenter des fonctions inverses pour
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convertir un plongement en une définition équivalente et vice-versa.

Nous ne rencontrons qu’un succès limité dans ces deux approches. Ceci

nous amène, dans la troisième et dernière partie, à questionner notre hypothèse

de départ : les plongements lexicaux correspondent-ils à une implémentation

de la sémantique distributionnelle ? Dans le Chapitre 5, nous étudions si les

plongements lexicaux correspondent aux intuitions des êtres humains quant à

l’hypothèse distributionnelle. Nous construisons à cette fin un jeu en ligne afin de

collecter des jugements humains, et proposons une formalisation pour la séman-

tique distributionnelle. La comparaison des plongements lexicaux et des juge-

ments humains démontre cependant que les premiers semblent très éloignés des

seconds, ce qui remet en cause la validité linguistique qu’on leur avait jusque-là

attribuée. Le Chapitre 6 adopte une approche complémentaire ; nous y étudions

les artéfacts imputables à l’architecture Transformer qui sont perceptibles dans

les plongements lexicaux contextualisés.

À l’issue de ces expériences, nous disposons de multiples élements pour répon-

dre à notre problématique. Dans le Chapitre 1, nous avons pu voir la diversité

de la sémantique distributionnelle en tant que domaine d’étude. Cette diversité

n’implique pas qu’aucune formalisation n’est possible, et nous en avons proposée

une qui se base sur la substituabilité distributionnelle dans la Section 5.1. Cepen-

dant, si l’on admet que cette formalisation est appropriée, il faut alors aussi ad-

mettre que les plongements lexicaux tels qu’ils existent aujourd’hui semblent de

piètres modèles linguistiques. S’ils atteignent un certain degré de performance

sur la tâche de substitution distributionnelle (Section 5.4.2), la manière dont ils

produisent ces résultats ne correspond pas à ce que nous observons chez les êtres

humains (Section 5.4.3). Ceci est d’autant plus troublant qu’on peut proposer une
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description beaucoup plus fine de certains modèles de plongements parmi les

plus populaires à partir de leur seule architecture neuronale (Chapitre 6). Somme

toute, il est raisonnable de conclure que les plongements lexicaux modernes ne

répondent pas aux critères que l’on peut attendre des modèles de sémantique

distributionnelle.

Ceci est à l’opposé de ce que l’on peut voir de la lexicographie. Bien qu’il y ait

un certain flottement dans la définition d’un dictionnaire (Section 2.1), la com-

munauté TAL fait confiance aux dictionnaires et les utilise comme inventaires

sémantiques fiables (Sections 2.3 et 2.4). Cette confiance n’est toutefois qu’un

des facteurs qui entrent en compte lorsque l’on veut comparer dictionnaires et

plongements lexicaux. L’alignement entre mot et sens (Sections 4.1 et 4.2), la

qualité des représentations vectorielles (Sections 3.3 et 4.3) ou même la struc-

ture de la langue, avec ses synonymes et ses mots grammaticaux (Section 3.2)

pèsent également sur ces comparaisons.

Nous ne pouvons pas établir que la sémantique distributionnelle et la lex-

icographie sont des théories de sémantique lexicale équivalentes. Il est diffi-

cile de tirer une conclusion qui porte sur la sémantique distributionnelle à par-

tir des plongements lexicaux, puisque que leur lien reste à déterminer. Mais si

nous supposons que les plongements lexicaux sont des modèles de sémantique

distributionnelle (quoique imparfaits), alors nos résultats suggèrent que le sens

tel qu’il est compris en lexicographie est une notion distincte du sens tel que

la sémantique distributionnelle le conçoit. Peut-être que nous pourions trou-

ver une théorie lexicale davantage comparable aux plongements lexicaux. Peut-

être qu’un véritable modèle de sémantique distributionnelle serait à même de

résoudre la tâche de substitution distributionnelle de la même manière que les
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humains. Peut-être que les problèmes que nous avons soulignés se résument à

une question de calibrage de nos modèles. Peut-être que résoudre toutes ces diffi-

cultés nous permettrait d’obtenir des représentations distributionnelles riches et

aisément comparables à des répresentations sémantiques, définitions ou autres.

Nous n’avons pour l’heure pas de preuve qui indique que ces obstacles seront

surmontables.

Ces problèmes sont en partie issus de la culture en TAL, qui se focalise princi-

palement sur l’ingénierie d’applications pratiques. Les considérations théoriques

qui intéressent la linguistique (et la linguistique computationnelle) n’arrivent

qu’après, si jamais elles entrent en compte. Il semble que ce qu’un modèle peut

faire prime souvent sur ce qu’il modélise. S’il est bon de reconnaître que l’approche

qui correspond au premier de ces deux objets d’études à ses avantages, notre in-

térêt dans cette thèse s’est portée plutôt sur le second. Dans un contexte où

les modèles neuronaux deviennent de plus en plus larges et omniprésents et de

moins en moins compréhensibles, il nous semble crucial de ne pas abandonner

nos liens aux sciences du langage. Un des buts que nous poursuivons dans cette

thèse est d’explorer la variété des outils à la disposition du chercheur en TAL, de

l’algèbre fonctionnelle et linéaire (Sections 1.4 et 6.2) aux réseaux de neurones

(Sections 4.2 et 4.3), des expériences de pensées (Section 2.2) à la collecte de juge-

ments linguistiques (Section 5.3). Cet éventail n’est bien sûr pas exhaustif, mais

nous espérons avoir démontré ce qu’apporte une approche ancrée dans la lin-

guistique à l’étude des systèmes de TAL.





On the Status of Word Embeddings as

Implementations of the Distributional

Hypothesis





IntRoduction

There’s no time to waste
There’s so much more to do
We built it all backwards so let’s fix that too

— Rivers of Nihil, The Tower

When authors interested in word embeddings draw an explicit connection

to a linguistic framework, they invariably point towards the field of distribu-

tional semantics. This field stems from the seminal work of Harris (1954), and

is based on the assumption that linguistic context suffices to characterize the

meaning of a word. This field of study is however not formally defined; instead,

researchers often adopt a practical definition, such as the one from Boleda (2020),

which states that Distributional Semantics Models correspond to graded high-

dimensional vectors learnt from natural language data. It remains that distribu-

tional semantic studies vary so wildly in the setup they use—from deep neural

networks to count matrices—that is debatable, if not doubtful, that they can be

considered as parts of a coherent and systematic theory.

The non-formal status of distributional semantics makes it complex to con-

ceptualize this field as a coherent framework. When characterizing what distri-

3

https://www.youtube.com/watch?v=MRF36MgV6H0


Introduction 4

butional semantics are, we cannot easily delineate which facts are relevant, what

is predicted, or which framework to compare to. Applications of the deep con-

textualized embedding model BERT (Devlin et al., 2019), for instance, are very

different from what we can study through and learn from the count-based doc-

ument model of LSA (Landauer and Dumais, 1997).

To overcome these limitations, we will study whether distributional seman-

tics can be conceptualized as what we here call a lexical semantic theory. By

“lexical semantic theory” (or indifferently “lexical theory”), we mean two things:

(i) that the field of study at hand proposes or assumes a number of statements

that, taken together, provides a general definition of word meaning;

(ii) that this general definition of word meaning corresponds to a practical way

of ascribing a meaning to any specific word.

In such a view, distributional semantics would be the lexical theory (i) which ar-

gues that the meaning of a word is ultimately derived from the linguistic contexts

in which it occurs; and (ii) where to ascribe meaning to words we generally em-

ploy word embeddings, i.e., vector representations computed from large numbers

of word collocations, as observed in text corpora.

This working definition of a lexical semantic theory allows to tease apart two

types of studies that could be construed as distributional semantics. On the one

hand, we find research that attempts to describe the meaning of every lexicon

item by relying solely on linguistic contexts. This is for instance what we find

in Harris (1954), who argues that word distribution correlates with, and suffices

to characterize word meaning. On the other hand, we have works that happen

at some point or another to use word distribution for some practical purpose,
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such as characterizing the polysemy of a word. An example of this second type

would be Firth (1957), whose take on meaning is that it ought to be informed by

all manners of linguistic analyses, including, but not limited to, those based on

word distribution. Only the former of these two types can be properly thought of

as a lexical semantic theory, and we will almost exclusively consider the former

type of studies in this dissertation.

There are two important consequences to this concept of a lexical semantic

theory. First, if we can assign a meaning to any word, then we should be able

to extend this procedure to the full lexicon. In other words, any lexical seman-

tic theory should have a corresponding practical implementation. In the case of

distributional semantics, these implementations will correspond to word embed-

ding models.

Second, the concept of a lexical semantic theory can be applied to other non-

formal frameworks. In particular, lexicography—that we define here as the study

and practice of dictionary-making—also corresponds to our concept of lexical

semantic theory. In such a view, the fundamental assumption that underlies

this lexical theory is that word meaning can be described through language and

more specifically definitions; in practice, it can be implemented as dictionar-

ies. Throughout this dissertation, we will use lexicography as a standard against

which to compare distributional semantics. These two views on what is word

meaning may or may not conflict, and studying whether—and how—they are

incompatible will be one of the major topics that we will discuss.

Obviously we cannot compare these two lexical semantic theories directly—

as they are not purely formal models, comparing their predictions by setting

them in the abstract neutral ground of mathematics is outside our reach. In-
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stead, we will have to compare their concrete implementations—hence our insis-

tence on providing a practical way of ascribing meaning to words. Even com-

paring their implementations can prove to be difficult, as dictionary definitions

and word embeddings correspond to very different objects: vectors on the one

hand, and sequences of text on the other.

In sum, this dissertation sets about to study whether distributional semantics

can be construed as a lexical semantic theory. The diversity of approaches that

have been labelled as distributional semantics models may entail that this field of

study does not correspond to a coherent and consistent theoretical framework of

analysis. What evidence can we find that would confirm or infirm this view? Are

there common characteristics between distributional semantics models and im-

plementations of other lexical semantic theories, such as dictionaries? Are there

any immediate arguments to be made by studying word embeddings themselves,

or by comparing their behavior to that of human speakers? We will structure our

argumentation in three parts.

In the first part, we will set the scene, so to speak, by giving an overview

of the state of the art. Chapter 1 will provide a general overview of distribu-

tional semantics. In this first chapter, we will discuss the history of distributional

semantics and distributional semantics models, from their inception up till the

most recent developments. We will also provide some elements to underscore

how diverse the field of distributional semantics is, both in terms of how word

embedding models are formally defined and studied in practice. In Chapter 2 we

will then turn to lexicography. After a brief review of what a dictionary is, we

will discuss some of the applications they have been found useful for in NLP.

The second part will tackle our research question head on, and attempt to
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compare dictionaries and word embeddings. In Chapter 3, we will attempt to

compare the two using the notion of distance: edit distance between definitions

and vector distance between word embeddings. As we will see, many caveats

apply when adopting such a methodology. These issues will lead us to adopt a

different experimental protocol. Namely, in Chapter 4, we will study whether

we can use neural networks to implement inverse functions that convert word

embeddings into definitions and back.

In the third and final part, we will take stock of the limitations of our com-

parisons, and reflect on the initial hypothesis we based our experiments on: are

word embeddings an implementation of a lexical semantic theory? Chapter 5 will

investigate whether word embeddings match human judgments with respect to

the distributional hypothesis. To that end, we will describe an online game im-

plemented to collect human judgments, and propose a tentative formalization

for distributional semantics models. This will allow us to compare the behavior

of word embeddings to that of human annotators. In our final chapter Chapter 6,

we will adopt a complementary approach. Namely, we will look for artifacts in

Transformer embedding spaces imputable to the design of such networks, i.e.,

biases due to their objective functions or their formal structure.





I

A Tale of Two TheoRies





1

DistRibutional Semantics as a Lexical

TheoRy

Has he lost his mind?
Can he see or is he blind?
Can he walk at all
Or if he moves will he fall?

Is he alive or dead?
Has he thoughts within his head?
We’ll just pass him there
Why should we even care?

— Black Sabbath, Iron Man

This chapter will study whether distributional semantics can be construed as

a lexical semantic theory. The notion of lexical semantic theory, as presented in

the introduction, requires of a field of study that it yields a corresponding im-

plementation. In distributional semantics, these implementations are generally

known as “distributional semantics models” (DSM) or, almost interchangeably in

the literature, “word embeddings.” We will nonetheless introduce a terminolog-
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ical distinction. We will reserve the term “distributional semantics models” to

items we consider as implementations of distributional semantics. On the other

hand, “word embeddings” will refer to algorithms, systems and softwares that

convert words into vectors—regardless of whether these algorithms, systems or

softwares are related to distributional semantics. The term of “word embedding,”

more precisely, was coined specifically for word vector representations drawn

from neural networks.

While the position that distributional semantics could be considered a lexical

theory on its own was more or less self-evident in early works, the chronologi-

cal overview we conduct in Section 1.1 stresses that a more nuanced position is

required to account for the important variations across implementations of dis-

tributional semantics. The major point that will emerge from our study is that

this variation in implementations is in fact a thoroughly central characteristic of

the field of distributional semantics as it exists today. We will focus on a few

DSM architectures, word2vec, BERT and ELECTRA, in Section 1.2, underscoring

their important differences. Differences in model architectures, as we will see in

Section 1.3, also entail differences in experimental protocols designed to study

and evaluate distributional semantics models. Lastly, we will focus on how vec-

tor space dimensionality itself affects comparisons of distributional semantics

models in Section 1.4.

1.1 Chronological Overview

Our starting point will be to provide a summary of what is addressed in the field

of distributional semantics, mostly through a chronological perspective.
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1.1.1 Inception

Distributional semantics was founded by the seminal work of Harris (1954), which

proposed the distributional hypothesis. In short, word distribution should corre-

late with word meaning. The idea is that the meaning of a word should con-

strain the sort of contexts it can appear in. Let us take a referential view of

meaning: more precisely, let us consider that “cat” refers to the feline animal,

and focus on the sort of situation in which cats are likely to be involved. It is

more probable that these situations involve purring and whiskers than foreign

politics or churches. If we now think of how we would describe these situations

through language, we see that the words we will use are more likely to be re-

lated to cats—in other words, because of what they mean, words like “purring”

and “whiskers” are intuitively more likely to occur in the context of the word

“cat” than words like “ecclesiastical” or “foreign”. Harris (1954) stresses that it is

unlikely that specific words or morphemes can be ascribed to specific meanings

in a one-to-one relation. Nonetheless, his distributional hypothesis claims that

semantic statements—statements about the meaning of utterances and words—

have distributional counterparts. One can say things about word meaning from

word distribution alone, and the two are therefore correlated, to some extent. To

quote Harris (1954) directly:

if one wishes to speak of language as existing in some sense on two

planes—of form and of meaning—we can at least say that the struc-

tures of the two are not identical, though they will be found similar

in various respects.



Distributional Semantics as a Lexical Theory 14

1.1.2 From a methodology to a lexical semantic theory

What sort of distributional statement can and should be made is not entirely

transparent in the original proposal of Harris (1954). Harris himself considers

contrasting the valid contexts of words. For instance, if “eye-doctor” and “oculist”

can systematically occur in the same contexts, we can say they mean the same

thing. For word pairs that do not share this property, like “oculist” and “lawyer”,

we can still approximate how similar their meanings are, simply by considering

the “amount of difference in their environments.” If two words share no con-

text, like “oculist” and “of ”, we can highlight that they belong to two different

classes of words, or parts of speech. Context here is to be understood as linguis-

tic context: Harris himself gave as example the phonemes or the words in the

immediate vicinity of the target word of interest.

To test pairs of words in similar contexts, the linguist can rely on informants’

judgments. While this method sheds a light as to how exactly we can leverage

distributional facts for semantic analysis, it is mostly intended to be applied to

controlled situations and small corpora. This methodology therefore has the dis-

advantage of being partial: it does not cover all the facts at the linguist’s disposal.

Kay (2011) argues that the complex phenomenon that is language in fact demands

that we adopt techniques spanning the entirety of the lexicon and encompass-

ing as much data as possible. Much as there is little that we can learn about the

weather system from a few well chosen drops of rain, linguists should focus on

understanding human languages as the complex systems they are rather than

focus specifically on how some well chosen elements interact within them. The

argument that Kay (2011) develops is centered on the computational nature of
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language processes. He further stresses that machine learning and statistics are

central to the tool set of the computational linguist, as they greatly expand the

scope of the work undertaken by automating the tedious, tiresome work of man-

ually studying every single data point. If we adopt a position similar to that of

Kay (2011), the proposal of Harris (1954) seems inadequate: eliciting judgments

from informants for word pairs of interest prevents us from studying the system

as a whole. Instead, we are forced to focus specifically on pre-selected items. This

characteristic is also necessary if we want to study distributional models as se-

mantic theories: we require a procedure that yields the meaning representation

of any possible word.

We can see this play out, for instance, in the study of Rubenstein and Goode-

nough (1965). The study sets on to assess the validity of the distributional hypoth-

esis. The authors focus on a small subset of words: 65 pairs, all nouns, with vary-

ing degrees of semantic similarity (from “cord” vs. “smile” to “gem” vs. “jewel”).

They then contrast semantic similarity judgments from informants to the over-

lap in attested contexts. Their methodology is convincing, but the strength of

their conclusion is somewhat undermined by the limited size and diversity of

their sampled paired words. We must not forget that the computational means

available to Rubenstein and Goodenough (1965) are not those available fifty years

later to Kay (2011), and modern computing power does allow us to overcome this

limitation.

In fact, setting aside any notion of computational power, a very similar crit-

icism is expressed by Miller (1967). Miller’s position is that the study of Ruben-

stein and Goodenough (1965) cannot be converted into a systematic description

of meaning: assuming we restrict ourselves to a vocabulary of 100 words, there
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are already 4950 different word pairs for which similarity judgments are required.

The problem only worsens when we consider a larger, more realistic vocabulary.

1.1.3 Co-occurrence count matrices

The first accounts of distributional semantics approaches for the study of large

amounts of data rely on a second branch of research, that of vector-based models

derived from co-occurrence count. This approach can be seen as a natural devel-

opment for distributional semantics, in that it is based on the tabulation of the

contexts of each word.

Let us use a simple example, and assume we have the following corpus of

three documents D1, D2 and D3, whose contents would be:

D1: Fat cat sat on the mat.

D2: The cat is chasing the mouse on the mat.

D3: My dog is a pooch.

From this raw data, we can construct a list of contexts for any word. Two pos-

sibilities have been explored in the literature: we can either consider the set of

documents where a given word occurs or the words which co-occur with our

target words. The former would correspond to:

contextsD (w) = #{Di |w ∈ Di }

and the latter to:

contextsW (w) = #{w ′|{w, w} ⊂ Di } (1.1)

To take a concrete case, if we consider the word “cat”, modeling contexts as doc-
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ument would yield:

contextsD (cat) = {D1,D2}

whereas adopting a word-based approach would yield:

contextsW (cat) = {Fat,cat,sat,on, the,mat, .,

The, is,chasing,mouse}

A natural refinement of this approach consists in keep track not only of the

contexts, but also of the number of times our target word co-occurs with this

context. It is rather handy to represent this information as a count matrix, where

each cell Ct ,c tracks the number of times the target word t co-occurs with the

context c . Continuing with our previous example, if we model contexts through

word co-occurrence, then we would have Ccat, mat = 2 and Ccat, dog = 0.

Perhaps one of the best-known pioneering works for this approach is that

of Salton et al. (1975), who proposed to represent documents as a vectors. In

their proposal, components of document-vectors corresponds to the presence or

absence of a given term in the corresponding document. It should be noted that

the work of Salton et al. (1975) does not refer to the distributional hypothesis. The

motivations underpinning this application are in fact purely practical and stem

from the authors’ interests in the field of Information Retrieval. The intuition

behind this layout is to ensure that related documents containing similar terms

are placed close to one another, and unrelated documents would are placed far

apart in the vector space, so as to be easily separable.

Another point to stress in the work of Salton et al. (1975) is that it pro-
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poses to construct document representations, rather than word representations.

Nonetheless, converting these into word vectors is straightforward. As specific

components correspond to individual terms, we can consider the whole vector

set as a count matrix. Column vectors therefore summarize the documents in

which a specific term can be found. This is essentially the starting point of the

‘Latent Semantic Analysis’ of Landauer and Dumais (1997). Count matrices of

the sort, and LSA in particular, were one of the first type of DSMs to attract a

certain level of attention among the scientific community. Another important

proposal to mention here that also belongs to this category of models is the ‘Hy-

perspace Analogue to Language’ of Lund and Burgess (1996).

Count-based models can be classified using characteristics such as how vec-

tor component values are computed. Aside from simple raw counts, we find tf-idf

weighting:

tf.idf(w,d) = fw,d∑
w ′∈T

fw ′,d
· log

#D

1+#{d ′|w ∈ d ′∧d ′i nD}
(1.2)

where fw,d corresponds to the number of occurrences of the word or term

w in the context d . This metric was born from the field of Information Re-

trieval (IR), where contexts are mostly documents. As such, its purpose is to

quantify how strong and exclusive is the association between the context doc-

ument d and the word w . It is therefore constructed from two components:

first, the term frequency (tf, formally, fw,d /
∑

w ′∈T
fw ′,d ) measures the frequency

of the word w in the context document d , as compared to all other words w ′

attested in the context; second, the inverted document frequency (idf, formally

log(#D/(1+#{d ′‖w ∈ d ′∧d ′ ∈ D}))) measures how exclusive this association is,
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by counting the number of contexts that contain the word w . Another frequently

encountered scheme is that of pointwise-mutual information:

PMI(w,d) = log
p(w,d)

p(w)p(d)
(1.3)

where w is the word of interest, and d is the context, often the sentence where

w occurs. The idea is to compare the likelihood of p(w,d), observing the word

w and the context d jointly, to p(w)p(d), what we would expect if the two items

were independent. Closely related to the latter is the positive pointwise mutual

information, where values below 0 are capped:

PPMI(w,d) = max(0,PMI (w,d)) (1.4)

Note that PMI yields negative values only if p(w)p(d), the baseline expectations

for independent events, is greater than p(w,d), the probability of jointly observ-

ing the word w and the context d . As such, capping PMI values to 0 corresponds

to disregarding observations where the joint probability of a word and a context

is less likely than a random accident.

Another axis of variation consists in the algorithm used to down-project the

very high dimensional count vectors (with dimensions in the tens of thousands)

to manageable lower-dimensional spaces (with dimensions in the hundreds). A

noteworthy mention here is truncated SVD, which was specifically introduced

to the community by Landauer and Dumais (1997). Under this algorithm, word

vectors are rotated and stretched such that vector components are all ordered by

the variance in the dimension they represent: hence the first dimension after a
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truncated SVD algorithm varies the most, followed by the second, and so on. As

such, the last components tend to not vary much, and can be ignored in order to

limit the number of dimensions necessary to describe the embedding space.

Another important remark is that, unlike the LSA model of Landauer and

Dumais (1997), the HAL model of Lund and Burgess (1996) uses word co-occur-

rences as contexts. Vector components do not represent the documents where a

word can be found: instead, they represent other words in the vocabulary; the

scalar value for a given component measures how frequently the word being

represented and the word for that component occur near one another. These

two definitions of word context—the documents wherein the word of interest

can be found, or the other words attested right next to the word of interest—

would remain a major point of distinction between various DSM architectures.

1.1.4 The birth and rise of neural word embeddings

Independently to these works, neural approaches to computing word represen-

tations were developed with the intent of solving the “curse of dimensionality.”

The longer a specific sequence of words is, the more unlikely it is to occur in any

sample. In the case of statistics-based models such as neural networks trained

on linguistic data, this entails that it is virtually impossible to gather numerous

examples of every possible n-gram. Models will therefore be tested on items that

are in likelihood very different from all training items. To address this, Bengio

et al. (2003) suggest to use vector representations of words such that representa-

tions of semantically similar words end up near one another.

This approach is very reminiscent of what Salton et al. (1975) tried to achieve.
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Salton et al. (1975) suggest document vectors designed such that any neighboring

vectors should containing related keywords and address related topics. Bengio

et al. (2003) propose word representations computed such that any neighbor-

ing vectors correspond to related concepts. In both cases, the basis for creating

consistent vector neighborhoods is to facilitate the software exploitation of the

items—retrieve documents more easily in some IR systems for Salton et al. (1975),

and model language more efficiently for Bengio et al. (2003).

In detail, Bengio et al. (2003) propose to use a neural network to compute

word representations. Their proposed architecture is a feed-forward language

model architecture. The model receives as input the concatenation of learned

representations of the previous words. Its objective is then to predict what word

comes next. These learned representations, which were coined “word embed-

dings,” were found to significantly bring down perplexity scores on language

modeling benchmarks, as compared to n-gram approaches. This seminal work

proved to be inspirational. For instance, Collobert and Weston (2008) point out

that architectures of this sort can be trained to solve a broad variety of tasks at

once through multitask learning.

These approaches led to the work of Mikolov, K. Chen, et al. (2013). The

word2vec model they propose consists in a feed-forward neural network rather

similar to the proposal of Bengio et al. (2003). Two training procedures are con-

sidered, depending on how the context words c1...cn and the word of interest w

are wired. The first, CBOW, consists in summing the learned representations of

the context words c1...cn , and using this summed vector as the input of a log-

linear classifier to predict the word of interest w . The second approach is con-

ceptually the reverse: using the learned representation of the word of interest w
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as an input to predict the context words c1...cn one after the other, and taking

the sum of the losses to train the model.

Until then, there had been no sudden transition from count-based approaches

to neural approaches to distributional semantics: for instance, count-based ap-

proaches such as that of Griffiths et al. (2007) were contemporaneous to the neu-

ral proposal of Collobert and Weston (2008). Yet the approach of Mikolov, K.

Chen, et al. (2013) turned out to be extremely popular. One reason for this en-

thusiasm was that word2vec vectors were suggested to describe a manifold—that

is to say, basic vector operations over word2vec vectors encode analogy rela-

tions (Mikolov, Yih, et al., 2013). Another reason was that they were shown to

be roughly equivalent: Levy and Goldberg (2014b) formally demonstrated how

the word2vec model and the earlier count-based matrices were related, as the

loss function used in the skip-gram training procedure was shown to implicitly

factorize a PMI-weighted occurrence count matrix. A third reason, perhaps even

more important, was software optimizations and hardware improvement. The

proposal of Mikolov, K. Chen, et al. (2013) cut down the necessary training time

from months to days, if not hours.

One research avenue focused on how to improve the word2vec architecture,

of which we can cite two major examples. The first is the GloVe model of Pen-

nington et al. (2014). The name, a contraction of ‘global’ and ‘vector’, reflects

their intention to take into account global, document-level co-occurrences when

computing a vector. The second example is the FastText model of Bojanowski et

al. (2017). They remarked that models like word2vec were better adapted to mor-

phologically poor languages like English than morphologically rich languages

like French or Russian: these models do not take into account sub-word informa-
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tion, which is crucial in inflectional languages. The proposal of Bojanowski et al.

(2017) was therefore to add vector terms corresponding to character n-grams of

the word of interest w . These character n-grams would model the orthographic

regularities that correlate with the inflection patterns of words.

In recent years, yet another development has occurred in the field of neural

word embeddings. An important conceptual shift was the introduction of con-

textual word embeddings. The idea was perhaps most clearly expressed in the

work of Peters et al. (2018), who stress that contextual embeddings like those

yielded by their ELMo model are “a function of the entire input sentence.” That

is to say the vector representation associated with a given word depends not only

on what that word is, but also on what other words occur in this sentence. An-

other way to frame the difference is to stress that, if models like word2vec yield

vector representations for word types, contextual word embeddings like ELMo

yield vector representations for word tokens.

The idea of taking context into account in word representation was not en-

tirely new, and is to be found in count-based approaches, such as Erk and Padó

(2010). The authors start by computing token count-based representations—i.e.,

for each token t , they produce a sparse vector t⃗ where each component td corre-

sponds to the number of times a given word wd type is attested in the sentential

context of the token t . Each of these token vectors is taken as an exemplar, and

a similarity metric such as cosine similarity or Jaccard index allows us to re-

strict token exemplars on the basis of context. Another example is the work of

Reisinger and Mooney (2010), where token vectors are computed from 10-word

windows instead of sentential contexts. Unlike Erk and Padó (2010), who pro-

duce context-specific token representation, Reisinger and Mooney (2010) then
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cluster token representations and use cluster centroids as the representation for

one prototypical usage of the word.

Perhaps the most successful modern neural contextual architecture is the

BERT model of Devlin et al. (2019). The BERT model is based on the Transformer

architecture of Vaswani et al. (2017), and has proven to be highly efficient on a

wide variety of NLP tasks. We will look at this model at greater length in Sec-

tion 1.2.2. Simply put, BERT is trained to solve a “fill-in-the-blank” sequence

denoising task. Variations on the architecture of BERT have since blossomed.

Among these, we can cite the BART model of Lewis et al. (2020), which consists

in an encoder-decoder extension of BERT, allowing it to be trained on a greater

variety of sequence denoising sub-tasks, such as adding in missing tokens and re-

moving superfluous ones. Another is the ELECTRA architecture of Clark, Luong,

et al. (2020): this model is derived from the Generative Adversarial Net (GAN)

architecture (Goodfellow et al., 2014), where two sub-modules compete against

one another; we will discuss this architecture in Section 1.2.2.

In parallel to works on contextual word embeddings, another closely related

focus of research has been the development of large pre-trained language models.

The flagship here is represented by the various iterations of the General Pre-

trained Transformer of the OpenAI team (Radford, 2018; Radford et al., 2019),

although larger language models have been developed by other players. In many

cases, comparisons have been made between large language models like GPT

and contextual embeddings like BERT or ELMo. While the work of Bengio et

al. (2003) provides historical reasons for this, it is worth pointing out that these

models are intrinsically different in how they are designed and trained: they

are designed as models that predict the next word in a continuous span of text;
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that is to say, language models are primarily models for text generation, rather

than models of word tokens in specific contexts. In practice, large pre-trained

language models are commonly used to derive embeddings of words in context,

and are tested on the same benchmarks and datasets as contextual embedding

models like BERT or ELMo. It therefore stands to reason that large pre-trained

language models are also relevant to distributional semantics studies.

1.2 Major examples ofDistributional SemanticsModel

architectures

We have sketched out a chronological overview of the developments of the the-

ory of distributional semantics in the previous section. One of the elements that

we highlighted is their great diversity: from count matrices to deep neural net-

works, the variety of approaches that have been deployed is dizzying. In the

present section, we provide tangible elements on what this variation concretely

entails, by describing in depth three famous DSM architectures: word2vec in

Section 1.2.1, BERT in Section 1.2.2 and ELECTRA in Section 1.2.3.

1.2.1 The word2vec model

The word2vec model of Mikolov, K. Chen, et al. (2013) is well-known in the NLP

community. Its fame is due to its efficiency—both in terms of computation and

downstream applications. As we have pointed out earlier, the term of “word2vec

model” is misleading, as it conflates two distinct but related shallow neural net-

work architectures, which are illustrated in Figure 1.1.
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Figure 1.1: CBOW and Skip-gram architectures; taken from Mikolov, K. Chen,
et al. (2013)

The first of these, dubbed CBOW (short for “Continuous Bag of Words”) con-

sists in using the context around a word as the input, and trying to predict the

target word for this context. The second architecture is known as skip-gram, and

can be thought of as the mirror image of CBOW: using the target word as sole

input, the model will be tasked with predicting each word of the context one

after the other.

CBOW is comprised of one linear projection W P of shape [V ×d ] and a log-

linear classifier W C of shape [d ×V ], Here, V is the size of the vocabulary and

d is the number of dimensions, typically ranging from 50 to 300 or more. All

context words are first transformed as one-hot vectors, then down-projected in

a vector space Rd using the projection W P , as the use of one-hot vectors allows

us to transform a vocabulary index in a vector. Given a word wi , and its index i
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in the vocabulary, we define

w⃗i = (c1, . . . , cd )

c j =


1 if j = i

0 otherwise
(1.5)

Therefore the down-projection using W P corresponds to selecting the ith row

of W P and the row-vectors of the W P matrix therefore are the actual word2vec

embeddings used in downstream applications.

The average of all projected vectors is then used as input for the log-linear

classifier W C itself. The context is determined by awindow size: a window of size

t will correspond to selecting the t tokens before the target and the t tokens after

it. In a more formal and succinct manner, we can describe the entire algorithm

of CBOW as:

h⃗i = 1

2t

(
i−1∑

j=i−1−t
W P · w⃗ j +

i+1+t∑
j=i+1

W P · w⃗ j

)

ŷi = softmax
(
W C · h⃗i

)

It is worth noting that traditionally the classifier W C only serves for training,

and is discarded afterwards.

In terms of actual training, the use of a log-classifier entails that the objective

to optimize is a log-likelihood maximization. More precisely, the training objec-

tive is to maximize the log-likelihood of the probability of predicting the target

word based on its context, log p(wt |c). The probability distribution is explicitly
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derived by the softmax function:

ŷ = softmax
(
W C · h⃗

)
=

exp
(
W C

j · h⃗
)

∑
j ′

exp
(
W C

j ′ · h⃗
) (1.6)

where W C
j is the jth column vector of the matrix W C . The components of ŷ sum

to 1, and therefore define a probability distribution for each element of the vo-

cabulary; in other words, ŷ is a vector of dimension V . In practice, as maximizing

the probability of predicting the current word knowing the context is equivalent

to minimizing the negative log-likelihood for that word, models are trained to

minimize the negative log-likelihood instead:

L (ŷ , wi ) =− log ŷi (1.7)

The skip-gram architecture, as we have already pointed out, can be thought

of as a “reversed” CBOW architecture, since the aim is to predict the context

based on the target word. The parameters used in skip-gram models and their

shape are therefore very reminiscent of what we see in CBOW models. To train a

skip-gram model over a datapoint, we first project the target word using a linear

projection W P of shape [V ×d ], and use a classifier to predict each word in the

context W C of shape [d ×V ]. As with CBOW, we derive vectors from the W P

matrix; likewise, a probability distribution is inferred by applying a softmax after
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the classifier’s output. Or more formally:

h⃗i =W P · w⃗i

ŷi = softmax
(
W C · h⃗i

)
(1.8)

where w⃗i is the one-hot vector for the target word wi .

The next major difference between skip-gram and CBOW is to be found in

their loss functions. As all context words are to be predicted using the same input

word, we aim to maximize the joint probability of all context words knowing the

target word:

p(wi−t , . . . , wi+t |wi )

In practice, we estimate this probability using the chain rule:

i−1∏
j=i−t

p(w j |wi )×
i+t∏

j=i+1
p(w j |wi )

For efficiency considerations, it is more efficient to perform these computations

in log-space, as we can transform the product into a sum by maximizing a log-

likelihood instead. Hence the model is trained by minimizing the joint negative

log-likelihood of each context word:

L (ŷ ,〈wi−t , . . . , wi+t 〉) =−
(

i−1∑
j=i−t

log ŷ j +
i+t∑

j=i+1
log ŷ j

)
(1.9)

Mikolov, K. Chen, et al. (2013) observe that obtaining the multinomial distri-

bution of the skip-gram model is computationally inefficient. One may instead
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consider training the classifier to distinguish whether a given context is attested

for a given word. Goldberg and Levy (2014) provide a formal approach which

we retrace here. Let D+ the set of all pairs of words w and contexts c that oc-

curs in our dataset, and let D− a set of negative examples (also pairs of words

and contexts), such that D+∩D− =;, i.e., that no negative example pair of word

and context is attested in our base dataset. Let p(X = 1|w,c) the probability that

the pair 〈w, c〉 is present in the base dataset D+. We can redefine the classifier’s

objective as maximizing:

p(X = 1|w,c) ∀〈w, c〉 ∈ D+

and minimizing:

p(X = 1|w,c) ∀〈w, c〉 ∈ D−

As we are dealing with a binomial variable X , minimizing p(X = 1|w,c) is equiv-

alent to maximizing 1−p(X = 1|w,c) . The objective can therefore be re-framed

as maximizing:

∏
〈w, c〉∈D+

p(X = 1|w,c)
∏

〈w, c〉∈D−

(
1−p(X = 1|w,c)

)

To perform this re-framing, one needs to amend the network architecture.

Unlike previously, an explicit probability distribution over the full vocabulary is

no longer required; hence the computationally costly softmax function can be

replaced with a sigmoid function:

σ(y) = 1

1+exp(−y)
(1.10)
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Since 1−σ(y) =σ(−y), we can compute the score for 〈w j , wi 〉 simply using:

σ
(
W C

j · (W P wi
))

for pairs drawn from D+, and:

σ
(
−W C

j · (W P wi
))

for pairs drawn from D−. To limit computation complexity, the latter term is

estimated using only k negative examples. This yields the following loss function

to minimize:

− log p(w j |wi ) =− logσ
(
W C

j · (W P wi
))+ ∑

wn∈N
σ

(−W C
n · (W P wi

))
(1.11)

where N = {〈wi ,cm〉, · · · 〈wi ,cm+k〉}; N ⊂ D− is a set of k negative examples sam-

pled for wi .

As an alternative to negative sampling, Mikolov, K. Chen, et al. (2013) in-

troduce a hierarchical softmax which encodes probabilities using a binary tree

structure. Leaves correspond to words in the vocabulary, and each node n stores

the relative probabilities of its children using a dedicated weight vector v⃗n . More

precisely, let P (wi ) = {n0, . . . ,nwi } be the path from the root node n0 to the leaf

node nwi for word wi . One can redefine the output probability as

p(w j |h⃗i ) = ∏
n∈P (w j )

σ
(
v⃗n · h⃗i

)
(1.12)
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Lastly, Mikolov, K. Chen, et al. (2013) also proposed to avoid issues arising

with class imbalance (also known as “Zipf’s law”) by dropping words from the

training set based on their frequency. They define the subsampling rate:

P (wi ) = 1−
√

t

f (wi )
(1.13)

where t is a “temperature” hyperparameter (typically 10−5) and f (w) is the fre-

quency of word w . This subsampling rate defines the probability that any token

will be discarded based on the frequency of its type wi .

1.2.2 The BERT model

We now turn to a second embedding architecture, namely BERT.

BERT is a deep neural network based on the Transformer architecture (Vaswani

et al., 2017).1 Formally, a Transformer model is a stack of sublayers. Each sub-

layer is centered around a specific sublayer function. Sublayer functions can

either be feed-forward sub-modules or multi-head attention sub-modules.

The former are perceptrons of the form:

y⃗ =W F
O ·

(
Φ

(
W F

I · x⃗ +bF
I

))
+bF

O (1.14)

where Φ is some non-linear function such as ReLU or GELU (Hendrycks and

Gimpel, 2016). The input and output dimensions are equal, whereas the inner

layer dimension is larger.

1The original architecture of Vaswani et al. (2017) is a sequence-to-sequence model, compris-
ing both an encoder and a decoder. In practice, a “Transformer” architecture is often understood
as the encoder from the sequence-to-sequence architecture of Vaswani et al. (2017), and it is this
acception we adopt throughout this dissertation.
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Multi-head attention mechanisms (MHA) are concatenations of individual

scaled-dot attention heads:

y⃗t =W H
O ·

(⊕
h

Ah
t

)
+bH

O (1.15)

Ah =softmax

(
Q ·K T√

dv

)
·

W h
V ·


x⃗1

...

x⃗n

+bh
V

 (1.16)

The attention weights ah
t are computed by means of a softmax dot-product be-

tween keys K and queries Q projections of all the input layer representations

for the full sequence. In other words, the product softmax(Q ·K T /
√

dv ) can be

thought of as weights in an average over the transformations W h
V ·

[
x⃗1
...

x⃗n

]
+bh

V . As

such, we can provide a step-by-step derivation of multi-head attention outputs

as a weighted sum of value vectors. Here, we heavily rely on the presentation

by Kobayashi et al. (2020).

For simplicity, let:

V =

W h
V


x⃗1

...

x⃗n

+bh
V


W = softmax

(
Q ·K T√

dv

)

with ⊕ representing vector concatenation. The attention weights W define a

single matrix of shape [SQ×SV ], where SQ is the number of query vectors and SV
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is the number of vectors to which we pay attention.2 Each cell of this W matrix

corresponds to one attention weight, i.e., the similarity between a query vector

and a key vector, computed as a scaled dot-product smoothed with a softmax

softmax
(
〈Qq ·Kk〉/

√
dv

)
. Since by definition of the matrix product:

(M ·N )i , j =
∑
k

Mi ,k ×Nk, j

we get that the cell at row q and column c of the attention head output Ah
q,c will

be equal to the weighted sum of the c th component of the k linearly mapped

vectors:

Ah
q,c =

∑
k

Wq,k ×Vk,c

Hence the q th row of the attention head output matrix Ah can be rewritten as a

weighted sum of linearly mapped vectors:

Ah
q =∑

k
Wq,k ×Vk

To arrive at our unbiased output H⃗ l and the corresponding bias term bH l , note

that due to the softmax, the attention weights sum to one:
∑

k Wq,k = 1, hence we

can rewrite the weighted sum Ah
q to extract the head specific bias:

Ah
q =∑

k
Wq,k ×

(
W h

V x⃗k +bh
V

)
=∑

k

(
Wq,k ×W h

V x⃗k

)
+∑

k
Wq,k ×bh

V

= bh
V +∑

k
Wq,k ×W h

V x⃗k

2For BERT and self-attention in general, SQ = SV .
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From there on, one can pass the head bias bh
V and the weighted average

∑
k Wq,k×

W h
V x⃗k through the output projection matrix of the MHA module W Hl

O to match

the expressions above.

Going back to the definition of a Transformer architecture, after each sub-

layer function S (either MHA or feed-forward), a residual connection (i.e., adding

the input to the output) and a layer normalization (Ba et al., 2016, henceforth

“LayerNorm”) are applied:

y⃗ = γλ¯
(S (⃗x)+ x⃗)− µ⃗λ

σλ
+βλ (1.17)

with ¯ representing element-wise multiplication. The gain γλ and bias βλ cor-

respond to learned parameters. µ⃗λ = µλ · 1⃗ is the vector 1⃗ = (1 . . . 1) scaled by

the mean component value µλ of the input vector (⃗x)+ x⃗, and σλ is the standard

deviation of the component values of the input vector.

Two sublayers are stacked into a single Transformer layer : the first corre-

sponds to a multi-head attention, and the second to a feed-forward. To kick-start

the propagation through the layers, a static representation is fed into the first

layer. This initial input corresponds to the sum of a simple word lookup static

embedding and a sinusoidal positional encoding vector, where the components

are defined using the sine and cosine functions:

p(t )2i = sin

(
t

100002i /d

)
p(t )2i+1 = cos

(
t

100002i /d

)
(1.18)

where d is a hyperparameter defining the output and hidden representations
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vector sizes, and t corresponds to the timestep, i.e., the index of the token in the

input. These positional encodings are introduced so as to inform Transformer

models of word order, as it would otherwise not be retrievable from the set of

vectors they receive as inputs. Note that the use of parameters dedicated to spe-

cific positions entails that Transformers are in principle incapable of modeling

sentences past a certain length. In variants such as the BERT model of Devlin

et al. (2019), there are additional terms to this static input to encode the segment

the current token belongs to, as well as an additional LayerNorm before the very

first sublayer. Other variants also encode positions by means of an offset in the

computation of attention weights (C.-Z. A. Huang et al., 2018; P. Shaw et al.,

2018).

Lastly, Transformer models generally use word-pieces, rather than raw word

types, to convert text into lookup indices in an embedding table. Word-pieces

correspond to the output of sub-word tokenization algorithms, i.e., algorithms

that chunk sequences of texts in tokens that do not correspond to word types.

One of the simplest such algorithms is Byte Pair Encoding (BPE). To initialize

it, we define a set of known pieces P as the set of all characters3 attested in the

corpus we wish to tokenize. We then repeat the following three instructions until

the set P reaches some predetermined size (often 30 000 word-pieces):

1. tokenize the full dataset, using the largest word pieces available from the

current set of tokens P

2. find the most frequent pair of word-pieces 〈m ∈ P,n ∈ P〉 to appear sequen-

tially in the current tokenized dataset

3Or bytes, in some variants.
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3. add the merged pair mn to the current set of word pieces: P ← P ∪ {mn}

As such, the BPE algorithm preferentially provides distinct token representations

for frequent sequences of characters: hence common words (“is”, “the”, “that”,

etc.) will receive distinct token representations that match their word types,

whereas commonplace orthographic realizations of morphological exponents (“-

s”, “-ing”, etc.) will likely correspond to sub-word token representations.

Aside from its Transformer architecture, the BERT model of Devlin et al.

(2019) also distinguished itself by its novel training objective. BERT is trained to

solve two tasks simultaneously: a word-level objective called “masked language

model” (MLM) and sentence-level objective dubbed “next sentence prediction”

(NSP).

The MLM word-level objective for BERT is tied to earlier experiments from

psychology, and especially to a methodology referred to as the Cloze test (Tay-

lor, 1953). This experimental protocol, also known as “Gap-Fill,” “Cloze deletion

test,” “Fill in the blanks” and by many other names, consists in blanking out a

token (or group of tokens) in a given sentence and requiring subjects to fill in

said blanks with plausible words. This task has mostly been used as a learning

exercise to assess reading proficiency and mastery of grammar. BERT is a Trans-

former architecture trained to perform well on the Cloze test—the intuition being

that parameters able to correctly solve a reading exercise are likely to be decent

textual representations. To reformulate the Cloze test as the MLM training ob-

jective, it is framed as a prediction task, where the model must correctly predict

the token that has been blanked out. As such, the prediction can be done with a

simple log-linear classifier, defined as a softmax over a vocabulary projection to

which the embedding of the blanked-out item is fed. This process is quite similar
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to what we described for word2vec in the previous section, which is why we do

not detail the prediction itself further.

Concretely, Devlin et al. (2019) devise the following procedure. The model

first randomly selects 15% of the word-pieces, which will be fed to the softmax

prediction layer. 80% of the randomly selected items (12% of the word-pieces

in total) will be replaced by a special token [MASK], representing a blank to be

filled. 10% of the randomly selected word-pieces (1.5%) are replaced by a word at

random; this is done to mitigate the mismatch between pre-training and usage

of the model further down the line, since the special token [MASK] will likely

never be encountered during downstream applications or fine-tuning. Lastly,

10% of the randomly selected word-pieces (1.5%) are left as is, in order to “bias

the representation towards the actual observed word.”

The second training objective of BERT, NSP, consists in predicting whether a

sentence immediately follows another in the corpus. This objective entails that

BERT can only be trained on a corpus of coherent documents, and not on cor-

pora composed of shuffled sentences, and that inputs to the BERT model during

training are comprised of two sentences. This second objective has been said to

be helpful in Question Answering (QA) and Natural Language Inference (NLI)

downstream tasks.

The NSP objective can be naturally implemented as a binary classification,

using paired sentences 〈S A,SB 〉 as inputs. The model needs to discriminate cases

where S A is immediately followed by SB in the training corpus from cases where

S A and SB were randomly selected. This can be implemented as a sigmoid-based

classifier quite similar to the negative-sampling reformulation we discussed ear-

lier for word2vec. In practice, sentences are presented as a contiguous span of
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tokens to the system, using two special tokens [CLS] and [SEP] as separators.

More concretely, if S A = w A
1 , ..., w A

n and SB = w B
1 , ..., w B

m , the system will receive

the following sequence as input:

[CLS], w A
1 , . . . , w A

n , [SEP], w B
1 , . . . , w B

m , [SEP]

To further facilitate the model’s ability to distinguish two sentences, learned seg-

ment encodings for S A and SB are added respectively to the two sentences in-

volved. As a concrete example, if the initial training example was “My dog barks.

It is a pooch.,” the actual input would correspond to the following sequence of

vectors:

⃗[CLS]+ ⃗p(0)+ ⃗segA, M⃗ y + ⃗p(1)+ ⃗segA,

⃗dog + ⃗p(2)+ ⃗segA, ⃗bar ks + ⃗p(3)+ ⃗segA,

.⃗+ ⃗p(4)+ ⃗segA, ⃗[SEP]+ ⃗p(5)+ ⃗segA,

I⃗ t + ⃗p(6)+ ⃗segB , i⃗ s + ⃗p(7)+ ⃗segB ,

a⃗ + ⃗p(8)+ ⃗segB , ⃗pooch + ⃗p(9)+ ⃗segB ,

.⃗+ ⃗p(10)+ ⃗segB , ⃗[SEP]+ ⃗p(11)+ ⃗segB

where p⃗(i ) are the positional encodings, and ⃗segA and ⃗segB are the segment

encodings. Lastly, although not specified in the paper, the sentence prediction

only uses the [CLS] token for its prediction.
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1.2.3 The ELECTRA model

The third and last architecture we describe has not encountered the same degree

of fame as BERT and word2vec. It nonetheless both combines some of the fea-

tures we have discussed above as well as introduced a number of design choices

that starkly contrast with the two architectures we have just reviewed.

Conceptually, ELECTRA is a Transformer-based contextual embedding model

with an architecture inspired from GANs (Goodfellow et al., 2014). A GAN con-

sists in two modules that are pitted one against the other. The Discriminator

module (a.k.a the “Critic”) is trained on a binary classification task: distinguish

real datapoints, attested in some training set, from fake ones. These fake data-

points are those created by the Generator module (also called the “Actor”).4 The

losses of these two modules are adversarial: maximizing the loss of either mod-

ule entails minimizing the loss of the other. More formally, the objective for the

discriminator D and the generator D can be described as:

min
θG

max
θD

V (GθG ,DθD ) = Ex∼I
(
DθD (x)

)+Ex∼R
(
DθD

(
GθG (z)

))
(1.19)

where I is the input dataset, G and D refer to the Generator and Discriminator

modules, respectively parameterized with θG and θD , and R is a random variable

(generally multivariate standard Gaussian) that guarantees the Generator is not

deterministic and can produce multiple fake datapoints.

This objective essentially relies on each module forcing the other to improve

itself. At the beginning of the training, the Generator’s outputs are more or less

4Hence why GANs are also called “Actor–Critic models.”
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random, hence the Discriminator can easily learn to distinguish a fake output

GθG (z) from an actual datapoint x, which leads the entire GAN to minimize the

first term of the objective function, Ex∼I
(
DθD (x)

)
. Once the Discriminator is able

to discriminate the Generator’s output consistently, the only way to improve on

the objective function is to maximize the second term Ex∼R
(
DθD

(
GθG (z)

))
, i.e., to

have the Generator produce more plausible outputs that are more likely to fool

the Discriminator. As the Generator learns to produce more convincing outputs,

the GAN is incentivized to also update the Discriminator, so that it remains able

to distinguish real from fake datapoints despite the fake datapoints looking more

similar to the real ones. In all, this leads to an “arms race” where both modules

are forced to reach higher performances on their respective sub-objectives.

The practical application of this GAN architecture is that the Generator is

trained to transform some random noise z ∼ R into likely datapoints. At their

inception, GANs were presented as an algorithm to generate images resembling

those listed in the input dataset I . The objective in Equation (1.19) is however

more broadly applicable, and only requires that some gradient can be computed

from the Discriminator and passed on to the Generator. In practice, this can be

done by having the Generator produce continuous outputs, or by using a Rein-

forcement Learning algorithm. As such, GANs have also been applied to generate

text (Gulrajani et al., 2017; Nie et al., 2019, e.g.).

The Generator and Discriminator modules in ELECTRA are both implemented

as Transformers. Unlike classical GANs, the Generator in ELECTRA is trained

on a simplified MLM objective rather than on a noise-transformation task as we

saw above. The Discriminator, on the other hand, has to distinguish tokens that

have been unmasked by the generator using a sigmoid-based classifier, much like
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what we saw with the negative sampling in word2vec. As such, ELECTRA is not

exactly a GAN. The authors’ reasoning is that while methods to propagate gradi-

ent through a discrete sampling exist, they tend to be noisy. As such, they may

under-perform in the case of a purely adversarial setup, where it is crucial that

the Generator correctly factors in the response of the Discriminator. Note that

the objective of the Discriminator nonetheless depends on not being fooled by

the Generator: any unmasked token that is not flagged as such penalizes the Dis-

criminator. As such, a similar dynamic can be found in ELECTRA and in GANs:

at the beginning of the training, the Discriminator’s task is relatively easy as

the Generator’s unmasking outputs are more or less random, and as the Gener-

ator reaches higher performance, it incentivizes the Discriminator to do as well.

The key difference is that the Generator gets its gradient directly from the input

dataset rather than through the generator.

The ELECTRA architecture distinguishes itself from most applications of GANs

in that its main by-product is intended to be the Discriminator. In practice, the

Generator is much smaller than the Discriminator, in terms of number of param-

eters. Another key point to note is that the Discriminator’s objective, classifying

tokens according to whether or not they have been filled in by the Generator, is

conceptually very similar to the negative sampling performed in some word2vec

models. In essence, the task at hand is to determine whether or not the input

word-type is attested in the given context.5 Given that the Discriminator em-

beddings are those intended for use on downstream applications, it makes sense

to consider ELECTRA as an approach to perform negative sampling with a BERT-

5Consistent with this analysis, tokens correctly retrieved by the Generator—i.e., tokens pro-
duced by the Generator that correspond to the actual input token prior to masking—are associated
with the same label as tokens that were not masked in the first place.
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like model.

1.2.4 Comparing the three architectures

Our brief technical review of the DSM architectures of word2vec, BERT and

ELECTRA has stressed these three models are formally quite distinct from one

another.

At one end of the spectrum, word2vec is a shallow neural network, that can

be thought of as a 2-layer perceptron. Most of the technical baggage associated

with it consists in computational optimizations: how to avoid using the softmax

function, for instance, gave rise to two distinct strategies: negative sampling and

hierarchical softmax.

BERT’s approach is the opposite. It employs an impressive number of pa-

rameters and sub-modules, computes many hidden representations, and relies

on two distinct gradient computation mechanisms for its training. If word2vec

is a lightweight DSM, then the design of BERT is very much geared towards

making its performances on downstream application as impressive as possible.

In particular, the finetuning approach suggested by Devlin et al. (2019) entails

that downstream applications benefit from the numerous weight parameters of

the model.

At the other end of the spectrum, we find ELECTRA. This model is literally

twice as complex as BERT: in terms of layout, it contains two stacks of Trans-

former layers, instead of one. It relies on a complex training dynamic, pitting two

sub-modules one against the other. Nonetheless, despite its even greater com-

plexity, the ELECTRA architecture employs concepts similar to those we find in



Distributional Semantics as a Lexical Theory 44

the static word2vec architectures, although the means it uses vastly differ.

In all, these three DSMs illustrate the variety of approaches that can be con-

strued as implementations of distributional semantics. One therefore needs to

ponder whether such distinct models should be conceived as similar linguistic

objects. Lastly, it is worth pointing out that the three models we have consid-

ered here also have a number of similarities: all use gradient descent to estimate

their parameters. The burning issue of the heterogeneity of distributional se-

mantics models is therefore even more significant if we consider models derived

from completely distinct approaches, such as SVD-based models like the Latent

Semantic Analysis of Landauer and Dumais (1997).

1.3 Heterogeneity of Distributional Semantics Mod-

els Evaluation Protocols

The chronological survey conducted in Section 1.1 and the characterization of

three DSM architectures in Section 1.2 both highlighted how the models that

are considered as pertaining to distributional semantics are numerous and var-

ied. This stems from the relatively flexible theoretical ground of these models:

although they are historically connected, there are very few testable proposi-

tions we can derive from the general formulation of the theoretical framework

of Harris (1954). In fact, although a clear parallel is well established between

static embeddings (e.g., word2vec) and the theory of distributional semantics

(e.g., see the overviews by Lenci (2018) or Boleda (2020)), the same has not been

held clearly for contextual embeddings. For instance Westera and Boleda (2019)
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explicitly consider only “context-invariant” representations as distributional se-

mantics. This may be because of the original remark by Peters et al. (2018) that

contextual embeddings are “functions of the entire input sentence”—whereas

static embeddings map words to vectors. Intuitively, the setups required to han-

dle static and contextual embeddings differ, and thus it is legitimate to consider

them as distinct, though related, theoretical constructs. This discrepancy war-

rants that we study more precisely how different these models are in practice,

if we wish to understand the characteristics of distributional semantics as a se-

mantic theory.

Different types of investigative methodology have been proposed in the lit-

erature: statistical studies on the structure of the vector space (see Section 1.3.1),

classifier probe-based studies (see Section 1.3.2), or even attention visualization

techniques (see Section 1.3.3). While we will focus primarily on these three

groups of methodologies, other approaches exist: one such example would be

the comparisons of model variants. For instance, Peters et al. (2018) analyzed

through an extensive ablation study of ELMo what information is captured by

each layer of their architecture. Likewise, Devlin et al. (2019) discussed what part

of their BERT architecture is critical to the performances they obtained, compar-

ing pre-training objectives, number of layers and training duration. A similar

trend was pursued by Mikolov, K. Chen, et al. (2013), as they compared the time

complexities of various word embedding algorithms. Another related method-

ological approach consists in benchmarking: for instance, BERT-based models

have significantly increased state-of-the-art over the GLUE benchmark for nat-

ural language understanding (A. Wang et al., 2019) and most of the best scoring

models for this benchmark include or elaborate on BERT. Such methodologies
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are not especially tied to word embeddings, and have been applied in numerous

neural network applications besides embedding architectures. We therefore set

them aside and focus on more directly relevant experimental protocols.

1.3.1 Vector Space Structure

Broadly speaking, the literature on distributional semantics has put forth and

discussed many mathematical properties of embeddings. An important element

to take into account here is the work of Levy and Goldberg (2014b), which high-

lights that word vector spaces such as those derived from word2vec are equiva-

lent to those we can infer from count-based matrices. We have briefly discussed

this work in Section 1.1.4: the loss function of the word2vec skip-gram architec-

ture with negative sampling was shown to implicitly factorize a PMI-weighted

occurrence count matrix. In detail, their argument goes as follows: the word2vec

architecture (cf. Section 1.2.1) is comprised of two matrices W P and W C , from

which word and context representations are sampled. It therefore makes sense

to consider what their product M = W P ·W C corresponds to, i.e., what matrix

M they implicitly factorize. Given that each cell of Mi j corresponds to the dot

product between a word representation w⃗i and a context representation c⃗ j , one

can consider what constraints are placed by the loss being optimized on this dot

product term w⃗i · c⃗ j . They do so by comparing the partial derivative of the loss

function with respect to this dot product and studying how it can be made to

equate 0. They arrive at the reformulation:

w⃗i · c⃗ j = PMI(wi ,c j )− logk (1.20)
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Figure 1.2: Linguistic Regularity in distributional vector spaces

where k is the number of negative examples for the negative sampling, and

PMI(wi ,c j ) is the pointwise mutual information between a word wi and a con-

text c j . As we noted above in our chronological overview, such weighting, or

variants thereof such as the positive PMI, were until word2vec rather frequent

in the NLP community, particularly in studies focusing on word similarity mod-

eling. This entails that there is a strong connection between the vector spaces

described by models similar to word2vec and those described by count-based

methods.

One trait of traditional DSMs that is very often encountered, discussed and

exploited in the literature is the fact that the relative positions of embeddings

are not random. Early vector space models, by design, required that word with

similar meanings lie near one another, as in the works of Landauer and Dumais

(1997) or Bengio et al. (2003); as a consequence, regions of the vectors space are

expected to describe coherent semantic fields.

Vectors encoding contrasts between words are furthermore expected to be
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coherent, as shown by Mikolov, Yih, et al. (2013). A visual illustration of this

fact is depicted in Figure 1.2. The idea is that word vectors should be a lin-

ear composition of their relevant semantic aspects: in short, we expect that

the vectors for “king”, “queen”, “prince” and “princess” are such that ⃗pr i ncess ≈
⃗ki ng − ⃗queen + ⃗pr i nce . This core characteristic has led to the rise of analogy

as an evaluation methodology for word embeddings and distributional semantic

models. For instance, Gladkova et al. (2016) have proposed a balanced analogy

dataset called BATS. This dataset is composed of four general categories of analo-

gies (inflectional morphology, derivational morphology, lexicographic semantics

and encyclopedic semantics), each of which contains 10 different specific ana-

logical relations (e.g., noun singular–plural). Each relation contains 50 different

pairs; any two pairs from a given relation can therefore be used as an evaluation

datapoint.

Datasets like that of Gladkova et al. (2016) have contributed to establish-

ing formal analogy, and vector offsets by extension, as a popular method for

investigating distributional semantics model. Studies have therefore set to ex-

ploit this property for different goals. We can quote, for instance, the work

of Bolukbasi et al. (2016), which looks into whether linear offsets that encode

social stereotypes can be found in word2vec models. Their research stresses

that in the widely distributed Google-News word2vec model, the difference be-

tween m⃗an and ⃗computer _pr og r ammer is very close to the difference be-

tween ⃗woman and ⃗homemaker . In other words, social stereotypes—in partic-

ular gender biases—are also encoded as linear offsets in word embedding models.

Bolukbasi et al. (2016) also attempt to identify subspaces: not only offsets, but

hyperplanes that would encode specific unwanted contrasts.
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Another example of a work using vector offsets would be Bonami and Pa-

perno (2018). These authors reason that, if semantic differences are encoded in

vector offsets, it makes sense to assume that the systematicity of said differences

should impact the systematicity of this offset—relations that are more system-

atic, such as the alternation between bare English verbs and their gerunds (sing–

singing or dance–dancing), should be expressed more consistently than relations

which are less systematic, such as that between a verb and an associated loca-

tion noun (hospitalize–hospital or dine–diner). On the other hand, morphologists

such as Stump (1998) have stressed that derivational morphology is less seman-

tically systematic than inflectional morphology. That is to say, in the case of

inflection (e.g., sing–singing), we should expect the offsets between related vec-

tors to vary less; on the other hand the less systematical relations in derivational

morphology (e.g., dine–diner) should lead to a wider variation of vector offsets.

The expectation that semantic contrasts should be reflected in vector offsets

can be re-framed as a problem of linear dependence, as was done by Arora et al.

(2016). The general idea underlying this work is that each word type vector w⃗

computed by neural models can be expressed as a linear combination of vectors

representing its senses σw1 . . .σwn , or more formally: w⃗ ≈α1 ·σ⃗w1+·· ·+αn ·σ⃗wn .

Their argument focuses on log-linear architectures, like word2vec (without neg-

ative sampling) or GloVe. They start with the assumption that the context vector

encodes a probability over the whole vocabulary describing which words are

likely to occur. By applying Bayes’ rule and plugging the equations for a log-

linear classifier, Arora et al. (2016) identify a linear transformation between con-

text words and target word. This linear assumption justifies their treatment of

word type vectors as linearly decomposable along any partition of their contexts
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of occurrences, as summation is commutative with respect to linear transforma-

tion. In other words, one can partition contexts of a word w in various sets,

accord to the sense of w they describe; each of these sets of contexts will corre-

sponds to a linear factor of the total embedding w⃗ .

As a consequence, one can expect that there exist a set of basis vectors that

describe the entire word embedding space, i.e., any word2vec-like word embed-

ding can be expressed by a weighted sum of these basis vectors. This further-

more entails that vectors can be expressed using sparse coding techniques, as

the weights of the weighted sums of basis vectors should suffice to describe any

embedding. Hence, as nothing prevents some or most of these weights to be set

to zero, there is an equivalent sparse vector that encodes the same information

as the initial word embedding. Interestingly, as the basis vectors are constructed

from groups of contexts, one can expect that the components of a sparse repre-

sentation should correspond to individual senses of the initial word represented

by the embedding.

It is worth noting that to arrive at this conclusion, Arora et al. (2016) make a

number of non-trivial assumptions. They assume that the softmax denominator

of a log-classifier can be expressed as a product of the context vector’s norm and

a constant factor; they inherit the commonly held “bag-of-word” independence

assumption that words in a sequence are probabilistically independent from one

another; lastly, as noted previously, the demonstration only holds for a specific

type of word-embedding architectures. Also of note is that the method is not

unique to word2vec models, for instance, a related approach has been suggested

for the Transformer architectures by Yun et al. (2021).

More broadly, the assumption that linear structure of vector spaces is mean-
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ingful has however been subjected to criticism by numerous authors, with scrutiny

mostly focusing on the linear offset approach of Mikolov, Yih, et al. (2013). For

instance, Linzen (2016) notes how the terms in an analogy relation tend to be

very close to one another—so much so that the three cue terms in an analogy

(e.g., king, queen and prince in the analogy king : prince :: queen : x), if not re-

moved from the potential answers, are likely to be retrieved by the algorithm.

Similar concerns are raised by Rogers, Drozd, et al. (2017), who point out that re-

sults are generally impacted by the distance of the target vector: further items are

much less likely to be retrieved. An equivalent conclusion is reached by Schluter

(2018): she furthers previous remarks on the non-inclusion of cue terms in po-

tential targets, and points how normalizing word embeddings before performing

vector addition distorts results.

It should be noted that most of these studies focus on word type seman-

tic properties: hence they are not directly applicable to contextual embedding

models. Some approaches have nonetheless been proposed. In particular, Vulić

et al. (2020) propose a comprehensive test of pre-trained BERT models on six

languages (English, German, Russian, Finnish, Chinese, Turkish) and five lexi-

cal semantic tasks: lexical semantic similarity (where they measure the corre-

lation between embedding similarity and human judgments of similarity), word

analogy using BATS (Gladkova et al., 2016), bilingual lexicon induction (where a

mapping is learned across languages), cross-lingual information retrieval (where

the cross-lingual mapping is tested on a document-level IR task) and lexical re-

lation prediction (where they attempt to predict the semantic relation—e.g., syn-

onymy, antonymy, etc.—between two words, based on their embeddings). They

conclude that such models can perform well on such static tasks, sometimes out-
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performing baseline models, but that results are highly dependent on the exact

methodology employed. Such approaches to applying word type intrinsic evalu-

ation procedures to contextual embeddings are overall uncommon in the present

NLP research landscape.

1.3.2 Classifier Probes

Overall, despite the importance of the literature on the relation between semantic

spaces and word embeddings, whether contextual embeddings depict a coherent

semantic space on their own has been left mostly unexplored. While a trend

of research has focused on characteristics of the vector space described by the

embeddings, noting how many Transformer-based models tend to be anisotropic

(Cai et al., 2021, e.g.), the focus here is chiefly on the geometry.

Instead, a prominent methodology to investigate attention-based networks

and contextual embeddings is that of “probes”: simple learned models such as

classifiers designed to extract information from the embeddings. The general

idea has been traced back to Linzen et al. (2016). In this work, the authors are

interested in finding out whether LSTM-based language models are able to learn

number agreement between subject and verb. They focus on whether they are

perturbed by attractors.6 To that end, Linzen et al. (2016) learn a classifier to

predict the number of the verb based on the corresponding LSTM state, and vary

experimental conditions by selecting sentences with different numbers of attrac-

tors.

The idea to train a simpler model to investigate the contents of a more com-

6Nouns in a different number occurring between the subject noun and its corresponding verb;
also known as “distractors” in the literature.
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plex one caught on. Peters et al. (2018), when presenting their ELMo embeddings,

also took this framework as an opportunity to showcase the performances and

capabilities of their architecture. They address multiple tasks, from Question An-

swering to Semantic Role Labeling and to Natural Language Inference, and high-

light how different representations from their model—either the sole embedding,

or that embedding with the addition of BiLSTM hidden representations—lead to

different performances on the tasks.

This methodology has been criticized as potentially conflicting with the in-

tended purpose of studying the representations themselves. Wieting and Kiela

(2019) even stress how probes can achieve high performance in spite of the input

representations being probed: the margin between probing randomly initialized

neural networks and probing trained models can be rather thin. Wieting and

Kiela link this to a question of inherent model expressivity—i.e., more complex

models ought to produce more complex outputs, not by virtue of their output but

by virtue of their more complex structure. Hence expressivity would follow the

number of components in hidden representations, as outlined by Cover (1965).

To overcome this, Hewitt and Liang (2019) propose an interesting take on this

problem: their core argument is that probe expressivity ought to be taken into

account when defining a task. To neutralize the expressivity of a given probe,

they compare the results obtained by the probe on the task of interest, and on

a slight reformulation where target labels are randomly permuted. This allowed

Hewitt and Liang to quantify a baseline expectation of how rich the outputs of a

model are simply by virtue of its inherent complexity.
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1.3.3 Attention Head Analysis

While classifiers are technically broadly applicable to any vector representation,

they have gained traction specifically in studying Transformer-based represen-

tations. This field in question is now known as “BERTology” studies; Rogers,

Kovaleva, et al. (2020) have written a comprehensive introduction to some of the

main results in this line of research. One reason why classifiers are so useful

to the BERTologist lie in that they are well-suited to study Transformers in par-

ticular: they consist in easily learned models that can gather information from

specific parts of the neural network under scrutiny. Given the very high number

of attention heads in Transformers, classifier probes allow researchers to run di-

agnostic probing tasks on all heads, and identify individual attention heads that

behave differently from the others.

This wide-spread use of probes can be thought of as a consequence of the

popularity of attention mechanisms. Works interested in analyzing the behavior

of attention heads (Raganato and Tiedemann, 2018; Hewitt and Manning, 2019;

Clark, Khandelwal, et al., 2019; Coenen et al., 2019; Jawahar et al., 2019, a.o.)

have each introduced specific procedures. General trends and findings nonethe-

less emerge from these different methodologies. Researchers frequently focus

on the attention weights to determine which value vector is the most dominant

in a head’s output. A consequent body of research also reports that syntactic

structures can be derived from these attention weights.

Recent research has however questioned the pertinence of these attention-

based analyses. Serrano and Smith (2019) argues that attention weights can be

meaningless on their own and should instead be studied along the directionality
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of the value embeddings (to which the models pays attention) as well as the

task at hand. Brunner et al. (2019) highlight how the down-projection before

each attention head limits the ability of a model to keep track of long sequences,

and stress that self-attention weight distributions are not directly interpretable.

Even more problematic, Pruthi et al. (2020) highlight that attention heads can be

trained to be deceptive—i.e., assign low weights to a set of “impermissible tokens”

while still relying on these features for prediction.

Overall, analyses of attention heads tend to focus more on the inner workings

of the networks than on their adequacy with theories of meaning. A very clear

example of this trend is exhibited by works such as Voita et al. (2019) or Michel et

al. (2019), which look into which attention heads can be removed without being

detrimental to the overall performances of the network.

All in all, what this review of DSM evaluation protocols reveals is that the

variety of architectures that can be framed as DSM translates into a variation

of how they are investigated. Testing word token contextual embeddings on

word type benchmarks is a nascent field of inquiry; and methodologies developed

to study the hidden representations of contextual embeddings are often tied to

specific characteristics of the Transformer architecture, such as the existence of

a multi-head attention mechanism in the model.

1.4 Vector Size and Concentration

One aspect that we have yet to discuss is that modern DSMs are invariably im-

plemented as vector spaces, but that the exact dimensionality of the vector space

is left as an hyperparameter to set. Dimensionality is perhaps one of the best
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studied aspects of vector spaces in machine-learning, as it has an immediate re-

lationship with the expressivity of a model: hidden representations with more

dimensions are in theory able to make finer distinctions. In the case of distribu-

tional representations and word embeddings, it stands to reason that this hyper-

parameter is a crucial factor to set.

There is worth in considering the effects of vector size on some well known

metrics, so as to develop an intuition of the sort effect that stems from vary-

ing the dimensionality of embeddings. We construct a small-scale experiment to

review the effects of vector size on vector metrics. We will focus our observa-

tions on a pre-trained embedding skip-gram model available on the NLPL vector

repository7. In order to define our baseline expectations, we will also consider

standard Gaussian vectors of dimension d : y⃗ ∼N (⃗0, Id )—i.e., independent ran-

dom vectors whose components are independent and identically distributed (iid)

and sampled from a Gaussian standard distribution with mean 0 and standard

deviation of 1.

Let us focus our analysis on three metrics: Euclidean norm, Euclidean dis-

tance and cosine similarity, as these are fairly common metrics when dealing

with distributional semantics models and vector spaces in general. For reference,

the Euclidean norm ‖x⃗‖2 of a d-dimensional vector x⃗ is defined as:

‖x⃗‖2 =
√√√√ d∑

i
x2

i (1.21)

This norm is related to the Euclidean distance d (⃗x, y⃗) between two vectors x⃗ and

7Available here: http://vectors.nlpl.eu/repository/6.zip.

http://vectors.nlpl.eu/repository/6.zip
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y⃗ :

d
(⃗
x, y⃗

)= ‖x⃗ − y⃗‖2 =
√√√√ d∑

i
(xi − yi )2 (1.22)

The last metric we mentioned is cosine similarity, which can be defined as:

cos
(⃗
x, y⃗

)= 〈⃗x · y⃗〉
‖x⃗‖2 · ‖y⃗‖2

(1.23)

which relies on the scalar product 〈⃗x · y⃗〉 between x⃗ and y⃗ :

〈⃗x · y⃗〉 =
d∑
i

xi · yi (1.24)

As the components yi of a standard Gaussian vector y⃗ are iid, the Euclidean

norm of standard Gaussian vectors follows a χ-distribution with d degrees of

freedom:

‖y⃗‖2 =
√√√√ d∑

i
yi

2 with yi ∼N (0,1) (1.25)

We can therefore compute expected value and variance as function of the num-

ber of dimensions (Abell et al., 1999):

E(‖y⃗‖2) =
p

2Γ( d+1
2 )

Γ( d
2 )

V(‖y⃗‖2) = d −E(‖y⃗‖2)2 (1.26)

where Γ is the gamma function: Γ(r ) = ∫ ∞
0 xr−1e−xd x for any real value r ; hence

there is a straightforward analytical solution.

A similar remark can be made for Euclidean distance: recall that by definition,
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the Euclidean distance between two vectors is the Euclidean norm of their dif-

ference, Note that X −Y , the difference of two normal variables X =N (µX ,σX )

and Y =N (µY ,σY ), is itself a normal variable with mean µX −µY and standard

deviation
√
σ2

X +σ2
Y . Given that our components are drawn iid from a stan-

dard normal distribution, ai ,bi ∼ N (0,1), we get that their difference ai − bi

is drawn from a normal distribution with mean 0 and standard deviation
p

2.

Since N (0,
p

2) =p
2 ·N (0,1), this entails that the distribution of Euclidean dis-

tance in a d-dimensional space can be re-framed as a scaled chi distribution. Let

two independent standard Gaussian vectors Z = (z1, . . . , zd ), Z ′ = (z ′
1, . . . , z ′

d ) ∼
N (⃗0, Id ):

Y =
√√√√ d∑

k

(
zk − z ′

k

)2 with zk , z ′
k iid standard Gaussian

=
√√√√ d∑

k
δ2

k with δk := zk − z ′
k iid ∼N (0,

p
2)

=p
2 ·

√√√√ d∑
k
δ2

k with δk iid standard Gaussian (1.27)

Hence the distribution of the Euclidean distance between two independent stan-

dard Gaussian vectors is equal to the distribution of the Euclidean norm multi-

plied by
p

2, from which we can retrieve the variance and expected value:

E(‖y⃗ − x⃗‖2) = 2Γ( d+1
2 )

Γ( d
2 )

V(‖y⃗ − x⃗‖2) = 2d −2 ·E(‖y⃗‖2)2 (1.28)
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As for cosine, we should note that its expected value is always 0, for any

dimension d . We can nonetheless inspect what variance we observe as a func-

tion of dimension.8 Let x⃗ and y⃗ be two standard Gaussian independent vectors.

Denote R the random rotation such that R(y⃗)/‖R(y⃗)‖2 = (1, 0, . . . , 0), i.e., the

unit vector corresponding to the first axis. As a measure of angle, cosine is

insensitive to global rotations of the vector space—that is to say, cos
(
y⃗ , x⃗

) =
cos

(
R(y⃗), R (⃗x)

)
. It is also insensitive to individual vector scaling, that it is to say

cos
(
y⃗ , x⃗

)= cos
(
k · y⃗ , x⃗

)
. From this, we can rewrite without loss of generality:

cos
(
y⃗ , x⃗

)= cos

(
R(y⃗)

‖R(y⃗)‖2
,

R (⃗x)

‖R (⃗x)‖2

)

For simplicity, let us denote z⃗ = R (⃗x)/‖R (⃗x)‖2 and b⃗ = R(y⃗)/‖R(y⃗)‖2—i.e.,

b⃗ = (1, 0, · · · , 0). As both vectors z⃗ and b⃗ are normalized (i.e., their norms is

equal to 1), the cosine between the two is equal to their scalar product.

Note that R is a random rotation that only depends on y⃗ , and is therefore in-

dependent from x⃗. As such, R is a linear application and R (⃗x) is iid sampled from

a Gaussian vector. More precisely, R (⃗x) is iid sampled from a Gaussian vector

with mean R (⃗0) = 0⃗ and covariance matrix RId RT = Id , since R is a rotation and

thus RRT = Id . Simply put, this entails that R (⃗x) is a standard Gaussian vector.

As such, the components R (⃗x)i are symmetric. This entails that the two

vectors U = (R (⃗x)1, · · · ,R (⃗x)i , · · · ,R (⃗x)d ) and V = (R (⃗x)1, · · · ,−R (⃗x)i , · · · ,R (⃗x)d )

have identical distributions. From this, we gather that zi =Ui /‖U‖2 and −zi =
Vi /‖V ‖2 are identically distributed. In other words the random variable zi is

symmetric, thus centered, and we therefore have V(zi ) = E(z2
i ) . Moreover, the

8We are highly indebted to Marianne Clausel for the following demonstration.
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components zi are all independent, and by linearity of expectation we have:

d∑
i=1

V (zi ) =
d∑

i=1
E
(
z2

i

)= E

(
d∑

i=1
z2

i

)

Note however that
∑d

i=1 z2
i is equal to the norm of z⃗ squared, which by con-

struction is equal to 1. The components zi are identically distributed and their

variances are therefore all equal: ∀i , j V(zi ) =V(z j ); as all d components’ vari-

ances sum to 1, we get that the variance for the distribution of each individual

component is equal to 1/d .

Returning to the cosine between z⃗ and b⃗, we have noted that the denominator

‖⃗z‖·‖⃗b‖ is equal to 1, and the cosine is entirely defined by the scalar product 〈⃗z ·⃗b〉.
The definition of the scalar product in Equation (1.24) and our construction for

b⃗ entail that cos(⃗x, y⃗) =∑d
i=1 bi × zi = 1× z1 +∑d

i=2 0× zi = z1. From this, we can

derive the variance of cosine as:

V(cos(⃗x, y⃗)) =V(z1) = 1

d
with x⃗, y⃗ iid∼N (⃗0, Id ) (1.29)

To compare our random baselines in Equations (1.26), (1.28) and (1.29) to what

we observe for word embeddings, we adopt the following approach: for each d ′

between 1 and 256, we make a random sample S of 100 000 embeddings drawn

from the embedding model, and then apply a dimensionality reduction over S

using PCA with d ′ components.

Plotting the expected value and the variance of Euclidean norm and Euclidean

distance, as well as the variance of cosine similarity against dimensionality (as its
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Figure 1.3: Vector space metrics, as a variable of dimensionality
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expected value is systematically 0) will therefore produce Figure 1.3. To better

understand the degree to which the evolution of the two moments (expected

value and variance) is commensurate, we can also look at their ratio in Fig-

ures 1.3c and 1.3f). Looking at the distance and norm of standard Gaussian vec-

tors reveals that the norm appears bounded, whereas the expected value keeps

rising. As a consequence, there is a concentration phenomenon: there is less

and less variation around the mean. Turning to the norm and distance word2vec

models, we find that the variance even decreases in higher dimensions, while

the expected values rise. This mechanically leads to a similar effect of concen-

tration around a mean value. Lastly, cosine variance can also be seen to sharply

decrease, whereas the expected value is constant at 0: again, this entails that the

distribution is more tightly distributed around a central value in higher dimen-

sions.

Simply put, this experiment shows that vector length, distance and angle do

not mean the same thing, quantitatively speaking, in higher dimensions. Observ-

ing two highly diverging values is all the less likely in higher dimensional spaces.

Crucially, this holds for both random and distributional vectors. As such, even

in the case of two sets of embeddings computed through the same embedding

algorithm, we may in principle observe distinct behaviors owing to differences

in dimensionality.

1.5 Conclusions

In this chapter, we have focused on what distributional semantics are, as a theory

of semantics. The core aspect that we have attempted to highlight is the high
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variability of what can be construed as a model of distributional semantics.

We have shown that the coherence of distributional semantics as a field of

study is more historical than theoretical, as we saw in Section 1.1. Recent mod-

els have claimed themselves as distributional, but a historical perspective on this

field of study stresses the progressive modification of what fits under this term.

What used to be an emanation of the structuralist theories of Harris (1954) was

turned into a psycholinguistic research paradigm; and only under the impulse of

vector space model inherited from the field of Information Retrieval did large-

coverage, systematic sets of distributional representations emerge. Recent de-

velopments in this area of research have introduced new characteristics at a fast

pace: the emergence of neural models, as well as the predominance of contextual

word-token vectors are both innovations from the last decade, whose implica-

tions have yet to be fully understood.

This mostly chronological coherence has the practical of outcome of foster-

ing a very diverse field of study. Our in-depth review of selected architectures

in Section 1.2 underscores very clearly the practical differences between exist-

ing models. Different implementations of distributional semantics, such as the

Transformer of Devlin et al. (2019) or the log-linear classifiers of Mikolov, K.

Chen, et al. (2013), will likely produce structurally different vector representa-

tions. The immediate consequence of this variation is that the approaches pro-

posed to study DSMs must also be adapted to specifically match the models of

interest, as we have surveyed in Section 1.3. Even when considering two sets

of embeddings drawn from the same algorithm, differences in dimension may

influence the behavior of well-known metrics, as we saw in Section 1.4.

In all, while this chapter has underscored the theoretical difficulties that come



Distributional Semantics as a Lexical Theory 64

with construing distributional semantics as a lexical semantic theory, it is still

possible to consider the wide variety of models developed in the literature as

a consistent and coherent group. There are nonetheless implications entailed

by this overview: any work claiming to study distributional semantics as a co-

herent lexical semantic theory will have to embrace the multiplicity of existing

approaches.







2

DictionaRies in NLP

The sentient is sent to seek out all the truth
A flight to earth that is a given from his birth
To rise from ashes of the dead
Out of the fire is sent to fulfill man’s desire

— Iron Maiden, The Book of Souls

Dictionary-making us an age-old practice. 18th century Europe dictionary-

makers that the general public is most familiar with, such as Harris and Diderot,

were building upon a long and well established tradition. The Chinese Er-ya (尔

雅), which is generally agreed upon as the oldest surviving dictionary, dates back

between the 6th century BC to the 3rd century BC. Looking at other related lexical

resources, we find glossaries written in cuneiform from the early 2nd millennium

BC, as well as lexica, such as the Átaktoi glôssai (or “Disorderly words”), written

in the 4th century BC by Philitas of Cos, which listed rare, archaic, dialectal or

technical words.

Elements of this chapter were adapted from a previous publication (Mickus, Constant, et al.
2021b, “About Neural Networks and Writing Definitions”).

67

https://www.youtube.com/watch?v=FQ0qz5iU6ho
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Modern lexicographers are very much invested in using a descriptive ap-

proach, rather than a prescriptive one. They document what usages exist “in the

wild” when writing dictionary definitions. Neither are lexicographers opposed

to bringing in new technologies in the art of writing definitions. Lexicographers

frequently use large corpora of texts to see whether their definitions describe ac-

tual word usage: this is made possible by the existence of technology to process

and explore these large corpora such as the SketchEngine concordancer. Another

domain where dictionaries make use of modern technology is for data storage:

the widely used electronic document format XML was developed with the Ox-

ford English Dictionary in mind.1 There is also a rather long-standing tradition

of linguists working with—or as—lexicographers. John Rupert Firth worked on

the Oxford English Dictionary and discussed at length the proper methodology

for writing definitions (Firth, 1952). Natalia Shvedova both succeeded Sergei

Ozhegov in maintaining the Russian Ozhegov dictionary, and wrote multiple

monographs and essays on Russian syntax.

Dictionaries are both lexical resources at scales where computer science tools

become relevant, and objects of linguistic study in their own right. A large body

of work in NLP is devoted to using dictionaries, which we will try to summarily

review in this chapter. First, in Section 2.1, we will have a look at what are

dictionaries. Second, we will discuss how dictionaries can help in studying

problems of semantic grounding in Section 2.2. Third, in Section 2.3, we will

consider NLP approaches that attempt to use dictionaries as meaning inventories.

Lastly in Section 2.4, we will focus on two tasks based on dictionaries: the reverse

1See the notice from the OED on this topic: https://public.oed.com/blog/
the-oed-and-innovation/.

https://public.oed.com/blog/the-oed-and-innovation/
https://public.oed.com/blog/the-oed-and-innovation/
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dictionary task in Section 2.4.1 and the definition modeling in Section 2.4.2.

2.1 What are dictionaries

To provide a reductive definition of what a dictionary is, one could say it is, at its

very core, a set of definitions. This very crude characterization of dictionaries is

however too limited to properly account the entirety of the scientific work that

goes into making a dictionary. We will first start by laying out the terminology

we will employ (Section 2.1.1). We then review what different resources have

been called dictionaries in Section 2.1.2, and make a few remarks on the relation

between dictionaries and lexical semantic theories in Section 2.1.3.

2.1.1 Terminology

Throughout this dissertation, we will adopt the following terminology: A defini-

tion is an entry as found in a dictionary. It links a word to be defined—a definien-

dum (plural: definienda)—to a gloss which explains its meaning in natural lan-

guage. A gloss is generally made up of multiple tokens, which we call definientia

(singular: definiens).

realm: An abstract sphere of influence, real or imag-

ined.

(1)

We can take as an example definition 1. Here, the definiendum that we wish

to define is “realm”. The associated gloss is “An abstract sphere of influence, real

or imagined”. This gloss can also be analyzed as a sequence of definientia: 〈'An',

'abstract', 'sphere', 'of', 'influence', ',', 'real', 'or', 'imagined',

'.'〉. We will specifically mention whenever we depart from this terminology.
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2.1.2 Defining the concept of a dictionary

Paradoxically, dictionaries are familiar everyday objects as well as poorly de-

lineated from a theoretical standpoint. On the one hand, the general public is

familiar with the dictionary: it is both an enshrined arbiter of knowledge of all

things linguistic, as well as the book that sits on their shelf and that they consult

when playing Scrabble. As Durkin (2016) remarks at the very introduction of his

introduction to the Oxford Handbook of Lexicography, “few people need to be

told, in the broadest terms, what a dictionary is.”

On the other hand, coming up with a satisfactory definition of what a dic-

tionary is has been the object of many papers (Sterkenburg, 2003; Bergenholtz,

2012; Tarp, 2017, e.g.). To take a concrete example, Tarp (2017) reviews defini-

tions proposed in the lexicography literature, discusses the limitations of each,

and finally arrives at the following definition for a dictionary (p. 246):

A dictionary is a utility tool, which is conceived for consultation

with the genuine purpose of meeting punctual information needs

experienced by specific types of potential user in specific types of

extra-lexicographical context, and which is designed to assist its users

by providing manual or automatic access to lexicographically pre-

pared data, which can either be used directly by the users in order to

retrieve the required information which they can subsequently use

to solve specific problems in the context where the needs originally

occurred, or by a digital tool in order to make automatic corrections

in texts or translations produced by the users of this tool.

Needless to say, the technicality and complexity of this definition is a clear tes-
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timony of the hardships encountered by the author.

Part of the hardship stems from the fact that “dictionary” is a rather loose

term. To start with, lexicographers often note how the general public under-

stands ‘the dictionary’ as some kind of institution that records the ‘true meaning’

of words—whereas lexicographers themselves stress that no two dictionaries are

quite the same in all respects, and much of the differences are due to the con-

scious choices and thoughts of editors.

Another point to take note of is that there are many types of dictionaries.

Etymological dictionaries yield the etymology of words. Bilingual dictionaries

propose glosses in some other target languages, and are therefore geared towards

translation purposes. Learners’ dictionaries attempt to cater more specifically to

the needs of foreign learners of a given language—they therefore include detailed

instruction about the grammar and usage of words, on top of definitions in the

simplest style possible. A number of reference works can also be construed as

dictionaries: works ranging from encyclopedia to dictionaries of place names,

proper names, and the like, as well as technical lexica (e.g., the Oxford Dictionary

of Music). Last, but not least, is the most familiar general-use dictionary.

The actual format of dictionaries and other reference works can vary as well.

Dictionaries have been recorded on probably every medium—from clay tablets

to books and to electronic formats. Even the general structure (a.k.a. the “macro-

structure”) of dictionaries is not fixed: while ordering definitions alphabetically

by definienda is the most familiar practice, it is by no means the only one. For in-

stance, thematic dictionaries group definienda according to their general mean-

ing, whereas electronic dictionaries do not require any overt ordering of their
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definitions.2 Reverse dictionaries (a.k.a. retrograde dictionaries) flip the usual

structure, and allow users to query definienda based on their glosses.3 Finally,

how definitions contained in these dictionaries are written is yet again a domain

where variation abound, with practices ranging from coming up to paraphrase

that can be substituted for the target definiendum, to displaying and explaining

the definiendum in the context a typical sentence (Hanks, 2016).

In sum, the contents, format, structure and medium of dictionaries are not

fixed. Attempting to subsume all these different reference works in a single

concept is therefore rife with caveats. In this dissertation, we adopt two basic

guidelines to sidestep this issue. First, on a practical level, we will focus solely

on monolingual general-use dictionaries. While this does not solve every prob-

lem we have mentioned so far—since different linguistic traditions correspond to

different lexicographic traditions—it does reduce the degree of variation we will

have to juggle with.

Second, on a theoretical level, we consider the concept of a dictionary as a

fuzzy one, much as what Wittgenstein (1953) sketches for games: they display

criss-crossing similarities, but there is no set of sufficient and necessary proper-

ties to delineate dictionaries to be found. Some of these similarities were delin-

eated in the definition from Tarp (2017) above, but we can stress two traits which

directly influence our work. Foremost is that dictionaries are, at their core, sets

2In practice, a electronic dictionary created from a database of definitions will have an explicit
order or index. These are purely technical implementation details: users of such a dictionary will
in most cases not be aware of this order.

3The term “reverse dictionary” has also been used to characterized common dictionaries with
entries ordered by the reverse spelling. Such dictionaries start by listing all words that end in
“-aa”, followed by all words that end in “-ba”, etc. Throughout this thesis, we will ignore these
dictionaries ordered by the suffix of the definienda. We strictly reserve the term “reverse dictio-
nary” to describe dictionaries where users look up glosses to find corresponding definienda.
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of definitions, and therefore they link words to glosses. Another point to con-

sider is that dictionaries are tools, built for human users in mind—this aspect will

necessarily impact any automated approach we consider.

2.1.3 Dictionaries as semantic theories

One can also point out that dictionaries cannot simply be practical tools, made

for users to manipulate and find information. The fact that general-use dictio-

naries frequently include definitions for function words is a strong indicator that

looking up the meaning or spelling of words is not likely the sole raison d’être

of a dictionary: basic linguistic competence should rule out the need to look up

the meaning of words such as “of ”, “a”, “this”, and so on. It should be stressed

that including entries for such words is defensible in most dictionaries that do

not target fully linguistically competent readers; moreover not all general-use

dictionaries will define function words: for instance, Bergenholtz (2012) stresses

that the early editions of the Nudansk Ordbog did not include definitions for

words that were deemed common.

If the inclusion of common word definitions is not motivated by the utilitar-

ian nature of a dictionary as a lexical resource, why are they included? Béjoint

(2016) relates this to the social dimension of dictionaries, especially which were

developed during the construction of European nation-states. He notes (p. 12):

In some European countries, the motivation was to sing the praises

of the language, at a time when nations were taking shape and found

themselves competing for riches, for territories, for prestige, and for

influence. General dictionaries were compiled to show how venera-
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ble, how rich, how harmonious, how regular the language was, how

superior it was to all other languages.

Furthermore, he stresses this interest in the richness of the vocabulary is still

very present to modern-day dictionary users (p. 19):

the users want their [dictionary for general users] to represent the

whole language, and this emblematic function of the dictionary is as

important for them as its more practical functions.

That all manners of words, including the most common ones, are defined

in dictionaries is not without its interest. This entails that dictionaries can be

viewed as lexical semantic theories, as we had defined earlier in Chapter 1. They

attempt to describe the semantic content of the entire lexicon, much as DSMs as-

cribe a vector representation to every word attested in a corpus. The difference is

that the meaning of words is not described by means of numerical components.

Instead, the fundamental hypothesis espoused by dictionaries is that words can

be described by means of natural language. This connection between products of

lexicography and theories of meaning is not just a mere happenstance: as Geer-

aerts (2016) notes, lexicography is applied lexicology—hence new developments

of lexical semantics often influence how definitions are written.

It should also be noted that lexicographers have adopted corpus-based in-

vestigations as their primary methodology when writing definitions. This new

trend was crystallized at the time in articles such as Kilgarriff (2000); modern lexi-

cography handbooks will almost invariably contain some materials about corpus

construction and use (Kupietz, 2016; Kosem, 2016, e.g.). This practice entails that

the lexical semantic theory to which a given dictionary can be equated is often
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rooted in a descriptive approach— modern dictionaries do not adopt a purely

normative position: they characterize the normal usage as they observe it.

2.2 Dictionaries and Semantic Grounding

As we have just discussed, dictionaries are informed by corpus studies and de-

velopments in lexicology. This make dictionaries a very practical standard of

comparison for NLP systems: as a lexical resource, they can be used to frame and

investigate some of the limitations we expect to encounter in NLP. One domain

where dictionaries have shown great usefulness is that of semantic grounding,

and we will take this topic as an example of how NLP systems can make use of

dictionaries as inventories of meanings.

2.2.1 What is semantic grounding?

In the thought experiment of Harnad (1990), we are asked to picture an English

speaker who doesn’t speak Chinese. We give them a Chinese monolingual dic-

tionary and ask them to learn to speak Chinese from that dictionary alone. The

task seems strictly impossible, and Harnad (1990) therefore concludes that ex-

ternal information is required. It is necessary to identify the real world objects

that Chinese characters refer to: without this information, our English reader

can only memorize strings of symbols that they will be unable to use in a con-

versation.

We focus here on a referential take on meaning. While this approach leaves

out many crucial aspects of meaning, we do so for simplification purposes. The

field of NLP is centered on applications and therefore values first and foremost
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factual accuracy. To take a concrete example, if we design a software that gener-

ates image captions, our interest will lie in whether the caption actually describes

items present in the image. Another point to take into account is that NLP mod-

els are not social agents in the same sense that competent speakers are (Bender

and Koller, 2020): the text they produce does not correspond to a specific com-

municative intent. The pragmatic and social dimensions of language are virtually

absent in artificial text, or are found only in the eye of the beholder.

Figure 2.1: Thought experiment of Searle (1980)

Another metaphor describing the conundrum of semantic grounding is the

Chinese Room Argument of Searle (1980), which we illustrate in Figure 2.1. The

thought experiment goes as follows: suppose that we construct some piece of

software capable of answering any Chinese question in flawless Chinese. If we

take someone who doesn’t speak Chinese and isolate them in a room with the

source code of that software, then slip in a question in Chinese, the person inside

the room will be able to perform all the computations described in the source code

by hand and produce some sort of coherent answer. But nothing in the room
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speaks Chinese. Searle (1980) takes this as a proof by absurdity that no such

Chinese-speaking software can be written. To most, it sounds like an intriguing

paradox, laying out a question that is not straightforward to answer: how can a

machine learn to talk? Is talking merely about producing appropriate symbols,

without any form of understanding?

A very similar argument was developed by Jackson (1982). He asks us to

imagine Mary, a brilliant scientist, locked in a black and white room. From within

this room, she has to study how human vision works. To that end, she has a

black-and-white screen, which can display any black-and-white image she needs,

as well as access to all the information she might require. She can gather all

the physical evidence to establish how different wavelengths of light affect the

retina, and learn that this is what humans outside her black-and-white room

call color. Would Mary discover something about color by leaving her room?

Jackson (1982)’s position is that there is something about colors—qualia, in the

terms of Jackson (1982)—that cannot be conveyed through words and a black-

and-white screen alone. Colors have to be perceived, and Mary would therefore

learn something by seeing red for the first time. This qualia argument would

equally apply to neural networks: we cannot expect word embedding models to

encode the experience of color, if that experience is inferred from text alone.

The hardships inherent to this question are made even clearer in the Octopus

thought experiment, proposed by Bender and Koller (2020), and illustrated in

Figure 2.2. Two English speakers, Alice and Bob, are stranded on two islands

connected by a telegraph wire running along the seafloor. Unbeknownst to them,

a seafloor-dwelling super-intelligent octopus that does not speak English has

tapped into the telegraph wire and listens in on their conversation. At some
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Figure 2.2: Thought experiment of Bender and Koller (2020)

point, it decides to alleviate its boredom by cutting the cable and impersonating

Bob. Bender and Koller (2020) ask: will the super-intelligent octopus be able to

successfully deceive Alice, or will she find out? Their answer is that it depends

on the task: the Octopus should be able to reproduce mundane greetings, but

won’t be able to respond properly if Alice talks about something fundamentally

new that requires the speaker to understand and know what it is they are talking

about—for instance, if she discusses how to build something brand new, such as

a coconut catapult.

2.2.2 What dictionaries show of NLP systems and grounding

These thought experiments highlight how relating words to real-world objects

is a crucial goal for NLP systems: without this step, no neural network can be

guaranteed to produce meaningful utterances—that is, we can’t build the Chi-

nese Room of Searle (1980) unless we are able to guarantee that the Octopus of
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Bender and Koller (2020) understands what it is talking about. One of the more

commonly accepted solutions to this difficulty is to provide our models with

some sort of interaction with the real world, from which they will be able to

build informed representations of words. Systems that rely on text alone there-

fore can’t be guaranteed to produce coherent, meaningful outputs. Even if they

do so, it’s likely they do so by accident, by relying on clever heuristics rather

than by actually manipulating information in a meaningful fashion.

Despite these limits, there are things that can be learned even without ground-

ing. The setup described by Harnad (1990), where an English speaker has to learn

Chinese from a dictionary, is especially useful here since it allows us to construe

the problem as a task to solve. In the setup of Harnad (1990), there are things

that the English speaker can learn: the meaning of the word being defined will

influence what sorts of words appear in its definition, and said meaning is loosely

correlated with the way the defined word is written. Much as how we can make

educated guesses from a word’s morphology in English, Chinese orthography

is not entirely random. We can see this at play in the selected sample of Chi-

nese definitions displayed in definitions 2, 3 and 4: the definienda all end with

the character 星, whereas the glosses in the second column all start with the

sentence “行星名。”. Other sequences of characters are also found in all these

glosses.

土星: 行星名。距离太阳第六近的行星，目前已知

有六十余颗卫星，有明显行星环。属于类木

行星，外观呈黄棕色，大气成分主要为氢和

氦。古代称为「镇星」、「填星」、「信星」。

(2)
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火星: 行星名。距离太阳第四近的行星，有两颗小

卫星。属于类地行星，外观呈现红棕色，大

气稀薄。表面的奥林帕斯山是太阳系的最高

山峰。古称「荧惑」。

(3)

金星: 行星名。距离太阳第二近的行星，较地球略

小。属于类地行星，外观呈现淡黄色，拥有

浓厚大气层，温室效应剧烈，是太阳系中最

热的行星。在古代，金星于日出前出现在东

方称为「启明」，傍晚出现在西方则称为「长

庚」

(4)

Neural networks attempting to generate definitions ought to be able to pick

up on such regularities: if the word to be defined ends in星, then start by generat-

ing行星名。. To a Chinese speaker, this seems somewhat reasonable: words that

end in星 often denote planets, whereas行星名 literally means ’name of a planet’.

Nonetheless, such formal similarity could also in principle be purely coincidental:

this sort of heuristic is not at all driven by meaning and relies solely on some sur-

face property that happens to be expressed more or less regularly in a corpus of

definitions. A patient enough reader who does not speak Chinese would be able

to list all the sequences of characters common across the three glosses 2, 3 and

4, despite not knowing the meaning of any of these. This sort of heuristic is, in

short, an educated guess: models that exhibit this sort of behavior have learned to

apply certain patterns. They do not produce a definition grounded in their under-

standing of the word to be defined. As such, these patterns are bound to be brittle:

in our example, we can see that many Chinese words that end with星 do not cor-
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respond to planet names. The character星 itself is generally translated as ‘star’,

and therefore appears in words such as流星 (‘shooting star’) or彗星 (‘comet’).

Consequently, their definitions 5 and 6 do not start with the sequence “行星名。”.

流星: 太阳系中无数小微粒之一,只有当它碰巧落到

地球大气层内时才能直接观测到,在大气中由

于受到运动的阻力会引起暂时的灼热,此时若

在夜间,天空中就出现一道亮光

(5)

彗星: 是明亮彗核周围通常包着的朦胧彗头组成的

云雾状天体,当它运行的轨道部分靠近太阳时

经常出现长长的彗尾,由于辐射压力使彗尾指

向远离太阳的方向,彗星的运行轨道随着从近

似圆形到抛物线而具有不同的偏心率,轨道倾

角从 0°到 180°,运行周期从 3年到几千年。通

称扫帚星

(6)

The core argument of all the thought experiments we have surveyed is that

text alone is not sufficient to posit that neural networks manipulate information

in a meaningful fashion: words also have to be linked to the real-world objects

they can refer to. Dictionaries, again, are found to be useful in this area of study.

Vincent-Lamarre et al. (2016) have shown that in order to infer the referents for

all the words in an entire dictionary, it suffices to know the referents for a small

subset of its vocabulary. More precisely, they study how definitions are linked to

one another: as a definiendum can appear as the definiens in another definition,

we can establish a graph of all words listed in a dictionary by linking definienda
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to their definientia. Vincent-Lamarre et al. (2016) further provide a method to

reliably extract from this graph the minimum number of words to ground. If

we can describe for every word in this minimal set what it refers to, we can

iteratively ground definitions one by one. We start with definitions that only

rely on words from this minimal set: these grounded definitions allow us to use

their definienda to ground even more definitions, until the entire dictionary is

grounded.

2.3 Dictionaries as NLP meaning inventories

Dictionaries are therefore useful to delineate and study issues that we expect of

text-based NLP models. As such, they are highly relevant lexical resources to the

NLP scientist. We now turn to review more closely the link between dictionaries

and NLP applications.

Throughout the history of NLP, dictionaries have been invaluable sources of

data because they provide semi-structured data in high volumes. Automated ap-

proaches are well suited to parse, re-format and enrich the semantic information

contained in dictionaries.

To take a concrete example, Chodorow et al. (1985) suggested using the struc-

ture of a dictionary to extract semantic hierarchies. Their starting point is the

observation that the Aristotelian model of definition—whereby a definiendum

is defined by means of a genus (its broad semantic category) and a differentia

(its specific attributes within this category)—is a prevalent style of definition in

lexicography. This in turn justifies a simple heuristic: the syntactic head of a def-

inition should correspond to a hypernym of the word being defined—because this
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head is likely to be the genus of the word being defined, and the genus should

be a hypernym of the definiendum. Any automated extraction of a syntactic

head can therefore be used to establish hypernymy relations, and, by extension,

a semantic hierarchy of words.

This heuristic, while certainly most useful to NLP applications, is not the only

way element that NLP scientist have used from dictionaries. Lesk (1986), for in-

stance, focused on the fact that dictionaries are also inventories of meaning and

thereby relevant to a central problem in NLP: the task of word-sense disambigua-

tion (WSD), and proposed to leverage dictionaries definitions to perform word

disambiguation. This task consists in mapping ambiguous words to unambigu-

ous senses, given the context they appear in: e.g., deciding whether the word tie

as it appears in the sentence “The game ended in a tie” be mapped to the sense

‘tie: article of clothing worn around the neck’ or ‘tie: draw, outcome with no

clear winner’. The proposal of Lesk (1986) relies on two assumptions. The first

assumption is that generally speaking, we can expect words semantically related

to the relevant sense to appear in the context of the word to disambiguate; that

is to say, if words such as game, score, or match occur near the noun tie, then it is

more likely to be used in the sense of a ‘draw’, rather than ‘a piece of clothing’.

The second assumption is that the definientia are also semantically related to the

specific sense they are defining: clothing is less likely to occur than match when

trying to define the ‘draw’ sense of tie. Therefore one can expect that the over-

lap between words in a definition and word in a context can cue a machine into

what sense matches a given word token. Further improvements on this method

have been suggested throughout the years; for instance Gaume et al. (2004) also

rely on the transitive nature of definitions—that is to say, that the words in a
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definition of a definiens should also be semantically related to the definiendum,

and so on—to compute this overlap.4 This trend of research is still very rele-

vant today, as attest approaches such as the GlossBERT model of L. Huang et al.

(2019), which proposes to employ both contextual embeddings to model words to

be disambiguated as well as existing dictionaries such as WordNet to represent

target word senses.

Assuming that dictionaries correctly, consistently and exhaustively describe

the meanings of words allows NLP researchers to use dictionaries to study all

aspects of semantics. Hill et al. (2016) look at how dictionaries equate single

words (the definiendum, e.g., “giraffe”) to sequences of words (the definientia,

e.g., “a tall, long-necked mammal of Africa”). This equation can be used to study

and model semantic composition. The composed meaning of a gloss can be taken

to be roughly equal to the meaning of the word being defined, i.e., dictionaries

are a natural benchmark for compositional semantics. By using the definiendum

as a target and the definition gloss as an input source, NLP researchers can train

models to infer the meaning of a phrase from the meaning of its components.

As a concrete use-case, Hill et al. (2016) showed how this could be exploited to

implement a crossword solver.

Dictionaries have also been used in NLP to compute computer-friendly se-

mantic representations. One such example is the work of Tissier et al. (2017),

also known as dict2vec. Their key idea is that dictionary definitions provide all

the information necessary to derive a consistent semantic representation of the

4The formulation of the WSD task itself is subject to criticism; in particular, it presupposes
that there is a fixed, discrete set of senses that can be assigned to each word. Kilgarriff (1997)
strongly argues that sense inventories only make sense with respect to a task. This trait is not
exclusive to WSD. NLP applications derived from dictionaries rarely, if ever, question the sense
inventory described by the dictionaries they use.
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definiendum. Concretely, the proposal of Tissier et al. (2017) consists in comput-

ing word embeddings not from distributional contexts drawn from large corpora,

but from the definientia associated to a given definiendum. Following a similar

idea, Bosc and Vincent (2018) look to convert dictionary glosses into consistent

embeddings by using an auto-encoder neural network. In their work, Chang

and Y.-N. Chen (2019) suggest to transform definition glosses into embeddings

using sentence encoders, and to learn a mapping from contextualized definienda

embedding to gloss embedding as an explanation tool.

In all, these works share a common feature: dictionaries are used primarily

as inventories of meaning, which can then be mined and exploited to yield more

refined semantic information, and exploit them in NLP applications. In the case

of Chodorow et al. (1985), that information was hypernymy relations. In the

work of Hill et al. (2016), it was semantic composition. In works such as of Tissier

et al. (2017), the focus was to convert the format of this information.  

2.4 Definition Modeling and Reverse Dictionary

Dictionaries can also be construed as datasets for NLP tasks. In particular, re-

searchers have been interested in generating definition glosses given the asso-

ciated definiendum—known as the Definition Modeling task—, or finding which

definiendum corresponds to a given input gloss—i.e., constructing softwares for

reverse dictionaries.
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2.4.1 Reverse Dictionary

A reverse dictionary, such as the Oxford reverse dictionary (Edmonds, 1999), is

a type of lexical resource that matches concept descriptions to words that corre-

spond to these descriptions. In that, a reverse dictionary is the mirror image of a

dictionary: instead of mapping a word to a paraphrase that explains it, it maps a

paraphrase to a word. One difficulty inherent to this type of lexical resource

is that a given concept can be described using many different paraphrases—

arguably, infinitely many descriptions can correspond to any given concept. The

description that a user would come up with will certainly differ from the de-

scriptions offered by a reverse dictionary. This entails that a physical reverse

dictionary can never be an exhaustive resource. This also underscore the need

for an automatic procedure that parses a user’s input description and returns a

matching concept. This can therefore be formulated as an NLP task, where the

input is an user query, and the output is the target word to retrieve.

Siddique and Sufyan Beg (2019) propose a comprehensive review of the lit-

erature on the topic, on which we base our present discussion. Siddique and

Sufyan Beg remark that there are few works addressing the task as such. They

trace the research on this topic back to a patent held by H. V. Crawford and J.

Crawford (1997). The works surveyed by Siddique and Sufyan Beg (2019) can

be grouped in four classes: document-based models, graph-based models, vector

space-based models and neural language model-based models.

The first class of models draws heavily from the field of Information Retrieval.

The core idea is to match the input query words with the words contained in the

definition gloss: the system will then return the definiendum for the definition
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gloss that overlaps most with the input user query. To avoid problems of data

sparsity, user queries are often expanded to include synonyms or other semanti-

cally related words, such as hypernyms or hyponyms. Works implementing this

approach have been applied to multiple languages. The patent of H. V. Crawford

and J. Crawford (1997), as well as the approach of R. Shaw et al. (2013) tackle

English. Bila et al. (2004) address Japanese, and El Khalout and Oflazer (2004)

study Turkish.

The second group of works listed by Siddique and Sufyan Beg (2019) is based

on graph connectivity. Dutoit and Nugues (2002) use a resource called “The In-

tegral Dictionary,” and propose a two step algorithm that first delineates a sub-

graph to query, and then exhaustively looks up in the subset for the most similar

entry to the query. Thorat and Choudhari (2016) use the graph structure of a

dictionary (WordNet or Oxford English Dictionary). For each content word in a

user query, they explore the sub-graph that surrounds it, and then rank all nodes

they reached in their search to retrieve the most likely target word.

The third class of works attempt to transform the input query from the user

into a vector. Méndez et al. (2013) propose to derive vectors from WordNet by

selecting synsets that maximize a similarity measure, before performing a neigh-

borhood search to extract the most relevant target word; Calvo et al. (2016) ex-

plore whether vectors obtained by other means, such as LDA, can be used instead

of the WordNet-derived ones.

The last group corresponds to a work we have already mentioned above, that

of Hill et al. (2016) (cf. Section 2.3). While Hill et al. (2016) suggested to use

dictionaries as benchmarks for compositional semantics model, it is worth not-

ing that the algorithmic approach they suggest was to use a LSTM to parse the
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full definition gloss and use the hidden state at the last time-step to predict the

definiendum. In effect, replacing the definition gloss with a user’s query would

lead to a reverse dictionary system. One precursor to the work of Hill et al. (2016)

is that of Zanzotto et al. (2010), who used a shallow neural network to implement

a compositional distributional semantics model and dictionaries as their training

data.

Since the review of Siddique and Sufyan Beg (2019), a number of works have

attempted to tackle the Reverse Dictionary task using a neural language model-

based approach. The WantWords system (L. Zhang et al., 2020; Qi et al., 2020) is

based on a BiLSTM architecture, and incorporates auxiliary tasks such as part-

of-speech prediction to boost performances. Yan et al. (2020) seeks to replace the

learned neural language models in Hill et al. (2016) or WantWords with a pre-

trained model such as BERT (Devlin et al., 2019) and its multilingual variants,

which allows them to use their system in a cross-lingual setting—querying in a

language to obtain an answer in another. Most recently, Malekzadeh et al. (2021)

used a neural-language model based approach to implement a Persian reverse

dictionary.

2.4.2 Definition Modeling

The task of Definition Modeling, introduced by Noraset et al. (2017), generates a

dictionary definition using a neural network. This network takes as input word

embeddings, or neural vector representations of the word being defined. There

are a number of applications of this task: for instance, Definition Modeling sys-

tems could provide definition drafts for under-documented languages. From a
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linguist’s point of view, there is theoretical significance in comparing two dif-

ferent types of semantic representations such as distributional word vectors and

dictionary definitions. Where Definition Modeling systems find their core use-

fulness, however, is in their ability to explain the contents of word embeddings.

They can translate computer-generated sequences of real numbers into dictio-

nary definitions that humans will be able to comprehend without difficulty.

Definition Modeling was originally conceived as an evaluation tool by No-

raset et al. (2017): the quality of the information captured in a word embedding

should impact the quality of the definition generated. In fact, we should expect

that results on the Definition Modeling reflect the contents of the input: if the

embeddings we feed into our model lack semantic grounding, then we should

expect the output definitions to be equally unanchored to the real world. This

sort of confusion has been anecdotally attested in Definition Modeling systems.

An example provided by Noraset et al. (2017) is listed in the definition 7:

feminine: of or pertaining to the human body (7)

This definition is obviously factually incorrect, as “feminine” should corre-

spond pertain to females rather than “the human body”.It is nonetheless inter-

esting to see that this model got some elements right, even though the facts it

states—how this symbol actually relates to the real world—are incorrect. This il-

lustrative example should not be taken as the full extent of a Definition Modeling

system’s capability, but it is useful to stress how these models are reliant on the

input word embeddings: we can see that the specific facts about a particular ref-

erent are difficult to retrieve from its distributional representation alone. It also

stresses the breadth of work that remains to be done to obtain valid definitions.

Since the seminal work of Noraset et al. (2017), Definition Modeling has blos-
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somed into a somewhat consequential body of work. Gadetsky et al. (2018)

introduced the use of examples of usage as a secondary input; L. Yang et al.

(2019) transposed the task into Chinese. A very noteworthy work here is that of

Bear and Cook (2021), who introduce a cross-lingual English–Wolastoqey model.

Further improvements and re-framing of the task have been suggested: for in-

stance, H. Zhang et al. (2019) suggest training Definition Modeling architectures

to also generate examples of usage, whereas Bevilacqua et al. (2020) stress how

large, pre-trained models can be co-opted to perform impressively well on the

task.

Nonetheless, authors in Definition Modeling cannot guarantee their artificial

definitions to be factually correct. There are ways to mitigate this problem: in

principle, we can give more information to the model, so that its guesses are

more and more educated. For instance, authors have suggested providing the

model with information on the definiendum, from the hypernymy relations it

entertains (Noraset et al., 2017) to what sememes can be used to describe it (L.

Yang et al., 2019).

Perhaps the piece of supplementary information that has been studied in

most depth is contextual information. Gadetsky et al. (2018) first proposed to

use examples of usage to deal with polysemy. H. Zhang et al. (2019) require their

model to demonstrate the ability to use a definiendum coherently, by having it

produce an example of usage as an auxiliary task. The model of Bevilacqua et

al. (2020) functions by transforming a context with a highlighted word into a

definition for this word.

Despite all this inventiveness, Definition Modeling systems are derived from

text alone. In that, they provide a very good illustration of the sort of issues
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highlighted in the thought experiments previously presented in Section 2.2. It

may help to contrast what we expect from the dictionary to what we can glean

from neural networks trained on Definition Modeling. Why do we trust what’s

written in a dictionary? At the most basic level, this has to do with the fact that

lexicographers are humans. We can trust that the person who wrote a defini-

tion knows the world around them, that they are not completely clueless about

the real-world object they are trying to define. When asked to define poppy,

for instance, we can rely on our experience with poppies—we know what they

look like, perhaps we know what they smell like, and that guides our definition-

writing. A neural network, on the other hand, has no such experience: it has

no eyes to see with, no nose to smell with, no experience to recall. It may be

able to infer that a word such as flower should appear in the definition of poppy,

but there’s very little preventing it from producing a definition such as “a blue

flower”.5

In all, ensuring the factual correctness of these models remains an open ques-

tion. Hence some have advocated side-stepping text generation altogether, like

what is done in the related task of definition extraction from text (Navigli and Ve-

lardi, 2010). This task has seen recent interest, owing to the shared task of Spala

et al. (2020). All this goes to showing that the generative aspect of definition

modeling is perceived as a challenge in the NLP community.

5In fact, we may expect text-based neural networks to produce such errors, to a certain extent.
As their input is solely text, they should be sensitive to whatever is written. Given the reporting
bias of human speakers—viz., that we do not tend to state the obvious—we can expect texts to
state the color of a poppy if and only if it is unusual, as for instance is the case with Himalayan
blue poppies. This could in principle bias distributional models into associating poppies with blue.
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2.5 Conclusions

Meaning is one of the more complex aspects of language. It is an immediate

experience for any speaker, but properly explaining what it is, or how it comes

to be, remains an arduous enterprise. It stands to reason that the same issue is to

be found in NLP, the field of study that deals with the mechanization of language.

As we discussed in Chapter 1, research in NLP has yet to establish firmly what

counts and what doesn’t count as a meaning representation, and this question

is becoming all the more crucial as we witness neural networks growing ever

more complex, and their productions ever more similar to what humans would

produce.

Dictionaries, on the other hand, are curated inventories of definitions, as we

saw in Section 2.1. They attempt to describe word meanings as objectively as

possible. In that, they have proved to be an invaluable asset to NLP studies in

semantics, as they provide dense descriptions in natural language that can be

leveraged to inject semantic information in NLP models. In particular, we saw

how dictionaries are a privileged vantage point to study semantic grounding in

Section 2.2.

In this chapter, we have summarized how dictionaries have traditionally been

used in NLP. We showed how they have been used to gather semantic infor-

mation in Section 2.3. We more specifically looked into two domains of study:

reverse dictionaries in Section 2.4.1 and the Definition Modeling task in Sec-

tion 2.4.2.

This overview has underscored some existing gaps in the literature. Seman-

tic grounding is far from being a solved question. Both reverse dictionaries and
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the definition modeling tasks are understudied, compared to other NLP applica-

tions such as machine translation and or image captioning. As a consequence,

there are legitimate concerns about how our models should be assessed, and what

metrics are most fit to our purposes. These concerns will be explored at greater

lengths in future chapters.
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The cracks weren’t visible in the beginning
Now we’re staring deep down into the guts of the earth
We’ve been watching these two tectonic plates slowly drifting apart
And when the first cracks appeared on the surfaces
We had surrendered our hopes to reality

— The Ocean Collective, Ordovician: The Glaciation of Gondwana

Previously in Chapter 1 and Chapter 2, we have detailed how distributional

semantics and dictionaries fit within the larger framework of NLP. We have seen

that they correspond to very different constructions: vectors on the one hand

and sequences of text on the other.

These two different natures do not entail that we have to deal with incom-

mensurable objects, and limit ourselves to manual annotations and qualitative

observations. As we surveyed briefly in Section 2.3, a group of works has at-

This chapter is based on a previous publication (Mickus, Bernard, et al. 2020, “What Meaning-
Form Correlation Has to Compose With: A Study of MFC on Artificial and Natural Language”).
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https://www.youtube.com/watch?v=9ksF5iDVF3g
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tempted to merge the two kinds of semantic descriptions. While the aims of

all these works differ, from studying compositional semantics to building an ex-

planatory tool for contextual embeddings, these models all attempt to vectorize

definition glosses. Hill et al. (2016) propose to build a compositional seman-

tics model. The dict2vec model of Tissier et al. (2017) constructs definienda em-

beddings from definition gloss contexts. Bosc and Vincent (2018) constructs an

auto-encoder from definition glosses. Chang and Y.-N. Chen (2019) use sentence

encoders to vectorize glosses, and map them to contextualized definiendum em-

beddings.

This common approach of converting glosses into vectors can be questioned.

Here, we advocate a more direct approach. We can leverage the fact that texts

and vector spaces are both metrizable: it is possible to mathematically define

a distance between two sentences, much as we define the Euclidean distance

between two vectors.

In this chapter, we will focus on measuring topographic similarity using Man-

tel tests, which we will review in Section 3.1. A crucial question for us to answer

is whether topographic similarity computations yield linguistically coherent re-

sults, especially when it comes to natural language. We will then turn to assess-

ing the validity of this methodology on the sort of issues we are interested in:

comparing vectors and sequences of symbols, so as to delineate the confound-

ing factors we are likely to encounter in Sections 3.2 and 3.3. We will finally

perform our comparison of definitions and embeddings: we will measure topo-

graphic similarity on a dataset of comparable embeddings in Section 3.4, and then

replicate and expand on this first study, this time using off-the-shelf pre-trained

models in Section 3.5. We will close on a summary of our findings in Section 3.6.
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∃!x ( ∀xPresident(x))∧(
President(x) →Deplorable(x)

)

∃x.Dog(x)∧
Cute(x)

∃x.Dog(x)
∧Big(x)

The president
is deplorable.

A cute dog.

A big dog.

Figure 3.1: Overview of topographic similarity computations

3.1 Topographic Similarity

Let us consider two semantically similar words, such as “dog” and “cat”. On

the one hand, we may expect their distributional vector representations to be

close to one another. On the other hand, the definitions that we give for these

words are likely to be similar as well—both of them are likely to be noted as

domesticated mammals. We can contrast these expectations to what we would

observe if we compared “dog” and “mammoth”. Both their distributional vectors

and their definition glosses are likely to be further apart than that of “dog” and

“cat”. And the words “dog” and “torque” would be even further apart. Provided

that we can measure the similarity between any two embeddings, and between

any two definition glosses, this observation can be rephrased as follows: the

distance between two definienda embeddings should correlate with the distance

between their associated glosses. We refer to this characteristic as topographic

similarity: the metric space for distributional representations should in principle

display the same similarity structure as the metric space for definition glosses.

To evaluate whether two different spaces display the same structure, we will

compute the correlation between distance measurements for two metric spaces.
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A toy example of this process is described in Figure 3.1. In the figure are dis-

played two different metric spaces: one for logical formulas on the left, and one

for graphical sentences on the right. We assume that some distance metric is

defined within each space, represented in dashed lines. In the present chapter,

our interest lies in comparing distributional semantics vectors with definition

glosses: our experiment will therefore compare the textual distance between two

definitions with the vector distance between two embeddings.

3.1.1 Measuring topographic similarity with Mantel tests

The methodology we employ to measure topographic similarity in this chapter

is based on Mantel tests (Mantel, 1967). The initial requirements to run a Mantel

test are that we possess:

(i) two distance metrics d1 and d2

(ii) a set of items S such that for any pair of items drawn from the set 〈im ∈
S, in ∈ S〉, the two distances d1 and d2 are defined and computable.

The two distances d1 and d2 can be seen as describing metric spaces M1 M2,

which we will compare at the locations in M1 and M2 that correspond to the

items im , in · · · ∈ S in our set S. Assuming these requirements are satisfied, we

can define two distance matrices of shape [#S ×#S]:

(D1)mn = d1 (im , in) with im , in ∈ S

(D2)mn = d2 (im , in) with im , in ∈ S (3.1)

Since a distance metric should assign 0 to the distance between an item and itself,
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the diagonal of D1 and D2 is equal to 0. Moreover, note that the two matrices

are symmetric: for all indices m and n, we have (D1)mn = (D1)nm and (D2)mn =
(D2)nm . As such, the triangular matrices of D1 and D2 are sufficient to encode

all distances S ×S.

These distance matrices can be considered as parallel sequences of observa-

tions O1 and O2:

(O1) = (
(D1)0,1 . . . (D1)0,#S , (D1)1,2 . . . (D1)#S−1,#S

)
(O2) = (

(D2)0,1 . . . (D2)0,#S , (D2)1,2 . . . (D2)#S−1,#S
)

(3.2)

Such parallel sets of observations can be used to derive a measure of correla-

tion that will quantify whether high values in O1 will correspond to high values

in O2. This is generally done using a Pearson correlation coefficient, also known

as Pearson’s r . Given two series of observations X = (x1 . . . xn) and Y = (
y1 . . . yn

)
,

Pearson’s r is defined as:

rX ,Y =
∑n

i (xi −µx)(yi −µy )√∑n
i

(
xi −µx

)2 ·
√∑n

i

(
yi −µy

)2
(3.3)

where µx and µy are the mean values of X and Y respectively. The core idea

behind Pearson’s correlation coefficient is that we want to assess whether obser-

vations xi and yi have the same linear behavior: Pearson’s r measures whether

high xi values entail high yi values On a formal level, Pearson’s correlation coef-

ficient is highly related to the cosine function (cf. Equation (1.23)): if we consider

X and Y as vectors of dimension n, then Pearson’s r corresponds to the cosine
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between the mean-centered vectors X and Y , cos
(
X −µX · 1⃗n ,Y −µY · 1⃗n

)
, where

1⃗n is the vector of dimension n with all components equal to 1. In other words,

Pearson’s r corresponds to removing the spurious co-directional components—

as µX · 1⃗ and µY · 1⃗ are biases inherited from the mean value in X and Y —before

testing whether X and Y are co-directional. As a consequence, Pearson’s r is

bounded to real values within [−1;1]; where 1 corresponds to two perfectly cor-

related sets of observations, −1 to two anti-correlated sets, and 0 to uncorrelated

sets.

Another related measure of correlation is the Spearman correlation coeffi-

cient, also known as Spearman’s ρ. It measures whether the two set of obser-

vations correspond to the same ordering of values. Hence it can be seen as a

relaxation of Pearson’s correlation coefficient, where no emphasis is put on en-

suring that the two sets observations X and Y are in a linear scaling relationship.

On a formal level, it is equivalent to computing Pearson’s r , but replacing raw

scalar value with rank information instead. Its definition relies on a ranking

function that computes the number of items greater than i in some set S:

rank(i ,S) = #{i ′|i ′ ≥ i ∧ i ∈ S} (3.4)

Using this function, we can define the Spearman correlation coefficient between

two sets of observations X = (x1 . . . xn) and Y = (
y1 . . . yn

)
as:

X̂ = (rank(x1, X ), . . .rank(xn , X ))

Ŷ = (
rank(y1,Y ), . . .rank(yn ,Y )

)
ρX ,Y = r X̂ ,Ŷ (3.5)
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where r A,B is the Pearson correlation coefficient between A and B . Here, unless

specifically noted, we will rely on Pearson’s correlation coefficient.

Taken together, we call the topographic similarity τ of two metric spaces the

correlation between the corresponding triangular distance matrices:

τM1,M2 = correl(O1,O2) (3.6)

Where the correl function corresponds to Pearson’s r , Spearman’s ρ, or some

other correlation coefficient.

Mantel tests include one additional step to derive a p-value, i.e., a quantifica-

tion of the statistical significance of the topographic similarity τ. By randomly

permuting one of the two sets of observations, O1 or O2, we can measure the

topographic similarity τ′ we obtain for a random pairing of distance measure-

ments in the distance matrices D1 and D2. Repeating this random permutation

measurement multiple times yields an estimate of what our baseline expectations

for the topographic similarity of the metric spaces M1 and M2 evaluated on the

set of items S ought to be. We can then compare our actual measurement τ to

this baseline expectation to derive statistical significance: if it is among the 5%

highest observed similarity scores τ′, we will assign it a p-value of 0.05 or be-

low, if we can establish a stricter cutoff. It is also frequent to use these baseline

expectations τ′ to produce a z-score, which we will refrain from doing here.

3.1.2 Relevant Applications

One important point to note is that this technique of topographic similarity is

generally used for purposes other than the one we espouse here. Two relevant
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domains of application correspond to research on semantic compositionality and

on arbitrariness of the sign.

One suggestion, that can be traced back to Kirby (1999), and that is fully op-

erationalized in Kirby (2001), Brighton and Kirby (2006) or Kirby, Cornish, et al.

(2008), is that compositionality can be measured as a correlation between mean-

ing and surface form (i.e., the sequence of tokens): as the components change,

so should the composed meanings. This can be viewed as a topographic simi-

larity between the meaning space and the form space. Topographic similarity

has therefore been employed as a way to both detect and quantify composition-

ality in the field of emergent communication (Kirby, Cornish, et al., 2008; Kirby,

Tamariz, et al., 2015; Spike, 2016; Ren et al., 2020, a.o.) which studies agents (arti-

ficial or human) who have to produce messages in order to express well defined

meanings.

Other implementations of topographic similarity include studies centered on

correlations between form and meaning at the word or sub-morphemic level—

conflicting with the assumption of arbitrariness of the sign (Saussure, 1916).

These studies generally use distributional representations to derive meaning dis-

tances. Gutiérrez et al. (2016) combine topographic similarity with kernel regres-

sion, in order to derive the most appropriate distance between word forms. This

research trend has been applied to numerous languages: Kutuzov (2017) trans-

fers this line of reasoning to Russian, whereas Dautriche et al. (2017) survey 100

different languages. We especially note the work of Pimentel et al. (2019), which

use an information-theoretic formulation of the problem and rely on manual se-

mantic resources to compute meaning distances.
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3.2 Topographic similarity and Artificial Languages

Topographic similarity-based assessments implicitly assume that any change in

one of the metric spaces should correspond to some change in the other. In

the case of natural language processing, this can however be challenged: for

instance, synonyms and paraphrases will introduce changes in form that should

not entail change in meaning. Thus we expect topographic similarity to be sensi-

tive to such phenomena, and this in turn suggests that factors such as synonymy

could overpower the metric space similarity that we wish to detect using topo-

graphic similarity. To approach this question, we generate artificial languages

containing varying degrees of potential confounding factors.

3.2.1 Methodology

Our experimental protocol consists in generating artificial languages with vary-

ing properties, and see what impact they have on topographic similarity mea-

surements. All of our artificial languages are sets of paired representations. For

simplicity, we refer to one of these representations as the underlying meaning,

while the other will be the formal message. We represent meanings as binary

vectors of five components, whereas messages are sequences of symbols. We re-

fer to each of the five semantic dimensions as a concept. In most cases, the value

of a concept will be denoted in a message by a specific symbol, which we call its

expression. An example illustration for two meaning binary vectors B⃗1 and B⃗2

paired to their respective expressions F1 and F2 is shown in Figure 3.2.

As we are interested in whether topographic similarity accurately captures
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0 0 0 1 1 〉

0 0 1 1 1

B⃗1 = 〈

B⃗2 = 〈 〉

5 6 1 20 12 〉

5 6 20 1218

F1 = 〈

F2 = 〈 〉

Figure 3.2: Artificial languages: basic setup

whether two different manners of encoding the same information are equivalent,

we will design our languages so that some of the concepts are systematically ex-

pressed conjointly by unanalyzable holistic expressions—i.e., using symbols that

cannot be attributed to any single concept, but rather correspond to a group of

concepts at once. We generate languages where the values of the first h concepts

are systematically expressed through a single expression, and the other 5−h are

left untouched, with h varying from 1 to 5. When h = 1, the language is en-

tirely compositional; when h = 5, the language is entirely holistic. Purely holistic

messages should not display a structure similar to that of our meaning vectors,

whereas purely compositional messages should display a one-to-one mapping

between message symbols and meaning component values. We therefore expect

the degree of holisticity displayed by a message to be inversely proportional to

the topographic similarity scores. A visual depiction of the effects of h = 1 is

presented in Figure 3.3.

0 0 0 1 1 〉B⃗ = 〈

0 1 20 12F = 〈 〉

Figure 3.3: Artificial languages: holisticity

The first confounding factor we consider is synonymy: as previously noted,
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synonyms entail a variation in form that is not coupled with a variation in mean-

ing. To model this phenomenon, we generate languages in which any single

value of a concept can equally be expressed by s different expressions, with s

ranging from 1 to 3. As a consequence, when s = 1, the language exhibits no

synonymy, whereas if s > 1, the language will contain pairs such as those in

Figure 3.4.

0 0 0 1 1 〉

0 1 1 1 1

B⃗1 = 〈

B⃗2 = 〈 〉

5 6 1 20 12 〉

5 3 13 17 12

F1 = 〈

F2 = 〈 〉

Figure 3.4: Artificial languages: synonymy

Moreover, we expect that topographic similarity measurements might be in-

fluenced by the presence of semantically ungrounded elements—i.e., elements not

associated with any concept or combination of concepts. We therefore generate

languages where u specific ungrounded symbols appear once in every message

at randomly chosen positions, with u varying between 0 and 3. In languages

where u = 0, the language contains only semantically grounded expressions. In

languages where u > 0, we have instead the behavior exemplified in Figure 3.5;

more precisely this figure would correspond to a parameter u = 1.

0 0 0 1 1 〉B⃗ = 〈

5 6 1 20 12F = 〈 〉14

Figure 3.5: Artificial languages: semantically ungrounded elements

Finally, we consider the case of paraphrases, sentences of different forms but
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equivalent meanings. For a language to contain paraphrases, it must be able to

express a single meaning with different messages. This is the case in our artificial

languages that exhibit synonymy or contain semantically ungrounded elements;

the variation they introduce allow distinct messages to have the same meanings.

We thus generate languages for which p messages are produced for each mean-

ing before dropping possible meaning-message pair duplicates. p ranges from 1

to 3. If p = 1, the language contains no paraphrase. This p parameter leads to

languages containing pairs such as those in Figure 3.6.

0 0 0 1 1 〉B⃗ = 〈

0 0 0 1 1B⃗ = 〈 〉

5 6 1 20 12Fa = 〈 〉14

5 6 1 2014 16Fb = 〈 〉

Figure 3.6: Artificial languages: paraphrases

We test all possible combinations of these four parameters. We also include

random baselines where we assign meanings to random sequences of symbols,

either of an arbitrarily fixed length of 5 symbols, or of a length chosen uniformly

between 1 and 10. We generate 50 artificial languages for every combination

of parameters to help us distinguish the stable effects of our parameters from

spurious accidents due to our random generation process. We refer to each of

the 50 generation processes as a separate run.

We compute Mantel tests using the Hamming distance between meaning
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vectors—i.e., the number of differing components:

h (⃗x, y⃗) =
d∑
i
1{xi 6=yi } (3.7)

As for message, we use the Levenshtein distance, also known as edit distance.

The Levenshtein distance corresponds to the minimum number of editions (sub-

stitutions, deletions or additions) necessary to convert a string of characters A

into a string of character B :

dl (A,B) =



max(#A,#B) if#A = 0∨#B = 0

dl (A1...m ,B1...n) ifA0 = B0

1+min


dl (A,B1...n) ,

dl (A1...m ,B) ,

dl (A1...m ,B1...n)

 otherwise

(3.8)

Here, A is of length m + 1, B is of length n + 1, and S Ai and Bi refer to the

i th (zero-indexed) character in the strings A and B respectively. In the present

experiment, we normalize Levenshtein distance by the maximum length of the

two messages.

d̂l (A,B) = dl (A,B)

max(#A,#B)
(3.9)

For each language, we study the corresponding p-value and the correlation

score. For every combination of parameters, we study its average p-value and

correlation score across all runs.
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One limitation of this method is that our modeling may not comply fully with

natural language—in particular, the existence of exact synonyms is debatable;

likewise, natural function words do possess some semantic content, whereas our

ungrounded symbols do not. Neither do we claim to conduct an exhaustive study

of all relevant phenomena.

3.2.2 Results

A visualization of the results for the variation factors is shown in Figure 3.7.

Each sub-figure corresponds to a different factor, and shows the distribution of

topographic similarity scores according to the possible levels for that factor. As

expected, random baselines were found to be insignificant (p-value ≥ 0.05).

If we focus on holisticity (Figure 3.7a), we do see that less compositional lan-

guages yield lower topographic similarity scores. When we consider the correla-

tion values averaged over all 50 runs, we see that no holistic parameter configu-

ration (where h = 5) is found to be significant, resulting in the missing boxplot in

Figure 3.7a. 1st, 2nd and 3rd quartiles are found to consistently decrease for higher

values of h.1 This tells us that topographic similarity is indeed sensitive to the

structural similarity of meaning representations and message representations.

Synonymy and semantically ungrounded elements are found to be confound-

ing factors (Figure 3.7b and Figure 3.7c). Higher values for the s and u param-

eters systematically entail that the distribution of topographic similarity scores

1Some languages with h = 5, which are fully holistic, were found to yield significant topo-
graphic similarity. Most of these also included multiple ungrounded symbols (u ≥ 1). This can be
explained by the effects of paraphrases: in holistic languages with multiple messages per mean-
ing containing ungrounded symbols, paraphrastic messages for a given meaning differ only by
their ungrounded symbols, whereas messages for different meanings will also differ by their
grounded symbols—leading to nonzero correlation. However, on average over all 50 runs, the
p-value for any of these settings is below our threshold.
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(averaged over 50 runs) is globally lower, as 1st, 2nd and 3rd quartiles consistently

decrease.

Lastly, for non fully-holistic settings (h < 5), we observe that some combi-

nations of factors fail to produce significant topographic similarity scores. In

15.2 % of all possible factor combinations, this persists even when averaged over

all 50 corresponding runs. Hence we conclude that this is an actual effect of the

interaction of factors. All these languages are defined with at least one extreme

factor: viz. either three synonyms per concept (s = 3), three ungrounded sym-

bols (u = 3) or four concepts merged into a single expression (h = 4). Moreover

all of them (except for two languages defined with h = 4, s = 3 and either u = 2 or

u = 3) contained a single message per meaning (p = 1). Confirming this trend, we

find that all non fully-holistic languages with up to three messages per meaning

(p = 3) were found to have a significant topographic similarity on average. These

shared characteristics can hint at the fact that confounding factors can signifi-

cantly obfuscate the structural similarity of the two metric spaces. An alternative

explanation could be that languages without paraphrases (p = 1) contain fewer

messages and thus yield higher p-values, whereas paraphrases additionally entail

that very low textual distances map to zero meaning distances.

3.2.3 Discussion & Conclusions

We observed that synonymy (Figure 3.7b) and ungrounded elements (Figure 3.7c)

seemed detrimental to topographic similarity scores, whereas the effects of para-

phrases were found to be more subtle (Figure 3.7d). We quantify this by com-

puting a simple linear model in R (R Core Team, 2018) where the correlation
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Coeffs. Estimate Std. Error t value Pr(> |t |)
(Intercept) 0.402781 0.001936 208.07 < 2 ·10−16

h = 2 −0.016909 0.001577 −10.72 < 2 ·10−16

h = 3 −0.057501 0.001577 −36.46 < 2 ·10−16

h = 4 −0.113547 0.001577 −72.00 < 2 ·10−16

h = 5 −0.197191 0.001734 −113.75 < 2 ·10−16

s = 2 −0.096726 0.001748 −55.34 < 2 ·10−16

s = 3 −0.137808 0.001748 −78.85 < 2 ·10−16

u = 1 −0.099435 0.001524 −65.26 < 2 ·10−16

u = 2 −0.126905 0.001524 −83.29 < 2 ·10−16

u = 3 −0.145707 0.001524 −95.63 < 2 ·10−16

p = 2 0.031989 0.001354 23.63 < 2 ·10−16

p = 3 0.041219 0.001354 30.45 < 2 ·10−16

Table 3.1: Linear model of correlation with parameters as predictors. Intercept:

h = 1, s = 1,u = 0, p = 1.

score is the dependent variable and the values of the four parameters are the

predictors; data points correspond to specific runs. Results are reported in Ta-

ble 3.1. For each coefficient (i.e., predictor value), we list its estimated coefficient

in the regression, the standard residual error not captured by the model, the cor-

responding t-statistics (i.e., the number of standard deviations that separate the

value assigned to a predictor from what we would observe in the case of the null

hypothesis being true), and the probability of it being a significant factor.

While h = 5 was found to be the predictor with the strongest negative effect

on topographic similarity scores, we found that factors s = 3, u = 3 and u = 2

had stronger effects than h = 4. In short, the model shows that factors such as

synonymy impact topographic similarity measurements—sometimes to a greater

extent than structural similarity as shown by t-value scores. It also stresses that

paraphrases positively impact topographic similarity scores: in languages where

p > 1, any single unreliable message is less likely to whittle down scores.
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In all, our experiment suggests that taking topographic similarity applied

to natural sentences comes with significant challenges. Factors that we expect

from natural language, such as ungrounded symbols and synonyms, obfuscate

the clear relationship between structural similarity and topographic similarity

scores. At times, these factors can even annihilate the interpretability of topo-

graphic similarity scores for generated languages. Yet structural similarity does

impact measurements: therefore, while topographic similarity scores in and of

themselves may not be sufficient to establish or reject that two spaces encode

similar information, they can serve as a diagnosis tool.

3.3 Topographic similarity and Sentence Encoders

We may expect another type of confounding factor arising from the models we

use to compute semantic representations. As Wieting and Kiela (2019) point out,

randomly initialized and untrained neural architectures can perform surprisingly

well on some tasks, despite not being able to produce linguistically meaningful

representations. If we are to use neural embeddings, it is important that we

assess how topographic similarity copes with embeddings from untrained neural

networks.

3.3.1 Methodology

In this experiment, our approach will be to compute topographic similarity for

natural language data—more specifically, for sentences. We will consider two

types of metrics: text-based metrics and vector-based metrics.

With respect to textual metrics, we will use the Levenshtein distance (defined
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over words rather than characters), as well the Levenshtein distance normalized

by sentence length. Moreover, as we saw in Section 3.2, extraneous factors such

as synonymy or ungrounded tokens may impact our measurements. To check

whether these factors also impact natural language examples, we perform simple

modifications of our original process. To control for synonymy, we replace every

word by the first lemma of its first synset in WordNet (Fellbaum, 1998), if any

such lemma can be found. To control for ungrounded symbols, we remove stop-

words from our sampled sentences.

The vector distances we use in this section rely on sentence encoders, com-

putational models that convert sequences of tokens into vector representations.

They can be trained on a variety of tasks, from predicting the entailment relation

between a pair of sentences (Conneau et al., 2017) to reconstructing the context

of a passage (Kiros et al., 2015). These tasks require capturing the meaning of the

corresponding texts.

We first verify whether the distances over these vector spaces correspond

to human judgments. If so, this would allow us to consider our embeddings

as linguistically motivated. We expect sentence embeddings to anti-correlate

to human similarity ratings: if sentence encoders capture sentence semantics,

then words that humans judge to be highly similar in meaning should not be far

from one another in the embedding spaces. We therefore compute the Spearman

correlation between the human ratings present in the SICK benchmark (Marelli et

al., 2014) and the cosine and Euclidean distances between the two corresponding

sentence embeddings. SICK consists in a series of paired sentences, matched with

a human rating of their semantic similarity. As such, we expect that distance

between representations of sentence meaning should significantly anti-correlate



Comparing Dictionaries and DSMs using Topographic Similarity 116

Cosine Euclidean

-1.00

-.80

-.60

-.40

-.20

0.00

−0
.0

4

−0
.2

2

−0
.7

7

−0
.7

7

−0
.4

3

−0
.4

2

−0
.6

4

−0
.6

6−0
.4

9

−0
.4

9

C
or

re
la

ti
on

random Transformer
USE

random LSTM
Infersent

Skip-Thought

Figure 3.8: Meaning distance metrics evaluated on the SICK dataset. (Spearman

correlation)

with human semantic similarity judgments.

Figure 3.8 summarizes correlation scores for a few sentence encoders. First

is Skip-Thought (Kiros et al., 2015), a LSTM-based encoder trained to produce

vector representatiosn that contain the information necessary to reconstruct the

previous and next sentences. Next is Infersent (Conneau et al., 2017), a biLSTM

model trained on the NLI task. The third and final model is the Universal Sen-

tence Encoder (Cer, Y. Yang, et al., 2018, USE for short), trained on multiple tasks

at once, which include sentence classification and an objective similar to that

of Skip-Thought. Lastly, we include randomly initialized and untrained Trans-

former and LSTM models. We observe that USE yields the most consistent se-

mantic representations and thus decide to focus in the following on this partic-

ular model. To contrast the effects of training, we will also include the random

Transformer in our experiments.

To compute actual topography similarity scores, we randomly sample 4 123

sentences from the Toronto BookCorpus (Zhu et al., 2015)—a collection of English

books of various genres—for computing Mantel tests using Levenshtein distance,

both raw and normalized, as the textual distance.2 We repeat the procedure 5

times before averaging results.

2This corpus size is defined in relation to a pilot study.



117 Comparing Dictionaries and DSMs using Topographic Similarity

cos/Lev.
l 2/L

ev.

cos/Lev. n.

l 2/L
ev. n.

-.50

-.25

.00

.25

.50

.75

1.00

−0
.5

04

0.
75

4

−0
.0

56 0.
23

8

0.
11

3

0.
11

4 0.
34

2

0.
34

5

C
or

re
la

ti
on

random Transformer
USE

(a) No control

cos/Lev.
l 2/L

ev.

cos/Lev. n.

l 2/L
ev. n.

−0
.4

81

0.
64

9

−0
.0

33

0.
08

8

0.
09

0

0.
09

1 0.
30

6

0.
31

1

(b) Controlling for stop-words

cos/Lev.
l 2/L

ev.

cos/Lev. n.

l 2/L
ev. n.

−0
.5

04

0.
75

3

−0
.0

55 0.
23

3

0.
11

4

0.
11

5 0.
34

5

0.
34

8

(c) Controlling for synonymy

Figure 3.9: Topographic similarity scores for natural language sentences.

3.3.2 Results

Results are presented in Figure 3.9: Figure 3.9a corresponds to the control-less

scenario; Figure 3.9b and Figure 3.9c present the effects of controlling for stop-

words and synonyms respectively. Results are consistent across all five random

samples of sentences: standard deviation of topographic similarity scores is sys-

tematically below 0.016, and often below 0.005.3

Most striking are the very high correlations and anti-correlations that are

yielded by the random baseline: the anti-correlations and correlations derived

from non-normalized Levenshtein distance have a greater magnitude than what

we observe for USE (which is also based on the Transformer architecture). In the

case of Euclidean distance, this magnitude can partly be explained by the archi-

tecture itself, which computes a vector that is not meaningful (as we saw in Fig-

ure 3.8) but that is still computed in a very compositional way (cf. Section 1.2.2).

3Only the randomly initialized Transformer when using Euclidean distance and non-
normalized Levenshtein distance yields standard deviations above 0.01 (in all three scenarios).
Standard deviations for USE embeddings are all below 0.003, with the exception of the two setups
involving normalized Levenshtein distance and controlling for stop-words (around 0.007).
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Put simply, random Transformers are compositional, but the corresponding no-

tion of composition is not linguistically justified. The simple sum used to derive

the sentence embeddings from the hidden states at each time-step4 entails that

the norm of every sentence representation grows proportionally to the number

of words it contains. Moreover the residual connections used in Transformers

entail that the hidden state for a given time-step bears some trace of the input

word at this time-step: therefore, sentences with words in common will tend to

be nearer in the Euclidean space.

Turning to the topographic similarity scores for USE, we observe that nor-

malizing Levenshtein distance leads to higher scores, which would suggest that

sentence length is not a semantically relevant factor. On the other hand, cosine-

based setups overall are found to decrease scores by a low margin, of 0.005 at

most. Removing stop-words lowers the correlation for USE embeddings: scores

in Figure 3.9b are found to be lower than those without any form of control by a

margin ranging from 0.02 to 0.04. Lastly, while we technically observe a higher

topographic similarity when controlling for synonyms (Figure 3.9c), the effect is

very subtle: correlation increases by no more than 0.005.

3.3.3 Discussion & Conclusions

This second experiment first and foremost cautions us that topographic similarity

does not discriminate between linguistically motivated and randomly generated

representations: in some instances, we observe high correlation scores for ran-

dom model outputs. This entails that any comparison that we perform using this

4Like Cer, Y. Yang, et al. (2018), we divided the sentence embedding by the square root of the
length of sentence.
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tool must factor in the inherent noisiness of our distributional representations.

Topographic similarity therefore assumes, and does not control, that the inputs

we feed it are linguistically motivated. While this assumption is obviously not

satisfied for a random model, it is defensible for USE given its training procedure

and the high anti-correlation with respect to human judgments observed above

in Figure 3.8.

On a purely practical level, this experiment also shows that topographic sim-

ilarity can be applied on human language. We were able to measure somewhat

high correlation scores (τ > 0.34). This suggests that the methodology is appli-

cable to linguistic data, and more specifically to definitions.

3.4 Topographic similarity and definitions

We now return to our inquiry of topographic similarity in definitions and em-

beddings. The results of our two preliminary experiments lead us to adopt a

more cautious stance. We have established in Section 3.2 that we expect con-

founding factors to impact our measurements. From Section 3.3, we know that

the quality of an embedding is also bound to affect how we can interpret topo-

graphic similarity measurements. Taking these caveats into account, we now

turn to measuring the topographic similarity between the two metrizable spaces

described by word embedding and definitions. To that end, we will first establish

the data we will use in Section 3.4.1, before describing our exact methodology and

experimental results in Sections 3.4.2 to 3.4.4.
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3.4.1 Dataset

In order to properly contrast the topography of embedding spaces with that of

dictionary definitions, we need to establish a dataset of embeddings paired with

dictionary definitions. The main question we will address here is how to select

hyperparameters to train our models and data so as to ensure that our compar-

isons are fair. We will first conduct a pilot study, on which we will build to pro-

duce our final dataset of embeddings and definitions broadly comparable across

settings.

Pilot study on hyperparameter setting

The first trait to consider, which we pointed out earlier in Section 1.4, is that

word embedding dimensions may impact distance, norm, and cosine similarity

of embeddings. Euclidean distance and cosine similarity are especially relevant

to our present study on the topographic similarity of word embeddings and def-

initions. As such, to rule out a potential confounding factor, we choose to use a

constant value of vector size for all embedding models to consider, which we set

to d = 256. Nonetheless, dimension is but one hyperparameter to us: there are

still numerous other for us to consider,d depending on the exact distributional

models under consideration.

One possibility that we may consider to select hyperparameters is Bayes-

ian Optimization. This algorithm consists in iteratively training models, with

initially random hyperparameters: at each iteration, we select the hyperparam-

eter configuration most likely to yield an increase in performance on some ob-

jective, according to Bayes’ rule. We provide a more thorough presentation in
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Appendix A.

Given that this hyperparameter selection method is not consensual in the

community, we start by evaluating the impact it would have on our models. We

focus on finding hyperparameters suitable for word2vec architectures on all four

comparable corpora. To compare their performances, we will compare them on

manual translations of the BATS dataset of Gladkova et al. (2016): we provide an

overview of these translations in Appendix B. This analogy benchmark is struc-

tured in two levels: individual sub-sections instantiating specific analogical rela-

tions (e.g., “animal—young” or “infinitive—past participle”) are then grouped into

four super-sections: Inflection, Derivation, Lexicography, Encyclopedia. The for-

mer two correspond to morphological relations whereas the two latter are more

closely aligned to common-sense reasoning.

We consider four languages to start with: English, Spanish, French and Ital-

ian. All the models are trained on comparable corpora; data was collected from

three different domains to ensure a broad linguistic coverage: Wikipedia, movie

subtitles, and literature. Wikipedia data was retrieved from existing dumps.5

Movie subtitles data comes from the OpenSubtitles corpus (Lison and Tiede-

mann, 2016). The literature corpora come from various sources: Project Guten-

berg6 for English and French, Wikisource7 for Spanish, and Liber Liber8 for Ital-

ian. For each language, we made sure to select data in standard modern lan-

guage varieties only. For the literature corpora, this involved discarding books

published prior to a date which corresponds to when each language started being

5https://dumps.wikimedia.org/
6https://www.gutenberg.org
7https://es.wikisource.org/
8https://www.liberliber.it/online/

https://dumps.wikimedia.org/
https://www.gutenberg.org
https://es.wikisource.org/
https://www.liberliber.it/online/
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written in its modern form (around the 19th century depending on the language).

Pre-processing included normalization, cleaning, and tokenization. The fol-

lowing steps were performed with the aim of ensuring consistency across single

languages. First, we normalized the data to the NFC form and re-encoded all

texts to UTF-8. Then, we performed text normalization using regular expres-

sions (quotes, diacritics, punctuation marks, trailing white spaces). After that,

we removed metadata, headers and footers based on heuristics, such as identi-

fying sentences at the beginning and end of files that contain metadata-related

keywords. Lastly, we performed segmentation in sentences and tokenization.

We used the spaCy library9 to tokenize the data.

Word2vec models were trained on these corpora using the gensim library

(Řehůřek and Sojka, 2010). We define the objective of this Bayes Optimization

process as the performance over a random subset of our analogy datasets: for

each sub-category, we select ten possible pairs of analogy instances, and attempt

to maximize the accuracy of the models on these subsets. In total, we perform 50

iterations, the first 10 of which are purely random samples of hyperparameters

to establish a prior distribution. This optimization process is implemented using

the scikit-optimize library.10

Once we have determined the best model for each language using Bayesian

Optimization, we compute its performances on the aforementioned analogy bench-

marks (either the original BATS model of Gladkova et al. (2016) or our transla-

tions). The performances of these best models are displayed in Figure 3.10b. We

also include the performances obtained by models with the default hyperparam-

9https://spacy.io/
10https://scikit-optimize.github.io

https://spacy.io/
https://scikit-optimize.github.io
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Figure 3.10: Hyperparameter selection: Results on BATS and translations

eters suggested in gensim in Figure 3.10a.

While tuning the hyperparameters does yield improvement, this has to be

balanced with the intensive computations it requires. In fact, a more careful

observation will show that this increase in performance is not statistically sig-

nificant. For each of the four languages we consider in this preliminary experi-

ment, we compute a Student’s t-test for related samples between the tuned and

untuned models, comparing their average accuracy on each subsection of our

analogy benchmark.

A paired Student t-test such as the one we conduct here consists in eval-

uating whether two comparable sets of values are significantly different from

one another. It assumes that we have two sets of measurements, A and B , of

n measured values, and that we are able to link a measurement in A to a re-

lated measurement in B . Given that, we can compute a t-statistic based on the
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mean-centered distributions of A and B :

Â = (
A1 −µA . . . An −µA

)
B̂ = (

B1 −µB . . . Bn −µB
)

tA,B =
(

n∑
i=1

µA −µB

)
×

√√√√ n (n −1)∑n
i=1

(
Âi − B̂i

)2 (3.10)

where µA and µB are the mean values of A and B respectively. In essence, the

t-statistic corresponds to computing the difference in means µA −µB to char-

acterize how distinct A and B are, and then scaling this difference so that it is

statistically interpretable. This scaling is related to the estimated standard devi-

ation for the distribution of the mean-centered differences (Â1 − B̂1 . . . Ân − B̂n),

under the assumption that the average mean-centered difference is equal to 0.

Simply put, the t-statistic compares the global difference µA −µB to what one

would expect if there was no difference between A and B .

We can then compare the t-statistic computed for A and B to what we would

observe for completely unrelated observations, where differences could be im-

parted to simple random flukes in the measurements. In practice, this hypothet-

ical baseline is defined as a t-distribution. Let X =N (0,σ) a normal distribution

with mean O and standard deviation σ, and Y such that Y 2/σ2 follows a χ2 dis-

tribution with degree of freedom n—viz., Y 2/σ2 = ∑n
i=1 N (0,1)). From this, we

can define the t-distribution with n degrees of freedom as:

t = X
p

n

Y
(3.11)

Using this t-distribution baseline, we can establish a p-value for the difference
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between A and B . More precisely, we compute the probability of observing the

t-statistic as defined in Equation (3.10) using a confidence interval over the t-

distribution.

As for our pilot study on hyperparameter selections, the two sets we wish to

compare correspond to the performances on the analogy dataset of Appendix B

of a model using default parameters, and the best model obtained during our

Bayesian Optimization hyperparameter selection. Our paired observations will

correspond to the average performance on a subsection of the dataset, hence

we have in total 40 different paired observations per language. We aim to as-

sess whether the hyperparameter selection process yielded an increase in perfor-

mance, i.e., whether the average accuracy on the analogy benchmark is greater

after hyperparameter selection.

Language p-value t-stat

en 0.469 N/A
es 0.524 N/A
fr 0.213 N/A
it 0.003 3.224

Table 3.2: T-tests between tuned and untuned models

Results of these analyses are displayed in Table 3.2. Aside from Italian, the

difference between tuned and untuned models were not found to be statistically

significant, hence we do not report the t-statistic associated. To confirm these

results, we also tried doubling the number of iterations of the Bayesian Opti-

mization process for the French and English tuned models. While this did yield a

slight increase in performance, the outcome still did not significantly differ from

results of the two corresponding untuned models.
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Language with examples without

en 0 806297
es 0 132583
fr 431793 573313
it 16127 86959
ru 122282 485208

Table 3.3: DBnary: number of items per language

There are two possible explanations for these puzzling results: either the

Bayesian Optimization requires many more iterations before yielding any sub-

stantial improvement, or the performances we obtain with untuned word2vec

models are already close to optimal. The latter case could be construed as evi-

dence against the validity of the offset method to solve the word analogy task.

In any event, taking these results in stride, we decide to train our embedding

models using default hyperparameters. An important argument in favor of this

decision is that our emphasis is on building comparable and controlled resources,

rather than reaching state-of-the-art performances.

Selected embeddings & dictionary data

In the previous section, we have decided not to perform hyperparameter setting

for our embedding algorithms. We have also started delineating comparable cor-

pora in Section 3.4.1. The questions we now have to tackle are twofold: that of

the embedding architectures and of the dictionary data we wish to include in our

comparable datasets.

As a source of dictionary definitions, we will primarily be using the DBnary

dataset (Sérasset, 2012).11 It consists of an RDF-formatted version of some of

11http://kaiko.getalp.org/about-dbnary/

http://kaiko.getalp.org/about-dbnary/
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Language N. Sents. N. Tokens N. Bytes

it 78761031 955474050 5001829910
es 78973969 975762257 5001999992
fr 82082118 1004767254 5001999368
en 97622760 1035154295 5001999755
ru 79526583 1035661601 10036395727

Table 3.4: Embeddings: corpus statistics

the existing Wiktionary projects.12 Table 3.3 shows the DBnary dataset size for

all four languages in our pilot study, plus Russian, which we introduce so as to

introduce more typological and linguistic diversity to our observations.

To construct a comparable dataset for Russian, we select data from Wik-

isource, Wikipedia and OpenSubtitles. The corresponding corpora are displayed

in Table 3.4. Note that we include twice the volume in bytes for Russian: this is

due to idiosyncrasies of UTF-8 encoding, which generally uses 2 bytes for non-

Latin characters. Comparing the number of sentences or tokens across languages

nonetheless ensures us that the corpora are of similar size.

With that in mind, the last point to consider is which embedding architec-

tures to include. Here, we focus on three architectures: word2vec models trained

with gensim (Řehůřek and Sojka, 2010), the ELECTRA model of Clark, Luong, et

al. (2020), and character-based embeddings. The word2vec and ELECTRA models

were selected so as to provide some comparison between static and contextual

embeddings; both are trained with default hyperparameters aside from output

vector size, which we set to 256. As for the ELECTRA models, given that we

need contexts to derive token representations, we train the models only in En-

glish, French and Russian. The French and Russian DBnary datasets both contain

12See https://www.wiktionary.org/

https://www.wiktionary.org/
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examples of usage that we can leverage to derive contexts for the embeddings of

a word to be defined. While the English DBnary dataset does not contain ex-

amples of usage, they are nonetheless present in the original Wiktionary dumps.

We therefore re-parse the English Wiktionary to extract examples of usage along

with definition glosses and definienda. The same procedure did not yield con-

vincing results for the Spanish and Italian Wiktionary projects, both of which

contain too few examples of usage for any reliable downstream application.

The character-based embeddings are included to provide baseline expecta-

tions for non-semantic representations—as we can expect spelling to be more or

less arbitrary with respect to word meaning. In practice, these embeddings are

computed through a simple LSTM-based auto-encoder: the word is passed into

an LSTM encoder as a sequence of characters, we sum all output hidden states,

and use these summed hidden states to initialize an LSTM decoder, whose objec-

tive it is to reconstruct the input word. As a character-based representation, we

can therefore use the summed output hidden states, as they are tailored to con-

tain all the information necessary to reconstruct the spelling of the correspond-

ing word. Given that we implement this module ourselves, we use a Bayesian

Optimization algorithm to select hyperparameters for our five character auto-

encoder. We use this process to decide learning rate, weight decay, dropout, β1

and β2 parameters of the AdamW optimizer, batch size, number of epochs over

the full dataset, as well as whether to share a single weight matrix for encoder

and decoder character embeddings. The datasets used to trained the models cor-

respond to the set of all word types attested in our base corpora described in

Table 3.4. All models achieve a 99% reconstruction accuracy.
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3.4.2 Methodology

We now return to our primary concern: establishing whether word embeddings

and definitions describe comparable metric spaces. As we explained above, we

rely on the dataset we constructed in Section 3.4.1. We sample definitions for

each of the five languages (English, Spanish, French, Italian, Russian). We con-

struct two frequency registers for our samples: we either sample commonwords—

viz., definitions whose definienda are among the 20% most common words in the

embeddings’ training corpus—or we sample rare words—viz., definitions whose

definienda are among the 50% least common words in the embeddings’ training

corpus. To take into account effects due to sampling accidents, for each language,

we construct five random samples of both kinds, and average results prior to any

analysis.

As for confounding factors, we only check whether ungrounded symbols

also impact natural language examples. We use the same control mechanism

we introduced in Section 3.3. Namely, to control for ungrounded symbols, we

remove stop-words from our definitions. We consider both Euclidean and cosine

distances to measure the similarity between two embeddings. As for definition

glosses, we consider the Levenshtein edit distance and the Levenshtein edit dis-

tance normalized by the maximum length of the two glosses. We also include he

Jaccard index, viz. the “Intersection over Union,” defined as:

d J (A,B) = #(A∪B)

#(A∩B)
(3.12)

for two sets of tokens A and B .
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3.4.3 Results

We summarize our findings in Figure 3.11 for common words, and in Figure 3.12

for rare words. Sub-figures correspond to different embedding architectures.

Correlations measured on glosses from which stop-words were removed are indi-

cated with a minus exponent −. Statistically insignificant topographic similarity

scores are not displayed.

Out of the total 312 correlations we compute, only 148 (47%) were found to

yield a significant correlation, and 38 (12%) yielded significant anti-correlations.

The remainder (126 setups, or about 40%) were found to be insignificant. Stan-

dard deviations of topographic similarity scores across all setups remain below

0.015 (with one exception, that English ELECTRA, using l2/Lev.) and often be-

low 0.008, with the exception of a few setups. In detail, out of the 3 setups yield a

standard deviation above 0.01, all of which involve Euclidean distance. Further-

more, 9 more setups yield a standard deviation above 0.009, with no common

trend between all the involved setups.

We now look at the results on common words displayed in Figure 3.11. Over

all, the highest correlation seem to be those obtained with SGNS. Most setups that

involve word2vec embeddings yield positive correlations, and magnitudes are

generally higher than what is observed elsewhere. Character-based embeddings

also seem to yield correlations, although the overall magnitude is lower than

those observed for SGNS models. Turning to ELECTRA embeddings, we see

that Russian seems like the only language which yields unequivocally higher

correlation from ELECTRA than from character-based embeddings.
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Figure 3.11: Topographic similarity scores for definitions (Common words).
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Figure 3.12: Topographic similarity scores for definitions (Rare words).
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If we focus on the results on rare words displayed in Figure 3.12, we see a

different picture. SGNS-based setups are overall much poorer than what we ob-

served in common words (Figure 3.11). Numerous setups are found insignificant

or yield anti-correlations. Result from character embeddings sharply contrast

across languages: in the English, French and Russian models, we observe higher

results than what we have for SGNS, whereas Spanish and Italian yield insignifi-

cant setups or anti-correlations. Lastly, we can note that ELECTRA embeddings

seem to fare better than with common words.

There are also some surprising observations to be made. The most straight-

forward setup (cos/Lev.) systematically fails to produce positive correlations. It

also produces the highest anti-correlation scores (rare words, Spanish, with and

without stop-words). Removing stop words is not always helpful: especially in

SGNS-based setup, we can see an almost systematic decrease in correlation.

3.4.4 Discussion

The experiments suggest that common word definitions are more similar to SGNS

vectors, whereas rare word definitions are more similar to character-based or

contextual embeddings, as the magnitude of the correlation attests. Overall,

the most regular relation is to be found between common word definitions and

word2vec vectors.

Character-based embeddings are not a negligible predictor of definition dis-

tance. This makes sense: one might expect etymologically related words to

have some part of their meaning in common; as a consequence, their defini-

tions should highlight these similarities; hence, to some extent, orthographically
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similar words should have similar definitions. On the other hand, our ELECTRA

contextual embeddings often under-perform other types of embeddings. This is

likely due to the amount of data they require in order to be properly trained.

Another point to take note of is that we find overall much lower correlations

than what we observed for sentences in Section 3.3. The majority of the setups

we test corresponds to either insignificant results or anti-correlation. The be-

wildering behavior observed on definitions might be due to particular artifacts

from this dataset, in contrast to the more natural and varied dataset used in the

previous experiment. Dictionaries are rather constrained in terms of style, and

often make use of stylistic prefixes (e.g., “of or pertaining to”). This may drive the

correlation scores down; and could in theory be factored in by more appropriate

pre-processing or more elaborate textual metrics.

3.5 Replicating and expanding the study on defini-

tions

The surprising results we observed in Section 3.4 warrants that we rule out any

possible mistake on our part. To do so, we resort to a replication study, and pro-

ceed with greater caution so as to rule out any potential flaw in our methodology.

We will rely on datasets and embeddings that we have not created ourselves,

employ all control mechanisms at our disposal, and cover a greater number of

textual metrics between definitions.
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3.5.1 Methodology

We select definitions from the dataset distributed by Noraset et al. (2017). We

restrict ourselves to definitions of nouns collected from the GCIDE, the GNU

Collaborative International Dictionary of English (GCIDE),13 where the definien-

dum is among the 100–10 000 most frequent words of the English Gutenberg cor-

pus. This yields 4 123 distinct definienda and 20 109 definitions. For ambiguous

definienda, we select one definition at random so as to ensure a strict one-to-one

correspondence between embeddings and glosses. We repeat this process five

times for all subsequent measurements before averaging results.

We consider four sets of pre-trained word embeddings: fastText trained on

Common Crawl (Bojanowski et al., 2017), GloVe 6B, trained on Wikipedia and

GigaWord, and GloVe 840B, trained on Common Crawl (Pennington et al., 2014),

and word2vec trained on GoogleNews (Mikolov, K. Chen, et al., 2013).

We do not include contextual embeddings for three reasons. First, the GCIDE-

based dataset of Noraset et al. (2017) does not provide contexts of usage for us

to compute contextual representations. Second, we expect that the behavior of

more complex models may be less easy to interpret overall. Third, there is no

consensual methodology to compare the quality of static embeddings and con-

textual embeddings, making it difficult to know whether we can hold contextual

embeddings to the same standard than static embeddings. Excluding contextual

representations from this replication study is the simpler solution to these three

problems.

We first verify that the semantic distances over these semantic spaces prop-

13https://gcide.gnu.org.ua/.

https://gcide.gnu.org.ua/
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Figure 3.13: Meaning distance metrics evaluated on the MEN dataset. (Spearman
correlation)

erly anti-correlate to human similarity ratings: words that humans judge to be

highly similar in meaning should not be far from one another in the embedding

spaces. We therefore assess the four sets of word embeddings on a word seman-

tic similarity benchmark, the MEN dataset (Bruni et al., 2014), which maps pairs

of words to human ratings of their semantic similarity. For all models, we test

the Euclidean distance and the cosine distance as a distance over vectors; if they

encode how different two meaning representations are, we expect them to anti-

correlate with semantic similarity ratings. Results in Figure 3.13 highlight that

while all semantic metrics properly anti-correlate, cosine distance yields higher

correlations with human similarity judgments than Euclidean distance, for all

embedding spaces.

As in previous experiments, we consider cosine and Euclidean distance to

measure the distance between definienda embedding. We also include Leven-

shtein distance and length-normalized Levenshtein distance, as well as the Jac-

card index.

Moreover, natural language has a rich syntax: it therefore makes sense to as-

sess the textual similarity of these sentences using syntactically-informed met-

rics. Thus, in addition to our previous definition gloss distances, we study the
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Tree Edit Distance (TED) computed with the AP-TED algorithm (Pawlik and

Augsten, 2015) over the corresponding parse trees obtained with the Reconciled

Span Parser (V. Joshi et al., 2018). We also consider normalizing TED so that the

maximum distance between any two definitions is 1. More formally, given the

parse trees F and G , we normalize their TED by #F + #G −min(h(F ),h(G )),

where #T corresponds to the size of tree T and h(T ) to its height.

To check whether synonymy, ungrounded symbols and paraphrases also im-

pact natural language examples as we saw in Section 3.2, we perform simple

modifications of our original process. To control for synonymy, we use the same

procedure as before: we replace every word by the first lemma of its first synset

in WordNet (Fellbaum, 1998), if any such lemma can be found. To control for

ungrounded symbols, we use the same mechanism as previously of removing

stop-words. Given that this latter manipulation profoundly alters the sentence,

we do not compute TED-based topographic similarity scores in this case.

As for paraphrases—i.e., multiple glosses associated to the same embedding—

we redo the selection process, and this time randomly sample 4 123 items out of

the total 20 109 definitions, without the constraint of having only one definition

per definiendum: hence these samples only contain on average 2 507 distinct

definienda (standard deviation: ±14.53). We duly note that different definitions

correspond to distinct senses of the definiendum and thus are not strictly speak-

ing paraphrases. However, we remark that static embeddings of polysemous

words correspond to all possible senses for this word-type, thus a static word

embedding ought to be matched to the entire set of definitions for the corre-

sponding token. Moreover, the case of ambiguous definienda associated to mul-

tiple glosses correspond exactly to the confounding factor we described earlier
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Figure 3.14: Topographic similarity scores for natural language definitions.

as paraphrases in Section 3.2: multiple sequences of tokens M1 · · · Mn associated

to the same vector representation.

3.5.2 Results

We summarize our findings in Figure 3.14. Figure 3.14a corresponds to results

in the case where no supplementary control is applied. Figures 3.14b to 3.14d

highlight the effects of controlling for stop-words, synonyms, and multiple def-

initions respectively. Statistically insignificant topographic similarity scores are

not displayed. Standard deviations of topographic similarity scores across the
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five runs remain below 0.008 and often around 0.005, with the exception of a

few setups when controlling for paraphrases.14

While the control methods often produce inconsistent measures, they can be

understood as suggesting that the identified topographic similarity confounding

factors are noticeably at play in natural language.

As with artificial language experiments above, controlling for stop-words im-

proved topographic similarity measurements in most setups (Figure 3.14b), how-

ever scores decrease for fastText and word2vec when using cosine and Leven-

shtein distances setups. Controlling for synonymy brought very small suggestive

topographic similarity increases in the most standard setup (cosine and non-

normalized Levenshtein) but observations across other setups are not consistent

(Figure 3.14c). Controlling for paraphrases produces consistent and pronounced

topographic similarity improvements on the most standard setup but quite di-

verse effects elsewhere (Figure 3.14d).

We also make two general unexpected observations about alternative setups.

First, as seen e.g., from the controlless scenario in Figure 3.14a, normalizing tex-

tual metrics can be surprisingly detrimental. For instance, Euclidean distance

between GloVe 6B vectors, when paired with Levenshtein distance, goes from

the highest measured topographic similarity score to statistical insignificance—

in fact, only 2 out of the 8 topographic similarity using normalized Levenshtein

distance are significant. When controlling for confounding variables, normaliza-

tion can even induce anti-correlations. Second, cosine distance also yields lower

topographic similarity scores than Euclidean distance, despite it being more in

14In detail, 4 setups yield a standard deviation between 0.01 and 0.015; they all involve Eu-
clidean distance and non-normalized form distances, using either fastText or GloVe 840B.
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line with human ratings (Figure 3.13): Euclidean distance yields in many occa-

sions correlation scores of 0.1 and higher, more than twice what we observe for

cosine distance.

3.5.3 Discussion

Overall, this experiment on its own highlights that demonstrating the role of

confounding factors expected to be detrimental to topographic similarity, such

as ungrounded elements, is in principle possible for natural language; though

we have employed blunt methods of control, effects could be perceived. On the

other hand, our observations underscore how sensitive topographic similarity is

to the choice of distance functions: considerations such as normalizing metrics

between 0 and 1 or choosing Euclidean vs. cosine distance can impact results

significantly.

These observations raise two questions:

(i) why does normalizing textual distances degrade topographic similarity

scores?

(ii) do these results support that definitions and DSMs describe comparable

metric spaces?

To answer both, we study more closely which items are detrimental to topo-

graphic similarity, as they may shed light on what topographic similarity mea-

surements capture, and how normalization affects it. We consider items where

measurements are mismatched: sentences with a relatively low meaning dis-

tance but a relatively high form distance—or vice versa—drive the topographic

similarity score down. We convert distance measurements into rank values, and
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consider the 100 pairs of sentences that yield maximal rank difference for a given

setup. These pairs will be referred to as problematic below.

For the sake of clarity, we focus on GloVe 6B-based measurements, using Lev-

enshtein distance (either raw or normalized) and compute all our measurements

from the same random selection of 4 123 definitions. In the controlless scenario,

the 100 most problematic items for non-normalized Levenshtein-based setups all

involved two synonym-based definitions, such as Definition 8:

pilot: a steersman (8)

As synonym-based definitions can be identified to holistic messages, this

evaluation suggests that our dataset contains a high number of non-composi-

tional examples that this textual metric is not fit to handle.

All problematic pairs were found to have a high semantic distance (involv-

ing two unrelated definienda) but a low textual distance (both definitions are

very short, usually composed of an article and a noun, which entails few edit

operations). This suggests that normalizing the textual distance might be cru-

cial to get reliable topographic similarity. However, while normalizing Leven-

shtein distance does reduce the number of pairs of synonymy-based definitions

in the problematic pairs, they remain very frequent (98/100 for Euclidean dis-

tance, 88/100 for cosine distance), due to the fact that a common article usually

means that half of the tokens in the two definitions are the same. Removing

stop-words further reduces synonymy-based definitions in problematic pairs to

a handful, but reveals other artifacts: many pairs share a common pattern such

as Definitions 9 and 10:

sneer: the act of sneering (9)
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wade: the act of wading (10)

Moreover, the topographic similarity scores obtained in these settings are

lower than with raw Levenshtein distance, suggesting that such patterns are fre-

quent and that length is (counter-intuitively) a relevant factor. We conjecture

that short definitions are responsible for a large part of these artifacts, which an-

swers our first question. A simple solution might therefore be to filter them out.

Alternatively, a more complex textual distance could allow us to get rid of these

artifacts. We leave this subject for future work.

The second question we asked above concerned whether this replication study

presents a different pictures from what we saw in our first attempt in Section 3.4.

To answer this, we compare all results of the present replication study to those

we saw for English common words with word2vec (cf. Figure 3.11b).

First, we can remark that differences in setups do not seem to have quite

the same effect: while cosine distance was found to yield higher correlations in

the previous experiment, this time around, we generally get better results with

Euclidean distance. In the previous study, removing stop-words did not seem

helpful, whereas this time around this control mechanism appears to improve

some, but not all setups.

In terms of raw correlation scores, if we restrict ourselves to the same archi-

tecture, we find better results in our previous experiment. If we adopt a more

global perspective, we find a tentative improvement over the maximum corre-

lation scores (0.100 previously, vs. 0.128 here). Nonetheless, this upgrade is far

from satisfactory, as we are still quite below what we can expect for sentence

encoders (cf. Section 3.3); moreover, it might not be a significant improvement
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as we are using a different dataset of definition glosses.

Simply put, the results of this replication do not shed a greater light on our

previous results. In both cases, we find counter-intuitive interactions between

setups. In both cases, we find statistically insignificant correlations, as well as

statistically significant correlations and anti-correlations. In both cases, the high-

est correlation scores we observe are far below what one cold expect from our

previous experiments.

3.6 Conclusions

In all, what did we learn by measuring the topographic similarity of embeddings

and definition glosses? On the one hand, some of the setups we surveyed did

yield positive correlation scores. On the other hand, many also yielded no sig-

nificant correlation, or even anti-correlation scores; furthermore the magnitude

of the correlation in any setup that actually proved significant was fairly limited

(τ< 0.15). This contrasts with the sentence-based measurements we conducted

in Section 3.3 (τ> 0.30).

Another point that warrants caution is the lack of agreement from our setup.

We do not observe a unanimous trend common to all setups, nor do the results

straightforwardly point in the same direction. The choice of distances, embed-

dings, or control methods can annihilate or negate similarity scores. This tells us

that while definitions can in principle be cast as a metric space, doing so is rife

with caveats. This in turn obfuscates topographic similarity to a degree where it

is hard to make any final conclusion.

This unclear set of results was the initial reason why we conducted the repli-
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cation study in Section 3.5. Our conclusions in Section 3.4 hinted at a poor

dataset: the one we had used might have been responsible for the surprising

results we observed. However, replicating our study using GCIDE definitions

(instead of DBnary definitions) and readily available embeddings (instead of the

ones we trained) did not seem to improve our results convincingly—at least, the

results we observed were still not up to the standards we could expect following

our experiment with sentence encoders in Section 3.3. Moreover, we have been

able to pinpoint through manual analysis that some characteristics of dictionar-

ies hinder the application of the topographic similarity methodology: synonym-

based definitions, in particular, can be equated to fully holistic messages in our

earlier experiments with Artificial languages in Section 3.2, for which this topo-

graphic similarity metric is ill-suited.

This replication study has corroborated what emerged from our first approach

in Section 3.4: the overall organizations of the space of definition glosses and the

space of word embeddings differ. They are barely comparable to what we ob-

serve for sentences and sentence embeddings. We have ruled out that the data

we provided is the root cause for this low similarity; hence, it is reasonable to

conclude that this low correlation is to be imputed to the different nature of word

embedding and definition spaces.

We could make some caveats and suggestions for improvement. For instance,

a textual distance more complex than the ones we have focused on during this ex-

periment could allow us to produce higher topographic similarity scores. How-

ever, if we consider this problem as some metric to improve on, we shift our

methodology from measuring a property of two metrizable spaces to that ofmod-

eling the textual metric most topographically similar to some vector space, which
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is another perspective altogether that we will investigate in future chapters.





4

Defining InveRse Functions Between

DictionaRies and DSMs

Mara hörfar fráleitt fann
Feigðin lítið kríli
Fara draugar aldrei ann
Ógnin okkar býli

Býli okkar ógnin ann
Aldrei draugar fara
Kríli lítið feigðin fann
Fráleitt hörfar Mara

— Skálmöld, Barnið

Our comparison of definitions and embeddings as metric spaces in Chapter 3

was not conclusive. One potential explanation that emerges from our findings is

that perhaps our problem is best casted as one of conversion, rather than com-

This chapter is based on previous publications (Mickus, Paperno, and Constant 2019, “Mark
my Word: A Sequence-to-Sequence Approach to Definition Modeling”; Mickus, Constant, et al.
2020, “Génération automatique de définitions pour le français (Definition Modeling in French)”)
as well as the SemEval 2022 CoDWoE shared task: https://competitions.codalab.org/
competitions/34022; article in press: (Mickus, Deemter, et al. 2022, Semeval-2022 Task 1: COD-
WOE – Comparing Dictionaries and Word Embeddings).
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https://www.youtube.com/watch?v=v6zNV2dykng
https://competitions.codalab.org/competitions/34022
https://competitions.codalab.org/competitions/34022
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⃗tomato
Definition Modeling

Reverse Dictionary

A widely cultivated
plant, Solanum lycop-
ersicum, having edible
fruit.

Figure 4.1: Inverse tasks of Definition Modeling and Reverse Dictionary

parison. Instead of measuring the properties of both types of semantic represen-

tations, we can focus on whether all the information necessary to reconstruct

one representation is present in its counterpart. In other words: can a definition

gloss be generated from the embedding of its definiendum, and can we conversely

compute this vector from the gloss?

One appealing approach is to use neural networks, as they are in principle

able to approximate any function. To address this problem, we would there-

fore need two types of neural models: those that convert definition glosses into

embeddings, and those that convert embeddings into definition glosses. Such

models are very reminiscent of existing NLP applications that we discussed pre-

viously: reverse dictionary applications (see Section 2.4.1) and definition model-

ing systems (see Section 2.4.2).

In all, we will investigate whether Definition Modeling and reverse dictionar-

ies can be re-framed as each other’s inverse, as illustrated in Figure 4.1. If this

can be achieved, reverse dictionary models would allow us to convert glosses

into embeddings, whereas definition modeling systems would allow us to con-

vert embeddings into glosses.

This approach, though appealing, is not without issues. In this chapter, we

will more narrowly focus on three foreseeable difficulties. First, aligning word
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embeddings and word definitions is not a trivial problem, as we will describe in

Section 4.1. Second, as we will see in Section 4.2, Definition Modeling as it is

currently conceptualized in the NLP community is highly reliant on examples

of usage, which are incompatible with our inverse functions. Third, it is not

guaranteed that such systems are able to discriminate between embeddings based

on their quality, as we will study in Section 4.3. Having covered these expected

shortcomings, we will sketch some perspectives on this approach in Section 4.4.

4.1 Aligning word definitions and word embeddings

Earlier in Chapter 2, we reviewed a number of NLP systems that convert glosses

into embeddings under the general denomination of “reverse dictionary systems.”

Once can point out that the literature on the topic almost exclusively focuses

on systems, rather than considering the problem of building a reverse dictionary

as a task. One could nonetheless construct a dataset where definition glosses

are associated with target embeddings to be reconstructed. Such a dataset could

then be used to compare the performance of different approaches and architec-

tures for reconstructing word embeddings from the associated definition glosses.

This is in essence the approach adopted by works using dictionaries to perform

compositional semantics, such as Zanzotto et al. (2010) and Hill et al. (2016).

As it stands, we do find some immediate issues with such a formulation of

the reverse dictionary task—although it essentially corresponds to what we de-

scribed in Section 3.4.1. One major problem to consider is that of word-sense

alignment. While static embeddings correspond to a given word type, definition

glosses instead describe a specific sense of a given word type. As such, typical
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static embedding architectures such as word2vec, GloVe or FastText will map

multiple inputs to the same output. While this may not appear too problem-

atic for polysemous words, where the various definition glosses are somewhat

related, we can ask ourselves whether this is justified for homographs. For in-

stance, it is questionable that we should expect any model to produce the same

output for two widely differing definitions such as those in 11 and 12:1

quail: Any of various small game birds of the genera

Coturnix, Anurophasis or Perdicula in the Old

World family Phasianidae or of the New World

family Odontophoridae.

(11)

quail: To lose heart or courage; to be daunted or fearful. (12)

The problem is all the more complex with contextual word embeddings such

as BERT. Here, the first hurdle lies in aligning definition glosses with contexts

of the word use in that sense. This can generally be done using examples of us-

age: these short texts should in principle contain the definiendum used with the

meaning described by the definition gloss. However, not all dictionaries provide

such examples of usage; and if a dictionary does include examples, it might not

do so systematically.

Second, word senses do not necessarily correspond to specific contextual-

ized token semantic representations. For instance, we might expect a gloss, as

a word sense description, to only list essential properties of this concept (e.g., if

we define the meaning of “bird” that corresponds to the Aves genus of animals,

1From en.wiktionary.org

https://en.wiktionary.org/wiki/quail
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we might include remarks such that a bird has wings, feathers, a beak, gener-

ally flies, etc.), whereas a token representation such as a contextual embedding

might include contingent properties of the specific referent (e.g., in “I saw a red

bird”, the token representation for “bird” could contain enough information for

us to rule out that the bird it refers to is a seagull, which is white). In other words,

word sense representations could be less specific than token representations, and

more specific than word type representations.

Yet another difficulty arises if we have multiple examples of usage associated

to a single definition: here, we would have multiple contextual embedding tar-

gets for a single input sequence of definientia. Overall, these issues in alignment

suggest that reverse dictionary systems can be seen as non-injective surjective

functions; i.e., reverse dictionary systems correspond to a many-to-one set re-

lation. This means that we cannot in principle establish a strict mathematical

bijection between dictionary definitions and word embeddings.

4.2 Definition Modeling and Examples of Usage

The problem of word alignment we described in the previous is however not the

sole issue we encounter when trying to establish inverse functions between defi-

nitions and embeddings. One key element to consider is that almost all Definition

Modeling systems require examples of usage. This dependency on supplemen-

tary input aggravates the alignment problem we discussed above, as it entails we

have asymmetrical tasks. We could convert glosses into embeddings, but to pro-

duce a gloss from an embedding one would need to supply an example of usage

that is, for the most part, irrelevant to the reverse dictionary task.
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The introduction of examples of usage in Definition Modeling can be traced

back to Gadetsky et al. (2018). To our knowledge, the work of Gadetsky et al.

(2018) is in fact the second paper to ever discuss Definition Modeling. In other

words, Definition Modeling was re-framed so as to involve examples of usage

almost immediately after the seminal work of Noraset et al. (2017).

The argument that Gadetsky et al. (2018) develop to justify including example

of usages is that words are often ambiguous or polysemous, and thus generat-

ing a correct definition requires that we either use sense-level representations,

or that we disambiguate the word embedding of the definiendum. It should be

noted that the disambiguation that Gadetsky et al. (2018) proposed was based on

a contextual cue—i.e. a short text fragment. As Chang, Chi, et al. (2018) notes,

the cues in the dataset of Gadetsky et al. (2018) did not necessarily contain the

definiendum or even an inflected variant thereof. For instance, one training ex-

ample disambiguated the word “fool” using the cue “enough horsing around—let’s

get back to work!”. As such, the cues used by Gadetsky et al. (2018) are not ex-

actly examples of usage. Nonetheless, subsequent works such as Chang, Chi, et

al. (2018) or Bevilacqua et al. (2020) fully embraced the idea of using examples of

usage containing the definiendum.

One could also attempt to justify the inclusion of examples of usage in Def-

inition Modeling systems using linguistic arguments. To take the more specific

case of verb definitions, one can observe that context explicitly represents argu-

ment structure, which is obviously useful when defining the verb. There is no

guarantee that a single embedding, even if it be contextualized, would preserve

this wealth of information.

This contextual reformulation of definition modeling can appear contrary to
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the original proposal by Noraset et al. (2017), which conceived definition model-

ing as a “word-to-sequence task.” They argued for an approach related to, though

distinct from sequence-to-sequence architectures. Nonetheless, the system of

Noraset et al. (2017) applied a specific encoding procedure to the definiendum,

based on spelling and hypernymy information. Hence even the non-contextual

formulation of Noraset et al. (2017) involves supplementary input.

In all, despite some key differences, most Definition Modeling architectures

can be casted as sequence-to-sequence models that rely on supplementary in-

formation on top of word embeddings. All approaches we are aware of devote

distinct parameters or sub-modules to encode the definiendum representation. In

the case of Noraset et al. (2017), the encoding was the concatenation of the em-

bedding of the definiendum, a vector representation of its sequence of characters

derived from a character-level CNN, and its “hypernym embedding.” Gadetsky

et al. (2018) used a sigmoid-based gating module to tweak the definiendum em-

bedding. The architecture proposed by Chang, Chi, et al. (2018) is comprised

of four modules, only one of which is used as a decoder: the remaining three

are meant to convert the definiendum as a sparse embedding, select some of the

sparse components of its meaning based on a provided context, and encode it into

a representation adequate for the decoder. The model of Bevilacqua et al. (2020)

is based on a pre-trained sequence-to-sequence architecture, whose encoder is

tasked with modeling the context of occurrence.

On the other hand, the inclusion of examples of usage is here entirely con-

trary to our purpose. If we are to evaluate whether embeddings are equivalent

to glosses, we cannot adopt a contextual formalization of Definition Modeling.

A contextual formalization would in fact entail that we equate a given definition



Defining Inverse Functions Between Dictionaries and DSMs 154

to a vector paired with an example of usage; and we would have to re-frame

reverse dictionaries accordingly as the task to generate a vector paired with an

example of usage. The first question we will examine in this section is whether

we can find a formalization of definition modeling that encompasses both con-

textual and non-contextual variants of this task (see Section 4.2.1). We will then

shift our attention to the impact that a context-free formulation of Definition

Modeling has on performance (see Section 4.2.2).

4.2.1 Formalization

The sequence-to-sequence formulation of definition modeling can formally be

seen as a mapping between contexts of occurrence of definienda and their cor-

responding definitions. It moreover requires that the definiendum be formally

distinguished from the remaining context: otherwise the definition could not be

linked to any particular word of the contextual sequence, and thus would need

to be equally valid for any word of the contextual sequence.

We formalize definition modeling as mapping to sequences of definientia

from sequences of pairs 〈w1, i1〉, . . . , 〈wn , in〉 , where wk is the kth word in the

input and ik ∈ {0,1} indicates whether the kth token is to be defined. As only one

element of the sequence should be highlighted, we expect the set of all indica-

tors to contain only two elements: the one, id = 1, to mark the definiendum, the

other, ic = 0, to mark the context; this entails that we encode this marking using

one bit only.2

2Multiple instances of the same definiendum within a single context should all share a single
definition, and therefore could theoretically all be marked using the definiendum indicator id = 1.
Likewise the words that make up a multi-word expression should all be marked with this id

indicator. Here, for simplicity, we only mark a single item; in cases when multiple occurrences
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To treat definition modeling as a sequence-to-sequence task, the information

from each pair 〈wk , ik〉 has to be integrated into a single representation ⃗markedk :

⃗markedk =mark(ik , w⃗k ) (4.1)

This marking function can theoretically take any form. Considering that defini-

tion modeling uses the embedding of the definiendum w⃗d = e(wd ), we focus on a

multiplicative and an additive mechanism, as they are conceptually the simplest

form this marking can take in a vector space. They are formally defined as:

⃗marked×k = ik × w⃗k (4.2)

⃗marked+k = e(ik )+ w⃗k (4.3)

The last point to take into account is where to set the marking. Two natural

choices are to set it either before or after encoded representations were obtained.

We can formalize this using either of the following equation, with E the model’s

encoder:

⃗marked after
k =mark(ik ,E (w⃗k )) (4.4)

⃗marked before
k = E (mark(ik , w⃗k )) (4.5)

of the same definiendum were attested, we simply marked the first occurrence.
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Multiplicative marking

The first option we consider is to use scalar multiplication to distinguish the word

to define. In such a scenario, the marked token encoding is

⃗marked×k = ik × w⃗k (4.6)

As we use bit information as indicators, this form of marking entails that only

the representation of the definiendum be preserved and that all other contextual

representations are set to 0⃗ = (0, · · · , 0): thus multiplicative marking amounts

to selecting just the definiendum embedding and discarding other token embed-

dings. The contextualized definiendum encoding bears the trace of its context,

but detailed information is irreparably lost. Hence, we refer to such an integra-

tion mechanism as a SELECT marking of the definiendum.

When to apply marking, as introduced by Equation (4.4), is crucial when

using the multiplicative marking scheme SELECT. Should we mark the definien-

dum before encoding, then only the definiendum embedding is passed into the

encoder: the resulting system provides out-of-context definitions, like in Noraset

et al. (2017) where the definition is not linked to the context of a word but to its

definiendum only. For context to be taken into account under the multiplicative

strategy, tokens wk must be encoded and contextualized before integration with

the indicator ik .

In Figure 4.2 we present the contextual SELECT mechanism visually. It con-

sists in coercing the decoder to attend only to the contextualized representation

for the definiendum. To do so, we encode the full context and then select only
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r⃗1 r⃗2 r⃗3 r⃗4 r⃗5

I⃗ ⃗
we
ar a⃗ ⃗ti
e .⃗

Figure 4.2: SELECT: Selecting from encoded items; items are contextualized and
the definiendum is singled out from them

the encoded representation of the definiendum, dropping the rest of the context,

before running the decoder. In the case of the Transformer architecture, this

is equivalent to using a multiplicative marking on the encoded representations:

vectors that have been zeroed out are ignored during attention and thus cannot

influence the behavior of the decoder.

This SELECT approach may seem intuitive and naturally interpretable, as it

directly controls what information is passed to the decoder—we carefully select

only the contextualized definiendum, thus the only remaining zone of uncer-

tainty would be how exactly contextualization is performed. It also seems to

provide a strong and reasonable bias for training the definition generation sys-

tem. Such an approach, however, is not guaranteed to excel: forcibly omitted

context could contain important information that might not be easily incorpo-

rated in the definiendum embedding.

Being simple and natural, the SELECT approach resembles architectures like

that of Gadetsky et al. (2018) and Chang, Chi, et al. (2018): the full encoder is ded-

icated to altering the embedding of the definiendum on the basis of its context;

in that, the encoder may be seen as a dedicated contextualization sub-module.
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r⃗1 r⃗2 r⃗3 r⃗4 r⃗5

I⃗
+ C⃗

⃗
we
ar
+ C⃗

a⃗
+ C⃗

⃗ti
e
+ D⃗

.⃗
+ C⃗

Figure 4.3: ADD: Additive marking in encoder; context items and definiendum
are marked by adding dedicated embeddings

Additive marking

We also study an additive mechanism shown in Figure 4.3 (henceforth ADD). It

concretely consists in embedding the word wk and its indicator bit ik in the same

vector space and adding the corresponding vectors:

⃗marked+k = e(ik )+ w⃗k (4.7)

In other words, under ADD we distinguish the definiendum by adding a vector

D⃗ to the definiendum embedding, and another vector C⃗ to the remaining context

token embeddings; both markers D⃗ and C⃗ are learned during training. In our im-

plementation, markers are added to the input of the encoder, so that the encoder

has access to this information; we leave the question of whether to integrate

indicators and words at other points of the encoding process, as suggested in

Equation (4.4), to future work.

Additive marking of substantive features has its precedents. For example,

BERT embeddings (Devlin et al., 2019) are trained using two sentences at once as

input; sentences are distinguished with added markers called “segment encod-
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ings.” Tokens from the first sentence are all marked with an added vector ⃗segA ,

whereas tokens from second sentences are all marked with an added vector ⃗segB .

The main difference here is that we only mark one item with the marker D⃗ , while

all others are marked with C⃗ .

This ADD marking is more expressive than the SELECT architecture. Sequence-

to-sequence decoders typically employ an attention to the input source (Bah-

danau et al., 2015), which corresponds to a re-weighting of the encoded input

sequence based on a similarity between the current state of the decoder (the

‘query’) and each member of the input sequence (the ‘keys’). This re-weighting

is normalized with a softmax function, producing a probability distribution over

keys. However, both non-contextual definition modeling and the SELECT ap-

proach produce singleton encoded sequences: in such scenarios the attention

mechanism assigns a single weight of 1 and thus devolves into a simple linear

transformation of the value and makes the attention mechanism useless. Using

an additive marker, rather than a selective mechanism, will prevent this behav-

ior.

4.2.2 Experimental Protocol

We implement several sequence to sequence models with the Transformer ar-

chitecture (Vaswani et al., 2017), building on the OpenNMT library (Klein et al.,

n.d.) with adaptations and modifications when necessary. Throughout this ex-

periment, we use pre-trained GloVe vectors from Pennington et al. (2014) and

freeze weights of all embeddings. Words not in GloVe but observed in train or

validation data and missing definienda in our test sets were randomly initialized
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with components drawn from a normal distribution N (0,1).

We train a distinct model for each dataset. We batch examples by 8 192, using

gradient accumulation to circumvent GPU limitations. We optimize the network

using Adam with β1 = 0.99, β2 = 0.998, a learning rate of 2, label smoothing of

0.1, Noam exponential decay with 2000 warmup steps, and dropout rate of 0.4.

Model parameters are initialized using Glorot. Models were trained for up to

120,000 steps with checkpoints at each 1000 steps; we stopped training if perplex-

ity on the validation dataset stopped improving. We report results from check-

points performing best on validation.

Implementation of the Non-contextual Definition Modeling System

In non-contextual definition modeling, definienda are mapped directly to defi-

nitions. As the source corresponds only to the definiendum, we conjecture that

few parameters are required for the encoder. We use 1 layer for the encoder,

6 for the decoder, 300 dimensions per hidden representations and 6 heads for

multi-head attention. We do not share vocabularies between the encoder and

the decoder: therefore output tokens can only correspond to words attested as

definientia.3 The dropout rate and warmup steps number were set using a hyper-

parameter search on the dataset from Noraset et al. (2017), during which encoder

and decoder vocabulary were merged for computational simplicity and models

stopped after 12,000 steps. We first fixed dropout to 0.1 and tested warmup step

values between 1000 and 10,000 by increments of 1000, then focused on the most

promising span (1000–4000 steps) and exhaustively tested dropout rates from 0.2

3In our case, not sharing vocabularies prevents the model from considering rare words only
used as definienda, such as “penumbra” as potential outputs, and was found to improve perfor-
mances.
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to 0.8 by increments of 0.1.

Implementation of Contextualized Definition Modeling Systems

To compare the effects of the two integration strategies that we discussed in

Section 4.2.1, we implement both the additive marking approach (ADD) and the

alternative ‘encode and select’ approach (SELECT). To match with the complex

input source, we define encoders with 6 layers; we reemploy the set of hyperpa-

rameters previously found for the non-contextual system. Other implementation

details, initialization strategies and optimization algorithms are kept the same as

described above for the non-contextual version of the model. We stress that the

two approaches we compare for contextualizing the definiendum are applica-

ble to almost any sequence-to-sequence neural architecture with an attention

mechanism to the input source.4 Here we chose to rely on a Transformer-based

architecture (Vaswani et al., 2017), which has set the state of the art in a wide

range of tasks, from language modeling (Dai et al., 2019) to machine translation

(Ott et al., 2018). It is therefore expected that the Transformer architecture will

also improve performances for definition modeling, if our arguments for treating

it as a sequence to sequence task are on the right track.

Datasets

As our goal is to understand the effects of contextualization on definition mod-

eling, we train our models on three distinct datasets, which are all borrowed or

adapted from previous works on definition modeling. As a consequence, our

4For best results, the SELECT mechanism should require a bi-directional encoding mecha-
nism.
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experiments focus on the English language. The dataset of Noraset et al. (2017)

(henceforth DNor) maps definienda to their respective definientia, as well as addi-

tional information not used here. In the dataset of Gadetsky et al. (2018) (hence-

forth DGad), each example consists of a definiendum, the definientia for one of

its meanings and a contextual cue sentence. DNor contains on average shorter

definitions than DGad. Definitions in DNor have a mean length of 6.6 and a stan-

dard deviation of 5.78, whereas those in DGad have a mean length of 11.01 and a

standard deviation of 6.96.

Chang, Chi, et al. (2018) stress that the dataset DGad includes many examples

where the definiendum is absent from the associated cue. About half of these

cues doe not contain an exact match for the corresponding definiendum, but up

to 80% contains either an exact match or an inflected form of the definiendum

according to lemmatization by NLTK (Loper and Bird, 2002). To cope with this

problematic characteristic, we converted the dataset into the word-in-context

format assumed by our model by concatenating the definiendum with the cue.

To illustrate this, consider the actual input from DGad comprised of the definien-

dum “fool” and its associated cue “enough horsing around—let’s get back to work!”:

to convert this into a single sequence, we simply prepend the definiendum to the

cue, which results in the sequence “fool enough horsing around—let’s get back to

work!” Hence the input sequences of DGad do not constitute linguistically co-

herent sequences, but it does guarantee that our sequence-to-sequence variants

have access to the same input as previous models. The inclusion of this dataset in

our experiments is intended mainly for comparison with previous architectures.

We also note that this conversion procedure entails that our examples have a

very regular structure: the word marked as a definiendum is always the first
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word in the input sequence.

Our second strategy was to restrict the dataset by selecting only cues where

the definiendum (or its inflected form) is present. The curated dataset (hence-

forth DCtx) contains 78,717 training examples, 9,413 for validation and 9,812 for

testing. In each example, the first occurrence of the definiendum is annotated

as such. DCtx thus differs from DGad in two ways: some definitions have been

removed, and the exact citation forms of the definienda are not given. Models

trained on DCtx implicitly need to lemmatize the definiendum, since inflected

variants of a given word are to be aligned to a common representation; thus

they are not directly comparable with models trained with the citation form of

the definiendum that solely use context as a cue—viz. Gadetsky et al. (2018) &

Chang, Chi, et al. (2018). All this makes DCtx harder, but at the same time closer

to a realistic application than the other two datasets, since each word appears

inflected and in a specific sentential context.

4.2.3 Results

We use perplexity, a standard metric in definition modeling, to evaluate and

compare our models. Informally, perplexity assesses the model’s confidence in

producing the ground-truth output when presented the source input. It is for-

mally defined as the exponentiation of cross-entropy. We do not report BLEU or

ROUGE scores due to the fact that an important number of ground-truth defini-

tions are comprised of a single word, in particular in DNor (≈ 25%). Single word

outputs can either be assessed as entirely correct or entirely wrong using BLEU

or ROUGE. However consider for instance the word “elation”: that it be defined
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DNor DGad DCtx

Noraset et al. 48.168 45.620 –
Gadetsky et al. – 43.540 –

Non-contextual 42.199 39.428 48.266
ADD – 33.678 43.695
SELECT – 33.998 62.039

Table 4.1: Results (perplexity)

either as “mirth” or “joy” should only influence our metric slightly, and not be

discounted as a completely wrong prediction.

Table 4.1 describes our main results in terms of perplexity. Perplexity mea-

sures for Noraset et al. (2017) and Gadetsky et al. (2018) are taken from the au-

thors’ respective publications.

All our models perform better than previous proposals, by a margin of 4 to 10

points, for a relative improvement of 11–23%. Part of this improvement may be

due to our use of Transformer-based architectures (Vaswani et al., 2017), which is

known to perform well on semantic tasks (Radford, 2018; Cer, Y. Yang, et al., 2018;

Devlin et al., 2019; Radford et al., 2019, eg.). Like Gadetsky et al. (2018), we con-

clude that disambiguating the definiendum, when done correctly, improves per-

formances: our best performing contextual model outranks the non-contextual

variant by 5 to 6 points. The marking of the definiendum out of its context (ADD

vs. SELECT) also impacts results. Note also that we do not rely on task-specific

external resources (unlike Noraset et al., 2017; L. Yang et al., 2019) or on pre-

training (unlike Gadetsky et al., 2018).

Our contextual systems trained on the DGad dataset used the concatenation of

the definiendum and the contextual cue as inputs. The definiendum was always
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at the start of the training example. This regular structure has shown to be useful

for the models’ performance: all models perform significantly worse on the more

realistic data of DCtx than on DGad. The DCtx dataset is intrinsically harder for

other reasons as well: it requires some form of lemmatization in every three out

of eight training examples, and contains less data than other datasets, only half

as many examples as DNor, and 20% less than DGad.

The surprisingly poor results of SELECT on the DCtx dataset may be partially

blamed on the absence of a regular structure in DCtx. Unlike DGad, where the

model must only learn to contextualize the first element of the sequence, in DCtx

the model has to single out the definiendum which may appear anywhere in the

sentence. Any information stored only in representations of contextual tokens

will be lost to the decoders. The SELECT model therefore suffers of a bottleneck,

which is highly regular in DGad and that it may therefore learn to cope with;

however predicting where in the input sequence the bottleneck will appear is

far from trivial in the DCtx dataset. We also attempted to retrain this model with

various settings of hyperparameters, modifying dropout rate, number of warmup

steps, and number of layers in the encoder—but to no avail. An alternative ex-

planation may be that in the case of the DGad dataset, the regular structure of

the input entails that the first positional encoding is used as an additive marking

device: only definienda are marked with the positional encoding p(1), and thus

the architecture does not purely embrace a selective approach but a mixed one.

In any event, even on the DGad dataset where the margin is very small, the

perplexity of the additive marking approach ADD is better than that of the SE-

LECT model. In short: supplying more contextual information to the decoder

yields better performance. This fact can be construed as an indication of hard-
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ships to come: if a strong argument can be made that the task ought to include

contexts as inputs (as we discussed in the introduction of this Section 4.2) and

that there is a clear impact in discarding the context, then perhaps definitions

cannot be generated from embeddings alone—perhaps contextual information

might be necessary. If so, this should bear consequences on our experiments

down the line: viz., we may expect that contextual embeddings like ELECTRA

yield better results than static embeddings like SGNS.

4.2.4 Qualitative Analysis

A manual analysis of definitions produced by our system reveals issues similar to

those discussed by Noraset et al. (2017), namely self-reference,5 POS mismatches,

over- and under-specificity, antonymy, and incoherence. Annotating distinct

productions from the validation set, for the non-contextual model trained on

DNor, we counted 9.9% of self-references, 11.6% POS mismatches, and 1.3% of

words defined as their antonyms. In contrast, Noraset et al. (2017) found 7.14%

self-references but 8.57% antonyms. We counted POS mismatches whenever the

definition seemed to fit another part-of-speech than that of the definiendum, re-

gardless of both of their meanings.

filch: to seize (13)

grammar: the science of language (14)

implosion: a sudden and violent collapse (15)

5Self-referring definitions are those where a definiendum is used as a definiens for itself.
Dictionaries can be expected to be exempt of such definitions, as readers are assumed not to
know the meaning of the definiendum when looking it up.
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Error type Context
(definiendum in bold)

Production

POS mismatch her major is linguistics most important or
important

Self-reference he wrote a letter of apology to
the hostess

a formal expression
of apology

Table 4.2: Examples of common errors (ADD model trained on DNor)

sediment: to percolate (16)

deputation: the act of inciting (17)

ancestry: lineage (18)

We list a few examples of definitions generated by the non-contextual model

trained on DNor. Definitions 13, 14 and 15 were manually selected by us to display

the capabilities of the models: they are able to produce simplistic but conceivable

definitions. Definitions 16, 17 and 18 were randomly selected from the validation

set, so as to provide a clearer idea of the actual performances of our models.

For comparison, we annotated the first 1000 productions of the validation set

from our ADD model trained on DCtx. We counted 18.4% POS mismatches and

4.4% of self-referring definitions; examples are shown in Table 4.2. The higher

rate of POS mismatch may be due to the model’s hardship in finding which word

is to be defined since the model is not presented with the definiendum alone:

access to the full context may confuse it. On the other hand, the lower number

of self-referring definitions may also be linked to this richer, more varied input:

this would allow the model not to fall back on simply reusing the definiendum as

its own definiens. Self-referring definitions highlight that our models equate the
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meaning of the definiendum to the composed meaning of its definientia. Sim-

ply masking the corresponding output embedding might suffice to prevent this

specific problem.

As for POS mismatches, we do note that the work of Noraset et al. (2017)

had a much lower rate of 4.29%: we suggest that this may be due to the fact that

they employ a learned character-level convolutional network, which arguably

would be able to capture orthography and rudiments of morphology. Adding

such a sub-module to our proposed architecture might diminish the number of

mistagged definienda. Another possibility would be to pre-train the model, as

was done by Gadetsky et al. (2018): in our case in particular, the encoder could

be trained for POS-tagging or lemmatization.

Lastly, one important kind of mistakes we observed is hallucinations. Con-

sider for instance the production 19 by the ADD model trained on DCtx, for the

word “beta”:

beta: The twentieth letter of the Greek

alphabet (κ), transliterated as 'o'.

(19)

Nearly everything it contains is factually wrong, though the general seman-

tics are close enough to deceive an unaware reader. We conjecture that filtering

out hallucinatory productions will be a main challenge for future definition mod-

eling architectures, for two main reasons. Firstly, the tools and metrics necessary

to assess and handle such hallucinations have yet to be developed. Secondly, the

input given to the system being word embeddings, research will be faced with

the problem of grounding these distributional representations—how can we en-

sure that “beta” is correctly defined as “the second letter of the Greek alphabet,

transliterated as ‘b’”, if we only have access to a representation derived from its
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contexts of usage? Integration of word embeddings with structured knowledge

bases might be needed for accurate treatment of such cases.

On a related note, other examples were found to contain unwanted social

biases; consider the production 20 from the same model:

blackface: relating to or characteristic of the

theatre

(20)

Part of the social bias here may be blamed on the under-specific description

that omits the offensive nature of the word; however contrast the definition of

Merriam Webster in 21 for “blackface”, which includes a note on the offensiveness

of the term, with that of Wiktionary in 22, which does not.

blackface: dark makeup worn to mimic the appearance of a

Black person and especially to mock or ridicule

Black people

Note: The wearing of blackface by white perform-

ers was, from the early 19th through the mid-20th

centuries, a prominent feature of minstrel shows

(see minstrel sense 3a) and similar forms of en-

tertainment featuring exaggerated and inaccurate

caricatures of Black people. The use of blackface is

considered deeply offensive.

(21)

blackface: A style of makeup in which a non-black person

blackens their face, usually in order to portray a

black person.

(22)

We refer the reader to Bolukbasi et al. (2016) or Swinger et al. (2018) for a
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discussion on biases within embedding themselves, and to Russell (2021) for an

overview from the perspective of lexicography.

4.2.5 Conclusions

These preliminary experiments suggest that re-framing Definition Modeling as

a context-free task will come with its challenges. For one thing, we can ex-

pect lower scores overall: as we saw in Table 4.1, perplexity is at its highest

for non-contextual models. In all, state-of-the-art results are probably outside of

the reach of a non-contextual Definition Modeling system. We however stress

that comparable contextual models, such as the ADD and SELECT models we

proposed here, also display faulty productions.

Nonetheless, there are also some facts to consider that do encourage us in

pursuing a non-contextual approach. It is important to underscore that our re-

formulation is coherent with the original formulation of Definition Modeling by

Noraset et al. (2017). Lastly, this reformulation is also required by our object

of inquiry: if we are to study whether distributional semantic representations

and dictionary definitions encode the same semantic information, we must first

carefully remove all confounding factors—including the use of context in the

Definition Modeling task.

4.3 Can Definition Modeling discriminate DSMs?

In the previous sections, we saw that aligning word embeddings and word def-

initions is not a trivial enterprise, and that context is likely necessary to reach

state-of-the-art performance on the Definition Modeling task.
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We now turn to a third issue: are Definition Modeling systems able to dis-

criminate between distributional semantics models? A model that is sufficiently

complex could in principle overcome quality issues in some input DSM. This is

not a desirable characteristic: if Definition Modeling systems are able to extrap-

olate and blur differences of quality between embeddings, what could we learn

from them?

This echoes an argument we have previously stressed, with respect to the

classifier probe architectures used to investigate contextual embeddings (see Sec-

tion 1.3.2). A model that is too powerful ceases to be a good investigation tool. In

the narrower scope of our present inquiry, having Definition Modeling systems

that are able to overcome data limitations would entail that we are not able to

draw any firm conclusion by setting up inverse functions between glosses and

embeddings.

To answer this question, we will look at the performance of definition mod-

eling on a variety of embeddings, and compare this behavior to what we observe

on some other measure of word embedding quality, namely word analogy.

4.3.1 Dataset

The dataset we use in this next experiment is drawn from the GLAWI resource

(Hathout and Sajous, 2016), a XML-formatted French Wiktionary dump. GLAWI

associates each definiendum word type with a list of its attested POSs. Each POS,

in turn, is associated with a list of word senses, complete with a definition gloss

as well as an optional example of usage. We ignore definitions that either lack

an example of usage, or where the definiendum was not found in the example of
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# Items # distinct definienda Avg. example length Avg. gloss length

232037 100288 25.36 12.01

Table 4.3: Items retrieved from GLAWI

usage. As previously, we include examples that contain an inflected variant of

the definiendum. We case-fold the entire dataset. We do not remove multiword

expressions, as long as they are realized as a contiguous span in the example of

usage.

Table 4.3 presents some descriptive statistics pertaining to this dataset. Ex-

amples of usage are twice as long as definition glosses. We also note that 12% of

the items correspond to multiword definienda; for these, average example length

and average definition gloss length is relatively similar to what we observe for

single-word definienda. The dataset is then split for train (80%, 185363 examples),

validation (10%, 23178 examples) and test data (10%, 23496 examples), such that

definienda are unique to the split where they are attested. We use the same splits

for all models in this pilot experiment.

4.3.2 Embeddings and Definition Modeling system

We use a model similar to the ADD model from the previous Section 4.2. We

mark all definienda tokens with a feature vector +D⃗ , whereas context tokens

marked with a feature vector +C⃗ . We also prepend to this example of usage the

definienda tokens between two special tokens [DDUM] and [CTXT], to help the

model delineate definienda from contexts. An overview of the architecture is

shown in Figure 4.4. Encoder and decoder contains 12 Transformer layers each;

as our interest lies in whether definition modeling does distinguish between em-
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Figure 4.4: Overview of Definition Modeling for French data

bedding quality, we do not update the embeddings during training. hyperparam-

eters are manually set, using a warmup of 10000 steps, a learning rate of 1 and a

label smoothing of 0.15

As for word embeddings, we compare multiple architectures: CBOW word2vec

(Mikolov, K. Chen, et al., 2013), GloVe (Pennington et al., 2014) and FastText (Bo-

janowski et al., 2017). Word2vec and GloVe models are trained on FRCOW and

wikipedia, as lemmatized by Coavoux (2017);6 all embeddings use 300 dimen-

sions. Both corpora are case-folded; they correspond to a total of 7.25 billion

tokens. For word2vec, we use 20 negative samples, a window of 10, and iterate

10 times over the full corpus. For GloVe, we train the model over 10 iterations us-

ing the default parameters suggested by the original demo script of Pennington

et al. (2014). As for FastText, we consider two setups: one model that is trained

6Available at http://www.llf.cnrs.fr/wikiparse/

http://www.llf.cnrs.fr/wikiparse/
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random word2vec GloVe FastText SC FastText FB

0.00 36.46 58.32 57.38 68.63

Table 4.4: Analogy results for embedding sets (in %)

on the same corpus for 5 iterations (referred to as “FastText SC”), as well as a

model trained on roughly ten times the number of tokens, drawn from Common-

Crawl and Wikipedia by Grave et al. (2018) (“FastText FB”). Comparing these two

FastText embeddings sets should inform us on the sensitivity of Definition Mod-

eling to hyperparameter choices and embedding training corpus size. Lastly, we

include a randomly initialized matrix, i.e., standard Gaussian vectors, to define

baseline expectations.

Table 4.4 summarizes the accuracy observed on the French analogy test set

of Grave et al. (2018) for each of our sets of vector representations; that is to

say, the proportion of correctly solved analogy questions. Note that we drop

duplicate entries in the dataset of Grave et al. (2018), as well as examples con-

taining the pair “son–sa” (third person singular possessive) as they correspond

to a grammatical gender analogy, rather than a social gender analogy as do the

other pairs in its group (e.g. “oncle–tante”, ‘uncle–aunt’). This corresponds to

646 examples. Finally, we case-fold the entire analogy dataset. Analogy results

give us an overview of what our expectations are, in terms of embedding quality.

These baseline expectations defined from analogy will provide us a basis of dis-

cussion when considering definition modeling results. If these two embedding

quality measures appear very distinct from one another, we will need to either

question the ability of definition modeling to discriminate embeddings based on

their quality, or admit that analogy quality is orthogonal to definition modeling
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Embeddings Perplexity BLEU

random 83.70 19.90
word2vec 52.13 30.60
GloVe 48.55 29.00
FastText SC 45.04 30.50
FastText FB 47.84 32.80

Table 4.5: General results on test

quality. The latter is not as implausible as it might first appear: nothing guar-

antees that linear regularity of semantic space has any practical usefulness for

generating definitions. Nonetheless, both tasks should be sensitive to embed-

ding quality; hence why we may expect that their results should overlap to some

degree.

4.3.3 Results

We use two metrics to evaluate our models: perplexity and BLEU scores (Pap-

ineni et al., 2002). These metrics are fairly common in NLG. Perplexity aims to

capture how uncertain a model is that it would have produced this target; it is

closely related to cross-entropy. Models with lower perplexit therefore perform

better than models with higher perplexity. BLEU computes the similarity of the

vocabulary used in a target and the matching production: high BLEU should

correspond to higher performances.

Performances are detailed in Table 4.5. For each set of embedding, we re-

port perplexity and BLEU score on our test split. Two remarks can be made by

looking at perplexity results: first, random embeddings yield much lower per-

formances than non-random embeddings. This means that definition modeling
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meets at least the bare minimum requirements as an evaluation tool. Second,

differences in performances on the analogy task (Table 4.4) do not correspond

to what we observe for perplexity. If the ordering of the three architectures is

more or less stable, the difference between GloVe and FastText is much narrower

than what we could expect from analogy results. Note however that FastText

embeddings encode orthographic regularities as linear vector offsets. As a con-

sequence, inflection-based analogies with more or less orthographically regular

morphological exponents are likely to favor FastText over GloVe. Crucially, the

dataset of Grave et al. (2018) contains examples matching these characteristics.

Moreover, our model (FastText SC) yields results comparable to the one we re-

trieved from Grave et al. (2018), whereas analogy results clearly delineated the

two. On the other hand, BLEU scores suggest a different picture. While random

vectors are still below embeddings, GloVe vectors are this time seen as worse

than word2vec. Lastly, the two FastText models seem to strike a balance be-

tween BLEU and perplexity, with our SC model now below what we observe for

the original FB model.

Note however that hyperparameters were not set separately for each archi-

tecture; hence a more extensive research might have a significant impact on these

results. Moreover, we can interpret these results as our models having access

to sufficiently rich input to overcome the differences among embedding sets—

which would cast doubt on the usefulness of definition modeling as an evaluation

task for embeddings.

To provide a more thorough understanding of these results, we can also com-

pare them to what we would observe by simply providing the definition for the

most similar item in the train test. We consider two approaches for this baseline:
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Embeddings BLEU validation Best overall Best definiendum

random 19.80 17.10 16.20
word2vec 31.60 17.50 17.80
GloVe 28.40 17.60 18.00
FastText SC 30.30 17.80 18.70
FastText FB 32.30 17.30 18.80

Table 4.6: Supplementary baselines on validation data (BLEU scores)

either by selecting the most similar input overall—which we can approximate by

computing the similarity between train and test examples using the cosine be-

tween their mean vector representations—or by considering that similar words

should have similar definitions—hence we can compare definitions with the most

similar definienda. Both of these approaches are computed on the validation set.

Corresponding results are presented in Table 4.6. We also include the BLEU

scores obtained on the validation split for reference. First, we see that the dif-

ference between random and non-random embeddings is much less than what

we observed earlier. This stems in part from the fact that none of these mod-

els were learned, hence random vectors are this time associated to stylistically

perfect outputs.

Hence we can suppose that any improvement over these baselines is to be im-

puted to outputs that are more semantically appropriate rather than outputs that

are more stylistically appropriate. If we do commit to this idea that the difference

in BLEU scores on these baselines and those obtained through training models

reflect semantic improvements, we must conclude two things. First, we ought to

conclude that definition modeling is able to assess the semantic nature of the em-

beddings we tested: the high improvements of learned models compared to the

low improvements of the random model suggest that there was indeed something
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to learn. Second, we ought to conclude that Definition modeling, as a method of

evaluation, is much less straightforward than analogy—since random and non-

random baselines in Table 4.6 are fairly close to one another, and we must rely

on trained models with numerous parameters to enlarge this distinction.

4.3.4 Manual analysis

Thus far, we have relied on automatic metrics to investigate our results on French

definition modeling. Such metrics have their limitations. In particular, they are

mostly fit to capture stylistic or formal coherence—they do not measure whether

productions are factually correct, as we have discussed in Sections 2.2 and 2.4.2.

To take a concrete example, suppose the following definition gloss for the

definiendum “chemical” in 23:7

chemical: of or relating to chemistry (23)

Automatic metrics such as BLEU are much likely to prefer an absurd produc-

tion such as definition 24

chemical: of or relating to Barbados (24)

over the attested definition 25:8

chemical: of, relating to, used in, or produced by chemistry

or the phenomena of chemistry

(25)

This example is far from implausible. We selected a random sample SG of

10000 definitions from GLAWI, and then computed for each definition gloss defi

in our sample SG the minimal edit distance to any other definition in SG , or more

7As found on en.wiktionary.org.
8As defined by the Merriam-Webster, see www.merriam-webster.com.

https://en.wiktionary.org/wiki/chemical
https://www.merriam-webster.com/dictionary/chemical?utm_campaign=sd&utm_medium=serp&utm_source=jsonld
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formally the set:

D =
{

min
def j∈SG−{defi }

d̂l
(
defi ,def j

) | defi ∈ SG

}
(4.8)

where d̂l corresponds to the Levenshtein edit distance defined on words, rather

than characters. The set D of minimum edit distances was found to be composed

at 77.19% of definitions with an edit distance of 1, i.e., 77.19% of our definitions

had a counterpart in SG that differed only by a word added, removed or swapped.

In all, if factual correctness is a problem that broadly applies to all NLG ap-

plications, it appears to be even more thorny in definition modeling due to the

constrained style of definitions and the importance of factual correctness when

determining what is a good or a bad production. Paradoxically, the prominence

of factual correctness is also why this task is an interesting approach for the

evaluation of word embeddings in the first place.

We sidestep these caveats to the study of definition modeling outputs by re-

linquishing automatic metrics and instead conducting a manual evaluation of 100

randomly sampled validation items. We first consider issues in the generation

process itself. For each embedding architecture, we tabulate:

(i) the number of productions that would match another POS than the one

attributed,

(ii) the number of productions where the definiendum is present in its own

definition gloss,

(iii) the number of productions containing repetitions.

These criteria, as we pointed out above, are orthogonal to the productions being
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Embeddings Wrong POS Self-reference Repetitions

random 25 1 6
word2vec 19 7 4
GloVe 24 2 5
FastText SC 16 7 5
FastText FB 22 4 0

Table 4.7: Production errors typical of neural NLG systems

factually correct.

Results are displayed in Table 4.7. While random vectors and GloVe embed-

dings appear equally impacted at first glance, we note that the errors attested for

random vector tend to have a much greater impact: e.g., phrases are repeated un-

til the model hits the maximum production length. All embedding models seem

to find it challenging to properly distinguish between parts of speech, which we

can pin on the fact that we use a single encoder for both the definiendum and the

example of usage. Non-random embeddings produce more self-referring defini-

tions (where the definiendum is present in its own gloss), which suggests that

the NLG models are aware of the structure of the embedding space, as the con-

textualized definiendum representation cues the decoder towards producing the

most semantically similar word type, i.e., the definiendum itself.

We now focus on the semantic factors that can produce invalid definitions.

It is hard to survey these factors systematically due to their entanglement with

text generation issues: for instance, a wrong POS will necessarily entail that

the definition is invalid, to some extent. As our models are poorly semantically

grounded, some productions are hard to judge as well. We therefore focus on

three criteria where we can hope to achieve some strictness:
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Embeddings Inappropriate semantic field Genus–differentia

for target
sense

for any
sense

# defs.
impacted

# with
wrong
genera

(%)

random 93 91 58 50 86.2 %
word2vec 63 56 62 35 56.5 %
GloVe 67 57 65 40 61.5 %
FastText SC 61 45 69 38 55.1 %
FastText FB 70 57 65 41 63.1 %

Table 4.8: Production errors of semantic nature

(i) whether the semantic field of the production has any link to the target

meaning, given the example of usage

(ii) whether the semantic field of the production has any link to any meaning

of the definiendum

(iii) the proportion of definitions using a genus–differentia pattern (cf. Sec-

tion 2.3) where the genus is a hypernym of the definiendum.

Tabulated results are presented in Table 4.8. We include the number of defi-

nitions using a genus–differentia pattern for reference. We observe that random

vectors often fall back to meta-linguistic definition pattern—e.g., “synonyme de

∼” (‘synonym of ∼’) “variante orthographique de∼” (‘alternative spelling for ∼’)—

which is likely a consequence of the corresponding model’s inability to coher-

ently link a definiendum with a possible hypernym. More generally, this man-

ual evaluation suggests that semantic adequacy and factual correctness remain a

major challenge to definition modeling. This time again, we do see that random

vectors yield worse definitions than non-random embeddings: this suggests that

definition modeling can serve as an evaluation tool for distributional represen-
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tations, as random inputs yield clearly less acceptable outputs than non-random

ones.

During this manual evaluation, we also made a number of surprising obser-

vations. Models corresponding to different embedding sets ended up producing

the exact same definitions for certain entries, suggesting that the lexicographic

material presented to the model plays a major role. Some models also tended at

times to focus solely on one particular meaning, and did not exploit the exam-

ple of usage. Lastly, many definitions corresponded to highly domain-specific

knowledge, which could at time hinder our manual evaluation.

4.3.5 Conclusions

In all, the picture that emerges from this last experiment is not entirely clear.

We do see that Definition Modeling systems delineate random inputs from pre-

trained word embedding systems. Committing to the idea that definition model-

ing can discriminate between embedding quality however entails that the aspects

it captures are orthogonal to the aspects that are captured by word analogy. A

manual evaluation of the productions clearly highlights that the models’ outputs

are far from usable, and that much remains to be done before definition modeling

systems can map embeddings to definition glosses.

These limitations, along with the previous issues on word alignment that we

mentioned in Section 4.1 and the reliance on examples of usage in Definition

Modeling we explored in Section 4.2, question whether we can in fact define in-

verse functions between definition glosses and word embeddings. The require-

ments of the Definition Modeling and Reverse Dictionary tasks, as well as the
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overall structures of definitions and word embeddings, appear to make the two

lexical theories incommensurable.

4.4 The CoDWoE Shared task

The studies we have conducted thus far obviously require further validation by

the community. To foster interest in this task and offer wider perspectives on

what we suggest here, we proposed to re-frame our line of argument in the for-

mat of a shared task. Inviting contributions from the NLP community at large

will allow us both to advertise the tasks as reformulated here as well as gather

multiple replication studies. This in short will allow to strengthen any argument

that might arise from our results, as they would be based on a scientific consen-

sus, rather than a single study.

This shared task was hosted at the 2022 edition of the SemEval workshop9

and titled CoDWoE—short for “Comparing Dictionaries and Word Embeddings”.10

Participants were given as material the datasets we described in Section 3.4.1

and directed to solve the two tasks of Definition Modeling and Reverse Dictio-

nary, as two separate tracks. In the Definition Modeling track, participants had

to generate definition gloss, using any or all of the embeddings we provided. In

the Reverse Dictionary track, participants had to generate any (or all) embed-

ding architectures, using the definition gloss we provided. We asked partici-

pants to refrain from using external resources, including static lexical resources

like WordNet (Fellbaum, 1998) or pre-trained language models like BERT (Devlin

9See https://semeval.github.io/SemEval2022/.
10For further information on the shared task, visit the Codalab competition website at https:

//competitions.codalab.org/competitions/34022, as well as the dedicated code repository
at https://github.com/TimotheeMickus/codwoe.

https://semeval.github.io/SemEval2022/
https://competitions.codalab.org/competitions/34022
https://competitions.codalab.org/competitions/34022
https://github.com/TimotheeMickus/codwoe
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Figure 4.5: Logo for the CoDWoE Shared task
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et al., 2019), so as to ensure the comparability and scientific worth of the shared

task results.

We describe the metrics we used to rank submissions in Section 4.4.1. We

then turn to a description of our baseline systems in Section 4.4.2, and finally

discuss some of the findings from this shared task in Section 4.4.3.

4.4.1 Metrics

The first question we have to address is that of which metrics to use. Given that

we frame our experiment as a shared task, there a three criteria we consider to

select our metrics. First, their computation must only require a system’s output

and the corresponding targets. Second, we favor well-known, or easy to under-

stand metrics over obscure ones. Third, we try to select metrics that are easy to

compare across frameworks. Only the first of these three criteria is an absolute

requirement.

Reverse Dictionary Metrics

The Reverse Dictionary task, as we have re-framed it here, consists in recon-

structing embeddings. To that end, we consider three measures of vector simi-

larity. First is MSE (mean squared error), which measures the difference between

the components of the reconstructed and target embeddings. Mean-squared er-

ror is however not very easy to interpret on its own.

Second is cosine: the reconstructed and target embeddings should have a

cosine of 1. It is hard to place specific expectations for what a random output

would produce, as this essentially differs from architecture to architecture: for
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instance, Transformer outputs are known to be anisotropic, so we shouldn’t ex-

pect two random ELECTRA embeddings to be orthogonal.

As neither MSE nor cosine provides us with a clear diagnosis tool comparable

across all targets, we also include a ranking based measure: we compare the

cosine of the reconstructed embedding p⃗i and the target embedding t⃗i to the

cosine of the reconstruction p⃗i and all other targets t⃗ j in the test set, and evaluate

the proportion of such targets that would yield a closer association—viz., the

number of cosine values greater than cos(p⃗i , t⃗i ). More formally, we can describe

this ranking metric with Equation (4.9):

Ranking(p⃗i ) =

∑
t⃗ j∈Test set

1cos(p⃗i ,⃗t j )>cos(p⃗i ,⃗ti )

#Test set
(4.9)

Definition Modeling Metrics

A common trope in NLG is to stress the dearth of adequate automatic metrics.

Most of the metrics currently existing focus on token overlap, rather than se-

mantic equivalence. The very popular BLEU and ROUGE metric (Papineni et al.,

2002; Lin, 2004) measures the overlap rate in n-grams of various lengths (usually

1-grams to 4-grams).

To alleviate this, researchers have suggested using external resources, such

as lists of synonyms and stemmers (Banerjee and Lavie, 2005) or pre-trained lan-

guage models (W. Zhao et al., 2019). The reliance of these augmented metrics

on external resources is problematic. Different languages will use different re-

sources with varying degrees of quality—and this will necessarily impact scores,
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introducing a confounding factor for any analysis down the line. In the extreme

case, if these resources are not available for a particular language, then the metric

will have to be discarded. Even assuming the availability of the required exter-

nal resources, none of these improved metrics is entirely satisfactory. In the

case of synonymy-aware metrics such as METEOR (Banerjee and Lavie, 2005),

we can stress that syntactically different sentences can express the same mean-

ing, but would not be captured by such metrics. Embeddings-based metrics such

as MoverScore (W. Zhao et al., 2019) are very recent, and therefore less well

understood; moreover concerns can be raised about whether using a method de-

rived from neural networks trained on text will prove of any help in studying the

meaning of texts generated by other neural networks.

One alternative frequently used by the NLG community—and that we our-

selves have used in Section 4.2.3—is perplexity, which weighs the probability that

the model would generate the target. This last alternative is however not suited

to a shared task setup, as it requires us to have access to the actual neural net-

works trained by participants so we can investigate the probability distributions

they model—unlike the other metrics we mentioned thus far, which only require

the outputs of these models.

In short, none of the currently available NLG metrics are fully satisfactory.

Some are not applicable given the shared task format, some depend on external

resources of varying quality, and some merely measure formal similarity, rather

than semantic equivalence. Our approach is therefore twofold: on the one hand,

we select multiple metrics with the expectation that each might shed light on

one specific factor; on the other hand, we encourage participants to go beyond

automatic scoring for the evaluation of their model.
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As for which metrics we select, we narrow our choice to three. First is a basic

BLEU score (Papineni et al., 2002) between a production pi and the associated

target ti ; our reasoning here is that as it is one of the most basic metrics, it

is a consistent default choice. Second is the maximum BLEU score between a

production pi and any of the targets ti , t j . . . tn for which the definiendum is the

same as that of pi . This second metric is designed to not penalize models that

rely solely on SGNS or char embeddings: as the input would always be the same,

deterministic models would always produce the same definition pi = p j = ·· · =
pn .11 To distinguish between our two BLEU variants, we refer to the former as

S-BLEU (or Sense-BLEU), and the latter as L-BLEU (or Lemma-BLEU).

Given that some definitions in our dataset can be very short, we also apply a

smoothing to both BLEU-based metrics. In practice, BLEU computes an overlap

of n-grams of size m and under; by default, m = 4. This overlap is a geometric

mean across all n-gram sizes 1. . .m. If a definition d contains less than m tokens,

then any associated production for which d is used as a target will contain 0

overlapping n-grams of size m. The use of a geometric then entails that the BLEU

score for any production associated to d will be 0. To circumvent this limitation

of BLEU, it is common to use some form of smoothing. Here, for any n-gram size

m̂ that would yield an overlap of 0 (i.e., m̂ such that #d < m̂ ≤ m), we replace the

overlap count with a pseudocount of 1/log#d .

Lastly, we include MoverScore (W. Zhao et al., 2019), using a multilingual

DistilBERT model as the external resource. The fact that this model is multilin-

gual means that we can use it for all five languages of interest. Embedding-based

11One way of bypassing this problem would be to include a source of noise, as is done in
GAN architectures (Goodfellow et al., 2014). This would still leave open the question of how to
optimally align the outputs to the possible targets.
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methods have the potential to overcome some of the limitations of purely token-

based metrics, which is why we deem them worth including in our setup.

The second part of our approach for evaluating submissions consists in en-

couraging participants to not rely solely on the automatic scoring system of

their outputs. Concretely, we provide participants with a richly annotated trial

dataset, which contains frequency and hand-annotated semantic information,

and strongly suggest participants to use it for a manual evaluation of their sys-

tem. We include the presence of a manual evaluation as a criterion to evaluate

the quality of a system description paper, and plan to formally recognize the

most enlightening evaluations conducted by participants.

Neither our selection of metrics nor our insistence on manual evaluation

solves the evaluation issues of NLG systems. We duly note the importance of

this question, and plan to conduct a follow-up evaluation campaign on the CoD-

WoE submissions.

4.4.2 Baseline Architectures

One remark that emerges from our selection of metrics is that it is difficult to

see what baseline expectations should be for each of these models. We therefore

implement simple neural network architectures to set a lower threshold for our

expectations. We will be using the models shown in Figure 4.6. They are based

on the Transformer architecture of Vaswani et al. (2017) and designed to be as

simple as possible.

We illustrate our Reverse Dictionary baseline architecture in Figure 4.6a. It

consists in feeding the input gloss 〈b⃗os, w⃗1, . . . , w⃗n , e⃗os〉 into a simple Trans-
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Figure 4.6: Baseline architectures for the CoDWoE shared task

former encoder, and then summing all the hidden representations to produce

the prediction pi . In practice, the summed hidden states are passed into a small

non-linear feed-forward module to derive the prediction:

pi =Wp

(
ReLU

(∑
t

h⃗t

))

Our Definition Modeling baseline is presented in Figure 4.6b. It consists in

a simple Transformer encoder, where earlier time-step representations are pre-

vented from attending to later time-step representations. To provide information

about the definiendum to the model, we use the definiendum embedding d⃗i as

the input for the first time-step instead of a start-of-sequence token. We train

the models with teacher-forcing: i.e., during training we ignore the definientia

p1
i , . . . , pn

i that the model produces; instead we feed it the target w1, . . . , wm at-

tested in the training set at each time-step. During inference, we feed the model

with its own prediction. This creates a train-test mismatch, which we alleviate
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by using a beam-search. We stop generation when all beams have produced an

end-of-sequence token.

For both tracks, we train one model for each distinct pair of language and

embedding architecture. We start by re-tokenize the datasets using sentence

piece with a vocabulary size of 15000. This is done in order to mitigate the effects

of different vocabulary sizes when training our Transformer baselines, and make

the models overall easier to compare across different languages.

In the same vein, we set hyperparameters using a Bayesian Optimization

procedure, with 100 hyperparameter configurations tested and 10 initial ran-

dom samples. For the Reverse dictionary models, we tune the following hyper-

parameters: learning rate, weight decay penalty, the β1 and β2 hyperparameters

of the Adam optimizing algorithm, dropout rate, length of warmup, batch size,12

number of heads in the multi-head attention layers, and number of stack layers.

For the Definition Modeling systems, we also include a label smoothing param-

eter to tune. Models are trained over up to 100 epochs; training is stopped early

if no improvement of at least 0.1% is observed during 5 epochs. In all cases, we

decay the learning rate after the warmup following a half cosine wave, such that

the learning rate reaches 0 at the end of the 100 epochs.

4.4.3 Results

The CoDWoE shared task was scheduled to last until after the initial version of

this dissertation was presented to the jury. We therefore include in this section

early results on the development set as presented to the jury members in the next

12In practice, we first manually find the largest batch size that fits on our GPU, and then let
the model select the number of batches it should accumulate gradient on.
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Lang. Embs. MSE cos Ranking

en
SGNS 0.910 92 0.151 32 0.490 30
char 0.147 76 0.790 06 0.502 18
ELECTRA 1.412 87 0.842 83 0.498 49

es
SGNS 0.929 96 0.204 06 0.499 12
char 0.569 52 0.806 34 0.497 78

fr
SGNS 1.140 50 0.197 74 0.490 52
char 0.394 80 0.758 52 0.499 45
ELECTRA 1.153 48 0.856 29 0.497 84

it
SGNS 1.125 36 0.204 30 0.476 92
char 0.363 09 0.727 32 0.496 63

ru
SGNS 0.576 83 0.253 16 0.490 08
char 0.134 98 0.826 24 0.494 51
ELECTRA 0.873 58 0.720 86 0.491 20

Table 4.9: Reverse Dictionary track: results on development set (baseline models)

subsection, as well as the finalized competition results in the subsequent one.

Development set results

We begin by reviewing the performances of the baseline architectures over the

reverse dictionary track, as displayed in Table 4.913 Overall, we can stress that

the character-based embeddings yield by far the lowest MSE scores across all

five languages. ELECTRA embeddings yield the highest cosine scores—which

can certainly be attributed to their known anisotropy. Turning to ranking mea-

surements, we find that no specific architecture manages to display convincing

results: all models are equally disappointing, with on average half of the devel-

opment set being preferred over the reconstruction. This could suggest that all

13We give results on the development set until the end of the evaluation phase of the shared
task.
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Lang. Embs. S-BLEU L-BLEU MoverScore

en
SGNS 0.030 48 0.040 62 0.083 07
char 0.026 30 0.033 59 0.045 31
ELECTRA 0.031 55 0.041 55 0.067 32

es
SGNS 0.035 28 0.052 73 0.066 85
char 0.032 91 0.047 12 0.061 12

fr
SGNS 0.029 83 0.041 34 0.040 36
char 0.029 13 0.039 85 0.019 35
ELECTRA 0.030 61 0.039 54 0.038 55

it
SGNS 0.047 59 0.069 10 0.101 54
char 0.025 32 0.035 22 0.040 68

ru
SGNS 0.038 05 0.051 21 0.115 59
char 0.023 24 0.032 38 0.071 45
ELECTRA 0.029 87 0.037 82 0.103 82

Table 4.10: Definition Modeling track: results on development set (baseline mod-
els)

our models tend to produce the median vector for the space, disregarding the

output that we feed them.

Results for the definition modeling track are summarized in Table 4.10. Here,

results are again rather disappointing: all models tend to produce very low scores

across all metrics. In general, SGNS vector seem to yield the highest perfor-

mances, followed by character-based embeddings and ELECTRA embeddings.

We can observe that MoverScore is overall more lenient than the BLEU variants

we use. Another point of interest is that the ELECTRA models also benefit from

the L-BLEU, which suggests that these token representations do not necessarily

coincide with word senses.
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Test set results

In total, the shared task attracted 159 different submissions from more than 15

distinct users, and resulted in 11 system description papers. From these 15 teams,

9 tackled the Definition Modeling track, and 10 addressed the reverse dictionary

track.

Leaderboards Scores attained by participants are shown in Tables 4.11 to 4.14.

In Table 4.11, “Mv”, “SB” and “LB” refer to Moverscore, Sense-BLEU and Lemma-

BLEU respectively; in Tables 4.12 to 4.14, “rnk” refers to the cosine ranking metric

(cf. Section 4.4.1). Across tables, highest participant scores per metric are dis-

played in bold font.

In total, we received 159 valid submissions from 15 different users; out of

which 11 teams produced a submission paper. 9 of these teams tackled the Def-

inition Modeling, and 10 addressed the reverse dictionary track. Competition

rankings are established by ranking each submission received, selecting for each

participant the best performance on all metrics, and finally taking the average

best rank. Some participants’ submissions were faulty and could not be pro-

cessed by the evaluation website scoring program.

Among the system descriptions we received, two focused solely on definition

modeling. Kong et al. (2022, BLCU-ICALL) use a multitasking framework for def-

inition modeling, based on a generation and a reconstruction objectives. Mukans

et al. (2022, RIGA) focus on what are the effects of model size and duration of

training on GRUs and LSTMs for definition modeling, and whether MoverScore

corroborates human judgment.
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Team en fr ru

MSE cos rnk MSE cos rnk MSE cos rnk

Baseline 1.413 0.843 0.498 1.153 0.856 0.498 0.874 0.721 0.491

Locchi 1.301 0.843 0.478

BL.research 1.326 0.844 0.434 1.112 0.858 0.442 0.864 0.721 0.399

LingJing 1.509 0.846 0.478 1.271 0.859 0.478 0.828 0.734 0.420

IRB-NLP 1.685 0.828 0.432 1.339 0.847 0.429 0.911 0.724 0.345

Edinburgh 1.310 0.847 0.490 1.066 0.862 0.476 0.828 0.735 0.417

the0ne 1.340 0.846 0.500

Table 4.14: ELECTRA Reverse Dictionary track results

Five submissions specifically focus on the reverse dictionary task. Bendah-

man et al. (2022, BL.research) compare the performances of MLP-based to LSTM-

based networks for reverse dictionary. B. Li et al. (2022, LingJing) study pretrain-

ing objectives for the reverse dictionary track. Ardoiz et al. (2022, MMG) pay

specific attention to how the not-so-satisfactory quality of the Spanish dataset

impacts results on Spanish reverse dictionary. Cerniavski and Stymne (2022, Up-

psala) study whether foreign language entries can improve the performance of

the English reverse dictionary baseline model. Z. Wang et al. (2022, 1cademy)

introduce multiple technical tweaks for reverse dictionary, such as a dynamic

weight averaging loss, language-specific tags and residual cutting.

The last four submissions addressed both tracks. P. Chen and Z. Zhao (2022,

Edinburgh) propose to project embeddings and definitions on a shared repre-

sentational space. Korenčić and Grubišić (2022, IRB-NLP) take inspiration from

Noraset et al. (2017) to address definition modeling, and experiment with pooling

strategies over Transformer embeddings for the reverse dictionary track. Tran et

al. (2022, JSI) focus on comparing the effects of adding LSTM and BiLSTM layers

on top of a Transformer model, as well as zero-shot cross-lingual generalization.
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Srivastava and Harsha Vardhan (2022, TLDR) propose two Transformer-based ar-

chitectures for the two tracks, leveraging contrastive learning and unsupervised

pretraining.

Looking at Tables 4.11 to 4.14, we see that the metrics we chose in Sec-

tion 4.4.1 are not always aligned. On the Definition Modeling track (Table 4.11),

while the multitask framework of Kong et al. (2022, BLCU-ICALL) yields gener-

ally the most consistent performance, it is often outmatched in specific setups.

For instance, BLEU-based metrics favor the shared projection technique of P.

Chen and Z. Zhao (2022, Edinburgh) in Russian and French, while the pooling

strategies of Korenčić and Grubišić (2022, IRB-NLP) appear especially effective

on the Spanish dataset. As for the Reverse Dictionary track (Tables 4.12 to 4.14),

the strongest contender is generally the Edinburgh team, although the IRB-NLP

team almost systematically produces the highest cosine ranking score. Inter-

estingly, BLCU-ICALL, IRB-NLP and Edinburgh all rely on multi-task learning.

Note however that the SGNS targets seem to depict a rather different picture,

where the pretraining objectives of B. Li et al. (2022, LingJing) bring about some

of the best results.

Discussion & analyses When looking at the competition results, two trends

emerge. First, the baseline architectures from Section 4.4.2 remain quite compet-

itive with solutions proposed by participants. Second, scores are generally unsat-

isfactory, especially in the definition modeling track: we do not see a clear divide

between char embeddings and distributional semantic representations. The NLG

metrics are, in absolute terms, low compared to modern NLP standards and re-

sults reported elsewhere on other definition modeling benchmarks. As for the
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reverse dictionary track, we see that across all submissions, at least a third of the

test set is closer (in terms of cosine distance) to the production than the intended

target.

Participants have suggested multiple reasons for these hardships. In partic-

ular, Ardoiz et al. (2022, MMG) highlight that the automated data compilation in

DBnary (Sérasset, 2012) is of an unsatisfactory quality. Similar remarks can be

made with respect to the embeddings, which are trained on rather small corpora.

Other submissions such as Mukans et al. (2022, RIGA), P. Chen and Z. Zhao (2022,

Edinburgh), Korenčić and Grubišić (2022, IRB-NLP) highlight the limited appli-

cability of mainstream NLG metrics. One last remark is the limited size of our

dataset, discussed by the Edinburgh and RIGA teams. All these remarks suggest

avenues for future research: in particular, the release of the full dataset should

alleviate some of the concerns with respect to dataset size. The MMG team also

suggest some concrete preprocessing steps to handle some of the issues they

identify in the proposed definitions.

In terms of solutions explored, we can stress that teams have adopted a va-

riety of strategies and architectures: systems used Transformer, RNN and CNN

components, often leveraging or exploring multilingualism (Tran et al. 2022, JSI;

Cerniavski and Stymne 2022, Uppsala; Z. Wang et al. 2022, 1cademy; Bendah-

man et al. 2022, BL.research), multitasking, or multiple training objectives (Kong

et al. 2022, BLCU-ICALL; 1cadamy; Korenčić and Grubišić 2022, IRB-NLP; Sri-

vastava and Harsha Vardhan 2022, TLDR; P. Chen and Z. Zhao 2022, Edinburgh).

Multi-task training tends to yield varied yet competitive results for our data. No

preponderant architecture emerges from the system descriptions; we note that

multiple submissions based their work on other contextualized embedding ar-
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chitectures, trained from scratch on the CODWOE dataset (Z. Wang et al. 2022,

1cademy; B. Li et al. 2022, LingJing). The comprehensive review of architectures

by team 1cadamy suggests nonetheless that Transformers might be less suited to

this shared task than recurrent models.

As for manual evaluations, Kong et al. (2022, BLCU-ICALL) provide a thor-

ough review of the errors produced by their model. Mukans et al. (2022, RIGA)

provide some example outputs of their models, while Srivastava and Harsha

Vardhan (2022, TLDR) and Z. Wang et al. (2022, 1cademy) include ablation stud-

ies. The most thorough analysis, however, is that of P. Chen and Z. Zhao (2022,

Edinburgh), who provide both quantitative and qualitative (PCA-based) analyses

across embedding architectures, languages, and trial dataset features. Korenčić

and Grubišić (2022, IRB-NLP) provide an extremely well documented review of

their systems performances, along multiple analyses of the embeddings proposed

for the shared tasks, ranging from 2D down-projection visualizations to descrip-

tive statistics of components. We refer the reader to the respective system papers

for a more thorough review and focus here on a few promising approaches to

summarize trends that emerge from these manual analyses:

(i) Current metrics are not satisfactory. The IRB-NLP team highlight that the

BLEU scores reported on the shared task are dramatically lower than what

is generally expected in the literature; the Edinburgh team even shows that

the S-BLEU scores obtained by non-sensical glosses such as “, or .” can

end up among the highest scores for some languages. The Reverse Dictio-

nary metrics can also be sensitive to different aspects of the embeddings,

as shown by the IRB-NLP team: this can lead to very different rankings of
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model productions, especially when comparing the cosine-based ranking

metric to the cosine and MSE metrics. BLEU-based scores are also often

sensitive to the length of the production, the target, or both, as shown by

both the Edinburgh and the Riga teams.

(ii) Erroneous productions abound. Related to the previous remark, many Def-

inition Modeling systems produce irrelevant or under-specified glosses, for

which the proposed metrics are not satisfactory. For instance, the BLCU-

ICALL report 52% irrelevant glosses and 23.5% under-specified glosses,

from a manual evaluation of 200 productions. Other participating teams,

such as RIGA or IRB-NLP, also display generated glosses with varying

degress of semantic accuracy.

(iii) Embeddings contain more than semantics. The Edinburgh team highlights

how different linguistic features retrieved from the trial dataset can sig-

nificantly impact the scores they observe. They also highlight that char

embeddings are separable by length, and that the Electra embeddings are

clustered according to their frequency.

(iv) Not all setups are created equal. The Uppsala team report that Russian

seems to be the most effective data source in their multilingual transfer

experiments. The IRB-NLP team stresses that vector component distri-

butions across languages and architectures as well as gloss length across

languages can take very different values, and they also include 2D visu-

alization suggesting the Electra embeddings tend to form neat cluster not

observed for SGNS embeddings. Scores also vary quite a lot across setups

(cf. Tables 4.11 to 4.14).



203 Defining Inverse Functions Between Dictionaries and DSMs

4.5 Conclusions

In all, framing our investigation as finding inverse functions between the set

of definition glosses and the set of word embeddings is an approach rife with

caveats.

As we saw in Section 4.1, the structure of word embeddings and dictionary

differ, making it impossible to define inverse functions in the mathematical sense.

Further issues arise when we consider definition modeling. On the one hand,

definition modeling systems require examples of usage in order to reach their

maximum potential, as we surveyed in Section 4.2. On the other hand, as we

saw in Section 4.3, the current state of definitions modeling productions is not

up to the standard we could expect.

These problems add to other issues beyond what we discussed in the present

chapter. Recall that in Section 2.2 we saw that semantic grounding was a ma-

jor issue for text-only systems; and this more specifically applies to definition

modeling systems, as we reviewed in Section 2.4.2. Likewise, in Chapter 3, our

attempt to measure the correlation of distances between embeddings with dis-

tances between definition glosses was not very conclusive: our results could be

construed as considering two related but distinct spaces.

Taking all these results in stride, we could argue that definitions and embed-

dings are not equivalent lexical theories. Of course, further research is required

before we can believe beyond reasonable doubt the impossibility of perfectly

translating definitions glosses into word embeddings and back, This is what we

wished to foster through the organization of a shared task, which we described

in Section 4.4. We expected that broadening the research landscape in definition
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modeling and reverse dictionary systems would bring about more nuance, and

help us refine our understanding of word embeddings and dictionary definitions

as lexical theories. Yet, we found it is not trivial to tease apart the various factors

that lead to the overall low results we observed. While the inadequacy of main-

stream NLG metrics and the limitations of the dataset certainly play a role, they

do not resolve the fundamental issue that we wished to investigate with CoD-

WoE. Whether word embeddings and dictionaries contain the same information

is still not a solved research problem.

Nonetheless, the facts that we presently have at our disposal, as gathered

through our experiments, suggest that what is encoded in an embedding differs

from what is described by a definition gloss. This naturally leads us to asking

what precisely word embeddings encode.
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Limits of the distRibutional hypothesis

Spare me your riddles witch, can’t you see?
They mean nothing to me

— Æther Realm, Tarot

In the two previous chapters, we have stressed how difficult it is to estab-

lish whether distributional semantics and dictionary definitions are equivalent

semantic descriptions. We have however also stressed in Chapter 2 that we do

not expect distributional information to suffice to encode all of meaning.

One criticism we should particularly take into account is that the DSMs we

have been focused on are derived from gradient-based approaches. As such, they

are approximate solutions, rather than exact ones, to the objective functions set

up to train these models. Moreover, it is not certain that these objective functions

describe the distributional hypothesis accurately. In short, we are in principle

dealing with approximate solutions to improper simplifications of an unproven

This chapter is based on previously published work (Mickus, Constant, et al. 2021a, “A Game
Interface to Study Semantic Grounding in Text-Based Models”), as well as work currently under
review.
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https://www.youtube.com/watch?v=pGT6k0JDtsg


Limits of the distributional hypothesis 210

hypothesis.

It therefore makes sense for us to look into the quality of our embedding

models, insofar they are implementations of the distributional hypothesis. This

quality assessment should moreover not rely on some contingent property of

these vector spaces, but rather sharply focus on whether they do implement the

distributional hypothesis of Harris (1954). The first hurdle we have to overcome,

however, is to determine whether or not distributional semantics models can be

considered as a coherent group on a theoretical level: as we have seen in Chap-

ter 1, the unity of the field seems more chronological in nature than theoretical,

as the objects that have been dubbed DSMs are extremely varied. We will pro-

pose in Section 5.1 a unifying framework for implementations of distributional

semantics based on distributional substitutability.

Armed with this framework, we will then question whether this evaluation

procedure can be practically put to use through a pilot study in Section 5.2. We

will then focus on what data we need to collect in Section 5.3, and analyze our

results in Section 5.4. Finally, we discuss what conclusions can be drawn from

this analysis in Section 5.5.

5.1 Distributional substitution

As we had reviewed in Chapter 1, DSMs are extremely varied in their architec-

tures and target objectives. This variety strongly suggests that the exact archi-

tecture design of an embedding model bears on the analysis results we observe.

It therefore makes sense to root any comparison we may conduct in the design

choices of the model we compare. One consequence of this is that distributional
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semantics may be a rather loosely defined label given to miscellaneous mod-

els, and any work purporting to discuss distributional semantics as a theoretical

framework would have to juggle between different architectures.

There is worth in critically assessing this statement. While it is certain that

existing models of distributional semantics do not adhere to a strictly defined

framework, we can nonetheless examine and compare existing models to see

whether a common characteristic is shared across implementations.

One characteristic that may be fit for this purpose is the distributional sub-

stitutability proposed in the seminal work of Harris (1954). He remarks that it is

possible to establish classes of items for which we can make similar statements

in terms of their occurrences. By manually examining a given corpus, we may

find that the environments in which some item X occurs are essentially the same

as the environments in which some item Y occurs. In essence, this entails that

we are justified to think that we can substitute X for Y, and Y for X, based on their

distribution.

Sahlgren (2008) reviews and builds on this idea of distributional substitutabil-

ity. More precisely, Sahlgren stresses the theoretical connection between this

distributional substitutability and the paradigmatic axis in the structuralist frame-

work of linguistics (Saussure, 1916). A key remark he makes is that the distribu-

tional hypothesis can be re-framed as stating that differences of meaning entail

differences of distribution. This differential view of meaning has its roots in

the structuralist work of Saussure (1916) and Bloomfield (1933). Sahlgren more

specifically draws on Saussure’s concept of “valeur”—i.e., the purely linguistic

difference in meaning attributed to a linguistic sign, owing to its unique combi-

natorial properties.
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The Saussurian valeur of a sign, as a differential conceptualization of mean-

ing, is characterized both by the allowed positions of the sign on the syntagmatic

axis—simply put, the sorts of syntactic contexts where the corresponding sign

may occur—as well as the relations this sign entertains within the paradigmatic

axis—i.e., how it differs from other words that could fit in this slot. Or, directly

quoting Sahlgren (his emphasis):

Paradigmatic relations hold between linguistic entities that occur in

the same context but not at the same time, like the words “hungry”

and “thirsty” in the sentence “the wolf is [hungry|thirsty]”. Paradig-

matic relations are substitutional relations […]. A paradigm is thus

a set of such substitutable entities.

While Sahlgren (2008) does not explicitly equate the distributional substitutabil-

ity of Harris (1954) with the paradigmatic axis of Saussure (1916), the connection

immediately derives from his analysis.

This principle of substitutability has been used in other studies. One major

contribution to highlight here is that of Ferret (2021), who proposes to substitute

words in context to derive pairs of contextual embeddings for different word

types in identical contexts. This allows Ferret (2021) to test contextual embed-

dings on typical word-type benchmarks and tasks, such as measuring the cosine

similarity of contextual embeddings for co-hyponyms, antonyms, and other se-

mantically related words.

We can however go beyond simply swapping items in a given context. One

can continue the line of reasoning from Sahlgren (2008) by considering how state-

ments of distributional substitutability should translate to DSMs. To do so, one
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can propose a more formal definition of substitutability: two words w1 and w2

are substitutable if and only if they are equally likely to occur in any context c .

This could be formally written as:

Substitutable(w1, w2) ⇐⇒ ∀c ∈C Pr(w1|c) = Pr(w2|c) (5.1)

It should be noted that this definition is rather strict, and requires us to have

a notion of the set of all contexts C . Let us also stress that the formal defini-

tion we propose in Equation (5.1) involves a probability distribution Pr, rather

than observations of utterances as per the initial definition in Harris (1954). This

modification is necessary if we want to translate Harris’s definition to DSMs in

general and neural embeddings in particular, as such models only output proba-

bility distributions, not utterances.

Let us re-frame Equation (5.1) to consider cases where words are not substi-

tutable. For a given context c , we can consider which of two words is most likely.

This naturally yields the following inequality:

Pr(w1|c) > Pr(w2|c) (5.2)

In essence, we expect that DSMs are able to characterize the effect of substituting

one word (w2) for another one (w1) within a given linguistic context (c). This

corresponds to a slightly different approach than the original proposal of Harris

(1954) we consider a fixed context, and investigate which words it is most appro-

priate for. As such, we can start from some given context c that we know will

contain the first word w1, and see what the effects of substituting in w2 would
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be.

Crucially, many—if not most—word embedding models are able to yield an

expression such as the one in Equation (5.2).1

To begin with, we can highlight that some DSMs directly model Pr(t |c). This

is in particular the case of sequence denoising objectives like BERT’s Masked

Language Model objective (Devlin et al., 2019), where a “masked” item has to be

uncovered from its context. This is also the case of multinomial classification

objectives like CBOW (Mikolov, K. Chen, et al., 2013), where the target item is

to be predicted by the summed activation of the context embeddings. Lastly,

bidirectional language models like ELMo (Peters et al., 2018) that predict a word

from the past and future context are also subsumed in this category.

A category of DSMs where we need to put in a bit more effort to arrive at

Equation (5.2) are models like Skip-gram (Mikolov, K. Chen, et al., 2013). Their

loss function takes the form of P (c|·); meaning that we need to apply Bayes’ rule

to arrive at Equation (5.2); or formally:

P (t1|c) > P (t2|c) = P (c|t1)P (t1)

P (c)
> P (c|t2)P (t2)

P (c)

= P (c|t1)P (t1) > P (c|t2)P (t2) (5.3)

It should be noted that this equation relies on the probability of a token P (ti ).

Crucially, said probability in word2vec architectures is truncated, by mean of a

temperature sampling. Recall from our overview in Section 1.2.1 that in word2vec,

1A major category that we have to consider separately concerns document-based DSMs, as the
sort of context c they rely on differs from word-based DSMs. Remark that Sahlgren (2008) argues
that such models encode information on syntagmatic relations, rather than word paradigms.
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a term w is dropped with probability:

P̂ (w) = 1−
√

t

P (w)

where t is the temperature parameter, typically 10−5, and P (w) is the non-modified,

frequency-based probability. The idea is to under-sample very frequent words,

and over-sample rarer words. It is therefore more principled to use the re-sampled

distribution P̂ instead of the raw frequency P here, as it avoids a distributional

shift between training and testing.

Moving on, we see that negative sampling approaches like FastText (Bo-

janowski et al., 2017) and ELECTRA (Clark, Luong, et al., 2020) measure whether

a term is valid for a given context. Formally, this is written as P (t ∈ c), and is

reflected by the use of a sigmoid to compute a binomial distribution probabil-

ity. For these objective functions, we can simply consider which term yields the

highest probability of being a good fit for the current context, namely:

P (t1 ∈ c) > P (t2 ∈ c) (5.4)

More precisely, to arrive exactly at the previous Equation (5.2), it is possible to

renormalize the probability P (ti ∈ c) with respect to the entire vocabulary:

Pr(ti |c) = 1∑
t j∈V

P (t j ∈ c)
·P (ti ∈ c)

The above does sum to 1 over the full probability space of the vocabulary V ,

is defined with respect to the context c , and simplifies to the aforementioned



Limits of the distributional hypothesis 216

Equation (5.4), as 1∑
t j ∈V

P (t j∈c) is constant for a given context c .

Generative language models—for instance, that of Bengio et al. (2003) or more

recently, the GPT models of Radford (2018)—can also be folded into this same

framework. Generative objectives seemingly ignore half of the context: typi-

cally, they yield the probability of ti being the next token: P (ti |c1...i−1). While

we could simply adopt this truncated form as the definition of a context for such

models, it is in fact possible to coerce them into taking into account the full con-

text. More precisely, we leverage an idea proposed in the literature on probing

syntactic agreement in neural networks, as envisioned by Linzen et al. (2016) and

Gulordava et al. (2018). We can therefore derive the comparison given the full

context c1...n as follows:

P (cn |c1...i−1, t1, ci+1...n−1) > P (cn |c1...i−1, t2, ci+1...n−1) (5.5)

Essentially, this consists in comparing the probability of generating the full con-

text with the target to the probability of generating the full context with the dis-

tractor. We do note that this formulation may not be fully appropriate for genera-

tive models with a limited time window, such as that of Bengio et al. Lastly, a sim-

ilar trick can also be used for models like BART (Lewis et al., 2020). While BART

is technically trained using a denoising objective, its sequence-to-sequence gen-

erative architecture entails that we consider it along other generative language

models.

Lastly, this characteristic further generalizes to non-neural models. If we

adopt the “count” vs. “predict” dichotomy of Baroni et al. (2014), we can see that

both “count” and “predict” models are based on estimate of the conditional prob-
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ability of words given their linguistic contexts: the main difference being that

“count” models derive this estimate from descriptive statistics, whereas “predict”

models learn it using inferential models such as neural networks. To take a con-

crete example, recall that count-based matrices approaches, such as that of Erk

and Padó (2010) or Reisinger and Mooney (2010), a cell Mi j denotes the strength

of the association between a term ti and a context c j . It suffices to normalize

this matrix to arrive at a probability distribution of the form required in Equa-

tion (5.2). Alternatively in the case of exemplars and prototype models, one can

also apply the cluster assignment or similarity threshold filtering methods pro-

posed to rank terms t given a specific context c .

This distributional substitution allows us to properly compare distributional

models, using only the explicit objective functions of neural models or the counted

observations of statistical models. The formulation moreover lends itself to an

intuitive definition of DSMs: a distributional semantics model is a model capa-

ble of discriminating words from their distribution. This ease of statement and

broadness of application make distributional substitution a very appealing theo-

retical ground to compare and contrast distributional models.

Moreover, it naturally lends itself to comparisons with human judgments on

the same task: we can easily ask annotators which of two words they would pre-

fer in some set of contexts. Comparing human preferences to model preferences

therefore allows us to study whether a DSM matches with what we observe of

human linguistic behavior.

In short, distributional substitution is a natural candidate when it comes to

assessing the linguistic validity of embedding models. We can contrast it to what

we would glean from, say, word analogy tasks (cf. Section 1.3.1). That seman-
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tically regular processes are encoded by more or less regular vector offsets is

certainly an interesting and highly useful characteristic of a vector space. How-

ever, it would be false to assume that not displaying this trait entails that our

models are not distributional: at the end of the day, having regular semantic off-

sets is a contingent, nice-to-have feature of a vector space—not a prerequisite for

a DSM.

On the other hand, distributional substitution stems from the very definition

of distributional semantics: it is an essential trait that we expect a distributional

semantic model to display. Moreover, testing this trait requires solely that we

focus on the objective functions of our distributional semantic spaces, making it

a purely intrinsic evaluation procedure. It therefore allows us to verify not only

the validity of an objective function as an approximation of the distributional

hypothesis, but also the degree of approximation that remains after trying to

optimize this objective, i.e., the quality of the embeddings as an approximate

solution to their objective function.

5.2 Pilot Study

If we wish to use distributional substitution to evaluate our models, we need to

be able to characterize what our expectations are. For instance, we might expect

that a pair of words such as “potato” and “ecclesiastical” are easy to distinguish,

whereas “two” and “three” might not be. To evaluate this, collecting human judg-

ments is a necessity. We conduct a pilot study to assess whether our hypothesis

is coherent—i.e., whether humans indeed discriminate between easy and hard

word pairs—and whether this can constitute a coherent data collection program.
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In all, a collection of human judgments on distributional substitutability would

correspond to a list of records, each of which containing the following:

1. two distinct candidate words, wt and wd ,

2. a set of contexts for one of the candidate word wt where said candidate

has been blanked out, Ca ,

3. human judgments of how easy it is to confuse the two candidates, hab .

Note that judgments are not necessarily symmetrical: a word could for instance

be easily confused with one of its hypernyms, but not with its hyponyms—or

conversely. Thus any pair wt , wd entails a second pair wd , wt .

Concretely, participants of this pilot study were invited to submit judgments

through an online survey app developed specifically for the study.2 The website

is now retired.

5.2.1 Word type vs. word sense judgments

Given the scope of this dissertation, we could consider having annotators distin-

guish between senses, rather than between word types. In principle, this would

allow us to propose a fine-grained comparison between definitions (as they aim

to propose word sense descriptions) and word embeddings, both defined at the

word type level—i.e., static embeddings, which should conglomerate all the pos-

sible senses for a word in a single representation—or at the word token level—

i.e., contextual embeddings which should model the sense appropriate to a given

context.
2Source code for the Django web application: https://github.com/TimotheeMickus/

the-pilot-is-a-dog

https://github.com/TimotheeMickus/the-pilot-is-a-dog
https://github.com/TimotheeMickus/the-pilot-is-a-dog
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A natural way of collecting judgments at the sense level would be to have

our annotators select word definitions da ,db (or any type of semantic gloss for

a sense), rather than word types wt , wd . This however comes with its own chal-

lenges: it supposes that we are able to align senses to contexts. While we could

rely on existing definition modeling datasets which link glosses to contexts, this

would introduce a non-negligible train/test overlap between the human judg-

ments dataset and models trained on our dataset. This is due in part to the col-

laborative nature of Wiktionary: as edits are open to any collaborator, it does ap-

pear that some definitions are copied or adapted from other online dictionaries—

a well-known case being the inclusion of TLFi entries in the French Wiktionary

project. A second issue stems from the bias in the sort of sentences used as ex-

amples of usage or citations: many dictionaries tend to favor literary examples,

which correspond to a subset of all possible genres, styles and registers.

To avoid train/test overlap and the bias towards the literary genre, one would

therefore need to learn to align contexts and senses, which is not a trivial prob-

lem. More precisely, it would require us to essentially produce a WSD system

that would be highly reliable, or to perform a manual verification, which would

necessarily limit the scope of our data collection. Collecting data at the word-

sense level would therefore prove too costly.

An alternative solution we could consider would be to ask participants to

select the definition that is the most appropriate from the pool of all possible

definitions for the two words wt , wd . Again, this comes with major drawbacks:

it is overall more demanding of the annotators—in essence, annotators would

need to read all the possible dictionary entries before making a choice. Another

issue with this approach lies in that definitions for a given word type can have
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varying degrees of similarity between one another: two definitions can be fairly

similar or highly distinct. This would require of any analysis down the line to

include some metric of similarity between definition glosses; and we have already

shown the sort of issues that this approach is met with in Chapter 3.

Lastly, it is worth pointing out that our stated goal being to evaluate word

embeddings, it is not necessary to collect annotations at the sense level. In fact,

if we want to keep in line with the theoretical approach developed in Section 5.1,

it is in a certain respect more appropriate to collect annotations at the word-type

level, as this corresponds more closely to what DSMs are confronted with.

In short, it seems both more practical and more theoretically appropriate to

not collect human judgments at the word sense level, but rather focus on judg-

ments at the word type level. To ensure that the annotations are at the word type

level, we can provide annotators with multiple contexts. This will ensure that we

collect annotations for the general trend for two word types—rather than provide

one specific context where the two words happen to be ambiguous. To illustrate

this last point, let us take a concrete example. We expect the words “mouse” and

“keyboard” to be generally easy to distinguish; but some contexts, such as “I just

bought a new for my computer” happen to be ambiguous. If we were to

provide a single context, we would end up collecting judgments about particular

word tokens rather than word types.

5.2.2 Word Pairs Selection

We then need to establish the set of word pairs for which we would like to collect

annotations. The first decision we make is to try to target word pairs that will be
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difficult to distinguish. This is done for two reasons. First, we expect the majority

of word pairs to not be significantly challenging: any two random words will

have mostly orthogonal meanings, so to speak. Hence presenting these pairs

should invariably result in annotators confidently distinguish the two words.

Second, we are interested in finding the limitations of current DSMs. Focusing

on a more challenging set of word pairs should make these limitations clearer.

An obvious source of candidate word pairs to start with is words with simi-

lar distributional representations, as these are the sort of items we wish to probe.

This distributional semantics-based selection of annotated pairs may provide a

useful starting point; however, one might want to find some other pair-selection

mechanism to avoid any potential bias that distributional models may have im-

plicitly carried. It therefore makes sense to use other lexical semantic resources,

such as ontologies like WordNet (Fellbaum, 1998). We may also target word pairs

that are known in the literature to be semantically similar. Another alternative

would be to employ adversarial data collections, where annotators are divided

into two groups: the first produces judgments about a word pair in a given con-

text, the second suggests word pairs for the first group to judge.

In all, this entails we have four distinct word-pair collection strategies: dis-

tributional semantics-based, ontology-based, from previous studies, and adver-

sarial examples. We now look at each strategy in more detail.

Distributional semantics. Using word2vec trained on Google-news, a random

sample of 10K word pairs was selected. A raw random sample would include ex-

ceedingly rare word types, which might correspond to improperly pre-processed

textual artifacts. Items were therefore filtered against a lexicon (all lemma names
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Word pair cos Word pair cos

aegis auspices 0.851 fourteen eighteen 0.851
allay assuage 0.843 fourteen nineteen 0.833
altercation scuffle 0.843 gorgeous beautiful 0.835
bluegill crappie 0.837 immensely tremendously 0.852
cello viola 0.871 inscribed engraved 0.851
chanting chanted 0.889 kilo kilogram 0.851
eight six 0.945 male female 0.841
featherweight bantamweight 0.841 trombonist trumpeter 0.843
featherweight welterweight 0.843 viagra cialis 0.912
fifth sixth 0.968 welterweight bantamweight 0.841

Table 5.1: Distributional pairs produced

from WordNet). The 20 pairs yielding the highest cosine similarity were selected.

Produced pairs are shown in Table 5.1.

Ontology. Using WordNet, items were selected based on how many hyper-

nyms they had in common. More precisely, we selected pairs that maximized

the intersection-over-union or Jaccard index d j (H1, H2), using the closure sets

of hypernyms for the two words considered H1 and H2. Note that the Jaccard

index between hypernym sets reaches 1 for synonymous lemmas and inflectional

variants. In theory, synonyms should have exactly the same meaning and there-

fore the same distribution; as our interest lies in gradients of word pair substi-

tutability, we should in principle disregard such word pairs. As for inflectionally

related words, note that the setup would devolve in a grammar proficiency test,

which is irrelevant to our present hypothesis. We therefore removed candidate

word pairs with a Jaccard index equal to 1.

The corresponding word pairs are listed in Table 5.2.



Limits of the distributional hypothesis 224

Word pair cos Word pair cos

pear apple 0.958 haricot frijole 0.958
fullback quarterback 0.958 crabapple apple 0.960
apple quince 0.958 ingenue heavy 0.962
loganberry dewberry 0.958 buckskin roan 0.962
tangelo pomelo 0.958 vicuna alpaca 0.964
tangelo kumquat 0.958 chardonnay riesling 0.966
tangelo citrange 0.958 muscadet riesling 0.966
tangelo shaddock 0.958 verdicchio riesling 0.966
tangelo citron 0.958 manioc cassava 0.968
tangelo grapefruit 0.958 tokay muscatel 0.969

Table 5.2: WordNet-based pairs

Previous studies of interest. Colors (Zaslavsky et al., 2018) and containers

(White et al., 2017) have been suggested as semantically competing words that

entertain complex semantic relationships, based on grounded factors. Likewise,

embeddings of cities (Louwerse and Zwaan, 2009) are known to correlate to some

extent with their geographical locations, i.e., some of their real-world grounded

characteristics can be retrieved from their distributions.

We created a basic vocabulary for each of the three categories:

• Colors: red, orange, yellow, green, blue, purple, black, white, brown, pink,

gray

• Containers: bottle, pot, tube, vial, drum, gourd, flask, vase, thermos, teapot,

canister, jerrycan

• Cities: Birmingham, Leeds, Glasgow, Sheffield, Bradford, Manchester, Ed-

inburgh, Liverpool, Bristol, Cardiff, Belfast, Leicester

The vocabulary for cities corresponds to the most populous UK cities, as listed in

Wikipedia. The vocabulary for containers was adapted from (White et al., 2017).
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Color Container Cities

orange purple thermos bottle Belfast Cardiff
brown yellow pot vial Birmingham Bristol
brown red thermos flask Liverpool Bristol
green blue vase gourd Glasgow Sheffield
purple yellow vial flask Bradford Leeds
red white teapot drum Sheffield Manchester
orange yellow vial gourd Birmingham Sheffield
red purple vase tube Leicester Cardiff
green purple vial thermos Bristol Belfast
orange blue vial vase Liverpool Manchester
red blue pot gourd Glasgow Bristol
green orange teapot vase Sheffield Leeds
gray yellow pot bottle Leicester Bradford
brown purple canister flask Edinburgh Bristol
purple gray bottle gourd Liverpool Leicester
purple blue pot jerrycan Sheffield Bradford
brown gray vase bottle Liverpool Edinburgh
brown blue vial canister Edinburgh Belfast
green white drum flask Manchester Leeds
orange red bottle tube Bristol Leeds

Table 5.3: Hand-crafted pairs

We then computed all distinct pairs within categories, and randomly selected 20

pairs per category. The corresponding word pairs are listed in Table 5.3

Adversarial examples. We asked a small separate pool of participants to pro-

vide word pairs that they expected to be difficult to distinguish, based on dis-

tribution alone. All of them received the set of instructions transcribed in Ap-

pendix C.1. Participants tasked with producing adversarial examples were al-

lowed to solicit others. Submitted pairs are shown in Table 5.4.
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Submitter 1 Submitter 3 Submitter 5

red blue box package high tall
fear surprise parcel package blue turquoise
glass mug fence board interesting fascinating
orange apple traverse jump career profession
knowledge belief shade shadow glisten gleam

brother friend vampire mosquito Submitter 6

ashes dirt tangerine orange envy jealousy
to give to lend dragon dinosaur sonnet quatraine
cute beautiful concede recognize gallon litre

correctly accordingly Submitter 4 this that

to run to walk magic illusion infer imply

democracy dictatorship witch sage

Submitter 2 sand gravel

annihilate destroy cardboard paper
daddy father sponge towel
lie fib dirt powder

thing entity
spit sputter

Table 5.4: Adversarially submitted word pairs
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Word pair Word pair

lazer female drinking siege
east honeydew N chameleon
info haddock pocket sonnet
combat coop sorcerer antiseptic
liquor possibility rim cherry
fluid mess hotspot reparcelling
aeroplane drag plenipotentiary medicine
tycoon pillagings dwarf defens
krib mite compromise countryside
troopship osteo plaza cookie

Table 5.5: Control word pairs

Control items. Control pairs result from randomly selecting 20 word pairs from

Universal Dependencies English tree banks (all treebanks excepted English ESL).

We sample 40 tokens uniformly over the full vocabulary set derived from the UD

datasets.3 The resulting pairs are shown in Table 5.5; note that the sampling pro-

cedures leads to selecting rather infrequent tokens such as “N ”, “krib” or “defens”,

which are likely either spelling mistakes, non-standard orthographic variants or

textual preprocessing artifacts.

5.2.3 Results

Each participant was presented with five uniformly randomly sampled items

from each series: WordNet, word2vec, colors, cities, containers, adversarial ex-

amples, and control items. This totals to 35 items to annotate. Picking one word

is required, participants may tick a checkbox if they believe the words to be syn-

onyms in the provided contexts. Items (word pairs wt , wd and five contexts) are

3We first sample 20 items without replacement to be used as targets wt , then do a second
uniform sample without replacement to select distractors wd .
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Ontology Distributional Cities Containers Colors Adversarial Control

0.828 0.626 0.657 0.879 0.889 0.869 0.929

Table 5.6: Results of pilot experiment

presented in random order. For each item, the correct word and the distractor

from the pair are presented in random order.

Two optional free-text feedback questions were made available to partici-

pants: one asking whether participants believe they can present more challeng-

ing word pairs than the one they just saw, one asking for any general comments.

For each word pair we collect four elements:

1. to which word pair this annotation corresponds;

2. whether the correct word was selected;

3. whether the participant considered the two words to be synonyms;

4. during which web session was this annotation produced

The fourth item, in essence, serves as an anonymous identifier for the annotator.

Most word pairs received at least one annotation, some up to 17. Accuracy

results per series of word pair, based on the 99 first submitted annotations are

listed in Table 5.6 All series are solved above chance (0.5).

Unsurprisingly, using cosine to retrieve distributionally similar words seems

to be the hardest challenge, followed by distinguishing cities. There is almost a

20% difference with the next series, i.e., using WordNet hypernym set overlaps.

Adversarially submitted pairs, followed by containers and then colors, yield ac-

curacy scores of 0.04 to 0.06 points above what we observe for WordNet. Control
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pairs are solved 92% of the time. Removing annotations by annotators having

failed their control item does not modify the above ranking.

When asked whether they could produce more challenging word pairs, par-

ticipants had varying responses. Out of the 13 responses we received, five par-

ticipants had a high confidence that they could; out of which three went as far as

suggest pairs on the spot. Another group of 4 responses expressed some degree

of uncertainty as to the quality of the pairs they provided (“maybe,” “I guess”).

Only 2 participants replied negatively, suggesting that it would make sense to

allow participants to provide word pairs.

We also note 2 participants who provided a more elaborate answer, stressing

that the difficulty of the task depends on the exact implementation: e.g., which

contexts are selected, and what cultural and social milieu the annotators were

from. The general feedback question also echoed some of these remarks on the

details of implementation: participants asked whether looking up information on

google was allowed and suggested improvements to the interface. An important

number of respondents also pointed out that the knowledge and skills required

to solve questions varied from word pair to word pair.

5.2.4 Conclusions of the pilot study

In all, this pilot study was able to demonstrate three key elements.

The most crucial point that can be gathered from is that word pairs con-

structed from DSMs were among the most challenging. This signals that the task,

as it is constructed, does indeed relate more to distributional semantics than to

alternative means of construing and describing semantic contents, such as on-
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tologies like WordNet. As such, the annotation task as it was framed in this pilot

study appears to be a legitimate way to investigate distributional semantics.

Just as crucial is the fact that world-knowledge and the socio-cultural milieu

of annotators impacts their overall success rate. This was especially apparent

for the UK cities based questions: the vast majority of our participants were not

born, raised, or connected to the United Kingdom, making this category espe-

cially difficult to solve.

The last element that was made clear by this pilot study concerns the con-

struction of annotation items. On the one side, participants themselves were

often disoriented by the variety of questions and possible strategies to answer

them. On the other side, constructing annotation items for this pilot study also

revealed some potential issues: some sentences contained inflected variants of

the target or the distractor, making a simple hard-match strategy not viable for

selecting contexts. Furthermore, we observed artifacts such as sentences in for-

eign languages (Spanish, Japanese, Chinese), as well as cases where all the se-

lected contexts matched only with one of the possible senses of a polysemous

target. As such, a more fault-tolerant strategy might be to dynamically select

contexts for each annotator, rather than pre-compute a set of contexts that would

then be presented to all annotators. This dynamic context selection would also

simplify the interface and design requirements so as to allow participants to pro-

pose their own word pairs.

Overall, this pilot study suggests that the task is well suited to study the

validity of the distributional hypothesis. We therefore now turn to implementing

an interface for data collection at a larger scale.



231 Limits of the distributional hypothesis

5.3 Implementing an interface

The core focus of this chapter consists in testing the limits of distributional se-

mantics as a theory of lexical semantics. There are two aspects in which human

knowledge can be useful to our enterprise of investigating the value of the dis-

tributional hypothesis:

(a) How hard is it to distinguish terms from contexts alone?

(b) Are there terms indistinguishable from context alone?

These two related questions lead to two distinct series of data to collect. To an-

swer (a), we would need to collect judgments on the distributional substitution

task. Later on, substituting distributional models with human annotators will

allow us to compare human judgments to DSM performance. To answer (b), we

would instead require human participants to suggest word pairs that they expect

to be difficult to distinguish.

The pilot study we detailed in Section 5.2 demonstrated two key elements.

First, it highlighted that it is possible to gather judgments and make non-trivial

observations using an online platform, which would help us answer (a). Sec-

ond, it suggested that participants, on the whole, were confident that they could

propose challenging word pairs—i.e., exactly what we require to address (b).

As such, these two collection procedures lead us to an adversarial data collec-

tion project, where annotators can play either of two roles: proposing word pairs

to answer (b) (henceforth (b)-annotators), or distinguishing word pairs proposed

in (b) to answer (a) (likewise (a)-annotators).
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More precisely, these two adverse roles naturally cast themselves into two

antagonistic positions in a gamified setup, as the objectives of these two roles

are opposite to one another. As such, we propose to collect such human judg-

ments through a game interface, as displayed in Figure 5.1. Supplementary il-

lustrations are available in Appendix D. This game is available online at https:

//blankcrack.atilf.fr/; code for the interface is to be made public at https:

//github.com/TimotheeMickus/blankcrack.

5.3.1 Dataset Construction

We start by some considerations regarding the data we annotate and the format

of our collected annotations. In particular, we detail the sentence contexts we

select, our initial set of word pairs, the data presented to the annotators, and the

data we effectively collect.

As we are interested in establishing a widely applicable benchmark, we col-

lect data for multiple languages: English, French, Italian, Spanish and Russian.

These five languages were chosen on criteria of high data availability. We con-

struct the interface so as to facilitate adding new languages to the interface in

future releases.

The first element required for our game is a list of distributional contexts,

or sentences. We further wish our data to be broadly comparable across lan-

guages: we therefore select a comparable number of sentences from compara-

ble but varied corpora. The corpora of sentences furthermore need to be large

enough to allow us to dynamically select sentences for any given word pair, as

we have outlined in Section 5.2.4. We chose to select four million sentences

https://blankcrack.atilf.fr/
https://blankcrack.atilf.fr/
https://github.com/TimotheeMickus/blankcrack
https://github.com/TimotheeMickus/blankcrack
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per language, equally drawn from four genres of corpora. One fourth of each

corpus comes from Wikipedia dumps, one fourth from books corpora (Guten-

berg Project, Wikisource, LiberLiber.it), one fourth from parliamentary de-

bates (EuroParl (Koehn, 2005) or UN Corpus (Ziemski et al., 2016) for Russian)

and the last fourth from OpenSubtitles (Lison and Tiedemann, 2016).

The second type of data we require is a set of word pairs to bootstrap our

data collection process, so that both (a)-annotators and (b)-annotators can im-

mediately start. To do so, we consider two strategies. The first “a priori” strategy

consists in manually constructing pairs that one initially expects to be challeng-

ing, such as months, days of the week, numbers (cardinal and ordinal) and colors.

Any pair of terms from one of these series can constitute a word pair to annotate.

The second strategy, which we call “distributional” or “w2v-based,” consists

in automatically discovering distributionally similar items given our corpus of

sentence. We train distinct word2vec models for each of our five language-

specific corpora. We select hyperparameters with Bayesian optimization, using

performance on a formal analogy dataset as the objective to maximize. We ran-

domly sample 1M word pairs, and narrow down to the 250 items whose vectors

maximize cosine similarity.

From these word pairs and sentences, we can then automatically construct

annotation items. We present each (a)-annotator with two words wt and wd

from a given word pair 〈wt , wd 〉, and k sentences randomly selected such that

all sentences contain the target wt and none contains a word with the same word

stem as the distractor wd . (a)-annotators can freely set k ∈ {1,3,5}; by default,

k = 5.

We replace all occurrences of wt by a blank token “ ” before present-

LiberLiber.it
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Target: pleura Distractor: diaphragm
Correct: No Time: 35.84 s

Contexts:

best way to dissect the aortic .

the and pericardium have both been
recorded as points of outlet.

if the be implicated, greater
expansion of the upper and outside portion
of the left side of the chest in inspiration
takes place.

Annotator ID: dYaGLiFsJz8
Creator ID: N/A (distributional)

Table 5.7: Example annotation item

ing them to the (a)-annotator. The annotator is then tasked with retrieving which

of the target wt or the distractor wd corresponds to these blank tokens. Word

pairs 〈wt , wd 〉 can correspond either to our initial set of word pairs, or to items

proposed by (b)-annotators.

To construct our dataset, we collect the following items: the target wt , the

distractor wd , the k sentences provided to the annotator, whether the annotator

correctly selected the target wt , the time taken to provide an answer, as well as

identifiers tracking the annotator and the creator of the word pair. We provide

an example item in Table 5.7.

5.3.2 Player Engagement

At its core, our game is score-based, with two distinct scores per user correspond-

ing to performances as (a)-annotators and (b)-annotators. The (b)-annotator score

corresponds to the success rate (as a percentage) of the user’s proposed word

pairs, i.e., how often (a)-annotators failed to solve riddles constructed using the

(b)-annotator’s word pairs, and selected the distractor wd instead of the tar-
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get wt . The (a)-annotator score is a running tally of points: (a)-annotator get

between 0.1 and 3 points per correctly solved annotation item (where the (a)-

annotator selected the target wt , rather than the distractor wd ), depending on

whether the item was solved under 3 minutes, was based on a known difficult

pair, or whether the (a)-annotator had set a lower number k of example sen-

tences.

The possibility to set the number k of sentences per riddle is presented in-

game as a difficulty level setting. Aside from this setting, we further implement

several mechanisms to attempt to keep players engaged. First, we include a

competition mode, whereby users compete against one another; this competi-

tion mode is based on a “friends list.” Second, we ensure that word pairs newly

suggested by (b)-annotators get presented to (a)-annotators in priority, so that

(b)-annotators receive feedback as early as possible. Third, we also include some

materials to share on social media, e.g., when (a)-annotators successfully retrieve

the blanked-out word in their annotations multiple times in a row, or at the end

of a competition session. Thus far, sharing on social media and competitions

have not been used much often by our users.

We also note that users tend to connect only once. One explanation may

lie in that “manual” word pairs from our initial set (cf. Section 5.3.1) are felt to

be very hard to solve. We are currently investigating mechanisms to combat

this trend such as high-score leader-boards displaying username, language and

score for top players; our intuition is that it may motivate players to return to

the platform to ensure they still appear on the leader-board. Another possibility

would be to provide users with a way to opt-out of these word pairs, which we

leave for future investigation.
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5.3.3 Implementation details

The game is implemented as a Django application (Django, 2020),4 a python web

framework. The web deployment of the application relies on a nginx proxy web-

server (nginx, 2021). A continuous Integration workflow is implemented using a

Docker container (Merkel, 2014) and triggered by a gitlab pipeline (Gitlab, 2021).

The interface itself is coded using responsive web design principles, making the

display appropriate to screen sizes ranging from smartphone to computer.

Translations of the web interface are handled using the Django functionalities

to that effect; hence translators can handle a plain text file of the data that needs

to be translated. Moreover, to facilitate the addition of new languages later on,

the code is structured so as to separate all NLP services from the web interface

implementations. They are implemented as a local python library, such that the

domain where language-experts have to intervene is limited and well-delineated.

Data is handled through a PostgreSQL database (PostgreSQL Global Devel-

opment Group, 2021). The SQL model is schematically presented in Figure 5.2 as

a UML diagram. There are two groups of model classes: data description classes

and game mechanics classes.

Data description classes serve to store all textual and annotation data. The

Word class keeps track of all possible targets or distractors, according to our origi-

nal sentence corpora; it includes information about the language (lang), the word

type (wtype), and the corresponding stem (wstem). The WordPair class groups

a target (word1) and a distractor (word2); we further keep track of the original

creator and the relevant language (lang). Sentences are described using the

4Documentation, tutorials and information available here: https://www.djangoproject.
com/

https://www.djangoproject.com/
https://www.djangoproject.com/
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Sentence class, which keeps track of all the Word objects it contains as a many-

to-many relation, as well as the language (lang). Lastly, the Annotation class

keeps track of the annotations we collect: it keeps track of all Sentence ob-

jects presented to the annotator using a many-to-many relations, and relates to

a WordPair object using a many-to-one relation; further collected information

include whether the user selected the target or the distractor (correct), the lan-

guage (lang) and the time taken to produce an annotation (timestamp). We use

this latter class to produce CSV dataset files, replacing usernames with random

strings of characters.

The second group of model classes keep track of user statistics, as well as in-

game information. We include two classes here. First is the UserProfile class

which keeps track of a user’s preferences (language, number of sentences per

riddle, timezone, friends list, or highest number of back-to-back correct anno-

tations, etc.) Second, we have the CrackerScore class, which keeps track of a

user’s score as a (a)-annotator in a given language. The Feedback class gathers

suggestions from users. The Contest class models to player-versus-player time-

bound sessions. The Achievement class keeps tracks of notable events that can

be shared on social medias by the corresponding users, such as Contest results

or noteworthy streaks of correct annotations. A newly generated Achievement

object will produce a pop-up in the game interface, which will then be turned off

using an Acknowledgment object.
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5.4 Analyzing the collected data

Having detailed the online game that we used to annotate and collect data, we

now turn to analyzing this data, in hope of answering the question we initially

set to address in this chapter: what are the limits of the distributional hypothesis,

and of distributional models? In this last section, we will first have a look at the

overall contents of the data in Section 5.4.1. We will then try to compare our

annotators’ judgments to DSMs in Section 5.4.2 and Section 5.4.3. Lastly, we will

attempt to manipulate the distributional hypothesis in Section 5.4.4.

5.4.1 Contents Overview

en es fr it ru

k = 1 329 110 540 161 113
k = 3 58 90 136 73 90
k = 5 2223 2044 3719 816 3991
Total 2610 2244 4395 1050 4194

Table 5.8: Number of items collected

The analyses presented here are derived from a set of 14493 annotations. An

overview of how these items are distributed across languages and numbers of

contexts (k) is displayed in Table 5.8.

Figure 5.3 displays the overall success rate of annotators; i.e., the percentage

of annotations where they were able to select the target word over the distractor.

Each sub-figure presents a different condition: Figure 5.3a shows results over the

full dataset, whereas Figure 5.3b and Figure 5.3c display results according to the

number of contexts shown to the annotators. We do not include results for k = 3,
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Figure 5.3: Success rates (in %), groups with fewer than 100 items not included
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as most groups contained less than 100 items.

We observe task is not as trivial as one might expect. If we look at the overall

tally (Figure 5.3a), and average across all five languages of our study, we get a

success rate of 82%. For all languages, at least 13% of the items considered here

have received an incorrect response from human annotators. The overall diffi-

culty can jump to more than 26% if we consider the most challenging setups,

where annotators only have access to k = 1 sentences (Figure 5.3b). Even in the

most informed setup with k = 5 (Figure 5.3c), we find that the best language re-

mains below 90% accuracy overall. It is also instructive to compare the strategies

used to define word pairs: those suggested by annotators tend to be the easiest of

all; whereas a priori word pairs tend to be harder than the average case. Lastly,

the surprising difficulty for Spanish distributional word pairs comes from the

fact that our original Wikipedia sample contain a number of extremely similar

sentences, focusing on botanical nomenclature.

Even in the best of cases, annotators select the distractor rather than the tar-

get almost one out of every ten items. This difficulty could be imparted, among

other factors, to our approach in collecting this data: we preprocess the sen-

tences we present to annotators automatically and rely on crowd-sourcing to

retrieve human judgments on the distributional substitution task. Nonetheless,

it suggests that meaning cannot be entirely retrieved from distribution alone:

extra-linguistic context is necessary (cf. Section 2.2). Adding strength to this

latter analysis, we can tentatively identify some word pairs that are not reliably

distinguished by human annotators with access to linguistic contexts: for all

languages, roughly 5% of all word pairs that have been seen by 5 or more anno-

tators have a corresponding average success rate at or below chance level. Such
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pairs often include co-hyponyms: in French we find aquarelle ’watercolor’ vs.

gouache ’gouache’, in Spanish we have frambuesa ‘raspberry’ vs. fresa ‘straw-

berry’, Russian yields беркут ‘golden eagle’ vs. кречет ‘gyrfalcon’), and in En-

glish we find baseball vs. basketball.

5.4.2 Success rates

If we wish to assess how well distributional models are able to assess Equa-

tion (5.2), we can look at how often models correctly retrieve the target.

Methodology

We start by considering a 1-gram baseline and a 2-gram baseline. Both are tab-

ulated from corpora comparable to the ones used as basis for our dataset. We

further ensure that there is no overlap between the corpora we use to compute

our n-gram baselines and those used to construct our dataset.

We also include pre-trained models based on the BERT architecture of De-

vlin et al. (2019), or variants thereof. We select the following models: BERT (base,

uncased) for English, BETO (Cañete et al., 2020) for Spanish, CamemBERT (Mar-

tin et al., 2020, base) for French, UmBERTo5 for Italian and RuRoberta (large)6

for Russian. Finally, we consider word2vec models (Mikolov, K. Chen, et al.,

2013), trained on up to 500M sentences from the Oscar dataset (Ortiz Suárez

et al., 2019), using the gensim library (Řehůřek and Sojka, 2010), with default

hyper-parameters. We do so instead of relying on the DSMs we constructed in

Section 3.4.1 so as to preemptively rule out any suspicion that data limitations or

5https://github.com/musixmatchresearch/umberto
6https://huggingface.co/sberbank-ai/ruRoberta-large

https://github.com/musixmatchresearch/umberto
https://huggingface.co/sberbank-ai/ruRoberta-large


Limits of the distributional hypothesis 244

poor training are to influence our results.

As all our models are able to assess the probability of a word in a given con-

text p(w |c), we can extract a prediction by considering whether the probability

associated to the target word p(wt |c) is greater than the probability associated

to the distractor in the same context p(wt |c).

In practice, we found it more effective to consider the sum of log probabilities

across all contexts c1, . . . , ck within an annotation item:

∑
k

log p(wt |ck )−∑
k

log p(wd |ck ) > 0 (5.6)

Whenever Equation (5.6) holds true, the associated model correctly assigns a

higher probability to the target wt than to the distractor wd . It should be noted

that Equation (5.2) and (5.6) are not strictly equivalent. However, using log-

probabilities matches more closely the training objectives of the models we con-

sider: both the MLM objective and the objective function of word2vec models

are implemented as cross-entropy minimization objectives.

As BERT models rely on masking word pieces, rather than word tokens, we

derive the scores in Equation (5.6) by masking all the word pieces of the target,

and sum the associated log-probabilities, then substitute in the distractor and

sum the log-probabilities associated with its word pieces. As for word2vec mod-

els, we derive the prediction by considering its explicit probability distribution,

as it is computed during training using the weights associated to modeling the

context.
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en es fr it ru

Size 2051 1686 3443 749 3926
Reduct. (%) 78.6 75.1 78.3 71.1 95.0

Table 5.9: Effects of filtering on dataset size

Results

We can now compare the success rate of models to that of humans. To tabulate

these scores, we dropped annotations that took too long or too short: we dropped

any annotations where the logarithm of the time taken by the annotator was

more than one standard deviation apart from the mean, to ensure that we remove

the least trustworthy annotations. To avoid likely train/test overlaps, we also

remove any sentence originating from Wikipedia. The quantitative impact of

this preprocessing is displayed in Table 5.9.

en es fr it ru

human 83.1 86.9 83.8 89.1 87.8
1-gram 51.9 56.2 53.4 50.8 57.2
2-gram 60.4 71.2 66.0 70.7 60.1
BERTs 75.8 71.6 74.1 76.1 74.4
W2Vs 75.5 77.1 75.5 74.8 72.5

Table 5.10: Success rates (in %)

Results are described in Table 5.10. We include the success rates of human

annotators on the items we retain for comparison. All models considered yield

results above chance level (50%). The various BERT models attain a success rate

between 71.6% and 76.1%; the macro-average across all languages reaches 74.4%.

This is still below what we see for humans (83.1% to 89.1%, averaging to 86.1%),

but systematically above n-gram baselines: the 1-gram average across languages
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is at 53.9%, the 2-gram average is at 65.7%. The real surprise here is the perfor-

mance of the word2vec models: despite being designed as purely static embed-

dings, they achieve a 75.1% average success rate on this contextual task, slightly

above what we observe for the BERT models.

Discussion

This overview of models’ success rates highlights that word2vec models can ob-

tain performances comparable to what we observe for BERT-like models. This

may be due in part to the size of our training corpora, ranging from 60G (EN) to

90G (RU) of data: this is often (but not always) above what some of the BERT

models were trained with.

In all, it is surprising to see that these static embeddings can rival contextual

embeddings on a contextual task. This lends depth to previous studies which

have found static embeddings to be comparable to contextual embeddings on

word-type benchmarks (Vulić et al., 2020; Lenci et al., 2021, a.o.). Nonetheless

there is still a gap between these models and human performance.

5.4.3 Comparing human and model behaviors

Our previous experiment (Section 5.4.2) has given us a quantitative estimate of

the performance of our distributional models. We now turn to assessing whether

these models can be construed as models of the linguistic behavior of our anno-

tators.
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Binary classification approach

The first approach we consider is to re-frame this question as a binary classifica-

tion problem. Let us assume our models are perfect linguistic models of human

capabilities: if so, we would expect them to match human failure with failure.

In other words, any incorrect annotation item should correspond to a negative

score, as assessed by Equation (5.6).

Hence we can consider human behavior as the “gold standard” that a model

of human linguistic capabilities would try to match. By assessing how our mod-

els perform on this binary classification task, we are able to surmise whether

their behavior matches that of human—are they puzzled by sentences humans

got wrong? Are they confident with sentences humans got right? To answer

this question, we can use standard binary classification tools. More specifically,

we turn to Matthews correlation coefficient (MCC) to see whether model pre-

dictions match with human behavior. This correlation coefficient is computed

as:

MCC= TP×TN−FP×FNp
(TP+FP) · (TP+FN) · (TN+FP) · (TN+FN)

(5.7)

With TP, TN, FP, FN being respectively the number of true positive, true neg-

ative, false positive and false negative. In other words, the MCC subsumes a

confusion matrix under a single figure between 0 and 1, such that a higher value

is assigned when the number of false positive or false negatives is minimized.

Results are shown in Table 5.11. The difference between n-gram baselines

and distributional semantics models that clearly emerged from Table 5.10. For

our three Romance languages, we find that the 2-gram baseline yields a higher

correlation coefficient than both word2vec and BERT. In English, the word2vec



Limits of the distributional hypothesis 248

en es fr it ru

1-gram 0.157 0.158 0.158 0.119 0.177
2-gram 0.156 0.211 0.200 0.193 0.143
BERTs 0.208 0.178 0.150 0.077 0.230
W2Vs 0.135 0.185 0.170 0.122 0.199

Table 5.11: Matthews’ correlation coefficient

model is found to yield the lowest MCC; in French and Italian, the CamemBERT

and UmBERTo models yield the lowest MCC.

It is hard to argue that the distributional models correlate more with human

behavior than the n-gram baselines. On the other hand, we can stress that all the

models we tested yielded a positive correlation. This suggests that the behavior of

our DSMs is not unrelated to humans—although it is certainly not a close match

either. In all, the mistakes and successes of our DSM models do not necessarily

align with that of human annotators.

Ranking approach

There are two obvious caveats that one can think of in the methodology we

adopted in Section 5.4.3. First, it pits model efficiency against linguistic valid-

ity: a model can’t be both always correct and match human failures with failures

of its own. Second, it relies entirely on treating human annotations as a gold

standard—even when annotators have selected the wrong answer.

The simplest way to address both of these concerns is to depart from the

binary approach, and see instead whether human uncertainty is matched with

lower scores from the models. In principle, a model could always choose the right

answer, but lower its score for difficult items—i.e., those annotators struggle with.
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Norm. en es fr it ru

none – – – 0.417 0.390
sents. – 0.458 0.449 0.373 0.376
words 0.447 0.385 0.454 0.421 0.452
chars. 0.462 0.395 0.455 0.417 0.459

Table 5.12: Common language effect size from Mann–Whitney U tests for log
time taken when answering correctly vs. incorrectly

Considering the uncertainty of our annotators also entails that we factor in how

confident they are in their judgments.

This approach requires some sort of measurement of annotator uncertainty,

beyond the binary annotations we have exploited thus far. To that end, we focus

on the time it takes an annotator to answer a question. We can expect that an

annotation item that is easy to judge should take less time than an item requir-

ing careful consideration. Furthermore, as annotators should have no difficulty

to correctly guess easier items, we expect that the time taken to answer correctly

should be less than the time taken to answer incorrectly. We also consider nor-

malizing the time taken by the number of sentences (i.e., k), the number of words

across all sentences, or the number of characters across all sentences. Our rea-

soning is that the time taken by an annotator also depends on how much text

they have to read.

In Table 5.12, we consider various time indicators: either the raw log seconds

taken,7 or variants normalized by some measure of the length of the annotation

item. Measurements are done using a Mann–Whitney U test. For two sets A and

7Our dataset contains both annotations completed in a few seconds, as well as annotations
completed in more than ten minutes. A logarithmic transformation shifts the distribution from
a power law to an almost normal distribution.
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B , this test defines a U statistic as:

UA,B = ∑
Ai∈A

∑
B j∈B



1 if Ai > B j

1/2 if Ai = B j

0 if Ai < B j

(5.8)

In other words, higher values are assigned when items in A are greater than

items in B Here, we use this test to see whether the distributions of time indi-

cators differ between correctly annotated items and incorrectly annotated items:

we then compute the common-language effect size, i.e., the U statistic divided by

the maximum value it could assume, #A×#B , so as to normalize it between 0 and

1. Here, a lesser value of ρ entails a greater certainty that the incorrect annota-

tions have greater associated values—that is to say, they require more time than

the correct annotations. Statistically insignificant effect sizes are not reported.

By studying the results of Table 5.12, we see that the raw time measurement is

not always significant. However, when factoring in the length of an annotation

item, we do detect that annotators take longer when they answer incorrectly

than correctly: this is consistent with time being an indicator of uncertainty.

Interestingly, we note that the best length normalization differs across languages,

but explaining what typological factors drive this difference is beyond the scope

of the present study.

Having found a way to quantify uncertainty, we can now include it in our

original annotations. We re-weight human annotations to factor in time, such

that highly confident correct answers lie at one end of the spectrum, and highly

confident wrong answers lie at the other end of the spectrum. This also ensures
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that we match as closely as possible how we derive scores from our models.

Technically, we re-weight human judgments as follows:

(
max s∗− s

)×

+1 if correct

−1 otherwise
(5.9)

where s is the length-normalized time indicator log t/N , with N either the num-

ber of sentences (for FR, IT, RU) or words (for EN and ES), and max s∗ is the

maximum value observed for s across all annotations for that language.

en es fr it ru

1-gram 0.149 0.115 0.132 0.163 0.147
2-gram 0.119 0.150 0.228 0.267 0.146
BERTs 0.225 0.152 0.204 0.218 0.258
W2Vs 0.145 0.196 0.244 0.165 0.248

Table 5.13: Spearman correlations of model scores and time-weighted human
judgments

As we have two related series of continuous measurements, we can apply

a simple correlation metric, such as Spearman’s ρ, between time-weighted an-

notator responses and model scores. This is shown in Table 5.13. In English,

French and Italian, either or both DSMs yield a lower correlation than what we

observe for n-grams, while in Spanish the margin between BETO model and the

2-gram baseline is less than 0.002. Only in Russian do we find a sharp distinction

between DSMs and n-grams. Overall, although correlation scores are always

positive, they remain fairly low (ρ < 0.27).
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Discussion

In all, while the models do display some degree of performance (as shown in

Section 5.4.2), neither the sort of mistakes they do (Section 5.4.3) nor the confi-

dence in their answer (Section 5.4.3) matches closely human behavior. In many

cases, distinguishing DSMs from n-gram baselines can prove very arduous. In

other words, models that perform relatively well on the distributional substitu-

tion task are not necessarily linguistically accurate.

5.4.4 Manipulating the distributional hypothesis

Our experiments thus far have focused on seeing whether DSMs model human

behavior. We could instead reverse the setup, and see whether a low score from

a DSM entails a greater hesitation from the human annotator. In effect, this

mirror approach would imply that we do not focus on the entire distribution

of scores, but rather put more emphasis on the most extreme values—where we

would expect the greatest impact on human behavior.

Methodology

Our approach this time around will be to select sentences that either maximize

or minimize Equation (5.6), and see how human annotators fare on these con-

texts, and how confident they are in their answers. We start by selecting the

most extreme word pairs, in terms of average success rate. For each word pair,

we select a random sample of up to 10000 sentences from the original sentence

corpora detailed in Section 5.3, and rank them according to the score a BERT-like

model would give them, following Equation (5.6). We then restrict our random
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sample to the five sentences with the lowest scores and the five sentences with

the highest scores, while making sure that sentences are uniquely associated to

word pairs. In other words, if some sentence cp is among the ten items chosen

for a pair 〈w n
t , w n

d 〉, then it will not be chosen for any other pair 〈w m
t , w m

d 〉. This

last restriction is required so as to ensure that participants never have access to

the target word in its actual context: otherwise, we would present twice the same

context cp—the first time with the word w n
t blanked out, the second time with

the word w m
t blanked out—and annotators may be able to recall the target they

saw previously.

We then recruit annotators to review this data. Unlike the main dataset, we

only present contexts one at a time: annotators only see one sentence with the

target word replaced by a blank token. Our reasoning is that we are interested

in the ability of a DSM to rank sentential contexts, and presenting multiple sen-

tences at once would prevent us from retrieving which specific context clued in

the annotator. Another difference is that we ask annotators to express them-

selves using a five-point Likert scale, ranging from high confidence in the target

to high confidence in the distractor.

Annotators are asked to review up to 500 items; for each language, two an-

notators work on the full dataset. All annotators are native speakers of the lan-

guage they worked with, and have been raised in a country where this language

is commonly spoken. Due to these limitations, we were only able to gather data

for English (200 items), Spanish (430 items) and French (500 items).
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Results

Figure 5.4 pits the scores derived from BERT on the y-axis against the corre-

sponding Likert scale annotations, for each language; the heatmap in the middle

of each picture displays how the two distributions coincide. These illustrations

clearly show that both annotators and the BERT models behave differently across

languages. However there are similarities: in all three languages, annotators

match high BERT scores with a strong preference for the target. In French (Fig-

ure 5.4c), annotators and BERT seem to closely match in their behavior: a neutral

response is elicited when the score is low, whereas a confident preference for the

target corresponds to a high score. In the other two languages, low scores are

spread out across the scale. In Spanish (Figure 5.4b), scores around zero elicit

a neutral response, but scores below zero do not seem associated to a specific

response. In English (Figure 5.4a), we see a linear trend: the very lowest BERT

scores tend to elicit a strong preference for the distractor.

To provide a more quantitative outlook, we turn to a dominance analysis of

which factor is most closely related to our annotators’ behavior. Dominance

analysis consists in learning a simple linear regression, computing the associ-

ated r 2 to measure its fitness, and computing what proportion of this r 2 can be

imparted on each predictor. We refer the reader to the original description by

Budescu (1993) for the full derivation and only provide here a basic exposition.

A r 2 score, also known as a coefficient of determination, corresponds to the

proportion of the variation of the dependent variable is explained by a linear
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model’s predictors. It is computed as:

r 2 = 1−

n∑
i=1

(
yi − ŷi

)2

n∑
i=1

(
yi −µY

)2
(5.10)

Where Y = (y1, . . . , yn) corresponds to our observations of the dependent vari-

able, Ŷ = (ŷ1, . . . , ŷn) corresponds to the predictions of the model at hand, andµY

is the mean value for Y . The r 2 score involves a sum of squared error
(
yi − ŷi

)2,

normalized by the observed variance
n∑

i=1

(
yi −µY

)2. Note that a theoretically per-

fect model that produces no error should receive a score of 1. Any degree of error

will decrease this score; negative values correspond to models worse than sys-

tematically producing the mean observed value of the dependent variable

Dominance analysis is based on the fact that the fitness of linear model, as

measured by its r 2 score, can be rewritten as the sum of contributions Cpi from

specific model predictors PM = (p1 . . . pn).

r 2
PM

= ·
n∑

i=i
Cpi (5.11)

where r 2
PX

is the fit associated with the set of predictors PX . Individual contribu-

tions Cpi are here defined based on the effect of including or excluding the related

predictor pi . For any predictor pi , consider all possible subsets PM ′ ⊆ PM \{pi } of

predictors other than pi . For each subset PM ′ , we can compare the fit we observe

using PM ′ on its own, to what we would gain by adding pi :

C
(PM ′ )
pi

= r 2
PM ′∪{pi } − r 2

PM ′ (5.12)
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By summing over all possible subsets PM ′ , we can quantify the importance of

the predictor pi based on the improvements it brings, taking into account the in-

formation captured by all other predictors. In practice, to ensure that individual

contributions Cpi sum at the r 2 of the initial set of predictors PM , we take a two-

step average. We first compute C k
pi

, the average importance across subsets with

the same number k of predictors to consider, and then take the average across

all subset sizes k:

C k
pi

= 1(n−1
k

) ·( ∑
{PM ′ |#PM ′=k}

C
(PM ′ )
pi

)

Cpi =
1

n
·

n−1∑
k=0

C k
pi

(5.13)

Crucially, individual contributions C
(PM ′ )
pi

only depend on r 2 measurements of

sub-models. These can be obtained directly by performing linear regressions for

the corresponding sub-models and computing the associated r 2 scores.

In our case, we will use dominance analysis to look at a model predicting the

average Likert score by annotation item. As predictors, we will use the origi-

nal average success rate for that word pair, as well as the original BERT score.

This will allow us to compare these two metrics as competing explanations for

the Likert annotations we collected. We also introduce other predictors that we

expect to play a role: the original source of the sentence shown to the Likert an-

notators (as a four-dimensional one-hot vector), the average length-normalized

log time taken for the word pair in the original dataset, and the log frequency of

the target and the distractor.

Results are presented in Table 5.14. The r 2 of each linear regression is given
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BERT succ. time freq. src. r 2

en 76.86 8.97 9.01 3.80 1.36 0.28
es 59.18 4.22 4.20 21.24 11.16 0.21
fr 81.38 7.15 7.30 1.94 2.23 0.44

Table 5.14: Proportion of r 2 explained by type of predictor (in %)

in the last column; columns 1 through 5 detail the proportion of this r 2 imparted

on each predictor (in %). The fitness of the regression, as measured by r 2 scores,

suggests that more than half of the variance in annotations is not explained by a

simple linear relation between predictors. This is especially striking in Spanish,

where the r 2 score is at 0.21. Yet all models consistently rank the BERT score

as the most important predictor. The French and English both impart more than

75% of the explained variance on BERT scores and 15% to 20% to average success

rates and time taken on the previous dataset. The Spanish model emphasizes

more the frequency of the target and distractor (21.24%) and the corpora from

which the presented context originate (11.16%).

Discussion

In short, this last experiment stresses that in specific conditions BERT models

can prove to be useful tools to manipulate the distributional hypothesis.

This is especially visible on the case of the French data, which yields the

most obvious bimodal distribution (Figure 5.4c), the highest r 2, and the largest

proportion of variance explained by the BERT model scores. These elements

suggest that the CamemBERT model was able to select sentences that strongly

cued the target.

On the other hand, we are not able to reliably find French contexts that elicit
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a strong preference for the distractor. This is something we only tentatively ob-

serve for English, where paradoxically the dominance analysis suggests that our

current predictors are less well-suited to explain the phenomena we recorded

(r 2 = 0.28). This is in line with previous experiments: while high BERT scores

translate into a confident preference for the target, much remains to be done

in order to accurately depict the full breadth of human behaviors, ranging from

strong preferences in the distractor and accurately depicting less confident hu-

man judgments.

Opposite to this is Spanish: the lowest scores from BETO do not bias the

annotators towards neutral or negative responses. The main reason of this dif-

ference is unclear: the quality of the sentences presented to annotators might

play a role, but so might the quality of BETO. We also find a much lower inter-

annotator agreement for this language: the Pearson r correlation coefficient for

our two Spanish annotators is of only 0.11, compared to the 0.59 we observe for

English or the 0.74 for French.

Improvements could be made on our analyses: one could use as predictors

the average success rate and the average time taken restricted to items with k = 1

contexts, as these would be more representative. We leave this to future inves-

tigations, as we haven’t collected enough data to establish such baselines (cf.

Table 5.8). Another point we leave for future study is the number of datapoints

in our original datasets: some predictors are derived from them (average time

and success rate) and it is unclear how size discrepancy impacts them.
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5.5 Conclusions

In the present chapter, we have approached the question of how to quantify our

expectations with respect to distributional semantics and distributional seman-

tics models. The short, incomplete answer that we presented here is that dis-

tributional information would allow humans to retrieve about 82% of pairwise

meaning distinctions. In contrast, embedding models like BERT or word2vec

would only reach 75% accuracy, and the way they achieve these performances

begs the question of whether we should consider them as models of distribu-

tional semantics. We however need to take these numbers in context, as we

derived them from an experiment designed to focus on pairs of words difficult

to distinguish from distributional information alone. Rather than the exact fig-

ure, the crucial point to keep in mind is that embeddings cannot be thought of

as perfect implementations of the distributional semantics theory.

To answer our questions, we have provided a dataset of human judgments

on the distributional substitution task (Section 5.3), spanning five languages and

over 14000 items. We showed how DSMs in general—both modern BERT-like

models and earlier word2vec embeddings—had still some margin for improve-

ment, especially if we consider not just their overall efficiency (as in Section 5.4.2),

but rather how well they match human behavior (Section 5.4.3). Nonetheless,

despite this gap, we find that in limited circumstances, BERT-like models can be

used as tools to manipulate the distributional hypothesis (Section 5.4.4), which

we deem encouraging for the prospects in the field.

This discrepancy between word embeddings and human behaviors is not

without practical consequences. In particular, contextual embeddings-based met-
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rics such as the MoverScore metric of W. Zhao et al. (2019) implicitly rely on the

assumption that embedding models describe—to some extent—the meaning of

words. Such an assumption is perhaps not warranted by the current state of

the art; in any event a case-by-case assessment is certainly advisable. Broadly

speaking, a similar remark can be addressed to linguistic works using distribu-

tional representations as a proxy for meaning, be it when studying compositional

semantics (Hill et al., 2016), arbitrariness of the sign (Gutiérrez et al., 2016) or

morphological regularity (Bonami and Paperno, 2018). Whether an embedding

model behaves in a linguistically coherent fashion on any given dataset should

not be taken for granted and must be counted among the assumptions any such

study relies on.

Taking a more linguistic-oriented point of view, this chapter suggest two

key elements that will be relevant to future research. On the one hand, a uni-

fying framework to study DSMs despite their high degree of variation can be

put forward, as we have shown with distributional substitution in Section 5.1.

On the other hand, our analyses in Section 5.4 reveal that much remains to be

done before we can confidently say that modern NLP models can be construed

as linguistically valuable models of distributional semantics. This leaves open a

number of perspectives for future research, besides simply augmenting the size

of our datasets: how would this translate to other languages, especially non-

European ones? What is required of DSMs for them to accurately describe the

human judgments we collected? Which factors are the most adequate to model

human behavior on the distributional substitution task?

After these analyses, we can now return to the question we initially started

this chapter with: how much faith can we put in our distributional semantics
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models as theories of lexical semantics? We have established that the currently

available models are imperfect, both in that they under-perform humans on the

distributional substitution task, and in that they are limited in their capacity to

reflect human behavior. To an extent, dictionaries are imperfect as well: lex-

icographers are fallible and systemic social biases will creep into any cultural

production—among which dictionaries are to be counted. This is perhaps best

captured by the key fact that year after year, dictionaries see new editions based

on earlier versions. In short, dictionaries and embeddings alike have their flaws:

the present dissertation might be best construed as investigating whether word

embeddings should be taken as seriously as dictionaries when discussing mean-

ing inventories.

Relevant to this discussion, the way in which a dictionary is imperfect is very

much distinct from the way a distributional semantics model is imperfect. While

we may criticize dictionaries for containing social biases, these biases will also

be present in DSMs. More central to our argument is that distributional models

are imperfect implementations of the distributional hypothesis: there is an in-

herent degree of noise in distributional representations that we cannot currently

abstract away. And even if we did overcome these implementation issues, we

would still be faced with the greater problem: the distributional hypothesis itself

does not seem sufficient to properly encode all meaning distinctions. The 82%

success rate that we mentioned earlier can also be read as 18% of word pairs that

linguistic context on its own is not sufficient to distinguish.

Again, what matters here is not the exact figure we arrive at—be it 18% or

any other—but rather that we can arrive at a quantified estimate at all. The ex-

periments we have devised here are incomplete, and call for more research. In
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reaching our conclusion that distributional semantics and its implementations

have their flaws, we should be mindful of the caveats that come with our exper-

iment protocol. We should keep in mind that we have used an adversarial setup

to collect word pairs. We should keep in mind that the number of contexts dis-

played to annotators was limited to a few, whereas the methodology proposed

by Harris (1954) was conceived with large corpora of manually collected linguis-

tic evidence in mind. We should keep in mind that a number without a scale is

never straightforward to interpret: we cannot formulate what our expectations

are for success on this substitutability task. All of these aspects can and should

be discussed: there is a need to confirm and replicate these claims. Nonetheless,

to arrive at a quantified observations is a step forward and away from putative

judgments of a model’s intrinsic limitations; it provides objective facts on which

to base our work. It provides a concrete basis for us to discuss the intrinsic limi-

tations of the distributional enterprise.
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The StRuctuRe of TRansfoRmeR Embedding

Spaces

I’ve done the math enough to know
The dangers of our second guessing
Doomed to crumble unless we grow
And strengthen our communication

— Tool, Schism

The previous Chapter 5 has underscored that distributional semantics mod-

els did not appear to correspond to human behavior on the distributional sub-

stitution task, casting doubt on their validity as models of lexical semantics.

That is however not the sole issue we have encountered thus far. As we saw

in Section 1.3, methodologies applied to analyze word embedding models are

diverse. They distinctly delineate two or three family groups: word-type repre-

sentations or static representations like word2vec, word-token or contextual rep-

This chapter is based on previously published work (Mickus, Paperno, Constant, and
Deemter 2020, “What do you mean, BERT?”) as well as work currently in press (Mickus, Paperno,
and Constant 2022, How to Dissect a Muppet: The Structure of Transformer Embedding Spaces).
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https://www.youtube.com/watch?v=MM62wjLrgmA
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resentations, and attention-based representations (which are invariably contex-

tual). These different methodologies seem to suggest that word-type represen-

tations like word2vec are inherently distinct from word-token representations

like BERT. Whether we can apply the methodological approach developed for

word-type models to word-token models is in fact not trivial.

Whereas traditional DSMs match word types with numeric vectors, contex-

tualized embeddings produce distinct vectors per token. Ideally, the contextual-

ized nature of these embeddings should reflect the semantic nuances that con-

text induces in the meaning of a word—with varying degrees of subtlety, ranging

from broad word-sense disambiguation (e.g. ‘bank’ as a river embankment or as

a financial institution) to narrower sub-types of word usage (‘bank’ as a corpora-

tion or as a physical building) and to more context-specific nuances. Regardless

of how apt contextual embeddings such as BERT are at capturing increasingly

finer semantic distinctions, we expect the contextual variation to preserve the

basic DSM vector-space properties. Namely, we expect that the space structure

encodes meaning similarity and that variation within the embedding space is se-

mantic in nature. Similar words should be represented with similar vectors, and

only semantically pertinent distinctions should affect these representations. But

that it should be so is no guarantee that it is actually so.

Do the different architectures of DSMs entail that the vector spaces they de-

scribe are qualitatively different? To answer this question, we will perform a

series of experiment on the BERT model of (Devlin et al., 2019). Our first ap-

proach in Section 6.1 will be to see whether basic properties of distributional

semantics models also hold for BERT contextual embeddings. This will lead us

in Section 6.2 to see whether we can provide a mathematical reformulation that
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links our observations to characteristics of the Transformer architecture. Using

this better informed framework, we will conduct intrinsic and extrinsic evalu-

ations of how the Transformer architecture shapes the BERT embedding space

in Sections 6.3 and 6.4. To wrap up this chapter, we will discuss our findings in

Section 6.5.

6.1 Is BERT a vector-space model of meaning?

In the previous chapter, we have seen that the probability distribution underlying

BERT did not line up with our expectations for DSMs. There is another aspect

that we have left aside, namely whether the embeddings describe a coherent

semantic space.

6.1.1 Word type cohesion

Our starting point will be that similar words should lie in similar regions of the

semantic space. This should hold all the more so for identical words, which ought

to be maximally similar. By design, contextualized embeddings like BERT exhibit

variation within vectors corresponding to identical word types. Thus we expect

that word token representations corresponding to the same word type form natu-

ral, distinctive clusters in the embedding space. Here, we assess the coherence of

word type clusters by means of their silhouette scores, as proposed by Rousseeuw

(1987).



The Structure of Transformer Embedding Spaces 268

Experimental protocol

In this first experiment, we used the Gutenberg corpus as provided by the NLTK

platform, out of which we removed older texts (King John’s Bible and Shake-

speare), whose style and vocabulary was distinct from the remainder of the cor-

pus. Sentences are enumerated two by two; each pair of sentences is then used

as a distinct input source for BERT. As we treat the BERT algorithm as a black

box, we retrieve only the embeddings from the last layer, discarding all interme-

diary representations and attention weights. To derive embeddings, we used the

bert-large-uncased model.

To study the basic coherence of BERT’s semantic space, we can consider types

as clusters of tokens—i.e. specific instances of contextualized embeddings—and

thus leverage the tools of cluster analysis. In particular, silhouette score is gen-

erally used to assess whether a specific observation v⃗ is well assigned to a given

cluster Ci drawn from a set of possible clusters C . The silhouette score is defined

in Equation (6.1):

separation(v⃗ ,Ci ) =min{mean
v⃗ ′∈C j

d(v⃗ , v⃗ ′)∀ C j ∈C − {Ci }}

cohesion(v⃗ ,Ci ) = mean
v⃗ ′∈Ci−{v⃗}

d(v⃗ , v⃗ ′)

silhouette(v⃗ ,Ci ) = separation(v⃗ ,Ci )−cohesion(v⃗ ,Ci )

max{separation(v⃗ ,Ci ), cohesion(v⃗ ,Ci )}
(6.1)

We used Euclidean distance for d .

Silhouette scores consist in computing for each vector observation v⃗ a cohe-

sion score (viz. the average distance to other observations in the cluster Ci ) and a

separation score (viz. the minimal average distance to other observations, i.e. the
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minimal ‘cost’ of assigning v⃗ to any other cluster than Ci ). Optimally, cohesion

is to be minimized and separation is to be maximized, and this is reflected in the

silhouette score itself: scores are defined between -1 and 1; -1 denotes that the

observation v⃗ should be assigned to another cluster than Ci , whereas 1 denotes

that the observation v⃗ is entirely consistent with the cluster Ci .

Ccat

⃗dog42

Cdog

Cpooch

Figure 6.1: Visualization of silhouette score

A visualization of what silhouette scores assess is given in Figure 6.1. In our

case, observations v⃗ therefore correspond to tokens (that is, word-piece tokens),

and clusters Ci to types. In the illustration, the 42nd “dog” token vector is high-

lighted as belonging to the cluster Cdog for the corresponding word type. We

assess whether the distance of this ⃗dog42 vector to other vectors in the Cdog is on

average smaller than to the distance of vectors belonging to the nearest cluster

Cpooch.

Keeping track of silhouette scores for a large number of vectors quickly be-

comes computationally intractable, hence we use a slightly modified version of

the above definition, and compute separation and cohesion using the distance to

the average vector for a cluster rather than the average distance to other vectors
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Figure 6.2: Distribution of token silhouette scores

in a cluster, as suggested by Vendramin et al. (2013). Though results are not en-

tirely equivalent as they ignore the inner structure of clusters, they still present

a gross view of the consistency of the vector space under study.

We do note two caveats with our proposed methodology. Firstly, BERT uses

subword representations, and thus BERT tokens do not necessarily correspond to

words. However we may conjecture that some subwords exhibit coherent mean-

ings, based on whether they tightly correspond to morphemes—e.g. “##s”, “##ing”

or “##ness”. Secondly, we group word types based on character strings; yet only

monosemous words should describe perfectly coherent clusters—whereas we ex-

pect some degree of variation for polysemous words and homonyms according

to how widely their meanings may vary.

Results & discussion

We compared cohesion to separation scores using a paired Student’s t-test, and

found a significant effect (p-value < 2·2−16). This highlights that cohesion scores

are lower than separation scores. To provide a quantitative estimate of the mpor-
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tance of this effect, we turn to Cohen’s d :

dA,B = µA −µB

σ̂A,B
(6.2)

Where σ̂A,B is the pooled standard deviation derived from comparing the esti-

mated variances v̂(A) and v̂(B) of A and B respectively:

v̂(X ) =
∑

x∈X x −µX

#X −1

σ̂A,B =
√

(#A−1) · v(A)+ (#B −1) · v(B)

#A+#B −2
(6.3)

Simply put, Cohen’s d normalizes the difference between the mean value in A

and the mean value in B by the standard deviation we expect for A∪B .

The effect size as measured by Cohen’s d is however rather small, reaching

only −0.121, suggesting that cohesion scores are only 12% lower than separation

scores. More problematically, we can see in Figure 6.2 that 25.9% of the tokens

have a negative silhouette score: one out of four tokens would be better assigned

to some other type than the one they belong to. When aggregating scores by

types, we found that 10% of types contained only tokens with negative silhouette

score.

The standards we expect of DSMs are not always upheld strictly; the median

and mean score are respectively at 0.08 and 0.06, indicating a general trend of

low scores, even when they are positive. We previously noted that both the use

of sub-word representations in BERT as well as polysemy and homonymy might

impact these results. The amount of meaning variation induced by polysemy

and homonymy can be estimated by using a dictionary as a sense inventory:
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we can in principle distinguish monosemous word types from ambiguous word

types by verifying if they have more than one definition. First, we observed

that monosemous words, as identified by their number of dictionary definitions,

yielded higher silhouette scores than ambiguous words (p < 2 · 2−16, Cohen’s

d = 0.236), though they still include a substantial number of tokens with negative

silhouette scores.

As for ambiguous words, note that the number of distinct entries for a word

type can serve as a proxy measure of how much meaning varies in use. We thus

used a linear model to predict silhouette scores with log-scaled frequency and

log-scaled definition counts, as listed in the Wiktionary, as predictors. We se-

lected tokens for which we found at least one entry in the Wiktionary, out of

which we then randomly sampled 10 000 observations. Both definition counts

and frequency were found to be significant predictors, leading the silhouette

score to decrease. This suggests that polysemy degrades the cohesion score of

the type cluster, which is compatible with what one would expect from a DSM.

Similarity also includes related words, and not only tokens of the same type.

Other studies (Vial et al., 2019; Coenen et al., 2019, e.g.) already stressed that

BERT embeddings perform well on word-level semantic tasks. To directly as-

sess whether BERT captures this broader notion of similarity, we used the MEN

word similarity dataset (Bruni et al., 2014), which lists pairs of English words

with human annotated similarity ratings. We removed pairs containing words

for which we had no representation, leaving us with 2290 pairs. We then com-

puted the Spearman correlation between similarity ratings and the cosine of the

average BERT embeddings of the two paired word types, and found a correlation

of 0.705, showing that cosine similarity of average BERT embeddings encodes
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semantic similarity. For comparison, a word2vec DSM (Mikolov, K. Chen, et al.,

2013) trained on BookCorpus (Zhu et al., 2015) using the same tokenization as

BERT achieved a correlation of 0.669.

6.1.2 Cross-sentence coherence

As observed in the previous section, overall the word type coherence in BERT

tends to match our basic expectations. In this section, we do further tests, lever-

aging our knowledge of the design of BERT. We look at the interaction of two

features of the BERT model: on the one hand, segment encodings to distinguish

between paired input sentences, on the other hand, residual connections.

Formal approach

We begin by examining the architectural design of BERT. We refer the reader

to Section 1.2.2 as well as Vaswani et al. (2017) and Devlin et al. (2019) for a

thorough overview of the architecture. In this section we focus on the interaction

of two design choices in the BERT architecture: the use of residual connections

throughout the model, as well as segment encodings used for the NSP objective.

As brief reminder, on a formal level, BERT is a deep neural network composed

of superposed layers of computations. Each layer is composed of two sub-layers:

the first performing multi-head attention, the second being a simple feed-forward

network. After each sub-layer, residual connections and layer normalization are

applied; thus the intermediary output y⃗λ after sub-layer λ can be written as a

function of the input x⃗λ, as y⃗λ = LayerNorm(Sλ(⃗xλ)+ x⃗λ), with Sλ the sublayer

function.
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Moreover, BERT includes positional encodings to explicitly model word or-

der, as well as segment encodings to provide the model with some leverage point

in its next sentence prediction (NSP) objective. Using the same example that we

provided in Section 1.2.2, if the initial training example was “My dog barks. It is a

pooch.,” the actual input would correspond to the following sequence of vectors:

⃗[CLS]+ ⃗p(0)+ ⃗segA, M⃗ y + ⃗p(1)+ ⃗segA,

⃗dog + ⃗p(2)+ ⃗segA, ⃗bar ks + ⃗p(3)+ ⃗segA,

.⃗+ ⃗p(4)+ ⃗segA, ⃗[SEP]+ ⃗p(5)+ ⃗segA,

I⃗ t + ⃗p(6)+ ⃗segB , i⃗ s + ⃗p(7)+ ⃗segB ,

a⃗ + ⃗p(8)+ ⃗segB , ⃗pooch + ⃗p(9)+ ⃗segB ,

.⃗+ ⃗p(10)+ ⃗segB , ⃗[SEP]+ ⃗p(11)+ ⃗segB

Due to the general use of residual connections, marking the sentences using

the segment encodings ⃗segA and ⃗segB can introduce a systematic offset within

sentences. Consider that the first layer uses as input vectors corresponding to

word, position, and sentence information: w⃗i + p⃗(i )+ s⃗egi ; for simplicity, let

i⃗t = w⃗i + p⃗(i ); we also ignore the rest of the input as it does not impact this

reformulation. The output from the first sub-layer y⃗1,i can be written:

y⃗1,i = LayerNorm(S1(⃗ii + s⃗egi )+ i⃗i + s⃗egi )

= β⃗1 +γ1 ¯ 1

σ1,i
S1(⃗ii + s⃗egi )+γ1 ¯ 1

σ1,i
i⃗i

−γ1 ¯ 1

σi ,1
µ(S1(⃗ii + s⃗egi )+ i⃗i + s⃗egi )

+γ1 ¯ 1

σi ,1
s⃗egi
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d⃗og

M⃗y

⃗barks I⃗t’s

⃗pooch

a⃗

(a) without segment encoding bias

d⃗og

M⃗y

⃗barks

I⃗t’s

⃗pooch

a⃗

(b) with segment encoding bias

Figure 6.3: Toy example for segment encoding bias

= ⃗̃y1,i +γ1 ¯ 1

σi ,1
s⃗egi (6.4)

This equation is obtained by simply injecting the definition for layer-normalization

(cf. Equation (1.17)).

Therefore, by recurrence, the final output y⃗Λ,i after all the Λ stacked Trans-

former sublayers for a given input w⃗i + p⃗(i )+ s⃗egi can be written as:

y⃗Λ,i = ⃗̃yΛ,i +
(

Λ⊙
λ=1

γλ

)
¯

(
Λ∏

λ=1

1

σλ
i

)
× s⃗egi (6.5)

This rewriting trick shows that segment encodings are partially preserved in

the output. All embeddings within a sentence contain a shift in a specific di-

rection, determined only by the initial segment encoding and the learned gain

parameters for layer normalization. In Figure 6.3, we illustrate what this system-

atic shift might entail. Prior to the application of the segment encoding bias, the

semantic space is structured by similarity (‘pooch’ is near ‘dog’); with the bias,

we find a different set of characteristics: in our toy example, tokens are linearly
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separable by sentences.

The presence of a trace imputable to segment encodings questions the nature

of the vector space described by BERT. If BERT properly describes a purely se-

mantic vector space, we should overall observe no significant difference in token

encoding imputable to the segment the token belongs to.

Experimental protocol

This is a testable proposition: we can verify whether the BERT vector space is

shaped by non-semantic factors. For a given word type w , we may constitute

two groups: wsegA , the set of tokens for this type w belonging to first sentences

in the inputs, and wsegB , the set of tokens of w belonging to second sentences. If

BERT counterbalances the segment encodings, random differences should cancel

out, and therefore the mean of all tokens wsegA should be equivalent to the mean

of all tokens wsegB .

We used the same dataset and BERT model as in Section 6.1.1. This setting

(where all paired input sentences are drawn from running text) allows us to focus

on the effects of the segment encodings. We retrieved the output embeddings of

the last BERT layer and grouped them per word type.

To assess the consistency of a group of embeddings with respect to a pur-

ported reference, we used a mean of squared error (MSE): given a group of em-

beddings E and a reference vector r⃗ , we computed how much each vector in E

strayed from the reference r⃗ . It is formally defined as:

MSE(E , r⃗ ) = 1

#E

∑
v⃗∈E

∑
d

(v⃗d − r⃗d )2 (6.6)
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This MSE can also be understood as the average squared distance to the reference

r⃗ . When r⃗ =µE , i.e. r⃗ is set to be the average vector in E , the MSE measures vari-

ance of E via Euclidean distance. We then used the MSE function to construct

pairs of observations: for each word type w , and for each segment encoding

segi , we computed two scores. The first, MSE(wsegi ,µsegi ) gives us an assess-

ment of how coherent the set of embeddings wsegi is with respect to the mean

vector in that set, µseg j . The second, MSE(wsegi ,µseg j ) assesses how coherent

the same group of embeddings is with respect to µseg j , the mean vector for the

embeddings of the same type, but from the other segment seg j . If no significant

contrast between these two scores can be observed, then BERT counterbalances

the segment encodings and is coherent across sentences.

Figure 6.4: Log-scaled MSE per reference

Results & discussion

We compared results using a paired Student’s t-test, which highlighted a signif-

icant difference based on which segment types belonged to (p-value < 2 ·2−16);
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the effect size (Cohen’s d = −0.527) was found to be stronger than what we

computed when assessing whether tokens cluster according to their types (cf.

Section 6.1.1). A visual representation of these results, log-scaled, is shown in

Figure 6.4. For all sets wsegi , the average embedding from the set itself was sys-

tematically a better fit than the average embedding from the paired set wseg j . We

also noted that a small number of items yielded a disproportionate difference in

MSE scores and that frequent word types had smaller differences in MSE scores:

roughly speaking, very frequent items—punctuation signs, stop-words, frequent

word suffixes—received embeddings that are almost coherent across sentences.

Although the observed positional effect of embeddings’ inconsistency might

be entirely due to segment encodings, additional factors might be at play. In par-

ticular, BERT uses absolute positional encoding vectors to order words within a

sequence: the first word w1 is marked with the positional encoding p(1), the sec-

ond word w2 with p(2), and so on until the last word, wn , marked with p(n). As

these positional encodings are added to the word embeddings, the same remark

made earlier on the impact of residual connections may apply to these positional

encodings as well. Lastly, we also note that many downstream applications use

a single segment encoding per input, and thus sidestep the caveat stressed here.

6.1.3 Sentence-level structure

We have seen in Section 6.1.2 that BERT assigns to the same word type some-

what different representations for token occurrences in even and odd sentences.

However, comparing tokens of the same type in consecutive sentences is not

necessarily the main application of BERT and related models.
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Does the segment-based representational variance affect the structure of the

semantic space, instantiated in similarities between tokens of different types?

Here we investigate how segment encodings impact the relation between any

two tokens in a given sentence: our expectation for a semantic space is that

segment encodings should not impact semantic similarity metrics.

Experimental protocol

Consistent with previous experiments, we used the same BERT model and dataset

(cf. Section 6.1.1); in this experiment also mitigating the impact of the NSP ob-

jective was crucial. Sentences were thus passed two by two as input to the BERT

model. As cosine has been traditionally used to quantify semantic similarity be-

tween words (Mikolov, Yih, et al., 2013; Levy and Goldberg, 2014a, e.g.), we then

computed pairwise cosine of the tokens in each sentence. This allows us to re-

frame our assessment of whether lexical contrasts are coherent across sentences

as a comparison of semantic dissimilarity across sentences. More formally, we

compute the following set of cosine scores CS for each sentence S:

CS = {cos(v⃗ , u⃗) | v⃗ 6= u⃗ ∧ v⃗ , u⃗ ∈ ES} (6.7)

with ES the set of embeddings for the sentence S. In this analysis, we compare

the union of all sets of cosine scores for first sentences against the union of all

sets of cosine scores for second sentences. To avoid asymmetry, we remove the

[CLS] token (only present in first sentences), and as with previous experiments

we neutralize the effects of the NSP objective by using only consecutive sentences

as input.
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Figure 6.5: Mann–Whitney U tests, 1st vs. 2nd sentences

Results & discussion

We compared cosine scores for first and second sentences using a Mann–Whitney

U test. We observed a significant effect, however small (Cohen’s d = 0.011). This

may perhaps be due to data idiosyncrasies, and indeed when comparing with a

word2vec (Mikolov, K. Chen, et al., 2013) trained on BookCorpus (Zhu et al.,

2015) using the same tokenization as BERT, we do observe a significant effect

(p < 0.05). However the effect size is six times smaller (d = 0.002) than what

we found for BERT representations; moreover, when varying the sample size

(cf. Figure 6.5), p-values for BERT representations drop much faster to statistical

significance.

A possible reason for the larger discrepancy observed in BERT representa-

tions might be that BERT uses absolute positional encodings, i.e. the kth word of

the input is encoded with p(k). Therefore, although all first sentences of a given

length l will be indexed with the same set of positional encodings {p(1), . . . , p(l )},
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only second sentences of a given length l preceded by first sentences of a given

length j share the exact same set of positional encodings {p( j +1), . . . , p( j + l )}.

As highlighted previously, the residual connections ensure that the segment en-

codings were partially preserved in the output embedding: the same argument

can be made for positional encodings. In any event, the fact is that we do ob-

serve on BERT representations an effect of segment on sentence-level structure.

This effect is greater than one can blame on data idiosyncrasies, as verified by

the comparison with a traditional DSM such as word2vec. If we are to consider

BERT as a DSM, we must do so at the cost of cross-sentence coherence.

The analysis above suggests that embeddings for tokens drawn from first sen-

tences live in a different semantic space than tokens drawn from second sen-

tences, i.e. that BERT contains two DSMs rather than one. In the hypothetical

case that BERT is a “two in one” DSM, the comparison between the two sentence

representations that we can derive from a single input would be meaningless, or

at least less coherent than the comparison of two sentence representations drawn

from the same sentence position. To test this conjecture, we use two composi-

tional semantics benchmarks: STS (Cer, Diab, et al., 2017) and SICK (Marelli et

al., 2014). These datasets are structured as triplets, grouping a pair of sentences

with a human-annotated relatedness score. The original presentation of BERT

(Devlin et al., 2019) did include a downstream application to these datasets, but

employed a learned classifier, which obfuscates results (Wieting and Kiela, 2019;

Cover, 1965; Hewitt and Liang, 2019). Hence we simply reduce the sequence of

tokens within each sentence into a single vector by summing them, a simplis-

tic yet robust semantic composition method. We then compute the Spearman

correlation between the cosines of the two sum vectors and the sentence pair’s
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Model STS cor. SICK-R cor.

Skip-Thought 0.25560 0.48762
USE 0.66686 0.68997
InferSent 0.67646 0.70903

BERT, 2 sent. ipt. 0.35913 0.36992
BERT, 1 sent. ipt. 0.48241 0.58695
word2vec 0.37017 0.53356

Table 6.1: Correlation (Spearman ρ) of cosine similarity and relatedness ratings
on the STS and SICK-R benchmarks

relatedness score. We compare two setups: a “two sentences input” scheme (or 2

sent. ipt. for short)—where we use the sequences of vectors obtained by passing

the two sentences as a single input—and a “one sentence input” scheme (1 sent.

ipt.)—using two distinct inputs of a single sentence each.

Results are reported in Table 6.1; we also provide comparisons with three dif-

ferent sentence encoders and the aforementioned word2vec model. As we had

suspected, using sum vectors drawn from a two sentence input scheme degrades

performances below the word2vec baseline. On the other hand, a one sentence

input scheme seems to produce coherent sentence representations: in that sce-

nario, BERT performs better than word2vec and the older sentence encoder Skip-

Thought (Kiros et al., 2015), but worse than the modern USE (Cer, Y. Yang, et al.,

2018) and Infersent (Conneau et al., 2017). The comparison with word2vec also

shows that BERT representations over a coherent input are more likely to include

some form of compositional knowledge than traditional DSMs; however it is dif-

ficult to decide whether some true form of compositionality is achieved by BERT

or whether these performances are entirely a by-product of the positional encod-

ings. In favor of the former, other research has suggested that Transformer-based
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architectures perform syntactic operations (Raganato and Tiedemann, 2018; He-

witt and Manning, 2019; Clark, Khandelwal, et al., 2019; Jawahar et al., 2019;

Voita et al., 2019; Michel et al., 2019). In all, these results suggest that the se-

mantic space of token representations from second sentences differ from that of

embeddings from first sentences.

6.2 The Linear Structure of Transformers

Our experiments in Sections 6.1.2 and 6.1.3 have demonstrated that the vector

space of BERT is shaped, among other things, by the segment encodings used

to solve its NSP objective. Crucially, the reasoning that we have applied to first

formulate our intuition in Section 6.1.2 is based on features of the Transformer

architecture—namely, in that BERT, as a Transformer, contains residual connec-

tions and LayerNorms at each sublayer, thus preserving inputs and intermediary

representations in its outputs. We now focus on whether the intuition we had for

segment encodings can be generalized to more broadly characterize Transformer

embedding.

6.2.1 Mathematical re-framing

If we follow the logic we developed in Section 6.1.2 of tracking how inputs prop-

agate throughout the network, we can show that the Transformer embedding et

for a token t is as a sum of four terms:

e⃗t = I⃗t + F⃗t + H⃗t + C⃗t (6.8)
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where I⃗t is proportional to the input i⃗pt0,t , F⃗t and H⃗t are the cumulative contri-

butions of the feed-forward sub-modules and the attention heads respectively,

and C⃗t is a bias term applying to all positions t . We will review how to derive

these terms from the definition of a Transformer architecture (cf. Section 1.2.2)

in Section 6.2.2, and focus for now on characterizing each of the four terms in

more details.

I⃗t corresponds to the input embedding (i.e., the positional encoding, the in-

put word-type embedding, and the segment encoding in BERT-like models), after

having gone through all the LayerNorm gains γλ for each of the Λ stacked sub-

layers, and re-scaling by the inverse of the standard deviations σλ:

I⃗t =

Λ⊙
λ
γλ

Λ∏
λ
σλ

¯ i⃗pt0,t (6.9)

This first term is very reminiscent of the segment encoding bias we noted earlier

in Equation (6.5): the main difference is that we consider all the linear biases

inherited from the input vectors rather than specifically focus on the segment

encoding bias.

The term F⃗t is the sum of the outputs of the feed-forward sub-modules for

all L layers. sub-modules in lower layers have to pass through the LayerNorm of

all the layers above, which gives:

F⃗t =
L∑
l

Λ⊙
λ=2l

γλ

Λ∏
λ=2l

σλ

¯F⃗l ,t (6.10)
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where F⃗l ,t =W Fl
O ·

(
Φ

(
W Fl

I · i⃗ptFl ,t +bFl
I

))
is the unbiased output at the position

t of the feed-forward sub-module for this layer l .

H⃗t corresponds to the sum across layers of each multi-head attention sub-

module, having passed through the relevant LayerNorms. As multi-head atten-

tions are entirely linear, we can further describe each output as a sum over all

h heads of a weighted bag-of-words of the input representations to that sub-

module. Or formally:

H⃗t =
L∑
l


Λ⊙

λ=2l−1
γλ

Λ∏
λ=2l−1

σλ

¯∑
hl

∑
t ′

ahl
t ′ Zhl (i⃗ptl ,t ′)

 (6.11)

where ahl
t ′ corresponds to the attention weights assigned to position t ′ by the

attention head hl . The transformation Zhl =W Hl
O ·M h ·W h,l

V corresponds to pass-

ing an input embedding through the unbiased values projection W h,l
V of the head

h, then projecting it from a dv -dimensional subspace onto a dv ×h-dimensional

space using a zero-padded identity matrix:

M h =
[

0dv ,(h−1)×dv Idv 0dv ,(H−h)×dv

]

and finally passing it through the unbiased outer projection W Hl
O of the relevant

MHA sub-module.

In the last term C⃗t , we collect all the biases:

C⃗t =
Λ∑
λ


Λ⊙

λ′=λ+1
γλ′

Λ∏
λ′=λ+1

σλ′

¯βλ−

Λ⊙
λ′=λ

γλ′

Λ∏
λ′=λ

σλ′

¯ µ⃗λ
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+
L∑
l

Λ⊙
λ=2l−1

γλ

Λ∏
λ=2l−1

σλ

¯
(

bHl
O +W Hl

O ·⊕
hl

bh,l
V

)

+
L∑
l

Λ⊙
λ=2l

γλ

Λ∏
λ=2l

σλ

¯
(
bFl

O

)
(6.12)

This term C⃗t includes the biases βλ and mean-shifts µ⃗λ of the LayerNorms, the

output biases of the feed-forward sub-modules bF
l , the outer projection bias in

each multi-head attention sub-module bW O
l

, as well as those from the value pro-

jections in each head, after having passed through the outer projection W O
l ·⊕

hl

bWV
h,l .1

This derivation can be extended to account for multiple Transformer vari-

ants. For instance, in the case of relative positional embeddings applied to value

projections (P. Shaw et al., 2018), it is rather straightforward to follow the same

logic so as to include relative positional offset in the most appropriate term.

Remark that Equation (6.8) does not entail that the terms are independent

from one another. For instance, the scaling factor 1/
∏
σλ systematically depends

on the magnitude of earlier hidden representations. Neither do we analyze feed-

forward outputs, which are derived from previous representations—in fact, the

non-linear function Φ they contain prevents us from using basic linear algebra

to study them. Another noteworthy case concerns the H⃗ term, where we rely on

the input of the previous layer. While we could decompose the input according

to individual modules, in practice we did not find a computationally tractable

1In general, concatenation is equivalent to a sum of zero-padded identity matrices, hence this
last term is equivalent to

∑
h M hbWV

h,l , with M h as we described for Equation (6.11).
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way of doing so. We leave this question for future study. In all, Equation (6.8)

only stresses that a Transformer embedding can be decomposed as a sum of the

outputs of its sub-modules: it does not fully disentangle computations done in

separate sub-modules.

Nonetheless, we can draw connections between the derivation we provide in

Equation (6.8) and a wide range of previous studies setting out to explain how

Transformers behave (Rogers, Kovaleva, et al., 2020). For instance, the I⃗t term

also provides a principled way of comparing static and contextual embeddings

(Lenci et al., 2021). Likewise, works that employ probes to unearth a linear struc-

ture corresponding to the syntactic structure of the input sentence (Raganato and

Tiedemann, 2018; Hewitt and Manning, 2019, a.o.) can be construed as relying

on the explicit linear dependence across tokens through the H⃗t term. Also rele-

vant is the study on sparsifying Transformer representations of Yun et al. (2021):

the linearly dependent nature of Transformer embeddings has some implications

when it comes to dictionary coding. Likewise, our approach can provide some

quantitative argument for the validity of attention-based studies (Serrano and

Smith, 2019; Jain and Wallace, 2019; Wiegreffe and Pinter, 2019; Pruthi et al.,

2020), and naturally expands on earlier work attempt to go beyond attention

weight overviews (Kobayashi et al., 2020).

6.2.2 Step-by-step derivation of Equation (6.8)

Given that a Transformer layer consists of a stack of L layers, with each layer

being comprised of two sublayers, we can treat a Transformer as a stack ofΛ= 2L

sublayers. For simplicity of notation, we link the sublayer index λ to the layer
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index l , by noting that the first sublayer of layer l is the 2l −1-th sublayer, and

the second is the 2l th sublayer.2

Consider that each sublayer includes a residual connection before the final

LayerNorm:

y⃗ = γλ¯
(S (⃗x)+ x⃗)− µ⃗λ

σλ
+βλ

For simplicity, let:

Tλ(v⃗) = γλ¯
(

1

σλ
× v⃗

)
Note that this normalization transformation T is distributive over vector addi-

tion. We can rewrite a sublayer as:

y⃗ = Tλ

(
Sλ (⃗x)+ x⃗ − µ⃗λ

)+βλ

= Tλ (Sλ (⃗x))+Tλ (⃗x)−Tλ

(
µ⃗λ

)+βλ

We can then consider what happens to this additive structure in the next sub-

layer. Likewise, let Tλ+1(v⃗) = γλ+1 ¯
(

1
σλ+1

× v⃗
)

be the normalization transfor-

mation associated to the next sublayer. If we consider the effects of combining

multiple normalizations, we remark that:

Tλ ◦Tλ+1(v⃗) = γλ+1 ¯γλ¯
(

1

σλ
× 1

σλ+1
× v⃗

)

=

λ+1⊙
λ′=λ

γλ′

λ+1∏
λ′=λ

σλ′

¯ (v⃗)

2In the case of BERT, we also need to include a LayerNorm before the first layer, which is
straightforward if we index it as λ= 0.
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The latter expression generalizes to any sequence of normalization transforma-

tions Tλ...λ+n = Tλ◦· · ·◦Tλ+n . Assume for simplicity that the normalization trans-

formation that covers no sublayer Tλ+1...λ is a simple identity function, i.e., we

take that Tλ+2...λ+1(w) = w .

Let us now consider passing the input x⃗ through a complete layer, i.e., through

sublayers λ and λ+1:

y⃗ =Tλ+1
(
Sλ+1

[
Tλ (Sλ (⃗x))+Tλ (⃗x)−Tλ

(
µ⃗λ

)+βλ

])
+Tλ+1

(
Tλ (Sλ (⃗x))+Tλ (⃗x)−Tλ

(
µ⃗λ

)+βλ

)
−Tλ+1(µ⃗λ+1)+βλ+1

As we are interested in the combined effects of a layer, Sλ is a multi-head

attention mechanism and Sλ+1 a feed-forward.

For ease of consultation, we include here our earlier definition of the feed-

forward outputs as:

y⃗ =W F
O ·

(
Φ

(
W F

I · x⃗ +bF
I

))
+bF

O

= F⃗t +bF
O

By substituting the actual sublayer functions in our previous equation:

y⃗ =Tλ+1

(
F⃗l +bFl

O

)
+Tλ+1

(
Tλ

(
H⃗ l +bH l

)
+Tλ (⃗x)−Tλ

(
µ⃗λ

)+βλ

)
−Tλ+1(µ⃗λ+1)+βλ+1
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This can be rewritten to match more closely Equation (6.8) by delineating

input, multi-head attention, feed-forward and normalization terms:

y⃗ =⃗i + h⃗ + f⃗ + c⃗

i⃗ =Tλ...λ+1(⃗x)

h⃗ =Tλ...λ+1(H⃗ l )

f⃗ =Tλ+1

(
F⃗l

)
c⃗ =Tλ...λ+1(bH l )+Tλ+1

(
bFl

O

)
+

λ+1∑
λ′=λ

(
Tλ′+1...λ+1(βλ′)−Tλ′...λ+1(µ⃗λ′)

)

To express the output of an entire Transformer model, we then need to pass

the input across multiple layers. We substitute x⃗ in our previous equation with

the output of the previous layer:

y⃗l+1 =⃗il+1 + h⃗l+1 + f⃗l+1 + c⃗l+1

i⃗l+1 =Tλ+2...λ+3

(⃗
il + h⃗l + f⃗l + c⃗l

)
h⃗l+1 =Tλ+2...λ+3

(
H⃗ l+1

)
f⃗l+1 =Tλ+3

(
F⃗l+1

)
c⃗l+1 =Tλ+2...λ+3(bH l+1 )+Tλ+3

(
bFl+1

O

)
+

λ+3∑
λ′=λ+2

(
Tλ′+1...λ+3(βλ′)−Tλ′...λ+3(µ⃗λ′)

)

Which we can rearrange to match Equation (6.8):

y⃗l+1 =I⃗ + H⃗ + F⃗ + C⃗
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I⃗ =Tλ...λ+3 (⃗x)

H⃗ =Tλ+2...λ+3

(
H⃗ l+1

)
+Tλ...λ+3

(
H⃗ l

)
F⃗ =Tλ+3

(
F⃗l+1

)
+Tλ+1...λ+3

(
F⃗l

)
C⃗ =Tλ+2...λ+3(bH l+1 )+Tλ...λ+3(bH l )

+Tλ+3

(
bFl+1

O

)
+Tλ+1...λ+3

(
bFl

O

)
+

λ+3∑
λ′=λ

(
Tλ′+1...λ+3(βλ′)−Tλ′...λ+3(µ⃗λ′)

)

As such, we can simplify the H⃗ , F⃗ and C⃗ terms as:

H⃗ =
l+1∑
l ′=l

T2l ′−1...2(l+1)

(
H⃗ l

)
F⃗ =

l+1∑
l ′=l

T2l ′...2(l+1)

(
F⃗l

)
C⃗ =

l+1∑
l ′=l

T2l ′−1...2(l+1)
(
bH l

)+ l+1∑
l ′=l

T2l ′...2(l+1)

(
bFl

O

)
+

λ+3∑
λ′=λ

(
Tλ′+1...λ+3(βλ′)−Tλ′...λ+3(µ⃗λ′)

)

This logic carries on across layers: adding one new layer corresponds to (i) map-

ping the existing term through the two new sublayers normalization transforma-

tions, (ii) adding a new term for the multi-head attention, (iii) adding a new term

for the feed-forward, (iv) tallying up the biases and mean centering introduced in

the current layer. Hence, by recurrence over all layers and providing the initial

input i⃗pt0,t , we obtain Equations (6.8) to (6.12) exactly.
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6.3 Intrinsic analyses

We now focus on a quantitative description of the decomposition we described

in Equation (6.8). We begin with an overview of the interplay between the four

terms in Section 6.3.1 and then turn to quantifying the degree of non-linearity

present in the BERT model Section 6.3.2.

6.3.1 Visualizing the contents of embeddings

We have shown that Transformer embeddings have a highly linear structure.

Given that Equations (6.9) to (6.12) are all defined as sums across layers or sub-

layers, it is straightforward to adapt them to derive the decomposition at each

intermediate representation. One question we might be interested in asking is

that of the relative importance of the four terms I⃗t , F⃗t , H⃗t and C⃗t .

Experimental protocol

Typically, we are looking for some metric able to compare one of the terms T⃗t

to the total e⃗t . Ideally, we would want this metric to capture whether T⃗t and e⃗t

have roughly the same orientation, as well as whether T⃗t is a major component

of e⃗t . In other words, we need a metric sensitive to co-directionality and relative

magnitude.

A normalized dot-product of the form:

m (⃗et , T⃗t ) = 〈⃗et · T⃗t 〉
‖⃗et‖2

2

(6.13)

satisfies both of these requirements. Moreover, given that dot products dis-
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tributes over addition (i.e., 〈a ·∑i bi 〉 =∑
i 〈a ·bi 〉), and that the dot-product of a

vector with itself is its magnitude squared (i.e., 〈a ·a〉 = ‖a‖2
2), we get that sum-

ming over all four terms equals one:

m (⃗et , I⃗t )+m (⃗et , F⃗t )+m (⃗et , H⃗t )+m (⃗et ,C⃗t ) = 1

Hence this metric intuitively measures the importance of a term relative to the

total sum.

Following what we observed in Sections 6.1.2 and 6.1.3, we provide only a

single sentence per input to avoid any obvious confounding factors—both in this

experiment and any subsequent one. We contrast embeddings from three related

models: the BERT base uncased model of Devlin et al. (2019) and fine-tuned vari-

ants on CONLL 2003 NER (Tjong Kim Sang and De Meulder, 2003)3 and SQuAD

v2 (Rajpurkar et al., 2018).4 Our reason to depart from the model used in previous

experiments lies in that the code used to compute the derivation in Equation (6.8)

has yet to be optimized, and using a smaller model has the practical benefit of

speeding up our computations significantly. Unlike the previous experiments,

we randomly sample 10 000 sentences from the EuroParl English section (Koehn,

2005) which corresponds to almost 900 000 word-piece tokens. This different

dataset was selected to ensure that all three models of interest would be tested

on comparable conditions—viz., on an out-of-domain setting.

3https://huggingface.co/dslim/bert-base-NER-uncased
4https://huggingface.co/twmkn9/bert-base-uncased-squad2

https://huggingface.co/dslim/bert-base-NER-uncased
https://huggingface.co/twmkn9/bert-base-uncased-squad2
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Results

Figure 6.6 summarizes the relative importance of the four terms of Equation (6.8),

as measured by the normalized dot-product defined in Equation (6.13); ticks on

the x-axis correspond to different layers. Figures 6.6a to 6.6c display the evolu-

tion of our proportion metric across layers for all three BERT models, whereas

Figures 6.6d to 6.6f display how our normalized dot-product measurements cor-

relate across pairs of models, using Spearman’s ρ. 5

Looking at Figure 6.6a, we can make a few important observations. The input

term I⃗t , which corresponds to a static embedding, initially dominates the full

output, but quickly decreases in prominence, until it reaches 0.045 at the last

layer. This should explain why lower layers of Transformers generally give better

performances on static word-type tasks (Jawahar et al., 2019; Vulić et al., 2020,

a.o.).

Interestingly, the constant term C⃗t is far from negligible: at layer 11, it is

actually the most prominent term of the four and defines 23% of the output em-

bedding. Note that C⃗t defines a set of offsets embedded in a 2Λ-dimensional hy-

perplane. In fact, we can re-write Equation (6.12) to highlight that is comprised

only of scalar multiplications applied to constant vectors. Let:

bS
λ =


(

bHl
O +W Hl

O ·⊕
hl

bh,l
V

)
if λ= 2l −1

bFl
O if λ= 2l

m⃗λ =
Λ⊙

λ′=λ+1

γλ′ ¯ (βλ+bS
λ)

5Layer 0 is the layer normalization conducted before the first sublayer, hence F⃗t and H⃗t are
undefined here.
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n⃗λ =
Λ⊙

λ′=λ+1

γλ′ ¯ 1⃗

If there is a LayerNorm before the first layer (e.g. BERT), let bS
0 = 0⃗. Then Equa-

tion (6.12) is equivalent to:

C⃗t =
Λ∑
λ

 1
Λ∏

λ′=λ+1
σλ′

·m⃗λ

+
Λ∑
λ

 −µλ

Λ∏
λ′=λ+1

σλ′

· n⃗λ


Note that the vectors m⃗λ and n⃗λ are all constant for any input and position. As-

suming they are all independent puts an upper bound of 2Λ independent vectors

necessary to express any C⃗t vector. Moving back to our concrete example of

BERT base, 23% of the output can be expressed using a 2Λ= 50 dimensional vec-

tor,6 or 6.5% of the 768 explicit dimensions of the model. As such, it is very likely

that this term induces part of the anisotropy often attributed to Transformer em-

beddings (Ethayarajh, 2019; Timkey and Schijndel, 2021, e.g.).

The H⃗t term, which corresponds to the multi-head attention sub-modules,

is not as prominent as one could expect from the vast literature that focuses on

it. Its normalized dot-product is barely above what we observe for the constant

term C⃗t , and never averages above 0.3 across any layer. This can be partly pinned

down on the prominence of the feed-forward term F⃗t , which yields a normalized

dot-product of 0.4 or above across most layers. Given that the feed-forward sub-

modules are always the last component added to each hidden state, we can see

that the sub-terms of F⃗t went through fewer LayerNorms, as compared to the

6Recall that BERT base contains 12 layers containing 2 sublayers each plus an initial Layer-
Norm applied before the first layer, for a totoal of Λ= 25 LayerNorms to consider.
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sub-terms of H⃗t . As a consequence, the sub-terms of F⃗t also underwent fewer

scalar multiplications which likely affects their magnitude.

If we now turn to the finetuned models (Figures 6.6b and 6.6c), we find that

they impart a much lower proportion of the contextual embeddings to the I⃗t

and C⃗t terms. While the F⃗t term seems to dominate in the final embedding,

looking at the correlations in Figures 6.6d and 6.6e suggest that the H⃗t terms are

those that undergo the most modifications. Proportions assigned to the terms

correlate with those assigned in the non-finetuned model more in the case of

lower layers than higher layers (Figures 6.6d and 6.6e). The required adaptations

seem task-specific as the two fine-tuned models do not correlate highly with

each other (Figure 6.6f). Lastly, updates in the NER model impact mostly layer

8 and upwards (Figure 6.6d), whereas the QA model (Figure 6.6e) sees important

modifications to the H⃗t term at the first layer, suggesting that SQuAD requires

more drastic adaptations than CONLL 2003.

6.3.2 Quantifying non-linearity

Figure 6.6a show the quantitative importance of F⃗t to the final embedding. The

intuitive reasoning for adding the feed-forward terms is that the model would

otherwise devolve into a sum of bag-of-words and static embeddings. While

both approaches have had their successes in the NLP literature (Mikolov, Yih,

et al., 2013; Mitchell and Lapata, 2010), adding a non-linearity would in principle

make the model more expressive. Non-linearity moreover enables the model to

capture interactions between static input and context, which we have thus far

quantified indirectly.
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As the non-linear functions used in Transformers are generally either ReLU

or GELU, which both behave almost linearly for a high enough input value, it

is in principle possible that the feed-forward sub-modules can be approximated

by a purely linear transformation, depending on the exact set of parameters they

converged onto.

0 1 2 3 4 5 6 7 8 9 10 11 12

0.4

0.5

0.6

0.7

Layer

r2

Figure 6.7: Fitting the F⃗ t term: r 2 across layers

To assess this possibility, we learn a simple least-square linear regression

mapping the z-scaled inputs of every feed-forward sub-module to its respective

z-scaled output. We use the bert-base-uncased model and the random sample

from EuroParl from Section 6.3.1, and fit the regressions using all the 900 000

embeddings at our disposal. Figure 6.7 displays the quality of these linear ap-

proximations, as measured by a r 2 score. While we do see some variation across

layers, we do not observe a perfect fit, suggesting the non-linearity is actively

exploited by BERT.
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6.4 Extrinsic analyses

We have provided quantitative description of the importance of the four terms

delineated in Section 6.2. This previous analysis of our suggested decomposition

was essentially intrinsic in nature, in that it only considered the embeddings

themselves. It is however useful to look into what this decomposition of four

terms may entail for downstream applications, which is why we now pivot to an

extrinsic analysis.

6.4.1 The MLM objective

In Section 6.3.2, we saw that the F⃗t term could not be simply explained as a linear

combinations of the correspond sub-module inputs. An interesting follow-up

question concerns how that non-linearity is exploited by the model: does this

non-linear F⃗t make the model more effective? More generally, it makes sense to

see how the four terms allows us to retrieve the target word-piece.

Experimental protocol

We consider two approaches: either using the actual projection learned by the

non-finetuned BERT model, or by learning a simple categorical regression for a

specific term. To test the model, we use our EuroParl sample, and select 15% of the

word-pieces at random; as in the original work of Devlin et al. (2019), 80% of the

sampled word-pieces are replaced by a mask token, 10% are replaced by a random

word-piece, and 10% are left as is; we split embeddings in three groups (80% for

train, 10% for validation, 10% for test). When learning categorical regressions
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from scratch, we use an AdamW optimizer (Loshchilov and Hutter, 2019) and

iterate 20 times over the train set; hyperparameters (learning rate, weight decay,

dropout, and the β1 and β2 AdamW hyperparameters) are set using Bayesian

Optimization, with 50 hyperparameter samples and accuracy as objective.

Results

Results are displayed in Table 6.2. In the first row (“def.”) we derive predictions

using the default output projection from the original matrix, whereas the second

(“lrn.”) corresponds to our learned projections. Columns display the results of

using the sum of 1, 2, 3 or 4 of the terms I⃗t , H⃗t , F⃗t and C⃗t to derive vector

representations. On the one hand, the default projection benefits from a more

extensive training: when using all four terms, the default projection is almost

2% more accurate than learning one from scratch. On the other hand learning

a regression allows us to consider more specifically what can be retrieved from

individual terms, as is apparent when comparing the behavior of the F⃗t in the

two setups: when using the default output projection, we get 1.36% accuracy,

whereas learning a specific categorical regression yields 53.92%.

The default projection matrix is also highly dependent on the normalization

offsets C⃗t and the feed-forward terms F⃗t being added together: removing this C⃗t

term from any experiment using F⃗t is highly detrimental to the accuracy. On the

other hand, combining the two produces the highest accuracy scores. Our logis-

tic regressions show that most of this performance can be imputed to the F⃗t term.

Learning a projection from the F⃗t term already yields an accuracy of almost 54%.

On the other hand, a regression learned from C⃗t only has a limited accuracy has

a limited performance of 9.24%. Interestingly, this is still above what one would
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observe if the model always predicted the most frequent word-piece (viz. the,

corresponding to 6% of the test targets), suggesting that even these very seman-

tically bare items can be exploited by a categorical regression. As C⃗t variations

are tied to the z-scaling performed in the LayerNorms, this would suggest that

the magnitude of Transformer representations are not entirely meaningless, we

leave a more in-depth investigation to future research.

In all, do feed-forward modules make the model more effective? The F⃗t term

is necessary to achieve the highest accuracy on the training objective of BERT.

On its own, it doesn’t achieve the highest performances: for that we also need

to add the multi-head attention outputs H⃗t . However, the performances we can

associate to F⃗t on its own are higher than what we observe for H⃗t , suggesting

that the feed-forward sublayers do help in making the Transformer architecture

more effective on the MLM objective.

6.4.2 Lexical contents & WSD

The effectiveness on the training objective is however not necessarily linked to

the utility of the term on downstream applications. We first look at how the

vector spaces are organized, and which term describes the most linguistically

appropriate vector space. Here, we turn to WSD, as it is fair to expect that distinct

senses should correspond to different vector representations.

Experimental protocol

We consider an intrinsic KNN-based setup and an extrinsic probe-based setup.

The former is inspired from (Wiedemann et al., 2019): we assign to a target the
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most common label in its neighborhood. We restrict neighborhoods to words

with the same annotated lemma and use the k = 5 nearest neighbors (using cosine

distance). The latter is a 2-layer MLP similar to Du et al. (2019), where the first

layer is shared for all items and the second layer is lemma-specific.

We use the NLTK SemCor dataset (Landes et al., 1998; Bird et al., 2009), with

an 80%–10%–10% split between train, development and test. We ignore targets

with monosemous or OOV lemmas. We sum over word-pieces to convert them

into single word vector representations. Learning rate, dropout, weight decay, β1

and β2, learning rate scheduling are selected with Bayesian Optimization, using

100 random configuration samples and accuracy as objective.

Results

Results are shown in Table 6.3, we report results using accuracy. For reference,

selecting the most frequent sense would yield an accuracy of 57%, whereas pick-

ing a sense at random would yield an accuracy of 24%. The input terms I⃗t and the

offsets C⃗t struggle to outperform the most frequent sense baseline: the relevant

KNN accuracy scores are lower, whereas the corresponding classifier accuracy

scores are barely above.

Overall the same picture emerges from the intrinsic and extrinsic setups. The

F⃗t term does not yield the highest performances in our experiment, instead, the

H⃗t term systematically dominates. When considering a single term, H⃗t is ranked

first and F⃗t second. When considering sums of two terms, the setups ranked 1st,

2nd, and 3rd are those that include H⃗t ; setups ranked 3rd to 5th, those that in-

clude F⃗t . Even more surprisingly, when summing three of the terms, the highest

ranked setup is the one where we exclude F⃗t , and the lowest ranked setup is
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I⃗t

H⃗t

F⃗t

C⃗t

I⃗t + H⃗t

I⃗t + F⃗t

I⃗t + C⃗t

H⃗t + F⃗t

H⃗t + C⃗t

F⃗t + C⃗t

I⃗t + H⃗t + F⃗t

I⃗t + H⃗t + C⃗t

I⃗t + F⃗t + C⃗t

H⃗t + F⃗t + C⃗t

I⃗t + H⃗t + F⃗t + C⃗t

K
N

N
54.36

64.07
62.45

55.40
64.22

62.22
56.34

63.37
64.40

62.43
63.56

64.44
62.18

64.10
63.94

C
ls.

58.42
66.84

64.46
57.32

66.65
63.88

57.83
65.71

66.95
64.46

65.76
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64.45
65.88

65.99
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the one where we exclude H⃗t . This suggests that the F⃗t term is not necessarily

helpful to the final representation for WSD.

One argument that could be made here would be to posit that the predic-

tions derived from the different sums of terms are intrinsically different, hence

a purely quantitative ranking might not capture this important distinction. To

verify whether this holds, we can look at the proportion of predictions that agree

for any two models. This is summarized in Figure 6.8: an individual cell will de-

tail the proportion of the assigned labels shared by the models for that row and

that column. In short, we see that model predictions tend to a high degree of

overlap. For both KNN and classifier setups, the three models which appear to

make the most distinct predictions turn out to be computed from the I⃗t term,

the C⃗t term or their sum: i.e., the models that struggle to perform better than

the MFS baseline and are derived from static representations. In other words, we

find no strong evidence that the H⃗t and F⃗t produce very different results.

6.4.3 Effects of finetuning & NER

Downstream application can also be achieved through fine-tuning, i.e., restarting

a model’s training to derive better predictions on a narrower task. As we saw

from Figures 6.6b and 6.6c, the modifications brought upon this second round of

training are task specific, meaning that an exhaustive experimental survey is out

of our reach.

We consider the task of Named Entity Recognition, using the WNUT 2016

shared task dataset (Strauss et al., 2016). We contrast the performances of terms

extracted from the non-finetuned BERT model to that of the aforementioned vari-
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ant finetuned on the CONLL 2003 NER dataset. We learn shallow logistic regres-

sions, setting hyperparameters with Bayesian Optimization, using 100 samples

and macro- f1 as the objective.

Results are presented in Table 6.4. Finetuning BERT on another NER dataset

unsurprisingly has a systematic positive impact. More interesting is the impact

this finetuning has on the F⃗t term: when used as sole input, we observe an in-

crease in performance of 10%, and similar improvements are observed consis-

tently across all setups involving F⃗t . The highest performance is reached by

using I⃗t + H⃗t as input (46.96%), and in the base setting the highest performance

is reached by using I⃗t + H⃗t + C⃗t —suggesting that even in this setup, F⃗t might be

superfluous.

We can also look at whether the various classifiers produce different outputs.

Given the high class imbalance of the dataset at hand, we macro-average the pre-

diction overlaps by label. The result is shown in Figure 6.9; Figure 6.9a details

the behavior of the untuned model, whereas Figure 6.9b details that of the NER-

finetuned model. In this round of experiments, we see much more distinctly that

the I⃗t model, the C⃗t model and the I⃗t +C⃗t model behave markedly different from

the rest. Rather surprising here is that I⃗t + H⃗t non-finetuned model also behaves

quite differently from the remaining models; for this we have no convincing ex-

planation. Looking at the NER-finetuned model (Figure 6.9b), we find that aside

from the aforementioned static representations, most predictions display a de-

gree of overlap much higher than what we observe for the non-finetuned model:

both feed-forwards and multi-head attention are skewed towards producing out-

puts more adapted to NER tasks.
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6.5 Conclusions

In this chapter, we have investigated whether the vector space described by

Transformer embeddings in general, and BERT in particular, encodes the prop-

erties we can expect from a vector-space model of meaning. We have used a

diverse array of tools for doing so, from clustering techniques to mathematical

analysis and from quantitative descriptions to classifier probes.

In Section 6.1, we saw that type-level semantics seem to match our general

expectations about DSMs—and yet that focusing on details leaves us with a much

foggier picture. The main issue we identify stems from BERT’s next sentence pre-

diction objective, which requires tokens to be marked according to which sen-

tence they belong. This introduces a distinction between first and second sentence

of the input that runs contrary to our expectations in terms of cross-sentence

coherence. The validity of such a distinction for lexical semantics may be ques-

tioned. Similarly, other works (Lample and Conneau, 2019; Z. Yang et al., 2019;

M. Joshi et al., 2020; Liu et al., 2019) stress that the usefulness and pertinence of

the NSP task were not obvious. While the primary assessment we conducted in

Section 6.1.1 showed that token representations did tend to cluster naturally ac-

cording to their types, a finer study detailed in section Section 6.1.2 highlighted

that tokens from distinct sentence positions (even vs. odd) tend to have different

representations.

This artifact can be seen as a direct consequence of BERT’s architecture:

residual connections, along with the use of specific vectors to encode sentence

position, entail that tokens for a given sentence position are ‘shifted’ with respect

to tokens for the other position. This issue is however only the tip of the iceberg,
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so to speak. As we have shown in Section 6.2, the Transformer architecture it-

self shapes and biases the vector space described by Transformer embeddings.

Transformer embeddings can be decomposed linearly to describe the impact of

each network sub-modules.

As we discussed in Sections 6.2.1 and 6.3.1, we can use this linear structure

to draw connections to a wide array of studies on Transformer behavior, from

anisotropy to their syntactic abilities, and from attention-based studies to varia-

tions of performances across layers. In other words, the derivation we presented

in Section 6.2.1 provides a general explanation of the structure of Transformer

embeddings that is directly relevant to a wide a range of known characteristics

of these embeddings. Simply put, this derivation can be seen as an effective

means of explaining how to exploit Transformer embeddings. This explanation

is purely mechanical in nature: it relates to specific network sub-modules and

does not intuitively mesh with our expectations of a description of the meaning

of a word.

One of the conclusions that we had drawn from our attempt to testing the

distributional hypothesis in Chapter 5 was that DSMs in general, and BERT-like

models in particular, did not seem to properly represent the behavior of human

speakers: in particular, in Section 5.4.3, we saw that DSMs, both static and con-

textual, did not coincide with human behavior any better than n-gram baselines

on a task derived from what we expect of implementations of distributional se-

mantics (Section 5.1). This has casted doubt on their status of implementations

of a lexical semantic theory. The results of the experiments conducted in the

present chapter strengthen this claim even more: vector spaces derived from

Transformer-based models such as BERT bear the very recognizable marks of
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the architecture that engenders them. Overall, there is a discernible gap be-

tween what we expect of a proper implementation of a lexical semantic theory

and what we observe from the vectorization algorithms produced by NLP engi-

neers. The characterization that emerges from an inspection of the Transformer

architecture (Section 6.2) appears to be much more successful at explaining the

behavior of Transformer embeddings than what a theory-driven approach does

yield (Section 5.1). Or, to put it in a provocative manner: word embeddings are

not distributional semantics models.







Conclusions

The keeper stokes the fires of the beacon at the top
Of a tower that drives us all onto the rocks
I thought the water would be quiet I was right
They warned me of the lighthouse but it shines so bright

— Dyscarnate, Nothing Seems Right

Word embeddings, insofar they are practical implementations of distribu-

tional semantics, leave much to be desired.

Distributional semantics is, as we saw in Chapter 1, a very diverse field of

study, which connects to semantics, psycholinguistics, information retrieval and

neural NLP. Even when restricting ourselves to the major works of the last decade,

we find distinct architectures tied to distinct experimental protocols. Even when

focusing very narrowly on a single model, we see that hyperparameters such as

the associated vector space dimension impact the interpretation of the metrics

we have at our disposal. In short, implementations of distributional semantics

are necessarily subject to variation.

Yet, we were able to propose a tentative formalization for this field. In Sec-

tion 5.1, we developed the idea that distributional subtitutablity was a promising
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framework for unifying and formalizing distributional semantics as a consistent

semantic theory. If we adopt a practical point of view, we see that many distri-

butional semantics models can be construed as inference models for the distribu-

tional substitution task. From a theoretical stance, there is a rich connection to

the seminal work of Harris (1954) as well as subsequent theoretical reviews and

development: distributional substitutability is baked in the founding assump-

tions of distributional semantics. Adopting this formalization yields a very in-

tuitive definition of distributional semantics models: a DSM is a model that can

discriminate words based on context.

By explicitly stating the criteria we expect DSMs to conform with, we can

quantify how far off this mark current word embedding models are. On the one

hand, we see that word embeddings achieve some degree of performance on the

distributional substitution task (Section 5.4.2) and, in some circumstances, they

can serve as tools to manipulate the distributional hypothesis (Section 5.4.4). On

the other hand, how they achieve these results does not appear to be in line

with human behavior (Section 5.4.3). Furthermore, we can identify artifacts in

the vector spaces of some of the most popular word embedding models, as we

saw in Chapter 6. These artifacts range from word types not being entirely con-

sistently described in word token models (Section 6.1.1), to biases imputable to

the objective function (Sections 6.1.2 and 6.1.3), and to issues stemming from the

very architecture these neural models employ (Sections 6.2 and 6.3.1).

While we can re-frame the objective functions of word embeddings so as to

coincide with our expectations for distributional semantics models (Section 5.1),

the models they converge to fall short of what we expect of an implementation

of the lexical theory of distributional semantics (Section 5.4.3). This is in essence
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a problem of calibration: the probabilities estimated by word embedding models

do not match with what we observe of human behavior. This reflects a certain

disconnect between the tools at our disposal and the requirements we as linguist

may have: neural networks are built so as to maximize the likelihood of produc-

ing the optimal token with respect to their objective function. The expectations

we have for distributional semantics models are more subtle, in that we want

them to account for degrees of uncertainty. Word embeddings, as they currently

are, cannot be construed as complete, coherent and consistent implementations

of distributional semantics, as they are instead geared towards solving their ob-

jective functions—as appeared obvious when we looked at the effects of finetun-

ing in Section 6.4.3.

This contrasts with what we can observe for dictionary definitions. While

there is quite a variation in the lexical resources we dub “dictionaries,” one can

easily establish a consensual working concept of a dictionary (Section 2.1). This

has led the NLP community to use these resources as ground truth meaning in-

ventories in their applications (Sections 2.3 and 2.4). One question we have not

addressed is whether this trust is in fact warranted: dictionaries do not provide

a clear manner of relating words to real-world objects (Section 2.2), nor do they

explicitly discuss how they establish their inventories of meanings, nor are they

especially handy to study how linguistic context impacts meaning. Lastly, estab-

lishing quantifiable and principled expectations for dictionaries—as we did with

word embeddings—also seems currently outside of our grasp.

These limitations of dictionaries and embeddings explain in part the over-

all low results we observe when we do compare vectors and glosses. Be it by

comparing metric spaces directly, as we did in Chapter 3, or through neural net-
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works as in Chapter 4, our results were overall inconclusive. We also identified

a number of supplementary confounding factors that impact our comparisons

across lexical semantic theories. How to align word types or word tokens to

word senses (Sections 4.1 and 4.2), the quality of embedding representations (Sec-

tions 3.3 and 4.3) and the presence of confounding factors in natural language

(Section 3.2) also weigh on such comparisons.

∗
∗ ∗

Our initial line of inquiry concerned itself with the nature of distributional

semantics as a lexical semantic theory—in the same sense that lexicography can

be understood as an endeavor towards providing the meaning of every item in

the lexicon. The experiments we conducted have given us numerous elements

to develop and answer it. What transpires is that distributional semantics and

lexicography are likely not equivalent lexical semantic theories. Setting aside

whether we can reach any conclusions pertaining to distributional semantics

based solely on observations from word embeddings, we find that confound-

ing factors weigh heavily on the less-than-conclusive comparisons we can make.

This strongly hints at a very distinct underlying concept of meaning: word sense

as is described by distributional vectors appears to be quite different from word

sense as we commonly find it depicted in dictionaries. Perhaps we could find

a more suitable lexical theory to compare word embeddings to—perhaps a true

distributional semantics model would be able to solve the distributional substi-
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tution task as humans would—perhaps the issues we pointed out are merely a

problem of calibrating the model—perhaps solving these issues would then yield

distributional representations rich enough to compare with meaning represen-

tations, be it definitions or other. For now, we lack solid evidence that would

point to these limitations being eventually overcome.

In this dissertation, we have attempted to demonstrate three key facts about

distributional semantics. First, the diversity of studies in distributional seman-

tics do not entail that no formal statements regarding this theory can be made.

Here, we have proposed to use distributional substitutability, but we could more

generally stress that the probability distribution that is explicitly modeled by a

DSM is a very convenient handle for the linguist to grasp. Second, an inherent

difficulty of this framework is that it cannot easily be equated or related to lex-

icography, making its value as an explanatory framework less secure. Our defi-

nition of the goal of a lexical semantic theory was to provide a description of the

meaning of every item in the lexicon. However, that we cannot easily relate dis-

tributional semantics to another lexical semantic theory questions whether the

distributional hypothesis actually provides an alternative account, or whether it

deals with a very distinct set of facts altogether. Third, the gap in quality between

practical implementations of distributional semantics and our expectations nec-

essarily adds on to the confusion. Nonetheless, that we can make quantitative

statements about this gap should be taken as a very encouraging sign for future

research.

The hurdles and limitations we have identified throughout this dissertation

are very much interlinked. The high focus on engineering practical applications

in the field of NLP entails that word embeddings models are discussed and studied
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first and foremost owing to their effectiveness on some set of tasks. Theoretical

considerations that might interest the (computational) linguist come second—if

they at all factor in. Hence the sort of limitations we underscored here should

not surprise us. In short, it seems that what a model can do often matters more

than what it does model. In this dissertation, we have been more concerned with

the latter, and said very little of the former. That is not to say that we do not

believe that nothing of value is to be gained by a more performance-driven ap-

proach; but rather that the discrepancy between NLP and linguistics appears to

us a more salient and pressing question to answer. In the last decades, the NLP

community has shifted from shallow statistical perceptrons and rule-based mod-

els to first fully espousing neural networks and now to committing to a handful of

models pre-trained by a very small number of research groups. In such a context

where datasets shelf-life dwindles and explainable NLP becomes a necessity, it

is important that we in the NLP community do not renege our links to the study

of language.

∗
∗ ∗

An unstated goal of this dissertation was to explore the variety of tools avail-

able to the NLP researcher. We have established baselines using functional alge-

bra (Sections 1.4 and 6.2) and collected human judgments with an online game

(Section 5.3). We have studied metrics of statistical correlation (Chapter 3) and

probing classifiers (Sections 6.4.1 to 6.4.3), neural networks (Sections 4.2 and 4.3)
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and thought experiments (Section 2.2). This dissertation does not claim by any

mean to be an exhaustive review of all the existing means at our disposal to in-

vestigate NLP systems, but we do hope to have illustrated the boons that come

from adopting an approach partly rooted in linguistic concerns.

There are many aspects that we have left untouched. We can name the more

obvious limitations of any NLP research agenda: we have studied a limited num-

ber of languages, have reviewed a limited number of architectures, have used a

limited number of metrics, and so on. An important point to mention here is that

we have adopted definitions as a gold standard against which to compare word

embeddings. This position is at best debatable—few, if any, among the lexicogra-

phy abd cognitive science communities would argue that meaning as it exists in

a speaker’s mind has much to do with dictionary definitions. Other frameworks

such as word association maps or semantic networks might be more immediately

comparable to distributional semantic representations. In all, the argument that

was of this dissertation is perhaps best put as follow: when looking for models

of word meaning, we should take distributional semantics at least as seriously as

dictionary definitions.

Another limitation that is perhaps more central to our argument is that we

have not tackled the question of semantic grounding, but rather introduced it as

a perspective for future research. As we saw in Section 2.2, how to link a word

with the real world object it refers to is a salient problem both in dictionaries

and in word embeddings. Here, word embeddings provide an interesting van-

tage point. Firstly, we can simply focus on the difference between multimodal

representations and text-only embeddings. Another angle of approach consists

in delineating the capacities of text-only models, as we saw in Chapter 5. Con-
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trasting their behavior to human judgments gives us a general idea of how far one

can push a text-only model—from which we can quantify the gap that still needs

to be covered by introducing semantic grounding information. A more complete

overview would require an in-depth study of the performances of multimodal

representations on the dataset we constructed.

Another aspect we have addressed but briefly and yet merits a lengthier in-

vestigation is that of textual metrics. As we saw in Chapters 3 and 4, defining

metrics for textual similarity (between two attested definitions or between a tar-

get and a production) is far from a trivial task. Here we have looked into po-

tential confounding factors and known limitations. One family of metrics which

our results impact is that of embeddings-based metrics, such as the MoverScore

we used in our shared task (Section 4.4). The limited linguistic interpretability of

word embeddings likely entails that such metrics should also induce caution in

the NLP practitioner that seeks explainability and transparency from their sys-

tem. This also we leave for future research.

To summarize what we have argued for in a single word: word embeddings

cannot be viewed as concrete implementations of a well-formalized semantic

framework derived from word distribution. The distributional semantics com-

munity often echoes the famous quote of Firth (1957): “You shall know a word by

the company it keeps”. The train of thoughts we outlined in the present disserta-

tion leads us to question whether the company a word keeps is actually enough

for us to know it.
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Appendices





A

Bayesian Optimization

Please, teacher teacher! Leave us alone
As we accept life lessons from no one

— Jinjer, Teacher, Teacher!

Bayesian Optimization is an optimization algorithm—i.e., an algorithm that

seeks the optimal parameters for some given input function—tailored towards

objective functions that are expensive to compute. It has been applied to se-

lect hyperparameters for neural networks (Snoek et al., 2012), and is therefore

an alternative approach to random search and exhaustive grid search. The pre-

sentation below is based on the tutorial by Frazier (2018), to which we refer the

reader for a more in-depth presentations as well as additional material.

In essence, when selecting hyperparameters with Bayesian Optimization, we

repeat the following sequence of instructions:

1. compute what our prior beliefs are, given the previous hyperparameter

configurations we have sampled and the performances they yielded;
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2. select the next hyperparameter configuration according to our prior be-

liefs;

3. observe the actual performance of this latest configuration, and update our

beliefs accordingly.

More formally, Bayesian Optimization consists in iteratively selecting pa-

rameters that we can expect to improve the current optimal value, using Bayes’

rule. When applied to hyperparameter selection for a neural architecture A , the

function that we will optimize consists in taking some configuration of hyperpa-

rameters H as input, training a model of architecture A with the hyperparam-

eters H , and outputing a scalar value representing the performance reached by

said model. This scalar output value can be the loss of the model on a validation

split or any other metric of its performance. This function to optimize is more

formally called the objective function. Crucially, Bayesian Optimization does not

require the objective function to be differentiable, hence we can use to select the

optimal hyperparameters for any scalar measure of model performance.

Successful applications require having few parameters to set, therefore Bayesian

Optimization is not applicable for a direct estimation of neural network param-

eters. It also assumes that all parameters to set take real values and that the

objective function isn’t noisy—although it is possible to relax both of these as-

sumptions. On the other hand, Bayesian Optimization focuses on finding a global

optimum under a minimum budget of objective function evaluations, which is

why it is appropriate for hyperparameter selection, as training a neural network

can be costly.

An overview of Bayesian Optimization is shown in Algorithm 1. Given the
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Algorithm 1: Bayesian optimization
Data: f , objective function to optimize;

N , total number of samples of f to perform, N > 0;
n, number of samples of f to compute prior, N > n> 0;
I , valid input space for f , I ⊂Rh ;
Acq, an acquisition function.

1 Let Obs ← [ ];
2 while n 6= 0 do
3 Randomly sample x ∼ I ;
4 Append f (x) to Obs;
5 Decrement n and N ;
6 end
7 while N 6= 0 do
8 Construct the posterior distribution D on f using Obs;
9 x∗ ← argmax

x
Acq(x,D,Obs);

10 Append f (x∗) to Obs;
11 Decrement N ;
12 end
13 return optimum value in Obs;
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assumption that all the parameters to set are real scalars, we can consider f as a

function that takes a vector in input and outputs a scalar, that is to say f : Rp →R,

with p the number of parameters to set.

The two key concepts that Bayesian Optimization relies on are the construc-

tion of a posterior distribution D and the acquisition function Acq. The for-

mer is generally done using Gaussian processes: that is to say, we construct

a multivariate Gaussian distribution that matches with the observations Obs =(
f (x1), . . . , f (xi )

)
. This multivariate Gaussian distribution is defined using a

mean function Φµ and a covariance function Φσ (also known as a “kernel”), both

of which are computed using the previously sampled input values (x1, . . . , xi ).

In short, we construct:


f (x1)

...

f (xi )

 ∼ N




Φµ(x1)

...

Φµ(xi )

 ,


Φσ(x1, x1) . . . Φσ(x1, xi )

...
. . .

...

Φσ(xi , x1) . . . Φσ(xi , xi )



 (A.1)

Covariance functions are generally chosen so that they have the property

that points closer in the input space yield a higher value. As such, a simple and

commonly used covariance function is the power exponential:

Φσ(xn , xm) =αexp
(−‖xn , xm‖2

2

)
(A.2)

Where α is a vector parameter that is adjusted globally so as to match with

our previous observations Obs. One can remark that the maximum value of

exp
(−‖xn , xm‖2

2

)
is attained when xn = xm . More complex covariance functions
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exist, such as the Màtern kernel, which we fit to our observations using the pa-

rameters α and ν:

Φσ(xn , xm) =α
21−ν

Γ(ν)
·
(p

2ν‖xn −xm‖2

)ν ·Kν(
p

2ν‖xn −xm‖2) (A.3)

where Kν is the modified Bessel function of the second kind:

Kν(z) = Γ
(
ν+ 1

2

)
(2z)νp

π
·
∫ ∞

0

cos t(
t 2 + z2

)ν+1/2
d t (A.4)

While this second covariance function appears much more complex, it plays

essentially the same role of quantifying the similarity between two inputs xm

and xn .

Mean functions tend to be simpler overall. A frequent common choice is to

simply use a constant value that we adjust to match with our observations Obs.

The usefulness of this Gaussian process is that we can use it to define what we

expect to observe for any future input we might test. As the mean and covari-

ance functions are defined with respect to the previous inputs (x1, . . . , xi ), we

can apply sample a new input xi+1 ∼ I and expand the multivariate Gaussian

distribution to predict f (xi+1), the value our objective function f will take at

this next point xi+1. More precisely, we can apply Bayes’ rule, as it is defined for

multivariate Gaussian distribution:

f (xi+1) | f (x1), . . . , f (xi ) ∼ N (Φ̂µ(x),Φ̂σ(x))
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A =


Φσ(xi+1, x1)

...

Φσ(xi+1, xi )

 ·


Φσ(x1, x1) . . . Φσ(x1, xi )

...
. . .

...

Φσ(xi , x1) . . . Φσ(xi , xi )


−1

Φ̂µ(x) = A ·


f (x1)−Φµ(x1)

...

f (xi )−Φµ(xi )

+Φµ(xi+1)

Φ̂σ(x) =Φσ(xi+1, xi+1)− A ·


Φσ(x1, xi+1)

...

Φσ(xi , xi+1)

 (A.5)

We refer the reader to textbooks on Gaussian processes, such as Rasmussen and

Williams (2006).

This is also where the second key element comes into play, namely the acqui-

sition function Acq. This function determines the input point we sample next:

as shown on line 9 of Algorithm 1, the next observation f (x∗) corresponds to

the point x∗ which maximizes this Acq function, given the distribution D (as

modeled through a Gaussian process).

The simplest and most commonly discussed acquisition function is the Ex-

pected Improvement function:

Acq(x,D,Obs) = E
(
max

(
f (x)−maxObs

)
, 0|D)

(A.6)

Here, the expectation with respect to D is given by Equation (A.5). Simply put,

the Expected Improvement function computes the expectation at point x of ex-

ceeding the previous optimum value maxObs. Again, other acquisition functions
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can be defined. In particular, it might be useful to explore the input space, that

is to say, to sample points where we are less certain of what the objective func-

tion will yield, which should correspond to a high variance in our constructed

distribution.





B

Analogy Dataset tRanslated fRom BATS

Stranger fruit
Got holes in flesh
But it ain’t gonna spoil
’Cause it never was fresh

— Zeal & Ardor, Stranger Fruit

One of the contributions of this work consists of the introduction of transla-

tions of the Balanced Analogy Test Set (Gladkova et al., 2016, BATS) for Dutch,

French, German, Italian, Mandarin, and Spanish. This analogy benchmark is

structured in two levels: individual sub-sections instantiating specific analogical

relations (e.g., “animal—young” or “infinitive—past participle”) are then grouped

into four super-sections: Inflection, Derivation, Lexicography, Encyclopedia. The

former two correspond to morphological relations, such as the relation between

two inflected forms of a word or the relation between a verb and the correspond-

ing agent noun, whereas the two latter are more closely aligned to common-sense

reasoning, and include relations such as synonymy or the relation between the

We are highly indebted to Eduardo Caló & Léo Jacqmin in the production of these resources.
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name of a country and that of its capital city. The original resource by Gladkova

et al. (2016) emphasizes balance by ensuring that each of the four super-sections

contains exactly 10 sub-sections, and that each of the 10 sub-sections contains ex-

actly 50 instances of the same analogical relation. Models are tested exhaustively

on all possible pairs of instances within each sub-category. We direct the reader

to the original paper by Gladkova et al. (2016) for a more thorough overview. To

create these resources, direct translations from the original English version were

taken as starting point before performing language-specific adaptations.

Dutch. The encyclopedic semantic section E03 was localized using Dutch provin-

cies and their capital cities.

French. The inflectional morphology section I03 was replaced with gender in-

flection of adjectives since comparatives are realized using periphrastic construc-

tions (e.g., jolie ‘cute’, plus jolie ‘cuter’). The derivational morphology section D01

was replaced with denominal adjectives using the suffix -el, as the formation of

privatives using suffixes is not a productive morphological operation. The en-

cyclopedic semantic section E03 was localized using a random selection of 50

French départements and their capital cities, barring those that would be tok-

enized as MWE.

German. The encyclopedic semantic section E03 was localized using German

Länder and their capital cities.

Italian. The inflectional morphology section I03 was replaced with gender in-

flection of adjectives since in Italian too comparatives are realized using pe-
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riphrastic constructions (e.g., bella ‘cute’, più bella ‘cuter’). The derivational mor-

phology section D01 was replaced with noun diminutives using the suffixes -ino,

-ina, for the same reason as in French. The encyclopedic semantic section E03

was localized using Italian regioni and their capital cities.

Mandarin. Given the typological differences with English, we removed the

whole section concerning inflectional morphology and completely reshaped the

one on derivational morphology. In particular, given that derivation by means

of affixes is a very productive process (Packard, 2000), we selected eight af-

fixes, namely -度 -dù ‘-ness/-ity’, -化 -huà ‘-ize’, -性 -xìng ‘-ness/-ity’, -学 -xué

‘-ology’, -主义 -zhǔyì ‘-ism’, -儿 -r ‘prosodic suffix’, -机 -jī ‘instrument’,小- xiǎo-

‘diminutive prefix/small/young’, and created corresponding categories. We set

the focus of D09 on agent formation from verbs, much as D08 in all other lan-

guages, whereas for D10 we took inspiration from S. Li et al. (2018) focusing on

reduplication of monosyllabic verbs having “a bit” as semantic nuance. In the

lexicographic semantic section, we exploited the so-called “elastic words” (Guo,

1938; Duanmu, 2007) to build L08. We filled it using the list of elastic words in

the Appendix of Dong (2015), focusing only on free monomorphemic adjectives

and their corresponding long forms. The encyclopedic semantic section E03 was

localized using Chinese 省 shěng and their capital cities. We incorporated the

original E06 in D08 and replaced it with a category on nouns and their respec-

tive classifiers, disregarding the general classifier个 gè that is not semantically

informative.
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Spanish. The inflectional morphology section I03 was replaced with gender in-

flection of adjectives since also in Spanish comparatives are realized using pe-

riphrastic constructions (e.g., linda ‘cute’, más linda ‘cuter’). The derivational

morphology section D01 was replaced with noun diminutives using the suffixes

-ito, -ita, for the same reasons as in French and Italian. The encyclopedic seman-

tic section E03 was localized using Spanish comunidades autónomas and their

capital cities.

Cross-linguistically, when direct translations sounded unnatural or were not

compliant with the patterns of the categories, we deleted the pair, and where

applicable, more than one correct answer was supplied. Eventually, we removed

multi-word expressions and duplicates when appearing in translations. Finally,

all the categories, except E03, were padded to 50 entries following the morpho-

logical or semantic pattern of each category. After completing the translation

process, we obtained 11,328 pairs overall. Resources will be made publicly avail-

able upon acceptation of the paper. An overview of our BATS translations with

examples and figures can be found in Tables B.1 and B.2.
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Égypte
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M
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伯
利
兹
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语

E03
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(13)
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a
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M
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西
安
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西

(27)
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M
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H
om

ero
:griego
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孟
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国

E05
D
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D
epp
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Lincoln

:président
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king
:fisico/…

Locke
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孔
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学
家

E06
Ente

:K
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cigüeña
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daim
:faon

ape
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:eendje/…

筷
子

:双
/…

E07
K
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:aúlla
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猫
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/…

E08
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狐
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E09
K
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蚂
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a
老
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Tot
1,963

1,961
2,000

1,967
1,960

1,477
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(continued)
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InstRuctions PRovided to AnnotatoRs

Now you do what they told ya

— Rage Against The Machine, Killing in the Name

At multiple stages during the conception and analysis of the Blankcrack project,

we relied on annotators. We collect here the annotation guidelines, instructions,

etc., for ease of consultation.

C.1 BlankCrack Pilot Study, Adversarial Word Pair

Submissions

I’m looking for English speakers that would have a bit of time to spare.

I’m looking into collecting some data for my thesis. It’s probably going to

turn into a web-based application broadly open to the public and set up as a

game, but before I actually set things in motion and ask my supervisors to fund

this, I need to conduct a pilot study.
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https://www.youtube.com/watch?v=bWXazVhlyxQ
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Typically, I’m interested in how feasible it is to guess the meaning of a word

based on its context. Annotators/players will be presented with a set of sen-

tences, all of which containing some word X that will be blanked out, and will

then be tasked with selecting which of two definitions is most likely to apply to

the blanked out word. Here’s an example:

Given the contexts:

• At one point they told me the had been fixed, the next day it hadn’t.

• There is already a little house that I would turn into a little rabbit

hutch being kept back there and I was thinking about keeping the rabbit

in the run with the chickens, but keeping the chickens in the coop and the

rabbit in the hutch at night.

• This type of harness goes around the s chest and legs and has a clip

for the leash up on the back of the in middle of shoulder blades.

• You say you work a lot, and that you have a young ; so I have little

doubt that your is just filled with energy to burn; and it is good of

you to look for a place to take him.

• went in there and got my groomed came home to an uneven

then took him back to get evened up what a mistake!

which definition is the most likely for the blanked out word?

1. A mammal, that has been domesticated for thousands of years, of highly

variable appearance due to human breeding.

2. A domesticated subspecies of feline animal, commonly kept as a house pet.
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I’m currently working on how to gather word pairs. One possibility would be to

have annotators/players submit word pairs that other annotators/players would

then have to disambiguate. I would like to include this as part of the pilot study,

and for this I need people to come up with some word pairs they think will be

hard to guess. If you have the time, can you come up with 5-ish word pairs that

I’d be able to test in this pilot study?

C.2 BlankCrack Pilot Study, On-Screen Instructions

This is a pilot survey!

Below and on the next page are 30 questions. Each question is based on a

word pair; we randomly selected 5 sentences where one of the two words oc-

curred and the other didn’t.

Can you guess which word we blanked out?

You are required to give a guess for each question, i.e., you may not leave a

blank choice. If you think the two words always mean the same thing, make your

guess nonetheless and check the tickbox at the end of each question.

Upon completing the survey, you should be redirected to a page confirming

your answers have been processed. If nothing happens upon clicking the “Sub-

mit” button, make sure you’ve made a guess for each word pairs, even those you

judge to be synonyms.

Lastly, you will find 2 optional questions for feedback at the very end. Don’t

hesitate!

Data collected through this survey will serve academic and/or educational

purposes only. No personal data is being collected.
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C.3 BlankCrackOnlineGame, On-Screen Instructions

C.3.1 (a)-annotation instructions

The fiendish Tippesk has issued forth a challenge! The riddle is made of 2 words

and k sentences. One of these words has been blanked out from all the sentences;

the other actually never occurs in any of them.

Let’s show them we can crack this in no time!

C.3.2 (b)-annotation instructions

Heed my word, minions of Tippesk!

Give me two words that those pesky squirrels won’t be able to tell apart once

blanked out. With this word pair, I shall craft riddles and torment them. Avoid

synonyms! I wish them to despair…

C.4 BlankCrack Online Game, Instructions for Re-

Annotation of BERT-Selected Contexts

I need people to go through a closed-format “fill-in-the-gaps” questionnaire.

You’ll see one sentence at a time, where one word has been manually blanked

out.

Here’s an example in French:

bien entendu, une hirondelle ne fait pas le , mais le belarus

est un grand état important, un voisin de l'union européenne et nous
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sommes évidemment ravis de toute évolution positive.

The interface will propose two possible words: in this French example, these

two words are automne and printemps.

We ask you to indicate which of the two words you believe was in the original

version of this sentence, before it was replaced with a blank space.

Rather than a hard binary choice, we want you to state how confident you are

in your answer. Continuing with our French example, you can select any of the

five following answers:

• You think it’s very likely printemps

• You think it’s perhaps printemps

• You don’t know

• You think it’s perhaps automne

• You think its very likely automne

Behind the scenes, the website will convert your responses into annotations

on a 5 point Likert scale, ranging from “high confidence in the attested word” to

“high confidence in the unattested word.”

The sentences & word pairs weren’t selected at random: we used some Natural

Language Processing software to do that. Your responses will provide us with

information to test the value of that software as a linguistic model.
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IllustRations, pictuRes, visual suppoRts

Legends spoke of the ancient monster
From a time beyond the dawn of time
In a pit of primordial ooze
Many years we have been kept waiting
But tonight that squid will surely die
Revenge is a dish best served fried
Deep fried

— Alestorm, Death Throes of the Terrorsquid

The following images were not included in the main text, and are collected

here instead to reward the happy few who made it through to this appendix.

Illustrations listed here, as well as those presented in Chapter 2 and the CoDWoE

logo (Figure 4.5) were realized by the author of this dissertation. In all cases,

rough drafts were first realized by hand, and finalized and colorized using GIMP

(The GIMP Development Team, 2019). The leaflets in Figure D.11 and Figure D.12

were used as advertisement material at the Forum des Sciences Cognitives et du

TAL à NANCY 2021 and the Salon 360 Grand Est 2021.
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https://www.youtube.com/watch?v=3TKyNTwD3Yk
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Figure
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picture
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Figure D.2: Member of the United Riddle Solving Squirrels, used to represent
cracker playstyle ((a)-annotators)
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Figure D.3: Minion squid of Tippesk, used to represent blanker playstyle ((b)-
annotators)
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Figure
D
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Figure D.6: Displayed for highly efficient (b)-annotations
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Figure D.7: Displayed for mildly efficient (b)-annotations
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Figure D.8: Displayed for poor (b)-annotations
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Figure
D
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((a)-annotators
ranking)



395 Illustrations, pictures, visual supports

Fi
gu

re
D

.1
0:

D
is

pl
ay

ed
du

ri
ng

co
nt

es
ts

((
b)

-a
nn

ot
at

or
s

ra
nk

in
g)



Illustrations, pictures, visual supports 396

Figure D.11: Advertisement leaflet (English)
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Bienvenue à
BlankCrack !

C'est quoi ?
   Blankcrack est
un jeu pour collecter
des informations
linguistiques. Nous
cherchons des mots
de sens différents et
qui apparaissent
dans des contextes
similaires, comme
mardi et lundi.

Ça sert à quoi ?
   Ces données nous permettent d'étudier comment les réseaux
de neurones en TAL apprennent le sens des mots à partir du
contexte. Sont-ils perturbés par des paires comme mardi et lundi ?
Est-ce que cela joue sur leurs performances ?

Figure D.12: Advertisement leaflet (French)




