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Summary

The goal of my thesis is to understand the relationship between neuronal network structures
and spatio-temporal dynamics of neurons’ activity, either recorded in vitro, or simulated
with mathematical models. My work focuses on neuronal cultures, as these experimental
set-ups are increasingly studied in technical applications, but lack detailed theoretical
characterisation and understanding.

The theoretical modeling involves two levels of interests: the activity and the establishment
of connections in neuronal cultures. I was interested in two different models of activity:
the static quorum percolation model and the dynamical adaptive exponential integrate
and fire. Network connectome of neuronal culture is taken into account with a network
embedded in the two-dimensional space. I investigate the phase transition of the Quorum
Percolation Model and identify a transition between 2 types of propagating dynamics. With
a phase specifically designed to investigate neuronal activity, I propose a novel method
to analyse and identify the periodic bursting regime both in time and space. This analysis
reveals specific characteristics of bursting initiation that help us in the understanding of the
fundamental principles that relate the spatial network and the collective neuronal activity.

The second part of my thesis is experimental: the goal is to investigate and quantify neurons
morphology in 2D cultures. Indeed, although many studies indicate that spatial correla-
tions are a key parameter to understand the propagating bursting dynamics in culture, the
underlying network structure is poorly characterized. The challenge is to observe a single
cell in a culture dense biological medium. With viral infection, controlled in its quantity, we
were able to observe individual cells, expressing the green fluorescent protein, in a complex
biological environment. The confocal images are automatically processed with a python
program able to extract and quantify neurites’ morphology. Such measurements will be of
great help in order to refine theoretical network models, and for future microfluidic devices
that aim at controlling the network structure. I identify two regimes in the correlation of
neurite path showing the interaction between neurite stiffness and adhesion to its environ-
ment and estimate the average connection length in a biological network with a simple toy
model.

Keywords

NEURONS · CULTURE · NETWORK · MORPHOLOGY · BURSTS · AVALANCHE

NUCLEATION · DYNAMICS · PROPAGATION · PHASE ·



Resumé

L’objectif de mon étude est de comprendre la relation entre la structure spatiale d’un réseau
de neurones à deux dimensions et l’activité, soit mesurée expérimentalement soit résolu par
des modèles mathématiques.

La partie théorique porte sur le comportement spatio-temporel des bouffées d’activité d’une
culture de neurones et est basée sur deux modèles. Un premier, statique, de type percolation
à quorum et un second dynamique du type "adaptive exponential integrate-and-fire". En
utilisant un modèle de réseau inscrit dans l’espace 2D et une phase spécifiquement adaptée
à une activité sous forme de potentiel d’action nous arrivons à mettre en évidence des
caractéristiques spécifiques de l’activité : temps et longueur caractéristiques, vitesse de
propagation, zone et neurone initiateurs (leader), etc... Ces propriétés nous permettent de
mieux comprendre les mécanismes fondamentaux de l’initiation des bouffées d’activité
dans les cultures et leurs relations avec le réseau spatial. J’étudie la transition de phase du
modèle de Quorum Percolation au sein de réseau spatiaux et identifie une transition entre
deux dynamiques de propagation spatiales.

La seconde partie de ma thèse, de nature expérimentale, vise l’exploration du réseau spatial
en culture et la quantification de la morphologie de neurones corticaux. En effet, alors même
que différentes études théoriques indiquent clairement que les corrélations spatiales sont
déterminantes pour la dynamique collective dans les cultures, la structure des réseaux
reste encore très mal élucidée. Après quelques jours de croissance in vitro il est impossi-
ble d’observer une cellule unique, noyée dans l’ensemble de la culture. En utilisant une
infection virale en quantité précisément contrôlée, permettant l’expression de la protéine
fluorescente GFP, nous arrivons à observer une cellule unique dans un réseau biologique.
Nous pouvons ainsi suivre la croissance de cellule unique par imagerie confocale. Ces
images sont par la suite analysée automatiquement par un programme python permettant
de quantifier précisément la morphologie de neurones corticaux in vitro. Ces mesures sont
un outil précieux pour nourrir les modèles de réseaux spatiaux, mais également pour le
design d’environnement microfluidique dont l’objectif est le contrôle de la morphologie.
Par une modélisation simple de la connectivité du réseau, j’établis un ordre de grandeur de
la longueur de connexion. L’analyse morphologique des neurites révèle deux régimes de
longueur différents, dont l’origine encore mal identifiée pourrait permettre de quantifier le
rôle des interactions cellules-cellules dans la morphologie des neurones.
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Figure 1.1: Two snowflakes’ pho-
tographs of Wilson Bentley [1]
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This chapter presents the interdisciplinary field that neuro-
physics aims to be. Coping with the complex subtleties of
biological systems, physicist try to further the understanding
of neuronal mechanisms. Widening the scope of neurobiology
by introducing new approches, this research domain also find
its roots in the wonder of consciousness and the hope that
someday we might understand how our thoughts emerge
and change. These metaphysical questions are probably what
keep many neurophysicists going on.

My personal understanding of neuronal processes comes
from my physics training. To my mind, the sophisticated and
highly efficient processing power of cognitive systems belong
to the class of emergent behaviours. From snowflakes to ant
societies, the biosphere is overflowing with examples of large
scale complex order absent in the microstates.

In this section I will present a mathematical object, that can be
though as a "toy model" for neuronal systems and may repre-
sent the elementary brick for information processing. Then I
will present the fundamental notions needed to understand
my doctoral work.

1.1 Mind, brain and neuronal activity

Universal computing with The Game of Life

You cannot play this game with your familly. You play with
the game itself, and create your own mathematical world
with birth, life, and death. In the late 1960s, the mathematician
John Horton Conway invented a set of very simple rules
to create geometrical drawings: they are the living soul of
the world you will create. The drawings are embedded in
a square grid, and are transformed according to these very
rules. Each square cell has 8 nearest neighboring cells. If 2 or
3 of them are painted, then the cell stays painted (is alive),
otherwise the cell dies, and is erased. A birth, meaning a new
cell is painted, happens when there are 3 painted neighboring
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Figure 1.2: Examples of patterns
in Conway’s Game of Life. The
Top grid displays examples of a
beehive (left) and a boat (right).
The bottom five square display
the 5 generation of a gliders that
make him travel across the square
diagonal

Figure 1.3: The Top frame rep-
resents the set or iteration rules
in the 126 elementary cellular
automaton. The Bottom frame
shows the first 16 iteration with
a single live cell at the initial state.

cells. After choosing your very own initial pattern, you just
have to let it evolve and observe it creating new patterns, or
maybe die out. I can only advise you to go and have a little
fun: The Game Of Life

This game became popular in the mathematical world for
its rules are simple, but the possibilities are tremendous: a
real zoo of patterns, life forms, has been identified [2]. Let’s
look at some of them. The blinker, 3 aligned square, is an
oscillator: every two generation the pattern returns to its
original state. The beehive, or the boat (see figure 1.2) consists
on two patterns that do not change from one generation to
the next. The glider (see figure 1.2) is an example of pattern
that travels across the grid: it is in perpetual motion.

The game of life has taught us that transferring information
is easy, as long as you follow some basic rules. Information
can be one of the 5 generation of the glider, and after letting
it travel some distance, the same pattern appears elsewhere
in another 3 by 3 square. Much more than this naive example
the game of life can be used to compute every logic gates:
it is a universal Turing Machine [3] [3]: Rendell (2011), ‘A Universal

Turing Machine in Conway’s Game
of Life’

. The 1 and 0 can be
think as the existence or not of gliders, and different patterns
can be used to accomplish the different logic gates. In this
Turing Machine, the computation is done with specific spatio-
temporal patterns. Anyone who looks at both the retinal
waves, captured by Meister et al. or Butts et al. [4, 5] [4]: Meister et al. (1991), ‘Synchronous

bursts of action potentials in gan-
glion cells of the developing mam-
malian retina’
[5]: Butts et al. (1999), ‘Retinal Waves
Are Governed by Collective Net-
work Properties’

and a
random realisation of Conway’s game of life will notice the
uncanny resemblance.

A paradigm for the emergence of complex
organization: Cellular automaton

Conway’s game of life is an example of what is now called,
a cellular automaton: a set of rules that describe the evolu-
tion of cells in a square grid. Stephen Wolfram studied and
classified the 256 one-dimensional cellular automaton. For
example, all generations of a single alive cell, submitted to
the iteration rule 126 represent a Sierpinski triangle, (see fig-
ure 1.3) a well-known fractal structure, that repeats itself
endlessly at every scale. This macroscopic property emerges
from the elementary rule 126 that describes microstates. In
2004 Matthew Cook [6] demonstrated that the iteration rule
110 is a Universal Turing Machine, like Conway’s Game of

[6]: Cook (2004) ‘Universality in Elementary Cellular Automata’

http://pmav.eu/stuff/javascript-game-of-life-v3.1.1/
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Life. In both of these examples (rules 126 and 110), local and
simple rules have been able to create macroscopic, coherent
and complex structures.

However, out of the 256 one-dimensional cellular automa-
ton, not many of them exhibit such remarkable behavior. The
fundamental mechanism, the rationale that makes rule 110
to be different, to be better (?) is entirely unknown. Why spe-
cific rules of propagation allow certain macroscopic behavior
whereas some repress any large scale structure ? In another
domain, synchronization is a widely spread phenomenon
in physics. It describes the collective behaviour of multiple
subsystems and emerges from the coupling between intrinsi-
cally oscillating units. Is there any equivalent, in the world
of ’physics laws’ that can explain why certain sets of rules
appear as boring, when others create wonders ? Is the reduc-
tionism paradigm even relevant ?

Food For Thoughts Methodological reductionism claims
that a high level of organization can be explained and under-
stood from a lower level of organization. Physics, and many
other domains of sciences, are often associated to reduction-
ism. It has been very successful for the understanding of
heredity, through its macro-molecule organization as genes,
or the understanding of macroscopic properties like magneti-
zation through a molecular scale interaction. In mathematics,
it has led Ernst Friedrich Ferdinand Zermelo to try develop-
ing a common foundation for mathematics, nowadays called
the axiomatic set theory. However, Kürt Gödel incomplete-
ness theorem is a strong argument that can nuance the idea
that there exists such foundation, or that it has any worth.
In the exploration of emerging properties, scientists [7, 8]

[7]: Gazzaniga (2010), ‘Neuroscience
and the correct level of explana-
tion for understanding mind’
[8]: Anderson (1972), ‘More Is Dif-
ferent’

have raised the question about the fruitfulness and relevancy
of reductionism. "The ability to reduce everything to simple
fundamental laws does not imply the ability to start from
those laws and reconstruct the universe." ∼ Philip Warren
Anderson

From a simple paradigm to the brain complexity

The two-dimensional cellular automaton presented here are
not so different from models of neuronal networks. Indeed, a
straightforward and simplistic approach to describe neurons
behaviour can be to consider them as black and white units:
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either active (a painted cell) or silent (a white cell). These
Ising-like models are vastly studied. [9–11] [9]: Hernández-Navarro et al. (2017),

‘Dominance of Metric Correlations
in Two-Dimensional Neuronal Cul-
tures Described through a Random
Field Ising Model’
[10]: Schneidman et al. (2006), ‘Weak
pairwise correlations imply strongly
correlated network states in a neu-
ral population’
[11]: Tkacik et al. (2006), ‘Ising mod-
els for networks of real neurons’

In such neuronal
model of cellular automaton, the iteration rule then takes
into account that inhibitory cells remove active cells, whereas
excitatory cells create them. Is it possible that a macroscopic
coherent structure emerges from such a simple system ? And
if so, what is the role of the biological complexity of the brain
?

Emergent behaviour can be classified into several categories.
[12] For instance, an emergent property like the temperature is
a property of an ensemble of particules, an emergent structure
like 3 lines form a triangle or a real emergence like the comput-
ing capacity of the Game of Life. Is the mind a macroscopic
property of an ensemble of excitable units, or a real emerging,
just like a cell is alive whereas the molecules of which it is
made are not ? Do those weak categories of emergence even
apply to the brain ? A new tailored definition may be required
to investigate the complex mind-brain relationship.

The intricate multi-scale structure of the brain is the major
obstacle to understand fully the mind-brain mechanisms [12].
From the couple of centimetres of anatomical and functional
brain regions, to the molecular interactions, the brain is made
of modular interacting components at every spatio-temporal
scales. Minicolumns are structures of 30 microns in diameter
that represent 100 neurons. [13] [13]: Hagmann et al. (2008), ‘Map-

ping the Structural Core of Hu-
man Cerebral Cortex’

They are the anatomical basis
of the cerebral cortex structure made of columns, subareas,
areas and lobes. The temporal scaling of neuronal activity is
also evidently related to its complexity and processing power.
Large scale brain activity [14] [14]: Salinas et al. (2001), ‘Corre-

lated neuronal activity and the flow
of neural information’

has been recorded from 1 to 200
Hz, whereas synaptic plasticity involves molecular changes
in a matter of seconds (short term plasticity) to hours (long
term plasticity). [15] [15]: Abbott et al. (2004), ‘Synaptic

computation’
Macroscopic neuroimaging techniques that quantify the rela-
tionship between mind and brain states are showing accurate
correlations, [16, 17] [16]: Damoiseaux et al. (2009), ‘Greater

than the sum of its parts’
[17]: Raichle et al. (2007), ‘A de-
fault mode of brain function’

however do not bring us closer to un-
derstanding the origin of this relationship. Moreover, there is
no evidence, to my knowledge, that there exists a direct bijec-
tive relationship between brain state, however it is measured,
and mind state. There is still no proper understanding of
the emergence of macroscopic behaviour, like the conscious-
ness, from its microscopic elements, and interactions. All this,
question our ability to properly describe, scientifically, the
consciousness, and its relationship with the physical brain.
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" Perhaps most simply, emergence - of consciousness or
otherwise - in the human brain can be thought of as

characterizing the interaction between two broad levels:
the mind and the physical brain. To visualize this

dichotomy, imagine that you are walking with Leibniz
through a mill. Consider that you can blow the mill up in
size such that all components are magnified and you can

walk among them. All that you find are mechanical
components that push against each other but there is little
if any trace of the function of the whole mill represented

at this level. This analogy points to an important
disconnect in the mind-brain interface: although the
material components of the physical brain might be
highly decomposable, mental properties seem to be

fundamentally indivisible "

Danielle S. Bassett and Michael S. Gazzaniga [12][12]: Bassett et al. (2011), ‘Under-
standing complexity in the human
brain’

To my very own disappointment, I am not going to propose
a theoretical framework able to solve this immensely compli-
cated question. However, looking at neuronal cultures is a
way to reduce the inherent complexity of the brain, and study
a system closer to a cellular automaton where the reduction-
ism paradigm may still be relevant.

1.2 Neuronal cultures in practice

A model of the brain ?

Compared to 3D structure of the brain, the 2D neuronal net-
work growing in a dish is a much simpler system. The main
reasoning behind this is a matter of order of magnitude. For
example, in the 1D cellular automaton, there are 223

= 256
different11: One need to consider 3 cells,

each of them can be alive or dead,
hence 23 combination, and each
of these combinations can create
a cell either dead or alive.

possible rules. There are 229
= 10154 possible 2D

cellular automaton and 2227
3D cellular automaton, which is

infinity according to any computer in 2021, and maybe ever.
Scaling down one dimension drastically reduces the complex-
ity. Also, for a theoretical physicist playing with numerical
simulations, it makes it much more easy to treat without
heavy machinery. The human brain is large, with approxi-
mately 85 billion neurons2

2: that is 8.1013

[18][18]: Herculano-Houzel (2012), ‘The
remarkable, yet not extraordinary,
human brain as a scaled-up pri-
mate brain and its associated cost’

, with each creating thousands
of synapses. Neuronal cultures typically contain 103 to 105
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neurons making it easier to model with computational meth-
ods.

In 1907, the American Ross Granville Harrison [19] [19]: Harrison et al. (1907), ‘Obser-
vations of the living developing
nerve fiber’

reported
the first culture of frog neurons which allowed him to identify
several morphological scales in growing nerve fibres. " One
fiber was observed to lengtlen almost 20 µm in 25 minutes. "
Much more than just a report on the size, and growth speed
of nerve fibres, R.G. Harrison demonstrated that living neu-
ronal tissues from vertebrates can grow outside the body. A
century after this demonstration, as I am writing this, the key
word ’neuronal culture’ gives 761 results in PubMed search
engine. They are all articles published in the 3 first months
of 2021. Being able to study neurons in a controlled medium
(in ions concentration, temperature, pH etc...) has led to a
tremendous number of successful study. Jerome Pine, in 1980,
and Guenter W. Gross et al. in 1982 [20, 21] [20]: Pine (1980), ‘Recording ac-

tion potentials from cultured neu-
rons with extracellular microcir-
cuit electrodes’
[21]: Gross et al. (1982), ‘Record-
ing of spontaneous activity with
photoetched microelectrode sur-
faces from mouse spinal neurons
in culture’

recorded neurons’
activity with the help of micro-electrode arrays. They started
the idea that neuronal cultures could be used as a model to in-
vestigate activity in the brain. The intricate three-dimensional
structure of the brain and the large amount of external stim-
uli is an impediment that neuronal culture overcome. Our
understanding and modelling of single neuron behaviour
is greatly due to recordings of cultures. They became also
extensively used for drug testing and the investigation of
neurodegenerative diseases and epileptiform of activity. [22,
23] [22]: Schlachetzki et al. (2013), ‘Study-

ing neurodegenerative diseases in
culture models’
[23]: Dichter (2009), ‘MODELS |
The use of Cell Culture Models
to Study Mechanisms Related to
Epilepsy and Antiepileptic Drugs’

Microfluidic divices: a new perspective

The structured organization of the brain, in the form of a
complex network is the support of our cognitive functions.
This network emerges as neurons grow, axons get longer, the
dendritic tree get denser, and continue changing once the
synapses are formed according to plasticity rules and cellular
apoptosis3 3: 50 % of the network connec-

tivity might come from apoptosis
[24]

. The resulting network is highly predetermined,
and little is due to randomness. Mastering the growth of
healthy biological neurons in a dish allows testing of multi-
ple theories, but does not necessarily reflect the brain mech-
anisms. Is the extrapolation from unconstrained neuronal
cultures to the brain relevant ? The advantage of neuronal
culture were that neurons could grow freely, actually move it
away from the subject at hand: the neuronal network in the
brain.
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Advances in microfluidics and chemical patterning techniques
in the last 15 years made possible the design of precised and
controlled environment at the micrometer scale. Controlling
the environment also means controlling the growth.[25][25]: J. Millet et al. (2010), ‘Guid-

ing neuron development with pla-
nar surface gradients of substrate
cues deposited using microfluidic
devices’

Mil-
let et al. were able to guide neuronal growth with chemical
cues deposited on a glass substrate, whereas Peyrin et al. built
an oriented neuronal network with asymmetrical 3D micro-
channels. With cleverly designed devices, researchers [26]

[26]: Peyrin et al. (2011), ‘Axon
diodes for the reconstruction of
oriented neuronal networks in mi-
crofluidic chambers’

have made possible to partly reconstruct the brain architec-
ture as a network with non-random long range connections.
This reconstruction made possible to investigate the role of
synaptic connections in Alzheimer’s and Parkinson’s disease.
[27, 28] The devices used to create directed links in popula-
tions of neurons become more and more efficient [29][29]: Renault et al. (2016), ‘Asym-

metric axonal edge guidance’
and new

discoveries may possibly appear from modern Brain-On-chip
enthusiasm. [30, 31][30]: Forro et al. (2021), ‘Electro-

physiology Read-Out Tools for Brain-
on-Chip Biotechnology’
[31]: Jahromi et al. (2019), ‘Microflu-
idic Brain-on-a-Chip’

.

1.3 Dynamics of cultured neuronal
networks, what do we know ?

Recorded activity in culture

The periodic bursting regime

A couple of days after plating dissociated neurons, cultures
exhibit one stereotypical activity in the form of periodic syn-
chronized bursting event. From the firsts recordings [21] in
the 80s, using either electrodes [32–34][32]: Wagenaar et al. (2006), ‘An

extremely rich repertoire of burst-
ing patterns during the develop-
ment of cortical cultures’
[33]: Masquelier et al. (2013), ‘Net-
work Bursting Dynamics in Exci-
tatory Cortical Neuron Cultures
Results from the Combination of
Different Adaptive Mechanism’
[34]: Okujeni et al. (2017), ‘Mesoscale
Architecture Shapes Initiation and
Richness of Spontaneous Network
Activity’

or calcium imaging
techniques people have reported that neuronal cultures main
activity is formed by a several hundred milliseconds of in-
tense firing over the whole network, separated by long win-
dows of sparse activity. This bursting activity keeps on for
as long as the culture is alive and is persistent over multiple
biochemical manipulation. For instance, cancelling inhibition
does not stop this spontaneous dynamics. Such robustness
implies the existence of a fundamental mechanism governing
this collective behaviour.

[27]: Deleglise et al. (2014) ‘beta-amyloid induces a dying-back pro-
cess and remote trans-synaptic alterations in a microfluidic-based re-
constructed neuronal network’
[28]: Deleglise et al. (2013) ‘Synapto Protective Drugs Evaluation in Re-
constructed Neuronal Network’
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Figure 1.4: a. Cortical network growing over a micro electrode array. The black dot is a 30 µm diameter electode.
b. Raster plot of the recorded activity with 60 electrodes as function of time. Each black dots represent a spike.
Figure from Masquelier et al. [33]

Characteristics of neuronal activity: a question of
perspective

When Masquelier et al.[33] reported their findings on bursts
in culture, they identified what they called network spikes:
events of consistently the same duration, where almost ev-
ery cell in the culture is activated. These network spikes, as
can be observed in figure 1.4, come in series with short in-
terval between them (less than a second) such that you can
observe 3 network spikes in the first 2 bursts, and only 2 in
the last one. Conceptually, the identified network spikes are
considered as distinct events because they were temporally
distant: neurons’ action potentials are gathered in a single
system size event of duration several hundreds of millisec-
onds. Gathering spikes in time bins is the strategy used by
John M. Beggs and Dietmar Plenz [35–37] [35]: Beggs et al. (2003), ‘Neuronal

Avalanches in Neocortical Circuits’
[36]: Beggs (2004), ‘Neuronal Avalanches
Are Diverse and Precise Activity
Patterns That Are Stable for Many
Hours in Cortical Slice Cultures’
[37]: Plenz et al. (2007), ‘The or-
ganizing principles of neuronal
avalanches’

to analyse brain
slices activity. They were interested in identifying avalanches:
consecutively activated neurons related all together by one
or several initial spikes.

Following an analogy with snow avalanches, aftershocks
in earthquakes or the dynamics of a pile of rice, neuronal
avalanches are continuous spatio-temporal patterns of corre-
lated activity up to the triggering initial spike(s). It has been
observed that the size distribution of the number of after-
shocks or rice avalanches, [38–40] [38]: Bak et al. (1989), ‘Earthquakes

as a self-organized critical phenomenon’
[39]: Baiesi et al. (2004), ‘Scale-free
networks of earthquakes and af-
tershocks’
[40]: Frette et al. (1996), ‘Avalanche
dynamics in a pile of rice’

follows a power law such
that an initial event (shock under the earth crust, or a spike)
can be a single isolated event as well as it can trigger a sys-
tem size avalanche. Such dynamics is characteristic of a scale
free behaviour in the sense that there is no scale, there is no
typical length, or time duration able to properly characterize
it. On the contrary, an example can be a propagating wave,
characterized by its wavelength and frequency.
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Figure 1.5: Pattern in space of one
avalanche recorded by Beggs et al.
[36]

Figure 1.6: Avalanche size distri-
bution in dissociated neuronal cul-
tures. Figure from Pasquale et al.
2008

Neuronal avalanches

Neuronal avalanches are the spatio-temporal patterns of
activity emerging from spike propagation through the net-
work. They are identified in experimental recordings able
to pinpoint action potential as a function of time and space.
Spike times are sorted out in time bins of size ∆t, close to
the millisecond. Avalanches are then consecutive time bins
with at least one spike, and with empty bins before and af-
ter them. The avalanche duration is the sum of all the time
bins, and the avalanche size is the number of activated
electrodes, or neurons during this time interval. Figure 1.5
represents the spatial pattern of an avalanche of 3 time
bins.

This definition, although rarely stated in scientific papers,
implies that neurons’ activity in an avalanche follows the
causality law. Hence, spike in the nth time bins are mainly
related to previous spike of this avalanche, and not pre-
vious activity. The avalanche typical scale in time, and in
space is the correlation time or length.

According to John M. Beggs and Dietmar Plenz [35–37] neu-
ronal avalanches are also scale free. They reported that the
size distribution is a power law, with a −3

2 exponent (see
figure 1.6). Latter studies, [41, 42][41]: Pasquale et al. (2008), ‘Self-

organization and neuronal avalanches
in networks of dissociated cortical
neurons’
[42]: Yaghoubi et al. (2018), ‘Neu-
ronal avalanche dynamics indicates
different universality classes in neu-
ronal cultures’

also reported scale free be-
haviour in neuronal cultures with similar data analysis. The
report of scale free behaviour in neuronal propagating dy-
namics has raised a great deal of interest in the neuroscience
community, because the fundamental origin of scale invari-
ance is often the divergence of the correlation length, and it
always occurs in critical systems.

Remarks on critical systems in neuroscience
In the description of an emergent property one may find
oneself faced with what is called a phase transition: as a
system variable is changed the observable (called the order
parameter) changes radically and rapidly. For instance, as the
temperature (the system variable) of a liquid is increased, the
density of molecules (the order parameter) is rather constant,
except at one point, where the liquid becomes a gas and the
density decreases drastically. The critical point is the temper-
ature value at which the transition occurs. At a critical point,
systems follow universal laws related only to properties of



1.3 State of the art 11

symmetry: the macroscopic observable (order parameter) of
two systems with similar symmetries behave similarly.

The neural criticality hypothesis suppose that the brain au-
tonomously stays at a critical state (see [43] [43]: Hesse et al. (2014), ‘Self-organized

criticality as a fundamental prop-
erty of neural systems’

for a review).
This hypothesis imply that neural systems are able to target
a critical point during their growth and astutely tune a con-
trol parameter to stay close to the critical point. This is an
example of self-organized critical system [44–46] [44]: Bak et al. (1988), ‘Self-organized

criticality’
[45]: Wilting et al. (2018), ‘Oper-
ating in a Reverberating Regime
Enables Rapid Tuning of Network
States to Task Requirements’
[46]: Zeraati et al. (2021), ‘Self-organization
toward criticality by synaptic plas-
ticity’

. The system
variable is here controlled by the system itself in order to stay
in the critical state. The relevant question being is their an
advantage for neuronal system to put efforts into staying at
criticality.

Critical states are efficient for multiple neural related tasks.
Critical neuronal avalanches are reported [47] to ensure max-
imal sensitivity to sensory stimuli allowing to flexibly switch
of dynamics/state by small changes [45]. The allegedly opti-
mized information processing [48] [48]: Beggs (2008), ‘The criticality

hypothesis’
of neuronal systems come

from the divergence of the correlation scales at criticality. Both
temporal and spatial correlation scales diverge at the critical
point. These experimental recordings and theoretical predic-
tions are at the origin of a vast debate in the neuroscience
community, and has been the center of attention of many
scientists.

Although it is closely related, the self organized citicality is
not the main subject of my doctoral work. I have been focused
on the spatio-temporal characterization of (avalanche-like)
neuronal activity. I do hope it will help in understanding
it, the origin and relevancy of self-organized criticality in
neuronal systems will not be debated here.

Spatial characteristics

In their studies, Beggs et al. [36] claim that neuronal avalanches
are stable patterns of activity over many hours. They re-
ported that neuronal cultures spontaneously produce 5000
avalanches per hour, representing 30 different spatio-temporal
patterns of propagation. In a more recent study, Javier G. Or-
landi et al [49] [49]: Orlandi et al. (2013), ‘Noise

focusing and the emergence of co-
herent activity in neuronal cultures’

reported with calcium imaging techniques,
that the nearly periodic bursting activity is controlled by
the nucleation, and propagation of circular waves. The nu-
cleation centres appears to be randomly chosen in a set of

[47]: Kinouchi et al. (2006) ‘Optimal Dynamical Range of Excitable Net-
works at Criticality’
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specific points in the culture (see figure 1.7). They reported
propagation velocity close to 10 mm.s−1 with an increase as
the inhibition is suppressed with bicuculine. Others research
teams also reported a propagating dynamics with high reso-
lution array of electrodes4

4: CMOS-MEA: complementary
metal-oxide semiconductor micro-
electrodes-array

. [50, 51][50]: Lonardoni et al. (2017), ‘Re-
currently connected and localized
neuronal communities initiate co-
ordinated spontaneous activity in
neuronal networks’
[51]: Gandolfo et al. (2010), ‘Track-
ing burst patterns in hippocampal
cultures with high-density CMOS-
MEAs’

.

Overall, the most recent studies show that neuronal cultures
bursting regime are made of an initiation of activity, leading
to the nucleation and propagation of a wave. To these three
phases (initiation, nucleation, propagation) one may add a
possible reverberating phase, once the activity spread to the
whole culture.[51]. Several parts of the culture may act as
nucleation centres, creating a non-uniform distribution in
space.

Leader neurons

What is the role of each individual neuron in a burst ? As
it has been observed, some may lie close to the nucleation
centre, making them among the firsts to fire. Are they always
the first one to fire ? Is the phase (initiation, nucleation, propa-
gation, reverberation) in which a neuron spike constrained or
random ? According to D. Eytan and S. Marom [52][52]: Eytan et al. (2006), ‘Dynamics

and Effective Topology Underly-
ing Synchronization in Networks
of Cortical Neurons’

some neu-
rons consistently spike at earliest phase of the burst, whereas
other are most frequently activated at latter stage. Similarly
to the 30 stable avalanche families observed by Beggs et al.
[36], it seems that all in vitro neuronal systems activity exhibit
sequences of spiking that regularly repeat themselves in a
constrained order. [53–55][53]: Ikegaya et al. (2004), ‘Synfire

Chains and Cortical Songs’
[54]: Eckmann et al. (2008), ‘Leader
neurons in population bursts of
2D living neural networks’
[55]: Zbinden (2010), ‘Leader neu-
rons in living neural networks and
in leaky integrate and fire neuron
models’

Leader neurons are at the centre of scientific theories trying to
model the fundamental mechanisms for neuronal culture to
spontaneously generate periodic bursts of propagating activity.
Although developing neural circuits en vivo are known to

Figure 1.7: Nucleation points
probability density function. The
probability to be a nucleation cen-
ter is not uniform in space. 134
bursts were analysed. Figure from
Orlandi et al. 2013 [49]
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Figure 1.8: A schematic represen-
tation of network burst gener-
ation phases. Small black dots
represent non active neurons,
whereas colored neurons are ac-
tive. The initation may happens
sparsely in the network. The nu-
cleation is localized in one specific
point. The propagation starts at
this point. The reverberation con-
stitute the majority of the burst
duration after its growth.

behave similarly [56, 57] [56]: Feller (1999), ‘Spontaneous
Correlated Activity in Developing
Neural Circuits’
[57]: Blankenship et al. (2010), ‘Mech-
anisms underlying spontaneous
patterned activity in developing
neural circuits’

it is still unclear what makes leader
neurons, leader, or what govern the initiation dynamics.

Mechanisms, and theoretical description

Noise Driven: Quorum Percolation model

Without any external drive, neuronal cultures are unexpect-
edly able to display intense activity. One possible mechanism
comes from the stochastic synaptic noise. Typical commu-
nication pathway between neurons is the release of vesicle
in the synaptic shaft evoked by an action potential-induced
Ca2+ influx. Independently of any presynaptic depolariza-
tion, spontaneous release of vesicle has been reported [58–
60] [58]: Kavalali (2015), ‘The mech-

anisms and functions of sponta-
neous neurotransmitter release’
[59]: Kaeser et al. (2014), ‘Molecu-
lar Mechanisms for Synchronous,
Asynchronous, and Spontaneous
Neurotransmitter Release’
[60]: Sibarov et al. (2015), ‘Charac-
teristics of Postsynaptic Currents
in Primary Cultures of Rat Cere-
bral Cortical Neurons’

to occur at each synapse as a random event with typical
frequency of 10 Hz5

5: It appears that the frequency
is age dependant, [60] Sibarov et
al. reported that the frequency in-
crease exponentially from 1 Hz to
15 Hz between days in vitro 1 and
20.

. These spontaneous releases represent a
fraction of action potential evoked releases which in turn are
associated with a miniature Excitatory Post Synaptic Poten-
tial (mPSP). This constant uniform excitation may be able to
bring the membrane potential above threshold of activation.
The depolarization of some neurons may then propagate and
spread to the whole network. The theoretical framework able
to describe such phenomenon is called percolation.

Historically, it refers to the flow of liquids going through
porous materials. The word percolation comes from the Latin
percolare, which means to trickle through, to filter. Like hot
water has to cross ground coffe beans, neuronal activity has
to propagate through a complex network. There are multiple
kinds of percolation [61] [61]: Miller (2016), ‘Equivalence

of several generalized percolation
models on networks’

, and the one we are interested in
is called quorum percolation, a variation of the bootstrap
percolation in directed networks.
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Figure 1.9: Schematic of propaga-
tion in the quorum percolation
model with a threshold m = 2. The
red nodes are activated at t = 0.
Then the brown nodes are acti-
vated at second time step, then the
green node. The gold node will
never activate.

The Quorum Percolation Model

The quorum percolation model describes the ability of
a network to recruit a giant connected component Gcc

under the random activation of an initial proportion f .
It is a model with discrete time, where the proportion of
active nodes at time t + 1 depends only on the number of
active nodes at t. A node is activated at t + 1 if and only if
it had at least m activated incoming neighbours at time t.
This dynamics of propagation in networks is represented
in figure 1.9

Dynamical models of neuron’s membrane potential often
consider a threshold above which a spike is artificially
emitted. Excitatory post synaptic potentials (initiated by
neighbours spiking) bring the membrane potential closer
to threshold making the neuron more easily activated. In
such framework, the Quorum Percolation Model suppose
that the number of excitatory input needed to reach the
threshold is:

m =
Vth −Veq

VPSP

with Vth the potential threshold, Veq the equilibrium po-
tential and VPSP the increase in the post synaptic potential
after one activated incomming neighbours. Note that the
existence of a threshold can be criticized, see page 3 of [62]

[62]: Izhikevich (2007), Dynamical
systems in neuroscience

This model exhibits a complex phase transition diagram. [63,
64][63]: Baxter et al. (2010), ‘Bootstrap

percolation on complex networks’
[64]: Amini (2010), ‘Bootstrap Per-
colation in Living Neural Networks’

The order parameter that best illustrate the transitions is
the size of the giant active connected component Gcc in the
infinite time limit. The system stable state changes depend-
ing on the number of initially active nodes. As one can see
with the brown and red curves of figure 1.10 for two spe-
cific values fc1 and fc2 there is a meaningful change in the
order parameter. For f < fc1, there is no giant connected
component and the order parameter Gcc is null. For f > fc1 a
giant connected component appears and the order parameter
continuously increases from zero. At f = fc2 one observes a
discontinuity in the order parameter: there is a finite jump in
the size of the active giant connected component. This is the
distinctive feature of first order phase transition. For f > fc2

the order parameter keeps continuously increasing. Hence,
the phase transition diagram presents two phase transitions,
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Figure 1.10: Size of the giant
active connected component as
functions of the initially ignited
fraction for threshold values m
being 5 (brown), 9 (red) and 13
(blue) in an Erdös Rényi with
1000 nodes and a mean degree of
15.

Figure 1.11: Schematic of a sub-
critical cluster highlighted in gold
for a threshold of 3. Nodes in
green represent the active fraction
at the start, blue ones are activated
at the stable state and gold are not
active. One can notice that if a sin-
gle node of the cluster is activated,
the whole cluster will be. A single
activation is able to create a dis-
continuity in the size of the giant
active component.

a second order phase transition at fc1, and a first order one at
fc2.

Origin of the discontinuity: subcritical clusters

In undirected networks, cascades of activations happen
when some nodes are at the edges of switching on: they
have m − 1 active neighbours. We call subcritical clusters
groups of connected nodes with m − 1 active neighbours at
the infinite time limit. Figure 1.11 illustrates a small subcrit-
ical cluster. The activation of a single vertex in the overall
neighbourhood of this cluster is sufficient to activate all of
its nodes. Just as in bond percolation, where the connected
components mean size diverges close to threshold, as f
approaches fc2 from below, the mean size of subcritical
clusters diverges. Hence, the avalanche of activation origi-
nating from a single activated node in the network, results
in a finite jump of the order parameter.

It can be shown [63] [63]: Baxter et al. (2010), ‘Bootstrap
percolation on complex networks’

that the mean size of subcritical clus-
ter follow, ssubc ∼

p→pc
( fc2 − f )−1/2. This divergence comes

from the subcritical cluster size distribution at the critical
point. The distribution is known to scale as s−3/2 in the
undirected complex networks, and other simpler ones like
Bethe lattices. [65] [65]: Shukla (2008), ‘Dynamics of

bootstrap percolation’

A complex picture: the two-dimensional phase diagram
Because quorum percolation utilizes a parameter m in its dy-
namical process, it also exhibits a more complex transition.
Increasing the value of the threshold, one can understand
that when m is above the mean in-degree ki the propagation
is jammed by low in-degree nodes and the discontinuity can
not exist any more. There is a value mc above which the num-
ber of active nodes at the infinite time limit is a continuous
function of the initially ignited fraction f . For such values the
size of the giant active connected component is continuous:
zero below fc1 and non-zero above (see figure 1.10). The com-
plete picture of quorum percolation phase transition has to be
drawn in a two-dimensional phase space, where the critical
points fc1 and fc2 are functions of the threshold m.

Quorum Percolation in Neuronal Cultures
In the hope to quantify neuronal network statistical prop-
erties, Breskin et al [66, 67] [66]: Breskin (2006), ‘Connectivity

in living neural networks’
[67]: Eckmann et al. (2007), ‘The
physics of living neural networks’

introduced the idea that the re-
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reveals information on the structure of the network that is often
extremely hard to extract otherwise.

Monitoring Network Activity and Pharmacology. Neuronal cultures
[see supporting information (SI) Fig. S1], grown on 13-mm glass
cover slips, were placed in a chamber mounted on a Zeiss inverted
microscope with a 10! objective. The neurons were electrically
stimulated by applying a 20-ms bipolar pulse through bath elec-
trodes that run along opposite sides of the culture, delivered by a
computer-controlled current source, and the corresponding voltage
drop V was measured with an oscilloscope (9). Images of calcium-
sensitive fluorescence were captured with a cooled CCD camera at
a rate of 5 frames per second, and processed to record the
fluorescence intensity of 400–600 individual neurons in a region of
830 ! 670 !m2 as a function of time (Fig. 1A). Experiments were
carried out at room temperature. (See SI Text and Fig. S2 and S3
for additional details.)

The network was weakened by gradually blocking the "-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate
receptors of excitatory synapses with increasing amounts of
6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). N-Methyl-D-
aspartate (NMDA) receptors were completely blocked with 20 !M
of the corresponding antagonist 2-amino-5-phosphonovalerate
(APV) so that the disintegration of the network is due solely to
CNQX.

To study the role of inhibition, inhibitory synapses were left
either active or blocked with 40 !M GABAA of the receptor
antagonist bicuculine. To study the disintegration of the network
with and without inhibition, we label the network containing
both excitatory and inhibitory synapses by GEI, and the network
with excitatory synapses only by GE.

Quantifying Connectivity: Giant Component. The network’s re-
sponse to a given CNQX concentration was measured as the
fraction of neurons " that responded to the electric stimulation

at voltage V (Fig. 1B), as described in ref. 9. At one extreme, a
fully connected network ([CNQX] # 0) leads to a very sharp
response curve, because a small number of responding neurons
suffice to activate the entire network. At the other extreme, with
high concentrations of CNQX (!10 !M), the network is com-
pletely disconnected and the response curve is given by the
individual neuron’s response. "(V) for independent neurons is
then well described by an error function (9). For intermediate
concentrations of antagonist some of the neurons break off into
separated clusters, but a giant cluster still contains a finite
fraction of the network.

The size of the giant component G is measured as the biggest
fraction of neurons that fire together in response to the external
excitation (Fig. 1B). The size of the giant component decreases with
the concentration of antagonist (Fig. 1C), and it is considered to be
zero when a characteristic jump is not identifiable. Conceptually,
the presence of a giant component reveals the existence of long-
range connectivity that spans the entire network. Fig. 1D shows the
spatial coverage of the giant component (within the field of view of
the microscope) during the disintegration of the network for the
response curves of Fig. 1B. For [CNQX] # 0 the giant component
comprises the entire network. As the concentration of CNQX
increases the giant component reduces in size, but it covers a
continuous area that extends the entire network. At a critical
concentration, [CNQX] ! 700 nM, a giant component is not
identifiable and the group of neurons that fire together in response
to the excitation correspond to isolated clusters.

Characterization of the Control Parameter. To quantify the change
in connectivity of the network as it disintegrates we introduce a
control parameter that measures the average number of inputs
m required for a neuron to fire, and provide an expression that
relates m with the concentration of CNQX.

Our model assumes that each input onto a neuron increases or
decreases its threshold voltage VT, depending on the polarizing
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Fig. 1. Network’s response and giant component. (A)
Example of the fluorescence signal of five neurons of a
GEI hippocampal network for four concentrations of
CNQX and V # 3.1 V. Vertical arrows indicate the
excitation time, and arrow tips the responding neu-
rons. (B) Corresponding response curves "(V) for a
total of 450 neurons. Gray bars show the size of the
giant component. Lines are a guide for the eye except
for 700 nM and 10 !M, which are fits to error functions.
(C) Corresponding size of the giant component G as a
function of [CNQX] (main plot) and as a function of the
control parameter m/m0 that quantifies the average
connectivity of the network (Inset), defined in Materi-
als and Methods. (D) Spatial coverage of the giant
component (red) for the response curves shown in B.
Dark circles in Left are neurons.
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Figure 1.12: Experimental results
of the quorum percolation experi-
ments from [68]. They showed the
estimation of the jump in the or-
der parameter as functions of the
threshold m, or the concentration
[CNQX].

sponse to an external electrical stimulation can be understood
through the lens of percolation. They recorded the number
of activated neurons Ga as function of the excitation poten-
tial V while chemically66: With CNQX: 6-cyano-7-nitroqui

noxaline-2,3-dione
weakening the original network and

observed a discontinuous jump in the response curve Ga(V).
They latter introduced [68][68]: Soriano et al. (2008), ‘Devel-

opment of input connections in
neural cultures’

a control parameter to assess the
quorum percolation threshold m as a function of the CNQX
concentration, that quantify the network damage. The idea is
that this chemical does not behave as an on and off switch,
but decrease slowly the synaptic strength by blocking some
synaptic receptors.

The average number of inputs mo for a neuron to fire, in the
undamaged network, is related to the potential threshold
and synaptic efficiency (see section Section 4). The synap-
tic strength is affected by the concentration of CNQX ac-
cording to the available receptors concentration c that are
not blocked by it. Some bio-chemical analyses easily gives,

c =
Kd

Kd + [CNQX]
, where Kd is the CNQX dissociation con-

stant (Kd = 300 nmol.L−1). The quorum percolation threshold
as a function of the synaptic strength is then m =

mo

c
=

1 +
[CNQX]

Kd
, which presents a critical value above which the

size of the giant active component is continuous. Figure 1.12
shows the estimation of the critical value mc, or equivalently
the concentration [CNQX] above which there is no disconti-
nuity in the number of active neurons.

Synchronization: intrinsically oscillating neurons

Pacemaker neurons are able to drive neuronal circuits into
bursting regime. They are spontaneously activated, even in
the absence of synaptic input. The depolarization of their
membrane potential comes from a persistent active sodium
conductance [69, 70][69]: Tazerart et al. (2008), ‘The

Persistent Sodium Current Gen-
erates Pacemaker Activities in the
Central Pattern Generator for Lo-
comotion and Regulates the Loco-
motor Rhythm’
[70]: Sipilä et al. (2006), ‘Intrinsic
bursting of immature CA3 pyra-
midal neurons and consequent gi-
ant depolarizing potentials are driven
by a persistent Na+ current and
terminated by a slow Ca2+-activated
K+ current’

, and is followed by an after-spike hy-
perpolarization that last 1 to 6 seconds. These neurons are
believed to be clustered at the nucleation centre of propagat-
ing events in the cerebellum and hippocampus. [57]

The existence of intrinsically oscillating neurons, with stable
frequencies, leads us to believe that the observed bursting
regime is a specific case of synchronization of oscillators.
Indeed, a phase transition, from an asynchronous activity to
a phase locked synchronized burst has indeed been observed
experimentally in culture of hippocampal neurons. Y. Penn



1.3 State of the art 17

et al [71] [71]: Penn et al. (2016), ‘Network
synchronization in hippocampal
neurons’

demonstrated that the rhythmic bursting regime
appears when the concentration of calcium is increased. They
claim that such biological networks are established with 60
% of pacemaker-like neuron, that display various types of
bursting patterns, with an inter-burst interval ranging from 1
to 20 s7

7: Although it is in the same or-
der of magnitude, this long inter-
val seems incongruent with the 1
to 6 seconds of after-spike hyper-
polarization.

.

This phase transition has been qualitatively reproduced with
a dynamical model in Tanguy Fardet thesis. [72] [72]: Fardet (2018), ‘Growth and

activity of neuronal cultures’
Taking into

account that a the diminution of calcium induces a reduction
in the vesicle release and of the after-spike hyperpolarisation8

8: The AHP is mediated by cal-
cium activated potassium conduc-
tance [57]

,
the adaptive exponential integrate-and-fire model [73] [73]: Brette et al. (2005), ‘Adaptive

Exponential Integrate-and-Fire Model
as an Effective Description of Neu-
ronal Activity’

in a
Gaussian network reproduces the phase transition, with the
decrease of inter-burst interval as the calcium concentration
is increased.

Reaching a synchronous state is not obvious, and this model
is able to reproduce the observed synchronization because it
belongs to the family of relaxation oscillators. The Mermin-
Wagner theorem [74] [74]: Mermin et al. (1966), ‘Absence

of Ferromagnetism or Antiferro-
magnetism in One- or Two-Dimensional
Isotropic Heisenberg Models’

states that harmonic oscillators can-
not reach synchronous state in 2D locally coupled networks.
However, relaxation oscillators are driven by the fastest ones,
hence the possibility to synchronize in spatially embedded
2D networks. It has been proven that relaxation oscillators
coupled locally synchronize at an exponential rate, a feature
observed experimentally [52] [52]: Eytan et al. (2006), ‘Dynamics

and Effective Topology Underly-
ing Synchronization in Networks
of Cortical Neurons’

in neuronal cultures.
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In the introduction chapter we have seen that the spatial
dynamics of neuronal culture activity in two-dimensional
space is still unclear, and requires more in depth analysis to
provide an accurate model of neuronal population activity.
Also, I have presented the model of quorum percolation, used
to describe neuronal culture response to an excitation and the
transition to a fully active state with an elementary ingredient
of neuronal dynamics: a threshold based interaction.

In this chapter, I will first briefly present an overview of the
Quorum Percolation Model (QPM) extensions to specific neu-
ronal dynamics in order to grasp a more detailed understand-
ing of this model, and more specifically of the critical point
mc above which the phase transition is continuous. Then, I
will use this model in networks embedded in space in order
to explore the theoretical possibilities offered by such simpli-
fied model of activation. I will define and quantify different
regimes of 2D spatial propagation and introduce the idea that
spatial correlation changes the first order phase transition.

2.1 An overview of the QPM variants

Connectomics with the QPM
After a successful description of stimulated neuronal cultures,
[66] [66]: Breskin (2006), ‘Connectivity

in living neural networks’
the QPM has been used to estimate properties of the neu-

ronal network degree distribution. The experimental measure
of the critical threshold mc is in agreement with simulations
of the QPM with network described by a Gaussian in-degree
distribution of average degree between 60 and 150 depending
on neurons’ origins and culture density. [68] [68]: Soriano et al. (2008), ‘Devel-

opment of input connections in
neural cultures’In a mean field approach of the QPM, a neuron with in-degree

k is activated when the proportion of active neurons is higher
than

m
k

. Hence, the conjecture that the degree distribution tail
is responsible for the initiation of bursts in culture. Eckmann
et al [75] claim that a power law tail with exponent −2 is able

[75]: Eckmann (2010) ‘Leaders of neuronal cultures in a quorum percola-
tion model’
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to reproduce the exponential rise in the number of active neu-
rons observed in vitro. [52][52]: Eytan et al. (2006), ‘Dynamics

and Effective Topology Underly-
ing Synchronization in Networks
of Cortical Neurons’

The superposition of a Gaussian
distribution of incoming connections and this power law tail
is able to reproduce the following supra-exponential growth,
in agreement with their previous studies [66].

The degree distribution has also been shown to strongly in-
fluence the first order phase transition. The critical value mc

above which the transition is continuous has been shown to
depends on the mean degree and standard deviation in Gaus-
sian networks. Monceau et al. [76][76]: Renault et al. (2014), ‘Effec-

tive non-universality of the quo-
rum percolation model on directed
graphs with Gaussian in-degree’

identified the relationship
as

mc

ki
≈ 1 − 1.3

σ

ki
+ 1.5

(
σ

ki

)2

(2.1)

with σ the in-degree standard deviation.

Extension of the quorum percolation model
The QPM has been refined to best describe neuronal cultures.
As expected, [68][68]: Soriano et al. (2008), ‘Devel-

opment of input connections in
neural cultures’

the effect of ≤ 20% inhibitory neurons has
been shown to be equivalent to a rewiring of a purely ex-
citatory network and only shift the critical point to smaller
values: mc(η) = mc(η = 0) − 2kη. [77][77]: Fardet et al. (2018), ‘Effects of

inhibitory neurons on the quorum
percolation model and dynamical
extension with the Brette–Gerstner
model’

In order to take some aspect of neurons dynamics into ac-
count, Renault et al. have introduced the probability pd that a
neuron deactivates at each time step of the simulation δt. [78]

[78]: Renault et al. (2013), ‘Mem-
ory decay and loss of criticality in
quorum percolation’

The duration of activation scale is then: τQP =
δt

ln(1 − pd)
The

decay reduces the effective size of the network, and changes
the behaviour of the observed first order phase transition.
They found out that, even for small decay pd values, the size
of the giant component is not discontinuous anymore. The
transition with decay is of second order, as long as the thresh-
old m > 1. Thus, memory decay decreases the threshold to
mc = 1. Along with a shift in mc they showed that the ap-
parent size of the discontinuity, if measured experimentally
would be underestimated if decay is not taken into account.

Quorum Percolation in spatially embedded networks
Although the theoretical framework developed here seems
to describe some features of neuronal population activation
properly, the model lacks an important parameter. Cultured

[66]: Breskin (2006) ‘Connectivity in living neural networks’
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neurons grow in the 2D space, and develop synaptic connec-
tions accordingly. The assumption of random graphs, where
any neuron can connect with any other neuron in the culture
is unrealistic. One need to take into account that the network
is embedded in space: there exists a typical finite distance of
connection λ. As a result the dynamic of activation is differ-
ent. In metric networks, the activation of a finite number of
neurons, m in a disk of radius λ is enough to trigger a sys-
tem size event. In random graph, such nuclei able to initiate
a propagating activation does not exist, and a large excitation
is needed.

2.2 Simulation of the the Spatial
Quorum Percolation Model

Network Model

The Exponential Distance Rule (EDR) model [72] [72]: Fardet (2018), ‘Growth and
activity of neuronal cultures’

can repro-
duce a Gaussian-like in-degree distribution, the observed
adirectionality and the finite connection distance. [79] [79]: Barral et al. (2016), ‘Synap-

tic scaling rule preserves excita-
tory–inhibitory balance and salient
neuronal network dynamics’

It is an
Erdös-Rényi like network, where the connection probability
depends exponentially on the Euclidean distance. The net-
work is built under the condition of fixed mean degree, from
a random selection of somata positions in a circular culture
with strict border conditions. Each pair of somata separated
by a distance d is connected with the probability:

p(d) = p0e−d/λ (2.2)

with p0 a normalization factor. The exponential character-
istic length λ (also called EDR scale) is equal to the mean
connectivity length in the thermodynamic limits.

Network properties and the EDR scale
In order to better understand this model, we introduce a
characteristic scale λc with the network mean in-degree ki,
and the culture spatial density η:

λc =

√
ki
πη
= R

√
ki
N

(2.3)
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Figure 2.1: Graphical representation of the EDR model properties as function of the spatial scale λ (vertical axis).
The simulated networks are set with a spatial density of 500 cells.mm−2 in a circular environment of radius 1mm.
The mean in-degree is 100, hence λc = 250 µm. Values or λ are given on the left. The left frame displays the
distribution of connection length (in µm). The middle frame displays the betweenness distribution and the right
frame the clustering distribution. Beware that the vertical scale changes for better visualization, so that the total
area is always 1. Every curve in this figure is a probability density normalized to 1.

With R the culture radius, and N the number of neurons. This
scale represents the radius of a circle that covers ki neuron,
depending on the density and is much smaller than the radius.
Indeed, typical values of N and ki are in range of 104 and 100
(respectively), hence

λc ∼
R
10

Emergence of clusters
Figure 2.1 shows EDR networks properties as function of the
EDR scale. The characteristic scale λc appears to be a transi-
tion point between two behaviour. Although much smaller
than the culture radius, for values of the EDR scale λ close 800
microns, the network is very close to an Erdös-Rényi one and
heterogeneities are not yet clearly observable. However, for
values of λ close to λc, locality emerges as a widening of the
clustering and betweenness1010: A centrality measure that quan-

tify the importance of a node in
the network information flow. For
a node n, its value is related to
the number of smallest path be-
tween all pair of node (u, v) going
through the node n.

Interestingly, the maximum of
the betweenness distribution shifts towards low values show-
ing a decrease for the majority of nodes, whereas some have
increasingly high values. This is characteristic of densely con-
nected clusters, interconnected with high centrality nodes.
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Figure 2.2: Graphical representation of the EDR model degree distribution for three values of the spatial scale
λ, 100 (blue), 250 (red) and 800 (green) microns. The simulated networks are set with a spatial density of 500
cells.mm−2 in a circular environment of radius 1mm. The mean in-degree is 100, hence λc = 250 µm. The right
graphs represent the in-degree distribution. The left frame represents nodes’ degree as a function of their position
in polar coordinates. The curves are an average over 100 instances of the EDR model.

Correlation with space
Figure 2.2 shows the correlation of the in-degree with the
node position11 11: Characterized by its distance

to the culture center
in the two-dimensional culture. As the EDR

scale decreases, nodes close to the environment border are
constrained to a smaller degree, because of the lack of close
neighbors. Close to λc the distribution is broad, with the
highest in-degree at the centre of the culture. As λ decrease
below λc the degree appears constant for a large portion of
the environment and decrease rapidly at the border. Hence,
the highly asymmetrical12 12: The distribution is almost bi-

modal: nodes close to the bound-
ary have low in-degree,

degree distribution. Note the non-
monotonous evolution of the degree ki(r) as λ is changed: the
highest in-degree appears when λ is close to λc and at r ≈ 0

Numerical simulation methods

Explicit simulations of the QPM
The QPM dynamics can be described in discrete time as fol-
lows:

1. For every node n a variable sn(t = 0) is initiated to 0.
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A random fraction of the network, F is activated such
that ∀n ∈ F, sn(t = 0) = m

2. Any node na activated at the time step t − ∆t sends at t
one signal to each of its outgoing neighbors.

3. The variable sn(t) for all nodes n is incremented by 1 for
each signal received at time t. If sn(t) is greater than the
threshold m, the node n is activated at time t

4. Once a node is activated, it remains in this state until
the end: when the number of activated neurons at time
t is equal to the umber of activated neurons at time
t + ∆t

Once the number of activated node is constant over one itera-
tion, the system has reach a stable state. One cascade of activa-
tion produced by the QPM is terminated, and the macroscopic
state reached by the model can be analyzed. From a statistical
physics point of the view, this state described by the size of
the giant active connected component Gcc. The observable
Gcc depends on the complex network, of spatial scale λ and
the fraction of initially ignited nodes f . The QPM is solved
with random instances of both the EDR network and the
fraction of initially ignited nodes. Thus, the observable is to
be averaged over the two associated configuration in order
to obtain the function Gcc(λ, f ). Only then, the behaviour
of Gcc(λ, f )will be smoothed of statistical dependancy. It is
worth noticing, however, that the activation dynamics are
entirely deterministic.

In our specific case, we are interested in the propagation of
activity in one specific instance of the EDR network model.
In order to relate the observed QPM dynamics to properties
of the network and not only to the connection length λ we
will keep the network fixed and average observables over
10000 instances of different fractions of initially ignited nodes
only.

Thus, the behaviour observed as function of the EDR scale
λ cannot be taken as hard proof since it may come from
statistical variability and must be understood as conjectures.
On the contrary, the behaviour observed as function of the
quorum threshold m is not associated to statistical variability
since m is constant over the network. Also, the conclusions
one can drawn from the analysis in the following sections are
limited by the finite size of the simulated system which will
be discussed.



2.2 Simulation of the QPM 25

The fraction of initially ignited neurons f
As explained in the previous chapter, there is a first order
phase transition in the size of the giant active conencted com-
ponent. If the random fraction of initially activated neurons
is too low there is no giant connected component, whereas
once above a critical value, there is a giant active connected
component. I want to characterize the spread of activity in the
two-dimensionnal space. Hence, the quantity of interest is the
number of iterations NOI to reach the stable state. It is fairly
intuitive that for small values of initially activated neurons,
there are only few propagating events and the number of
iterations is small. The same thing happens when the fraction
of initially ignited neurons is high: only a few number of
time steps is sufficient to activate the whole network. Thus,
I will first look at the specific point f? where the number of
iterations reaches its maximal value. For values m < mc it
corresponds to the first order phase transition fc2. Indeed, the
number of iteration to reach the stable configuration is com-
monly used to find the critical point of the first order phase
transition. [80] [80]: Gao et al. (2015), ‘Bootstrap

percolation on spatial networks’
However, it is not restricted to this phase tran-

sition. For m ≥ mc the number of iterations also goes through
a maximum, and allows us to study the propagating dynam-
ics above the transition.

The propagating dynamics is constrained by the network
size. The more nodes there is, the longer the propagation will
be. I will study networks of 10000 nodes. Since the compu-
tational time for simulating the model, and analyzing the
result can be extensively long, I coded a program able to
work with multiple processes. The time saving advantage,
and the simplicity of implementation are the main arguments
for this choice, however it requires more memory than multi-
threading. Hence, the size of the considered network could
not be too large. This restricted me to an in-degree of 10,
but allowed me to simulate ∼ 10 networks at the same time
without overloading the memory.

The simulated EDR networks’ in-degree distribution sets the
typical order of magnitude for the thresholds mc. According
to equation 2.1: mc/ki ≈ 0.713 13: The standard deviation is suf-

ficiently constant for all EDR scale
and is approximated well by the
square root of the mean in-degree
like any Erdös-Rényi network

. In the following analysis the
quorum will be express in terms of m/ki and one need to
keep in mind that above 0.7 the size of the giant active con-
nected component is continuous in an equivalent Gaussian
network.
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Figure 2.3: Schematic representa-
tion of the propagating dynam-
ics transitions in the Quorum Per-
colation Model, with EDR net-
work. The quorum is expressed as
m/ki . The blue region represents
a dynamics of localized nucle-
ation. The red region represents
a dynamics where no propagat-
ing front can be identified. The
gold region represents a dynam-
ics of fractured propagation. R is
the culture radius, and λc com-
puted with equation 2.3

The QPM and synchronous bursting activity

A single instance of the QPM is understood as the initiation
of a single burst. The fraction of initially activated nodes
f and the threshold m represent (respectively) a uniform
noisy excitation of the network and its excitability. The
QPM can higlight the condition under which a network is
able to produce a burst and if it is, the initiation dynamics
can be analyzed.

2.3 Propagating dynamics

Exploration of the phase space (λ,m)

Before looking for quantification of the activity, it is interest-
ing to observe the overall behaviour for different values of
the connection length λ and the quorum m/ki. One specific
instance of the QPM can be plotted in space, with the time
step at which a node is activated being the observable. The
different dynamics identified here, are summarized in the
figure 2.3. They are all example of one of the longest prop-
agation at the considered phase point (m, λ, f?). There are 3
patterns clearly identifiable. 1414: Note that for high values of

the quorum, the observation is made
difficult by the high number of ini-
tially active nodes

I Localized nucleation: For small values of the quorum
m/ki and small values of the EDR scale λ, we observe
a localized nucleation of activity and a propagation
invariant by rotation. After the nucleation, the propa-
gation respect a rotational symmetry around the nu-
cleation centres. See figure 2.4, plot with EDR scale
λ = 150µm: propagation starts in the middle blue-ish
region and spread in every directions. There can be mul-
tiple nucleation centres (see on the same figure, plots
with smaller EDR scale). 15

15: In order to distinguish this dy-
namics, I tend to use the word nu-
cleation when there is a rotational
symmetry.

I Fractured propagation: For larger values of the quo-
rum m/ki and small values of the EDR scale λ, we ob-
serve a localized nucleation of activity, with an asym-
metrical propagation. The propagation seems to be
highly restricted by the network and create fractured
patterns of activity. See for example, plots of figure 2.5
with an EDR sclae λ < 75µm. The typical scale of the
fractured patterns seems related to the quorum and
EDR scale: they increase when m decreases, and when
λ increases.
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I Non-propagating: For high values of the EDR scale λ,
we do not observe any propagating front correlated
to space. The higher values of the quorum m/ki may
indicate that there is a relationship with the mean de-
gree: activated nodes are mainly in the centre, where
the degree is higher (see figure 2.2). See plots with EDR
scale larger than 400 µm in figures 2.4 to 2.6.

Figures 2.4 to 2.6 displays examples of these dynamics. One
can notice that there is a clear difference between the localized
nucleation and fractured propagation. The (m,λ) phase space is
separated in (at least) two domains by a curve m1(λ). For m <

m1(λ) the propagation is locally nucleated, whereas for m >

m1(λ) the propagation is fractured. In the following sections,
I will investigate this curve m1(λ) and try to characterize the
different dynamics.

Figure 2.4: Representation in the 2D space of one instance of the Quorum Percolation Model, with threshold
quorum m/ki = 0.2 (top) and,m/ki = 0.3 (bottom). Colours represent the time of activation, from blue at the
initial time to red, at the stable configuration in the infinite time limit. The corresponding EDR scale is written on
top of each frame (in microns).

white white white white white white white white white white
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white white white white white white white white white white
white white white white white white white white white white
white white white white white white white white white

Figure 2.5: Representation in the 2D space of one instance of the Quorum Percolation Model, with threshold
quorum m/ki = 0.4 (top), m/ki = 0.5 (middle) and m/ki = 0.6 (bottom). Colours represent the time of activation,
from blue at the initial time to red, at the stable configuration in the infinite time limit. The corresponding EDR
scale is written on top of each frame (in microns).
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Figure 2.6: Representation in the 2D space of one instance of the Quorum Percolation Model, with threshold
quorum m/ki = 0.7 (top) and m/ki = 0.8 (bottom). Colours represent the time of activation, from blue at the
initial time to red, at the stable configuration in the infinite time limit. The corresponding EDR scale is written on
top of each frame (in microns).

Figure 2.7: Number of iteration at
the critical point, NOI?, as func-
tion of the quorum m/ki , for dif-
ferent values of the EDR scale λ in
range [15, 800] microns. For val-
ues of λ higher than ∼ 400 µm, all
curves merge into one.

Number of iterations

Figure 2.7 shows the average number of iterations at the
critical point, NOI? as function of the quorum. We can see
that there is a maximum for all values of the EDR scale. As λ is
varied, this maximum decreases down to a constant value for
λ ∼ 400 µm, where all curves NOI?(m)merge into one. This
behaviour seems related to the dynamics identified above:
for an EDR scale higher than 400 µm, there is no propagation
front, hence the number of iteration does not depend on the
EDR scale. On the contrary, when the EDR scale is smaller, the
number of iterations depends on the network spatial structure
and shows a maximum. This maximum can be associated
with the transition between two dominating behaviours.

Unsurprisingly, the number of iterations depends on the prop-
agating dynamics. On the one hand, slower propagating dy-
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namics will last longer because it will take them more time
to reach the system size. On the other hand, the net num-
ber of recruitable nodes impacts the number of iterations.
The maximum of NOI? separates two regimes: one where
the propagation is possible but slowed down by the typical
connection length1616: As we will see latter, the prop-

agation velocity increases with the
EDR scale in the localized nucle-
ation dynamics regime

, and a second where the propagation is
jammed by the quorum threshold.

When the quorum is small with respect to the in-degree, long
range connections make the propagation faster, thus the num-
ber of iterations decreases for increasing values of λ. However,
when the quorum increases close to the smallest values of
the in-degree distribution the propagation follows the only
possible path in the network, made of the highest in-degree
nodes. Hence, the propagation may be slow down, or even
stop because of network local structure. The number of itera-
tions decreases for higher values of the quorum. In between
the two situations, there is a maximum describe by the m1(λ)

function.

Branching parameter

Definition: Branching Process
The branching process theory began with Sir Francis Galton
and Reverend Henry William Watson. [81][81]: Kendall (1966), ‘Branching

Processes Since 1873’
Sir Francis Galton,

an explorator, mathematician, geographer and so on was
an ardent proponent of social Darwinism and presumably
coined the term of eugenics in 1884. He was interested in
the disappearance of family names, [82][82]: Galton (1873), ‘Problem 4001’ and formulated the
following problem: s

Problem 4001: A large nation, of whom we will only
concern ourselves with the adult males, N in num-
ber, and who each bear separate surnames, colonise a
district. Their law of population is such that, in each
generation, a0 per cent of the adult males have no male
children who reach adult life; a1 have one such male
child; a2 have two; and so on up to a5 who have five.

In a modern approach, a branching process is a model for pop-
ulation growth with discrete time. The population evolves
according to a simple rule: in every generation i = 0, 1, 2, ...
each individual produces in the next generation a random
number of offsprings, independently of others. The model is
governed by the probability of offspring, pn = P(number of
offsprings = n).
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Figure 2.8: Representation of the
first 5 generetions of a Branching
Process. For instance, the number
of individuals at the 4th genera-
tion is 2 because the 3 individuals
of generation 3 have only 2 off-
springs in total: the random vari-
ables X1, X2 and X3 drawn in the
distribution of offsprings pn are
respectively evaluated to 1, 1 and
0.

Let Xn with n ∈ N∗ be random variables drawn in the off-
spring distribution, and Ai with i ∈ N be the number of
offspring at generation i. Then the transition probabilities, of
state with k individuals, to state with n, can be writen as

P(Ai+1 = n|Ai = k) = P(X1 + X2 + ... + Xk = n)

From this equation, it is possible to show17 17: One can find it in many math-
ematics textbook on stochastic pro-
cesses such as [83]

that the expected
value for the number of individual at generation i, E(Ai) =

µi is governed by the expected value of offsprings, E(X) =
E(A1) = σ (we consider that there is one individual at the
initial time, A0 = 1):

µi = σ
i ⇔ σ =

µi+1

µi
(2.4)

Hence, the population dies out if E(X) is less than 1, and
grows to infinity otherwise. This parameter, E(X), is called the
branching parameter. It corresponds to the average number of
offsprings computed over the probability pn: σ =

∑∞
n=0 npn

It is here assumed that

∀(n, m) ∈ N∗2, E(Xn) = E(Xm) = σ (2.5)

Each individual is equivalent, and being born in a differ-
ent generation does not change the expected number of off-
springs. This is a stationnary branching process. Also, there
is no interaction between the generation i − 2 and the genera-
tion i. In the case of quorum percolation, the population can
be understood as the number of active nodes and the prop-
agation can be studied with an equivalent of the branching
parameter σ.

Branching rate in the QPM
In quorum percolation simulations, one can quantify the
propagating dynamics with an equivalent of the branching
parameter. In a time evolution process, we introduce W(t)
the number of activated nodes at time t. One can define the
branching rate, a time dependent variable as:

E(W(t + ∆t))
E(W(t))

= σt (2.6)
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Figure 2.9: Branching rate σt ,
computed with eq. 2.6 in the firsts
time steps of the quorum percola-
tion model with EDR network of
different spatial scale (displayed
in microns). The quorum is m/ki =
0.2.

Figure 2.10: Schematic of an EDR
network in the QPM. Only the
connections going from left to
right are shown. The green nodes
are activated and gold nodes are
not. Because of local fluctuation of
seeding density, and a small EDR
scale the red nodes have few con-
nections going from left to right.
They are unable to propagate the
activity in this direction. Note that
they have a high betweenness: the
smallest path from the green to
the gold nodes have to cross one
of the red one.

The branching rate relates nodes activated at the time step
t + ∆t to nodes activated at t. The question the branching
rate can help us solve is whether the propagation can be sus-
tained or not. There are two limiting factors able to stop the
propagation of activity: the network size and the network
locality18

18: High values of the clustering
and/or betweenness

. Firstly, one can expect a decrease of the branching
rate when the propagating front reaches the boundaries of
the two-dimensionnal spatial network. The propagation is
stopped because it has reach the limit of the environment.
Secondly, the network may not be able to self-maintain the
activity, because of local structural characteristics: see fig-
ure 2.10 for a schematic representation of how locality can
interupt the propagation.

Figure 2.9 shows the branching rate during the firsts time
steps of the QPM simulation. One can understand the first
order transition in the QPM with network embedded in space
with this figure. Depending on the spatial connectivity scale,
the emergence of a giant active component does not come
from similar dynamics:

I For small values of the EDR scale, the initially activated
nodes can represent a very high local excitation. The
reason is that locally, the density of activable edges at
t = 0 is in some area much higher than on the overall
network, because of some nodes with high clustering
values (see figure 2.1). Hence, at the firsts time steps the
branching rate has a very high value: for each ignited
node at t, 3 are ignited at t + ∆t. However, this clustered
network is not suited for propagation and the branch-
ing rate rapidly decreases, because of nodes with high
betweenness (see figure 2.1).

I For larger values of the EDR scale, the clustering and
betweenness are uniform in space. Hence the effective
initial excitation is uniform in the network, and there
is no particular region of higher excitation. However,
the network is efficient in information transfer and the
excitation is rapidly increased and propagated across
the network.
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Figure 2.11: Top frame shows an
example of a localized nucleation
dynamics in a network with EDR
scale 50 and a quorum m/ki =
0.2.Middle frame shows an exam-
ple close to the transition point
m1(λ) in a network with EDR scale
25 and a quorum m/ki = 0.3. Bot-
tom frame shows an example of a
fractured propagation dynamics
in a network with EDR scale 25
and a quorum m/ki = 0.4.

The branching rate in the propagating dynamics transition
Figure 2.12 displays the branching rate σt as functions of the
time step in the QPM. The branching rate’s decrease due
to the network size can be observed in localized nucleation
dynamics (see top frame of figure 2.11), when the quorum and
the EDR scale are low. This decrease happens with a relatively
good statistics, meaning that most of the instances behave
very similarly. We can observe that the time step at which this
happens depends on the EDR scale and quorum. Hence, one
may expect that the propagation speed and nucleation size
depend on the quorum and EDR scale. We will look into it in
latter sections.

Closer to the transition point m1 where the dynamics appear
fractured (see middle frame of figure 2.11), the branching
rate does not show this slow decrease, but stays relatively
constant with a significant decrease in the statistics. This
seems to indicate a very irregular dynamics, where some
realizations are able to propagate activity for a very long time
whereas other cannot.

When the dynamics appear clearly fractured (m > m1(λ)), the
branching rate reaches a stable value σ∞ lower than 1, with
also a decreasing statistics as the time step goes up. The sta-
ble value σ∞ depends on the EDR scale and the quorum (see
figure 2.13). It decreases with increasing λ and m, showing
that the network locality is the limiting factor for propaga-
tion in this regime. In the fractured propagation regime, the
network is fundamentally unable to propagate activity up to
the system size.
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Figure 2.12: The branching rate, computed with eq. 2.6, for different values of the quorum and the EDR scale.
Note that the y-axis is the same for all frames, whereas the x-axis is not. Also, the represented EDR scale is
not the same in the two bottom frames for better visualization. The top left frame corresponds to a quorum
m/ki = 0.2. The top right frame corresponds to a quorum m/ki = 0.3. The bottom left frame corresponds to a
quorum m/ki = 0.4. The bottom right frame corresponds to a quorum m/ki = 0.5. It is interesting to know that
the visible noise at the end of the activity comes from a lack of statistics. The longer the propagation, the more
uncommon it is, hence the reduced number of realization in these time step ranges.
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Figure 2.13: Stable branching rate
σ∞ as function of the quorum
m/ki for different EDR scale.

Figure 2.14: The expected number
of activated nodes as function of
the time step E(W(t)) for different
quorum values (colorscale). The
quorum is expressed in terms of
m/ki and the EDR scale is 150 µm

Close to the transition point m1(λ), σ∞ is very close to one,
hence the possibility to reach a system size event. See the
middle plot of figure 2.11 with λ = 25µm and m/ki = 0.3, the
fractured dynamics spread to the whole environment. On the
contrary, further away from the transition point (m > m1(λ)),
σ∞ is smaller than one. The number of activated nodes at each
time step, W(t) decreases over time. We can expect the typical
scale of avalanches in this regime to be finite, and dependent
on the EDR scale, characterizing the ability or inadequacy of
the network to propagate a complex signal.

We understand from figure 2.12 that the branching rate be-
haviour as function of the time step can be used to identified
the transition m1(λ) from localized nucleation to fractured
propagation in small EDR scale networks. When the EDR
scale increases, m1 increases close to the critical point of the
quorum percolation phase transition mc

19

19: Remember the size of the gi-
ant active connected component
is continuous if m > mc , and in
Gaussian network with equivalent
degree distribution, mc/ki ≈ 0.7

.

In figure 2.14, the evolution of the expected value E(W(t))
shows the emergence of a monotonically decreasing function
when the quorum is higher than m/ki ≈ 0.7 with a connec-
tivity scale of 150 µm. This value is the critical point above
which the quorum percolation phase transition is of second
order. For high values of the EDR scale, the branching rate’s
decrease is to be associated with the quorum percolation
phase transition. In this regime, the quorum m has reached
the smallest values of the in-degree distribution: m ≈ mc

and the propagation is limited by nodes’ in-degree. Looking
at plots in figure 2.6 for large values of the EDR scale (400,
800 µm) the propagation stops even if the border of the cul-
ture has not been reached. The apparent rotational symmetry
seem to correlate with the in-degree (see figure 2.2) showing
that the propagation is limited by nodes’ in-degree.

Figure 2.15 shows the different limiting factors of propagation
in the QPM in the (m,λ) phase space.
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Figure 2.15: Representation of the limiting factors of propagation in the (m, λ) phase space. The blue region
represents the localized nucleation dynamics. The red region represents non-propagating dynamics. The gold
region represent the fractured propagation dynamics. The quorum value of 0.7 is the quorum percolation critical
value in a space-free gaussian network: it separate first order to second order phase transition in the limit λ→∞.
The Network Size is a limiting factor when the quorum percolation phase transition is of first order. In the
localized nucleation regime this is characterized by the branching rate decrease when the propagating front reach
the 2D culture boundaries. The degree is a limiting factor when the quorum percolation phase transition is of
second order. The locality is a limiting factor when the EDR scale is small and m > m1(λ).
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Figure 2.16: Example of
avalanches in the QPM model.
This sketch represents 2 instances
of the QPM, only the connection
going forward in time are
represented. The blue dots are
activated at t = 0. In the Top
one there are 1 avalanche of size
4, 2 avalanche of size 1 and 1
avalanche of size 6. In the bottom
one there is only 1 avalanche of
size 15.

Characterization of the propagating dynamics

Avalanche: causal propagation of activity

Simulations of the QPM on a specific network allow looking
for avalanches as correlated events. With the knowledge of
both the activation time and the connections one can identify
the active connected component that respect the network and
time causality. The fraction of initially activated nodes act as
an excitation of the network. This excitation being uniform,
it may lead to several avalanches not in any way related
to one another. One single instance of the QPM can create
several avalanches of different sizes. One need to identify
them properly in order to know there sizes.

I compute an avalanche size as the number of node in one
connected component of a subgraph of the network (see fig-
ure 2.16 for graphical representation). First only activated
nodes are taken into account in the subgraph. Second, we
consider only the connections respecting the time causality.
The connection from node A to B is kept in the subgraph,
only if A has been activated before B. The resulting subgraph
can be looked for connected components.20

20: In the search for connected com-
ponents, the direction is not taken
into account, and I look for what
is called ’weakly connected com-
ponents’

One connected
component is made of active nodes with at least one path
connecting any pair of nodes (A,B) such that A is activated
before B. This is an avalanche. Hence, the number of node in
individual connected component is the avalanche size. Figure
2.17 shows the avalanche size probability distribution in the
QPM with spatially embedded networks.

The avalanche size distributions shows two different be-
haviours. Depicted in the left frame of figure 2.17, with small
connectivity scale and large quorum values, the distribution
displays a finite cut-off. This cut-off does not seem to be
related to the initial excitation, since it decreases when the
fraction of initially activated node f? increases. It seems to in-
dicate that for high quorum value, the propagation is jammed
and cannot reach a system size event. The large number of ac-
tivated nodes is formed of multiple small avalanches. There
is again, a transition point where it appears that all scales
of avalanches are represented in a distribution that may be
close to a power-law with exponent −3/2. Nonetheless, this
possibly scale free behaviour is not as easily observable in
lager EDR scale, even close to the transition point m1.
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Figure 2.17: Normalized avalanche size probability distribution in the QPM with connectivity scale of 15 µm
(left) and 800 µm (right). The quorum is expressed in terms of m/ki with a colorscale and the vertical lines show
the value of the initially activated nodes f? × N , with N the total number of nodes. The dashed line in the left
frame shows a -1.5 slope as reference. Note that the bins are logarithmically distributed, hence the amplitude may
not be mistaken with the count of instances. For instance, in the case m/ki = 0.2 in red, the number of instances
with an event of the size of the system is close to the total number of instances. However, the amplitude for an
avalanche size of 104 node is similar to the one for an avalanche size of 10 which very rarely occurred. Note also
that there is a gap without any avalanches in between 102 and 104 for the quorum m/ki = 0.2 on the left frame.

Figure 2.18: Average size of
avalanches in the QPM with λ =
15µm. The bar length represents
the standard deviation of the
distribution. The quorum is ex-
pressed in terms of m/ki and N
is the number of nodes.

Figure 2.18 displays the average size of avalanches in net-
work with 15 µm EDR scale. We can notice the change in the
avalanche dynamics. For small a quorum value, all avalanches
encompass the whole network. For larger values of the quo-
rum, the activity is formed of multiple small avalanches with
a typical size in the range of 100 nodes (1% of the network).
The transition point, is characterized, like many critical sys-
tems by an increase of the variability, represented by the
standard deviation in the figure. Figure 2.20 shows that the
typical avalanches’ size depends on the EDR scale. As the con-
nectivity scale increases the number of node in an avalanche
increases. This represents the idea that network locality is
responsible for jamming the activity propagation.

The localized nucleation dynamics is more difficult to char-
acterize with the correlated activity of avalanches. One may
want to remember that it is mainly formed of a system size
event, however more frequently than I would have expected
smaller avalanches are also present with a non-trivial distri-
bution.

When the EDR scale is large (see the right frame of figure
2.17), the avalanche size statistics represents the first order
phase transition: the vast majority of QPM instances are of the
size of the system, and only a few instances do not percolate.
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Figure 2.19: Non propagating dy-
namics in a network of EDR scale
800 µm and quorum m/ki = 0.4

Figure 2.20: Average size of
avalanches in the QPM as func-
tion of the connectivity scale. The
quorum is expressed in terms of
m/ki .

Figure 2.21: Distribution of the
edge activation probability com-
puted with equation 2.7 in 3 net-
works with EDR scale 15, 75 and
200 µm. The mean value is shown
with a blue star and is always 0.1.

These small avalanches’ size scale is directly related to the
initial excitation f?. This type of dynamics corresponds of
the non propagating dynamics (see figure 2.19).

Regularity of propagation ?

Is there a certain stability in avalanches ? We have seen that
in the fractured propagation dynamics, there are avalanches
with a finite size (see figures 2.17, 2.18 and 2.20). Are those
avalanches random, or does it exists a frequent sequence of
node activation ? We want to find a group of nodes A, B, C ...
such that the sequence of activation A→ B→ C etc... is more
frequent than expected.

We define the edge activation probability as

PAB =
number of instances where B is activated after A

number of instances where A is activated
(2.7)

When computing this quantity, one may be careful that the
number of realization where A is active is not too small which
may result in a biased value.

For every point in the considered phase space (λ, m), the
distribution of PAB was close to a log-normal with mean 1/ko
the inverse of the mean out-degree(see figure ??. The average
behaviour seems that every node activates randomly any of
its out going neighbors. The recurrence of activation seems
independent of the spatio-temporal dynamics: the overall
statistics being relatively close with one another.

Giving a closer look, one may try to find a specific path in
the network where the probability PAB is the highest possible.
This would represent the most probable propagation given
the activation of certain nodes. In other words, we want to
find weekly connected components in which the edge acti-
vation probability of any connections would be higher than
an arbitrary threshold. Figure 2.22 shows such weekly con-
nected components of a networks with EDR scale of 15 µm.
Be careful, this figure does not represent specific nodes with
a higher probability to be activated, but the most probable
connected components that would be activated if some nodes
of this very same component are activated.
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Figure 2.22: Weekly connected components with high edge activation probability in network with λ = 15µm. The
threshold is express with the colour scale (Note that the scale is not linear). The left frame displays all weekly
connected component for a given threshold for the probability PAB. For a given threshold, each individual weekly
connected components are drawn with the same colour, although they may be distinct. The right frame display a
single weekly connected component for each given threshold for the probability PAB. The drawn component is
the one with a specific neuron in it, picked randomly in the ones with highest PAB value. This frame shows the
most probable avalanche once this node has been activated.

Figure 2.23: Fractured propaga-
tion in a network of EDR scale 25
µm and quorum m/ki = 0.4

The first observation is that the edge activation probability is
in the large majority smaller 0.4. The edges choosen the most
frequently (in blue) are not structured in the 2D space but
spread uniformly. We can see that the emergent structure does
not present any symmetry: it describes the default type of
propagation in the considered regime: fractured propagation
(see figure 2.23).

The lack of regularity is here expressed in terms of low values
of the edge activation proability PAB: at a single node scale,
the direction of propagation is choosen randomly within all
its out-going neighbors. Also, the uniform distribution in
space of the most probable connected component (in blue)
indicates that even if some out-going neighbors are more
frequently choosen, they are not related to one another in
the network: there is no frequent sequence of activation with
moer than 1 or 2 nodes.

When the dynamics is locally nucleated, the regularity of each
realization increase. The largest weekly connected subgraph
appears for larger probability threshold. Indeed, the main
difference between different realization is the number and po-
sition of nucleation centre. One can understand that changing
the centre of nucleation does not change much sequence of
activation for neurons away from the centre. Hence, neurons
close to the border have a higher probability to be found in
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regular avalanches. For this type of dynamics, the centre of
initiation and first to be activated neurons are the property
able to quantify the regularity.

Remarks on the QPM First let us state that, the QPM is a
first order Markov chain because the state of the network at
time t depends only on the state of the system at time t − ∆t.
Mathematically,

P(A(t) = at |A(t−∆t) = at−1, ... A(0) = a0)

= P(A(t) = at |A(t − ∆t) = at−1)

where A(t) is a random variable listing all the active nodes at
time t.

Nonetheless, the sequence of activation is not well repre-
sented by a first order markov chain. Let us consider the
sequence A → B → C, where A,B and C are nodes in the
network. One can write that

P(A→ B→ C) = P(A→ B) × P(A, B→ C)

= P(A→ B) × (P(A→ C) + P(B→ C))

For networks with low clustering values, the probability that
the triangle ABC exist is very low. Hence, the propability of a
sequence can be approximate with

P(A→ B→ C) = P(A→ B) × P(B→ C)

The sequence probability is dominated by what I defined as
the edge activation probability. We showed above that there
is no highly frequent sequence of activation. However, in
network with high clustering value the probability that the
triangle ABC is not uniform in space, and can reach high
values. Thus the estimation of the most probable avalanche
should in reality take into account this "long range interac-
tion" in the network space.
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Dynamics: first-to-fire and propagation

We understand that there is no proof of regular avalanches. It
means that there is no regular initiators: the nodes activated
at the firsts time steps are chosen randomly by the initial
excitation. In the following section, we are going to look for
the initiators, and we can already say that there is no specific
region, nor specific nodes that is more frequently a centre
of nucleation or a first-to-fire. The typical size of nucleation
and the propagating velocity are interesting properties of the
dynamics that require to find the firsts activated nodes.

Method
I propose here a procedure to detect the surface of initiation,
specifically designed to study the localized nucleation dy-
namics. The idea is that we are going to map the 2D discrete
activation pattern into a time dependent 2D surface S(t). The
surface of initiation will be identified as a specific time point
in this 2D function.

As a first hypothesis, I consider that the 2D culture is homo-
geneously and randomly seeded. Secondly, I suppose that a
nucleation centre is a surface where the local density of acti-
vated nodes is close to the total local density. The initiation of
a localized nucleation starts by recruiting all nodes in a given
region.

Once identified I will evaluate the surface with two criteria:

1. The number of activated node outside the surface must
be small compared to the number of activated node
inside the surface.

2. The surface must be the smallest possible.

In order to quantify these two criteria I introduce the surface
performance:

P(S(t)) =
AS
t

Ao
t

(2.8)

with AS
t the number of activated nodes in the surface S(t) at

time t, and Ao
t the total number of activated nodes at time

t.

The performance extreme values are 0 and 1. A performance
P(S(t)) close to one, means that the surface S(t) encompass
the majority of active nodes. At t = 0 the initially activated
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Figure 2.24: Schematic representa-
tion of the performance and the

corresponding P(S) −
|S |
|C |

. Once

the performance is close to unity
it stays relatively constant. The
circled point corresponds to the
point where the surface S(t) is the
surface of initiation. It can be com-
puted by calculating the distance
between the performance and the
first bisecting line and looking for
the maximum.

nodes are uniformly spread in the 2D space, hence no surface
can be found to properly describe the activity: the area |S(t =
0)| = 0 and the corresponding performance P(S(t = 0)) =
0. As time grows, a nucleation point appears and one can
find a surface S(t) that encompass the activated node in this
nucleation region. The initial excitation being still present,
the performance increases from 0, but is not necessarily close
to one. Once the number of nodes in the nucleation centre
is close to the number of nodes in the initial excitation the
performance is close to one. As time grows, the surface area
increase in order to describe the spread of activity and the
performance stays relatively close to one. Once the activity
has reach the size of the system, the surface will be close
the culture and the performance close to 1. This expected
behaviour can be found in figure 2.24.

For a localized nucleation, one expect to find a small surface
able represents the majority of all activated nodes: the initia-
tion surface. I define this surface as the smallest surface with
the maximum performance. It can be found by looking at the
maximum of

P(S(t)) −
|S |
|C |

(2.9)

with |S(t)| being the surface area, and |C | being the culture
area. This maximum is associated with a nucleation time
tn and a surface Sn = S(tn). Figure 2.24 shows a schematic
representation of this computation.

Description of the activity with 2D surfaces
In order to map the observed dynamics (see localized nucle-
ation in figure 2.4), made of multiple centre of nucleation, the
surface S(t) has to be computed for each individual instance.
The number of regions depends on individual instance of the
QPM, and we don’t want to fix it to a certain value. Also,
we will look for surfaces as circles because the nucleation
centre and the propagation are invariant by rotation. One
could look at every time step, and draw by hand the surface
S(t), however this is extremely time-consuming and lacks
reproducibility. The procedure described below is a simple
automatic way to identify the surfaces S(t).

Looking for non-connected regions of high activity can be
done by looking for clusters of active nodes. A cluster is a
group of nodes, sufficiently close from one another in the
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Figure 2.25: Performance average
over 1000 realizations of percolat-
ing events for network of EDR
scale 150 and 800µm. The circle
shows the point of the surface ini-
tiation computed with equation
2.9.

Figure 2.26: Area of the initiation
surface as function of the EDR
scale. The area is expressed in per-
centage of the culture area.

2D space. There exists multiple different algorithm able to
find different categories of clusters. The one we use here
is called DBSCAN [84][84]: Ester et al. (1996), ‘A Density-

Based Algorithm for Discovering
Clusters in Large Spatial Databases
with Noise’

because it requires few number of
parameters and there is no need to add the number of clusters
as input. This algorithm can be run at each time step in order
to find separated clusters of activity. Then each cluster is
approximated by the smallest disk that encompass every
cluster’s node. The union of all disks is the surface S(t) at the
corresponding time step. As time grows, the total number of
active nodes increases along with the surface area of S(t).

The performance of all S(t) surfaces can be computed as a
function of the surface area in order to find the surface of ini-
tiation. Figure 2.25 displays the performance with a non prop-
agating dynamics and a localized nucleation. As expected,
when the dynamics nucleates locally the performance sharply
increases close to 1, and then stays constant. On the contrary,
when the initiation is not localized the performance increases
slowly, because there is no localized region of high activity.
The surface of initiation is then much larger, here close to 40%
of the culture but still represents poorly the overall nodes’
activation.

Hence, the performance is able to represent the typical size
of the nucleation region, with the maximum of equation 2.9,
and quantify the locality of the activation pattern, with the
curve P(S). The more P(S) is close to the first bisector line, the
less localize the initiation is.

Figure 2.26 shows that the area of the initiation surface in-
creases with the EDR scale. With the hypothesis that the den-
sity is homogeneous, the bigger the area the more neurons
there are in the surface. With a larger connectivity length, the
clustering decreases and the interconnected nodes are further
apart, hence a region with 100% recruited node is larger. Also,
as the EDR scale increases there is a slight increase (above
50µm for m/ki = 0.2) in the fraction of initially ignited nodes
f?. Thus, the number of activated nodes outside the surface
is effectively larger, decreasing the performance and resulting
in a larger surface of initiation.

Initiation of activity

Because several nucleation centres may be resent simulta-
neously with different radii, computing the propagation is
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Figure 2.27: Computation of the
distance to the initiation surface.
The surface Sn, consisting of 3
disks, is here represented in bright
red. The distance from Sn is repre-
sented by the colour scale.

not straightforward. In order to estimate the propagation ve-
locity from a nucleation centre to any node in the network,
one need to estimate the distance to the closest border of the
initiation disks (computed above). A simple way to do this
is to enlarge the initiation surface boundaries by a quantity r
in every direction. Then, the distance from any node n is the
value of the corresponding expansion rn. Figure 2.27 shows
such expansion of initiation surface made of 3 distinct nucle-
ation centre. This process respects the rotational symmetry of
the propagation with multiple centre of symmetry.

The expansion parameter r can be plotted as a function of
average time of activation to compute the velocity with a
linear regression. Figure 2.28 shows the expansion parameter
r plotted versus the time activation for one realization with
a network of EDR scale 50 µm. The first observation is that
the velocity is constant over time: correlation coefficients of
all realizations are close to r2 = 0.99. The linear evolution
demonstrates the rotational symmetry observed and that the
propagation velocity depends only on the QPM simulation
parameters (λ, m) and not the position in the 2D space.

Figure 2.28 shows values of the expansion parameter r smaller
than zero. They correspond to the initiation surface shrink-
ing and are also associated with a linear propagation. The
initiation surface boundaries does not correspond to a shift in
dynamics, from a non-propagative nucleation to a propaga-
tion front. In figure 2.28, the right frame shows the first time
step of a percolating event. We can see that the propagation
starts at t = 1 for both nucleation centres. There is no proof of
an initiation/nucleation phase after t = 0 where the dynam-
ics would be different from a propagating front. The closest
phase to an initiation/nucleation one can think of is the initial
excitation t = 0. In a continuous excitation process, where a
single node is activated per time step, the initiation/nucle-
ation can be understood as the time required for a quorum
to be activated in a group of interconnected nodes. However,
in the QPM the excitation being concentrated at t = 0 the
initiation/nucleation is constrained to this single time step.

Because the nucleation is concentrated in t = 0 each individ-
ual nucleation centres are synchronized. Again, in a contin-
uous excitation process, with a single node being activated
per time step, different centres of nucleation might be out of
sync with each others. The corresponding phase difference, if
too large, would make this analysis dysfunctional. Because
nucleation centres in the QPM are synchronized at t = 0,
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Figure 2.28: The left frame shows the expansion parameter r as a function of the time of activation. Negative
values of r correspond to the initiation surface shrinkage. Only a fraction of the data points and shown for better
visualisation and the dashed line represents the linear regression. The right frame displays the first activation
time in the 3000 µm radius circular culture. The initiation surface is made of 2 disks of radius 450 (top) and 400
(bottom) µm.

Figure 2.29: Propagation velocity
as function of the EDR scale. The
quorum is m/ki = 0.2 correspod-
ing to localized nucleation. The
velocities falls onto a linear evolu-
tion as functions of λ. The corre-
lation coefficient is r2 = 0.98 and
the slope 1.7 ut (ut refers to unit of
time)

their corresponding propagation front meet one another at
the equidistant line from the nucleation centres.

Propagation velocity

Instinctively, one may expect the propagation velocity to
depend on the connectivity length scale λ and even predict
that for each consecutive time step, the propagation front
advances by a quantity equal to the mean connectivity length.
Figure 2.29 displays the propagation velocity as function
of the EDR scale λ. The linear evolution seems to indicates
that the propagation front advances by a quantity higher
than the connectivity length. The distance covered by the
growing front is 1.7 times the EDR scale. Also, this relation
seems to hold over an entire decade. Figure 2.1 shows that the
connection length distribution widen close to λc and stays
similar as λ increases. Thus, the long range connections does
not seem to be at the origin of this fast propagation.

One may wonder why the evolution of the velocity with re-
spect to the EDR scale correlates so well with a linear curve.
First, one may argue that the method used here is biased
and force the linear relationship. However, I believe that it is
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Figure 2.30: Propagation velocity
as function of the quorum m/ki
for an EDR network with λ =
150µm. The velocities falls onto
a linear evolution with a correla-
tion coefficient is r2 = 0.99 and
the slope −800 µm.ut−1 (ut refers
to unit of time)

related to that fact that each realization is done on an effec-
tive different network. We have seen that there is no specific
centre of initiation and the nucleation point changes for every
realization. Thus, from the point of view of the couple of
first-to-fire nodes and the propagating front the network is
effectively different one realization from the other.

The interaction between the mean in-degree and quorum is
expected to be a relevant quantity. Figure 2.30 shows that the
velocity is indeed linearly correlated with the quorum m/ki.
The higher the quorum, the slower the dynamics is.

2.4 Discussion

We have studied the spatio-temporal dynamics of the quorum
percolation model in spatially embedded networks, described
by the mean connection length λ. Three dynamics of propa-
gation have been identified in the (λ, m) phase space. In the
limit of long range connection, λ � λc, the dynamics does
not exhibit a propagating front. The only correlation with
the 2D space that exist with the activation patterns is as the
quorum got closer to mc = ki. In this regime the propagation
is highly limited by the in-degree and does not reach the
circular culture boundaries.

In the short range limit, λ 6 λc, the dynamics is correlated
with the 2D space. We have shown evidences of a transition
from a propagation that respects a rotational symmetry cen-
tred on specific nucleation points, and a propagation seem-
ingly random and erratic. This erratic propagation, named
’fractured propagation’, exists for a quorum smaller than a
value m1. This transition point m1 depends on the mean con-
nectivity scale λ. The localized nucleation dynamics appears
in a confined region of the phase space (λ < λc, m < m1(λ)).
We have shown that m1 is a monotonically increasing func-
tion of EDR scale up to a certain point, (λ > λc, m < mc)

where the localized nucleation does not exist any more and
the transition shifts toward the non-propagating dynamics.

We have shown that below m1, the correlated propagation
of activity is predominantly made of percolating system size
events. There exists only a fraction of finite scale correlated
events. On the contrary above m1(λ), the fractured propa-
gation dynamics exhibit multi-scale correlated events. The
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transition point m1 may even be related to a scale-free be-
haviour, with a power law of exponent −3/2.

The analysis conducted here suggests that the critical value
mc above which the first order transition become a second
order one depends on the connectivity spatial scale. Locality
is able to jam the signal propagation, reducing the possibility
for a system scale events to appears discontinuously.

The discontinuity is associated with the power-law distribu-
tion of subcritical clusters just below the critical point of ini-
tially ignited nodes fc2, which resonates with the distribution
of neuronal avalanches. However, we have shown that below
mc the QPM exhibits only system size correlated avalanche.
The subcritical clusters are unable to produce multi-scale
avalanches, because once activated they are part of a much
bigger avalanche. Still, it seems that the sought scale-free be-
haviour of correlated avalanches may be present at the critical
point f = fc2 and m = mc. However, in space-free random
network the large value of mc = ki imply a large value of
fc2, such that most of the activated nodes are activated at
the initial time t = 0 and not through the percolating event.
One may wonder the relevance of this in the framework of
spontaneous neuronal avalanches. However, following the
idea that the critical point mc depends on the EDR scale, it is
possible for small initial fractions fc2 to initiate a scale-free
avalanche distribution in a quorum percolation model with
spatially embedded networks. Locality is a critical parameter
in the search for multi scale correlated avalanches.

It is important to keep in mind neuronal cultures order of
magnitude. The in-degree ranges from 60 to 150 and the
density from 100 to 1000 mm−2. These values correspond to

λc ∼
ki
d

ranging from 0.25 to 1.25 mm. The typical size of ax-
ons, in mature cultures, is expected to be closer to a couple of
millimetres, making the neuronal culture probably closer to a
space-free random network than a spatially embedded one.
However, the experimental recordings are not entirely con-
sistent with one another. Some show a scale-free behaviour,
others a complex propagation or a localized nucleation. After
making my very own neuronal culture I can see how the local
density and its fluctuation may have an extremely important
role in understanding of recorded activity. The scale λc may
appear as a something to keep in mind when interpreting
neuronal activity.
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In the previous chapter, we saw that the Quorum percolation
model, although assumed to describe only the response to
an excitation, may be able to capture some features of sponta-
neous neuronal activity. The model is indeed simplistic and
does not take inner neurons dynamics into account. A model
of neuronal population dynamics needs to go beyond the
simple response to an excitation and

In this chapter I investigate one specific type of dynamics:
pacemaker neurons. As we have seen in the introduction,
pacemakers are present in multiple neuronal systems and
may be able to explain the synchronization in a bursting
regime observed neuronal cultures. This work is based on my
publication: “A novel methodology to describe neuronal net-
works activity reveals spatiotemporal recruitment dynamics
of synchronous bursting states“ [85] which is presented here
reformatted and with only some minor modifications.

Abstract
We propose a novel phase based analysis with the purpose of
quantifying the periodic bursts of activity observed in various
neuronal systems. The way bursts are initiated and propa-
gate in a spatial network is still insufficiently characterized.
In particular, we investigate here how these spatiotemporal
dynamics depend on the mean connection length. We use a
simplified description of a neuron’s state as a time varying
phase between firings. This leads to a definition of network
bursts, that does not depend on the practitioner’s individ-
ual judgment as the usage of subjective thresholds and time
scales. This allows both an easy and objective characteriza-
tion of the bursting dynamics, only depending on system’s
proper scales. Our approach thus ensures more reliable and
reproducible measurements. We here use it to describe the
spatiotemporal processes in networks of intrinsically oscillat-
ing neurons. The analysis rigorously reveals the role of the
mean connectivity length in spatially embedded networks in
determining the existence of “leader“ neurons during burst
initiation, a feature incompletely understood observed in sev-
eral neuronal cultures experiments. The precise definition of a
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burst with our method allowed us to rigorously characterize
the initiation dynamics of bursts and show how it depends
on the mean connectivity length. Although presented with
simulations, the methodology can be applied to other forms
of neuronal spatiotemporal data. As shown in a preliminary
study with MEA recordings, it is not limited to in silico mod-
eling.

Keywords Network Burst · Synchronization · Dynamics ·
Phase · Initiation · Propagation

3.1 Introduction

With experimental recordings or numerical simulations from
the whole brain to neuronal cultures [49, 86–88][86]: Olmi et al. (2019), ‘Control-

ling seizure propagation in large-
scale brain networks’
[87]: Massimini et al. (2004), ‘The
Sleep Slow Oscillation as a Travel-
ing Wave’
[88]: Paraskevov et al. (2017), ‘A
spatially resolved network spike
in model neuronal cultures reveals
nucleation centers, circular travel-
ing waves and drifting spiral waves’
[49]: Orlandi et al. (2013), ‘Noise
focusing and the emergence of co-
herent activity in neuronal cultures’

scientists try
to understand the information processing [89] underlying
propagating activities in complex neuronal networks. Phe-
nomena of rhythmic actvivity coupled to propagation are
extensively studied in complex neuronal systems. In a bot-
tom up approach, exploring the variety of activity patterns
that exists is a relevant path in order to understand higher
brain functions, or diseases. As an example, propagating
waves have been identified as the default activity of cortical
structures. They are observed in various conditions, during
sleep in the healthy brain, or during epileptic epochs, and
at different scales: from thousands of neurons in less than
a millimeter in culture, to billions of neurons through the
whole cortical layer. [90, 91][90]: Sanchez-Vives et al. (2017),

‘Shaping the Default Activity Pat-
tern of the Cortical Network’
[91]: Sanchez-Vives (2015), ‘Slow
wave activity as the default mode
of the cerebral cortex’

In order to go even deeper in the
understanding of neuronal wave activity, one needs repro-
ducible and unbiased quantitative measurements adapted to
the considered phenomena.

We propose here a methodological approach of such phenom-
ena motivated by studies on neuronal culture activity. [92–94]

[92]: Renault et al. (2015), ‘Com-
bining Microfluidics, Optogenet-
ics and Calcium Imaging to Study
Neuronal Communication In Vitro’
[93]: Yamamoto et al. (2018), ‘Im-
pact of modular organization on
dynamical richness in cortical net-
works’
[94]: Tibau et al. (2018), ‘Neuronal
spatial arrangement shapes effec-
tive connectivity traits of in vitro
cortical networks’

Although recorded at different scales, activity observed in
vitro are thought to be a well suited model for propagating
phenomenon in the brain either similar to slow wave sleep
[95] or to epileptic activity [96, 97]. Indeed, recent studies on
young 2D neuronal cultures have forwarded evidences that

[95]: Sanchez-Vives et al. (2000) ‘Cellular and network mechanisms of
rhythmic recurrent activity in neocortex’
[96]: Derchansky et al. (2008) ‘Transition to seizures in the isolated imma-
ture mouse hippocampus’
[97]: McCormick et al. (2001) ‘On The Cellular and Network Bases of
Epileptic Seizures’
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specific regions are able to initiate a propagating front of ac-
tivity going through the whole network during what is now
called a network burst [49, 50, 88] [49]: Orlandi et al. (2013), ‘Noise

focusing and the emergence of co-
herent activity in neuronal cultures’
[50]: Lonardoni et al. (2017), ‘Re-
currently connected and localized
neuronal communities initiate co-
ordinated spontaneous activity in
neuronal networks’
[88]: Paraskevov et al. (2017), ‘A
spatially resolved network spike
in model neuronal cultures reveals
nucleation centers, circular travel-
ing waves and drifting spiral waves’

. A rhythmic activity takes
place within the culture, formed by long periods of silence
and shorter epochs of intense firing at the culture scale, that
constitute a burst. Although morphological properties of neu-
rons grown in culture may vary from healthy brain tissues,
this process of localised initiation and/or propagation has
been observed during many activity routing in the brain: dur-
ing epileptic seizures, slow wave sleep, retinal development
[5, 87, 97, 98] or in cortical areas in anesthetized and awake
conditions [99].

Motivations

Spatiotemporal analysis of collective rythms and waves is not
straightforward, as shown by the multiple number of meth-
ods used in the literature. How to faithfully quantify neuronal
network activity in time and space is still an open question.
The most common approach uses a binning strategy: neurons’
activity is considered to be a series of consecutive discrete
events in time and space thus easy to count within specific
time bin of size ∆t. The obtained function can afterwards be
used to compute a firing rate as a function of time [52, 54, 71,
100, 101] [71]: Penn et al. (2016), ‘Network

synchronization in hippocampal
neurons’
[54]: Eckmann et al. (2008), ‘Leader
neurons in population bursts of
2D living neural networks’
[52]: Eytan et al. (2006), ‘Dynamics
and Effective Topology Underly-
ing Synchronization in Networks
of Cortical Neurons’
[100]: Gritsun et al. (2012), ‘Growth
Dynamics Explain the Develop-
ment of Spatiotemporal Burst Ac-
tivity of Young Cultured Neuronal
Networks in Detail’
[101]: Bologna et al. (2010), ‘Low-
frequency stimulation enhances
burst activity in cortical cultures
during development’

, a degree of synchrony with cross/auto-correlations
[14, 71, 102–104], a global network activation (percentage
of active units within a time bin) [93], spatial properties

[5]: Butts et al. (1999) ‘Retinal Waves Are Governed by Collective Network
Properties’
[87]: Massimini et al. (2001) ‘The Sleep Slow Oscillation as a Traveling
Wave’
[97]: McCormick et al. (2001) ‘On The Cellular and Network Bases of
Epileptic Seizures’
[98]: Maccione et al. (2014) ‘Following the ontogeny of retinal waves’
[99]: Muller et al. (2012) ‘Propagating waves in thalamus, cortex and the
thalamocortical system’
[14]: Salinas et al. (2001) ‘Correlated neuronal activity and the flow of
neural information’
[102]: Stegenga et al. (2008) ‘Analysis of Cultured Neuronal Networks
Using Intraburst Firing Characteristics’
[103]: Chiappalone et al. (2006) ‘Dissociated cortical networks show spon-
taneously correlated activity patterns during in vitro development’
[104]: Wang et al. (1996) ‘Gamma Oscillation by Synaptic Inhibition in a
Hippocampal Interneuronal Network Model’
[93]: Yamamoto et al. (2018) ‘Impact of modular organization on dynami-
cal richness in cortical networks’
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of information transfer with avalanches [35, 42, 105, 106], a
center of activity and trajectory [107][107]: Chao et al. (2005), ‘Effects

of Random External Background
Stimulation on Network Synaptic
Stability After Tetanization’

, or even very persua-
sive snapshots displaying the activity in space [88, 100, 108].
However, all those tools are known to display time binning
and/or thresholds biases [109, 110][109]: Touboul et al. (2017), ‘Power-

law statistics and universal scal-
ing in the absence of criticality’
[110]: Touboul et al. (2010), ‘Can
Power-Law Scaling and Neuronal
Avalanches Arise from Stochastic
Dynamics?’

. We call here biased, any
computation that uses arbitrary parameters that may modify
the result. For example, the avalanches size distribution may
or may not resemble a critical-like power law distribution
depending on ∆t [35]. Moreover, the discrete nature of neu-
ron communicating system as action potential should not be
taken as the characteristic of a two state dynamical system: ei-
ther active of inactive. Action potentials are simple hallmarks
of a much complex dynamics. However, a binning strategy
represents the idea that neurons are either active or silent and
thus neglects their dynamical properties.

Let us also note that the very nature of the observed periodic
activity in culture is ill-defined, and different definitions of a
network burst are found in the literature [50, 54, 111][50]: Lonardoni et al. (2017), ‘Re-

currently connected and localized
neuronal communities initiate co-
ordinated spontaneous activity in
neuronal networks’
[54]: Eckmann et al. (2008), ‘Leader
neurons in population bursts of
2D living neural networks’
[111]: Mazzoni et al. (2007), ‘On
the Dynamics of the Spontaneous
Activity in Neuronal Networks’

Along
with different definitions (and namings), various methods
exist to detect bursting states. Cotterill et al. [112] concluded,
after analysing 8 algorithms, that there is still need for an
accurate burst detection method to be adopted at a single
unit level. The variety of methods and definitions [50, 52,
54, 103] used at the network level is an impediment to a

[35]: Beggs et al. (2003) ‘Neuronal Avalanches in Neocortical Circuits’
[42]: Yaghoubi et al. (2018) ‘Neuronal avalanche dynamics indicates
different universality classes in neuronal cultures’
[105]: Zierenberg et al. (2018) ‘Homeostatic Plasticity and External Input
Shape Neural Network Dynamics’
[106]: Levina et al. (2006) ‘Dynamical Synapses Give Rise to a Power-Law
Distribution of Neuronal Aval-anches’
[88]: Paraskevov et al. (2017) ‘A spatially resolved network spike in model
neuronal cultures reveals nucleation centers, circular traveling waves
and drifting spiral waves’
[100]: Gritsun et al. (2012) ‘Growth Dynamics Explain the Development
of Spatiotemporal Burst Activity of Young Cultured Neuronal Networks
in Detail’
[108]: Kitano et al. (2007) ‘Variability v.s. synchronicity of neuronal activ-
ity in local cortical network models with different wiring topologies’
[112]: Cotterill et al. (2016) ‘A comparison of computational methods for
detecting bursts in neuronal spike trains and their application to human
stem cell-derived neuronal networks’
[50]: Lonardoni et al. (2017) ‘Recurrently connected and localized neu-
ronal communities initiate coordinated spontaneous activity in neuronal
networks’
[52]: Eytan et al. (2006) ‘Dynamics and Effective Topology Underlying
Synchronization in Networks of Cortical Neurons’
[54]: Eckmann et al. (2008) ‘Leader neurons in population bursts of 2D
living neural networks’
[103]: Chiappalone et al. (2006) ‘Dissociated cortical networks show spon-
taneously correlated activity patterns during in vitro development’
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reproducible description of a neuronal synchronized state
independent of any arbitrary parameters.

Objectives

The main focus of this article is to show that there exists an
unbiased, parameter free quantity that can define and iden-
tify bursts in neuronal culture (section 3.2). Along with a
clear definition of a network burst (section 3.2), we present,
on simulated data, the dynamical process involved in the re-
cruitment of the network during the bursts initiation. The key
concept we introduce to properly define network bursts is
the network phase function. We illustrate the potential of this
definition on a theoretical model of neuronal culture made
of oscillatory units and reveal the bursts initiation involved.
Rigourosly, the firing rate is the single-spike probability den-
sity [113] [113]: Peter Dayan et al. (2000),

Theoretical Neuroscience Computa-
tional and Mathematical Modeling of
Neural Systems

, although it is always represented as the spike-
count firing rate. Coming back to the original definition of
the firing rate, as a probability density, we show that our burst
definition reveals the initiation time scale of nework bursts
(section 3.3). We conclude on the activity in the 2 dimensional
real space and discuss the role of the network connectivity
length in the burst initiation (section 3.3).

3.2 Materials and methods

Simulations of neuronal networks

Neurons activity

The methods described in the following sections are studied
on simulations of neuronal networks (see Appendix 3.6 for
more details). Neuronal activity is modeled via the adaptive
exponential integrate and fire model [73] [73]: Brette et al. (2005), ‘Adaptive

Exponential Integrate-and-Fire Model
as an Effective Description of Neu-
ronal Activity’

for its computa-
tional efficiency and biological relevance.

By controlling both pre and post synaptic mechanisms Penn
et al. [71] [71]: Penn et al. (2016), ‘Network

synchronization in hippocampal
neurons’

found that over two thirds of dissociated hippocam-
pal and cortical neurons are pacemaker neurons. Neurons
are said to be pacemakers when they regularly spike even
when pull apart from any other neurons. They are oscilla-
tors. In neuronal cultures, such behavior may come from
persistent sodium current INa,P or gap junctions [69, 70, 114,
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115][70]: Sipilä et al. (2006), ‘Intrinsic
bursting of immature CA3 pyra-
midal neurons and consequent gi-
ant depolarizing potentials are driven
by a persistent Na+ current and
terminated by a slow Ca2+-activated
K+ current’
[69]: Tazerart et al. (2008), ‘The
Persistent Sodium Current Gen-
erates Pacemaker Activities in the
Central Pattern Generator for Lo-
comotion and Regulates the Loco-
motor Rhythm’
[114]: Draguhn et al. (1998), ‘Elec-
trical coupling underlies high-fre-
quency oscillations in the hippocam-
pus in vitro’
[115]: Rouach et al. (2003), ‘Car-
benoxolone Blockade of Neuronal
Network Activity in Culture is not
Mediated by an Action on Gap
Junctions’

. Following these results, we use 3 different parameter
sets corresponding to self-sustained oscillating neurons in-
dependently of their connectivity. They will be referred to as
’Noise Driven’, ’Regular Spiking’ and ’Intrinsically Bursting’
depending on their spiking patterns (see Appendix 3.6 for
further details). We want to raise awareness on the Noise
Driven type. Although the name might be misleading, ND
neurons are regularly spiking, however the spike interval de-
pends highly on the number and intensity of inputs received
(for example noise). Looking at pacemaker neurons comes
with significant consequences. Those neurons intrinsically
follow their inner dynamics, and pushing them away from
their stable cycle demands specific conditions. For instance,
the required input to make a pacemaker spike in a small time
window, depends on this neuron inner state when the input
is received and not only on its strength. The examples illus-
trating this paper investigate a novel perspective on bursting
phenomena with pacemaker neurons.

Network model

The network metric correlations [9][9]: Hernández-Navarro et al. (2017),
‘Dominance of Metric Correlations
in Two-Dimensional Neuronal Cul-
tures Described through a Random
Field Ising Model’

have been shown to shape
network global activation. We take this into account by choos-
ing an Exponential Distance Rule (EDR) model for the neu-
ronal connectivity. [72] This is an Erdös-Rényi like network,
where the connection probability depends on the Euclidean
distance, with an exponential decrease. The exponential char-
acteristic length λ is later called, the network spatial scale
and is equal to the mean connectivity length. The network is
built under the condition of fixed mean degree, from a ran-
dom selection of somata positions in a 800 µm radius circular
culture with strict border conditions (more details in the Ap-
pendix 3.6). Each pair of somata separated by a distance d is
connected with the probability p(d) = p0e−d/λ, with p0 a nor-
malization factor. It is to be noted that the proposed analysis
is not limited to those specific parameters and model. As an
example, a different model is analyzed in detail in appendix
3.6.

[72]: Fardet (2018) ‘Growth and activity of neuronal cultures’
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Temporal spikes analysis

Spike count rate

We consider spikes as identical, discrete events, varying only
in their time of emission and emitter position. In other words,
we neglect the information that may exist in the spike shapes
and sub-threshold membrane oscillations. Usually, the firing
rate is approximated with a convolution of the neural re-
sponse function with a chosen kernel (rectangular, gaussian,
exponential, alpha etc...). Although this spike-count rate has
been shown to correlate with specific stimuli in neuroscience
studies [113] [113]: Peter Dayan et al. (2000),

Theoretical Neuroscience Computa-
tional and Mathematical Modeling of
Neural Systems

, this approach entails huge variability and may
not be reproducible depending on the choice of kernel, and
its characteristic time scale. In an attempt to provide unbi-
ased estimators of neurons activity, we suggest a different
method in order to rid activity analysis of time binning strate-
gies. We use in this paper individual spike times. While our
method is specially appropriate for simulations, the required
high spatiotemporal resolution necessary to discriminate sin-
gle spikes is increasingly available through MEA and even
fast calcium imaging that reaches the millisecond range with
Oregon Green BAPTA-1 calcium indicator [116, 117] [116]: Tsai et al. (2017), ‘A very

large-scale microelectrode array
for cellular-resolution electrophys-
iology’
[117]: Grewe et al. (2010), ‘High-
speed in vivo calcium imaging re-
veals neuronal network activity
with near-millisecond precision’

.

The Network phase

Since pacemaker neurons are characterized by an oscillatory
behaviour, concurrently to single spike times, we will use
a phase to describe a neuron’s state. Pikovsky et al. [118]

[118]: Pikovsky et al. (2001), Syn-
chronization: A universal concept in
nonlinear sciences

defined the phase of an oscillatory signal with discrete events
as a piecewise continuous function in between two events. We
define the phase φi(t) for neuron i, and any time t in between
two spikes ti,k and ti,k+1 as:

φi(t) =
t − ti,k

ti,k+1 − ti,k
, t ∈ [ti,k , ti,k+1[ (3.1)

where ti,k is the time of the k th spike of neuron i, in the or-
dered sequence of spike times. The phase function of a dis-
crete set of events is computed after the recording of the
sequence of firing times; its value at some time t > ti,k de-
pending on the knowledge of the following firing time ti,k+1.
The phase φi(t) is the difference between time t and the clos-
est spike in the past, divided by the instantaneous interspike
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Figure 3.1: Bursting events acting as an epoch of synchronous spiking is visible with large oscillations of the
network phase. The middle panel represents the maximum (red) and minimum (green) values of the phase
extrema averaged over 50s simulations. In each simulation a proportion p of Intrinsically Bursting neurons,
in a synchronous state, have been substituted for a Poisson spiking neuron of rate 10 Hz in order to mimick
non-synchronous neurons. As expected (see Eq. 3.4), the proportion of synchronous neurons correlates with
the network phase peak values. Left and right panels show the network phase and a raster plot of 50 randomly
chosen neurons (in a population of 2000 neurons) as functions of time for two different proportion p = 0.14 (left)
p = 0.78 (right). One can see the two peaks that surround the bursts.

interval at this time t. An oscillatory neuron state can thus
be defined by this bounded variable, that embodies both fre-
quency and spike timing. It is the simplest step to estimate a
neuron dynamical state, without constraining it to a two state
dynamics. We define the network phase as the mean phase:

Φ(t) =
1
N

N∑
i=1

φi(t) (3.2)

with N the total number of neurons. After each spike, the
phase of a neuron decreases from 1 to 0 in a discontinuous
way. Accordingly, the network phase decreases by an amount
in the range of 1

N . Because of this reset, the network phase
decreases more significantly whenever several neurons spike
simultaneously, allowing us to detect and define a synchro-
nized bursting regime. The network phase typically increases
slowly in between bursts because few neurons spike, and
rather irregularly, and it decreases down, and/or oscillates
around 0.5, during bursts because of high firing rate (see fig-
ure 3.1). Let us stress that the network phase we use here is
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a simple way to access the complexity of the spike times’ se-
quence from experimental or simulated data and not a novel
modeling of the dynamics.

Burst Definition

Using the network phase, we develop now a mathematical
characterization of synchronous bursting states. The network
phase Φ(t) specific behavior in bursting activities (see fig-
ure 3.1) guides us towards a definition: bursts are global
events observed in between a maximum and minimum of
the network phase. Let us show that, a local maximum of the
network phase is associated with the synchronization of at
least some neurons in the culture. Let us call q the proportion
of synchronized neurons that spike in a specific time window,
let’s call it ∆t, around time t. This proportion q of coactivated
neurons might not represent the whole network, thus a pro-
portion p = 1 − q does not spike in this time window but
at a latter time in the burst. Because the phase between two
spikes has a linear evolution, (with the slope being the in-
verse of the interspike) the network phase variation due to
non-synchronous neurons is easily determined. On the con-
trary, the phase of the spiking neurons goes through the hard
reset from 1 to 0 which forces the network phase to decrease
by a certain amount |∆Φ|. We note N1 and N2 the number of
synchronous, and non-synchronous neurons (respectively).
The synchronous neurons represent the first one to fire in a
burst, whereas the non-synchronous neurons represent those
who will spike at a latter time, not at all or with an irregular
pattern. We can write the quantity ∆Φ being equal to:

∆Φ =Φ(t +
∆t
2
) −Φ(t −

∆t
2
)

And, given the definition of the network phase (Equation 3.1),
the most general form is:

∆Φ =
1
N

( N2∑
i=1

t + ∆t
2 − ti,k+1

ti,k+2 − ti,k+1
−

t − ∆t
2 − ti,k

ti,k+1 − ti,k

+

N2∑
i=N1+1

∆t
ti,k+1 − ti,k

)
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As explained before, because of synchronous spiking neu-
rons, the network phase will decrease when a burst starts. We
are looking for the condition for ∆φ to be negative. In order
to continue the computation without to much complexity,
we assume that the instantaneous interspike interval, noted
ISI, is the same for both synchronous and non-synchronous
populations. This is sufficient to capture the important param-
eters at play, and reflects data recorded with calcium imaging,
where only the first spikes of a burst are accessible with high
resolution. For synchronized neurons the ISI corresponds to
the interburst interval, while for non-synchronized neurons
the ISI represents the interval between irregular firings. We
can write:

∆Φ = q
(
∆t

2ISI
− (1 −

∆t
2ISI

)

)
+ p

∆t
ISI

(3.3)

The first and second terms describe respectively, the decrease
of the network phase due to the synchronous neurons and
the increase due to the non-synchronous ones. Thus, the char-
acterization of a synchronous event as we defined it above
implies :

∆t
ISI
− q < 0 (3.4)

This means that a decrease of the network phase happens
if a proportion q of the population spikes in a time scale
smaller than q × ISI. This coactivation is associated with a
decrease of the network phase by an amount proportional to
the size q. A bursting state can thus be detected without any
arbitrary parameters and happens in between a maximum
and a minimum of the network phase. The amplitude |∆Φ| is
related to the proportion of bursting neurons.

With less restrictive assumptions, one can understand that the
network phase decreases whenever some neurons are coacti-
vated in a time interval ∆t . The network phase decreases by
an amount proportional to q, as long as this group phase does
not increase back to 1 in this ∆t time window. This increase is
represented by the last term in equation 3.3: (1− ∆t

2ISI ). Hence,
the time scale of the synchronization ∆t has to be smaller than
the fast time scale q × ISIin_burst .

With this definition, the network phaseΦ(t) offers, indepen-
dantly of any arbitrary parameters, a burst starting time ref-
erence as a maximum, and an ending time reference as a
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Figure 3.2: Raster plot of 100 elec-
trodes and the network phase as
a function of time of experimen-
tal recordings from [50]. The burst
can clearly be identified. The dif-
ferent sizes of synchronized neu-
rons’ groups in the high frequency
regime of the bursts is clearly visi-
ble with the phase oscillations.

minimum. Moreover, as Eq. 3.4 demonstrates it, the differ-
ence between the maximum and minimum values of the
network phase is a measure of the proportion of synchronous
neurons. As figure 3.1 represents it, the minimum and max-
imum values are linearly correlated with the proportion of
synchronous neurons, or equivalently non-synchronous neu-
rons.

The network phase with experimental recording

Large oscillations of the phase, showing bursting regime and
different degree of synchronization can also be seen in ex-
perimental recordings. Data publicly available, from [50] is
represented in figure 3.2. It is a recording of hippocampal
cell cultures made with a 64x64 micro-electrode array. Each
electrode is considered as an individual unit to compute the
phase with, and the network phase is the mean average over
the 4096 electrodes.

First spike probability distribution

Eytan et al. [52] [52]: Eytan et al. (2006), ‘Dynamics
and Effective Topology Underly-
ing Synchronization in Networks
of Cortical Neurons’

have introduced the idea that some neurons
in a culture are consistently the first ones to fire over consecu-
tive bursts. Their analysis however depended on an arbitrary
threshold on the activity in order to define the sequence of
precursors in neuron firing. Our approach allows an unbi-
ased characterization of these. We are going to compute the
probability density for the occurrence of a spike close to the
burst beginning. Thanks to the time reference for each burst
given by its phase’s maximum (see section 3.2), we can derive
the probability for a neuron to emit its first spike during the
burst at time τ = t − tb where tb is the detected burst starting
time (see figure 3.1). Note that τ can be above or below zero.
This probability is the rigorous definition of the firing rate.
Indeed, according to Peter Dayan and L.F. Abbott [113] [113]: Peter Dayan et al. (2000),

Theoretical Neuroscience Computa-
tional and Mathematical Modeling of
Neural Systems

“The
probability density for the occurrence of a spike is, by defi-
nition, the firing rate [...]”. Here, each trial is an individual
burst, and in order to look for the burst initiation, we only
take into consideration the first recorded spike of each neu-
ron. Let us note however that in many publications, possibly
due to finite number of recordings, the term “firing rate” is
more commonly associated with its approximation, the spike
count rate. To avoid confusion we will speak in the paper of
“spike probability distribution”.
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Figure 3.3: Search for initiation area in a bursting activity of Intrinsically Bursting neurons. Bottom panel is
a raster plot of the burst, each line is one out of 800 neurons randomly pick in the 2000 neurons simulation.
The black line represents the network phase. Top panels represent in space 4 different time points with colored
neurons as neurons that have spiked up to the considered time (dashed lines in the raster plot). Neurons that
have not yet spiked are plotted in grey. Shadows represent the elliptic initiation area. One can observe that at
first, the activity is dispersed and no specific region is detected. Some time after, a region has been sufficiently
active to be detected then at a later time an other one appears on the right (last panel) These two regions latter
grow up to the size of the culture when all neurons have started spiking.

Although we modeled neurons as pacemaker, the noise added
as miniature post synaptic events (see appendix 3.6 for more
details) creates some variability and the sequence of action
potentials may vary from burst to burst. Hence the need to
investigate the initiation in a probabilistic manner. In order
to carry out this analysis one needs a time reference coher-
ent over consecutive bursts/trials with the spike sequence
probability density.

To compute this quantity, one first detects for each neuron
the first spike in a burst and then compute the cumulative
activity: Cb(τ) =

1
N

∑N
n=1Θ(τ − τn,b), where N is the number

of neurons, and τn,b is their first spiking time in burst b and
Θ the Heaviside function. The cumulative activity is then
averaged over multiple bursts of the same simulation. Then
the numerical derivative F is the first spike time probability
density, computed with the time resolution r :

F(τ) =
< Cb > (τ + r)− < Cb > (τ)

r
(3.5)
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Spatial Spike Analysis

This section focuses on the initiation in space of bursting
dynamics. Many studies [49, 50, 88] [49]: Orlandi et al. (2013), ‘Noise

focusing and the emergence of co-
herent activity in neuronal cultures’
[50]: Lonardoni et al. (2017), ‘Re-
currently connected and localized
neuronal communities initiate co-
ordinated spontaneous activity in
neuronal networks’
[88]: Paraskevov et al. (2017), ‘A
spatially resolved network spike
in model neuronal cultures reveals
nucleation centers, circular travel-
ing waves and drifting spiral waves’

either from numerical
simulations or experimental recordings in cultures, have re-
ported that bursts start repeatedly in one or several localised
regions of the culture. We propose here a method to detect
such regions based on a clustering algorithm of spiking neu-
rons. Although we know the in-burst spike times because of
the high resolution used in simulations, we will use only the
first spike of each neuron in order to look at how does the
bursting regime starts.

A specific region of the culture starts spiking before the
whole population

As a first hypothesis, one considers that the culture is homo-
geneously and randomly seeded with neurons. Thus, if one
region is to start the activity, it should have a density of spik-
ing neurons close to the density of the culture. This is how
we will detect the initiation area. The algorithm DBSCAN
from the Scikit Library [84, 119] [84]: Ester et al. (1996), ‘A Density-

Based Algorithm for Discovering
Clusters in Large Spatial Databases
with Noise’
[119]: Pedregosa et al. (2011), ‘Scikit-
learn: Machine Learning in Python’

, is a density based algorithm
for cluster detection that only requires two parameters and
does not need a priori guess of the number of clusters. The
two parameters are, a radius of search ε to look for nearest
neighbors, and threshold for the minimum number of neigh-
bors Nth required to belong in a cluster. We introduce later an
approach to avoid these two arbitrary parameters. Overall,
the algorithm can be used at any time point and works as
follow:

1. Each burst is identified with the extrema of the network
phase

2. For each burst, one looks at the first spike of each neu-
ron. At the considered time point, if a neuron has not
spiked yet, it is invisible to the DBSCAN search, if a
neuron has spiked, one turns it into a visible state. Visi-
ble neurons are neurons that have spiked at least once
before the considered time point.

3. The DBSCAN algorithm proceeds as the following:

I For each visible neuron i, one counts the number
of visible neurons in a radius ε , noted ni

I If ni is larger than or equal to Nth, neuron i is said
to belong to a cluster
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Figure 3.4: Estimation of the op-
timal parameter ε . Each panel
shows the number of detected
cluster (red) and the number of
neurons in it normalized by the
total number of neurons (blue) as
function of ε in circular culture
of radius 800 µm. Scale bar in the
inset of the top panel shows 400
µm. Bottom frame: All neurons
are visible for the DBSCAN algo-
rithm. Middle frame: Only 20%
randomly chosen neurons are vis-
ible.Top frame: Two separate acti-
vated regions with a total of 10%
visible neurons.

I If two neurons detected in a cluster are closer than
ε , they are in the same cluster.

4. Initiation areas are approximated with an ellipse over-
lapping each neuron in a cluster. There can be several
regions, and they can overlap too.

The underlying hypothesis for what is here called a visible
neuron, is that a spike may have causal influence over very
long period of time. One needs to consider here first the
propagation delay and second the integration processes in
the post-synaptic neuron, which theoretically speaking can
be as long as the interspike interval for pacemaker neurons
as shown by Izhikevich [62] with the description of the phase
response curve.

The algorithm output is a region of the two dimensional cul-
ture -sometimes several regions- of high activity, in the sense
that this region is not necessarily fast spiking at the moment
or near the moment of the computation but most of its neu-
rons have been active up to the point of computation. Figure
3.3 represents this search and the corresponding areas.

Parameters Estimation

In order to reduce the number of arbitrary parameters we
propose to modify the original DBSCAN algorithm. We first
choose to relate the minimum number of neighbors threshold
Nth and the radius of search ε to one another. To be identified
as the initiation region, almost each neuron in it has to be
activated. Thus, the threshold Nth has to be the mean number
of neuron in a disk of radius ε . Given the density d of the
culture, we could set Nth = d × πε2. However, doing so, one
does not account for the different local densities that arise
from the strict condition on the culture boundary. Neurons
in the center have necessarily a higher number of neighbors.
Thus, we set Nth to be the mean number of neurons in a disk,
corrected by one standard deviation. In this way, neurons at
the border can contribute to a cluster more easily. Under the
assumption that the standard deviation scales as the square
root of the mean, we set:

Nth = d × πε2 −
√

d × πε2 (3.6)

[62]: Izhikevich (2007) Dynamical systems in neuroscience
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Figure 3.5: Estimation of the op-
timal parameter ε . Each panel
shows the number of detected
cluster (red) and the number of
neurons in it normalized by the
total number of neurons (blue) as
function of ε Triangular culture,
with aspect ratio 1:10. The inset in
the top frame presents the result
for ε = 35µm: orange dots are neu-
rons in a cluster and black dots
are visible neurons not in a clus-
ter. Scale bar in the inset of the top
panel shows 400 µm. The figures
follow the same procedure as in
figure 3.4 and the density is the
same.

To estimate ε let us first quote that for small values, some
neurons may not be able to reach the threshold Nth because
there are to few neighbors at this distance. For large ε values,
because of equation 3.6, the threshold will be high and some
neurons may not be able to reach it. This comes from the fact
that, locally, the number of neighbors may not scale as fast
as Nth with ε . Thus, there exists a suitable range of values
that we are going to look for. Figures 3.4 and 3.5 present an
estimation of ε for 2 culture geometries based on running the
DBSCAN program with different visible neurons. The goals
are the following:

I If each neuron of the culture is visible, the algorithm
should detect only one cluster with each neuron in it.

I If a large percentage of the population (at least more
than half) is uniformly spiking in the culture, the al-
gorithm should also detect 1 cluster with most of the
spiking neurons in it.

I It can detect separate regions of activity.

Figures 3.4 and 3.5 present the number of neurons in the
initiation area as function of ε for different scenarii. One can
observe that the 3 goals are to some extend achieved. As
predicted, small values of ε are not suitable, and large values
also miss the clusters. Although a first cluster is detected at
ε ≈ 10µm, each neuron belongs to this cluster only above 25
µm. This sets the minimum value possible. One can observe
that the number of neurons in a cluster slightly depends
on the culture geometry and density of activity. Sharp edges,
with few neurons will be detected in a cluster for larger values
of epsilon than culture with aspect ratio 1:1. We also observe
that for large ε the density of visible neurons can be too
low (see middle frame of figure 3.5) for any cluster to be
detected: because of equation 3.6, the threshold number of
neighbors cannot be reached.However, for a relatively broad
range of values the resulting number of neurons in a cluster
does not depend on ε . This is the range we are interested
in. What is important for the following analysis is that the
algorithm can localise high densities and treats each neurons
equally in order to detect activity near the border as well as
in the center. Moreover, it does not necessarily depend on the
culture aspect ratio because the most suitable value of ε can
be adapted to individual cultures.
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Figure 3.6: Probability density function for any neuron to emit its first spike at time τ = t − tb , where tb is the time
of the network phase maximum (see burst definition 3.2). The right panel represents the probability function for
Noise Driven neurons, and the left panel represents Regular Spiking neurons. Both panels include a zoom-in of
the region of interest: first-to-fire neurons for τ < 0. Networks with an EDR scale 1000 (red) and 50 (blue) µm are
considered.

3.3 Results

The results presented in this section demonstrate the valu-
able contribution of the maximum of the phase we introduced
before to unambiguously unravel the network dynamics dur-
ing bursts initiation. Indeed, this extremum defines a specific
time point in the dynamics of a burst, coherent over consecu-
tive bursts. With simulated neuronal populations in cultures
we illustrate the spatio-temporal dynamics of initiation, un-
characterised until now. Then, with publicly available MEA
data from [50][50]: Lonardoni et al. (2017), ‘Re-

currently connected and localized
neuronal communities initiate co-
ordinated spontaneous activity in
neuronal networks’

we discuss on the practical use of our methods
with experimental data.

Burst initiation

We now make use of the probability distribution to reveal dif-
ferent dynamical regimes during bursts. Figure 3.6 displays
the temporal dynamics of burst initiation for a set of simu-
lations with different connectivity spatial scales and neuron
models. One can observe that the detected time of burst, at
τ = 0, appears to be a critical value that separates different
behaviors. The probability density for τ < 0 can be used to
define a temporal scale for the initiation. With an estimation
of the width of the probability density function, we find an
initiation duration in the order of 10 ms for regular spiking
neurons, and 100 ms for noise driven ones.

Surprisingly enough, the probability distribution for τ < 0
seems independent of the connectivity spatial scale of the
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EDR model but depends on the neurons inner dynamics
(here modeled through different sets of parameters). This
time scale comes from the inner neurons dynamics, and not
from the spatial correlation of the network model. On the
contrary, for τ > 0 the overall neuronal population is largely
characterized by an uni-modal distribution that depends on
the network spatial scale. The importance of the spatial corre-
lation emerges in the second regime, (τ > 0) where the curves
for two different EDR scale differ from one another.

Spatial initiation: Cluster algorithm
performance

In order to quantify the localised initiation, we propose to
measure the nucleation site identification performance of our
cluster detection algorithm, more simply called performance.
As presented before (see 3.2), the clustering algorithm is able
to identified a surface S(t) as a set of multiple clusters of
concentrated activity. We define the performance of the iden-
tified surface P(S) as the number of visible (meaning active)
neurons (see 3.2) in the detected region divided by the total
number of visible neurons in the population at the calcula-
tion time point. As time evolves, one can run the algorithm
and compute the performance as function of the estimated
region’s surface (estimated as the smallest ellipse that en-
compass each point in it). When the activity starts, it may be
sparse and the detected region will probably be of low per-
formance. However, if the activity is indeed localised, in the
sense that it is confined into a small region and extends from
it, the performance should increase faster than the cluster(s)
area and then stay relatively constant as the activity extends
to the whole culture.

Moreover, one can estimate the smallest region with the max-
imum performance looking at the maximum of P(S(t)) − |S(t) |

|C | ,
with P(S(t)) the performance of the detected cluster(s), and
|S(t)|, |C | respectively, the cluster(s) and culture area. The al-
lows us to define consistently what we call “the initiation
region”. Figure 3.7 represents the performance for two EDR
networks with different connectivity scale. One can easily no-
tice that (also reported earlier by Paraskevov et al.[88] [88]: Paraskevov et al. (2017), ‘A

spatially resolved network spike
in model neuronal cultures reveals
nucleation centers, circular travel-
ing waves and drifting spiral waves’

), long
range connectivity does not exhibit localised initiation. This
is noticeable both with the initiation region area being larger
than 25% of the culture and the shape of the performance:
growing slowly towards 1.
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Looking for leaders

A debated topic is whether some neurons behave as “leaders”
that display consistently a precursor activity, and what are
there characteristics [54, 120][120]: Faci-Lázaro et al. (2019), ‘Im-

pact of targeted attack on the spon-
taneous activity in spatial and bi-
ologically inspired neuronal net-
works’
[54]: Eckmann et al. (2008), ‘Leader
neurons in population bursts of
2D living neural networks’

. In order to show the existence
of leader neurons in simulations with pacemaker neurons,
we focus on the first spike probability density before the burst
onset time defined by the maximum of the network phase
(see figure 3.6). Neurons that spike in the time lapse described
here by τ < 0 display a significantly different dynamics than
the rest of the network. The main reason being that this is the
only period of time where the probability density does not
depend on the network spatial scale but on neurons’ inner dy-
namics. With noise driven neurons, the integral of the curve
indicates that there are 20 first-to-fire neurons per bursts.
However, they may not always be the same ones. In order to
identify leadership in bursting dynamics, we look for first-to-
fire statistics. If some neurons are repeatedly first-to-fire, we
will call them leaders.
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Figure 3.7: Performance as a function of the detected cluster(s) surface area |S(t) |
|C | . Top panels represent burst

initiation in simulations with a network of Regular Spiking neuron and EDR scale of 50 µm. Snapshots are
separated by 20 ms and colored dots represent visible neurons (see 3.2). The activity is manifestly localised.
Bottom panels represent burst initiation in simulations with the same neuron parameters, but a network with
EDR scale of 1000 µm. Snapshots are separated by 20 ms and colored dots represent visible neurons (see 3.2). The
activity is seemingly not-localised. Middle panel shows the corresponding performance: the last fifty bursts have
been analyzed through the clustering algorithm with a time step smaller than a millisecond. Each data point is
here represented. Straight lines represent the maximum of P(S(t)) − |S(t) |

|C | . They correspond to top second image
and bottom last image.
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Figure 3.8: Statistics for each neu-
ron to be a first-to-fire over 50
bursts in a simulation with Noise
Driven neurons. X-axis has been
sorted out to display a decreas-
ing statistic. Blue and red refers
to networks where the EDR scale
was respectively 50 and 1000 µm.
There are 10 first-to-fire neurons
present in more than 50% of the
considered bursts for the small
EDR scale, and most of the cul-
ture is never first-to-fire. On the
contrary, long conectivity length
increase the number of possible
first-to-fire up to a third of the cul-
ture.

Figure 3.8 displays the first-to-fire statistics for two networks
of different EDR scale. Although the distribution probability,
figure 3.6 was similar for both of these networks, the first-to-
fire statistics is notably different. By using an exponential fit
of the distributions of figure 3.8 we estimate the total number
of neurons acting as first-to-fire to be 24 and 95 for networks
of connectivity scales respectively, 50 and 1000 µm. Thus, in
our simulations, with a small EDR scale, the total number of
first-to-fire is in the same range as the number of first-to-fire
per burst. These short range networks contain leaders: around
20 neurons repeatedly drive the network to a bursting state
in simulations with noise driven neurons. On the contrary
with large EDR scale, the total number of neurons that act as
first-to-fire is much larger than the number of first-to-fire per
bursts. Thus, an established group of regular leader neurons
does not exist in a network with long range connectivity.

For the culture sizes we simulated, we note a common growth
dynamics that requires approximately 20 neurons to initiate a
burst for long and short connectivity spatial scales. For short
EDR scales, leader neurons exists, they are repeatedly in the
burst initiation sequence among other rarely initiation neu-
rons. For lager EDR scales, the variation in the composition of
the burst precursor group is much larger and leaders rarefy.

3.4 Discussion

Dynamical regimes

The separation of behavior at τ = 0 in the spike time proba-
bility distribution reveals the specific dynamics of what has
been reported earlier as leader electrodes. [52, 54][54]: Eckmann et al. (2008), ‘Leader

neurons in population bursts of
2D living neural networks’
[52]: Eytan et al. (2006), ‘Dynamics
and Effective Topology Underly-
ing Synchronization in Networks
of Cortical Neurons’

. Using a
complex sorting algorithm, Eckmann et al. reported the exis-
tence of leader electrodes in neuronal cultures. They used an
arbitrary threshold between the probability to spike during
a pre-burst period (see [54] for definition of a pre-burst) and
the probability to spike at any time during silent periods (low
firing rate) to identify leader electrodes.

Here, thanks to the first spike probability distribution, we dis-
tinguish naturally the very dynamics of first-to-fire neurons
during what Eckmann et al. [54] called the pre-burst. This
allowed us to show that the very beginning of these neurons
activity is independent of the network spatial correlations.
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This property is clearly revealed thanks to our method unique
feature to align bursts initiation through the maximum of the
phase. The key element of this characterization is that the
maximum of the phase is a coherent time point in the syn-
chronization process over consecutive bursts. Because of this,
the firing time sequences are properly aligned allowing to
compute the first spike time probability distribution and re-
veal the initiation dynamics time scale. Previous methods
making use of arbitrary reference time are not able to sepa-
rate the spatial scale independent dynamics (τ < 0) from the
spatial scale dependent one (τ > 0). This is illustrated in Ap-
pendix 3.6 where the first spike time probability distribution
is evaluated through a conventional method. There, the burst
initiation dynamics is blurred because of the arbitrary time
reference.

Our burst initiation alignment method allows us to highlight,
on simulations, different regimes during a burst and the role
of spatial correlations during initiation and propagation. In-
deed, the spike time distributions in figure 5 show distinct
initiation and spreading stages. The initiation stage appears
insensitive to spatial correlations, while the burst propagation
is strongly affected by it.

In addition, the spatial connectivity scale plays a role for the
initiation localisation and the existence of leader neurons.
Both properties have been found only in networks with small
connectivity spatial scale. In order to understand this, we
discuss the assumption that neuronal networks activity is
made of avalanches. Neuronal avalanches are understood
as the spreading of neuronal firings by a cascading process
during which neurons that fire at some time t trigger other
neuron firing at a later time. The activation of neurons at
some time point is predominately determined by the inputs
they receive from other neurons of the population just before.
Let us first call “causal time”, the time duration between a
neuron spike and the last input that may have influenced it.
Because of the time delay due to spike propagation or other
inner dynamics, a pre-synaptic neuron spike may not influ-
ence a post-synaptic neuron future spiking. Thus, there is a
causal time below which neurons appearing co-activated are
in fact, unrelated with one another, even if they are synap-
tically connected. Hence, the assumption that neuronal net-
works activity is made of avalanches tells us that multiple
spikes with a time shift smaller than the causal time must
have common predecessors that spiked during the avalanche:
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Figure 3.9: Performance com-
puted with a recording on 64x64
MEA from Lonardoni et al. [50],
as function of the detected clus-
ter(s) area. The same process is
used as in figure 3.7. Black dots
are data points, and the red curve
is the average curve. The vertical
line shows the minimum area for
the maximum performance. It cor-
responds to 14% of the 5.12x5.12
mm2 MEA. The activity recorded
by the MEA appears to start in
a region of 3.5 mm2 representing
more than 80% of the overall activ-
ity during the bursts nucleation.
The activity is not uniformly dis-
tributed, but is initiated in the
identified region.

there is a path in the network (with inverted direction of con-
nections) from those co-activated neurons to the first-to-fire
that started the avalanche.

Although we have not reported it here, bursts of activity,
when initiated locally, grow with a synchronous propagating
front [88][88]: Paraskevov et al. (2017), ‘A

spatially resolved network spike
in model neuronal cultures reveals
nucleation centers, circular travel-
ing waves and drifting spiral waves’

(it can be seen in the activity snapshots in appendix
3.6). These fast synchronous propagating fronts are an exam-
ple of co-activations in time scale smaller than this causal
time. They are synchronous because of the activity of their
predecessors, their predecessors were synchronous because
of their predecessors, and so on and so forth. The first ones
being the first-to-fire in the burst, which spike at their own
pace, according to their own dynamics dimly influenced by
the network structural characteristics. Hence, the common
temporal dynamics observed for different network spatial
scale. Then, these first-to-fire neurons project to, and acti-
vate the propagating front starting at the phase maximum.
The phase maximum corresponds to the time point of the
first co-activated neurons in the avalanche: the beginning
of the propagating dynamics. This regime depends highly
on the network spatial correlations, and corresponds to an
avalanche. Because of this avalanche dynamics, first-to-fire
neurons can activate a synchronous propagating front if they
share common successors. Neurons spatially localised with
common successors are numerous in networks with small
connectivity spatial scale, and are not likely to exist in net-
works with long range connections. Hence, the initiation is
localised and a synchronous propagating front exists only in
network with small connectivity spatial scale.

This scenario is revealed because the maximum of the phase
is the time point that separates the leaders’ dynamics and
the avalanche dynamics. Although, in simulations with pace-
maker neurons, the network spatial correlations do not shape
the leaders’ dynamics, the choice of leaders emerges as a
result of the interaction between the network complex stuc-
ture and the neurons dynamics. Then, the second stage of
the burst, dominated by an avalanche dynamics, coupled
with a small connectivity spatial scale appears to be the key
elements for a propagating front to exist.
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Experimental data

Although our methods were developed alongside simulated
data, we were concerned about their applicability on experi-
mental data. The application of our analysis on experimen-
tal data is mainly dependent on the temporal resolution of
the recordings. The decrease of calcium indicators fluores-
cence signal is too slow in many cases to reach the resolution
needed to investigate in-bursts dynamics. However, the in-
crease of the fluorescence signal during the action potential
can be sufficiently fast to solve with high resolution the first
spike of each burst. The methods presented in this paper can
be applied when only the first spike in a burst is known. The
computation of the network phase does not require high pre-
cision in the burst to pinpoint the starting point. Finally, all
the analysis on space and temporal dynamics require only the
first spike in each burst. Thus we believe that our methods
are also suited for high resolution calcium recordings.

Matrix Electrode Arrays (MEA) provide high temporal res-
olution sufficient to resolve single spikes. We have looked
at recordings from 64x64 MEA, in order to show that spatial
resolution is not an issue with modern tools. The sample rate
is 7 kHz and the spatial resolution 80 µm. The fast increase of
the performance as function of the increasing area of activity,
in figure 3.9 prooves that the bursts start locally. Like in our
simulations, we were able to identify a specific region of the
network, representing 14% of the MEA surface that initiates
the bursting regime.

With a threshold based burst detection method, Lonardoni et
al. [50] [50]: Lonardoni et al. (2017), ‘Re-

currently connected and localized
neuronal communities initiate co-
ordinated spontaneous activity in
neuronal networks’

were able to show that the bursts initiation sites are
related to spatially segregated functionnal communities. We
here find that the surface of initiation, unambiguously identi-
fied with our method, represents 14% of the MEA, similar to
the size of the functionnal communities (see figure 4 of their
paper). This links activity cross-correlation results from a full
recording, with individual bursts initiation.

3.5 Conclusion

This study presents a novel methodology for characterizing
synchronous bursting and propagating events in neuronal
cultures. In particular we present the network phase, a natu-
ral measure for studying synchronous events. It enables us
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to propose a simple definition and detection criterion for a
network burst starting time. This time reference is the basic
component in order to determine the first spike time probabil-
ity distribution which describes the burst initiation dynamics
and indicates the existence of leader neurons in networks
of naturally oscillating units. It also shows the characteristic
time scale of the neuronal population dynamics during what
Eckmann et al. [54][54]: Eckmann et al. (2008), ‘Leader

neurons in population bursts of
2D living neural networks’

called a pre-burst.

We use a modified clustering algorithm in order to detect
whether the growing activity is confined in space. To do this,
we compute a quantity we call performance which evaluate
the location of activity. Its time evolution can highlight lo-
calised burst initiation, and pinpoint the area of initiation.

Finally, the presented methods are used to describe the burst
initiation dynamics. The time reference we introduce with the
network phase, allows us separate the first-to-fire inner dy-
namics from the regime where avalanches dominate. It shows
a separation of behavior both in time and space. Our simu-
lations with spatial networks of pacemaker neurons show
that localised initiation happens only with a small connec-
tivity spatial scale breaking the cylindrical symmetry of the
simulated culture. Networks with a long connectivity scale
display the same pre-burst initiation dynamics as short scale
ones. However they do not display a localised initiation.

The methodology developed here makes possible a systemic
analysis of bursting states, and the initiation dynamics still
under many questionings. The network structural properties
that drive specific neurons to be leader of bursting activities is
still unknown but is now easier to address. Moreover, thanks
to the linear correlation between the network phase and the
number of synchronous events, it may become a powerful
tool to further the discussion on the keenly debated topic of
criticality in neuronal cultures.

In future work we would like to set up similar analysis on
high temporal resolution calcium imaging in order to verify
the applicability of the methods introduced here, and investi-
gate with precision biological neuronal networks dynamics
during bursting regime.
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3.6 Chapter’s appendix

Simulation of Neuronal Network

Simulate neuronal activity

Simulations are carried out with [73] [73]: Brette et al. (2005), ‘Adaptive
Exponential Integrate-and-Fire Model
as an Effective Description of Neu-
ronal Activity’

the adaptive Exponen-
tial Integrate and Fire model (aEIF) via the NNGT python
library and NEST simulator [121, 122]. Each neuron is de-
scribed as a two dimensional system with the menbrane po-
tential variable Vm (as in the Integrate-and-Fire model) and
an adaptation current w which modulate neurons’ excitability
(as in the Izhikevich model [123] [123]: Izhikevich (2003), ‘Simple

model of spiking neurons’
). This model can be solved

computationally for large networks in a reasonable amount
of time and provide a large variety of activity patterns. [124] [124]: Naud et al. (2008), ‘Firing

patterns in the adaptive exponen-
tial integrate-and-fire model’

Vm < Vpeak


Cm

dVm

dt
= −gL(Vm − EL) + gL∆T e

Vm −Vth

∆T − w + Ie + Is

τw
dw
dt

= a(Vm − EL) − w

Vm > Vpeak

{
Vm ←− Vr

w ←− w + b
(3.7)

Where Cm is the membrane capacitance, EL is the resting
potential, gL is the leak conductance, ∆T is a potential normal-
ization constant that affect the spiking current, Vth is the soft
threshold, τw is the adaptation time scale, a relates to the sub-
threshold adaptation, whereas b gives the spike-triggered
adaptation strength and Vr is the reset potential after the
potential Vm reaches Vpeak . Ie and Is are currents that come
from respectively external sources or neighboring spikes. The
exponential non-linearity model the pre-spike membrane po-
tential sharp increase and is needed to describe in-burst fast
dynamics. In the end, we choose this model because it is more
biologically relevant than the Izhikevich model [123] [123]: Izhikevich (2003), ‘Simple

model of spiking neurons’
, and

much less complex than the Hodgkin-Huxley model.

To follow indications of neurons in cultures being oscillators
even when uncoupled, [71] [71]: Penn et al. (2016), ‘Network

synchronization in hippocampal
neurons’

we simulate the activity with
three sets of parameters that display pacemaker neurons:

[121]: Silmathoron et al. (2021) tfardet/NNGT
[122]: Gewaltig et al. (2007) ‘NEST (NEural Simulation Tool)’
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Intrinsically Bursting (IB), Regular Spiking (RS) and Noise
Driven neurons (ND) whose behavior is detailed in figure
3.10.

Figure 3.10: Phase space and activity of the considered parameter sets. Each line describes one set of parameters,
namely (from top to bottom) Intrinsically Bursting, Noise Driven and Regular Spiking neurons. The (Vm,w) phase
plane (left column) is represented with a couple of cycle represented in dark dots. Blue line is the membrane
potential nullcline (set of points where dVm

dt = 0) and green line is the adaptation current nullcline (set of points
where dw

dt = 0). The middle column represents the corresponding menbrane potential and adaptive current traces
as functions of time. The left column is an histogram of interspike intervals with a poissonian input of rate 15 s−1

and increasing weights: from zero noise in black to the highest in brown in pA.

A neuron said Regular Spiking has a very periodic activity
even when submitted to noisy input. Its interspike interval
varies by 3% when submitted to a 15 s−1 poisson spike train.
A Noise Driven neuron, on the other hand, is much more de-
pendant on the input it receives: its interspike interval varies
by 50 % under the same conditions. Intrinsically Bursting
neurons present a more complex frequency pattern: high fre-
quencies are super-imposed over a natural small one. This
can be seen in the resetting point after a spike: it is below the
Vm nullcline (see figure 3.10). We use in the paper those 3 sets
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of parameters to show that the presented methods does not
depend on specific values.

Model Parameters
Table 3.1 lists all parameters with their values.

Table 3.1: Parameters Values

Parameters Values
Intrinsically Bursting Noise Driven Regular Spiking

Network modeling
Number of neurons N 2000
Culture radius R 800 µm
Density d 1000 mm−2

EDR scale λ 50 − 1000 µm
Mean in-degree k̄ 100
Neuron modeling
Membrane capacitance Cm 400 pF 250 pF 200 pF
Resting Potential EL -70 mV -64.2 mV -70. mV
Leak conductance gL 9 nS 10 nS 12.01 nS
Potential normalization ∆T 2 mV 5.5 mV 1.8 mV
Soft threshold Vth -50 mV -55 mV -50 mV
Adaptation time scale τw 400 ms 500 ms 300 ms
Sub-threshold adaptation a -6.5 nS -1.5 nS 2. nS
Adaptation strength b 10 pA 50 pA 70 pA
Reset Potential Vr -47.8 mV -59 mV -48 mV
Potential spike peak Vpeak 0 mV 20 mV 30 mV
External current Ie 38.8 pA 25 pA 262 pA
Refractory period Duration τre f 2 ms 2 ms 2 ms
Synapses modeling
Synaptic weight g 20 - 50 pA 50 - 125 pA 10 - 50 pA
Synaptic time scale τsyn 0.2 ms 0.2 ms 0.2 ms
Miniature events rate rminis 15 s−1 15 s−1 15 s−1

Miniature events weight gminis 10 - 25 pA 20 - 62 pA 5 - 25 pA
Simulation
Time step ∆t 0.1 ms
Typical simulation time 300 s

Spatial Network

To account for the spatial correlations that exist in cultures
and shape its activity [9] [9]: Hernández-Navarro et al. (2017),

‘Dominance of Metric Correlations
in Two-Dimensional Neuronal Cul-
tures Described through a Random
Field Ising Model’

, we use an Exponential Distance
Rule (EDR) to connect all neurons. A population of 2000
excitatory neurons is randomly drawn in a circular culture of
radius 800 µm. Then, with the same process as an Erdös-Renyi
network generation, one connect node i to j with probability:
pi j = p0e−di j/λ, where di j is the Euclidean distance between



76
3 Spatio-temporal Dynamics in bursts of synchronized Pace-
makers

them. This results in a directional network, whose topological
properties are predetermined by the magnitude of λ, the EDR
scale and a sharp border condition: neurons can connect only
inside the circular culture.

Post Synaptic Current
Interactions are modeled as fast current injection into the
post-synaptic neuron, following a pre-synaptic spike and a
space dependent delay. The delay is set as a 3.0 ms constant
plus a spike propagation of velocity 0.1 m.s−1, similar to what
has been experimentaly observed in cultures [79][79]: Barral et al. (2016), ‘Synap-

tic scaling rule preserves excita-
tory–inhibitory balance and salient
neuronal network dynamics’

. Overall,
it follows a log-normal distribution of mean 5. to 15. ms for
every network. The network metric properties set up both
specific connectivity patterns, and the delay in spike prop-
agation with different connection spatial length. Miniature
events are also set as a Poisson noise of rate 15 s−1 for each
synapses and with a post synaptic current (PSC) of half the
amplitude of a spike-triggered PSC.

Synaptic weights that determine the post synaptic current
amplitude are set such that the rhythmic activity is observed
and stable. Stability of this state is estimated with the mean
average interspike interval and network phase.

Analysis with the Izhikevich model, synaptic
depression and stochastic inputs

We want to show that our methods can be used to analyze
simulations with different models. For examples, previous
studies [49, 106, 125][49]: Orlandi et al. (2013), ‘Noise

focusing and the emergence of co-
herent activity in neuronal cultures’
[106]: Levina et al. (2006), ‘Dynam-
ical Synapses Give Rise to a Power-
Law Distribution of Neuronal Aval-
anches’
[125]: Levina et al. (2007), ‘Dynam-
ical synapses causing self-organized
criticality in neural networks’

described the neuronal activity with
dynamical synapses and stochastic inputs. More specifically
we want to bring together various point of view in the un-
derstanding of bursting networks. Orlandi et al proposed a
mechanism called noise focusing, based on simulations and
experimental recordings, in order to interpret activity during
burst initiation. On the other hand, we based our simulations
under the assumption that bursting states are an example of
oscillator synchronization [71, 126][126]: Dhamala et al. (2004), ‘Tran-

sitions to Synchrony in Coupled
Bursting Neurons’
[71]: Penn et al. (2016), ‘Network
synchronization in hippocampal
neurons’

.

Inspired by in silico networks in Orlandi et al. [49], the follow-
ing simulations are done with an EDR network with mean
in-degree 70 and scale 100 µm in a culture of radius 2.5 mm

[49]: Orlandi et al. (2013) ‘Noise focusing and the emergence of coherent
activity in neuronal cultures’
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with 5000 neurons, so that the density is 250 mm−2. Following
Izhikevich [123] [123]: Izhikevich (2003), ‘Simple

model of spiking neurons’
we look for parameters that display regular

spiking neurons, who are not intrinsically spiking (synaptic
connection and noise create the activity). This model is repre-
sented in its reduced form with the following equation

if V < 30mV


dv
dt
= 0.04v2 + 5v + 140 − u + Is(t) + η(t)

du
dt
= a(bv − u)

else V ≥ 30mV
{
v ←− c
u ←− u + d

(3.8)

where v represents the membrane potential and u a mem-
brane recovery variable, which accounts for ionic currents.
The parameter a represents the recovery variable time scale, b
represents the sub-threshold adaptation, c describes the after-
spike polarisation, d the spike-triggered adaptation strenght,
and Is(t) is the post synaptic current. η is a Gaussian White
Noise current of mean value 0 and standard deviation 10 pA.
It stays constant for a duration of 5 times the simulation time
step, then changes values etc... Miniature events are also set
as a Poisson noise of rate 50 s−1. We set the following values:
a = 0.02, b = 0.25, c = −65 and d = 8.

Following previous work, [49, 125, 127] [49]: Orlandi et al. (2013), ‘Noise
focusing and the emergence of co-
herent activity in neuronal cultures’
[125]: Levina et al. (2007), ‘Dynam-
ical synapses causing self-organized
criticality in neural networks’
[127]: Tsodyks et al. (2000), ‘Syn-
chrony Generation in Recurrent
Networks with Frequency-Dependent
Synapses’

we consider dynam-
ical synapses with the Tsodyks model described by the fol-
lowing equations:

dx
dt
=

z
τrec
−Uxδ(t − tspk)

dy
dt
= −

y

τPSC
+Uxδ(t − tspk)

dz
dt
=

y

τPSC
−

z
τrec

(3.9)

where x, y and z are the fractions of synaptic ressources in
a (respectively) recovered (ready), active, and inactive state
; τrec is the recovery time scale for synaptic depression and
is set to 1.2 s and U determines the decrease of available
ressources used by each presynaptic spike and is set to 0.2;
τPSC is the post synaptic current time scale and is set to 10 ms.
Facilitation has been taken away by setting τf acil = 0ms.

It results in a synaptic current for neuron i given by Ii =∑ki
j gi j yi j(t), where gi j is the absolute synaptic strength be-
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tween i and j. The sum runs over all pre-synaptic neurons of
i.

Figure 3.11 and 3.12 represent the overall analysis from the
network phase maximum detection to the spatial represen-
tation of the activity with the neuron’s individual phase.
The proposed methodology is here able to pinpoint that this
model displays a different spatiotemporal dynamics, not seen
with simulations of pacemaker neurons presented in the pa-
per. The spike probability distribution does not display the
hallmarks of first-to-fire specific dynamics. Since the global
activity is high in between burst a co-activation structured
in space (a propagation front) can be created without spe-
cific initiation. Spatial initiation is still both localised, and
structured into a propagation front.

Figure 3.11: Representation in space of 2 bursts (Top and Bottom) with the neurons’ phases in color scale. Culture
radius is 2.5mm. The Middle frame corresponds to the maximum of the phase time point. 1 ms separate each
frame.
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Figure 3.12: Analysis with the Izhikevich model. Top panel is a raster plot of 100 randomly selected neurons.
Middle panel is a trace of the corresponding network phase. Bursts appear as in the paper, between 2 consecutive
maxima and minima, however inter burst activity is always high thus the phase stays close to 0.5. Bottom left
panel shows the first spike time probability distribution. This distribution shows the absence specific dynamics
of first-to-fire neurons in this example. Middle bottom panel shows the clustering algorithm in space for 3
consecutive time step: visible neurons are represented as red dots, and all other as black dots. The corresponding
performance is plotted in the bottom left panel. It shows the characteristic curve of localised growth with a
region of initiation representing 14% of the total culture.

Firing rate and first spike probability
distribution

In order to show that the maximum of the phase represents
a specific point in the bursting dynamics, we look at a time
reference computed with the spike count rate. This firing rate
was computed with a convolution with an exponential kernel
first (with temporal scale 3 ms), then gaussian kernel (with
temporal standard deviation 3 ms). The resulting function
was searched for maximum above a certain threshold to de-
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Figure 3.13: Spike time probabil-
ity density for two different time
references. Top frames show the
spike count rate of 4 consecutive
bursts aligned on their maximum
(right)) and on an arbitrary 20
Hz threshold crossing time (top).
Bottom frames show the proba-
bility distributions with the cor-
responding time reference. The
simulations correspond to Noise
Driven neurons, used in the paper
in figure 3.6. One can observe that
changing the time reference does
not strongly change the distribu-
tion shape, however here, we can-
not observe first to fire behavior
anymore and the curves are arbi-
trarily translated in time from one
another

tect bursting events. This maximum and a 20 Hz threshold
value was then used as time references to compute the first
spike probability distribution. Figure 3.13 shows an exam-
ple of firing rate and spike time probability distribution for
the same simulations as in the paper (figure 3.6) with two
time references. The burst definition presented in the paper
is specifically designed to look at the spiking pattern during
initiation. It gives a time reference related to the network
state with information about previous and future spikes and
not only spikes in a couple of milliseconds time window.
Hence, this time reference stays coherent over consecutive
burst. The arbitrariness in the firing rate threshold method
cannot achieve such coherence.

Data and Code Data and code are available in the a github
repository: MalloryDazza/NN_Burst_Dynamics.

Activity snapshots The following figures shows snapshots
of the in-burst activity pattern, displayed with neurons indi-
vidual phases. They correspond to the examples used in the
paper.
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Figure 3.14: Representation in space of the burst used for presenting the spatial cluster detection (figure 2) in the
paper. Neurons’ phases are plot at the soma location. Each frame are separated by 25 milliseconds. Pacemakers
are Intrinsically Bursting, and the EDR scale is 50 µm.
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Figure 3.15: Representation in space of the burst used for performance computation (figure 5) in the paper (top
activity). Neurons’ phases are plot at the soma location. Each frame are separated by 5 milliseconds. Pacemakers
are Regular Spiking, and the EDR scale is 50 µm.
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Figure 3.16: Representation in space of the burst used for performance computation (figure 5) in the paper
(bottom activity). Neurons’ phases are plot at the soma location. Each frame are separated by 5 milliseconds
Pacemakers are Regular Spiking, and the EDR scale is 1000 µm..
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Figure 3.17: Representation in space of the burst used for velocity computation (figure 6) in the paper (left panel).
Neurons’ phases are plot at the soma location. Each frame are separated by 10 milliseconds. Pacemakers are
Noise Driven, and the EDR scale is 50 µm.
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Figure 4.1: Sketch of a stage 5
neuron, from Baj et al. [128]. Dy-
namical phase where branches re-
tract (represented by empty ar-
rows) and elongate (represented
by black arrows) until a stable
form is reached.
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The previous chapters and other independent studies stress
out the importance of spatial correlations in the understand-
ing and forecasting of neuronal network activity. Several net-
work models, like the exponential distance rule model, or
growth based models are able to create nteworks with spa-
tial correlations, however there is a real lack of experimental
data to confront the resulting network properties. The chal-
lenge is to identify individual neurons morphology in a dense
and complex biological environment. This section is a step
forward the characterization of two-dimensional neuronal
network structure.

The original goal of the experiments I conducted during my
thesis was to design a physico-chemical environment able
to control the network structural properties. Is it possible to
constrain neurons in such a way that the network acquire
certain properties ? The firsts examples are the diode and arch
microfluidic designs that are able to create directed connec-
tions between two populations. Can one goes even further
and dream of a physico-chemical design able to control the
number of connections, or neurons’ clustering ?

Because the investigation and realisation of such environ-
ment have been stopped by the Covid-19 pandemic a more
modest program has been set up. Although they lack proper
characterization, I will still present the firsts attempts in the
construction of this physico-chemical design. In this chapter,
I will first introduce neurons morphological characteristics,
and then present the characterization of the unconstrained
neuronal network I have developed.

4.1 Neuronal morphogenesis in vivo

Development of the neuronal tree

The characteristic neuronal arborescence is made possible
by the interaction between a continuous remodelling of its
cytoskeleton and the structural support of rigid filaments.
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Figure 4.2: Phase-contrast image of an hippocampal neuron at its firsts stages of development in vitro. Top left
frame shows a stage 1 neuron: it attaches to the substrate. Bottom left frame shows a stage 2 neuron: Minor
neurites start to develop with intermitent growth and retraction to 20-30 µm in length. Middle frame shows
a stage 3 neuron: One neurite, the axon, continuously grows for 2-3 hours becoming 3 times longer than the
others. Right frame shows a stage 4 neuron: dendrites have begun their growth and the axon extend to several
hundreds of microns. In culture, synapses are created on axo-dendritic crossings of different neurons. Images
from Kaech et al. [131]. Scale bar is 25 µm.a

a [131]: Kaech et al. (2006) ‘Culturing hippocampal neurons’

Mature neuron morphology emerges as the final result of a
growing and differentiation process, which can be describe
by a 5 stage developmental model∗ [129, 130] [129]: Dotti et al. (1988), ‘The Es-

tablishment of Polarity by Hippocam-
pal Neurons in Culture’
[130]: Cáceres et al. (2012), ‘Neu-
ronal Polarity’

. These 5 stages
are represented in figures 4.2 and 4.1.

The first two stages are the cell adhesion to its substrate and
the emergence of protrusion that will soon become neurites.
The creation of a single axon starts when one of the compet-
ing immature neurites prevails and grows continuously for
a couple of hours. This process of polarization happens 24
hours after plating for 50% of the culture and at the fourth
day in vitro, the axon can be half a millimeter long whereas
dendrites are less than a hundred microns. During the fourth
stage (DIV4-6), axo-dendritic crossing between two cell can
see the beginning of synaptogenesis [128, 132] [132]: Fletcher et al. (1994), ‘Synap-

togenesis in hippocampal cultures’
[128]: Baj et al. (2014), ‘Develop-
mental and maintenance defects
in Rett syndrome neurons identi-
fied by a new mouse staging sys-
tem in vitro’

and the den-
dritic tree extends and stabilizes. Lastly, after seven days in
vitro there is fast dynamical phase of branches retraction and
extension until a stable morphology is reached. The last stage
is the one with the most synaptic changes: the number of

∗ [128]: Baj et al. (2014) proposed a 6th stage of morphological stabilization
during which the dendritic spine shifts from ’stubby’ to ’mushroom’
types.
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Figure 4.3: Fluorescent imaging of
microtubules (left) and actin mi-
crofilaments (right) in a growth
cone, from Buck et al. [137]. Scale
bar is 10 microns.

synapses increase, dendritic spine morphology changes and
some excitatory synapses starts to switch to inhibitory [133,
134][133]: Ganguly et al. (2001), ‘GABA

Itself Promotes the Developmen-
tal Switch of Neuronal GABAer-
gic Responses from Excitation to
Inhibition’
[134]: Harrill et al. (2015), ‘Ontogeny
of biochemical, morphological and
functional parameters of synap-
togenesis in primary cultures of
rat hippocampal and cortical neu-
rons’

.

Extension process: The Growth cone

During the extension of axon and dendrites, the main actor is
the growth cone: a mesh of actin filament and microtubule
that act as a two-dimmensionnal molecular motor. Figure
4.3 shows the actin filaments and microtubules organization
in the growth cone. These two polymers are responsible for
the growth cone structure and its ability to steer the neu-
rite growth. [135, 136][135]: Conde et al. (2009), ‘Micro-

tubule assembly, organization and
dynamics in axons and dendrites’
[136]: Coles et al. (2015), ‘Coordi-
nating Neuronal Actin–Microtubule
Dynamics’

When entering a new environment,
bundles of actin filament extend the cell membrane by form-
ing filopodia: finger shaped organs able to interact with the
environment and create traction forces responsible for the
elongation and turning of the growth cone.

The interaction with the bio-chemical environment, also called
chemotropic guidance is one of the main mechanisms respon-
sible for the orientation of growth cone movement. Specific
chemicals have been shown [137, 138][137]: Buck et al. (2002), ‘Growth

Cone Turning Induced by Direct
Local Modification of Microtubule
Dynamics’
[138]: Kellermeyer et al. (2018), ‘The
Role of Apoptotic Signaling in Axon
Guidance’

to initiate biochemical
pathways in the growth cone, responsible for the cytoskelton
dynamics and act as attractors, or repellant. The substrate
stiffness can also orient growth cone motion: a soft substrate
is attractive which explain the preference for neurons to grow
over glial cells. However, in an two-dimensionnal cultures,
(if present) guidance cues are uniform and the growth can be
well described as a random process [139, 140][139]: Koene et al. (2009), ‘NET-

MORPH’
[140]: Maskery et al. (2004), ‘Growth
Cone Pathfinding: a competition
between deterministic and stochas-
tic events’

.

The growth dynamic cannot be described as a continuous
process. Indeed, reports have shown that the growth cone is
still more than 50 % of the time. There are period of pausing,
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during which the microtubules re-organize into a stable con-
figuration allowing the propagation to continue, and period
of retraction [141] [141]: Smirnov et al. (2014), ‘The

effects of confinement on neuronal-
growth cone morphology and ve-
locity’

. Hence, even in the absence of chemical
guidance cues, the growth process depends on the cytoskele-
ton dynamics and a biologically relevant model needs to take
it into account [142] [142]: Rauch et al. (2013), ‘Forces

from the rear’
. The run-and-tumble model23

23: for a detailled mathematical
description of run-and-tumble and
brownian particle motion see [143]
Solon et al., (2015)

describes
the motion of a self propelled particule as sequences of linear
motion (run), interspersed with stochastic change in direction
(tumble) according to a uniform law between two extrem val-
ues [+θm, -θm]. The tumble can represent the re-organization
pause of the growth cone whereas the run represent the pe-
riod of rapid motion (the growth cone instantaneous speed is
in the order of 10 µm.h−1)

Neurite structure

Tortuous neurites’ morphology is not only due to the erratic
growth cone motility. Imagine sliding a sewing thread on a
2D surface from its tip. After a couple of centimeters you will
notice that the thread shape does not follow exactly the tip
motion. There are two reasons for this, firstly the thread does
no adhere to the surface and is allowed to move relatively
freely. Secondly, the thread stiffness protect it from sharp an-
gles: these are not stable configuration of the filament. Same
thing happens for neurites, mature neurites’ shape depends
on the interaction with the substrate, and the cytoskeleton
rigidity, made of a bundle of microtubules. Microtubules
rigidity is quantified through the bending stiffness: Y × I with
Y the Young modulus and I the second moment of area. The
bending stiffness quantifies how much force is required to
bend the microtubule up to a certain curvature κ, such that:

κ =
Y I

F∆x
≈

∆y

∆x2

with F the applied force, ∆x the length of the microtubule
rod and ∆y its deflection. It is well known [144, 145] [144]: Gittes et al. (1993), ‘Flexural

rigidity of microtubules and actin
filaments measured from thermal
fluctuations in shape.’
[145]: Suresh (2007), ‘Biomechan-
ics and biophysics of cancer cells’

that the
order of magnitude of microtubule bending stiffness in vitro
is 10−23 N.m2, thus the tension required to bend a single 10

µm long microtubule, to an aspect ratio
∆y

∆x
=

1
10

is 10 −5

nN. The rest tension of axon has been found to be in range
of 1-10 nN, both in vivo and in vitro [146, 147] [146]: Hällström et al. (2010), ‘Fifteen-

Piconewton Force Detection from
Neural Growth Cones Using Nanowire
Arrays’
[147]: Rajagopalan et al. (2010), ‘Drosophila
Neurons Actively Regulate Axonal
Tension In Vivo’

. Thus, a
single microtubule is easily bend by forces present in the
cell. The large gap in order of magnitued indeed shows that
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neurite stable configuration is due to both a rigid bundle of
interacting microtubule which increases its stiffness2424: Independant filaments would

linearly increase the total stiffness
of a material, such that
κbundle = Nbundle κMT

and the
biochemical interaction with its environment.

The quantity used to described bending of elongated stream-
lined systems is the persistence length. It has been used to
quantify polymer chains stiffness or the path formed by ran-
dom walker. In the study of polymer chains, the persistence
lengths is defined relatively to the mechanical properties of
the chain. [144, 148–150][148]: Landau et al. (1959), Theory

of Elasticity, Volume 7 of Course of
Theoretical Physics
[144]: Gittes et al. (1993), ‘Flexural
rigidity of microtubules and actin
filaments measured from thermal
fluctuations in shape.’
[149]: Rivetti et al. (1996), ‘Scan-
ning Force Microscopy of DNA
Deposited onto Mica’
[150]: Abels et al. (2005), ‘Single-
Molecule Measurements of the Per-
sistence Length of Double-Stranded
RNA’

The energy required to bend by an
angle θ a chain of size d, in a 2D plane is:

E =
Y Iα2

2d
= kBT

lp
2d

θ2 (4.1)

where kB is the Boltzmann constant, T the absolute temper-
ature, Y the Young modulus, I the chain second moment of

area and lp =
EI

kBT
the persistence length. Hence, the thermal

fluctuation of θ follows a Gaussian distribution, of mean zero
and standard deviation σ =

√
d/lp:

P(θ) =

√
lp

2πd
exp

(
lp θ2

2d

)
(4.2)

Such distribution, and stiffness, has a major consequence on
the chain shape. The persistence length lp corresponds to the
distance over which the neurite is close to straight line. This
can be quantify by the correlation of the direction. Let us de-
note θ(s) the tangent angle of the neurite at a curvilinear axis
s. Under the hypothesis of the equipartition principle, one
can show25

25: It can be computed from the
distribution eq. 4.2 that in a 2D plane (see pages 317-318 of Jonathan

Howard’s book [151][151]: Howard (2001), Mechanics of
Motor Proteins & the Cytoskeleton

):

〈cos (θ(s) − θ(0))〉 = exp
(
−

s
2lp

)
(4.3)

In the absence of stiffness, or spatial "memory" the persis-
tence length is null and the correlation falls to zero. This is
the case of a Brownian Motion where each directions are
taken independently of the previous ones. With a certain
rigidity, or spatial memory the persistence length has a finite
value, directly related to the mechanical (for a polymer) or
motility (for a Brownian Motion) properties. If the angle θ is
determined by the thermal fluctuation, then the distribution
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of theta values is a Gaussian and the persistence lenght is the
orientation correlation length (see equation 4.3).

Lastly, in order to properly characterize the neuronal net-
work, one have to investigate the formation of synaptic con-
nections. Synaptogenesis is a long process which occurs dur-
ing the lasts stages of development from DIV4 to DIV15.
They typically happen on overlaping region between a pre-
synaptic axon and a post-synaptic dendrite and can reach
an extremelly high density in mature culture. Dzyubenko et
al. [152] [152]: Dzyubenko et al. (2016), ‘Colo-

calization of synapse marker pro-
teins evaluated by STED-microscopy
reveals patterns of neuronal synapse
distribution in vitro’

reported 10 synapses.µm−2 in typical hippocampal
neurons and astrocyte co-cultures with 200 mm−2 cells.

From a single cell to complex network
Our main goal is to characterize the network of neuronal cul-
tures. As in the theoretical models used in the previous chap-
ters the network is made of nodes, represented by the neu-
rons’ soma, and directionnel connections from a pre-synaptic
neuron to a post-synaptic one. Hence we are interrested in the
possibility to create synapses between two specific neurons. It
seems obvious that if they are too far apart, they will never be
connected. It is impossible for the axon to grow over very long
distances (typically several millimiters for mice). For close
by neurons, a connections in the network is created only if at
least one synapse is formed, thus an axon and a dendrite have
to overlap over a certain distance. Because of the complex
neurites’ growth process, the Euclidian distance between the
soma is not a relevant parameter to estimate the probability
of connections. Axon tortuosity, branching, or the interaction
with its biochemical environment are all specific features of
neuronal growth and morphology that influence the network
properties: the number of connections per neurons (the de-
gree), the probability of triangles and loops (clustering), the
centrality of specific nodes (betweenneess) etc...

Neurons morphological characteristics, obtained from cul-
tures of cortical neurons, can be directly implemented into
growth simulations in order to reproduce biologically rele-
vant networks. Also, I will present a toy model to estimate
the typical connection Euclidian length in network of real
neurons that take into account neurites tortuosity, branching
etc...
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4.2 Methods and Protocols

Primary culture of cortical neurons

Dissection and cell plating
Dissections were done by Audric Jan with the occasional help
of Terence Saulnier and Josquin Courte. Hence, the protocol
follows the one presented in Audric Jan PhD thesis[153][153]: Jan (2021), ‘Fasciculation ax-

onale et dynamique du cône de
croissance en environnement con-
finé’

.

Wild type gestating mices at embryonic day 15-16 were dis-
sected in order to extract the embryos’ cortexes. They rest
during the dissection and until the digestion step on ice in
glucosed Gey’s Balanced Salt Solution2626: 0.5mL of GBSS (Sigma 9779)

completed to 6mL with 100 g.L−1

D-(+)-glucose in calcium and mag-
nesium free D-PBS (Gibco 14190-
094)

(GBSSg). After re-
moving the majority of the GBSSg solution, the papaïn27

27: Papaïn Sigma, 76220

at 15
U.mL−1 in DMEM with high glucose and supplemented with
GlutaMAX and sodium pyruvate28

28: DMEM Gibco, 31966-021

and filtered at 0.22µm is
added. The solution is incubated at 37◦C for 8 to 10 minutes
and gently flipped every 3 minutes. The enzymatic dissocia-
tion is stopped with 0.5mL of serum.

After changing the supernatant to DMEM we mechanically
dissociate cells with pipettes of varying sizes. It is impor-
tant to limit the number of air bubbles to a minimum and
stopped the trituration once there is no macroscopic piece
visible anymore to preserve cell viability. The cell suspension
is then centrifugated 6 minutes at 700 rpm at room tempera-
ture. After extracting the DMEM, cells are suspended in the
seeding medium the closest possible to the seeding concen-
tration. Before seeding, cells are counted with a Malassez
hemocytometer. Since the density I seek is close to several
hundreds of cells per squared millimetre, the number of cells
in a 24x24 mm2 coverslip are in the order of 300 000. The
concentration depends on the volume added, which depends
on the substrate (chips or ’open-air’ culture).

In microfluidic chips, the plating medium composition is
(percentages in volume):

I 5% Fetal bovine serum
I 2% B27 supplement (Gibco, 17504-044)
I 1% N2 supplement (Gibco, 17502-048)
I 92% high glucose DMEM, supplemented with pyruvate

and GlutaMAX (Gibco, 31966-021)

In ’open-air’ culture, the plating medium composition is (per-
centages in volume):

I 5% Horse serum

https://www.sigmaaldrich.com/catalog/product/sigma/g9779?lang=fr&region=FR&cm_sp=Insite-_-caSrpResults_srpRecs_srpModel_g9779-_-srpRecs3-1
https://www.thermofisher.com/order/catalog/product/14190094
https://www.thermofisher.com/order/catalog/product/14190094
https://www.sigmaaldrich.com/catalog/product/sigma/76220?lang=fr&region=FR&cm_sp=Insite-_-caSrpResults_srpRecs_srpModel_76220-25g-_-srpRecs3-1
https://www.thermofisher.com/order/catalog/product/31966021
https://www.thermofisher.com/order/catalog/product/17504044
https://www.thermofisher.com/order/catalog/product/17502001
https://www.thermofisher.com/order/catalog/product/31966021
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I 2% B27 supplement (Gibco, 17504-044)
I 1% N2 supplement (Gibco, 17502-048)
I 1% Glutamine (Gibco, A2916801)
I 1% Sodium Pyruvate (Gibco, 11360-070)
I 90% Glutamine free MEM (Gibco, 21090-022)

The plating medium is changed the day after the dissection
to a maintenance medium of composition (percentage in vol-
ume):

I 1% Horse serum
I 2% B27 supplement (Gibco, 17504-044)
I 1% Glutamine (Gibco, A2916801)
I 96% Neurobasal (Gibco, 21103-049)

After plating, cells are stored in a 37◦C and 5% CO2 atmo-
sphere. In every medium, 0.2% of 10mg.mL−1 gentamicin29

29: Gentamicin Gibco, 15710-049)is added

Substrate
The substrate is made of glass coverslips coated with adhesive
molecules. In order to confine neuronal growth, the molecule
can be deposited on limited, and controlled regions of the
coverslip. This is done with photolithography techniques and
has been explained in details in previous works, (see [154,
155] [154]: Tomba (2014), ‘Primary brain

cells in in vitro controlled microen-
vironments: single cell behaviors
for collective functions’
[155]: Braini (2016), ‘Approche bio-
physique des formes neuronales’

for most recent ones).

After cleaning with isopropanol the dried coverslips are ex-
posed 30s to an O2 plasma in order to prepare the surface for
silanization. We introduce a dozen of coverslips with 100 µL
of AB 109004 silane30

30: (3-methacryloxypropyl)tricholoro-
silane, 95%

in a vacuum chamber, rapidly after the
plasma. The vacuum pump is activated for 20 minutes, and
again 20 minutes after the coverslips are stored in a large petri
dish tightly closed with parafilm. Silane is highly toxic and
caution is needed during this step. It needs to be achieved
under an extractor hood. Also, preparing a falcon tube of
water to dispose of the silane pipette tip is a good habit.

In a clean room, S1805 positive photoresist is spincoated at
4000 rpm (with 4000 rpm.s−1 acceleration) for 30s on the
silane coated coverslips. After annealing it at 115◦C for 1
minute, the coverslips are exposed to a 50-60 mJ.cm2 UV light
through a chosen mask. With wavelength of 435 nm, and the
spectral lamp of the MJB4 mask aligner in the IPGG, this dose
corresponds to a 5s exposure. The pattern is revealed after
1 min in the MF-26A developer. The coverslip is rinsed in

https://www.thermofisher.com/order/catalog/product/17504044
https://www.thermofisher.com/order/catalog/product/17502001
https://www.thermofisher.com/order/catalog/product/A2916801?SID=srch-srp-A2916801#/A2916801?SID=srch-srp-A2916801
https://www.thermofisher.com/order/catalog/product/11360070?SID=srch-srp-11360070#/11360070?SID=srch-srp-11360070
https://www.thermofisher.com/order/catalog/product/11090081?SID=srch-srp-11090081#/11090081?SID=srch-srp-11090081
https://www.thermofisher.com/order/catalog/product/17504044
https://www.thermofisher.com/order/catalog/product/A2916801?SID=srch-srp-A2916801#/A2916801?SID=srch-srp-A2916801
https://www.thermofisher.com/order/catalog/product/21103049#/21103049
https://www.thermofisher.com/order/catalog/product/15710049
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Figure 4.4: Patterns of adhesive
proteins used for the photolithog-
raphy mask. The tips have of 30◦

angle. Green pattern is created
from a 1.5 mm in diameter disk,
and imposing the tip to align with
the circle tangents. Red pattern is
created with the same constraint,
but the tip is shortened with a
curvature. Blue pattern is created
with ellipses of width 1.5 mm and
1 mm height. These patterns are
also created with a continuity of
the tangents.

distilled water and dried with a vertical air jet. The coverslips
can be stored in petri dish closed with parafilm for months.

The patterned coverslips are then exposed 5 minutes to an O2

plasma. This step removes the silane where the resist is not,
and prepare the glass surface to fix the adhesive molecules. It
seems that this long plasma also make the photoresist easier
to remove in the following steps. Neglecting the importance
of this plasma has made many of my experiments unsuccess-
full. The poly-L-ornithine3131: PLO, Sigma P4957 adhesive molecule is incubated
overnight at 80µg.mL−1 rapidly after the O2 plasma. A 200 µL
drop is deposited on a clean and flat hydrophobic surface (a
petri dish for instance, or parafilm). A coverslip is then care-
fully put on top of the drop, the photoresist pattern facing
down. The petri dish is then tightly closed with parafilm to
prevent evaporation and left aside overnight. After washing
it in distilled water or D-PBS, the photoresist is removed in
a 90s ultrasonic bath of pur ethanol. A deviation from the
original protocol made me start with longer than 2min30s ul-
trasonic bath, although 1min30 should be enough providing
the O2 plasma is successful. After washing 2 times in distilled
water, 10µg.mL−1 laminin32

32: Laminin, Sigma L2020

in distilled water is incubated
for 45 minutes with the same protocol. The coverslips are
washed 2 times and deposited in individual petri dishes with
1.5 mL of cell free seeding medium.

Poly-ornithine and laminin dilution can be done in calcium
and magnesium free D-PBS unless the coverslips need to be
dried. In this specific case, the dilution can be done in distilled
water.

In unconstrained environment, the photolithography is not
necessary and fluorodishes are coated with poly-ornithine
and laminin with the same procedure. Fluorodish are specific
petri dishes with glass bottom suited for microscopic imaging
with strong magnification.

Mask design
In the EDR network model, neurons in-degree is directly
related with the finite size of the culture. Closer to the bound-
aries, neurons create fewer connections because of the lack of
close neighbours. Following this idea, I assumed that creat-
ing a sharp tip would increase the ratio border over surface,
hence decrease locally the degree. Different values of the tip
sharpness, as well as transitions to the circular part of the
culture was tested, and can be seen in figure 4.5. The idea

https://www.sigmaaldrich.com/catalog/product/sigma/p4957
https://www.sigmaaldrich.com/catalog/product/sigma/l2020
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behind all patterns is to reduce the number of sharp angles. I
made sure the border gradient (the tangents) is continuous.
60 of these patterns fit in a 24x24 coverslip, allowing to test
multiple tips angles.

Data acquisition

Probing individual cell

CytBow neurons
In order to quantify individual cell morphology in a dense
biological environment one need to differentiate one specific
cell from the others. Loulier et al. [156] [156]: Loulier et al. (2014), ‘Mul-

tiplex Cell and Lineage Tracking
with Combinatorial Labels’

developed the technol-
ogy of multiaddressable genome-integrative color markers
that are able to color label individual cells and follow their
direct line of descent. I can use this technology in order to
identify individual neurons. The colour labelling is expressed
in the form of a fluorescent protein produced in the cyto-
plasm. Hence the mice’s denomination: CytBow. In particular,
neuronal cells of CytBow mice express 3 types of mutually
exclusive fluorescent proteins [157–160] [157]: Shaner et al. (2004), ‘Improved

monomeric red, orange and yel-
low fluorescent proteins derived
from Discosoma sp. red fluores-
cent protein’
[158]: Zacharias (2002), ‘Partition-
ing of Lipid-Modified Monomeric
GFPs into Membrane Microdomains
of Live Cells’
[159]: Rizzo et al. (2004), ‘An im-
proved cyan fluorescent protein
variant useful for FRET’
[160]: Goedhart et al. (2012), ‘Structure-
guided evolution of cyan fluores-
cent proteins towards a quantum
yield of 93%’

:

I the orange-red tdTomato (λabs = 554nm, λem = 581nm)
or mCherry (λabs = 587nm, λem = 610nm) [157]

I the yellow-green mEYFP (λabs = 515nm, λem = 528nm)
[158]

I the blue-green mCerulean (λabs = 433nm, λem = 475nm)
[159] or mTurquoise2 (λabs = 434nm, λem = 474nm)
[160]

Each cell in culture performed with CytBow mice can be
colour coded, but with only 3 labels. Either the density is
sufficiently small for this 3 colour neurons to rarely cross or
the colour coded neurons must be only a fraction of the total
population. We seek density close to several 100 mm2, and
axons can grow up to a millimetre. Thus, one need to add
wild type neurons, in a CytBow culture. Cultures with 20%
CytBow33 33: Jean Livet’s team at the Insti-

tut de la Vision kindly provided
the mices

and 80% wild type has been successfully made on
patterned substrate. The phenotypic instability of CytBow
construction, and the strong reduction of mice availability
after the Covid-19 pandemic made us choose another technol-
ogy to keep our investigation going on. Note however, that
the concentration of 20% colour coded cells was too high to
identify individual cell morphology.
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Figure 4.5: Photography of the
border of a pattern with CytBow
neurons at DIV4. One can see a
small bundle of axon following
the pattern boundary from top to
bottom (white arrow). The green
and red pseudocolours represent
the mEYP and tdTomato proteins
of CytBow construction.

Virus infection

Viral vectors are tools commonly used by molecular
biologists to deliver genetic material into cells.3434: Viral vector wikipedia article

Lentiviruses are a subclass of virus able to target non-dividing
cells like neurons. Also, it is possible to incorporate the green
fluorescent protein (GFP) gene into a safe3535: unable to replicate by itself and genetically
stable lentivirus. The produced viral vector can be used to
mark individual cells with GFP. A precise control of the infec-
tion is nonetheless require to control the fraction of probed
neurons.

A solution of 107 - 108 U.mL−1 viral vector produced by Chris-
tian G. Specht’s team, and stored at -80◦C is introduced in
the maintenance medium the day after plating (DIV1). It is
assumed, after trying it once at DIV5, that infection in older
culture are much less successful.

The quantity of added virus needs to be astutely adjusted to
what one wants to observe. In order to set up a good statistical
analysis I want as much images of neurons as possible, hence

https://en.wikipedia.org/wiki/Viral_vector
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Figure 4.6: Phase contrast image
of DIV 4 cortical neurons, with
one expressing the GFP in speu-
docolour.

the number of infected cells that express the GFP must be the
highest possible. However, if too many cells cross one another
it became impossible to properly characterize the single cell
properties of the culture. For a cell of typical spatial extension
e (see for example figure 4.6 the extension e corresponds to the
diagonal, here e = 500µm), the density of cell expressing the

GFP must scale as dGFP ∼
1
e2 . The number of cells expressing

the GFP, and the quantity of virus added in the medium
depends on the typical neuron size one wants to observe.
This size depends on the neuron growth speed and age.

The larger the virus quantity, the higher the number of neu-
rons one can observe, but the shorter these neurons can be
observed. Thus, to observe neurons at late ages, one need
very small quantity of virus and will only observe a few
neurons expressing the GFP.

Surprisingly, the cell density is also to be taken into account.
Indeed, the cell density expressing the GFP is 20% higher36

36: This value takes all measur-
ment into account

in the cultures where I added 5 µL of viral solution com-
pared to those where I added 10 µL. Taking the cell density
into account, one find a monotonically increasing behavior

of the ratio of density
dGFP

d
, where dGFP is the cell density ex-

pressing the GFP and d the total cell density. It is plausible
that one need to take diffusion into account. The diffusion
coefficient of virus in water is in the order of magnitude of
10 µm2.s−1 [161] [161]: Bockstahler et al. (1962), ‘The

Molecular Weight and Other Bio-
physical Properties of Bromegrass
Mosaic Virus’

. The virus concentration in the medium is
close to 3.103mL−1, thus the typical distance between two
virus is 700 µm. It takes ∼ 20 hours for a virus to diffuse
over such distance, which suggest that diffusion is one of the
limiting factor. Increasing the cell density increases the virus
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Figure 4.7: Ratio of cell density ex-
pressing the GFP, dGFP and the to-
tal density d versus the volume of
added virus. The line gives the ap-
proximate trend in the range we
are interrested in. Density were
estimated by counted somata in
images of 1-25 mm−2.

concentration gradient3737: If biological and adsorption
mechanisms are indeed neglige-
able with respect to diffusion pro-
cessses

which in turn, increase the diffusion
efficiency by the same amount.

In open-air culture, with 2-3 mL of medium it seems that
the cell density and the quantity of added virus are to be
considered together to properly identify only a small sample
of the whole neuronal network.

Figure 4.7 displays the ratio of densities versus the volume
of virus solution added in the 3mL medium. There is no
reason for the curve to be linear, however it gives a good
approximation to set up the order of magnitude. The cell
density that express the GFP can be writen as:

dGFP ≈ d ×Vv × 0.015

where d is the total density, and Vv the volume of virus (in
µL), and 0.015 the slope (in µL−1) computed in figure 4.7. One

wants this density to match with
1
e2 . Hence,

Vv(d, e) ≈
1

0.015 × d × e2 (4.4)

This equation is equivalent with saying that, if I want to ob-
serve a neuron of size e, in a culture of density d, I need to add
a volume of virus Vv. For instance, a neuron with e = 250µm,
in a culture of density 150 mm−2 can be observed with 7 µL.
This is not an exact value but it is a good order of magnitude
and corresponds to the experiments I conducted. If the den-
sity if higher, the number of cells expressing the GFP will
be higher, thus the volume Vv needs to be lower. Moreover,
if one looks for density dGFP ∼ 1/e2 there is a good chance
to overestimate the measurment towards smaller neurons of
the culture. Since smaller ones are less likely to cross other
neurons, they will be predominant in the statistics. Aiming
for lower values that Vv in equation 4.4 is a good strategy.
Fewer neurons will express the GFP but the statistics will be
more consistent with the reality.

Table 4.1 shows the number of recorded neurons and the
volume of virus added in each corresponding dish. One can
see the second dissection fruitfullness, nonetheless it may
have introduced a bias towards smaller neurons. When many
neurons overlap and are not identifiable individually it is
hard to estimate this bias. For instance, picture 4.9 shows that
in a 20 mm2 many neurons overlap and only a couple are
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Table 4.1: Number of recorded neurons and volume of virus added in the 3 dissections from which the data are
extracted. The number of recorded neurons per dish and the total per days in vitro per dissection is displayed on
the right columns.

Days In Vitro Volume of virus Vv Number of recorded neurons

Dissection 1 4
1 µl

8

29
5
3

0.1 µl 11
2

5 0.1 µl 13 13

Dissection 2

4 5 µl 35 4712

5 1 µl 11 2211

6 0.5 µl 24 460.05 µl 22

Dissection 3

4 1 µl 23 318

5 0.1 µl 9 167

6 0.01 µl 3 63

properly separable. These 3 dissections were used to set the
quantity of virus and acquire morphological data, hence the
heterogeneity and uneven representation of each culture.

Image recordings and Analysis
Images were recorded with a confocal microscope equiped

with an oil-immersion 40x lens. For the GFP, the excitation is
concentrated around the peak at 488 nm excited with a laser
and the emission is concentrated around the 509 nm peak and
above. Images were all 2048x2048 pixels and 228x228 µm2.
Larger images were taken and merged together by the built-in
feature of Leica software, LAS X. The microscope is equiped
with a small incubator keeping the CO2 concentration to 5%
and heaters on the lens and petri dish holder set to provide a
temperature close to 37◦C on the petri dish.

High magnification under a microscope require a short dis-
tance between the lens and what we want to observe. Petri
dishes are too thick for the 40x lens installed at the IPGG.
This is the reason we use fluorodishes. However patterned
cultures cannot be made in fluorodishes. It is possible to
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Figure 4.8: A drilled dish to sup-
port a glass coverslip.

use magnetic coverslip holders, but with those one needs to
manipulate coverslips with living cells. Hence it is prefer-
able, and much easier to make the coverslip holders by hand
cutting through classical petri dishes (see figure 4.8) with a
drilling machine. The coverslip is attached to the pierced dish
after the photolithography with a thin layer of PDMS. This
withstand the ultrasonic bath without any issue and the in-
cubation of PLO can be realised with another glass coverslip
on top of the droplet: the liquid is sandwiched between two
coverslip.

There exist several software able to identify neuron morphol-
ogy from confocal data. DeepNeuron [162][162]: Zhou et al. (2018), ‘Deep-

Neuron’
for instance uses

deep learning to extract neuron morphology in multi dimen-
sionnal images (up to 5D). NeuronJ [163][163]: Meijering et al. (2004), ‘De-

sign and validation of a tool for
neurite tracing and analysis in flu-
orescence microscopy images’

is an imageJ plugin
that help reconstruct neuron morphology given the neurites’
starting and ending point. This two examples seemed uneffi-
cient for what I wanted to do. On the one hand, DeepNeuron
is highly functionnal but complex and on the other hand
ImageJ needs a lot of inputs from the experimentalist. This
motivated me to write a simple Python code able to extract
neuron morphology from confocal data. I believe that since I
was interrested in neurons’ firsts stages of development their
spatial spread would not be too complex to solve. Retrospec-
tively, it was probably not the best option and unconsciously
motivated by the desire to learn image analysis in Python,
perhaps more than a real need. However, the small software
I developed does work well and shows that simple rules are
able to extract neurons’ morphology.

The first step are to identify the soma and neurite. This is sim-
ple since they have 2 different spatial scales. Somata ranges
from 10 to 30 microns whereas neurites are smaller than a
couple of microns in diameters. A simple convolution and
thresholding of the binary fluorescent image will give the
somata and neurite positions. One obtain two binary images
where bright pixels belongs to the neuron’s somata or neu-
rite. Neurites are then reduced in size along their diameter in
order to obtain a line of pixels with an efficient thinning algo-
rithm [164]. Every pixel can be sorted out into 5 categories:

I The soma
I A neurite
I A branching point

[164]: Zhang et al. (1984) ‘A fast parallel algorithm for thinning digital
patterns’
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Figure 4.9: GFP fluorescent imag-
ing from cortical cultures at DIV4.
5uL of virus was added and the
image is 1.05x1.05 mm. One can
estimate the cell density that ex-
press the GFP in this image close
to 20 mm−2

Figure 4.10: The different pixel
categories are represented in this
examples. The neuron come from
the top right corner of figure
4.9. Red pixels are the neurites.
Blue pixels are the soma. Green
pixels are the branches tips, or
growth cones. Brown pixels are
the branching points.

I A growth cone
I The background

The soma and background are identified in previous stages.
Neurites, branching points and growth cones are identified
according to their 8 closest pixels. A growth cone is the neu-
rite end point, thus has only 1 bright neighbouring pixel. A
neurite has 2 bright neighbouring pixels, and a branching
point has at least 3. Figure 4.10 shows the extraction of neu-
rons morphology with this method.

Note that with this definition a branching point is defined
with several pixels. Figure 4.11 gives an example where the
branching point is described by 3 pixels. For the following
analysis, a single pixel is kept as a branching point. The others
are set to the neurite category.

Then the neuron morphology is describe with a graph. Growth
cones, branching points and the soma are the graph’s nodes
and neurites form the graph’s edges. The edge direction corre-
sponds to the direction of growth. Some direction are obvious:
the growth starts from the soma, thus the node ’soma’ has
a null in-degree. Conversly the growth cone nodes have a
in-degree of 1 and an out-degree of 0. When looking for the
edge direction the most important rule is the following: if a
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Figure 4.11: Background pixels
are in gold, and bright pixels are
in brown (branching point) or red
(neurite). A branching point is de-
scribed by more than one pixel.
The three brown pixels belong to
the branching point category be-
cause more than 2 of their neigh-
bours are bright.

Figure 4.12: Definition of the an-
gle in a branching point.

Figure 4.13: Schematic of the (u,v)
branch. The encircled direction
corresponds to the direction u→
v.

branching point, of total degree 3, has two outgoing links,
necessarily the other one is in-comming. It is a form of con-
servation of mass.

These 3 simple rules are sufficient for many neurons. There is
however a difficulty when crossing of neurites creates a loop
in the tree structure of the graph. In order to solve this the
first idea that comes to mind is to set a preferential direction
according to the angle formed by each neurite in a branching
point. Because of its rigidity, a neurite unlikely turn with an
angle higher than ∼ 60◦. The neurite average direction close
to the branching point can be estimated with a linear regres-
sion of the pixelated skeleton (see figure 4.12 for the angle
definition in a branching point). The unknown direction of
growth can be choosen according to the smallest angle in
the branching point. Surprisingly, this strategy is unefficient,
and many mistakes were done. Because the skeleton is pixe-
lated and a neurite is not a straigth line the direction is badly
approximated. With too few pixels the direction is highly
dependent on the pixel size, and with too many the neurite
starts to turn worsening the estimated direction quality. In
order to overcome this difficulty, I set up another criteria tak-
ing into account the branches of two consecutive branching
point.

Let us suppose that we do not know the direction of the
branch (u,v), where u and v are two branching point of total
degree 3 such that they both have one outgoing and one
incoming edge. Then the direction u→ v is associated with
a neurite incoming in u and outgoing in v. This neurite is
circled in blue in the schematic 4.13 and is associated with
two angle in the branching point u and v. The sum can be
compared with the equivalent one for v → u and find the
best choice for the (u,v) edge direction. The best choice being
the one with the smallest twist. This procedure can be done
with degree higher than 3, for each edge one look for the best
of all edges (the one with the smallest torsion). Figure 4.14
shows the edge direction in the same neuron from figure 4.10.
Even with multiple crossing points the direction is the one a
human eye would identify.

Definition of morphological structures

Let us set some definitions for the following analysis.
When a single point is needed the soma position is approx-
imated as the center of mass. Multiple neurites emerge
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Figure 4.14: Neuron and morpho-
logical graph. Graph nodes are in
brown: there are the soma, growth
cone and branching points. The
branches appears in light red.

from the soma: one axon and several dendrites. The axon
is identified as the longest neurite (computed with the
curvilinear length, including branches). All other neurites
are considered as dendrites. One neurite (axon, or den-
drite) is considered as starting at the soma boundaries
and end at all its growth cones or branch tips. One branch
starts at a branching point along a neurite and ends up at
a single growth cone. Thus, a neurite (axon or dendrite)
is made of multiple branches, and I call the ’main’ branch
the longest one from the soma to a single growth cone.

Figure 4.15 shows one individual neuron at DIV6 in an ho-
mogeneous culture. This is an example of the image analysed
through this process.

Figure 4.15: Phase contrast image
of a cortical culture of density 180
mm−2, at DIV6 with a single neu-
ron in green pseudocolour rep-
resenting the GFP. The image is
780x880 µm2

Morphological quantities
In order to provide quantitative measurment for modeling

of neuronal network, I am interested in the spatial spread of
neurons. Does the growth cone stays in a relatively confined
region close to the soma, or does it run far away in a straight
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line ? The tortuosity can quantify this behaviour: The tortu-
osity of a neurite following a path C is the ratio of the total
path length and the distance covered:

T =
1

| |ro − r∞ | |

∫
C

s
| |s| |
· ds (4.5)

with ro and r∞ the starting and ending point of the path C

As described in the introduction (see page 89), the persis-
tence length can accuratly describe elongated streamlined
systems like neurites. However, unlike polymer chains they
are not susceptible to thermal fluctuations. Neurites persis-
tence length may not be as easily related to the mechanical
bending energy. For one thing they adhere to the substrate,
and their shape may be influenced by and external signales
(gradients of chemo-attractants/-repellants or mechanical
stimuli) more than cytoskeleton rigidity3838: Note however, that laminin

has been observed as a "permis-
sive" substrate rather than an "in-
structive" one [165] regarding the
elongation growth

. Also, this study
propose to look at interacting neurons in culture which may
impact the morphology more than the inner mechanical struc-
ture.

Nonetheless the 2D shape of neurites can be analysed with the
same quantity lp. Sometimes, [166, 167][166]: Vikhorev et al. (2008), ‘Bend-

ing Flexibility of Actin Filaments
during Motor-Induced Sliding’
[167]: Duke et al. (1995), ‘"Gliding
Assays" for Motor Proteins’

the obtained quantity
is called the path persistence length, as it is stricly speaking a
geometrical observable of the path. The relationship between
the path persistence length and the rigidity may not hold
anymore, but the results will be of great value to improve
interacting elongation models [168][168]: Kirkegaard et al. (2018), ‘The

role of tumbling frequency and
persistence in optimal run-and-tumble
chemotaxis’

.

Calculation of the persistence length

Although other methods exists [169][169]: Cifra (2004), ‘Differences and
limits in estimates of persistence
length for semi-flexible macromolecules’

I will compute the
persistence length lp as the correlation length of the unit
tangent vector ®ts :

〈®ts · ®t◦〉 = 〈cos(θs − θ0)s〉 = exp
(
−

s
lp

)
(4.6)

with ®ts the tangent vector of the neurite path at a curvilin-
ear position s.

In order to compute it with the experimental data I will
look at every branches determined in the image analysis
paragraph page 99. First I compute a B-spline approxi-
mation [170][170]: Dierckx (1982), ‘Algorithms

for smoothing data with periodic
and parametric splines’

of the branches so that the angles are not
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Figure 4.16: Schematic of the tan-
gent angle θ(s) computed to esti-
mate the persistence length. Red
dots are separated by a curvilin-
ear distance s along the neurite
path here in blue.

constrained by the 2D pixelated grid. It is an efficient way
to smooth the complex 2D neurite path. A linear fit of
ln〈®ts · ®to〉 versus the curvilinear distance s gives the persis-
tence length.

4.3 Results

Morphological properties

Axon and dendrite length

In biological neuronal network, the typical connections length
is govern by the axon and dendrite expansion. Figure 4.17
shows the total curvilinear length of axon and dendrites,
branches included. First one must notice that the average
value does not increase over time from DIV 5 to DIV 6 but
stays relatively constant close to 750 µm. On the one hand,
there is probably an overestimation of small neurons at DIV 6
because of the increasing probability of overlapping in large
neurons. On the other hand, the growth is highly multifac-
torial and variation of density, neuronal type and dissection
may affect the total neurite length. Hence, the distribution
may not be undestood has a probability density: contrary
to what the figure hints at DIV 6 small neurons are most
probably not the majority.

However, this gives a typical length of 750 µm for axons and
250 µm for dendrites at DIV 5-6. These order of magnitude
set the maximum distance possible for connections: neurons
more than 1 mm apart from one another are very unlikely to
create synaptic connections.

Figure 4.17: Axon and dendrite to-
tal curvilinear length distibution.
Branches are taken into account.
The blue star is the mean.
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Branches tortuosity

Since synapse formation depends on axon/dendrite contact,
the probability distribution as function of the distance be-
tween two neurons has to be related to neurite tortuosity.
With a high tortuosity, an axon cover a large surface increas-
ing the possible contact with post-synaptic dendrites. Figure
4.18 shows the branches’ tortuosity3939: A branch starts at a branching

point, or the soma and ends at a
growth cone

distribution. It seems
independant of the culture age and typical values are below40

40: Tortuosity of a semi-circle
1.6 with an average close to 4/3. Although some rare very
high values are present, branches are best described with a
relatively strong push forward and without many zigzags.

Hence, the typical branch size is 75% of its curvilinear length.
The distance scale of the probability connection is then bounded
above by 75% of the axon plus dendrite curvilinear length.

Figure 4.18: Branches tortuosity
distribution defined in equation
4.5 as:

T =
1

| |ro − r∞ | |

∫
C

s
| |s| |
· ds

with Cbeing the branch path and
ro and r∞ the starting and ending
point of the branch.

Branching

The ability to create multiple branches significantly increase
the probability to create synapses. Bottom plot of figure 4.19
displays the number of branching points in axons and den-
drites. There are on aveage 5-6 branching point in DIV6 axons,
and 0.7 per dendrites.

Top plot of figure 4.19 shows the distribution of distances
between two branching points. The typical value is close to
60 µm at all age for axons, and 20 µm in dendrites. In order
to reproduce neurons morphology, the branching angle is
displayed in figure 4.20. However, the branching angle is a
local quantity and does not describe efficiently the spatial
spread.4141: At least up to DIV6
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Figure 4.19: Top frame shows
the istributions of curvilinear dis-
tance between two branching
points. The blue star is the mean.
Bottom frame shows the distribu-
tions of the number of branching
point in the axon (left) and in den-
drites (rigth).

Figure 4.20: Distributions of the
angle in at branching point in the
axon (left) and dendrites (right).
The blue star is the mean. The
angle are computed according to
the picture above showing two
branching angle θ1 and θ2

Estimation of the network

In the elaboration of a theoretical model for networks of point-
neuron42 42: Theoretical models that con-

sider neurons as single points in
the 2D space, like the ones we stud-
ied in the previous chapters

, the quantity one is looking for is the probability
density of connection as function of the distance d between
two neurons.

This quantity can be estimated with the probability that
an axon has grown up to a certain distance from the pre-
synaptic soma Pgrowth(ra) and the probability that a dendrite
has grown up to a certain distance from the post-synpatic
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Figure 4.21: Presence probability
of an axon branch at a distance r
from the soma. The blue curve is
a fit with function 4.7.

Figure 4.22: Schematic representa-
tion of the equation 4.8. Pgrowth(r)
and Qgrowth(d − r) are taken as
function defined in equation 4.7,
the connection probability P(d)
is directly related to the overlap-
ing area. In this representation the
pre-synaptic neuron is on the left-
side of the graph, and the post-
synaptic neuron at the rigth side
at a distance d.

soma Qgrowth(rd). The probability that a synapse is created
can be approximated as a uniform distribution over the con-
tact length c and the interneuron distance can be written
as d ≈ ra + rd − c. As we have seen in the previous section,
the axon length cannot be directly used here as the distance
ra. Because of the axon tortuosity, the probability Pgrowth be-
comes negligeable below the average curvilinear length. Also,
branching can increase the presence probability of an axon
branch at a given distance ra. Presence probability densities
Pgrowth(ra) and Qgrowth(rd) can be estimated from experimen-
tal data by couting the number of axon branch (respectively
dendrites) at a given distance ra (respectively rd) from the
soma. Figure 4.21 shows Pgrowth as function of the radius r
from the soma at DIV6. One can expect that below a certain
value rmin this probability plateau at a constant value because
every neuron has at least one axon branch at this distance.
rmin is the smallest radius whose circle encompass every axon
recorded.

f (r) : r 7→ po

(
1 +Θ(r − rmin) × exp

(
−

r
lc

))
(4.7)

with lc the exponential scale and p◦ a normalization factor
such that the integral over [0,+∞] is 1 and Θ the heaviside
function.

Then, the probability of connection as function of the interneu-
ron distance d can be computed as :

P(d) = q◦

∫ d

0
Pgrowth(r) ×Qgrowth(d − r) × R◦ dr (4.8)

with R◦ the number of synapses per unit length of axo-dendritic
crossing, Pgrowth(r) the axon presence probability at a distance
r from the pre-synaptic neuron and Qgrowth(d − r) the dendrite
presence probability at a distance d − r from the post-synaptic
soma and q◦ a normalization factor. This calculation is repre-
sented in figure 4.22.

The connection probability P(d) is represented in figure 4.23,
along with the correspondig mean connectivity length. shows
that the mean connectivity length is increasing with the cul-
ture age. Values are in a good agreement with Barral et al.
[79][79]: Barral et al. (2016), ‘Synap-

tic scaling rule preserves excita-
tory–inhibitory balance and salient
neuronal network dynamics’

who reported an average functionnal connection length
of 400 µm in mature culture.
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Figure 4.24: Growth ratio distri-
bution. The blue star is the mean.

Figure 4.23: Left frame shows the connection probability as function of the inter neuron distance d. Experimental
data is shown with the colored dots, and the lines shows the fit to a function described in eq. 4.7. Right frame
shows the mean distance length computed with the experimental data (stars) and the fit (dots).

Growth properties

Growth ratio
In order to estimate neurons’ preference in the axon or den-
tritic tree growth I defined the growth ratio as the ratio of the
axon over the dendrites’ curvilinear length:

Gr =
Laxon

Ldendrites
(4.9)

Figure 4.24 displays the growth ratio distribution, and shows
values similar at all ages with an average between 3 and
4. This is to relate with the total length in figure 4.17. The
average axon length over the average dendrite lengths is also
close to 3. Thus, on average slowly growing axons belong to
neurons whose dendrites also grow slowly.

Growth cone speed
The main branch of the axon can be used to compute the
growth cone speed as the ratio of the curvilinear length over
the time duration. Since the growth is very slow the first 24
hours43

43: During the two first stage of
development, only immature neu-
rites develop and are 20 to 30 µm,
which is 1 % of the axon total length, I removed 24 hours from the days in vitro value.

Right frame of figure 4.25 shows the distribution of growth
cone speed. It appears homogeneous over the 3 DIV and
close to 4 µm.h−1. Reports [171, 172] [171]: Ruchhoeft et al. (1997), ‘Myosin

functions in Xenopus retinal gan-
glion cell growth cone motility in
vivo’
[172]: Tanaka et al. (1995), ‘The
role of microtubule dynamics in
growth cone motility and axonal
growth.’

in various systems and
cell types have found the instantaneous growth cone speed
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Figure 4.25: Growth cone speed
distribution. The blue star is the
mean.

to be close to 15 µm.h−1. Firstly, growth cones dynamics is
not a continuous process. Period of pausing and retraction
can decrease significantly the long time averaged speed I
compute here. Secondly, the growth cone motion may not
entirely be reflected in the neurite path. Because of its inner
mechanical structure and flexibility a neurite length may not
be exactly equal to the distance covered by the growth cone.
The persistence length can be of help to quantify this.

Persistence length

As explained in the previous section (see page 103), the per-
sistence length is computed as the correlation length of the
branches’ direction: 〈ts · t◦〉. Experimental data shows that
there are two regime:

I The short range (SR) regime: below 3 µm, ln(〈ts · t◦〉)
follows a linear evolution as function of the curvilinear
distance s with a persistence length close to lSR

p ≈ 60 µm.
The average correlation coefficients is 0.97.

I The long range (LR) regime: above 10 µm, ln(〈ts · t◦〉)
follows a linear evolution as function of the curvilinear
distance s with a persistence length close to lLR

p ≈ 500
µm. The average correlation coefficients is 0.90.

Figure 4.26 shows the persistence lengths computed with
neurons from all dishes, and gathered at single Days In Vitro.
There is no obvious variation from DIV 4 to DIV 6 and one
may assume that the true value is indeed independant on the
culture age. Gathering every neuron at all days in vitro one
find lLR

p = 487 ± 38µm, and lSR
p = 59 ± 6µm.

In order to better understand the double persistence length
regime, let us look at some recorded images. Figure 4.28
shows an axon and its growth cone. One can observe that
the axon follow a very sharp angle on a scale smaller than
10 µm. Because of fluctuation in the surrounding adhesion
caused by the laminin coating and close by neurons or axons,
any neurite path can be steeply bend over angle that the cy-
toskeleton stiffness would not allow in a free environment.
The cytoskeleton stiffness is most probably not impacted by
the environment, but the interacting forces applied to the neu-
rite are. Sharp bending of neurite because of its surroudings
can also be found in figures 4.29. These extrem bending are
responsible for the short range regime and the small persis-
tence length. Figure 4.30 shows the middle part of an axon
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Figure 4.26: Persistence length computed with equation 4.6 for several days in vitro. Each point is calculated
with every neuron in a single culture, and the star regroup every culture. The errorbars are computed with 3
times the standard deviation of the slope in the linear regression (under the assumption of residual normality).

Figure 4.27: Correlation of neu-
rite orientation path as function of
the curvilinear disance, with the
two short range and long range lin-
ear regression. in (resp.) blue and
brown.

Figure 4.28: Image of an axon at
DIV6 expressing the GFP with the
surrounding in phase contrast.

at DIV6. One can see small fluctuations of the direction that
seem to correlate with the surrounding biological material.
However, there is no angle as sharp as the ones seen above.
Indeed, as the neurite gets older, its stiffness increases. Also,
the growth cone pull straighten the neurite. It results in an
increased persistence length.

Figure 4.27 shows the correlation of the neurite orientation
path as function of the curvilinear distance, agregating all
the acquired data. The two regimes are clearly visible, and
suggest that the path correlation can be written as:

〈®ts · ®t◦〉 ∝ exp
(
−

s
lLR
p

)
+ exp

(
−

s
lSR
p

)
(4.10)

Perhaps a simplistic explanation is to relate the short range
regime to the growth cone exploration with a very short
memory scale and the long range to neurite stiffness. The cy-
toskeleton stability in high curvature regions can be assured
by actin, much more flexible than microtubules.
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Figure 4.29: Image of a cortical
neuron at DIV5 expressing the
GFP with the surrounding in
phase contrast.

Figure 4.30: Image of an axon and
its growth cone at DIV5 express-
ing the GFP with the surrounding
in phase contrast.



CONCLUDING REMARKS AND

PERSPECTIVES



Understanding neuronal networks

Two regimes in the persistence length In my experimental study I have characterized
cortical neurons’ in two-dimensionnal cultures and there are two main properties that I
want to highlight. Firstly, the analysis of neurites’ paths, through the persistence length, has
revealed two regimes that one may associate with two different mechanisms. This result
can be directly used to improve theoretical models of neuronal growth with interacting
neurons. The persistence length in the short range regime may come from the erratic motion
of growth cone. The neurite stabilisation is made possible thanks to many interaction
with neighboring biological materials (other neurons, or neurites, or glial cells). Without
interaction the neurite path is probably much more constrained by its rigidity: just like a
sewing thread being pull from its tip. The persistence length in the long range is much
closer to values predicted for microtubules.

Connectivity length Secondly, I built a toy model for neuronal connection based on the
probability for a pre-synaptic neuron to overlap a post-synaptic dendrite. The statistical
analysis of a neurite presence probability as function of the distance from the soma has
allowed us to take neurite stochastic morphological features (mainly branching and tortuos-
ity) into account. The complex path between a pre-synaptic neuron, the synapse and the
post synaptic neuron is approximated with a simple Euclidienne distance. Then, I was able
to conclude on the Euclidian mean connectivity length. The specific values computed here
must be treated with caution: the experimental data come from immature neurons and the
final stages of development may influence strongly the result. Nonetheless, if these data are
to be believed and the typical connection length is indeed considerably smaller than the
axon length, it may reinforce the perception that neuronal networks are badly approximated
by space-free networks.

Non regular dynamics of the QPM In exploring the Quorum Percolation Model in net-
works embedded in the two-dimensionnal space we have seen that the threshold rule of
activation is sufficient to create a propagating front, from a random uniform excitation
provided that the connection scale is small enough. We have highlighted evidences of a
transition from a localized nucleation, invariant by rotation to a fractured propagation
constrained by the network locality and the initial excitation. This complex dynamics
of propagation seems related to the network ability to stop the activity. In both of these
regimes, the model is unable to create a repetitive pattern of activation. Nucleation points
and avalanches are not repeatedly happening in the same region of the culture.
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A scale free dynamcis ? The transition of spatio-temporal dynamics as the quorum thresh-
old m is increased leads us to conjecture that spatial correlations can break down the
discontinuous percolation transition and decreases the critical point mc above which the
transition is continuous. This is associated with a decrease of the initial excitation f?(mc)

needed to activate a large proportion of the network at this critical point mc. A small excita-
tion allowed us to properly identify avalanches of correlated activation and conjecture that
a scale free dynamics may take place at the phase point of the spatial dynamics transition
( f?, m1(λ)).

Orlandi et al. [49] and other teams have forwarded evidences of a strong regularity in the
bursting dynamics of neuronal cultures. They proposed the concept of noise focusing: a
dynamical amplification of noise towards specific regions of the culture able to initiate a
system scale event. Here, we have shown that a simple threshold rule is not enough to
produce a steady directed amplification: the Quorum Percolation Model in homogeneous
networks embedded in space is not enough to produce a directed amplification of noise.
Hence, regularity of nucleation points in the Noise Focusing Model necessarily comes from
a dynamic absent in the Quorum Percolation Model.

High regularity of pacemakers The periodic steady state of neuronal cultures’ activity
can also be investigated in the framework of synchronization. Unsurprisingly, we have
shown that synchronization of pacemaker neurons is able to reproduce high regularity
in the spatio-temporal dynamics. The synchronization is govern by the network-neuron
dynamics interaction: the nucleation process is characterized by a time scale dependent
on neurons’ inner dynamics, and the presence of leader neurons by the network locality.
However, the synchronization process of relaxation oscillators lead the bursting steady state
to a single nucleation point of activity. A complex map of nucleation point distribution like
the one observed in vitro is not present in uniform networks of pacemakers. Also, the only
pattern of propagation I have observed in this system are invariant by rotation and not
constrained by the network structure. Uniform network of excitatory pacemakers is unable
to stop the propagation in a given direction. One may ask if inhibition is able change the
spatio-temporal pattern of burst initiation ?

An intriguing paradox Recordings of neuronal cultures activity are hard to reproduce
because they display seemingly contradictory behaviour.

I REGULARITY: Neuronal bursts of activity are nucleated in a specific region of the
culture, and with certain frequency of occurrence.

I VARIABILITY: There is a non trivial distribution of nucleation points in the 2D space
and a most probably a variability in propagating front.

I SYSTEM SCALE DYNAMICS: Neuronal bursts are system scale events: the whole popu-
lation is activated in a small time scale.

I MULTI-SCALE DYNAMICS: Along with the system scale bursts, there exists multiple
scale of correlated activity (maybe distributed according to a power law)
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What neuronal mechanism is fundamental to observe such complex activity ? The Quorum
Percolation Model in networks embedded in space shows that a threshold rule of activation
can reproduce the 3 last criteria but at different phase point. Synchronization of spatially
embedded networks of pacemaker neurons is able to reproduce regular system scale events.
Can the 4 criteria be met with these two ingredients ? Many teams study the self-organization
of neuronal culture, and see in the scale free behaviour at a critical point a way to gather the 2
last criteria. Are self-organized critical systems able to reproduce the observed REGULARITY

and VARIABILITY of neuronal bursting regime ?

Insights from experimental work Being able to work on real cultures has made me
question the relevancy of trying to reproduce experimental data from different laboratories.
I had the front row seat to see the difficulties for having homogeneous densities in culture of
less than 1 mm2. Even though I could not make any activity recordings, I had the opportunity
(with recordings of Marx Montalà a student in Jordi Soriano’s Team in Barcelona) to see
that clusters of high density can lead a whole neuronal population activity for days. I have
observed myself the morphological and growth speed differences between hippocampus
and cortical cells, between different adhesive molecules, or environments (microfluidic
chips, or open-air). I believe it makes sense to extrapolate those differences to neuronal
activity, and thus question the motivation of theoretical works like my very own research.
The fundamental mechanism I looked for may not be as fundamental or universal as one
may want to believe. Being able to properly characterize and control hands on neuronal
network make perfect sense in order to relate specific neuronal mechanisms to larger scale
dynamics.

What I call an intriguing paradox may come from inner statistical variability of neuronal
cultures: a cluster that act as a nucleation point increases the REGULARITY, whereas very
homogeneous cultures may increase the VARIABILITY in spatio-temporal patterns of activity.
A large proportion of pacemaker (for example in the hippocamppus) may force the system
towards forced oscillations and a SYSTEM SCALE DYNAMICS, whereas a higher proportion
of irregularly firing neurons may drive the system towards a MULTI-SCALE DYNAMICS.
Neurons’ morphologies, and the network connectome bring there own complexity too: does
a higher density culture increases or decreases the connectivity scale ? the axon tortuosity
? A population of neurons grown in small patterned tend to develop a large bundle of
axon at the culture periphery. This bundle, absent in large cultures, undoubtably impact
the connectivity profile, and the observed activity. These characteristics are difficult, if not
impossible, to implement in theoretical modelling, since we do not yet have a viable model
of neuronal network activity. Thus, experimentally controlling these properties that we
can only with difficulty model theoretically is probably the best way to establish a global
understanding of neuron populations activity in culture.
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A
Neuronal culture confinement

In this appendix I describe multiple attempts to confine neu-
ronal culture in the two-dimensional space. The goal is to
obtain homogeneous cultures in the order of 1 mm2 of var-
ious and controlled shape. As described in the main body,
it can be achieved with photolithography techniques and
coating of adhesive proteins in open-air culture.

The main issue with this technique is the large volume of
medium required in open-air culture: 2-3 mL of medium dras-
tically diminish the effective concentration of neurotrophic
factors produced by glial cells and/or neurons themselves
[173, 174][173]: Walicke et al. (1986), ‘Fibrob-

last growth factor promotes sur-
vival of dissociated hippocampal
neurons and enhances neurite ex-
tension.’
[174]: Catapano et al. (2001), ‘Spe-
cific Neurotrophic Factors Support
the Survival of Cortical Projection
Neurons at Distinct Stages of De-
velopment’

. Neurotrophic factors are famillies of small pro-
teins that support the growth and survival of developing and
mature neurons. Hence reducing the volume of medium can
increase the survival rate and improve the growth.

The use of microfluidics chips can reduce the volume nano-
liters and efficiently support the growth of neuronal popula-
tion. Microfluidics devices have been extensively used in the
recent years [175], not only because of the increase survival
rate but because they are highly controllable, reproducible
and flexible environments at the single cell precision or lower.
I will present here 3 attempts to create affordable and easy to
produce macrofluidics 4545: I call them macrofluidics, be-

cause they are much larger than
typical chips. They are ∼ 100 µL
in volume.

suitable for confinement of neuronal
population.

Business as usual The most simple approach is to use the
very same patterned dishes I described in the main body and
attach a millimeter scale roof on top of them. The roof can
be made of two layers of biocompatible material like poly-
dimethylsiloxane, PDMS. One layer form the main chamber:
it is the exterior walls of the neuron’s house we are building
and has to be thicker than a neuron’s height. The second layer

[175]: Millet et al. (2012) ‘New perspectives on neuronal development via
microfluidic environments’
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Figure A.1: Design of the
macrofluidic chips. The top
is only made of two circular
openings, and the bottom is made
of one large chamber with funnels
that match the top openings.
The dimension are th one of the
cover-slips: 24x24 mm2.

is a flat roof with two opening: the inlet and outlet that allows
to had or remove medium from the main chamber. Figure
A.1 shows the two layers design that form the PDMS chip.

The fabrication is very simple. First, 30 mL of PDMS is first
made with a 1:10 prepolymer to curing agent ratio, and air
bubbles are removed in a vaccum chamber. The PDMS is
poured in a 500 cm2 culture dish or equivalent flat support.
The PDMS has to cover the whole dish. It can easily be done
by hand, making sure that no bubbles are created. Pouring
25 mL of PDMS results in an average layer of 500 µm. When
pouring less than 25 mL the PDMS does not cover the whole
dish, and the resulting thickness is actually often higher than
500 µm.

The PDMS can be stored in a 70◦ oven overnight or 2-3 hours.
I suggest to let it rest overnight because of the cutting step: it
seems to be more precise when the PDMS is harder. Although,
precision is not a problem now. The chamber dimension being
much larger than any relevant biological ones.

The PDMS layer is easily removed from the 500 cm2 dish,
which can be then re-use as many times as needed. The PDMS
layer is then carefully deposited onto a plastic membrane
with soft glue on it. The membrane hold PDMS layer when
cutting it. An automatic mechanical cutter is then used to
cut the PDMS layer into the 23x23 mm2 square shape to fit
the used cover-slips, along with the chamber and openings.
In one 500 cm2 PDMS layer I could fit around 20 chips (20
chambers, and 20 top). The individual layers are carefully
removed from the plastic membrane46 46: they tend to break down eas-

ily if not carefully handled. I found
it usefull to peel them off from un-
derneath with a pair of thin pliers.

and washed several
times in ethanol. Then, they are soaked 48 hours in water to
remove ethanol.

The two layers are glued together with 30s O2 plasma, mak-
ing sure the top opening match with the chamber. This chip
can then be fixed on the patterned cover-slip. There are two
possibilities, first one is to use the 30s of O2 plasma on both
the PDMS chip and the cover-slip with photoresist still on.
Then bond the two together and rapidly add the adhesive
protein in the chamber to be coated on the cover-slip while
the plasma is still active. Second one is to coat the adhesive
protein on the coverslip, remove the photoresist, and dry the
cover-slip before bonding with the chip. This prevents the use
of plasma on the cover-slip and decreases the bond strength:
the chip can peel off when adding medium, or washing the
chamber doing this. However, with the first methods, the
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Figure A.2: Patterned culture of cortical neurons in a macrofluidic chip at DIV3. The droplet pattern is cut by the
PDMS chamber. Small clusters of neurons form in the bulk outside of the pattern because there is no adhesive
molecule.

photoresist is still on and the lift off need to be done after-
wards.

Figure A.2 shows an example of a pattern substrate with
macrofluidics chips on top. One can see the droplet pattern
cut off by the PDMS chip.

Inverted patterns We understand that the problem come
from the bond of the PDMS chip and patterned cover-slip
coated with a vulnerable adhesive protein. With the inverted
patterns technique, the photoresist is used to protect the ad-
hesiv protein.

First the adhesive protein4747: In a distilled water solution,
to prevent crystallization when dry-
ing the cover-slip.

is incubated in order to coat the
whole cover-slip’s surface. Photolithography is then used to
create patterns of photoresist on top of the proteins in order
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Figure A.3: DIV 3 culture of cortical neurons with inverse patterns.

to protect them. Silane can be added at this step in order to
decrease cell adhesion outside of the desired patterns, and
the chip can be bond with O2 plasma on both the cover-slip
with protected adhesive protein and the PDMS chip. This
techniques has worked in a couple dishes, but only when
the cell density was higher than what I was aiming for. Also,
cells tend to cluster more intensely than in equivalent classic
patterns.

Figure A.3 shows one pattern with this technique.

PDMS pattern I also tried to create pattern by cutting PDMS
layers, which could be easily integrated into a chip. The dif-
ficulty here is to obtain patterns with a sufficiently good
precision. Figure A.4 shows that the cutter tear the PDMS on
the top surface, but the cut is much smoother on the bottom
one. The PDMS thickness and stiffness are the two important
parameter to avoid irregular and unwanted tear of the PDMS
layer. Thickness of 500 µm seems to be in the good range,
but thinner is good too. I believe that the PDMS should be
sufficiently rigid, but I do not have enough hindsight to give
more details.

Once cutted PDMS layers can be assembled with the roof
chip and cover-slip with 30s of O2 plasma bonding.

Manipulation of the chip Like every microfluidic systems,
manipulating such confined environment can require some
experience. First, you might notice from the sketch figure
A.1 that the path from the roof opening to the chamber are
narrower close to the chamber. I do not know where this
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Figure A.4: Pattern made with ∼ 500 µm thick layer of PDMS. The left picture shows the bottom surface, with a
smooth pattern edge. The rigth picture shows the top surface of the same pattern. There are many tear from the
mechanical cutter.

feature come from4848: I have not designed this chip , but it is extremely useful. I have tried
using larger funnel and adding any liquid in the chamber is
a nightmare. With the narrow funnel one can fill it with the
pipette tip and prevent the liquid from coming backwards.

When added any liquid in the chamber I found it useful to
control the liquid by touching the PDMS roof with a pair
of pliers, and decreasing locally the chamber height. This
helps guiding the liquid towards the chamber boundaries
symmetrically and prevent air bubbles to stay in the chamber.
This is not an easy task, since you have to inject liquid with
one had and control the liquid with the other. Be careful not
tear the PDMS roof. You can easily train with water, but note
that changing the liquid and chamber coating will highly
change the liquid behaviour in the chamber. For example,
culture medium with cells is much more viscus, and do not
flow as easily as ethanol in the chamber.

Finally, evaporation is something to keep in mind and adding
medium almost every day is important to prevent air to enter
the chamber. Maybe the chip design can be modify to add a
little of medium. However, in order for my technique to work
the top layer need to be flexible. If too thick, and not flexible
enough adding liquid in the chamber may come as another
challenge.
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