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Introduction

In 1924, De Broglie conjectured that every microscopic particle is associated with a wave

of wavelength

h
AiB = = 1
a5 = (1)

with p its momentum and h the Planck constant [1]. This hypothesis was confirmed
in 1928 by Davisson and Germer [2| with the experiment of electron diffraction. The
evolution of a matter wave function 1 in a potential V is governed by the Schrédinger
equation discovered in 1926 [3]:

oY h?
h— = | ——A+V 2
"o ( om = )w @)
with A = h/27 the reduced Planck constant, m the mass of the particle and A the

Laplacian. The inherent quantum uncertainty on position and momentum was described
in 1927 by the Heisenberg principle [4]:

Arap> " (3)
with Ax the position dispersion, Ap the momentum dispersion.

Nowadays, the wave-like behavior of quantum matter still captivates physicists. A
quantum wave function can penetrate classically forbidden regions, leading to the famous
tunneling effect. Moreover, a quantum wave packet can reverse its direction of propa-
gation in the absence of a classical turning point. This last phenomenon is commonly
known as quantum reflection. In fact, quantum reflection is a general feature of wave
propagation in inhomogeneous media |5, 6], like atmospheric and oceanic waves for ex-
ample, and it occurs in regions where the wavelength varies rapidly. Quantum reflection
has been studied for the attractive Casimir potential since the early days of quantum
mechanics |7, 8], and it was first observed experimentally for ultracold atoms on solid
surfaces [9, 10, 11, 12|. The scattering of the atomic matter wave on the Casimir-Polder
potential of a surface is very different from that of a classical particle. The Casimir-
Polder force is attractive, so that one would expect an incoming atom to be accelerated
towards the surface and eventually hit it. On the contrary, the atom has a significant
probability to be reflected away from the surface [13, 14].

Some experiments have observed the bounces of particles on different surfaces. These
quantum bouncers are trapped by the combined action of reflection and gravity. The
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quantum bound states have been described theoretically [15, 16, 17, 18], but since the
gravitational force is very weak at atomic scales, extremely cold particles are needed
to resolve them experimentally. These Gravitational Quantum States (GQS) have first
been observed with ultracold neutrons [19, 20, 21, 22|. They have not been observed
on atoms, but their existence is predicted also in this case as a consequence of quantum
reflection from the attractive Casimir-Polder (CP) interaction on a mirror placed below
the atoms [23, 24].

In this thesis, we will study the evolution of the atom during a free fall. One must
keep in mind that the falling atom is not a classical point particle but a quantum matter
wave. The fact that the falling wave function is extended and that it expands, means
that the time at which the particle reaches the detector is randomly distributed. This
is a consequence of the quantum uncertainty on the initial position and momentum of
the particle. More generally, the absence of notions such as point particle or classical
trajectory complicates the formulation of the weak equivalence principle in quantum me-
chanics |25, 26, 27, 28]. The gravitational interaction not only appears in the trajectories
of motion but also in the phase of the wave function, when the neutron is in a spatial
superposition of different gravitational potentials. The effect of gravity on quantum sys-
tems was first observed in the Colella-Overhauser-Werner (COW) experiment [29]. A
phase shift was measured between the arms of a neutron interferometer when the device
was tilted in the Earth’s gravity field. Later on, atomic interferometers were able to
measure the local gravitational acceleration with great precision [30].

GBAR: testing the equivalence principle for antimatter

The recognition that the motion of objects in a gravitational field is independent of
their mass and composition was central to the birth of modern science in the 17
tury. In the last decades, the Equivalence Principle has been tested at high precision on
macroscopic test masses and atoms [31, 32, 33, 34, 35, 36, 37, 38]. The space mission MI-
CROSCOPE confirmed the weak equivalence principle with a relative precision of about
10~ by comparing the free fall of macroscopic platinum and titanium masses [39].

Since Dirac’s remarkable prediction in 1928 [40] and Anderson’s observation of the
positron in 1932 [41], antimatter has remained a topic of great interest for physicists.
The antiparticle is defined as the symmetric of a particle after charge (C), parity (P) and
time reversal (T) — the so called CPT symmetry -, and the CPT tests on antimatter are
quite precise |42, 43, 44|. However, modern physics still fails to understand the apparent
asymmetry between the numbers of particles and antiparticles in the visible universe.
A natural way to progress in this domain is to explore the gravity for antimatter, that
doesn’t fit in the framework of Standard Model [45]. The possibility of an asymmetry in
the gravitational behavior of matter and antimatter has been raised [46, 47, 48, 49, 50],
with the possibility of negative gravitational mass for antimatter [51, 52, 53, 54, 55].
However, objections to this possibility are discussed in many papers [56, 57, 58].

In this context, it’s important to test the effect of gravity on antimatter in experi-
ments. A direct measurement of the acceleration of an antimatter particle in the Earth’s

cen-
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gravity field is a longtime objective of physicists. Experimental knowledge on this issue
is much less precise than for gravitational properties of ordinary matter. Early experi-
ments with charged antiparticles like antiprotons were thwarted by the preponderance of
electromagnetic forces over gravity |59, 60, 61]. Current experimental endeavors are thus
concentrating on neutral particles, especially the antihydrogen atom. The antihydrogen
atom H is the bound state of an antiproton p and a positron e™; it was first produced at
high energies in CERN in 1995 [62]. Since then, much progress has been made towards
lower temperatures and longer lifetimes [59, 63| in several experiments based at CERN’s
Antiproton Decelerator [64, 65, 66]. The aim of measuring the free fall acceleration g of
anti-hydrogen H in Earth’s gravitational field has been approached in the last decades
[67] and indirect indications of the sign of g obtained very recently [68]. Improving the
accuracy of the measurement of g will remain a crucial objective for advanced tests of the
Equivalence Principle involving antimatter besides matter test masses [33, 36, 37, 38, 39].

The GBAR project (Gravitational Behavior of Antihydrogen at Rest) is one of the
ongoing endeavors to determine the gravitational pull of the Earth on the simplest of
antimatter atoms, antihydrogen. This ambitious experiment will produce, trap and cool
antihydrogen atoms before dropping them in the Earth’s gravity field, in a modern day
reenactment of Galileo’s tower experiment. The specificity of GBAR. is that it will
produce the antihydrogen ion H*, two positrons orbiting an antiproton, in order to take
advantage of ion trapping and cooling techniques [69]. Once the ion is cold, a laser pulse
is applied to detach the excess positron forming a neutral antiatom H. The laser pulse
marks the start of the free fall towards a detection plate. The aim is to measure g with
an accuracy of the order of 1% by timing the classical free fall of antiatoms [70, 71].

An important goal of this thesis will be to study precisely the expected accuracy
of the GBAR experiment, accounting for the recoil transferred in the photodetachment
process. We will highlight what are the optimal parameters in the design of the free fall
chamber to get the best precision.

The presence of the attractive Casimir-Polder potential on surfaces of the free fall
chamber induces quantum reflection phenomenon: antihydrogen atoms have a probability
to bounce above the detection surface, preventing their annihilation. The reflected atoms
will not be detected at the expected time, leading to a loss in statistics. Moreover,
higher energy atoms are less affected by quantum reflection and are thus more likely to
be detected. Accurately modeling quantum reflection is therefore necessary to correct
this mechanism which could otherwise bias the measurement.

Quantum interference measurement of the GBAR experi-
ment

The interest of studying quantum reflection for antimatter has been highlighted by physi-
cists, for example with antihydrogen atoms [13, 23, 72|. This phenomenon is in particular
crucial for spectroscopic studies of the quantum levitation states of antihydrogen atoms
trapped by quantum reflection and gravity [19]. We use this quantum phenomenon to
study an original experimental setup, consisting of adding a reflecting surface to gen-
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erate interferences between quantum states, before the free fall of the antihydrogen on
the detector, thus producing interference pattern containing much more information on
g that the classical distribution of free fall time. This study was already proposed in the
thesis of P.P. Crépin [73], but without taking into account the photodetachment process
of the excess positron. The main goal of this quantum design is to increase considerably
the precision of the GBAR experiment.

Outline of the thesis

Chapter I deals with the free fall of quantum wave packet of antihydrogen as part of
the GBAR experiment. We solve the Schrédinger equation for a particle in the Earth
gravitational field. The Wigner function formalism is introduced to discuss the links
between quantum and classical descriptions of motion. The photodetachment of the
positron and associated momentum recoil is taken into account in our study, as well as
quantum reflection on the detection surfaces. Based on these results, we can compute
the annihilation current J at the detection. The uncertainty of this classical free fall
experiment is evaluated by using the Monte-Carlo simulation and Cramer-Rao statistical
analysis (optimal lower bound). Our simulations aim at finding the optimal parameters
for the design of the free fall chamber to get the best accuracy possible in the classical
free fall timing experiment.

In chapter II, we study a new measurement technique of the antihydrogen free fall
acceleration producing interferences of quantum levitation states. We describe the ex-
perimental setup, that could be implemented in the GBAR experiment, and derive the
evolution of the atomic wave packet from the photodetachment to the detection. We also
present statistical methods to extract an estimation of g and give the standard deviation
that is much smaller than the one achieved with the free fall timing experiment.

The numerical calculations are performed using the programming language Python
and its high performance compiler Numba. Original statistical analysis methods will be
highlighted: analysis from non-gaussian likelihoods, mean-likelihood estimator, statistics
from interference pattern,...

A few technical discussions are presented in the Appendices. The appendix A details
the equations governing the evolution of a gaussian wave paquet in a gravitational field.
Appendix B details theoretical considerations concerning quantum reflection on Casimir-
Polder potential. Appendix C presents the important algorithms, codes and numerical
computations used in this thesis.

A bibliography, list of publications and an index of notations are given at the end of
the manuscript.



Chapter I

Timing the free fall of antihydrogen
wave packet in GBAR experiment

In this chapter, we determine the accuracy to be expected for the measurement of free fall
acceleration of antihydrogen in the GBAR experiment, and we evaluate if we can reach
a relative uncertainty below 1%. A goal is to determine whether the photodetachment
recoil is a limiting factor to the precision. Our analysis will ease the constraints on the
choice of the parameters of the trap and photodetachment laser, as well as the design
parameters of the GBAR free fall chamber.

I.1 Presentation and goal of the GBAR experiment

One of the most important questions of fundamental physics is the asymmetry between
matter and antimatter observed in the Universe |74, 75, 76, 77]. In this context, it is
extremely important to compare the gravitational properties of antimatter with those
of matter [46, 54, 56, 57, 58, 78|. Experimental knowledge on this question is much
less precise than for gravitational properties of ordinary matter [58, 60, 79]. The aim of
measuring the free fall acceleration g of anti-hydrogen H in Earth’s gravitational field
has been approached in the last decades [67] and indirect indications of the sign of g
obtained very recently [68].

Ambitious projects are currently developed at new CERN facilities to produce low
energy anti-hydrogen atoms [80] and to improve the accuracy of g-measurement |71, 81,
82, 83]. Among these projects, the GBAR experiment ( Gravitational Behaviour of Anti-
hydrogen at Rest) aims at measuring the free fall of ultra-cold H atoms, with a precision
goal of 1% [70, 84].

The principle of GBAR experiment is based upon an original idea of Walz and
Hénsch [69]. GBAR is an international collaboration with several institutions led by
CEA (France). Parts of the work presented below have been done in collaboration with
the teams in Kastler-Brossel Laboratory (France), ETH Zurich (Switzerland), Laue-
Langevin Institute (France) and University of Mainz (Germany).
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Using a neutral particle for GBAR experiment is necessary in order to avoid elec-
tromagnetic interference (at this microscopic scale, electromagnetism is dominant over
gravity). In theory, the electrically neutral antineutrons would be the smallest chunks
for this experiment, but they can’t be used due to the difficulty of their production and
storage. The next simplest particle is therefore antihydrogen, the simplest antimatter
atom.

I.1.1 Production of antihydrogen

Producing antihydrogen requires antiproton and positron, and the different steps needed
for the final measurement are illustrated in figure 1.1.

ELENA
p 100 keV

Bunker

Drift tube
decelerator
Proton Gun —
10 keV e 10 MeV

Silica target
(Positronium)
b

Lamb shift
measurement ———

Figure I.1: Scheme of the different steps of the GBAR experiment.

Antiprotons are produced by collisions of ~ 26 GeV protons at the Proton Synchrotron
at CERN. Extra Low ENergy Antiproton ring (ELENA) is a 30 m hexagonal electrostatic
ring that decelerates those antiproton beams from an energy of 5.3 MeV to 100 keV for
precise measurements; it is situated inside the Antiproton Decelerator (AD) complex [80,
85, 86]. Antiprotons are then slowed down to approximately 1 keV using an electrostatic
decelerator and a drift tube [87, 88]. Along with antiprotons from AD, the GBAR
experiment also needs an intense flux of positrons, which are generated by the collision of
9 MeV electrons from a linear accelerator (LINAC) with a tungsten target [89]. Positrons
from the intense LINAC-based source are first trapped in a buffer gas accumulator and
collected in a high-field Penning trap [90]. The accumulated e are then ejected onto
a nanoporous silica film inside a cavity, forming a positronium (Ps, bound state e*e™)
cloud in vacuum [91, 92, 93, 94]. Then the antiproton beam strikes the target made of
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this positronium cloud, producing H* ions by two successive charge-exchange reactions
[95, 96]:

p+Ps— H+e (L.1)
H+Ps— Ht +e . (1.2)

At the output of the reaction chamber, the HT ions are separated from H and p. Al-
though more difficult to produce than the simpler antiatoms H, the antimatter ions
H* can be more easily manipulated. They are trapped and sympathetically cooled to
microkelvin temperatures in a Paul trap filled with laser-cooled Be™/HD™ ion cloud
[97, 98, 99, 100].

Figure 1.2: Photo of the experimental hall at Antimatter Factory (2018)
[101].

1.1.2 Free fall chamber

The excess positron of H* is photodetached with a laser pulse, forming a neutral anti-
hydrogen atom H [102, 103, 104]. This pulse marks the start of the free fall of the H
neutral atom (as illustrated in figure 1.3). The free fall on a given height is timed with a
stop signal associated with the annihilation of anti-hydrogen reaching the surface of the
detector [84].

The source of H atoms is placed at the center of the cylindrical vacuum chamber
(radius R. and free fall height Hf) in which the free fall measurement is performed.
The H atom will come in contact with the vacuum vessel and annihilate, producing
on average three charged pions 7+ (see figure 1.4). Micromegas detectors (Micro-Mesh
Gaseous Structure) track the trajectory of the pions, allowing for the reconstruction
of the H annihilation position. The Micromegas detectors of size 50 cm x 50 cm are
arranged in groups of three, with 5 cm spacing between each other [105]. Additionally,
Time of Flight (ToF) scintillator bars are forming the outer layer of the detection setup,
and are used to measure the precise free fall time and help reject cosmic ray signals.
Antihydrogen atoms easily traverse the vacuum chamber vessel and leave straight tracks
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Figure 1.3: Illustration of the photodetachment process in the free fall
experiment.

by ionising the gas of the detectors. A cryogenic vacuum environment will lower the
pressure such that residual gas annihilation is negligible.

The annihilation events are localized in space and time, and the free fall acceleration
g is deduced from a statistical analysis of annihilation events. Our analysis is focused
on the optimization of uncertainty, expected to reach a value of the order of 1% after
analysis of the free fall of approximately N = 1000 atoms |70, 84].

In fact, we will see that the precision of the experiment is mainly limited by the initial
velocity dispersion before the photodetachment process. For an accurate determination of
g, it is crucial to understand how the photodetachment process modifies the distribution
of velocities and then affects the statistics of annihilation events. In the simulations, we
assume that free fall acceleration of antihydrogen has its standard value gg = 9.81 m/s?.
We fix the initial number N of atoms but our analysis of dispersion accounts for the fact
that the number of events N, detected on the surfaces of the chamber may be smaller than
N. At the end of calculations, we will obtain the mean p, and the standard deviation
o4 of the estimator defined for g, simply denoted g from now on.

In this part, we will study the free fall of antihydrogen atoms for different configu-
rations of the chamber. We start with the simple design with horizontal plane to test
the effect of trap and photodetachment parameter. We then study the realistic full free
fall chamber of the GBAR experiment with cylindrical shape. In this chamber, we will
implement two disks positioned above and below the trap, which goal is to hide the
complexity of the trap and to improve the accuracy of the experiment. We will finally

make the analysis more complete by evaluating the effect of quantum reflection on the
detection surfaces and on the disks.
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z

TLV,

: =
p- X\
Figure 1.4: Principle of the free fall measurement of antihydrogen in the
GBAR experiment. H* ions are laser cooled in an ion trap. The excess
positron is photodetached by a horizontal laser (red line) to form a neutral
H atom that falls under gravity. Micromegas and scintillation detectors are

used to reconstruct the positions in space and time of the annihilation events
on the surfaces of the chamber [106, 107, 108].

I[.2 Simplest geometry: horizontal plane detection

The first design studied is the simple geometry where annihilation of antihydrogen takes
place only on a horizontal plane placed at an altitude H; = 30 cm below the trap. The
main goal of this design is to study the effect of initial parameters like velocity dispersion
Av and energy recoil 0 F on the precision of the experiment.

In the following, we first discuss the initial distribution of velocities before the free
fall and the distribution of annihilation events after the free fall. We then present a
Monte-Carlo simulation of the measurement of the free fall acceleration g using first this
simple geometry where atoms fall down to a horizontal detection plane.

1.2.1 [Initial state before free fall
The initial velocity is composed of different components:
e The distribution in the Paul trap with width Av ;

e The recoil induced by the absorption of the photon is constant, along the direction
of propagation of the laser, with magnitude v, ;
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Figure [.5: Simple geometry of the GBAR experiment: free fall on a horizon-
tal plane placed below the trap at a distance H; = 30 cm. The trajectories
from the trap to the horizontal plane are represented in red lines.

e The recoil velocity associated to the excess positron wve.

Then the initial velocity is:
V) = Ugrap + Uy — Ve. (L.3)
Unless stated explicitly, the initial parameters of trap and laser used in the simulation

are indicated in table I.1.

Parameter Value
Trap frequency f=1MHz
Initial velocity dispersion | Av = 0.44 m/s
Photodetachment energy 0F =30 peV
Photodetachment velocity | ve = 1.76 m/s

Table I.1: Values of the parameters of the trap and photodetachment process.
We detail below the different components of the initial velocity.
Distribution in the Paul trap Before the photodetachment process, the initial wave

packet corresponds to the ground state of an harmonic and isotropic trap, with Heisenberg
minimal dispersions identical along the 3 directions of space:

| h
¢ = I’ w=2nf (1.4)
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with ¢ position dispersion, f trap frequency, m mass of antihydrogen atom and A reduced
Planck constant. From the Heisenberg relation, we get the velocity dispersion:

h  _ fhw _ [hf
omAzx N 2m NV 2m’

Values of Av and ( are given in the table 1.2 for different trap frequencies.

Av =

(L5)

Av [m/s] | ¢ [um] | f [MHz]
0.77 41 3
0.44 71 1
0.24 130 0.3
0.14 220 0.1
0.077 410 0.03

Table 1.2: Initial dispersions in velocity and position for different trap fre-
quencies.

The ground state is represented by a wave-packet centered at the origin of space
coordinates with a Gaussian shape in position:

¢tra (xtra y Ytra ) ¢tra (Ztra )
Y p p p p
1 3/4 rthap
ma) oo )

with riap = (Ttraps Ytraps 2trap) the position with respect to the trap center. This wave
function is normalized:

\I’trap (Irtrap)

(L6)

. ‘\I/trap(rtrap>‘2d3rtrap =1. (I'7)
R

The wave function has also a gaussian shape in the momentum representation:

~ 1 1
\I/trap (ptrap) W J]R3 €xp <_hptrap : Ttrap) \I/trap ('rtrap)dg'rtrap

_ 1 8/4 ox _ p%rap
2w Ap? P 4Ap? |-

The density matrix is defined in space representation as:

ptrap(rtram r‘érap) = \Ijtrap(Ttrap>\1/frap(rérap)' (Ig)

We now introduce the Wigner formalism, i.e. the phase space formulation of quantum
mechanics introduced by Wigner in 1932 [109]. The Wigner function W is a convenient
representation of the density matrix [72], which fully describes quantum properties of the
initial state. It is a quasi-probability distribution defined as a mixed position-momentum
representation. Its proximity to the classical phase space distribution makes the Wigner
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function an ideal tool to study the classical limit [110]. The Wigner distribution W (7, p)
of a state with density matrix p is defined as:

. 1 1 s 8\ 3
W(r,p) = WngeXp(—hp-S>p<7‘+2,7’—2>ds (I.10)

— (27T1h)3 J‘H@ exp (—;p- s) \J (’r + g) o ('r — ;) d3s.

For the gaussian state W, the density matrix is a gaussian distribution of mean posi-
tions and differences and the Wigner function is a gaussian distribution of positions and
momenta. In our case, the Wigner function in the trap becomes:

1 g s s
Wtrap (T‘trapa ptrap) = W JR3 e rPtrap Sptrap <'I’trap + 57 Ttrap — 5) d38
1 i 1 3/2 ,M
= 73 J e_ﬁptrap's 72 (& 2<2 d38
(27Th) R3 27TC

1 rthap p%rap
= — — . I.11
(7rh)3 exp ( 2C2 ) exp ( 2Ap2 ( )

where at the last step we used the gaussian integral

9 5 (T 3/2 52
ngexp (—allz||? + Bl|x||) d®x = (a) exp <4a>. (L12)

We then calculate the probability in momentum space:

Htrap (ptrap) = fR?* Wtrap ('r'trapa Dtrap ) a? Ttrap
1 \*? Pirap
= e — . 1.13
( 21 Ap? ) P < 2Ap? (113)

This momentum distribution can also be obtained directly from equation (I.8):

~ 2 1 3/2 p%rap
Htrap(ptrap) = ‘\I/trap(ptrap)‘ = (W) €xp _QA]?Z . (114)

The gaussian shape of the initial momentum distribution is represented in the figure 1.6.

Recoil induced by the photon For antihydrogen, the threshold energy (electron
affinity) is around 0.754 eV corresponding to a photon wavelength of 1.64 pm. The
magnitude of the photon recoil is then
hky

vy =R 0.24 m/s. (I.15)
with k., the wave vector of the photon and m the mass of antihydrogen. This value is
fixed and doesn’t show fluctuations. Moreover, the direction of the photon recoil is given
by the laser propagation.
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Figure 1.6: Initial momentum distribution in the trap Ili;ap in terms of ve-
locities v, and v,. Parameters: f =1 MHz / Av = 0.44 m/s.

Photodetachment process The photodetachment of the excess positron relies on
the absorption by the ion of a photon whose energy is high enough to detach the bound
positron. In the case of H~ or HT atom, an s-electron is detached into an outgoing p-wave
electron so that the cross-section scales as E%2 [104]. The photodetachment efficiency
then depends on the energy §E above the threshold and scales as d %2, which implies
that large values of E have to be favored to get a good photodetachment efficiency
[102, 103, 104]. However this excess energy is transformed into kinetic energy which can
be considered as a bad thing for the uncertainty in a naive linear variation analysis . The
recoil of the atom is calculated by accounting for energy and momentum conservation.
The recoil g, associated to excess positron has a fixed modulus ¢, which in the limit

me < m is given by:
gde = V2miE. (I.16)

The recoil velocity for the atom is fixed by excess energy d ¥ above the photodetachment
threshold, with typical values given in table 1.3.

ve [m/s| | OF [peV]
1.25 15
1.77 30
2.17 45

Table 1.3: Recoil velocity v, for the atom for different excess energies JF

With these values of the excess energy, needed to reach a good photodetachment
efficiency, v, is larger than the velocity dispersion Av before photodetachment, which
would be a worrying problem in a naive precision analysis. q. is expressed in spherical
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coordinates as (see figure 1.7):

de = GeGe = qe (sin B, cos @, sin O, sin ., cos O.). (I.17)

Figure 1.7: Spherical coordinates of momentum transfer vector g.

The recoil of the atom is calculated from energy and momentum conservation. We
use here the approximation where it is described as an instantaneous elastic process, not
affecting the position. The momentum transfer q is the sum of the photon momentum
g, and the opposite g, of the momentum of detached excess positron:

q=4qy —(gec= hk'y — (Qe- (1'18)

The recoil momentum associated to detached positron lies on a sphere with a center hk,,
and a radius g.

After the photodetachment, the momentum of the atom is given by the sum of the
momentum inside the trap and the recoil momentum transfered in the photodetachment:

P0 = Ptrap + 4 = Purap + Nky — qe. (I.19)

We first consider a pure state corresponding to the momentum transfer ¢. The wave
function or equivalently the Wigner function are expressed as:

Wy (ro) 7

1 3/4 r% 1
<27TC2> exp (—4@ + hq.m) . (1.20)

1
€xp (q : 7‘0) \I/trap(r(])
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pq(To,Té) = \Pq(ro)\I’;(ré)
i i
— o (a7 e (1) ) Vun Wiy 1)
1
= exp (hq “(ro — ré)) Perap(T0,T0) - (I.21)
1 i S s\ 3
Wy(ro,po) = @i JRS eXp< P S>pq (ro + 5570~ 5) d3s
1 ¢ s S\ 3
- W JR3 eXp(—h(po - Q) : S)ptrap (7'0 + 5,7“[) — 5) d’s
= Wiap(r0,P0 — q). (1.22)

The angular distribution on the sphere depends on the polarization of the laser. In spher-
ical coordinate, with poles given by the direction of polarization of the photodetachment
laser, the angular distribution probability is given by:
., _dP 3
@(de) = F
with © the solid angle and 7 the laser polarization vector (unit vector orthogonal to the
laser propagation direction):

(de - 2)? (1.23)

n = (0, sin 6, cos by,). (I.24)
The normalization factor in (I.23) is such that
2m 3
Jw )dQ = f J 1) sin fedf.dpe = 1. (I.25)
For a vertical polarization, 6, = 0, n = (0,0, 1), one obtains:
. 3
w(Ge) = i cos® 0. (1.26)
For a horizontal polarization, 0, = 7/2, 1 = (0,1,0), we get:
3
w(Ge) = yp sin? 6, sin? .. (1.27)
The Wigner function is then a statistical mixture over recoil directions:
Waro.po) = | Wi(ro.po)=(@)d = | Wiesp(ro.po — @Jm(@)de. (128)

The momentum distribution, defined as the marginal of the modified Wigner function
integrated over position, is:

Iy(po) = RBWO("'OaPO)dB"'O

= JWtrap(TOa Po — q)ds""Ow((je)dQ

f Myrap (P0 — @) (4 ) A (1.29)
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The momentum distribution is the convolution of the gaussian distribution of initial
momentum and of the recoil distribution associated with positron.

The calculation of TIp(pg) can be performed analytically. We first give the result for
a vertical polarization:

Ho(po) = Ho(po + hkfy) = JHtrap(pO + qe)w((je)d(l (1.30)

T 27T 1 3/2 _M
= LJO (W) e 2807 (§e)sinfedbedp,

1 \%? _sbred 720 poae 3
= <27TA]92> e 2897 LL e APQECOS 0 sin f.df.dp..

The expression of g. and py in spherical coordinates are (by noting 6, angle between the
vertical axis Z and velocity vector v):

ge = ¢ (sin B, cos p., sin b, sin ., cos b.) , (1.31)

Po = po (sin B, cos y, sin B, sin @,,, cos ).

One then gets

_ 1\ B+ 3
y(po) = (W) exp <— N >47r (1.32)
T 2T : :
y J f exp (_sm 0, sin 0, cos cp; + cos 0, cos 06) cos? 0, sin 0,dfd,
0o Jo g
with
2
o2 = AP (1.33)
Poge

By using isotropic integrals and modified Bessel function [111, 112], we deduce after some
intermediate steps:

il L (R ) B9 (1 ag, cos? 0, + Lsin0,) (134
e 24 — 24 — i .
o(Po) NN, (6 P e P ) 47TP(( «Cos” 0, + I, sin” 6,) (1.34)
with )
o
I[,=———— —o* 1.35
*~ tanh(1/o2) ° (1:35)
This distribution is normalized:
fﬂo(Po)dpo = 1. (1.36)

The distribution for a general polarization angle is finally obtained by a rotation of
the system of coordinates, replacing in the expression the angle 6, between directions 2
and v by the angle 6,,, between directions v and 7:

ﬁ 1 7(170*113)2 7(po+q3)2 3 1 oF 9 0 7 9 P
= e 28p2 _ ¢ 2Ap — cos + I, sin .
R ) o (1 200 (0) + Tesin(6,0)

(L.37)



Free fall of antihydrogen quantum wave packet in the GBAR experiment 21

The distributions Iy drawn as functions of velocities vg = po /m are shown in figure 1.8
for different values of the parameters 6 £ and f, for the case of a vertical polarization. The
distributions, invariant under a rotation around the z-axis, are shown as a density plot in
the vy, v, plane. Other polarizations are obtained by a 3D rotation of the distribution.
Velocities after photodetachment lie on a spherical shell obtained as the convolution
product of the sphere of photodetachment recoil velocities and the gaussian distribution
of velocities in the ion trap. In the simulations, we will use a velocity dispersion of
Av = 0.44 m/s and photodetachment recoil velocity v, = 1.76 m/s.

In most cases of experimental interest, the gaussian velocity Av is smaller than the
velocity recoil ve, and the distribution is close to the initial one restricted on the sphere
of radius v,, with an angular density proportional to cos?#,. The full distribution, for
arbitrary values of Av?, describes a gaussian smearing along radial variations and a
gaussian smearing of the initial angular distribution.
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Figure I1.8: Density plots of the velocity distributions in the v,, v, plane
for 6F = 15, 30, 60 peV on the first, second and third lines respectively
(corresponding to ve = 1.25 m/s, 1.76 m/s and 2.50 m/s) and for f = 0.1,
0.3, 1, 3 MHz on the first, second, third and fourth columns respectively
(corresponding to Av = 0.14 m/s, 0.24 m/s, 0.44 m/s and 0.77 m/s) [108|.



Free fall of antihydrogen quantum wave packet in the GBAR experiment 22

We assume that all atoms originate from the same point (z, yo, 20) = (0,0,0), which
corresponds to the position of the trap, at time ty = 0. After photodetachment, atoms
freely fall in the gravity field and the free fall can be considered as classical if one uses
the Wigner representation.

1.2.2 Free fall and annihilation probability current

After the free fall, each detection point is characterized by its position (z,y,z), time
of flight ¢t and speed (vy,vy,v.). There is a one to one matching between the impact
parameters (r and t) and the initial velocity wvg:

T = Vgl Uzzvxoz%
Y = vyt and { vy = vy, = 4

12 _ _ z t
ZZUZOt—gT 'szvzo_gt*{_%-

with g the gravity field at Earth surface (reference value is gg = 9.81 m/s?).

The Wigner function will be used to calculate the annihilation current; it has the
remarkable property that for at most quadratic potentials, it connects classically those
two positions in phase space [109]:

Wi(r, p) = Wo(ro, po) , (1.38)
with
o = (any07Z0) , T = (957317 Z) ) (139)
B r—Tro gl B T —1To gl _ .
po—m< 7 2> ) p—m( r +2) , g=1(0,0,—g).

The observable is the particle current j, which is counted as a number of detected

atom N per unit of time dt and per unit of surface dJS:
d3N d3N

n=——v=pv 1.40
asat” " av ' " (1.40)
with dS unit of surface, dt unit of time, dV unit of volume, v speed and p density. By
noting |v] | the speed orthogonal to the surface of detection, we get the current J normal
to the detection surface:

j:

J(r,1) lilpe(r,r)

o, | f Wi(r, p)d®p
]R3

m\3 3 _ r—ry gt
|UL|<7) JR3WO(7'Oap0)d ro po—m< ; 2). (L.41)

We thus write J from the marginal of Wigner function that is also the initial momentum
distribution Ilj:
m?lv |

J(’l‘,t) = 3

o (po)- (1.42)
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Figure 1.9: Distribution of annihilation times, at the center of the floor (r =
0). Parameters: f = 1 MHz, E = 15 peV and vertical polarization of the
laser.

For a detection on the horizontal plane, the orthogonal velocity is:

_g (1.43)

V] = Uy = Uyy — gt = R

SRN

Moreover, we check that the annihilation current over the detection surface is normalized
so that

JRB J(r,t)d*rdt = 1. (1.44)

An example of such normalized distribution of annihilation events is shown in figure
1.9 for a detection at the center of the floor. The distribution presents two peaks cor-
responding to atoms with different initial velocities which are annihilated at the same
point but different time of flight. The heights and shapes of these two peaks depend on
the precise values of the parameters entering the expression of J(r,t).

The distribution of annihilation current is also represented in figure .10 by using
false color picture allowing to see both time and spatial coordinates. Due to the cor-
relation between the vertical and horizontal velocity induced by the photodetachment,
the maxima depends on the distance R to the center (they do not form vertical lines)
showing the importance to take into account the position in the analysis.

In the following parts, we will present analysis methods to determine the accuracy
of the experiment. The first one is the linear variation analysis based on the relative
uncertainty on the time arrival. Then we detail the analytical Cramer-Rao method
based on the calculation of the Fisher information. Another way closer to the final data
analysis to be designed for the experiment is the numerical Monte-Carlo method. We
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Figure 1.10: Distribution of annihilation events (J(7,t) in m~2s™!) on the
floor as a function of ¢ and r (distance from the vertical axis) [108|. Same
parameters as figure 1.9.

compare the results of those methods, and use their good agreement as a cross validation
of the results.

1.2.3 Linear variation analysis

We present here the statistical variation analysis to determine the accuracy of the ex-
periment, as it was done in the initial proposal of GBAR [113]. In the simple design,
the atom is prepared in a trap and then dropped on a detection plate, which results in a
spread of the arrival time distribution (see figure 3 in appendix A). We note H the height
between the trap and the detection plate. The quantum phase space quasi-distribution
Wi(z,p.) obeys classical equations of motion in a uniform gravity field. It follows that
we can do all calculations based on classical trajectories, by treating classical and quan-
tum uncertainties on the same footing |14, 72|. The expression of g as function of our
variables is

g= P Azzw) (L45)

t—to  (t—to)?
The standard deviation on g can be expressed in terms of Av,,, Az, Az, Aty and At,
the standard deviations of v,,, 20, 2, top and t respectively considered as independent.
2
A2+ ‘@ A+ |%

\/ 0z ot
Ag Av, \* (A (A2\7 | (At (At
— 2\/< pr ) + (g?) + el =) {5 (1.46)

2 2 2

og 0g

2

g
Az2 4 =L
F ze +

g
A2
* oto

2
v3, o7 At

Ag




Free fall of antihydrogen quantum wave packet in the GBAR experiment 25

Can we simplify this expression ? The H* ions in the Paul trap are very well localized to
a few pm, and the annihilation position z of the H atom can be measured and stabilized
to better than 100 pum |72, 113]. Moreover, the start time to can be known with a
precision better than 500 us, and the annihilation time ¢ can easily be measured to a
better precision. Those arguments justify so we can neglect the dispersions Azy, Az,
Aty and At respectively for a measurement of g at the % level. The relative uncertainty

then becomes:
A A A 2H
29 02%0 92y o [FE (1.47)
g gt glH g

This equation is correct only for 1 event. With N measurements, one gets an uncertainty
on g of about:

9 VN gtu’
In the GBAR proposal [113], it was estimated that about N=1500 fully detected anni-
hilation events are needed to reach a 1% precision on g.

The term Awv,, has 2 sources: the initial velocity of the atom on the trap (with
dispersion noted Av previously) and the recoil of the photodetached positron. In this
naive estimation of the sensitivity of the experiment, we see that the dispersion of the
estimator of g is proportional to the dispersion of the vertical velocity distribution Aw,,
just before the free fall, that is also just after the photodetachment process, and inversely
proportional to the average free fall time t7. An efficient way to decrease the relative
uncertainty would consist then in decreasing the vertical velocity dispersion Av,,. As
a large part of the velocity dispersion is due to the excess energy delivered by the pho-
todetachment process, this naive analysis could lead to restrict the excess energy and
consequently limit the photodetachment efficiency. The photodetachment recoil is then
a limiting factor.

In the following parts, we will use more robust statistical methods (Monte-Carlo /
likelihood numerical method and Cramer-Rao analytical method). We will show that,
contrary to the results of the linear analysis, the photodetachment recoil isn’t a limiting
factor and the precision is mainly limited by the initial velocity dispersion before the
photodetachment process.

A 1 Aw,
PO ol (L48)

1.2.4 Monte-Carlo simulation

Considering a draw of N atoms that escape from the trap after the photodetachment
process, we calculate the trajectory that depends on the random initial velocity vy and
deduce the annihilation position in space r; and time t;. We sum up here the different
steps in this simulation.

Generation of events The Monte-Carlo simulation is performed by sampling random
variables corresponding to the different sources of uncertainty in the initial velocity. The
distribution in the trap is generated using a normal distribution function with a width
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Aw given by (I.5). In Python, this normal distribution is generated by using the module
numpy . random.normal ().

In spherical coordinates, the probability of the velocity direction (6, ¢) due to the pho-
todetachment process is obtained using equation (I1.23). This probability distribution is
generated using two independent random variables X; and Xs with uniform distributions
in |0,1] producing random angles:

0, = arccos v/1 —2X1 , . = 2nXs. (1.49)

In Python, the variables X; and X5 are generated using the module numpy . random. rand ()
(see appendix C for details of the code used). If the polarization forms an angle 6,, with
the vertical, a rotation along the z-axis is performed to obtain the velocity components:

sin @ cos .
Ve = Ve | cos B, sin b, sin . + sin 6, cos b, |. (1.50)
— sin ), sin 6, sin @, + cos B, cos .

Using the standard value gg = 9.81 m/s?, we generate N = 1000 atoms with random
initial velocity vg. Each atom undergoes a classical free fall, and each detection event is
characterized by its impact position (z,y, z) on one of the surfaces of the chamber and
its time of flight .

We represent in figure [.11 a sample of 50 Monte-Carlo trajectories drawn in 2D plane
(all azimuthal angles set to the same value, only for this representation). The point (0, 0)
is here the position of the trap. Trajectories have a shape of parabola with random initial
velocity and reach the detection plate (horizontal line) situated 30 cm below the trap.
The maximum radius reached is about 1 m.

Computation of likelihoods For each detection point generated from MC simulation,
we evaluate the annihilation probability current J(z,y,z,t). For a random draw of N
detected events, we calculate the likelihood function [114, 115] as the product of current
for the annihilation events:

N

L(g) = | [ Jo(wi i, 2, ti). (1.51)

i=1
Samples of 10 likelihood functions £ are plotted in figure I.12 as function of (¢ — go)/g0,
each one calculated for a random draw of N = 1000 atoms. The number of 10 draws
has been chosen to illustrate the variance while simultaneously avoiding confusion on
the figure. The likelihood functions have gaussian shapes with similar values for their
variance, but they are shifted with respect to one another, hence giving different values
of the estimator. Each likelihood function leads to an estimation of the variance close
to the variance deduced from the histogram of values on a large number of independent
random draws. Their colors are chosen to make the figure more easily read.

The usual method is to estimate the value of g maximizing the likelihood:

(“{;;”) 0. (152)
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Figure I.11: Sample of 50 Monte-Carlo trajectories with vertical polarization
of the laser and detection on horizontal plane. The point with coordinates
(0,0) is the position of the trap.
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Figure 1.12: Sample of 10 normalized likelihoods calculated for independent
random draws of 1000 atoms for the simple design.

In Python, the estimation of g is obtained by minimizing the function —log £(g), by
using the module scipy.optimize.fmin. The value of this estimator will be denoted
Jmax in the following parts.



Free fall of antihydrogen quantum wave packet in the GBAR experiment 28

Calculation of the uncertainty We repeat this simulation process (generation of
events and Max Likelihood estimation) a large number M of times. Each simulation
provides an estimator gmay, the distribution of which is plotted in figure 1.13.

25 1

= N
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1 1

Number of events
=
o
!
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—0.100-0.075-0.050-0.025 0.000 0.025 0.050 0.075 0.100
(9 —90)/90

Figure I.13: Normalized histogram of the estimators g for M = 10000 random
draws for the simple design.

This distribution has nearly a gaussian shape and is symmetrical. From this his-
togram, we can extract the following information:

e The mean value of the distribution of gmax is denoted fig4 ;

e The standard deviation o4 of the estimators gmax will often be given as the relative
uncertainty o4/go in the following.

The estimator isn’t biased if |py — go| < 04 that is also when |bias| < 0,4/go. In our case,
the mean value of the histogram is close to the value gp = 9.81 m/s?, which means that
the estimator has a negligible bias.

We also notice that there is an inherent statistical error in 0,4, because we generate
an initial velocity with random norm and random direction. However, when we increase
the number M of random draws, the statistical error decreases. We chose M = 10000 in
order to reduce drastically this statistical error, and to get nearly the same value for o,
if we repeat several times the Monte-Carlo simulation.

We may wonder if there exist another way to extract more information from the
probability current density that leads to a lower uncertainty 4. In fact, the information
contained on the probability distribution can be quantified by the Fisher information.
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I.2.5 Cramer-Rao statistical method

The Cramer-Rao lower bound corresponds to an optimal estimation of the relative uncer-
tainty. Whatever the estimation method we use, we can never reach a better uncertainty
for the considered parameter.

Cramer-Rao lower bound This lower bound is deduced from the Fisher information
7, describing the g-dependence of the event distribution [114, 115, 116]:

Z, = E {—;;logj(g)} =E [(;glog!](g))j
_ f dsczT(a{]Jgg)Q. (L53)

Here E denotes the expectation value and J, the probability current calculated for the
value g. The last integral is calculated on the surface of the chamber and on the annihi-
lation time.

We consider ¢ an unbiaised estimator:

E[g — g] = 0. (1.54)
After several steps and by using the Cauchy-Schwarz inegality, we have for 1 event [115]:
V[g] Z = 1. (1.55)
For N events, the previous relation becomes:
In(@)=NZI , V[glIy=1
—  V[g] = % (1.56)

Then the Cramer-Rao bound UgCR is given by the number of events N and the Fisher
information Z [115]:

1

CR

= . I.57
Ug /_]\f Ig ( )

In our case of study, the calculation of the Fisher information is precisely:

400 +00
7= Jo J—wfo drdgdt 1(r cos ¢, rsin g, t) , (1.58)
_ (59Jg($,y,t))2
H(:Evy7t) - Jg(.’l?, y,t)

This triple integral is performed numerically, by using the module scipy.integrate.nquad:
I = nquad(integrand, [[0,np.inf], [-np.pi,np.pil, [0,np.inf]]) [0]

An advantage of this method is its computation speed. Indeed, we evaluated that the
simulation with the CR method is about 20 times faster than the MC - likelihood simu-
lation with M = 10000.
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Statistical efficiency

The Monte-Carlo dispersions o are expected to be slightly larger than the Cramer-

Rao dispersions agR, the difference being small for a good statistical efficiency, with the

statistical efficiency e defined as [115]:

SCR\ 2
e=<9> , 0<e<l. (1.59)

Og

MC
g

An estimator is called efficient if e & 1, meaning that the Cramer-Rao lower bound is
nearly reached. From an experimental point of view, a good efficiency means that the
unique random draw to be obtained in one experiment is representative of the variety of
results for different random draws in the numerical simulations.

The relative uncertainty obtained with both methods for f = 1 MHz and §E = 30 ueV
is around 1%:

o)€/g ~ 1.04% (1.60)
o§f/g ~1.03% , (1.61)
e<G$R>2~098 (L62)
— MC ~ . . .
99

The statistical efficiency is then nearly satisfied for our design of horizontal plane consid-
ered in this part (Ué” SN agCR). This is directly related to the fact that the likelihoods
are gaussian (see figure 1.12).

We now study the effect of trap and laser parameters on the accuracy of the experi-
ment.

1.2.6 Variation versus design parameters

We discuss here variations of the results versus trap and laser parameters, still with
horizontal plane design, using Monte-Carlo or Cramer-Rao dispersions equivalently as
they lead to the same conclusions, in all cases discussed below in this part.

Polarization of the laser We can study the effect of the polarization of the laser, by
plotting the relative uncertainty o4/g as function of the polarization angle 6,, for f =1
MHz and 0F = 30 peV. In particular, the relative uncertainty obtained for vertical and
horizontal polarization of the laser is:

04/9 (0 =0°) ~ 1.04% , (1.63)
ag/g (0 =90°) ~ 1.62% . (1.64)
Those results stand in contrast with the expectation of the naive linear variation analysis

sketched at the beginning of this part. The variance of vertical recoil is indeed smaller
for a horizontal polarization than for a vertical one, so that naive expectations would
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Figure 1.14: Variations of relative dispersion as a function of 6,, (polarization
angle).

lead to a larger dispersion in the former case than in the latter one. With the results of
the full analysis performed in this part, the accuracy is better for vertical polarization.
This can be traced to the fact that atoms with an initial upwards velocity have a longer
time of flight, which is beneficial for the determination of g.

Variation of velocity dispersion Figure [.15 shows that the accuracy is improved
(the relative dispersion is decreased) for lower values of f or equivalently Av, the two
curves corresponding to different polarization angles but the same excess energy. The
accuracy is then highly determined by the Gaussian velocity distribution in the ion
trap. We see also that the vertical polarization provides better accuracy than horizontal
polarization, whatever the value of the velocity dispersion.

Variation of photodetachment recoil The effect of the photodetachment recoil is
shown in figure [.16 with full lines representing Cramer-Rao predictions and dots showing
the results of Monte-Carlo simulations. One clearly sees on the plot that the results of
the two methods are close, which confirms the good statistical efficiency. One also notices
a conclusion standing in contrast with the prediction of a dispersion proportional to the
initial velocity dispersion, since the accuracy is improved for larger values of the excess
energy.

The too naive linear variation analysis sketched previously leads to the prediction of
a dispersion proportional to the dispersion of initial vertical velocity. It gives in most
cases an accuracy poorer than the correct results produced by the analysis in this part.
It also favours the choice of a horizontal polarization whereas the correct results lead
to prefer a vertical polarization. The results obtained here thus reduce the constraints
on the choice of photodetachment parameters, as they allow an increase of § £ which is
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Figure 1.15: Variations of relative dispersion, as a function of Awv, vertical

and horizontal polarization of the laser, with recoil velocity ve = 1.77 m/s
[108].
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Figure 1.16: Variations of predicted relative dispersions, as a function of recoil
velocity v, for different velocity dispersions Av and a vertical polarization.
Full lines represent Cramer-Rao predictions while dots show the results of
Monte-Carlo simulations [108].

certainly good for discussion of the photodetachment efficiency.
Up to now, we have considered only free fall on the horizontal floor. However, the
experiment will take place in a chamber with finite dimensions for radius and height,

and it is necessary to take into account the presence of the walls on which atoms having
large initial velocities will annihilate.
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1.3 Cylindrical free fall chamber

For a first realistic treatment of the GBAR free fall chamber, we consider a cylindrical
chamber having finite dimensions for the free fall height H; = 30 cm, with ceiling at
height H. = 30 cm above the trap and with radius R, = 25 cm. It was the design of the
free fall chamber considered by the collaboration when the thesis work began [70].

Atoms fall from the trap at the center of the chamber until they reach a material
boundary on the floor, walls or ceiling of the chamber (see figure 1.17). The free fall
height H;y = 30 cm corresponds to a free fall time ¢ ~ 247 ms for atoms with null
initial vertical velocity. With R, = 25 cm, antihydrogen atoms with an initial horizontal
velocity larger than ~ 1 m/s hit the vertical walls before they can reach the floor. When
this is the case, free fall times are shortened with respect to the situation where atoms
are only detected on the floor, which should degrade the sensitivity to the measurement
of g. This effect is relevant for a significant fraction of antiatoms, which should lead to
poorer accuracy. The analysis of this degradation is discussed below.

Hc=30cm

Walls

Hf =30 cm

Figure 1.17: Free fall inside cylindrical chamber of radius R. = 25 cm and
height 60 cm. The trajectories to the surfaces of the chamber are represented
in red dotted lines.

We will apply the same procedures as before to compute the annihilation current,
perform Monte-Carlo simulations and deduce maximum likelihood estimators g.
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I.3.1 Current with discontinuities

The analytical formulas for the current are the same as in the last part with a horizontal
plane. The only difference is that the orthogonal velocity at detection has different
definitions for detections on different surfaces of the chamber:

t
V] = Uy —gt = % — % , detection on the floor or ceiling ; (1.65)
Va4 y? .
v =4/02 +v% = % , detection on the walls. (1.66)

Antihydrogen atoms can touch the ceiling, when they have large enough upwards velocity
in the initial distribution
Vs > Vs = /29 H,. (1.67)

The value of vs (~ 2.43 m/s with the standard value of gy = 9.81 m/s? and H. = 30
cm) is independent of other parameters. It leads to a step in the annihilation current
as a function of time of flight (see figure 1.18), which has important consequences in the
following analysis.

For a given position, we can calculate analytically the critical time ¢, corresponding
to this step. A "limit" trajectory can be described as the succession of two parabolic
legs: an upward one from the trap to the ceiling and a downward one from the ceiling to
the annihilation position.

te = t1 (trap — ceiling) + t2 (ceiling — annihilation)
_ v, VY297 V2gH.  V29H - 292
g g g g
2H 2(H, —
_ c (He Z)' (1.68)
g g
For example, for H. = 30 cm and z = —H; (floor), we obtain t. ~ 597 ms, which

corresponds to the position of the cut emphasized by the zoom in figure I.18.

1.3.2 Analysis and relative uncertainty

The parameters used are the same as the ones used for the design with horizontal plane,
they are indicated in table I.1.

Results of typical Monte-Carlo simulations are depicted in figure 1.19. We have
plotted a scatter of NV = 5000 annihilation events for the different surfaces of the chamber.
The color of the detection points indicates the time of flight, which is always smaller than
1s. Very few atoms hit the ceiling.

The likelihood functions calculated for random draws of N = 1000 atoms are no
longer perfectly Gaussian (figure 1.20) while the histogram of estimated g for a number
of different simulations has an asymmetric shape with a significant bias (figure 1.21).
This behaviour appears when we include the ceiling in the geometry, which induces a cut
in the current J. This point will be discussed more thoroughly below.
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Figure 1.18: Distribution of annihilation times on the floor, at z = —Hj.

Parameters: f =1 MHz, 6 F = 30 peV and vertical polarization of the laser.

The relative uncertainties obtained with the Monte-Carlo method for the vertical and
horizontal polarizations of the laser are:

oy’ /g (0 = 0°) ~ 1.26% , (1.69)
oy /g (0n = 90°) ~ 2.93%. (1.70)

As expected, the accuracy is a bit degraded compared to the situation with horizontal
plane. Indeed, a significant fraction of atoms reach the wall before the floor, and their
time of flight is reduced as well as the effective free fall height, leading to a detrimental
effect on the accuracy.
The Fisher information is calculated by decomposing it on each detection surface of
the free fall chamber:
T = Tfoor + Lyans + Iceiling- (171)

However, the current J of annihilation times on the floor and on the walls contains a cut,
as illustrated in figure [.18. The evaluation of the Fisher information in those surfaces
leads to an error, as it involves the calculation of the derivative of J which isn’t defined
at the cut. This problem will be solved later in this chapter, by smoothing this step.

In the next part, we will add small disks inside the cylindrical chamber, positioned
symmetrically above and below the trap.

I.4 Cylindrical chamber with disks

When we analyzed the role of annihilation on the surfaces of the free fall chamber, we
discovered a new effect associated with the presence of "obstacles" and noticed at some
point that "obstacles" could be used to improve the accuracy of the experiment. Indeed,
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Figure 1.19: Monte-Carlo generation of N = 5000 events, where the color
indicates the time of flight ¢. Distribution of events: 45% on the floor, 54%
on the walls, 1% on the ceiling. Vertical polarization of the laser.

near-edge events correspond to large information about the value of the free fall accelera-
tion. This led us to design a new experimental configuration with two disks symmetrical
placed in the vicinity of the source of antiatoms in order to maximize the advantage
gained from near-edge events. The purpose of this part is to study this configuration.
The new design is represented in figure [.22-a, where we add two disks of radius
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Figure 1.20: Sample of 10 normalized likelihoods calculated in the case of the
cylindrical chamber for independent random draws of 1000 atoms.
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Figure 1.21: Histogram of estimators g for 10000 random draws in the case
of the cylindrical chamber.

Rg; = 2 cm symmetrically positioned above and below the trap at distance H; = 1 cm.
In figure 1.22-b, we show schematically the trap (which is the source of anti-atoms) and
the obstacles surrounding it (such as the electrodes of the ion trap and the lenses of the
laser cooling). The symmetrical configuration produces a simple geometry which will be
more easily studied in Monte-Carlo simulations of the experiment. We will work with a
horizontal polarization of the photodetachment laser (6, = 7/2) in order to launch the
atoms preferably in the free interval between the two disks.

The disks are absolutely needed for the experiment [99, 100] as they hide the com-
plexity of the trap. However, they intercept some trajectories of free falling anti-atoms
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Figure [.22: a - Cylindrical chamber with two disks symmetrically positioned
above and below the trap at distance H;. b - Schematic representation of
the ion trap. Electrodes are in red, the lenses are in purple and the two disks
are in blue. The structure that supports the trap is not represented.

and they reduce the number of annihilated events. In the following, we fix the initial
number N of atoms but our analysis of dispersion accounts for the fact that the number
of events N, detected on the surfaces of the chamber is smaller than N.

One might simply think that these obstacles are detrimental as they reduce the
number of annihilated events, leading to a loss of accuracy. We will show however that
the opposite happens, with a significantly improved accuracy on the measurement of g,
thanks to the information gained from the boundaries of intercepted trajectories which
depend on g.

I.4.1 Distribution of annihilation events with disks

The conditions to reach the upper disk from the trap are:

9
Vzy > 0o , UzOtapO - 5752}30 > Hg ,  treach-disk < tdisk- (1'72)
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with

_ Uz U — AV —29Hq  Ra—+z5+y; 173
tapo - ) treach—dlsk - ) tdlSk - . ( . )
g g £/ VE, V2

The condition to reach the lower disk from the trap is:
Vs Lisk — gt?hsk < Hy. (L74)

On the figure 1.23 of the 2D current on the walls as function of z and ¢, one clearly
sees the sharp boundaries of the shadow induced on the walls by the presence of the
disks. The position in space and time of this shadow depends on the value of g and its
detection allows to gain information on the value of g.

0.2 50
0.1 1
40
0.0 &
|
g
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Figure 1.23: Distribution of annihilation events J on the walls of the altitude
z and time of flight t. The shadow zone is represented in grey. Parameters:
f=1MHz, §E = 30 pueV and horizontal polarization of the laser.

The figure 1.24 illustrates that modifying the value of g changes the shadow area,
here for g = 0.8 go, g = 0.8 gp and g = 1.2 go.

The critical time t. of the steps induced by the disks depends on the detection point
(z,y,z) considered. Note that the critical time induced by the disk is necessarily lower
than the one induced by the ceiling. For example if we consider a detection point on the

walls at z = —17 cm, then the value of the critical times induced by the upper and lower
disks are:
) 2 z— R./Ry|Hy|
U disk: t. = - ——————— ~0.256 s; L.75
pper dis c \/g Ra/Bo—1 s (L.75)

2 R./R4|H,
Lower disk: ¢, = \/g M ~ 0.1 s. (1.76)
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Figure 1.24: Current J as a function of z and t. The area with diagonal
hatching represents the shadow from the two disks for gg. The two dotted
areas represent zones that are not in the shadow for ¢ = gg but are in the
shadow for g = 1.2 gg and g = 0.8 gp.

Those critical times are clearly apparent in the figure 1.25 of annihilation times, drawn
at the fixed altitude z = —17 cm.

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
t(s)

Figure 1.25: Distribution of annihilation times, at z = —17 cm. Same pa-
rameters as figure 1.23.

A random draw of Monte-Carlo detection events is represented in figure 1.26 on the
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floor and on the walls. Trajectories hitting the disk lead to annihilation there, and
are discarded from the forthcoming analysis as they contain no useful information on
the value of g. About 60% of the initial atoms are detected, while the other 40% are
annihilated on the disks. On the walls, we observe two main groups of detection for
¢ = 1£90° (azimuth angle), due to the horizontal polarization of the laser. There is no
detection events on the ceiling due to the presence of the upper disk which intercepts
upward trajectories.
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Figure 1.26: Monte-Carlo generation of N = 5000 events. Distribution of
events: 3% on the floor, 97% on the walls, 0% on the ceiling. Horizontal
polarization of the laser.

1.4.2 Monte-Carlo analysis with disks

The parameters used are the same as the ones used for the previous designs, they are
indicated in table [.1. Figure .27 shows likelihood functions calculated for random draws
of N = 1000 atoms. They are nearly flat, with sudden drops to zero. This behaviour is
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due to the presence of obstacles and it can be qualitatively understood. Let us consider
a position r and time of flight ¢ reached by an atom for g = gg. If this impact is close
to the boundary of allowed area, and because the boundary depends on g, the impact
may be in the shadow of the disk for a different value of g. Beyond this boundary, the
likelihood drops to zero. The effect of the shadow and the presence of the critical time
t. is visible in the likelihood function.

200 A

150 +

=~ 100 - /’ﬂ

N FJ

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03
(9= 90)/90

Figure [.27: Sample of 10 likelihoods, plotted for N = 1000 events, for the
geometry with disks.

As mentioned previously, the usual method is to estimate the value of ¢ by maximizing
the likelihood (see equation (I.52)). However, we saw that with the current design, the
likelihood functions don’t have gaussian shape. They have trapezoidal shapes with an
inclined plateau. Hence, their maximum will then fall on either side of the plateau of the
likelihood function, which means that Maximum Likelihood Estimation is no longer the
adapted method. This problem can be solved by defining a new estimator gmean as the
mean value of the likelihood function [108]:

Genn — VL)
e $L(g)dg

The histogram of distribution obtained with this estimator is represented in figure
1.28. The shape of the histogram is symmetrical and its bias is small because the disks
are symmetrically positioned above and below the trap. The estimator g is then unbiased
and its distribution is a Laplace distribution:

_ b (9%l
flg) = V2o, p( Vo, > (1.78)

where o4 the dispersion of g which scales as 1/N [117]. We note that if the two disks are
not symmetric, then the estimator g is biased.

(L77)
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Figure 1.28: Normalized histogram of estimators g for 10000 random draws,
for the geometry with disks.

Precise values of the bias and accuracy obtained with both estimators is indicated in
the table I.4. The calculated value of the bias could be different for another simulation (it
also shows fluctuations) but it would in any case remain much smaller than the dispersion.

Estimator | Bias + dispersion
Jmax —0.01% + 0.80%
Jmean — 0.001% + 0.36%

Table 1.4: Bias (ug — go)/go and Relative uncertainty o4/go obtained with
the design with disks, when using the estimators gmax and Gmean-

We see that the Mean Likelihood Estimator gmean leads to smaller bias and relative
uncertainty, which confirms the relevance of this estimator that we have introduced.
Moreover, we also see that the accuracy is better than in the case without disks (2.93%),
even if less atoms are detected. Indeed, extra information on the value of g comes with
the presence of shadow borders on the detection area (the position of which depends on
9)-

We will now vary the radius of the disks Ry and their distance from the trap Hy
to evaluate their effect on the accuracy. This will justify the values of the parameters
previously used in this part (Ry =2 cm and Hg = 1 cm).

Disk parameters We vary Ry from 0 to 4 cm and Hy from 0 cm to 2.5 cm with full
cylindrical chamber. By increasing the radius of the disk (Ry4) and by decreasing the
distance trap-disk (Hy), the effect of the cut increases but the number of atoms detected
decreases (see figure 1.29, upper plot). So there should be optimal parameters to get the
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best precision of the measurement. In the lower plot of figure 1.29, we observe that the
optimal result is obtained around Ry = 2 ¢cm and Hy = 1 cm, which explains why we
use those parameters in our simulations.

Proportion of atoms detected (%)
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Relative uncertainty (%)
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Figure 1.29: Effect of disk radius Ry and distance from the trap Hy on
the proportion of atoms detected (upper plot) and relative uncertainty o4/g
(lower plot). Oscillations in the lower plot are numerical artefacts due to the
fitting process.

I.4.3 Smoothing of the current

The steps in the current lead to a Dirac distribution in the derivative of the current with
respect to g and make the Cramer-Rao statistical method unapplicable, as the dispersion
O'gCR is calculated from the Fisher information which is thus an ill-defined integral (the
integrand diverges at the steps). This difficulty is purely formal as the steps are rounded
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up by the experimental details of the timing measurement. The uncertainty on the STOP
signal given by the Micromegas detectors, of the order of a few tenths of nanoseconds,
is largely dominated by the uncertainty in the START signal, that is the finite duration
of the photodetachment process. The experimentally detected current is a convolution
of the current calculated above by the distribution of START time. The convolution
rounds up the steps and brings the current back inside the domain of applicability of the
Cramer-Rao method. In order to describe the rounding up mechanism, we introduce a
smooth distribution d, of width 7 for the START signal. The model distribution of the
START time used is the logistic distribution (see figure 1.30):

1
5. (tg) = ——————. 1.79
(to) 47 coshQ(é—OT) (L.79)

500

400

300

200

100

ta (mis)

Figure 1.30: Logistic distribution §,, with 7 = 500 ps.

The total time is now:
T=1t+t (1.80)

where ty is the photodetachment time (within the distribution of width 7) and ¢ the
time of flight. The experimentally measured current J; is the convolution product of the
function J by the distribution ¢, of time ty:

Jo(r,T) = JJ(T, T — 10)5 (to)dto. (L.81)

Jr can be computed analytically or numerically. After the convolution, the step at t. in
J in rounded up on a time of the order of 7. Currents calculated before and after the
convolution on a cut with fixed altitude z = —17 cm are represented in figure 1.31. Due
to the small value of 7 compared to the variation time scale in J, the convolution doesn’t
change appreciably the current, except in the vicinity of the steps. Indeed, the effect of
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Figure I.31: Comparison between the currents J(r,t) and J,(r,T') calculated
with the same parameters as in figure 1.25, the first one before the convolu-
tion, the second one after the convolution with 7 = 500 us [117]. The effect
of the dispersion on % is visible on the edges of the shadow zone induced by
the obstacles.

the dispersion on tg, calculated here for 7 = 500 us, is visible at the steps of the current
corresponding to edges of the shadow of the disks.

The relative uncertainty obtained with smoothing is slightly higher than the case
without smoothing, which had of course to be expected:

04/9 ~ 0.58%. (1.82)

Variation with N and statistical efficiency Normalised likelihood functions are
represented on figure [.32 for different values of N. For N = 10 and N = 100, the
likelihoods are mostly flat with sudden drops to zero. The drop to zero is rounded up
by the dispersion 7, with the rounding negligible for N = 10 or N = 100 but starting
to be noticeable for N = 1000. For N = 10000, the likelihoods are closer to Gaussian
functions because the numerous annihilation events produce an efficient sampling of the
rounded step.

To illustrate the effect of the cut induced by the disks and analyze regimes of statistical
efficiency, we draw in figure 1.33 the predictions of Monte-Carlo/likelihood simulations
versus the number N of events in a given random draw. We have compared them to
the predictions deduced from Cramer-Rao bound, taking into account the contribution
of the rounded step (orange line) or not taking it into account (green line).

In figure 1.33, we can distinguish 2 regimes. For small values of N (N < 1000), the
Monte-Carlo uncertainties follow a 1/N regime (the events close to the cut improve the
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Figure 1.32: Set of normalised likelihood for different values of the initial
number of atoms N for 7 = 500 us.

accuracy); the presence of the disks brings information but not enough to reach the good
efficiency limit. In this regime, the likelihoods are not gaussian (see figure 1.32) and the
shape of the histogram is a Laplace distribution. For large values of N (N >> 1000),
the Monte-Carlo uncertainties follow a 1/\/W regime and approaches the Cramer-Rao
bound with cut; the number of events in the vicinity of the step becomes sufficient so
that statistical efficiency is recovered. In this regime, the likelihoods are nearly gaussian
(see figure 1.32), as well as the associated histogram. An analytical model is proposed in
[117] to explain this behaviour.

In the following part, we will make the analysis more complete by evaluating the
effect of quantum reflection of H atoms on the Casimir-Polder potential in the vicinity
of matter surfaces of the free fall chamber [13].

I.5 Taking into account quantum reflection

Quantum reflection is a uniquely quantum phenomenon in which an atom or a small
molecule is reflected in a wavelike fashion from an attractive surface. It is described
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Figure 1.33: Uncertainty on the estimation of g as function of the number N
of initial events for 7 = 500 ps. The green line corresponds to the Cramer-
Rao bound without disks and the orange one to the Cramer-Rao bound with
disks using 7 = 500 pus. Both Cramer-Rao bounds scale as 1/\/N

in details in appendix B. As quantum reflection probability is not null at velocities of
experimental interest, it is necessary to take this effect into account in the data analysis
for GBAR and avoid systematic errors which could be due to reflected atoms.

A very good polishing of the chamber surfaces is mandatory for preventing diffuse
quantum reflection. In this case, reflected atoms can be eliminated from the data analysis
by using discrimination time windows (for example, atoms with an initial vertical velocity
bouncing on the floor after a time ¢ will touch it again after a further time 2¢). If quantum
reflection is well mastered, it is even possible to take reflected atoms into account in the
analysis, thus improving the statistics.

I.5.1 Quantum reflection probability

Ultra cold anti-hydrogen atoms falling onto the detection plate will suffer a quantum
reflection before touching the plate and this will affect the measurement of the free fall
[13, 14, 118]. Quantum reflection of antihydrogen on a plate depends on the component
of the velocity orthogonal to the plate and on optical properties of the material. We
assume boundaries to be well polished stainless steel plates behaving as good optical
mirrors in the visible and near-IR domains. A good approximation of quantum reflection
probabilities is obtained by taking the values calculated for a plate perfectly reflect-
ing electromagnetic fields [13]. Quantum reflection probability depends on the atomic
wavevector k| that is equivalently the orthogonal velocity |vp|:

m
kL= 2l (1.83)
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Figure 1.34: Cylindrical chamber with disks, accounting for quantum re-
flection. Direct trajectories are represented with green full lines and QR
trajectories are represented with red dotted lines.

Quantum reflection probability |r|?> has known asymptotic behaviours at low and high
values of these parameters. In particular, the low-energy behaviour is determined by the
imaginary part b of the scattering length, itself determined by the optical parameter of

the mirror: m
2 = e~ 4Pl — o=4Blwl - with B = bl (1.84)

For a mirror perfectly reflecting electromagnetic fields (as stainless steel with good pol-
ishing), the module of the scattering length is [72]:

|b| ~ 543.345 ap ~ 28.75 nm. (1.85)

with ag ~ 5.29 - 10" m the Bohr radius.
More precisely, an interpolation formula has been designed to reproduce accurately
the intermediate and high-energy parts of the numerically calculated curves [72]:

4k m
7[? = exp <—1+M2/3> ;o k= (bl (1.86)
1+pk~1

The constants « and [ have been obtained by a least-squares fit on the numerically
calculated curves. For a perfect EM, we have:
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Perfect EM | 0.708810 | 0.516300

Different velocities correspond to neatly different probabilities, so that it is necessary
to account for the variation of quantum reflection for each individual trajectory. The
dependence between the probability of quantum reflection and the orthogonal velocity is
represented in figure 1.35, where we observe that |r|? decreases when |vp| increases.

100 4

10—1 4

log |r|?

1072 4

0 1 2 3 4 5
[vi| (m/s)

Figure 1.35: Relation between the probability of quantum reflection |r|? (with
log scale) and the orthogonal velocity |vp].

In particular, for an atom having initial vertical velocity v,, = 0 and falling down to
a perfect EM mirror from a height H = 30 cm, the probability of quantum reflection is:

lop| = /29H ~ 243 m/s — |r|* ~ 5.4%. (1.87)

Quantum reflection probabilities are higher on the disks (since the height Hy between
the trap and the disks is 1 cm), and they can give rise to systematic effects of the same
order of magnitude as the statistical accuracy looked for in GBAR experiment.

1.5.2 Current with quantum reflection

The reflected atoms are not detected at the expected time, leading to a loss in statistics.
Moreover, higher energy atoms are less affected by quantum reflection and are thus more
likely to be detected. Accurately modeling quantum reflection is therefore necessary to
correct this bias.

From a given detection point (7,t), we have to find back the initial velocity vg. There
is a one to one matching between those values, but the relation between detection position
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and initial velocity depends on the existence of a reflection and the detection surface on
which it happened. A detection point on a surface of the chamber can be reached directly
or by having undergone one or several reflections on the disks or on another surface of the
chamber (see figure 1.34). As elementary quantum reflection probabilities on detection
surfaces are of the order of 5% and as the radius of the disks is small, we disregard in
this analysis the case of multiple quantum reflections.

The probability current at detection point is obtained by adding the contribution of
the different cases, with the probabilities associated:

J(r,t) = Jaue(r,t) + > JSp (1) (1.88)

where Jgi (7, t) is the contribution of the direct trajectory and .J, (SI){(T, t) comes from the

quantum reflection by the surface s. Each of the latter expressions contains the associated
quantum reflection probability. For example, for a detection point on the floor, the total
current is:

T(r,t) = Jnoor(r,t) + Jon (m,0) + JGa (r, 1) (1.89)

+J((91;1{3per disk) (’I‘, t) + J((Ql%wer disk) (7’, t).

For a direct trajectory, the analytical expression of the current is:

3oy |
t3

m

Jair(r,1) = (1 = p(v1)) 1o (po) (1.90)
with p(v] ) the probability of quantum reflection on the detection surface (the expression
of which is given by equation 1.86) and v, the orthogonal velocity at detection.

For a trajectory with QR on vertical surface (walls), we have:

m3|v |

Ho(po) = P(Ub)tTHO(PO) (1.91)

m3|v |

t2

z
dsz

with v, the orthogonal velocity on the reflection surface and v the orthogonal velocity
on the detection surface. For a trajectory with QR on horizontal surface (floor or disks),

we have: 5
m’|v |

m3 v
TS (r,t) = pluy Io(po) = p(vs) | l|)Ho(po). (1.92)

2(t —ty

dvz,

with ¢, the time of bouncing on the horizontal surface.
How can we get t, 7 For the cases of one quantum reflection on a horizontal surface
(at height z;), the orthogonal velocity at bouncing v, can be written:

op| = 32+ Gty o = =+ §(t 1) (1.93)
— = — S+ =y + 5 —t) = 0. (1.94)
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By isolating t,, we get a 3" degree polynomial equation:

At§+Bt2+Ctb+D=0 (1.95)

— _ _3 _ —2z+2 ozt
A=1 , B=-3t , o=,  p_at

The bouncing time t; is obtained by solving numerically this equation with the module
numpy .roots in Python. Moreover, we only keep the solutions that satisfy the following
conditions (with ¢4 time spent above the reflecting surface):

ty>tg , <ty , Tp+ 27 > tg (1.96)
g

Once tp is obtained, the initial velocity is

g
— + =t I.
Vyy = tb 5 b ( 97)

1.5.3 Different cases of quantum reflection

Case walls — floor When the atom is reflected on the walls and is detected on the
floor at position (x,y,0), we consider the "mirror" point symmetric to the detection
position relative to the walls. Its coordinates are (T, Ym, 2m) = (rm cosb,ry, sind,0),
with r,, = 2R, — v/2? + y? and 6 = arctan(y/z). The initial velocity is given by:

(1.98)

The orthogonal velocity on the reflection surface (walls) is vg, = 4 /v2 + 1150 and the one

on the detection surface (floor) is v, = v,, — gt. The expression of the current is:

3|”Z’

walls
J( . )( 7t) :p(vzy) 3

o (po)- (1.99)

Case walls — walls When the atom is reflected on the walls and is detected on the
walls at position (x,y,z), we consider the point symmetric to the detection position
relative to the opposite walls. We note it (T, Ym, 2m) = (rm cosd,ry, siné, z), and the
initial velocity is given by:

(1.100)
The orthogonal velocity on the reflection surface and detection surface (walls) is vy, =

£/V2, +v2 . The expression of the current is:

3
walls M= | Vg
J(SR )( 7t) = p(vxy) t|3 y|H0(P0)‘ (1.101)
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Case upper disk — floor When the atom is reflected on the upper disk and is detected
on the floor, the initial velocity is given by:
z Yy g
Vop =Vo =7, Uy =Vy = 5 Ux = E + itb (1.102)
We denote Hy the height between the trap and the upper disk (> 0). The orthogonal
velocity on the reflection surface (upper disk) is vy = 4/v2 — 29H4. The time of bounce
tp is obtained by solving the cubic equation:

At +BE+Ct,+ D=0 (1.103)
3 —2 t
A=1 , B=-3t , C= Z;“+2 , D=2,

The expression of the current is:

m3|02’

(upper disk)
‘Q (r:2) t2(t —tp)

= p(vp) o (po)- (1.104)

Case upper disk — walls The relations are the same as the case "upper disk —
floor", the only difference being the orthogonal velocity at detection:

upper dis m3 Vg
TG ) = o) ) vy = o, e (09

Case lower disk — floor We denote H,; the height between the trap and the upper
disk (< 0). The relations are the same as the case "upper disk — floor", the only
difference being that we take Hy < 0.

Case lower disk — walls The relations are the same as the case "lower disk — floor",
the only difference being the orthogonal velocity at detection |vg,| = 4 /vZ + vgo.

1.5.4 Distribution of events and figures of the current

The fraction of atoms that reach the surfaces of the detection chamber is about 66%
(the other 34% are annihilated on the disks and lost for our analysis) while 18% of the
detected atoms have been reflected on another surface before their detection.

We represent in figure 1.36 the current on the walls as function of time ¢ and position
coordinate z. The essential information on these plots is that quantum reflections allow
atoms to reach the zone which was previously forbidden (figure 1.23). This "shadow"
zone represents ~ 2.5% of all the detection. We also observe that there remains a small
forbidden zone which cannot be reached by any trajectory even when taking into account
quantum reflections.

A Monte-Carlo random draw of N = 5000 initial atoms is represented in figure 1.37,
where red points correspond to detection events which have been reflected on another
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Figure 1.36: Distribution of annihilation events (J(R,T) in m~2s~!) on the
walls as a function of ¢t and z. The shadow zone is represented in grey color.
Parameters: cylindrical chamber with disks and QR, horizontal polarization
of the laser.

surface before their detection. Quantum reflection increases the proportion of atoms
detected on the floor (13%), compared to the case without quantum reflection (3%).

We represent in figure 1.38 the likelihood functions calculated for random draws of
N = 1000 H atoms. We clearly see that the likelihoods are not Gaussian and contain
different steps, in particular due to interception of some trajectories by the disks. We
also notice that some likelihood functions are significantly biased.

We then show in figure 1.39 this histogram of the estimator g which follows a Laplace
distribution as in the case without quantum reflection (figure I.28).

The dispersion found with disks by taking into account quantum reflection is, with
the Monte-Carlo method:

04/9 ~ 0.84%. (1.106)

Accounting for quantum reflection doesn’t degrade that much the accuracy compared to
the case without quantum reflection (0.36%), provided that quantum reflection is mainly
specular. Quantum reflection processes lead to detection in the shadow zone, which
slightly reduces the advantage associated with the information coming from shadows
borders. But it doesn’t suppress the advantage as the accuracy is still improved with
respect to the value of ~ 2.93% obtained in the absence of shadow borders. For com-
pleteness, we also evaluated the confidence intervals containing 95% of the probability in
the histogram of the estimators §:

I, =[9.751 ; 9.868] , without taking into account QR ; (1.107)
I. =1[9.733 ; 9.895] , accounting for quantum reflection. (1.108)
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Figure 1.37: Monte-Carlo generation of N = 5000 events, where the color
indicates the time of flight ¢ for direct trajectories and where quantum re-
flected trajectories are represented with red color. Distribution of events:
13% on the floor, 87% on the walls, 0% on the ceiling.

As could be expected, the confidence intervals are larger than if they were calculated
for a Gaussian distribution with the known standard deviations. However, there is no
significant difference in this respect associated with quantum reflection.

1.6 Conclusion of chapter I and discussions

In this chapter, we have evaluated the accuracy to be expected for the measurement of
free fall acceleration g of antihydrogen in the GBAR experiment with the values of param-
eters indicated in table 1.1, accounting for the recoil transferred in the photodetachment
process. Using Monte-Carlo simulations and analytic