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Introduction

In the recent few years, network data has become ubiquitous and has attracted great interest in

the data mining community. It is used in many different areas. Social networks such as Face-

book, Twitter, or real-life social circles are inherently graphs with a lot of potential applications

like recommending friends, finding groups of people, bots or spammers, malicious accounts that

spread fake news, hate speakers, the most influential people and even studying the spread of

information or diseases. The Web is also a network in which we want to identify hubs and try

to improve the accuracy of searches. In telecommunication networks such as 4G and 5G or

e-mails networks, one may want to identify entities whose behavior deviates from normality or

the ones who spread malicious information. The distribution of electricity, gas, and water are

also networks in which we want to find anomalies, prevent breakdowns or peaks in consump-

tion. On the digital security side, virus propagation, intrusion of machines, and detection of

unauthorized computers are applications of network analysis. Graphs keep on growing bigger

and bigger with roughly 3 billion Facebook users, 200 million daily Twitter users and 45 billion

webpages. New methods have been needed to deal with such datasets. Recently, graph min-

ing has been revolutionized by machine learning models. Graph embeddings and graph neural

networks are very efficient tools to reduce the complexity of analyzing graphs. Moreover, they

improve a lot the ability to perform certain tasks on graphs.

On the other hand, anomaly detection is an important problem in many application domains.

Anomaly detection aims at finding abnormal instances of the data. There are a lot of possible

applications such as health monitoring with the detection of anomalies in radiographies or

electrocardiograms, fraud detection, special event detection, defects in industry, or anomalous

behaviors. For example, it is estimated that there are between 25 and 100 billion euros of

tax fraud in France. In 2020, 25% of the tax audits were automated with the use of data

analysis tools. The receipts of the tax have grown by 30% between 2019 and 2020. The rise of

anomaly detection tools is leading to major improvements in a lot of places. It is necessary to

further these developments and to improve the current methods. Another challenge to anomaly

detection is the fact that it deals with the occurrence of rare instances in the data. This often

implies dealing with very unbalanced data. Unbalanced data processing also complicates the

analysis of the data.

Finally, explainability in the domain of artificial intelligence, XAI, has become very impor-

tant with the rise of deep learning models. Indeed, deep learning has brought huge improvements
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Introduction

in text mining, computer vision or signal processing. But it has also brought a lack of under-

standability since most of the best models are not interpretable. For instance, convolutions or

attention mechanisms are not inherently understandable. Thus, an emerging field of research

is Explainable Artificial Intelligence (XAI) that focuses on how to generate meaningful expla-

nations that can improve trust in the different models, improve the transparency of decisions,

avoid biases from models or datasets or simply understand the output of a machine learning

tool.

This thesis lies at the intersection of these three domains: graph mining for anomaly detec-

tion and explainability.

Outline of the thesis. This manuscript is composed of a background chapter followed by

two chapters each presenting one of our contributions.

• Chapter 1 is an introduction to the different topics discussed in this thesis. First, we

introduce the concept of graph and the tools to deal with them which are graph mining

notions. A few definitions are given and a general presentation to network analysis, graph

embedding techniques, and graph neural networks is provided. Second, we introduce

the notion of anomaly detection and discuss one of its key limitations: the curse of

dimensionality. Finally, we give insights of the notion of explainable artificial intelligence.

The linear models and decision trees are introduced to, then, present their limitations.

More accurate models are also introduced such as deep neural networks. While these new

machine learning models improved a lot of different aspects of the decision process, they

also are not inherently understandable. To solve this issue, new methods to explain are

necessary.

• Chapter 2 is dedicated to the definition and the detection of contextual anomalies in

attributed graphs which are a new kind of anomalies. Anomalies in graphs are not always

clearly defined and often depend on the application. For example, power laws have been

largely used in graph mining and anomalies could be those nodes that deviate a lot from

the laws [Akoglu et al., 2010]. While this definition is easy to understand, it is model-

specific as the choice of the laws is crucial. Moreover, such methods do not provide a

clear definition of the anomalies as they do not focus on specific nodes of the graph. In

an unsupervised setting, where no labeled data is available during the training, a model

cannot focus on specific nodes of the graph since it cannot have user-guided information.

On the other hand, if a few labeled examples are fed to the model during the training, it

can focus on nodes of the same type. This approach allows detecting nodes of the graph

that share the same kind. Thus, if we already know a few anomalies in the graph, then

we can detect all the anomalies of the same type. In this thesis, we defined contextual

anomalies as nodes of the graph depicted by a special local context around that node.

Then, in a semi-supervised way, this type of anomaly can be detected thanks to graph

neural networks with attention mechanisms. Intensive experiments prove the efficiency of
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the approach and show that it outperforms both semi-supervised and unsupervised state-

of-the-art models in the detection of contextual anomalies. Tuning of the parameters is

discussed too so that any user can easily detect its own anomalies.

• Chapter 3 is devoted to the presentation of our graph classification explanatory model.

Explainability in the context of machine learning has significantly grown in the past few

years. The improvement of machine learning models in terms of computer vision and

natural language processing have brought a lack of understandability of the methods.

This is mostly due to the use of neural networks. In the context of node classification

in graphs, explanatory models often rely on finding either important nodes of the graph

that led to a specific classification or important features describing the nodes. A new

method is introduced, that is simple, understandable and that can distinguish between

both nodes and features to extract only the relevant nodes and their features that imply

the anomaly detection. Experiments demonstrate that this new model can accurately find

the relevant information that leads a deep model to a specific prediction. It also greatly

outperforms state-of-the-art methods since it is more precise. Finally, hyper-parameter

tuning is discussed.

3
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Chapter 1

Background

Three main themes will be discussed throughout this thesis. First, graph mining has seen

a renewal of interest in the last few years with the arrival of machine learning tools. Many

approaches have been developed to reduce the inherent complexity of graphs and to improve

the management of such complex data. The second theme is anomaly detection and more

specifically in the context of relational data. Anomaly detection has been dealt with distance-

based or density-based metrics. Nowadays, machine learning also took place in the anomaly

detection domain and those techniques improved the detection of anomalies in both regular

and graph data. In the end, anomaly detection and graph mining have been radically changed

with the input of machine learning models. But machine learning and especially deep neural

networks are rarely human-understandable because of their intrinsic complexity. Thus, the third

theme is explainable artificial intelligence, XAI. It consists of developing new models that are

either inherently understandable or that make sense of a non-interpretable model. This chapter

is dedicated to background knowledge of these three topics that are essential to understand the

rest of the thesis. We also address their mixing into the framework of contextual anomalies

detection in chapter 2 and explanation in chapter 3.

1.1 Graph mining

1.1.1 A few definitions

Definition 1.1.1 (Graph). A static, unweighted graph G(V, E) is a structure built on a set of

nodes V = {vi}n−1
i=0 , the vertices and a set of edges E ⊆ V × V which is a set of unordered pairs

of nodes.

Example 1.1.1. For instance, in a social network (or social graph), nodes can be people and

edges exist whether people know each other. But there can be many other graphs: nodes are

people and edges exist whether someone liked another one’s post.

Graphs grow bigger every day with new users joining Facebook or Twitter for example. Such

graphs have billions of nodes and thousands of billions of edges. Thus, new tools are necessary

9



1.1. Graph mining

to study them and to be able to extract relevant information from them. Due to the important

size of such datasets, efficient storage methods had to be proposed. Two criteria are important

to compare the different ways to store a graph: the amount of memory necessary to store the

graph and the time to compute some specific values. A typical time-consuming task is to find

the list of neighbors of a node. There are three main ways to read a graph. First, there is the

edge list where every edge is listed such that we know every connection in the graph. The nodes

are the extremities of the edges. This is a very efficient way to store a graph in terms of space

complexity but it is not very efficient in terms of time of search to get the list of neighbors of

a node as it may be necessary to read the whole edge list to find every neighbor. Secondly, the

adjacency list gives, for every node, the set of its neighbors. It is a lot faster to look for the list

of neighbors of a specific node since it is directly stored this way. Last, the third way to store

a graph is through adjacency matrix A.

Definition 1.1.2 (Adjacency matrix). The adjacency matrix A of a graph is a square matrix

where nodes are in rows and columns. Each element of the matrix aij is 1 if and only if there

is an edge between the nodes vi and vj and 0 otherwise.

Moreover, this matrix is usually sparse and can be stored accordingly. Throughout this

thesis, unless specified otherwise, graphs will be stored as a sparse adjacency matrix. With the

sparse version, the space complexity is the same as the edge list and the time to get the set of

neighbors of a node is nearly the same as the adjacency list. Furthermore, the adjacency matrix

framework offers the possibility to do matrix operations on the graph which will be very useful.

Example 1.1.2. The undirected unweighted graph G(V, E) where V = {1, 2, 3, 4, 5, 6} and E =

{(1, 2), (1, 5), (2, 3), (2, 4), (3, 4), (3, 5), (3, 6)} is represented on Figure 1.1 on the left and its

adjacency matrix is on the right.

Figure 1.1: Illustration of an undirected unweighted example graph. A small graph on the left

and its adjacency matrix on the right.
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Chapter 1. Background

1.1.2 Different types of graphs

Graphs can be of many different types according to their composition. This is a non-exhaustive

list of the most important types of graphs:

• Oriented graphs

• Bipartite graphs

• Attributed graphs

• Weighted graphs

• Temporal graphs

Definition 1.1.3 (Oriented graph). An oriented graph G(V, E) is built on a set of nodes V and

a set of edges E which is a set of ordered pairs of nodes. Let eij be the edge between node vi
and node vj. Contrary to the undirected case, eij ∈ E 6=⇒ eji ∈ E.

Example 1.1.3. A typical example of an oriented graph is an e-mail network where nodes of

the graph are e-mail addresses and edges are whether an e-mail has been sent. In this case,

an e-mail is sent by someone to someone else indicating that the action is from a certain node

towards another. This is the signature of oriented graphs.

Definition 1.1.4 (Bipartite graph). In a bipartite graph, the set of nodes V can be split into

two disjoint subsets V1 and V2 such that V = V1 ∪ V2, V1 ∩ V2 = ∅ and each edge has one

extremity in each subset.

Example 1.1.4. For instance, let us consider a graph with two sets of nodes. We have a set

of people V1 and a set of videos V2. Edges depict the fact that a specific user vi ∈ V1 watched

a specific video vj ∈ V2. This case of a bipartite network can be, for example, used to build a

recommender system in environments like YouTube, Netflix or Amazon.

Definition 1.1.5 (Attributed graph). An attributed graph G(V, E , X) has additional infor-

mation on their nodes and/or their edges. Nodes and edges of the graph can have their own

feature vector that describes them. The set of node’s features is represented by the feature matrix

X ∈ Rn×f where f is the number of features per node.

Example 1.1.5. In a social network, people can be described by a lot of features that can be

numerical such as height, age, weight, or categorical like gender. Such graphs are nowadays at

the core of many research activities as they stir together both graph mining and tabular data

mining.

Definition 1.1.6 (Weighted graph). A weighted graph is a particular instance of an attributed

graph where the additional information only lies on the edges. In a weighted graph G(V, E ,W ),

wij ∈ R is the weight associated with the edge eij. For a node vi, the set of its neighbors is

N (vi) = {vj ∈ V |eij ∈ E} and the total weight of this node vi is wi =
∑

vj∈N (vi)
wij.

11



1.1. Graph mining

Figure 1.2: Illustration of a directed and weighted example graph. A small graph on the left

and its adjacency matrix on the right.

Example 1.1.6. The directed weighted graph G(V, E) where V = {1, 2, 3, 4, 5, 6} and E =

{(1, 2), (1, 5), (2, 3), (2, 4), (3, 4), (3, 5), (3, 6)} is represented on Figure 1.2 on the left and its

adjacency matrix is on the right.

Definition 1.1.7 (Temporal graphs). Temporal graphs are graphs that evolve over time. Nodes

and edges can be created or deleted and their features can change. A temporal graph can be

represented by a set of static graphs {Gt(Vt, Et, Xt)}T−1
t=0 at different timesteps t ∈ {0, 1, ..., T−1}

where T is the final timestep. Graphs that do not evolve over time are called static graphs.

Example 1.1.7. For instance, the Facebook network where the nodes are people and edges are

friendship’s relations evolves over time. Each day, some users sign up on the platform creating

new nodes on the graph, new edges are created if some users become friends and the user’s

features, like age or place of residence, may also change.

To conclude, we presented several kinds of graphs: oriented, bipartite, attributed, weighted

and temporal graphs. Our work focuses on undirected static attributed graphs. While temporal

graphs are a natural extension of the proposed work, those will not be discussed here. To deal

with this type of relational data, a lot of work has been done since the first experiments of

Milgram [Milgram, 1967].

1.1.3 Network analysis

1.1.3.1 Visualization

Some of the first works on network analysis consisted in visualization. Visualization is the

process of representing the network in a way that we can look at it with relevant information.

Some layouts have been proposed to tackle this issue [Fruchterman and Reingold, 1991] [Kamada

and Kawai, 1989]. For its part, graph dimension reduction consists of reducing the inherent

structural complexity of a graph and, in two dimensions, joins up with visualization. While

it has seen significant improvements in the early 2000s [Belkin and Niyogi, 2003] [Roweis and

12



Chapter 1. Background

Saul, 2000] by improving the complexity of state-of-the-art methods, it is still an ongoing field

of research due to the immense growth of graphs’ size and complexity.

Example 1.1.8. The Zachary Karate Club is a famous graph of 34 nodes and 78 edges [Zachary,

1977]. Its visualization through the Fruchtermann-Reingold [Fruchterman and Reingold, 1991]

layout is shown in Figure 1.3.

Figure 1.3: Visualization of the Zachary Karate Club graph using Fruchterman-Reingold layout.

1.1.3.2 Metrics and centralities

Moreover, different metrics and measures have been proposed to better understand the inner

workings of the graphs.

Definition 1.1.8 (Shortest path). A path in a graph is a sequence of vertices such that every

consecutive pair of vertices in the sequence is connected by an edge in the network. The shortest

path between two nodes is the path with the minimum number of edges, weighted if necessary.

The geodesic distance is the length of this shortest path between two nodes.

The shortest path between two nodes is the easiest way to go from a specific node to another

one. For a whole graph, it is possible to compute two different metrics. The average path length

is the mean of all the geodesic distances and the diameter is the maximum geodesic distance

over every pair of nodes. There are two famous experiments on the computation of the average

path length in our world. First, Stanley Milgram planned to send some letters from Omaha or

Wichita in the USA to Boston. Some random people of the starting cities received the letters.

These letters had to be handed to a specific person in Boston. In the more likely case, the

first carriers did not know the target. Thus, they had to give the letter to a friend who was

13



1.1. Graph mining

likely to know the target. If the letter reached the contact in Boston, then the researcher could

examine the length of the path, i.e. the number of people that held the letter before coming

to Boston. The results suggested an average path length close to 6. This is known as the

"six degrees of separation" or the small-world phenomenon. The second experiment has been

conducted by Leskovec and Horvitz more recently [Leskovec and Horvitz, 2008]. They compute

the average path length of the communication network of the MSN Messenger software. With

the knowledge of the whole graph, it is possible to compute the shortest path between any pair

of nodes and average it to have the average path length. This experiment concluded that the

average path length was 6.6 in this graph. This value confirms the small-world phenomenon.

Nowadays, common social networks such as Facebook or Twitter have higher connectivity which

leads to lower values of the average path length.

A typical metric to measure the connectivity of a graph is density. For a graph G(V, E) with

n nodes and m edges, the density is defined as the ratio between the total number of edges m

and the maximum possible number of edges if the graph were fully connected.

density(G) =
2×m
n(n− 1)

(1.1)

Moreover, the local clustering coefficient of a node vi is the density of its ego-network which

is the subgraph ENi induced by the set of nodes Ni, the set of neighbors of vi and by the set

of edges between those nodes. At the scale of the whole graph, it is possible to compute the

average clustering coefficient. A high clustering coefficient indicates a tendency of the neighbor

of a node to be connected together and a tendency of the network to exhibit a community

structure.

Furthermore, centralities are measures of importance of nodes in a graph. Four centralities

are commonly used. First, the degree centrality of a node is the simplest centrality. For a

specific node vi, it is defined as its degree di = |Ni|, or its number of neighbors. Then, the

betweenness centrality is defined as:

betweenness(vi) =
∑

vs 6=vi 6=vt

σst(vi)

σst
(1.2)

where σst is the total number of shortest paths from vs to vt and σst(vi) is the number of those

paths passing by vi. Thirdly, the closeness centrality of a node is the inverse of its farness.

The farness is defined as the average of the geodesic distances to the other nodes of the graph.

Finally, the eigenvector centrality is defined thanks to the eigenvalue problem Aφ = λφ where

A is the adjacency matrix, φ is the eigenvector associated to the largest eigenvalue λ. Then,

the eigenvector centrality of a node vi is:

φi =
1

λ

n−1∑
j=0

aijφj (1.3)

These centralities give insights into the behavior of a graph. They can have different inter-

pretation as illustrated in Table 1.1.
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Metric Meaning

Degree centrality How many people can this person reach directly?

Betweenness centrality How likely is this person to be in communication paths?

Closeness centrality How fast can this person spread information in the graph?

Eigenvector centrality How well is this person connected to other well-connected people?

Table 1.1: Different metrics that have been proposed to make sense of graphs and their inter-

pretations. Source: Giorgos Cheliotis - Social Network Analysis Lecture.

1.1.3.3 Heavy-tailed distributions

According to [Aggarwal, 2011], the Gaussian distribution is common in nature but there are

many cases where the probability of events far to the right of the mean is significantly higher

than in Gaussians. For example, on Instagram, only a small number of users have more than a

million followers whereas a very large majority of people have less than a thousand followers.

Heavy-tailed distributions attempt to model this. They are known as "heavy-tailed" because

they decay polynomially quickly instead of exponentially creating a "fat tail" from extreme

values on the probability density function plot. Power laws are well-known distributions used

to fit observations. For example, in Figure 1.4, the distribution of the degrees among the nodes

is plotted and, in a log-log scale, can be approximated by a straight line.

Figure 1.4: Power laws and deviations: in-degree and out-degree distributions on a log-log scale

for the Epinions graph (an online social network of 75888 nodes and 508960 edges [Domingos

and Richardson, 2001]).

1.1.3.4 Network models

One of the first network models has been proposed by P. Erdös, and A. Rényi [Erdös and

Rényi, 1959]. It consists in creating a graph with n nodes and a probability p that each edge

is present, independently of the other edges. The distribution of the degree of any particular

vertex is binomial. The network has different properties depending on n and p. If the product
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np is less than 1, then the graph will almost surely have no connected components of size larger

than O(log(n)). On the contrary, if np > 1, then the graph will almost surely have a unique

giant component containing a positive fraction of the vertices. And if p > (1+ε)ln(n)
n , then the

generated graph will almost surely be connected.

The Barabasi-Albert model begins with a connected network of m0 nodes [Barabasi and

Albert, 1999]. Then, new nodes are added one at a time and connected to m < m0 nodes. The

probability pi that the new node is connected to node vi is:

pi =
di∑
j dj

(1.4)

where di is the degree of the node vi and the sum is computed over all pre-existing nodes.

Thus, heavily linked nodes tend to accumulate even more links while nodes with few links

are unlikely to be chosen. This phenomenon is called preferential attachment since new coming

nodes prefer to attach to high-degree nodes. The degree distribution of a Barabasi-Albert graph

is a power-law.

Many other network models have been proposed. Some of them try to mimic real-world

network’s behavior. The LFR benchmark [Lancichinetti et al., 2008] is a network model that

can create graphs with communities while Dancer [Largeron et al., 2017] can generate dynamic

attributed graphs with communities.

1.1.4 Mining tasks

1.1.4.1 Community detection

Community detection aims at partitioning the nodes of a graph in such a way that nodes

belonging to the same community are densely connected to each other while sparsely connected

to the rest of the network [Fortunato and Hric, 2016] [Fortunato, 2010]. Thus, a community in

a network is a group of nodes with high internal density and low external density. For instance,

a community can be described as a group of people working at the same company or a group

of people belonging to the same family. This informal definition has been quantified in many

different ways and usually by quality functions. A quality function measures the goodness of a

partition of a network into several communities. The modularity [Newman, 2006] is one of the

most popular quality functions even though none has gained universal acceptance. One of its

advantages is that it does not depend on the number of clusters that the graph is divided into.

The basic idea of modularity is to compare the strength of the relationship in the community

with those equivalent to a random subgraph with the same number of nodes, the same number

of edges, and the same degree distribution. The farther the community is from a random

subgraph, the better the community structure is. The modularity Q of a partition of the graph
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into k communities {V1, ...,Vk} is given by:

Q =
1

2m

k∑
l=1

∑
vi∈Vl,vj∈Vl

(
aij −

didj
2m

)
(1.5)

where m is the number of edges of the graph, di is the degree of vi and aij is the element ij of

the adjacency matrix.

The modularity takes values between −1 and 1. A partition exhibits a good community

structure when the modularity is greater than 0.3 [Newman, 2004] and a very good community

structure when the modularity is greater than 0.6 [Largeron et al., 2015]. While modularity can

be used to measure the quality of a partition, it is also possible to take advantage of it to detect

the communities. Newman proposed a greedy clustering algorithm for optimizing modularity

[Newman, 2004]. The nodes start each in their own community. Then, at each step, one chooses

the two communities whose merger leads to the biggest increase in modularity. Another method

to detect communities has been proposed by [Newman and Girvan, 2004]. The basic assumption

is that there are only a small number of edges between communities. Thus, their betweenness

centrality will be high. The definition of this centrality for edges is the same as the one in

equation 1.2. The main idea of this method is to find the edges with the highest betweenness

centrality and remove them so that communities are disconnected from each other.

1.1.4.2 Node Classification

In many applications, nodes are often characterized by contextual information. For instance, in

a social network describing interactions between users, characteristics such as genre, interest,

can be assigned to the nodes and thus, the network can be represented by an attributed graph.

These labels typically appear on the user’s profile within the network but frequently only part

of them are available. When the labels of some nodes are known, but others are unknown, node

classification or semi supervised label prediction consists in determining the unknown labels

[Bhagat et al., 2011]. In the literature, two main approaches have been proposed to solve this

task: on the one hand, methods which propagate the existing labels via random walks and on

the other, methods based on traditional classifiers using graph information as features.

1.1.4.3 Link prediction

Another common task is link prediction. Consider a graph G(V, E) where V is the set of nodes

and E is the set of observed edges. Link prediction aims at inferring new interactions among the

nodes of the graph based on their attributes and observed edges [Liben-Nowell and Kleinberg,

2007] [Getoor and Diehl, 2005]. Attributes can be hand-crafted or the feature vector of a node in

the case of an attributed graph. Initially, link prediction was based on different graph similarity

measures such as Common Neighbors (CN) which is, for a pair of nodes (vi, vj), the number of

neighbors that they have in common.

CN(vi, vj) = |N (vi) ∩N (vj)| (1.6)
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The main issue of Common Neighbors is that is does not take into account the relative number

of neighbors. Thus, the Jaccard measure (J) has been proposed to deal with it. For a pair of

nodes (vi, vj), it is defined as:

J(vi, vj) =
|N (vi) ∩N (vj)|
|N (vi) ∪N (vj)|

(1.7)

In addition, many other heuristics such as Adamic-Adar, Katz index, or preferential attachment

have been proposed to measure the proximity of two nodes in the graph [Liben-Nowell and

Kleinberg, 2007]. Recently, some machine learning models, such as graph embeddings, have

been proposed for link prediction [Trouillon et al., 2016] [Sinha et al., 2018].

To sum up, graphs can be visualized with tools such as the Fruchterman-Reingold layout.

A lot of metrics and measures and been defined to quantify the importance of the nodes or

to characterize the behavior of a graph. Moreover, the typical distributions in graphs follow

heavy-tailed distributions and not the usual Gaussian ones. Finally, some quality measures such

as modularity have been proposed to tackle the issue of community detection. This modularity

can be maximized to find communities in a graph. While these metrics are very useful to study

graphs, it is not efficient enough for solving new tasks such as node classification in comparison

with more recent machine learning methods.

1.2 Machine learning for graph mining

Machine learning has brought two main kinds of models. First, graph embedding techniques

consist of graph dimension reduction by describing each node (or edge or part of the graph) by a

vector of the specified dimensions. The second type of method is graph neural networks (GNNs).

They are deep neural networks on a non-homogeneous topology that aggregates information of

the nodes. Both kinds of models use elements of deep learning. We will first discuss some key

points of machine learning and deep neural networks to, then, study graph embeddings and

graph neural networks.

1.2.1 Machine learning basics

Parts of this section are largely inspired by [Goodfellow et al., 2016].

1.2.1.1 The task

Machine learning allows tackling tasks that are too difficult to solve with fixed programs written

by human beings. Learning is a mean of attaining the ability to perform the task. Usually,

machine learning tasks are defined depending on how to process an example. An example

is a collection of features that have been quantitatively measured from some objects. It is

represented by a vector x ∈ Rf where f is the number of features describing the example.

There exists many kinds of machine learning tasks such as classification, prediction or anomaly
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detection are some of the most common ones. For classification, the computer program is asked

to which of k categories an example belongs to. To solve this, the algorithm produces a mapping

function φ : Rf → {1, ..., k}. When y = φ(x), the model assigns the example described by the

vector x to the category identified by the label y.

1.2.1.2 The performance

To evaluate the ability of an algorithm to perform certain tasks, we must design quantitative

measures of its performance. Usually, the measure of the performance depends on the task being

carried out by the system. For tasks such as classification or transcription, we often measure the

accuracy of the model. It is the proportion of examples for which the model produces correct

output. Usually, we are interested in how well an algorithm performs on data that it has not

seen before. Thus, the performances are evaluated on a test set that is separate from the data

used for training the machine learning model, the training set.

1.2.1.3 The experience

Most machine learning algorithms can be categorized as either unsupervised or supervised. Un-

supervised methods experience a dataset containing many features, then learn useful prop-

erties of the structure of this dataset. For example, clustering, which consists of dividing the

dataset into clusters of similar examples, is an unsupervised learning task. Unsupervised learn-

ing involves observing several examples of a random vector x and attempting to learn the

probability distribution p(x) from which the examples have been drawn. On the other hand,

supervised learning algorithms experience a dataset containing many features but each exam-

ple is associated with a label. For example, a flower dataset is annotated with the species of

each plant. A supervised learning algorithm can learn to classify the plants based on their mea-

surements. This time, the learning algorithm involves observing several examples of a random

vector x and an associated label value or label vector y, then learning to predict y from x usu-

ally by estimating p(y|x). The third type of learning algorithm is semi-supervised algorithms.

A semi-supervised learning algorithm experiences a dataset containing instances described

by features but only some of them are associated with a label. Semi-supervision can be seen as

weak supervision but can produce considerable improvement in accuracy.

1.2.1.4 Example: linear regression

Linear regression is, of course, a regression problem. The goal is to build a model that can take

a vector x ∈ Rf as input and predict the value of a scalar y ∈ R as its output. Let ŷ be the

value that the model predicts y should take on. Then, the output of the model is:

ŷ = wTx (1.8)

where w ∈ Rf is a vector of parameters.
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Parameters are values that control the behavior of the model. Here, wi is the coefficient

that we multiply by xi before summing up the contributions from all the features. w can be

seen as a set of weights that determine how each feature affects the final prediction. Suppose

that we have n examples for training the model and m examples for evaluating the model. One

way of measuring the performance of the model is to compute a loss function. For example,

the mean squared error on the test set is given by:

MSEtest =
1

m

m∑
i=1

(ŷ
(test)
i − y(test)

i )2 (1.9)

To improve the weights w of our model in a way that reduces MSEtest, the algorithm is

allowed gaining experience by observing examples from the training set (x(train), y(train)). One

way to do it is to minimize the mean squared error. This is done by solving for where its

gradient is 0.

A learning algorithm is trained with a training set and evaluated on a test set. The training

set can be split into two parts. The first part will be used to train the learning algorithm.

The second part is called the validation set. It is used to evaluate the performance of the

algorithm during the training and for the tuning of the parameter of the algorithm.

1.2.1.5 Common evaluation metrics

Throughout this thesis, several evaluation metrics will be used. For an example x ∈ Rf with

label y, the model predicts a scalar ŷ ∈ R. In the context of classification, when the true label

of the instances and consequently the label predicted by the algorithm are categorical, taking k

modalities, a confusion matrix can be computed to evaluate the algorithm. Each term [l, l′] of

the matrix indicates the number of instances for which the true label equals l and the predicted

label equals l′. An example with k set to 2 is given in Table 1.2. The number of examples

predicted in the group 1 whose label is 1 is called the number of True Positives (TP). The

examples predicted in the second group whose label is 2 are called the True Negative (TN).

Those are the examples correctly classified by the learning algorithm. The examples predicted

in the group 1 whose label is 2 are the False Positive (FP) and the examples predicted in the

group 2 whose label is 1 are the False Negative (FN).

ŷ = 1 ŷ = 2

y = 1 TP FN

y = 2 FP TN

Table 1.2: Example of a confusion matrix with two classes. TP: true positive, TN: true negative,

FN: false negative, FP: false positive

From this matrix, many different measures can be defined to evaluate the performance of a

learning algorithm. The accuracy is the proportion of examples predicted correctly.

accuracy =
TP + TN

TP + TN + FP + FN
(1.10)
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Precision and recall focus on a specific class. The precision for the class 1 is:

precision =
TP

TP + FP
(1.11)

and the recall is:

recall =
TP

TP + FN
(1.12)

Finally, the F1-measure is defined by:

F1 = 2
precision× recall
precision+ recall

(1.13)

To sum up, we have seen that a learning algorithm performs a task. It experiences a dataset

in an unsupervised, semi-supervised or supervised manner. The training process is done via

optimizing a loss function on a set of training examples. Finally, the model’s performance is

evaluated with metrics such as the accuracy, or the F1-measure. There is a lot of learning

algorithms. Nowadays, deep neural networks have proven to be very efficient in several tasks

and are state-of-the-art models.

1.2.2 Deep neural networks

Deep learning is a machine learning approach based on artificial neural networks. These artificial

neural networks are computing systems inspired by the functioning of the human brain.

For example, let us have a look at the simplest neural network: the perceptron [Rosenblatt,

1958]. This network only has one hidden layer as in Figure 1.5. For an input vector x ∈ Rf , it

is defined as:

h(x) = g(W · x + b) (1.14)

where g is an activation function and the matrixW and the bias b are weights to learn. Weights

can be shared among neurons.

Definition 1.2.1 (Artificial neural network). An artificial neural network consists of a set of

neurons and a set of connections between them. Each neuron stores a value and the connections

indicate whether a value is passed to another neuron or not. The weights of the network are the

weights of the connection. The weight of a connection quantifies the importance of the source

in the computation of the target of this connection.

Definition 1.2.2 (Deep neural network). A deep neural network is an artificial neural network

made of multiple layers. The first layer is called the input layer, the final layer is the output

layer and the other layers are called the hidden layers. A layer can be a perceptron or any more

complex function of some parameters.

There are three steps to create and use a deep neural network. First, designing his archi-

tecture is a key element to make it efficient. Secondly, it must be trained so it can, in a third

place, infer predictions. Building the network architecture consists of arranging the neurons

and their connections into layers. The input is usually a vector and the input layer must fit
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Figure 1.5: An example of an artificial neural network. Source: Wikipedia

the dimension of the input vectors. Thus, the design of this first layer is often very limited.

Then, there is a wide variety of potential hidden layers. The most common ones are convolution

layers [Goodfellow et al., 2016] in computer vision and attention layers [Vaswani et al., 2017]

in natural language processing. The final layer often depends on the kind of loss function that

is used to train the model.

Definition 1.2.3 (Loss function). A loss function also called cost function or error function,

is a function that takes as input some vectors (the representations of some data) Ypred and their

expected values (the labels of the data) Ytrue to compare them. The less similar these two vectors

are, the higher the cost.

Example 1.2.1. In the context of classification into k groups, a typical loss function is the

standard categorical cross-entropy loss that takes as input a set of vectors of predictions Ypred
and their expected values Ytrue. It is defined as:

L(Y true, Y pred) = −
k∑
j=1

n−1∑
i=0

(ytrueij × log(ypredij )) (1.15)

where k is the number of different classes, and ytrueij and ypredij are assumed to be positive.

Once built, the network must be trained. The forward pass is the process of passing the

data through the network. It first goes in the input layer and gets transformed as it progresses

to the output layer. The output layer gives a new vectorial representation of an input that is

compared to its expected label thanks to the loss function. Then, there is the backpropagation

step. Backpropagation is a widely used algorithm to train neural networks. It computes the

gradient of the loss function with respect to the weights of the network for a specific input-output

instance with the use of the chain rule. Thanks to gradient descent, it is possible to minimize

the loss function by changing the weights of the layers. For more mathematical information,

we refer the reader to [Goodfellow et al., 2016].

22



Chapter 1. Background

The final step is the inference. The training step computed the weights of the network. Then,

when new data come in, it is fed to the network and the network outputs a new representation.

In a classification problem, this new representation will be the class to whose the new data

belongs.

To sum up, a neural network is made of layers of neurons that are connected together. It is

trained thanks to a training set and a loss function that computes the error between the output

of the network and the expected representation. Through backpropagation, the weights of the

network are adjusted. Finally, it is possible to infer some predictions on new data.

1.2.3 Graph embeddings

Definition 1.2.4 (Graph embedding). Let G(V, E) be an unweighted and undirected graph where

A is its binary adjacency matrix. Graph embedding consists of encoding the graph into a low-

dimensional space Rf
′ with a function φ : V 7→ Z which maps vertices to vector embeddings while

preserving some properties of the graph. The embedding matrix is denoted Z where each row zi

is the embedding vector of the node vi.

Example 1.2.2. For a graph G(V, E), a trivial embedding is the adjacency matrix itself. Each

node embedding is its corresponding row in the adjacency matrix. Thus, every node lies in a

n-dimensional space, and pairs of nodes whose set of neighbors are the same are close together.

Note that this embedding is not in low-dimensions.

These techniques are deeply related to the problem of graph dimension reduction. According

to the typology of [Ou et al., 2017], graph embeddings methods can be divided into three

sub-categories: random-walks-based methods, matrix factorization methods, and deep learning

methods.

1.2.3.1 Random-walks based methods

The first type of method makes use of the Skip-Gram [Mikolov et al., 2013] algorithm. The

aim of the Skip-Gram model is to learn a shallow neural network with only a few layers which

is called the embedding layer. It was first made for natural language processing to compute

embeddings of words. Each word of the corpus is encoded as a one-hot vector whose dimension

is the number n of words in the corpus. A one-hot vector will be used as input of the neural

network. The network is made of an input layer followed by a linear layer, the embedding layer,

where a linear transformation Winput ∈ Rn×f
′ is learned with f ′ is the hidden dimension. Then,

there is the output layer made of a linear transformation Woutput ∈ Rn×f
′ and a softmax. After

the neural network has been trained, the embedding of the words can be read on the embedding

layer. First, for a specific word w, find its context C(w). Usually, it is a few words before and

a few words after w in the sentence. Then, compute the product between the one-hot vector

w ∈ Rn representing w and the embedding layer:

h = W T
inputw (1.16)
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The next step consists of computing the dot-product with the output layer and applying a

softmax:

ypred = softmax(W T
outputh) (1.17)

where the softmax of a vector x ∈ Rv is defined as:

softmax(xi) =
exi∑v
j=1 e

xj
(1.18)

For every pair of word (w,wC) where wC ∈ C(w), the loss function is the difference between

the representation ypred of w after the softmax and the one-hot vector ytrue representing wC .

The network is trained using stochastic gradient descent.

Example 1.2.3. For example, assume we want to study the phrase "The man who passes the

sentence should swing the sword" and focus on embedding the word "passes" as in Figure 1.6.

The sentence has 8 words and they will be embedded in 3 dimensions.

Figure 1.6: Training window of the word "passes". The context is made of "who" and "the".

Source: aegis4048.github.io

Then, as in Figure 1.7, the word "passes" is encoded into a one-hot vector w ∈ R8 in the

input layer. It is fed to the embedding layerWinput ∈ R8×3 and the resulting vector h = W T
inputw

is the embedding of the word "passes". Finally, it is multiplied by Woutput and applied a

softmax. The output ypred can be then compared with the one-hot vector representing the

words "the" and "who" of the context.

The Skip-Gram model can also be used with graphs to learn an embedding of the nodes.

Instead of using sentences (sequence of words) to define a context, it uses sequences of nodes

generated by random-walks in the graph. The shallow neural network remains the same and

every node, instead of word, is encoded by a one-hot vector. For an input node, its context can

be defined by random-walks. A random-walk in a graph is a path where, at each step, the next

node is chosen at random among the neighbors of the current node. The basic idea is to start

on a specific node, then, go to one of its neighbors at random. Random-walks based approaches

[Grover and Leskovec, 2016] [Perozzi et al., 2014a] rely on the Skip-Gram model discussed

previously. The main difference between these methods is the way the context of every node

is generated and some optimization tricks. For DeepWalk [Perozzi et al., 2014a], the context

of a node is directly drawn thanks to a standard random-walk. The standard random-walk in

a graph starts at a specific node vi. The next state of the walk is entirely determined by the

current state (its position at vi). That is, the probability of the walk going to a neighbor of vi
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Figure 1.7: Skip-gram model structure. Current word is "passes". The context is made of

"who" and "the". Source: aegis4048.github.io

is 1/di where di is the degree of vi. The context of a node vi is the set of the few previous and

the few next nodes in the walk. With words, training samples were pairs made of the current

word and a word of the context. With nodes, training samples are pairs of nodes made of the

current node vi and a node of the context. For their part, the authors of Node2vec [Grover

and Leskovec, 2016] propose to use biased random-walks to generate the context of the nodes.

The process to get the next step depends on the current state of the walk and the previous

one. Assume the previous state was vi and the walk is now on the node vj . Then, as in Figure

1.8, the unnormalized probability of the walk to go back to vi is 1/p, the probability to go to a

neighbor of both vi and vj is 1 and the probability to go to a neighbor of vj but not a neighbor

of vi is 1/q. p and q are hyper-parameters to tune the probability of the walk in two different

ways to go far in the graph, Depth First Search (DFS), or to stay close to the starting point,

Breadth First Search (BFS). These different types of random-walks allow capturing different

properties of the graph.

As for DeepWalk, random-walks are used to create the context around a specific node to

compute the embedding thanks to the Skip-Gram model. Another difference between DeepWalk

and Node2vec is the way they optimize the loss function. Node2vec uses negative sampling while

Deepwalk uses hierarchical softmax. Both methods have time complexity O(nf ′) which can be

a lot faster than matrix decomposition methods in the case of dense graphs.

Note that the embedding of an entire graph also exists but will not be discussed here.

Thus, graph embedding and node embedding are interchangeable through this thesis. Also,

the embedding itself can be either the mapping function or the output of the function: a

low-dimension vector for each node of the graph.
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Figure 1.8: Biased random-walks generation process for Node2vec. Source: [Grover and

Leskovec, 2016]

1.2.3.2 Matrix decomposition methods

The second family of methods is based on matrix decomposition. The main idea is to work

directly on the adjacency matrix. As said previously, the most straightforward embedding is

the matrix itself as it provides a natural approach without loss of information but it does not

reduce the dimension of the problem. Thus, downstream applications will not be faster. It

is possible to apply the wide range of matrix reduction techniques to the adjacency matrix

to operate a graph embedding. Of course, the choice of decomposition has an impact on the

quality of the embedding itself. Matrix factorization methods are, most of the time, based on

the decomposition of the adjacency matrix and thus do not take into account node features

[Belkin and Niyogi, 2003] [Ou et al., 2016] [Roweis and Saul, 2000].

In this family, we can mention Laplacian Eigenmaps, LE [Belkin and Niyogi, 2003], an algo-

rithm that provides a computationally efficient approach to non-linear dimensionality reduction.

For a weighted graph G(V, E ,W ), the method aims to minimize the following cost function:

L(Z) =
1

2

∑
vi∈V,vj∈V

||zi − zj ||2wij = tr(ZT L̂Z) (1.19)

where tr(.) is the trace of a matrix and L̂ = D − W is the Laplacian of the graph with

dii =
∑

vj∈V wji the diagonal weight matrix. This minimization is done with spectral analysis.

In fact, solving this problem is the same as solving the generalized eigenvector problem:

L̂z = λDz (1.20)

Let y0,y1, ... be the solutions of the generalized eigenvector problem ordered according to their

eigenvalues by increasing order. Then, the embedding of a node vi is given by (y0(i), y1(i), ...).

This method only requires to solve an eigenvalue decomposition that can be quite fast depending

on the number of edges with the total time complexity of the algorithm is O(|E|f ′2).

For their part, [Roweis and Saul, 2000] presented LLE for Locally Linear Embedding. LLE

is an unsupervised learning algorithm that computes neighborhood-preserving embeddings. For
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a weighted graph G(V, E ,W ), the authors assume that the weight wij represents the weight of

node vi in the representation of vj :

ẑi ≈
∑
vj∈V

wijzj (1.21)

Hence, the embedding is obtained by minimizing the following loss function:

L(Z) =
∑
vi∈V
||zi − ẑi||2 (1.22)

This is a quadratic cost function in terms of the coordinates zi with fixed weights wij . Let

us denote I the identity matrix. Then, the loss function can be minimized by finding the

eigenvectors of the matrix (I −W )T (I −W ) whose bottom f ′ non zero eigenvectors provide

the embedding of the nodes. This method is also quite efficient to compute an embedding of a

graph since its complexity is also O(|E|f ′2).

A more recent approach is HOPE which stands for High-Order Proximity preserving Em-

bedding [Ou et al., 2016]. This embedding method aims to preserve high-order proximity

measurements in terms of powers of the adjacency matrix A. They define a similarity matrix

S such that sij is the similarity between vi and vj . They want to minimize the norm between

this similarity matrix and the embedding matrix:

L(Z, S) = ||S − ZZT ||22 (1.23)

The authors propose different similarity matrices of the form S = M−1
1 M2. For example, for

Katz Index, M1 = I − βA and M2 = βA and for common neighbors, we have M1 = I and

M2 = A2. In a similar fashion as LLE, finding the optimal approximation of the proximity

matrix S is the same as performing a Singular Value Decomposition [Golub and Reinsch, 1970]

on S and using the largest singular vectors to construct the embedding. This also can be done

with truncated singular value decomposition to drastically reduce the complexity and bring it

in line with LLE and LE so that the total complexity of the decomposition is also O(|E|f ′2).

Matrix decomposition approaches are rather fast methods that allow a precise proximity to

be preserved in the embedding space. Their major drawback is that they do not generalize well

to unseen data. The second limit is the fact that they do not take into account the features of

the nodes. Also, some methods have been proposed to tackle these issues.

1.2.3.3 Deep learning methods

Deep learning methods [Wang et al., 2016] [Cao et al., 2016] can also be used to encode a graph

into a low-dimension space. These methods often rely on auto-encoder architecture to learn a

mapping of the nodes into a low-dimensional space. An auto-encoder is made of an encoder

that takes as input the graph, the nodes, and/or the features of the nodes to transform it into

low-dimension vectors. Then, a decoder takes as input those vectors and tries to recompose
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the input of the encoder. A standard method is Structural Deep Network Embedding, SDNE

[Wang et al., 2016]. The goal of this method is to compute the embedding of each node of

the graph while preserving the first and second-order proximities. The first-order proximity

describes the pairwise proximity between vertices. For a node vi, it can be described by the set

of its neighbors N (vi). Thus, the embedding aims to project near together in the embedding

space linked nodes. Then, the second-order proximity between two nodes vi and vj describes the

proximity of the pair’s neighborhood structure. It is determined by the similarity betweenN (vi)

and N (vj). Thus, nodes having the same neighbors should be near together in the embedding

space. More technically, SDNE’s input layer is h0
i = ai. Initially, each node is described by

its row in the adjacency matrix. Then, SDNE’s encoder is a multi-layer perceptron where each

layer c follows this equation:

hci = σ(W chc−1
i + bc) (1.24)

where W c and bc are parameters to learn. The final layer of the encoder outputs enc(vi) = hCi

where C is the number of the last layer. Then, the first order proximity is preserved thanks to

the use of a first loss function on the output of the encoder:

L1st =
∑

(vi,vj)∈E

ai,j ||enc(vi)− enc(vj)||2 (1.25)

For any pair of linked nodes, this first loss function aims at keeping them close by in the

embedding space by ensuring that there euclidean distance is minimized. After computing the

embeddings enc(vi) for each node, the decoder will try to reconstruct the input of the network:

the rows of the adjacency matrix. Indeed, the authors proposed to build the decoder as another

multi-layer perceptron whose output is âi = dec(enc(vi)). Then, the second-order proximity

is preserved thanks to the use of a second loss function:

L2nd =
∑
vi∈V
||(dec(enc(vi))− ai)� βai|| (1.26)

where β ∈ R is a parameter and � is the Hadamard product. The aim of this second loss

function is that the output of the network must look like the input which is the rows of the

adjacency matrix. The row ai of this matrix A is equivalent to the list of the neighbors N (vi)

for the node vi since they contain the same information. Thus, reconstructing the rows of the

adjacency matrix means preserving the second-order proximity as two nodes that have the same

set of neighbors in the graph should now have the same nearest neighbors in the embedding

space.

But, one major drawback of these methods is that they only consider node structural infor-

mation i.e. the connectivity between pairs of nodes. They ignore the fact that graph can contain

feature information that describes its nodes. Therefore, [Kipf and Welling, 2016] proposed the

Graph Auto-Encoder, GAE, that can deal with attributed networks. This is a relatively sim-

ple architecture. For an attributed graph G(V, E , X), the encoder consists of two GCN layers

(defined in Section 1.2.4:

Z = enc(X) = GCN(σ(GCN(X|W 1))|W 2) (1.27)
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where σ is the ReLU function and W 1 and W 2 are parameters to learn. The output of the

encoder is the embedding matrix Z where each row zi is the embedding vector of a node vi. As

for SDNE, GAE tries to reconstruct the adjacency matrix A with the decoder:

âij = dec(zi, zj) = σ′(zTi zj) (1.28)

where σ′ is the logistic sigmoid function. To compare the real adjacency matrix A and the

reconstructed one Â, the authors propose to use a cross-entropy loss.

Name of the method Graph sim. Embedding sim.

Laplacian Eigenmaps (LE) - O(N2) 1st-order prox. Euclidean

Locally Linear Emb. (LLE) - O(N2) 1st-order prox. Euclidean

HOPE - O(N2) Katz-Index Dot-product

SVD of the adjacency matrix - O(N2) 2nd-order prox. Dot-product

Struc2vec (S2V) - O(Nlog(N)) co-occurence proba. Dot-product

Node2vec (N2V) - O(N) co-occurence proba. Dot-product

Verse - O(N) Perso. Page-Rank Dot-product

Kamada-Kawai layout (KKL) - O(N2) Euclidean

Multi-dim Scaling (MDS) 1st-order prox. Euclidean

SDNE - O(N) 1st & 2nd-order prox. Euclidean

Table 1.3: Studied methods with complexity, their graph similarity (encoder) and their distance

in the embedding space (decoder)

To sum up, there is a wide variety of graph embedding techniques that transform the nodes

of a graph into low-dimension vectors as presented in Table 1.3. LE [Belkin and Niyogi, 2003],

LLE [Roweis and Saul, 2000], HOPE [Ou et al., 2016], Struc2vec [Ribeiro et al., 2017], Node2vec

[Grover and Leskovec, 2016], Verse [Tsitsulin et al., 2018], Kamada-Kawai layout [Kamada and

Kawai, 1989], MDS [Kruskall, 1964] and SDNE [Wang et al., 2016] are all embedding techniques

that can be classified into either matrix decomposition methods or Skip-Gram methods or deep

neural network methods. The embeddings produced by these methods can be very different

since they aim at preserving different aspects of the graph. These embeddings can then be

used for any downstream task that requires vectors to perform inference. Most importantly, it

should be noticed that, in an anomaly detection setup, as graph embedding allows the user to

transform a graph into a set of vectors, usual detection methods suited for vectorial data can

then be applied.

1.2.4 Graph neural networks

Deep neural networks have proven to be very efficient in both computer vision and natural

language processing. Relational data can also be used with neural networks to perform inference
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but the model should take into account the specificity of this type of data. Here, we detail the

process of creating a neural network on a graph.

1.2.4.1 Building a graph neural network

The main idea of deep neural networks on graphs, or graph neural networks, is to aggregate the

information of the nodes to infer a property. Let G(V, E , X) be a graph on a set of nodes V, a
set of edges E and a feature matrix X where each row xi ∈ Rf is the feature vector of the node

vi ∈ V. We want to learn a new representation of this node by aggregating the information of

surrounding nodes, usually its neighbors. The input features of a neural network layer are called

hi for the node vi and its output of the layer is h′i for the same node. The information flow

from its neighbors to the studied node vi is a message as in Figure 1.9. Thus, this aggregation

is called message passing.

h0

h1

h2

h3

h4

h5

Figure 1.9: Message passing: aggregation of the information of surrounding nodes.

This new representation h′i of the node vi is given by the definition ψ of the layer that we

use to compute: h′i = ψ({hj |vj ∈ N (vi)}). A neural network with only one layer is a relatively

small network. To build a bigger one, multiple layers can be placed on top of each other. Bigger

neural networks are more complex, usually less understandable, and may or may not be more

precise depending on the situation.

In image processing, many convolution layers are added to a deep neural network for com-

puter vision purposes. At the pixel scale, a single convolution in an image provides a summary

of the vicinity of this pixel. A second convolution will provide information about the pixels

that are a bit further from this pixel in the image. Adding more and more convolutions allows

aggregating the information with pixels that are still further. In natural language processing,

attention mechanisms are used. Attention is another aggregation method that can be split into

different heads or parallel computations. Each head is said to focus on different parts of the

sentence to extract enough information for later inference. In the same manner as previously,

many attention layers can be added in a single neural network such that the information neces-

sary to do inference on a word is brought to it even if it is far in the corpus. The more attention

layers, the more information is brought to inference.

The same process applies to graphs. As said before, a neural layer aggregates the local

information around a node vi. For the rest of this thesis, we will assume that the aggregation is
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made on the set of the neighbors N (vi) of this node. Moreover, the information of the node vi
itself may be added to this aggregation. We call it a self-loop since the features of a node will

be used to predict new features of the same node. One layer of a graph neural network explores

the neighborhood of a node, the 1-hop neighborhood more precisely. If we add a second layer,

it will aggregate information from the 2-hop neighborhood and so on. The more layers, the

further in the graph the information is looked at to process the inference. This is called the

field-of-view which is addressed in Figure 1.10. It is clearly defined in the case of graph neural

networks since a network with C layers aggregates information from the C-hop neighborhood of

a node. The set of nodes on which the aggregation is made and the set of edges between them

is the computation graph. In the case of graph mining, the field-of-view and the computation

graph are deeply related.

Second layer

Initial features

First layer

Figure 1.10: The field-of-view increases as the number of layers increases. With 0 layer, only the

features of the nodes are used. The first layer aggregates information from the direct neighbors

of the red node. The second layer aggregates information from the 2-hop neighbors of the red

node.

Recently, some graph neural networks (GNN) methods have been proposed to tackle the

issue of attributed graphs [Kipf and Welling, 2017] [Hamilton et al., 2017] [Veličković et al.,

2018]. They define neural networks layers with graph convolution, attention mechanism, or

different aggregation methods. They have shown a significant improvement in terms of node

classification. These methods focus on attributed networks in a semi-supervised setting: some

of the nodes have a label that corresponds to the group they belong to. The usually studied

task is node classification which consists of assigning the remaining nodes into the right group.

Graph Convolutional Network, GCN [Kipf and Welling, 2017], is one of the first models to

tackle the issue of semi-supervised attributed graph classification. They are an extension of

the usual convolutional layers in computer vision [LeCun and Bengio, 1998]. For an attributed

graph G(V, E , X), let the input layer be defined as h0
i = xi, then a graph convolutional layer is
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given by:

hci = σ(W c.
∑

vj∈N (vi)

hc−1
j /

√
didj) (1.29)

where σ is an activation function, W c is the trainable matrix at layer c and di is the degree of

the node vi. Thus, each convolutional layer is a linear combination of the output of the previous

one with weights depending on the degree of the nodes. Then, to train the parameters of the

layers, the authors proposed to use a cross-entropy loss.

GraphSage is another method that has been proposed to deal with graphs in a deep learn-

ing fashion [Hamilton et al., 2017]. It is an inductive framework that leverages node feature

information to generate node embeddings. The workflow of the algorithm is described in Figure

1.11. First, some nodes from the neighborhood are sampled. Then, the features of these nodes

are aggregated together. Finally, this aggregated information is used for later inference.

Figure 1.11: Illustration of the GraphSage framework - [Hamilton et al., 2017]

More precisely, the information of the sampled nodes is aggregated thanks to a deep neural

network architecture. The input of the network is the adjacency matrix A and the features X

of the node vi with h0
i = xi. Then, each layer of the network is defined as:

hci = σ(W c.AGGREGATEc(hc−1
j , ∀vj ∈ S(vi))) (1.30)

where c is the number of the layer, Wc is the weight to learn for this layer, AGGREGATEc

is an aggregation function discussed next and S(vi) is the set of sampled nodes in the vicinity

of the node vi. The authors proposed many aggregation functions. The first example is the

mean aggregator. It consists simply of taking the mean of the features of the sampled nodes.

Another approach is the Long Short Term Memory, LSTM [Hochreiter and Schmidhuber, 1997],

aggregator which has the advantage of the larger expressive capability. The last aggregator is

a max pooling approach. Each sampled vector is fed through a fully-connected layer where the

operation is defined as:

AGGREGATEcpool(h
c−1
j ) = max

vj∈S(vi)
σ(W c

poolh
c−1
j + bc) (1.31)

where W c
pool and b

c are trainable parameters. The most used and simplest aggregation function

is the mean aggregator.
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The last layer of the network outputs the embedding zi of each node vi of the graph.

Then, the next step is the learning of the parameters. To do so, the authors defined a

custom loss function as:

L(zi) = −log(dec(zi, zj))−QEvn Pn(vi)log(−dec(zi, zn)) (1.32)

where the decoding function is dec(zi, zj) = σ(zTi zj) and σ is the sigmoid function, Q is the

number of negative samples, Pn is a negative sampling distribution, and vj is a node that co-

occurs in a random-walk around vi. The parameters of the network are learned with stochastic

gradient descent.

One of the best graph neural layers, in terms of performance, is the attention layer that

is used to build Graph Attention Networks, GAT [Veličković et al., 2018]. It also deals with

attributed graphs and, thus, takes as input the adjacency matrix A and the feature matrix X.

GAT aggregates information from the neighborhood of a node by assigning more importance

to some nodes. Let the input layer be defined by h0
i = xi, then an attention layer is given by:

hci = σ(W c.
∑

vj∈N (vi)

αcijh
c−1
j ) (1.33)

where σ is an activation function,W c is learned and αcij are parameters to weight the aggregation

of the information defined as:

αcij = softmax(ecij) (1.34)

with

ecij = LeakyReLu(aTc [W chci ||W chcj ]) (1.35)

where ac is a trainable vector. In the end, a GAT layer learns the weights of a weighted

linear combination of the features of the nodes by minimizing the cross-entropy loss. The

key difference between the three methods is that GraphSage does not necessarily assign any

weight to the different nodes in the aggregation process while GCN assigns a non-parametric

weight 1√
didj

to the message passing from vj to vi and GAT learns these weights such that

the most important nodes have a larger weight. [Veličković et al., 2018] conducted experiments

to evaluate the performances of the different graph neural network approaches. First, in a

transductive setting, they learn to classify the nodes of three graphs. Cora has 2708 nodes

divided into 7 classes, Citeseer has 3327 nodes in 6 groups and PubMed has 19717 nodes in

3 different classes. They train the different methods on 140, 120 and 60 nodes respectively

with 500 nodes to validate and 1000 nodes to test. The results in terms of accuracy of the

classification are presented in the table 1.4

The second type of experiment uses an inductive setting on PPI. The dataset PPI is com-

posed of 24 graphs on 56944 nodes divided into 121 classes. The training is done on 20 graphs

with 44906 nodes. The validation is made with 2 graphs on 6514 nodes and the test set consists

of 2 graphs on 5524 nodes. The results in terms of micro-averaged F1 scores are given in table

1.5.
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Method / Graph Cora Citeseer Pubmed

GAT 83.0± 0.7 72.5± 0.7 79.0± 0.3

GCN 81.4± 0.5 70.9± 0.5 79.0± 0.3

Table 1.4: Transductive setting - Results from [Veličković et al., 2018]

Method / Graph PPI

GAT 0.768

GraphSage 0.973± 0.002

Table 1.5: Inductive setting - Results from [Veličković et al., 2018]

These results show that the GAT architecture seems to be the best for node classifica-

tion. Moreover, the method is efficient and provides good results. Thus, GNNs seem a good

opportunity to deal with attributed graphs.

To conclude, we have seen that there are many ways to do machine learning on graphs.

First, through graph embeddings, the nodes of a graph can be represented in a low-dimensional

space. The different techniques consist of using the Skip-Gram model, matrix factorization,

or deep neural networks. Secondly, graph neural networks are a very powerful tool to deal

with attributed graphs. They are particularly efficient for solving node classification. But, a

specific case of node classification is anomaly detection where there are only two classes: the

normal nodes and the anomalies. So, a promising path to explore seems to be graph-based

anomaly detection using graph neural networks. That is the approach that we retained to

design CoBaGAD presented in Chapter 2.

1.3 Anomaly detection

Anomaly detection consists of finding rare instances or patterns in the data that are abnormal.

This definition does not depend on the type of data that is studied. In fact, there are anomalies

in signal processing, computer vision, natural language processing, regular vectorial data, or

even graphs. In the following section, we will focus on the detection of anomalies both in

vectorial data and in graphs.

In regular tabular data, the goal is to find instances of the dataset D that are far from the

majority. These instances can be single points or small groups of points. The main idea to find

instances that are far from the rest of the dataset is to compute a certain distance with respect

to the other points. A first method consists of computing the minimum distance,Min_disti, of

each data point i to any other data point j. Then, we can find those instances whose minimum

distance is the highest.

Min_disti = min
j∈D

D(i, j) (1.36)

where D is a distance function and the minimum over j is over all instances in the dataset
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except i. Such a method can be useful as a first try to look at abnormal data but it also has

drawbacks. For example, in the unitary hypercube in dimension d, we uniformly draw 5000

samples. Then, we can compute the pairwise euclidean distance between any pair of data points

and normalize it by the maximum distance which is
√
d. Finally, we can draw the density plot

of these distances for any dimensions d.

Figure 1.12: Density plot of the distances in two dimensions.

For d = 2, Figure 1.12 shows that the probability of frequency of occurrence of the nor-

malized distance is widespread from 0.0 to 1.0. This implies that distances can take a lot of

different values and it is thus possible to differentiate them and, subsequently, differentiate the

data points to find anomalies. Let’s see what happens in higher dimension.

Figure 1.13: Density plot of the distances in 128 dimensions.

For d = 128, Figure 1.13 shows that the distances concentrates around a central value. This
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means that there is less discrepancy between the values and, thus, it is harder to distinguish

between the data points.

Figure 1.14: Density plot of the distances in 1024 dimensions.

For d = 1024, as shown in Figure 1.14, the notion of euclidean distance vanishes as the

pairwise distance between any pair of instances is nearly the same. This is the effect of the

so-called curse of dimensionality [Bellman, 1958]. The distances concentrate around a value.

In anomaly detection, this phenomenon has a huge impact on the ability to detect anomalies.

Indeed, it makes it difficult to find instances of the data that are "far" from the other points,

since, in high dimension, euclidean distances are all the same. Instances cannot be far anymore

since they are all as far from each other.

To solve the issue of the curse of dimensionality, many methods have been proposed. It is

possible to change the kind of distance, switch to density based approaches, use deep neural

networks or add a topology. Topology is very useful as it provides a natural way to split

the space into sub-regions that can allow finding anomalies. In the context of this thesis, the

topology that we use is graphs. Indeed, graphs and tabular data can be mixed up to create

attributed graphs. Moreover, as seen before, deep neural networks can be used to tackle the

issue of attributed graphs. They can also be used in the context of anomaly detection in regular

vectorial datasets. Consequently, we are going to use them to detect anomalies in attributed

graphs.

We also previously discussed the notion of graph embedding that allows transforming a

graph into a usual vectorial dataset. Thus, a second way of detecting anomalies in attributed

graphs is to, first, embed the nodes of the graph into a vectorial space such that it is possible to,

then, detect anomalies in this new space. A low-dimensional space is preferable since it allows

faster computation and may avoid the curse of dimensionality issue. However, deep learning

models are not human-understandable due to their complexity. Thus, new methods have to be

developed to understand the decision process of a complex model.

36



Chapter 1. Background

1.4 Explainable Artificial Intelligence

Machine learning is usually a tool to help humans make decisions. A lot of methods have been

developed for decision aid. From linear models to deep neural networks, there is a wide range

of models in machine learning. Deep learning improved a lot the ability of models to predict

accurately. The predictions of any model must be understandable for legal purposes, to verify

the correctness of the results, or for fairness for example. But, the main issue of deep neural

networks is that they are too complex to be humanly understood. The series of Generative

Pre-trained Transformer, GPT, models by OpenAI is a good example of how huge these models

can grow. The first GPT model, GPT-1 [Radford et al., 2018], had 117 million parameters.

The second version, GPT-2 [Radford et al., 2019], had 1.5 billion parameters. Finally, the most

recent version, GPT-3 [Brown et al., 2020], has roughly 175 billion parameters. Clearly, these

models are better each time and can deal with natural language processing very efficiently.

But, in the meantime, the very complex structure of these networks made them not human-

understandable. Indeed, it is not possible to interpret a few hundred of billions of parameters

of a deep neural network. Moreover, explainable artificial intelligence has become primordial

with the European General Data Protection Regulation, GDPR. The article 13 states that

"the controller shall, at the time when personal data are obtained, provide the data subject

with the following further information necessary to ensure fair and transparent processing:

the existence of automated decision-making, including profiling and, at least in those cases,

meaningful information about the logic involved". For a controller to provide such data, it is

necessary to understand the functioning of his algorithm. This is exactly the aim of explainable

artificial intelligence. Thus, the main challenge of explainable artificial intelligence, or XAI, is

to make sense of the process that led a model to a certain decision.

For instance, consider one of the first methods that have been used: the linear model.

Definition 1.4.1 (Linear model). A linear model is a statistical model that consists of learning

the parameters W , or the weights, to find a relationship between some observations y, and some

explanatory variables X.

The linear relation is simply

y = X ×w (1.37)

It expresses the links between an observation yi and potential explanations xij . The weights

wj indicates the relative importance of each explanatory variables. For a particular instance i,

we have

yi = w1 ∗ xi1 + w2 ∗ xi2 + ...+ wj ∗ xij (1.38)

Thus, the higher a weight wk, the more the related variable xik is important to explain the

observed variable. On the contrary, a low weight shows that this variable is not relevant when

explaining an observation. These linear regression models are easy to understand as their output

is a linear combination of the input [Efron et al., 2004b]. The weight given to each explanatory
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variable is clearly human-understandable and indicates the importance of that variable in the

decision process.

While linear models are at the basis of many recent methods, another type of model is the

set of trees [Breiman et al., 1984]. A tree is a tool for decision aid that consists of splitting a

set of observations yi into homogeneous groups corresponding to their label. A tree is made

of a root, in which the observations stand, some nodes, in which there are subparts of the

initial observations, and links between them, also called splits, that indicate how to separate

the observations. Assume a population with two groups, the aim of a split is to reduce the

number of elements of one group while retaining the maximum of individuals of the second

group by examining some explanatory variables xij . A binary tree will split any node into two

children nodes.

Figure 1.15: An example of a binary decision tree.

On the example tree presented in Figure 1.15, the root is made of 1001 samples, or ob-

servations, distributed among two groups. The group, or class, 0 has 864 elements and the

group 1 has 137. The Gini value is a statistical measure of the distribution of a variable into

a population. Low values of Gini indicate that a node is nearly pure, i.e. the elements of this

node nearly all belong to the same class. On the contrary, a high value of Gini indicates that

the elements of a node are mixed up between different groups. Finally, a split is made according

to a specific explanatory variable xij and a threshold. For example, the first split is made with

regards to the 35-th variable X35 with a threshold 0.5. Thus, every element of the root whose

variable X35 is lower than 0.5 will be assigned to the left child and the others to the right

child. Each node of the tree is then split again into two children until a maximum depth, i.e.

a maximum number of splits, is reached. In the end, we have leaves, or final nodes, that are

ideally pure or, at least, with many more elements of one group. The series of splits that leads

a specific observation into a specific leaf is the decision process. For example, the leaf on the
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far right is made of observations which are described by X35 > 0.5, X45 > 0.5 and X21 > 0.5.

Binary decision trees are simple models that allow classifying elements of a population into

several leaves. The path to go from the root to a leaf is the decision process. This path is

human-understandable.

The classification task is one of the most studied tasks in machine learning. It consists

of predicting a class for each instance of the dataset. Both linear models and binary decision

trees can be trained with part of the dataset, the training set, to learn the best parameters

and then to classify an unseen instance. Although they are easier to understand than deep

neural networks, linear models and decision trees lack predictive power. To solve this, trees

can be aggregated together to make a forest. Random forests consist of training many different

trees with different parameters. Then, the classification is made by a majority vote of the

trees. While random forests are a first step towards the improvement of the prediction power,

they already lost a lot of understandability. Indeed, it is harder to understand the process of

classification as many trees may not predict the same thing. For their part, linear models were a

first step towards deep neural networks. As discussed previously, deep neural networks tend to

be always bigger. It is now impossible to understand the decision process of a neural network.

On the other hand, these deep networks are, at the moment, the best tool for classification

purposes and many more different tasks.

As a result, it is necessary to bring back some understandability in the decision process. But

the key element is to keep a high enough precision of the decision while making the decision

process understandable. Two main ways have been proposed. The use of self-explanatory

models is a first step to explain the decision of a machine learning model. It is either made

by the use of linear models or binary decision trees but also by adding understandability to a

more complicated model. Another way to explain the decision process is to learn a simpler and

interpretable new model that is can explain the decision of the predictive model. That is the

approach we retained in our work as we will see in Chapter 2
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Chapter 2

Graph contextual anomalies detection

Anomaly detection has been a field of intense research for the last decades, both for graph data

[Akoglu et al., 2015] [Ranshous et al., 2015] [Ma et al., 2021] and for vector data [Mehrotra

et al., 2017] [Aggarwal, 2016] [Su and Tsai, 2011] [Hodge and Austin, 2004]. According to

these last ones, anomalies are substantial variations from the norm. This introduces two main

questions. The first one is how to describe the norm while the second is how to quantify the

deviation to this norm. There are a lot of possible choices for both norm and deviation. For

example, in regular vectorial data, the norm is usually made of instances of the dataset that

are grouped together and the deviating instances are the ones that lie further in the space.

As in regular vectorial data, there can be many different types of anomalies in relational data.

They can be particular instances of nodes, edges, subgraphs, or even full graphs such as bridges

between communities, irregular subgraphs, or out-of-power-laws nodes that are a few of the

many possible definitions of anomalies in networks. A node can be an anomaly because of

its neighborhood, its attributes, or a combination of both. For instance, in a graph with a

community structure (i.e. containing sets of highly connected nodes with few connections to

the rest of the graph), an anomaly can correspond to a node that does not really belong to

any community either because it is isolated or because it forms a bridge between two groups.

Assortativity is a measure of how much does a pair of connected nodes look like each other. If a

network is assortative, or assortatively mixed, then nodes that are linked together tend to have

similar attribute [Newman, 2002] [Newman, 2003] [Anagnostopoulos et al., 2008]. On the other

hand, if a network has the opposite property, it is called dissassortativity. In an attributed

graph with assortativity, an anomaly can be a node whose attributes are significantly different

from those of its neighbors.

In this thesis, we introduce and study a new particular case of node anomaly in attributed

networks: context-based anomaly or contextual anomalies. Context-based anomalies corre-

spond to nodes of a graph whose local neighborhood present a specific arrangement. This kind

of anomaly is relatively frequent in practice. For instance, in a bibliographic network where the

nodes correspond to papers assigned to thematic categories and there is a link from a document

node to another if the first one cites the second, a contextual anomaly can correspond to a
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node belonging to the category ‘Archeology’ (because it contains the word ‘excavation’) which

is cited by documents belonging to the category ‘computer science’. Context-based anomalies

are also often associated with fraud or corruption. In those situations, experts try to use "pat-

terns" or contexts to find these frauds or corruption cases. But, of course, these contexts are

not known by the experts. For instance, a company has a CEO who has an account in a tax

haven then this company is more likely to be fraudulent. To clearly define this kind of anomaly,

we consider that there exists an unknown small subgraph (a context), and a distinguished node

in this subgraph, such that each time this subgraph occurs in the data, then the node corre-

sponding to the distinguished node is an anomaly with a high probability p. In this thesis, for

simplicity, we consider the case p = 1 but our work can be extended to a situation where this

probability is lower. This unknown subgraph is called a context and the corresponding anomaly

is "a context-based anomaly". A few examples are given in Figure 2.1. C1 and C2 are contexts

defined on the neighborhood of the distinguished node and C3 is defined on both the node itself

and its neighborhood.

C
1

C
2

C
3

Figure 2.1: Three different types of contextual anomalies and their context. C1 describes a

node with no specific feature that has at least one blue neighbor and at least one red neighbor.

C2 is the same with blue and green. C3 depicts a node that is yellow and has at least one blue

neighbor. Contexts can be defined on the nodes themselves and in their vicinity.

We argue that these context-based anomalies are interesting and, as the experiments show,

not always well detected by current approaches.

The detection of anomalies in networks can be tackled in a supervised, semi-supervised, or

unsupervised way [Su and Tsai, 2011] [Hodge and Austin, 2004]. A supervised method requires

some labeled data, anomalous nodes, and normal nodes, to train a model that will be used to

detect anomalies among the other unlabeled nodes of the graph. For the semi-supervised setting,

the model is trained with labeled data too but also with unlabeled data. That is, information

of the nodes is aggregated onto labeled nodes to learn a model that can be used to detect

anomalies. Finally, in a fully unsupervised manner, a model has to be constructed without

labeled data to detect anomalies. While an unsupervised model does not require labeled data

to be made, it performs usually, not always, worse than a supervised or semi-supervised one.

In the following, we use a semi-supervised approach. More precisely, we have a transductive

setting as in Figure 2.2: the data consist of a single graph for which a proportion of the nodes is
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labeled (either "anomaly" or "normal") and the other nodes have no label. The goal is to find

the labels of those unlabeled nodes belonging to the same graph. The difference with a fully

supervised setting is that the learning algorithm can use the unlabeled nodes and their features,

or attributes, even if it has no access to their labels which is helpful since a single graph has a

singular topology. Thus, information of every node is required to be able to process it correctly.

Removing unlabeled nodes from the learning would change the connectivity of the graph and

thus disrupt it.

G

?

?

?

?

? ?

?

?

Figure 2.2: In a semi-supervised setting, some nodes are tagged as anomalies (red arrows), some

nodes are tagged as normal (blue arrows) and the remaining nodes (with question marks) have

to be classified into the normal class or the anomaly class.

Node anomaly detection can be addressed in many ways: finding general laws, using cus-

tom criteria, or as byproducts with community detection algorithms [Akoglu et al., 2010]

[Chakrabarti, 2004]. But recent years have seen the rise of representation learning on graphs

that consists of finding a representation of the nodes in a feature space and then identifying

anomalies in this space. The features can be hand-made (not learned) or automatically learned,

for instance by a Graph Neural Network (GNN) which is the state-of-the-art for node classi-

fication and, more generally, for solving many supervised or unsupervised problems on graphs

[Veličković et al., 2018]. Through this thesis, we propose to use this approach to automat-

ically and simultaneously learn a suited representation of the nodes and detect the anoma-

lies. More precisely, we propose CoBaGAD, for Context-Based Graph Anomaly Detector, a

semi-supervised algorithm to detect contextual anomalies. CoBaGAD is a variation of Graph

Attention Networks (GAT) where the attention mechanism has been changed by a custom one

allowing better feature selection.

To carry out an experimental evaluation of CoBaGAD, we need datasets. However, to our

knowledge, real data for this kind of anomaly is not publicly available. Thus, we created a

generator of contextual anomalies to add anomalies to a graph.

Our contributions are:

• A new kind of node anomaly in a graph: contextual anomaly.

• A generator of contextual anomalies.
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• A GNN architecture to detect it.

• Experiments to validate our model on several kinds of graph with different types of con-

textual anomalies and compare it with Graph Attention Networks [Veličković et al., 2018],

Graph Convolution Networks [Kipf and Welling, 2017], GraphSage [Hamilton et al., 2017]

and Node2vec [Grover and Leskovec, 2016] + LOF [Breunig et al., 2000].

This chapter is organized as follows. First, we review related works of anomaly detection

in both vectorial and graph data. We mathematically define the problem in Section 2.2 and

present our method to detect context-based anomaly in attributed graphs in Section 2.3. Then,

we describe our datasets in Section 2.4, our evaluation protocol, and the experiments carried

out to evaluate the ability of our method to detect anomalies in Section 2.5.2. Finally, we

discuss the obtained results which are generally better than those provided by state-of-the-art

methods.

2.1 Related work

Many different approaches have already been proposed to tackle anomaly detection for both

vector data and relational data. Through this section, we discuss previously published methods

that were created to deal with anomaly detection. Please note that the words "outliers" and

"anomalies" will be used interchangeably. According to [Aggarwal, 2016], "outliers are also

referred to as [...] anomalies in the data mining and statistics literature". Obviously, graph

anomaly detection techniques are very interesting since they directly deal with the type of data

we are interested in. On the other hand, we also review anomaly detection techniques for usual

vector data since, as seen in Section 1.2.3, the use of graph embedding methods provides a

low-dimensional representation of a graph and can, thus, be fed to such an anomaly detector.

In the following, we first discuss the case of outlier mining in the context of vector data. Then,

we review state-of-the-art models that detect anomalies in graph data.

2.1.1 Anomaly detection with vectorial data

We can distinguish two main fields of research in anomaly detection according to the type of

data that we investigate. First, anomaly detection with vectorial data aims at finding vectors

in the space that are "far" from the others. Different criteria have been proposed to quantify

the notion of "far" from the others. On the other hand, graph anomaly detection is a related

field of research that focuses on relational data. While they do not use the same type of data,

they share common ideas.

In regular data, where instances lie in Rf , many types of anomalies can be defined depending

on their proximity to the rest of the instances. In Figure 2.3, we can see three types of outliers.

First, global outliers are instances of the data that are far from all the other points. The notion

of distance can be defined in many ways and will be discussed later but influences a lot the
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detection of outliers. Second, local outliers are instances that are far from a cluster, or group,

of data points but are not necessarily far from all the points of the data set. Lastly, collective

outliers are small groups of instances that are split from the rest of the data but do not contain

enough points to be considered as a cluster. These different notions of outliers imply a lot of

different ways to detect them. Many distances can be introduced in Rf . This can lead to the

use of densities or sub-space discovery to isolate outliers.

Local outlier

Global outlier

Collective outliers

Figure 2.3: Different types of anomalies in vectorial data.

Following the definitions of [Ting et al., 2018], anomalies can be related to different methods

based on the notion of distance, neighborhood, or density:

• Density-based methods: anomalies are instances of the data in regions of low density.

• Isolation-based methods: anomalies are instances of the data which are most susceptible

to isolation.

• k-th nearest neighbor methods: anomalies are instances of the data that are the furthest

to their k-th nearest neighbor.

To that list, we also add some specific methods:

• Kernel-based methods: kernels measure the similarity between two points. Anomalies are

instances that are dissimilar to all the other points.

• High dimension methods: due to the curse of dimensionality, finding anomalies in high

dimensions is challenging and some methods have been developed to tackle this issue.

In the sequel, we will present examples of methods belonging to these different fami-

lies: density-based, tree-based, k-nearest neighbors, kernel-based or high-dimension-based tech-

niques.

2.1.1.1 Density-based methods

Density methods focus on instances of the data that are "alone", i.e. there are very few other

instances in the neighborhood of this specific instance. Mathematically speaking, density is
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the number of instances in a specific area of the space divided by the volume of this subspace.

While this notion can be used in the context of subspace anomaly detection, the notion of local

density is rather used in this case.

Among the popular methods, Local Outlier Factor (LOF) [Breunig et al., 2000] is a density-

based measure to detect points in the space that are far from the others by comparing their

local density to that of their neighbors. More precisely, the authors define the local reachability

density, lrd. For a data point p ∈ Rf , the local reachability density is the inverse of the mean

of the distance to its neighbors.

lrd(p)−1 =
1

|Nk(p)|
×

∑
q∈Nk(p)

D(p, q) (2.1)

where Nk(p) is the set of its k nearest neighbors and D a distance of Rf . Then LOF is defined

as the average of the neighbors’ local reachability density normalized by that of the instance

we are studying.

LOF (p) =
1

|Nk(p)|
×

∑
q∈Nk(p)

lrd(q)

lrd(p)
(2.2)

LOF compares the local density of the point p with the local density of its neighbors. Thus, an

outlier can be detected as its local density is low compared to that of its nearest neighbors.

For their part, [Ester et al., 1996] introduced Density-Based Spatial Clustering, or Applica-

tions with Noise, or DBSCAN, a clustering algorithm. Clustering is, usually, an unsupervised

technique that consists of grouping similar data instances into clusters in such a way that sim-

ilar instances are in the same cluster. DBSCAN does not force every data point to belong to

a cluster. Thus, by assuming that normal instances are those in a cluster and anomalies are

those that do not belong to a cluster, DBSCAN can detect anomalies. In this case, anomalies

are byproducts of the clustering process.

DBSCAN uses two parameters: a distance ε and a minimum number of pointsMinPts that

must stand in a radius of ε to be considered a cluster. The main idea of the method is to look

at the ε-neighborhood Vε of an instance p. The ε-neighborhood is defined as the set of data

points that are in the sphere of radius ε and center p.

Vε = {q|D(p, q) < ε} (2.3)

The next step is to check whether there are MinPts instances close to it, i.e. the number of

elements of Vε is higher thanMinPts. If so, the data point belongs to a cluster and the instance

must be added to the right cluster. On the contrary, if an instance does not have enough points

close to it, then it is regarded as the noise of the data and considered as anomalous. Clustering

methods are very interesting since they can operate in an unsupervised setting and their testing

is fast since there are a lot less groups than instances of the data. But, on the other hand, such

methods are generally not explicitly made to detect anomalies and can be less precise than

some others.
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Another way to find anomalies is to rank them according to some measures and focus on the

most important ones. That is what [He et al., 2003] did. They proposed CBLOF for Cluster-

Based Local Outlier Factor as an extension of LOF. CBLOF is a measure based on the size

of the cluster an instance belongs to and its distance to the closest cluster. The first step of

the method consists of clustering the data set into several clusters. The authors argue that

any proper clustering algorithm can be used. Then, clusters are divided into two sets. Large

clusters and small clusters are defined thanks to two hyper-parameters. The first parameter

controls how many instances must lie in the set LC of the large clusters or in the set SC of small

clusters. For example, it specifies that 90% of the data points must be in the large clusters.

The second parameter sets the relative size difference between the smallest large cluster and

the biggest small cluster. For example, the large clusters must all be at least ten times bigger

than any small cluster. Then, for an instance p in a small cluster Ci, the cluster-based local

outlier factor is defined as:

CBLOF (p) = |Ci| × min
Cj∈LC

D(p, Cj) (2.4)

where p ∈ Ci and Ci ∈ SC. Thus, for an instance in a small cluster, the CBLOF is determined

by the size of its cluster and the distance D to its closest large cluster relative to each instance

in this cluster.

For an instance p in a large cluster Ci, the CBLOF is defined as:

CBLOF (p) = |Ci| ×D(p, Ci) (2.5)

where p ∈ Ci and Ci ∈ LC. In this case, the CBLOF is given by the size of the cluster the

instance belongs to multiplied by the distance to its cluster. The distance between an instance

and a cluster can be the one given by the chosen clustering algorithm. Finally, based on the

CBLOF, the different instances of the data can be ranked. According to this ranking, data

points can be tagged as anomalies.

When data is not distributed along linear manifolds, [Sathe and Aggarwal, 2016] come in.

They proposed LODES, a local density Spectral Outlier Detector to tackle the issue of outliers

embedded in arbitrary manifolds. LODES uses spectral clustering which consists of a spectral

decomposition of a specific matrix. This matrix is based on pairs (i, j) of instances that are

mutually in the set of k-nearest neighbors. For each such pair, i ∈ Nk(j) and j ∈ Nk(i),
a similarity wij can be computed using a kernel. These pairs and weights define a weighted

undirected graph. Thus, the degree di of each instance can be computed and the normalized

weight matrix can be defined as:

w′ij =
Linkage_Density

Symmetric_Density_Difference
=

wij
(di − dj)2

(2.6)

The next step consists of computing the corresponding degree matrix D′ and, then, the Lapla-

cian as the difference between the new degree matrix D′ and the normalized weight matrix
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W ′. The final step of the spectral embedding is the computation of the first eigenvectors of

the Laplacian which give the embedding. This new representation of the data can be used to

detect anomalies. A first idea is to apply a k-nearest neighbor approach but the authors argue

that there is a better method. They use an iterative approach based on the decomposition of

the Laplacian to adapt the weights wij and compute an anomaly score as the average of the

distance to the neighbors of the neighborhood graph.

2.1.1.2 Tree-based methods

As discussed in Chapter 1.4, trees can be used to split the data into several groups. The root

of the tree contains all the instances of the data. Every node of the tree can be split. A split

is a simple, often binary, rule to discriminate the population of a node of the tree into two, or

more, children. The fewer rules to reach a specific instance, the easier it is to describe it with

some simple rules. This is the point of view of anomaly detection methods that use trees.

Based on this underlying idea, anomalies can be found thanks to an isolation forest. iForest

[Liu et al., 2008] is an outlier detection method based on isolation trees, iTrees. Such trees are

binary decision trees that aim at cutting the space into sub-spaces by splitting it along specific

coordinates. The process to grow a tree is iterative. At each step, a feature, or coordinate, c

and a value v are randomly selected. A sub-sample of the data set, a node of the tree, is split

into a left child containing instances i where ci < v, and a right child containing instances i

where ci ≥ v. An isolation tree step is a random cut along a specific axis of the space. The

process is repeated until the tree is fully grown i.e. each instance of the data is isolated in a

leaf. Once built, it is possible to look for a specific instance in the tree. The quantity hl(p) is

the path length to reach the instance p in the l-th tree. If hl(p) is low, it means that it is easy

to isolate this instance of the data. On the contrary, an instance that is hard to isolate will

have a high hl(p). Finally, an anomaly score is computed for every data point p as:

score(p) =
1

T

T∑
l=1

hl(p) (2.7)

where T is the total number of iTrees. The score is the average of all the path lengths among

the different trees of the forest. Thus, the highest the score, the lowest the probability of being

an anomaly. It is, thus, possible to focus on the instances of the data that are outliers with

the highest probability. While this method is very efficient and provides a lot of insights when

looking for anomalies, it has also some drawbacks. Due to the non-deterministic cuts along

some specific axis, the method can miss some anomalies.

An improvement of iForest is iNNE [Bandaragoda et al., 2018]. The authors proposed isola-

tion using Nearest Neighbors Ensemble, iNNE, which is an alternative of iForest. It overcomes

its main weaknesses: inability to detect local anomalies due to the use of a global score, anoma-

lies that are masked by axis-parallel clusters, anomalies with a high percentage of irrelevant
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attributes and anomalies in multi-modal data sets. iNNE provides a local distribution adap-

tation for each region of the space. It also uses all the coordinates of the space instead of a

sample of them. Thirdly, it can detect local anomalies through the use of a local score. First,

iNNE defines the maximum sphere B(p) containing p and no other data point:

B(p) = {x ∈ Rf/||x− p||2 < τ(p)} (2.8)

where τ(p) = ||p −NN(p)||2 is the radius of the sphere and NN(c) is the nearest neighbor of

c. Then, a subsample Si is drawn from the initial dataset without replacement. The quantity

cnni(x) is defined as:

cnni(x) = argmin
c∈Si

{τ(c)|x ∈ B(c)} (2.9)

This quantity allows the authors to derive a local anomaly score. First, the isolation score

scorei of x with respect to the subset Si is given by:

scorei(x) = 1− τ(NN(cnni(x)))

τ(cnni(x))
(2.10)

if x ∈ ∪c∈SiB(c) and scorei(x) = 1 otherwise. This isolation score is maximum when the

instance p is located far from all points in Si. Finally, the local anomaly score for a data point

x is defined as the average of all the isolation score for the different subsets.

score(x) =
1

T

T∑
i=1

scorei(x) (2.11)

where T is the total number of subsampling. In the end, instances can be ranked according to

their potential of being an outlier.

2.1.1.3 k-nearest neighbors methods

One of the most straightforward ideas to detect anomalies that are far from the rest of the data

is to look at the set of the nearest neighbors. If the closest instances to a specific data point

are far, then it is likely to be an anomaly. Many methods have been proposed based on these

nearest neighbors.

For [Ramaswamy et al., 2000], "a point p in a dataset is an outlier with respect to parameters

k and d if no more than k points in the dataset are at a distance of d or less from p". They

propose three algorithms that rank the data points p according to their distance Dk(p) to their

k − th neighbor and they take the top ranks as outliers. For a data point p, the distance is

defined as:

Dk(p) = max
q∈Nk(p)

D(q, p) (2.12)

where Nk(p) is the set of the k nearest neighbors of p. First, they propose two relatively

straightforward algorithms which are a nested-loop join algorithm and an index join algorithm.

The main issue with these methods is that they need to compute the distance Dk(p) for every

instance in the data set. To tackle the issue of being computationally expensive, the authors

showcase a partition-based algorithm. Its four steps are as follows:
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• partition the dataset using a clustering algorithm (BIRCH [Zhang et al., 1996]).

• For each cluster, compute lower and upper bound for Dk(p) with p in the cluster.

• Find candidate partitions in which there are potential outliers.

• Find outliers in those partitions

This algorithm is computationally much more efficient than the two other described.

For their part, [Angiulli and Pizzuti, 2002] propose a new definition for distance-based out-

liers that takes the sum of the distances from its k nearest neighbors into account. Then, outliers

are instances of the data which have the largest distance. To find the k nearest neighbors, they

linearize the search space with Hilbert space-filling curve iteratively with f + 1 shifts of the

data set where f is the number of features or dimensions. Hilbert space-filling curve is mapping

between values in a 1-D interval I and the coordinates of f -dimensional points in S such that

if two points are close in the initial space I, they are also close in S but the converse is not

necessarily true. This first step reduces a lot of the potential nearest neighbors. Then, a final

step can find exactly the set Nk(p) of the k nearest neighbors of a data point p. Once the set of

nearest neighbors is known, it is easy to rank the different data points with the distance Dk(p)

defined as:

Dk(p) =
∑

q∈Nk(p)

D(q, p) (2.13)

This sum could be normalized by the number of elements of Nk(p) but it is not necessary as

every point has, by definition, the same number of k-nearest neighbors. Finally, the different

instances of the data are ranked according to their distance Dk(p). The data points with the

highest distance Dk(p) are those which are flagged as outliers.

2.1.1.4 Kernel-based methods

Kernel-based methods [Ting et al., 2016], [Ting et al., 2018] are recent methods that avoid

distance-based neighborhood problems, like the curse of dimensionality notably. The authors

introduce a data-dependent dissimilarity, the mass-based dissimilarity. From this dissimilarity,

they introduce a new function that can recover the neighborhood. Finally, they show that

their approach outperforms previously state-of-the-art models. The kernel introduced in [Ting

et al., 2016]is defined as follows. Let S be a data sample drawn from a probability distribution

function F . Let H0 ∈ H(S) be a hierarchical partitioning of the space into non-overlapping

and non-empty regions, where H(S) is the set of all possible hierarchical partitions. For two

points p and q, the set of partitions that they simultaneously belong to is:

Jp,q = {r ⊂ H0|(p, q) ∈ r} (2.14)
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Then, they define the smallest local region covering p and q with respect to H0 and S as:

R(p, q|H0;S) = argmin
r⊂H0s.t{p,q}∈r

∑
z∈S

1(z ∈ r) (2.15)

where 1 function is the indicative function. Then, the mass-based dissimilarity of p and q with

respect to S and F is defined by:

m(p, q|S,F) = EH(S)[PF (R(p, q|H;S))] (2.16)

where E is the expectation taken over all models in H(S) and PF is the probability with

respect to F . In practice, the dissimilarity is estimated from a finite number of models and

the expectation becomes an average. Afterward, the data set is partitioned into iTrees, then,

the data points "are traversed through each tree to record the mass of the nodes". The sum of

mass of the lowest nodes containing both p and q is
∑

i |R(p, q|Hi)| and the mean over T iTrees

of these mass is given by:

me(p, q) =
1

T

T∑
i=1

|R(p, q|Hi)|
|S|

(2.17)

Finally, µ-neighborhood mass is defined as Mµ(p) = {q ∈ S|me(p, q) < µ}. In the end,

anomalies are defined as those instances which have the highest probability mass to their k-th

lowest probability mass neighbors in a given data set.

2.1.1.5 High dimensional anomaly detection

A key issue in anomaly detection is the curse of dimensionality. We already discussed it previ-

ously in Section 1.3 and showed why this is a problem. Thus, some methods have been proposed

to tackle to the case of high dimensions.

Instead of using a regular distance, like the euclidean distance, it is possible to use the

angle between two vectors. [Kriegel et al., 2008] introduced ABOD for Angle-Based Outlier

Detection. This is a non-parametric approach for outlier detection in high dimensional data

based on the use of the angle between two vectors instead of the euclidean distance between any

pair of data points. They define the angle-based outlier factor. It corresponds to the variance

over the angles between the difference vectors of p to all pairs of points weighted by the distance

of the points. For a data point p, we have

ABOF (p) = V arq,r(
< q − p, r − p >
||q − p||2 × ||r − p||2

) (2.18)

where < p, q > is the scalar product between p and q and V ar is the variance. They use a

speed-up version to lower the complexity. The variance is computed on a subset of the dataset

which is the set of nearest neighbors of p. To speed up even more, a lower bound of ABOF

can be computed. In the end, the algorithm first looks for nearest neighbors, then, computes

the lower bound of ABOF for every data point. Then, it sorts the data points by the value of

lower bound and finally, computes the real ABOF of the potential outlier and check whether
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they really are outliers.

For their part, [Vries et al., 2010] proposed PINN which stands for Projection Indexed

Nearest Neighbors. It assesses the problem of finding outliers in very high dimensional spaces.

The authors use LOF as an outlier score but instead of finding the nearest neighbors in the

original space they first project the data into a lower dimension space with a random projection

that preserve the k nearest neighbor distance. Then, they find the k nearest neighbors in the

new space. Finally, they can compute LOF (p) and discriminate data points according to their

score. In the end, the main trick is to change the space of the dataset to be able to compute

the usual Local Outlier Factor.

Recently, machine learning tools have been brought to deal with anomaly detection. Among

many fields of research, representation learning has been very important. Representation learn-

ing consists of learning a mapping of the data into a low-dimensional space such that each

instance of the input dataset is represented by a vector in low-dimension. This dimension

reduction can be very useful when dealing with outlier detection. Indeed, the curse of dimen-

sionality does not operate in low-dimension. Thus, [Pang et al., 2018] introduced RAMODO, a

ranking model-based framework. It learns a low-dimensional representation of the data with a

neural network to infer outliers. It takes, as input, a set of potential outliers and a set of candi-

date inliers. The model assumes a distance-based anomaly detector φ such as LOF. The neural

network learns a mapping function f such that φ(f(p)) > φ(f(q)) if p is an outlier and q is an

inlier. It is made of a single fully connected layer with reduced dimension and the activation

function is a usual ReLU function. RAMODO optimizes an outlier score-based ranking loss

to detect outliers. The candidate outliers are found using Sp [Sugiyama and Borgwardt, 2013],

which is a fairly good but unstable outlier ranking, and are used as negative examples in the

training process. Positive examples are sampled based on the inverse of their outlier score given

by Sp. Once the network has been trained, it is possible to compute the new representation of

the dataset. The new dataset is a set of low-dimensional vectors in which it is possible to use

any distance-based anomaly detector previously discussed.

To sum up, there is a wide range of methods to detect anomalies in vector data. The

type of anomalies detected often depends on the type of methods that are used to detect

them. There are density-based, isolation-based, k-th nearest neighbor, kernel-based, and high

dimension methods. While some methods are better suited for low-dimensional data, most of

the recent works focus on detecting anomalies in high-dimensional data. Another challenge for

anomaly detection is graph anomaly detection. All previous methods cannot be directly applied

in graphs. For this reason, some methods have been developed specifically for graphs.
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2.1.2 Anomaly detection in relational data

There are a lot of methods that aim at finding anomalies in graphs and a lot of different kinds of

anomalies that those methods try to detect. Due to the complex topology of graphs, a variety

of graph anomalies exists. Contrary to the case of regular vectorial datasets, it is not possible

to define anomalies as an instance, or a small group, that is far from the rest of the data. The

notion of distance in graphs is not the same. Especially in unweighted graphs, the distance

to the nearest neighbors is the same for every node since the distance between a node and its

neighbor is always one. On the other hand, the graph topology avoids computing the k nearest

neighbors search that is, often, computationally expensive. Indeed, it is not necessary to look

for the neighbors of every instance in the data since it is given by the graph itself. In the end,

graphs are more complex than usual vectorial datasets but they provide their topology which

is very useful to avoid some computations. On the other hand, this complexity implies the

need for new methods to be able to deal with the detection of new types of anomalies. In the

following, we review state-of-the-art models that deal with anomaly detection in different types

of static graphs.

Methods can be cataloged according to their graph anomaly detection approaches. Accord-

ing to [Pourhabibi et al., 2020], there are five main categories:

• Community-based: find dense groups of nodes

• Probabilistic-based: find some statistics in the data and anomalies are deviations of the

statistics

• Structural-based: exploit graph topological structure to find anomalies

• Compression-based: used to find suspicious activities in a dynamic network. These meth-

ods are out of the scope of this thesis and will not be discussed there.

• Decomposition-based: use the minimum description length to find elements that inhibit

compressibility

While this typology is useful to categorize the methods, in this thesis, we will take another

point of view and catalog the methods based on the kind of graph they take as input. We

distinguish two cases: either a method needs a plain graph as input or an attributed graph.

2.1.2.1 Plain graphs

Plain graphs are unweighted unsigned un-attributed non-oriented static graphs. This means

that edges have no weight, nodes and edges have no features describing them, edges are not

oriented i.e. the interaction between nodes is reflexive, and the graph does not evolve over

time. In this particular, yet the simplest, form of a graph, there are already a lot of potential

definitions for a graph anomaly such as bridges between communities or unexpected edges. In

the sequel, we describe methods dedicated to anomaly detection in graphs.
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Autopart [Chakrabarti, 2004] is a parameter-free graph partitioning and edge outlier de-

tection algorithm that belongs to the category of decomposition-based methods. It mines a

graph G(V, E) to discover clusters, or groups of similar nodes, and outliers that are defined

as edges deviating from the overall structure of the graph. Moreover, the algorithm must be

automatic, i.e. without parameters, scalable and incremental in the sense that it can recom-

pute the results to adapt to new data. The method relies on the Minimum Description Length

[Rissanen, 1978] which is the minimum number of bits needed to encode a piece of data. It

modifies the adjacency matrix by reordering the rows and columns such that blocks of high (or

low) density are created. This way, nodes in the same block belong to the same group. Thus,

nodes are indexed into k disjoint groups with an index function I : V → {1, ..., k}. Moreover,

there is a tradeoff between the homogeneity of the blocks and the number of blocks desired. To

do so, the authors use the Minimum Description Length to count the number of bits needed to

re-arrange the information in the adjacency matrix. The total encoding cost T (A, k, I) of the

adjacency matrix A for a given number of groups k and the index of groups I is:

T (A, k, I) = log∗(k) +
k−1∑
i=1

dlog(bi)e+
k∑
i=1

k∑
j=1

dlog(bibj + 1)e+ C(Aij) (2.19)

where log∗(x) = log2(x) + log2log2(x) + ..., bi is the number of nodes in the i-th group and

C(Aij) is the code cost of the submatrix restricted to the links from group i to j. This cost has

to be minimized. Their algorithm has two steps that are called recursively. First, for a specific

number of blocks, the inner loop finds the best arrangement of the matrix. Then, the outer

loops increases the number of groups and checks if the compression cost has decreased or not.

Figure 2.4 shows this two-step process.

Figure 2.4: Two step process of the Autopart method [Chakrabarti, 2004]. First, arrange the

matrix to have a specific number of groups. Then, increase the number of groups if necessary.

Finally, outliers are defined as edges that, if removed, reduce a lot the compression cost. It

is possible to rank an edge (u, v) according to its outlierness which is defined as:

outlierness(u, v) = T (A′, k, I)− T (A, k, I) (2.20)

where A′ = A except that the edge (u, v) is removed. In the end, the authors can find the

underlying structure in the graph. They introduce a lossless compression scheme for finding

node groups and outlier edges. Their proposed algorithm is automatic and parameter-free.
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Another decomposition-based method is SUBDUE proposed by [Noble and Cook, 2003].

It takes as input a plain graph and defines anomalies as "a surprising or unusual occurrence".

The description length of a graph DL(G) is defined as the minimum number of bits to encode

this structure. The best substructure S of the graph is the one that minimizes the following

value:

F (S,G) = DL(G|S) +DL(S) (2.21)

where DL(G|S) is the description length of G using S and DL(S) is the description length of

S. Substructures that reduce the description length a lot may appear frequently and anomalies

appear, by definition, rarely. Based on this value F (S,G), it is possible to rank substructures

according to their degree of abnormality. Afterward, the authors provide experimental results

of their method using real-world intrusion networks and artificially created data.

The main issue with these two methods that use the minimum description length principle

is that they are computationally very expensive. Their complexity is exponential in the number

of nodes in the worst case and can be reduced to polynomial. Such methods are not suitable

for dealing with graphs of millions of nodes.

For their part, [Jimeng Sun et al., 2005] proposed an algorithm to detect bridges between

communities in a bipartite graph. First, for every node, they identify similar nodes (their

community) and then, they rank nodes according to their "normality" to identify the bridges

between communities. The method takes as input a bipartite graph G(V, E) such that V =

V1 ∪ V2, V1 ∩ V2 = ∅ and A is its adjacency matrix. For every node va ∈ V1, it computes a

relevance score vector ua which is the personalized page rank (PPR) of its neighbors. This is

done by finding the steady-state probability vector of:

ua = (1− c)PAua + cqa (2.22)

where PA is the column normalized version of MA which is the matrix 2× 2 block matrix made

of 0 on the diagonal, A on the top right and AT on the bottom left. c is a parameter and qa

is the one-hot vector corresponding to va. The steady-state is reached by simply iteratively

repeating the Equation 2.22. Based on this score, the authors are able to compute a normality

score. For a node vb ∈ V2, let t be its number of neighbors. A t × t similarity matrix RSt is

computed where each element (a, a′) is the similarity between ua and ua′ . Finally, the normality

score for the node vb ∈ V2 is the mean of all elements of RSt except the diagonal. Nodes with

lowest normality are spotted as anomalies.

OddBall [Akoglu et al., 2010] is an approach that aims at detecting outliers as nodes of

weighted graphs. This method belongs to the class of probabilistic-based models. The normal

data is defined thanks to power-laws. Outliers are those nodes that deviate from these power

laws. More specifically, for every node vi, some features are extracted: its degree di, the number

of edges in the ego network ei, the total weight of ego network wi, and the principal eigenvalue

of the adjacency matrix of the ego network λi. Then, it could be possible to use a standard
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anomaly detector in the space of extracted features but the authors promote the use of another

technique. They group features into carefully chosen pairs. For example, they consider the

number of edges of the ego network ei of the nodes versus the total weight of the ego network

wi and they find that these two variables follow a power law. This is useful to detect heavy

vicinities. The same is applied for ei and di to detect near-cliques and stars and for λi and wi
to detect single dominating heavy edges. These outliers are defined as nodes whose features

deviate from these power laws. An example of the laws found by OddBall is presented in Figure

2.5.

Figure 2.5: From a graph, some features are extracted to compute power laws. Outliers are

those nodes whose features deviate from the laws, in red on the right figure. Source [Akoglu

et al., 2010]

2.1.2.2 Attributed graphs

Sometimes, graphs have additional information on their nodes or edges. In this section, we will

discuss the case of attributed graphs G(V, E , X) where the additional information is given by

the feature vector xi ∈ Rf for the node vi.

Goutrank [Müller et al., 2013] is a graph outlier ranking method for attributed graphs that

is part of the community-based methods. It promotes the use of ranking techniques to focus

on the most important outliers and argue that it is more suitable in some situations. Goutrank

is one of the first anomaly detectors that can deal with attributed graphs and not only with a

plain graph or with vector data. To find outliers, nodes are ranked according to their degree

of deviation in both graph and attribute properties. The method has two key steps. It, first,

clusters the feature space into subspaces and the graph into subgraphs. Then, Goutrank gives

a score score(vi) to each node vi depending on the cluster partitioning: the more the node

belongs to subspaces, the less likely it is to be an anomaly. To do so, they define a Subspace

Clustering Result as a set of subspace clusters {(C1, S1), (C2, S2), ...} where Cj ⊂ V is a densely

connected subgraph with high attribute similarity in the feature subspace Sj ⊂ Rf . In a dense

subgraph, there must be a correlation between the graph structure and some attribute values.
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This step is done with the use of the methods proposed by [Moser et al., 2009] and [Günnemann

et al., 2010]. The next step is the ranking of the nodes with regards to the found Subspace

Clustering Result. The authors propose a score for each node vi with node degree importance:

score(vi) =
1

3

∑
{(Cj ,Sj)|vi∈Cj}

|Cj |
cmax

+
|Sj |
smax

+
di
dmax

(2.23)

where |Cj | is the number of elements in Cj , |Sj | is the number of attributes of Sj , cmax is the

size of the biggest cluster, smax is the maximal dimensionality of the subspaces and dmax is the

maximum degree of the nodes. Thanks to this score, the nodes can be ranked and a user can

focus on the nodes with the lowest scores.

FocusGo [Perozzi et al., 2014b] is an outlier detection method for an attributed graph

which focuses on user-specific communities to study the more interesting parts of the graph.

This method belongs to the community-based methods. An anomaly is a node of a community

that deviates from the focus attribute. Through a set of user-provided nodes, the aim of the

method is to infer these focus attributes. Then, communities and outliers are simultaneously

mined. Thanks to local clustering, the algorithm can efficiently scale to large graphs. The

power of focus attributes is illustrated in Figure 2.6.

Figure 2.6: Example of a graph. Two communities focus each on a specific attribute (NYC and

IBM). The outlier is in the NYC community and does not have a PhD but did College instead.

Source [Perozzi et al., 2014b]

The input of the method is an attributed graph G(V, E , X) and a set of user-specific focus

nodes Cex which are considered to be similar to the type of nodes the communities of interest

should contain. The first step is to find the focus attributes which are the few features that unite

the nodes in a community. They use the Mahalanobis distance (xi−xj)
TW (xi−xj) to capture

the importance of each feature where xi is the feature vector of vi and W is a diagonal matrix

to learn with a distance metric learning problem. Thus, each element Wii is the importance

of the i-th feature. Then, the algorithms extract communities that are structurally dense,

well separated from the rest of the graph, and consistent with the focus attributes. Cores of

the communities are nodes that have high weighted similarity to their neighbor. Afterward,
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communities are expanded by adding the node that increases the quality of the community the

most if it exists. This quality is measured by conductance [Andersen et al., 2006] but could be

measured with modularity [Newman, 2006] too. At the same time, the method detects outliers

as nodes that structurally belong to a community but deviate in some focus attributes. Best

structural nodes are identified during the expansion of the community as nodes that would be

included to the community disregarding the attributes. Finally, outliers are the best structural

nodes that are not in the final community: they should be in the community if attributes did not

matter but they are not in the end. The authors conducted experiments to control the quality

of their community structure, evaluate their outlier detection technique and its scalability.

An extension of Autopart [Chakrabarti, 2004] to the case of attributed graphs has been

proposed by [Akoglu et al., 2012]. But, there is a much more performing method that deals

with the same kind of graph and anomalies. Recently, [Perozzi and Akoglu, 2018] proposed

a method for detecting both communities of an attributed graph G(V, E , X) and anomalies as

abnormal communities. This method is part of the community-based methods. It can uncover

communities of the graph and extract local information for each community. The authors

introduce a new measure of subgraph quality for attributed communities called normality and

a community extraction algorithm that maximizes this normality. From the modularity, one

can derive the internal consistency I of a cluster C as:

I =
∑

vi∈C,vj∈C,i6=j

(
Aij −

didj
2m

)
simw(xi,xj |w) (2.24)

where simw(xi,xj |w) is a weighted node similarity computed thanks tow a non-negative weight

vector, di is the degree of vi, m is the total number of edges and A is the adjacency matrix. The

internal consistency is a measure of the quality of the community with regards to its features.

For a community to be well-defined, it must be also well-separated from the rest of the graph.

The external separability ES of a community C is the measure that controls it.

ES = −
∑

vi∈C,vb∈B,(vi,vb)∈E

(
1−min

(
1,
didb
2m

))
simw(xi,xj |w) ≤ 0 (2.25)

where B is the set of nodes at the boundary of C. Finally, the normality of a community is

defined as the sum of the internal consistency and the external separability.

N = I + ES (2.26)

Then, the method infers the attribute weight vector wc for a specific community C by

maximizing the normality score such that nodes in the community are very similar and nodes

at the boundary are very dissimilar. Finally, it is possible to detect outliers simply defined

as communities whose normality is low. The authors compare their method with some other

standard measures, like conductance [Andersen et al., 2006], Oddball [Akoglu et al., 2010] or
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cut ratio [Yang and Leskovec, 2015], and show that their method consistently outperforms all

other methods by roughly 20% in terms of average precision.

2.1.2.3 Deep learning methods for anomaly detection.

With the rise of deep learning methods and graph analysis, some methods belonging to this

family have been proposed to tackle the issue of graph anomaly detection.

NetWalk [Yu et al., 2018] is a deep embedding approach that deals with dynamic graphs.

It belongs to the family of probabilistic-based models. This method aims at finding anomalous

nodes by learning a representation of the nodes at each time step and clustering them into

groups such that nodes that do not belong to a cluster are spotted as anomalies. The represen-

tation is learned by clique embedding. First, a collection Ω of unbiased random-walks of size l

is computed that is used as input of their novel embedding method. They propose a deep au-

toencoder neural network architecture to learn the vector representation while minimizing the

pairwise distance among the vertices of a walk. The autoencoder ψ is a multi-layer perceptron

of nl layers that takes as input a node vi encoded as a one-hot vector 1i. The first half of the

layers make the encoder ψ(nl/2) while the remaining half makes the decoder ψ(nl). The loss

function L has three parts: a reconstruction error, the minimization of the pairwise distances,

and a regularization term.

L =
γ

2

|Ω|∑
k=1

l∑
i=1

||ψ(nl)(vi)− 1i||22 +

|Ω|∑
k=1

∑
1≤i,j≤l

||ψ(nl/2)(vi)−ψ(nl/2)(vj)||22 +
λ

2

nl∑
c=1

||W c||2F (2.27)

whereW c are the weights learned at layer c. Thus, a representation of the nodes can be learned.

It is then possible to cluster these vectors into groups. Finally, newly arriving nodes can be

detected as anomalous if their representation does not fall into a cluster. It is also possible to

rank the nodes with the distance to their closest centroid of cluster.

For their part, [Wang et al., 2021] proposed a One-Class graph neural network to detect

anomalies in attributed graphs. This method also belongs to the family of probabilistic-based

models. The main idea of one-class classification is to cluster the regular data into a single class

or group and the remaining data is considered as outliers. The framework OCGNN, for One-

Class Graph Neural Network, relies on the use of Graph Neural Network that will be extensively

discussed next. The framework is described in Figure 2.7.

The algorithm takes as input an attributed graph G(V, E , X) with several nodes labeled as

normal nodes. The overall functioning of a graph neural layer can be summed up as:

Hc+1 = f(Hc, A,W c), H0 = X (2.28)

where c ∈ {1, ..., nl} is the index of the layer, Hc is the output of this layer, A is the adjacency

matrix and W c are the weights learned. The full network is composed of several graph neural
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Figure 2.7: General workflow of the OCGNN framework. The method embeds the graph into

a low-dimension space. Then it learns an hypersphere to cluster the regular data [Wang et al.,

2021].

layers. Then, to learn the hypersphere, the authors propose a loss function that simultane-

ously learns the parameters of the network and minimizes the volume of the data description

hypersphere which is characterized by a radius r ∈ R+ and a center c ∈ Rf :

L(r,W ) =
1

β|Vtraining|
∑

vi∈Vtraining

(
||hnl

i − c||22 − r2
)

+ r2 +
λ

2

nl∑
c=1

||W c||2 (2.29)

where Vtraining is the set of training nodes, nl is the total number of layers and β and λ are

hyper-parameters. The first term is a penalty for node that stands out of the hypersphere. At

this step, the embedding of a node vi is the output of the final layer Hnl
i , and we know the

hypersphere. Thus, it is possible to detect anomalous nodes either as those that are very far

from the center of the hypersphere or simply those nodes that are outside the sphere.

To conclude, a lot of methods have been proposed to tackle the issue of graph anomaly

detection. While it is possible to classify the different methods according to the kind of graphs

they require as input, it is harder to classify the kinds of anomalies. Often, the type of anomalies

detected depends on the model itself [Yu et al., 2018] [Wang et al., 2021] [Chakrabarti, 2004]

[Perozzi and Akoglu, 2018]. Clearly defined anomalies, such as bridges between communities or

contextual anomalies, are rare. In the next section, we will discuss the detection of contextual

anomalies.

2.2 Problem definition

[Chandola et al., 2009] defines contextual anomalies for vector data as: "if a data instance is

anomalous in a specific context (but not otherwise), then it is termed as contextual anomaly".

In their case, the contextual attributes are "used to determine the context". We introduce the

same concept of anomalies but for relational data. The context is not only some specific features

but an entire attributed subgraph around a focus node.

More formally, let G(V, E , X) be a graph on a set of n nodes V = {vi}n−1
i=0 , a set of edges

E = {eij} and a feature matrix X ∈ Rn×f such that each row xi of the matrix X is the feature

vector of the node vi.
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Hypothesis 1 (Contextual anomaly). We consider that there exists an unknown small subgraph

(a context), and a distinguished node in this subgraph, such that each time this subgraph occurs

in the data, then the node corresponding to the distinguished node is an anomaly.

Example 2.2.1. Some examples of contextual anomalies and their contexts are given in Figure

2.8. In these examples, the features of the nodes are colors. The context C1 describes a node

with no specific color that has at least one neighbor that is blue and one neighbor that is red.

The context C2 is the same except that the second neighbor should be green. Finally, the context

C3 describes a node that is yellow and that has at least one blue neighbor.

C
1

C
2

C
3

Figure 2.8: Three different types of contextual anomalies and their context. C1 describes a

node with no specific feature that has at least one blue neighbor and at least one red neighbor.

C2 is the same with blue and green. C3 depicts a node that is yellow and has at least one blue

neighbor. Contexts can be defined on the nodes themselves and in their vicinity.

We deal with the task of anomaly detection as a node classification task in a transductive

setting as illustrated in Figure 2.9: the data consists of a single graph for which a proportion of

the nodes is labeled (either "anomaly" or "normal") and the other nodes have no labels. The

goal is to find the labels of the unlabeled nodes.

G

?

?

?

?

? ?

?

?

Figure 2.9: In a semi-supervised setting, some nodes are tagged as anomalies (red arrows), some

nodes are tagged as normal (blue arrows) and the remaining nodes (with question marks) have

to be classified into the normal class or the anomaly class.

However and most importantly, the conditions (i.e., the context) which make a node anoma-

lous are not known during the training of the model.

It may be noted that our approach is related to the subgraph matching problem of [Scarselli

et al., 2009] that can be defined as follows. Given a pattern graph P , all nodes belonging to a

subgraph isomorphic to P in the graph database are labeled 1, the others are labeled −1. In
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our case, only one particular node of the pattern is an anomaly. This formalization seems more

natural given the supervised information that is available: it is possible to know if a company or

individual has been convicted/found guilty of corruption for instance, but it would be difficult

to have the ground truth about the suspicious subgraph/context. We will see in Chapter 3 how

to explain the reasons for which an element has been classified as anomalous. But, first, in the

next section, we present the method that we designed to detect these anomalous nodes.

2.3 Our method: CoBaGAD

The main idea of our method is to learn simultaneously two two-classes classifiers with at-

tention mechanisms. Then, local information is aggregated to determine whether a node is

normal or not. Parameters of the network are learned with a standard classification loss

in a semi-supervised fashion. For this, we propose to improve Graph Attention Networks

(GAT)[Veličković et al., 2018] and propose CoBaGAD, for Context-Based Graph Anomaly

Detector, which has four steps detailed below.

The input of the model is a graph G(V, E , X) where X is the feature matrix such that xi is

the feature vector describing node vi.

Global affine transformation: The first step is an affine transformation followed by a non

linear function σ. This function σ is applied elementwise. The parameters are the matrix

W ∈ Rf×f
′ and a row vector b ∈ R1×f ′ . The matrix with only 1 is denoted 1.

Λ = σ (XW + 1b) (2.30)

This step transforms the initial features X independently of the graph structure. The i-th row

of the matrix Λ is the new representation for node vi, and notice that since the matrix W is not

necessarily square, this new representation can have more or fewer features than xi. Basically,

this step embeds the features into a low-dimension space where f ′ < f . This allows a faster

computation for the next steps and improves the performance of the classification.

Attention layer: It consists of k attention heads where k is a hyper-parameter. For each

attention head c ∈ {0, ..., k−1}, we perform a local linear transformation followed by a weighted

aggregate. First, a local linear transformation Wc ∈ Rf
′×f ′ is applied on the features:

Λc = ΛWc (2.31)

Then, for each edge (i, j) ∈ E , the value ei,j,c is computed:

ei,j,c = LeakyReLU ((λi,c � λj,c).uc) (2.32)

where � is the Hadamard product, λi,c and λj,c are respectively the ith and jth rows of Λc, and

uc ∈ Rf ′ is a learned column vector. The Hadamard product λi,c � λj,c computes a similarity
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vector between λi,c and λj,c. When it is multiplied by uc, it corresponds to a weighted dot-

product similarity where each element of uc is the relative importance of each corresponding

element of the Hadamard product.

Then, the attention weights αi,j,c are defined as a normalized version of ei,j,c such that for

each node vi and each head c, they are positive and sum to 1:

αi,j,c =
exp(ei,j,c)∑

k∈N (vi)
exp(ei,k,c)

(2.33)

where N (vi) is the set of the neighbors of node vi. The set N (vi) may contain the node vi itself.

If so, we say that we add self-loops to the graph. Adding self-loops provides the information of

the node vi in its future representation.

The next step consists of computing, for each node vi, a convex combination of the λj,c for

all neighbors vj of vi using the attention weights. These weights can be seen as the amount

of information that flows between nodes or the importance of a message passing from vj to

vi. Finally, the new representation hi of the node vi is given by the concatenation of all the

representations given by the k attention heads. i.e., each node vi is represented by a row vector

of f ′ × k features.

hi,c =
∑

j∈N (vi)

αi,j,cλj,c and hi = σ′
(
‖k−1
c=0hi,c

)
(2.34)

where σ′ is an activation function, softmax in the case of the last layer or ReLU for the other

layers, and ‖ is vector concatenation.
The network can be a stack of several such attention layers, the output of each layer being

the input of the next layer.

The parameters that must be learned areW , b, and for each of the k attention heads in each

attention layer: the matrix Wc and the vector uc. The hyper-parameters are f ′, the number of

attention layers, and the number k of heads in each attention layer. The activation functions σ

and σ′ can also be chosen by the user, basically they are ReLU or softmax functions.

CoBaGAD differs from the original GAT by two major points. First, we added a global

affine transformation (Eq.2.30) to embed the original features in a new space. This operation

improves the ability to detect anomalies and allows reducing the dimension of the problem.

Then, we use a custom attention mechanism in Eq.2.32. Rather than concatenating the new

representations of a pair of nodes, we compute a similarity between them with the Hadamard

product. The attribute weight vector uc focuses on the most important part of this product for

later inference.

Two-class classification: In the case of anomaly detection, we classify the nodes into two

classes: anomalies and normal nodes. We design our neural network with one layer described

above and k = 2 attention heads. We choose two attention heads since we want that the

first one focuses on anomalies and the second one focuses on normal nodes. To do so, we

set the hidden dimension f ′ = 2. Thus, the output of the network is a vector of dimension
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4 after concatenation. We force the first head to recognize anomalies and the second head to

recognize normal nodes by choosing carefully the design of the ground-truth vectors. Anomalies

are represented by the vector (1, 0, 0, 0) while the normal nodes are represented by (0, 0, 0, 1).

Thus, a high value on the first coordinate of the first attention head will be the sign of an

anomaly and a high value on the second coordinate of the second head indicates that the

node should be normal. Reciprocally, a high value on the second coordinate of the first head

indicates that the node may be normal while a high value on the first coordinate of the second

head indicates an anomaly. To sum up, coordinate 0 and 2 are indicative of an anomaly while 1

and 3 indicate a normal node. In the end, the parity of the maximum coordinate of the output

of the network indicates whether a node should be classified as an anomaly or a normal node.

To showcase the detection power of our method, we conducted extensive experiments on

many different datasets. The datasets depend on the kind of graph that is used and the type

of anomaly defined by a context. A key issue is that such datasets are most of the time not

publicly available. Thus, we proposed a generator to create some datasets with contextual

anomalies.

2.4 Datasets generation

2.4.1 Generation of a graph with contextual anomalies

As benchmarks corresponding to the kind of anomaly considered in this chapter are not publicly

available, to experimentally evaluate our model and compare it with the state of the art, we

have designed a generator to automatically introduce context-based anomalies in a graph.

Starting from a graph G(V, E) and a context, our Contextual Anomaly Generator, ConA-

Gen, transforms this graph G(V, E) into an attributed graph G(V, E , X) with contextual anoma-

lies. First, we choose a graph without any feature on the nodes. Then, we add features to each

node. There are many ways to create features for the nodes. The first step consists of choosing

between categorical and numerical attributes. Attributes correspond to discrete categories like,

for example, the city someone lives in. Numerical attributes are attributes whose values are

numbers in a continuous space. For example, the age of a person is a numerical attribute, and

"being young" is a categorical attribute. Thus, categorical attributes can be drawn from a finite

set while numerical attributes are usually drawn from a continuous distribution. Each node is

given a feature vector. Therefore, it is possible to mix the different attributes for each coordi-

nate of the vectors. The easiest way to generate feature vectors is the 1 dimensional categorical

case where each node is given a category from a small finite set of categories. For example, each

node is given one color at random among five possible colors. Much more complicated feature

vectors can be designed with multi-dimensional numerical attributes drawn from complex dis-

tributions for instance. Finally, nodes are tagged as anomalies or normal nodes depending on
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their local context.

The generating process can be summed up as follows:

• Choose a graph and a context for anomalies

• Draw features from a distribution

• Tag nodes as anomalies if their neighborhood exhibits the context

Of course, during the generation of a dataset with contextual anomalies, the context that

makes a node an anomaly is known. This is necessary to label the nodes as anomalous or

normal. These labels may be used by an anomaly detector afterward.

2.4.2 An illustrative example

Assume a simple example where the input of ConAGen is the small graph drawn on Figure

2.10. The features of the nodes will be randomly drawn in a finite set of categorical attributes

{blue (B), green (G), red (R), yellow (Y), purple (P)} where each node can only have one color.

The context to define an anomaly is simple too. It is the fact that a node is yellow. In the

following, it will be denoted as the anomaly type A3.

Next, we are going to detail the process of generating the dataset in the case of a simple

graph with context A3. The first step of the dataset generation is to choose a graph G(V, E)

without any feature on the nodes, for example, the graph of Figure 2.10.

Figure 2.10: The first step of the dataset generation process: choose a graph with no features.

The second step consists of attributing a feature vector to each node of the graph. To do so,

we choose one-hot vectors of size f describing the f different colors. For instance, the color blue

(B) is equivalent to (1, 0, 0, 0, 0) and yellow (Y ) is equivalent to (0, 0, 0, 1, 0). In this example,

the features are categorical attributes that we interpret as colors but could be interpreted as
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Figure 2.11: The second step of the dataset generation process: randomly draw feature vectors

for each node of the graph.

any discrete categorical features. In the end, each node is attributed a one-hot feature vector

randomly with uniform probability among the different colors as in Figure 2.11.

The final step is the labelization of the nodes. Depending on the chosen context, nodes are

tagged as anomalies or normal nodes as in Figure 2.12.

Figure 2.12: The final step of the dataset generation process: flag nodes that are anomalies.

2.5 Experimental evaluation of CoBaGAD

To experimentally evaluate the ability of CoBaGAD to identify anomalies, we use ConAGen to

generate different datasets with different contexts, and then, we compare its performances with

other state-of-the-art methods.
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2.5.1 Datasets

In our experiments, we choose six graphs with very different structures and seven types of

contexts. Table 2.1 gives the name, the number of nodes, and the number of edges of these

graphs. G0 is a random Erdos-Renyi graph. G1 and G4 are also generated, respectively with

Dancer [Largeron et al., 2017] and LFR [Lancichinetti et al., 2008], which mimic real-world

graph behavior. Moreover, we chose real-world graphs that are common in the literature:

Polblogs 1, Cora 2 and Facebook 3.

Graph Name Nodes Edges

G0 Erdos-Renyi 10000 24907

G1 Dancer 10000 189886

G2 Facebook 4039 88234

G3 Polblogs 1224 16715

G4 LFR 1000 5622

G5 Cora 1433 5429

Anomalies Definition Context subgraphs

A0 B ∧G

A1 (B ∧G) ∨ (B ∧R) /

A2 (B ∧G) ∨ (Y ∧R) /

A3 Ȳ

A4 Ȳ ∧B

A5 Y ∧ Ȳ ∧B

A6 Ȳ ∨ (Y ∧B) /

Table 2.1: Left table: Datasets characteristics: name of the graphs, number of nodes and edges.

Right table: Anomalies characteristics. B = blue, G = green, R = red, Y = yellow, P =

purple. Ȳ means that anomalies are nodes that have color Y . B means that anomalies have at

least one neighbor whose color is B.

Then, the feature vector xi of node vi is defined as a one-hot vector of dimension f . In our

illustrative example related to fraud detection, such features can be interpreted as the role in a

company (e.g. (0, 0, 1, 0, 0) represents the CEO and (0, 1, 0, 0, 0) represents an employee). In the

following, to simplify the explanation, the one-hot vectors are equivalent to colors respectively:

blue (B), green (G), red (R), yellow (Y), and purple (P). Indeed, every node of the graph is

attributed a one-hot vector that can be interpreted as to its color or any categorical attribute.

Finally, we choose a context that will describe the anomalies. Among the nodes of the graph,

some of them are flagged as anomalies if they follow a simple rule described by this context. In

our experiments, we studied the rules presented in Table 2.1 but other rules can be considered.

In this table, Ȳ means that anomalies are nodes that have color Y ellow whereas B means that

anomalies have at least one neighbor whose color is Blue. For example, A6 = Ȳ ∨ (Y ∧ B)

represents nodes that have the color yellow (Y ) or have at least one neighbor with color blue

(B) and at least one neighbor with color yellow (Y ). By doing so, there are a lot of anomalies

in the graph. It is not an issue in its current form but we want to address the problem of

anomaly detection in the framework of imbalanced data since anomalies are, by definition, rare.

1http://konect.cc/networks/dimacs10-polblogs/
2https://relational.fit.cvut.cz/dataset/CORA
3https://snap.stanford.edu/data/egonets-Facebook.html
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To reduce their number and to be in an imbalanced setup that is closer to real-world cases, we

change the color of some nodes. The color purple (P ) which corresponds to the feature vector

(0, 0, 0, 0, 1) will never be used in the definition of the local contexts (see Table 2.1). Thus,

we use it to replace the features of other nodes to have only between 4% and 6% of anomalies

in the graphs. We could still reduce this number to control the level of imbalance but lower

numbers of anomalies result in fewer instances to learn a machine learning model. Some of the

graphs we use in our experiments only have 1000 nodes which gives roughly 50 anomalies. As

explained later, only half of them are used to train the model, that is 25 examples. In the end,

we cannot reduce this number as there would not be enough data to train. On the other hand,

it would be possible to study cases where there are fewer anomalies (as a percentage of the total

nodes) if we were to use bigger graphs.

Note that our algorithm CoBaGAD does not know how the anomalies have been created.

Indeed, in a real-world case, the expert would flag some nodes as anomalies but he does not

necessarily know the conditions which make a node anomalous. Thus the goal of our algorithm

is to recognize these anomalies without this contextual knowledge.

2.5.2 Experimental setup

Thanks to our generator, ConAGen, all the nodes of the graphs belong to either the set of

anomalies or the set of normal nodes. In a transductive setup, nodes are split into train, val-

idation, and test sets. The train set is made of 50% of the total anomalies. Then, we add

as many normal nodes as there are anomalies. The same applies to the validation set with

25% of anomalies. The test set is composed of the remaining 25% of anomalies and 25% of

normal nodes of the graph. Balancing train and validation sets to have as many normal nodes

as anomalies improved a lot the results. Thus a part of negative examples (normal nodes) is

ignored during training. To ensure the reproducibility of our results, the code and the datasets

are available in our GitHub 4.

We compare our algorithm, CoBaGAD, with state-of-the-art methods in node classifica-

tion: Graph Convolution Networks [Kipf and Welling, 2017] (GCN), Graph Attention Networks

[Veličković et al., 2018] (GAT), GraphSAGE [Hamilton et al., 2017] with mean aggregator and

an unsupervised anomaly detection approach based on Node2vec [Grover and Leskovec, 2016]

and LOF [Breunig et al., 2000].

For every deep learning method, we learn a single layer: we experimentally show that

it is the best parameter. Given the kind of studied pattern, adding more layers seems not

relevant. For CoBaGAD, we use GELU [Hendrycks and Gimpel, 2016] as activation function

σ and softmax as activation function σ′, f ′ and k = 2 are set to 2 as we learn two 2-classes

classifiers for classifying both anomalies and normal nodes. For GAT and GraphSAGE, we

4https://github.com/vaudaine/Detection-of-contextual-anomalies-in-attributed-graphs

68



Chapter 2. Graph contextual anomalies detection

use the same parameters. For GCN, we use localpool filter, softmax as activation function

and output of dimension 2. For every algorithm, we tried two versions: without self-loop

and with self-loops by adding the identity matrix to the adjacency matrix and we present the

best results. We train for 1000 epochs with Adam optimizer [Kingma and Ba, 2015] and a

learning rate of 5e− 3 on the train set and validate it at each step. Thanks to early stopping,

the weights of the networks are kept when the accuracy on the validation set is the highest.

We use the standard categorical cross-entropy loss for k classes and n instances of the data:

L(Y true, Y pred) = −
∑k

j=1

∑n−1
i=0 (ytrueij × log(ypredij )).

Concerning the unsupervised approach, it is an association between Node2vec embedding

and LOF anomaly detection. First, we compute an embedding of the graph using Node2vec

with p = 1, q = 1, and dimension 128. It outputs a new representation for every node vi. This

representation is concatenated with its feature vector ~xi. Finally, these vectors are fed to a

LOF classifier to detect anomalies.

2.5.3 Results

For each model, each dataset, and each type of anomaly, experiments are conducted 12 times

by changing the train/validation/test split. We choose the 3 best results on the validation and

report the mean and standard deviation of the precision or the recall obtained on the test set.

The experiments have been conducted on the six different graphs from G0 to G5 and on the

seven anomaly types from A0 to A6 for a total of 42 experiments. Only the precision of the

anomaly class is reported. The recall of both anomalies and normal nodes and the precision

of normal nodes are not discriminating between the methods. They are given in Annexes 3.7.

Among these 42 results, CoBaGAD outperforms every other state-of-the-art method 33 times

in terms of precision of the detection of the anomaly class. These results can be found in the

following tables from 2.2 to 2.8 for each anomaly type.

A0 / Graph G0 G1 G2 G3 G4 G5

CoBaGAD 0.98± 0.03 0.96± 0.03 0.87± 0.09 0.56± 0.16 0.85± 0.13 0.92± 0.12

CoBaGAD loops 0.76± 0.05 0.89± 0.14 0.95± 0.03 0.87± 0.09 0.22± 0.1 0.69± 0.07

GAT 0.96± 0.04 0.5± 0.24 0.29± 0.02 0.55± 0.08 0.59± 0.13 0.93± 0.1

GAT loops 0.68± 0.04 0.83± 0.02 0.33± 0.08 0.43± 0.09 0.18± 0.04 0.59± 0.02

GCN 0.34± 0.02 0.11± 0.0 0.1± 0.0 0.18± 0.02 0.23± 0.02 0.26± 0.02

GCN loops 0.24± 0.0 0.12± 0.01 0.11± 0.0 0.16± 0.02 0.31± 0.03 0.14± 0.01

GraphSAGE 0.51± 0.03 0.51± 0.03 0.63± 0.05 0.44± 0.08 0.34± 0.05 0.52± 0.03

GraphSAGE loops 0.53± 0.01 0.56± 0.03 0.54± 0.12 0.41± 0.05 0.36± 0.08 0.5± 0.05

Naive 0.06± 0.01 0.06± 0.01 0.06± 0.02 0.16± 0.09 0.05± 0.04 0.03± 0.01

Table 2.2: Precision of the anomalies for A0 on several graphs (G0-G5) in the testing set.

The first group of anomaly types is A0 = B ∧ G, A1 = (B ∧ G) ∨ (B ∧ R) and A2 =

(B ∧ G) ∨ (Y ∧ R). For these anomaly types, the context of the node is entirely defined by

its neighborhood. The information necessary to know whether a node is an anomaly is located
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A1 / Graph G0 G1 G2 G3 G4 G5

CoBaGAD 0.96± 0.03 0.92± 0.11 0.78± 0.29 0.69± 0.22 0.72± 0.15 0.85± 0.12

CoBaGAD loops 0.72± 0.03 0.98± 0.02 0.78± 0.1 0.73± 0.05 0.44± 0.22 0.69± 0.02

GAT 0.74± 0.3 0.55± 0.21 0.51± 0.14 0.63± 0.07 0.46± 0.19 0.8± 0.18

GAT loops 0.71± 0.01 0.4± 0.06 0.33± 0.03 0.61± 0.12 0.25± 0.09 0.54± 0.04

GCN 0.34± 0.02 0.11± 0.01 0.12± 0.02 0.19± 0.03 0.32± 0.02 0.26± 0.01

GCN loops 0.24± 0.01 0.19± 0.03 0.13± 0.02 0.18± 0.02 0.34± 0.04 0.16± 0.01

GraphSAGE 0.46± 0.04 0.49± 0.04 0.51± 0.06 0.39± 0.06 0.38± 0.07 0.47± 0.04

GraphSAGE loops 0.41± 0.02 0.5± 0.02 0.49± 0.03 0.38± 0.08 0.31± 0.07 0.47± 0.03

Naive 0.05± 0.0 0.05± 0.01 0.09± 0.01 0.18± 0.04 0.0± 0.0 0.01± 0.01

Table 2.3: Precision of the anomalies for A1 on several graphs (G0-G5) in the testing set.

A2 / Graph G0 G1 G2 G3 G4 G5

CoBaGAD 0.61± 0.04 0.61± 0.02 0.58± 0.2 0.47± 0.14 0.64± 0.15 0.72± 0.06

CoBaGAD loops 0.46± 0.01 0.62± 0.06 0.34± 0.01 0.35± 0.15 0.26± 0.14 0.48± 0.06

GAT 0.52± 0.02 0.41± 0.04 0.29± 0.03 0.32± 0.07 0.3± 0.03 0.51± 0.11

GAT loops 0.43± 0.02 0.42± 0.1 0.25± 0.01 0.35± 0.06 0.18± 0.03 0.49± 0.03

GCN 0.27± 0.02 0.12± 0.0 0.13± 0.01 0.17± 0.01 0.25± 0.02 0.23± 0.03

GCN loops 0.16± 0.01 0.11± 0.0 0.14± 0.01 0.2± 0.04 0.19± 0.04 0.14± 0.0

GraphSAGE 0.33± 0.01 0.37± 0.01 0.43± 0.04 0.44± 0.05 0.27± 0.05 0.38± 0.01

GraphSAGE loops 0.32± 0.03 0.38± 0.02 0.44± 0.03 0.41± 0.04 0.33± 0.03 0.32± 0.04

Naive 0.03± 0.01 0.05± 0.02 0.08± 0.01 0.1± 0.01 0.03± 0.03 0.01± 0.01

Table 2.4: Precision of the anomalies for A2 on several graphs (G0-G5) in the testing set.

entirely on the set of neighbors of this node. Thus, no information from the node itself is needed.

This means that, when aggregating the message from all neighboring nodes in Equation 2.34, it

is not mandatory to take into account the node itself. In other words, the additional self-loops

in the adjacency matrix should not add useful information.

From Tables 2.2, 2.3 and 2.4, we can see that CoBaGAD consistently outperforms every

other state-of-the-art methods for 17 out of 18 experiments with an average precision of 0.78±
0.15 among all graphs and those three kinds of anomaly. In comparison, GAT has an average

precision of 0.57±0.20, GCN has 0.22±0.08, GraphSAGE has 0.44±0.08 and the naive approach

has an average precision of 0.06±0.05. Moreover, we do not necessarily expect the experiments

without self-loops to perform better as additional information from the loops could be put aside

by the algorithm. The results show that CoBaGAD has better results without self-loops for 12

out of the 18 experiments which confirm that self-loops are not mandatory for the detection

of these three types of anomalies even though it sometimes improves the performance of the

algorithm.

The second group of anomaly types is A3 = Ȳ , A4 = Ȳ ∧ B, A5 = Y ∧ Ȳ ∧ B and

A6 = Ȳ ∨ (Y ∧ B). For these anomaly types, the context of the node is entirely defined by its

neighborhood and the node itself. Thus, it is mandatory to have information from the node

itself to be able to classify the node correctly. Thus, we expect the methods with self-loops to
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A3 / Graph G0 G1 G2 G3 G4 G5

CoBaGAD 0.18± 0.0 0.27± 0.0 0.44± 0.05 0.21± 0.01 0.33± 0.08 0.13± 0.0

CoBaGAD loops 0.99± 0.01 0.99± 0.01 0.95± 0.05 0.91± 0.13 0.89± 0.15 0.93± 0.02

GAT 0.17± 0.01 0.36± 0.16 0.45± 0.12 0.22± 0.06 0.37± 0.23 0.09± 0.02

GAT loops 0.82± 0.07 0.79± 0.03 0.78± 0.07 0.55± 0.03 0.43± 0.01 0.61± 0.09

GCN 0.07± 0.0 0.06± 0.0 0.06± 0.0 0.06± 0.0 0.07± 0.0 0.06± 0.0

GCN loops 0.95± 0.02 0.97± 0.02 0.91± 0.07 0.8± 0.21 0.94± 0.08 0.78± 0.04

GraphSAGE 1.0± 0.0 0.95± 0.04 0.97± 0.04 0.71± 0.1 0.65± 0.29 0.8± 0.11

GraphSAGE loops 0.93± 0.08 0.99± 0.01 0.84± 0.09 0.66± 0.1 0.68± 0.24 0.97± 0.03

Naive 0.21± 0.01 0.06± 0.01 0.17± 0.01 0.0± 0.0 0.17± 0.06 0.04± 0.02

Table 2.5: Precision of the anomalies for A3 on several graphs (G0-G5) in the testing set.

A4 / Graph G0 G1 G2 G3 G4 G5

CoBaGAD 0.88± 0.09 0.9± 0.03 0.97± 0.04 0.8± 0.07 0.56± 0.12 0.57± 0.08

CoBaGAD loops 0.9± 0.1 0.95± 0.04 0.88± 0.05 0.61± 0.03 0.62± 0.1 0.89± 0.09

GAT 0.44± 0.03 0.72± 0.02 0.77± 0.03 0.47± 0.17 0.51± 0.1 0.33± 0.04

GAT loops 0.5± 0.07 0.77± 0.15 0.58± 0.12 0.67± 0.23 0.45± 0.1 0.43± 0.05

GCN 0.12± 0.0 0.08± 0.0 0.07± 0.01 0.06± 0.02 0.08± 0.01 0.12± 0.02

GCN loops 0.44± 0.01 0.7± 0.03 0.71± 0.12 0.6± 0.12 0.65± 0.07 0.35± 0.02

GraphSAGE 0.46± 0.03 0.73± 0.04 0.69± 0.03 0.58± 0.11 0.61± 0.04 0.41± 0.03

GraphSAGE loops 0.45± 0.02 0.73± 0.02 0.72± 0.02 0.53± 0.11 0.49± 0.06 0.36± 0.03

Naive 0.08± 0.0 0.09± 0.01 0.15± 0.01 0.0± 0.0 0.09± 0.01 0.02± 0.01

Table 2.6: Precision of the anomalies for A4 on several graphs (G0-G5) in the testing set.

A5 / Graph G0 G1 G2 G3 G4 G5

CoBaGAD 0.84± 0.02 0.9± 0.03 0.82± 0.07 0.61± 0.03 0.51± 0.23 0.84± 0.22

CoBaGAD loops 0.56± 0.04 0.8± 0.12 0.75± 0.07 0.48± 0.15 0.49± 0.03 0.5± 0.01

GAT 0.69± 0.11 0.74± 0.11 0.54± 0.09 0.57± 0.07 0.52± 0.09 0.46± 0.1

GAT loops 0.4± 0.06 0.74± 0.07 0.71± 0.09 0.5± 0.16 0.41± 0.01 0.38± 0.06

GCN 0.11± 0.01 0.08± 0.0 0.07± 0.01 0.07± 0.0 0.08± 0.01 0.1± 0.01

GCN loops 0.35± 0.01 0.67± 0.04 0.62± 0.07 0.6± 0.04 0.46± 0.13 0.23± 0.02

GraphSAGE 0.32± 0.02 0.68± 0.0 0.68± 0.06 0.47± 0.02 0.56± 0.06 0.26± 0.05

GraphSAGE loops 0.34± 0.01 0.68± 0.03 0.65± 0.06 0.51± 0.04 0.5± 0.04 0.3± 0.04

Naive 0.04± 0.0 0.06± 0.01 0.13± 0.02 0.0± 0.0 0.05± 0.04 0.04± 0.03

Table 2.7: Precision of the anomalies for A5 on several graphs (G0-G5) in the testing set.

perform much better than the ones without self-loops.

From Tables 2.5, 2.6, 2.7 and 2.8, we can see that CoBaGAD still consistently outperforms

every other state-of-the-art methods for 17 out of 24 experiments with an average precision of

0.79 ± 0.19 among all graphs and those four kinds of anomaly. In comparison, GAT has an

average precision of 0.58 ± 0.15, GCN has 0.57 ± 0.24, GraphSAGE has 0.63 ± 0.19 and the

naive approach has an average precision of 0.08±0.06. Moreover, we do expect the experiments

with self-loops to perform better as additional information from the loops is mandatory. The
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A6 / Graph G0 G1 G2 G3 G4 G5

CoBaGAD 0.66± 0.3 0.37± 0.12 0.5± 0.18 0.4± 0.03 0.25± 0.08 0.27± 0.15

CoBaGAD loops 0.9± 0.01 0.89± 0.05 0.54± 0.27 0.62± 0.2 0.73± 0.08 0.4± 0.04

GAT 0.14± 0.02 0.34± 0.08 0.31± 0.02 0.4± 0.03 0.22± 0.07 0.16± 0.07

GAT loops 0.55± 0.12 0.59± 0.12 0.39± 0.05 0.48± 0.1 0.27± 0.03 0.39± 0.03

GCN 0.13± 0.02 0.12± 0.01 0.13± 0.01 0.15± 0.03 0.19± 0.01 0.11± 0.03

GCN loops 0.38± 0.05 0.26± 0.09 0.2± 0.07 0.21± 0.01 0.32± 0.13 0.46± 0.11

GraphSAGE 0.67± 0.04 0.58± 0.05 0.44± 0.03 0.35± 0.06 0.3± 0.08 0.64± 0.06

GraphSAGE loops 0.65± 0.03 0.54± 0.04 0.48± 0.06 0.49± 0.16 0.48± 0.06 0.65± 0.14

Naive 0.18± 0.02 0.11± 0.01 0.12± 0.01 0.1± 0.05 0.1± 0.04 0.06± 0.01

Table 2.8: Precision of the anomalies for A6 on several graphs (G0-G5) in the testing set.

results show that CoBaGAD has better results with self-loops for 16 out of the 24 experiments

which confirms that self-loops are mandatory for the detection of these types of anomalies.

To sum up, the results show that our algorithm achieves state-of-the-art performance across

all datasets and anomalies. More specifically, for A0, A1 and A2 which all are anomalies based

on the pattern B ∧ G, our method always outperforms the other competitors (except for A0,

G5 where it is still very relevant). We are able to improve upon GAT, our principal contender,

by at least 2% on A0, G0 up to 62% on A0, G2. Attention-based methods are better than

the others (GCN, GraphSage, Node2vec + LOF) when dealing with these types of anomalies.

Anomalies A3 to A6 rely on the pattern Ȳ which means that the considered nodes are yellow.

Thus, information about the node itself is required. A3 is a very simple pattern where anomalies

are defined by the simplest pattern: nodes are just yellow. In that case, we can suppose that

it is easy for many algorithms to perform well in detecting those nodes. In fact, GraphSAGE

shows good performance for most of the graphs but lacks a bit of consistency. GCN is more

consistent but results are worse than those provided by GraphSAGE. While GAT fails to show

good performance, our method is the most consistent and shows very good results in general.

Then, for A4 to A6, as the pattern becomes more complex, CoBaGAD remains the only method

that, except a few cases, correctly detects the anomalies.

2.5.4 Number of layers: hyper-parameter tuning

The key parameter in our method is the number of layers of the graph neural network. A layer

aggregates information from the set of neighbors of a node as described in Equation 2.34. Thus,

a network with two layers will aggregate information from the 2-hop neighborhood which is the

set of neighbors of the neighbors of a node. Accordingly, a neural network made of C layers

will aggregate information from nodes at distance C. While more information is necessary in

some cases, algorithms tend to be less accurate when given too much senseless data. To verify

this, we test one hypothesis:

• Anomalies defined by a context at distance C are better detected with a neural network

with C layers.
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This involves using networks with more layers to increase the "field of view" and also studying

an anomaly defined by a context of larger diameter. Thus, we introduce the anomaly A7 defined

by the context: if a node vi has at least one blue neighbor vj that has at least one blue neighbor

vk which is not vi, then vi is an anomaly. Thus, information at distance two is necessary to

detect anomalies of type A7. To test our hypothesis, we conducted the exact same experiments

as in the previous section but, this time, we change the number of layers. Intermediate layers

have a ReLU activation while the final one has a softmax. We still do the experiments twelve

times, find the best three based on the validation set and average their results on the test set.

The results for G4 and G5 for every type of anomaly are given in Tables 2.9 and 2.10

G4 A0 A1 A2 A3 A4 A5 A6 A7

1 Layer 0.85± 0.13 0.72± 0.15 0.64± 0.15 0.89± 0.15 0.62± 0.10 0.51± 0.23 0.73± 0.08 0.48± 0.00

2 Layers 0.50± 0.25 0.31± 0.07 0.23± 0.03 0.85± 0.03 0.61± 0.17 0.44± 0.07 0.46± 0.06 0.39± 0.01

3 Layers 0.31± 0.03 0.28± 0.03 0.42± 0.20 0.77± 0.16 0.22± 0.04 0.23± 0.02 0.39± 0.01 0.41± 0.08

Table 2.9: Precision of the detection of anomalies A0-A7 on the graph G4 in the testing set.

G5 A0 A1 A2 A3 A4 A5 A6 A7

1 Layer 0.92± 0.12 0.85± 0.12 0.72± 0.06 0.93± 0.02 0.89± 0.09 0.84± 0.22 0.40± 0.04 0.29± 0.03

2 Layers 0.31± 0.06 0.27± 0.04 0.18± 0.03 0.72± 0.20 0.63± 0.18 0.55± 0.18 0.15± 0.04 0.14± 0.02

3 Layers 0.26± 0.05 0.29± 0.08 0.22± 0.09 0.29± 0.09 0.46± 0.14 0.45± 0.12 0.22± 0.06 0.33± 0.14

Table 2.10: Precision of the detection of anomalies A0-A7 on the graph G5 in the testing set.

What we expect from the results is that the 1 layer case is better for all anomalies except A7

where the 2 layer case should be better. Results show that for every anomaly A0 to A6 whose

context only needs information at distance 1, the model with only 1 layer is the best every

time. As for A7, where information at distance 2 is necessary, we see that the 1 layer model is

better in the case of G4 while the 3 layer model is better for G5. In the end, our hypothesis

is partially confirmed. For contexts at distance 1, 1 layer is enough. Whereas for contexts at

a larger distance, more experiments have to be conducted to better understand the impact of

the number of layers on the performances.

2.6 Conclusion

Throughout this chapter, we have defined a new kind of graph anomaly based on a context.

Such anomalies follow a simple pattern. We also proposed a generator to create datasets with

contextual anomalies that we use to conduct our experiments. Then, we have presented a

Context-Based Graph Anomaly Detector, CoBaGAD, an extension of the Graph Attention

Networks that focuses on detecting contextual anomalies. With intensive transductive experi-

ments, we demonstrate the ability of our method to identify such anomalies and to outperform

state-of-the-art algorithms.

Different improvements can be addressed in future work such as scoring anomalies instead of

binary classifying. We would like also to address the case of numerical attributes or at least
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more complex features when generating our datasets instead of categorical attributes like col-

ors. Another particularly interesting field of research in the domain of anomaly detection is the

explainability of the detected anomalies. The objective is to be able to recover the context that

defines an anomaly. That is the topic of the next chapter.
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Chapter 3

Explaining anomaly classification in

graphs.

Graph mining has been radically changed by machine learning in the last few years. Community

detection, node classification, or link prediction are a few of the many tasks that have been

revisited and whose results have been significantly improved. Even though machine learning

led to successful enhancements, it has brought its black-box models whose decisions are not

well human-understandable. Understanding the predictions of a model can be very beneficial

to trust the model itself. Nowadays, models are usually evaluated by accuracy metrics on avail-

able data but their performances in real-world cases can be very different. In addition, some

models are very sensitive to small modifications of the training data [Mannino et al., 2009].

Thus, understanding single predictions can lead to an overall better model and can avoid errors

when using the model. Moreover, the lack of transparency of black-box models makes them not

very acceptable when they are responsible for important decisions in our daily life, for instance

for health applications or for fraud detection where the identification of an anomaly can lead

to a legal proceeding that can not be launched only on a probability score.

In this chapter, we present a new model to learn an explanation for node classification predic-

tion in the context of anomaly detection in attributed graphs. In the specific case of anomaly

detection, nodes of the anomalous class are not necessarily densely connected in the graph. It is

notably true for contextual anomalies, studied in this chapter, where anomaly depends on their

neighborhood. This kind of anomaly is relatively frequent in practice and, usually not easy to

detect. If black-box models can detect them efficiently, they are not able to justify the reasons

for which they have assigned the label "anomalous" to a particular node.

To overcome this limit, we propose to explain their prediction by learning a new understand-

able model for every instance identified as anomalous. More precisely, in a LIME-like fashion

[Ribeiro et al., 2016], we perturb the neighborhood of the node to create new instances rela-

tively similar to this node. Then, the black-box classifier is used to predict the class of those

perturbed instances. Finally, using this new dataset, composed of the perturbed instances with

their class predicted by the black-box model, a new local and interpretable classifier is learned
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that tells whether the perturbation changed the node’s class or not. Thus, the local classifier

allows explaining the decisions of the global black-box model.

In this chapter, we present:

• A new framework to explain the predictions of black-box models in the context of anomaly

detection in attributed graphs,

• The definition of measures to quantify the effectiveness of an explanation,

• An experimental validation of our method on several kinds of graphs that confirms its

interest.

The chapter is organized as follows. First, we review related works. We define the problem

studied in Section 3.2 and present our method to explain contextual anomalies in attributed

graphs in Section 3.3. Then, we describe our evaluation protocol in Section 3.4 and the ex-

periments carried out to evaluate the ability of our method to explain the decisions taken by

a black-box classification model in Section 3.5. Finally, we discuss the obtained results and

compare them to those provided by state-of-the-art methods in Section 3.6.

3.1 Related work

3.1.1 Explainability in the context of vector data

Recent approaches, based on deep learning have proved to be particularly effective for solving

many tasks. However, due to the "black-box" effect, they also suffer from a lack of understand-

ability which limits their use. The interpretability of the models, i.e. their understanding by

the AI specialists but also their explainability, i.e. the understanding by the end-user of the

reasons that led the algorithm to make a decision, have become real societal issues notably

for applications in many areas such as medicine or criminal justice [Arrieta et al., 2020]. This

led the European Union to introduce a right to explanation in General Data Protection Right

(GDPR). Different methods have been proposed to tackle the issue of explaining a black-box

prediction. According to [Arrieta et al., 2020], predictive models are either transparent, i.e.

self explanatory like decision trees, or need post-hoc explainability. Our study is within the

scope of model-agnostic post-hoc explainability. This branch can be divided into several fami-

lies: local explanations, visual explanations, feature relevance explanation, and explanation by

simplification. Feature relevance explanation with sensitivity analysis and local explanations

with additive feature attribution are the closest methods to our work.

3.1.1.1 Sensitivity analysis (SA)

The basic idea of sensitivity analysis is to look over all the space of features to evaluate the

response of the model. SA quantifies how much an input of a model has to change to modify its
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output. [Krause et al., 2016] provide interactive partial dependence diagnostics. In the context

of risk management in medicine, the authors want to find how features affect the prediction of

a model with partial dependence plots. The concept of partial dependence has been introduced

by [Friedman, 2001]. This is a visualization tool to summarize the dependence of a function

φ on the values of its input variables {xi}ni=1 where xi ∈ Rf . It is easy to plot a function

depending on only one or two variables but viewing functions of high-dimensional arguments

is more difficult. To formally define the partial dependence, let S ⊂ {1, ..., f} and C be the

complement of S. S and C are the index subsets. For example, if S = 1, 2, 3, 4, then xi,S refers

to the 4 × 1 vector containing the values of the first four coordinates of xi = xi,S ∪ xi,C . It is

possible to rewrite the output of the model as: φ(xi) = φxi,C (xi,S) = φ(xi,S |xi,C). Then, the

partial dependence is defined as:

φS(xi,S) =
1

n

n∑
j=1

φxj,C (xj,S) (3.1)

This partial dependence allows one to study the influence of a subset of features. It tells

us for given values of S what the average marginal effect on the prediction is. For example,

assume we learn a model φ to predict the risk of a person having cancer. It is possible to

study the partial dependence of the model to feature "Age" by plotting its partial dependency

plot. The set S corresponds to the singleton containing only the feature "Age". Then, for each

value of "Age", it is possible to compute φS(xi,S). To do so, the age of each instance of the

data is modified to a specific value. Then, the model predicts a risk for each instance that is

averaged. Finally, the process is repeated for every value of "Age". The partial dependence of

the predicted risk with respect to the age of a population is given in Figure 3.1.

Figure 3.1: Partial dependence plot of the average predicted risk with respect to the age [Krause

et al., 2016]

Thus, partial dependence plots give an insight into the dependence of a predictive model

with regards to some specific features. These plots are very useful to have a first look at the

dependence of the data. But more precise measures have also been developed.
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For their part, [Cortez and Embrechts, 2011] proposed different measures of sensitivity

analysis. SA allows assessing input relevance and effects on the model’s responses. First, the

data vectors xi ∈ Rf are aggregated into a baseline vector b ∈ Rf composed by the mean

attribute values where bj = 1
n

∑n
i=1 xij . Then, from the baseline vector b each input varies

through its range. For example, to study the influence of the j-th coordinate, its 1d space is

divided into K regular subspaces from mini=1,...,n xij to maxi=1,...,n xij . Then, a new dataset zj

is constructed where each zjk ∈ Rf is recursively defined by:

zj0 =

(
b1, b2, ..., min

i=1,...,n
xij , ..., bf

)
(3.2)

zjk = zk − 1 +

(
0, 0, ...,

maxi=1,...,n xij −mini=1,...,n xij
K

..., 0

)
(3.3)

Then, the respective model responses are used to compute a sensitivity metric. Let us

denote ˆzk,j the sensitivity response, i.e. the response of the model, for zjk. The range (r) is

defined as:

rj = max
k=0,...,K

( ˆzk,j)−mink=0,...,K( ˆzk,j) (3.4)

The gradient (g) is:

gj =
K∑
k=2

| ˆzk,j − ˆzk,j−1|/(K − 1) (3.5)

and the variance (v) is:

vj =
K∑
k=2

( ˆzk,j − ¯̂zk,j)
2/(K − 1) (3.6)

where ¯̂zk,j is the average of ˆzk,j over all K instances. Finally, the relative importance Rj of

each metric can be computed:

Rj = sj/

f∑
l=1

sl (3.7)

where s can be either r, g or v. These relative importance allows ranking the features to find

the most influential one.

3.1.1.2 Inverse classification

Inverse classification is a form of local sensitivity analysis: it focuses on one instance at a time

and consists of modifying one input of a black-box model to change its output to a specific

class. The main issue is to find the minimal change that leads to the desired class such that this

modification gives an explanation of the initial classification. [Laugel et al., 2018] proposed an

inverse classification approach. They have two objectives with their explanatory method: the

explanation must be accurate and human-understandable. They consider a binary classifier φ

where the observation x ∈ Rf must be interpreted with φ(x) its associated prediction. The goal

is to explain x with e, another observation, belonging to the other class such that φ(x) 6= φ(e).

The final explanation is e−x which is the minimal modification to do to change the class of the
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instance x. Indeed, if a small change of a specific coordinate involves a change in the predicted

class, then this feature is probably important. Conversely, if the predicted class changes due to

a very large modification of a coordinate, then it is probably unimportant to the classification.

Thus, they aim at solving the following problem:

e∗ = argmin
φ(x)6=φ(e)

c(x, e) (3.8)

where c(x, e) = ||x − e||2 + γ||x − e||0 with γ a weighting hyperparameter and ||x||0 is the

number of non-zero elements of x. To find the element e∗ that minimizes this cost function,

the authors use a growing sphere algorithms which consists of finding the minimal sphere layer

SL around x defined as:

SL(x, a0, a1) = {z|ao ≤ ||x− z||2 ≤ a1} (3.9)

This is done by changing the radius of this sphere such that, first there is no point of the other

class in it. Then, the sphere is expanded to only have one instance of the other class. In the

end, the explanation provided to the user is e∗ − x.

3.1.1.3 Additive feature attribution methods

The model that we propose to explain the prediction of a black-box model belongs to this

family.

Additive feature attribution methods use a linear function of binary variables as explanatory

model [Lundberg and Lee, 2017] [Shrikumar et al., 2017]. An explanation must be faithful to

the predictive model f , local, and interpretable. More specifically, let x0 be an input and φ(x0)

the prediction to be explained where φ is the black-box model. These methods use simplified

inputs x′ (for instance binary vectors) instead of x and they define a local mapping around

x0, hx0 , from the simplified inputs to the original inputs such that hx0(x′0) = x0 (x′0 is the

simplified version of x0). Then a local explanatory model gx0 is learned to try to preserve the

same output as φ in the neighborhood of x0: for all simplified inputs x′ such that hx0(x′) is

"close" to x0, gx0(x′) ≈ φ(hx0(x′)). The faithfulness of the model g with respect to φ is the

fact that g should find the same class as φ. Also, the model g is local since it approximates the

model φ around a specific instance x0.The different additive feature attribution methods differ

by the choice of their mapping functions h, of their loss function and, of the kind of explanatory

model g.

[Ribeiro et al., 2016] proposed LIME, for Local Interpretable Model-agnostic Explanations,

an explanation technique that can explain the predictions of any classifier. LIME introduces

a measure Ω(g) of the complexity of the model g such that this model is interpretable. For

example, it can be the depth of a decision tree. Then, πx(z) is a proximity measure between x

and z, another instance of the data, to define locality around x. Finally, the explanation model

g for the instance x must minimize both Ω(g) and L(φ, g, πx) a fidelity function. To do so, they
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sample instances z′ around x′ by drawing non-zero elements of x′ uniformly at random. Then,

from a perturbed instance z′, they recover the original representation z and obtain φ(z). This

set of recovered perturbed instances and their prediction can then be used to learn the model g.

The authors promote the use of linear models and sparse linear explanations most specifically

but any regression model could be used as long as it is interpretable. If we note M the number

of simplified input features, according to [Lundberg and Lee, 2017]:

g(z′) = ψ0 +
M∑
i=1

ψiz
′
i (3.10)

where z′ ∈ {0, 1}M and ψi ∈ R are learned.

To sum up, the additive feature attribution methods consist of two steps. First, draw

samples z around an instance x to explain. Then, learn a new model g with these samples z.

There are many approaches to deal with explainability in the context of vector data. Among

them, sensitivity analysis looks for the minimal change of input to modify its prediction by the

machine learning model. On the other hand, additive feature attribution methods rely on the

fact they perturb input instances to learn a local explanation model. These methods have

proven to be efficient for vector data but, for graph data, other approaches exist.

3.1.2 Explainability in the context of relational data

Most of the works done in XAI (Explainable Artificial Intelligence) concerns tabular data but

graph mining has also been revisited recently especially thanks to graph embedding techniques

and graph neural networks and, it suffers also from the lack of ability to understand the process

applied for classifying a node, predicting a link or detecting a community. A new taxonomy of

the different methods has been proposed in [Yuan et al., 2021] which distinguishes:

• Gradient-based methods [Pope et al., 2019] come from image and text processing. The

main idea is to differentiate the output of the model with respect to its input. This

creates a heat-map that gives the feature relative importance. Higher gradients usually

imply higher importance for the input features.

• Perturbation methods [Ying et al., 2019] [Luo et al., 2020] [Schlichtkrull et al., 2021]

are based on perturbations, small changes, of the input of the black-box model. The aim

is to study the change of output when modifying the input.

3.1.2.1 Gradient-based methods

Gradient-based methods [Pope et al., 2019] come from image and text processing. The under-

lying idea is to differentiate the output of the model with respect to its input. This creates

a heat-map that gives the features relative importance. Higher gradients usually imply higher

importance for the input features. These methods focus on Graph Convolutional Networks.
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For an attributed graph G(V, E , X) with adjacency matrix A, the matrix formulation of a GCN

layer H l is:

H l(X,A) = σ(CH l−1(X,A)W l) (3.11)

where σ is an activation function, W l are the weights learned at layer l and C = D̂−1/2ÂD̂1/2

is the convolution matrix with d̂ii =
∑

j âij and Â = A+ In is the adjacency matrix with added

self-loops. Then, the authors define the k-th graph convolutional feature map at layer l as:

hlk(X,A) = σ(CH l−1(X,A)wl
k) (3.12)

where wl
k is the k-th column of W l. Thus, for the node vi, the k-th feature at layer l is hlk,i. It

is possible to calculate the global average pooling feature after the final layer L as:

ek =
1

n

n∑
i=1

hLk,i (3.13)

and the class score, for class c, is yc =
∑

k w
c
kek. Finally, different heat-maps can be computed.

First, the gradient-based heat-map is:

Lcgradient(vi) = ||ReLU
(
∂yc

∂xi

)
|| (3.14)

Second, the Class Activation Mapping (CAM) is defined by:

LcCAM (vi) = ReLU

(∑
k

wckh
L
k,n(X,A)

)
(3.15)

As for GradCAM, an extension of CAM, the class c specific weights are calculated by:

αc,lk =
1

n

n∑
i=1

∂yc

∂hlk,i
(3.16)

To then compute the heat-map with:

LcGrad−CAM (vi) = ReLU

(∑
k

αc,lk h
l
k,n(X,A)

)
(3.17)

All these heat-maps allow evaluating the relative importance of the features at each layer of the

graph convolutional neural network. The authors conducted experiments to prove that they are

able to identify relevant substructures of the graph for a given classification. These subgraphs

are explanations of the classification.

3.1.2.2 Perturbation methods

GraphLIME [Huang et al., 2020] is a surrogate approach presented as an extension of the LIME

model [Ribeiro et al., 2016] to the graph domain. The aim of the method is to explain the

classification of a node vi by the model φ, described by its feature vector xi. The general

workflow of the method is the same as LIME. The first step consists of sampling around the
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data to explain. The second step is the process of learning a new model that is faithful and

interpretable. The sampling strategy is very simple: it samples the k-hop neighborhood Nk(vi)
around a node vi. For each node vj ∈ Nk(vi), it is possible to know its predicted class ŷj = φ(vj).

Then, GraphLIME learns an interpretable model g thanks to the aggregated information of the

neighborhood of vi with the HSIC, Hilbert-Schmidt Independence Criterion, Lasso framework

which is a non-linear feature selection method. To do so, it uses the features xj ∈ Rf associated

with each node vj ∈ N (vi) as input and their predicted class ŷj = φ(xj) as label. The goal of

the HSIC Lasso is to find the set of positive parameters βk that minimizes the following loss:

1

2
||L̄−

d∑
k=1

βkK̄
(k)||2F + ρ||β||1 (3.18)

where L̄ is the normalized centered Gram matrix that comes from the ŷj , K̄(k) is the normalized

centered Gram matrix for the k-th feature that comes from the xj and ρ is a regularization

parameter. The minimization is done via Least Angle Regression [Efron et al., 2004a]. In the

end, the βk are known and depict the relative importance of each feature. Finally, the most

important features are the explanation of the classification. The key limitation of GraphLIME

is that it cannot distinguish feature importance among neighbors. In particular, the features of

the node vi are inherently as important as those of its neighbors. In fact, GraphLIME outputs

the relative importance of each of the f features which is the same for the node vi and its

neighbors.

On the other hand, GNNExplainer [Ying et al., 2019] is a perturbation method that jointly

learns graph structural and node feature information to unveil what part of the graph is most

relevant when a model φ predicts the class of node vi. For this specific node vi, the goal of

GNNExplainer is to identify the subgraph GS and the set of features XS that are important for

the prediction ŷi = φ(vi). The first step consists of finding GS . GNNExplainer formulates the

problem as the maximization of the mutual information between the predicted class and the

predicted class when a part of the graph or a part of the features is masked:

MI(Ŷ , (GS , XS)) = H(Ŷ )−H(Ŷ |G = GS , X = XS) (3.19)

where H(Ŷ ) is the entropy of Ŷ and H(Ŷ |G = GS , X = XS) is a conditional entropy where a

part of the graph is masked. For a node vi, MI quantifies the difference between the case where

the full graph and the whole set of features are known with the case where only the subsets

GS and XS are known for training. The first term of the equation, H(Ŷ ), is an entropy term

that remains constant which is not taken into account for optimization purposes. The second

term is the only one to be maximized. The second step of the method is the process of learning

a feature selector for the nodes in GS . The algorithm only considers a subset of the features

XF
S = XS�F which is defined through a binary feature selector F ∈ {0, 1}f . Thus, only several

coordinates of the feature vectors will be selected. In the end, the following mutual information
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objective is jointly optimized:

MI(Ŷ , (GS , F )) = H(Ŷ )−H(Ŷ |G = GS , X = XF
S ) (3.20)

Intuitively, the feature selector F acts as a mask. If a feature is not important in the clas-

sification process, then masking this feature should not modify a lot the final prediction. To

conclude, GNNExplainer offers an explanation as to the set (GS , XS) after optimization. This

is a small amount of information needed to classify a specific node correctly. The explanation

is the subset of nodes and features that are necessary for the model to predict precisely. A key

limitation to this method is that the same mask is applied to the features of every node in the

subgraph, this means it cannot highlight different features on different neighbor nodes. Thus,

the authors chose to learn a uniform feature selector but this may not be suitable for many

cases and, in particular, for contextual anomalies.

[Luo et al., 2020] proposed PGExplainer, a parameterized explainer for graph neural net-

works. PGExplainer focuses on explaining multiple instances collectively. It addresses this

challenge with a deep neural network to parameterize the generation process of explanations.

The main idea of this method is to learn a probabilistic graph generative model to provide the

subgraph explaining a prediction. The general framework is the same as in GNNExplainer but

focuses on the underlying computation graph. The algorithm aims at maximizing the following

mutual information:

MI(Ŷ ,GS) = H(Ŷ )−H(Ŷ |G = GS) (3.21)

where G = GS + ∆G. G is the original graph, GS is the subgraph explaining the predictions Ŷ

and ∆G is the part of the graph which does not contain important information. Then, the model

collectively explains the predictions of a trained graph neural network on multiple instances.

It uses a parameterized network to learn to generate explanations. The model consists of two

steps. A vector representation is learned through a first layer GNN0:

Z = GNN0(A,X) (3.22)

then a classification layer GNN1 is applied:

Y = GNN1(Z) (3.23)

Thus, Z will be used as input for the explanation network Σ = g(G,Z). Several network g

are proposed to learn an explanation. The authors promote the use of a multi-layer perceptron

for both graph classification and node classification. In their experiments, they show that

their method finds subgraphs that are more explanatory than GNNExplainer. But it relies on

the output of a GNN. Thus, the information of the structure of the graph and the features

are already mixed together. It is not possible to differentiate between them. Moreover, as

GNNExplainer, PGExplainer lacks the opportunity to differentiate important features.
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All the methods discussed previously have one major drawback. They are not able to

distinguish the importance of features coming from different nodes. In particular, for the

case of contextual anomalies, it is important to differentiate between the different nodes of a

neighborhood. This led us to propose a new method dedicated to explaining the predictions of

a graph neural network.

3.2 Problem definition

The problem studied in this chapter consists of explaining the prediction of a black-box model

in the contextual anomaly detection setting. Thus, we assume that anomalous nodes have

already been detected by a first global model and, we propose a local method to explain,

in a human-understandable way, the reasons for which a specific node has been classified as

anomalous. Before presenting our method, we introduce notations and notions used throughout

this chapter.

3.2.1 Contextual anomaly detection

The detection of contextual anomalies has been extensively discussed in the previous chapter

2. We sum up its main components.

Formally, let G = (V, E , X) be an attributed graph defined by a set of n nodes V = {vi}, a
set of edges E = {eij} and a feature matrix X ∈ Rn×f where f is the dimension of the feature

vectors such that each row xi in matrix X is the feature vector describing the node vi. Each

node vi of G has a true label y(vi) ∈ {1, 0} where y(vi) = 1 if vi is anomalous and y(vi) = 0

otherwise. Moreover, we suppose that the anomalies are contextual. This means that there

exist several small subgraphs, called contexts, C1, C2,... and in each Ci there is a distinguished

node. For each occurrence of Ci in G, the node in G corresponding to this distinguished node

in Ci is an anomaly. The aim of contextual anomaly detection is to learn a model that will

classify unlabeled nodes into one class or the other. We do it with CoBaGAD and show that

our model performs very well.

3.2.2 Classification problem formalization

We suppose that the contexts Ci are not known and that the anomalies are detected in a

transductive setting: at training time, the labels of some of the nodes of G are known and a

classifier φG is learned using this training set to detect which of the unlabeled nodes correspond

to anomalies.

We assume that the output of the learning on this graph G is a black-box classifier φG .

Given a node vi and a graph N(vi), φG(vi, N(vi)) provides the prediction for the label of vi.

The attributed graph N(v) = (NV,NE,NX) denotes a neighborhood of vi which is used by the

model φG to compute this prediction (N(v) is also sometimes called the computation graph). It

contains the nodes NV, edges NE and features NX of the nodes close to vi in G. Depending on

84



Chapter 3. Explaining anomaly classification in graphs.

the class of models, N(v) can be, e.g., empty or equal to the whole graph G or a part of G. For
instance, when using GNNs, N(v) is the k-hop neighborhood of vi in G where k is the number

of layers in the GNN. In the rest of the chapter, to simplify the notations, φG is denoted φ.

3.3 Our method

This section presents our method to find an explanation for the label φ(vi, N(vi)) predicted by

the black-box model φ for a given node vi. Our strategy, inspired by LIME, is to first learn a

simple local model g "around" vi which is faithful (i.e., as good as φ locally) and interpretable

(i.e., it will be possible to derive an explanation from g).

This means that a different model g is learned for each node identified as anomalous by the

global black-box model φ and, usually g is simpler than φ: we do not expect that it can classify

all nodes vi of G accurately. It will only need to be accurate on nodes vj that are "close" in

some sense to vi. This closeness will not be relative to a distance between vi and vj in the graph

G as in GraphLIME. In our case, the nodes vj will be copies of vi with a randomly perturbed

neighborhood described next.

We chose decision trees as the class of models for g. Indeed, they are easy to learn, under-

standable, and provide a way to evaluate the importance of each of the features they use to

predict the class of a node but other types of models can also be used like for instance logistic

regression.

An important interest of the proposed methodological framework is that, for a given context

graph Ci, one can generate new training and testing data, as detailed below, and then compare

the explanations produced by our method to the ground truth defined by Ci. Of course, the

contexts Ci are not used in the learning phase (by the decision model) nor in the explanation

phase (by the explanation model). They are just used as ground truth to compute the quality

of the explanations, in terms of precision and recall, and to evaluate this explanation model

using measures that we introduce in Section 3.4. That is clearly an advantage of our method

which differs by this way from the other approaches where this ground truth is not available and

thus the explanations are difficult to evaluate. Moreover, our method can distinguish the most

important features depending on the node of interest. This is clearly an advantage compared

to previous state-of-the-art methods.

3.3.1 Local sample as perturbations of the neighborhood

Given the graph G = (V, E , X), a model φ which is a black-box model that predicts the class of

the nodes and a node vi whose predicted class has to be explained, the first step of the process

consists of sampling the vicinity of the node vi to generate training data for learning the local

model g.

To be able to learn a faithful model g, the vicinity of vi should consist of nodes that are

similar to vi in their features but also in their neighborhoods. The approach of GraphLIME
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Figure 3.2: Generation of the training set for local model g. vi is a node classified as an

anomaly by the black-box model φ for which we want to compute an explanation. a) k perturbed

neighborhoods are randomly generated (nodes represented in white have their features masked),

b) φ is applied to label them, c) they are encoded as vectors to make the training set for g.

is to sample the neighbors of vi in G. But in our setting of contextual anomaly detection and

because anomalies are rare, this method of sampling is more likely to give only normal nodes

and, consequently, the model g learned on this sample will be constant and not useful.

Thus we propose another strategy closer to the masking technique of the original LIME

and GNNexplainer: A perturbed neighborhood N ′(vi) = (NV,NE,NX′) is generated from

N(vi) = (NV,NE,NX) by randomly masking the feature vectors of some nodes in N(vi) (which

includes vi itself).

Every node is masked with probability p. If it is selected, its feature vector in NX is replaced

by a "void vector": two natural choices are the vector with only zeros or the vector with only

1/f where f is the number of features per node. It is not necessary to perturb the edges NE

since our local models (decision trees) will only take as input the perturbed features NX′ of

the node vi and its neighbors. This random perturbation is repeated k times to get a set of

perturbed {NX′j}kj=1. The higher k, the more data to learn g. This increases the ability of g

to explain accurately but this also linearly increases the time needed to explain a prediction.

For its part, p is the probability to mask the features of a node. The aim of a perturbation is

to generate new instances relatively similar to vi such that sometimes their predictions by φ

change. Thus, low values of p will generate new data not too different from the instance that

has to be explained. Typical values for p and k are 0.5 and 250.

Figure 3.2 shows an example where k = 3 perturbed neighborhoods are generated. In each

case, the masked node (represented in white) has its features replaced by 0. It could also be

1/f as explained before. Here, each node feature vector is a one-hot representation of its color.

Colors are ordered: blue, green, red, yellow ,and purple such that for each node, its feature

vector i-th element is a one if it has the corresponding color. Thus, the features of the yellow

node vi are (0, 0, 0, 1, 0), they are (1, 0, 0, 0, 0) for the blue node and (0, 0, 0, 0, 1) for the purple

one.

86



Chapter 3. Explaining anomaly classification in graphs.

3.3.2 Learning the local model

The next step is to generate a learning set and learn the local model g on this set. The learning

set contains the perturbed feature matrices {NX′j}kj=1 but also the labels for these nodes.

Since we aim to explain the predictions of the black-box model φ, we use φ to compute these

labels (see Fig. 3.2b) The complete training set with the associated labels is thus :

{(NX′j , yj)}kj=1 where yj = φ(vi, (NV,NE,NX′j)).

If di is the degree of vi in the graph, each {NX′j} is a matrix of (di + 1) rows (one for vi
and one for each of its neighbors) and f columns. From now on, we will see it as a vector of

(di + 1)f input features by concatenating the rows of the matrix. For example, Fig. 3.2c shows

the generated training set for g. Each vector is a concatenation of the features of node vj and

its two neighbors and the corresponding label yj computed with φ.

Remark that since the size of the vectors NX ′j depends on the degree of vi, it would

not be possible to train directly a decision tree on the whole graph. This decision tree can

only be learned locally. As stated before, we chose to train a decision tree but any human-

understandable model could be used. For a node vi, a decision tree g is trained with the k

different vectors {NX′j}kj=1 as features and the corresponding yj as labels (step d in Fig. 3.3).

There is no test set for g as we are not interested in evaluating its accuracy. However, it is

obvious that g is only learned if φ achieves good performances in terms of accuracy. Decision

trees are human interpretable (at least if they are not too large). So we could stop here and

output the tree as an explanation. However, we want to evaluate the importance of each fea-

ture in the decision and be able to compare it with the ground truth consisting of the context

subgraph Ci.

3.3.3 Feature importance in a decision tree

To explain the decision of a black-box model φ, as presented in previous section, we train a

binary decision tree g using the training set {(NX′j , yj)}kj=1.

At each step during the learning of g, i.e., for each node T in the decision tree, a feature l

is selected according to its predictive power evaluated thanks to an impurity function like for

instance, entropy or Gini impurity. The information gain IG(T ) obtained at this step is then

defined as the decrease of impurity resulting from the splitting of the node T in the decision tree

according to feature l into its child nodes. Assuming only two child nodes (leftT and rightT )

without loss of generality, it is given by:

IG(T ) = wT impT − wleft(T )impleft(T ) − wright(T )impright(T ) (3.24)

where wT is the proportion of samples reaching node T and imp is the impurity function.

87



3.3. Our method

g

y
Explained

(v)

f) comparison

e) important features

extraction

d) learning

v and N(v)

yNX’

C
3

y
Ground−truth

(v )

00000 00000 10000

100010 00000 10000

000010 00001 00000

100000 00001 10000

1000000010 00000 1000000010 00000

training set

v
i

i

i i

i

j j

φ(vi) = 1

Figure 3.3: Explaining a prediction. d) From the training set (see Fig. 3.2), a local model g

is learned. e) The important features are extracted to generate the explanation yExplained(vi)

which can be compared with the ground truth yGround−truth(vi). This ground truth is generated

from N(vi) and the context (here we assume that the context C3 generated the anomaly on vi).

In this example, yExplained(vi) is different from yGround−truth(vi): the explanation only detected

the blue neighbor but not the fact that the node vi should be yellow.

Then, the global importance f-imp(l) of an input feature l is computed as the ratio of the

information gain obtained on the nodes in the decision tree where feature l has been retained:

f-imp(l) =

∑
T∈Jl IG(T )∑
k∈K IG(k)

(3.25)

where Jl is the set of nodes of the tree that split on feature l and K is the set of all nodes of

the tree.

3.3.4 Explaining the prediction of a contextual anomaly by the black-box
model

For a node vi identified as anomalous by φ, the local model g, i.e. the decision tree, gives us

the importance f-imp(l) of each of those (di + 1)f features, where di is the degree of the node

vi. We propose two scenarios to analyze and return the explanation features:

• most important features: if there are nf features in the ground truth, select the nf features

l with the largest f-imp(l)

• all important features: select all the features l whose importance f-imp(l) is more than 0.

We represent an explanation by a vector yExplained(vi) ∈ {0, 1}(di+1)f whose j-th element is

1 if the j-th feature has been selected and 0 otherwise (step e in Fig. 3.3).

The importance of a feature is related to the information gain that it provides and the

number of times where it is used in the decision tree. Thus, a highly important feature is a

feature that is expected to have a large impact on the output of g. Since g should predict

the same labels as f on the local training set, the important features for g are also important

(locally) for φ.

88



Chapter 3. Explaining anomaly classification in graphs.

The fact that the explanation is local is also important: in our setting, the anomalies are

defined by the occurrences of the context subgraphs Ci. Thus each anomaly in the graph G is

related to one particular context Ci (each Ci somehow defines a "type" of anomalies) and we

need that our model can give a different explanation for each context.

It is should be noted that this framework enables us to uncover not only the important

features but also on which node they occur. In our illustrative example, we can know if the

node has been classified because it has a specific color and/or because one of its neighbors

(or more) have also a specific color (not necessarily the same) and which ones, both for the

neighbors and the colors. For instance, in Fig. 3.3, yExplained(vi) contains one 1, corresponding

to the first feature of the second neighbor of v. This means that the model explains the anomaly

by this particular feature of this particular neighbor. By the way, in this example, the model

missed one other important feature explaining the anomaly as can be seen by comparing with

yGround−truth(vi).

Finally, it is important to note that our framework can be used with any model f , such as

Graph Neural Networks or Graph Embeddings, with any design of the features NX′ describing

the neighborhood of the node vi and with any kind of human-understandable model g. In

fact, we presented our model for contextual anomaly detection but our model can be used for

any classification task on graphs with any model since the explanation model does not depend

on the classification model itself but only on its output. Moreover, we use a decision tree to

compute the importance of each feature but it could be also suitable to use any transparent

model.

3.4 Measures: Fidelity, efficiency, and quality of an explanation

Different criteria can be evaluated when explaining node classification. First, fidelity is a mea-

sure of faithfulness. We can also evaluate the efficiency of an explanatory model depending on

the ease of understanding and the time needed to give an explanation. Last, we can measure

if the explanation is right by comparison with the ground truth. To take into account these

different aspects, we defined three measures.

3.4.1 Fidelity

When locally approximating the model φ around the node vi, the interpretable model g must

at least be locally faithful to the black-box model φ. Thus, the predicted class of vi must be

the same for both models.

We can introduce a measure of fidelity by averaging over all nodes to be explained, the

difference of prediction of class between φ and g:

Fidelity = 1− 1

ne

∑
vi∈Vexp

|φ(vi, N(vi))− g(NXi)| (3.26)

89



3.4. Measures: Fidelity, efficiency, and quality of an explanation

where Vexp is the set of ne nodes to be explained.

The fidelity measures the proportion of predictions that are equal between φ and the local

model g. For a model g that reproduces well locally the predictions of φ, the fidelity should be

close to 1. In the case where a local model g would not have a high enough fidelity, then it is

pointless to use it to explain a prediction.

3.4.2 Efficiency

The efficiency of an explanation is very important. There are two main dimensions. First, the

explanatory model g has to give a result that is easy to understand: the user should not have

to spend a lot of time understanding the explanation. Second, the model g must not take a

lot of time to give an explanation: the user should not wait too long to have an explanation.

While the first is hard to measure since it would require humans to estimate the time they need

to understand an explanation, the second is easier to evaluate. Indeed, we can compare the

complexity of different models to have an idea of how long it would be to have an explanation

as we will show in the experimental section.

3.4.3 Precision and recall

To evaluate the quality of an explanation yExplained(vi), we need a ground truth. It is given by

the definition of the context for the anomalous node. The ground truth is a vector yGround−truth(vi) ∈
{0, 1}(di+1)f (having the same size as yExplained(i)) whose j-th element is 1 if stated so in the

definition of the anomaly context.

For instance in Fig. 3.3, we consider that the node vi is an anomaly because of context

C3, i.e., because it is yellow and it has a blue neighbor. In graph G, node vi first neighbor is

purple, and the second one is blue. Then, for this node, the ground truth related to C3 is given

by yGround−truth(vi) = (0, 0, 0, 1, 0; 0, 0, 0, 0, 0; 1, 0, 0, 0, 0) (the order of the colors in the one-hot

representation is blue, green, red, yellow, purple). Indeed, the first 5 elements are the node vi’s

features since its color is in the context C3. Then, the purple neighbor does not appear in the

context so we simply concatenate 5 zeros. Finally, the blue neighbor is in the context so we

add its feature vector to the ground truth. In the end, yGround−truth(vi) is a natural encoding

of the context that defines this anomaly on node vi. It has exactly two 1s that correspond to

the two important features that we want to recover: the fact that the node is yellow, and the

fact that it has a blue neighbor.

In the case of a good explanation for the prediction of node vi, we have yGround−truth(vi) =

yExplained(vi) term by term. To measure to which extent an explanation is good, we com-

pute the precision Precision(vi) and recall Recall(vi) of the 1 between yGround−truth(vi) and

yExplained(vi). In Fig. 3.3, yGround−truth(vi) contains two 1s and yExplained(vi) recovered only

one of them, so the recall is 50% and the precision is 100%.

Such measures are local, i.e. only for one node vi. To have a global measure, we can average

the precision and the recall over all anomalous nodes to be explained in a graph. Thus, we can
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define the average precision and the average recall as:

P =
1

ne

∑
vi∈Vexp

Precision(vi) (3.27)

R =
1

ne

∑
vi∈Vexp

Recall(vi) (3.28)

where Vexp is the set of ne anomalous nodes to be explained.

3.5 Experiments

To show the ability of our methodological framework to explain individual predictions of a

black-box model, we conducted experiments on many different datasets. These datasets as

well as the code are publicly available in our anonymous GitHub repository 1. The context of

anomalies is natural for our framework. Indeed, we investigate the change of prediction of a

node vi by the model φ. Thus, a setup with only two classes is ideal. Many previous methods

do not experiment on data with ground truth since, to our knowledge, there is no such dataset

in the domain of explainable node classification. In our case, we can evaluate the performance

of our method by conducting several experiments that show how the parameters of the model

can be tuned.

3.5.1 Datasets

As datasets with contextual anomalies are not publicly available, we used the same methodology

as in the previous chapter 2 with artificially introduced anomalies. In this way, we have been

able to evaluate our explainable model and compare it with the state-of-the-art methods on

many different graphs, real or synthetic. The graphs are the same as in the previous chapter.

Datasets are created with our graph contextual anomaly generator ConAGen. Every experiment

has been conducted on a machine with 1 CPU core at 2.5GHz, 1 NVidia GTX 1080 GPU, and

20GB of RAM.

When explaining the classification of a node by the model φ, the final explanation should

match the rule that defines the anomalies. Context subgraphs that define the anomalies that

we use in our experiments are reminded in Table 3.1

3.5.2 Experimental setup

We retain as classifier φ for detecting the anomalies CoBaGAD since, as shown in the previous

chapter, it is the best performing method to detect contextual anomalies which offer a natural

ground truth for an explanation. Then, we compare the explanations given by our approach

and two other contenders GNNExplainer [Ying et al., 2019] and GraphLIME [Huang et al.,
1Code available in our repository: https://github.com/Anonymous0001000/Explaining-anomaly-

classification-in-graphs
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Anomalies Definition Context subgraphs

A0 B ∧G

A1 (B ∧G) ∨ (B ∧R) /

A2 (B ∧G) ∨ (Y ∧R) /

A3 Ȳ

A4 Ȳ ∧B

A5 Y ∧ Ȳ ∧B

A6 Ȳ ∨ (Y ∧B) /

Table 3.1: Anomalies characteristics. B = blue, G = green, R = red, Y = yellow, P = purple.

Ȳ means that anomalies are nodes that have color Y . B means that anomalies have at least

one neighbor whose color is B.

2020].

To learn the parameters of CoBaGAD, we split the datasets the exact same way and use the

same parameters as in the previous chapter. Once we trained the black-box model φ, CoBa-

GAD in our case, we have to learn a binary decision tree g for each prediction of φ. We only

explain nodes of the test set classified as anomalous by CoBaGAD. Their number can change

depending on the precision of CoBaGAD for a specific experiment. The masking probability

is p = 0.1, the number of features per node is f = 5 and the "void vector" is (0, 0, 0, 0, 0).

We make k = 250 perturbations of the graph for each explanation and use Gini impurity as

a splitting criterion since the input features are boolean. The maximum depth of the tree is

set to 3 to avoid over-fitting. In real cases, it could be useful to limit the depth of the tree to

a higher value if a lot of features are expected to be important to explain the decision of the

black-box model. Moreover, the input of the decision tree g is the set {(NX′j , yj)}kj=1 as defined

previously and we choose the neighborhood of a node to be defined as the usual 1-hop neighbors.

The explanation vector of a node vi is yExplained(vi) ∈ {0, 1}(di+1)f and the corresponding

ground truth is a vector yGround−truth(vi) ∈ {0, 1}(di+1)f . To build the ground truth vector, we

assume that the first f elements of these vectors are on the features of the node itself and the

dif last elements are about the features of its neighbors as defined in the section 3.4.

For its part, GraphLIME outputs the importance importanceGraphLIME ∈ Rf of each of our

f features per node (the same for the node vi and its neighborhood). The algorithm is used

with parameters hop = 1 and rho = 0.1. As there is no distinction between the node and

its neighbors, we compute a vector yexplained−GraphLIME as the concatenation of di + 1 times

importanceGraphLIME . For GNNExplainer, we train the model with 100 epochs for each expla-

nation. It outputs the importance importanceGNNExplainer ∈ Rf of each of our f features per

node and the subgraph of important nodes in the vicinity of vi. Thus, an explanation is a vec-
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tor yexplained−GNNExplainer given by the concatenation of the vector importanceGNNExplainer
when the corresponding node belongs in the important subgraph and the vector (0, 0, 0, 0, 0)

otherwise.

3.6 Results

We conducted experiments on the six graphs and the seven contexts of anomalies described

previously. We compare our method with GNNExplainer [Ying et al., 2019] and GraphLIME

[Huang et al., 2020] and report the results for the three measures defined in Section3.4.

3.6.1 Fidelity

The fidelity of the explanatory models g evaluates their ability to classify nodes the same way

as the black-box model φ. We compared our approach with GraphLIME and GNNExplainer.

We do not report the results here since all the methods have a fidelity equal to 1 for every

dataset and every context.

3.6.2 Efficiency

As explained previously, efficiency can be divided into two parts. First, an explanation has to be

easy to understand by the user. While it is hard to measure the ease of understanding, we can

still compare the shape of the explanations given by the different methods. For a node vi and

its neighborhood, GraphLIME outputs the importance of each feature regardless of whether it

is the studied node or its neighbors. In our case, we have f = 5 features per node in our graphs

and GraphLIME can find important features among those. GNNExplainer, for its part, gives

the importance of each of those f = 5 features and also gives the subgraph of the neighborhood

that leads the model φ to classify the node vi into a specific class. Our method can find the

importance of each feature while distinguishing between the node vi itself and its neighbors.

All those three types of explanations are easy to understand. However, our method is more

precise compared to GraphLIME and GNNExplainer. Indeed, as stated in the related work

section, these last ones have only one feature mask for all neighbors and thus, they are not able

to explain for which neighbor which feature is important.

The second part of the efficiency is the time needed to have an explanation of a prediction.

We can compare the time complexity of each method. Let us denote call(φ) the time that the

model φ needs to predict the class of a node vi, di the degree of this node vi and depth(T )

the maximum depth of our decision trees. When explaining the prediction for a node vi,

the time complexity of our method is as follows. First, we sample k different perturbations

for a complexity of O(k.di.f). Then, we call k times the model φ to predict the class of vi
with a complexity of O(k.call(φ). Finally, we build the decision tree T whose complexity is

O(k.depth(T ).di.f . To sum up, our time complexity is O(k.di.f+k.call(φ)+k.depth(T ).di.f) =

O(k(call(φ) + di.f(1 + depth(T ))). For its part, GraphLIME method can be decomposed into
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several steps. First, it samples the neighborhood of the node vi with complexity O(di) at

distance 1. Then, for each of these neighbors, the model φ has to predict their class for a total

time of O(di.call(f)). The final is step is the learning of the HSIC Lasso parameters. The

computation of the kernel and Gram matrices take O(d2
i .f) and the parameters are learned

with the Lasso Lars algorithm whose time complexity is not explicit. In the end, the total

time complexity of GraphLIME is O(di.call(φ) + d2
i .f + Lasso_Lars). GNNExplainer does

not provide a precise analysis of its time complexity but the learning is linear in the number

of epochs chosen by the user. In the end, the comparison is tough but all the methods are

relatively fast.

3.6.3 Quality of the explanation

Our method as well as the contenders, GNNExplainer and GraphLIME, output the importance

of each feature. The main difference between them is their ability to accurately explain the pre-

dictions of the model φ. Thanks to our methodological framework, the quality of an explanation

that they provide can be evaluated according to precision and recall as defined in equations 3.27

and 3.28. Averaged scores of precision (P) and recall (R) (± the standard deviation) obtained

by each method are therefore computed on the anomalies correctly identified by the classifier φ

(CoBaGad) for every graph and every type of contextual anomalies A0 to A6. Table 3.2 shows

the results if all the features whose importance is non-zero are retained as important features

to explain the classification while Table 3.3 presents the results when choosing only the most

important features as explanations, as indicated in Section 3.4. Bold numbers indicate the best

score for each dataset and type of contextual anomaly.

Results show that our method largely outperforms the other two approaches in both sce-

narios (’all important features’ and ’most important features’). Globally speaking, our method

performs the best in 42 cases out of 42 experiments in terms of precision for both ’all important

features’ and ’most important features’ and outperforms the other methods in both average

precision and average recall as shown in Table 3.4. In terms of precision, it obtains very high

scores, often equal to 1, which means that the features returned to the user are all correct.

Moreover, these scores are very significantly higher than those obtained with GNNExplainer

and GraphLIME. As for the recall, the other two methods are sometimes better than our ap-

proach or equivalent. However, in these very rare cases where a contender achieves a better

recall, its corresponding precision is very low compared to that obtained by our method. It is

notably the case in Table 3.2 for A1 on G4 and G5, for A4 and, for A5 on G0, G1, G4, and G5

with GNNExp. As shown in Table 3.3, we observe the same behavior for GraphLIME in the

second scenario where we consider only the most important features. To interpret these results,

it is important to remember, that a precision of roughly 0.01 with a recall of 1.0 indicates that

the method predicted that all features are important i.e. its explanations are pointless. More

generally, a very low precision with a very high recall is a sign of poor explanations. These

experiments demonstrate, without doubt, that our method is the only one able to explain these
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Algo G0 G1 G2 G3 G4 G5

A0

Our

GraphLIME

GNNExp

P = 0.7± 0.21

R = 0.82± 0.25

P = 0.06± 0.09

R = 0.2± 0.29

P = 0.04± 0.04

R = 0.46± 0.38

P = 0.48± 0.11

R = 0.82± 0.23

P = 0.0± 0.0

R = 0.02± 0.09

P = 0.01± 0.01

R = 0.44± 0.39

P = 0.38± 0.13

R = 0.73± 0.29

P = 0.0± 0.0

R = 0.02± 0.12

P = 0.0± 0.01

R = 0.33± 0.34

P = 0.5± 0.0

R = 0.83± 0.17

P = 0.0± 0.0

R = 0.0± 0.0

P = 0.01± 0.01

R = 0.37± 0.31

P = 0.56± 0.1

R = 0.96± 0.17

P = 0.04± 0.07

R = 0.2± 0.31

P = 0.04± 0.04

R = 0.48± 0.39

P = 0.73± 0.23

R = 0.75± 0.29

P = 0.06± 0.1

R = 0.16± 0.23

P = 0.06± 0.04

R = 0.51± 0.32

A1

Our

GraphLIME

GNNExp

P = 0.62± 0.32

R = 0.5± 0.11

P = 0.06± 0.09

R = 0.2± 0.28

P = 0.04± 0.04

R = 0.49± 0.39

P = 0.49± 0.11

R = 0.47± 0.12

P = 0.0± 0.01

R = 0.04± 0.14

P = 0.01± 0.01

R = 0.45± 0.39

P = 0.52± 0.06

R = 0.51± 0.08

P = 0.0± 0.01

R = 0.02± 0.09

P = 0.0± 0.01

R = 0.45± 0.41

P = 0.47± 0.11

R = 0.44± 0.13

P = 0.0± 0.0

R = 0.0± 0.0

P = 0.01± 0.01

R = 0.44± 0.4

P = 0.5± 0.17

R = 0.5± 0.06

P = 0.01± 0.03

R = 0.1± 0.2

P = 0.02± 0.02

R = 0.56± 0.41

P = 0.57± 0.35

R = 0.48± 0.2

P = 0.07± 0.1

R = 0.23± 0.26

P = 0.06± 0.04

R = 0.52± 0.39

A2

Our

GraphLIME

GNNExp

P = 0.97± 0.15

R = 0.71± 0.28

P = 0.06± 0.09

R = 0.19± 0.27

P = 0.05± 0.04

R = 0.51± 0.4

P = 0.68± 0.26

R = 0.7± 0.29

P = 0.0± 0.0

R = 0.02± 0.09

P = 0.01± 0.01

R = 0.46± 0.39

P = 0.65± 0.28

R = 0.63± 0.27

P = 0.0± 0.0

R = 0.02± 0.11

P = 0.0± 0.0

R = 0.39± 0.4

P = 0.5± 0.34

R = 0.53± 0.39

P = 0.0± 0.0

R = 0.0± 0.0

P = 0.0± 0.0

R = 0.35± 0.34

P = 0.98± 0.08

R = 0.9± 0.2

P = 0.03± 0.05

R = 0.22± 0.3

P = 0.03± 0.03

R = 0.49± 0.35

P = 0.77± 0.37

R = 0.63± 0.35

P = 0.06± 0.1

R = 0.16± 0.24

P = 0.05± 0.04

R = 0.54± 0.35

A3

Our

GraphLIME

GNNExp

P = 0.98± 0.09

R = 1.0± 0.0

P = 0.05± 0.08

R = 0.29± 0.45

P = 0.05± 0.03

R = 0.78± 0.41

P = 1.0± 0.0

R = 1.0± 0.0

P = 0.03± 0.05

R = 0.77± 0.42

P = 0.03± 0.03

R = 1.0± 0.0

P = 1.0± 0.0

R = 1.0± 0.0

P = 0.03± 0.04

R = 0.77± 0.42

P = 0.03± 0.03

R = 1.0± 0.0

P = 0.97± 0.11

R = 1.0± 0.0

P = 0.07± 0.07

R = 0.94± 0.23

P = 0.02± 0.02

R = 1.0± 0.0

P = 1.0± 0.0

R = 1.0± 0.0

P = 0.02± 0.04

R = 0.27± 0.44

P = 0.03± 0.04

R = 0.6± 0.49

P = 0.99± 0.08

R = 1.0± 0.0

P = 0.05± 0.09

R = 0.29± 0.45

P = 0.07± 0.03

R = 0.98± 0.15

A4

Our

GraphLIME

GNNExp

P = 1.0± 0.0

R = 0.45± 0.09

P = 0.11± 0.1

R = 0.31± 0.24

P = 0.08± 0.05

R = 0.67± 0.36

P = 1.0± 0.0

R = 0.22± 0.11

P = 0.03± 0.06

R = 0.21± 0.11

P = 0.04± 0.03

R = 0.65± 0.29

P = 1.0± 0.0

R = 0.25± 0.14

P = 0.03± 0.03

R = 0.22± 0.14

P = 0.03± 0.02

R = 0.68± 0.29

P = 1.0± 0.0

R = 0.26± 0.15

P = 0.06± 0.11

R = 0.21± 0.15

P = 0.05± 0.04

R = 0.67± 0.29

P = 1.0± 0.0

R = 0.38± 0.1

P = 0.06± 0.05

R = 0.28± 0.19

P = 0.04± 0.04

R = 0.47± 0.33

P = 1.0± 0.0

R = 0.47± 0.08

P = 0.12± 0.11

R = 0.34± 0.27

P = 0.1± 0.05

R = 0.64± 0.31

A5

Our

GraphLIME

GNNExp

P = 0.88± 0.22

R = 0.35± 0.21

P = 0.25± 0.18

R = 0.44± 0.3

P = 0.11± 0.06

R = 0.62± 0.34

P = 0.77± 0.14

R = 0.55± 0.12

P = 0.1± 0.04

R = 0.53± 0.16

P = 0.05± 0.02

R = 0.6± 0.27

P = 0.67± 0.0

R = 0.67± 0.0

P = 0.12± 0.06

R = 0.51± 0.19

P = 0.05± 0.03

R = 0.58± 0.32

P = 1.0± 0.0

R = 0.83± 0.24

P = 0.14± 0.06

R = 0.49± 0.18

P = 0.06± 0.02

R = 0.7± 0.34

P = 0.96± 0.09

R = 0.31± 0.28

P = 0.24± 0.07

R = 0.61± 0.12

P = 0.08± 0.02

R = 0.7± 0.21

P = 0.81± 0.26

R = 0.41± 0.28

P = 0.19± 0.18

R = 0.3± 0.28

P = 0.15± 0.06

R = 0.61± 0.28

A6

Our

GraphLIME

GNNExp

P = 0.85± 0.2

R = 0.97± 0.14

P = 0.05± 0.09

R = 0.25± 0.38

P = 0.05± 0.03

R = 0.73± 0.4

P = 1.0± 0.0

R = 1.0± 0.0

P = 0.01± 0.01

R = 0.14± 0.23

P = 0.01± 0.01

R = 0.47± 0.39

P = 1.0± 0.0

R = 1.0± 0.0

P = 0.0± 0.01

R = 0.03± 0.11

P = 0.01± 0.01

R = 0.5± 0.4

P = 1.0± 0.0

R = 1.0± 0.0

P = 0.0± 0.0

R = 0.0± 0.0

P = 0.0± 0.01

R = 0.22± 0.34

P = 0.64± 0.34

R = 0.83± 0.37

P = 0.04± 0.04

R = 0.34± 0.4

P = 0.04± 0.03

R = 0.67± 0.39

P = 0.86± 0.2

R = 0.97± 0.14

P = 0.04± 0.09

R = 0.16± 0.33

P = 0.07± 0.03

R = 0.88± 0.24

Table 3.2: Average precision and recall ± standard deviation computed on all important features

- Bold font is best.
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3.6. Results

Algo G0 G1 G2 G3 G4 G5

A0

Our

GraphLIME

GNNExp

P = 0.86± 0.25

R = 0.72± 0.29

P = 0.08± 0.09

R = 0.54± 0.42

P = 0.08± 0.11

R = 0.3± 0.35

P = 0.7± 0.32

R = 0.68± 0.33

P = 0.01± 0.0

R = 0.91± 0.27

P = 0.01± 0.02

R = 0.1± 0.2

P = 0.67± 0.33

R = 0.67± 0.33

P = 0.01± 0.0

R = 0.96± 0.17

P = 0.01± 0.01

R = 0.09± 0.17

P = 0.67± 0.33

R = 0.67± 0.33

P = 0.01± 0.0

R = 1.0± 0.0

P = 0.01± 0.01

R = 0.1± 0.16

P = 0.88± 0.25

R = 0.88± 0.25

P = 0.06± 0.08

R = 0.71± 0.35

P = 0.05± 0.08

R = 0.17± 0.24

P = 0.86± 0.25

R = 0.67± 0.3

P = 0.08± 0.09

R = 0.45± 0.41

P = 0.1± 0.15

R = 0.23± 0.28

A1

Our

GraphLIME

GNNExp

P = 0.7± 0.26

R = 0.48± 0.07

P = 0.08± 0.07

R = 0.64± 0.38

P = 0.1± 0.11

R = 0.37± 0.36

P = 0.49± 0.11

R = 0.47± 0.12

P = 0.01± 0.01

R = 0.95± 0.17

P = 0.01± 0.02

R = 0.2± 0.25

P = 0.52± 0.06

R = 0.51± 0.08

P = 0.0± 0.0

R = 0.94± 0.23

P = 0.01± 0.02

R = 0.2± 0.23

P = 0.47± 0.11

R = 0.44± 0.13

P = 0.01± 0.0

R = 1.0± 0.0

P = 0.02± 0.02

R = 0.26± 0.23

P = 0.54± 0.14

R = 0.5± 0.06

P = 0.04± 0.03

R = 0.83± 0.3

P = 0.05± 0.06

R = 0.3± 0.31

P = 0.61± 0.33

R = 0.43± 0.19

P = 0.08± 0.1

R = 0.46± 0.39

P = 0.13± 0.13

R = 0.27± 0.24

A2

Our

GraphLIME

GNNExp

P = 0.98± 0.13

R = 0.73± 0.26

P = 0.08± 0.08

R = 0.61± 0.4

P = 0.09± 0.12

R = 0.35± 0.36

P = 0.69± 0.29

R = 0.56± 0.22

P = 0.01± 0.0

R = 0.94± 0.22

P = 0.01± 0.02

R = 0.16± 0.23

P = 0.67± 0.3

R = 0.53± 0.22

P = 0.0± 0.0

R = 0.99± 0.08

P = 0.01± 0.01

R = 0.16± 0.22

P = 0.53± 0.37

R = 0.41± 0.3

P = 0.01± 0.0

R = 1.0± 0.0

P = 0.01± 0.01

R = 0.15± 0.23

P = 1.0± 0.0

R = 0.9± 0.2

P = 0.05± 0.04

R = 0.72± 0.32

P = 0.05± 0.09

R = 0.28± 0.3

P = 0.79± 0.36

R = 0.73± 0.28

P = 0.06± 0.09

R = 0.41± 0.42

P = 0.09± 0.12

R = 0.24± 0.28

A3

Our

GraphLIME

GNNExp

P = 1.0± 0.0

R = 1.0± 0.0

P = 0.06± 0.08

R = 0.51± 0.5

P = 0.07± 0.12

R = 0.41± 0.49

P = 1.0± 0.0

R = 1.0± 0.0

P = 0.03± 0.05

R = 0.77± 0.42

P = 0.03± 0.1

R = 0.12± 0.32

P = 1.0± 0.0

R = 1.0± 0.0

P = 0.03± 0.04

R = 0.79± 0.41

P = 0.03± 0.1

R = 0.21± 0.41

P = 0.94± 0.23

R = 0.94± 0.23

P = 0.07± 0.07

R = 0.94± 0.23

P = 0.06± 0.13

R = 0.28± 0.45

P = 1.0± 0.0

R = 1.0± 0.0

P = 0.03± 0.04

R = 0.6± 0.49

P = 0.12± 0.2

R = 0.47± 0.5

P = 0.98± 0.15

R = 0.98± 0.15

P = 0.06± 0.09

R = 0.37± 0.48

P = 0.06± 0.15

R = 0.17± 0.38

A4

Our

GraphLIME

GNNExp

P = 1.0± 0.0

R = 0.45± 0.09

P = 0.12± 0.1

R = 0.47± 0.3

P = 0.16± 0.15

R = 0.41± 0.33

P = 1.0± 0.0

R = 0.22± 0.11

P = 0.03± 0.06

R = 0.21± 0.11

P = 0.07± 0.08

R = 0.25± 0.21

P = 1.0± 0.0

R = 0.25± 0.14

P = 0.03± 0.03

R = 0.22± 0.14

P = 0.05± 0.05

R = 0.23± 0.22

P = 1.0± 0.0

R = 0.26± 0.15

P = 0.06± 0.11

R = 0.21± 0.15

P = 0.08± 0.12

R = 0.22± 0.2

P = 1.0± 0.0

R = 0.38± 0.1

P = 0.07± 0.04

R = 0.41± 0.28

P = 0.08± 0.11

R = 0.31± 0.34

P = 1.0± 0.0

R = 0.47± 0.08

P = 0.13± 0.11

R = 0.38± 0.28

P = 0.19± 0.17

R = 0.34± 0.29

A5

Our

GraphLIME

GNNExp

P = 0.89± 0.21

R = 0.36± 0.22

P = 0.27± 0.16

R = 0.6± 0.28

P = 0.26± 0.2

R = 0.47± 0.32

P = 0.77± 0.14

R = 0.55± 0.12

P = 0.1± 0.04

R = 0.53± 0.16

P = 0.1± 0.07

R = 0.25± 0.18

P = 0.67± 0.0

R = 0.67± 0.0

P = 0.12± 0.06

R = 0.53± 0.19

P = 0.09± 0.08

R = 0.21± 0.2

P = 1.0± 0.0

R = 0.83± 0.24

P = 0.14± 0.06

R = 0.54± 0.17

P = 0.09± 0.09

R = 0.28± 0.29

P = 0.96± 0.09

R = 0.31± 0.28

P = 0.24± 0.07

R = 0.61± 0.12

P = 0.14± 0.12

R = 0.27± 0.23

P = 0.83± 0.24

R = 0.44± 0.29

P = 0.24± 0.14

R = 0.63± 0.32

P = 0.28± 0.23

R = 0.38± 0.31

A6

Our

GraphLIME

GNNExp

P = 0.95± 0.2

R = 0.94± 0.21

P = 0.07± 0.09

R = 0.42± 0.44

P = 0.11± 0.12

R = 0.5± 0.46

P = 1.0± 0.0

R = 1.0± 0.0

P = 0.01± 0.01

R = 0.66± 0.41

P = 0.01± 0.02

R = 0.16± 0.28

P = 1.0± 0.0

R = 1.0± 0.0

P = 0.01± 0.01

R = 0.89± 0.29

P = 0.01± 0.02

R = 0.22± 0.31

P = 1.0± 0.0

R = 1.0± 0.0

P = 0.01± 0.01

R = 0.94± 0.23

P = 0.0± 0.02

R = 0.08± 0.25

P = 0.68± 0.46

R = 0.83± 0.37

P = 0.05± 0.04

R = 0.44± 0.36

P = 0.07± 0.06

R = 0.41± 0.38

P = 0.94± 0.23

R = 0.91± 0.26

P = 0.04± 0.08

R = 0.18± 0.34

P = 0.11± 0.15

R = 0.33± 0.44

Table 3.3: Average precision and recall ± standard deviation computed on the most important

features - Bold font is best.

Methods Our GraphLIME GNNExp

All P = 0.80± 0.20 P = 0.05± 0.06 P = 0.04± 0.03

R = 0.69± 0.25 R = 0.25± 0.22 R = 0.58± 0.18

Most P = 0.84± 0.17 P = 0.06± 0.06 P = 0.07± 0.06

R = 0.66± 0.27 R = 0.64± 0.25 R = 0.26± 0.11

Table 3.4: Average precision and recall over all graphs and anomaly types for the "all important

features" and "most important features" scenario.
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different types of contextual anomalies, even if for a few of them, notably A4 and A5 it returns

only a part of the true features.

3.6.4 Hyper-parameter tuning

There are two important parameters in our method. First, the probability p of masking a feature

influences the way the data is modified to create perturbed instances. Second, the number of

perturbed samples k controls how populated our explanatory model g is. To find the best set

of parameters, we conducted experiments with a wide range of p and k simultaneously. With

the exact same experimental setup as described above, we cut the space of hyper-parameters

with p ranging from 0 to 1 by step of 0.1 and k varying in 0, 10, 50, 100, 200, 500, 1000. To have

a global overview of the results and to give an optimal set of parameters (p, k), we present the

results with the F −measure:

F −measure = 2
precision× recall
precision+ recall

(3.29)

The results of the grid-search for finding the best set of parameters (p, k) are presented. We

show the results for the graph G4 and the anomaly type A0 in Figure 3.4 and 3.5 and for G5

with A3. The results for the other graphs and anomaly types are presented in the Annexes 3.7.

Figure 3.4: Grid search for the parameters p and k reporting the F-measure for the graph G5

and anomaly A0 computed on all important features.

The F-measure takes a value between 0 and 1 and is best when close to 1. On the figures,

for a specific couple (p, k), a dark blue rectangle indicates that the model g provided poor

explanations. On the other hand, a yellow rectangle is a sign of a good explanation. The first

observation is trivial, with k = 0 perturbed samples, the model g cannot learn anything since

there is only the original sample in the dataset. The same applies for p = 0: the "perturbed"
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3.7. Conclusion

Figure 3.5: Grid search for the parameters p and k reporting the F-measure for the graph G5

and anomaly A3 computed on all important features.

samples are not perturbed since p = 0. Then, the training dataset for g is composed of the

original sample duplicated k times. Then, our results suggest that high values of p imply that

the perturbation is too strong and the new samples are too distorted from the original data.

This distortion prevents the model g from being able to learn efficiently the important features.

We recommend the use of values of p between 0.1 and 0.3. As for k, there is a minimum amount

of perturbations that is necessary for the model g to learn correctly. But, on the contrary, too

many samples may decrease the F-measure as in Figure 3.4 for k = 1000 and p = 0.7. We

recommend to use values for k between 100 and 500. Moreover, sometimes as in Figure 3.5,

the values of p and k do not change the F-measure a lot. We still see that lower values of p,

between 0.1 and 0.5, are better.

To sum up, the experiments show that our method is the only one able to find the important

features that lead a model to a specific decision. As for contextual anomalies, our explaining

method can thus find the contexts that define an anomaly type. It is also relatively easy to tune

the two parameters of the method. Clearly, the explaining method that we propose is better

than current state-of-the-art models.

3.7 Conclusion

We present a novel method for explaining the predictions of black-box models on graphs, such

as GNNs. For a specific node, our method can find important features characterizing the node

or nodes in the vicinity of this specific node that led to its predicted class by a black-box

model. State-of-the-art methods are not as precise as that. Indeed, our model is not only

able to uncover the important features which explain the decision but also on which nodes in

the vicinity of the studied node, including the node itself, they occur. Thanks to the use of
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Chapter 3. Explaining anomaly classification in graphs.

contextual anomalies as ground truth, we also proposed a methodological framework and a

measure to evaluate the ability of the models to explain correctly a prediction. We conducted

experiments that show that our model can accurately explain node classification. Moreover,

our method largely outperforms state-of-the-art approaches. We presented our work in the

context of anomaly detection with GNNs which is a special case of node classification but the

extension of our method to the general case of node classification is straightforward. Indeed,

other types of explanation models can also be used like for instance logistic regression and any

type of model to explain can also be used. However, the lack of ground truth data will make

the evaluation of the models harder in that case. Finally, we would like to consider attributed

graphs with numerical features like age or height for instance.
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Conclusion

The first main contribution of this thesis is the definition, the generation, and the detection

of graph contextual anomalies with graph neural networks in the context of imbalanced data.

Contextual anomalies are a specific case of node anomalies where nodes of the graph exhibit

a singular arrangement. There are many different types of contextual anomalies depending on

the "context". Thanks to our generator ConAGen, it is possible to create new datasets with

contextual anomalies and the ground truth knowledge of which nodes are anomalies. Moreover,

we presented CoBaGAD, our contextual anomaly detector. With a modified graph attention

layer, we can build a neural network to classify the nodes into two categories: normal nodes

and anomalies. Through intensive experiments, we show that our model can outperform state-

of-the-art methods of classification on graphs by a large margin. While our model has some

very good performances, we would like to address some possible improvements. First of all, our

generator gives each a one-hot feature vector. That is, the nodes of a graph are only described by

one categorical attribute (which can be thought of as a color). Thus, a natural improvement of

our generator is to switch to more complex features creation like multiple categorical attributes

or multiple numerical attributes. These two setups are closer to real cases of networks. This

modification of features will also imply that we can define more complex contextual anomalies

and this would be a new challenge for CoBaGAD to tackle. While contextual anomalies may

become more complex, CoBaGAD should remain robust to changes and should not be modified,

besides maybe the tuning of a few parameters like the number of layers to have a larger field of

view. Secondly, we would like to provide an anomalous score. Indeed, in the context of fraud,

for example, the experts will focus only on the most important and most probable frauds. Thus,

it could be beneficial to have a ranking technique that can find the most relevant anomalies in

the network.

The second contribution of this thesis is the explanation of the prediction of a black-box

model that performs inference on graph data. Our model belongs to the family of perturbation

methods whose goal is to generate new data around a specific instance to learn a local explain-

able model. For a specific node, our method relies on sampling many times the neighborhood

of the node and perturbate it to create a new dataset. These perturbed examples are fed to

the black-box model to output a label. Thanks to these perturbed examples associated with

their labels, we can train a decision tree locally, i.e. for this specific node. The choice of the

decision tree is not trivial since the decision process of a tree is human-understandable and it
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Conclusion

also provides an importance score for each of the input features. Then, we can use the scores

to find the relevant features that led the black-box model to a specific decision. Thanks to

contextual anomalies that provide natural ground truth for explaining node classification, we

conducted a lot of experiments to retrieve the context that defined the anomalies.

We believe that our work has a lot of potential applications. The detection of anomalies

is very important in many domains such as fraud detection in public markets or tax evasion,

security with network intrusions, finance with credit card fraud, malware detection, false ad-

vertising or fake news propagation. Many fraudulent activities exist and always more complex

methods are developed to try not to get caught. Thus, new tools are designed too to detect the

new forms of anomalies. This can be achieved with the use of powerful machine learning algo-

rithms. But, machine learning methods also brought a lack of understanding of the functioning

of the algorithms. This is mainly due to the large number of parameters that they use. Thus,

explaining the decision process of a method is crucial. This is done via explainable artificial

intelligence that is a set of new methods that aim at making sense of the inference process of a

machine learning method.

Both anomaly detection and explainable artificial intelligence are necessary to make the

world fairer. Fairer by finding fraudulent people thanks to anomaly detection and more fair by

bringing artificial intelligence to anyone with XAI. The predictive power of machine learning

algorithms shall be beneficial for everyone but also understandable to everyone.
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Annexes

Anomaly detection

We present here additional results for the detection of contextual anomalies with different

methods. In Section 2.5.2, we presented tables of the precision of the detection of the anomaly

class since this value is the most discriminating one. Here, we report the recall of the anomaly

class, the precision and the recall of the normal class for the same experiments as in Section

2.5.2. Most of the recalls and precisions are close to 1. This does not allow for finding the best

method. We see that GCN has poor performances in term of recall for the normal nodes.

Anomalies / Graph G0 G1 G2 G3 G4 G5

CoBaGAD A0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

CoBaGAD loops A0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.53± 0.0 0.98± 0.02

GAT A0 1.0± 0.0 0.99± 0.01 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

GAT loops A0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.6± 0.09 1.0± 0.0

GCN A0 0.94± 0.02 0.95± 0.02 0.96± 0.05 0.94± 0.0 0.89± 0.03 0.83± 0.04

GCN loops A0 0.86± 0.03 0.96± 0.05 0.96± 0.01 1.0± 0.0 0.89± 0.08 0.85± 0.07

GraphSAGE A0 1.0± 0.0 1.0± 0.01 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

GraphSAGE loops A0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.99± 0.01

Table 3.5: Recall of the anomalies for A0 on several graphs (G0-G5) in the testing set.

Anomalies / Graph G0 G1 G2 G3 G4 G5

CoBaGAD A0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

CoBaGAD loops A0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.97± 0.0 1.0± 0.0

GAT A0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

GAT loops A0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.97± 0.01 1.0± 0.0

GCN A0 1.0± 0.0 0.99± 0.0 1.0± 0.0 1.0± 0.0 0.99± 0.0 0.99± 0.0

GCN loops A0 0.99± 0.0 1.0± 0.01 1.0± 0.0 1.0± 0.0 0.99± 0.01 0.99± 0.01

GraphSAGE A0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

GraphSAGE loops A0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

Table 3.6: Precision of the normal nodes for A0 on several graphs (G0-G5) in the testing set.
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Anomalies / Graph G0 G1 G2 G3 G4 G5

CoBaGAD A0 1.0± 0.0 1.0± 0.0 0.99± 0.01 0.95± 0.03 0.99± 0.01 0.99± 0.01

CoBaGAD loops A0 0.98± 0.01 0.99± 0.01 1.0± 0.0 0.99± 0.01 0.85± 0.08 0.97± 0.01

GAT A0 1.0± 0.0 0.91± 0.06 0.88± 0.01 0.95± 0.02 0.95± 0.03 0.99± 0.01

GAT loops A0 0.97± 0.01 0.99± 0.0 0.89± 0.03 0.92± 0.03 0.83± 0.03 0.95± 0.0

GCN A0 0.88± 0.01 0.5± 0.02 0.59± 0.02 0.74± 0.03 0.81± 0.03 0.85± 0.02

GCN loops A0 0.82± 0.0 0.54± 0.05 0.63± 0.01 0.69± 0.05 0.87± 0.02 0.65± 0.05

GraphSAGE A0 0.94± 0.01 0.94± 0.01 0.97± 0.01 0.92± 0.03 0.87± 0.03 0.94± 0.01

GraphSAGE loops A0 0.94± 0.0 0.95± 0.01 0.95± 0.02 0.91± 0.02 0.88± 0.04 0.93± 0.01

Table 3.7: Recall of the normal nodes for A0 on several graphs (G0-G5) in the testing set.

Anomalies / Graph G0 G1 G2 G3 G4 G5

CoBaGAD A1 1.0± 0.0 1.0± 0.0 0.99± 0.02 0.96± 0.03 0.96± 0.06 0.98± 0.01

CoBaGAD loops A1 1.0± 0.0 1.0± 0.0 0.98± 0.02 0.98± 0.03 0.64± 0.03 0.99± 0.01

GAT A1 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

GAT loops A1 1.0± 0.0 1.0± 0.0 0.99± 0.01 1.0± 0.0 0.58± 0.13 1.0± 0.0

GCN A1 0.98± 0.01 0.92± 0.04 0.89± 0.06 0.96± 0.03 1.0± 0.0 0.86± 0.03

GCN loops A1 0.95± 0.01 1.0± 0.01 0.9± 0.03 0.96± 0.03 1.0± 0.0 0.88± 0.1

GraphSAGE A1 1.0± 0.0 0.99± 0.01 1.0± 0.0 0.98± 0.03 0.98± 0.03 1.0± 0.0

GraphSAGE loops A1 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

Table 3.8: Recall of the anomalies for A1 on several graphs (G0-G5) in the testing set.

Anomalies / Graph G0 G1 G2 G3 G4 G5

CoBaGAD A1 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

CoBaGAD loops A1 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.98± 0.0 1.0± 0.0

GAT A1 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

GAT loops A1 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.97± 0.01 1.0± 0.0

GCN A1 1.0± 0.0 0.99± 0.0 0.99± 0.01 1.0± 0.0 1.0± 0.0 0.99± 0.0

GCN loops A1 1.0± 0.0 1.0± 0.0 0.99± 0.0 1.0± 0.0 1.0± 0.0 0.99± 0.01

GraphSAGE A1 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

GraphSAGE loops A1 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

Table 3.9: Precision of the normal nodes for A1 on several graphs (G0-G5) in the testing set.
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Anomalies / Graph G0 G1 G2 G3 G4 G5

CoBaGAD A1 1.0± 0.0 0.99± 0.01 0.97± 0.04 0.97± 0.03 0.97± 0.02 0.99± 0.01

CoBaGAD loops A1 0.98± 0.0 1.0± 0.0 0.98± 0.01 0.98± 0.01 0.92± 0.05 0.97± 0.0

GAT A1 0.95± 0.06 0.93± 0.04 0.94± 0.04 0.96± 0.01 0.9± 0.06 0.98± 0.02

GAT loops A1 0.97± 0.0 0.91± 0.02 0.89± 0.02 0.96± 0.02 0.88± 0.04 0.95± 0.01

GCN A1 0.88± 0.01 0.52± 0.04 0.61± 0.03 0.74± 0.06 0.86± 0.01 0.84± 0.01

GCN loops A1 0.8± 0.0 0.73± 0.05 0.63± 0.09 0.72± 0.05 0.87± 0.02 0.71± 0.04

GraphSAGE A1 0.93± 0.01 0.93± 0.01 0.94± 0.01 0.9± 0.02 0.89± 0.03 0.93± 0.01

GraphSAGE loops A1 0.91± 0.01 0.94± 0.0 0.94± 0.01 0.89± 0.03 0.85± 0.05 0.93± 0.01

Table 3.10: Recall of the normal nodes for A1 on several graphs (G0-G5) in the testing set.

Anomalies / Graph G0 G1 G2 G3 G4 G5

CoBaGAD A2 1.0± 0.0 0.99± 0.0 0.98± 0.01 1.0± 0.0 1.0± 0.0 0.99± 0.01

CoBaGAD loops A2 1.0± 0.01 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.67± 0.14 0.98± 0.02

GAT A2 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.96± 0.06 1.0± 0.0 1.0± 0.0

GAT loops A2 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.67± 0.05 0.99± 0.01

GCN A2 0.93± 0.03 0.84± 0.01 0.91± 0.02 1.0± 0.0 0.96± 0.03 0.85± 0.08

GCN loops A2 0.9± 0.02 0.97± 0.02 0.94± 0.02 0.9± 0.07 0.82± 0.11 0.83± 0.09

GraphSAGE A2 0.99± 0.01 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.93± 0.09 1.0± 0.0

GraphSAGE loops A2 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.99± 0.01

Table 3.11: Recall of the anomalies for A2 on several graphs (G0-G5) in the testing set.

Anomalies / Graph G0 G1 G2 G3 G4 G5

CoBaGAD A2 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

CoBaGAD loops A2 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.98± 0.01 1.0± 0.0

GAT A2 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

GAT loops A2 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.97± 0.0 1.0± 0.0

GCN A2 0.99± 0.0 0.98± 0.0 0.99± 0.0 1.0± 0.0 1.0± 0.0 0.99± 0.01

GCN loops A2 0.99± 0.0 1.0± 0.0 0.99± 0.0 0.99± 0.01 0.99± 0.01 0.98± 0.01

GraphSAGE A2 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.01 1.0± 0.0

GraphSAGE loops A2 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

Table 3.12: Precision of the normal nodes for A2 on several graphs (G0-G5) in the testing set.
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Anomalies / Graph G0 G1 G2 G3 G4 G5

CoBaGAD A2 0.96± 0.01 0.96± 0.0 0.94± 0.05 0.92± 0.05 0.96± 0.02 0.97± 0.01

CoBaGAD loops A2 0.93± 0.0 0.96± 0.01 0.88± 0.01 0.86± 0.07 0.86± 0.06 0.93± 0.02

GAT A2 0.94± 0.01 0.91± 0.01 0.85± 0.02 0.87± 0.06 0.85± 0.02 0.93± 0.03

GAT loops A2 0.92± 0.01 0.91± 0.03 0.82± 0.01 0.88± 0.03 0.8± 0.04 0.93± 0.01

GCN A2 0.84± 0.01 0.59± 0.02 0.63± 0.05 0.72± 0.01 0.81± 0.02 0.82± 0.03

GCN loops A2 0.7± 0.01 0.5± 0.02 0.64± 0.05 0.78± 0.06 0.77± 0.04 0.68± 0.03

GraphSAGE A2 0.87± 0.01 0.89± 0.0 0.92± 0.01 0.92± 0.02 0.83± 0.04 0.9± 0.0

GraphSAGE loops A2 0.87± 0.02 0.89± 0.01 0.92± 0.01 0.91± 0.01 0.87± 0.02 0.86± 0.03

Table 3.13: Recall of the normal nodes for A2 on several graphs (G0-G5) in the testing set.

Anomalies / Graph G0 G1 G2 G3 G4 G5

CoBaGAD A3 1.0± 0.01 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

CoBaGAD loops A3 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

GAT A3 0.98± 0.02 0.9± 0.08 0.96± 0.04 0.81± 0.15 0.84± 0.08 0.89± 0.06

GAT loops A3 1.0± 0.0 1.0± 0.01 0.99± 0.02 1.0± 0.0 1.0± 0.0 1.0± 0.0

GCN A3 0.58± 0.04 0.59± 0.09 0.73± 0.06 0.67± 0.08 0.58± 0.11 0.93± 0.02

GCN loops A3 1.0± 0.0 1.0± 0.0 0.99± 0.01 1.0± 0.0 1.0± 0.0 0.98± 0.02

GraphSAGE A3 1.0± 0.0 1.0± 0.0 0.99± 0.01 1.0± 0.0 0.98± 0.03 1.0± 0.0

GraphSAGE loops A3 1.0± 0.0 1.0± 0.0 0.99± 0.02 0.98± 0.03 0.98± 0.03 1.0± 0.0

Table 3.14: Recall of the anomalies for A3 on several graphs (G0-G5) in the testing set.

Anomalies / Graph G0 G1 G2 G3 G4 G5

CoBaGAD A3 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

CoBaGAD loops A3 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

GAT A3 1.0± 0.0 0.99± 0.01 1.0± 0.0 0.99± 0.01 0.99± 0.01 0.97± 0.03

GAT loops A3 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

GCN A3 0.95± 0.0 0.93± 0.0 0.94± 0.0 0.93± 0.01 0.95± 0.01 0.95± 0.01

GCN loops A3 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

GraphSAGE A3 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

GraphSAGE loops A3 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

Table 3.15: Precision of the normal nodes for A3 on several graphs (G0-G5) in the testing set.
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Anomalies / Graph G0 G1 G2 G3 G4 G5

CoBaGAD A3 0.72± 0.01 0.83± 0.0 0.92± 0.01 0.77± 0.01 0.86± 0.05 0.56± 0.02

CoBaGAD loops A3 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.99± 0.01 0.99± 0.01 0.99± 0.0

GAT A3 0.68± 0.02 0.87± 0.07 0.91± 0.04 0.79± 0.1 0.84± 0.12 0.35± 0.14

GAT loops A3 0.99± 0.01 0.98± 0.0 0.98± 0.01 0.95± 0.01 0.92± 0.0 0.96± 0.01

GCN A3 0.49± 0.06 0.37± 0.06 0.29± 0.05 0.29± 0.05 0.47± 0.1 0.1± 0.01

GCN loops A3 1.0± 0.0 1.0± 0.0 0.99± 0.01 0.98± 0.03 1.0± 0.01 0.98± 0.0

GraphSAGE A3 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.97± 0.01 0.94± 0.06 0.98± 0.01

GraphSAGE loops A3 0.99± 0.01 1.0± 0.0 0.99± 0.01 0.97± 0.02 0.95± 0.05 1.0± 0.0

Table 3.16: Recall of the normal nodes for A3 on several graphs (G0-G5) in the testing set.

Anomalies / Graph G0 G1 G2 G3 G4 G5

CoBaGAD A4 1.0± 0.0 0.98± 0.02 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

CoBaGAD loops A4 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

GAT A4 1.0± 0.0 0.99± 0.01 0.98± 0.02 1.0± 0.0 0.98± 0.03 1.0± 0.0

GAT loops A4 1.0± 0.0 0.99± 0.01 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.99± 0.01

GCN A4 0.7± 0.02 0.82± 0.05 0.88± 0.17 0.72± 0.2 0.69± 0.06 0.7± 0.08

GCN loops A4 1.0± 0.0 1.0± 0.0 0.99± 0.02 0.98± 0.03 1.0± 0.0 0.99± 0.01

GraphSAGE A4 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.98± 0.03 0.98± 0.03 0.99± 0.01

GraphSAGE loops A4 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.98± 0.03 1.0± 0.0 0.98± 0.02

Table 3.17: Recall of the anomalies for A4 on several graphs (G0-G5) in the testing set.

Anomalies / Graph G0 G1 G2 G3 G4 G5

CoBaGAD A4 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

CoBaGAD loops A4 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

GAT A4 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

GAT loops A4 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

GCN A4 0.97± 0.0 0.97± 0.0 0.99± 0.02 0.94± 0.06 0.96± 0.01 0.97± 0.01

GCN loops A4 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

GraphSAGE A4 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

GraphSAGE loops A4 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

Table 3.18: Precision of the normal nodes for A4 on several graphs (G0-G5) in the testing set.
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Anomalies / Graph G0 G1 G2 G3 G4 G5

CoBaGAD A4 0.99± 0.01 0.99± 0.0 1.0± 0.0 0.98± 0.01 0.94± 0.03 0.95± 0.02

CoBaGAD loops A4 0.99± 0.01 1.0± 0.0 0.99± 0.0 0.96± 0.0 0.96± 0.02 0.99± 0.01

GAT A4 0.92± 0.01 0.97± 0.0 0.98± 0.0 0.91± 0.05 0.93± 0.03 0.87± 0.03

GAT loops A4 0.93± 0.02 0.98± 0.02 0.95± 0.02 0.95± 0.05 0.92± 0.03 0.92± 0.02

GCN A4 0.69± 0.01 0.38± 0.04 0.18± 0.23 0.31± 0.07 0.5± 0.11 0.67± 0.04

GCN loops A4 0.92± 0.0 0.97± 0.0 0.97± 0.01 0.95± 0.02 0.96± 0.01 0.88± 0.01

GraphSAGE A4 0.92± 0.01 0.98± 0.0 0.97± 0.0 0.95± 0.02 0.96± 0.01 0.91± 0.01

GraphSAGE loops A4 0.92± 0.01 0.98± 0.0 0.98± 0.0 0.94± 0.02 0.93± 0.02 0.89± 0.01

Table 3.19: Recall of the normal nodes for A4 on several graphs (G0-G5) in the testing set.

Anomalies / Graph G0 G1 G2 G3 G4 G5

CoBaGAD A5 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.98± 0.03 1.0± 0.0 1.0± 0.0

CoBaGAD loops A5 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.96± 0.03 1.0± 0.0 1.0± 0.0

GAT A5 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

GAT loops A5 0.98± 0.03 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

GCN A5 0.72± 0.05 0.81± 0.04 0.78± 0.11 0.74± 0.09 0.6± 0.09 0.69± 0.07

GCN loops A5 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.98± 0.03 0.99± 0.01

GraphSAGE A5 1.0± 0.0 1.0± 0.0 0.99± 0.01 1.0± 0.0 0.98± 0.03 0.98± 0.03

GraphSAGE loops A5 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.93± 0.05 0.99± 0.01

Table 3.20: Recall of the anomalies for A5 on several graphs (G0-G5) in the testing set.

Anomalies / Graph G0 G1 G2 G3 G4 G5

CoBaGAD A5 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

CoBaGAD loops A5 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

GAT A5 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

GAT loops A5 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

GCN A5 0.97± 0.0 0.97± 0.0 0.96± 0.01 0.96± 0.01 0.96± 0.01 0.98± 0.0

GCN loops A5 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

GraphSAGE A5 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

GraphSAGE loops A5 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

Table 3.21: Precision of the normal nodes for A5 on several graphs (G0-G5) in the testing set.
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Anomalies / Graph G0 G1 G2 G3 G4 G5

CoBaGAD A5 0.99± 0.0 0.99± 0.0 0.99± 0.01 0.96± 0.01 0.92± 0.05 0.99± 0.02

CoBaGAD loops A5 0.95± 0.01 0.98± 0.01 0.98± 0.01 0.92± 0.04 0.93± 0.01 0.95± 0.0

GAT A5 0.97± 0.02 0.98± 0.01 0.94± 0.02 0.95± 0.01 0.94± 0.02 0.93± 0.03

GAT loops A5 0.9± 0.03 0.98± 0.01 0.97± 0.01 0.92± 0.04 0.91± 0.0 0.91± 0.02

GCN A5 0.64± 0.05 0.41± 0.03 0.36± 0.18 0.41± 0.09 0.58± 0.02 0.68± 0.02

GCN loops A5 0.88± 0.01 0.97± 0.01 0.96± 0.01 0.96± 0.01 0.92± 0.05 0.83± 0.02

GraphSAGE A5 0.87± 0.02 0.97± 0.0 0.97± 0.01 0.93± 0.01 0.95± 0.01 0.85± 0.05

GraphSAGE loops A5 0.88± 0.01 0.97± 0.0 0.97± 0.01 0.94± 0.01 0.94± 0.01 0.88± 0.02

Table 3.22: Recall of the normal nodes for A5 on several graphs (G0-G5) in the testing set.

Anomalies / Graph G0 G1 G2 G3 G4 G5

CoBaGAD A6 0.68± 0.04 0.91± 0.01 0.91± 0.03 0.78± 0.05 0.76± 0.03 0.72± 0.19

CoBaGAD loops A6 1.0± 0.0 1.0± 0.0 0.99± 0.02 0.98± 0.03 0.69± 0.08 0.98± 0.01

GAT A6 0.62± 0.02 0.92± 0.02 0.89± 0.03 0.89± 0.05 0.8± 0.0 0.61± 0.21

GAT loops A6 1.0± 0.0 0.99± 0.02 0.99± 0.01 1.0± 0.0 0.76± 0.08 0.99± 0.01

GCN A6 0.52± 0.01 0.83± 0.01 0.79± 0.03 0.83± 0.08 0.82± 0.08 0.54± 0.12

GCN loops A6 0.86± 0.02 0.95± 0.06 0.86± 0.06 0.89± 0.0 0.87± 0.11 0.87± 0.02

GraphSAGE A6 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.96± 0.06 0.99± 0.01

GraphSAGE loops A6 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

Table 3.23: Recall of the anomalies for A6 on several graphs (G0-G5) in the testing set.

Anomalies / Graph G0 G1 G2 G3 G4 G5

CoBaGAD A6 0.98± 0.0 0.99± 0.0 0.99± 0.0 0.99± 0.0 0.98± 0.0 0.97± 0.0

CoBaGAD loops A6 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.98± 0.01 1.0± 0.0

GAT A6 0.97± 0.0 0.99± 0.0 0.99± 0.0 0.99± 0.0 0.98± 0.0 0.96± 0.0

GAT loops A6 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.98± 0.01 1.0± 0.0

GCN A6 0.96± 0.0 0.98± 0.0 0.98± 0.0 0.98± 0.01 0.99± 0.01 0.96± 0.01

GCN loops A6 0.99± 0.0 1.0± 0.01 0.99± 0.01 0.99± 0.0 0.99± 0.01 0.99± 0.0

GraphSAGE A6 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.01 1.0± 0.0

GraphSAGE loops A6 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

Table 3.24: Precision of the normal nodes for A6 on several graphs (G0-G5) in the testing set.
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Anomalies / Graph G0 G1 G2 G3 G4 G5

CoBaGAD A6 0.95± 0.06 0.89± 0.04 0.93± 0.04 0.93± 0.01 0.84± 0.06 0.64± 0.42

CoBaGAD loops A6 0.99± 0.0 0.99± 0.0 0.92± 0.06 0.95± 0.03 0.86± 0.04 0.91± 0.01

GAT A6 0.76± 0.03 0.88± 0.04 0.88± 0.01 0.92± 0.01 0.79± 0.09 0.64± 0.36

GAT loops A6 0.94± 0.03 0.95± 0.02 0.9± 0.02 0.93± 0.03 0.87± 0.01 0.9± 0.01

GCN A6 0.77± 0.03 0.6± 0.03 0.67± 0.03 0.68± 0.09 0.77± 0.01 0.68± 0.16

GCN loops A6 0.91± 0.02 0.79± 0.1 0.76± 0.09 0.79± 0.02 0.85± 0.08 0.93± 0.03

GraphSAGE A6 0.97± 0.01 0.95± 0.01 0.92± 0.01 0.88± 0.03 0.85± 0.05 0.96± 0.01

GraphSAGE loops A6 0.97± 0.0 0.94± 0.01 0.93± 0.02 0.92± 0.04 0.93± 0.02 0.96± 0.03

Table 3.25: Recall of the normal nodes for A6 on several graphs (G0-G5) in the testing set.
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Introduction

Ces dernières années, les données de type réseau sont devenues omniprésentes et ont suscité

un grand intérêt dans la communauté de l’exploration de données. Elles sont utilisées dans de

nombreux domaines différents. Les réseaux sociaux tels que Facebook, Twitter ou les cercles

sociaux de la vie réelle sont par nature des graphes avec de nombreuses applications potentielles

telles que la recommandation d’amis, la recherche de groupes de personnes, de bots ou de

spammeurs, de comptes malveillants qui diffusent de fausses nouvelles, d’orateurs haineux, des

personnes les plus influentes et même l’étude de la diffusion d’informations ou de maladies. Le

Web est aussi un réseau dans lequel nous voulons identifier les hubs et essayer d’améliorer la

précision des recherches. Dans les réseaux de télécommunication comme les réseaux 4G et 5G

ou les réseaux d’e-mails, on peut vouloir identifier les entités dont le comportement s’écarte de la

normalité ou celles qui diffusent des informations malveillantes. La distribution d’électricité, de

gaz, d’eau sont aussi des réseaux dans lesquels on veut trouver des anomalies pour prévenir les

pannes ou prédire les pics de consommation. Du côté de la sécurité numérique, la propagation de

virus, l’intrusion de machines, et la détection d’ordinateurs non autorisés sont des applications

de l’analyse de réseau. Les graphes ne cessent de grandir, avec environ 3 milliards d’utilisateurs

de Facebook, 200 millions d’utilisateurs quotidiens de Twitter et 45 milliards de pages web. De

nouvelles méthodes sont donc nécessaires pour traiter de tels ensembles de données. Récemment,

l’exploration de graphes a été révolutionnée par les modèles d’apprentissage automatique. Les

plongements de graphes et les réseaux neuronaux sur graphes sont des outils très efficaces pour

réduire la complexité de l’analyse des graphes. De plus, ils améliorent considérablement la

capacité à effectuer certaines tâches sur les graphes.

D’autre part, la détection d’anomalies est un problème important dans de nombreux do-

maines d’application. La détection d’anomalies vise à trouver des instances anormales dans les

données. Il existe de nombreuses applications possibles telles que la surveillance de la santé

avec la détection d’anomalies dans les radiographies ou les électrocardiogrammes, la détection

de fraudes, la détection d’événements spéciaux, les défauts dans l’industrie ou les comporte-

ments anormaux. Par exemple, on estime qu’il y a entre 25 et 100 milliards d’euros de fraude

fiscale en France. En 2020, 25% des contrôles fiscaux ont été automatisés grâce à des outils

d’analyse de données. Ainsi, les recettes de l’impôt ont augmenté de 30% entre 2019 et 2020.

L’essor des outils de détection des anomalies entraîne des améliorations majeures dans beaucoup

de domaines. Il est nécessaire de poursuivre ces développements et d’améliorer les méthodes

actuelles. Un autre défi de la détection d’anomalies est le fait qu’elle traite de l’occurrence de

cas rares dans les données. Cela implique souvent de traiter des données très déséquilibrées. Le

traitement de données déséquilibrées complique également l’analyse des données.

Enfin, l’explicabilité dans le domaine de l’intelligence artificielle, XAI (eXplainable Artificial

Intelligence), est devenue très importante avec l’essor des modèles d’apprentissage profond. En

effet, l’apprentissage profond a apporté d’énormes améliorations dans l’exploration du texte,

la vision assistée par ordinateur ou le traitement du signal. Mais il a également entraîné un
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manque de compréhensibilité car la plupart des meilleurs modèles ne sont pas interprétables.

Par exemple, les convolutions ou les mécanismes d’attention ne sont pas intrinsèquement com-

préhensibles. Ainsi, un domaine de recherche émergent est l’intelligence artificielle explica-

ble (XAI) qui se concentre sur la façon de générer des explications significatives qui peuvent

améliorer la confiance dans les différents modèles, améliorer la transparence des décisions, éviter

les biais des modèles ou des ensembles de données ou simplement permettre de comprendre la

sortie d’un outil d’apprentissage automatique.

Cette thèse se situe à l’intersection de ces trois domaines : la fouille de graphes pour la

détection d’anomalies et l’explicabilité.

Contexte de cette thèse . Les travaux présentés dans cette thèse ont été réalisés dans

l’équipe Data Intelligence du laboratoire Hubert Curien qui est une unité mixte de recherche

(UMR 5516) entre l’Université Jean Monnet de Saint-Étienne, l’Université de Lyon, le CNRS

et l’Institut d’Optique Graduate School.

Plan de la thèse Ce manuscrit est composé d’un chapitre de mise en contexte suivi de deux

chapitres présentant chacun une de nos contributions.

• Le chapitre 1 est une introduction aux différents sujets abordés dans cette thèse. Tout

d’abord, nous introduisons le concept de graphe et les outils pour les analyser. Quelques

définitions sont données et une présentation générale de l’analyse de réseau, des techniques

de plongement de graphes et des réseaux neuronaux sur graphes est fournie. Ensuite, nous

introduisons la notion de détection d’anomalies et discutons de l’une de ses principales

limites : la malédiction de la dimensionnalité. Enfin, nous donnons un aperçu de la

notion d’intelligence artificielle explicable. Les modèles linéaires et les arbres de déci-

sion sont introduits pour, ensuite, présenter leurs limites. Des modèles plus précis sont

également introduits tels que les réseaux de neurones profonds. Si ces nouveaux modèles

d’apprentissage automatique ont amélioré de nombreux aspects du processus de décision,

ils ne sont cependant pas intrinsèquement compréhensibles. Pour résoudre ce problème,

de nouvelles méthodes d’explication sont nécessaires.

• Le chapitre 2 est consacré à la définition et à la détection des anomalies contextuelles dans

les graphes attribués, qui constituent un nouveau type d’anomalies. Les anomalies dans

les graphes ne sont pas toujours clairement définies et dépendent souvent de l’application.

Par exemple, les lois de puissance ont été largement utilisées dans l’exploration de graphes

et les anomalies pourraient être les nœuds qui s’écartent beaucoup de ces lois. Bien que

cette définition soit facile à comprendre, elle est spécifique au modèle car le choix des lois

est crucial. De plus, ces méthodes ne fournissent pas une définition claire des anomalies

car elles ne se concentrent pas sur des nœuds spécifiques du graphe. Dans un cadre

non supervisé, où aucune donnée étiquetée n’est disponible pendant l’apprentissage, un

modèle ne peut pas se concentrer sur des nœuds spécifiques du graphe puisqu’il ne peut
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pas disposer d’informations guidées par l’utilisateur. En revanche, si quelques exemples

étiquetés sont fournis au modèle pendant l’entrainement, il peut se concentrer sur les

nœuds du même type. Cette approche permet de détecter les nœuds du graphe qui

partagent le même type. Ainsi, si nous connaissons déjà quelques anomalies dans le

graphe, alors nous pouvons détecter toutes les anomalies du même type. Dans cette thèse,

nous avons défini les anomalies contextuelles comme des nœuds du graphe représentés par

un contexte local particulier autour de ce nœud. Ensuite, de manière semi-supervisée, ce

type d’anomalie peut être détecté grâce à des réseaux de neurones sur graphes avec des

mécanismes d’attention. Des expériences intensives prouvent l’efficacité de l’approche et

montrent qu’elle surpasse les modèles de pointe semi-supervisés et non supervisés dans la

détection d’anomalies contextuelles. L’ajustement des paramètres est également discuté

afin que chaque utilisateur puisse facilement détecter ses propres anomalies.

• Le chapitre 3 est consacré à la présentation de notre modèle explicatif de classifica-

tion sur graphes. L’explicabilité dans le contexte de l’apprentissage automatique s’est

considérablement développée au cours des dernières années. L’amélioration des mod-

èles d’apprentissage automatique en termes de vision par ordinateur et de traitement du

langage naturel a entraîné un manque de compréhensibilité des méthodes. Ceci est prin-

cipalement dû à l’utilisation de réseaux neuronaux. Dans le contexte de la classification

des nœuds dans les graphes, les modèles explicatifs reposent souvent sur la recherche de

nœuds importants du graphe qui ont conduit à une classification spécifique ou de car-

actéristiques importantes décrivant les nœuds. Une nouvelle méthode est présentée, qui

est simple, compréhensible et qui peut faire la distinction entre les nœuds et les carac-

téristiques pour extraire uniquement les nœuds pertinents et leurs caractéristiques qui

impliquent la détection d’anomalies. Les expériences démontrent que ce nouveau modèle

peut trouver avec précision les informations pertinentes qui conduisent un modèle profond

à une prédiction spécifique. Il surpasse aussi largement les méthodes de l’état de l’art car

il est plus précis. Enfin, l’ajustement des hyperparamètres est discuté.

Conclusion

La première contribution principale de cette thèse est la définition, la génération et la dé-

tection d’anomalies contextuelles dans les graphes avec des réseaux de neurones sur graphes

dans le contexte de données déséquilibrées. Les anomalies contextuelles sont un cas spécifique

d’anomalies où les nœuds du graphe présentent un arrangement singulier. Il existe de nombreux

types d’anomalies contextuelles en fonction du "contexte". Grâce à notre générateur ConA-

Gen, il est possible de créer de nouveaux jeux de données avec des anomalies contextuelles ainsi

que la vérité de terrain sur les nœuds qui sont des anomalies. De plus, nous avons présenté

CoBaGAD, notre détecteur d’anomalies contextuelles. Avec une couche d’attention de graphe

modifiée, nous pouvons construire un réseau neuronal pour classer les nœuds en deux catégories
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: nœuds normaux et anomalies. Grâce à des expériences intensives, nous montrons que notre

modèle peut surpasser les méthodes de classification sur graphes de l’état de l’art d’une im-

portante marge. Bien que notre modèle présente de très bonnes performances, nous aimerions

aborder certaines améliorations possibles. Tout d’abord, notre générateur donne à chaque nœud

un vecteur de caractéristiques de type one-hot. C’est-à-dire que les nœuds d’un graphe ne sont

décrits que par un seul attribut catégorique (qui peut être considéré comme une couleur). Ainsi,

une amélioration naturelle de notre générateur est de passer à la création de caractéristiques

plus complexes comme des attributs catégoriels multiples ou des attributs numériques multiples.

Ces deux configurations sont plus proches des cas réels. Cette modification des caractéristiques

impliquera également que nous puissions définir des anomalies contextuelles plus complexes,

ce qui constituerait un nouveau défi à relever pour CoBaGAD. Bien que les anomalies con-

textuelles puissent devenir plus complexes, CoBaGAD devrait rester robuste aux changements

et ne devrait pas être modifié, à part peut-être l’ajustement de quelques paramètres comme le

nombre de couches pour avoir un plus grand champ de vision. Deuxièmement, nous aimerions

pouvoir fournir un score d’anomalie. En effet, dans le contexte de la fraude, par exemple, les

experts ne se concentreront que sur les fraudes les plus importantes et les plus probables. Ainsi,

il pourrait être bénéfique d’avoir une technique de classement qui puisse trouver les anomalies

les plus pertinentes dans le réseau.

La deuxième contribution de cette thèse est l’explication de la prédiction d’un modèle boîte

noire qui effectue des inférences sur des données de type graphes. Notre modèle appartient

à la famille des méthodes de perturbation dont le but est de générer de nouvelles données

autour d’une instance spécifique pour apprendre un modèle explicable local. Pour un nœud

spécifique, notre méthode s’appuie sur un échantillonnage multiple du voisinage du nœud et

le perturbe pour créer un nouveau jeu de données. Ces exemples perturbés sont introduits

dans le modèle de la boîte noire pour produire une étiquette. Grâce à ces exemples perturbés

associés et à leurs étiquettes, nous pouvons entraîner localement un arbre de décision, i.e. pour

ce nœud spécifique. Le choix de l’arbre de décision n’est pas trivial car le processus de décision

d’un arbre est compréhensible par l’homme et il fournit également un score d’importance pour

chacune des caractéristiques d’entrée. Ensuite, nous pouvons utiliser ces scores pour trouver

les caractéristiques pertinentes qui ont conduit le modèle boîte noire à une décision spécifique.

Grâce aux anomalies contextuelles qui fournissent une vérité terrain naturelle pour expliquer la

classification des nœuds, nous avons mené de nombreuses expériences pour retrouver le contexte

qui a défini les anomalies.

Nous pensons que notre travail a beaucoup d’applications potentielles. La détection des

anomalies est très importante dans de nombreux domaines tels que la détection de fraudes sur

les marchés publics ou l’évasion fiscale, la sécurité avec les intrusions dans les réseaux, la finance

avec la fraude à la carte de crédit, la détection des logiciels malveillants, la publicité mensongère

ou encore la propagation de fausses nouvelles. De nombreuses activités frauduleuses existent et

des méthodes toujours plus complexes sont développées pour tenter de ne pas se faire prendre.
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Ainsi, de nouveaux outils sont également conçus pour détecter les nouvelles formes d’anomalies.

Cela peut être réalisé à l’aide de puissants algorithmes d’apprentissage automatique. Mais les

méthodes d’apprentissage automatique ont également entraîné un manque de compréhension

du fonctionnement des algorithmes. Ceci est principalement dû au grand nombre de paramètres

qu’ils utilisent. Il est donc crucial d’expliquer le processus de décision d’une méthode. Cela se

fait par le biais de l’intelligence artificielle explicable, qui est un ensemble de nouvelles méthodes

visant à donner un sens au processus d’inférence d’une méthode d’apprentissage automatique.

La détection des anomalies et l’intelligence artificielle explicable sont toutes deux nécessaires

pour rendre le monde plus juste. Plus juste en trouvant les personnes frauduleuses grâce à la

détection des anomalies et plus juste en mettant l’intelligence artificielle à la portée de tous grâce

à XAI. Le pouvoir prédictif des algorithmes d’apprentissage automatique doit être bénéfique

pour tous, mais aussi compréhensible pour tous.

Remerciements

Je voudrais avant tout remercier Christine et Baptiste pour avoir encadrer mes travaux de

recherche au cours de ces trois dernières années et sans qui rien n’aurait été possible. Leur

encadrement m’a permis de grandir à la fois scientifiquement mais aussi humainement. Scien-

tifiquement grâce à leur expertise, à leur excellente connaissance du domaine, à leur approche

rigoureuse de la science bien faite et à leur capacité d’ouverture et d’intégration des différentes

approches de graph mining. Mais aussi humainement grâce à l’apprentissage de la bonne con-

duite d’un projet de recherche en passant par chaque étape depuis l’établissement d’un sujet

jusqu’à l’écriture d’un papier. Baptiste, tu es toujours prêt à aider, à échanger des idées, et

à apporter un éclairage sur un sujet scientifique pointu. Christine, tu as su me donner un

cadre scientifique précis pour pouvoir avancer dans la bonne direction et me soutenir lors des

différentes épreuves que constitue la thèse de doctorat. Baptiste et Christine, vous faites vrai-

ment une merveilleuse équipe et j’ai passé de très bons moments à travailler avec vous au cours

de ces trois dernières années. J’aimerais aussi remercier toute l’équipe Data Intelligence et le

laboratoire Hubert Curien pour m’avoir accueilli durant ma thèse et tout fait pour avoir de

bonnes conditions de travail malgré l’obstacle du COVID.

J’aimerais remercier aussi les membres du jury qui ont relu et évalué mes travaux de thèse

et plus particulièrement ce manuscrit. Merci à Márton Karsai et Eric Gaussier pour l’attention

particulière qu’ils ont apporté à ma thèse de doctorat. Merci à Nidhi Hegde d’avoir apporté

son expertise sur le sujet. Et merci à Christophe Gravier d’avoir suivi l’avancée de mes travaux

de recherche au cours de ma thèse.

Je porte aussi une attention très spéciale au soutien que m’a procuré ma famille. Merci à

mes parents, Alain et Marie-Agnès, de m’avoir toujours soutenu dans mes études et de m’avoir

aidé à pouvoir les réaliser dans d’excellents conditions. Vous avez toujours été intéressés malgré

la difficulté d’appréhension du sujet et toujours disponible quand il le faut. Merci aussi à ma

129



Bibliography

chérie, Cybèle, pour me supporter au quotidien malgré la fatigue et le stress parfois. Cette

thèse ne serait pas la même sans toi. Merci à mes frères, Quentin, Robin et Vincent, pour leur

curiosité et leur soutien indéfectible. Merci à ma belle-famille pour leurs encouragements et leur

aide morale. Et enfin, merci à mes amis pour leur bonne humeur et les moments de réconfort

qu’ils m’ont apporté et qu’ils m’apportent encore.

130


	Introduction
	List of Publications
	List of Notations
	Background
	Graph mining
	A few definitions
	Different types of graphs
	Network analysis
	Mining tasks

	Machine learning for graph mining
	Machine learning basics
	Deep neural networks
	Graph embeddings
	Graph neural networks

	Anomaly detection
	Explainable Artificial Intelligence

	Graph contextual anomalies detection
	Related work
	Anomaly detection with vectorial data
	Anomaly detection in relational data

	Problem definition
	Our method: CoBaGAD
	Datasets generation
	Generation of a graph with contextual anomalies
	An illustrative example

	Experimental evaluation of CoBaGAD
	Datasets
	Experimental setup
	Results
	Number of layers: hyper-parameter tuning

	Conclusion

	Explaining anomaly classification in graphs.
	Related work
	Explainability in the context of vector data
	Explainability in the context of relational data

	Problem definition
	Contextual anomaly detection
	Classification problem formalization

	Our method
	Local sample as perturbations of the neighborhood
	Learning the local model
	Feature importance in a decision tree
	Explaining the prediction of a contextual anomaly by the black-box model

	Measures: Fidelity, efficiency, and quality of an explanation
	Fidelity
	Efficiency
	Precision and recall

	Experiments
	Datasets
	Experimental setup

	Results
	Fidelity
	Efficiency
	Quality of the explanation
	Hyper-parameter tuning

	Conclusion

	Conclusion
	Acknowledgement
	Bibliography

