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LIST OF TABLES ations. In this approach, reassigning even one weight affects the total weight of servers. Accordingly, the total weight of servers should be recomputed by performing each weight reassignment. We treat such an approach as a concurrent object; then, we prove that its consensus number is greater than one to show that it cannot be implemented in asynchronous, failure-prone distributed systems, regardless of how it is implemented.

In the second approach, the weights are reassigned in a pairwise manner where each server can donate some part of its weight to another server. Besides, each server can retake its donated weights. The advantage of this approach against the first approach is that the total weight of servers does not change over time, so it is not required to recompute the total weight of servers by performing each weight reassignment. Similarly, we show that the second approach cannot be implemented in asynchronous, failure-prone distributed systems. Finally, we investigate another approach that is a weaker version of the second approach and has an asynchronous implementation.

Another contribution of this thesis is to construct atomic storage based on the dynamic weighted quorum in which weights can be reassigned without consensus over time using the implementation of the third weight reassignment approach. To this end, we first consider the crash failure model and present an epoch-based protocol. Then, to improve the efficiency of the epoch-based protocol, we present an epoch-less protocol.

A few problems related to the dynamic weighted quorum, weight reassignment approaches, and weight reassignment protocols are considered in this thesis as well. One of the related problems is determining essential criteria for weight

Chapter 1 Introduction

In the era of big data, cloud computing, cryptocurrencies, and the internet of everything, storage systems are demanding more than ever. Since such systems are prone to various types of failures, like disk failures and failures created by malicious attacks, they should be fault-tolerant. Replication is the most wellknown technique to construct fault-tolerant storage systems [START_REF] Gifford | Weighted voting for replicated data[END_REF][START_REF] Kuznetsov | Asynchronous reconfiguration with byzantine failures[END_REF][START_REF] Souravlas | Trends in data replication strategies: a survey[END_REF][START_REF] Van Renesse | Chain replication for supporting high throughput and availability[END_REF]. In a replicated storage system, copies of data are stored in multiple storage units, so the system remains available, i.e., respond to clients in a timely manner [START_REF] Ongaro | In search of an understandable consensus algorithm[END_REF], by occurring failures for a proper subset of its storage units.

A replicated storage system can be located in a single physical site and connected to the clients via a single network interface, like RAID systems [START_REF] David A Patterson | A case for redundant arrays of inexpensive disks (raid)[END_REF]. Such a storage system constitutes a single point of failure so that data cannot survive after complete site disasters. In contrast, storage units can be placed in several sites constructing a distributed storage system. Each storage unit in a distributed storage system is a cheap commodity disk or low-end PC [START_REF] Chockler | Reliable distributed storage[END_REF]. These distinguishing features and many others cause distributed storage systems to become increasingly popular.

In a distributed storage system, storage units are called servers. Each copy of data stored by a server might have a different version than other copies, so ensuring consistency is a significant problem. Intuitively, consistency means that every client should be able to execute the provided operations, like read and write, on the most up-to-date version of data stored by the storage system [START_REF] Brewer | Cap twelve years later: How the" rules" have changed[END_REF][START_REF] Kuznetsov | Asynchronous reconfiguration with byzantine failures[END_REF]. However, providing both consistency and availability in distributed storage systems is impossible in the presence of network partitions due to the CAP theorem [START_REF] Gilbert | Brewer's conjecture and the feasibility of consistent, available, partition-tolerant web services[END_REF].

There are two main approaches to designing a distributed storage system based on that impossibility result. The first approach considers network partitions and presents a trade-off between consistency and availability, like NoSQL distributed databases [START_REF] Brewer | Cap twelve years later: How the" rules" have changed[END_REF]. The other approach excludes network partitions and provides both consistency and availability by assuming that at least one available quorum exists to execute each operation [START_REF] Kuznetsov | Asynchronous reconfiguration with byzantine failures[END_REF]. In further detail, servers are organized as a quorum system [START_REF] Vukolić | Quorum Systems: With Applications to Storage and Consensus[END_REF], and each operation should be executed by a 14 CHAPTER 1. INTRODUCTION quorum. A quorum system is a collection of sets called quorums such that each quorum is a subset of servers, and the intersection property that states every two quorums intersect should be satisfied. The intersection property guarantees that no operation can miss the most up-to-date version of data.

There exist many types of quorum systems such as grids [START_REF] Shun | The grid protocol: A high performance scheme for maintaining replicated data[END_REF][START_REF] Naor | The Load, Capacity, and Availability of Quorum Systems[END_REF], trees [START_REF] Agrawal | The tree quorum protocol: An efficient approach for managing replicated data[END_REF], hierarchical [START_REF] Kumar | Hierarchical quorum consensus: a new algorithm for managing replicated data[END_REF], and the majority quorum system (MQS) [START_REF] Whittaker | Read-write quorum systems made practical[END_REF]. In the MQS, also known as majority voting [START_REF] Robert | A majority consensus approach to concurrency control for multiple copy databases[END_REF][START_REF] Ueda | On the availability of replicated data managed by hierarchical voting[END_REF], every quorum consists of a strict majority of servers. Most replicated storage systems based on quorum systems, such as ZooKeeper [START_REF] Hunt | Zookeeper: Wait-free coordination for internet-scale systems[END_REF] and Etcd [START_REF] Etcd | [END_REF], utilize the MQS due to its simplicity and optimal fault tolerance; however, the MQS can impact both quorum latency 1and throughput [START_REF] Whittaker | Read-write quorum systems made practical[END_REF]. The reason for this performance impact is that an MQS does not consider the heterogeneity of servers or network connections. If it takes such heterogeneity into account, its quorum latency and throughput are likely to be improved.

Contrarily to MQS, the weighted majority quorum system (WMQS), also known as weighted voting [START_REF] Amir | Optimal availability quorum systems: Theory and practice[END_REF][START_REF] Jiménez-Peris | Are quorums an alternative for data replication[END_REF][START_REF] Parhami | Voting algorithms: Ieee transactions on reliability[END_REF] or weighted replication [START_REF] Berger | Aware: Adaptive wide-area replication for fast and resilient byzantine consensus[END_REF], was proposed to cope with heterogeneity. In the WMQS, each server is assigned a weight or voting power that is in accordance with the server's latency or throughput determined by a monitoring system [START_REF] Barbara | The Reliability of Voting Mechanisms[END_REF][START_REF] Berger | Aware: Adaptive wide-area replication for fast and resilient byzantine consensus[END_REF]; every quorum consists of a set of servers such that the sum of their weights is greater than half of the total weight of servers in the system. This way, proportionally smaller quorums can be constituted so the performance of the system can be improved. The following example helps to grasp the difference between MQS and WMQS in distributed storage systems with heterogeneous latencies and throughput.

Example 1. Let s 1 , s 2 , s 3 , and s 4 be the servers comprising the distributed storage system and c be a client. Consider the two following scenarios. For the first scenario, assume that the average round-trip latencies between the client and servers s 1 , s 2 , s 3 , and s 4 are 20ms, 45ms, 100ms, and 140ms, respectively. In another scenario, assume that the throughput of servers s 1 , s 2 , s 3 , and s 4 are 1000, 800, 400, and 200 operation/sec, respectively. Such latencies and throughput are determined using a monitoring system. Let 1.4, 1.1, 0.9, 0.6 be the assigned weights to servers s 1 , s 2 , s 3 , and s 4 , respectively. The quorum latency using MQS is 100ms while using WMQS is 45ms (Figure 1.1). The throughput of the system based MQS and WMQS is 600 and 800 operation/sec, respectively 2 . Both scenarios show the advantage of using the WMQS over MQS due to constituting proportionally smaller quorums.

The WMQS relies on static weight assignments, so it has a significant limitation for dynamic environments and long-lived distributed storage systems, where the latencies and throughput of servers might change over time. To overcome such a limitation, the dynamic weighted majority quorum system (DWMQS), also known as dynamic voting [START_REF] Davcev | A dynamic voting scheme in distributed systems[END_REF][START_REF] Jajodia | Dynamic voting algorithms for maintaining the consistency of a replicated database[END_REF][START_REF] Zarafshan | Ancestral dynamic voting algorithm for mutual exclusion in partitioned distributed systems[END_REF], can be used. weight reassignment protocols to reassign weights over time according to the performance variations detected by monitoring systems. Many weight reassignment protocols have been proposed based on consensus 3 or similar primitives (for example, the protocols presented in [START_REF] Berger | Aware: Adaptive wide-area replication for fast and resilient byzantine consensus[END_REF][START_REF] Davcev | A dynamic voting scheme in distributed systems[END_REF][START_REF] Jajodia | Dynamic voting algorithms for maintaining the consistency of a replicated database[END_REF]). The general scheme of these protocols is as follows: new weights are proposed; then, servers execute a consensus protocol (for example, Paxos [START_REF] Lamport | Paxos made simple[END_REF]) or similar primitives to reach an agreement on the proposed weights; finally, the decided weights are used. The objective of using consensus or similar primitives is to ensure that all processes use the same set of weights to decide whether a subset of servers constitutes a quorum. An important feature of these protocols is that they cannot be implemented in asynchronous and failure-prone distributed systems due to the FLP theorem [START_REF] Michael | Impossibility of distributed consensus with one faulty process[END_REF].

Using the weight reassignment protocols based on consensus or similar primitives for consensus-based distributed storage systems, like state machine replication [START_REF] Schneider | Implementing fault-tolerant services using the state machine approach: A tutorial[END_REF], is not problematic. However, some distributed storage systems can be implemented in asynchronous, failure-prone distributed systems for which consensus-free weight reassignment protocols should be used to avoid changing the timing model. Regarding consensus-free weight reassignment protocols, no study has been done to the best of our knowledge, and studying such protocols is the primary objective of this thesis.

Motivation

One of the fundamental distributed storage systems is the atomic storage system (simply atomic storage, also known as atomic register [START_REF] Lamport | On interprocess communication (part i)[END_REF]). Although such a storage system has only two operations-read and writeit provides the building blocks for both complex practical storage systems (for example, FAB [START_REF] Saito | Fab: building distributed enterprise disk arrays from commodity components[END_REF] and GPFS [START_REF] Frank | Gpfs: A shared-disk file system for large computing clusters[END_REF]) and theoretical storage systems (like, lattice agreement [START_REF] Attiya | Atomic snapshots using lattice agreement[END_REF]). Atomic storage ensures consistency as follows: each read returns the last value written. 3 Consensus is one the most fundamental problems of distributed systems [START_REF] Dolev | On the minimal synchronism needed for distributed consensus[END_REF][START_REF] Guerraoui | Introduction to Reliable Distributed Programming[END_REF][START_REF] Turek | The many faces of consensus in distributed systems[END_REF]. In case a set of servers requires to agree on a value, consensus is used. Any solution for consensus must satisfy three properties: agreement: no two servers decide on different values; validity: the decided value was proposed by some server; termination: all correct servers reach a decision. Although consensus is a powerful primitive in designing distributed services, it cannot be implemented in asynchronous, failure-prone distributed systems, even in the presence of a single crash failure [START_REF] Michael | Impossibility of distributed consensus with one faulty process[END_REF].
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An important feature of atomic storage is that it can be implemented in failureprone asynchronous distributed systems [START_REF] Herlihy | The art of multiprocessor programming[END_REF][START_REF] Vukolić | Quorum Systems: With Applications to Storage and Consensus[END_REF].

Regarding the number of readers and writers, there are two types of atomic storage [START_REF] Herlihy | The art of multiprocessor programming[END_REF]. The first type is the single-writer multi-reader (SWMR), in which there is only one process that is allowed to execute write operations while there are multiple processes that can execute read operations. The ABD protocol [START_REF] Attiya | Sharing memory robustly in message-passing systems[END_REF] is the first protocol presented to implement the SWMR atomic storage in crashprone asynchronous distributed systems. Each read operation takes two communication rounds 4 , where each communication round contains two phases 5 . On the other hand, each write operation takes one communication round that contains two phases. Several protocols have been presented to improve the efficiency of the ABD protocol by reducing the number of communication rounds or phases of the read operations (for example, the protocols presented in [START_REF] Dutta | How fast can a distributed atomic read be[END_REF][START_REF] Hadjistasi | Oh-ram! one and a half round atomic memory[END_REF][START_REF] Mostéfaoui | Time-efficient read/write register in crash-prone asynchronous message-passing systems[END_REF] and references therein).

Contrarily to the SWMR atomic storage, there is another type called multiwriter multi-reader (MWMR) atomic storage, in which there are multiple processes that can execute write operations. Lynch and Schwarzmann presented the first MWMR extension of the ABD protocol in [START_REF] Lynch | Robust emulation of shared memory using dynamic quorum-acknowledged broadcasts[END_REF]. Each read or write operation takes two communication rounds, where each communication round contains two phases. We name that protocol the MW-ABD. Several protocols have been presented to improve the efficiency of the MW-ABD protocol by decreasing the number of its communication rounds and phases (for example, [START_REF] Englert | On the efficiency of atomic multi-reader, multi-writer distributed memory[END_REF][START_REF] Georgiou | Towards feasible implementations of low-latency multiwriter atomic registers[END_REF]).

The ABD, MW-ABD, and similar protocols are based on static configurations, where the set of servers does not change over time. Although atomic storage is able to tolerate failures of some servers, servers might require to be replaced in long-lived systems. Moreover, some new servers might be added to the system to enhance the performance. Therefore, the protocols of atomic storage must be able to provide reconfiguration operations by which new servers can be added, and old servers can be removed [START_REF] Aguilera | Reconfiguring replicated atomic storage: A tutorial[END_REF][START_REF] Spiegelman | Dynamic reconfiguration: A tutorial (tutorial)[END_REF].

Multiple consensus-based protocols for reconfigurable atomic storage have been proposed (like, [START_REF] Georgiou | Developing a Consistent Domain-Oriented Distributed Object Service[END_REF][START_REF] Gilbert | Rambo: a robust, reconfigurable atomic memory service for dynamic networks[END_REF][START_REF] Gramoli | Operation Liveness and Gossip Management in a Dynamic Distributed Atomic Data Service[END_REF]). However, researchers have tried to propose consensus-free protocols for reconfigurable atomic storage due to the possibility of implementing atomic storage in asynchronous, failure-prone distributed systems. Aguilera et al. proposed the first consensus-free protocol for reconfigurable atomic storage called DynaStore [START_REF] Aguilera | Dynamic atomic storage without consensus[END_REF]. In this protocol, atomic storage uses a default configuration that is known by all servers initially. The protocol provides three kinds of operations: read, write, and reconfig. The read and write operations are executed similar to the MW-ABD protocol. Servers can change their current configurations using reconfig operation. The drawback of Dyna-Store is its performance. Several protocols (for example, [START_REF] Alchieri | Efficient and modular consensus-free reconfiguration for fault-tolerant storage[END_REF][START_REF] Jehl | The case for reconfiguration without consensus: Comparing algorithms for atomic storage[END_REF][START_REF] Jehl | Smartmerge: A new approach to reconfiguration for atomic storage[END_REF][START_REF] Spiegelman | Dynamic reconfiguration: Abstraction and optimal asynchronous solution[END_REF]) have been proposed to improve the performance of DynaStore.

To enhance the performance of atomic storage based on the MQS, instead of decreasing the number of communication rounds or phases, one can replace the MQS with WMQS. Since the servers' performance might change over time in long-lived systems, the weights should be reassigned over time; therefore, using the DWMQS instead of the WMQS is a better choice. At this point, we can ask a similar question to the reconfigurable atomic storage: "can we construct a consensus-free atomic storage based on DWMQS?"

Research Problems

The research done in this thesis can be summarized as addressing three main problems. First, we investigate the weight reassignment problem by considering three weight reassignment approaches to determine whether they can be implemented without consensus (Problem 1). Second, we design two consensus-free protocols for the weight reassignment problem. Then, we construct consensusfree atomic storage based on DWMQS such that the servers' weights are reassigned using the proposed consensus-free weight reassignment protocols (Problem 2). Third, we investigate the relationship between two problems-the weight reassignment and reconfiguration problems-and present a new variation for the reconfiguration problem (Problem 3). Each problem is described in further detail below.

Problem 1: investigating the consensus-free weight reassignment problem

To investigate the consensus-free weight reassignment problem, we take two steps. We first define the problem of weight reassignment for the DWMQS.

For a system based on the MQS, every quorum consists of a strict majority of servers; therefore, a majority of servers should be correct to guarantee the system's availability. In other words, the maximum number of failed servers, f , should be less than equal to ⌊(n -1)/2⌋, where n denotes the number of servers. In case the MQS is replaced with the WMQS, to guarantee the system's availability, the weights should be assigned so that the total of the f greatest weights is less than tw/2, where tw denotes the total weight of servers. Similarly, if the WMQS is replaced with the DWMQS, the total of the f greatest weights should remain less than tw/2 over time.

Based on the relationship between the f greatest weights and tw, we formulate the fundamental problem of the DWMQS and weight reassignment protocols as follows:

"Assume that a system based on DWMQS is available initially, i.e., the total of the f greatest weights is less than tw/2. Multiple concurrent requests are issued to reassign weights. Consequently, the total weight of servers might change after applying a subset of such requests. Is there any weight CHAPTER 1. INTRODUCTION reassignment protocol that satisfies the following properties: (1) it can be implemented in asynchronous distributed systems and (2) it guarantees that the total of the f greatest weights remains less than half of the total weight of servers?" Presenting a protocol that only satisfies property ( 2) is straightforward using consensus or similar primitives. However, satisfying both properties is a challenging problem.

For the second step, we consider three weight reassignment approaches. A weight reassignment approach indicates how weight reassignment requests can be issued and processed. We investigate whether these approaches can be used in designing protocols for the fundamental problem of the DWMQS and weight reassignment protocols. To this end, we use a notion called consensus number introduced by Herlihy in [START_REF] Herlihy | Wait-free synchronization[END_REF]. Each type T has an associated consensus number, which is the maximal number of servers that can solve consensus using objects of type T and atomic registers [START_REF] Guerraoui | The consensus number of a cryptocurrency[END_REF][START_REF] Herlihy | Wait-free synchronization[END_REF]. For instance, the consensus number of queue is two [START_REF] Herlihy | Wait-free synchronization[END_REF], which means that two servers can solve consensus using objects of queue and atomic registers while three servers cannot. Recently, Guerraoui et al. used this notion to show that cryptocurrencies can be implemented without consensus [START_REF] Guerraoui | The consensus number of a cryptocurrency[END_REF].

We employ consensus numbers according to the following reasoning throughout this thesis: (a) we know that consensus cannot be implemented in asynchronous, failure-prone distributed systems [START_REF] Michael | Impossibility of distributed consensus with one faulty process[END_REF]; (b) we show that consensus can be solved among n servers using an object of type T and some message-passing primitives that can be implemented in asynchronous, failure-prone distributed systems (i.e., accordingly, the consensus number of type T is greater than equal to n); from (a) and (b), we conclude that an object of type T cannot be implemented in asynchronous, failure-prone distributed systems.

We first consider the most intuitive approach for reassigning weights in which only the weight of one server can be decreased or increased while the weights of other servers remain unchanged in each call of the provided operations. We call such an approach the IncreaseDecrease approach and treat it as a concurrent object; then, we prove that its consensus number is greater than one to show that it cannot be implemented in asynchronous distributed systems.

In the second approach called the PerfectPairwise, the weights are reassigned in a pairwise manner where each server can donate some part of its weight to another server. The PerfectPairwise approach is closely similar to the asset transfer problem [START_REF] Nakamoto | A peer-to-peer electronic cash system[END_REF]. In the asset transfer problem, each server has an account and can transfer some part of its balance to another server if the transferred balance does not turn its balance negative. Although it has been proved that the asset transfer problem has an asynchronous implementation [START_REF] Guerraoui | The consensus number of a cryptocurrency[END_REF], we show that the PerfectPairwise approach does not have an asynchronous implementation, similar to the IncreaseDecrease approach. Finally, we investigate a weaker version of the second approach called the WeakPairwise; and we show that it can be implemented in asynchronous failure-prone distributed systems.

ROADMAP

Problem 2: designing protocols for the weight reassignment problem

We present two implementations for the WeakPairwise approach. We first propose an epoch-based implementation of the WeakPairwise approach. This implementation is similar to the view-based reconfiguration protocols, like Free-Store [START_REF] Alchieri | Efficient and modular consensus-free reconfiguration for fault-tolerant storage[END_REF]. Besides, we design an efficient monitoring system for atomic storage. We present the read-write protocols of atomic storage that are based on the DWMQS, and the weights are reassigned using the proposed epoch-based implementation of the WeakPairwise approach. Next, to improve the performance of the epoch-based protocol, we propose another protocol to implement the Weak-Pairwise approach. This protocol does not rely on epochs in contrast to the epoch-based protocol.

Problem 3: investigating the relationship between the weight reassignment and reconfiguration problems

The reconfiguration problem is the problem of changing the set of servers over time, i.e., some servers can be removed from a system, or some new servers can be joined to the system. Multiple consensus-free protocols for implementing the reconfigurable atomic storage have been proposed [START_REF] Aguilera | Dynamic atomic storage without consensus[END_REF][START_REF] Alchieri | Efficient and modular consensus-free reconfiguration for fault-tolerant storage[END_REF][START_REF] Jehl | The case for reconfiguration without consensus: Comparing algorithms for atomic storage[END_REF][START_REF] Jehl | Smartmerge: A new approach to reconfiguration for atomic storage[END_REF][START_REF] Spiegelman | Dynamic reconfiguration: Abstraction and optimal asynchronous solution[END_REF]. On the other hand, it has been proved that it is impossible to reconfigure a storage system infinitely many times while guaranteeing the liveness of the storage system [START_REF] Spiegelman | On liveness of dynamic storage[END_REF].

In both reconfiguration and weight reassignment problems, quorum systems change over time. Based on this relationship, we introduce a variant of the asynchronous reconfiguration problem called the conditional reconfiguration problem. The conditional reconfiguration problem is similar to the standard asynchronous reconfiguration problem with only one difference: a condition related to the size of configurations should be satisfied. Similar to the impossibility result presented for the IncreaseDecrease approach, we show that the conditional reconfiguration problem has no asynchronous algorithm.

Roadmap

The remainder of this thesis is organized into six chapters.

-In Chapter 2, we provide preliminaries and background for our contributions.

We present a detailed system model. Then, we provide some fundamental assumptions and properties for weight assignment and weight reassignment problems. Then, we define the problem of atomic storage.

-In Chapter 3, we investigate the problem of weight reassignment by considering three weight reassignment approaches-IncreaseDecrease, PerfectPairwise, and WeakPairwise. We use several examples to highlight the properties of approaches. Then, the impossibility results of the IncreaseDecrease and Per-fectPairwise approaches are presented. Furthermore, the reconfiguration and -In Chapter 4, we propose an epoch-based implementation of the WeakPairwise approach. Then, we design an efficient monitoring system for atomic storage. We present the read-write protocols of atomic storage that are based on the DWMQS, and the weights are reassigned using the proposed epoch-based implementation of the WeakPairwise approach.

-In Chapter 5, we propose another protocol to implement the WeakPairwise approach. This protocol does not rely on epochs in contrast to the protocol presented in Chapter 4. We discuss why an epoch-less protocol is more efficient than its epoch-based counterpart.

-Finally, we present the conclusion and provide possible future directions for this work in Chapter 6.

Chapter 2 Preliminaries and Background

Abstract. In this chapter, we provide preliminaries and background for our contributions. We present a detailed system model. We also present a few definitions related to quorum systems. Then, we provide some fundamental assumptions, properties, and definitions for weight assignment and weight reassignment problems. Finally, we present the problem of atomic storage.

System Model

We consider a distributed system composed of two non-overlapping sets of processes-a finite set of n servers S = {s 1 , s 2 , . . . , s n } and an infinite set of clients C = {c 1 , c 2 , . . . }. Each process has a unique identifier. Every client or server knows the set of servers. The processes communicate by message passing, and the links reliably connect all pairs of processes. The system is asynchronous, i.e., we make no assumptions about processing times or message transmission delays. However, each process has access to a local clock; processes' local clocks are not synchronized and do not have any bounds on their drifts, being nothing more than counters that keep increasing. The interactions between processes are assumed to take place over a timespan T ⊂ R + called the system's lifetime. We consider the crash fault-tolerant (CFT) model throughout this manuscript. In this model, processes are prone to crash failures, and a process is called correct if it is not crashed. We assume that at most f servers might crash.

Definitions Related to Quorum Systems

Our work is based on quorum systems, so we present a few definitions related to quorum systems in this section. We begin by presenting the definition of quorum systems.

Definition 1 (quorum system [START_REF] Vukolić | Quorum Systems: With Applications to Storage and Consensus[END_REF]). A quorum system is a collection of sets called quorums such that each quorum is a subset of servers, and the intersection CHAPTER 2. PRELIMINARIES AND BACKGROUND property that states every two quorums intersect should be satisfied.

There exist many types of quorum systems; among them, the majority quorum system (MQS) has significant importance due to its simplicity and optimal fault tolerance [START_REF] Whittaker | Read-write quorum systems made practical[END_REF]. The definition of the MQS is as follows.

Definition 2 (majority quorum system (MQS) [START_REF] Whittaker | Read-write quorum systems made practical[END_REF]). The MQS is the one that every quorum consists of a strict majority of servers.

The weighed majority quorum system (WMQS) can be used to enhance the performance of the systems based on the MQS. In the WMQS, each server is assigned a weight or voting power that is in accordance with the server's latency or throughput determined by a monitoring system [START_REF] Barbara | The Reliability of Voting Mechanisms[END_REF][START_REF] Berger | Aware: Adaptive wide-area replication for fast and resilient byzantine consensus[END_REF]. Then, the weights are used to determine whether a subset of servers constitutes a quorum. The following definition is the definition of the WMQS. Definition 3 (weighted majority quorum system (WMQS)). The WMQS is the one that every quorum consists of a set of servers whose total weight is greater than half of the total weight of all servers.

Weight Assignment

In the WMQS, a weight should be assigned to each server. One can assign a weight to each server based on different criteria, such as throughput or latency of the server. Note that throughput can be effectively improved by adding more resources (CPU, memory, faster disks) to servers or using better links. However, latency in geo-distributed storage systems will be affected by the speed of light limit and perturbations caused by bandwidth sharing [START_REF] Sousa | Separating the WHEAT from the Chaff: An Empirical Design for Geo-Replicated State Machines[END_REF]. Therefore, we focus on considering latency instead of throughput.

We assume that there is a monitoring system that assigns a score, called latency score, to each server based on the server's latency. The monitoring system provides a function called lscore that takes a server as input and returns the server's latency score. Based on the latency scores, the weigh reassignment protocols can assign weights to servers such that if the latency score of server s i is greater than s j , then w i < w j . For example, assume that the latency scores of servers s 1 , s 2 , s 3 , and s 4 are 20, 45, 100, and 140, respectively. By assigning 1.4, 1.1, 0.9, 0.6 as the weights of servers s 1 , s 2 , s 3 , and s 4 , respectively, the relationship between the servers' weights and latency scores is satisfied.

If the servers' weights are assigned based on the servers' latency scores, as explained above, the quorum latency (see definition below) of the storage system will be enhanced on average. Chapter 4 presents further details about the monitoring system and the mentioned claim about enhancing the quorum latency. Definition 4. Quorum latency for a request in a quorum system is the time interval between sending the request (to a quorum, some quorums, or a subset of servers) until receiving the responses from a quorum of servers [START_REF] Oprea | Minimizing response time for quorumsystem protocols over wide-area networks[END_REF][START_REF] Whittaker | Read-write quorum systems made practical[END_REF]. Some figures presented throughout this manuscript use gray areas to show the servers' latency scores. The higher the height of a gray area associated with a server, the lower the server's latency score. For instance, the latency score of server s 1 is lower than server s 2 in Figure 2.1.

Figure 2.1: The way of illustrating servers' latency scores Throughout this manuscript, the initial weight of servers, the weight of each server s i , and the total weight of servers are denoted by iw, w i , and tw, respectively. According to Definition 3, the total weight of any constituted quorum should be greater than tw/2 to satisfy the intersection property of the WMQS.

To guarantee the availability of a storage system based on the WMQS, a relationship between the servers' weights and f should be satisfied. The following property determines such a relationship.

Property 1

The summation of f greatest weights should be less than tw/2.

Let f = ⌊(n -1)/2⌋, like the MQS. Accordingly, the size of any quorum is ⌈(n + 1)/2⌉ in the WMQS, regardless of the way of assigning weights to the servers, so there is no difference between the sizes of quorums in the MQS and WMQS. Recall from Example 1 presented in Chapter 1 that if proportionally smaller quorums are constituted the performance of the system can be enhanced. Therefore, it is required to assume that f ≤ ⌊(n -1)/2⌋ to have proportionally smaller quorums in the WMQS. The following assumption states such an assumption by introducing a new parameter denoted by ∆.

Assumption 1

The relationship between n and f is as follows: n = 2f + 1 + ∆, where ∆ is a natural number. By using Assumption 1 when ∆ ≥ 1, the fault-tolerance of the system might be decreased while its performance can be improved due to having proportionally smaller quorums. A similar assumption is used by other weight assignment protocols (e.g., [START_REF] Sousa | Separating the WHEAT from the Chaff: An Empirical Design for Geo-Replicated State Machines[END_REF]). Weights can be determined in different ways. In the following, we present a weight reassignment scheme by which the weights can be determined.

WHEAT scheme

WHEAT (WeigHt-Enabled Active replicaTion) [START_REF] Sousa | Separating the WHEAT from the Chaff: An Empirical Design for Geo-Replicated State Machines[END_REF] is a scheme to assign weights to the servers such that the weight of each server is either minw or maxw. The following assumption determines the values of minw and maxw.

Assumption 2

The values of minw and maxw are 1 and 1 + ∆/f , respectively.
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Servers constitute two types of quorums using WHEAT. The first type is the quorums with size f + 1 that has the least quorum size. The second type is the quorums with size n -f . The following assumption determines the total weight of servers, that can be computed based on the values of maxw and f . Note that knowing the total weight of servers is necessary to determine whether a subset of servers constitutes a quorum based on Definition 2.

Assumption 3

The total weight of servers, tw, is equal to 2 × maxw × f + 1.

Weight Reassignment

In the DWMQS, the weight of each server might be reassigned over time. We use a data structure called change to store each weight reassignment of any server. A change is a triple ⟨w, s i , info⟩, where w ∈ R is the amount of change made on the weight of server s i ∈ S, and 'info' indicates the additional information about the change. Each server s i has a local set denoted by changes to store every change ⟨ * , s i , * ⟩. By using set changes, server s i 's weight can be computed as follows:

w i = sum {w | ∀ ⟨w, s i , * ⟩ ∈ s i .changes} . For example, let s i .changes = ⟨1, s i , init⟩, ⟨0.3, s i , increment⟩, ⟨-0.1, s i , decrement⟩ . Then, server s i 's weight is equal to 1.2.
Based on changing or not changing the total weight of servers over time, there are two ways to reassign servers' weights:

-Time-varying total weight (TVTW), in which the total weight of servers can change over time, and -Time-invariant total weight (TITW) in which the total weight of servers is time-invariant and known by every process in advance.

Note that to indicate that a subset of servers constitutes a quorum in the DWMQS, the total weight of servers should be known. Accordingly, using the TITW is simpler than the TVTW because it is not required to execute additional queries to determine the total weight of servers.

A fundamental problem related to the DWMQS and weight reassignment protocols that is considered in the following chapters is the following: "Assume that a system based on DWMQS is available initially, i.e., the total of the f greatest weights is less than tw/2. Multiple concurrent requests are issued to reassign weights. Consequently, the total weight of servers might change after applying a subset of such requests. Is there any weight reassignment protocol that satisfies the following properties: (1) it can be implemented in asynchronous distributed systems and (2) it guarantees that the total of the f greatest weights remains less than half of the total weight of servers?"

ATOMIC STORAGE

Atomic Storage

This section presents the basics of emulating a (static) distributed multi-writer multi-reader (MWMR) atomic storage based on quorum systems. Such a storage system allows processes to read, write, and overwrite a single value using the following operations:

read() that returns the last written value or ⊥ if no value was previously written, and write(val) that writes val.

The formal definition of atomic storage is as follows.

Definition 5 (Atomic storage [START_REF] Lynch | Distributed Algorithms[END_REF]). An implementation of an object is atomic, if for any execution all the read and write operations that are invoked on an object complete, then the read and write operations for the object can be partially ordered by an ordering ≺, so that the following conditions are satisfied:

A1. There do not exist read or write operations π 1 and π 2 such that π 1 completes before π 2 starts, yet π 2 ≺ π 1 .

A2. All write operations are totally ordered and every read operation is ordered with respect to all the writes.

A3. Every read operation ordered after any write returns the value of the last write preceding it in the partial order; any read operation ordered before all writes return the initial value, ⊥.

In the following, we present a summary of a protocol, the MW-ABD [START_REF] Lynch | Robust emulation of shared memory using dynamic quorum-acknowledged broadcasts[END_REF], that implements the MWMR atomic storage.

The MW-ABD protocol

The MW-ABD protocol [START_REF] Lynch | Robust emulation of shared memory using dynamic quorum-acknowledged broadcasts[END_REF] emulates a static distributed multi-writer multireader (MWMR) atomic storage based on quorum systems. The protocol consists of two different algorithms-reader-writer side1 and server-side. The readerwriter side can be executed by a process (either a client or server) while the server-side is executed by servers.

Reader-writer side. Algorithm 1 is the pseudo-code of the MW-ABD's readerwriter side. Both read and write operations proceed in two phases, each ending with a confirmation that at least one quorum was accessed. In the first phase of a write operation (phase1), a writer contacts a quorum in order to determine the highest tag 2 maxtag used prior to write the last written value (Lines 2-9 of CHAPTER 2. PRELIMINARIES AND BACKGROUND Algorithm 1). Then, in the second phase (phase2), the writer takes the following steps: (a) increments the timestamp of maxtag, (b) overwrites its identifier on the identifier of maxtag, (b) propagates its value, along with the changed maxtag within a WRITE message to a quorum (Lines 10-15 of Algorithm 1).

Similarly, in phase1 of a read operation, a reader contacts a quorum to retrieve the value associated with the highest tag maxtag reported by the quorum (Lines 16-24 of Algorithm 1). Then, in phase2, the reader propagates the read value along with maxtag within a WRITE message to a quorum (Lines 25-31 of Algorithm 1).

Server-side. Algorithm 2 is the pseudo-code of the MW-ABD's server-side. Each server s i maintains a local variable called register used to store the tag and value of its local register. To access the tag (resp. value) of the local register, register.tag (resp. register.val) can be used. Each server updates its register locally when it receives a WRITE message with a higher tag than its own tag. Note that the WRITE message might be received from a writer or a reader executing its second phase. 

Nomenclature

Chapter 3 Weight Reassignment Approaches

Abstract. Using the weighted majority quorum system enhances the performance of distributed storage systems by allowing smaller quorums to constitute in contrast to using the majority quorum system. A significant limitation of the weighted majority quorum system is its reliance on static weights, which are inappropriate for dynamic environments and long-lived systems. To overcome such a limitation, the dynamic weighted majority quorum system, that utilizes weight reassignment protocols to reassign weights over time according to the performance variations detected by monitoring systems, can be used. Weight reassignment protocols can be based on different approaches. This chapter presents the abstract forms of three approaches to reassign servers' weights and investigates whether they can be implemented in asynchronous, failure-prone distributed systems. The weight reassignment, reconfiguration, and asset transfer problems are closely related; this chapter discusses their relationship as well.

Warmup

A conventual approach to enhance the performance of systems based on the majority quorum system (MQS) is to replace the MQS with the weighted majority quorum system (WMQS) [START_REF] Berger | Aware: Adaptive wide-area replication for fast and resilient byzantine consensus[END_REF][START_REF] Heydari | Efficient consensus-free weight reassignment for atomic storage[END_REF][START_REF] Jiménez-Peris | Are quorums an alternative for data replication[END_REF][START_REF] Sousa | Separating the WHEAT from the Chaff: An Empirical Design for Geo-Replicated State Machines[END_REF]. In the WMQS, a static weight is assigned to each server based on the server's performance detected by a monitoring system, and every subset of servers whose total weight is greater than tw/2 is a quorum, where tw is the total weight of all servers. Accordingly, to guarantee the availability of the system that is based on the WMQS, the weights should be assigned in such a way that the total of the f greatest weights is less than tw/2. A significant limitation of the WMQS is its reliance on static weights, which are inappropriate for dynamic environments and long-lived systems [START_REF] Berger | Aware: Adaptive wide-area replication for fast and resilient byzantine consensus[END_REF]. To overcome such a limitation, the dynamic weighted majority quorum system 30 CHAPTER 3. WEIGHT REASSIGNMENT APPROACHES (DWMQS) can be used. The DWMQS utilizes weight reassignment protocols to reassign weights over time according to the performance variations detected by monitoring systems. In this chapter, we investigate the fundamental problem related to the DWMQS and weight reassignment protocols that states: "Assume that a system based on DWMQS is available initially, i.e., the total of the f greatest weights is less than tw/2. Multiple concurrent requests are issued to reassign weights. Consequently, the total weight of servers might change after applying a subset of such requests. Is there any weight reassignment protocol that satisfies following properties: (1) it can be implemented in asynchronous distributed systems, and (2) the total of the f greatest weights remains less than tw/2?"

To this end, we investigate three weight reassignment approaches-IncreaseDecrease, PerfectPairwise, and WeakPairwise. We treat the first two approaches as concurrent objects; then, we prove that their consensus numbers are greater than one, i.e., such approaches cannot be implemented in asynchronous, failureprone distributed systems. However, the last approach, a weaker version of the second approach, can be implemented in asynchronous, failure-prone distributed systems. Such an investigation is essential because it indicates that if a weight reassignment protocol wants to be implemented in asynchronous failureprone distributed systems, it does not have the freedom to choose any weight reassignment approach.

The IncreaseDecrease approach is closely related to the reconfiguration problem so that its impossibility result can be presented for the reconfiguration problem as well. Notably, we prove that it is impossible to present a reconfiguration protocol in asynchronous, failure-prone distributed systems if a condition related to the number of servers should be satisfied at any time. On the other hand, the PerfectPairwise approach is similar to the asset transfer problem. Since the asset transfer problem can be implemented in asynchronous, failure-prone distributed systems, such a discussion highlights why the PerfectPairwise approach cannot be implemented in asynchronous, failure-prone distributed systems.

IncreaseDecrease Approach

IncreaseDecrease is a TVTW-based weight reassignment approach in which only the weight of one server can be increased or decreased while the weights of other servers remain unchanged in each call of the operations provided for weight increment or decrement. Each server has a local and monotonically increasing sequence number sn. This approach provides the three following operations:

increase(sn, w) that can be called by servers. Each server calls this operation to increase its weight by w.

decrease(sn, w) that can be called by servers. Each server calls this operation to decrease its weight by w.

INCREASEDECREASE APPROACH

collect() that can be called by processes and returns the weights of servers.

Such a sequence number is increased before calling both increase and decrease operations. Operation increase(sn, w) called by server s i returns a change ⟨w ′ , s i , ⟨INC, s i , sn, w⟩⟩ to s i , where w ′ can be either equal to 0 or w. Besides, operation decrease(sn, w) called by server s i returns a change ⟨w ′ , s i , ⟨DEC, s i , sn, w⟩⟩ to s i , where w ′ can be either equal to 0 or -w. Each returned change is added to set changes. This approach has the following properties:

- -A change ⟨w ′ = 0, s i , ⟨ * , s i , sn, w⟩⟩ is returned to server s i . In this case, both server s i 's weight and the total weight of servers are not changed because the servers' weights are in a situation that Property 1 will be violated by returning w ′ ̸ = 0.

-A change ⟨w ′ ̸ = 0, s i , ⟨ * , s i , sn, w⟩⟩ is returned to server s i . In this case, both server s i 's weight and the total weight of servers are increased by w ′ = +w (resp. w ′ = -w) if op = increase (resp. op = decrease).

One of the ways to implement this abstraction is to modify reconfiguration protocols (e.g., [START_REF] Alchieri | Efficient and modular consensus-free reconfiguration for fault-tolerant storage[END_REF][START_REF] Jehl | The case for reconfiguration without consensus: Comparing algorithms for atomic storage[END_REF][START_REF] Jehl | Smartmerge: A new approach to reconfiguration for atomic storage[END_REF][START_REF] Spiegelman | Dynamic reconfiguration: Abstraction and optimal asynchronous solution[END_REF]) in such a way that join and leave operations of reconfiguration protocols are modified to increase and decrease operations, respectively. An example of using this abstraction to reassign servers' weights is depicted in Figure 3.1. The decrease operation started by server s 2 is not finished because Property 1 will not be satisfied by executing this operation. At first glance, it seems that this approach can be implemented using standard message-passing primitives [START_REF] Herlihy | Wait-free synchronization[END_REF]. However, the following theorem states CHAPTER 3. WEIGHT REASSIGNMENT APPROACHES that this approach cannot be implemented in asynchronous, failure-prone distributed systems.

Theorem 1. The consensus number of IncreaseDecrease weight reassignment approach is at least two.

Proof. We prove the theorem by contradiction. For the sake of contradiction, we assume that the consensus number of the IncreaseDecrease approach is one (implicitly, we assume that the IncreaseDecrease approach can be implemented in failure-prone asynchronous distributed systems). Let S = {s 1 , s 2 , s 3 }. We assume that every server executes Algorithm 3. Each server s i , such that i ∈ {1, 2}, has access to a shared array of SWMR registers and writes its proposal in the ith register of the array. Each server s i , such that i ∈ {1, 2}, calls an operation op ∈ {increase, decrease} according to its identifier. Then, each server waits until the collect operation returns a value that is not equal to ⟨1, 1, 1⟩. Finally, each server s i , such that i ∈ {1, 2}, determines its decision based on the value returned by the called collect operation.

Algorithm 3 Solving consensus among two servers using the IncreaseDecrease approach ▷ s 1 and s 2 reach an agreement while s 3 is used as an auxiliary server ▷ the algorithm executed by each server s i , where i ∈ {1, 2, 3} ▷ proposals is an array of SWMR registers to store s 1 's and s 2 's proposals such that proposals[i] stores s i 's proposal

function decide() 1) iw ← 1 2) if i = 1 3) increase(s 1 , 1, 0.9) 4) else if i = 2 5) decrease(s 2 , 1, 0.6) 6) wait until ⟨1, 1, 1⟩ ̸ = collect() = ⟨w 1 , w 2 , w 3 ⟩ 7) if w 1 = 1.9 8) return proposals[1] 9) else if w 2 = 0.4 10)
return proposals [START_REF] Etcd | [END_REF] Note that line 6 will eventually be executed because we assume the IncreaseDecrease approach can be implemented in failure-prone asynchronous distributed systems. In total, there are four cases that only two of them can happen: 1) No operation is executed. This case cannot happen because we assumed that there is an asynchronous algorithm.

2) All operations are executed concurrently. Accordingly, the servers' weights become ⟨1.9, 0.4, 1⟩. This case cannot happen since Property 1 is not satisfied.

PERFECTPAIRWISE APPROACH

3) Operation increase(s 1 , 1, 0.9) is executed. Accordingly, the value returned by function collect is ⟨1.9, 1, 1⟩. This case can happen; as a result, the decided value by all servers is proposals [START_REF]Docker swarm[END_REF] (Line 8).

4) Operation decrease(s 2 , 1, 0.6) is executed. Accordingly, the value returned by function collect is ⟨1, 0.4, 1⟩. This case can happen; as a result, the decided value by all servers is proposals [START_REF] Etcd | [END_REF] (Line 10).

By using the aforementioned algorithm, the servers can solve consensus. Hence, there is a contradiction because three servers can solve consensus using the above algorithm, and the theorem holds.

According to Theorem 1, two servers can solve consensus using the protocol of the IncreaseDecrease approach. Since consensus cannot be implemented in asynchronous, failure-prone distributed systems, the protocol of the IncreaseDecrease approach cannot be implemented in the asynchronous, failure-prone distributed systems. Note that if IncreaseDecrease weight reassignment approach, instead of presenting three operations, presents two operations-(a) either increase or decrease and (b) collectthe impossibility result still holds using the same proof as the proof of Theorem 1.

PerfectPairwise Approach

PerfectPairwise is a weight reassignment approach in which weights are reassigned in a pairwise manner where a server called donor donates some part of its weight to another server called donee that has better performance. In order to name this approach, the term 'perfect' is used to emphasize that if the donor's weight decreases by weight w in a donation, the donee's weight increases by the same amount of weight w. In this approach, the total weight of servers remains timeinvariant in contrast to the IncreaseDecrease approach.

This approach provides the following operation:

donate(sn, w, s j ) that can be called by each server that wants to be a donor and donates some part of its weight to another server s j , where sn is a local and monotonically increasing sequence number of the donor, and w is the value of donated weight. Such a sequence number is increased before calling the donate operation. Operation donate(sn, w, s j ) called by server s i returns two changes-a change ⟨-w ′ , s i , ⟨DNT, s i , sn, w, s j ⟩⟩ to s i and another change ⟨w ′′ , s j , ⟨DNT, s i , sn, w, s j ⟩⟩ to s j , where w ′ and w ′′ might be either equal to 0 or w (Figure 3.2). The approach has the following properties:

-(PerfectPairwise Validity) Server s i has called operation donate(sn, w, s j ) before it (resp. server s j ) receives change ⟨ * , s i , ⟨DNT, s i , sn, w, s j ⟩⟩ (resp. change ⟨ * , s j , ⟨DNT, s i , sn, w, s j ⟩⟩). -If a change ⟨w ′ = 0, s i , ⟨DNT, s i , sn, w, s j ⟩⟩ is returned to server s i , then a change ⟨w ′′ = 0, s j , ⟨DNT, s i , sn, w, s j ⟩⟩ is returned to s j as well. In this case, the weights of servers s i and s j do not change because the s j 's weight is in a situation that Property 1 will be violated by returning w ′ ̸ = 0 and w ′′ ̸ = 0.

-(PerfectPairwise

-If a change ⟨w ′ = -w, s i , ⟨DNT, s i , sn, w, s j ⟩⟩ is returned to server s i , then a change ⟨w ′′ = w, s j , ⟨DNT, s i , sn, w, s j ⟩⟩ is eventually returned to s j . In this case, the weight of server s i (resp. s j ) decreases (resp. increases) by w after receiving the change.

PerfectPairwise Figure 3.2:
The illustration of the PerfectPairwise approach. Operation donate(sn, w, s j ) is called by server s i , and two changes are returned to servers s i and s j . Consequently, the weight of server s i (resp. s j ) decreases by w ′ , where w ′ = 0 or w (resp. increases by w ′′ , where w ′′ = 0 or w).

The following theorem shows that the PerfectPairwise approach cannot be implemented in a wait-free, failure-prone distributed systems, like IncreaseDecrease approach.

Theorem 2. The consensus number of PerfectPairwise approach is at least two.

Proof. We prove the theorem by contradiction. For the sake of contradiction, we assume that the consensus number of the PerfectPairwise approach is one (implicitly, we assume that an asynchronous algorithm can be presented for the PerfectPairwise approach). Let S = {s 1 , s 2 , s 3 }. Using Algorithm 4, servers s 1 and s 2 reach an agreement, and server s 3 is used as an auxiliary server.

Each server s i , such that i ∈ {1, 2}, has access to a shared array of SWMR registers and writes its proposal in the ith register of the array. Then, each server calls function decide. The initial weight of each server is equal to one. Each server s i , such that i ∈ {2, 3}, calls the donate operation to donate 0.25 of its weight to s 1 (Lines 2-5). Then, all servers wait until receiving a change from the algorithm (Line 6). Finally, each server s i , such that i ∈ {1, 2}, determines its decision based on the received change (Lines 7-16).

Since the donee is server s 1 in both donations, server s 1 receives two changes from the algorithm of PerfectPairwise approach that can be one of the following disjoint cases: (a) ⟨0, s 1 , ⟨DNT, s 2 , 1, 0.25, s 1 ⟩⟩ and ⟨0.25, s 1 , ⟨DNT, s 3 , 1, 0.25, s 1 ⟩, Algorithm 4 Solving consensus among two servers using the PerfectPairwise approach ▷ s 1 and s 2 reach an agreement while s 3 is used as an auxiliary server ▷ the algorithm executed by each server s i , where i ∈ {1, 2, 3} ▷ proposals is an array of SWMR registers to store s 1 's and s 2 's proposals such that proposals[i] stores s i 's proposal

function decide() 1) iw ← 1 2) if i = 2 3) donate(s 2 , 1, 0.25, s 1 ) 4) else if i = 3 5) donate(s 3 , 1, 0.25, s 1 ) 6) wait until receiving ⟨w, s i , ⟨DNT, s k , 1, 0.25, s 1 ⟩⟩ 7) if i = 1 8) if (k = 2 and w = 0) or (k = 3 and w ̸ = 0) 9) return proposals[1] 10) else 11) return proposals[2] 12) else if i = 2 13) if w = 0 14)
return proposals [START_REF]Docker swarm[END_REF] 15) else [START_REF] Dolev | On the minimal synchronism needed for distributed consensus[END_REF] return proposals [START_REF] Etcd | [END_REF] or (b) ⟨0.25, s 1 , ⟨DNT, s 2 , 1, 0.25, s 1 ⟩⟩ and ⟨⟨0, s 1 , DNT, s 3 , 1, 0.25, s 1 ⟩. The order of the received changes is not important.

On the other hand, server s 2 receives only one change that is either ⟨0, s 2 , ⟨DNT, s 2 , 1, 0.25, s 1 ⟩ or ⟨-0.25, s 2 , ⟨DNT, s 2 , 1, 0.25, s 1 ⟩. If server s 1 receives one of the changes of case (a), then, it returns proposals [START_REF]Docker swarm[END_REF] (Line 9); server s 2 receives change ⟨0, s 2 , ⟨DNT, s 2 , 1, 0.25, s 1 ⟩, then, it returns proposals [START_REF]Docker swarm[END_REF] as well (Line 14). Besides, if server s 1 receives one of the changes of case (b), then, it returns proposals [START_REF] Etcd | [END_REF] (Line 11); server s 2 receives ⟨-0.25, s 2 , ⟨DNT, s 2 , 1, 0.25, s 1 ⟩, then, it returns proposals [START_REF] Etcd | [END_REF] as well (Line 16). Accordingly, servers s 1 and s 2 can decide the same proposal, i.e., they can solve consensus. Hence, we found a contradiction, and the theorem holds.

According to Theorem 2, two servers can solve consensus using the implementation of the PerfectPairwise approach. Since consensus cannot be implemented in asynchronous, failure-prone distributed systems, the presented implementation is not asynchronous.

As we have proved above, implementing IncreaseDecrease and PerfectPairwise approaches is impossible in a asynchronous, failure-prone distributed systems. Remember that the PerfectPairwise and IncreaseDecrease approaches are based on TITW and TVTW, respectively. Since implementing TITW-based approaches is simpler than TVTW-based approaches, we present a weaker version of the PerfectPairwise approach, that can be implemented in asynchronous, failureprone distributed systems. The weaker version is called the WeakPairwise approach.

WeakPairwise Approach

In the PerfectPairwise approach, a global computation should be performed for each donation (i.e., the total of the f greatest weights should be computed) to determine the changes returned to the donee and donor of the donation. To present a weaker version of the the PerfectPairwise approach that can be implemented in asynchronous, failure-prone distributed systems, we take the following steps:

-We modify the donate operation so that such a global computation is not required anymore. We define an upper bound for servers' weights denoted by maxw such that f × maxw < tw/2. By doing so, each server s i returns min(maxw, w i ) as its weight. Hence, Property 1 is always satisfied.

To indicate the value of maxw, we use the WHEAT scheme, i.e., we set maxw = 1 + ∆/f and tw = 2 × maxw × f + 1.

In addition to defining an upper bound, it is required to define a lower bound for servers' weights denoted by minw. To see why minw is required, consider the following example. Assume that S = {s 1 , s 2 , s 3 , s 4 }, ∆ = 1, and f = 1. Accordingly, maxw = 2, tw = 5, and iw = 1.25. Every server s ∈ {s 1 , s 2 , s 3 } donates weight 1 to server s 4 . Consequently, the weights of servers s 1 , s 2 , s 3 , and s 4 become 0.25, 0.25, 0.25, and 2, respectively. Then, server s 4 crashes. At this time, the system becomes unavailable. To avoid such a situation, the system should remain available until there exist n -f servers, i.e., tw/2 < (n -f ) × minw. We can use the WHEAT scheme to define minw as well, i.e., we set minw = 1.

-We assume that the initial weight, iw, of each server is equal to tw/n. Besides, we assume that the weight of each server can be any value in range [minw, maxw].

-Each server is allowed to donate iw -minw to other servers in total.

-We present another operation called retake by which a donee can retake its donated weight. To see why this operation is required, consider the following example. Assume that S = {s 1 , s 2 , s 3 , s 4 }, ∆ = 1, and f = 1. Accordingly, maxw = 2, tw = 5, iw = 1.25, and minw = 1. Every server s ∈ {s 1 , s 2 , s 3 } donates weight 0.25 to server s 4 . Consequently, the weights of servers s 1 , s 2 , s 3 , and s 4 become 1, 1, 1, and 2, respectively. Then, server s 4 crashes. At this time, servers cannot reassign theirs weights anymore. Theretofore, they need a mechanism to retake their donated weights. To do so, operation retake that is defined as follows is required.

WEAKPAIRWISE APPROACH

retake(sn, w, s j ) that can be called by each server that has donated some part of its weight to another server s j and wants to retake its donated weight.

Operation retake(sn, w, s j ) called by server s i returns two changes-a change ⟨w ′ , s i , ⟨RTK, s i , sn, w, s j ⟩⟩ to s i and another change ⟨-w ′′ , s j , ⟨RTK, s i , sn, w, s j ⟩⟩ to s j .

The weaker version of the PerfectPairwise approach is called the WeakPairwise approach and has the following properties:

-(PerfectPairwise Validity) The validity property has three parts:

-Server s i has called operation donate(sn, w, s j ) before s i and s j receive changes ⟨ * , s i , ⟨DNT, s i , sn, w, s j ⟩⟩ and ⟨ * , s j , ⟨DNT, s i , sn, w, s j ⟩⟩, respectively.

-Server s i has called operation retake(sn, w, s j ) before s i and s j receive changes ⟨ * , s i , ⟨RTK, s i , sn, w, s j ⟩⟩ and ⟨ * , s j , ⟨RTK, s i , sn, w, s j ⟩⟩, respectively.

-Before calling operation retake(sn, w, s j ) by server s i , server s i has called operation donate(sn, w, s j ).

-(PerfectPairwise Termination) If server s i calls operation op(sn, w, s j ) such that op ∈ {donate, retake}, it (resp. server s j ) receives a change ⟨ * , s i , ⟨ * , s i , sn, w, s j ⟩⟩ (resp. a change ⟨ * , s j , ⟨ * , s i , sn, w, s j ⟩⟩) eventually if it (resp. s j ) is a correct server.

-(WeakPairwise Donate-Accuracy) If server s i calls operation donate(sn, w, s j ), one of the following cases can happen:

-If a change ⟨w ′ = 0, s i , ⟨DNT, s i , sn, w, s j ⟩⟩ is returned to server s i , then a change ⟨w ′′ = 0, s j , ⟨DNT, s i , sn, w, s j ⟩⟩ is returned to s j as well. In this case, the weights of servers s i and s j do not change because the s j 's weight is in a situation that Property 1 will be violated by returning w ′ ̸ = 0 and w ′′ ̸ = 0.

-If a change ⟨w ′ = -w, s i , ⟨DNT, s i , sn, w, s j ⟩⟩ is returned to server s i , then a change ⟨w ′′ , s j , ⟨DNT, s i , sn, w, s j ⟩⟩ is eventually returned to s j , where w ′′ is equal to min(maxw -w j , w). In this case, the weight of server s i decreases by w, and the weight of server s j increases by min(maxw -w j , w), after receiving the changes. In other words, operation donate(sn, w, s j ) called by server s i works as follows:

1) if minw ≤ w i -w 2) w i ← w i -w 3)
w j ← min(maxw, w j + w)

4) other servers' weights are not changed CHAPTER 3. WEIGHT REASSIGNMENT APPROACHES -(PerfectPairwise Retake-Accuracy) Given operation retake(sn, w, s j ) called by server s i , a change ⟨w ′ , s i , ⟨RTK, s i , sn, w, s j ⟩⟩ is returned to server s i , and another change ⟨w ′′ = -w, s j , ⟨RTK, s i , sn, w, s j ⟩⟩ is eventually returned to s j , where w ′ = min(maxw -w j , w) In this case, the weight of server s i (resp. s j ) increases (resp. decreases) by min(maxw-w j , w) (resp. w) after receiving the change.

In a donation made from server s i to server s j , some part of the donated weight might be lost. To grasp the idea of losing weight, consider the following example. Let S = {s 1 , . . . , s 6 } and f = 2. Consequently, tw = 7, iw = 7/6, and maxw = 1.5. Assume that each server s i ∈ {s 2 , . . . , s 6 } donates a weight equal to 1/6 to server s 1 . Besides, assume that such donations are concurrent. After applying the donations, the weights of servers are reassigned to the values determined in Figure 3.3, and the summation of weights is equal to 6.5, which means that 0.5 part of tw is lost. Note that losing weights enables the WeakPairwise approach to be implemented in asynchronous, failure-prone distributed systems. 

Discussion

This section consists of two distinct parts. Due to the similarity of the weight reassignment and reconfiguration problems, the first part is dedicated to presenting the impossibility result of the IncreaseDecrease and PerfectPairwise approaches for the reconfiguration problem. The second part discusses the relationship between the weight reassignment and asset transfer problems.

Weight Reassignment vs. Reconfiguration

The reconfiguration problem is the problem of changing the set of servers over time. Reconfiguration protocols (e.g., [START_REF] Aguilera | Dynamic atomic storage without consensus[END_REF][START_REF] Alchieri | Efficient and modular consensus-free reconfiguration for fault-tolerant storage[END_REF][START_REF] Jehl | Smartmerge: A new approach to reconfiguration for atomic storage[END_REF]) provides two operations-join and leave. Let U be the universe of servers such that S ⊆ U . Each server s ∈ U can join to the system, i.e., can be added to set S, by calling join(s). Besides, each server s ∈ U can leave the system, i.e., can be removed from set S, by calling leave(s). In the following, we present the relationship between the weight reassignment and reconfiguration problems. To do so, we show that the reconfiguration problem is a special case of the IncreaseDecrease weight reassignment approach.

Remember that the IncreaseDecrease approach provides two operations-increase and decreaseto reassign the weights of servers. We present the following method to simulate operation join (resp. leave) with operation increase (resp. decrease):

-If a server s ∈ U is a member of the initial configuration, its weight is equal to one; otherwise, its weight is equal to zero.

-Simulating operation join with operation increase: when a server s ∈ U wants to join the system, it calls operation increase(1, 1).

-Simulating operation leave with operation decrease: when a server s ∈ U that is a member of the system wants to leave the system, it calls operation decrease(1, 1).

The reason why the IncreaseDecrease approach has no asynchronous implementation is that servers might concurrently execute increase and decrease operations such that Property 1 is not satisfied. Based on this reason and the relationship between the IncreaseDecrease approach and reconfiguration problem, we define a variant of reconfiguration problem called conditional asynchronous reconfiguration. The conditional asynchronous reconfiguration problem is similar to the standard asynchronous reconfiguration problem with only one difference: a condition related to the size of configurations should be satisfied. For example, the size of each configuration should be greater than k, where 2 ≤ k ≤ n. We prove that solving such a problem is impossible in asynchronous, failureprone distributed systems. To do so, we show that the consensus number of the conditional asynchronous reconfiguration problem is at least three.

Theorem 3. The consensus number of the conditional asynchronous reconfiguration problem is at least three.

Proof. We prove the theorem by contradiction. For the sake of contradiction, we assume that the consensus number of the conditional asynchronous reconfiguration problem is one (implicitly, we assume that there is an algorithm that solves the conditional asynchronous reconfiguration problem in asynchronous, failure-prone distributed systems).

Let S = {s 1 , s 2 , s 3 } be the current configuration. Also, let |C| ≥ 2 be the condition that should be satisfied in every configuration C. Such a condition states that the number of servers in each configuration C should be greater than equal to two. Assume that three concurrent leave requests-leave(s 1 ), leave(s 2 ), Algorithm 5 Solving consensus among two servers using the implementation of the conditional asynchronous reconfiguration problem ▷ the algorithm executed by each server s i , where i ∈ {1, 2, 3} ▷ proposals is an array of SWMR registers to store servers' proposals such that proposals[i] stores s i 's proposal

function decide() 1) cur_conf ← {⟨+s 1 ⟩, ⟨+s 2 ⟩, ⟨+s 3 ⟩} 2) proposal_conf ← cur_conf ∪ {⟨-s i ⟩} 3)
execute the algorithm of the conditional asynchronous reconfiguration problem with input proposal_conf 4) wait until a new configuration is returned ▷ assume that the new configuration is new_conf 5) find k such that s k / ∈ new_conf 6) return proposals [k] and leave(s 3 )-are issued by different clients. By using Algorithm 5, servers can solve consensus.

Note that lines 5-6 will eventually be executed because we assumed that there is an algorithm for solving the conditional asynchronous reconfiguration problem in asynchronous, failure-prone distributed systems. Besides, note that the size of new_conf is two due to the following reasons: (a) the size of new_conf cannot be less than two because the defined condition will not be satisfied, and (b) the size of new_conf cannot be three because each server waits until having a new configuration (line 4). There is a contradiction because three servers can solve consensus using the above algorithm, and the theorem holds.

Corollary 1. Solving the conditional asynchronous reconfiguration problem in asynchronous, failure-prone distributed systems is impossible.

Proof. This corollary holds according to Theorem 3.

Weight Reassignment vs. Asset Transfer

Each server s i has an account in the asset transfer problem and can transfer some part of its balance to another server s j if the transferred balance does not turn its balance negative, formally:

1) if 0 ≤ w i -w 2) w i ← w i -w 3) w j ← w j + w 4)
other servers' weights are not changed where w k and w denote the balance of server s k and the transferred balance, respectively. The following two facts and a conclusion that comes later make it more clear what makes implementing the PerfectPairwise approach to be impossible in asynchronous, failure-prone distributed systems. (a) the asset transfer problem is similar to the weight reassignment problem with only one difference: there is no upper bound for the balance (weight) of each server, and (b) it is proved that the asset transfer problem can be implemented in asynchronous, failure-prone distributed systems [START_REF] Guerraoui | The consensus number of a cryptocurrency[END_REF]. The conclusion that can be made based on the presented facts: satisfying the upper bounds of servers' weights makes it impossible to implement the PerfectPairwise approach in asynchronous, failureprone distributed systems.

Chapter 4 Epoch-Based Weight Reassignment

Abstract. This chapter presents a crash fault-tolerant (CFT) epochbased weight reassignment protocol for implementing the WeakPairwise weight reassignment approach in asynchronous distributed systems. In such a protocol, the chief duty of epochs is to determine the lifetimes of changes returned by donate and retake operations. Then, an atomic storage based on DWMQS is designed such that each server has a weight, the quorums are constituted using servers' weights, and servers' weights can be reassigned using the proposed weight reassignment protocol over time.

Warmup

Remember that WeakPairwise is a weight reassignment approach, that provides two operations-donate and retake. Each server can donate some part of its weight to another server and retake the donated weight by calling donate and retake operations, respectively. Operations donate and retake create changes, and every created change is added to set changes. The weight of each server can be computed using set changes. This chapter proposes a protocol to implement donate and retake operations.

The proposed protocol is epoch-based. The system's lifetime is divided into a sequence of epochs ⟨e 0 , e 1 , . . . ⟩. At the beginning, epoch e 0 is installed in the system. After finishing each epoch e k (0 ≤ k), epoch e k+1 is installed. The chief duty of epochs is to determine the lifetimes of changes created by donate and retake operations as follows.

The default weight of each server during each epoch is equal to iw. Before installing epoch e k , each server s i can donate some part of its default weight associated with epoch e k to another server s j . To do so, server s i sends the amount of weight that wants to donate for epoch e k within a DNT message to server s j . Server s j receives the DNT message if it is a correct server. The donate operation completes when epoch e k-1 is changed to epoch e k such that server s i (resp. server s j ) creates a change ⟨-w, s i , * ⟩ (resp. a change ⟨w, s j , * ⟩) There are two algorithms by which the donate and retake operations are implemented. The first algorithm called PairwiseWR is executed by each server and is responsible for finding servers as donees, sending DNT messages to donees, and processing the received DNT messages. The other algorithm called EpochChanger is executed by servers as well and is responsible for changing the epochs, completing the executions of donate operations, and executing the retake operations.

In the following, we explain the epoch-based protocol in further details. First, we present a few preliminary definitions and concepts in Section 4.2. Then, we explain the PairwiseWR algorithm. Then, we present the EpochChanger algorithm. We present the read-write protocols and an example containing a few donations, retakes, and clients' read-write requests. 

Preliminaries

In this section, we present the preliminary definitions and concepts related to the epoch-based weight reassignment protocol.

Epochs. In the epoch-based weight reassignment protocol, the object of epochs is to determine the following items:

-the lifetimes of changes returned by donate and retake operations, i.e., when the changes returned by such operations should be applied to the weights of donors and donees, and -the execution time of the retake operations.

During the system's lifetime, a sequence of epochs σ = ⟨e 0 , e 1 , . . . ⟩ is installed in the system. The following assumption determines the number of epochs 4.2. PRELIMINARIES installed in the system. A similar assumption is used by all protocols that implement the reconfigurable atomic storage such as RAMBO [START_REF] Gilbert | Rambo: a robust, reconfigurable atomic memory service for dynamic networks[END_REF], DynaStore [START_REF] Aguilera | Dynamic atomic storage without consensus[END_REF],

SpSn [START_REF] Gafni | Elastic configuration maintenance via a parsimonious speculating snapshot[END_REF], FreeStore [START_REF] Alchieri | Efficient and modular consensus-free reconfiguration for fault-tolerant storage[END_REF], and SmartMerge [START_REF] Jehl | Smartmerge: A new approach to reconfiguration for atomic storage[END_REF]. Its reason is that it is impossible to reconfigure a storage system infinitely many times while guaranteeing the liveness of the storage system [START_REF] Spiegelman | On liveness of dynamic storage[END_REF].

Assumption [START_REF] Aguilera | Reconfiguring replicated atomic storage: A tutorial[END_REF] The number of epochs that are requested to be installed in the system is finite. Formally, |σ| = m, where m ∈ N and σ is the sequence of installed epochs.

The system starts in epoch e 0 called the initial epoch. The successor (resp. predecessor) of any epoch e k for 0 ≤ k (resp. 1 ≤ k) is e k+1 = e k .succ (resp. e k-1 = e k .pred). When a non-initial epoch e k+1 (0 ≤ k) is installed, we say that e k+1 .pred was uninstalled from the system. At any time t ∈ T , we define lepoch to be the last epoch installed in the system. Since lepoch is the last epoch installed in the system, it does not have any successor, that is shown by lepoch.succ =⊥. The weights of servers are not reassigned during any epoch and might be reassigned at the time of installing epochs.

Each process p ∈ {C ∪ S} has a local variable called cepoch to store its current epoch. The current epoch of each process p, p.cepoch, is a member of set {e 0 , e 1 , . . . , lepoch}. Note that the current epochs of any two processes might be different, and also, they might be different from the last installed epoch in the system. 

Installing an epoch. To install an epoch in

PairwiseWR Algorithm

This section describes the PairwiseWR algorithm of the epoch-based weight reassignment protocol. The PairwiseWR algorithm is executed by each server and is responsible for finding servers as donees, sending DNT messages to donees, and processing the received DNT messages. The default weight of servers in each epoch is equal to iw, that can be calculated using the Extended WHEAT scheme.

Algorithm 6 is the pseudocode of the PairwiseWR algorithm. Each server has a set denoted by changes to store every received change initialized with a change ⟨iw, s i , ⟨INIT, e 0 ⟩⟩ (Line 1 of Algorithm 6). Also, each server has a variable called sn initialized with 0 and used as a sequence number to distinguish its donations (Line 2 of Algorithm 6). Each server has access to three functions: • weight that returns the weight of a server for a specific epoch, • cepoch that returns the current epoch of a server, and • dirty_epochs that returns a set of epochs that a server has participated in.

For each epoch, any server might reassign its default weight. As a result, each server might have different weights in distinct epochs. Each server s i to reassign its default weight associated with an epoch e, such that s i .cepoch < e, should donate some part of its weight or receive at least one donation. In this way, the servers that have lower latency scores might become high-weighted servers leading to improving the performance.

Each server should satisfy the lower bound defined for weights in Assumption 2 to be allowed to donate some weight. For simplicity, each server s i can only donate some weight for its succeeding epoch (epoch s i .cepoch.succ). Server s i can donate weight w associated with epoch e to another server s j if the following conditions are satisfied: C1) Epoch e should be equal to the succeeding epoch of server s i . C2) Server s i has not participated in any operation related to epoch e, i.e., e / ∈ dirty_epochs.

C3)

Server s i 's latency score should be significantly greater than s j 's latency score, i.e., lscore(s j ) ≪ lscore(s i ). Note that the reason for not using 'greater than' and using 'significantly greater than' is to avoid unnecessary weight reassignments.

C4)

Server s i should have some weight to donate to server s j . Each server s i is allowed to donate at most iw -minw part of its weight. Indeed, server s i is allowed to donate weight w to another server s j if the following relation holds: iw -minw ≤ weight(s i , e) -w.

If the above conditions are met, server s i is allowed to donate weight w to server s j . To do so, server s i takes the following steps: (a) increments its sequence number, (b) creates a change for the donation, (c) adds the created change to set chagnes, and (d) sends a message ⟨DNT, cepoch.succ, s i , sn, w, s j ⟩ to sever s j (Lines 6-8 of Algorithm 6). After receiving a donation, each server s i creates a change for the donation if the following condition is met: C5) Server s i has not participated in any operation related to epoch e.

If the above conditions are met, server s i creates a change for the received donation and adds the created change to set changes (Line 12 of Algorithm 6). Otherwise, it does not create a change for the received donation.

EpochChanger Algorithm

Each server can request to change the installed epoch in the system and change its current epoch by using an algorithm called the EpochChanger algorithm. Algorithm 7 is the pseudo-code of the EpochChanger algorithm. In the following, we describe how this algorithm works.

How servers can request to change an epoch. Each server has a variable called cepoch to store its current epoch (Line 1 of Algorithm 7). Function cepoch returns the value of this variable. Each server s i for each epoch e has a timeout. Note that in practice, such a timeout should be big enough so that the sn ← sn + 1 

Properties of Epoch Changer

We present properties of Algorithm 7 in this subsection. These properties are used to prove that: (1) for each non-initial epoch e installed in the system, there exists at least one server that requests to install epoch e, and (2) the weight reassignment algorithm satisfies the liveness property. Moreover, these properties are used in Section 4.5 to prove the correctness of the atomic storage. Note that all the specified lines in this subsection are related to Algorithm 7. 

Lemma 2. There is only one installed epoch in the system. In other words, if

an epoch e ′ is installed in the system, any previously installed epoch e < e ′ was uninstalled and will not be installed anymore.

Proof. We will argue by contradiction. Assume that there are at least two installed epochs e and e ′ in the system, where e ̸ = e ′ . Without loss of generality Assume that e was the i th installed epoch in the system and e ′ is the j th installed epoch in the system, where i < j. To install a new epoch after epoch e ′ , the index of the new epoch should be greater than j. Therefore, epoch e will not be installed anymore. Lemma 3. Let s and s ′ be two correct servers such that: (1) s.cepoch = e j , (2) s ′ .cepoch = e i , (3) e i < e j , (4) after uninstalling epoch e i , the sequence of epochs installed by server s is ⟨e i+1 , . . . , e j-1 , e j ⟩, and ( 5) the current epoch of server s ′ is less than equal to the current epochs of all correct servers. Server s ′ installs the same sequence of epochs ⟨e i+1 , . . . , e j-1 , e j ⟩ eventually. Proof. When s.cepoch = e i , server s requires executing Line 13-23 to install epoch e i+1 . By executing those lines, it is guaranteed that two messages are sent by server s: message ⟨CHANGE, e i+1 ⟩ and message ⟨UPDATE, * , * , * , e i , * ⟩. In addition to server s ′ , there might be some other servers with epoch e i . Since server s is correct, all correct servers including server s ′ with epoch e i receive message ⟨CHANGE, e i+1 ⟩ eventually. To finish the proof, we need to show the following cases. The first two cases are straightforward. Regarding the third case, according to Property 1, even if f servers fail (each of them with weight maxw), there might be a weighted majority of correct servers that sent message ⟨UPDATE, * , * , * , e i , * ⟩. Therefore, the last case eventually occurs.

Lemma 4. Let lepoch = e k at time t such that e k is the k + 1 th epoch installed in the system, where 0 ≤ k. There is only one sequence of epochs σ = ⟨e 0 , e 1 , . . . , e k-1 , e k ⟩ from e 0 to e k such that e i = e i-1 .succ for any 1 ≤ i ≤ k.

Proof. Using Lemmas 2 and 3, the proof of this lemma is straightforward. Lemma 6. Let e be the last installed epoch in the system. Epoch e will eventually be changed.

Proof. Due to Lemma 5, there exists (or will eventually exist) at least a weighted majority of correct servers with epoch e. The timeout of at least one of those servers (say, s) for epoch e will eventually finish; then s will send message ⟨CHANGE, e.succ⟩ to other servers. Since server s is correct, the epoch will eventually be changed due to Lemma 5.

Theorem 4. The algorithm is live, i.e., servers can change their weights over time.

Proof. Using Lemmas 5 and 6, the proof of this theorem is straightforward.

Read-Write Protocols

We extend the (static) MW-ABD protocol [START_REF] Lynch | Robust emulation of shared memory using dynamic quorum-acknowledged broadcasts[END_REF] in such a way that each server has a weight, the quorums are constituted using servers' weights, and servers' weights can be reassigned using the proposed epoch-based weight reassignment protocol over time. In the following, we present the reader-writer and server sides of read-write protocols.

Reader-writer side. Algorithm 8 describes the reader-writer side of the readwrite protocols. Each process has a variable cepoch to store its current epoch initialized with epoch e 0 and has a variable cnt used as a sequence number to distinguish the issued requests initialized with zero (Line 1 of Algorithm 8). Both read and write operations proceed in two phases, each ending with a confirmation that at least one quorum was accessed (like the original MW-ABD protocol).

In the first phase of a read or write operation (phase1), a process contacts a quorum in order to determine the last epoch installed in the system and highest tag maxtag used prior to write the last written value. To do so, the process sends a message ⟨READ, cnt⟩ to all servers. Servers include their current epochs in their responses. The process stores all received responses that their epochs are equal to its current epoch and can determine whether a subset of servers constitutes a quorum using function is_quorum. If the current epoch of the process is less up-to-date than the epoch of a response, the process updates its current epoch with that epoch and restarts the operation (Lines 12-14 of Algorithm 8).

Then, in the second phase (phase2), after incrementing the timestamp of maxtag, if the process is a writer, it overwrites its own identifier on the identifier of maxtag and propagates its current epoch, value, and the changed maxtag within a WRITE message to a quorum. Server side. Algorithm 9 is the pseudo-code of the server side of read-write protocols. After receiving each read-write request r, each server s determines its current epoch (s.cepoch) by calling function cepoch() from Algorithm 7 and computes its weight using function weight (Lines 5-6 of Algorithm 9). For write requests, if the current epoch of each request is the same as s.cepoch, server s executes the request (Lines 11-12 of Algorithm 9). Similarly, for read requests, server s adds s.cepoch and weight to its response that should be sent to the client that issued the request.

Correctness

In the following, we prove that the read-write protocols (Algorithm 8 and Algorithm 9) implements atomic storage.

Storage liveness. We have to prove that every read-write operation executed by a correct client eventually terminates. To do so, we prove the following theorem.

Theorem 5. Every read-write operation executed by a correct client eventually terminates.

Proof. Consider a read-write operation o executed by a correct client c. For the first phase phase1 from o, client c sends a message to all servers and waits for servers' responses. There are three cases as follows:

1) A weighted majority of servers that their epochs are equal to c.cepoch responds to client c. Consequently, client c ends phase1 and starts the execution of the second phase phase2 from o by sending a message to all servers and waits for servers' responses. There are three following sub-cases:

1.1) A weighted majority of servers that their epochs are equal to c.cepoch responds to client c. Consequently, client c ends phase2, and the operation terminates.

1.2) Client c receives a response from a server with epoch e such that c.cepoch ̸ = e. If c.cepoch < e, client c updates its current epoch. Then, the client restarts the operation. We just need to show that this sub-case occurs a finite number of times, i.e., the operation o is not restarted infinitely many times. We can conclude from Lemma 6 that the process of uninstalling epoch lepoch eventually terminates. Besides, according to Assumption 4,
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Algorithm 8

The reader-writer side of the read-write protocols -process p i variables 1) cnt ← 0, cepoch ← e0 functions to read-write the atomic storage 2) read() ≡ read_write(⊥)

3) write(value) ≡ read_write(value)

function read_write(value) phase1 4) cnt ← cnt + 1 5) send ⟨READ, cnt⟩ to all servers 6) M ← ∅ 7) repeat 8)
upon receipt of message ⟨READACK, reg, cnt, e, w⟩ 9)

if cepoch = e 10)
M ← M ∪ ⟨reg, cnt, e, w⟩ 

if cepoch = e 28) M ← M ∪ {⟨reg, cnt, e, w⟩} 29) else 30) if cepoch < e 31) cepoch ← e 32)

read_write(value)

▷ restart the operation

33) until is_quorum(M ) 34) return value
the number of epochs are finite. Hence, the operation o will eventually be executed.

1.3) Operation o is concurrent with uninstalling epoch lepoch so that readwrite operations are disabled. We can conclude from Lemma 6 that the process of uninstalling epoch lepoch eventually terminates. After that,

Monitoring System

We focus on considering latency instead of throughput because throughput can be effectively improved by adding more resources (CPU, memory, faster disks) to servers or using better links. However, latency in geo-distributed storage systems will be affected by the speed of light limit and perturbations caused by bandwidth sharing [START_REF] Sousa | Separating the WHEAT from the Chaff: An Empirical Design for Geo-Replicated State Machines[END_REF].

In the WMQS, a weight is assigned to each server based on the server's latency or throughput.

In the process of assigning weights to the servers, the weights of servers should be in accordance with the latency scores of servers to improve the quorum latency of the storage system. In further detail, if the latency score of server s i is greater than s j , then w j < w i . The first step for assigning such weights to servers is to present a monitoring system by which the latency scores of servers can be computed. The monitoring system is executed by servers and presents the following operations:

latency(s, rtl) that can be called by a client c ∈ C and states that the roundtrip latency of a communication between client c and server s ∈ S is equal to rtl, -lscore(s) that can be called by each server and returns the latency score of server s ∈ S.

Each client calls operation latency to provide input to the monitoring system (Figure 4.3a). Then, the monitoring system computes the latency scores of servers based on such inputs. The monitoring system can be implemented in different ways; however, to implement it efficiently, clients utilize only the messages used to execute read-write operations1 in such a way that (a) the round-trip latencies of client-server communications are measured using the first phases of read-write operations, (b) such measured latencies are sent to the monitoring system using the messages of the second phases of the operations (Figure 4.3b).

The implementation consists of two modules-ClientServerMS and ServerServerMS. Each server s i ∈ S has an ordered set to store the latency scores of servers, denoted by lscores i = ⟨ls 1 , . . . , ls j , . . . , ls n ⟩, where ls j is a variable to store the latency score of server s j .

ClientServerMS module. Each client c, for the first phase (ph1) of each readwrite operation, creates an ordered set denoted by rtls = ⟨rtl 1 , . . . , rtl j , . . . , rtl n ⟩ to store the round-trip latencies of servers for executing ph1 (Figure 4.4). In further detail, the value of variable rtl j is computed as follows: rtl j = min(mrtl, t 2 jt 1 j ), where mrtl is a pre-defined constant for the maximum round-trip latency, t 1 j is the time that client c sends the READ message to server s j , and t 2 j is (a) The inputs of the monitoring system are the round-trip latencies of client-server communications. Each client calls operation latency to send the round-trip latency of its communication with a server to the monitoring system.

(b) Clients utilize the messages used to execute the phases-ph1 and ph2of read-write operations for measuring the round-trip latencies of clientserver communications and sending such latencies to the monitoring system.

Figure 4.3:

The relationship between the clients and the monitoring system the time that client c receives the READACK message sent by s j . Note that a client might finish the first phase of a read-write operation and start the second phase of the operation while it has not received the READACK messages of some servers. In such situations, it is required to use mrtl as the round-trip latency of the communications with the servers that their messages have not been received. Client c, after finishing the first phase and by starting the second phase of the operation, attaches the ordered set rtls to its WRITE messages (Figure 4.4). Each server s i has a set called history_rtls to store every rtls that is attached to a received WRITE message. Servers can compute the latency scores of servers based on set history_rtls in different ways. However, we use the following function named history_rtls2lscores to compute the latency scores of servers:

▷ the algorithm executed by server s i ▷ lscores i = ⟨ls 1 , . . . , ls j , . . . , ls n ⟩ function history_rtls2lscores(history_rtls) 1) ⟨tls 1 , . . . , tls j , . . . , tls n ⟩ ← ⟨0, . . . , 0, . . . , 0⟩ 2) for j = 1 :

n 3) r 1 ← sort({rtls[j] | ∀ rtls ∈ history_rtls}) 4)
r 2 ← remove the first 1/3 and the last 1/3 values of r 1 5) tls j ← average(r 2 ) 6) lscores i ← (lscores i + ⟨tls 1 , . . . , tls j , . . . , tls n ⟩)/2 Function history_rtls2lscores takes as an input set history_rtls. To compute the latency score of server s j : (a) the round-trip latencies of server s j stored 4.7. PERFORMANCE EVALUATION 59 in every set rtls ∈ history_rtls are extracted, then the extracted values are sorted (Line 3), (b) the outlier values are removed from the sorted set (Line 4), (c) the average of the remaining set is computed as the temporary latency score of server s j (Line 5), and (d) the average of the temporary latency score of server s j and the stored one in set lscores i are computed as the latency score of server s j (Line 6). To remove the outlier values, we simply remove the first 1/3 and the last 1/3 values of the sorted set. On the other hand, each server s i , by receiving set lscores j from server s j , substitues the average of lscores i and lscores j with its set. Having the Ser-verServerMS module in the implementation of the monitoring system is necessary because a server s i might not receive a WRITE message from a client while another server s j can receive; servers s i can retrieve the unreceived information using the ServerServerMS module.

Performance Evaluation

In this section, we present a performance evaluation of the atomic storage based on our weight reassignment protocol to quantify its quorum latency when compared with atomic storage systems based on the following cases: (1) the (static) MW-ABD [START_REF] Attiya | Sharing memory robustly in message-passing systems[END_REF] that uses an MQS, and (2) RAMBO [START_REF] Gilbert | Rambo: a robust, reconfigurable atomic memory service for dynamic networks[END_REF] (a consensus-based reconfiguration protocol). We implemented prototypes of the MW-ABD, RAMBO, and our protocols in the python programming language. Besides, we used KOL-LAPS [START_REF] Gouveia | Kollaps: decentralized and dynamic topology emulation[END_REF], a fully distributed network emulator, to create the network and links' latencies.

Reconfiguration protocols present two special functions: join and leave. Servers can join/leave the system by calling these functions. Reconfiguration CHAPTER 4. EPOCH-BASED WEIGHT REASSIGNMENT protocols require to be adapted to be used as weight requirement protocols. To do so, we change join and leave functions of RAMBO to increase and decrease functions, respectively. Each server can request to increase/decrease its weight using increase/decrease functions. Particularly, each server can call increase and decrease functions every δ unit of time (0 < δ is a constant) as follows to increase/decrease its weight. Assume that the latency score of server s are ls t and ls t ′ respectively at time t and t ′ = t + δ. Also, assume that the total latency scores of servers computed by s are LS t and LS t ′ respectively at time t and t ′ . Server s calls function increase (resp. decrease) to increase (resp. decrease) its weight at time t ′ if ls t /LS t + τ < ls t ′ /LS t ′ (resp. ls t ′ /LS t ′ + τ < ls t /LS t ), where τ is a threshold for changing weights.

We used one 1.8 GHz 64-bit Intel Core i7-8550U, 32GB of RAM machine. KOLLAPS executes each server and client in a separate Docker container [START_REF] Merkel | Docker: lightweight linux containers for consistent development and deployment[END_REF], and the containers communicate through the Docker Swarm [START_REF]Docker swarm[END_REF]. We set the numbers of servers and clients to five and ten, respectively. Moreover, at most, one server can fail (f = 1). Each client sends a new read-write request as soon as receiving the response of the previously sent read-write request. Since there is no difference between read-write protocols regarding the number of communication rounds in our read-write protocols, we set the read-write ratio to 0.5.

The duration of each run is 200 seconds. In each run, latencies of links are changed every ∆ = 10 seconds while the processes are unaware of the value of ∆. We executed 100 runs and computed the average of the results that is depicted in Figure 4.5. The average quorum latencies of the MW-ABD, RAMBO, and our protocol are 139, 118, and 101 milliseconds, respectively. The MW-ABD protocol requires the responses of three processes to decide whether a quorum is constituted while other protocols might constitute their quorums by two processes. Therefore, the quorum latencies of other protocols are less than the MW-ABD on average. In the RAMBO protocol, some views might be active at a time, while in our protocol, there is only one installed view at any time; hence, our protocol outperforms the RAMBO protocol on average. 

Chapter 5 Epoch-Less Weight Reassignment

Abstract. In the epoch-based weight reassignment protocol presented in Chapter 4, donations and retakes performed during an epoch e cannot be applied unless e is changed to e + 1, and all correct servers should participate in the process of synchronizing states. Besides, read-write operations might be restarted when the epochs are changed to guarantee the liveness property of the atomic storage. This chapter presents an epoch-less weight reassignment protocol for implementing the WeakPairwise approach, in which each donation and retake can be applied without requiring epochs. Consequently, donations and retakes can be applied faster, and it is not required to restart read-write operations. A few optimization techniques are presented to improve the performance of the epoch-less protocol further. One of the optimization techniques is to reduce the number of participants in the process of synchronizing states to only two servers.

Warmup

In this section, we present the overall idea of the epoch-less implementation of the WeakPairwise abstraction. Assume that server s i donates some part of its weight, that is equal to a constant w, to another server s j . In the epochbased protocol, the donation process is started by sending a DNT message from s i to s j , that contains w and a sequence number dedicated to the donation. Server s i (resp. s j ) should wait until changing the current epoch e k to the next epoch e k+1 for decreasing (resp. increasing) its weight by w, and a quorum of correct servers should participate in the process of synchronizing the states. Then, server s i can retake its donated weight at the time changing epoch e k+1 to e k+2 .

However, in the epoch-less protocol, server s i (resp. s j ) creates a change to decrease (resp. increase) its weight by w (resp. w ′ ≤ w) as soon as sending (resp. receiving) such a message. Then, server s i starts a timeout called τ retake for the 64 CHAPTER 5. EPOCH-LESS WEIGHT REASSIGNMENT donation. After finishing such a timeout, server s i asks a quorum of servers Q to assist it to retake its donated weight by broadcasting a RTK message. Each server s ∈ Q creates an auxiliary change (achange) and adds the created achange to another set called achanges. An achange is a similar data structure to change that is created by a server to assist a donor that wants to retake its donated weight. In case every server s ∈ Q creates an achange and the donee is correct, the donee cannot use the donated weight anymore. Each server s ∈ Q sends a confirmation to the donor within a RTN message after creating an achange. If the donor receives confirmations from all servers Q, it creates a change to increase its weight. Every change is added to set chagnes. The whole process is depicted in Figure 5.1. In this chapter, we explain the epoch-less protocol in further details. First, we explain the donate operation in Section 5.2. Particularly, we determine (a) the conditions that each donor should satisfy to be allowed to start a donation, (b) what a donee must do when it receives the donated weight. Then, we present the retake process in Section 5.3. A few optimization techniques are presented in Section 5.4 to improve the performance of the epoch-less weight reassignment protocol. We present the read-write protocols and an example that contains a few donations, retakes, and clients' read-write requests in Section 5.5.

Donate Operation

Algorithm 10 is the pseudocode of the donate operation. Each server has a variable called sn initialized with 0 and used as a sequence number to distinguish its donations. Also, each server has a set denoted by changes to store every received change initialized with a change ⟨iw, s i , -⟩ and a variable denoted by register to store the tag and value of its local register. Each server has access to two functions: • donated_but_not_retaken that determines the amount of weight that is donated by a server but not retaken, and • read that returns the tag and value of the atomic storage. The implementations of these functions are presented later in this section.

Each server s i can donate some part of its weight equal to w to another server s j if the following conditions are satisfied: C1) Each server s i has a timeout called τ donation ; if the timeout finishes, server s i can start a donation. Such a timeout is required to control the number of donations made by each server.

C2)

Server s i should have some weight to donate to s j . Each server s i is allowed to donate at most iw -minw part of its weight. Indeed, server s i is allowed to donate weight w to another server s j if the following relation holds: iw -minw ≤ donated_but_not_retaken(s i ) -w.

C3) Server s i 's latency score should be significantly greater than s j 's latency score, i.e., lscore(s j ) ≪ lscore(s i ). Note that the reason for not using 'greater than' and using 'significantly greater than' is to avoid unnecessary weight reassignments.

If the conditions mentioned above are met, server s i takes the following steps: (a) creates a change for the donation and adds it to set changes, (b) restarts timeout τ donation , (c) starts a timeout called τ retake for the donation, and (d) donates w to s j by sending a DNT message (Lines 4-10 of Algorithm 10). According to the following theorem and its corollary, decreasing the weight of a server does not create a safety issue for atomic storage.

Theorem 7. Assume that the following relation holds for server s i : iw-minw+ w ≤ donated_but_not_retaken(s i ). If s i 's weight is decreased by w while tw is not changed, the safety property of atomic storage is not violated, even without updating the servers' local registers.

Proof of Theorem 7. To prove this theorem, we present all possible cases. Then, we show that no case violates the safety property. To do so, assume that the last completed write operation was ⟨tag β , β⟩. One of the following disjoint cases can happen:

1) The state of s i is ⟨tag β , β⟩, and there is no concurrent write at the time of changing s i 's weight. Assume that servers are grouped based on their tags in such a way that group G t contains all servers with tag t. Accordingly, s i ∈ G tag β . By decreasing s i 's weight, just the total weight of group G tag β will be decreased. Note that the total weight of each group G t ̸ = G tag β is less than tw/2 because the last write was done by servers of group G tag β , and tw is not changed. On the other hand, other groups' total weights will not change by decreasing s i 's weight. Since there is no group G t ̸ = G tag β with a total weight greater than tw/2, it is not possible to read a stale value.

2) The state of s i is ⟨tag β , β⟩, and there is at least one concurrent write at the time of changing s i 's weight. Similar to Case 1, it is not possible to read a stale value. ∆ = 1. Accordingly, tw = 5 and iw = 1.25. Assume that, at time t 1 , the weights of servers s 1 , s 2 , s 3 , and s 4 are 2, 1, 1, and 1, respectively. Also, assume that the last written value is α with tag tag α and is stored by servers s 1 and s 2 .

Server s 1 returns the donated weights to other servers at time t 2 . Decreasing s 1 's weight does not create a safety issue according to Theorem 7. When servers s 2 , s 3 , and s 4 receive the returned weights, their weights are increased but there is no safety violation if the states are not synchronized due to the assumption made in the beginning of the proof. Then, each server s ∈ {s 1 , s 2 , s 3 } donates weight w = 0.25 to server s 4 . Decreasing the weight of server s ∈ {s 1 , s 2 , s 3 } weight does not create a safety issue according to Theorem 7. Consequently, the new weights of servers s 1 , s 2 , s 3 , and s 4 are 1, 1, 1, and 2, respectively. Note that the weight of server s 4 can be increased without requiring to synchronize the states.

At time t 3 , client c sends a read request to servers s 3 and s 4 . A quorum is constituted by servers s 3 and s 4 because their total weight is greater than tw/2, and result of the read request is ⊥ while it is not the last written value. We find a safety violation, that is a contradiction as well so the theorem holds. 

Retake Operation

Algorithm 11 is the pseudocode of the retake operation. Each server has a set denoted by achanges to store auxiliary changes and has access to function is_quorum. Function is_quorum determines whether a subset of servers is a quorum. This operation begins if a server s i has donated some part of its weight to another server s j , and after a while, s i wants to retake the donated weight. In further detail, after sending the DNT message, server s i starts a timeout τ retake for the donation. As soon as finishing such a timeout, server s i register ← read()

13)

changes ← changes ∪ {⟨w, s i , d⟩} broadcasts a RTK message to all servers using a RB_broadcast module (Line 2 of Algorithm 11). Upon delivering a RTK message from RB_deliver, each server s k creates an auxiliary change ⟨-w, s j , ⟨RTK, s i , sn, w, s j ⟩⟩ for the donation. Then, the created achange is added to set achanges, and a RTN message is sent to s i (Lines 3-4 of Algorithm 11). Each server includes its changes and achanges to the sending RTN message to s i . Upon receiving a RTN message from a quorum of servers, server s i executes a read operation to avoid creating a safety issue due to Theorem 8. Then, it creates a change and adds the created change to its changes. (Lines 5-6 of Algorithm 11). Server s i utilizes the information included in the RTN messages to decide whether a quorum is constituted using function is_quorum.

Consider a process p that receives messages from a subset of servers S ⊆ S such that each server s ∈ S includes its changes and achanges in its message. By using function is_quorum, that takes as input set S, process p can determine whether a quorum is constituted. Function is_quorum is based on function weight. Function weight takes as its input a server s i and set S. Then, such a function calculates and returns the weight of server s i as follows: if s i / ∈ S, zero is returned as the weight of s i ; otherwise, the summation of three following values are returned: • iw, • the summation of all weights donated, received, and retaken by s i , and • the summation of all weights that are donated to s i such that their donors sent RTK messages using the RB_broadcast module (Line 2 of Algorithm 11) but s i have not received such messages yet, i.e., the summation of all achanges that are stored by servers of S about s i but it is not stored by 

Optimization

This section presents a few optimization techniques that can be used to improve the performance of the epoch-less weight reassignment protocol.

Technique 1

Given a donation made from server s i to server s j , if server s j 's weight becomes greater than maxw by adding the donated weight, server s j cannot use the donated weight. Besides, server s i cannot use the donated weight until finishing the timeout dedicated to the donation. To improve the efficiency of this process, server s j sends a message to server s i by which the donated weight is returned to server s i . Server s i uses the donated weight as soon as receiving the returned message.

Technique 2

Each server asks all servers for retaking its donated weights To improve the efficiency of the retake process, each server can batch its retake requests if it has multiple retake requests that should be broadcasted to all servers. Then, all the bached requests can be sent in a single request.

Technique 3

For each donation, the donor of the donation broadcasts a RTK message after finishing the timeout τ retake devoted to the donation. If the latency scores of the donor and donee have not changed from the time of sending the DNT message to finishing the timeout τ retake devoted to the donation, it is not required to retake the donated weight. Indeed, the donor can extend the lifetime of the donation. Accordingly, the donor can only reset its timeout τ retake devoted to the donation without sending a RTK message.

Read-Write Protocols

Here, we present the read-write protocols of the epoch-less weight reassignment protocol.

Reader-writer side. Algorithm 12 is the pseudocode of the reader-writers' algorithm. The reader-writers' algorithm is similar to the reader-writer's algorithm of the MW-ABD protocol [START_REF] Lynch | Robust emulation of shared memory using dynamic quorum-acknowledged broadcasts[END_REF] with only one difference: each reader or writer, after receiving messages from a set S ′ ⊆ S to decide whether a quorum is constituted, calls function is_quorum (Lines 10 and 23 of Algorithm 12). Server side. Algorithm 13 is the pseudocode of the servers' algorithm. The servers' algorithm is similar to the servers' algorithm of the MW-ABD protocol with only one difference: each server includes its changes and achanges to its responses.

Correctness.

The following theorems states an atomic storage can be implemented using the read-write protocols (Algorithm 12 and Algorithm 13) if the weights of servers are reassigned by calling donate (Algorithm 10) and retake (Algorithm 11) operations.

Algorithm 12

The reader-writer side of the read-write protocols -process p i variables 1) opCnt ← 0 functions for read-write atomic storage 2) read() ≡ read_write(⊥) 

Safety of the atomic storage

Lemma 11. Assume that there is no change from time t 1 to time t 2 . Also, assume that set S 1 ⊆ S (resp. S 2 ⊆ S) is determined as a quorum by function is_quorum such that every server s 1 ∈ S 1 (resp. every server s 2 ∈ S 2 ) is contacted from t 1 to t 2 . Then, two quorums S 1 and S 2 have a non-empty intersection, i.e, S 1 ∩ S 2 ̸ = ∅.

Proof. A set S ′ ⊆ S is determined as a quorum by function is_quorum if the In case these changes are concurrent, (without loss of generality, assume that changes c 1 and c 2 are made on servers s 1 and s 2 , respectively) we have to show that the following quorums have an intersection: (a) a quorum constituted by s 1 (b) a quorum constituted by s 2 (c) a quorum constituted by both s 1 and s 2 (d) a quorum constituted by none of s 1 and s 2 . It is straightforward to show that these quorums have an intersection. Consequently, operation r 2 returns the most up-to-date value. Lemma 14. Assume that a read operation read 1 returns a value α 1 at time t e 1 with an associated tag tag 1 . Also, assume that another read operation read 2 started at time t s 2 > t e 1 returns a value α 2 associated with tag tag 2 . Then, one of the following cases happen: (1) tag 1 = tag 2 and α 1 = α 2 , or (2) tag 1 ≤ tag 2 and α 2 was written after α 1 .

Proof. Assume that read 1 starts at time t s 1 and read 2 ends at time t e 2 , then t s 1 < t e 1 < t s 2 < t e 2 . There are four mutually exclusive cases: a) There is no concurrent change. For this case, the lemma holds according to Lemma 11.

b) There is a concurrent change with read 1 at time t ′ such that t s 1 < t ′ < t e 1 . For this case, the lemma holds according to Lemma 12. c) There is at least one change between read 1 and read 2 . For this case, the lemma holds according to Lemma 13.

d) There is a concurrent change with read 2 at time t ′ such that t s 2 < t ′ < t e 2 . This case is similar to Case 2. Theorem 9. The storage system implemented using the read-write protocols (Algorithm 12 and Algorithm 13) is an atomic storage.

Proof. According to Lemma 14, the theorem holds. Theorem 10. Atomic storage implemented using the read-write protocols (Algorithm 12 and Algorithm 13) is live.

Proof. Since at most f servers might fail, there are n -f servers in the worst case. The minimum value for the total weight of n -f servers is equal to n -f . Since tw/2 < n -f , a quorum can be constituted, i.e., the system remains live even in the worst case scenario.

An example

The following example contains a few calls of donate, retake, and clients' readwrite operations (Figure 5.3). Let S = {s 1 , s 2 , s 3 , s 4 }, C = {c 1 , c 2 }, n = 4, f = 1. Accordingly, iw = 1.25, tw = 5, and maxw = 2. The local register of each server is initialized with ⟨⊥, ⊥⟩. Also, for each server, sets CHAPTER 5. EPOCH-LESS WEIGHT REASSIGNMENT changes and achanges are initialized with {⟨iw, s i , -⟩} and ∅, respectively. Client c 1 executes write(α), and registers of servers s 2 , s 3 , and s 4 are updated. Note that at least three severs are required to constitute a quorum at this time. Server s 1 donates weight 0.25 to s 2 . Consequently, s 1 .changes = {⟨iw, s 1 , -⟩, ⟨-0.25, s 1 , ⟨DNT, s 1 , 1, 0.25, s 2 ⟩⟩}, and w 1 = 1. On the other hand, server s 2 executes a read operation after receiving the donation. The read operation is executed by quorum {s 1 , s 2 , s 3 }. Then, s 2 .changes = {⟨iw, s 1 , -⟩, ⟨+0.25, s 2 , ⟨DNT, s 1 , 1, 0.25, s 2 ⟩⟩}, and w 2 = 1.5.

Client c 1 executes write(β). Note that either {s 2 , s 3 } or {s 2 , s 4 } is a quorum at this time. Assume that the constituted quorum is {s 2 , s 3 }, and registers of servers s 2 and s 3 are updated. Then, server s 1 sends a RTK message to s 2 for retaking its donated weight. Server s 2 creates a change ⟨-0.25, s 2 , ⟨RTK, s 1 , 1, 0.25, s 2 ⟩⟩ and adds the created change to set s 2 .chagnes so w 2 = 1.25; then, it sends a RTN message to s 1 . After receiving the RTN message, server s 1 executes a read operation. The read operation is executed by quorum {s 1 , s 2 , s 3 }. Then, server s 1 creates a change ⟨0.25, s 1 , ⟨RTK, s 1 , 1, 0.25, s 2 ⟩⟩ and adds the created change to set s 1 .chagnes so w 1 = 1.25.

Server s 1 donates weight 0.25 to s 3 after a while. Client c 1 executes write(γ), and a quorum by server s 1 , s 2 , and s 4 is constituted. After that, server s 1 sends a RTK message to s 3 for retaking its donated weight, but server s 3 does not respond the retake request on time so that server s 1 broadcasts a RTK message to all servers. Servers s 2 and s 4 send their responses to s 1 ; accordingly, server s 1 's weight becomes 1.25 again. Also, for each server s i ∈ {s 1 , s 2 , s 4 }, s i .achangess = {⟨-0.25, s 3 , ⟨RTK, s 1 , 2, 0.25, s 3 ⟩⟩} Client c 1 executes operation read() and a quorum by servers {s 2 , s 3 , s 4 } is constituted. Since servers s 2 and s 4 have auxiliary changes to show that the donated weight by server s 1 to s 3 was retaken, change ⟨0.25, s 3 , ⟨DNT, s 1 , 2, 0.25, s 3 ⟩⟩ ∈ s 3 .changes is not considered in computing s 3 's weight. 

Conclusion

This thesis investigates the problem of enhancing the performance of distributed storage systems based on the majority quorum system and can be implemented in asynchronous, failure-prone distributed systems. We consider a conventional technique to enhance the performance of such systems that is to replace the majority quorum system with the dynamic weighted majority quorum system. Since the dynamic weighted majority quorum system is based on weight reassignment protocols, we formulate the problem of reassigning weights in asynchronous, failure-prone distributed systems.

We investigate three approaches by which weight reassignment protocols can be constructed. We show that two of the approaches cannot be implemented in asynchronous, failure-prone distributed systems regardless of how they are implemented. Then, we conclude that a weight reassignment protocol cannot rely on any weight reassignment approach.

To show the impossibility of implementing a weight reassignment approach in asynchronous, failure-prone distributed systems, we use the notion of consensus number. In further detail, we treat a weight reassignment approach as a concurrent object; then, we show how the consensus can be solved using the object; since consensus cannot be implemented in asynchronous, failure-prone distributed systems, we conclude that the weight reassignment approach cannot be implemented in asynchronous, failure-prone distributed systems as well.

We show that one of the investigated approaches can be employed to construct a weight reassignment protocol that can be implemented in asynchronous, failure-prone distributed systems. We propose two weight reassignment protocols based on that approach. Then, we construct atomic storage based on the dynamic weighted majority quorum system such that the servers' weights can be reassigned over time using the proposed weight reassignment protocols.

Due to the similarity of the weight reassignment and reconfiguration problems, we also investigate the reconfiguration problems. We present a new variant of reconfiguration problems called the conditional reconfiguration problem. The conditional reconfiguration problem is similar to the standard asynchronous reconfiguration problem with only one difference: a condition related to the size of 75 76 CHAPTER 6. CONCLUSION configurations should be satisfied. We show that the conditional reconfiguration problem has no asynchronous implementation.

During the course of this research, we have found several ideas, how the insights and techniques from this thesis could be applied and extended. In this manuscript, we present a novel consensus-free and crash fault-tolerant weight reassignment protocol that can be used to improve the performance of atomic read/write storage systems. We assume that the set of servers does not change over time; however, our work can be extended to consider that servers can leave and new servers can join the system. Besides, every client sends each of its requests to all servers. Working on using strategies for selecting a subset of servers to send requests for improving the network congestion can be another direction for future improvement. Extending the failure model to Byzantine failures could also be another direction for future work.
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 1 Let epoch e be the current epoch of a server s, i.e., s.cepoch = e. Server s installs epoch e.succ if at least a weighted majority of servers including s had uninstalled epoch e. Proof. To install epoch e.succ, server s requires executing Line 23. To do so, first, it should receive message ⟨CHANGE, e.succ⟩. Then, it can execute Lines 13-17. If server s passes Line 19, it means that s received messages tagged with UPDATE from a weighted majority of servers ρ. Each server s ′ ∈ ρ has uninstalled epoch e before sending a message tagged with UPDATE. Therefore, server s can be sure that at least a weighted majority of servers has uninstalled epoch e by passing Line 19. Then, server s can continue executing the remaining lines to change its epoch to e.succ.
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 4 . EPOCHCHANGER ALGORITHM 51 we can assume e < e ′ . To install e ′ in the system, according to the definition of installing a epoch, at least one server s should install epoch e ′ . Due to Lemma 1, at least a weighted majority of servers with epoch e ′ .pred including s had uninstalled epoch e ′ .pred to allow s for installing epoch e ′ . Similarly, we can show that at least a weighted majority of servers with epoch e ′ .pred.pred including s had uninstalled epoch e ′ .pred.pred. With the same argument, we can show that any epoch x less than e ′ had uninstalled by at least a weighted majority of servers with epoch x including s. Therefore, e was uninstalled by at least a weighted majority of servers with epoch e.
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 12 All correct servers including server s ′ with current epoch e i uninstall epoch e i and send message ⟨UPDATE, * , * , * , e i , * ⟩. All correct servers including server s ′ with current epoch e i can only change their epochs to e i+1 . 3) Server s ′ can pass Line 19, i.e., server s ′ receives messages ⟨UPDATE, * , * , * , e i , * ⟩ from a weighted majority of servers (then server s ′ can continue executing Lines 20-23 to change its epoch to e i+1 .)
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 45 EPOCH-BASED WEIGHT REASSIGNMENT Let epoch e be the last installed epoch in the system, i.e., lepoch = e. Assuming a correct server s requests to change epoch e to epoch e.succ, then at least a weighted majority of correct servers including s install e.succ eventually. Proof. Using Lemma 3, all correct servers will eventually reach to epoch e. Then, according to Property 1, the total weight of correct servers with epoch e is a weighted majority. If a correct server (say, s) with epoch e sends a request to change its epoch to epoch e.succ, it will change its epoch due to the existence of a weighted majority of correct servers with epoch e. After that, all correct servers will eventually reach to epoch e.succ by Lemma 3, and the total weight of correct servers with epoch e is a weighted majority according to Property 1.
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 2 1 indicates the nomenclature used throughout this manuscript. The reader-writer side of the MW-ABD -process p i

	Symbol	Meaning
	T	the lifetime of the system
	Π	the set of all processes, either clients or servers
	C	the set of clients
	S	the set of servers
	n	the total number of servers
	m	the total number of clients

f the maximum number of servers that can fail tw the total weight of servers iw the initial weight of each server minw the lower bound defined for servers' weights maxw the upper bound defined for servers' weights mrtl the maximum value for the round-trip latency of client-server communications Table 2.1: The symbols and their meanings used throughout the manuscript 2.6. NOMENCLATURE Algorithm 1 upon receipt of ⟨READACK, ⟨tag, value⟩, opCnt⟩ from s i 7) msgs ← msgs ∪ ⟨s i , tag, value⟩ 8) until servers in set msgs constitutes a quorum 9) maxtag ← max {tag | ⟨s i , tag, value⟩ ∈ msgs} phase2 10) send ⟨WRITE, ⟨⟨maxtag.ts + 1, p i ⟩, value⟩, opCnt⟩ to all servers 11) msgs ← ∅ 12) repeat 13) upon receipt of ⟨WRITEACK, reg, opCnt⟩ from s i 14) msgs ← msgs⟨s i , tag, value⟩ 15) until servers in set msgs constitutes a quorum function read() phase1 16) opCnt ← opCnt + 1 17) send ⟨READ, opCnt⟩ to all servers 18) msgs ← ∅ 19) repeat 20) upon receipt of ⟨READACK, ⟨tag, value⟩, opCnt⟩ from s i 21) msgs ← msgs ∪ ⟨s i , tag, value⟩ 22) until servers in set msgs constitutes a quorum 23) maxtag ← max {tag | ⟨s i , tag, value⟩ ∈ msgs} 24) maxreg ← find(⟨s i , tag, value⟩ ∈ msgs such that tag = maxtag) phase2 25) send ⟨WRITE, ⟨maxtag, maxreg.value⟩, opCnt⟩ to all servers 26) msgs ← ∅ 27) repeat 28) upon receipt of ⟨WRITEACK, reg, opCnt⟩ from s i 29) msgs ← msgs⟨s i , tag, value⟩ 30) until servers in set msgs constitutes a quorum 31) return value Algorithm 2 The server-side of the MW-ABD -server s i variables 1) register[tag, val] ← ⟨∅, ⊥⟩ upon receipt of ⟨READ, cnt⟩ from p 2) send ⟨READACK, register, cnt⟩ to p upon receipt of ⟨WRITE, ⟨tag, val⟩, cnt⟩ from p 3) if register.tag < tag 4) register ← ⟨tag, val⟩ 5) send ⟨WRITEACK, cnt⟩ to p

  (IncreaseDecrease Validity) Before receiving a change ⟨ * , s i , ⟨ * , s i , sn, w⟩⟩, server s i had called an operation op(sn, w), where op ∈ {increase, decrease}.

-(IncreaseDecrease

Termination) Given operation op(sn, w) called by server s i such that op ∈ {increase, decrease}, server s i eventually receives a change ⟨ * , s i , ⟨ * , s i , sn, w⟩⟩ if s i is a correct server. -(IncreaseDecrease Accuracy) Given operation op(sn, w) called by server s i such that op ∈ {increase, decrease}, one of the following cases can happen:

  the system, at least one server should request it. Each server s i can only request to install epoch s i .cepoch.succ in the system by executing the EpochChanger algorithm. If lepoch = s i .cepoch, the EpochChanger algorithm installs epoch s i .cepoch.succ in the system such that the current epochs of a weighted majority of servers are changed to epoch s i .cepoch.succ. We say that epoch e ′ is more up-to-date than epoch e if the following recursive function returns yes by passing (e, e ′ ) as input. We use the notation e < e ′ to state that epoch e ′ is more up-to-date than epoch e.CHAPTER 4. EPOCH-BASED WEIGHT REASSIGNMENTinformation about the change. Types INIT, DNT, and RTK are used when a change is added as the initial weight of a server, returned from the donate operation, and returned from the retake operation, respectively. Each returned change is added to set changes. The weight of each server s i for each epoch e k can be calculated by calling function weight(s i , e k ) as follows: the total weight of all changes created for epoch e k is computed; if the computed weight is less than equal to maxw, then it is returned; otherwise, maxw is returned.

	return yes 3) else Comparing two epochs. Calculating weights. 2) 4) return no

function more_up_to_date(e, e ′ ) e ← e.succ if e = e ′ then return yes else if e =⊥ then return no else return more_up_to_date(e, e ′ ) Epochs vs. read-write operations. At any time t ∈ T , read-write operations can only be executed in epoch lepoch. At the time of uninstalling any epoch e, read-write operations are disabled on every server s such that s.cepoch = e. The operations are enabled after installing epoch e.succ. Change. Each change made on a server s i 's weight is associated with an epoch e and has the following structure: ⟨±w, s i , ⟨type, e, inf o⟩⟩, where w is the value of the change, type ∈ {INIT, DNT, RTK}, and inf o might contain additional function weight(s i , e k ) w ← sum {w | ⟨w, s i , ⟨ * , e k , * ⟩⟩ ∈ s i .changes} return min(w, maxw) Quorum. Processes can use function is_quorum to determine whether a subset of servers S ′ constitutes a quorum in epoch e k . This function computes the total weight of all servers S ′ using function weight. If the computed total weight is greater than tw/2, subset S ′ constitutes a quorum. This function works as follows in further details. function is_quorum(S ′ , e k ) 1) if tw/2 < sum {weight(s i , e k ) |s i ∈ S ′ }

upon RB_deliver ⟨UPDATE

  Each server has a register; in this step, the registers of servers with epoch epoch are synchronized. To do so, server s i reads its register, ⟨tag, val⟩ (Line 16). Then, server s i broadcasts message ⟨UPDATE, s i , ⟨tag, val⟩, s i .cepoch, s i .cepoch.weight⟩ to other servers (Line 17). Server s i waits until receiving messages ⟨UPDATE, * , * , s i .cepoch, * ⟩ from a weighted majority of servers (Line 19). Server s i computes and stores the new state of its register (Lines 20-22). (e) Changing the epoch (Line 23). (f) Enabling read-write operations (Line 24).Figure 4.2 illustrates an example of executing the PairwiseWR and the EpochChanger algorithms. In this example, S = {s 1 , s 2 , s 3 , s 4 }, f = 1, and ∆ = 1. Using WHEAT scheme, iw = 1.25, wmax = 2, and wmin = 1. Server s 3 wants to donate weight 0.25 associated with epoch e 1 to server s 1 . Hence, server Algorithm 7 The EpochChanger algorithm -server s i ≡ max {tag | ( * , ⟨tag, * ⟩, epoch, * ) ∈ updates and e = epoch} 6) maxval(e, t) ≡ first {val | ( * , ⟨tag, val⟩, epoch, * ) ∈ updates and e = epoch and t = , s, ⟨tag, val⟩, epoch, weight⟩ 26) updates ← updates ∪ {(s, ⟨tag, val⟩, epoch, weight)} s 3 sends a DNT message to server s 1 during epoch e 0 . Furthermore, server s 4 wants to donate weight 0.25 associated with epoch e 1 to server s 1 . Server s 4 sends a DNT message to server s 1 during epoch e 0 as well. Then, server s 1 receives the DNT messages sent by servers s 3 and s 4 before installing epoch e 1 . Therefore, server s 1 creates two changes for the received donations. The new weights of servers s 1 , s 2 , s 3 , and s 4 in epoch e 1 are 1.75, 1.25, 1, and 1, respectively. Server s 4 wants to donate weight 0.25 associated with epoch e 2 to server s 2 . Consequently, server s 4 sends a message DNT to server s 2 . Server s 2 receives

	7) 8) upon receipt of ⟨DNT, epoch, sj, s, w, si⟩ from sj changes ← changes ∪ {⟨-w, si, ⟨DNT, cepoch.succ, si, sn, w, sj⟩⟩} send ⟨DNT, cepoch.succ, si, sn, w, sj⟩ to sj 9) cepoch ← cepoch() of Algorithm 7 10) dirty_epochs ← dirty_epochs() of Algorithm 7 11) if epoch / ∈ dirty_epochs 12) 1) cepoch ← e0 2) change_requests ← ∅ 3) updates ← ∅ 4) dirty_epochs ← {e0} functions 5) maxtag(e) tag} 7) cepoch() ≡ cepoch 8) dirty_epochs() ≡ dirty_epochs upon timeout for epoch cepoch 9) RB_broadcast ⟨CHANGE, cepoch.succ⟩ 10) change_requests ← change_requests ∪ {epoch} while f orever 11) if cepoch.succ ∈ change_requests 12) if ∃ timeout for epoch cepoch 13) remove the timeout 14) disable the execution of read-write operations of Algorithm 9 15) dirty_epochs ← dirty_epochs ∪ {cepoch.succ} 16) ⟨tag, val⟩ ← register() of Algorithm 9 17) RB_broadcast ⟨UPDATE, si, ⟨tag, val⟩, cepoch, cepoch.weight⟩ 18) updates ← updates ∪ {(si, ⟨tag, val⟩, cepoch, cepoch.weight)} 19) wait until is_quorum(updates) 20) maxtag ← maxtag(cepoch) 21) val ← maxval(cepoch, maxtag) 22) set_tagval(maxtag, val) of Algorithm 9 23) cepoch ← cepoch.succ, set a timeout for cepoch 24) enable the execution of read-write operations upon RB_deliver ⟨CHANGE, e⟩ Example 2. variables 25) change_requests ← change_requests ∪ {e}

changes ← changes ∪ {⟨w, si, ⟨DNT, epoch, sj, s, w, si⟩⟩} epochs are changed rarely to satisfy Assumption 4. When the timeout of epoch s i .cepoch finishes, server s i broadcasts a message ⟨CHANGE, s i .cepoch.succ⟩ to all servers to change epoch s i .cepoch to epoch s i .cepoch.succ. Then, it stores s i .cepoch.succ in a set denoted by s i .change_requests (Lines 9-10 of Algorithm 7). Set change_requests is used to change epochs. How a server can change its current epoch. Each server s i , by receiving any message ⟨CHANGE, epoch⟩, stores epoch in a set denoted by s i .change_requests (line 25 of Algorithm 7). As soon as s i .cepoch.succ ∈ s i .change_requests, server s i starts to change its epoch (line 13). To do so, server s i must take the following steps: (a) Removing the timeout dedicated to epoch epoch if it has not been removed or finished yet (Lines 12-13 of Algorithm 7). (b) Disabling read-write operations (Line 14 of Algorithm 7). (c) Informing Algorithm 6 that some operations related to epoch s i .cepoch.succ are processing to safety Conditions C2 (Line 15 of Algorithm 7). (d) Updating the states (registers) of servers (Lines 16-21 of Algorithm 7).

  if iw -minw ≤ donated_but_not_retaken(s i ) -w and ∃ s j ̸ = s i : lscore(s j ) ≪ lscore(s i )
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	Algorithm 10 The donate operation -server s i
	variables
	1) sn ← 0
	2) changes ← {⟨iw, s i , -⟩}
	3) register[tag[ts, pid], val] ← ⟨⟨0, ⊥⟩, ⊥⟩
	upon timeout for τ donation
	4) 5)	sn ← sn + 1
	6)	d ← ⟨DNT, s i , sn, w, s j ⟩
	7)	changes ← changes ∪ {⟨-w, s i , d⟩}
	8)	restart timeout τ donation
	9)	start timeout τ retake for d
	10)	

send d to s j upon receipt of d = ⟨DNT, s j , s, w, s i ⟩ from s j 11) if lscore(s i ) ≪ lscore(s j ) 12)

  return for ⟨DNT, s i , s, w, s j ⟩ 2) RB_broadcast ⟨RTK, s i , s, w, s j ⟩ upon RB_deliver ⟨RTK, s j , s, w, s k ⟩ 3) achanges ← achanges ∪ {⟨-w, s k , ⟨RTK, s j , s, w, s k ⟩⟩} 4) send ⟨RTN, s, changes, achanges⟩ to s j ← sum {w | ⟨w, s i , * ⟩ ∈ s i .changes} + sum {w | ⟨w, s i , ⟨RTK, * , sn, * , * ⟩⟩ ∈ s * .achanges and ⟨w, s i , ⟨RTK, * , sn, * , * ⟩⟩ / ∈ s i .changes} In function is_quorum, in case the total weight of servers S is greater than tw/2, S is a quorum.
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	Algorithm 11 The retake operation -server s i
	variables
	1) achanges ← ∅
	upon timeout τ upon receipt of ⟨RTN, s, * , * ⟩ from a quorum
	5) register ← read()
	2)	return 0
	3) else
	4)	
	5)	return min(w, maxw)
	function is_quorum(S)
	1) if tw/2 < sum {weight(s i , S) |s i ∈ S}
	2)	return yes
	3) else
	4)	return no

6) changes ← changes ∪ {⟨w, s i , ⟨RTK, s j , s, w, s i ⟩⟩} function donated_but_not_retaken(s i ) 7) return sum {w | ⟨w, s i , ⟨DNT, * , s, * , * ⟩⟩ ∈ changes ⟨w, s i , ⟨RTK, * , s, * , * ⟩⟩ / ∈ changes} s i . function weight(s i , S) 1) if s i / ∈ S w

  3) write(value) ≡ read_write(value)

	function read_write(value)
	ph1	
	4) opCnt ← opCnt + 1
	5) send ⟨READ, opCnt⟩ to all servers
	6) S ← ∅
	7) repeat
	8)	upon receipt of ⟨READACK, reg, opCnt,
		changes, achanges⟩ from s i
	9)	
	14)	value ← maxreg.value
	15) else
	16)	ts ← maxtag.ts + 1
	17)	pid ← p i
	ph2	
	18) send ⟨WRITE, ⟨⟨ts, pid⟩, value⟩, opCnt⟩ to all servers
	19) S ← ∅
	20) repeat
	21)	upon receipt of ⟨WRITEACK, reg, opCnt,
		changes, achanges⟩ from s i
	22)	S ← S ∪ s i .⟨reg, changes, achanges⟩
	23) until is_quorum(S)
	24) return value

S ← S ∪ s i .⟨reg, changes, achanges⟩ 10) until is_quorum(S) 11) maxtag ← max {s i .reg.tag | s i ∈ S} 12) maxreg ← find {s i .reg | s i ∈ S and s i .reg.tag = maxtag} 13) if value =⊥

Quorum latency for a request in a quorum system is the time interval between sending the request (to a quorum, some quorums, or a subset of servers) until receiving the responses from a quorum of servers[START_REF] Oprea | Minimizing response time for quorumsystem protocols over wide-area networks[END_REF][START_REF] Whittaker | Read-write quorum systems made practical[END_REF].

Throughput is computed using quoracle library[START_REF] Whittaker | Read-write quorum systems made practical[END_REF].

A process p performs a communication round during an operation if (1) process p sends a message for the operation to a subset of servers, (2) upon delivery of the message, each server sends its response to process p, and (3) when process p receives a sufficient number of responses from servers, it terminates the communication round[START_REF] Hadjistasi | Consistent distributed memory services: Resilience and efficiency[END_REF].

Within an execution of a communication round, a phase is the set of sends and corresponding matching received responses[START_REF] Hadjistasi | Consistent distributed memory services: Resilience and efficiency[END_REF].

In this manuscript, both clients and servers can execute read operations, so we use 'readerwriter side' instead of 'client-side.'

[START_REF] Etcd | [END_REF] A tag is a tuple ⟨ts, pid⟩, where ts and pid are a timestamp and the identifier of a process, respectively. Tag tag 1 is less than equal to tag tag 2 iff: (tag 1 .ts ≤ tag 2 .ts) or (tag 1 .ts = tag 2 .ts and tag 1 .pid ≤ tag 2 .pid).

As a reminder, each read-write operation executed by client c ∈ C consists of two consecutive phases-ph1 and ph2. In phase ph1, client c sends a READ message to (a quorum of) servers. Then, client c waits until receiving READACK messages from a quorum of servers. After finishing ph1, client c starts ph2 by sending a WRITE message to (a quorum of) servers.

Acknowledgements

List of Tables

2. [START_REF]Docker swarm[END_REF] The symbols and their meanings used throughout the manuscript 26 Algorithm 9 The server side of the read-write protocols -server s i variables 1) register[tag [ts, pid], val] ← ⟨⟨0, ⊥⟩, ⊥⟩ function tag() 2) return register.tag function register() 3) return register function set_register(ts, pid, val) 4) return register ← ⟨⟨ts, pid⟩, val⟩ upon receipt of message ⟨READ, cnt⟩ from process p 5) cepoch ← cepoch() from Algorithm 7 6) weight ← weight(cepoch) 7) send ⟨READACK, ⟨tag, val⟩, cnt, cepoch, weight⟩ to process p upon receipt of message ⟨WRITE, ⟨tag, val⟩, cnt, e⟩ from process p 8) cepoch ← cepoch() from Algorithm 7 9) weight ← weight(cepoch)

if register.tag < tag [START_REF] Brewer | Cap twelve years later: How the" rules" have changed[END_REF] register ← ⟨tag, val⟩ 13) send ⟨WRITEACK, cnt, cepoch, weight⟩ to process p read-write operations are enabled again. Then, we reach to other cases or sub-cases.

2) Client c receives a response from a server with epoch e such that c.cepoch ̸ = e. If c.cepoch < e, client c updates its current. Then, the client restarts the operation (cannot start phase phase2). This case is similar to sub-case 1.2.

3) Operation o is concurrent with uninstalling epoch lepoch so that read-write operations are disabled. This case is similar to sub-case 1.3.

Storage atomicity.

We have to prove that the read-write protocols of our weighted storage implement an atomic read-write register (Definition 5). The sketch of the proof is as follows.

Lemma 7. Each phase of a read-write operation always finishes in the last installed epoch in the system (lepoch).

Proof. We prove the lemma by contradiction. Let R be the register and write(β) be the operation to write the value β in R with an associated tag tag(β). ). This case is similar to Case 2. Theorem 6. The read-write protocols implement an atomic read-write register.

Proof. This proof follows directly from Lemma 10.
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3) The state of s i is ⟨tag α , α⟩, where tag α < tag β , and there is no concurrent write at the time of changing s i 's weight. It is clear that there is no need to synchronize the states because the states of at least a weighted majority of servers are equal to ⟨tag β , β⟩, and by decreasing s i 's weight, nothing can happen for that weighted majority.

4) The state of s i is ⟨tag α , α⟩, where tag α < tag β , and there is at least one concurrent write at the time of changing s i 's weight. Similar to Cases 2 and 3, it is not possible to read a stale value.

5) The state of s i is ⟨tag γ , γ⟩, where tag(β) < tag(γ), and there is no concurrent write at the time of changing s i 's weight. This case can happen if the write ⟨tag γ , γ⟩ has not completed at the time of decreasing s i 's weight. Similar to Case 1, it is not possible to read a stale value.

6) The state of s i is ⟨tag γ , γ⟩, where tag(β) < tag(γ), and there is at least one concurrent write at the time of changing s i 's weight. This case can happen if the write ⟨tag γ , γ⟩ has not completed at the time of decreasing s i 's weight. Similar to Case 1, it is not possible to read a stale value.

None of cases mentioned above violet the safety property. Moreover, since there is no other case, the theorem holds.

Corollary 2. According to Theorem 7, during a donation made from a server s i to another server s j , the safety property of atomic storage is not violated if the weight of server s i decreases by w and the servers' local registers are not updated.

After receiving a DNT message from s j , server s i accepts the donated weight w if the following condition is satisfied: C4) Server s i 's latency score should be significantly less than s j 's latency score, i.e., lscore(s i ) ≪ lscore(s j ).

If the condition mentioned above is met, server s i creates a change for the received donation and adds the change to set changes so that its weight increases by min(maxw -w i , w). Theorem 8 states that it is required to update the state of server s i before doing such a weight increment (Lines 11-13 of Algorithm 10). Theorem 8. Assume that a server s i with tag tag i receives either a DNT message from another server s j or RTN messages from a quorum of servers. Consequently, its weight might be increased. The safety property of atomic storage might be violated if the local register of server s i is not updated before increasing its weight.

Proof of Theorem 8. This theorem is proved by contradiction. For the sake of contradiction, assume that the safety property is not violated if the state of server s i is not synchronized before increasing its weight. Consider the following example that is depicted in Figure 5.2. Let S = {s 1 , s 2 , s 3 , s 4 }, f = 1, and Proof. Without loss of generality, assume that the change increases the weight of a server s i . Since there is only one change, the weights of other servers are not reassigned. Reassigning server s i 's weight is the only factor that causes the constitution of new quorums; since before accomplishing such a weight reassignment, server s i executes a read operation to update its register, this lemma is similar to Lemma 11. Lemma 13. Assume that a read operation r 1 returns ⟨tag α , α⟩ at time t e α . Also, assume that another read operation r 2 started at time t s β > t e α returns ⟨tag β , β⟩. If there is at least one change at time t such that t e α < t < t s β , one of the following cases happen: (1) tag α = tag β and α = β, or (2) tag α ≤ tag β and β was written after α.

Proof. Without loss of generality, assume that there are two changes c 1 and c 2 from time t e α to time t s β . If one of these changes starts after finishing the other one, the lemma holds because the second change executes a read operation.