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Abstract

In this thesis, we focus on the design of an automatic algorithms that provide person-
alized ranking by adapting to the current conditions. To demonstrate the empirical
efficiency of the proposed approaches we investigate their applications for decision
making in recommender systems and energy systems domains.

For the former, we propose novel algorithm called SAROS that take into account
both kinds of feedback for learning over the sequence of interactions. The proposed
approach consists in minimizing pairwise ranking loss over blocks constituted by a
sequence of non-clicked items followed by the clicked one for each user. We also
explore the influence of long memory on the accurateness of predictions. SAROS
shows highly competitive and promising results based on quality metrics and also it
turn out faster in terms of loss convergence than stochastic gradient descent and batch
classical approaches.

Regarding power systems, we propose an algorithm for faulted lines detection
based on focusing of misclassifications in lines close to the true event location. The
proposed idea of taking into account the neighbour lines shows statistically significant
results in comparison with the initial approach based on convolutional neural networks
for faults detection in power grid.
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Chapter 1

General Introduction

The various scientific communities such as computer scientists and statisticians have
been interested for many years in the problems of data analysis. The different currents
from these communities focused on a set of specific issues and created scientific fields
that quickly evolved independently. This is for example the case of Information
Retrieval (IR), Information Extraction, or in the case of statisticians, data science,
etc. In recent years, the field of data analysis has undergone a rapid evolution, with
in particular the development of large-scale collections. The boundaries that had
been drawn between the different traditional domains of data analysis are currently
largely redrawn to create a large domain that we designate here by information access.
New problems appear, to which the various communities try to provide answers by
adapting the existing tools, or by developing new tools. In particular, it has become
important to be able to process huge amounts of data, to provide diversified solutions
to new user demands, and to automate the tools that make it possible to exploit
textual or image information.

More recently, the rapid development of techniques for the acquisition and storage
of digital information has favored the explosion of the quantities of information to be
processed, but also the diversity of their content. Thus, information to be processed
takes forms as diverse as sequences of interactions, textual documents, images, music
videos or even music. User needs have also evolved. Information systems must not
only help them find the information they are looking for, but also advise them or
make new suggestions. This is the main purpose of recommendation systems, which
suggest to their users items likely to interest them: books, films, music albums, etc.

Machine learning offers a range of tools to move in these directions. It is within this
framework that our work is situated, which aims to explore the potential of learning
techniques to meet the needs of users and to detect fault lines in energy systems. In the
case of textual information retrieval, for example, machine learning models are based
on the assumption that it is possible to perform many textual information processing
tasks by fairly crude analyzes of the text. Thus, any learning algorithm works from
an initially known and fixed data representation. It is common to pre-process the
data in order to modify this initial representation. The learning algorithm is then
used on the new representation obtained. Learning about this new representation has
several advantages: gains in algorithmic complexity and memory space, as well as the
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possibility of interpreting or visualizing the data. On the other hand, the influence of
the new representation on the performance in prediction is more difficult to analyze.
In the ideal case, we of course want the new representation to improve the prediction
performance of the learning algorithms. In recommender systems for example, the
new representation of users and items should make it possible to order higher items
that are of the interest of users with respect to the others using the dot product in the
latent learned space. In supervised learning, the new representation of the data should
make it possible to make fewer prediction errors. The choice of the new representation,
and therefore the choice of the method used to modify the initial representation, thus
seems essential in learning.

1.1 Contributions
In this thesis we first propose to learn the palatability of users for items by exploiting
their sequences of interactions using ranking models that take into account both
positive and negative feedback. Most of the state-of-the-art systems consider only the
items in the sequence of interactions for which a user has provided positive feedback.
The incentive of using not only positive feedback is that it difficult to understand
which items a user really likes and determine the characteristics of his or her con-
sumption/action based only on the information about the clicks/purchases/likes/views
etc. We suggest to avoid this problem and to increase the quality of the ranking by
considering also negative interactions of user with the system. The proposed approach
hence constructs a ranking model by taking user’ negative and positive sequence of
interactions.

We tackle this problem from a learning to rank perspective, which involves sorting
instances in relation to a demand. In any case, we are all confronted with task ranking
in our everyday lives. We make decisions all of the time by intuitively constructing a
scale of preferences for ourselves, based on which we choose one instance over another.
For example, we may go to the automobile service for maintenance and then decide,
based on the outcome, whether we would repair everything the service personnel
suggests or only the most urgent problems at the time, given our budget. There are
many different types of ranking systems that we encounter, such as document search
engines or recommender systems.

Companies may offer individualized and relevant suggestions using a properly set
ranking model. Because a consumer spends the least amount of time searching for the
right things and getting what he wants, his loyalty to the platform increases when
he spends the least amount of time searching for the right things and getting what
he wants with their help, the search time for the necessary items is reduced, and the
likelihood of performing related targeted actions increases.

At the same time, development of a personalized large-scale ranking system is a
serious and complex task. Formally, as in any supervised machine learning task, we
need to build a function that fit the data in the best way. The input data for the
training such function are the features of the system. For example, in case of fault
detection problem in power systems, voltage information could be used to detect a
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location of contingencies, if any exists. Considering recommender system task, its
possible to apply the user description or item descriptions to identify relevant items.

The important factors that affect the quality of ranking are how to take into
account the features extracted for training. That is why its crucial to define what
kind of feedback or characteristics of system to use. Another key point for building
relevant ranking model is time. To provide fast predictions for ranking especially for
predicting abnormal/dangerous behavior of the system is critical.

The detection of faults in power networks is the second subject we looked at in
this thesis. In this scenario, we show that by utilizing grid’s topology, significant
characteristics for forecasting faults in its line may be deduced.

In resume the applications we studied in this thesis are

• Recommender systems: We proposed an algorithm that learns user and item
representation over time while taking into account users’ negative and positive
feedback. As a result, the suggested method constructs blocks over the input
sequence of feedbacks, which is composed of a series of negative items followed
by positive items. We proved the convergence of the algorithm in the general
case of non-convex loss functions and showed its efficiency compared to the
state-of-the-art models over six large-scale benchmarks. A hybrid technique was
also presented to speed up the algorithm in practice, including pre-filtering of
input users.

• Power grids: We also considered the problem of faults detection in power grids.
The idea to improve the quality of predictions lies on taking into account the
structure or the topology of the power grid.

1.2 Thesis Structure
This thesis is organized in two parts. In the first part, we present state-of-the-art
frameworks and approaches related to our study. In the second part, we present our
contributions.
The first part of this thesis consists of two chapters.

* In chapter 2, we present the main statistical supervised learning frameworks
which are classification and ranking. For each learning framework, we present
the important concepts and algorithms that will be useful to us in the second
part of the thesis.

* In chapter 3, we present recent approaches in recommender systems.

The second part of this thesis consists of three chapters.

* In chapter 4, we present SAROS which is a sequential ranking algorithm for
recommendation. Based on the assumption that users are shown a set of items
sequentially, and that positive feedback convey relevant information for the
problem in hand, the proposed algorithm updates the weights of a scoring
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function whenever an active user interacts with the system, by clicking on a
shown item. We prove that these sequential updates of the weights converge to
the global minimal of a convex surrogate ranking loss estimated over the total
set of users who interacted with the system.

* In chapter 5, we propose a unified framework for convergence analysis of SAROS,
in the general case of non-convex ranking losses. Furthermore, we study the effect
of non-stationarities and memory in the learnability of a sequential recommender
system that exploits user’s implicit feedback.

* In chapter 6 we present our work for the problem of fault detection in power
grids. The main idea is first to characterize a power grid by exploiting its
topology then to learn a prediction function by minimizing a loss where the
errors that are farther away from the true location are penalized more than
errors that are nearer to the true location. This is done by considering additional
terms in the loss function that take into account the neighbours of the faulted
line. Finally, using the statistical Mann–Whitney U-test we show the efficiency
of the proposed approach.

Finally, in chapter 7 we conclude our work and present directions for future work.

1.3 Corresponding articles
The contributions of this manuscript are based on the following articles, prepared in
scope of the research made during this Ph.D. As all the papers are published with a
large number of co-authors, it should be noticed that the personal contribution to the
papers includes all the experimental parts, except memory estimation in Chapter 5
as well as the partial contribution in the theoretical parts under the supervision of
Yury Maximov, Marianne Clausel and Massih-Reza Amini.

Chapter 4 is based on the paper [4] published at the European Conference
in Machine Learning and Principles and Practice of Knowledge Discovery in
Databases (ECML-PKDD 2019)

In this paper, we proposed a theoretically founded sequential strategy for training
large-scale Recommender Systems (RS) over implicit feedback mainly in the
form of clicks. The proposed approach consists in minimizing pairwise ranking
loss over blocks of consecutive items constituted by a sequence of non-clicked
items followed by a clicked one for each user. Parameter updates are discarded
if for a given user the number of sequential blocks is below or above some given
thresholds estimated over the distribution of the number of blocks in the training
set. This is to prevent from updating the parameters for an abnormally high
number of clicks over some targeted items, mainly due to bots; or very few user
interactions. Both scenarios affect the decision of RS and imply a shift over
the distribution of items that are shown to the users. We provide a proof of
convergence of the algorithm to the minimizer of the ranking loss, in the case
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where the latter is convex. Furthermore, experimental results on five large-scale
collections demonstrate the efficiency of the proposed algorithm concerning
the state-of-the-art approaches, both regarding different ranking measures and
computation time.

Chapter 5, is based on two papers published respectively in Journal of Arti-
ficial Intelligence Research (JAIR 2022) [2] and the European Confernence in
Information Retrieval (ECIR 2022) [1].

The journal paper is a continuation of the paper [4]. Here, additionally to the
gradient-based strategy proposed in SAROS, we present the momentum method
for updating the parameters. Furthermore, we provide a convergence analysis of
both algorithms for the general case, when ranking loss is non-convex, whereas
in [4] we made it just for the convex loss function. The set of benchmarks also
was extended by RecSys’16, that is a fairly large dataset and completely satisfy
the task we are solving. The set of baselines algorithms also was increased by
powerful graph-neural network based approach for impartial comparison of our
algorithm with "fresh" state-of-the-arts.

In [1] we studied the effect of long memory over the user interactions in large-scale
recommender systems. In essence, the paper proposes the idea of filtering the
training data based on the concept of memory. Our finding led to an improvement
of the empirical results, that confirmed our idea about the redundancy of
information in the input data affecting the learning process.

Chapter 6 is supposed to be submitted at IEEE Control Systems Letters soon.

Climate change increases the number of extreme weather events (wind and
snowstorms, heavy rains, wildfires) that compromise power system reliability
and lead to multiple equipment failures. Real-time and accurate detecting of
potential line failures is the first step to mitigating the extreme weather impact,
followed by activating emergency controls. Power balance equations non-linearity,
increased uncertainty in renewable generation, and lack of grid observability
compromise the efficiency of traditional data-driven failure detection methods.
At the same time, modern problem-oblivious machine learning methods based on
neural networks require a large amount of data to detect an accident, especially
in a time-changing environment. In this paper, we propose a Topology-Aware
Line failure Detector (TALD) that leverages grid topology information to reduce
sample and time complexities and improve localization accuracy. Finally, we
illustrate superior empirical performance of our approach compared to state-of-
the-art method over various IEEE test cases.
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Part I

State-of-the-art
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Chapter 2

Supervised Learning

2.1 Introduction
In this chapter, we present the two main frameworks in supervised learning which are
classification and ranking. For each of these two frameworks, we present the important
concepts and the algorithms that will be useful to us for the rest of our work.

In supervised learning, the goal is to learn the probabilistic relation (or joint
distribution) between the examples (mostly in vector form) 𝑥 ∈ 𝒳 and their outputs
𝑦 ∈ 𝒴. This training is done using a training set which contains labeled examples
{(𝑥𝑖, 𝑦𝑖) | 𝑖 = 1, ...,𝑚} that are supposed to be identically and independently dis-
tributed with respect to a joint probability 𝒟𝒳 ,𝒴 . In classification and ranking, the
output set 𝒴 is discrete and they have two distinct goals. In classification, the aim is
to predict the class label of an example, while in ranking the aim is to rank examples
with respect to their outputs.

We note another important framework in supervised learning that is not covered
here and which is regression. The main difference between regression and the two afore-
mentioned frameworks is that the output set is, in the case of regression, continuous
(i.e. 𝒴 ⊂ R).

Currently, a large number of algorithms for supervised learning have been developed
for solving both classification and ranking problems, each of them has its own strengths
and weaknesses. That goes without saying that the most of the recent proposed state-
of-the-art approaches are based on neural networks.

This chapter is composed of three sections. We start by briefly presenting the
supervised learning theory in section 2.2. Following that, we present classification in
section 2.4, and then ranking in section 2.5. Note that this chapter is not an exhaustive
description of the algorithms developed in these two frameworks. We therefore focus
our presentation on the concepts and algorithms that we will need in our contributions
(see part II).
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2.2 A brief presentation of the learning theory
A supervised learning algorithm learns a prediction function from a set of examples,
called training set. Each example is composed of a pair (observation, output). The goal
of learning is to find a prediction function able of predicting the outputs associated
with new examples, i.e. examples that do not belong to the training set.

In practice, a loss function measures the (dis)agreement between prediction and
desired output (also called label). The smaller the error, the better the prediction.
Thus, the learning algorithm chooses the prediction function that minimizes the
average error on the training examples, called empirical risk. This is the Empirical
Risk Minimization (ERM) principle. By minimizing the empirical risk, we hope that
the prediction function will have a low generalization error, i.e it will make few errors
on average on new examples. The underlying assumption is that the new examples
are identical, in one way or another, to the training examples that were used to find
the prediction function. The study of the link between empirical error and error in
generalization is at the heart of the theory of statistical learning [Vapnik, 2000]. The
main result of this study is that learning is a compromise between a low empirical
error and a high complexity of the class of functions where the prediction function is
to be found. This is called the Structural Risk Minimization (SRM) principle. In the
following we will describe in detail these notions.

Definitions and notations We begin by giving some definitions and notations
that we will use in the remainder of this thesis. An example is a pair consisting of an
observation and a desired output. Observations have a numerical representation in a
vector space 𝒳 , typically 𝒳 ⊂ R𝑑 for fixed 𝑑. The response will be called the desired
output, and it is assumed to be part of an output set 𝒴 . A pair (𝑥, 𝑦) will designate
an element of 𝒳 × 𝒴 .

Central Assumption The fundamental assumption of statistical learning theory is
that all examples are independently and identically distributed (i.i.d.) by a fixed but
unknown probability distribution 𝒟 . Thus for any set 𝑆, the examples (𝑥𝑖, 𝑦𝑖) ∈ 𝑆
are generated i.i.d; according to 𝒟. We then say that 𝑆 is a i.i.d. sample following 𝒟.
Informally, this hypothesis defines the notion of representativeness of a training set or
test in relation to the problem: the training examples, as well as future observations
and their desired output, come from a given source.

Loss functions The second fundamental notion in learning is the notion of error,
also called risk or loss. Given a prediction function 𝑓 , the agreement between the
prediction 𝑓(𝑥) and the desired output 𝑦 for a pair (𝑥, 𝑦) is measured using a function
ℓ𝑐 : 𝒴×𝒴 → R+. Intuitively, ℓ𝑐(𝑓(𝑥), 𝑦) measures the similarity between the predicted
and the desired output. It is therefore generally a distance over the set of outputs 𝒴 .
In classification, the error generally considered is the 0/1 loss:

ℓ𝑐(𝑓(𝑥), 𝑦) = 1𝑓(𝑥)̸=𝑦.
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Where 1𝜋 is 1 if the predicate 𝜋 is true and 0 otherwise. In other words the loss of
a prediction error on the label of an example 𝑥 is worth 1.

In bipartite ranking, which consists in assigning a higher score to a relevant
observation 𝑥 (i.e. having a positive output 𝑦 = +1) than to an irrelevant one (i.e.
having a negative output 𝑦 = −1), a classical ranking loss ℓ𝑟 : (𝒴 × 𝒴)2 → R+ is to
count an error when the ordering induced by a scoring function 𝑓 : 𝒳 → R is reversed.
Hence

ℓ𝑟((𝑓(𝑥), 𝑦), (𝑓(𝑥′), 𝑦′) = 1(𝑦−𝑦′)(𝑓(𝑥)−𝑓(𝑥′))≤0.

Generalization error and empirical error We are now able to give the definition
of the error associated with a prediction function 𝑓 on all examples (𝑥, 𝑦) from (𝒳 × 𝒴).
This quantity is called generalization error which in the case of classification can be
written as:

ℒ(𝑓) = E𝒟 [ℓ(𝑓(𝑥), 𝑦)] =

∫︁
𝒳×𝒴

ℓ(𝑓(𝑥), 𝑦)𝑑𝒟(𝑥, 𝑦) (2.1)

The function 𝑓 that is of interest is the one that makes the fewest prediction
errors on new examples, it is therefore the one that minimizes ℒ(𝑓). However, as
the probability distribution 𝒟 is unknown, this error in generalization cannot be
directly estimated. [Vapnik, 2000] has shown that the search for the function 𝑓 can
be done in a consistent way by optimizing the average error of 𝑓 on a training set
𝑆 = ((𝑥𝑖, 𝑦𝑖))1≤𝑖≤𝑚. This quantity is an unbiased estimator of generalization error and
is commonly called the empirical risk of 𝑓 on 𝑆:

ℒ̂𝑚(𝑓, 𝑆) =
1

𝑚

𝑚∑︁
𝑖=1

ℓ(𝑓(𝑥𝑖), 𝑦𝑖) (2.2)

Vapnik’s ERM principle as well as the concepts mentioned above will be explained in
the following paragraphs.

Learning algorithm and ERM principle A learning algorithm takes as input
a training set 𝑆, and returns a prediction function 𝑓𝑆 : 𝒳 → 𝒴 . In formal terms,
a learning algorithm is a function 𝒜 that looks for the function 𝑓𝑆 inside a set of
functions ℱ ; called a class of functions. Intuitively, the ERM algorithm is understood
as follows. If the training examples contained in 𝑆 are sufficiently representative
of the distribution 𝒟, then (under certain conditions to be specified) the empirical
error ℒ̂𝑚(𝑓, 𝑆) is a good estimate of the generalization error ℒ(𝑓). To minimize the
generalization error, we will therefore minimize the empirical error on a given training
set 𝑆. Given an error function ℓ : 𝒴×𝒴 → R+, a training set 𝑆 containing 𝑚 examples
and a class of functions ℱ , the ERM principle returns then the function 𝑓𝑆 verifying:

𝑓𝑆 = arg min
𝑓∈ℱ

1

𝑚

∑︁
(𝑥𝑖,𝑦𝑖)∈𝑆

ℓ(𝑓(𝑥𝑖), 𝑦𝑖) (2.3)
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Generalization and consistency of a learning algorithm Let us underline that
the minimization of the empirical error is not an end in itself, what interests us being
the minimization of generalization error. Thus, the ERM algorithm is of no use to us
if the function learned 𝑓𝑆 has a low empirical error and a high generalization error.
We will therefore expect from the ERM algorithm that it generalizes, ie that the
empirical error of 𝑓𝑆 is a good estimator of its generalization error. If this property
of generalization holds, then we know that if ERM returns the low empirical error
function 𝑓𝑆, then its generalization error will probably be low too.

Let us also insist on the fact that the ERM algorithm works in a known and
fixed space of functions ℱ . The functions considered for the search for the lowest
generalization error are elements of ℱ . Thus, a second naturally desirable property
of the ERM algorithm is that it eventually finds the best function of ℱ (for error in
generalization) provided it has enough examples to learn from. This property is called
the consistency.

For learning to have meaning, the ERM algorithm must therefore verify the two
previous properties. However, studies show that generalization and consistency are
closely linked to the notion of complexity of the class of functions ℱ considered.

Overfitting and complexity of a class of functions Let us first focus on the
generalization property of the ERM algorithm. For certain classes of functions ℱ whose
empirical error of the learned function 𝑓𝑆 is not a good estimator of its generalization
error. We guess that it is better to avoid that the learned function is too complex
compared to the training samples. Indeed it is easy to find a function having a null
empirical loss on a training set, and arbitrarily a high generalization error. This
phenomenon is called overfitting and is illustrated in figure 2-1.
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Figure 2-1: Illustration of the overfitting phenomena on a classification problem where
the aim is to separate between blue and red points. A complex model will fit exactly
the data on the training set (square middle) by having an empirical error equal to 0,
but on other points outside the square (test points) it does a lot of mistake.

So we want the ERM algorithm to learn simple functions. A way to impose
simplicity is to constrain the class of functions ℱ to contain only simple functions (the
notion of simplicity remains to be defined). By doing so, it is possible to show that
for ERM, the properties of generalization and consistency are equivalent: by limiting
the complexity of the class of functions ℱ , we therefore guarantee the generalization
and the consistency of the ERM algorithm.

On the other hand, if ℱ is too simple compared to the distribution 𝒟, then the
learned function will probably not have good performance in generalization. Both
its empirical error and its error in generalization will be high. We thus see that the
choice of the space of hypotheses ℱ is crucial: it must be neither too complex to avoid
the problem of overfitting, nor too simple in order to avoid the problem of underfitting
and to achieve good performance in generalization anyway. This trade-off between
low empirical error and a complex class of functions, also known as the bias-variance
trade-off, is fundamental in machine learning. This tradeoff is illustrated in figure 2-2.
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Figure 2-2: The prediction error is displayed with regard to the complexity of the class
of hypotheses in this illustration of the bias-variance trade-off. Both the generalization
error and the empirical error are large for a class of hypotheses with little complexity.
This is referred to as underfitting. When the complexity of the class of functions grows,
both the empirical and true errors decline until a point at which the generalization
error starts to increase while the empirical error continues to fall. This is referred to
as overfitting. On the class of hypotheses with the lowest generalization error, the
best model may be identified.

VC Dimension We now know that in learning it is crucial to be able to limit the
complexity of the class of functions considered. For this, we must first define a way to
define this complexity. In the case of binary classification, a fundamental measure of
the generalization capacity developed by [Vapnik, 2000] is the Vapnik-Chervonenkis
dimension; or the VC dimension in short.

Let ℱ be a class of functions from 𝒳 into 𝒴 = {−1, 1} and 𝑋 = (𝑥1, . . . , 𝑥𝑚) a
set observations in 𝒳 . Consider

𝒮 = {((𝑥1, 𝑦1), . . . , (𝑥𝑚, 𝑦𝑚)) |(𝑦1, . . . , 𝑦𝑚) ∈ 𝒴𝑚}

in other terms 𝒮 is the set of observations with all possible labelings. The class
of functions ℱ shatters the set of observations 𝑋 if whatever the set of examples
𝑆 ∈ (𝒳 × 𝒴)𝑚, there is a classifier 𝑓 ∈ ℱ able to correctly classify all examples of 𝑆.
The VC dimension of ℱ is the maximum number of points such that the function
class can generate all possible classifications on this set of points. We then say that
the set is shattered by ℱ . The notion of complexity of a class of functions defined by
its dimension VC is therefore linked to this notion of shattering : the more a class of
functions is capable of shattering a large number of points, the more complex it is.
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Rademacher complexity Another classical measure of the complexity of a class of
functions is the Rademacher complexity [Bartlett and Mendelson, 2002]. This measure
estimates how well a class of functions ℱ = {𝑓 : 𝒳 → {−1,+1}} can learn over a
randomly noisy training set. Consider 𝜎 = {𝜎1, . . . , 𝜎𝑚} a set of 𝑚 binary random
variables where each 𝜎𝑖 ∈ 𝜎, called the Rademacher variable, takes a value −1 or +1
with probability 1

2
; i.e. ∀𝑖 ∈ {1, . . . ,𝑚};P(𝜎𝑖 = −1) = P(𝜎𝑖 = −1) = 1

2
. Then the

empirical Rademacher complexity of ℱ over a training set 𝑆 = (𝑥𝑖, 𝑦𝑖)1≤𝑖≤𝑚 of size 𝑚
is defined as:

F̂𝑚(ℱ , 𝑆) =
2

𝑚
E𝜎

[︃
𝑠𝑢𝑝
𝑓∈ℱ

⃒⃒⃒⃒
⃒
𝑚∑︁
𝑖=1

𝜎𝑖𝑓(𝑥𝑖)

⃒⃒⃒⃒
⃒
]︃
,

Hence the higher the Rademacher complexity, the higher the ability of the class
of function ℱ to fit random (Rademacher) noise. The corresponding Rademacher
complexity is then defined as

F𝑚(ℱ) = E𝑆[F̂𝑚(ℱ , 𝑆)].

The main difference between VC diemension and the Rademacher complexity is that
the latter can be easily upper-bounded for some class of functions.

Generalization bounds The study of the relationship between empirical error,
error in generalization and complexity of the class of functions is at the heart of the
statistical learning theory. Most of these works take the form of probabilistic error
bounds providing an upperbound of the generalization error that holds with high
probability with respect to the empirical error, the complexity of the considered class
of an some residual term that controls the precision of the bound; as the following
Rademacher generalization bound.

Theorem 1 (Generalization bound [Bartlett and Mendelson, 2002]) Let 𝒳 ∈
R𝑑 be a vectorial space and 𝒴 = {−1,+1} an output space. Suppose that the pairs of
examples (𝑥, 𝑦) ∈ 𝒳 ×𝒴 are generated i.i.d. with respect to the distribution probability
𝒟. Let ℱ be a class of functions having values in 𝒴 and ℓ : 𝒴 × 𝒴 → [0, 1] a given
instantaneous loss. Then for all 𝛿 ∈]0, 1], we have with probability at least 1− 𝛿 the
following inequality :

∀𝑓 ∈ ℱ ,ℒ(𝑓) ≤ ℒ̂𝑚(𝑓, 𝑆) + F𝑚(ℓ ∘ ℱ) +

√︃
ln 1

𝛿

2𝑚
(2.4)

Using the same steps we can also show that with probability at least 1− 𝛿

ℒ(𝑓) ≤ ℒ̂𝑚(𝑓, 𝑆) + F̂𝑚(ℓ ∘ ℱ , 𝑆) + 3

√︃
ln 2

𝛿

2𝑚
(2.5)

Where ℓ ∘ ℱ = {(𝑥, 𝑦) ↦→ ℓ(𝑓(𝑥), 𝑦) | 𝑓 ∈ ℱ}. It is therefore clear that to have a
low risk, the two terms on the right of these inequalities (2.4) or (2.5) must be low:
the empirical error which depends on the prediction function 𝑓 , and the second term
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which depends on the complexity of the class of functions ℱ . To have a theoretical
guarantee on the error in generalization, it is therefore not only necessary to minimize
the empirical error, it is also necessary to choose a class of functions that is not too
complex (having a high complexity term). But it should not be too simple, otherwise
the empirical error will be high. We therefore find the bias-variance trade-off, which
we have already highlighted previously. We also mention some theoretical results in
multi-class (extreme) classification establishing state-of-the-art bounds [Maximov and
Reshetova, 2016, Yin et al., 2019]. Another line of research proposes reduction from
multi-class to binary classification [Joshi et al., 2017, Rifkin and Klautau, 2004]. We
also mention a few extensive surveys on semi-supervised classification [Amini et al.,
2022, Van Engelen and Hoos, 2020, Maximov et al., 2018] and co-training [Amini
et al., 2022].

Structural risk minimization We previously underlined that the main difficulty in
supervised learning resides in the choice of the class of functions, because it is this choice
that implements the bias-variance trade-off. However, the previous generalization
bound suggests a simple strategy to determine the adequate class of functions. Consider
several classes of candidate functions ℱ1, . . . ,ℱ𝑁 whose Rademacher complexity we
know. For each class, we can find a function by the ERM algorithm, then calculate the
value of the bound on the generalization error. The class of functions which minimizes
this bound obtains the best theoretical guarantee on the error in generalization among
the classes of candidate functions. It is therefore naturally this one that we want to
select. This is exactly the principle of structural risk minimization (SRM) [Vapnik,
2000].

The two principles of empirical risk minimization and risk minimization structural
risk are at the origin of a large number of learning algorithms, and can explain the
algorithms that existed before the establishment of this theory. This is particularly
the case of support vector machines (SVM), whose empirical success could be justified
after the fact thanks to the SRM principle.

2.3 First-order methods
Minimization problems related to the ERM or SRM principles are solved using
optimization techniques, whose development is sometimes strongly tied to those of
the Machine Learning field. Without doubt, the Gradient Descent (GD) algorithm
is the most widely used of the several optimization techniques employed in Machine
Learning. GD is a first-order optimisation procedure that iteratively finds the (local)
minimum of a convex differentiable surrogate function of the (regularized) 0/1 loss.

The algorithm is based on the observation that if the loss function ℒ̂ to be minimized
is defined and differentiable in a neighborhood of a weight vector 𝑤(𝑡) then the loss
decreases if one goes from the actual value of the loss ℒ̂(𝑤(𝑡)), one step 𝜂𝑡 ∈ R+ -
called the learning rate, following a descente direction p𝑡 defined as p⊤

𝑡 ∇ℒ̂(𝑤(𝑡)) ≤ 0.
It then comes that for a small learning rate 𝜂𝑡 if we define the new weight vector
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𝑤(𝑡+1) as
𝑤(𝑡+1) = 𝑤(𝑡) + 𝜂𝑡p𝑡, (2.6)

then
ℒ̂(𝑤(𝑡+1)) ≤ ℒ̂(𝑤(𝑡)). (2.7)

It is obvious that if 𝜂𝑡 is too small then the decreasing condition (2.7) does not
guarantee to reach a local minima, or the true minimum, of ℒ̂. At each iteration of
GD, the following sufficient conditions, known as Wolfe conditions [Wolfe, 1969], have
been proposed in order to ensure the convergence of the algorithm.

• The decreasing of ℒ̂ should not be too small with respect to the length of the
jumps. Hence for a given 𝛼 ∈ (0, 1),

∀𝑡 ∈ N*, ℒ̂(𝑤(𝑡) + 𝜂𝑡p𝑡) 6 ℒ̂(𝑤(𝑡)) + 𝛼𝜂𝑡p
⊤
𝑡 ∇ℒ̂(𝑤(𝑡)) (2.8)

This is known as the Armijo condition.

• There should be a change in the curvature of the loss function after each update.
Or equivalently the slope has decreased sufficiently; i.e. ∃𝛽 ∈ (𝛼, 1) such that

∀𝑡 ∈ N*,p⊤
𝑡 ∇ℒ̂(𝑤(𝑡) + 𝜂𝑡p𝑡) > 𝛽p⊤

𝑡 ∇ℒ̂(𝑤(𝑡)) (2.9)

This is known as the curvature condition.

These conditions are shown in Figure 2-3 which for a given weight 𝑤(𝑡) and a
descent direction p𝑡 depicts the loss ℒ̂(𝑤(𝑡) + 𝜂p𝑡) with respect to the learning rate 𝜂𝑡.
At 𝑤(𝑡), the objective is to find a learning rate 𝜂𝑡 which guarantees that the decreasing
of ℒ̂ is not too small with respect to the length of the jumps of the update; and
that the slope has been reduced sufficiently. At ℒ̂(𝑤(𝑡)) (i.e. 𝜂𝑡 = 0) the equation
of the tangent to the loss with respect to 𝜂 is 𝜂 ↦→ ℒ̂(𝑤(𝑡)) + 𝜂p⊤

𝑡 ∇ℒ̂(𝑤(𝑡)). For
𝛼 ∈ (0, 1) , the line 𝜂 ↦→ ℒ̂(𝑤(𝑡)) + 𝛼𝜂p⊤

𝑡 ∇ℒ̂(𝑤(𝑡)) has a slope smaller in absolute
value than the one of the tangent; hence providing an upper bound on the value of
admissible learning rate. The Armijo condition stipulates that the value of 𝜂 should
be lower than this upper-bound. For a given 𝛽 ∈ (𝛼, 1); the slope 𝛽p⊤

𝑡 ∇ℒ̂(𝑤(𝑡)) will
be between p⊤

𝑡 ∇ℒ̂(𝑤(𝑡)) and 𝛼p⊤
𝑡 ∇ℒ̂(𝑤(𝑡)) in absolute value. The curvature condition

then ensures that the curvature of the loss on the new weight vector should be smaller
than 𝛽p⊤

𝑡 ∇ℒ̂(𝑤(𝑡)). In practice, a line search method is used to determine the learning
rate at each iteration. It entails starting with a large value of the learning rate 𝜂0 and
then shrinking it iteratively by multiplying the current value with a factor 1 > 𝑎 > 0
(i.e., backtracking) until the Armijo condition is met.

In the case where the loss function is convex and differentiable and that its gradient
is Lipschitz continuous with parameter 𝐿 > 0 defined as:

Definition 1 The gradient of ℒ̂ is Lipschitz continuous with parameter 𝐿 > 0 if

∀𝑤,𝑤′; ‖∇ℒ̂(𝑤)−∇ℒ̂(𝑤′)‖2 ≤ 𝐿‖𝑤 −𝑤′‖2 (2.10)
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Figure 2-3: Depiction of Wolfe conditions and the backtracking line-search strategy.

Then the gradient descent algorithm is ensured to converge to the local minima of ℒ̂
as stated in the following theorem.

Theorem 2 ([Zoutendijk, 1966]) Let ℒ̂ be a differentiable objective function with
a Lipschtiz continuous gradient and lower bounded. Suppose that the GD algorithm
generates (𝑤(𝑡))𝑡∈N defined by ∀𝑡 ∈ N,𝑤(𝑡+1) = 𝑤(𝑡) + 𝜂𝑡p𝑡; where p𝑡 is a descent
direction of ℒ̂ and 𝜂𝑡 a learning rate verifying both Wolfe conditions (2.8) and (2.9).
By considering the angle 𝜃𝑡 between the descent direction p𝑡 and the direction of the
gradient cos(𝜃𝑡) =

p⊤
𝑡 ∇ℒ̂(𝑤(𝑡))

||∇ℒ̂(𝑤(𝑡))||×||p𝑡||
; the following series is convergent∑︁
𝑡

cos2(𝜃𝑡)||∇ℒ̂(𝑤(𝑡))||2

Various improvements to the gradient approach have recently been developed. The
group of accelerated gradient methods is made up of these approaches, which the most
popular ones are:

• Classical Momentum [Polyak, 1964]

Instead of using the true gradient this technique accumulates the gradients with
the decaying parameter 𝜇 into momentum vector:

𝑔𝑡 = ∇ℒ̂(𝑤(𝑡−1)) (2.11)

𝑚𝑡 = 𝜇𝑚𝑡−1 + 𝑔𝑡 (2.12)

𝑤(𝑡) = 𝑤(𝑡−1) − 𝜂𝑚𝑡 (2.13)

27



• Nesterov’s accelerated gradient [Nesterov, 1983]

By plugging (2.12) into (2.13) we get that𝑤(𝑡) = 𝑤(𝑡−1)−𝜂𝜇𝑚𝑡−1−𝜂𝑔𝑡. Nesterov
momentum suggests the computation of the gradient immediately at the point
𝑤(𝑡−1) − 𝜂𝜇𝑚𝑡−1.

𝑔𝑡 = ∇ℒ̂(𝑤(𝑡−1) − 𝜂𝜇𝑚𝑡−1)

𝑚𝑡 = 𝜇𝑚𝑡−1 + 𝑔𝑡

𝑤(𝑡) = 𝑤(𝑡−1) − 𝜂𝑚𝑡 (2.14)

• AdaGrad [Duchi et al., 2011]

Another modified gradient descent algorithm with per-parameter learning rate
is adaptive gradient algorithm (AdaGrad). Informally, this strategy raises the
learning rate for sparser parameters while decreasing the rate for less sparse ones.
In situations when data is sparse and sparse parameters are more useful, like in
Natural language processing and image recognition applications, this technique
often outperforms ordinary gradient descent in terms of convergence.

𝑔𝑡 = ∇ℒ̂(𝑤(𝑡−1))

𝑤(𝑡) = 𝑤(𝑡−1) − 𝜂

‖𝑔𝑡‖
𝑔𝑡 (2.15)

• RMSProp [Hinton, 2020]

Root Mean Square Propagation (RMSProp) is another method in which the
learning rate is adjusted for each parameter. The aim is to divide a weight’s
learning rate by a running average of recent gradient magnitudes for that weight.
As a result, the running average is first calculated in terms of the square root of
the means.

𝑔𝑡 = ∇ℒ̂(𝑤(𝑡−1))

𝑛𝑡 = 𝜈𝑛𝑡−1 + (1− 𝜈)𝑔⊤𝑡 𝑔𝑡

where, 𝜈 is the forgetting factor. And the parameters are updated as,

𝑤(𝑡) = 𝑤(𝑡−1) − 𝜂
√
𝑛𝑡 + 𝜖

𝑔𝑡 (2.16)

Here 𝜖 is a small scalar in the order of 10−8 used to prevent division by 0.

• Adam [Kingma and Ba, 2015]

The RMSProp optimizer has been updated with Adam (for Adaptive Moment
Estimation). Running averages of both the gradients and the second moments
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of the gradients are used in this optimization process:

𝑔𝑡 = ∇ℒ̂(𝑤(𝑡−1))

𝑚𝑡 = 𝜇𝑚𝑡−1 + (1− 𝜇)𝑔𝑡

𝑚̂𝑡 =
𝑚𝑡

1− 𝜇
𝑛𝑡 = 𝜈𝑛𝑡−1 + (1− 𝜈)𝑔⊤𝑡 𝑔𝑡

𝑛̂𝑡 =
𝑛𝑡

1− 𝜈

𝑤(𝑡) = 𝑤(𝑡−1) − 𝜂√
𝑛̂𝑡 + 𝜖

𝑚̂𝑡 (2.17)

where 𝜇 and 𝜈 are the forgetting factors for gradients and second moments of
gradients, respectively.

2.4 Classification
In this section, we present SVMs in the case of binary classification and neural networks.
Both classifiers are undoubtedly the most popular classification algorithms in the
field of Machine Learning, mainly due to the theoretical justifications for SVMs, and,
their wide applications in different problems for neural networks. In Section 2.4.1,
we begin by presenting the notions of hyperplane separator of a set of examples and
kernels, then the principle of support vector machines [Vapnik, 2000], which allows
one to find a separating hyperplane thanks to a method which can be interpreted
as a minimization of the structural risk presented in the previous section. We then
describe neural networks in Section 2.4.2.

2.4.1 Support Vector machines

Consider an input space 𝒳 ⊂ R𝑑; a linear classifier is a function from R𝑑 into {−1, 1}
of the form 𝑓(𝑥) = sgn(⟨𝑤,𝑥⟩+𝑤0) with 𝑤 ∈ R𝑑 and 𝑤0 ∈ R, and sgn(𝑡) = 1 if 𝑡 > 0,
−1 otherwise. We notice that the hyperplane ℎ(𝑥) = ⟨𝑤,𝑥⟩+ 𝑤0 divides 𝒳 into two
subspaces which are the sets {𝑥 ∈ 𝒳 |⟨𝑤,𝑥⟩+𝑤0 < 0} and {𝑥 ∈ 𝒳 |⟨𝑤,𝑥⟩+𝑤0 > 0}.

Let us now consider a classifier ℎ(𝑥) = ⟨𝑤,𝑥⟩+ 𝑤0 that correctly classifies all the
examples of 𝑆. In this case, there exists then a scalar such that the examples (𝑥𝑖, 𝑦𝑖)
closest to the hyperplane satisfy |⟨𝑤,𝑥⟩+ 𝑤0| =1. Now consider two observations 𝑥1

and 𝑥2 of different classes, such that ⟨𝑤,𝑥1⟩+𝑤0 = +1 and ⟨𝑤,𝑥2⟩+𝑤0 = −1. The
margin is defined as the distance between these two points, measured perpendicular
to the hyperplane. In other words, the margin is ⟨ 𝑤|𝑤0| , (𝑥1 − 𝑥2)⟩ = 2

‖𝑤‖ . This notion
of margin is illustrated in the figure 2-4.

Hard margin SVM We have seen previously that provided that the examples
closest to the hyperplane satisfy |⟨𝑤,𝑥⟩ + 𝑤0| = 1, then the margin is related to
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Figure 2-4: Illustration of the linear hyperplane serparator (in bold) perfectly separat-
ing the examples of the positive class (circle) and the negative class (square) as well
as the margin.

the norm 𝑤 by the relation 𝛾 = 2
‖𝑤‖ . This result therefore suggests minimizing the

norm of 𝑤 in order to determine a maximum margin hyperplane. Noting that the
constraints |⟨𝑤,𝑥⟩+𝑤0| = 1 can be written 𝑦(⟨𝑤,𝑥⟩+𝑤0) = 1 for the examples close
to the hyperplane, this amounts to solving the following optimization problem:

min
𝑤∈R𝑑,𝑤0∈R

1

2
‖𝑤‖2

s.c. ∀𝑖, 𝑦𝑖(⟨𝑤,𝑥⟩+ 𝑤0) ≥ 1

We recognize a quadratic optimization problem with linear constraints. In general
we will not try to solve this problem directly, but rather we will be interested in the
dual problem [Ferris and Munson, 2002]:

max
(𝛼1,...,𝛼𝑚)∈R𝑚

𝑚∑︁
𝑖=1

𝛼𝑖 −
1

2

𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑦𝑖𝑦𝑗𝛼𝑖𝛼𝑗𝑥
⊤
𝑖 𝑥𝑗

s.c.
𝑚∑︁
𝑖=1

𝑦𝑖𝛼𝑖 = 0

∀𝑖, 𝛼𝑖 ≥ 0

This formulation has the advantage of expressing the vector 𝑏 solution of the
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optimization problem initial in the following form:

𝑤 =
𝑚∑︁
𝑖=1

𝑦𝑖𝛼𝑖𝑥𝑖

where (𝛼1, ..., 𝛼𝑚) is an optimal solution of the dual problem. Moreover, it can be
shown that 𝛼𝑖 > 0 if and only if 𝑦𝑖(⟨𝑤,𝑥⟩+ 𝑤0) = 1. Thus, the normal vector of the
optimal hyperplane can be decomposed as a linear combination of the input vectors
which are at the minimum distance from this hyperplane. These input vectors are
called the support vectors. Thus, the maximum-margin hyperplane has the property
of only depending on a subset of examples. These examples lie exactly on the margin
and are called the support vectors. The other examples could be anywhere outside
the margin without changing the solution. We would therefore find the same solution
if the training set 𝑆 contained only these support vectors.

Theoretical justification Support vector machines have been used successfully in
many fields, but it is not immediately clear how good they perform from a theoretical
point of view. [Vapnik, 2000] provides an explanation by linking the notion of
separation margin to that of VC dimension. In particular, he proves the following
theorem:

Theorem 3 ([Vapnik, 2000]) Let 𝑤 ∈ R𝑑 be such that ‖𝑤‖ = 1, 𝑐𝑤,𝑤0,𝛾 the clas-
sifier defined by the following relation: 𝑐𝑤,𝑤0,𝛾(𝑥) = 1 if ⟨𝑤,𝑥⟩ + 𝑤0 ≥ 𝛾, and
𝑐𝑤,𝑤0,𝛾(𝑥) = −1 if ⟨𝑤,𝑥⟩+ 𝑤0 ≤ −𝛾. This classifier is called a 𝛾-margined separator
hyperplane. In cases where 𝑥 does not match any of the two conditions, we consider it
to be ignored. Then, if the space of observations 𝒳 is included in a ball of radius 𝐵,
the dimension VC of the set of margin separator hyperplanes 𝛾 over 𝒳 is less than
⌈𝑅2/𝛾2⌉+ 1, where ⌈𝑡⌉ is the upper integer part of 𝑡.

The separation margin is therefore related to the VC dimension: the more one
separating hyperplane achieves a wide separation margin on a training set 𝑆, the
more it can be considered as part of a set of low-dimensional VC functions. However,
we have seen that the principle of structural risk minimization suggests favoring
low-dimensional VC binary classifiers. Thus by maximizing the margin, support vector
machines minimize the VC dimension and can therefore be seen as implementations
of the structural risk minimization principle.

Soft Margin SVM The hard-margin SVM presented in the previous section can
only apply when 𝑆 is linearly separable. In practice this is rarely the case, in particular
because of noise problems (𝑆 contains examples whose observed class is not the true
class), or quite simply because the problem is not linearly separable. An example of a
nonlinearly separable classification problem is given in figure 2-5. To be able to use
SVM on such data, it must therefore be made capable of accepting the misclassification
of certain examples.
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Figure 2-5: Illustration of a non-linearly separable classification problem. Support
vectors are circled.

A simple way to allow classification errors is to relax the constraints on the margin
by introducing slack variables. To an example of 𝑆 is associated a slack variable,
which allows us to associate a cost each time the corresponding example violates the
constraint on the margin. The new SVM thus defined is then said to soft margin. The
new objective of the soft-margin SVM is therefore twofold: to maximize the margin
and to minimize the number of examples violating the constraint on the margin. In
other words, we will minimize the norm of 𝑤 and the sum of the costs associated with
the spring variables. The new optimization problem is written:

min
𝑤∈R𝑑,𝑤0∈R

1

2
‖𝑤‖2 + 𝐶

𝑚∑︁
𝑖=1

𝜉𝑖

u.c. ∀𝑖, 𝑦𝑖(𝑤⊤𝑥𝑖 + 𝑤0) ≥ 1− 𝜉𝑖
∀𝑖, 𝜉𝑖 ≥ 0

where the 𝜉𝑖 are the slack variables, 𝐶 > 0 a real to choose from. When we have
𝜉𝑖 > 0, then the corresponding constraint is violated. The cost associated with this
violation is worth 𝐶𝜉𝑖, which we can compensate by decreasing the norm of 𝑤. If 𝐶
is large, then the slightest constraint violation will have a large cost, and the solution
will therefore favor hyperplanes with a small margin but with few margin constraint
violations. Conversely, a low 𝐶 will allow more classification errors and will favor
large-margin hyperplanes. We thus see that 𝐶 allows to parameterize the compromise
between the maximization of the margin and the violations of the constraints on the
margin. In practice, the 𝐶 coefficient will be chosen by standard model selection
methods such as cross-validation.
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Hinge loss and regularization We will now interpret soft-margin SVMs from the
perspective of regularization. An optimization problem is said to be regularized when
the optimized function is the sum of two errors: the cost function that really interests
us (the classification error for example), and a regularization term. This regularization
term is used either to stabilize the solution (i.e. to ensure that it does not vary too
much), or to incorporate a priori knowledge of the problem (i.e. to introduce a bias).
Many learning algorithms can be interpreted as regularized problems. We will see
that this is particularly the case for soft-margin SVMs.

For this we define the loss function ℓ(𝑓(𝑥), 𝑦) = max(0, 1− 𝑦ℎ(𝑥)), called Hinge
loss. This function is shown in figure 2-6.

Figure 2-6: 0/1 loss (blue), Hinge loss (green), and logistic loss (red)

We can now rewrite the previous optimization problem without the constraints:

min
𝑤∈R𝑑,𝑤0∈R

1

2
‖𝑤‖2 + 𝐶

𝑚∑︁
𝑖=1

max
(︀
0, 1− 𝑦𝑖(𝑤⊤𝑥𝑖 + 𝑤0)

)︀
If we divide the loss function by the constant 𝐶, we recognize a regularization

term and the empirical error:

ℒ̂(𝑤, 𝑤0) =
𝑚∑︁
𝑖=1

max
(︀
0, 1− 𝑦𝑖(𝑤⊤𝑥𝑖 + 𝑤0)

)︀
⏟  ⏞  

empirical error

+
1

2𝐶
‖𝑤‖2⏟  ⏞  

regularization term

Thus the soft-margin SVM can be seen as a regularized learning problem, where the
regularization function introduces a bias towards large-margin hyperplanes. Note that
with this regularized learning interpretation, the empirical error is not the 0/1 error
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that initially interested us but the surrogate Hinge loss. In [Bartlett and Mendelson,
2002] it is shown that the minimizer of any surrogate loss of the 0/1 loss, in which
the associated instantaneous loss ℓ : (𝑦, ℎ(𝑥)) ↦→ ℓ(𝑦, ℎ(𝑥)) is continuous and passes
through 1 when 𝑦ℎ(𝑥) = 0, is likewise the minimizer of the 0/1 classification error.

2.4.2 Neural network approaches

Artificial neural networks, are perhaps the most popular learning systems nowadays
whose design were originally schematically inspired by the functioning of biological
neurons discovered by [Ramon y Cajal, 1894].

Dendrites are the connections through which the neuron receives impulses, whereas
an axon is the link through which the neuron transmits the impulse. Each neuron has
one axon. Dendrites and axons have a complicated branching structure. A synapse is
a connection between the axon and the dendrite. A neuron’s primary purpose is to
carry information from the dendrites to the axon. Distinct dendritic signals, on the
other hand, can have different effects on the signal in the axon. If the overall impulse
surpasses a specific threshold, the neuron will send out a signal. The neuron will not
respond to the impulse if this happens, and no signal will be sent to the axon.

From this discovery, the concept of artificial neural networks was proposed in
[McCulloch and Pitts, 1943], where the two researchers presented their theory that
the activation of neurons is the basic unit of brain activity and described the formal
neuron which mimics the functioning of a biological neuron as shown in Figure 2-7).

For a given input 𝑥 = (𝑥1, . . . , 𝑥𝑑)
⊤ ∈ R𝑑, each characteristic 𝑥𝑗 is supposed to be a

real valued signal which arrives (from a dentrite) to a computing unit (i.e. the nucleus).
This unit estimates a weighted sum of the all characteristics:

∑︀𝑑
𝑗=1𝑤𝑗𝑥𝑗 and compares

the sum to a bias 𝑤0. The output of the neuron is then computed using an activation
function (see below) over a linear combination of the input: 𝑎 : 𝑥 ↦→ 𝑎(𝑤⊤𝑥+ 𝑤0)

[Rosenblatt, 1957] invented Perceptron which is the oldest machine learning algo-
rithm, designed to perform complex pattern recognition tasks. It is this algorithm
that will later allow machines to learn to recognize objects in images. The activation
function of Perceptron is the identity function and the weights of the model are learned
per example at each time that the model makes an error on the class of an example in
input. The weights are updated using a stochastic version of the gradient algorithm
by minimising the distance of the misclassified example to the current hyperplane.

At that time, neural networks were limited by technical resources. For example,
computers were not powerful enough to process the data needed to run neural networks.
This is the reason why research in the field of Neural Networks has remained dormant
for many years. It took until the early 2010s, with the rise of Big Data and massively
parallel processing, for Data Scientists to have the data and computing power needed
to run complex neural networks. In 2012, during a competition organized by ImageNet,
a Neural Network managed for the first time to surpass a human in image recognition.
This is why this technology is again at the heart of the concerns of scientists. Nowadays,
artificial neural networks are constantly improving and evolving day by day.
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Figure 2-7: Structure of a biological (top) and a formal (down) neuron.

Activation functions The term activation function comes from the biological
equivalent "activation potential", the stimulation threshold which, once reached,
triggers a neuron response. The activation function is often a nonlinear function. An
example of an activation function is the Heaviside function, which always returns 1 if
the input signal is positive, or 0 if it is negative.

The main activation functions are the following.

• ReLU: ReLU has the following formula 𝑎(𝑧) = 𝑚𝑎𝑥(0, 𝑧) and implements a
simple threshold transition at zero point. The use of ReLU significantly increases
the speed of training, but ReLU has one significant drawback - neurons could
"die" during the training. It means that they could come into a state where the
output will always be 0.

• Leaky ReLU:Leaky ReLU is one of the attempts to solve the problem of dead
neurons in ReLU described above. The usual ReLU gives a zero on the interval
𝑧 < 0, while Leaky ReLU (LReLU) has a small negative value on this interval.
That is, the function for LReLU has the form 𝑎(𝑧) = 𝛽𝑧 for 𝑧 < 0 and 𝑎(𝑧) = 𝑧
for 𝑧 ≥ 0, where 𝛽 is a small constant.

• Randomized ReLU: For a randomized ReLU (RReLU), the angular coefficient
on the negative interval is randomly generated from the specified interval during
training, and remains constant during testing. It also is noticed [Xu et al.,
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2015] that RReLU allowed to reduce the overfitting due to their element of
randomness.

These activation functions are shown below.

Figure 2-8: ReLU based activation functions; the figure is taken from https://www.
programmersought.com.

Other classicical activation function with smooth derivatives are:

• Sigmoid: The sigmoid is expressed by the following formula 𝜎(𝑧) = 1
(1+𝑒−𝑧)

.
This function takes an arbitrary real number at the input, and gives a real
number in the range from 0 to 1 at the output. In particular, large negative
numbers turn into zero, and large positive ones turn into one.

• Softmax: This is a generalization of the sigmoid function for the multidimen-
sional case. The function 𝜎(𝑧𝑖) = 𝑒𝑧𝑖∑︀𝐾

𝑘=1 𝑒
𝑧𝑘

converts a real number 𝑧𝑖 (element of
the vector 𝑧 with dimension 𝐾) into a real number from the interval [0, 1] and
the resulting sum of the coordinates of the vector 𝑧 is 1.

• Hyperbolic Tangent: The hyperbolic tangent 𝑡𝑎𝑛ℎ(𝑧) takes an arbitrary real
number at the input, and gives a real number in the range from -1 to 1 at the
output.

Multi-Layer Perceptron The multilayer perceptron (MLP) is a sort of artificial
neural network composed of many layers in which information flows directly from the
input layer to the output layer. Each layer has a different amount of neurons, with the
neurons in the last layer (known as "output") serving as the entire system’s outputs.
Layers between the input and the output layers are called hidden layers.

The two types of neural networks most studied in the literature are recurrent
networks, where there are loops between the different hidden layers and also between
units of these layers, and forward propagation networks (or feed forward) without a
loop, which we consider in the following. They are usually organized into layers of
neural units each similar to the one described previously.

In feed forward neural network, the information is propagated as follows: Given
an input example 𝑥 and its desired output 𝑦. The signal is propagated forward in the
layers of the neural network:
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• 𝑥
(𝑛−1)
𝑘 ↦→ 𝑥

(𝑛)
𝑗 , where 𝑛 is the layer number.

• Forward propagation is calculated using the activation function 𝑎, the aggregation
function ℎ (often a dot product between the weights and the inputs of the neuron)
and synaptic weights 𝑤𝑗𝑘 between neuron 𝑥(𝑛−1)

𝑘 and the neuron 𝑥(𝑛)𝑗 .

𝑥
(𝑛)
𝑗 = 𝑎(𝑛)(ℎ

(𝑛)
𝑗 ) = 𝑎(𝑛)

(︃∑︁
𝑘

𝑤
(𝑛)
𝑗𝑘 𝑥

(𝑛−1)
𝑘 + 𝑤𝑗0

)︃

When forward propagation is complete, the output is 𝑦. We then calculate the
error between the output given by the network 𝑦 and the desired output vector 𝑦. :

Loss functions The loss function can be calculated in a variety of ways, depending
on the task formulation. For example, if the task is regression, the most relevant losses
are Mean squared error (MSE) or Mean absolute error (MAE):

ℓ𝑀𝑆𝐸(𝑦,𝑦) =
𝐾∑︁
𝑘=1

(𝑦𝑘 − 𝑦𝑘)2

ℓ𝑀𝐴𝐸(𝑦,𝑦) =
𝐾∑︁
𝑘=1

|𝑦𝑘 − 𝑦𝑘|

If the task is a classification task, the most popular loss is the cross-entropy error

ℓ𝐶𝐸(𝑦,𝑦) = −
𝐾∑︁
𝑘=1

𝑦𝑘 log(𝑦𝑘)

where 𝑦𝑘 ∈ {0, 1} and 𝑦𝑘 = 1

1+𝑒
−ℎ

(𝑁)
𝑘

is the predicted output using a sigmoid activation.

Back-propagation of the gradient The weights of a neural network are updated
by minimizing the loss layer per layer, from the output to the input layer, throughout
training. This sequential update of the weights is called the back-propagation of the
gradient.

The gradient descent algorithm is in general used in this update.

𝑤
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𝜕𝑤
(𝑛)
𝑗𝑘

The chain rule is used to calculate the derivative of a loss with regard to a weight:

𝜕ℓ(𝑦,𝑦)

𝜕𝑤
(𝑛)
𝑗𝑘

=
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(𝑛)
𝑗

𝜕ℎ
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𝑗𝑘

37



2.5 Ranking
The task of classification described above is arguably one of the most studied task in
the literature. However, there are numerous situations where ranking the observations
rather than assigning them to a class is more appropriate. The most typical example
in information retrieval is search engines such, which give the user with a list of
documents sorted by relevance, rather than a collection of papers all deemed relevant
and presented in no particular order. Another example is recommendation systems
that we will present in depth in the next chapter. The goal of these systems is to
propose items that are likely to interest a user. Sorting items in order of relevance
seems more acceptable from a recommendation standpoint than predicting a score or
class for each item.

The task of ordering a set of objects with respect to a fixed information request is
called instance ranking (or ranking in short). More precisely, a ranking problem is
defined by an ordering relation on the space of instances 𝒳 , allowing to order 𝑥1 and
𝑥2 for any pair of instances (𝑥1, 𝑥2) in 𝒳 .

A simpler and more natural way to model the order relation is to use a function
𝑓 : 𝒳 → R which assigns an actual score to any example 𝑥 ∈ 𝒳 . The order between
the instances is then deduced from the comparison of the values of 𝑓 . So 𝑓(𝑥1) > 𝑓(𝑥2)
means that 𝑥1 is ranked above 𝑥2.

By modeling the order relation in this way, we formulate the ranking of examples
as the learning of a score function, as in classification. On the other hand, let us
underline an important difference: in classification, the learned functions directly give
the expected predictions. In ranking, learned functions return scores whose absolute
values are not important per se. Indeed, these values are only used to compare the
examples with each other. It is therefore the relative values of the scores that are
important.

2.5.1 Ordering induced by scores

Given a set of examples 𝑆 = (𝑥1, ..., 𝑥𝑚), we assume that the desired ordering is
induced by scores 𝑌 = (𝑦1, ..., 𝑦𝑚). These scores induce a strict partial order on the
set of inputs 𝑆: 𝑥𝑖 is ordered above 𝑥𝑗 if 𝑦𝑖 > 𝑦𝑗 . This is also the case in collaborative
filtering (CF), where each user can attribute to each item a value expressing his or
her preferences on a rating scale: 𝑦 = 5 if (s)he liked it a lot, and, 𝑦 = 1 the reverse.
In this case, items with different scores can be ordered relative to each other.

We assume that a part of the examples (𝑥𝑖, 𝑦𝑖) is known and available for training.
The purpose of instance ordering is to learn a score function which must retrieve
a desired order from the training examples. We therefore find a task similar to
classification, where the goal is to learn a function from a few examples in order to
find the outputs for new observations. On the other hand, our goal is no longer to
predict the scores of the unobserved examples, but to predict the order between the
instances. To take this difference into account, we must adapt the notions of learning
error and error in generalization to the framework of ranking.
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2.5.2 Ranking error on crucial pairs

A ranking loss is a function of the form ℒ𝑟 : R𝑚 × R𝑚 → R+. It takes two vectors of
scores as input: the vector of desired scores, and the vector of predicted scores. It
returns a positive real which measures the error between the vector of desired scores
and the vector of predictions. Note the difference with the error functions used in
classification, which compares the value of a desired output with its prediction. In
ranking, the value of an output does not matter, it is its relative value in relation to
the other outputs that matters. This is why the error functions consider score vectors
and not individual scores.

We call crucial pairs the pairs of observations (𝑥𝑖, 𝑥𝑗) such that 𝑦𝑖 > 𝑦𝑗 . We expect
a prediction function 𝑓 to make few prediction errors on crucial pairs, ie it satisfies
𝑓(𝑥𝑖) > 𝑓(𝑥𝑗). This leads us to define the ranking loss on crucial pairs :

ℒ𝑟(𝑓(𝑠), 𝑌 ) =
1∑︀

𝑖,𝑗 1𝑦𝑖>𝑦𝑗

∑︁
𝑦𝑖>𝑦𝑗

1𝑓(𝑥𝑖)≤𝑓(𝑥𝑗) (2.18)

where 𝑓(𝑠) = (𝑓(𝑥1), ..., 𝑓(𝑥𝑚)) and 𝑌 = (𝑦1, ..., 𝑦𝑚). The denominator is simply
the number of crucial pairs that can be generated from the score vector 𝑌 . At the
numerator, we recognize the number of crucial pairs on which the order predicted by
𝑓 is not the desired order. The ranking loss on the crucial pairs, which serves as our
empirical error, is therefore simply the proportion of crucial pairs incorrectly predicted
by 𝑓 .

2.5.3 Other ranking approaches

There are two other Learning-to-Rank approaches which are pointwise and listwise
ranking techniques [Liu, 2009].

In Pointwise approaches, ranking is formulated as a regression problem, in which
the rank value of each example is estimated as an absolute quantity to be found. In
the case where relevance judgments are given as pairwise preferences (rather than
relevance degrees), it is usually not straightforward to apply these algorithms for
learning. Moreover, pointwise techniques do not consider the inter dependency among
examples, so that the position of examples in the final ranked list is missing in the
regression-like loss functions used for learning.

On the other hand, listwise approaches take the entire ranked list of examples as
a training instance. As a direct consequence, these approaches are able to consider
the position of examples in the output ranked list at the training stage. Listwise
techniques aim to directly optimize a ranking measure, so they generally face a complex
optimization problem dealing with non-convex, non-differentiable and discontinuous
functions.

In terms of models, perhaps the first ranking based model is RankProp, originally
proposed by [Caruana et al., 1995]. RankProp is a pointwise approach that alternates
between two phases of learning the desired real outputs by minimizing a Mean Squared
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Error (MSE) objective, and a modification of the desired values themselves to reflect
the current ranking given by the net. Later on [Burges et al., 2005] proposed RankNet,
a pairwise approach, that learns a preference function by minimizing a cross entropy
cost over the pairs of relevant and irrelevant examples. SortNet proposed in [Rigutini
et al., 2011] also learns a preference function by minimizing a ranking loss over the
pairs of examples that are selected iteratively with the overall aim of maximizing the
quality of the ranking. A complete survey on the complexity of the Google PageRank
problem [Brin and Page, 1998], a core of many modern algorithms, is given in [Anikin
et al., 2020].

2.6 Conclusion
In this chapter we have provided a brief overview of supervised learning by focusing on
classification and ranking tasks. The two main other frameworks that are not covered
are unsupservised learning [Hinton and Sejnowski, 1999] and semi-supervised learning.
In unsupervised learning, the aim is to find similar groups from a set of examples for
which we do not have desired outputs. Unsupservised learning approaches exploit the
structure of data to find these clusters and have been applied in many applications,
such as Information Retrieval [Pessiot et al., 2010], or image segmentation [Xia and
Kulis, 2017]. Semi-supervised learning, on the other hand, tries to take use of both
label information in a small collection of labeled data and data structure in a large
quantity of unlabeled data for learning [Chapelle et al., 2006].

The presentation given in this chapter aims to pave the way for the introduction
of recommender systems that are the main application task that we considered in this
thesis.

40



Chapter 3

Recommender Systems

3.1 Introduction
With the development of e-commerce, Internet users are offered a growing choice of
products and services online. To guide them, most sites use recommendation systems.
Their goal is to generate personalized recommendations, ie to determine for each
user the products or articles most likely to interest him. To achieve this, the most
effective implementations to date use the preferences of other users to generate these
recommendations: this is the principle of collaborative filtering. Collaborative filtering
is particularly suitable for recommending cultural products such as films, books or
music, and is used successfully by commercial online recommendation systems such as
Amazon.com or CDnow.com.
Collaborative filtering techniques have in particular given rise to a large number of
recommendation systems on the Internet, for example for films (MovieLens1, ymdb.com,
...), or for web pages (Del.icio.us2 ) through bookmark pooling [Pessiot et al., 2007].
They are also the basis of the personalized proposals for items to buy that are made
on commercial sites such as Amazon.com or CDNow.com. The development of high-
performance collaborative filtering systems therefore presents significant economic
challenges. Different approaches have been proposed for collaborative filtering; the
most popular ones rely on matrix factorization which intends to factorize the sparse
matrix of users and items where each cell of the matrix is either a note or a binary
value corresponding for example to a click, into the multiplication of two matrices each
corresponding to a latent representation of respectively users and items. The main
challenges of matrix factorization approaches for recommender systems are how to
tackle the great sparsity of the original matrix and how to make the models scalable?

To address these points, ranking models for recommendation have attracted
many interest in both the industry and the academic research community in recent
years. Given a system (set of users, customers etc.), the goal here is to provide a
ranking of objects (items, products, adverts etc.), based on the information about
the interaction of these objects with the system and their individual characteristics.

1http://www.movielens.org
2http://del.icio.us/
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Common examples of applications include the recommendation of movies (Netflix,
Amazon Prime Video), music (Pandora), videos (Youtube), news content (Outbrain)
or advertisements (Google).

Feedback provided by the system and exploited to learn ranking scores can be
explicit, presented mostly by ratings; or implicit that include clicks, browsing over an
item or listening to a song. Such implicit feedback is readily available in abundance but
is more challenging to take into account as it does not clearly translate the preference
of a user for an item. The idea here is that even a clicked item does not necessarily
express the preference of a user for that item, it has much more value than a set of
unclicked items for which no action has been made. In most of these approaches,
the objective is to rank the clicked item higher than the unclicked ones by finding a
suitable representation of users and items in a way that for each user the ordering of
the clicked items over unclicked ones is respected by dot product in the joint learned
space. One common characteristic of publicly available collections for recommendation
systems is the huge unbalance between positive (click) and negative feedback (no-click)
in the set of items displayed to the users, making the design of an efficient online
RS extremely challenging. Some works propose to weight the impact of positive and
negative feedback directly in the objective function [Pan et al., 2008] to improve
the quality. Another approach is to sample the data over a predefined buffer before
learning [Liu and Wu, 2016], but these approaches do not model the shift over the
distribution of positive and negative items, and the system’s performance on new test
data may be affected.

In this chapter, we will review main approaches proposed for recommender systems
by focusing on learning-to-rank setting for this task that have been developed for the
off-line case. This problem differs from the problem of personalized recommendation
where the goal is to perform the recommendation online. The process of the latter is
as follows: a user comes into the systems and is displayed some ads based on his or
her previous interactions with the systems. At this time, we assume that the user is
starting a new session. Then, he or she starts to interact with the displayed ads. A
traditional off-line approach will have to wait for the end of the session in order to
learn potential new recommendations for the next visit of this user. However, in the
on-line setting, the aim is to develop a model which can adapt the recommendation
within the same session. Therefore, the parameters of the model will be updated
online. Providing high-quality online ranking is a challenging task for several reasons:

• It is strongly time-dependent: the set of relevant items for each user changes over
time and the relevance of the items depends on the preferences of a particular
user at a specific instant of time.

• The number of positive feedback, for instance clicks, are very rare (i.e. the data
are sparse).

• It is difficult to provide recommendations for new users and/or new items
(cold-start).

We will come over these points on the next chapters. In the reminder, we will first
present in Section 3.2 matrix factorization and ranking-based models for recommender
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systems, then in Section 3.3 we will describe classical measures that have been used
to evaluate these systems.

3.2 Different approaches
Two main approaches have been proposed to solve the problem of ranking. The
first one, referred to as Content-Based recommendation techniques (CBF)[Pazzani
and Billsus, 2007] make use of existing contextual information about the items
(e.g. textual description, meta-data) for recommendation. The second approach,
referred to as collaborative filtering (CF) and undoubtedly the most popular one [Su
and Khoshgoftaar, 2009], relies on the past interactions and recommends items to
users based on the feedback provided by similar other users. In the followings, we
are interested in predicting if a user will prefer an item over another, rather than
predicting a real-value (such as a rating for instance). This task is tackled by ranking
based approaches where the goal is to learn a list of items ordered according to their
degree of relevance for a given user.

3.2.1 Matrix Factorization

CF methods operate with a huge matrix of users-objects (each row corresponds to
a user, and each column is an item). To solve this problem, many methods use a
matrix decomposition [Koren et al., 2009], which shows good results. Let’s give some
mathematics key-points regarding this approach.
Suppose 𝒰 - the set of all users, ℐ - the set of items and 𝑅 is a matrix of size |ℐ| × |𝒰|
which contains all ratings that users have given to the items. Assume, that we consider
𝐾 latent variables, then the goal is to find two matrices 𝑃 and 𝑄 such that their
product approximates the matrix 𝑅:

𝑅 ≈ 𝑅̃ = 𝑃 ×𝑄𝑇 , (3.1)

where 𝑃 is a |𝒰|×|𝐾| matrix, and 𝑄 is a |𝐾|×|ℐ| matrix. As a result, the factorization
gives us a low dimensional numerical representation of users and items. In the case
of the stated problem, we want to build the regression model 𝑟𝑢,𝑖, that predicts the
missing values in the matrix 𝑅 for any arbitrary pair (𝑢, 𝑖) ∈ |𝒰| × |ℐ| :

𝑟𝑢,𝑖 = 𝑝𝑇𝑢𝑞𝑖 =
𝐾∑︁
𝑘=1

𝑝𝑢,𝑘𝑞𝑘,𝑖, (3.2)

where 𝑝𝑇𝑢 is the 𝑢− 𝑡ℎ row of 𝑃 and 𝑞𝑖 is the 𝑖− 𝑡ℎ column of 𝑄.
The error function between the estimated and real ratings can be calculated as
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Figure 3-1: Let [2, 3] be the ratings of two items A and B, 𝑟1 = [2.5, 3.6] and
𝑟2 = [2.5, 2.4] two vectors of predictions obtained by two different methods. Although
𝑟1 and 𝑟2 are equivalent in terms of squared error (the two are equal to 0.52 + 0.62),
only 𝑟1 predicts the order correctly, since the score it assigns to B is greater than that
of A.

follows:

ℒ(𝑃,𝑄,𝑅) =
∑︁

(𝑢,𝑖)∈Θ

(𝑟𝑢,𝑖 − 𝑟𝑢,𝑖)2 + 𝜆

(︃∑︁
𝑢∈𝒰

‖𝑝𝑢‖2 +
∑︁
𝑖∈ℐ

‖𝑞𝑖‖2
)︃
, (3.3)

where Θ is the set of all user-item pairs, that have marks in matrix 𝑅, 𝒰 is the full
set of users and ℐ is the full set of items. The second term of the equation is the
regularization part which allow to avoid overfitting. We also notice, that a non-convex
regulrization in Eq. 3.3 may improve the quality of factorization [Pogodin et al.,
2017, Krechetov et al., 2018]; however, computations often become harder.

The regression approach rely on the idea of providing the predictions that will as
close as possible from the true score, so the problem leads to the prediction of ratings
for each single pair user-item. It is important to note that the prediction of ratings
is only an intermediate step towards recommendation, and that other directions are
possible. In particular, given the typical use of recommender systems where the system
presents each user with the top 𝑁 items without showing the associated ratings, we
believe that ordering the items correctly is more important than correctly predicting
their ratings. Although these two objectives are close, they are not equivalent from the
point of view of the recommendation. Indeed, any method that correctly predicts all
ratings will also correctly order all items. On the other hand, with equal performances
in terms of rating prediction, two methods can have different performances in terms
of order prediction. This phenomenon is illustrated in Figure 3-1.
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3.2.2 Neural Language Models

Ranking-based approaches for RS, like matrix factorization techniques, rely on the
learning of latent representations for users and items. The main difference is that
these techniques primarily use neural networks for representation learning and follow
the basic idea of traditional Natural Language Processing (NLP) approaches, which
tackled the difficult task of finding the best representations of words to reflect their
similarities and differences.

Using the skip-gram training method (SG, implemented in the word2vec software
package3) encouraging results were obtained by encoding words as embedding vectors
[Mikolov et al., 2013a, Mikolov et al., 2013b]. Similarly, [Levy and Goldberg, 2014]
proposed new opportunities to extend the word representation learning [Mikolov et al.,
2013a, Mikolov et al., 2013b, Shazeer et al., 2016] to characterise more complicated
piece of information. Indeed, the authors of this paper showed the equivalence of the
SG model with negative sampling and implicit factorization of a point-wise mutual
information (PMI) matrix. Furthermore, they demonstrated that word embedding
may be used to a variety of data kinds (not only words) if a suitable context matrix
can be created.

Since then, this idea has been successfully applied to recommendation systems,
where different approaches attempted to learn representations of items and users. In
[Liang et al., 2016], the authors proposed a model that relies on the intuitive idea that
pairs of items scored the same way by different users are similar. The approach reduces
to finding both the latent representations of users and items, with the traditional
Matrix Factorization (MF) approach, and simultaneously learning item embeddings
using a co-occurrence Shifted Positive Pointwise Mutual Information (SPPMI) matrix
defined by items and their context.

In [Grbovic et al., 2015] the authors proposed Prod2Vec, which embeds items using
the word2vec technique, by modelling the sequence of user purchases as a sentence
and products within the sentence as words. More precisely, Prod2Vec (see figure 3-2)
trains the product embedding using the Skip-Gram (SG) model by maximizing the
likelihood over the entire set of products with the number of unique products 𝑀 and
with the length of the context 𝑐.

3https://radimrehurek.com/gensim/models/word2vec.html
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Figure 3-2: Prod2Vec skip-gram model; the figure is taken from [Grbovic et al., 2015].

ℒ =
∑︁
𝑝𝑖

∑︁
−𝑐≤𝑗≤𝑐;𝑗 ̸=0

logP(𝑝𝑖+𝑗|𝑝𝑖) (3.4)

Probability P(𝑝𝑖+𝑗|𝑝𝑖) is defined using the softmax function, where 𝑣𝑝𝑖 and 𝑣′
𝑝 are

representations of the current product 𝑝𝑖 and context product 𝑝 respectively:

P(𝑝𝑖+𝑗|𝑝𝑖) =
exp(𝑣𝑇𝑝𝑖 , 𝑣

′
𝑝𝑖+𝑗

)∑︀𝑀
𝑝=1 exp(𝑣𝑇𝑝𝑖 , 𝑣

′
𝑝)

(3.5)

This model was then extended in [Vasile et al., 2016] who, by defining appropriate
context matrices, proposed to learn embedding for meta information available in the
system. In addition, they demonstrated that the improvement obtained was mainly
the result of the ability of their approach to deal with item cold-start. Inspired by
the concept of sequence of words; the approach proposed by [Guàrdia-Sebaoun et al.,
2015] defined the consumption of items by users as trajectories. Then, the embedding
of items is learned using the SG model and the users embedding is further inferred as
to predict the next item in the trajectory.

3.2.3 Deep Neural Networks architectures for recommmenda-
tion

Different topologies of Deep Neural Networks could be used to handle the challenge of
employing context information while taking into consideration the time over interac-
tions in the system. The advantage of neural network design over traditional ranking
models is its extensibility. It is easy to start with a simple model and then demonstrate
the approach’s effectiveness; as it is possible to define what will be effective in a specific
task during the experiments. In the following, we will present the most popular neural
network based approaches for recommender systems.
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• Autoencoders
The network first creates a low-dimensional representation of the user from
the data, removing all except the most important information, then decoding
the data in its original dimension. As a consequence, a noise-free, averaged
representation is created, from which any item’s preference may be estimated.
Deep AutoEncoder [Kuchaiev and Ginsburg, 2017], might be used as an example
of an autoencoder model in a ranking problem. During training, sparse vector
of rates is taken as the input of the model because there are no users in reality
that can estimate all set of items. The model’s output is dense, which indicates
that the network predicts all of the user’s future ratings.

• Convolutional Neural Networks (CNN)
The principle behind convolutional neural networks is that convolutional layers
are alternated with non-linear and fully-connected layers. Initially, CNN was
used to do effective image recognition, but it currently now performs well in
other areas such as ranking problems.
Convolutional neural networks work on the basis of filters (see figure 3-3) that
are engaged in recognizing certain image characteristics (for example, straight
lines). A filter is an ordinary matrix of weights, which are trained. The filter
moves along the image and determines whether some desired characteristic is
present in a specific part of it, by applying convolution operation, which is the
sum of the products of the filter elements and the input signal matrix.
When potential factors cannot be obtained from user feedback, CNN is used to
extract potential factors from images, audio data [Chen et al., 2020, Nguyen
et al., 2017]. One of the cases is to use CNN to extract hidden features from
an image and map them with user preferences in the same hidden space. Thus,
speaking about recommender systems, CNN is mainly used to extract additional
characteristics from the data.

Figure 3-3: The principle of convolve operation; the figure is taken from https:
//classic.d2l.ai.

For applying CNN’s in ranking models proposed in chapters 4 - 5 Caser[Tang
and Wang, 2018a] as the baseline presented below (figure 3-4):
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Figure 3-4: The network architecture of Caser; the figure is taken from [Tang and
Wang, 2018a].

It is worth noting that this model doesn’t apply for feature extraction from some
additional data (images, audio) as it was discussed before. The main idea of the
model comes from the image recognition field, considering embedding matrix for
items as the image and passing the horizontal and vertical convolution filters
for searching the local features. As the input the model takes 𝐿 clicked items
for each user 𝑢 we and their next 𝑇 (𝑇 is the parameter) items as the targets.
To make the recommendations for a user 𝑢 at time step 𝑡 using trained Caser,
latent user embedding and matrix of trained embeddings for the user’s last 𝐿
interactions are taken as the input to predict 𝑁 next items.

The motivation of Caser was to provide accurate recommendations, referring
to the suggestion that the sequential patterns, where more recent items in a
sequence have a larger impact on the next item, play an important role in the
predictions. As the results it provides a unified and flexible network structure
for capturing both general preferences and sequential patterns.

• Recurrent Neural Networks (RNN)

Inside the RNN the basic recurrent cell is located. The model takes input
data and pass it through RNN, which has a hidden internal state. This state
is updated each time when new data is received in the RNN. Often the task
requires that RNN generates some output at each time interval, therefore, after
reading the input data and updating the hidden state, the RNN will create the
output data.
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Figure 3-5: The principle of RNN work. The information is spread from the input to
the output with some recursion on the connections between the nodes. The figure is
taken from https://colah.github.io/.

Inside the green box, figure 3-5, the recurrence relation is calculated:

ℎ𝑡 = 𝑓𝑊 (ℎ𝑡−1, 𝑥𝑡) (3.6)

To find the new state ℎ𝑡, the previous hidden state ℎ𝑡−1 and the current input
𝑥𝑡 are taken. When the next input data come to the model, the received hidden
state ℎ𝑡 is passed through the same function 𝑓𝑊 , and the whole process is
repeated. If there are sufficiently long input sequences, the network could face
with the problem of forgetting the information about remote input objects. But
in some cases, there is a necessity for the network to "remember" information
about the objects located at the beginning of the sequence. To solve this problem,
the modifications of RNN, such as GRU and LSTM were proposed.

The recommender system uses RNN to integrate the current browsing history
and order of views to provide more accurate recommendations. For example,
[Hidasi et al., 2016a, Hidasi and Karatzoglou, 2018] used RNN to represent
temporal and contextual aspects of user behavior that finally came them to
more accurate recommendations. Compared to matrix factorization approach,
RNN has a positive effect on the coverage of recommendations and short-term
forecasts. This success stems from the evolution of RNN according to the taste
of users and the calculation of the joint evolution between users and the potential
characteristics of the items.

The authors of the GRU4Rec [Hidasi and Karatzoglou, 2018] adapt the idea of
using recurrent neural networks for session-based recommendations. The main
motivation of the work is to apply the long-sessions (full user’s history) for
building recommendations by suggesting that it could provide a more complete
picture on the user’s preferences.

Because of the different session size for each user (the difference is even stronger
then for the sentences in texts) and the concept of strong time dependency
between the interactions inside the session, classical sliding window used over the
sentences for building mini-batches seems not relevant for recommender systems.
That is why authors suggest the new strategy for creating mini-batches. First
mini-batch is represented by the first event for the first 𝑋 sessions from the
full set of time-ordered sessions. For the second mini-batch the second events
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are used and so on. When any of the session ends, the next available session is
taken. Since the sessions are assumed to be independent, the hidden state is
resetted when the new session is taken for mini-batch. So called session-parallel
mini-batches are presented on the figure 3-6.

Figure 3-6: Mini batches for GRU4Rec; the figure is taken from [Hidasi and Karatzoglou,
2018].

As the result, authors adapted the GRU model to the recommender systems
setting by focusing on the session-based direction. Their strategy of building
mini-batches in parallel sessions significantly outperformed popular baselines
that are used for this task.

• Graph Neural Networks (GNN)

The idea lying behind Graph Neural Networks (GNN) is to learn a mapping
that represents nodes or entire (sub)graphs as points in a low-dimensional vector
space. The goal is to optimize this mapping so that the geometric relations in
this studied space display the structure of the original graph. For example the
recommender system could be modeled as a bipartite graph. In such a graph we
are dealing with the nodes of two types as it’s represented on the right part of
figure 3-7 with "red" and blue" nodes. The logic of graph construction is such
that edges connect only nodes of different types. So, in case of recommender
systems, sets of users 𝑈 and items 𝑉 could be considered as two class of nodes (left
part of the figure 3-7), where ones the user interacts with the item, appropriate
edge connects these two nodes, otherwise there is no edge between user and
item.
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Figure 3-7: The examples of bipartite graph; the figure is taken from https://habr.
com.

Figure 3-8: LightGCN architecture; the figure is taken from [He et al., 2020].

Proposed by [He et al., 2020] LightGCN for recommendations consists of the
graph convolution with the discarded feature transformation and nonlinear acti-
vation operations (see figure 3-8). The normalized sum of neighbor embeddings
of LightGCN is taken towards next layer. In layer combination part, the final
embedding of the node is constructed as the weighted sum of its embeddings
on all layers. These models have demonstrated their ability to handle compli-
cated contextual information, such as item summaries generated by extrative
summarization approaches [Amini and Usunier, 2007].

• Transformers
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The architecture of Transformers also was designed to process sequences as
RNN’s. But unlike RNN’s, transformers do not require processing sequences
consecutively. For example, if the input data is text, then the transformer does
not need to process the end of the text after processing its beginning. Due to
this, transformers are parallelized more easily than RNN’s and can be trained
faster

Figure 3-9: The transformer architecture; the figure is taken from https://jalammar.
github.io/illustrated-transformer/.

The main distinctive feature of transformers is in calculating attention, that
consists in transforming the embedding vector into three vectors: query, key and
value vectors. These vectors are created by multiplying embedding into three
matrices that are trained during the training process. As a result, 𝑧 vector is
calculated (see figure 3-9) and then it is transmitted further through forward
path of the neural network.
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Figure 3-10: SASRec training structure; the figure is taken from [Kang and McAuley,
2018].

In figure 3-10 training process for adapted transformer SASRec proposed by
[Kang and McAuley, 2018] is presented. At each time step, the model considers
all previous items, and apply attention mechanism to focus on the items relevant
to the next action.

3.3 Evaluation metrics
In order to choose the best model from the whole variety of algorithms and approaches,
it is necessary to be able to assess their quality quantitatively. In this section, we will
present the most common ranking metrics used to evaluate recommender systems.

Consider 𝑁 users 𝑈 = {𝑢𝑖}𝑁𝑖=1 and 𝑀 items 𝐸 = {𝑒𝑗}𝑀𝑗=1. The result of the ranking
algorithm is the mapping, which assigns to each item 𝑒 ∈ 𝐸 the weight 𝑟(𝑒), which
characterizes the degree of relevance of this item to the particular user 𝑢 ∈ 𝑈 (the
greater the weight, the more relevant the object). That is why the set of weights
determines the permutation 𝜋 on the set of items based on their sorting in descending
order.

To estimate the quality of the ranking, it is necessary to have some ground true
with which the results of the algorithm can be compared. Suggest 𝑟𝑡𝑟𝑢𝑒 ∈ [0, 1] is the
reference relevance characterizes the real relevance of items for a given user (𝑟𝑡𝑟𝑢𝑒 = 1
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item is ideal, 𝑟𝑡𝑟𝑢𝑒 = 0 - completely irrelevant), 𝜋𝑡𝑟𝑢𝑒 is the corresponding permutation
of 𝑟𝑡𝑟𝑢𝑒(𝑒).

It is worth noting that when 𝑟𝑡𝑟𝑢𝑒 takes only extreme values: 0 and 1, the per-
mutation 𝜋𝑡𝑟𝑢𝑒 is usually not considered and only the set of relevant items for which
𝑟𝑡𝑟𝑢𝑒 = 1 is taken into account. So, the purpose of the metric is to determine how
well the relevance obtained by the algorithm and the corresponding permutation 𝜋
to the true relevance values 𝑟𝑡𝑟𝑢𝑒. In the next subsections the main metrics would be
considered.

3.3.1 Mean Average Precision

Mean average precision at K (MAP@𝐾) is one of the most frequently used ranking
metrics. Precision measures are used in binary problem, where relevance accepted two
values: 0 and 1.

MAP@𝐾 =
1

𝑁

𝑁∑︁
𝑢=1

AP@𝐾.

Here the Average Precision at rank 𝐾, AP@𝐾, is defined as :

AP@𝐾 =
1

𝐾

𝐾∑︁
𝑘=1

𝑟𝑘𝑃𝑟(𝑘),

where, 𝑃𝑟(𝑘) is the precision at rank 𝑘 of the relevant items and 𝑟𝑘 = 1 if the item at
rank 𝑘 is preferred or clicked, and 0 otherwise.

The idea of MAP@𝐾 is to calculate AP@𝐾 for each user and then take the average.
The idea is quite reasonable, assuming that all users are equally important. In case
if it’s necessary to differ between the objects, then instead of a simple averaging,
it’s possible to use a weighted sum by multiplying the AP@𝐾 of each object by its
corresponding weight.

3.3.2 Normalized Discounted Cumulative Gain

There is another popular metric NDCG@𝐾, that could be applied for ranking. To
compute NDCG@𝐾, the term called DCG@𝐾 is calculated taking into account the
order of the items in the list by multiplying the relevance of the item by a weight
equal to the inverse logarithm of the position number.

DCG@𝐾 =
𝐾∑︁
𝑘=1

2𝑟𝑘 − 1

log2(1 + 𝑘)
.

In contrast to MAP@𝐾, 𝑟𝑘 here can also be used in the case of non-binary values
of the reference relevance. The use of the logarithm as a discount function can be
explained by the following intuitive considerations: the positions at the beginning of
the ranking differ much more than the positions at the end of it. It means that for a
user it is more important to have accurate ranking at the first positions, like 1 to 10,
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and almost not important how correctly items will be distributed between 50 and 60
positions. Normalized version of DCG@𝐾 is called NDCG@𝐾 and computed below:

NDCG@𝐾 =
1

𝑁

𝑁∑︁
𝑢=1

DCG@𝐾

IDCG@𝐾
,

where IDCG@𝐾 is DCG@𝐾 with an ideal ordering equals to
∑︀𝐾

𝑘=1
1

log2(1+𝑘)
.

3.3.3 Mean reciprocal rank

Another popular metric MRR@𝐾 define at which position of ranking customer find
the first useful recommendation.

MRR@𝐾 =
1

𝑁

𝑁∑︁
𝑢=1

RR@𝐾,

RR@𝐾 the value equal to the inverse rank of the first correctly predicted item:

RR@𝐾 =
1

min{𝑘 ∈ 1, .., 𝐾 : 𝑟𝑘 = 1}
.

MRR@𝐾 varies in the range [0, 1] and takes into account only the first correctly
predicted position, not paying attention to all the subsequent ones.

3.3.4 Rank Correlation based metrics

The rank correlation coefficient takes into account not the values of element’s relevances,
but only their rank. Below the two most common rank correlation coefficients, the
Spearman and Kendall, are presented.

• Kendall correlation coefficient:

Consider {(𝑥1, 𝑦1), ..., (𝑥𝑘, 𝑦𝑘)} be a set of observations of the joint random
variables 𝑋 and 𝑌 . Based on the calculation of concordant (and discordant)
pairs — pairs of elements to which the permutations have assigned the same
(different) order.

𝜏 =
|concordant pairs| − |discordant pairs|

𝐾(𝐾 − 1)/2
,

where concordant pairs are satisfy the condition: both 𝑥𝑖 > 𝑥𝑗 and 𝑦𝑖 > 𝑦𝑗 hold
or both 𝑥𝑖 < 𝑥𝑗 and 𝑦𝑖 < 𝑦𝑗 hold; otherwise the pairs are discordant.

• Spearman correlation coefficient:

The Spearman correlation coefficient is defined as the Pearson correlation coeffi-
cient between the rank variables.
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𝑟𝑆 = 𝜌(𝜋, 𝜋𝑡𝑟𝑢𝑒) =
𝑐𝑜𝑣(𝜋, 𝜋𝑡𝑟𝑢𝑒)

𝜎𝜋, 𝜎𝜋𝑡𝑟𝑢𝑒

,

𝜌 denotes the usual Pearson correlation coefficient, but applied to the rank
variables.

The quality metrics defined by rank correlation coefficient do not take into account
the position of elements and the correlation is calculated for all elements simultaneously,
not just for the top-K elements with the highest rank. Therefore, in practice these
metrics are applied extremely rarely.

3.3.5 Area Under (ROC) Curve

Area Under (ROC) Curve (AUC) shows the probability that a randomly selected pair
of products with different ratings will be ranked correctly; it means that those items
that user likes will be higher in the output ranking than those that user doesn’t like.
The ROC curve is shown below on the figure 3-11.

Figure 3-11: ROC curve; the figure is taken from https://medium.
datadriveninvestor.com.

True positive rate (TPR) on the figure is responsible for the percentage of correctly
predicted objects that the user clicked on and the false positive rate (FPR) is the
ratio of wrong predicted objects (should be non-clicked but predicted as clicked).
An excellent model has AUC near to the 1 which means it has a good measure of
separability. A poor model has an AUC near 0 which means it has the worst measure
of separability. And when AUC is 0.5, it means the model has no class separation
capacity.

56

https://medium.datadriveninvestor.com
https://medium.datadriveninvestor.com


AUC is not often used in ranking systems, as its main advantage is more related to
the task of classification, where it is important to understand the difference between
the two classes.

3.4 Conclusion
In this chapter we provided an overview of work on Recommender Systems (RS) that
provide personalized recommendations to users by adapting to their taste. The study
of RS has become an active area of research these past years, especially since the Netflix
Prize [Bennett and Lanning, 2007]. One characteristic of online recommendation is
the huge unbalance between the available number of products and those shown to
the users. Another aspect is the existence of bots that interact with the system by
providing too many feedback over some targeted items; or many users that do not
interact with the system over the items that are shown to them. In this context, the
main challenges concern the design of a scalable and an efficient online RS in the
presence of noise and unbalanced data. These challenges have evolved in time with
the continuous development of data collections released for competitions or issued
from e-commerce4. New approaches for RS now primarily consider implicit feedback,
mostly in the form of clicks, that are easier to collect than explicit feedback which is
in the form of scores. Implicit feedback is more challenging to deal with as they do
not depict the preference of a user over items, i.e., (no)click does not necessarily mean
(dis)like [Hu et al., 2008]. For this case, most of the developed approaches are based
on the Learning-to-rank paradigm and focus on how to leverage the click information
over the unclick one without considering the sequence of users’ interactions.

4https://www.kaggle.com/c/outbrain-click-prediction
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Chapter 4

Sequential Learning over Implicit
Feedback for Robust Large-Scale
Recommender Systems

4.1 Introduction
In this chapter, we propose our first contribution which is a new SequentiAl Rec-
Ommender System for implicit feedback (called SAROS), that updates the model
parameters user per user over blocks of items constituted by a sequence of unclicked
items followed by a clicked one. The parameter updates are discarded for users who
interact very little or a lot with the system. For other users, the update is done by
minimizing the average ranking loss of the current model that scores the clicked item
below the unclicked ones in a corresponding block. Recently, many other approaches
that model the sequences of users feedback have been proposed, but they all suffer from
a lack of theoretical analysis formalizing the overall learning strategy. In this work, we
analyze the convergence property of the proposed approach and show that in the case
where the global ranking loss estimated over all users and items is convex; then the
minimizer found by the proposed sequential approach converges to the minimizer of
the global ranking loss. Experimental results conducted on five large publicly available
datasets show that our approach is highly competitive compared to the state-of-the-art
models and, it is significantly faster than both the batch and the online versions of the
algorithm. The results of this chapter were presented at the European Conference in
Machine Learning & Principles ans Practices in Knowledge Discovery (ECML-PKDD)
in 2019 [4] and Conférence sur l’Apprentissage Automatique (CAp) in 2021 [3].

The rest of this chapter is organized as follows. Section 4.2 relates our work to
previously proposed approaches. Section 4.3 introduces the general ranking learning
problem that we address. Then, in Section 4.4, we present the SAROS algorithm and
provide an analysis of its convergence. Section 4.5 presents the experimental results
that support this approach. Finally, in Section 4.6, we discuss the outcomes of this
study and give some pointers to further research.
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4.2 Sequential learning for recommender systems
Many new approaches tackle the sequential learning problem for RS by taking into
account the temporal aspect of interactions directly in the design of a dedicated model
and are mainly based on Markov Models (MM), Reinforcement Learning (RL) and
Recurrent Neural Networks (RNN) [Donkers et al., 2017]. Recommender systems based
on Markov Models, consider the sequential interaction of users as a stochastic process
over discrete random variables related to predefined user behavior. These approaches
suffer from some limitations mainly due to the sparsity of the data leading to a poor
estimation of the transition matrix [Shani et al., 2005]. Various strategies have been
proposed to leverage the impact of sparse data, for example by considering only the
last frequent sequences of items and using finite mixture models [Shani et al., 2005],
or by combining similarity-based methods with high-order Markov Chains [Ruining
and Julian, 2016]. Although it has been shown that in some cases the proposed
approaches can capture the temporal aspect of user interactions but these models
suffer from high complexity and generally they do not pass the scale. Some other
methods consider RS as a Markov decision process (MDP) problem and solve it using
reinforcement learning (RL) [Moling et al., 2012, Tavakol and Brefeld, 2014]. The
size of discrete actions bringing the RL solver to a larger class of problems is also
a bottleneck for these approaches. Very recently Recurrent neural networks such as
GRU or LSTM, have been proposed for personalized recommendations [Hidasi and
Karatzoglou, 2018, Tang and Wang, 2018a, Kang and McAuley, 2018], where the
input of the network is generally the current state of the session, and the output is
the predicted preference over items (probabilities for each item to be clicked next).

Our proposed strategy differs from other sequential based approaches in the way
that the model parameters are updated, at each time a block of unclicked items
followed by a clicked one is constituted; and by controlling the number of blocks per
user interaction. If for a given user, this number is below or above two predefined
thresholds found over the distribution of the number of blocks, parameter updates for
that particular user are discarded. Ultimately, we provide a proof of convergence of
the proposed approach.

4.3 Framework and Problem Setting
Throughout, we use the following notation. For any positive integer 𝑛, [𝑛] denotes the
set [𝑛]

.
= {1, . . . , 𝑛}. We suppose that ℐ .

= [𝑀 ] and 𝒰 .
= [𝑁 ] are two sets of indexes

defined over items and users. Further, we assume that each pair constituted by a user
𝑢 and an item 𝑖 is identically and independently distributed according to a fixed yet
unknown distribution 𝒟𝒰 ,ℐ .

At the end of his or her session, a user 𝑢 ∈ 𝒰 has reviewed a subset of items ℐ𝑢 ⊆ ℐ
that can be decomposed into two sets: the set of preferred and non-preferred items
denoted by ℐ+𝑢 and ℐ−𝑢 , respectively. Hence, for each pair of items (𝑖, 𝑖′) ∈ ℐ+𝑢 ×ℐ−𝑢 , the
user 𝑢 prefers item 𝑖 over item 𝑖′; symbolized by the relation 𝑖 ≻u 𝑖′. From this preference
relation a desired output 𝑦𝑢,𝑖,𝑖′ ∈ {−1,+1} is defined over the pairs (𝑢, 𝑖) ∈ 𝒰 × ℐ and
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ℐ = [𝑀 ] The set of item indexes
𝒰 = [𝑁 ] The set of user indexes
𝒟 joint distribution over users and items
𝒟𝑢 conditional distribution of items for a fixed user 𝑢
N𝑡
𝑢 Negative items in block 𝑡 for user 𝑢

Π𝑡
𝑢 Positive items in block 𝑡 for user 𝑢

ℬ𝑡𝑢 = N𝑡
𝑢 ⊔ Π𝑡

𝑢 Negative and positive items in block 𝑡 for user 𝑢
ℐ+𝑢 The set of all positive items for user 𝑢
ℐ−𝑢 The set of all negative items for user 𝑢

ℓ𝑢,𝑖,𝑖′(𝜔) Instantaneous loss for user 𝑢 and a pair of items (𝑖, 𝑖′)

ℒ̂𝑢(𝜔) Empirical ranking loss with respect to user 𝑢
ℒ̂𝑢(𝜔) = 1

|ℐ+
𝑢 ||ℐ−

𝑢 |

∑︀
𝑖∈ℐ+

𝑢

∑︀
𝑖′∈ℐ−

𝑢
ℓ𝑢,𝑖,𝑖′(𝜔)

ℒ̂ℬ𝑡
𝑢
(𝜔) Empirical ranking loss with respect to a block of items

ℒ̂ℬ𝑡
𝑢
(𝜔) = 1

|Π𝑡
𝑢||N𝑡

𝑢|
∑︀

𝑖∈Π𝑡
𝑢

∑︀
𝑖′∈N𝑡

𝑢
ℓ𝑢,𝑖,𝑖′(𝜔)

ℒ(𝜔) Expected ranking loss ℒ(𝜔) = E𝒟𝑢ℒ̂𝑢(𝜔)

Table 4.1: Notation for the proposed SAROS algorithm and its variants.

(𝑢, 𝑖′) ∈ 𝒰 ×ℐ, such that 𝑦𝑢,𝑖,𝑖′ = +1 if and only if 𝑖 ≻u 𝑖′. We suppose that the indexes
of users as well as those of items in the set ℐ𝑢, shown to the active user 𝑢 ∈ 𝒰 , are
ordered by time.

Finally, for each user 𝑢, parameter updates are performed over blocks of consecutive
items where a block ℬ𝑡𝑢 = N𝑡

𝑢 ⊔Π𝑡
𝑢, corresponds to a time-ordered sequence (w.r.t. the

time when the interaction is done) of no-preferred items, N𝑡
𝑢, and at least one preferred

one, Π𝑡
𝑢. Hence, ℐ+𝑢 =

⋃︀
𝑡 Π𝑡

𝑢 and ℐ−𝑢 =
⋃︀
𝑡 N

𝑡
𝑢;∀𝑢 ∈ 𝒰 . Notations are summarized in

Table 4.1.

4.4 Proposed Approach
Our objective here is to minimize an expected error penalizing the misordering of
all pairs of interacted items 𝑖 and 𝑖′ for a user 𝑢. Commonly, this objective is given
under the Empirical Risk Minimization (ERM) principle, by minimizing the empirical
ranking loss estimated over the items and the final set of users who interacted with
the system :

ℒ̂𝑢(𝜔)=
1

|ℐ+𝑢 ||ℐ−𝑢 |
∑︁
𝑖∈ℐ+

𝑢

∑︁
𝑖′∈ℐ−

𝑢

ℓ𝑢,𝑖,𝑖′(𝜔), (4.1)

and ℒ(𝜔) = E𝑢
[︁
ℒ̂𝑢(𝜔)

]︁
, where E𝑢 is the expectation with respect to users chosen

randomly according to the uniform distribution, and ℒ̂𝑢(𝜔) is the pairwise ranking loss
with respect to user 𝑢’s interactions. As in other studies, we represent each user 𝑢 and
each item 𝑖 respectively by vectors U𝑢 ∈ R𝑘 and V𝑖 ∈ R𝑘 in the same latent space of
dimension 𝑘 [Koren et al., 2009]. The set of weights to be found 𝜔 = (U,V), are then
matrices formed by the vector representations of users U = (U𝑢)𝑢∈[𝑁 ] ∈ R𝑁×𝑘 and
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items V = (V𝑖)𝑖∈[𝑀 ] ∈ R𝑀×𝑘. The minimization of the ranking loss above in the batch
mode with the goal of finding user and item embeddings, such that the dot product
between these representations in the latent space reflects the best the preference of
users over items, is a common approach. Other strategies have been proposed for
the minimization of the empirical loss (4.1), among which the most popular one is
perhaps the Bayesian Personalized Ranking (BPR) model [Rendle et al., 2009]. In this
approach, the instantaneous loss, ℓ𝑢,𝑖,𝑖′ , is the surrogate regularized logistic loss for
some hyperparameter 𝜇 ≥ 0:

ℓ𝑢,𝑖,𝑖′(𝜔) = log
(︁

1 + 𝑒−𝑦𝑖,𝑢,𝑖′U
⊤
𝑢 (V𝑖−V𝑖′ )

)︁
+ 𝜇(‖U𝑢‖22 + ‖V𝑖‖22 + ‖V𝑖′‖22) (4.2)

The BPR algorithm proceeds by first randomly choosing a user 𝑢, and then repeat-
edly selecting two pairs (𝑖, 𝑖′) ∈ ℐ𝑢 × ℐ𝑢.

In the case where one of the chosen items is preferred over the other one (i.e.
𝑦𝑢,𝑖,𝑖′ ∈ {−1,+1}), the algorithm then updates the weights using the stochastic
gradient descent method over the instantaneous loss (4.2). In this case, the expected
number of rejected pairs is proportional to 𝑂(|ℐ𝑢|2) [Sculley, 2009] which may be
time-consuming in general. Another drawback is that user preference over items
depend mostly on the context where these items are shown to the user. A user may
prefer (or not) two items independently one from another, but within a given set of
shown items, he or she may completely have a different preference over these items.
By sampling items over the whole set of shown items, this effect of local preference is
unclear.

4.4.1 Algorithm SAROS

Another particularity of online recommendation which is not explicitly taken into
account by existing approaches is the bot attacks in the form of excessive clicks over
some target items. They are made to force the RS to adapt its recommendations
toward these target items, or a very few interactions which in both cases introduce
biased data for the learning of an efficient RS. In order to tackle these points, our
approach updates the parameters whenever the number of constituted blocks per user
is lower and upper-bounded (Figure 4-1).

In this case, at each time a block ℬ𝑡𝑢 = N𝑡
𝑢 ⊔ Π𝑡

𝑢 is formed; weights are updated by
minimizing the ranking loss corresponding to this block :

ℒ̂ℬ𝑡
𝑢
(𝜔𝑡𝑢) =

1

|Π𝑡
𝑢||N𝑡

𝑢|
∑︁
𝑖∈Π𝑡

𝑢

∑︁
𝑖′∈N𝑡

𝑢

ℓ𝑢,𝑖,𝑖′(𝜔
𝑡
𝑢). (4.3)

The surrogate part is the same as defined in the Eq. 4.2. The pseudo-code of
SAROS is shown in the following. Starting from initial weights 𝜔0

1 chosen randomly for
the first user. For each current user 𝑢, having been shown 𝐼𝑢 items, the sequential
update rule consists in updating the weights, block by block where after 𝑡 updates;
where the (𝑡+ 1)𝑡ℎ update over the current block ℬ𝑡𝑢 = N𝑡

𝑢 ⊔Π𝑡
𝑢 corresponds to one

gradient descent step over the ranking loss estimated on these sets and which with
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Figure 4-1: The sequential updates of weights (𝜔𝑡𝑢)1≤𝑡≤𝐵 for a user 𝑢 ∈ 𝒰 . The
horizontal axis represents the sequence of interactions over items ordered by time.
Each update of weights 𝜔𝑡𝑢; 𝑡 ∈ {𝑏, . . . , 𝐵} occurs whenever the corresponding sets
of negative interactions, N𝑡

𝑢, and positive ones, Π𝑡
𝑢, exist. For a new user 𝑢+ 1, the

initial weights 𝜔0
𝑢+1 = 𝜔𝐵𝑢 .

the current weights 𝜔𝑡𝑢 writes,

𝜔𝑡+1
𝑢 ← 𝜔𝑡𝑢 − 𝜂∇ℒ̂ℬ𝑡

𝑢
(𝜔𝑡𝑢) (4.4)

To prevent from a very few interactions or from bot attacks, two thresholds 𝑏
and 𝐵 are fixed over the parameter updates. For a new user 𝑢+ 1, the parameters
are initialized as the last updated weights from the previous user’s interactions in
the case where the corresponding number of updates 𝑡 was in the interval [𝑏, 𝐵]; i.e.
𝜔0
𝑢+1 = 𝜔𝑡𝑢. On the contrary case, they are set to the same previous initial parameters;

i.e., 𝜔0
𝑢+1 = 𝜔0

𝑢.

4.4.2 Convergence analysis

We provide proofs of convergence for the SAROS algorithm under the typical hypothesis
that the system is not instantaneously affected by the sequential learning of the
weights. This hypothesis stipulates that the generation of items shown to users is
independently and identically distributed with respect to some stationary in time
underlying distribution 𝒟ℐ , and constitutes the main hypothesis of almost all the
existing studies. Furthermore, we make the following technical assumption.

Assumption 1 Let the loss functions ℓ𝑢,𝑖,𝑖′(𝜔) and ℒ(𝜔), 𝜔 ∈ R𝑑 be such that for
some absolute constants 𝛾 ≥ 𝛽 > 0 and 𝜎 > 0 :

1. ℓ𝑢,𝑖,𝑖′(𝜔) is non-negative for any user 𝑢 and a pair of items (𝑖, 𝑖′);

2. ℓ𝑢,𝑖,𝑖′(𝜔) is twice continuously differentiable, with a continuous Lipschitz gradient
for both instantaneous loss and the ranking loss (Chapter 2 definition 1). That is
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Algorithm 1 *
Algorithm SAROS: SequentiAl RecOmmender System

Input: A time-ordered sequence (user and items) {(𝑢, (𝑖1, . . . , 𝑖|𝐼𝑢|)}𝑁𝑢=1 drawn i.i.d.
from 𝒟𝒰 ,ℐ
Input: maximal 𝐵 and minimal 𝑏 number of blocks allowed per user 𝑢
Input: number of epochs 𝐸
Input: initial parameters 𝜔0

1, and (possibly non-convex) surrogate loss function
ℓ(𝜔)
for 𝑒 ∈ 𝐸 do

for 𝑢 ∈ 𝒰 do
Let N𝑡

𝑢 = ∅, Π𝑡
𝑢 = ∅ be the sets of positive and negative items, counter

𝑡 = 0
for 𝑖𝑘 ∈ ℐ𝑢 do ◁ Consider all items displayed to user 𝑢

while 𝑡 ≤ 𝐵 do
if 𝑢 provides a negative feedback on item 𝑖𝑘 then

N𝑡
𝑢 ← N𝑡

𝑢 ∪ {𝑖𝑘}
else

Π𝑡
𝑢 ← Π𝑡

𝑢 ∪ {𝑖𝑘}
end if
if N𝑡

𝑢 ̸= ∅ and Π𝑡
𝑢 ̸= ∅ and 𝑡 ≤ 𝐵 then

𝜔𝑡+1
𝑢 ← 𝜔𝑡𝑢 −

𝜂
|N𝑡

𝑢||Π𝑡
𝑢|

∑︁
𝑖∈Π𝑡

𝑢

∑︁
𝑖′∈N𝑡

𝑢

∇ℓ𝑢,𝑖,𝑖′(𝜔𝑡𝑢)

𝑡 = 𝑡+ 1,N𝑡
𝑢 = ∅, Π𝑡

𝑢 = ∅
end if

end while
end for
if 𝑡 ≥ 𝑏 then
𝜔0
𝑢+1 = 𝜔𝑡𝑢

else
𝜔0
𝑢+1 = 𝜔0

𝑢

end if
end for

end for
Return: 𝜔̄𝑁 =

∑︀
𝑢∈𝒰 𝜔

0
𝑢

for any user 𝑢 and a pair of items (𝑖, 𝑖′) we have ‖∇ℓ𝑢,𝑖,𝑖′(𝜔)−∇ℓ𝑢,𝑖,𝑖′(𝜔′)‖2 ≤
𝛾‖𝜔 − 𝜔′‖2, as well as ‖∇ℒ(𝜔)−∇ℒ(𝜔′)‖2 ≤ 𝛽‖𝜔 − 𝜔′‖2,.

3. Variance of the empirical loss is bounded E𝒟

⃦⃦⃦
∇ℒ̂𝑢(𝜔)−∇ℒ(𝜔)

⃦⃦⃦2
2
≤ 𝜎2.

Moreover, there exist some positive lower and upper bounds 𝑏 and 𝐵, such that the
number of updates for any 𝑢 is within the interval [𝑏, 𝐵] almost surely.

Prior to the proof of the theorems, we first prove the following lemma
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Lemma 1 Let a sequence of items (𝑖1, . . . , 𝑖𝑚) be generated i.i.d. according to a
distribution 𝒟𝑢 over items for a given user 𝑢. Then for any sequence of blocks
{ℬ1

𝑢, . . . ,ℬ𝑘𝑢} generated by algorithm SAROS for that user we have,

E𝒟𝑢

[︃
1

𝑘

𝑘∑︁
𝑡=1

∇ ̂︀ℒℬ𝑡
𝑢
(𝜔)

]︃
= ∇ ̂︀ℒ𝑢(𝜔), with ̂︀ℒ𝑢(𝜔)=

1

|ℐ+𝑢 ||ℐ−𝑢 |
∑︁
𝑖∈ℐ+

𝑢

∑︁
𝑖′∈ℐ−

𝑢

ℓ𝑢,𝑖,𝑖′(𝜔), (4.5)

where ̂︀ℒℬ𝑡
𝑢
(𝜔) =

1

|Π𝑡
𝑢||N𝑡

𝑢|
∑︁
𝑖∈Π𝑡

𝑢

∑︁
𝑖′∈N𝑡

𝑢

ℓ𝑢,𝑖,𝑖′(𝜔),

and Π𝑡
𝑢, 𝑁 𝑡

𝑢 are the sets of positive (resp. negative) interactions in the block ℬ𝑡𝑢.
In other words, the expected gradient of empirical loss, taken over random blocks

ℬ𝑡𝑢, . . . ,ℬ𝑘𝑢 generated by the SAROS algorithm for a user 𝑢, equals to the expected loss
over 𝑢. Moreover, if for any (𝑢, 𝑖, 𝑖′) one has ‖∇𝑙𝑢,𝑖,𝑖′(𝜔)‖22 ≤ 𝛾2, then

E𝒟𝑢

⃦⃦⃦⃦
∇ ̂︀ℒ𝑢(𝜔)− 1

𝑘

𝑘∑︁
𝑡=1

∇ ̂︀ℒℬ𝑡
𝑢
(𝜔)

⃦⃦⃦⃦2
2

≤ 3
𝛾2

𝑘
.

Proof. Consider the expectation of the gradient of the empirical loss over a user
𝑢, ∇ℒℬ𝑡

𝑢
(𝜔), taken with respect to a block ℬ𝑡. For a fixed block, ℬ𝑡, the value of

|𝑁 𝑡
𝑢| · |Π𝑡

𝑢| is a constant. Thus, due to the linearity of expectation, for the sum of
random ℓ𝑢,𝑖,𝑖′(𝜔) we have

E𝒟ℬ𝑡
𝑢
∇ ̂︀ℒℬ𝑡

𝑢
(𝜔) =E𝒟ℬ𝑡

𝑢

⎡⎣ 1

|Π𝑡
𝑢||N𝑡

𝑢|
∑︁
𝑖∈Π𝑡

𝑢

∑︁
𝑖′∈N𝑡

𝑢

∇ℓ𝑢,𝑖,𝑖′(𝜔)

⎤⎦
=

1

|Π𝑡
𝑢||N𝑡

𝑢|
∑︁
𝑖∈Π𝑡

𝑢

∑︁
𝑖′∈N𝑡

𝑢

∇ ̂︀ℒ𝑢(𝜔) = ∇ ̂︀ℒ𝑢(𝜔) (4.6)

where the first sum consists of a non-zero number of addends as each block contains
at least one positive and one negative item.

Thus, by the law of total expectation, E𝜓𝑓(𝜓) = E𝜂E𝜓|𝜂𝑓(𝜓) for any properly
defined random variables 𝜓, 𝜂 and a function 𝑓 , we have

E𝒟𝑢

[︃
1

𝑘

𝑘∑︁
𝑡=1

∇ ̂︀ℒℬ𝑡(𝜔)

]︃
=

1

𝑘
E𝒟𝑢

[︃
𝑘∑︁
𝑡=1

∇ ̂︀ℒℬ𝑡(𝜔)

]︃
=

1

𝑘

𝑘∑︁
𝑡=1

E
𝒟ℬ𝑡

𝑢
𝑢
E𝒟ℬ𝑡

𝑢

[︂
∇ ̂︀ℒℬ𝑡

𝑢
(𝜔)

⃒⃒⃒⃒
ℬ𝑡𝑢
]︂

=
1

𝑘

𝑘∑︁
𝑡=1

E
𝒟ℬ𝑡

𝑢
𝑢
∇ ̂︀ℒ𝑢(𝜔) = ∇ ̂︀ℒ𝑢(𝜔)

where the last equality is due to Eq. (4.6).
To proof the bound on variance, recall, that SAROS constructs the blocks sequentially,

so that the number of positive and negative items in any block ℬ𝑡𝑢 is affected only
by the previous and the next block. Thus, any block after the next to ℬ𝑡𝑢 and
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before the previous to ℬ𝑡𝑢 are conditionally independent for any fixed ℬ𝑡𝑢. Then if
𝑉 2 = E𝒟ℬ𝑡

𝑢
‖∇ ̂︀ℒℬ𝑡

𝑢
(𝜔)−∇ ̂︀ℒ𝑢(𝜔)‖22 one has:

E𝒟ℬ1
𝑢 ,...,...,𝒟ℬ𝑘

𝑢

⃦⃦⃦⃦
1

𝑘

𝑘∑︁
𝑗=1

(︁
∇ ̂︀ℒℬ𝑗

𝑢
(𝜔)−∇ ̂︀ℒ𝑢(𝜔))︁⃦⃦⃦⃦2

2

= E𝒟ℬ1
𝑢 ,...,...,𝒟ℬ𝑘

𝑢

⎡⎣ 1

𝑘2

𝑘∑︁
𝑖,𝑗=1

(︂
∇ ̂︀ℒℬ𝑖

𝑢
(𝜔)−∇ ̂︀ℒ𝑢(𝜔))︂(︂∇ ̂︀ℒℬ𝑗

𝑢
(𝜔)−∇ ̂︀ℒ𝑢(𝜔))︂⊤

⎤⎦
= E𝒟ℬ2

𝑢
E𝒟ℬ1

𝑢
,𝒟ℬ3

𝑢
...,𝒟ℬ𝑘

𝑢
|ℬ2

𝑢

⎡⎣ 1

𝑘2

𝑘∑︁
𝑖,𝑗=1

(︂
∇ ̂︀ℒℬ𝑖

𝑢
(𝜔)−∇ ̂︀ℒ𝑢(𝜔))︂(︂∇ ̂︀ℒℬ𝑗

𝑢
(𝜔)−∇ ̂︀ℒ𝑢(𝜔))︂⊤⃒⃒⃒⃒ℬ2

⎤⎦
≤ 3𝑉 2

𝑘2
+

1

𝑘2
E𝒟ℬ1

𝑢 ,𝒟ℬ3
𝑢 ,...,𝒟ℬ𝑘

𝑢

𝑘∑︁
𝑖,𝑗=1
𝑖,𝑗 ̸=2

(︂
∇ ̂︀ℒℬ𝑖

𝑢
(𝜔)−∇ ̂︀ℒ𝑢(𝜔))︂(︂∇ ̂︀ℒℬ𝑗

𝑢
(𝜔)−∇ ̂︀ℒ𝑢(𝜔))︂⊤

≤3𝑉
2

𝑘

To conclude the proof it remains to note that 𝑉 2 ≤ 𝛾2 as 𝑉 2 ≤ E𝒟ℬ𝑡
𝑢
‖∇ ̂︀ℒℬ𝑡

𝑢
‖22. �

Our main result in this chapter is the following theorem which provides a bound
over the deviation of the ranking loss with respect to the sequence of weights found
by the SAROS algorithm and its minimum in the case where the latter is convex.

Theorem 4 ([4]) Let ℓ𝑢,𝑖,𝑖′(𝜔) and ℒ(𝜔) satisfy Assumption 1. Then for any constant
step size 𝜂, verifying 0 < 𝜂 ≤ min{1/(𝛽𝐵), 1/

√︀
𝑁𝐵(𝜎2 + 3𝛾2/𝑏)}, and any set of

users 𝒰 = {1, . . . , 𝑁}; algorithm SAROS iteratively generates a sequence {𝜔0
𝑗}𝑢∈𝒰 such

that

1

𝛽
E𝒟‖∇ℒ(𝜔0

𝑢)‖22 ≤
𝛽𝐵∆2

ℒ
𝑁

+ 2∆ℒ

√︂
𝐵𝜎2 + 3𝐵𝛾2/𝑏

𝑁
, ∆2

ℒ =
2

𝛽
(ℒ(𝜔0)− ℒ(𝜔*))

where the expectation is taken with respect to users chosen randomly according to the
uniform distribution 𝑝𝑢 = 1

𝑁
.

Furthermore, if the ranking loss ℒ(𝜔) is convex, then for any 𝜔̄𝑢 =
∑︀

𝑗≤𝑢𝜔
0
𝑗 we

have

ℒ(𝜔̄𝑢)− ℒ(𝜔*) ≤
𝛽𝐵∆𝜔2

𝑁
+ 2∆𝜔

√︂
𝐵𝜎2 + 3𝐵𝛾2/𝑏

𝑁
, ∆2

𝜔 = ‖𝜔0 − 𝜔*‖22.

Proof of the theorem is mainly based on the randomized stochastic gradient descent
analysis [Ghadimi and Lan, 2013].
Proof. Let 𝑔𝑡𝑢 be a gradient of the loss function taken for user 𝑢 over block ℬ𝑡𝑢:

𝑔𝑡𝑢 =
1

|𝑁 𝑡
𝑢||Π𝑡

𝑢|
∑︁

𝑖∈𝑁𝑡
𝑢,𝑖

′∈Π𝑡
𝑢

∇ℓ𝑢,𝑖,𝑖′(𝜔𝑡−1
𝑢 ),
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By Lemma 1 we have E𝒟ℬ𝑡
𝑢
𝑔𝑡𝑢 = ∇ℒ̂𝑢(𝜔). In the notation of Algorithm SAROS,

𝜔𝑡+1
𝑢 = 𝜔𝑡𝑢 − 𝜂𝑔𝑡𝑢, 𝜔0

𝑢+1 = 𝜔|ℬ𝑢|
𝑢 , 𝜔0

𝑢+1 − 𝜔0
𝑢 = 𝜂

∑︁
𝑡∈ℬ𝑢

𝑔𝑡𝑢.

Let 𝛿𝑡𝑢 = 𝑔𝑡𝑢−∇ℒ(𝜔0
𝑢), and let ℬ𝑢 be a set of all blocks corresponding to user 𝑢. Using

the smoothness of the loss function implied by Assumption 1 one has for 𝜔0
𝑢+1:

ℒ(𝜔0
𝑢+1) ≤ ℒ(𝜔0

𝑢)− ⟨∇ℒ(𝜔0
𝑢),𝜔

0
𝑢+1 − 𝜔0

𝑢⟩+
𝛽

2
𝜂2

⃦⃦⃦⃦
⃦∑︁
𝑡∈ℬ𝑢

𝑔𝑡𝑢

⃦⃦⃦⃦
⃦
2

2

= ℒ(𝜔0
𝑢)− 𝜂

∑︁
𝑡∈ℬ𝑢

⟨∇ℒ(𝜔0
𝑢), 𝑔

𝑡
𝑢⟩+

𝛽

2
𝜂2

⃦⃦⃦⃦
⃦∑︁
𝑡∈ℬ𝑢

𝑔𝑡𝑢

⃦⃦⃦⃦
⃦
2

2

= ℒ(𝜔0
𝑢)− 𝜂|ℬ𝑢|‖∇ℒ(𝜔0

𝑢)‖22 − 𝜂
∑︁
𝑡∈ℬ𝑢

⟨∇ℒ(𝜔0
𝑢), 𝛿

𝑡
𝑢⟩

+
𝛽

2
𝜂2

[︃
|ℬ𝑢|2‖∇ℒ(𝜔0

𝑢)‖22 + 2|ℬ𝑢|
∑︁
𝑡∈ℬ𝑢

⟨∇ℒ(𝜔0
𝑢), 𝛿

𝑡
𝑢⟩+

∑︁
𝑡∈ℬ𝑢

‖𝛿𝑡𝑢‖2
]︃

= ℒ(𝜔𝑢0)−
(︂
𝜂𝑢 −

𝛽

2
𝜂2𝑢

)︂
‖∇ℒ(𝜔0

𝑢)‖22

− (𝜂𝑢 − 𝛽𝜂2𝑢)
∑︁
𝑡∈ℬ𝑢

⟨
∇ℒ(𝜔0

𝑢),
𝛿𝑡𝑢
|ℬ𝑢|

⟩
+
𝛽

2
𝜂2𝑢
∑︁
𝑡∈ℬ𝑢

⃦⃦⃦⃦
𝛿𝑡𝑢
|ℬ𝑢|

⃦⃦⃦⃦2
2

where 𝜂𝑢 = |ℬ𝑢|𝜂.

Then re-arranging and summing up, we have

𝑁∑︁
𝑢=1

(︂
𝜂𝑢 −

𝛽

2
𝜂2𝑢

)︂
‖∇ℒ(𝜔𝑢)‖22

≤ ℒ(𝜔0)− ℒ(𝜔*)−
𝑁∑︁
𝑢=1

(𝜂𝑢 − 𝛽𝜂2𝑢)

⟨
∇ℒ(𝜔𝑢),

∑︁
𝑡∈ℬ𝑢

𝛿𝑡𝑢
|ℬ𝑢|

⟩
+
𝛽

2

𝑁∑︁
𝑢=1

𝜂2𝑢

⃦⃦⃦⃦
⃦∑︁
𝑡∈ℬ𝑢

𝛿𝑡𝑢
|ℬ𝑢|

⃦⃦⃦⃦
⃦
2

2

By Lemma 1, the stochastic gradient taken with respect to a block of items gives
an unbiased estimate of the gradient, thus

E𝒟𝑢

[︂⟨
∇ℒ(𝜔𝑢),

∑︁
𝑡∈ℬ𝑢

𝛿𝑡𝑢
|ℬ𝑢|

⟩⃒⃒⃒⃒
𝜉𝑢

]︂
= 0,

where 𝜉𝑢 is a set of users preceding 𝑢. As in the conditions of the theorem 𝑏 ≤ ℬ𝑢 almost
surely, one has by Lemma 1 and the law of total variation, Var𝜓 = E[Var(𝜓|𝜂)] +
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Var[E[𝜓|𝜂]]:

E𝒟𝑢

⃦⃦⃦⃦
⃦∑︁
𝑡∈ℬ𝑢

𝛿𝑡𝑢
|ℬ𝑢|

⃦⃦⃦⃦
⃦
2

2

≤ 𝜎2 +
3𝛾2

𝑏
(4.7)

where the first attend on the right-hand side of Eq. (4.7) comes from Assumption 1,
and the second term is due to Lemma 1.

Finally, one obtains

𝑁∑︁
𝑢=1

(︂
𝜂𝑢 −

𝛽

2
𝜂2𝑢

)︂
E𝜉𝑁 ‖∇ℒ(𝜔𝑢)‖22 ≤ ℒ(𝜔0)− ℒ(𝜔*) +

𝛽(𝜎2𝑏+ 3𝛾2)

2𝑏

𝑁∑︁
𝑢=1

𝜂2𝑢.

Condition 𝛽𝜂𝐵 ≤ 1 implies 𝜂𝑢 − 𝛽𝜂2𝑢/2 ≥ 𝜂𝑢/2, thus

1

𝛽
E𝒟 ‖∇ℒ(𝜔)‖22 ≤

1∑︀𝑁
𝑢=1 𝜂𝑢

[︃
2(ℒ(𝜔0)− ℒ(𝜔*))

𝛽
+

(︂
𝜎2 + 3

𝛾2

𝑏

)︂ 𝑁∑︁
𝑢=1

𝜂2𝑢

]︃

Taking

𝜂 = min {𝜂1, 𝜓𝜂2} , 𝜂1 =
1

𝛽𝐵
, 𝜂2 =

1√︀
𝑁𝐵(𝜎2 + 3𝛾2/𝑏)

for some 𝜓 > 0. Let 𝐷ℒ =
√︀

2(ℒ(𝜔0)− ℒ(𝜔*))/𝛽, then

1

𝛽
E𝒟 ‖∇ℒ(𝜔)‖22 ≤

𝐷2
ℒ

𝑁 min{𝜂1, 𝜓𝜂2}
+

(︂
𝜎2 + 3

𝛾2

𝑏

)︂∑︀𝑁
𝑢=1 𝜂

2
𝑢∑︀𝑁

𝑢=1 𝜂𝑢

≤ 𝐷2
ℒ

𝑁𝜂1
+

𝐷2
ℒ

𝑁𝜓𝜂2
+

(︂
𝜎2 + 3

𝛾2

𝑏

)︂
𝐵𝜓𝜂2

≤ 𝛽𝐵𝐷2
ℒ

𝑁
+

√︂
𝐵𝜎2 + 3𝐵𝛾2/𝑏

𝑁

(︂
𝒟2

ℒ
𝜓

+ 𝜓

)︂
≤ 𝛽𝐵𝐷2

ℒ
𝑁

+ 2𝒟ℒ

√︂
𝐵𝜎2 + 3𝐵𝛾2/𝑏

𝑁

To conclude the proof it remains to provide a bound in the case of convex loss function.
Due to the smoothness of the loss function:

1

𝛽
‖∇ℒ(𝜔𝑢)‖22 ≤ ⟨∇ℒ(𝜔𝑢),𝜔𝑢 − 𝜔*⟩ (4.8)
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Combining it with the smoothness condition, Eq. (4.8), we have

𝜑2
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(4.9)

Summing up the Inequalities (4.9) above for all 𝑢, we have
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The rest of the proof exactly follow along the lines of that of first part and hence the
details are omitted. �

This result implies that the loss over a sequence of weights (𝜔0
𝑢)𝑢∈𝒰 generated by

the algorithm converges to the true minimizer of the ranking loss ℒ(𝜔) with a rate
proportional to 𝑂(1/

√
𝑢). The stochastic gradient descent strategy implemented in the

Bayesian Personalized Ranking model (BPR) [Rendle et al., 2009] also converges to the
minimizer of the ranking loss ℒ(𝜔) with the same rate. However, the main difference
between BPR and SAROS is their computation time. As stated previously, the expected
number of rejected random pairs sampled by algorithm BPR before making one update
is 𝑂(|ℐ𝑢|2) while with SAROS, blocks are created sequentially as and when users interact
with the system. For each user 𝑢, weights are updated whenever a block is created,
with the overall complexity of 𝑂(max𝑡(|Π𝑡

𝑢| × |N𝑡
𝑢|)), with max𝑡(|Π𝑡

𝑢| × |N𝑡
𝑢|)≪ |ℐ𝑢|2.
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4.5 Experimental Setup and Results
In this section, we provide an empirical evaluation of our optimization strategy on
some popular benchmarks proposed for evaluating RS. All subsequently discussed com-
ponents were implemented in Python3 using the TensorFlow library 1 and computed
on Skoltech CDISE HPC cluster “Zhores” [Zacharov et al., 2019]. We first proceed
with a presentation of the general experimental set-up, including a description of the
datasets and the baseline models.

Datasets. We report results obtained on five publicly available datasets, for the
task of personalized Top-N recommendation on the following collections :

• ML-1M [Harper and Konstan, 2015] and Netflix [Bennett and Lanning, 2007]
consist of user-movie ratings, on a scale of one to five, collected from a movie
recommendation service and the Netflix company. The latter was released to
support the Netflix Prize competition [Bennett and Lanning, 2007]. For both
datasets, we consider ratings greater or equal to 4 as positive feedback, and
negative feedback otherwise.

• We extracted a subset out of the Outbrain dataset from of the Kaggle challenge2

that consisted in the recommendation of news content to users based on the
1,597,426 implicit feedback collected from multiple publisher sites in the United
States.

• Kasandr3 dataset [Sidana et al., 2017] contains 15,844,717 interactions of
2,158,859 users in Germany using Kelkoo’s (http://www.kelkoo.fr/) online
advertising platform.

• Pandor4 is another publicly available dataset for online recommendation [Sidana
et al., 2018] provided by Purch (http://www.purch.com/). The dataset records
2,073,379 clicks generated by 177,366 users of one of the Purch’s high-tech
website over 9,077 ads they have been shown during one month.

Table 4.2 presents some detailed statistics about each collection. Among these, we
report the average number of positive (click, like) feedback and the average number of
negative feedback. As we see from the table, Outbrain, Kasandr, and Pandor
datasets are the most unbalanced ones in regards to the number of preferred and
non-preferred items.

To construct the training and the test sets, we discarded users who did not interact
over the shown items and sorted all interactions according to time-based on the
existing time-stamps related to each dataset. Furthermore, we considered 80% of each
user’s first interactions (both positive and negative) for training, and the remaining

1https://www.tensorflow.org/.
2https://www.kaggle.com/c/outbrain-click-prediction
3https://archive.ics.uci.edu/ml/datasets/KASANDR
4https://archive.ics.uci.edu/ml/datasets/PANDOR
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Data |𝒰| |ℐ| Sparsity Avg. # of + Avg. # of −
ML-1M 6,040 3,706 .9553 95.2767 70.4690
Outbrain 49,615 105,176 .9997 6.1587 26.0377
Pandor 177,366 9,077 .9987 1.3266 10.3632
Netflix 90,137 3,560 .9914 26.1872 20.2765
Kasandr 2,158,859 291,485 .9999 2.4202 51.9384

Table 4.2: Statistics on the # of users and items; as well as the sparsity and the
average number of + (preferred) and − (non-preferred) items on ML-1M, Netflix,
Outbrain, Kasandr and Pandor collections after preprocessing.

Dataset |𝑆𝑡𝑟𝑎𝑖𝑛| |𝑆𝑡𝑒𝑠𝑡| 𝑝𝑜𝑠𝑡𝑟𝑎𝑖𝑛 𝑝𝑜𝑠𝑡𝑒𝑠𝑡
ML-1M 797,758 202,451 58.82 52.39
Outbrain 1,261,373 336,053 17.64 24.73
Pandor 1,579,716 493,663 11.04 12.33
Netflix 3,314,621 873,477 56.27 56.70
RecSys’16 5,048,653 1,281,909 17.07 13.81
Kasandr 12,509,509 3,335,208 3.36 8.56

Table 4.3: Number of interactions used for train and test on each dataset, and the
percentage of positive feedback among these interactions.

for the test. Table 4.3 presents the size of the training and the test sets as well as
the percentage of positive feedback (preferred items) for all collections ordered by
increasing training size. The percentage of positive feedback is inversely proportional
to the size of the training sets, attaining 3% for the largest, Kasandr collection.

We also analyzed the distributions of the number of blocks and their size for
different collections. Figure 4-2 (left) shows boxplots representing the logarithm of
the number of blocks through their quartiles for all collections. From these plots,
it comes out that the distribution of the number of blocks on Pandor, Netflix
and Kasandr are heavy-tailed with more than the half of the users interacting no
more than 10 times with the system. Furthermore, we note that on Pandor the
average number of blocks is much smaller than on the two other collections; and
that on all three collections the maximum numbers of blocks are 10 times more than
the average. These plots suggest that a very small number of users (perhaps bots)
have an abnormal interaction with the system generating a huge amount of blocks on
these three collections. To have a better understanding, Figure 4-2 (right) depicts the
number of blocks concerning their size on Kasandr. The distribution of the number
of blocks follows a power law distribution and it is the same for the other collections
that we did not report for the sake of space. In all collections, the number of blocks
having more than 5 items drops drastically. As the SAROS does not sample positive
and negative items for updating the weights, these updates are performed on blocks
of small size, and are made very often.

71



M
L-

1M

O
ut

br
ai
n

Pa
nd

or

Net
fl
ix

K
as

an
dr

0

1

2

3

lo
g
1
0
(N

um
be

r
of

bl
oc

ks
)

1-5 5-10 10-1515-2020-2525-3030-35
0

0.5

1

1.5

·105

Size of the blocks

N
um

be
r

of
bl

oc
ks

(a) (b)

Figure 4-2: (a) Boxplots depicting the logarithm of the number of blocks through
their quartiles for all collections. The median (resp. mean) is represented by the band
(resp. diamond) inside the box. The ends of the whiskers represent the minimum and
the maximum of the values. (b) Distributions of negative feedback over the blocks in
the training set on Kasandr.
Compared approaches. To validate the sequential approach described earlier,
we compared the proposed SAROS algorithm5 with the following methods:

• MostPop is a non-learning based approach which consists in recommending the
same set of popular items to all users.

• Matrix Factorization (MF) [Koren, 2008], is a factor model which decomposes the
matrix of user-item interactions into a set of low dimensional vectors in the same
latent space, by minimizing a regularized least square error between the actual
value of the scores and the dot product over the user and item representations.

• BPR [Rendle et al., 2009] corresponds to the model described in the problem
statement above, a stochastic gradient-descent algorithm, based on bootstrap
sampling of training triplets, and BPR𝑏 the batch version of the model which
consists in finding the model parameters 𝜔 = (U,V) by minimizing the global
ranking loss over all the set of triplets simultaneously (Eq. 4.1).

• Prod2Vec [Grbovic et al., 2015], learns the representation of items using a Neural
Networks based model, called word2vec [Mikolov et al., 2013a], and performs
next-items recommendation using the similarity between the representations of
items.

• GRU4Rec+ [Hidasi and Karatzoglou, 2018] is an extended version of GRU4Rec
[Hidasi et al., 2016a] adopted to different loss functions, that applies recurrent
neural network with a GRU architecture for session-based recommendation. The
approach considers the session as the sequence of clicks of the user that depends
on all the previous ones for learning the model parameters by optimizing a
regularized approximation of the relative rank of the relevant item which favors
the preferred items to be ranked at the top of the list.

5The code is available on https://github.com/SashaBurashnikova/SAROS.
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• Caser [Tang and Wang, 2018a] is a CNN based model that embeds a sequence of
interactions into a temporal image and latent spaces and find local characteristics
of the temporal image using convolution filters.

• SASRec [Kang and McAuley, 2018] uses an attention mechanism to capture
long-term semantics and then predicts the next item to present based on a user’s
action history.

Hyper-parameters of different models and the dimension of the embedded space for
the representation of users and items; as well as the regularisation parameter over the
norms of the embeddings for BPR, BPR𝑏, MF, Caser and SAROS approaches were found
by cross-validation. We fixed 𝑏 and 𝐵, used in SAROS, to respectively the minimum
and the average number of blocks found on the training set of each corresponding
collection. With the average number of blocks being greater than the median on all
collections, the motivation here is to consider the maximum number of blocks by
preserving the model from the bias brought by the too many interactions of the very
few number of users. For more details regarding the exact values for the parameters,
see the Table 4.4.

Parameter ML Outbrain Pandor Netflix Kasandr
𝐵 78 5 2 22 5
𝑏 1 2 1 1 1

Learning rate .05 .05 .05 .05 .4

Table 4.4: SAROS parameters values.

Evaluation setting and results. We begin our comparisons by testing BPR𝑏, BPR
and SAROS approaches over the logistic ranking loss (Eq. 4.2) which is used to train
them. Results on the test, after training the models 30 minutes and at convergence
are shown in Table 4.5. BPR𝑏 (resp. SAROS) techniques have the worse (resp. best)
test loss on all collections, and the difference between their performance is larger for
bigger size datasets.

Dataset
Test Loss, Eq. (4.1)

30 min At convergence
BPR𝑏 BPR SAROS BPR𝑏 BPR SAROS

ML-1M 0.751 0.678 0.623 0.744 0.645 0.608
Outbrain 0.753 0.650 0.646 0.747 0.638 0.635
Pandor 0.715 0.671 0.658 0.694 0.661 0.651
Netflix 0.713 0.668 0.622 0.694 0.651 0.614
Kasandr 0.663 0.444 0.224 0.631 0.393 0.212

Table 4.5: Comparison between BPR, BPR𝑏 and SAROS approaches in terms on test loss
after 30 minutes of training and at convergence.
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These results suggest that the local ranking between preferred and no-preferred
items present in the blocks of the training set reflects better the preference of users than
the ranking of random pairs of items or their global ranking without this contextual
information. Furthermore, as in SAROS updates occur after the creation of a block,
and that the most of the blocks contain very few items (Figure 4-2 - right), weights
are updated more often than in BPR or BPR𝑏. This is depicted in Figure 4-3 which
shows the evolution of the training error over time for BPR𝑏, BPR and SAROS on all
collections. As we can see, the training error decreases in all cases, and theoretically,
the three approaches converge to the same minimizer of the ranking loss (Eq. 4.1).
However, the speed of convergence is much faster with SAROS.
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Figure 4-3: Evolution of the loss on training sets for both BPR𝑏, BPR and SAROS as a
function of time in minutes for all collections.

We also compare the performance of all the approaches on the basis of the common
ranking metrics, which are the Mean Average Precision at rank 𝐾 (MAP@K) over all
users defined as MAP@K = 1

𝑁

∑︀𝑁
𝑢=1 AP@K(𝑢), where AP@K(𝑢) is the average precision of

preferred items of user 𝑢 in the top 𝐾 ranked ones; and the Normalized Discounted
Cumulative Gain at rank 𝐾 (NDCG@K) that computes the ratio of the obtained ranking
to the ideal case and allow to consider not only binary relevance as in Mean Average
Precision, NDCG@K = 1

𝑁

∑︀𝑁
𝑢=1

DCG@K(𝑢)
IDCG@K(𝑢) , where DCG@K(𝑢) =

∑︀𝐾
𝑖=1

2𝑟𝑒𝑙𝑖−1
log2(1+𝑖)

, 𝑟𝑒𝑙𝑖 is the
graded relevance of the item at position 𝑖; and IDCG@K(𝑢) is DCG@K(𝑢) with an ideal
ordering equals to

∑︀𝐾
𝑖=1

1
log2(1+𝑖)

for 𝑟𝑒𝑙𝑖 ∈ [0, 1] [Schutze et al., 2008].
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MAP@5 MAP@10
ML-1M Outbrain Pandor Netflix Kasandr ML-1M Outbrain Pandor Netflix Kasandr

MostPop .074 .007 .003 .039 .002 .083 .009 .004 .051 .3e-5
Prod2Vec .793 .228 .063 .669 .012 .772 .228 .063 .690 .012

MF .733 .531 .266 .793 .170 .718 .522 .267 .778 .176
BPR𝑏 .713 .477 .685 .764 .473 .688 .477 .690 .748 .488
BPR .826 .573 .734 .855 .507 .797 .563 .760 .835 .521

GRU4Rec+ .777 .513 .673 .774 .719 .750 .509 .677 .757 .720
Caser .718 .471 .522 .749 .186 .694 .473 .527 .733 .197
SASRec .776 .542 .682 .819 .480 .751 .534 .687 .799 .495
SAROS .837 .619 .750 .866 .732 .808 .607 .753 .846 .747

NDCG@5 NDCG@10
ML-1M Outbrain Pandor Netflix Kasandr ML-1M Outbrain Pandor Netflix Kasandr

MostPop .090 .011 .005 .056 .002 .130 .014 .008 .096 .002
Prod2Vec .758 .232 .078 .712 .012 .842 .232 .080 .770 .012

MF .684 .612 .300 .795 .197 .805 .684 .303 .834 .219
BPR𝑏 .652 .583 .874 .770 .567 .784 .658 .890 .849 .616
BPR .776 .671 .889 .854 .603 .863 .724 .905 .903 .650

GRU4Rec+ .721 .633 .843 .777 .760 .833 .680 .862 .854 .782
Caser .665 .585 .647 .750 .241 .787 .658 .666 .834 .276
SASRec .721 .645 .852 .819 .569 .832 .704 .873 .883 .625
SAROS .788 .710 .903 .865 .791 .874 .755 .913 .914 .815

Table 4.6: Comparison between MostPop, Prod2Vec, MF, BPR𝑏, BPR, GRU4Rec+, SASRec,
Caser and SAROS approaches in terms of MAP@5 and MAP@10(top), and NDCG@5 and
NDCG@10(down). Best performance is in bold and the second best is underlined.

Table 4.6 presents MAP@5 and MAP@10 (top), and NDCG@5 and NDCG@10 (down) of
all approaches over the test sets of the different collections. The non-machine learning
method, MostPop, gives results of an order of magnitude lower than the learning based
approaches. Moreover, the factorization model MF which predicts clicks by matrix
completion is less effective when dealing with implicit feedback than ranking based
models especially on large datasets where there are fewer interactions. We also found
that embeddings found by ranking based models, in the way that the user preference
over the pairs of items is preserved in the embedded space by the dot product, are
more robust than the ones found by Prod2Vec. When comparing GRU4Rec+ with BPR
that also minimizes the same surrogate ranking loss, the former outperforms it in case
of Kasandr with a huge imbalance between positive and negative interactions. This
is mainly because GRU4Rec+ optimizes an approximation of the relative rank that
favors interacted items to be in the top of the ranked list while the logistic ranking loss,
which is mostly related to the Area under the ROC curve [Usunier et al., 2005], pushes
up clicked items for having good ranks in average. However, the minimization of the
logistic ranking loss over blocks of very small size pushes the clicked item to be ranked
higher than the no-clicked ones in several lists of small size and it has the effect of
favoring the clicked item to be at the top of the whole merged lists of items. Moreover,
it comes out that SAROS is the most competitive approach, performing better than
other approaches over all collections. It also should be noticed the effectiveness of the
usage of both kind of feedback information, where both SAROS and BPR outperformed
even such as last published popular approaches Caser, GRU4Rec+ and SASRec that
used only positive feedback in training the predictions.
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4.6 Conclusion
In this chapter, we first proposed SAROS, a novel learning framework for large-scale
Recommender Systems that sequentially updates the weights of a ranking function
user by user over blocks of items ordered by time where each block is a sequence of
negative items followed by a last positive one. The main hypothesis of the approach is
that the preferred and no-preferred items within a local sequence of user interactions
express better the user preference than when considering the whole set of preferred and
no-preferred items independently one from another. The approach updates the model
parameters user per user over blocks of items constituted by a sequence of unclicked
items followed by a clicked one. The parameter updates are discarded for users who
interact very little or a lot with the system. The second contribution is a theoretical
analysis of the proposed approach which bounds the deviation of the ranking loss
concerning the sequence of weights found by the algorithm and its minimum in the
case where the loss is convex. Empirical results conducted on five real-life implicit
feedback datasets support our founding and show that the proposed approach is
significantly faster than the common batch and online optimization strategies that
consist in updating the parameters over the whole set of users at each epoch, or after
sampling random pairs of preferred and no-preferred items. The approach is also
shown to be highly competitive concerning state of the art approaches on MAP and
NDCG measures.
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Chapter 5

Learning over No-Preferred and
Preferred Sequence of Items for
Robust Recommendation

5.1 Introduction
In this chapter, we consider two variants of the SAROS strategy presented in chapter 4.
The first variant, referred to as SAROS𝑚, updates the model parameters at each time a
block of unclicked items followed by a clicked one is formed after a user’s interaction.
Parameters’ updates are carried out by minimizing the average ranking loss of the
current model that scores the clicked item below the unclicked ones using a momentum
method [Polyak, 1963, Nesterov, 1983, Nesterov, 2018]. The second strategy, which
we refer to as SAROS𝑏, is the same approach described in chapter 4, where model
parameters are updated by minimizing a ranking loss over the same blocks of unclicked
items followed by a clicked one using a gradient descent approach; with the difference
that parameter updates are discarded for users who interact very little or a lot with
the system. The results of this chapter were published at the Journal of Artificial
Intelligence Research (JAIR) in 2021, [2] and the European Conference in Information
Retrieval (ECIR) in 2022 [1].

Our main contributions here are,

• We propose a unified framework in which we study the convergence properties
of both versions of SAROS in the general case of non-convex ranking losses. This
is an extension of our earlier results [4], where only the convergence of SAROS𝑏
was studied in the case of convex ranking losses.

• Furthermore, we provide empirical evaluation over six large publicly available
datasets showing that both versions of SAROS are highly competitive compared to
the state-of-the-art models in terms of quality metrics and, that are significantly
faster than both the batch and the online versions of the algorithm.

• Finally, we show the impact of homogeneous user/items interactions for predic-
tion, after removal of non-stationarities
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The rest of this chapter is organized as follows. Section 5.2 introduces the general
ranking learning problem that we address in this study. Then, in Section 5.2.2, we
present both versions of the SAROS algorithm, SAROS𝑏 and SAROS𝑚, and provide an
analysis of their convergence. Section 5.4 presents experimental results that support
our approach. In Section 5.3 we introduce a strategy to filter the dataset with respect
to homogeneity of the behavior in the users when interacting with the system, based
on the concept of memory. Finally, in Section 5.5, we discuss the outcomes of this
study and give some pointers to further research.

5.2 Framework and Problem Setting
A key point in recommendation is that user preferences for items are largely determined
by the context in which they are presented to the user. A user may prefer (or not)
two items independently of one another, but he or she may have a totally different
preference for these items within a given set of shown items. This effect of local
preference is not taken into account by randomly sampling triplets formed by a user
and corresponding clicked and unclicked items over the entire set of shown items to
the user. Furthermore, triplets corresponding to different users are non uniformly
distributed, as interactions vary from one user to another one, and for parameter
updates; triplets corresponding to low interactions have a small chance to be chosen.
In order to tackle these points; in chapter 4 SAROS was suggested to update the
parameters sequentially.

5.2.1 Two strategies of SAROS

Note that this is different from session-based recommendations [Wang et al., 2019] in
which each session is also made up of a series of user-item interactions that take place
over a period of time. However, session-based recommendations approaches capture
both user’s short-term preference from recent sessions and the preference dynamics
representing the change of preferences from one session to the next by using each
session as the basic input unit, which is not the case in our study.

We propose two strategies for the minimization of (Eq. 4.3, ch. 4) and the update
of weights. In the first one, referred to as SAROS𝑚, the aim is to carry out an effective
minimization of the ranking loss (4.3) by lessening the oscillations of the updates
through the minimum. This is done by defining the updates as the linear combination
of the gradient of the loss of (Eq. 4.3), ∇ ̂︀ℒℬ𝑡

𝑢
(𝜔𝑡𝑢), and the previous update as in the

momentum technique at each iteration 𝑡 :

𝑣𝑡+1
𝑢 = 𝜇 · 𝑣𝑡𝑢 + (1− 𝜇)∇ ̂︀ℒℬ𝑡

𝑢
(𝜔𝑡𝑢) (5.1)

𝜔𝑡+1
𝑢 = 𝜔𝑡𝑢 − 𝛼𝑣𝑡+1

𝑢 (5.2)

where 𝛼 and 𝜇 are hyperparameters of the linear combination. In order to explicitly
take into account bot attacks – in the form of excessive clicks over some target items
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– we propose a second variant of this strategy, referred to as SAROS𝑏. This variant
consists in fixing two thresholds 𝑏 and 𝐵 over the parameter updates. For a new
user 𝑢, model parameters are updated if and only if the number of blocks of items
constituted for this user is within the interval [𝑏, 𝐵].

The pseudo-code of SAROS𝑏 is shown in Algorithm SAROS of chapter 4. The
sequential update rule, for each current user 𝑢 consists in updating the weights by
making one step towards the opposite direction of the gradient of the ranking loss
estimated on the current block, ℬ𝑡𝑢 = N𝑡

𝑢 ⊔ Π𝑡
𝑢 :

𝜔𝑡+1
𝑢 = 𝜔𝑡𝑢 −

𝜂

|N𝑡
𝑢||Π𝑡

𝑢|
∑︁
𝑖∈Π𝑡

𝑢

∑︁
𝑖′∈N𝑡

𝑢

∇ℓ𝑢,𝑖,𝑖′(𝜔𝑡𝑢) (5.3)

For a given user 𝑢, parameter updates are discarded if the number of blocks (ℬ𝑡𝑢)𝑡
for the current user falls outside the interval [𝑏, 𝐵].

5.2.2 Convergence Analysis

The proofs of algorithms’ convergence are given under a common hypothesis that the
sample distribution is not instantaneously affected by learning of the weights, i.e. the
samples can be considered as i.i.d. More precisely, we assume the following hypothesis.

Assumption 2 For an i.i.d. sequence of user and any 𝑢, 𝑡 ≥ 1, we have

1. E(𝑢,ℬ𝑡
𝑢)‖∇ℒ(𝜔𝑡𝑢)−∇ℒ̂ℬ𝑡

𝑢
(𝜔𝑡𝑢)‖22 ≤ 𝜎2,

2. For any 𝑢,
⃒⃒⃒
Eℬ𝑡

𝑢|𝑢⟨∇ℒ(𝜔𝑡𝑢),∇ℒ(𝜔𝑡𝑢)−∇ℒ̂ℬ𝑡
𝑢
(𝜔𝑡𝑢)⟩

⃒⃒⃒
≤ 𝑎2‖∇ℒ(𝜔𝑡𝑢)‖22

for some parameters 𝜎 > 0 and 𝑎 ∈ [0, 1/2) independent of 𝑢 and 𝑡.

The first assumption is common in stochastic optimization and it implies consistency
of the sample average approximation of the gradient. However, this assumption is not
sufficient to prove the convergence because of interdependency of different blocks of
items for the same user.

The second assumption implies that in the neighborhood of the optimal point, we
have ∇ℒ(𝜔𝑡𝑢)

⊤∇ℒ̂ℬ𝑡
𝑢
(𝜔𝑡𝑢) ≈ ‖∇ℒ(𝜔𝑡𝑢)‖22, which greatly helps to establish consistency

and convergence rates for both variants of the methods. In particular, if an empirical
estimate of the loss over a block is unbiased, e.g. Eℬ𝑡

𝑢
∇ℒ̂ℬ𝑡

𝑢
(𝜔) = ∇ℒ(𝜔), the second

assumption is satisfied with 𝑎 = 0.
The following theorem establishes the convergence rate for the SAROS𝑏 algorithm.

Theorem 5 Let ℓ be a (possibly non-convex) 𝛽-smooth loss function. Assume, more-
over, that the number of interactions per user belongs to an interval [𝑏, 𝐵] almost
surely and assumption 2 is satisfied with some constants 𝜎2 and 𝑎, 0 < 𝑎 < 1/2. Then,
for a step-size policy 𝜂𝑡𝑢 ≡ 𝜂𝑢 with 𝜂𝑢 ≤ 1/(𝐵𝛽) for any user 𝑢, one has

min
𝑢: 1≤𝑢≤𝑁

E‖∇ℒ(𝜔0
𝑢)‖22 ≤

2(ℒ(𝜔0
1)− ℒ(𝜔0

𝑢)) + 𝛽𝜎2
∑︀𝑁

𝑢=1

∑︀|ℬ𝑢|
𝑡=1 (𝜂𝑡𝑢)

2∑︀𝑁
𝑢=1

∑︀|ℬ𝑢|
𝑡=1 𝜂

𝑡
𝑢(1− 𝑎2 − 𝛽𝜂𝑡𝑢(1/2− 𝑎2))

. (5.4)
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In particular, for a constant step-size policy 𝜂𝑡𝑢 = 𝜂 = 𝑐/
√
𝑁 satisfies 𝜂𝛽 ≤ 1, one has

min
𝑡,𝑢
‖∇ℒ(𝜔𝑡𝑢)‖22 ≤

2

𝑏(1− 4𝑎2)

2(ℒ(𝜔0
1)− ℒ(𝜔*))/𝑐+ 𝛽𝑐𝜎2𝐵√

𝑁
.

Proof. Since ℓ is a 𝛽 smooth function, we have for any 𝑢 and 𝑡:

ℒ(𝜔𝑡+1
𝑢 ) ≤ ℒ(𝜔𝑡𝑢) + ⟨∇ℒ(𝜔𝑡𝑢),𝜔

𝑡+1
𝑢 − 𝜔𝑡𝑢⟩+

𝛽

2
(𝜂𝑡𝑢)

2‖∇ℒ̂ℬ𝑡
𝑢
(𝜔𝑡𝑢)‖22

= ℒ(𝜔𝑡𝑢)− 𝜂𝑡𝑢⟨∇ℒ(𝜔𝑡𝑢),∇ℒ̂ℬ𝑡
𝑢
(𝜔𝑡𝑢)⟩+

𝛽

2
(𝜂𝑡𝑢)

2‖∇ℒ̂ℬ𝑡
𝑢
(𝜔𝑡𝑢)‖22

Following [Lan, 2020]; by denoting 𝛿𝑡𝑢 = ∇ℒ̂ℬ𝑡
𝑢
(𝜔𝑡𝑢)−∇ℒ(𝜔𝑡𝑢), we have:

ℒ(𝜔𝑡+1
𝑢 ) ≤ ℒ(𝜔𝑡𝑢)− 𝜂𝑡𝑢⟨∇ℒ(𝜔𝑡𝑢),∇ℒ(𝜔𝑡𝑢) + 𝛿𝑡𝑢⟩+

𝛽

2
(𝜂𝑡𝑢)

2‖∇ℒ(𝜔𝑡𝑢) + 𝛿𝑡𝑢‖22

= ℒ(𝜔𝑡𝑢) +
𝛽(𝜂𝑡𝑢)

2

2
‖𝛿𝑡𝑢‖22 −

(︂
𝜂𝑡𝑢 −

𝛽(𝜂𝑡𝑢)
2

2

)︂
‖∇ℒ(𝜔𝑡𝑢)‖22

−
(︀
𝜂𝑡𝑢 − 𝛽(𝜂𝑡𝑢)

2
)︀
⟨∇ℒ(𝜔𝑡𝑢), 𝛿

𝑡
𝑢⟩ (5.5)

Our next step is to take the expectation on both sides of inequality (5.5). According
to Assumption 2, one has for some 𝑎 ∈ [0, 1/2):(︀

𝜂𝑡𝑢 − 𝛽(𝜂𝑡𝑢)
2
)︀ ⃒⃒
E⟨∇ℒ(𝜔𝑡𝑢), 𝛿

𝑡
𝑢⟩
⃒⃒
≤
(︀
𝜂𝑡𝑢 − 𝛽(𝜂𝑡𝑢)

2
)︀
𝑎2‖∇ℒ(𝜔𝑡𝑢)‖22,

where the expectation is taken over the set of blocks and users seen so far.
Finally, taking the same expectation on both sides of inequality (5.5), it comes:

ℒ(𝜔𝑡+1
𝑢 ) ≤ ℒ(𝜔𝑡𝑢) +

𝛽

2
(𝜂𝑡𝑢)

2E‖𝛿𝑡𝑢‖22 − 𝜂𝑡𝑢(1− 𝛽𝜂𝑡𝑢/2− 𝑎2|1− 𝛽𝜂𝑡𝑢|)‖∇ℒ(𝜔𝑡𝑢)‖22

≤ ℒ(𝜔𝑡𝑢) +
𝛽

2
(𝜂𝑡𝑢)

2E‖𝛿𝑡𝑢‖22 − 𝜂𝑡𝑢 (1− 𝑎2 − 𝛽𝜂𝑡𝑢(1/2− 𝑎2))⏟  ⏞  
:=𝑧𝑡𝑢

‖∇ℒ(𝜔𝑡𝑢)‖22

= ℒ(𝜔𝑡𝑢) +
𝛽

2
(𝜂𝑡𝑢)

2E‖𝛿𝑡𝑢‖22 − 𝜂𝑡𝑢𝑧𝑡𝑢‖∇ℒ(𝜔𝑡𝑢)‖22

≤ ℒ(𝜔𝑡𝑢) +
𝛽

2
(𝜂𝑡𝑢)

2𝜎2 − 𝜂𝑡𝑢𝑧𝑡𝑢‖∇ℒ(𝜔𝑡𝑢)‖22, (5.6)

where the second inequality is due to |𝜂𝑡𝑢𝛽| ≤ 1. Also, as |𝜂𝑡𝑢𝛽| ≤ 1 and 𝑎2 ∈ [0, 1/2)
one has 𝑧𝑡𝑢 > 0 for any 𝑢, 𝑡. Rearranging the terms, one has

𝑁∑︁
𝑢=1

|ℬ𝑢|∑︁
𝑡=1

𝜂𝑡𝑢𝑧
𝑡
𝑢‖∇ℒ(𝜔𝑡𝑢)‖22 ≤ ℒ(𝜔0

1)− ℒ(𝜔*) +
𝛽𝜎2

2

𝑁∑︁
𝑢=1

|ℬ𝑢|∑︁
𝑡=1

(𝜂𝑡𝑢)
2.
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and

min
𝑡,𝑢
‖∇ℒ(𝜔𝑡𝑢)‖22 ≤

ℒ(𝜔0
1)− ℒ(𝜔*) + 𝛽

2

∑︀𝑁
𝑢=1

∑︀|ℬ𝑢|
𝑡=1 (𝜂𝑡𝑢)

2𝜎2∑︀𝑁
𝑢=1

∑︀|ℬ𝑢|
𝑡=1 𝜂

𝑡
𝑢𝑧

𝑡
𝑢

≤
ℒ(𝜔0

1)− ℒ(𝜔*) + 𝛽
2

∑︀𝑁
𝑢=1

∑︀|ℬ𝑢|
𝑡=1 (𝜂𝑡𝑢)

2𝜎2∑︀𝑁
𝑢=1

∑︀|ℬ𝑢|
𝑡=1 𝜂

𝑡
𝑢(1− 𝑎2 − 𝛽𝜂𝑡𝑢(1/2− 𝑎2))

Where, 𝜔* is the optimal point. Then, using a constant step-size policy, 𝜂𝑡𝑢 = 𝜂, and
the bounds on a block size, 𝑏 ≤ |ℬ𝑢| ≤ 𝐵, we get:

min
𝑡,𝑢
‖∇ℒ(𝜔𝑡𝑢)‖22 ≤

ℒ(𝜔0
1)− ℒ(𝜔*) + 𝛽𝜎2

2
𝐵
∑︀𝑁

𝑢=1 𝜂
2

𝑏
∑︀𝑁

𝑢=1 𝜂(1− 𝑎2 − 𝛽𝜂(1/2− 𝑎2))

≤ 4ℒ(𝜔0
1)− 4ℒ(𝜔*) + 2𝛽𝜎2𝐵

∑︀𝑁
𝑢=1 𝜂

2

𝑏(1− 4𝑎2)
∑︀𝑁

𝑢=1 𝜂

≤ 2

𝑏(1− 4𝑎2)

{︂
2ℒ(𝜔0

1)− 2ℒ(𝜔*)

𝑁𝜂
+ 𝛽𝜎2𝐵𝜂

}︂
.

Taking 𝜂 = 𝑐/
√
𝑁 so that 0 < 𝜂 ≤ 1/𝛽, one has

min
𝑡,𝑢
‖∇ℒ(𝜔𝑡𝑢)‖22 ≤

2

𝑏(1− 4𝑎2)

2(ℒ(𝜔0
1)− ℒ(𝜔*))/𝑐+ 𝛽𝑐𝜎2𝐵√

𝑁
.

If 𝑏 = 𝐵 = 1, this rate matches up to a constant factor to the standard 𝑂(1/
√
𝑁) rate

of the stochastic gradient descent. �
Note that the stochastic gradient descent strategy implemented in the Bayesian

Personalized Ranking model (BPR) [Rendle et al., 2009] also converges to the minimizer
of the ranking loss ℒ(𝜔) (Eq. 2.18) with the same rate.

The analysis of momentum algorithm SAROS𝑚 is slightly more involved. We say that
a function 𝑓(𝑥) satisfies the Polyak-Łojsievich condition [Polyak, 1963, Lojasiewicz,
1963, Karimi et al., 2016] if the following inequality holds for some 𝜇 > 0:

1

2
‖∇𝑓(𝑥)‖22 ≥ 𝜇(𝑓(𝑥)− 𝑓 *),

where 𝑓 * is a global minimum of 𝑓(𝑥).
From this definition, we can derive an analysis on the convergence of SAROS𝑚

stated below.

Theorem 6 Let ℒ(𝜔) be a (possibly non-convex) 𝛽-smooth function which satisfies
the Polyak-Lojasievich condition with a constant 𝜇 > 0. Moreover, assume the number
of interactions per user belongs to an interval [𝑏, 𝐵] almost surely for some positive 𝑏
and 𝐵, and Assumption 2 is satisfied with some 𝜎2 and 𝑎. Then, for 𝑁 =

∑︀𝑁
𝑢=1 |ℬ𝑢|
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and a constant step-size policy 𝜂𝑡𝑢 = 𝜂 with 𝜂𝛽 ≤ 1, one has

ℒ(𝜔𝑡+1
𝑢 )− ℒ(𝜔*) ≤ exp(−𝜇𝜂𝑁)(ℒ(𝜔0

1)− ℒ(𝜔*)) +
𝛽𝜎2𝜂2

2(1− 𝜇/𝛽)
, 𝜂𝛽 ≤ 1.

where the estimation is uniform for all 𝑎, 0 ≤ 𝑎 < 1/2.
In particular, if 𝜂 = 𝑐/

√
𝑁 , under the same conditions one has

ℒ(𝜔𝑡𝑢)− ℒ(𝜔*) ≤ exp(−𝜇𝑐
√
𝑁)(ℒ(𝜔0

1)− ℒ(𝜔*)) +
𝛽𝜎2𝑐2

2(1− 𝜇/𝛽)𝑁
.

Proof. Similarly to the Theorem 5, From Ineq. (5.6) we have:

ℒ(𝜔𝑡+1
𝑢 ) ≤ ℒ(𝜔𝑡𝑢) +

𝛽

2
(𝜂𝑡𝑢)

2𝜎2 − 𝜂𝑡𝑢𝑧𝑡𝑢‖∇ℒ(𝜔𝑡𝑢)‖22

for 𝑧𝑡𝑢 = 1− 𝑎2 − 𝛽𝜂𝑡𝑢(1/2− 𝑎2) > 0. Further, using the Polyak-Lojasievich condition,
it comes:

−𝜂𝑡𝑢𝑧𝑡𝑢‖∇ℒ(𝜔𝑡𝑢)‖22 ≤ −2𝜇𝜂𝑡𝑢𝑧
𝑡
𝑢(ℒ(𝜔𝑡𝑢)− ℒ(𝜔*)),

and

ℒ(𝜔𝑡+1
𝑢 )− ℒ(𝜔*) ≤ ℒ(𝜔𝑡𝑢)− ℒ(𝜔*) +

𝛽

2
(𝜂𝑡𝑢)

2𝜎2 − 2𝜇𝜂𝑡𝑢𝑧
𝑡
𝑢(ℒ(𝜔𝑡𝑢)− ℒ(𝜔*))

≤ (ℒ(𝜔𝑡𝑢)− ℒ(𝜔*))(1− 2𝜇𝜂𝑡𝑢𝑧
𝑡
𝑢) +

𝛽

2
(𝜂𝑡𝑢)

2𝜎2

≤
∏︁
𝑢

∏︁
𝑡

(1− 2𝜇𝜂𝑡𝑢𝑧
𝑡
𝑢)(ℒ(𝜔0

1)− ℒ(𝜔*)) +
𝛽𝜎2

2

∑︁
𝑣≤𝑢

(𝜂𝑡𝑣)
2
∏︁
𝑣

∏︁
𝑡

(1− 2𝜇𝜂𝑡𝑣𝑧
𝑡
𝑣)

Finally, for a constant step-size policy, 𝜂𝑡𝑢 = 𝜂, one has 𝑧𝑡𝑢 = 𝑧 = 1−𝑎2−𝛽𝜂(1/2−𝑎2)
and

ℒ(𝜔𝑡+1
𝑢 )− ℒ(𝜔*) ≤ (1− 2𝜇𝜂𝑧)𝑁(ℒ(𝜔0

1)− ℒ(𝜔*)) +
𝛽𝜎2𝜂2

2(1− 2𝜇𝜂𝑧)
,

where the last term is given by summing the geometric progression. As 𝛽𝜂 ≤ 1 and
𝑎 < 1/2 one has 𝑧 ≥ 1/2. Thus

ℒ(𝜔𝑡+1
𝑢 )− ℒ(𝜔*) ≤ (1− 𝜇𝜂)𝑁(ℒ(𝜔0

1)− ℒ(𝜔*)) +
𝛽𝜎2𝜂2

2(1− 𝜇/𝛽)

≤ exp(−𝜇𝜂𝑁)(ℒ(𝜔0
1)− ℒ(𝜔*)) +

𝛽𝜎2𝜂2

2(1− 𝜇/𝛽)
, 𝜂𝛽 ≤ 1.

Taking 𝜂 = 𝑐/
√
𝑁 for some positive 𝑐 guarantees a rate of convergence 𝑂(1/𝑁). With a

different choice of the step-size policy, rates almost up to 𝑂(1/𝑁2) are possible; however,
these rates imply 𝑂(1/𝑁) convergence for the norm of the gradient which matches the

82



standard efforts of stochastic gradient descent under the Polyak-Lojasievich condition
[Karimi et al., 2016]. �

5.3 Recommender systems: when memory matters
In this section, we put in evidence (𝑎) the impact of homogeneous user/items interac-
tions for prediction, after removal of non-stationarities and (𝑏) the need of designing
specific strategies to remove non-stationarities due to a specificity of RS, namely the
presence of memory in user/items interactions. Thereafter, we turn this preliminary
study into a novel and successful strategy combining sequential learning per blocks of
interactions and removing user with non–homogeneous behavior from the training.

In the following, we present the mathematical framework, used to model stationarity
in RS data. Thereafter, we explain that in the case, where we have presence of long-
memory in the data removing non-stationarites is specially tricky. We present our
novel strategy combining the efficiency of sequential learning per block of interactions
and the knowledge of the memory behavior of each user to remove non-stationarities.
We then illustrate that memory is intrinsically present in RS user/items interactions
and that we have to take it into account to remove non-stationarities and improve
generalization. We then prove through experiments on different large-scale benchmarks
the effectiveness of our approach.

5.3.1 Stationarity

Our claim is that all user/items interactions may not be equally relevant in the learning
process. We prove in the sequel that we can improve the learning process, considering
only the subset of users whose interactions with the system are homogeneous in time,
meaning that the user feedback is statistically the same, whatever the time period is.
Unfortunately, non-stationarities are not easy to detect, since we have to take into
account another additional effect in RS, which is long-range dependence. Indeed, in
RS the choice of a given user may be influenced not only by its near past but by the
whole history of interactions.
We propose to model these two natural characteristics of user feedbacks, using two
mathematical notions introduced for sequential data analysis : stationarity and
memory. We recall that a time series 𝑋 = {𝑋𝑡, 𝑡 ∈ Z}, here the sequence of user’s
feedback, is said to be (wide-sense) stationary (see Section 2.4 in [Brillinger, 2001]) if
its two first orders moments are homogeneous with time:

∀𝑡, 𝑘, 𝑙 ∈ Z, E[𝑋𝑡] = 𝜇, and 𝐶𝑜𝑣(𝑋𝑘, 𝑋𝑙) = 𝐶𝑜𝑣(𝑋𝑘+𝑡, 𝑋𝑙+𝑡) (5.7)

Under such assumptions the autocovariance of a stationary process only depends on
the difference between the terms of the series ℎ = 𝑘 − 𝑙. We set 𝛾(ℎ) = 𝐶𝑜𝑣(𝑋0, 𝑋ℎ).

Our other concept of interest, memory arouses in time series analysis to model
memory that can be inherently present in sequential data. It provides a quantitative
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measure of the persistence of information related to the history of the time series in
the long-run and it can be related to presence of non-stationarities in the data. Its
definition is classically done in the Fourier domain and is based on the so-called spectral
density. The spectral density is the discrete Fourier transform of the autocovariance
function :

𝑓(𝜆) =
1

2𝜋

+∞∑︁
ℎ=−∞

𝛾(ℎ)𝑒−𝑖ℎ𝜆, 𝜆 ∈ (−𝜋, 𝜋]. (5.8)

and reflects the energy contains at each frequency 𝜆 if the times series. A time series
𝑋 admits memory parameter 𝑑 ∈ R iff its spectral density satisfies :

𝑓(𝜆) ∼ 𝜆−2𝑑 as 𝜆→ 0 . (5.9)

5.3.2 Memory

In the time domain, the memory parameter is related to the decay of the autocovariance
function. The more it is large, the more the past of the time series has an impact on
its next future. Interestingly, when the memory parameter is large, the time series
tends to have a sample autocorrelation function with large spikes at several lags which
is well known to be the signature of non-stationarity for many practitioners. It can
then be used as a measure of non-stationarity.

In order to infer this memory parameter, we use one of the most classical estimators
of the memory parameter, the GPH estimator introduced in [Geweke and Porter-
Hudak, 2008]. It consists of a least square regression of the log-periodogram of 𝑋.
One first defines a biased estimator of the spectral density function, the periodogram
𝐼(𝜆) and evaluate it on the Fourier frequencies 𝜆𝑘 = 2𝜋𝑘

𝑁
where 𝑁 is the length of the

sample :

𝐼𝑁(𝜆𝑘) =
1

𝑁

⃒⃒⃒⃒
⃒
𝑁∑︁
𝑡=1

𝑋𝑡𝑒
𝑖𝑡𝜆𝑘

⃒⃒⃒⃒
⃒
2

(5.10)

The estimator of the memory parameter is therefore as follows :

𝑑(𝑚) =

∑︀𝑚
𝑘=1(𝑌𝑘 − 𝑌 ) log(𝐼(𝜆𝑘))∑︀𝑚

𝑘=1(𝑌𝑘 − 𝑌 )2
, (5.11)

where 𝑌𝑘 = −2 log |1 − 𝑒𝑖𝜆𝑘 |, 𝑌 = (
∑︀𝑚

𝑘=1 𝑌𝑘)/𝑚 and 𝑚 is the number of used
frequencies.

We then classify the time series as non-stationary if 𝑑 ≥ 1/2, and as stationary
otherwise.

The inclusion of the Memory-Aware step of our algorithm, allowing to include
stationarity in the pipeline (called MOSAIC), can be carried out in two steps. In the
first step we train SAROS on the full dataset. Thereafter we remove non-stationary
embeddings, using a preliminary estimation of the memory parameter of each time
series. Finally we train once more this filtered dataset and return the last updated
weights.
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5.4 Experimental Setup and Results
The group of the experiments was expanded to a new dataset RecSys’16compared
to the one of the chapter 4. The dataset represents a sample based on historic XING
data provided 6,330,562 feedback given by 39,518 users on the job posting items and
the items generated by XING’s job recommender system.
Updated statistics for RecSys’16 are represented in table 5.1.

Data |𝒰| |ℐ| Sparsity Avg. # of + Avg. # of −
ML-1M 6,040 3,706 .9553 95.2767 70.4690
Outbrain 49,615 105,176 .9997 6.1587 26.0377
Pandor 177,366 9,077 .9987 1.3266 10.3632
Netflix 90,137 3,560 .9914 26.1872 20.2765
Kasandr 2,158,859 291,485 .9999 2.4202 51.9384
RecSys’16 39,518 28,068 .9943 26.2876 133.9068

Table 5.1: Statistics on the number of users and items; as well as the sparsity and the
average number of + (preferred) and − (non-preferred) items on ML-1M, Netflix,
Outbrain, Kasandr, Pandor and RecSys’16 collections after preprocessing.

RecSys’16 also is included into the group of the most unbalanced datasets, such
as Kasandr, Pandor and Outbrain. Table with the sizes of the train/test parts
and percentages of positive/negative feedback in the benchmarks also was updated
and displayed in the table 5.2.

Dataset |𝑆𝑡𝑟𝑎𝑖𝑛| |𝑆𝑡𝑒𝑠𝑡| 𝑝𝑜𝑠𝑡𝑟𝑎𝑖𝑛 𝑝𝑜𝑠𝑡𝑒𝑠𝑡
ML-1M 797,758 202,451 58.82 52.39
Outbrain 1,261,373 336,053 17.64 24.73
Pandor 1,579,716 493,663 11.04 12.33
Netflix 3,314,621 873,477 56.27 56.70
Kasandr 12,509,509 3,335,208 3.36 8.56
RecSys’16 5,048,653 1,281,909 17.07 13.81

Table 5.2: Number of interactions used for train and test on each dataset, and the
percentage of positive feedback among these interactions.

Compared Approaches. To estimate both strategies of sequential learning
approach SAROS𝑚 and SAROS𝑏, we compared them with the same state-of-the-art
approaches suggested in chapter 4, section 4.5. The set of baselines was extended
by the modern graph-convolution-based model LightGCN proposed by [He et al.,
2020]. This graph convolution network learns user and item embedding by linearly
propagating them on the user-item interaction graph. The final representations are
the weighted sum of the embeddings learned at all layers.

Hyper-parameters of LightGCN and the dimension of the embedded space for the
representation of users and items; as well as the regularisation parameter over the
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norms of the embeddings for all approaches were found using grid search on the
validation set as before for the remains benchmarks. Supplemented information with
the adjusted number of blocks and learnig rate involving the new RecSys’16 is
summarized below in the table 5.3.

Parameter ML Outbrain Pandor Netflix Kasandr RecSys’16
𝐵 78 5 2 22 5 22
𝑏 1 2 1 1 1 1

Learning rate .05 .05 .05 .05 .4 .3

Table 5.3: Hyperparameter values of SAROS𝑏.

Evaluation Setting and Results. All the experimental steps suggested for the
practical part of chapter 4 were repeated on the additional new benchmark RecSys’16,
baseline LightGCN and SAROS𝑚. For the first results, the testing BPR𝑏, BPR and SAROS
approaches over the logistic ranking loss after training the models till the convergence
are shown in Table 5.4.

Dataset Test loss at convergence, Eq. (2.18)
BPR𝑏 BPR SAROS𝑏 SAROS𝑚

ML-1M 0.744 0.645 0.608 0.637
Outbrain 0.747 0.638 0.635 0.634
Pandor 0.694 0.661 0.651 0.666
Netflix 0.694 0.651 0.614 0.618
Kasandr 0.631 0.393 0.212 0.257
RecSys’16 0.761 0.644 0.640 0.616

Table 5.4: Comparison between BPR, BPR𝑏 and SAROS approaches in terms of test loss
at convergence.

Figure 5-1 shows the evolution of the training error over time for BPR𝑏, BPR,
SAROS𝑚 and SAROS𝑏 on Kasandr, Pandor, Outbrain and Netflix. As we can
see, the training error decreases in all cases and the three approaches converge to the
same minimizer of the ranking loss (Eq. 2.18). This is an empirical evidence of the
convergence of SAROS𝑏 and SAROS𝑚, showing that the sequence of weights found by
the proposed algorithm allows to minimize the general ranking loss (Eq. 2.18) as it is
stated in Theorems 1 and 2.

To estimate the importance of the maximum number of blocks (𝐵) for SAROS𝑏, we
explore the dependency between quality metrics MAP@K and NDCG@K on ML-1M and
Pandor collections (Figure 5-2). The latter records the clicks generated by users
on one of Purch’s high-tech website and it was subject to bot attacks [Sidana et al.,
2018]. For this collection, large values of 𝐵 affects MAP@K while the measure reaches
a plateau on ML-1M. The choice of this hyperparameter may then have an impact
on the results. As future work, we are investigating the modelling of bot attacks by
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Figure 5-1: Evolution of the loss on training sets for both BPR𝑏, BPR and SAROS as a
function of time in minutes for all collections.

studying the effect of long memory in the blocks of no-preferred and preferred items
in small and large sessions with the aim of automatically fixing this threshold 𝐵.
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Figure 5-2: Evolution of MAP@5 with respect to largest number of allowed blocks, 𝐵.

Table 5.5 presents full set of results for NDCG@5 and NDCG@10, and MAP@5 and
MAP@10 of all approaches over the test sets including RecSys’16 of the different
collections.

With respect to the updated table 5.5, results justify the power of the proposed
approach. Even the comparison of SAROS with modern LightGCN shows very promising
results. LightGCN also is trained on the triplets but it sampled negative interactions
from all set of items for positive interactions, that’s why in case of very imbalanced
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NDCG@5 NDCG@10
ML-1M Outbrain Pandor Netflix Kasandr RecSys’16 ML-1M Outbrain Pandor Netflix Kasandr RecSys’16

MostPop .090 .011 .005 .056 .002 .004 .130 .014 .008 .096 .002 .007
Prod2Vec .758 .232 .078 .712 .012 .219 .842 .232 .080 .770 .012 .307

MF .684 .612 .300 .795 .197 .317 .805 .684 .303 .834 .219 .396
BPR𝑏 .652 .583 .874 .770 .567 .353 .784 .658 .890 .849 .616 .468
BPR .776 .671 .889 .854 .603 .575 .863 .724 .905 .903 .650 .673

GRU4Rec+ .721 .633 .843 .777 .760 .507 .833 .680 .862 .854 .782 .613
Caser .665 .585 .647 .750 .241 .225 .787 .658 .666 .834 .276 .225
SASRec .721 .645 .852 .819 .569 .509 .832 .704 .873 .883 .625 .605

LightGCN .784 .652 .901 .836 .947 .428 .874 .710 .915 .895 .954 .535
SAROS𝑚 .763 .674 .885 .857 .735 .492 .858 .726 .899 .909 .765 .603
SAROS𝑏 .788 .710 .904 .866 .791 .563 .874 .755 .917 .914 .815 .662

MAP@5 MAP@10
ML-1M Outbrain Pandor Netflix Kasandr RecSys’16 ML-1M Outbrain Pandor Netflix Kasandr RecSys’16

MostPop .074 .007 .003 .039 .002 .003 .083 .009 .004 .051 .3e-5 .004
Prod2Vec .793 .228 .063 .669 .012 .210 .772 .228 .063 .690 .012 .220

MF .733 .531 .266 .793 .170 .312 .718 .522 .267 .778 .176 .306
BPR𝑏 .713 .477 .685 .764 .473 .343 .688 .477 .690 .748 .488 .356
BPR .826 .573 .734 .855 .507 .578 .797 .563 .760 .835 .521 .571

GRU4Rec+ .777 .513 .673 .774 .719 .521 .750 .509 .677 .757 .720 .500
Caser .718 .471 .522 .749 .186 .218 .694 .473 .527 .733 .197 .218
SASRec .776 .542 .682 .819 .480 .521 .751 .534 .687 .799 .495 .511

LightGCN .836 .502 .793 .835 .939 .428 .806 .507 .796 .817 .939 .434
SAROS𝑚 .816 .577 .720 .857 .644 .495 .787 .567 .723 .837 .651 .494
SAROS𝑏 .832 .619 .756 .866 .732 .570 .808 .607 .759 .846 .747 .561

Table 5.5: Comparison between MostPop, Prod2Vec, MF, BPR𝑏, BPR, GRU4Rec+, SASRec,
Caser, and SAROS approaches in terms of NDCG@5 and NDCG@10(top), and MAP@5 and
MAP@10(down). Best performance is in bold and the second best is underlined.

dataset, such as Kasandr, the model has so big improvement under SAROS (because
when the number of positive interactions is very small we almost for sure will sample
negative). But if the data is not so imbalanced with respect to the number of
positive/negative interactions, our approach is better because the sampling in LightGCN
for this case will bring the noise to the data.

Identifying stationary users. We keep only users whose embeddings have four
stationary components, using a preliminary estimation of the memory parameter.
In table 5.6 it could be found that the output subset is much smaller for Kassandr
and Pandor than the full dataset whereas for ML-1M and Outbrain we succeed in
keeping a large part of the full dataset. Our filtering approach is then expected to be
more successful on the latter.

Data |𝑈 | |𝑆𝑡𝑎𝑡_𝑈 |
Kassandr 2,158,859 26,308
Pandor 177,366 9,025
ML-1M 6,040 5,289
Outbrain 49,615 36,388

Table 5.6: Statistics on datasets before and after filtering. Among these, the remaining
number of users after filtering based on stationarity in embeddings is denoted as
|𝑆𝑡𝑎𝑡_𝑈 |

Table 5.7 presents the comparison of MOSAIC with BPR, Caser and SAROS. These
results suggest that compared to BPR which does not model the sequence of interactions,
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MAP@5 MAP@10
ML-1M Kasandr Pandor Outbrain ML-1M Kasandr Pandor Outbrain

BPR .826 .522 .702 .573 .797 .538 .706 .537
Caser .718 .130 .459 .393 .694 .131 .464 .397

GRU4Rec .777 .689 .613 .477 .750 .688 .618 .463
SAROS .832 .705 .710 .600 .808 .712 .714 .563
MOSAIC .842 .706 .711 .613 .812 .713 .715 .575

NDCG@5 NDCG@10
ML-1M Kasandr Pandor Outbrain ML-1M Kasandr Pandor Outbrain

BPR .776 .597 .862 .560 .863 .648 .878 .663
Caser .665 .163 .584 .455 .787 .198 .605 .570

GRU4Rec .721 .732 .776 .502 .833 .753 .803 .613
SAROS .788 .764 .863 .589 .874 .794 .879 .683
MOSAIC .794 .764 .863 .601 .879 .794 .880 .692

Table 5.7: Comparison of different models in terms of MAP@5 and MAP@10(top), and
NDCG@5 and NDCG@10(down).

sequence models behave generally better. Furthermore, compared to Caser and
GRU4Rec which only consider the positive feedback; our approach which takes into
account positive interactions with respect to negative ones performs better.

Furthermore, as suspected results on Outbrain and ML are better with MOSAIC
than SAROS in these collections than the two other ones due to the fact that we have
more LRD users. Keeping only in the dataset, stationary users, for which the behavior
is consistent with time, is an effective strategy in learning recommender systems. The
predictable nature of the behavior of stationary users makes the sequence of their
interactions much exploitable than those of generic users, who may be erratic in their
feedback and add noise in the dataset.

5.5 Conclusion
In this chapter, we presented two variants of the SAROS approach presented in chapter 4;
in the first model parameters are updated user per user over blocks of items constituted
by a sequence of unclicked items followed by a clicked one. The parameter updates
are discarded for users who interact very little or a lot with the system. The second
variant, is based on the momentum technique as a means of damping oscillations. The
second contribution is a theoretical analysis of the proposed approach which bounds
the deviation of the ranking loss concerning the sequence of weights found by both
variants of the algorithm and its minimum in the general case of non-convex ranking
loss. Empirical results conducted on six real-life implicit feedback datasets support our
founding and show that the proposed approach is significantly faster than the common
batch and online optimization strategies that consist in updating the parameters over
the whole set of users at each epoch, or after sampling random pairs of preferred and
no-preferred items. The approach is also shown to be highly competitive concerning
state of the art approaches on MAP and NDCG measures.
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In addition, we introduced a strategy to filter the dataset with respect to ho-
mogeneity of the behavior in the users when interacting with the system, based on
the concept of memory. From our results, it comes out that taking into account the
memory in the case where the collection exhibits long range dependency allows to
enhance the predictions of the proposed sequential model. As future work, we propose
to encompass the analysis of LRD and the filtering phase in the training process.
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Chapter 6

Faulted Lines Detection with
ranking-based approach

6.1 Introduction
The climate change and global warming results in an increased number of extreme
weather events [Sillmann and Roeckner, 2008] that compromises security and reliability
of critical infrastructure (power and gas grids, telecommunications, transportation
systems) [Birkmann et al., 2016]. According to the recent statistics of the National
Center for Environmental Information1, the total cost of 310 recent major weather
events exceeds $2.155 trillion dollars and projected to increase in the near future [Smith
and Katz, 2013]. Power grids are responsible for a substantial part of this cost [Stern
and Stern, 2007].

One of the major challenges in protecting a grid from impending a cascading
blackout after a line failure is a real-time localization of the faulted line followed
activating emergency controls [Begovic et al., 2005, Zhang et al., 2016b]. Traditional
data-driven methods for fault localization, such as travelling-wave [Parsi et al., 2020]
and impedance based ones [Aucoin and Jones, 1996], require high grid observability
and sampling rates that are technically challenging and expensive for bulky sys-
tems [Sundararajan et al., 2019] or even known distribution of renewables [Owen et al.,
2019, Lukashevich et al., 2021, Lukashevich and Maximov, 2021]. Another line of
algorithms leverages deep neural networks capabilities [Li et al., 2019, Li and Deka,
2021a, Zhang et al., 2020a, Misyris et al., 2020]; however, these methods suffer from
high requirements on the amount of phasor-measurement unit data. The latter lead
to inability to make a accurate and timely detection in time-changing environment
that is intrinsic for extreme weather events and, therefore, compromises power grid
security.

The chapter addresses power grid reliability during extreme events, such as wildfires,
hurricanes and extreme winds, when multiple line failures may happen. The latter
failures must be detected in real-time to preserve secure and reliable operations and
prevent the grid from impending energy blackout. The most common failure type is a

1https://www.ncdc.noaa.gov/billions/
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line failure, when power supply through a specific line (lines) is interrupted for a few
seconds or permanently.

Contribution. Our contribution is as follows. First, we propose Topology-Aware
failure Localization Detector (TALD), a neural-network based algorithm for detecting
line faults in real-time. A particular advantage of our approach, that lead to a
higher detection accuracy and lower data requirements, is leveraging grid topology
information.

Second, the algorithm estimates the conditional probability that the fault has
happened on this line. This allows not only estimate the detection confidence, but also
efficiently utilize prior information on line vulnerability. The latter is often accessible
for power grid operators as a result of earlier failures or maintenance information.

Finally, we provide empirical support for TALD showing its superior performance
over simulated data.

Chapter structure. The chapter is organized as follows. Section 6.2 contains
problem setup and provides necessary background information. Section 6.3 provides
empirical results and discussion about it’s role. Short conclusion is given in Section
6.4.

6.2 Problem Statement

6.2.1 Notation.

Let 𝐸, |𝐸| = 𝑚, be a set of lines and 𝑉 , |𝑉 | = 𝑛, is a set of buses in a power grid
𝐺 = ⟨𝑉,𝐸⟩. Let 𝑝, 𝑞 ∈ R𝑛 be vectors of active and reactive power, 𝑣 ∈ R𝑛 be a
vector of voltage magnitudes, and 𝜃 ∈ R𝑛 be a vector of voltage phases. We denote
phase angle differences as 𝜃𝑖𝑗, (𝑖, 𝑗) ∈ 𝐸. Power grid buses consist of PQ (load) buses,
PV (generation) buses, and a slack bus that often stands for the largest and slowest
generator in the grid. We assume below that the phase angle 𝜃𝑖 = 0 for the slack bus
𝑖.

𝐸 set of lines 𝑉 set of buses
𝑚 number of lines 𝑛 number of buses
𝑣 bus voltages, 𝑣 ∈ R𝑛 𝜃 phase angles, 𝜃 ∈ R𝑛

𝑝, 𝑞 vector of active/reactive power injections
𝑑 number of PMUs 𝑉 𝑑 set of nodes with PMUs
𝑡 time index
𝑦𝑡𝑖 failure indicator at time 𝑡 at line 𝑖
𝑥𝑡 = ({𝜃𝑡𝑖 , 𝑣𝑡𝑖}𝑑𝑖=1) a set of PMU measurements at time 𝑡
nb𝐸(·), nb𝑉 (·) list of adjacent edges, vertices
nb𝑘𝐸(·), nb𝑘𝑉 (·) nb𝑘𝐸(·) = nb𝐸((. . . nb𝐸(·))⏟  ⏞  

𝑘 times

, nb𝑘𝑉 (·) = nb𝑉 (. . . nb𝑉 (·))⏟  ⏞  
𝑘 times

Table 6.1: Chapter notation.
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The chapter notation is summarized in Table 6.1.

6.2.2 Background.

Phasor Measurement Units (PMUs) enable high-resolution situational awareness of
power grid state by providing information about voltage magnitude 𝑣𝑖, 𝑖 ∈ 𝑉 and
phase angle 𝜃𝑖𝑗, (𝑖, 𝑗) ∈ 𝐸 using a common time source for synchronization. Often
PMUs are required at tap-changing transformers, complex loads, and PV (generation)
buses. Despite of wide-spread of PMUs and their role in grid monitoring, power grids
remain covered only in part because of privacy and budget limitations.

For notation simplicity, we assume w.l.o.g. that PMUs are places at the first 𝑑 buses
𝑉𝑑 of the grid, 𝑉𝑠 ⊆ 𝑉 , and this placement does not change during the observation
time. We refer 𝑉𝑑 as a set of observable buses. Furthermore, we receive a set of PMUs
measurements 𝑥𝑡 = ({𝜃𝑡𝑖 , 𝑣𝑡𝑖}𝑑𝑖=1) for each time 𝑡, 0 ≤ 𝑡 ≤ 𝑇 . Let 𝑦𝑡 ∈ R𝑛 be a an
indicator of faulted lines, e.g. 𝑦𝑡𝑖𝑗 = 1 iff line (𝑖, 𝑗) is faulted at time 𝑡, 0 ≤ 𝑡 ≤ 𝑇 .

The ability of PMU to measure the voltage phasor at the installed bus and the
current phasor of all the branches connected to the PMU installed bus can help
determine the remaining parameters to use for indirect measurements.

A particular advantage of PMU technology is high sampling rate that dramatically
increase situational awareness and allows to detect grid failures in nearly real-time.
For instance, for 60 Hz systems, PMUs must deliver between 10 and 30 synchronous
reports per second depending on the application. The timeline of the events in a
power grid is described in the Table 6.2.

To consider the topology of power grid we transform the binarized targets (fault
or non-fault), that we used during training into two vectors: the first one includes
the information about the faulted line and the second one consists of the information
about the neighbours of the faulted line. In more details, suggest we have a sample
(𝜓,𝑦) with the features 𝜓 ∈ 𝑅𝑑, where 𝜓 is some transformation over measurements
𝑥𝑡 and known parameters in power grid. Then the first vector of targets is defined
as 𝑦 = [𝑦1, · · · , 𝑦𝑖, · · · , 𝑦𝑛]𝑇 ∈ 𝑅𝑛, where in case of faulted line at the location 𝑗,
𝑦𝑗 = 1 and 𝑦𝑖 = 0 for 𝑖! = 𝑗. For the second vector of targets, let 𝑛𝑏𝐸(𝑗) denote
the neighborhood of the 𝑗th line, including the lines connected with 𝑗, and then
𝑦𝑖 = 1/nb𝐸(𝑗) only if 𝑖 ∈ nb𝐸(𝑗). The definition of 𝑦 is formalized at the equation
defined at the Eq. 6.1:

𝑦(𝑖) =

⎧⎪⎨⎪⎩
1/|nb𝐸(𝑗)|, if i ∈ nb𝐸(𝑗) : neighbor set of 𝑗
0, else
0 𝑖 = 𝑗 the true location has weight 0

(6.1)

For the remains line target is equal to zero. Then the loss function 𝐿𝑜𝑠𝑠(𝑓(𝜓),𝑦,𝑦)
for the proposed model (architecture is presented on the Fig. 6-1) over the samples
(𝜓,𝑦), where 𝑓(𝜓) are the predicting probabilities of the proposed model is defined
as the sum of two terms of cross-entropy functions (here CE). The definition of CE is
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Event Time, sec.
Transient Voltage Stability 0.2 – 10
Line trip 0.1 – 1.5
Static VAR Compensator (SVC) 0.1 – 1
DC compensator 0.1 – 1
Generator Inertial Dynamics 0.5–5
Undervoltage Load Shedding 1–9
Mechanically Switched Capacitors Dynamics 0.15–2
Generator/Excitation Dynamics 0.15–3
Induction Motor Dynamics 0.1–2
DC Converter LTCs 4–20
Long-term Voltage Stability 20 – 10000
Protective Relaying Including Overload Protection 0.1 – 1000
Prime Mover Control 1–100
Auto-Reclosing 15–150
Excitation Limiting 9–125
Boiler Dynamics 20–300
Generator Change/AGC 20–800
Power Plant Operator 40–1000
Load Tap Changers and Dist, Voltage Reg. 20–200
System Operator 60–10000
RAS 150–300
RAP 350–1000
Gas Turbine Start-Up 250–900
Load Diversity/Thermostat 200–2000
Line/Transformer Overload 600–2500
Load/Power Transfer Increase 250–7000

Table 6.2: Timeline of events in a power grid.

given below at the Eq. 6.2:

𝐶𝐸(𝑦, 𝑓(𝜓)) =
𝑛∑︁
𝑖=1

𝑦𝑖 · log

(︂
exp𝑓𝑖(𝜓)∑︀𝑛
𝑖=1 exp𝑓𝑖(𝜓)

)︂
(6.2)
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Figure 6-1: Architecture of the applied model proposed in [Li et al., 2018].

Then, we could express the loss function more formally by the next Eq. 6.3:

𝐿𝑜𝑠𝑠(𝑦,𝑦, 𝑓(𝜓)) = 𝐶𝐸(𝑦, 𝑓(𝜓)) · (1− 𝜖) + 𝐶𝐸(𝑦, 𝑓(𝜓)) · 𝜖 (6.3)

The architecture of the baseline model presented on the Fig. 6-1 is described in
details in the paper of authors [Li et al., 2018]. It’s suggested to use the convolution-
based neural network with the information about the bus voltages and prepared
features with a physical interpretation to make the predictions about fault location.
To make the model more interpretable and to improve the output accuracy we modified
the loss function to the explained in the equation 6.3 by including the network topology
in the model and then provide empirical evaluation of both approaches presented in
section 6.3.

6.3 Experimental part

6.3.1 Dataset

To estimate the approaches we apply two benchmarks: SIM_LARGE and
SIM_SMALL. SIM_SMALL was provided us by authors of [Li et al., 2018] for
68-bus power system. The second dataset SIM_LARGE we simulated in the power
system toolbox, based on nonlinear models [Chow and Cheung, 1992], a three-phase
short circuit fault lasting 0.2 seconds at the line 5-6 also in the IEEE 68-bus power
system as in the SIM_SMALL. The main differences between two benchmarks are
the number of samples simulated for train, test and validation sets, where the new
simulated set is about 10 times bigger. The second point is that the test set for
SIM_LARGE is generated simultaneously for all fault types, as the train set for
both datasets, whereas in SIM_SMALL benchmark there are separate test sets for
each fault. This new simulation allows us to estimate the generalization property of
the model to distinguish between different fault types. Also it let us to avoid the
overfitting of the model on one particular class.
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The feature vector 𝜓 is computed based on the idea lies in the baseline approach
[Li et al., 2018]. Represented by the feature vectors faulted lines in power grid are
then labeled by their locations; in case of 𝑚 lines in the power grid, the number of
output classes are equal to 𝑚+ 1, where additional class is for the normal condition,
that means there are no faults in the system. Below the statistics regarding the size of
simulated data for train, test and validation evaluations are represented in the table
6.3:

Dataset Set Size

SIM_SMALL

Train 1210
TP - Test

DLG - Test
LG - Test
LL - Test

71
71
70
71

Validation 1210

SIM_LARGE
Train 14413
Test 994

Validation 1207

Table 6.3: Size of the train, test and validation parts.

The fault-cases provided in data are simulated by changing the line impedance,
depending on the type. For simulation we consider a power grid of 𝑛 buses with a
single line fault that may either be one of the following: three-phase short circuit
(TP), line to ground (LG), double line to ground (DLG) and line to line (LL) faults for
SIM_SMALL and LG, DLG and LL for SIM_LARGE. To characterize the location
of the faults in power grid, the authors of [Li et al., 2018] propose to apply the
substitution theory [Jiang et al., 2014] for deriving the equations related to pre- and
during-fault system variables to express feature vector. The feature vector 𝜓 ∈ 𝐶𝑛×1

based on the substitution theory is defined then in terms of the bus voltages variations
∆𝑈 before and during the faults and the admittance matrix 𝑌0 before the faults:

𝜓 = Δ𝑈 · 𝑌0 (6.4)

Admittance matrix is an 𝑛 × 𝑛 matrix describing a linear power system with 𝑛
buses. It represents the nodal admittance of the buses in a power system, where
admittance is a measure of how easily a circuit or device will allow a current to flow.
The general mathematical expression of each element of the admittance matrix 𝑌𝑖𝑗 is
represented as following:

𝑌𝑖𝑗 =

⎧⎨⎩𝑦𝑖 +
∑︀

𝑘=1,...,𝑛;𝑘 ̸=𝑖
𝑦𝑘𝑖 i=j

−𝑦𝑖𝑗 𝑖 ̸= 𝑗

Where 𝑦𝑖𝑘 is the admittance between the bus 𝑖 and another bus 𝑘 connected to 𝑖.
The term 𝑦𝑖 accounts for the admittance of linear loads connected to bus 𝑖 as well as
the admittance-to-ground at bus 𝑖. To understand the distribution of generated data,
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we provide the statistics with respect to the size of groups regarding the number of
neighbours over lines. The results of the calculated statistics are introduced in the
Fig. 6-4:

Figure 6-2: SIM_SMALL Figure 6-3: SIM_LARGE

Figure 6-4: Number of objects for corresponding group with the amount of neighbours
for faulted line

6.3.2 Signal to Noise Ratio

SNR (signal-to-noise ratio) is a measure used in science and engineering that compares
the level of a desired signal to the level of background noise. SNR is defined as the
ratio between the output power of the transmitted signal and the power of the noise
that distorts it.

𝑆𝑁𝑅 =
𝑃𝑠𝑖𝑔𝑛𝑎𝑙
𝑃𝑛𝑜𝑖𝑠𝑒

=
𝐴2
𝑠𝑖𝑔𝑛𝑎𝑙

𝐴2
𝑛𝑜𝑖𝑠𝑒

(6.5)

𝑃 here means average power and 𝐴 is mean-square amplitude. Because many signals
have a very wide dynamic range, signals are often expressed using the logarithmic
decibel scale. Then SNR ratio is expressed in decibels(dB) is transformed into the
form:

𝑆𝑁𝑅𝑑𝐵 = 10 log10

𝑃𝑠𝑖𝑔𝑛𝑎𝑙
𝑃𝑛𝑜𝑖𝑠𝑒

= 20 log10

𝐴𝑠𝑖𝑔𝑛𝑎𝑙
𝐴𝑛𝑜𝑖𝑠𝑒

(6.6)

The ratio of SNR can take zero, positive or negative values. An SNR over 0 dB
indicates that the signal level is greater than the noise level. The higher the ratio, the
better the signal quality. The SNR of PMU measurements in different regions can
vary. We additionally explore this parameter over the test evaluations in subsection
6.3.3 of present chapter.
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6.3.3 Empirical Evaluation

The proposed model was trained using RMSProp optimizer and for early-stopping
criteria was suggested the next one: validation loss is computed over all validation
data, then if min over last 100 validation losses < best loss, where the best loss is the
minimum between the current best loss and the average over the last validation losses
for 100 steps, then we continue to train, otherwise - stop. All the parameters such
as learning rate, batch size, ratio that responsible for how many information about
the neighbours we take during the training and the remains parameters are set using
cross-validation method. To estimate the model we apply accuracy measure that is
defined as the relation between the number of correctly detected faulted lines and
total number of faults. The first experiments are done on the small SIM_SMALL
dataset over the full and partial observability cases. The partial measures are range
between 15% and 30% of buses and estimated over 4 test sets for each particular fault
class. The analysis of the results for two models could be find in the table 6.4.

TP fault DLG fault LG fault LL fault
% buses No-neigbhbors With-neighbors No-neigbhbors With-neighbors No-neigbhbors With-neighbors No-neigbhbors With-neighbors

100 98.59 100.0 100.0 100.0 100.0 100.0 100.0 100.0
30 91.55 97.18 95.77 98.59 97.14 97.14 98.59 100.0
25 78.87 92.96 92.96 97.18 94.29 97.14 95.77 98.59
20 91.55 94.36 90.14 97.18 84.29 94.29 95.77 95.77
15 73.24 88.73 95.77 97.18 88.57 92.86 88.73 90.14

Table 6.4: Comparison of the approaches based on the partial observability,
SIM_SMALL data

Based on the experiments it could be said that more measured buses improve the
predictability of fault locations. Also it should be noticed that information about the
grid topology also improve the final results on 2%-18% in comparison the case without
taking into account the neighbours during training in the loss function.

The results of the estimation the generalisation property to distinguish the faults
over different types are done on SIM_LARGE dataset and presented on the table 6.5
for range of train samples between 10 and 100 percentages with step 10. For the most
cases we could see the profit for the model with neighbours topology. This results
support the property of the generalisation the fault classes.

+/- neighbors 100 % 90% 80 % 70 % 60 % 50 % 40 % 30 % 20 % 10 %
no neighbors 95.07 93.86 93.66 92.76 95.07 88.33 91.44 93.16 89.03 85.11

with neighbors 95.57 95.27 95.07 95.47 94.67 91.95 90.74 94.16 88.63 89.64

Table 6.5: Estimation for different sizes of training set on SIM_LARGE data

For SIM_LARGE data we also provide the experiments for partial bus observations
as it was done for SIM_SMALL. The results are presented in the table 6.6. What
could be seen from here is that as in the table 6.4, the tendency between ratio of
measured buses and accuracy is preserved; it means that more observations usually
provide more accurate predictions of faulted line locations that could be explained
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by the bigger amount of input information provided for the model. Regarding the
comparison between two models, for all ratio values topology-based model outperform
the second one, that proves it’s less sensitivity to the lack of information, where for
the topology-based model the result sank around on 9%, where for another model it
sank on 13%.

LG fault
% buses No-neigbhbors With-neighbors

100 95.07 95.57
30 85.41 87.32
25 78.27 82.09
20 79.48 80.28
15 71.93 76.25

Table 6.6: Comparison of the approaches based on partial observability on
SIM_LARGE dataset

The test evaluations over SNR parameter are done by ranging approximation value
of noise from 40dB to 100dB with the step size 10. The Gaussian noise of the same
SNR was added both to the training and testing parts of datasets. The structure
of the CNN was kept the same but the hyperparameter as ratio 𝜖 in Eq. 6.3 was
additionally set up in the noisy regime. Other parameters are the same. Results in
Fig. 6-5 indicate that the sensitivity of both models to noise is different, and that
model based on neighbours topology is relatively more robust to the noise.

Figure 6-5: Estimation of SNR approximation over the approaches on SIM_LARGE
dataset. The results are provided for both models: with and without neighbours
topology term in loss function
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6.3.4 U-Mann-Whitney Test

Because of some instability in results from table 6.5, we suggest to compare them on
the basis of statistical criterion of Mann-Whitney-Wilcoxon. The distributions of the
output samples of accuracy’s are illustrated on the Fig. 6-6. This U-criterion is used
to assess the differences between two independent samples by the level of a feature
measured quantitatively.

Figure 6-6: Normalized histogram for samples distributions. The histogram provide
information about output accuracy for two models for different randomization.

This method determines whether the zone of overlapping values between two rows is
small enough. The lower the value of the criterion, it is more likely that the differences
between the parameter values in the samples are significant. U-Mann-Whitney test
step-by-step:

• To make a single ranked series from both compared samples, placing their
elements according to the degree of increase and assigning a lower rank to a
lower value with number of elements in the first sample 𝑛1 and 𝑛2 in the second
one.

• Divide a single ranked series into two, consisting of units of the first and second
samples, respectively. Calculate separately the sum of ranks for each sample 𝑅1

and 𝑅2, then calculate:

𝑈1 = 𝑛1 · 𝑛2 +
𝑛1 · (𝑛1 + 1)

2
−𝑅1 (6.7)

𝑈2 = 𝑛1 · 𝑛2 +
𝑛2 · (𝑛2 + 1)

2
−𝑅2 (6.8)
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• Determine the value of the Mann-Whitney U-statistics by the formula 𝑈 =
max{𝑈1, 𝑈2}.

• Using the table for the selected level of statistical significance, determine the
critical value of the criterion for the data. If the resulting value of 𝑈 is greater
than or equal to the tabular one, then it is recognized that there is a significant
difference between the samples and an alternative hypothesis is accepted. If the
resulting value of 𝑈 is less than the table value, the null hypothesis is accepted.

In our case, as null hypothesis we consider the equivalence of the mean for both
samples, as alternative hypothesis we suggest that the mean of the model that takes into
accounts the neighbours topology is greater than of the second one. The statistical
significance, also denoted as 𝛼, is the threshold probability of rejecting the null
hypothesis when it is true. 𝑝𝑣𝑎𝑙𝑢𝑒 - is actual probability (calculated from the resulting
value of 𝑈) of rejecting the null hypothesis when it is true. So when 𝑝𝑣𝑎𝑙𝑢𝑒 < 𝛼, we
assume that we reject the null hypothesis correctly.

The result of Mann-Whitney statistical test is presented on the Fig. 6-7 for 60% of
training samples from SIM_BIG data (for all the remains ratios of the training data
the test was provided by analogy and the results were the same). For the comparison,
a critical region of 2𝜎 is given. The Fig. 6-7 shows that the value of p-value is
significantly less than alpha, so, we reject the null hypothesis. Therefore, the mean of
the model that takes into account the topology among neighbour lines in power grid
exceeds the mean of the baseline model, and then we could consider obtained results
as statistically significant.

For power systems operational practice, it might be beneficial to present the solution
in a simple logical form [Boros et al., 2000, Hammer and Bonates, 2006, Maximov,
2012a, Maximov, 2013, Maximov, 2012b] conventional for interpretation by a power
system operator.
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Figure 6-7: Computed Mann-Whitney Statistics for normal distribution.

6.4 Conclusion
The problem of predicting power grid faults with a convolutional neural network is
discussed in this chapter. Simulated datasets SIM_SMALL and SIM_BIG containing
four and three types of errors, respectively, were used to address the problem. By
improving the loss function of the previously presented model [Li et al., 2018], we
were able to achieve the gains in the accuracy measure. We added an additional term
accounting neighbor information to the loss function to account for the neighbors
of the line with a failure throughout the learning phase. To evaluate the statistical
significance of the suggested technique, we used a statistical Mann-Whitney test to
corroborate our findings. The test validated the approach’s static significance. Also
the modified model demonstrates its better robustness to the noise conditions and
partial observability. A similar approach can be used for analysis of power generation
reliability [Stulov et al., 2020, Mikhalev et al., 2020].

102



Chapter 7

Conclusion and Future Perspectives

7.1 Concluding remarks
In this thesis, the problem of ranking was considered in relation to different fields,
in particular, to recommender systems and power systems. The first part and the
main contribution of the thesis is devoted to recommender systems. As a solution to
the problem regarding effective recommendations in the case of implicit feedback, we
propose an approach SAROS [4] for effective sequential training of hidden representations
of users and objects that take into account their interactions in the system. The
approach uses both types of feedback, positive and negative, organized in blocks so
that, according to our assumption, the algorithm pays more attention to positive
interactions during training. The proposed algorithm has proven itself in practice
relative to other popular approaches, where the most of them use only one type of
feedback. This confirmed the importance of using both types of interaction’s output,
as well as the effectiveness of the proposed block structure of training. And also
provided ways to improve it and speed it up. It is important to note that the proposed
algorithm was theoretically justified. First we proved its convergence for the case of a
convex loss function, and then we extend the theory of convergence on the general
case [2].

We also suggest the ways to speed up the algorithm in conditions of preserving
the quality of predictions [1]. The proposed method considers the time series of
user interactions with objects and filters out those objects that do not keep the long
memory. The experiments showed that the effective part of the training data keeps
memory. Thus, by filtering out users with short memory, we have preserved the high
quality of the model, slashed the size of the input data, and reduced the time for
processing and training them.

The second part of the thesis is mostly devoted on the practical application of
ranking model in engineering systems with the contribution on the improvement of
the existing model for ranking the faulted lines in power grids. We proposed to take
into account the network topology and changed the loss function by adding the term
that takes into account the neighbors of the broken line. By adapting this idea, we
slightly improved the baseline results. Moreover, according to the Mann-Whitney
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statistical test, our results are statistically significant.

7.2 Future perspectives
Recommender Systems. Generally speaking, it is a quite difficult task to adapt
recommendations to different data. Everything that we proposed to do on open-source
data may not work in reality. This may be a problem from two sides. The first reason
are users, as because their behavior may not be the same as that of those users on
whom we configured the algorithm. Another side is time: even if we recommend
good objects, then users will see and click only those objects that we recommend to
them and it will be more profitable for the company to recommend the same objects
(feedback loop task, [Mansoury et al., 2020, Sinha et al., 2016]). Therefore, it would
be interesting to try to run the proposed algorithm on some real data and adapt the
approach to it.

Power Systems. As for power grids, it would be interesting to try graph neural
networks for more advanced work with the network topology. Recently, graph neural
networks have shown impressive results in the power systems tasks [Liao et al., 2021]
due to their ability to capture dependencies in the graph-structured systems.
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