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I
Theoretical background of

value-based choices

Do you prefer brownie or tiramisù? One can probably answer this question quite easily1, but

how exactly? According to decision theories from various disciplines ranging from economics

(VonNeumann&Morgenstern, 1944) to psychology (Kahneman&Tversky, 1979), the choice

hinges on assigning a subjective value to each of the desserts (Glimcher, 2014). In doing so, a de-

cision can bemade by comparing these values and picking the highest one. This type of decision

making, known as value-based decision making, is ubiquitous in nature. It occurs whenever an

animal is faced with a choice between several alternatives that carry different intrinsic values for

it – e.g., choosing between different consumer goods, getting into a relationship, or wondering

whether something is beautiful or morally right. Value-based decisions are thus not driven by

the immediate sensory characteristics of the options (such as how fast this car is going towards

me), but rather by the individual’s subjective experience and idiosyncratic preferences (the an-

swer to a choice is not necessarily the same for everyone). Unlike sensory judgments (known

as perceptual decisionmaking), there are generally no unambiguous “correct” answers in value-

based decisions; the choices made depend on invisible values internal to the decisionmaker. To

infer these values, one can rely on a person’s behavior, i.e., on his or her observable choices: if a

1I do, and it’s definitely tiramisù
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I.1. How do we choose?

person chooses option A over option B, it can be inferred that option A has a higher value. In

doing so, however, we quickly realize that, even for the same individual, values are not constant

for a given object or a situation. Indeed, it is easy to see that although the choice or situation

seems totally similar, we do not alwaysmake the same decisions. For example, how can I explain

that in my favorite restaurant, I sometimes choose lasagna and sometimes a salad? Choices can

in fact be influenced by independent factors such as the internal states of the decision maker

(e.g., am I very hungry) or external factors (e.g., the outside temperature). Understanding the

influence and occurrence of these factors therefore seems essential to explain part of the incon-

sistency observed in choices.

In this chapter, I will start by delineating the theoretical framework of my experimental work,

which will inevitably involve a great deal of definition about the different types of values and

how they are used tomake a decision. I will then describe somemodels that have been proposed

to formalize the properties associated with values, and finally, I will outline some internal and

external factors that have been identified as value modulators.

1. How dowe choose?

a. The five steps of value-based decision making

Value-based choice can be seen as broken down into several processes that are necessary and

sufficient for its proper execution. In 2008,Rangel, Camerer, andMontagueproposed aunified

framework of value-based decision making drawing on existing theoretical models of choice in

economics, psychology and computer science (Rangel et al., 2008). This framework divides the

required computations into five major processes, which I will outline now (Fig. I.1).

Representation

The first process of this framework is to consider the current state of the world so as to build

a representation of the decision problem. This entails depicting the set of potential courses of

action (e.g., chasing aprey or fetchingwater) given the external states or variables (e.g., proximity

to a herd or a water source) and the internal states of an individual (e.g., hunger or thirst).

Valuation

The second computation relates to the valuation of the options. Each of the considered alter-

natives is assigned a value, which strongly depends on the representations of the internal and

external states.

2



I.1. How do we choose?

Learning

Update the representation, valuation 

and action selection processes

Representation

Set of  feasible actions?

Internal states?

External states?

Valuation

What is the value of  each action

(given the internal and external states)?

Action selection

Choose actions based on valuations

Outcome evaluation

How desirable are the outcomes and 

states that followed the action?

Figure I.1: The five processes involved in value-based choice. (i) representation of feasible actions; (ii)
valuation of these actions; (iii) selection of the most appropriate action; (iv) evaluation of outcomes; and
(v) learning based on the differences between the assessed outcomes and the initial assessment. FromRangel
et al. (2008).

Action selection

Next, the different options are compared on the basis of their computed value (value compari-

son), enabling the best one to be selected (action selection) and executed. Therefore, values act

as the driving force behind the choice revealed by the decision.

The valuation and action selection steps imply two fundamental properties of values:

1. Common currency

Assigning and comparing values seems fairly straightforward if one has to choose between op-

tions that differ only in one attribute. If, for example, we have to choose between buying an

apple for 1€ or the exact same apple for 2€, we simply need to represent and compare prices.

But what if we have to choose between an apple and an orange? Most of our choices involve

options with countless attributes (such as size, taste, health benefits, etc.) to be combined into

a coherent representation of value so that they can be compared with any other possible option.

A central idea to the valuation step is therefore that options ofmany different kinds can be trans-

lated into some form of common currency to enable comparison and choice (Levy & Glimcher,

2012; Montague & Berns, 2002).

3



I.1. How do we choose?

2. Subjectivity

Another noteworthy aspect is that, when faced with the same options, two individuals will not

necessarily make the same choice. This suggests that they did not assign the same values to each

possibility. Indeed, each of the options may be more or less desirable depending on one’s id-

iosyncratic preferences (e.g., my preference for Brussels sprouts in the canteen is not necessarily

shared by everyone). Thus, values are also inherently subjective.

Outcome evaluation

After the decision is made, a separate value signal measuring the desirability of the generated/

experienced results is computed, this is the outcome value.

Learning

Finally, the predicted value and the outcome value are compared, resulting in a prediction error

that is used to update the entire selection process (i.e., the first three steps of this framework).

This makes it possible to learn from the choices made and thus improve the quality of future

decisions. For example, this is the reasonwhy one does not touch fire again after getting burned

once. This computational process is the focus of a prolific area of research on decision-making

called reinforcement learning.

N

This segregation of the decision system into five categories is not rigid, and many questions

remain about the extent towhich these processes are separable in the brain. For example, it is not

clear whether stimulus valuation (step 2) takes place before action selection (step 3), or whether

the two computations are performed in parallel (Cisek, 2012). Nevertheless, this framework is

useful for establishing a common vocabulary and partitioning the study of value-based decision

making into several testable processes.

b. The different types of valuation systems

In the same spirit of categorizing decision processes, the valuation stage (step 2) has been de-

scribed as encompassing at least three different systems: the Pavlovian system, the habitual sys-

tem and the goal-directed system (Fig. I.2; Daw and O’Doherty, 2014; Dolan and Dayan, 2013;

Rangel et al., 2008). This partitioning stems from the widespread idea in decision psychology

(and later in neuroscience and behavioral economics) that there is more than one category of

possible strategies for acting.

4



I.1. How do we choose?

State Action Outcome State Action Outcome

State Action Outcome State Action

State Outcome State

Learning Future action
P
a
v
lo
v
ia
n

H
a
b
it
u
a
l

G
o
a
l-
d
ir
ec
te
d

Figure I.2: The different types of valuation systems. (top) Pavlovian system: repeated predictive pairing
of an arbitrary state or cue with a motivationally salient outcome (a reward or aversive event) causes a condi-
tioned and typically innate response to be emitted when the state is encountered in the future, appropriately
anticipating the outcome. (middle) Habitual system: if an action is executed while the animal is in a certain
state, and the action leads to a reward, the action is reinforced such that encountering the state in the future
makes executing that action more likely. If the value of the outcome was aversive, then the action is inhib-
ited in the future. (bottom) Goal-directed system: if an action from a certain state leads to a reward, then an
explicit representation of the sequence is remembered, which is available to guide actions when the state is
encountered in future. From Seymour, Singer, et al. (2007).

The Pavlovian system

The Pavlovian system (Fig. I.2 top) takes its name from Ivan Pavlov’s famous experiments on

dogs, which formalized the concept of reflex or classical conditioning (see Box 1). It assigns

values to a small set of behaviors that are either reflexive responses to classes of stimuli that were

important in our evolutionary history (so-called “innate” behaviors, e.g., salivating at the sight

of food), or learned responses to situations that predict the occurrence of those stimuli (classi-

cal conditioning, e.g., salivating at the sound of the food bag). Such Pavlovian behaviors differ

according to the valence of the stimulus or environmental context, favoring approach behavior

toward reward-predictive stimuli and avoidance behavior toward punishment-predictive stim-

uli (Huys et al., 2011). Although Pavlovian responses are generally advantageous, they are also

rigid since they are automatically issued in the presence of associated stimuli, whether or not

they are appropriate to the current situation. This rigidity is an important difference between

the Pavlovian system and the other two systems, known as instrumental, which allow for flexible

adaptation of behavior to a specific environment.
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I.1. How do we choose?

Box 1 | Pavlov’s dogs and the discovery of classical conditioning

Ivan Petrovich Pavlov (1849-1936) was a Russian physiologist who won the Nobel

Prize in 1904 for his work on digestive processes. In his research, he developed a proto-

col on the gastric function of dogs which consisted inmeasuring the quantity of saliva

produced following the ingestion of food under different conditions. At the begin-

ning of the protocol, the dogs only salivatedwhen they ate food, but as his experiments

progressed, Pavlov noticed that the dogs began to salivate abundantly even before they

were fed, and even from the moment a feeding assistant entered the room. Based on

these observations, he began to study what he called “psychic secretion”, which would

later be called Pavlovian or classical conditioning (Pavlov, 1927). He initiated a series

of experiments in which he sought to elicit a conditioned response to a previously neu-

tral stimulus. In one of them, he chose to use food as the unconditioned stimulus (i.e.,

the stimulus that elicits a response naturally and automatically), and the sound of a

metronome as the neutral stimulus. The dogs were first exposed to the sound of the

metronome and then the food was immediately presented. Initially, only the presen-

tation of the food caused salivation (the unconditioned response). But after several

conditioning trials, Pavlov found that “the sounds from the metronome had acquired

the property of stimulating salivary secretion” (Pavlov, 1927, p. 26). In other words,

the previously neutral stimulus (the metronome) had become what is known as a con-

ditioned stimulus that caused a conditioned response (salivation).

The habitual system

The habitual system (Fig. I.2 middle) uses the repetition of stimulus-response associations to

learn which action should be taken in a particular state of the world (i.e., it produces “habits”).

In this system, values are assigned to actions through trial-and-error experience and are propor-

tional to the expected reward that these actions generate. In contrast to the Pavlovian system,

the habitual system learns associations between a stimulus and an action (rather than a stim-

ulus and its associated outcome), and can assign values to a large number of actions (through

repeated training). However, in such a mechanism, the action is not performed with the inten-

tion of obtaining or avoiding the outcome. This means that actions can be selected even if the

outcome is no longer relevant or valued by the individual (e.g., driving to workwhen onewants

to go to the grocery store).

6



I.1. How do we choose?

The goal-directed system

Finally, the goal-directed system (Fig. I.2 bottom) assigns values to actions on the basis of desir-

able goals at the time of choice. This involves learning the association between a specific action

(e.g., inserting a coin into a candymachine) and its valued outcome (e.g., the candy). Such a sys-

tem relies on the ability to represent available states, actions, and goals at any time and involves

flexible computation of action plans. Thus, unlike the habitual system, the goal-directed system

can respond quickly to a change in the environment or internal state by updating the value of

an action whenever the value of its outcome changes.

Interactions between valuation systems

Overall, three valuation systems producing different behaviors have been described. These sys-

temswere proposed as operating in parallel, which implies that they consistently assign different

values to the same options. In the case where the assigned values lead to mutually exclusive ac-

tions, the three systems would compete to control the behavior (Daw et al., 2005). An example

of this would be an individual considering taking an extra bite of food while feeling full: The

Pavlovian system would assign a high value to the food, while the goal-directed system would

give it a low value (Rangel et al., 2008). Such conflicts have been a major assumption to (par-

tially) justify unexpected or inconsistent behaviors and choices (Dayan et al., 2006).

From a computational perspective, it has been proposed that habitual and goal-directed systems

are capturedby twodistinct classes of reinforcement learningmodels, themodel-free andmodel-

basedmethods, respectively (Daw et al., 2005), whereas the Pavlovian system could use features

of both models (Rigoli et al., 2012). Specifically, model-free models promote the execution of

experienced behavior (learned by trial-and-error) with little effort, while model-based models

make decisions through a flexible but computationally demanding process that uses an internal

model of the world. Yet, while these proposals have provided insight into many aspects of cog-

nition, tensions have emerged within the model-based/model-free computational dichotomy

(Miller et al., 2018). Alternative proposals question, for instance, whether model-free mecha-

nisms are part of the goal-directed system rather than the habit system, or even whether such

mechanisms are necessary to explain human and animal behavior.

Ultimately, the exact nature of the computation or even the number of valuation systems is still

a matter of debate. Nevertheless, it remains clear from a wealth of studies that the values under-

lying decision making are fractionated at the behavioral, computational and even neural levels,

corroborating the existence of distinct valuation systems (Daw & O’Doherty, 2014; Dolan &
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I.1. How do we choose?

Dayan, 2013; Miller et al., 2018; Rangel et al., 2008). In my experimental work I was specifi-

cally concerned with the goal-directed system, which will therefore be the focus of the rest of

this manuscript.

c. Focus on the goal-directed system valuation process

As just described, the goal-directed system assigns values to actions through the computation of

action-outcome associations. Theoretically, this approach involves assessing the benefits associ-

ated with the pursued goal, but also incorporating the costs associated with the possible course

of action. Indeed, the actions themselves can have an impact on the perception of a goal (e.g.,

consider the difference between climbing five floors or walking two meters to get a chocolate

square). Consequently, the decision value used in the comparator process (step 3 of the previ-

ous framework) is thought to provide an integrated representation of two types of values: the

stimulus value and the action cost (Fig. I.3; Pessiglione et al., 2018; Rangel and Hare, 2010).

Brain Behaviour Goal
Command Instrumentality

direction & intensity delay & probability

Cost Benefit

(effort & time) (reward - punishment)
Anticipation

Figure I.3: A schematic view of the goal-directed system. The box-and-arrow schema illustrates goal-
directed behavior. From Pessiglione et al. (2018).

Stimulus value

The stimulus (or goal) value is a measure of the expected benefit of undertaking an action to

achieve a goal, regardless of the costs of this action. The action may be set as the goal itself (e.g.,

walking because I like it) or it may lead to a valuable outcome (e.g., walking to get somewhere).

Importantly, goal value arises from the intrinsic meaning of two different types of predicted

outcomes: rewards and punishments.

Rewards (or gains) have a positive value and refer to something that is sought after (Schultz

et al., 1997). They are usually described in terms of the behavior they elicit, such as approach

or consumption behaviors. Rewards can be primary (e.g., food), include external stimuli (e.g.,

objects or money), the performance of a certain act, or an internal state. In general, rewards are

also associated with positive emotions and pleasure, although the hedonic satisfaction associ-
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ated with a stimulus (liking) might be distinct from the work involved in obtaining it (wanting;

Berridge & Kringelbach, 2015).

Punishments (or losses) have a negative value and refer to something that is sought to be escaped

or avoided. In this sense, punishments relate to any aversive event or stimulus. In particular, we

can mention sensory punishments (e.g., pain or foul tastes), and psychological punishments,

which are primarily frustrations related to the occurrence of an unwanted event (e.g., losing

money) or the failure to obtain a desired reward.

For instance, moving abroadmay be set as a goal because it has high positive value on the dimen-

sions of learning and personal growth, but it also carries negative values associated with being

separated from family and friends. Understandably, a goal can be designated as such only if

the values of rewards (positive) exceed the values of punishments (negative). Still, as mentioned

earlier, these values reflect the decider’s individual estimation of the attractiveness or unattrac-

tiveness of the available options and thus are by their very nature subjective. Moreover, as will

be detailed later (see section I.3.), the goal value (and thus rewards and punishments) can be

weighted differently within the same individual based onmodulators such as uncertainty, risk,

or the internal states of the decision maker.

Action costs

Action costs reflects the value of taking the action required to achieve a goal regardless of the

expected benefits that the action might generate. They result in a devaluation of the stimulus

value and are typically revealed by preferences for less costly alternatives. Action costs can be

divided into two categories: time and effort (Pessiglione et al., 2018). Time spent on a given

action is a cost because it becomes unavailable for other actions that might be profitable. Simi-

larly, effort is a cost because it involves the consumption of resources that might be needed later

to engage in another desired activity and that will require other costly processes to be restored.

While themetabolic costs of physical effort are obvious, the extent towhich cognitive effort also

consumes biological resources remains debated (Kroemer et al., 2016; Pessiglione et al., 2018).

Nevertheless, mental effort is generally experienced as aversive (Eisenberger, 1992) and humans

tend to avoid engaging in cognitively demanding activities (Kool et al., 2010; Westbrook et al.,

2013), suggesting that cognitive effort also entails a cost.

Punishments vs. action costs

Both punishments and action costs have the consequence of decreasing the value of benefits,

and have therefore often beenmixed up in the literature. Yet they can be clearly distinguished by
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considering whether the devaluation is related to the action (action cost) or the outcome (pun-

ishment/loss; Rangel & Hare, 2010). This distinction is meaningful since, for example, one

can reduce the effort costs associated with an action (e.g., reduce the physical distance needed

to buy an item), but cannot change the associated losses (e.g., its price). Nonetheless, it remains

that both can be considered as aversive stimuli.

Decision value

Finally, stimulus value and action cost are integrated into a decision value given by:

Decision Value = Stimulus Value− Action Cost

These decision values are the ones that are thought to be compared whenmaking a choice (Pes-

siglione et al., 2018; Rangel &Hare, 2010). Basically, when a single course of action is involved,

it is only initiated if the net value of this computation is positive (i.e., better than doing nothing).

Thismeans that the highest cost a person iswilling to accept, in order to achieve a particular goal,

is equal to the stimulus value. Therefore, action costs are typically viewed as a measure of the

motivation intensity.

Summary

• Value-based choice can be seen as broken down into five processes that are nec-

essary and sufficient for its proper execution: (i) representation, (ii) valuation,

(iii) action selection, (iv) outcome evaluation and (v) learning.

• Values are implemented as a common currency and are inherently subjective.

• The belief that more than one strategy for acting is possible has led to the distinc-

tion of three types of valuation systems: thePavlovian system, thehabitual system

and the goal-directed system.

• Within the goal-directed system, different types of values can be distinguished

(see Box 2).

• The goal or outcome of a decision can bemultidimensional, including rewards (or

gains) and punishments (or losses).

10
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Box 2 | Overview of the different types of value and terminology

Goal-directed decisionmaking involves different types of valuation – and therefore dif-

ferent values – throughout its decision-making process. While the distinction between

these values is ubiquitous in the literature, the same termsmay have beenused inconsis-

tently in different fields or at different times. For the sake of clarity, the different types

of values discussed in this manuscript, their interpretation, and the correspondence

with different terms proposed in the literature are reviewed below.

• Stimulus value: Expected benefit (i.e., integration of rewards and punishments)

from the outcome of a decision.

This valuation has received many names in the literature: It is called predicted

value / utility (Kahneman et al., 1997) or anticipated value (Loewenstein, 1987) by

economists, while psychologists alternatively use the terms goal or stimulus value

(Hare et al., 2008; Rangel & Hare, 2010), subjective desirability (Dorris & Glim-

cher, 2004) or affective forecasting (Wilson &Gilbert, 2005).

• Action cost: Value of the costs related to the action required to achieve a goal. It

includes the time spent doing the action and the amount of effort required (phys-

ical and mental).

• Decision value: Driver of the choice embedded in the comparison process, it is

revealed by the decision and integrates the representation of stimulus value and

action costs.

Synonyms: Action value (Rangel & Hare, 2010) or decision utility (Kahneman et

al., 1997)

• Outcome value: Measure of the pleasantness of the experienced or generated de-

cision outcome (Rangel & Clithero, 2012).

Synonyms: experienced value (Ruff & Fehr, 2014), instant utility (Kahneman et

al., 1997)

• Prediction error: Difference between obtained and expected outcomes (i.e., the

difference between outcome and stimulus value). Two kinds can be distinguished:

reward prediction errors (RPE) when the outcome is appetitive and punishment

prediction errors (PPE) when the outcome is aversive.
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2. Can we predict choices? – Computational models of value

comparison and selection

A fundamental goal of research in decision-making is to explain behavior, that is, to answer the

question of why humans (or animals) act as they do. To achieve this goal, a widespread practice

consists in using computational modeling. The idea is to define specific hypotheses about the

decision process in ways that narrow it to its essential components. As such, models provide a

framework to summarize existing knowledge, can help translate observations into predictions

of future events, facilitate the interpretation of complex data, and allow for the comparison of

competing hypotheses about underlying mechanisms. In the next section, I will present differ-

ent computational models that have been proposed to formalize how decision values are com-

pared and selectedwhen making a choice.

a. Static models of decision making

The argmax rule

The field of decision making has long been dominated by an economic perspective, seeking

to specify the minimal internal representation that could, in theory, account for a given set of

observed choices (Caplin & Glimcher, 2014). One of the earliest concepts in the field was that

humans should be rational and their decisions should serve to maximize their well-being (the

homo economicus). In other words, a decision maker would always choose the option with the

highest value. More formally, this amounts to performing an “argmax” operation among the

values (V ) of the elements from the choice set (Glimcher, 2014):

Choice = argmax {V1, V2, ..., Vn}

This operation implies that selecting a sub-optimal option is impossible, even for the closest dif-

ference between options in the choice set, provided that the valuation of each option is correct.

The argmax rule gives choices a purely deterministic nature (i.e., choice is settled on the option

with the highest desirability). However, it is often observed that individuals are very stochastic,

in the sense that when asked to choose from the same set of options several times, they often

makedifferent choices (Tversky, 1969). To capture choice irregularities and imperfect behaviors,

later theories havehad to introduce some formof stochasticity inoption selectionoruncertainty

in the representation of values.
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The softmax rule

One approach, already used in the reinforcement learning field, has been tomodel the probabil-

ity of choosing a particular option by a softmax or logistic transformation of the values (Luce,

1959). This model simply predicts that the probability of choosing an option increases with

its desirability (Fig. I.4a). When there are only two options to choose from (say A and B), it

reduces to the following equation:

pA =
1

1 + e−(α+β(VB−VA))

Where the probability of choosing option A (pA), is determined by the difference in value

(V ) between the two options A and B. The free parameter α refers to the intercept indicat-

ing whether there is a bias in choice, while the free parameter β, called “inverse temperature”,

reflects the slope of the sigmoid function controlling the influence of values on choice. This lat-

ter ranges from β = 0 for a completely random response to β = ∞ for a deterministic choice

of the highest value option (Fig. I.4a). Thus, instead of systematically picking the highest value

option, the softmax function provides a probabilistic choice model that captures the fact that

inconsistent choices increase when option values are close.

Signal detection theory

An alternative approach to accounting for choice variability has emerged from signal detection

theory (SDT). The roots of this model lie in the design and analysis of radar signals (Peterson

et al., 1954), from which it quickly spread to cognitive sciences, where it provided a theoretical

framework to explain perceptual decision making in the face of sensory uncertainty (Tanner

Jr. & Swets, 1954). In this context, SDT is applicable to any binary decision situation where

the response of the decision maker can be assessed by the actual presence or absence of a stim-

ulus (Fig. I.4b). The general premise is that decisions rely on evidence sampled from internal

probabilistic representations of both signal and noise, which are compared on the basis of an in-

ternal criterion. If the internal signal is stronger than the criterion, the stimulus will be reported

present, otherwise it will be reported absent. Four types of response are then distinguished: hit

(signal is reported present when it is), false alarm (signal is reported present when absent), miss

(signal is reported absent when present) and correct rejection (signal is reported absent when it

is). The probability of each response type can be used to recover two parameters: bias and sensi-

tivity. Bias represents the tendency to favor one answer over another (i.e., less evidence is needed

for that answer to be selected), while sensitivity (or discriminability d’) corresponds to the abil-
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ity to distinguish between each stimulus. In other words, sensitivity reflects the “similarity” of

the stimuli, so that d’ is a measure of performance which is independent of bias.

In the case of value-based decision making, the internal probability distributions represent the

values of two options to choose from. The closer the values are, the less distinguishable they

will be (small d’) and the greater the probability of observing inconsistent choices. The re-

sponse types “miss” and “false alarm” then constitute a single error category corresponding to

not choosing the option with the highest value.

The softmax rule and SDT thus yield quantitatively similar predictions. Nevertheless, these two

approaches differ insofar as they suggest different sources of decision stochasticity. On the one

hand, the softmax function assumes that option values are properly represented, but that noise

is introduced in the mapping between the internal state and the response (i.e., during the com-

parison and selection processes). Whereas SDT assumes that values are inherently generated in

a probabilistic way.

N

Both softmax and SDT models are easy-to-implement and robust procedures that are useful

for analyzing performance in simple contexts. However, they share two significant limitations.

First, they treat information in the environment as being static, leaving out the temporal aspect

of decision making. Yet, a well-known decision phenomenon, called the speed-accuracy trade-

off, states that decision time and performance are negatively related, so that the accuracy of a

decision canbe traded for its speed (Heitz, 2014). Second, theyprovideonly limitedmechanistic

insight into how choices aremade. To address these limitations, a second class ofmodels, which

can be called dynamic, instead treats information in the environment as continuous and offers

a way to incorporate choice probabilities alongside reaction times.

b. Dynamic models of decision making

Most of our decisions are made under time pressure (e.g., thinking about which pair of socks

to wear is not something that can be done for hours on end). Nevertheless, deciding when to

stop deliberating is not simple, as it involves a balance between two opposing forces. On one

hand, the quality of decision making improves when based on more information, on the other

hand, the time spent deciding is costly. This balance is known as the speed-accuracy trade-off,

a compromise that affects a large number of species, from acellular organisms to bumblebees

to humans (Forstmann et al., 2016; Heitz, 2014). Several models have been developed to ac-
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count for this phenomenon and explain how decisions are made under time pressure. The

most popular class of models assumes that decisions are made by a process of accumulating

noisy samples of information from the environment until a threshold of evidence is reached.

These accumulation-to-thresholdmodels are known as sequential sampling models.

P
ro

b
ab

ili
ty

 o
f 

ch
o

o
si

n
g 

A

0

0.5

1

Value difference (A-B)

A << B A >> B

α = 0 ; β = ∞

α = 0 ; β = 8

α = 0 ; β = 3

α = 0 ; β = 1

α = 0 ; β = 0

α = 4 ; β = 8

α = -4 ; β = 8

a

Bias(z)S
ti

m
u
lu

s 
o

n
se

t

Drif
t r

ate
 (v

)

Non-decision
times (u)

Reaction times

(response A)

Reaction times

(response B)

Upper boundary

Lower boundary

T
h

re
sh

o
ld

 (
a)

Time

a

z

0

c

Criterion

Signal

absent

Signal

present

Correct

Reject

Hit

Miss

False

alarm

Signal strength

d’
Liberal Conservative

b

Figure I.4: Choice models for value comparison and selection. (a) Softmax rule. Probability of choosing
option A as a function of the value difference between the two options A and B. Choice probabilities obtained
for five different values of the inverse temperature parameter (β; curves 1-5) and three different values of the bias
parameter (α; curves 2,6,7) of the softmax function are presented. (b) Signal detection theorymodel. The decision
space consists of two normal distributions from which a sample is drawn and compared with a criterion to make
a decision. The distance between the two distributions, called sensitivity (d’), determines the “similarity” of the
stimuli. Adapted from Gardner (n.d.). (c) Schematic representation of the drift diffusion model (Ratcliff, 1978).
A decision ismadewhen the evidence, accumulated from a point z (here unbiased) andmoving stochastically with
a drift rate v, reaches one of the two symmetric thresholds. Noise in the accumulation of information means that
processes do not always terminate at the same time or at the same boundary, producing reaction time distributions
for both options. Adapted from Vinding et al. (2021).

15



I.2. Can we predict choices?

Over the course of several decades, many versions of sequential sampling models have been de-

veloped (see Ratcliff & Smith, 2004 for a review). Among them, probably one of the most

widespread is the drift diffusionmodel (DDM; Ratcliff, 1978), which has been able to account

for a large amount of data in different domains, including perceptual discrimination and go-no-

go tasks, before being extended to value-based decision making (M. M. Mormann et al., 2010;

Tajima et al., 2016).

The drift diffusion model

The DDM has been widely used to explain observed patterns of choice and response time in

simple binary decisions (e.g., choosing between an apple and an orange). This model assumes

that each instant yields evidence about the stimulus, which is accumulated as a relative value sig-

nal from a starting point z to a decision threshold associated with a particular choice (Fig. I.4c).

The amount of accumulated evidence evolves at every instant t as follows:

Rt+1 = Rt + v + ϵt

Where Rt denotes the relative value signal at instant t (measured from the beginning of the

choice process), v is the drift rate, and ϵt represents a white Gaussian noise. The drift rate in-

dexes the rate at which evidence is acquired (i.e., the higher the drift rate, the faster and more

accurate the response). In value-based decisionmaking, it is a function of the difference in value

between the two options, such that it is biased towards the preferred option (M.M.Mormann

et al., 2010). The zero point of the drift rate distinguishes between positive drift rates that tend

toward the upper boundary and negative drift rates that tend toward the lower boundary. In

this model, choice stochasticity is captured by the Gaussian noise ϵt which allows for variability

in the accumulation of information over the course of a trial, giving rise to variability in reaction

times and allowing the process to not always terminate at the same boundary (producing errors

such as not choosing the option with the highest value).

N

Altogether, the computational models described in this section offer several levels of analysis of

decision dynamics – from the simplest psychological descriptions of value comparisons tomore

detailed implementations. All of these models have been successfully applied inmany domains,

providing accurate quantitative accounts of how choice probabilities (and response times in

the case of dynamic models) vary with the properties of choice options. However, a common

feature of thesemodels is that they introduce choice variabilitywith stochastic functions, which
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predict choices on average (choice probability), but cannot provide accurate predictions at the

individual level. Yet, although it can be argued that decision-makingmechanisms are inherently

stochastic, it would also appear that the random components may in part reflect the influence

of unobserved or unconsidered factors. Indeed, many factors such as risk or delay are widely

recognized as having a predictable influence onoption values during choice. Relatedly, a further

limitation of such models is that they describe how values are compared, but leave unspecified

how these values are constructed.

In order to better understand how decisions are made, many value modulators have been de-

scribed and valuation models have been proposed, allowing, when combined with choice func-

tions, to replace some of the randomness with bias. In the following section, I will introduce

three of these modulators that have been the focus of my experimental work: risk, mood and

visual attention.

Summary

• Over time, several computational models have been developed to capture how de-

cision values are compared and selected.

• Earlymodels fromeconomics considered choices tobedeterministic (argmax rule),

while later models introduced stochasticity in option selection or value representa-

tion as a way to capture choice irregularities and imperfect behavior.

• Static models of choice, including the softmax function and signal detection the-

ory, provide an effective description of choice behavior, but ignore the temporal

aspect of the decision and lack a deeper mechanistic view of its process.

• Dynamic choicemodels such as sequential samplingmodels, and particularly the

drift diffusion model, extend models from signal detection theory by providing a

simple mechanistic explanation of the observed relationship between decision out-

comes and reaction times.

• Overall, these models are limited by the fact that they do not describe how values

are constructed, and that they account for the variability of choices with stochastic

functions which only help to mimic behavior on average.
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3. Modulators of the valuation system

As mentioned before, in a goal-directed choice, the stimulus value is built by weighing the in-

trinsic rewards and punishments of the expected outcome of the decision. Yet in our daily lives,

many other factors can influence our perception of a goal. For example, the value attributed to

an action may depend on the riskiness of its associated rewards, the time frame in which these

rewards occur, or the social context (Rangel et al., 2008; Ruff & Fehr, 2014; Tobler & Weber,

2014). Such factors are referred to as valuemodulators. Their study contributes to explain part

of the observed choice inconsistency and to build more accurate models of decision making.

Three of them have been the focus of my experimental work: risk,mood and visual attention.

a. Uncertainty and risk

We make most of our decisions without knowing their consequences with certainty. Whether

selecting a course of study, going to climb Mont Blanc, or even choosing a given road to avoid

traffic, the expected outcome of each of these decisions depends on the occurrence of uncer-

tain events. For all that, it is clear that not all decisions have the same degree of uncertainty.

The economist Frank Knight was the first to draw a conceptual distinction between decisions

under risk and under uncertainty (Knight, 1921, Ch.7). He defines risk as situations where

the outcome is unknown, but the probability distribution governing that outcome is known.

Whereas uncertainty is characterized by both an unknown outcome and an unknown probabil-

ity distribution. The real world knowledge about the probability distribution of the potential

outcomes of a choice can fall anywhere on a continuum, ranging from complete ignorance (i.e.,

the potential outcomes are not even known) at one extremity, through various degrees of partial

ignorance (i.e., uncertainty), to risk (the full distribution of outcomes is precisely specified), to

certainty (a single deterministic outcome is known).

Because of the persistence of uncertainty in our everyday lives, this topic has been one of the

most prolific in the field of decision making. Consequently, as we will briefly mention, the

evolution of theories governing uncertain choices has gone hand in hand with the observation

of biases affecting stimulus value that go even beyond the scope of risk and uncertainty.

Expected Value Theory

The study of decision making under risk and uncertainty has a remarkably rich history that

goes back to Blaise Pascal’s early reflections on a standard problem present for several centuries

in mathematical texts and known as the division problem: how to divide the total stake of a
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game of chance in case of its premature interruption (Edwards, 2001)? Pascal posited that the

expected value of such a situation could be computed by combining the amount of the objective

outcomes and their probability level as follows:

EV (X) =
∑
x

p(x) · x

In this equation, the expected value (EV) of a gambleX is computed as the sum of all possible

outcomes (x) weighted by their respective probability (p(x); Tobler&Weber, 2014). From the

middle of the 17th century, mathematical expectation and its maximization (i.e., choosing the

option with the highest EV) thus became the central doctrine on how to choose rationally.

Expected Utility Theory

A little less than a century later, this approach was challenged on the basis of the so-called St.

Petersburg paradox (see Box 3), which points out that people often fail to maximize expected

value as they are only willing to pay a small price for the opportunity to play a game with a

highly skewed payoff distribution and infinite expected value. To resolve this paradox, Daniel

Bernoulli (Bernoulli, 1738/1954) suggested that the utility– the desirability or satisfaction – of

an outcome should be distinguished from itsmonetary amount (i.e., its value), such that instead

of maximizing expected value, choosers should maximize expected utility (EU):

EU(X) =
∑
x

p(x) · u(x)

Bernoulli postulates that “the utility resulting from any small increase inwealthwill be inversely

proportionate to the quantity of goods previously possessed” (Bernoulli, 1738/1954, p.25). In

other words, each additional quantity is less satisfying than the previous one. In this formula-
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tion, the function that maps the real value (x) to the utility of that value (u(x)) is no longer

linear but logarithmic (Fig. I.5). “Thus there is no doubt that a gain of one thousand ducats is

more significant to a pauper than to a richman though both gain the same amount” (Bernoulli,

1738/1954, p.24).

Box 3 | The St. Petersburg Paradox

The St. Petersburg paradox was originally introduced by Nicolaus Bernoulli (Daniel’s

cousin) in 1713 (de Montmort, 1713). Consider a game in which a fair coin is tossed

until it lands on tails. The player pays a fixed amount of money up front, and then

receives $2n if the coin lands on tails on the nth toss. Thus, if the coin lands on tails

the first time, the prize is 21 = $2, and the game ends. However, if the coin lands on

heads, it is put back into play. If it lands on tails the second time, the prize is 22 = $4,

and the game ends. If the coin lands on tails again, it is put back into play. And so on.

What would be a fair price to pay to enter the game? According to Pascal’s theory, one

needs to calculate the expected value of this gamble, which is the sum of the payoffs of

all possible outcomes. The probability of the coin landing on tails on the first toss is

1/2, and the player wins $2. The probability of the coin landing on tails on the second

toss is 1/4, and the player wins $4, and so on. Assuming that the game can continue

as long as the toss gives a head, the expected value is as follows:

EV = 1/2 × 2 + 1/4 × 4 + 1/8 × 8 + · · · = 1 + 1 + 1 + · · · = +∞

Since the expected value is infinitely large, a rational gambler should be willing to bet

his or her entire fortune to play this game. However, “few of us would pay even $25 to

enter such a game” (Hacking, 1983, p.563).

Years later, expected utility became the dominant normative theory (i.e. accounting for what

should be chosen, as opposed to descriptive theories describing what is actually chosen) in eco-

nomics following two main events. The first was the formulation by Von Neumann and Mor-

genstern (1944) of a set of axioms that are both necessary and sufficient to represent a deci-

sion maker’s choices by maximizing expected utility (see Box 4), which made it a normatively

attractive decision criterion. The second was when Savage (1954) introduced a more general

formulation of this theory, called subjective expected utility (SEU), which extended it from risk

to uncertainty. In this model, objective probabilities are replaced by subjective ones. The idea
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being that an individual evaluates the probabilities of consequences a priori with his or her per-

sonal knowledge or beliefs. Thus, the model can be applied even when the true probabilities

are not known to the decision maker.

Box 4 | Axioms of the (subjective) expected utility theory

• Completeness: For everyA andB, eitherA ≥ B orA ≤ B orA ∼ B, where≥ and

≤mean “is preferred to” and∼means “is equivalent to”.

This assumes that an individual has well-defined preferences and can always decide

between two alternatives.

• Transitivity: For everyA,B andC , ifA ≥ B andB ≥ C , thenA ≥ C

This implies that when an individual decides according to the completeness axiom,

he also decides consistently.

• Continuity: For everyA,B andC , ifA ≥ B ≥ C , then there exists a probability p

(∈ [0, 1]) such thatB is equally good as pA+ (1− p)C

This implies that if an individual prefersA toB andB toC , there should be a pos-

sible combination of A and C in which the individual is indifferent between that

combination andB.

• Independence: For every A, B and C , if A ≥ B, then for any C and p (∈ [0, 1]),

pA+ (1− p)C ≥ pB + (1− p)C

This assumes that two gambles mixed with a third irrelevant one will maintain the

same order of preference as when the two gambles are presented independently.

As early as the 1950s, the increasing discovery of choices that did not conform to this set of ax-

ioms, however, began to call into question the descriptive validity of subjective expected utility

theory. Classic demonstrations of the failure of certain axioms include: the Allais paradox (also

called the certainty effect; Allais, 1953; Kahneman & Tversky, 1979), loss aversion (Kahneman

& Tversky, 1979), ambiguity aversion (as demonstrated in the Ellsberg effect; Ellsberg, 1961),

the framing effect (Tversky &Kahneman, 1981) or the anchoring effect (Tversky &Kahneman,

1974)2.

2This list is by nomeans exhaustive. Many other types of cognitive biases have been described as leading to behavior
that deviates from expected utility theory, but it is beyond the scope of this manuscript to outline them all.
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Prospect Theory

In order to accommodate these violations, the SEU theory was adapted and extended by Kah-

neman and Tversky (1979) into a descriptive model known as the prospect theory. This model

proposes that distinct functions mediate the evaluation of probabilities and the translation of

objective value into subjective utility. The value V of a simple option resulting in an outcome

xwith probability p (and nothing otherwise) is then given by:

V (x, p) = w(p)v(x)

Wherewmeasures the impact of probability p on the attractiveness of the prospect and v mea-

sures the subjective value of the outcome x.

Prospect theory replaces the utility function u proposed by Bernoulli with a value function v

over gains and losses relative to a dynamic reference point. This value function remains con-

cave for gains, but is steeper and convex for losses (Fig. I.6a). These characteristics provide an

account of two behavioral observations. First, the fact that human participants seem to have

different rules of conduct towards gains and losses: they are risk averse for gains (as reported in

the standard expected utility model), but risk seeking for losses (Kahneman & Tversky, 1979).

That is, a certain optionwith a lower expected value than a risky gainwill be preferred, while the

risk of a large loss will be chosen to avoid a certain loss. Second, the steeper slope for losses than

for gains provides an explanation for a property known as loss aversion, in which people gener-

ally require more compensation for giving up a good than they would have been willing to pay

GainsLosses

v(x)
Loss aversion

Losses are felt more

keenly than gains

Reference

point

a

0 1p

1

w
(p
)

b

Figure I.6: Representative value and weighting functions from prospect theory. (a) Value function,
showing concave curvature for gains, convex curvature for losses, and steeper gradient for losses than gains.
(b) Inverse S-shaped probability weighting function. Adapted from C. R. Fox and Poldrack (2009).

22



I.3. Summary

to obtain it in the first place. Thus, loss aversion gives rise to risk aversion for mixed (gain-loss)

prospects (e.g., most people reject a 50-50 chance of winning $100 or losing $100).

Prospect theory also proposes that probability is not linearly related to the true probability, but

rather is integrated by a non-linear weighting function w (Fig. I.6b) that captures decreasing

sensitivity to changes in probability. The inverted S-shape of this function captures notably the

observed tendency to overweight low probabilities and underweightmoderate to high probabil-

ities (Kahneman & Tversky, 1979).

Thus, prospect theory provides a descriptive account of many of the so-called biases in risky

decisions that cannot be explained by expected utility theory. Yet the expected utility model

is still used in many applications today. One possible explanation for this is that utility theory

has more degrees of freedom. So, although it can take more information into account, it gives

much weaker testable predictions. Moreover, expected utility has been shown to be very strong

in giving correct predictions in many areas of its applications (see Lewandowski, 2017 for a

comparative view of the two approaches).

Summary

• Most of our decisions rely on the occurrence of uncertain events.

• Blaise Pascal postulated that the expected valueof a risky choice couldbe calculated

by combining the quantity of objective outcomes and their probability level.

• Daniel Bernoulli refined this theoryby stating that decision-makers rathermaximize

the expected utility of a decision, that is, its desirability or satisfaction, given that

each additional quantity of a good is less satisfying than the previous one.

• The identification of a number of paradoxes in this theory led Kahneman and Tver-

sky (1979) to adapt and extend it into a descriptive model known as prospect the-

ory.

• In particular, the latter theory takes into account the observation that humanpartic-

ipants appear to have different rules of conduct with respect to gains and losses,

a phenomenon known as loss aversion.
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b. Mood

Intuitively, affects play an important role in our daily choices. Don’t we say that some behaviors

are made by following our heart, or because it feels right? Yet, the impact of emotional states

on decision making has been ignored across disciplines for many years (Lerner et al., 2015).

Decision-making was seen as a cognitive process, which was therefore necessarily opposed to

emotions. This view goes back to Plato, who suggested that the soul had a tripartite structure,

consisting of cognition, emotion and motivation. He argued that these components were dis-

tinct, that they were in competition and that cognition was superior to the others (Scherer,

2000). Thus, in order to make rational choices, one had to override emotional impulses. In

recent decades, however, this trichotomy has been refuted and there has been growing interest

in understanding the role of affective states in decision making as a result of several observa-

tions. First, that even affects that are not directly related to the decision at hand (i.e. incidental

affects) can have an impact on choices (Clore, 1992; Lerner & Keltner, 2000). Second, that

emotional deficits, whether related to psychiatric illness (Cáceda et al., 2014), injury (Damasio

et al., 1994), or experimentally induced (e.g., Chou et al., 2007), can degrade the quality of deci-

sionmaking. And finally, that introducing affect into decisionmodels can significantly increase

their explanatory power (e.g., Mellers et al., 1997). In this section I will focus specifically on the

effects ofmood on decision making by first providing a brief definition of mood and its causes,

and then describing some computationalmodels that have been used in laboratory experiments

to accurately quantify the effects of mood on behavior.

What is mood?

Mood can be defined as an affective state distinct from emotions (Eldar et al., 2016), which is

typically measured along the valence dimension3 (i.e., placed along a pleasure-displeasure con-

tinuum). According to Bennett et al. (2020), mood is characterized by four main properties:

an integrative nature, a slow timescale, a non-intentional quality, and contextual modulation4.

The integrative property states that the valence of mood reflects the cumulative impact of the

valence of an individual’s recent experiences, as opposed to emotions, which would rather be

3In the sense of the circumplex model of affect proposed by Russell (1980), which proposes that affects emerge
from two basic systems, one of which is valence and the other arousal (i.e., intensity). Arousal, however, is rarely
considered in this context, as affective states associated with mood are thought to be of low intensity and diffuse.

4These properties are largely shared by the theories and models outlined below. Nevertheless, it should be noted
that this definition is one ofmany, as no consensus criteria currently prevail among typologies to strictly delineate
the concept of mood from other related affective phenomena such as emotions.
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the product of a single event. This property is widely held in theories of mood from various

fields, including philosophy, psychology or ethology (Edgeworth, 1881; Kahneman et al., 1999;

Mendl et al., 2010; Nettle & Bateson, 2012; Parducci, 1995; Ruckmick, 1936; Webb et al.,

2019). It entails that an individual whose recent experiences have been generally pleasant is

likely to have a positive mood, as opposed to a negative mood if the recent experiences have

been primarily unpleasant (Isen et al., 1978; Morris, 1989). Specifically, mood can be viewed

as a leaky integrator of the valence of transient experiences, such that recent events influence

mood more strongly than events distant in time (Rutledge et al., 2014; Vinckier et al., 2018).

As opposed to emotions that occur in the short term, mood is generally said to incorporate

the valence of momentary events on a time scale of hours to days (Larsen, 2000; Morris, 1989).

However, this does not exclude the possibility that older events may influence mood, since re-

membering more or less pleasant events may itself be associated with valence. Thus, emotion

andmood can be seen as parallel processes that interact and occur on different timescales (Eldar

et al., 2016).

The non-intentional property reflects the idea that, unlike other affective states such as emotions,

mood is not about anything specific (Rossi, 2019). In other words, a good or bad mood is

not related to a particular event, as enjoyment may be tied to eating a favorite dessert or fear

to the sight of a snake. Instead, mood is generally considered to be an unfocused and diffuse

background affective state (Beedie et al., 2005; Larsen, 2000).

Finally, contextual modulation refers to the fact that events do not affect mood in the same way

depending on the context in which they occur. In other words, the same event can have com-

pletely different effects on the valence of mood. Many contextual effects have been reported in

the literature, such as the expectation or counterfactual effect (Bennett et al., 2020). The expec-

tation effect is one of the most documented. It proposes that an event does not influence mood

according to its utility (or value), but rather according to the degree of difference between its ac-

tual and expected utility (Eldar & Niv, 2015; Medvec & Savitsky, 1997; Mellers, 2000; Mellers

et al., 1997; Otto & Eichstaedt, 2018; Rutledge et al., 2014; Villano et al., 2020). For example,

the effect of test scores on university students’ mood has been shown to depend onwhether the

scores exceed their expectations or not (Villano et al., 2020).

Mood induction and measurement

A key factor in studying the relationship between mood and decision making is being able to

induce and measure mood in a reliable and consistent manner. A vast literature in psychology
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suggests that mood can be manipulated by a wide range of techniques. Some of the most com-

monly used include presenting a movie or story with emotional content, listening to music,

engaging in social interactions, displaying facial expressions, and receiving feedback or mone-

tary outcomes (Westermann et al., 1996). Outside of the laboratory, various factors have also

been shown to correlate with mood fluctuations, the most famous being the results of sporting

events (Edmans et al., 2007) or sunlight levels (Bassi et al., 2013).

Tomeasure the dynamics of emotional states, researchers have developed a technique known as

experience-sampling, which involves asking participants about their subjective state at the mo-

ment. This technique, which requires repeatedly asking participants about their current mood,

is considered “the gold standard” for studying momentary feelings in the real world. Yet, de-

spite the strengths of this method, one of its limitations is that repeated reporting ofmoodmay

itself influence feelings, especially in a laboratory setting where sampling is more frequent. As a

result, subjects’ ratings may not be congruent with their actual state (Napa Scollon et al., 2009).

Rutledge: A computational model of momentary happiness

To address this issue, Rutledge et al. (2014) developed a computationalmodel by examiningmo-

mentary mood fluctuations during a laboratory-based probabilistic reward task. Specifically,

subjects had to repeatedly choose between certain outcomes and gambles whose potential gains

and losses varied from trial to trial. The main conclusion of this study was that mood fluctua-

tions depend primarily on the difference between expected and actual outcomes, a finding that

was previously reported as the expectation effect (see above). Still, the novelty of this study was

that, by using computational modeling, it was possible for the authors to estimate the theoret-

ical value of mood on a trial-by-trial basis, for each subject, even in the absence of actual mood

ratings. In particular, subjective well-being was modeled as follows:

Happinesst = ω0 + ω1

t∑
j=1

γt−jCRj + ω2

t∑
j=1

γt−jEVj + ω3

t∑
j=1

γt−jRPEj

Where, for each trial j (from the first trial to the current trial t), if the certain rewardwas chosen

it was entered into the equation asCRj . Conversely, if the gamble was chosen two terms were

entered into the equation: EVj , the expected value of the gamble, and RPEj , the difference

between the actual outcome and the EV . The weights ω (including a constant term ω0) cap-

ture the influence of the different types of event. Finally, these influences decay exponentially

over time with a forgetting factor 0 ≤ γ ≤ 1 that makes recent events more influential than

earlier ones. This work marks a turning point in the investigation of the precise mechanisms
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through whichmood influences behavior by providing a computational account of howmood

fluctuations can arise from the feedback an individual receives.

Types of affective influences

When discussing the impact of emotional states on choice, it is useful to identify the distinct

types of possible influence. Indeed, affects can come into play at different stages of the decision-

making process. Loewenstein and Lerner (2003) distinguished between expected and immedi-

ate affects, the latter being further classified into anticipatory and incidental affects. Expected

affect is defined as possible future emotions considered when determining the expected utility

of different courses of action. They argue that this is actually the only type of affect that has

been accounted for in classical models of decisionmaking. Among the immediate affects, antic-

ipatory affects arise from the choice at hand. They are a direct part of the decision process and

are experienced when a decision maker anticipates the outcomes of choice options, such as the

anticipatory fear of flying. Anticipatory affects differ from expected affects in that they are not

“cognitive” but actually felt. Incidental affects, on the other hand, are by definition unrelated to

the outcomes currently being considered, but may nevertheless cause alterations in the choice

processes. Mood can fall into any of these three categories (e.g., as an expected affect when an

action is chosen because it is expected to set a goodmood), although it is most often incidental.

In my experimental work, I was only interested in the incidental influence of mood.

Consequences of incidental mood on choices

There are a number of psychological theories that seek to explain howmood influences decision

making (see Shevchenko, 2018 for a review). Themood-as-information theory, also known as

the feeling-as-information model, is perhaps one of the most influential of these. In an initial

study, Schwarz and Clore (1983) asked healthy individuals to indicate their degree of satisfac-

tion with their lives while in a positive or negative mood, induced either by an episodic recall

procedure (Experiment 1) or simply by the weather (Experiment 2). The results showed that

recalling sad events or unfavorable weather conditions dampened participants’ mood, result-

ing in a decrease in their life satisfaction ratings. Interestingly, mood did not affect the judg-

ment of participants who were first asked about the weather, indicating that the incidental in-

fluence of mood (also known as misattribution) could be tempered by a greater awareness of

the (unrelated) source of this affective state. These findings eventually gave rise to the mood-

as-information theory, which posits that preexisting mood levels provide valuable information

about a person’s current situation, and thereby influence the processing strategies they adopt

(Schwarz & Clore, 1983; 2003). That is, when faced with a task requiring a judgment, individ-
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uals will typically frame their decision based on their current mood, such as asking themselves

“How do I feel about it?”. The judgment may then be misattributed in response to the cur-

rent mood. As a result, evaluativemood-congruent judgments occur (Schwarz & Clore, 2007).

Such a model assumes, for example, that people in good moods tend to view the world as more

friendly and thus make more positive subjective judgments, while people in bad moods tend

to evaluate the events around them as negative (Loewenstein & Lerner, 2003; Schwarz, 2012).

This view has been supported by numerous studies, most notably in the context of uncertain

or risky decisions where good mood has been consistently associated with risk-seeking choices,

while bad mood has been associated with more risk-averse decision-making (e.g., Arkes et al.,

1988; Bassi et al., 2013; Chou et al., 2007; Otto et al., 2016; Saunders, 1993).

Recently, researchers have begun to use computational methods in laboratory experiments to

preciselyquantify the effects ofmoodondecisionmaking. Inone study,moodwasmanipulated

using a wheel-of-fortune game in which subjects won or lost a relatively large sum of money

(Eldar & Niv, 2015). Among participants independently identified as less emotionally stable,

winning the draw not only increased self-reported happiness (as predicted by Rutledge’s model

presented above) but also increased perceived subjective reward value in subsequent choices.

Conversely, losing the draw reduced mood, as well as the effect of rewards on subsequent

choices. These results suggest that mood influences decision making by biasing the perception

of outcomes, with positive (negative) mood leading to higher (lower) valuation. Another study

confirmed these findings in healthy subjects and with a similar computational model, showing

that the integration over time of positive and negative feedback from a quiz task inducedmood

fluctuationswhich in turnmodulated the relativeweights assigned to gains and losses in a choice

task (Vinckier et al., 2018). Specifically, good mood promoted risk-taking by overweighting

potential gains, while bad mood tempered risk-taking by overweighting potential losses.

Overall, the foregoing results suggest that there is a bi-directional influence between mood and

outcome processing during decision making. While mood fluctuations have been accurately

modeled by an integrative process of feedback history and subjects’ expectation (Rutledge et al.,

2014), later models have included a reciprocal influence ofmood on the perception of feedback

to capture the fact that mood also distorts how subjects perceive outcomes in decision contexts

(Eldar & Niv, 2015; Vinckier et al., 2018), taking events as more positive than they objectively

are when in a good mood and conversely when in a bad mood. Crucially, specific dysfunctions

of this feedback loop have been argued to contribute to the emergence of mood disorders such

as depression or mood instability (Fig. I.7; Eldar et al., 2016).
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Figure I.7: Schematic of possible mood dys-
functions. Positive feedback loops reinforcing
good and bad moods, and possible transition be-
tween them. From Eldar et al. (2016).

Summary

• Mood is an affective state distinct from emotions, which is typically set along a

pleasure-displeasure continuum. It can be described by 4 main properties: an inte-

grative nature, slow timescale, non-intentional quality and contextual modulation.

• In the laboratory, mood can be induced bymood induction procedures that typ-

ically expose participants to emotionally valenced stimuli.

• Recently, Rutledge et al. (2014) developed a computational model of mood that

captures how mood fluctuations can result from the feedback an individual re-

ceives. One of the key features of this model is that mood depends primarily on

the difference between expected and actual outcomes.

• Mood can have different types of influence on decision making, including an inci-

dental effect (i.e., unrelated to the outcome of the current decision), whichwas the

focus of the present work.

• Behavioral experiments using computational models have refined the model pro-

posed by Rutledge et al. (2014) in suggesting thatmood and outcome processing

influence each other during decision making, such that feedback from a decision

influences mood, and in turn, mood influences the perception of feedback.

Inmy first experimental study, I used themoodmodel of Vinckier et al. (2018) that ac-

counts for this bi-directional interaction to retrieve participants’ mood levels on each

trial of a risky choice task (see section III.5. for a detailed description of this model).
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c. Visual attention

Another potential underlying source of choice stochasticity highlighted in the literature is atten-

tion. Attention is a broad concept, generally defined as a mechanism that prioritizes relevant

input and determines the quality of target information processing (Chun et al., 2011). This

mechanism is believed to have evolved out of necessity to account for the computational limits

of the brain’s ability to process information and ensure that behavior is controlled by relevant

material (Pashler et al., 2001). Part of the challenge in studying the impact of attentiononchoice

lies in the inherent difficulty of measuring it. In early studies, researchers have used verbal pro-

tocols in which participants were prompted to verbalize every thought they had, either concur-

rently with the decision process or retroactively (Payne et al., 1978). However, these protocols

can interfere with the task at hand and provide only approximate information about the timing

of different stages of the decision process. Amore direct approach, which has since become the

dominant method, has been to track eye movements during the decision process. This stems

from the fact that, under normal conditions, eyemovements and visual attention are thought to

move synchronously and select common targets in the visual field (Deubel & Schneider, 1996;

Hoffman & Subramaniam, 1995; Shepherd et al., 1986). Thus, visual fixations would reflect

what is actually being considered/processed.

Visual attention and value interactions

When making a decision involving visible options (e.g., in front of a market stall or on the

shelves of a supermarket), people typically shift their gaze between these options until one is

selected. In this context, two methodological approaches have been used to investigate the

role of visual attention during value-based choice (Fig. I.8). The first, called free attention or

“participant-controlled viewing”, involves observing how participants freely move their gaze

duringdecisionmaking through theuse of an eye-trackingdevice. The second is forced attention

or “experimenter-controlled viewing”, in which researchers exert at least partial control over the

location and duration of fixations by, for instance, displaying the choice alternatives or their in-

dividual components sequentially. The latter allows direct control of attention during decision

making, but is less ecological than free viewing.

To our knowledge, the first study that linked value to visual attention used forced attention

(Shimojo et al., 2003). In this one, participants were asked to choose the most attractive of two

faces whose exposure time was manipulated by the experimenters on each trial. Their results

indicated that over time, gaze tended to shift toward the option that was ultimately chosen and
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thatmanipulating gaze duration biased observers’ preference decisions. The authors referred to

this phenomenon as the gaze cascade effect. That is, they argue that a causal relationship exists

between gaze and preference, such that participants looked longer at valued faces (preference de-

termines gaze) and their valuation increased for the items they looked at more (gaze determines

preference).

_2 _1 0 +1 +2

Preference rating task

_2 _1 0 +1 +2

Preference rating task

+

Free response

Feedback

Forced fixation

+

Choose
Forced fixation

Forced fixation
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Choice prompt
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Figure I.8: Experimental procedures for investigating visual attention during value-based choice. In
both procedures, participants typically begin by rating on a scale how much they like the items presented.
In a free attention task (a), participants see two of the previously rated alternatives and must choose one. In
the forced attention task (b), the experimenter controls exposure in several ways. Sometimes the visibility of
the choice options is alternated, as shown here, or the experimenter may require a fixation time for each of
the alternatives using exogenous cues (not shown). Finally, in some studies, the food chosen in a randomly
selected trial is given to consume, while others are only hypothetical choices. Adapted fromM.M.Mormann
and Russo (2021).

Ever since, strong empirical evidence has replicated these results, showing that people tend to

look longer or be distracted by higher value options (a phenomenon called “value-based atten-

tional capture”; Anderson et al., 2011; Gluth et al., 2020; Gluth et al., 2018), and that the

option they look at the most tends to be chosen (Cavanagh et al., 2014; Krajbich & Rangel,

2011; Krajbich et al., 2010; Thomas et al., 2019). One interpretation of such results is that

visual attention is directed toward items based on their value, and that looking at an option in-

creases its value, either by amplifying it (Krajbich & Rangel, 2011; Krajbich et al., 2010; Smith

& Krajbich, 2019) or by moving it up by a constant amount (Cavanagh et al., 2014). However,

these studies are largely correlational, and the direction of causality between visual attention

and choice is still debated (M. M. Mormann & Russo, 2021). While the gaze cascade effect

suggests a bidirectional relationship between visual attention and choice (Shimojo et al., 2003),

another stream of evidence holds that only one direction applies, namely that visual attention
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has a causal effect on value during choice (Krajbich & Rangel, 2011; Krajbich, 2019; Krajbich

et al., 2010).

Evidence for the causal role of visual attention on choice

The claim that visual attention amplifies value is based on a substantial amount of experimenta-

tion employing various exogenous manipulations. For example, in one experiment, Armel et al.

(2008) manipulated relative exposure times using a forced attention paradigm in which options

were displayed one at a time. They found that the item that appeared on the screen for a longer

period of time was more likely to be chosen if it was positive, but less likely if it was negative.

Along similar lines, Lim et al. (2011) used a paradigm in which both choice items were kept on

the screen but gazewas directed by an exogenous cue. Again, items that receivedmore attention

were more likely to be chosen. Another set of studies attempted to alter the physical properties

of the stimuli by changing their visual salience to more subtly influence attention. In one of

them, the researchers increased the brightness of one of the elements so that it would be looked

at more than the other (M.M.Mormann et al., 2012). This manipulation effectively increased

choices for themore salient element, a result that has been replicated in subsequent studies (Ku-

nar et al., 2017; Towal et al., 2013). In addition, still other studies have shown that exogenously

influencing attention bymanipulating the timing of the decision prompt (Pärnamets et al., 2015;

Tavares et al., 2017), the location of systematically better items (Colas & Lu, 2017), or spatial

cues (Mrkva & Van Boven, 2017) resulted in a corresponding choice bias.

Although these studies havemade significant progress in establishing the causal link between vi-

sual attention and choice, they use techniques that directly interferewith the natural choice pro-

cess, alter the properties of choice alternatives, or manipulate participants’ expectations. Thus,

it cannot be ruled out that some other explanation may account for these results. Interestingly,

however, a recent study specifically aimed at overcoming these limitations, by using a separate

attentional learning task to induce a spatial bias in attention, reached the same conclusion of a

causal effect of visual attention on choice (Gwinn et al., 2019).

Some literature argues that this hypothesis is also strengthened by evidence against the reverse

relationship (i.e., that value would have a causal role on eye fixations). In particular, the fact

that, during binary decisions, initial fixations were equally likely to go to higher or lower value

options, and that the duration of a given fixationwas not correlatedwith the value of the option

being looked at (Krajbich&Rangel, 2011; Krajbich et al., 2010; Krajbich et al., 2012). However,

these claims can be qualified by the extensive evidence that reward cues direct attention even
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when that cue is not salient, irrelevant to the task, or results in negative outcomes (Anderson

et al., 2011; Gluth et al., 2018; M. M.Mormann &Russo, 2021).

A computational model of the relationship between visual attention and

value

To model the relationship between attention and choice, Krajbich et al. (2010) have proposed

a simple variant of the drift-diffusion model in which the evolution of the relative decision

value signal depends on the pattern of attention (Fig. I.9). This model, called the attentional

drift-diffusion model (aDDM), is identical to the basic drift-diffusion configuration (see sec-

tion I.2.b.), except that the drift rate is no longer constantwithin the decision, but nowdepends

on the option to which visual attention is directed. In other words, gaze has an amplifying ef-

fect on the attended option. For instance, when a given option is being attended, the relative

decision value signal evolves according as follows:

Rt+1 = Rt + θ × (βvattended − vunattended) + ϵt

Where β measures the attentional bias towards the value of the attended option (vattended). If

β = 1, the model is identical to the basic model and choice is independent of attention, but if

β > 1, choices are biased towards the option that is attended longer.
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Figure I.9: Attentional drift-diffusion model. A relative de-
cision value (RDV) evolves over time with a slope that depends
on what the subject is looking at. In addition to the average
drift, there is also Gaussian noise. When the RDV reaches one
of the two barriers the subject makes the corresponding choice.
The colored regions indicate what the subject is currently look-
ing at, blue for the left item on the screen and yellow for the
right. From Krajbich et al. (2010).

Two features of this model are worth mentioning. First, it predicts that exogenous changes in

attention should bias choices toward the most attended option when its value is positive, but

should have the opposite effect when the value is negative. Consistent with this prediction and

as mentioned above, several studies have shown that choices can be biased by exogenous ma-

nipulations of visual attention, including a positive bias toward appetitive stimuli and negative

bias toward aversive stimuli. Second, the model makes strong quantitative predictions about

the correlation between visual attention, choices, and reaction times that have been supported

by several studies (e.g., Krajbich et al., 2010; Pärnamets et al., 2015; Smith & Krajbich, 2019).

In particular, using a free attention task in which participants were asked to choose between
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two food items, the original study demonstrated that the model could account for the fact that

more fixated optionsweremore likely to be chosen (Krajbich et al., 2010). Thus, althoughmere

computational fits are insufficient to provide direct evidence of causality, these results certainly

point toward an attentional bias on choices that is not simply mediated by subjective value.

N

Overall, the use of eye-tracking and modeling of choice behavior provides substantial evidence

supporting a causal and amplifying effect of visual attention on subjective value during binary

choices. These results have been further extended to consumer choices (Krajbich et al., 2012)

and choices with multiple alternatives (Krajbich & Rangel, 2011).

Summary

• Attention is a broad concept, generally defined as a mechanism that prioritizes rel-

evant input and determines the quality of target information processing. Studies

investigating the effects of attention have focused primarily on visual attention,

as it is thought to move synchronously with eye movements and is therefore easily

quantifiable.

• Behavioral studies in humans suggest that a bi-directional relationship occurs be-

tween visual attention and choice, such that visual attention is directed toward

items based on their value, and, conversely, looking at an item increases its value.

• To account for the effect of visual attention on choices, Krajbich et al. (2010) pro-

posed a simple variant of the DDM, called the attentional drift-diffusion model,

in which the evolution of the relative decision value signal depends on the eye fixa-

tion pattern.

In my second experimental study, I investigated the effects of visual attention on deci-

sionmaking by focusing onmulti-attribute choices that were given less attention than

single-attribute binary choices (see subsection II.3.c.).
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II
The neural underpinnings of

value-based decisions

Having outlined the theoretical tenets of value-based decision making, we now turn to how

value is processed in the brain to inform choices. In this chapter, I will first introduce the mea-

sures that can be performed to study neural activity. Next, I will review the literature on the

encoding of expected value and prediction error signal in the brain, distinguishing between re-

ward and punishment processing. Finally, I will present the neural correlates underlying the

value modulators that I focused on in my experimental work, namely spontaneous brain activ-

ity, mood, and visual attention.

1. Brain activity measurements

Brain activity can bemeasured using different techniques that operate at different levels: that of

neurons (single-unit recordings), populations of neurons (local field potentials) or brain regions

(functional magnetic resonance imaging). It is important to note, however, that the different

methods address different aspects of neuronal function. Indeed, the interpretation of a given

result may depend strongly onwhat is beingmeasured: neuronal firing, brainmetabolism, neu-

rotransmitter levels or any other brain property.
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II.1. Brain activity measurements

Cognitive neuroscience techniques can be divided into two broad categories that provide dis-

tinct and complementary information about brain function: measurement techniques and

manipulation techniques. As the name implies, measurement techniques measure changes in

brain function while a research participant (human or animal) is engaged in a cognitive activ-

ity. These techniques can be called correlational because they show that signals from a brain

region coincide with a function of interest, but do not demonstrate that a region is necessary

for that function. Manipulative techniques, on the other hand, examine how disruptions in

brain function alter cognitive function or behavior through a transient change in neural firing

frequency/neurotransmitter levels, or through permanent tissue damage. For this reason, ma-

nipulative techniques are called causal approaches.

Each method has its strengths and limitations. In general, three factors are distinguished of

primary importance: temporal resolution, spatial resolution and invasiveness (Fig. II.1). Tem-

poral resolution refers to the frequency in time with which measurements or manipulations

can be performed. It is important because some processes require good temporal resolution

to be distinguished from one another. Spatial resolution refers to the ability to distinguish ad-

jacent brain regions that differ in function. Finally, invasiveness refers to the ability to make

measurements without damaging or disturbing the brain. Non-invasive techniques record en-

dogenous brain signals and thus can be performed repeatedly on human volunteers, whereas

invasive techniques are only used on non-human animals and/or human patients (e.g., prior to

neurosurgery).
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Figure II.1: Schematic overview of the spatial and temporal resolution scale of brain measurement
methods. Non-invasive methods are shown in green and invasive methods in red. EEG: electroencephalog-
raphy;MEG:magnetoencephalography; fMRI: functionalmagnetic resonance imaging. Adapted fromRuff
and Huettel (2014).
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II.1. Brain activity measurements

a. Measurement techniques

Single unit recordings: the firing rate

Neurons are cells that communicate through electrical impulses called action potentials. These

action potentials have a stereotyped amplitude and waveform for a given neuron and the rate

at which they are emitted can vary in response to stimuli. Thus, variations in the firing rate of

neurons are used to determine whether a stimulus (or any type of behavior) alters the ongoing

information processing with which these neurons are associated. The measurement of action

potentials requires the insertion of very thin electrodes into the neural tissue immediately adja-

cent to the neurons of interest. The electrode itself does not cause appreciable damage to the

brain, but opening the skull to access the brain is an invasive surgical procedure that carries sig-

nificant risks. The fundamental advantage of single-neuron recording is that it provides direct

information about the timing and synchronization of action potentials in a regionwith extraor-

dinary temporal resolution. Analysis of single neurons can also reveal the diversity of processes

within a brain region. However, this technique also has important limitations. The invasive

nature of single neuron recording limits its use to non-human animals (but see section VI.1.a.

aboutmicroelectrode recordings in humans). In addition, most published papers focus on neu-

rons in a single brain region, thereby limiting the insights that can be gained into complex cog-

nitive processes, most of which involve interactions betweenmultiple brain regions. Data from

single-unit recordings are therefore often highly complementary to data from techniques with

broader spatial coverage but more limited spatial and temporal resolution.

Local Field Potentials

While action potentials only relate to the activity of a single neuron, local field potentials (LFP;

also known as intracranial EEG) reflect the aggregated activity of small populations of neurons

represented by their extracellular potentials. LFPs are recorded within cortical tissue (or other

deep brain structures), usually using extracellular micro-electrodes, which distinguishes them

fromelectroencephalography (EEG), recordedon the surface of the scalpwithmacro-electrodes,

and electrocorticography (EcoG), recorded on the surface of the brain using large subdural elec-

trodes (Fig. II.2a). LFPs are characterized by oscillatory activity that is thought to play a role in

neuronal communication (Fries, 2005) and can be broken down into several frequency ranges.

In particular, in addition to the standard frequency ranges investigated in surface EEG, namely

delta (1-3 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (13-30 Hz), and gamma (30-50 Hz), LFPs

allow measurement of the high gamma band (50-150 Hz), which is highly attenuated by skull
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II.1. Brain activity measurements

and scalp in EEG recordings. This is significant since it has been shown that high gamma band

activity is strongly correlated with the ensemble spiking of cells in the immediate vicinity of the

electrode contact (Fig. II.2b-c; Ray et al., 2008). A benefit of LFP recordings is therefore that,

through the high gammaoscillations, they can be a useful indicator of the firing dynamics of the

recorded neuron population. In addition, LFPs recordings provide anatomically precise infor-

mation about the selective involvement of neuronal populations at the millimeter scale and the

temporal dynamics of their engagement at the millisecond scale. Also, compared to single-cell

recordings, multiple electrodes are typically implanted simultaneously, providing information

about functional interactionswithin and between networks at different stages of neuronal com-

putation (Parvizi&Kastner, 2018). Amajor limitation of thismethod is that it is highly invasive

and is therefore usually only performed in rodents or non-humanprimates. However, a few rare

clinical cases allow the recording of LFP in humans. Most of them are epileptic patients who

undergo stereo-electroencephalography (sEEG) recordings to identify the locus of the seizure

(Fig. II.2a; see Nuwer et al., 2019 for a review). The others, even rarer, are patients undergoing

deep brain stimulation surgery used for the treatment of refractory psychiatric and neurologi-

cal disorders (e.g., major depressive disorder, obsessive compulsive disorder, Parkinson disease;

Lozano et al., 2019). In all cases, these recordings are subject to clinical and hospital constraints

and the location of the electrodes is not under the control of the researchers.

sEEG

ECoG

a b c
EEG

Figure II.2: Local field potentials recordings and relation to firing rate. (a) Illustration of different electrodes
used to record cerebral activity. The stereo-electroencephalography (sEEG) electrodes are inserted directly into the
cortical tissue and can record local field potentials, while the electroencephalography (EEG) electrodes are placed
non-invasively directly on the scalp and the electrocorticography (EcoG) electrodes are placed on the cortical sur-
face. Adapted fromGrande et al. (2020). (b) Time-frequency plot of the change of LFP power relative to baseline.
The firing rate of the neuronal population is plotted in black. (c) Change in normalized firing rates (black traces)
plotted along with the change in normalized power in the high-gamma (red, top), low-gamma (magenta, middle),
and beta (blue, bottom) frequency ranges. The overlap between firing rate and high gamma power has been ad-
vanced as an argument for considering high gammapower as an indicator of local activity in a neuronal population.
(c-d) are from Ray et al. (2008).

38



II.1. Brain activity measurements

Functional magnetic resonance imaging (fMRI)

Since its development in the early 1990s, fMRI has become the dominant measurement tech-

nique in cognitive neuroscience. In contrast to the techniques seen so far, fMRI does not

exactly measure electrical activity, but rather the indirect consequences of neuronal activity

(the hemodynamic response). More precisely, it records the variation in blood oxygen level

through the BOLD (blood-oxygen-level-dependent) signal, based on the premise that neurons

consume more oxygen when they become active (see Huettel et al., 2014 for a detailed descrip-

tion). BOLD activity was found to be more related to LFPs than to single-unit recordings (Lo-

gothetis et al., 2001). Nevertheless, high gamma activitywas shown to be reflected in the BOLD

signal, thus establishing a link between spiking activity and BOLD signal (Mukamel, 2005; Nir

et al., 2007). One of the main advantages of fMRI lies in its accessibility, as it can be performed

with human volunteers and on standard clinical MRI scanners. In addition, fMRI has excel-

lent spatial resolution allowing sampling of the entire brain. However, its temporal resolution

iswell below that of electrophysiological techniques, whichmaymake it difficult to study highly

dynamic mental processes.

b. Manipulative techniques

The techniques presented so far reveal correlations between behavioral variables and measures

of brain activity. In other words, they make it possible to identify whether, where and when

the variables relevant to the decision are represented in the brain. However, these techniques

do not provide information on whether these neural representations are actually involved in

behavior. This knowledge is fundamental to establish truly mechanistic models of decision

making, which would allow, for example, to identify the neural mechanisms underlying the

pathological perturbations of decision making in brain disorders.

Lesion studies

Lesion studies are a powerful means of studying the impact of neural processes on behavior. In

humans, these studies are closely related to the clinical fields of neurology and neurosurgery,

as brain lesions leading to behavioral deficits occur as a result of accident or disease. Under-

standing these deficits is obviously very important for diagnosis, treatment and rehabilitation.

Nevertheless, these patients also provide valuable data on the conditions under which a given

anatomical substrate is necessary for a given process (Dunn&Kirsner, 2003; Fellows, 2012; Fel-

lows et al., 2005). In humans, themain drawback of this approach is that, unlike animal studies,
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II.2. Coding of prediction error and predicted value signals in the brain

natural brain lesions are often spatially diffuse and rarely selective to specific brain areas. It can

therefore be difficult to attribute a deficit to a specific brain area.

Intracranial electrical stimulation

In animal research, direct electrical stimulation of neurons by intracranial electrodes is a routine

practice. These stimulations are performed from electrodes inserted in the brain to perform the

single unit or LFP recordings described above. This technique consists of applying weak electri-

cal currents to the cortex that affect the activity of neurons in close proximity to the electrode.

Because it is highly invasive, this method is not often used in humans, but as mentioned above,

in rare cases, electrodes can also be implanted in patients to treat chronic and severe brain disor-

ders such as Parkinson’s disease or depression. In particular, a distinction can bemade between

intracranial electrical stimulation (iES; Desmurget et al., 2013) selectively applied during in-

traoperative procedures in patients with tumors or epilepsy and deep brain stimulation (DBS;

Lozano et al., 2019), which is a neurosurgical procedure involving the implantation of elec-

trodes into specific targets in the brain and the delivery of constant or intermittent electricity

from an implanted battery. Under these conditions, it is possible to perform electrical stimu-

lation while patients perform a cognitive task, thereby providing insight into the causal role of

the stimulated brain region.

2. Coding of prediction error and predicted value signals in

the brain

As previously discussed, value-based decision making can be divided into several distinct steps

that require different value signals (see section I.1.a. and Box 2), including evaluating the out-

comes of different options, and learning from those outcomes. Although many questions re-

main to be answered, empirical studies of decision making and reinforcement learning have in-

deed identified different types of neural representations of value that correspond to these stages

and are associated with changes in activity in different neural structures. Among these different

types of value, my experimental work notably related to the stimulus value, that is, the expected

value of the outcome of a decision. In the next section, I will therefore attempt to describe the

valuation system in the brain by focusing on two specific signals: the prediction error (as it is

considered to play a central role in learning the value of stimuli) and stimulus value. Early stud-

ies that looked at the neural representation of the value network focused almost exclusively on

reward valuation. I will therefore begin by outlining the neural basis of reward processing, and

then present the various hypotheses regarding the existence of a separate system for punishment
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II.2. Coding of prediction error and predicted value signals in the brain

processing. This brief review is not intended to be exhaustive, but simply to outline the results

that inform my experimental work. Thus, although the valuation system has been studied in a

wide range of species, I will focus here primarily on electrophysiological and neuroimaging work

done in humans, as well as in non-human primates given the many biological and behavioral

homologies they share.

a. Neural basis of rewards

Studies of the brain’s valuation circuits have emerged from two largely separate fields. On the

one hand, the study in the late 1990s of dopaminergic neurons in themidbrain led to the discov-

ery of howwe learn the value of goods and actions from experience. In parallel, a second field of

investigation focused on finding signals that correlate with the subjective values of goods. This

approach has made it possible to delineate a neural circuit involved in reward processing. At

the core of this circuit is the role of the ventral striatum and the orbital and ventromedial parts

of the prefrontal cortex (all of which are primary targets of the dopaminergic system) in repre-

senting and adjusting the stimulus value to inform decision-making (Haber &Knutson, 2010).

Activity in these areas has been shown to consistently predict preferences of all kinds in humans

and non-human primates. In order to give a general view of the structural and functional or-

ganization of this reward circuit, I will start by describing the anatomy of its main components

before presenting the various evidences of their involvement in the so-called brain valuation

system.

i. Neuroanatomy

The Dopaminergic system

Dopamine is a neurotransmitter (Carlsson, 1959) whose majority of neurons are found in the

center of the midbrain and form three groups of cells, the retrorubral nucleus (RRN), the

substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA; (Fig. II.3). These

groups of cells are contiguous, so there are no clear boundaries between them. From these small

nuclei, dopaminergic neurons project to various brain regions where their axonal terminals re-

lease the neurotransmitter dopamine. The neurons of the SNc innervate mainly the basal gan-

glia, in particular the caudate and putamen nuclei (i.e., dorsal striatum), through the so-called

nigrostriatal pathway. The VTA neurons send projections mainly to the ventral striatum (i.e.,

the nucleus accumbens and olfactory tubercle), the amygdala and the hippocampus via the

mesolimbic pathway and to the prefrontal and cingulate cortices via the mesocortical pathway

(Arias-Carrión et al., 2010).
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Figure II.3: The dopaminergic system of the midbrain and its projection pathways. Adapted from
Arias-Carrión et al. (2010).

Dopamine release was initially closely associated with reward and motivation, so much so that

an early and influential article (the “anhedonia hypothesis”) argued that it alone constituted

the brain’s reward system (Wise, 1982). As we will see below, contemporary accounts tend to

refine this hypothesis by distinguishing different aspects of reward (Schultz, 2007). In partic-

ular, rather than being involved in the subjective feelings of pleasure associated with reward,

dopamine is now thought to be involved in effects like reinforcement by encoding a signal that

can guide reward learning.

The basal ganglia

Dopamine acts on the reward circuit through the cortico-basal ganglia network. The basal gan-

glia are a group of interconnected subcortical nuclei located at the base of the forebrain and the

top of the midbrain (Fig. II.4). The main components of the basal ganglia – as functionally de-

fined – are the striatum, composed of both the dorsal striatum (caudate nucleus and putamen)

and the ventral striatum (nucleus accumbens and olfactory tubercle), the globus pallidus (its

internal GPi and external GPe segments), the substantia nigra (its pars compacta SNc and pars

reticulata SNr), the subthalamicnucleus (STN), the ventral pallidum, and the ventral tegmental

area (VTA; Redgrave et al., 2010).

Different levels of complexity exist in the organization of the basal ganglia. Since the late 1980s,

the classical model in both humans and animals has been based on the presence of direct and

indirect intrinsic pathways, both comprising a consecutive set of glutamatergic excitatory and

GABAergic inhibitory projections (Fig. II.5a). This model includes descending cortical projec-
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Figure II.4: Overview of the main components of the basal ganglia in lateral and coronal view. Adapted
from Kandel et al. (2013).

tions to the dorsal striatum, which then converge to GPi and SNr, either directly or indirectly

via GPe and STN. The output of GPi and SNr is then directed to the thalamus, which projects

back to the cortex, forming a complete cortico-basal ganglia-thalamocortical loop. The direct

and indirect pathways in the basal ganglia aremodulated by endogenous dopamine release from

the SNc, which acts onD1dopamine receptors expressed primarily in the direct excitatory path-

way, and onD2 receptors expressed primarily in the indirect inhibitory pathway, thereby balanc-

ing excitation and inhibition in the thalamo-cortical circuit. Besides this classical model, recent

studies have highlighted a much denser intrinsic connectivity of the basal ganglia, leading to a
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Figure II.5: Organization of intrinsic connections within the basal ganglia according to (a) the
classical model and (b) the contemporary model. From Redgrave et al. (2010).
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more complex circuit in which the transformations performed on inputs to generate outputs

are less easy to forecast (Fig. II.5b).

Historically, the basal ganglia were best known for their importance in motor function, due

to both the neuropathology of movement disorders and the idea that basal ganglia pathways

return primarily to the motor cortex (Nauta &Mehler, 1993). This view of basal ganglia func-

tion, however, changed dramatically with the identification of other distinct functional loops,

such as limbic (affective) or associative loops, allowing a shift from purely motor function to a

more complex set of functions that mediate the full range of goal-directed behaviors (Fig. II.6;

Haber and Knutson, 2010). In particular, the limbic circuit links the orbital and medial pre-

frontal cortices to the ventral striatum (the main input structure of the ventral basal ganglia),

regions that, as we shall see, have proven important in the integration of reward-related infor-

mation. The concept of parallel and distinct functional pathways has dominated the field for

about 20 years. However, recent thinking has emphasized that a key element for learning and

adapting goal-directed behaviors is the ability not only to evaluate different aspects of reward,
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Figure II.6: Global anatomy of cortico-basal ganglia-thalamocortical circuits. The connections between the
cerebral cortex and the basal ganglia can be viewed as a series of parallel, widely separated projection loops carrying
sensorimotor, associative and limbic (affective) information. The functional territories represented in the cerebral
cortex are maintained by the basal ganglia nuclei and thalamic relays. However, it should be noted that each level
provides opportunities for activity within the loop to be modified or modulated by signals from outside the loop.
ACA, anterior cingulate area; CMA, cingulate motor area; DLPFC, dorsolateral prefrontal cortex; FEF, frontal
eye field; GPi, internal segment of the globus pallidus; LOFC, lateral orbitofrontal cortex; M1, primary motor
cortex; MDpl, mediodorsal nucleus of thalamus, lateral part; MOFC, medial orbitofrontal cortex; PMC, premo-
tor cortex; SEF, supplementary eye field; SMA, supplementary motor area; SNr, substantia nigra pars reticulata;
VAmc, ventral anterior nucleus of thalamus, magnocellular part; VApc, ventral anterior nucleus of thalamus, par-
vocellular part; VLcr, ventrolateral nucleus of thalamus, caudal part, rostral division; VLm, ventrolateral nucleus
of thalamus, medial part; VLo, ventrolateral nucleus of thalamus, pars oralis. From Kandel et al. (2013).
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but also to develop appropriate courses of action and to inhibit maladaptive choices based on

prior experience. This requires integration between different aspects of reward processing as

well as interaction between reward circuits and brain regions involved in cognition. Indeed,

it has been shown that communication pathways do exist between different parts of these cir-

cuits, demonstrating thatwhile the ventral basal ganglia network is central to reward processing,

it does not function in isolation.

The prefrontal cortex

The prefrontal cortex (PFC) represents the anterior part of the neocortex on the frontal lobe of

the brain. This area is not uniform, but rather consists of distinct regions in terms of cytoarchi-

tecture, connectivity and function. Of these, two regions have been identified as particularly im-

portant in reward processing: the orbitofrontal cortex (OFC) and the ventromedial prefrontal

cortex (vmPFC).

The OFC constitutes the ventral surface of the frontal lobes. It is classically divided into the

medial orbitofrontal cortex (mOFC, areas 13 and 11 in Fig. II.7) and lateral orbitofrontal cor-

tex (lOFC, area 12 in Fig. II.7; Rolls et al., 2020). As shown in Fig. II.7 and supported by le-

sion studies in macaque (Mackey & Petrides, 2010), the orbitofrontal cortex in humans and

macaques largely corresponds. The OFC receives inputs from the thalamus, as part of the
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Figure II.7: Architectonic maps of the medial (top) and orbital (bottom) surfaces of the frontal lobe in (A)
humans and (B) macaque monkeys. FromWallis and Rushworth (2014).
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fronto-striatal limbic and associative loops (Fig. II.6), but it is also highly interconnected with

all sensory modalities (including gustatory, visual, auditory, and sensorimotor). In addition,

the OFC exhibits substantial connections with the limbic system, including the amygdala, en-

torhinal cortex, hippocampus, and parahippocampal gyrus (Price, 2006; 2007).

The vmPFC is located on the medial wall of the ventral surface of the PFC. It is identified by

cytoarchitectonic areas 14 (gyrus rectus), 10m and 10r (Rolls et al., 2020), and sometimes areas

25 and 32 (Fig. II.7; Lopez-Persem et al., 2019). As for the OFC, the vmPFC of humans and

macaques is largely comparable (Mackey & Petrides, 2010), and it is included in the fronto-

striatal limbic loop receiving inputs from the thalamus (Fig. II.6). Nevertheless, their functional

connectivity differs (Price, 2007). In particular, the vmPFC is strongly interconnected with

limbic and autonomic structures such as the lateral hypothalamus and the periaqueductal gray

region (Öngür & Price, 2000).

ii. Reward prediction error encoding

The dopaminergic system for value learning in non-human primates

The idea of a reward circuit probably originated in the mid-1950s, when Olds and Milner ob-

served that rats could repeatedly press levers to receive tiny pulses of current injected through

electrodes implanted deep into their brains (Milner, 1989; Olds &Milner, 1954). In particular,

when the electrode was located in the region of the septum or nucleus accumbens, the rats pref-

erentially self-stimulated to any other activity (even eating and drinking). These stimulation

sites were soon dubbed “pleasure centers” since their neural activity strongly reinforced the be-

havior. Research over the next two decades identified dopamine as one of the key chemicals

contributing to neural signaling in these regions, suggesting that one way to understand the

reward circuit was to study dopamine.

Early studies of dopamine led to the idea that it carried “hedonic signals” in the brain and that,

in humans, it was directly responsible for subjective pleasure. Since themajor drugs of abuse act

directly or indirectly through the dopamine system (Wise, 1996), this idea could, for example,

easily explain addictive behavior by the habitual choice of short-term pleasure despite a host of

long-term life problems, but had difficulty explaining the persistence of drug use when negative

consequences accumulate. And indeed, later studies revealed that the effects of dopamine were

much more complex than originally thought.

In a famous experiment, Schultz et al. (1997) trained monkeys to expect juice at a fixed interval

after a visual or auditory cue while recording the activity of dopaminergic neurons. Before the
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CS R

Reward predicted - Reward occurs

CS (no R)
0 2s

Reward predicted - No reward occurs

Figure II.8: Reward Prediction
Error in dopaminergic neurons.
Graphs show firing rates recorded
from midbrain dopaminergic neu-
rons in awake, active monkeys. CS:
conditioned stimulus; R: reward.
From Kandel et al. (2013).

monkeys learned the predictive cues, the onset of juice

was unexpected and produced a transient increase in

the firing rate of dopaminergic neurons above basal lev-

els (Fig. II.8 top). As the monkeys learned that certain

cues predicted the arrival of the juice, the neurons no

longer fired in response to the juice presentation - the

reward - but earlier, in response to the predictive visual

or auditory cue (Fig. II.8 middle). If a cue was pre-

sented but not followed by the usual reward, the fir-

ing stopped at the time the reward would have been

presented (Fig. II.8 bottom). In contrast, if a reward

exceeded expectations or was unexpected, because it

appeared without a prior cue, firing was increased in

proportion to the size of the positive surprise associ-

ated with the reward (Bayer &Glimcher, 2005). These

observations suggest that dopamine release in the fore-

brain does not serve as a signal of pleasure but rather as

a reward prediction errors (RPE) signal. An increase in

the firing rate of dopaminergic neurons would signify

a reward or stimulus related to a reward that was not

predicted, while a decrease would signify that the pre-

dicted reward was less than expected or absent. Thus,

alterations in dopamine release are thought to mod-

ify future responses to stimuli to maximize the like-

lihood of obtaining rewards and minimize unsuccess-

ful pursuits. If a reward is completely consistent with

what has been predicted based on environmental cues,

dopamine neuronsmaintain their tonic (baseline) level

of arousal. According to Schultz, this phenomenon means that as long as nothing changes in

the environment, there is nothing more to learn and therefore there is no need to modify be-

havioral responses. Subsequent studies extended these results by showing that dopaminergic

neurons incorporated the subjective value of reward into their prediction error signal since they

integrated different modulators of value such as risk (Stauffer et al., 2014) or delay (Kobayashi

& Schultz, 2008).
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Dopamine reward prediction errors in human

Dopamine reward prediction error signals are not limited tomonkeys, but have also been found

in electrophysiological studies in humans, not only in substantia nigra neurons (Zaghloul et al.,

2009), but also in large cortical territories such as the vmPFC and lOFC (Gueguen et al., 2021).

In addition, hundreds of human neuroimaging studies, using both classical (i.e., Pavlovian) and

instrumental conditioning (see Box 5 for a definition), demonstrate reward prediction error

signals in key target structures of dopaminergic neurons (Garrison et al., 2013), including the

ventral striatum (e.g., McClure et al., 2003; J. P. O’Doherty et al., 2003; Pessiglione et al., 2006;

Yacubian et al., 2006) and the mOFC (J. O’Doherty et al., 2001). The signal has been observed

to reflect the dopamine response and tooccur in striatal and frontal dopaminergic terminal areas

rather than in midbrain cell body regions, a phenomenon which could be explained by the fact

that it captures the sum of postsynaptic potentials (Schultz, 2016).

iii. Stimulus value encoding

Nowthatwehave seenhowvalues are learned,we can ask how these values are represented in the

brain at the time of choice. Indeed, as stated earlier, decision theories posit that relevant features

of choice options are embedded in a set of unitary subjective value signals, one for each option,

at the time of decision making. These predicted stimulus values would indicate the value that

the decision maker expects to derive from consuming or obtaining each proposed option in a

given choice situation, regardless of the cost associated with the actions taken to obtain it. The

location of the brain systems that compute and represent these subjective valuation signals dur-

ing decision making has been the subject of extensive research in neuroeconomics. Numerous

studies suggests that the targets of dopaminergic neurons, specifically the ventral striatum and

the orbital and ventromedial portions of the prefrontal cortex, play a key role in encoding stim-

ulus value in the brains of both human and non-human primates (Kable & Glimcher, 2009;

Platt & Plassmann, 2014).

How are stimulus value signals measured?

Several procedures are widely used to obtain subject- and stimulus-specific measures of stimu-

lus value. In non-human primates, conditioning paradigms have proven to be an effective tool

for studying predicted value (Fig. II.9 left and Box 5). Indeed, the conditioned stimulus has

no value to the animal at the beginning of conditioning, but gradually predicts the upcoming

reward, without itself being a reward. Thus, by examining the activity at the time the con-

ditioned stimulus appears, it is possible to dissociate the predicted value of the reward from
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Box 5 | Paradigms commonly used to investigate subjective values

• Classical (or Pavlovian) conditioning: First described by Ivan Pavlov (see Box 1), the

classical conditioning process involves associating a previously neutral stimulus (the

conditioned stimulus) with an unconditioned stimulus (e.g. food).

• Instrumental (or operant) conditioning: This type of conditioning involves using

reinforcement (or punishment) to increase (or decrease) a behavior. Through this

process, an association is formed between the behavior and the consequences of that

behavior.

• Subjective rating: This method simply involves asking participants to rate certain

items based on “how much they like them”. Subjective ratings were used for differ-

ent modalities (visual, acoustic, gustatory and odorous; Kühn and Gallinat, 2012)

and domains of pleasantness (e.g., faces, paintings, or houses; Lebreton et al., 2009).

• Willingness-to-pay: TheBecker-DeGroot-Marschak (BDM;Becker et al., 1964) auc-

tion task, derived from behavioral economics, provides an alternative solution that

encourages participants to accurately report subjective values. In this auction, partic-

ipants are asked to indicate howmuch they arewilling to pay for each itempresented.

Once all bids have been placed, one of them is randomly selected. The item is then

sold according to the following rules. Let b be the bid made by the subject for the

drawn item. After the auction, a random number n is drawn from a known distri-

bution. If b ≥ n, the subject has obtained the object and paid a price equal to n.

On the other hand, if b < n, the subject did not get the item but also did not have

to pay anything.

• Preference task: This paradigm typically asks participants to choose between two

options. It assumes that if an individual chooses one item over another, it means

that the value he or she assigns to that item is higher than the other. This operational

definition of value is based on the fundamental idea in economics that individuals

choose the option with the highest value.

All these tasks are illustrated in Fig. II.9.
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other features of the outcome. In humans, stimulus value is classically determined using rating

or willingness-to-pay tasks (Fig. II.9 right and Box 5). As with the conditioning paradigms,

the logic behind the tasks is to induce subjects to activate the stimulus value circuit without

necessarily activating the rest of the choice circuit. These tasks, performed in a non-economic

context, have the advantage of isolating the stimulus value, but they are basedon the assumption

that the same brain regions would be involved in a choice situation.

For both species, another popular option is therefore to estimate the subjective value from

choices themselves using preference tasks (Fig. II.9 and Box 5). This can be done under the as-

sumption that individual choice probabilities are generated by something like a logistic choice

model on the stimulus values (see section I.2.a. about the softmax rule). If the number of stim-

uli remains small, or if the stimulus values can be described using a simple functionwith a small

number of parameters (e.g., expected utility theory or prospect theory), this is sufficient to esti-

mate the stimulus value of each choice option (Rangel & Clithero, 2014).
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Figure II.9: Example of paradigms commonly used to investigate subjective values in non-human primates
(left; adapted from S. W. C. Chang et al., 2011) and humans (right; adapted from Lebreton et al., 2009 and Plass-
mann et al., 2007).

Predicted valuation signals in the striatum

Single-unit recordings. Several single-cell studies in non-human primates have reported a

relationship between reward expectancy and neuronal activity in the ventral striatum (Hassani

et al., 2001; Hollerman et al., 1998; Schultz et al., 1992), with the latter being proportional to

the rewardmagnitude (Cromwell & Schultz, 2003; Hassani et al., 2001). However, the dynam-

ics of responses were found to vary greatly between striatal neurons. For example, in one study,

50



II.2. Coding of prediction error and predicted value signals in the brain

Schultz et al. (1992) studied the neurons of macaque monkeys while they performed a delayed

go-no-go task. Lights of different colors instructed the animal to perform an arm extension or

refrain from movement, respectively, when a trigger light was turned on a few seconds later.

They found that neurons in the striatum exhibited a considerable variety of relationships to the

task. These consisted of responses to instructions, sustained activations preceding the trigger-

ing stimulus, responses to the triggering stimulus, sustained activations immediately preceding

the reward, and responses following the reward (Fig. II.10).

Reward-dependent response to
movement preparatory instruction

Reward-dependent activation
during movement preparation

Reward-dependent response
to movement trigger

Activation during
expectation of  reward

Response to primary reward
Instruction Trigger Liquid, food or sound

reinforcer

STRIATUM

Figure II.10: Schematic overview of the forms or reward processing found in the ventral striatum. Repro-
duced from Schultz et al. (2000).

Local field potential recordings. Because of its deep position in the brain, the local field po-

tentials of the ventral striatum are rarely explored in humans. Nevertheless, a few rare patients

who underwent deep brain stimulation surgery for the treatment of refractory psychiatric dis-

orders (obsessive-compulsive disorder, addiction or depression) are implanted in this region (C.

Zhang et al., 2017). In this context, one study suggests that the ventral striatum reflects the ex-

pected reward value at cue onset and the experienced reward value at feedback in event-related

potentials (M. X. Cohen et al., 2009b). In a follow-up study, the same team found the involve-

ment of the gamma band (40-80Hz) during a similar task (M. X. Cohen et al., 2009a).

fMRI recordings. Finally, numerous fMRI studies in humans have reported a relationship

between the value of the reward stimulus and neural activity in the ventral striatum. Early stud-

ies on this topic all showed that activity in the ventral striatum correlated with anticipation of

monetary gains, and later studies have confirmed these initial findings (Breiter et al., 2001; El-

liott et al., 2003; Kable & Glimcher, 2007; Knutson & Cooper, 2005; Knutson et al., 2005).

Outside the monetary domain, studies have shown that activity in the striatum correlates with

absoluteproduct desirability (Erk et al., 2002; Knutson et al., 2007). Aqualitativemeta-analysis,
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synthesizing the results of published fMRI experiments using ratings or choices to elicit value,

supports this evidence by showing that BOLD signal in the ventral striatum is positively corre-

lated with subjective expected values in a linear fashion (Fig. II.11; Bartra et al., 2013).

Decision stage

vmPFC Striatum

Figure II.11: Whole-brain meta-analysis of the positive effects of subjective value
when a decision is evaluated. Adapted from Bartra et al. (2013).

Predicted valuation signals in the vmPFC/OFC

Lesion studies. A clear link between predicted valuation signals and the vmPFC/OFC has

historically been established by anatomical and lesion studies. In non-human primates, multi-

ple studies have shown that lesions in the OFC impair performance in goal-directed behaviors.

Specifically, monkeys withOFC lesions were unable tomake adaptive responses to objects after

changes in the value of the underlying rewards for those objects (Izquierdo et al., 2004; West

et al., 2011). These results indicate that in the absence of the OFC, animals fail to calculate sub-

jective values on the fly. In human patients, a large literature stemming from the classic case of

Phineas Gage (Damasio et al., 1994) has shown that OFC dysfunction is associated with choice

deficits in a variety of areas (Cavedini et al., 2006; Hodges, 2001; Rahman et al., 1999; Strauss et

al., 2014; Volkow& Li, 2004). Notably, lesions in the ventromedial frontal region result in less

consistent preference judgments compared to healthy controls (Camille et al., 2011; Fellows &

Farah, 2007; Henri-Bhargava et al., 2012). Finally, patients with OFC lesions also show abnor-

mal behavior in gambling tasks, suggesting difficulty in coping with risk (Bechara et al., 1996;

Clark et al., 2008; Rahman et al., 1999).

Single-unit recordings. Results from single-cell recordings in non-human primates also sug-

gest that OFCneurons serve as a substrate for the computation and representation of predicted

value. In an early study, Thorpe et al. (1983) observed that OFC neurons responded to the

presentation of visual stimuli in ways that could not be explained in terms of simple sensory fea-

tures. Indeed, the response of these neurons to the visual presentation of a liquid-filled syringe

depended on whether, on previous trials, the liquid was appetitive (apple juice) or aversive (salt
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water), even though the appearance of the syringe was visually indistinguishable between the

two conditions. These observations thus led to the idea that these neurons possessed informa-

tion about the “consequences of the animal’s own responses”. Subsequent studies confirmed

these findings by showing that primate lOFC neurons responded to the administration of par-

ticular foods or juices in ways that depended on the motivational state or behavioral context of

the animal (Fig. II.12; Rolls et al., 1989; Schultz et al., 2000; Tremblay and Schultz, 1999). In

addition, single-cell recordings in monkeys also identified neurons reflecting expected values in

the vmPFC (Abitbol et al., 2015; Bouret & Richmond, 2010; Strait et al., 2014).

Response to
reward-predicting instruction

Activation during
expectation of  reward

Response to primary reward
Instruction Trigger Liquid, food or sound

reinforcer

ORBITOFRONTAL CORTEX

Figure II.12: Schematic overview of the forms or reward processing found in the orbitofrontal cortex. Re-
produced from Schultz et al. (2000).

Building on thiswork, Padoa-Schioppa andAssad (2006) designed an experiment inwhich they

estimated subjective value based on choices made in a preference task (Fig. II.9). In this experi-

ment, the authors recorded OFC neurons while thirsty monkeys chose between two different

fruit juices offered in different quantities, which were visually signaled to them. The choice pat-

terns showed a quality/quantity trade-off, that is, the monkeys preferred one of the two juices

when offered in equal quantities, but chose a less preferred juice if offered in sufficient amounts.

The relative values of the two juices, inferred from the indifference point (i.e., the amount at

which monkeys chose each juice with equal frequency), were then correlated with neural activ-

ity. The study identified three groups of neurons in the OFC: “offer value” cells that encode

the value of one of the two juices (Fig. II.13A and B), “chosen juice” cells that encode the out-

come of the binary choice (Fig. II.13C and D), and “chosen value” cells that encode the value

of the chosen offer (Fig. II.13E). This study, replicated in follow-up studies (Padoa-Schioppa,

2009; Padoa-Schioppa &Assad, 2008), is critical in that it suggests that decisions would indeed

be based on an evaluation step, as proposed in the model presented at the beginning of this

manuscript (see section I.1.a.).
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Local field potential recordings. Recording of local field potentials provides additional evi-

dence for the link between both vmPFC andOFCwith reward prediction. Inmonkeys, reward

anticipation was found to be encoded in the high gamma band (50-100 Hz) of the prefrontal

cortex, as well as in the beta band (15-29 Hz), but with reverse encoding: power in the beta

band was higher for low rewards than for high rewards (Y. Zhang et al., 2016). In humans, the

results appear to be similar. LFP recordings in the human medial and lateral OFC show an

increase in the amplitude of local field potentials with the probability of reward (Y. Li et al.,

2016), whereas the subjective value of food and non-food items is positively reflected in the

high-frequency activity (35-150 Hz) of the vmPFC and the lOFC (Lopez-Persem et al., 2020).

Likewise, high-frequency activity in the humanOFC reflectedmultiple valuation components,

such as the offer value and expected chosen value, in a choice task between a safe price and a

risky gamble (Saez et al., 2018). Thus, a convergent pattern emerges in the involvement of high

frequencies such as high gamma in outcome evaluation.
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Figure II.13: Cell Groups in Orbitofrontal Cortex. The five panels represent the activity of five neurons
(recorded in different sessions). In each panel, different offer types are ranked on the x axis by the ratio #B / #A,
where #X is the quantity of juice X offered to the animal. Black dots represent the percent of trials in which the
animal chose juice B (the choice pattern). Colored symbols represent the neuronal activity, with diamonds and
circles indicating trials in which the animal chose juice A and juice B, respectively. From Padoa-Schioppa and As-
sad (2006).
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fMRI recordings. Finally, a large number of studies performing fMRI recordings in humans

have shown that the BOLD signal in the vmPFC correlates with the subjective values of choice

alternatives, items to be evaluated or bid on (Lebreton et al., 2009; Plassmann et al., 2007). This

finding is further supported by the same meta-analysis as mentioned above for the striatum

(Bartra et al., 2013), showing a positive correlation between vmPFC and subjective expected

value (Fig. II.11). Furthermore, the BOLD activity of the vmPFC was also found to correlate

with the value of objects irrespective of their category, be it trinkets, snacks, andmoney (Chib et

al., 2009; Levy&Glimcher, 2011) or faces, paintings andhouses (Lebreton et al., 2009), but also

irrespective of themodality, be it olfactory (J.D.Howard et al., 2015) or auditory (Abitbol et al.,

2015). Overall, these results strongly support the idea that the vmPFC encodes the subjective

value of expected gains, but also that a common neural currency is used by the brain to allow

comparison between goods in the same unit.

The debate around vmPFC and OFC

A striking observation that may follow from the previous section is that, although involvement

of the vmPFC and OFC in reward prediction is reported in both species, activations of the

vmPFC are more frequent in humans, whereas neurophysiological studies in monkeys typi-

cally record from the OFC. This discrepancy is particularly salient because the vmPFC and

OFC are part of distinct brain networks, with different patterns of anatomical connectivity

and few direct interconnections (see section i.; Öngür et al., 2003; Wallis, 2011). Furthermore,

as mentioned earlier, these two regions are homologous between monkeys (macaque) and hu-

mans (Fig. II.7). A first potential explanation for this difference could be that the vmPFC is less

recorded at the single-cell level. Indeed, theOFC ismore accessible for electrophysiological stud-

ies due to its position close to the brain surface and lateral enough to avoid accidental contact

with the central sinus. A second possible explanationmay be that tasks engaging the vmPFC in

humans do not quite cognitively match the tasks used to examine theOFC inmonkeys. In fact,

the results may be very similar when efforts are made to precisely match behavioral tasks across

species (Baxter et al., 2000; Gottfried et al., 2003). This observation raises the possibility that

vmPFC and OFC may serve related but distinct functions that are solicited differently by be-

havioral tasks used in different species. An earlier theory based on neuroimaging studies indeed

suggested functional differences between lateral OFC and mOFC/vmPFC based on outcome

valence (Kringelbach, 2005). Although this theory has since been discarded, more recent find-

ings still suggest amedial-lateral organization (Noonan et al., 2010; Rudebeck&Murray, 2011),

in which notably neurons in the lateral OFC encode the value of external stimuli while those

in more medial parts (mOFC/vmPFC) encode the value of outcomes associated with internal
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states (Bouret & Richmond, 2010). A final consideration could be that it is differences in the

methodologies used to study decision making in monkeys and humans that would account for

the differential focus on OFC and vmPFC, including susceptibility artifacts in fMRI, or the

heterogeneous nature of neural responses in OFC (Wallis, 2011). One way to reconcile these

results could be to analyze the local field potentials of these regions, as it seems to link single-cell

recordings with fMRI. In fact, a recent study in epileptic patients implanted with intracranial

electrodes showed that the encoding of subjective values occurred both in the vmPFCand in the

lateral OFC, although with different dynamics (Lopez-Persem et al., 2020). This study there-

fore favors the hypothesis that the discrepancies observed between the vmPFC and the OFC

depend on the recorded signal rather than on specific tasks, but leaves open the question of the

precise mechanisms and the role of each of these two brain regions.

Other predicted value areas

In addition to the striatum and vmPFC/OFC, other brain regions are commonly involved in

reward valuation. Their description is beyond the scope of this manuscript, but we can never-

theless mention the posterior cingulate cortex, which is the brain area that responds most com-

monly alongside the vmPFC and ventral striatum, and has strong functional connectivity with

the vmPFC (Bartra et al., 2013; Buckner & DiNicola, 2019; Lebreton et al., 2009), as well as

the hippocampus, which is thought to be particularly recruited when choices are memory-based

(Gluth et al., 2015; Lebreton et al., 2009; Lopez-Persem et al., 2020).

b. Neural basis of punishments: an opponent brain system?

So far, we have focused on the neural coding of rewards. However, our daily choices often

require us to weigh the pros and cons of a series of actions before making a decision (see sec-

tion I.1.c.). Early experiments in behavioral economics suggested that choices involving gains

(appetitive domain) and losses (aversive domain) follow different policy rules (see section I.3.a.

about Prospect theory). For example, the endowment effect shows that people are willing to

pay more to keep something they own than to acquire the same thing when they don’t (Kah-

neman et al., 1990). In addition, rewards and punishments trigger different types of subjective

feelings (such as pleasure or pain, desire or fear) and elicit different types of behavior (approach

or avoidance, stimulation or inhibition). These different observations have given rise to the idea

that rewards and punishmentsmay be processed by different parts of the brain, whichmay exert

distinct influences on behavioral biases and clinical symptoms. Yet, while the neural correlates

underlying reward processing are fairlywell characterized, the neural basis of aversive processing
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is subject to greater debate. The purpose of this section is to present current hypotheses on the

possible implementation of reward and punishment systems in the brain.

i. Howarevalue signalsrelatedtorewardsorpunishmentsdistinguished?

In order to differentiate value signals specifically related to the valence of the outcome, dedi-

cated tasks should be used. In particular, it is important to implement the comparison within

the same behavioral task to avoid various confounding factors such as framing effects. Indeed,

in the absence of either valence, subjectsmay change their reference point and, for example, con-

sider an absence of reward as punishment or an absence of punishment as reward (Palminteri

et al., 2015; Rangel & Clithero, 2012; Seymour & McClure, 2008; Vlaev et al., 2011). Never-

theless, opposing reward and punishment in the same protocol poses the delicate problem of

comparing stimuli that do not necessarily have the same properties and whose values are not al-

ways in the same range. To circumvent this problem, studies that have addressed this issue used

secondary stimuli such asmoney or abstract “points”. This has the advantage of placing rewards

and punishments in the same sensory range and allowing the value of stimuli to be inferred di-

rectly from their numerical nature. However, the generalizability of the results obtained with

this type of task to other types of more “natural” stimuli is not guaranteed.

The clear separation of appetitive and aversive processing has most often been implemented

in instrumental learning paradigms. In these paradigms, participants are repeatedly presented

with a choice between two abstract stimuli (often fractal images or letters from exotic alphabets)

representing the two possible actions. They are then asked to learn, through trial and error,

to choose the most rewarding option or to avoid the most punishing one. In humans, two

famous designs of this type are theHiragana task (Frank et al., 2007; Frank et al., 2004) and the

Agathodaimon tasks (Fig. II.14 top andmiddle; Palminteri, Justo, et al., 2012; Pessiglione et al.,

2006).

• The Hiragana task consists of two sessions: a training session and a test session. In the

training session, subjects are presented with fixed pairs of options (usually three pairs),

represented by Hiragana symbols and associated with different probabilities of winning

or losing. Probabilistic feedback follows the choice to indicate whether it is correct or

incorrect. To assess whether participants learned more about the positive or negative

outcomesof their decisions, they are then testedwithnewcombinations of stimulus pairs

(involving symbols from the training phase), this time in the absence of feedback. The

ability to select the best possible stimulus is considered a measure of reward learning and

the ability to avoid the worst stimulus is considered a measure of punishment learning.
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Figure II.14: Example of classical tasks used to compare reward and punishment processing. The Hiragana
task (top; adapted from Shiner et al., 2012) and the Agathodaimon task (middle; adapted from Pessiglione et al.,
2006) are instrumental learning paradigms. In these tasks, the objective of the participants is to find by trial and
error the actionwith the highest expected value. In the accept/reject task (bottom; adapted fromTom et al., 2007),
participants are asked to indicate their willingness to take the gamble (or challenge) given the potential gains and
losses displayed on the screen. After their choice, a feedback may or may not be displayed.

• TheAgathodaimon taskdistinguishes between reward-seeking andpunishment-avoidance

performance directly within a session. As in the Hiragana task, subjects are shown fixed

pairs of symbols (usually two pairs), now materialized by Agathodaimon symbols. This

time, however, rewards and punishments are never mixed within a pair. Some pairs of

options have probabilities of winning or not winning, and others have probabilities of

losing or not losing. The rates of correct responses in the two conditions are thus re-

spectively considered measures of reward and punishment learning. Crucially, this task

disentangles two concepts that were confounded in the previous task: outcome valence
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(reward or punishment) and positive or negative prediction errors (both present in both

conditions).

Another approach, inspired by effort discounting tasks in animals, is that of accept/reject para-

digms (Fig. II.14 bottom). In such tasks, participants are presented with a unique combination

of potential gains and losses on individual trials and are asked to decide whether to accept or

reject each of the proposed combinations. The outcome is determined either by chance (50%

chance of winning the gains at stake or losing the losses at stake;Martino et al., 2010; Tom et al.,

2007) or by means of an additional task (Vinckier et al., 2018). Since the participants’ goal is to

win as much money (real or virtual) as possible, if they feel that the particular combination of

potential gains and losses is “not worth it”, they choose the “No” response to move on to the

next trial, otherwise they choose the “Yes” response. A significant advantage of this paradigm

is that it allows for the dissociation of behavioral sensitivity to gains and losses. In addition,

the amounts of potential gains and losses can be directly correlated with brain activity so as to

isolate the brain regions that are sensitive to them.

ii. The neural candidates for appetitive and aversive processes

As discussed above, it has been shown that the firing rate of dopaminergic neurons evolves pos-

itively and parametrically with reward prediction errors (RPE). One might then assume that

the same system is used to encode punishment prediction errors (PPE), and that dopamine lev-

els decrease with aversive events. This possibility seems unlikely, however, because the baseline

firing rate of dopaminergic neurons is quite low and would not have sufficient range to accu-

rately encode negative events (Bayer & Glimcher, 2005). This physiological constraint leads to

the hypothesis that an adverse system could respond positively to aversive events. To date, the

idea of an opponent system is still widely debated. Palminteri and Pessiglione (2017) have iden-

tified and discussed four hypotheses, which I will introduce here, that have been put forward

regarding the neural implementation of this potential system (Fig. II.15).

Hypothesis 1: No opponent system

A first hypothesis is that dopaminergic activity in the basal ganglia circuits is sufficient for re-

ward and punishment learning and that there is therefore no opponent system. According

to this hypothesis, negative prediction errors are simply encoded in the duration of pauses in

dopaminergic activity (Maia & Frank, 2011). Studies conducted in patients with Parkinson’s

disease, characterized by dopaminergic neuronal loss and treated with dopaminergic stimula-

tors, support this idea (Bódi et al., 2009; Frank et al., 2004; Kéri et al., 2010). It has been no-
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tably shown that patients under dopaminergic treatment were better at reward learning than

patients without treatment, and conversely for punishment learning (Frank et al., 2004). An

analogous study in patients with Tourette’s syndrome obtained comparable results (Palminteri

et al., 2009), increasing evidence suggesting the involvement of dopaminergic activity drops

in punishment learning. In this context, it is proposed that an important role is played by an

epithalamic nucleus called habenula, whose activity has been shown to provide an inhibitory

input to midbrain dopaminergic neurons after omission of a reward in monkeys (Matsumoto

& Hikosaka, 2007). In humans, habenula has also been shown to encode aversive events such

as electric shocks and to impact striatal activity (Lawson et al., 2014). Nevertheless, although

increased dopamine levels have been almost consistently associatedwith improved reward learn-

ing, the results regarding punishment learning are less consistent, with several studies showing

no effect of dopaminergic drugs on avoidance behavior (Eisenegger et al., 2014; Pessiglione et

al., 2006; Rutledge et al., 2009).

Hypothesis 2: Dopaminergic opponent system

A second hypothesis also assumes that dopaminergic activity underlies avoidance learning, but

that this occurs through a different subset of midbrain neurons that positively encode punish-

ment (Brooks & Berns, 2013). This hypothesis is based on electrophysiological observations

in non-human primates that an anatomically distinct population of midbrain dopaminergic

neurons responds positively to aversive stimuli (Matsumoto & Hikosaka, 2009). Consistently,

punishment expectation and punishment prediction errorwere shown to be positively encoded

in the ventral tegmental area and striatum during aversive conditioning tasks in human fMRI

(Delgado et al., 2008; Pauli et al., 2015; Seymour, Daw, et al., 2007). A related implication of

this second hypothesis is the idea that a functional gradient exists in the striatum, such that the

dorsal striatum would be preferentially involved in punishment processing, while the ventral

striatumwould bemore involved in reward processing. The fMRI data are generally consistent

with this idea (Pessiglione et al., 2006; Seymour, Daw, et al., 2007). However, a study con-

ducted in patients with Huntington’s disease suggests instead that the dorsal striatum system

would not be involved in learning as such, but rather in the selection between actions that result

in negative outcomes (Palminteri, Justo, et al., 2012).

Hypothesis 3: Serotoninergic opponent system

A third hypothesis asserts that another neuromodulator, serotonin (5-HT), assumes the role of

opponent signaling by encoding punishment prediction errors (Daw et al., 2002). The origin

of this hypothesis lies in a large literature in rodents linking the serotonergic system (in par-
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Figure II.15: Neural implementation of reward versus punishment processing. (a) Different hypotheses re-
garding the neural implementation of punishment avoidance (red) versus reward seeking (green). For each hy-
pothesis, the key regions and connections of each oppositional system are shown on the left, with their theoretical
pattern of activity as a function of prediction error (PE) plotted on the right. (b) Maps resulting from large-scale
automatedmeta-analyses as implemented inNeurosynth. 5HT: serotonin; DA: dopamine; dACC: dorsal anterior
cingulate cortex; dDA: dorsal dopamine; DS: dorsal striatum; dVTA: dorsal VTA; PFC: prefrontal cortex; SNpc:
substantia nigra pars compacta; vDA: ventral dopamine; vmPFC: ventromedial PFC; VS: ventral striatum; VTA:
ventral tegmental area; vVTA: ventral VTA. From Palminteri and Pessiglione (2017).

ticular the dorsal raphe) to behavioral inhibition (Soubrié, 1986). However, evidence for this

proposition is scarce. Although serotonin has been shown to antagonize dopamine function in

the VTA and striatum (Kapur & Remington, 1996; Lorrain et al., 1999), electrophysiological

recording and pharmacological manipulation studies have implicated serotonin in both reward

and punishment processing (J. Y. Cohen et al., 2015; Palminteri, Clair, et al., 2012). Further-

more, because the serotonergic system is much more anatomically widespread and genetically

complex than the dopaminergic system, it may be impossible to delineate a single functional

domain for this neuromodulator (Spies et al., 2015). Indeed, serotonin has been implicated in

other types of aversive events such as the cost of information sampling (Crockett et al., 2012) or

the opportunity cost induced by waiting for a reward (Fonseca et al., 2015; Schweighofer et al.,

2008).

Hypothesis 4: Other opponent systems

Finally, the fourth hypothesis proposes that punishment processing is mediated by aversive sig-

nals encoded in other cortical and subcortical areas, most notably the anterior insula (see Box 6)

and amygdala (Fig. II.16; Pessiglione and Delgado, 2015). This hypothesis is consistent with a

body of electrophysiological, pharmacological, and lesion studies in animals (Hayes et al., 2014;
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Namburi et al., 2016), as well as fMRI studies andmeta-analyses in humans (Bartra et al., 2013;

Garrison et al., 2013; Yacubian et al., 2006). For example, bilateral lesions of the amygdala were

shown to impair implicit punishment learning, which was spared by bilateral lesions of the hip-

pocampus (Bechara et al., 1995). Similarly, insular lesions were shown to specifically impair

punishment learning (Palminteri, Justo, et al., 2012). Subsequent computational analyses in-

dicated that the deficit was best rendered by decreasing the punishment parameter, consistent

with fMRI (Pessiglione et al., 2006; Seymour et al., 2004) and electrophysiology (Gueguen et al.,

2021) studies reporting encoding of punishment prediction errors in the anterior insula. In ad-

dition, the insula has been shown to respond to aversive outcomes that elicit intense feelings of

arousal, such as disgusting images (Calder et al., 2007), but also tomonetary losses, particularly

loss anticipation (Knutson et al., 2003), which has been linked to risk predictions (Preuschoff

et al., 2008) and risk-averse decisions (Kuhnen & Knutson, 2005). In such a model, one might

expect that regions that encode positive events, such as the ventral striatum and vmPFC, would

not be involved in aversive events. However, fMRI studies also provide several examples of over-

lapping appetitive and aversive processes in the human brain. For example, one study reported

that the same area of the vmPFC was positively correlated with potential monetary gains and

negatively correlated with potential losses (Tom et al., 2007), while activity in targeted regions,

including the amygdala and insula, showed no increase in activity with potential losses. Simi-

larly,mOFCactivity has been positively correlatedwithmonetary gains and food appetitiveness

and negatively correlated with losses and food aversiveness (Plassmann et al., 2010).

Aversive Reward

dmPFC

Amyg
vmPFC

Str
aIns

Figure II.16: Brain regions involved in reward and aversive processes. Results from a large-scale meta-analysis
(Yarkoni et al., 2011) reveal that reward processing involves the striatum (Str) and ventromedial prefrontal cortex
(vmPFC), whereas aversion processing involves the dorsomedial prefrontal cortex (dmPFC), anterior insula (aIns),
and amygdala (Amyg). From Pessiglione and Delgado (2015).

Overall, the delineation of the neural systems responsible for reward and punishment valuation

is still a matter of debate. In my experimental work, I addressed this issue by performing in-
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tracerebral recordings in epileptic patients while they performed an accept/reject task allowing

to isolate signals related to either potential monetary gains or losses. Intracerebral electroen-

cephalographic (iEEG) activity was recorded by deep electrodes sampling regions potentially

involved in this process, namely the prefrontal and insular cortex, with the aim to identify the

neural dynamics of selective brain regions featured by appetitive or aversive events.

Box 6 | Anatomy of the insular cortex

The insular cortex is a complex and richly connected cytoarchitectonic structure. Orig-

inally considered as a simple visceral sensory region, the insula has gradually been recog-

nized as a cortical hub involved in interoception, multimodal sensory processing and

perceptual self-awareness. Recently, its role in attention, executive functions and de-

cision making has also been highlighted, making it an important field of exploration

(Benarroch, 2019; Craig & Craig, 2009; Droutman et al., 2015; Klein et al., 2013;

Nieuwenhuys, 2012; Uddin et al., 2017).
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psmsas
ac

Figure II.17: Anatomy of the insula. Photograph of the left insular cortex of a human patient.
as: anterior short insular gyrus; al: anterior long insular gyrus; ac: accessory gyrus; APS: anterior
peri-insular sulcus; H: Heschl’s gyrus; IPs: inferior peri-insular sulcus; ms: middle short insular
gyrus; ps: posterior short insular gyrus; pl: posterior long insular gyrus; SPS, superior peri-insular
sulcus. From Craig and Craig (2009).

The human insular cortex is delimited from the frontal, parietal, and temporal oper-

cula by the peri-insular sulcus and is partitioned into posterior and anterior lobules

by the central insular sulcus (Fig. II.17; Uddin et al., 2017; Wysiadecki et al., 2018).

Though the direction and size of the gyri, as well as the exact number of short gyri,

may vary between individuals and hemispheres (Wysiadecki et al., 2018), there are gen-
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erally two long gyri in the posterior lobule and three short gyri in the anterior lobule, as

well as an accessory gyrus that corresponds approximately to the location of the fronto-

insular cortex.

On the basis of cytoarchitectonic analyses of the presence and density of cortical gran-

ular cell layer, the insula has been subdivided into posterior “granular”, intermedi-

ate “dysgranular” and anterior “agranular” areas (Fig. II.18 left; Klein et al., 2013;

Nieuwenhuys, 2012).
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Figure II.18: Cytoarchitectonic and functional maps of the human insula. (left) Cytoarchi-
tectonic gradient from agranular cortex in the anterior inferior insula via dysgranular cortex to
granular cortex in the posterior part of the insula. (right) Tripartite model of the functional areas
of the insula. Adapted from Klein et al. (2013).

The connectivity and functions of the insula in humans have been studied using sev-

eral techniques, including tractography, fMRI, cortical microsimulation during eval-

uation for epilepsy surgery, and analysis of the clinical consequences of insular injury

(Afif et al., 2010; Mazzola et al., 2017; Ryvlin & Picard, 2017; Stephani et al., 2011;

Uddin et al., 2017). These studies indicate that the posterior insula has connections to

the temporal, parietal, andposterior sensorimotor areas, the anterior insula connects to

the frontal, orbitofrontal, anterior cingulate, and anterior temporal areas, whereas the

medial insula shares connections to the anterior and posterior insular cortices (Ghaziri

et al., 2017).

The human insula is generally divided into (at least) three functional regions: a pos-

terior region functionally connected to areas involved in sensorimotor processing, a

dorsal anterior region functionally connected to areas involved in cognitive control,

and a ventral anterior subdivision functionally connected to limbic areas involved in
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affective processes (Fig. II.18 right; L. J. Chang et al., 2013; Deen et al., 2011). An-

other view, however, suggests that this traditional perspective of cognitive-affective-

interoceptive segregation may be oversimplified. In particular, dynamic analyses of

functional network connectivity have shown that different subdivisions of the insula

can alsowork in concert to integrate informationwithin and across cognitive, affective,

visual, and sensorimotor tasks (Uddin et al., 2014). Notably, the dorsal anterior insula

has been shown to exhibit strong functional connectivity acrossmultiple task domains

(R. Li et al., 2020; Uddin et al., 2014).

3. The neural mechanisms underlying choice variability

At the behavioral level, we have detailed several modulators that could account for some of the

choice stochasticity (see section I.3.). In this section, we will focus on describing the neural

mechanisms underlying the behavioral variability generated by these modulators. Insight into

these mechanisms is a valuable approach to better understand the origin of choice variability

and further constrain theories of how values are constructed and used in decisions.

a. Baseline effects

Although accounting for some factors may substitute for the observed stochasticity in choices

through bias, it appears that part of the behavioral variability may also be attributable to the

biological properties of the brain system that we use to compute subjective value. Indeed, since

the earliest neurophysiological recordings, scientists have observed the presence of ongoing ac-

tivity in the brain that has a characteristic temporal and spatial structure (Gloor, 1969; Raichle,

2015). This so-called spontaneous activity is distinguished by remarkably large temporal modu-

lations that are not attributable to any specific stimuli. The concern that such fluctuations were

merely the result of technical and physiological noise was refuted by simultaneous recordings

using different techniques (Laufs et al., 2003; Shmuel & Leopold, 2008), showing in particular

that the same fluctuations in ongoing activity could be observed in both electrophysiology and

fMRI.

Trial-to-trial variability in brain signals

The first clues to the implication of this spontaneous activity on cognitive functions emerged

from the long-standing observation from electrophysiological recordings that the neuronal re-
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sponses evoked by identical stimuli fluctuate over time (Dean, 1981; Shadlen & Newsome,

1998; Softky & Koch, 1993). This variability has also been replicated in fMRI studies, where

it has been found that the BOLD signal from the same region and in the same subject exhib-

ited significant variability from one trial to the next (Duann et al., 2002). In addition, a series

of results showed that perception of visual contrast (Ress & Heeger, 2003), identification of

fearful expressions (Pessoa & Padmala, 2005) or working memory performance (Pessoa et al.,

2002) could each be predicted by unexplained variations in the BOLD response across trials for

identical stimuli.

This effect was most explicitly linked to ongoing activity fluctuations in an influential study

examining ongoing and stimulus-evoked activity using simultaneous optical and electrophysio-

logical methods in the visual cortex of anesthetized cats (Arieli et al., 1996). In this study, the

authors found that spontaneous fluctuations in brain activity could account for trial-to-trial

variations in neuronal response elicited by identical stimuli. In particular, their data showed a

linear relationship between ongoing activity immediately before stimulus onset and evoked ac-

tivity levels, so that simply adding the average increase in stimulus-related activity to ongoing ac-

tivity provided an excellent prediction of the activity level actually measured during the evoked

response. Evidence for the persistence of task-independent ongoing activity in the evoked neu-

ronal response to a stimulus has also been provided in functional imaging studies. For example,

in one study, the authors found that the inter-trial variability of finger movement-related activ-

ity inmotor cortex could be significantly explainedbyfluctuations in ongoing activitymeasured

in the contralateral motor cortex (M. D. Fox et al., 2006). Through a clever analysis of the ac-

tivity level recorded simultaneously in a region that belongs to the same intrinsic functional

connectivity networks, but was not engaged by the task, it was thus possible to dissociate the

ongoing and evoked components of the signal in the task-relevant region.

Functional relevance of spontaneous fluctuations

By addressingwhether these ongoing activity fluctuations are functionally relevant, subsequent

studies have provided clear links between neuronal and behavioral variability. In particular, ex-

tensive fMRI evidence has shown that, when using ambiguous or near-threshold items, pre-

stimulus activity may serve as a predictor of perceptual decisions in various modalities. For

example, in the auditory domain, higher pre-stimulus activity in bilateral auditory cortex was

associated with better performance when attempting to detect near-threshold auditory stim-

uli (Fig. II.19a; Sadaghiani et al., 2009). In the visual domain, participants’ categorization of

Rubin’s bistable vase-face image was biased toward faces when pre-stimulus activity levels in
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the right fusiform facial area (a region known to be involved in face processing) were higher

(Fig. II.19b; Hesselmann, Kell, Eger, et al., 2008). Similarly, participants’ responses during a

random-dot movement task with near-threshold levels of coherence were biased toward coher-

ent movement by levels of pre-stimulus activity in the right middle temporal cortex (a region

involved in motion perception; Fig. II.19c; Hesselmann, Kell, and Kleinschmidt, 2008). Fi-

nally, the classification of a stimulus as painful was predicted by the anterior insula (aIns) pre-

stimulus signal level in a near-threshold pain detection paradigm (Wiech et al., 2010). Similar

results were also obtained in perceptual decision tasks with electrophysiological recordings in

monkeys (Shadlen & Newsome, 2001; Williams et al., 2003) and magnetoencephalography in

humans, showing notably that pre-stimulus alpha and gamma band fluctuations in visual ar-

eas can influence the conscious detection of an upcoming stimulus (Wyart & Tallon-Baudry,

2009).

Auditory detection(a) (b) Faces/vase decision (c) Motion decision

Figure II.19: Impact of spontaneous variations in brain activity on perceptual decisions. The upper part il-
lustrates the paradigms. In each experiment, the pre-stimulus BOLD signal (dotted vertical line marking stimulus
onset) was examined as a function of perceptual outcome and sampled from accordingly specialized sensory areas.
The corresponding regions of interest are presented on a canonical inflated cortical surface of the right hemisphere.
In all experiments, higher pre-stimulus time course in the respective sensory region biased towards perceiving stim-
ulus properties for which these regions are particularly sensitive. From Sadaghiani et al. (2010).

Baseline activity and value-based decision making

In the field of value-based decisionmaking,Maoz et al. (2013) examined activity in the dorsolat-

eral prefrontal cortex and striatum (regionswhose activity has been previously linked to the sub-

jective value of delayed reward) of monkeys deciding between smaller, immediate rewards and
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larger, delayed rewards. In doing so, they found neurons whose spiking activity was predictive

of the spatial location of the selected target or the magnitude of the chosen reward even before

the choice optionswerepresented. Moreover, the predictive power of these neurons increased as

the values associatedby the animalswith the twodecision alternatives became closer. In a similar

study investigating neuron activity in the orbitofrontal cortex when monkeys choose between

different types of juice in different quantities, Padoa-Schioppa (2013) surprisingly found that

trial-to-trial fluctuations in the activity of offer-value cells (Fig. II.13A and B) did not explain

the variability of choice in near-indifference decisions. In contrast, quasi-indifference decisions

were correlated with fluctuations in the activity of the chosen juice cells (Fig. II.13C and D) be-

fore the offer. However, predictive activity was largely related to the outcome of the previous

trial.

In human neuroimaging studies, several findings indicate that brain activity preceding the pre-

sentation of choice options may influence the final decision, particularly when the alternatives

are safe versus risky (Chew et al., 2019; Huang et al., 2014; Kuhnen & Knutson, 2005; Lopez-

Persem et al., 2016; Vinckier et al., 2018). Specifically, baseline activity in typical brain valuation

regions has been shown to be involved in biasing subsequent choice selection. For example, ac-

tivity in the nucleus accumbens and medial frontal gyrus may bias subsequent risky decision

making (Huang et al., 2014). Similarly, baseline activity in the ventromedial prefrontal cortex

reflected the strength of prior preferences (Lopez-Persem et al., 2016). In addition, these results

are also consistent with the idea of distinct neural circuits for reward and punishment valua-

tion presented earlier (Fig. II.15 hypothesis 4), as baseline activity in distinct regions was found

to be involved in either risk-taking or risk-aversion. In particular, high baseline activity in the

vmPFC or nucleus accumbens promoted risk-taking, whereas high baseline activity in anterior

insula tempered risk-taking (Kuhnen & Knutson, 2005; Vinckier et al., 2018), suggesting that

different brain regions are related to different aspects of decision-making.

While it is relatively well established that pre-stimulus activity influences choice, some studies

have also shown that baseline activity can be tied to mental constructs such as pleasure, sati-

ety, or mood (as we will see in more detail next), which are themselves influenced by external

events (Abitbol et al., 2015; Vinckier et al., 2018). For example, in one fMRI study, baseline

vmPFC activity in humans was manipulated with music, which created a systematic bias in the

subjective assessment. The same experiment was performed in monkeys where, this time, base-

line activity was affected by the number of trials (satiety or fatigue effect) and induced the same

type of bias. This study thus shows that across species, baseline activity is affected by context,
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both internal (e.g., satiety) and external (e.g., music), and that in turn it has an influence on the

expressed subjective value (Abitbol et al., 2015).
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Figure II.20: Potential explanation of how contextual factor impacts subjective value. (a) The initial hypoth-
esis is that a difference in context (context 2 in green vs. context 1 in pink) induces a shift in the baseline activity
of the vmPFC (Pre-stim), which would persist in the post-stimulus activity. If the subjective value is encoded in
the absolute peak of the evoked response, and not in the differential with respect to the baseline, this would have
an impact on the subjective value given to the same stimulus A. From Abitbol et al. (2015). (b) However, a recent
study observed that the correlation between pre-stimulus activity and subjective value was lost at the onset of the
stimulus before reappearing later. From Lopez-Persem et al. (2020).

An initial hypothesis regarding the mechanism by which the baseline influences the evoked re-

sponse to a stimulus was that an increase in baseline activity would persist in the evoked activ-

ity, resulting in a higher signal and thus a higher value, presuming that the value is encoded in

the absolute level of activity, not in the difference from the baseline (Fig. II.20a; Abitbol et al.,

2015). According to such a mechanism, the link to the upcoming value should persist between

the baseline and the evoked response. However, a recent intracerebral electroencephalography

(iEEG) study in humans observed that the correlation with value was momentarily lost in this

period (Fig. II.20b; Lopez-Persem et al., 2020).

Overall, these results lead to the view that trial-to-trial variations in pre-stimulus activity influ-

ence the valuation process at the time of choice, thereby influencing the behavioral response

and partially explaining choice stochasticity. However, the precise mechanism by which spon-

taneous activity influences value-based decision making is far from being resolved. Although

neuroimaging studies provide fairly consistent insights, the temporal resolution of fMRImeets

its limitations in isolating successive stages of information processing (e.g., how baseline activ-

ity is reflected in value-related brain responses). Indeed, choices occur rapidly, reflect the fast

dynamic structure of neural networks, and are exactly the type of phenomenon that requires

greater temporal precision than fMRI can provide. Still, the brain areas that are critical to the
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valuation of reward and punishment in value-based decisionmaking (e.g., the vmPFC and ante-

rior insula) are too deep to be studied by conventional non-invasive electrophysiological meth-

ods such as EEGorMEG. Single-cell or iEEG studies therefore seem to be themost appropriate.

Yet, electrophysiological investigations in animals do not allow clear conclusions on the impact

of ongoing fluctuations on choice and, to my knowledge, only one study has investigated this

phenomenon in humans (Lopez-Persem et al., 2020). Moreover, this study showed anticipa-

tory value signaling only in a reward rating task with no choice and reports discrepancies in the

mechanisms compared to fMRI studies. Therefore, the precise dynamics of how spontaneous

fluctuations affect decisions under multidimensional choices remain to be elucidated.

Summary

• Ongoing brain activity has been witnessed since the earliest neurophysiological

recordings and occurs at a wide range of temporal and spatial scales.

• This activity is called spontaneous as it is characterized by remarkably large tempo-

ral modulations that are not attributable to any specific stimulus.

• The observation that spontaneous fluctuations in brain activity could explain trial-

to-trial variations in neuronal response elicited by identical stimuli led to the idea

that these fluctuations might be functionally relevant.

• Later studies subsequently showed that pre-stimulus activity could serve as a predic-

tor for perceptual decisions in various modalities.

• In the field of value-based decisionmaking, electrophysiology and neuroimaging

studies in humans and non-human primates suggest that trial-to-trial variations in

pre-stimulus activity of typical brain valuation regions (i.e., vmPFC, aIns) influence

the valuation process at the time of choice, thus impacting the behavioral response

and partially explaining choice stochasticity.

• Some studies have also shown that baseline activity can be influenced by mental

constructs such as pleasure, satiety or mood, which are themselves influenced by

external events.

• Despite these advances, several issues and discrepancies can be pointed out:
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• Temporal resolution of fMRI is limited to be able to isolate the successive

stages of information processing.

• Brain areas critical to valuation are too deep to be studied by conventional

non-invasive electrophysiological methods.

• Single-cell studies in animals do not allow clear conclusions on the impact of

ongoing fluctuations on choice.

• The only iEEG study in humans (i) focuses only on reward valuation, (ii) was

not conducted in a choice context, and (iii) reports differences with themech-

anisms hypothesized in fMRI.

In my first experimental study these concerns were addressed by taking advantage of

the excellent spatiotemporal resolution and signal-to-noise ratio inherent to iEEG sig-

nals recorded with deep electrodes in the cortex of epileptic patients while they per-

formed a multidimensional choice task involving potential gains and losses.

b. Mood in the brain

As detailed earlier, research in cognitive and affective sciences has provided ample evidence of

the interactions between mood and decision making (see section I.3.b.). At the neural level,

however, the mechanisms underlying this phenomenon have long been overlooked. This is be-

causemood is a psychological construct that is difficult to define andmeasure, making the study

of its neural correlates particularly challenging. As a result, early studies did not directly address

this issue, but rather looked for neural responses to stimuli that trigger short-lived emotional

responses, showing in particular that human emotions weremost often associated with activity

in brain regions of the limbic system, including the amygdala and anterior cingulate cortex, but

also the ventral striatum, anterior insula and medial prefrontal regions (Murphy et al., 2003).

Using a computational model, the study by Rutledge et al. (2014) was one of the first to estab-

lish a link between mood and brain activity. In this one, subjects were asked to perform a prob-

abilistic reward task designed to elicit fairly rapid changes in affective state, while being asked at

regular intervals to answer the question “How happy are you right now?” Correlating BOLD

activity at the time of option and outcome onset with mood assessed by the model resulted in

a significant correlation in the ventral striatum, consistent with the striatal representation of

reward prediction errors contributing to mood changes (expectation effect). In addition, re-

peating this correlation at the time of the question presentation revealed a significant link with
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happiness ratings in the anterior insula. A follow-up study reinforced these findings by showing

that boosting dopamine levels pharmacologically increased happiness resulting from certain re-

wards (Rutledge et al., 2015). These observations thus seem to suggest some overlap between

regions involved in decision-making processes and mood. Hence, if mood can influence the

constituent processes of decision making, it stands to reason that affective states would have an

impact on choices.

Impact of mood on value-based decision making

Subsequent fMRI studies indeed provided evidence that mood exerts a specific impact on the

neural mechanisms underlying reward and loss processing. In one study, Eldar and Niv (2015)

showed that for participants who tend to be less stable inmood, a large, unexpected outcome af-

fected emotional state and biased reward perception in the same direction. Specifically, for these

participants, BOLD responses to reward in the striatum and vmPFC were stronger after a pos-

itive mood induction and weaker after a negative mood induction. Another study, conducted

in healthy subjects, refined the relationship between mood and valuation circuitry by showing

that mood had a specific impact on activity during expectation of reward (Young & Nusslock,

2016). In particular, participants underwent a positive or neutral mood induction procedure

combining the use of music and sentences, and then performed a delayed monetary incentive

task that assessed reward and loss processing. Results indicated that positive mood (compared

to neutral) increased activity specifically during reward anticipation in neural regions that have

previously been implicated in reward processing and goal-directed behavior, including the nu-

cleus accumbens, lateral orbitofrontal cortex, anterior insula, and vmPFC. Nevertheless, this

study did not include negative mood induction, which precluded accounting for the observed

differential effects of positive and negative mood on decision making.

The flexible effects of positive and negative affective state on value representation were first

demonstrated in an fMRI study of a related topic. Namely, this study investigated the effects

of incidental anxiety on neural circuits involved in risky decision making. Their results indi-

cated that under safe conditions, subjective expected values of gambling were positively coded

in the vmPFCand ventral striatum,whereas in a threatening context, these processes ceased and

were replaced by negative value coding in the anterior insula (i.e., increased activity for increas-

ingly worse outcomes), as well as a general negative baseline shift in the vmPFC (Engelmann

et al., 2015). Consistent with these findings, a recent study established that fluctuations in pos-

itive and negative mood were represented in the baseline activity of critical brain valuation re-

gions (Vinckier et al., 2018). Specifically, mood correlated positively with baseline activity in
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the vmPFC and negatively with baseline activity in the anterior insula (Fig. II.21). Ongoing

mood-related activity would then be able to modulate the relative weights assigned to key di-

mensions of choice options (see Fig. II.20). Notably, using a computational model, they deter-

mined that high baseline activity in the vmPFC favored risk-taking by overweighting potential

gains, whereas high baseline activity in the anterior insula tempered risk-taking by overweight-

ing potential losses.

dmPFC

vmPFC

aIns

Figure II.21: Brain activity underpinning mood fluctuations. Statistical parametric map of regions reflecting
mood (positive correlation in green, negative correlation in red). Four regions of interest were identified: ven-
tromedial prefrontal cortex (vmPFC), anterior insula (aIns), dorsomedial prefrontal cortex (dmPFC) and ventral
striatum (not shown). Adapted from Vinckier et al. (2018).

Overall, these fMRI investigations appear to converge on a similar model relating mood fluctu-

ations to the relative activity of opponent brain systems associated with reward or punishment

processing. Yet, a second strand of research using intracerebral electroencephalography record-

ings appears to challenge these findings by suggesting that mood fluctuations may instead cor-

respond to changes in the frequency of oscillatory activity. In particular, two recent studies,

combining mood estimates performed over several days with direct recording of intracerebral

electroencephalographic signals, revealed a negative correlation betweenmood level and low fre-

quency activity (< 10Hz) and a positive correlation betweenmood and high gamma activity (>

50 Hz), most notably in the OFC and the hippocampus (Rao et al., 2018; Sani et al., 2018).

Similarly, investigations of neural modulations across distinct frequency bands in the mesolim-

bic network (including the insula andOFC) revealed that higher frequencies (30-100Hz) were

associatedwith positive emotional displays, whereas lower frequency bandswere selective of the

neutral state (Bijanzadeh et al., 2019). Finally, stimulation of the lateral OFC has been associ-

ated with a marked improvement in mood, and subsequent spectral analysis revealed that this

stimulation largely suppressed low-frequency power, with the strongest effects observed in the

theta frequency band of the OFC, insula, and dorsal cingulate (Rao et al., 2018).
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Summary

• Regions underlying mood encoding appear to overlap with regions involved in de-

cision processes.

• The fMRI studies suggest that mood fluctuations are related to the relative activ-

ity of opponent brain systems associated with reward or punishment processing,

which would ultimately allow them to influence choices.

• Electrophysiological studies in humans suggest instead that mood fluctuations cor-

respond to changes in the frequency of oscillatory activity.

One aim of my first experimental work was to disentangle these findings by recording

the intracerebral activity of implanted epileptic patientswhile theyperformed a choice

task involving potential gains and losses interleavedwith amood induction procedure.

c. Neural correlates of visual attention

The brain mechanisms through which value and attention interact have been primarily inves-

tigated in the visual system, where the effects of value have been documented in the primary

visual cortex, the lateral intraparietal area, and more broadly in the ventral visual stream (Peck

et al., 2009; Serences, 2008; Stănişor et al., 2013). From this perspective, the origin of value

influence remains unclear, but the ventromedial frontal area has been identified as a plausible

candidate region (Hartikainen et al., 2012; Vaidya & Fellows, 2015b), especially arguing for its

many direct and indirect connections to the ventral visual stream (Price, 2007).

In contrast, relatively few studies have addressed the influence of attention on value-based choi-

ces at the neural level. In a pioneering human fMRI study, Lim et al. (2011) investigated this

issue using a binary choice task in which fixations of two appetitive stimuli were exogenously

manipulated. In doing so, they found that the vmPFC and ventral striatum encoded a rela-

tive value signals corresponding to the difference in value between the fixated and unfixated

items. This result thus suggests that attention influences values by shaping the activity of brain

regions crucial to the valuation process. Critically though, the authors demonstrated that these

fixation-dependent value signals were unrelated to the identity of the chosen item, leaving open

the underlying mechanisms by which visual attention ultimately influences choices. A major

limitation of this study is that, using fMRI, the authors had to considerably slow down the
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choice process by asking participants to fixate on a particular item for a specified amount of

time. As a result, the attention manipulation had a significant but small impact on choices.

To overcome these limitations, subsequent studies have taken advantage of the excellent tem-

poral resolution of single-cell recordings in non-human primates to probe brain activity during

natural free viewing (Hunt et al., 2018;McGinty, 2019;McGinty et al., 2016). Their results are

consistent with those observed in humans as they show that value representations in the OFC

can be influenced by the way attention is allocated between visual objects of different value. For

example, in two studies conducted by the same team (McGinty, 2019; McGinty et al., 2016),

macaquemonkeys performed a Pavlovian appetitive conditioning task in which they learned to

associate visual cues with rewards of different value (amount of juice; Fig. II.22a-b). Drawing

on natural gaze patterns, the authors found that a large proportion of cells in theOFC encoded

gaze position and that, in some cells, value encoding was amplified when subjects fixed their

gaze near the cue (Fig. II.22c).
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Figure II.22: Modulation of value signals inOFCneurons by gaze shifts. (a)Monkeyswere trained to associate
visual cues with a certain juice reward. (b) Each cue was associated with different amounts of juice. (c) Single-
example cell in the OFC. Firing increased as a function of cue value (colors) and decreased as a function distance
of fixation from the cue (x-axis). In addition, the effect of value was maximal for fixations on or near the cue,
constituting an interaction between the value and distance effects. Adapted fromMcGinty (2019).

With the idea of disentangling possible interference between eye movement, reward, and deci-

sion, these results were further confirmed by a study exploring the associations between covert

attentional shifts and single-cell activity in the primate OFC (Xie et al., 2018). In this study,

the authors employed a passive-viewing task in which a pair of visual cues were presented to

monkeys while they simply stared at them. After a period of time, the monkeys received the

reward associated with one of the two randomly selected cues. By inducing a transient change

in attention through a brief visual perturbation of one of the cues, it was possible to show that

the neural activity of the OFC reflected the value of the currently attended cue, regardless of

whether it was the cue with the highest value.
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Altogether, these results in the non-human primate support the initial findings of Lim et al.

(2011) whereby attention influences value-based behaviors through the modulation of neural

value activity. Even so, some discrepancies can be noticed between these studies. For example,

in the study by Xie et al. (2018), OFC activity in monkeys reflected only the highest value be-

tween alternatives, instead of the value difference between attended and unattended stimuli, as

found by Lim et al. (2011) Whether these discrepancies are due to species difference or to the

difference between neural signals recorded by fMRI and electrophysiology remains to be deter-

mined. Furthermore, none of the studies reported so far have established a direct link between

neural activity modulated by visual attention and choice behavior. To address this concern, a

recent study examined the influence of overt attention on behavior by asking how gaze shifts

correlated with reward anticipation responses in a Pavlovian conditioning task and whether

OFC activity mediated this correlation (McGinty, 2019). Although gaze allocation positively

predicted the conditioned response, OFC activity was almost completely uncorrelated with it,

meaning that no evidence was found that OFC mediates the predictive relationships between

gaze and conditioned responses. In parallel, another study examined the causal contributions of

the vmPFC and other prefrontal subregions to this fixation bias phenomenon by tracking the

eyemovements of lesioned patients and healthy controls as they chose between pairs of artworks

(Vaidya & Fellows, 2015a). Contrary to the hypothesis suggested by previous work, lesions of

the vmPFC and lateral PFC had no effect on this fixation bias, whereas lesions of the dmPFC

increased the influence of fixations on choice. Thus, although visual attentionmay increase the

subjective value of cues associated with a reward, the underlying mechanism remains largely

unknown, as does the functional importance of gaze modulation of vmPFC/OFC value sig-

nals. Finally, all the studies cited so far entail simple choices involving one-dimensional options

(rewarding or punishing), yet humans are regularly confronted with complex decisions involv-

ing the integration ofmultiple attributeswith sometimes uncertain outcome. At the behavioral

level, work addressing this issue has suggested that the attentional bias relates to attributes rather

than options (Fisher, 2017). Specifically, the probability of choosing an option increased with

the relative attention paid to the appetitive attribute, and decreased with additional time spent

on the aversive attribute. These results are supported by a recent study showing that the gaze

bias towards loss leads to loss aversion decisions (Sheng et al., 2020). Nevertheless, no study, to

our knowledge, has addressed this issue at the neural level.
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Summary

• Early studies suggest that vmPFC (in humans) and OFC (in non-human primates)

activity underpin the effect of visual attention on choice by encoding a fixation-

dependent value signal.

• Nevertheless, recent studies have failed to establish a direct relationship between

fixation-dependent activity in these regions and choice behavior.

• In addition, some discrepancies have emerged between human fMRI studies and

single-cell studies in non-human primates, whichmay be due to species or technical

differences.

• Finally, recent behavioral studies suggest that the attentional bias is on the attribute

rather than the options, but nothing is known at the neural level.

Answering these questions was the goal of my second experimental work. To do so,

we recorded intracerebral EEG activity as well as eye-tracking data while human sub-

jects performed a multi-attribute accept/reject decision-making task involving poten-

tial gains and losses. This combination of techniques is ideal for examiningwith good

temporal precision how eye fixations interact with differential value coding in the hu-

man brain, and how choices may be affected by this interaction.
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III.1. Abstract

1. Abstract

Identifying factors whose fluctuations are associated with choice inconsistency is a major is-

sue for rational decision theory. Here, we investigated the neuro-computational mechanisms

through which mood fluctuations may bias human choice behavior. Intracerebral EEG data

were collected in a large group of participants (n = 30), while they were performing interleaved

quiz and choice tasks. Neural baseline activity preceding choice onset was confronted first to

mood level, estimated by a computational model integrating the feedbacks received in the quiz

task, and then to the weighting of option attributes, in a computational model predicting risk

attitude in the choice task. Results showed that 1) elevated broadband gamma activity (BGA) in

the ventromedial prefrontal cortex (vmPFC) and dorsal anterior insula (daIns) was respectively

signaling periods of high and lowmood, 2) increased vmPFC and daIns BGA respectively pro-

moted and tempered risk taking by overweighting gain versus loss prospects. Thus, incidental

feedbacks induce brain states that correspond to different moods and bias the comparison of

safe and risky options. More generally, these findings might explain why people experiencing

positive (or negative) outcome in some part of their life tend to expect success (or failure) in any

other.

Keywords

Mood, decision, reward, risk, electrophysiology, oscillatory activity, broadband gamma, computa-

tional model, ventromedial prefrontal cortex, anterior insula
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2. Introduction

Humansoftenmakes inconsistentdecisions, evenwhen facing seemingly identical choices. This

surprising variability is a major difficulty for rational decision theory and a reason for introduc-

ing stochastic functions in choice models. However, even if stochastic functions help mimick-

ing behavior on average, they cannot help predicting individual choice. For this, one need to

identify factors whose fluctuations are systematically associated with changes in preference, in

order to replace randomness with bias. Influent factors can be related to the internal state of

the decision maker and/or the external context of the choice situation. In neuroscience, many

studies have shown that brain activity preceding the presentation of choice options might pro-

vide a bias on the eventual choice, particularly when alternatives are safe versus risky options

(Chew et al., 2019; Huang et al., 2014; Kuhnen & Knutson, 2005; Lopez-Persem et al., 2016;

Padoa-Schioppa, 2013; Vinckier et al., 2018).

In some cases, baseline brain activity could be related tomental constructs such as pleasantness,

satiety or mood, which were themselves under the influence of external events (Abitbol et al.,

2015; Vinckier et al., 2018). These findings therefore provide a putative mechanism explaining

why mood is predictive of risky choice: positive/negative events that increase/decrease mood at

the mental level also modulate baseline activity at the neural level, changing the way dedicated

brain regions valuate risky options. More precisely, good mood would lead to overweighting

gain prospects, and bad mood to overweighting loss prospects, making the overall expected

value of a risky option positive or negative, depending on circumstances. Such a mechanism

could account for the well-documented impact of mood on buying lottery tickets or investing

in financial markets (Bassi et al., 2013; Otto et al., 2016; Saunders, 1993), an effect that has

been reproduced in the lab (Arkes et al., 1988; Chou et al., 2007; Eldar & Niv, 2015). It could

also account for why depressed and manic patients have opposite attitudes toward risk, respec-

tively focusing on negative and positive outcomes of potential actions (Leahy, 1999; Yuen &

Lee, 2003).

Despite the importance of this phenomenon, producing disastrous decisions at both the indi-

vidual scale in psychiatric conditions and the societal scale in real-life economics, the underlying

mechanism at the neural level is still poorly understood. This is due to the limitations of func-

tional magnetic resonance imaging (fMRI), which has been mostly used because mood fluctu-

ations are difficult to track in animals, while invasive techniques are forbidden in humans, for

obvious ethical reasons. There is nonetheless a particular clinical situation that offers the op-

portunity to record intra-electroencephalographic (iEEG) activity from deep electrodes, when
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patients with refractory epilepsy are prior to surgery. These iEEG recordings have already been

used to successfully decode mood from resting-state activity, a technical achievement that may

open the route to closed-loop stimulation procedures (Bijanzadeh et al., 2019; Sani et al., 2018).

They have also been used to specify the impact of lateral orbitofrontal cortex stimulation aim-

ing at improving mood in moderately depressed patients (Rao et al., 2018). There is however

a discrepancy between these pioneering iEEG studies, which reported that changes in mood

states might correspond to changes in the frequency of oscillatory activity (Bijanzadeh et al.,

2019; Kirkby et al., 2018; Rao et al., 2018; Sani et al., 2018), and fMRI studies that have related

mood fluctuations to the relative activity of opponent brain systems associated to either reward

or punishment processing.

To examine whether good and bad mood are associated to activity in different brain regions or

different frequency bands, we recorded iEEG activity while patients were performing a task sim-

ilar to that used in a previous fMRI study to inducemood fluctuations and test their impact on

risky choices (Vinckier et al., 2018). Mood fluctuations were induced by feedbacks provided to

participants on their responses to general knowledge questions. Choices were aboutwhether to

accept a challenge rewardedwithmonetary gains in case of success but punishedwithmonetary

losses in case of failure. To avoid repeating self-report too frequently, a computational model

was developed, building on previous suggestion (Eldar &Niv, 2015), to generate mood level as

an integration of past feedbacks, the perception of which was itself modulated by mood level.

This theoretical mood level was positively correlated with activity in brain regions classically

associated with reward, such as the ventromedial prefrontal cortex (vmPFC), and negatively

correlated with regions associated with punishment, such as the anterior insula (aIns). In turn,

baseline activity in these regions (prior to the presentation of choice options) was predicting

a bias on choice, relative to an expected utility model. Indeed, high vmPFC activity favored

the risky option (accepting the challenge) by increasing the weight on potential gain, whereas

high aIns activity favored the safe option (declining the challenge) by increasing the weight on

potential loss. Yet, due to the poor temporal resolution of fMRI, there was a remaining gap in

the explanation, regarding the contribution of activity inmood-related regions during decision

making. Here, leveraging the excellent temporal resolution of iEEG, we intended to separate

brain activity related to feedback events, to overall mood level and to the choice process.

Thus, in an attempt to clarify the neuro-computational mechanism through which mood fluc-

tuations might arise and bias decisions under risk, we collected iEEG data in a large group of

participants (n = 30), while they were performing interleaved quiz and choice tasks. The ob-

jectives of our analytical approachwere 1) to identify brain regions in which activity was related
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to both mood state (good or bad) and choice (safe or risky), and 2) to examine whether mood

fluctuations and related decisions were associated to a shift in frequency bands or in anatomical

location of oscillatory iEEG activity.

3. Results

The aim of this study was to elucidate how intracerebral activity may underpin the impact of

mood fluctuations on risky choices. Intracerebral electroencephalographic (iEEG) data were

collected in thirty patients suffering from refractory epilepsy (39.5± 1.9 years old, 14 females,

see demographical details in SupplementaryTable III.S1), while they performed three unrelated

but interleaved tasks. The first was a quiz task designed as a mood induction procedure; the sec-

ond was a rating task used to quantify mood level; the third was a choice task used to unravel

the effects of mood fluctuations on economic choices (Fig. III.1a). In the quiz task, subjects

were asked to answer general knowledge questions and received feedback on their response (cor-

rect, incorrect or too late). In order to predictably modulate mood, the difficulty of questions

and the validity of feedbacks were manipulated, unbeknownst to the subjects, so as to create

episodes of high and low correct feedback rate (see Methods). In 25% of the trials, the effect

of feedback history was assessed by asking subjects to rate their mood on a visual analog scale.

Otherwise (in 75% of trials), the quiz and choice task were separated by a four-seconds rest pe-

riod (black screen). In the choice task, subjects had to decide whether to accept or reject a given

offer before performing a challenge consisting in stopping a moving ball inside a target. The

offer comprised a gain prospect (i.e., the amount of money they would win in case of success),

a loss prospect (i.e., the amount of loss in case of failure) and the difficulty of the upcoming

challenge (target size). When accepting the offer, subjects played for the proposed amounts of

money, otherwise, when declining, they played for minimal stakes (winning or losing 10 cents).

All three choice dimensions (gain, loss and difficulty) were varied on a trial-by-trial basis. In

order to avoid learning, and additional effects on mood, no feedback was provided regarding

performance in the challenge (actual success rate was around 30% on average but significantly

varied with difficulty). Subjects were explicitly informed that the three interleaved tasks were in-

dependent, such that responses to the quiz or mood ratings had no influence on choice options

and hence on their monetary earnings.

Choice behavior

We first tested whether subjects performed the choice task correctly by checking that the three

dimensions of the offer (gain prospect, loss prospect and challenge difficulty) were properly
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integrated into their choices (Fig. III.1b). Choice acceptance was fitted at the individual level

using a logistic regression model that included the three dimensions and significance of regres-

sion estimates was assessed at the group level (across n = 30 subjects) using two-sided, one-

sample, Student’s t-tests. Results show that acceptance rate significantly increased with gain

(βgain = 0.12 ± 0.02, t29 = 6.85, p = 2.10−7), but significantly decreased with loss (βloss =

−0.10± 0.02, t29 = −5.51, p = 6.10−6) and difficulty (βdiff = −0.03± 0.01, t29 = −2.97,

p = 6.10−3). These results were expected given previous behavioral evidence with a similar

choice task that subjects with epilepsy can integrate these three dimensions when making a de-

cision (Vinckier et al., 2018).

We next assessed whether mood fluctuations impacted choices above and beyond the influence

of these three dimensions. We thus tested the link between mood ratings and choice residu-

als, once the three dimensions had been regressed out (Fig. III.1c). To account for interac-

tions and non-linearities in a principled way, we fitted a model based on expected utility theory,

which was previously shown to best capture choices in this task (see Vinckier et al., 2018). In

brief (see Methods for details), acceptance likelihood was estimated as a softmax function of

expected utility, calculated as potential gain multiplied by probability of success (ps, inferred

from target size) minus potential loss multiplied by probability of failure (1 − ps), with gain

and loss terms weighted by distinct parameters (kg and kl respectively). Residuals of this choice

model were then regressed against mood ratings at the individual level, and significance of re-

gression estimates was assessed at the group level, using two-sided, one-sample, Student’s t-test.

Results indicate a significantly positive association between mood ratings and choice residuals

(β = 0.05 ± 0.02, t29 = 2.32, p = 0.027), meaning that variability in choices, beyond that

induced by the three dimensions of the offer, was indeed partially explained by mood fluctua-

tions.

Modeling mood fluctuations

Because frequent assessmentof subjective emotional states can lead to inconsistent ratings (Napa

Scollon et al., 2009), mood ratings were collected in a minority of the trials (25%). To retrieve

mood levels in trials where no rating was provided, we used computational modeling. To en-

sure the model was based on solid grounds, we checked beforehand that mood ratings were

influenced by the expected factors related to the quiz task.

We first verified that our manipulation of feedbacks was effective (Fig. III.1d): indeed the pro-

portion of correct feedbacks was higher in episodes with intended high versus low correct feed-

back rate (0.60± 0.01 vs. 0.21± 0.01; t29 = 22.99, p = 4.10−20; two-sided, paired Student’s
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t-test) and so was mood rating (0.22 ± 0.04 vs. −0.12 ± 0.06; t29 = 3.76, p = 8.10−4,

two-sided, paired, Student’s t-test).
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Figure III.1: Behavioral task and results. (a) Trial structure. Each trial included a quiz task, a rest or mood
assessment period and a choice task followedby a challenge. In the quiz task, subjects answered a general knowledge
question and received a feedback. The quiz task was followed by a rest period (75% of trials) or a mood rating
task (25% of trials) on a visual analog scale. In the choice task, subjects had to decide whether to accept or reject
a given challenge by taking into account gain prospects (represented by a bunch of regular 10-cent coins), loss
prospects (crossed out 10-cent coins) and difficulty (inversely proportional to the size of the blue bar in themiddle
of the screen). The challenge consisted in stopping a moving ball, invisible when inside the blue target. (b) Choice
behavior. Acceptance probability is plotted as a function of the three objective dimensions (gain, loss, difficulty)
and modeled subjective utility of the proposed challenge. Circles are binned data averaged across subjects. Yellow
dotted lines represent acceptance probability as computed by the choice model. Error bars represent inter-subject
S.E.M. (c) Impact of mood on the choice model residual error (actual choice – modeled acceptance probability).
Left panel: residual error is plotted as a function of mood rating. Right panel: the weight of mood on residual
error is shown as individual regression estimates. Circles represent individual data and horizontal line represents
mean across subjects (as in d, left panel). (d) Mood fluctuations. Left panel: Effect of correct feedback rate on
mood rating and theoretical mood level (TML). Right panel: difference in model evidence between TML and
a null model in which feedback had no impact on mood. Bars show subjects ranked in ascending order. Stars
indicate significance (p < 0.05).
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We then fitted individual mood ratings with a previously established computational model

(Vinckier et al., 2018) that formalizes a reciprocal influence between mood and feedback (see

Methods). This means that mood level increases with positive feedback (reciprocally, decreases

with negative feedback) and in turn that feedbacks are perceived as more positive whenmood is

higher (reciprocally, more negative whenmood is lower). Posterior estimates of free parameters

indicated that indeed, theweight of feedbackonmood (parameterωf ), was significantly positive

across subjects (t29 = 4.72, p = 6.10−5; two-sided, one-sample, Student’s t-test). Conversely,

the weight of mood on feedback (parameter δ) was also significantly positive (t29 = 3.30,

p = 0.003). The forgetting factor was 0.69 ± 0.04, meaning that feedback received five trials

earlier still had an impact corresponding to 23% of the most recent feedback. In addition, the

model included a linear effect of time, weighted by parameter ωt, which was not significantly

different from zero, meaning that task duration had no significant influence on mood. Using

fitted parameters for every patient, a theoretical mood level (TML) was then estimated on a

trial-by-trial basis. As seen withmood rating (Fig. III.1d), TMLwas significantly higher during

episodes with high vs. low correct feedback rate (t29 = 4.19, p = 2.10−4; two-sided, paired,

Student’s t-test). At the group level, Bayesian comparison indicated that the mood model was

farmore plausible (exceedance probabilityXp = 1) than the null model assuming no influence

of feedback but only the effect of time. However, the results of model comparison were more

variable at the individual level (see Fig. III.1d), with the null model doing better than the mood

model in 6 subjects (out of 30).

Intracerebral activity underpinning mood fluctuations

The next step was to establish a link between mood level and intracerebral electroencephalo-

graphic signals (iEEG). The iEEG dataset included a total of 3494 recording sites (bipolar mon-

tage, (see Methods) acquired from 30 patients (Supplementary Fig. III.S1). For each patient,

recording sites were localized within the native anatomical brain scan and labeled according to

either MarsAtlas (Auzias et al., 2016), Destrieux (Destrieux et al., 2010) or Fischl (Fischl et al.,

2002) parcellation schemes, with slightmodifications (seeMethods). Out of the 3494 recording

sites, 3188 were free from artefacts and located within the grey matter of the 50 covered areas.

Among these areas, 42 regions (n = 3154 sites) with at least 10 recording sites across at least four

patients were retained in the electrophysiological analyses (see Methods). We initially focused

on broadband gamma activity (50-150 Hz, BGA), as converging lines of evidence showed that

BGA correlates positively with both fMRI and spiking activity (Lachaux et al., 2007; Manning

et al., 2009; Mukamel, 2005; Niessing et al., 2005; Nir et al., 2007; Winawer et al., 2013), but

subsequently took all frequency bands into consideration.
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We extracted BGA time series from all retained recording sites and performed multiple linear

regressions (one per time point) across trials between BGA andmood rating or TML.We time-

locked this analysis to the [-4 to 0 s] time window before prospects onset, i.e. during the time

period corresponding to the rest or mood assessment period. Significance was tested across all

recording sites within each region of interest (ROI), using two-sided, one-sample Student’s t-

tests on regression estimates, with correction formultiple comparisons across time points using

a non-parametric cluster-level statistic (see Methods). To identify brain regions that were reli-

ably associated with mood fluctuations (Fig. III.2a), we focused our analyses on ROIs within

which BGA was significantly associated with both mood rating and TML, with the additional

constraint that the sign of the correlation had to be consistent.

The vmPFC was the only ROI for which we found a positive correlation (Fig. III.2b) between

BGA and both mood rating (best cluster: −1.37 to −1.04 s, sum(t90) = 122.3, pcorr =

0.010) and TML (best cluster: −0.57 to −0.13 s, sum(t90) = 132.4, pcorr = 8.10−3).

Conversely, we found a negative correlation in a larger brain network encompassing the daIns

(Fig. III.2b), inwhichBGAwasnegatively associatedwithbothmood rating (best cluster: −3.36

to−2.51 s, sum(t85) = −325.8, pcorr < 1.7.10−5) and TML (best cluster: −3.13 to−2.72

s, sum(t85) = −136.4, pcorr = 9.10−3). The additional brain regions in which BGA was

negatively associated with mood level involved the dorsolateral prefrontal cortex, the visual cor-

tex, the motor cortex, the dorsomedial premotor cortex, the ventral somatosensory cortex and

the ventral inferior parietal lobule. Note that in the ventral anterior insula, BGAwas negatively

associated with mood rating, but not with TML.

Thus, our two a priori ROIs signaled mood level with opposite signs, whether the correlation

withBGAwas tested duringmood rating only or extended to all trials usingTML to extrapolate

mood ratings. We also verified that the association between TML and BGA (averaged within

the best temporal cluster for each ROI) remained significant when only considering trials with

no rating (vmPFC:β = 0.031±9.10−3, t90 = 3.59, p = 5.10−4; daIns: β = −0.02±8.10−3,

t85 = −2.67, p = 9.10−3). To assess whether vmPFC and daIns regions would represent sep-

arate components of mood, we entered them into a single regression model meant to explain

TML. In order to obtain the time course of mood expression in the two ROIs (Fig. III.2c), we

performed multiple regression between TML and BGA from all possible pairs of vmPFC and

daIns recording sites recorded in a same subject (n = 247 pairs of recording sites, (see Methods)

and tested the regression estimates across pairs within each ROI for each time point. The re-

gression estimates were significant predictors of TML in both regions, but with opposite signs
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(best cluster for the vmPFC:−0.71 to 0 s, sum(t246) = 414.1, pcorr < 1.7.10−5; best cluster

for daIns: −3.05 to−2.76 s, sum(t246) = −113.8, pcorr = 0.018).

Thus, BGA in the two main ROIs carried non-redundant information about mood level. To

further investigate which component of mood was signaled by each region (Fig. III.2d), we re-

gressedBGAagainstTML separately for high- and low-mood trials (35%with highest vs. lowest

TML). In the vmPFC, regression estimates were significantly positive for high-mood trials only
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Figure III.2: Intracerebral activity underpinning mood fluctuations. (a) Anatomical location of the vmPFC
(blue) anddaIns (red) in the standardMontrealNeurological Institute template brain, alongwith all recording sites
located in these areas (dots) and the entire insula (in yellow). Anterior (A), posterior (P), dorsal (D), ventral (V),
left (L) and right (R) directions are indicated. (b) Time course of estimates obtained from the regression of BGA
against mood rating (left) or TML (right). (c) Time course of estimates obtained from the regression of vmPFC
anddaInsBGA included in a sameGLMfitted toTML. Inpanels b-c, lines indicatemeans and shaded areas±SEM
across recording sites. Bold lines indicate significant clusters (pcorr < 0.05). Grey hatched areas indicate the time
windowwithin which the quiz feedback was provided to subjects. (d) Average estimates (within the best temporal
cluster for each ROI) obtained from the regression of BGA against the 35% lower or higher TML. Bars are means
and error bars are SEM across recording sites. (e) Average estimates (over the baseline window: -4 to 0 s before
choice onset) obtained from the regression of BGA against TML after excluding the last feedback. Dots represent
individual regression estimates for each recording site, horizontal lines and error bars respectively represent mean
and SEM across sites within each ROI. (f) Association between TML and activity in frequency bands. For each
frequency band, power time serieswere averaged over the baselinewindow and entered in a regressionmodelmeant
to explain TML. θ: 4-8 Hz; α: 8-13 Hz; β: 13-33 Hz; γ: 33-49 Hz;Hγ: 50-150 Hz. In panels d-f, stars indicate
significance (p < 0.05) of regression estimates (two-sided, one-sample, Student’s t-test).
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(βhighTML = 0.17 ± 0.08, t90 = 2.10, p = 0.039; two-sided, one-sample, Student’s t-test),

not for low-mood trials. Conversely, in the daIns, regression estimates only reached significance

for low-mood trials (βlowTML = −0.14 ± 0.06, t85 = −2.39, p = 0.019), not high-mood

trials. This double dissociation suggests that the vmPFC signals mood level when it gets better

than average, and the daIns when it gets worse than average.

In order to check that TML was expressed above and beyond the component related to the

last feedback (Fig. III.2e), we splitted TML into two regressors, one representing the last feed-

back only (+1 or−1) and one representing the integration of all preceding feedbacks, which is

equivalent to TML estimated at the previous trial (seeMethods). BGA in the best time clusters

identified above were still significant predictors of TML (after removing the influence of the

last feedback) in both the vmPFC (β[−0.57−0.13] = 0.024 ± 8.10−3, t90 = 2.99, p = 4.10−3)

and daIns (β[−3.13−2.72] = −0.021±8.10−3, t85 = −2.64, p = 0.010; two-sided, one-sample,

Student’s t-test).

Finally, to ensure that our a priori focus on BGA was justified, we explored activity in other

frequency bands (Fig. III.2f). For each frequency band and recording site, power time series

were averaged over the pre-choice time window (−4 to 0 s) and regressed against TML. In the

vmPFC, regression estimates were only significant in the high-gamma band (βHγ = 0.091 ±
0.04, t90 = 2.41, p = 0.018; two-sided, one-sample, Student’s t-test). In the daIns however,

regression estimates were not only significantly negative in the gamma and high-gamma bands

(βHγ = −0.067 ± 0.03, t85 = −2.18, p = 0.032; βγ = −0.067 ± 0.03, t85 = −2.0,

p = 0.048), but also significantly positive in the theta and beta bands (ββ = 0.082 ± 0.04,

t85 = 2.31, p = 0.023 ; βθ = 0.062± 0.02, t85 = 2.85, p = 6.10−3). To check whether low-

frequency bands could provide additional information about mood level, we fitted TML with

all possible General Linear Models (GLMs) containing BGA together with any combination

of other frequency bands (see Methods). In both vmPFC and daIns, Bayesian model selection

designated the BGA-only GLM as providing the best account of TML (vmPFC: expected fre-

quency Ef = 0.99, exceedance probability Xp = 1; daIns: Ef = 0.99, Xp = 1). Thus,

even if other frequency band activity was significantly related to TML in daIns, it carried redun-

dant information relative to that extracted from BGA. Hence, BGA was the best neural proxy

for mood level, at least in our two main ROIs.

Impact of baseline intracerebral activity on decision making

To identifywhichmood-related regions impacted choices, we regressed across trials the residuals

of choice model fit against BGA (time-locked to choice onset), for every time point and record-

88



III.3. Results

ing site. Among regions that encoded mood levels in their baseline, regression estimates were

significant in five ROIs (Fig. III.3a and Supplementary Table III.S2), including positive corre-

lation in vmPFC (best cluster: −1.64 to−1.31 s, sum(t90) = 91.2, pcorr = 0.020) and nega-

tive correlation in daIns (best cluster: −0.95 to−0.67 s, sum(t85) = −85.2, pcorr = 0.029).

Taken together, these resultsmean that vmPFC and daIns baseline BGAnot only expressmood

in opposite fashion, but also had opposite influence on upcoming choice.
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Figure III.3: Impact of intracerebral activity on decision making. (a) iEEG activity predicting choice. Plots
show the time course of estimates obtained from the regression of choice residuals against BGA in vmPFC (top,
blue) and daIns (bottom, red), averaged across recording sites± SEM (shaded areas). Bold lines indicate significant
clusters (pcorr < 0.05). Grey hatched areas highlight the time windowwithin which quiz feedback was provided
to subjects. (b) Time course of estimates from the regression of choices against BGAperformed separately for high
vs. low baseline BGA trials, in vmPFC (top, blue) and daIns (bottom, red). Vertical line indicates theminimum re-
sponse time of trials used in the regression (1.6 sec). (c) Impact of baseline BGAon choicemodel parameters. Plots
show the difference in model weights (posterior parameters) between fits to high- vs. low-BGA trials. Significant
modulation was only found for kg (weight on potential gain) with vmPFC BGA and for kl (weight on potential
loss) with daIns BGA. Dots represent individual data, horizontal lines and error bars respectively represent mean
and SEM across recording sites. Stars indicate significance (p < 0.05).

Next, we tested whether baseline activity in our two ROIs was carried over choice-related ac-

tivity so as to bias decision making (Fig. III.3b). For each contact of a given ROI, we regressed

choices against BGA separately for trials with high and low baseline BGA (in the time win-

dow identified in the preceding analysis for each ROI). For the vmPFC, we found that when

baseline BGA was high, choice-related BGA positively predicted choices (best cluster: −1.41

to −1.16 s, sum(t90) = 70.4, pcorr = 0.035). In contrast, for the daIns, when baseline

BGAwas high, choice-related BGA negatively predicts choices (best cluster: −0.74 to−0.48 s,

sum(t85) = −78.2, pcorr = 0.022).
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Finally, we investigated the computational mechanism through which baseline BGA (in the

time window identified above for each ROI) could modulate decision making. For each con-

tact of a givenROI,wefitted choiceswith amodel inwhich theweights on the different terms of

expected utility (k0, kg, kl, and σ; (seeMethods) were modulated by baseline BGA (Fig. III.3c).

Comparing posterior parameters obtained with high versus low BGA trials (obtained by me-

dian split), we found that kg was significantly enhanced by vmPFC baseline (t90 = 3.16, p =

2.10−3; two-sided, paired, Student’s t-test) whereas kl was significantly enhanced by daIns base-

line (t85 = 2.90, p = 5.10−3). This suggests that iEEG baseline fluctuations in these two

mood-related regions had opposite effects: increased vmPFC BGA would lead to overestimat-

ing gain prospects, while increased daIns BGAwould lead to overestimating loss prospects.

4. Discussion

In the present study, we used a large dataset of iEEG signals recorded in 30 subjects to provide

a neuro-computational account of how mood fluctuations arise and impact risky choice. We

found that 1) baseline BGA in vmPFC and daIns was respectively signaling periods of high and

low mood induced by incidental feedbacks, 2) beyond BGA, oscillatory activity in other fre-

quency bands did not provide any additional information about mood level, 3) high vmPFC

baseline BGA promoted risk taking by selectively increasing the weight of potential gains,

whereas high daIns baseline BGA tempered risk taking by increasing the weight of potential

losses, 4) baseline BGA in both regions was carried over BGA during decision making, which

was predictive of the eventual choice. In the following, we successively discuss how BGA in

these two regions relate to mood and choice.

BGA and mood

To avoid asking subjects to rate their mood on every trial, we used a computational model to

interpolate mood level between mood ratings. The model was inspired from previous sugges-

tions (Eldar &Niv, 2015; Rutledge et al., 2014) and already validated in a previous publication

(Vinckier et al., 2018). The basic assumption is that mood is nothing but a weighted sum of

positive and negative events (here, feedbacks received in the quiz task), the more recent having

more weight than the more distant in the past. In addition, the model postulates that the way

feedbacks are perceived are also affected by mood, in the sense that a same feedback is perceived

as more positive when we are in a better mood. This makes reciprocal the influence between

internal states (mood) and external events (feedback). The model was inverted on the basis of

mood ratings and compared to a nullmodel, wheremood is just driftingwith time, without any
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influence of feedback. Even if the moodmodel was largely winning the Bayesian comparison at

the group level, its evidence was surpassing the null model in about two thirds of participants,

a proportion close to that reported is the previous publication (Vinckier et al., 2018). We nev-

ertheless kept all patients in subsequent analyses to reach more robust conclusions that might

be generalized to the entire population. Posterior estimates of free parameters confirmed the re-

ciprocal influence between feedback andmood, the forgetting factor suggesting that mood was

still impacted by the feedback received five trials in the past (about two minutes before), with

a weight about four times lesser than the last feedback. Thus, the time scale of mood fluctua-

tions was longer than acute emotional reactions to single stimuli, but much shorter than those

observed in mood disorders.

When looking for neural correlates of mood fluctuations, we used both raw ratings and mod-

eled mood levels as probes. The results were qualitatively similar but statistically more signifi-

cantwith theoreticalmood level because it allowed including all trials in the analysis. To identify

brain regions that couldmediate the impact ofmood on choice, we selected all regions thatwere

significantly associated to both mood level (good or bad) and choice (safe or risky). We found

the two main bilateral regions that were already identified with fMRI (Vinckier et al., 2018),

plus unilateral visual or motor regions that were likely related to the side of the behavioral re-

sponse. We note however that the anterior insula region defined anatomically corresponds to

a dorsal part of the cluster identified with fMRI (hence the appellation of daIns) and that the

vmPFC region included many recorded sites located in more ventral areas than the fMRI clus-

ter. Aswith fMRI,we observed that correlationwithmood levelwas positive in the vmPFCand

negative in the daIns. This is consistent with many studies implicating the vmPFC in reward

learning and the daIns in punishment learning (Fouragnan et al., 2018; Garrison et al., 2013; X.

Liu et al., 2011; Palminteri & Pessiglione, 2017), including studies using iEEG (Gueguen et al.,

2021). What we additionally show here is that the vmPFC and daIns are not just sensitive to

the last reward or punishment outcome as in learning paradigms, but integrate feedbacks over a

longer time scale. Indeed, the time course of regression estimates showed significant association

with mood in time windows much later than the response to the last feedback, and the associa-

tion remained significantwhen removing the impact of the last feedback from the computation

of theoretical mood level used as regressor. We note that some expected regions are missing in

our list, notably the ventral striatum, which has been shown to correlate positively with mood

level (Eldar & Niv, 2015; Rutledge et al., 2014; Young & Nusslock, 2016). This region could

not be investigated here because it was simply not sampled by the electrodes implanted for clin-

ical purposes (i.e., for localization of epileptic foci). More generally, an inherent limitation to
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iEEG is that parts of the brain are less sampled than others, so null results should be consid-

ered with caution, because of huge differences in statistical power across regions. Nevertheless,

whole-brain analysis using fMRI showed that with this induction procedure, activity in other

regions such as the ventral striatumor dorsal anterior cingulate cortex adds nothing to decoding

of mood level (Vinckier et al., 2018).

Having identified the two main regions reflecting mood fluctuations, we tested whether mood

fluctuations were associated to similar shifts in the frequency of oscillatory activity as was previ-

ously suggested (Bijanzadeh et al., 2019; Kirkby et al., 2018; Rao et al., 2018). On the contrary,

we observed that higher mood had opposite effects on high-frequency oscillations in the two

regions, with increased BGA in the vmPFC but decreased BGA in the daIns. Thus, mood

fluctuations were better accounted for by relative high-frequency activity (BGA) in the two

opponent regions. Indeed, when included in the same model, vmPFC and daIns BGA were

both significant predictors of mood level. Conversely, including low-frequency activity in the

model did not help predicting mood level. The information carried in low-frequency activity

was therefore at best redundant with that of high-frequency activity, whereas the two regions

carried at least partly independent information. When analyzing separately bad, neutral and

good mood levels, we found that higher BGA signaled the two extreme tertiles: good mood in

the vmPFC and bad mood in the daIns. This result suggests that the two regions were specifi-

cally concernedwith good and badmood, explainingwhy theywere not just anti-correlated. Al-

though we used a unidimensional rating going from bad to good mood, it could be that mood

is in fact bidimensional, meaning that good and bad mood would be better conceived as inde-

pendent components (Watson et al., 1988), relying on distinct brain systems. This is in keeping

with clinical practice: absence of positive affect or excess of negative affect are considered as two

independent criteria for depression.

The observation that mood is signaled by distinct brain systems and not different frequency

bands all over the brain as in previous iEEG studies (Bijanzadeh et al., 2019; Kirkby et al., 2018;

Rao et al., 2018) might be related to the use of positive and negative events to induce mood

fluctuations and not direct stimulation of the cortical surface, which might put constraints on

oscillatory activity. Besides, the good correspondence with previous fMRI results validates the

shared view that BGA represents a time-resolved neural index of local neuronal activity, which

typically correlates with both hemodynamic response and local spiking activity (Lachaux et al.,

2007; Manning et al., 2009; Mukamel, 2005; Niessing et al., 2005; Nir et al., 2007; Winawer

et al., 2013). We have confirmed this correspondence every time we compared iEEG and fMRI

activity during the same behavioral paradigm (Gueguen et al., 2021; Lopez-Persem et al., 2020).
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BGA and risky choice

Choice to accept or reject the challenge in our task was significantly modulated by the three

attributes displayed on screen: gain prospect (in case of success), loss prospect (in case of failure)

and difficulty of the challenge. We combined the three attributes using a standard expected

utility model and examined the residuals after removing the variance explained by the model.

Those residuals were significantly impacted by mood level, meaning that on top of the other

factors, good / bad mood inclined subjects to accept / reject the challenge. The same was true

for neural correlates of mood: higher baseline BGA in the vmPFC / daIns was associated to

higher accept / reject rates, relative to predictions of the choice model. Thus, different mood

levels might translate into different brain states that predispose subjects to make risky or safe

decisions.

The remaining question is how baseline BGA in these regions can be mechanistically related

to risky choice. To address this question, we examined BGA during decision making, which

could be separated from baseline BGA thanks to the temporal resolution of iEEG recordings.

We found some carry-over: higher BGA in the vmPFC / daIns again predicted the likelihood

of accept / reject choices. This does not mean that the link between BGA and choice was main-

tained all along, itwas actually lost at the offer onset and retrievedbefore the behavioral response.

This pattern could not be observed with fMRI but was already reported regarding the subjec-

tive value signals (Lopez-Persem et al., 2020). This result suggests that the impact of baseline

activity inmood-related regions wasmediated by the contribution of the same regions (vmPFC

and daIns) to the decision-making process. These regions have already been implicated in com-

puting the subjective values that are compared to make a choice, with the vmPFC and daIns

respectively providing positive and negative value signals (Bartra et al., 2013; Pessiglione &Del-

gado, 2015). Thus, the relative activity of two regions may provide an impulse to accept or

reject an offer, depending on whether the differential is positive or negative.

An additional explanationwouldbe that the two regions not only provide subjective valueswith

opposite signs, but also that they provide values that differ in how the different attributes are

weighted. To test this idea, we compared parameters of the choice model fitted separately onto

trials with high versus low baseline BGA in the vmPFC and daIns. We found that high BGA in

the vmPFC / daIns was respectively associated to overweighting of gain and loss prospects, and

not just the constant that captures the global tendency to accept or reject. This result makes

the link with the idea that we may see a glass half-full or half-empty when we are in a good or

badmood. It is also consistent with reports that pre-stimulus spiking or hemodynamic activity
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in the vmPFC predicts how much rewards are liked (Abitbol et al., 2015; Lopez-Persem et al.,

2020), whereas pre-stimulus activity in the daIns predicts how aversive punishments are per-

ceived (Caria et al., 2010; Wiech et al., 2010). Overall, our findings suggest that mood-related

neural fluctuations impact the valuation process in a valence-specificway, implemented by func-

tionally opponent brain systems.

An obvious limitation of these findings is that although the dataset was collected in patients

with epilepsy, we make interpretations as if it was collected in healthy subjects, assuming that

pathological activity did not influence the neural or cognitive processes of interest. What was

reassuring is that the behavior was remarkably comparable to that of young participants per-

forming a similar task, while the iEEG results were fully compatible with fMRI results (Vinck-

ier et al., 2018). Also, it does not seem very plausible that artifacts would by chance correlate,

across task trials in patients with different forms of epilepsy, with the computational variables

that were related to both neural and behavioral results. Indeed, in previous studies where we

compared results with and without removing artifacted trials, results were unchanged. In fact,

those trials can only degrade the correlation with computational variables, such that keeping

them ensures that results would be more robust to replication.

In summary, we used intracerebral recordings in humans to specify the neuro-computational

mechanisms through which mood fluctuations might arise from external events and impact

risky choice. At longer time scales, these mechanisms could explain why people take more gam-

bles (or less) after incidental events such as the victory (or defeat) of their favorite sport team, an

effect that might be exacerbated in pathological conditions such as duringmanic (or depressive)

episodes. The impact of mood on choice is a form of generalization, across different sources

of reward and punishment, that may be catastrophic in pathological cases, leading people to

believe that because they experienced positive (or negative) outcome in some part of their life,

they are likely to succeed (or fail) in any other.

94



III.5. Material &Methods

5. Material &Methods

Patients and electrode implantation

Intracerebral recordings were obtained from 30 patients suffering from drug-resistant focal

epilepsy (39.5 ± 1.9 years old, 14 females, see demographical details in Supplementary Table

III.S1) in 7 different epilepsy centers (RennesUniversityHospital: n = 10; GrenobleUniversity

Hospital: n = 9; Lyon Neurological Hospital: n = 3; Prague Motol University Hospital: n = 3;

Marseille La Timone Hospital: n = 2; Toulouse University Hospital: n = 2; Nancy University

Hospital: n = 1). These patients underwent intracerebral recordings by means of stereotacti-

cally implanted multilead depth electrodes (sEEG) in order to locate epileptic foci that could

not be identified by non-invasivemethods. Electrode implantationwas performed according to

routine clinical procedures and all target structures for the pre-surgical evaluation were selected

strictly according to clinical considerations with no reference to the current study. Nine to

twenty semi-rigid electrodes were implanted per patient. Each electrode had a diameter of 0.8

mm and, depending on the target structure, contained 6-18 contact leads of 2 mm wide and

1.5-4.1 mm apart (Dixi Medical, Besançon, France). All patients gave written, informed con-

sent before their inclusion in the present study, which received approval from the local ethics

committees (CPP 09-CHUG-12, study 0907; CPP18-001b / 2017-A03248-45; IRB00003888;

CERNo. 47-0913).

Intracerebral EEG recordings

Neuronal recordings were performed using video-EEGmonitoring systems that allowed for si-

multaneous recording of 128 to 256 depth-EEG channels sampled at 512, 1024 or 2048Hz (de-

pending on the epilepsy center). AcquisitionsweremadewithMicromed (Treviso, Italy) system

and online band-pass filtering from 0.1 to 200 Hz in all centers, except for Prague (Two Natus

systems were used: either a NicoleteOne with a 0.16-134 Hz band-pass filtering or a Quantum

NeuroWorks with a 0.01-682Hz band-pass filtering) andMarseille (Deltamed system, 0.16Hz

high-pass filtering). Data were acquired using a referential montage with reference electrode

chosen in the white matter. Before analysis, all signals were re-referenced to their nearest neigh-

bor on the same electrode, yielding a bipolar montage.

Behavioral tasks

Presentation of visual stimuli and acquisition of behavioral data were performed on a PC using

customMatlab scripts implementing the PsychToolBox libraries (Brainard, 1997). All patient
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responses were donewith a gamepad (Logitech F310S) using both hands. Subjects performed a

choice task combinedwith amood induction procedure adapted from a previous study (Vinck-

ier et al., 2018). Subjects completed two (n = 6) or three (n = 24) sessions of the experiment,

consisting of 64 trials each, for a total of 128 or 192 trials. Each trial included 3 sub-parts: a

quiz task, a rest or mood assessment period and a choice task.

Quiz task. In this task, a question and four possible answers were displayed on the screen.

The question was randomly selected from a set of 256 possible questions that were adapted

from the French version of the “trivial pursuit” game (e.g. Where is Park Güell located?) which

were slightly adapted for Prague’s epilepsy center. Subjects had to select the correct answer using

the up and down keys and confirm their answer using the confirmation key within amaximum

of 8 seconds. A feedback of 1 second was finally given (either a smiling face with a bell sound or

a grimacing face with a buzzer sound) immediately after the answer or at the end of the available

time if no answer had been made.

In order to predictably manipulate subjects’ mood, episodes of high and low correct response

rates were created unbeknownst to them by handling questions difficulty and feedbacks. Thus,

questions were sorted by difficulty (assessed bymean accuracy estimated previously in a sample

of healthy subjects; Vinckier et al., 2018) and grouped so as to create easy and hard episodes.

Within a given session of 64 trials, we created one episode of 20 trials with easy questions fol-

lowed by one episode of 20 trials with hard questions and three episodes of 8 trials with ques-

tions of medium difficulty. The episodes were organized so that easy and hard episodes were

always preceded and followed by episodes of medium difficulty (e.g., medium – easy –medium

– hard –medium). The order of easy and difficult episodes was counterbalanced across sessions

and subjects. Furthermore, feedback was biased such that a wrong answer could lead to a pos-

itive feedback (whereas a correct answer always led to a positive feedback). The proportion of

biased feedback depended on the difficulty of the episode: 50% in easy, 25% in medium and 0%

in hard episode. Post-hoc debriefing showed that no patient was aware of this manipulation.

Mood rating – rest period. Mood assessment or rest period beganwith a 500± 100ms black

screen used to ensure that a reasonable delay occurred after the last quiz feedback (which lasted

1 s). In 25% of the trials (i.e., in 16 out of 64 trials), the quiz task was followed by a mood

rating task inwhich subjects were explicitly asked to rate theirmood by answering the following

question “How do you feel right now?”. Subjects had to answer by moving a cursor from left

(very bad) to right (very good) along a continuous visual analog scale (100 steps) with left and
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right hand response buttons. Subjects were given at least 4 seconds to confirm their ratings with

the confirmation button. Their response was then maintained on the screen until the end of

the 4 seconds, so that they had no reason to speed-up their estimation. However, subjects were

also discouraged from being too long to respond, as when they had not confirmed their rating

within 4 seconds, a redmessagewas displayed on the screen saying “Please validate your answer”.

The initial position of the cursor on the scale was randomized to avoid confounding mood

level withmovements’ quantity. The position of mood ratings across trials within a session was

evenly distributed and pseudo-randomized so that mood ratings were not predictable for the

subjects, with the additional constraints that two mood ratings were spaced by a minimum of

2 trials and a maximum of 6 trials. In the remaining 75% of trials, the quiz task was followed

by a rest period consisting of a 4-second black screen. Therefore, the delay between the end of

the quiz feedback and the beginning of the choice task was kept to a minimum of 4.5 ± 0.1

seconds.

Choice task. The choice task began with the presentation of an offer consisting of three di-

mensions: a gainprospect (representedby abunchof 10-cent coins, range: 1-5€), a loss prospect

(represented by crossed out 10-cent coins, range: 1-5€) and the upcoming challenge difficulty

(represented by the size of a target window located at screen center, range: 1-5 corresponding

to 75-35% theoretical success; see training section for further details about how difficulty was

adjusted to each participant). Subjects were asked to accept or reject this offer, by pressing a left

or right button depending on where the choice option (“yes” or “no”) was displayed. Subjects’

choice determined the amount of money at stake: accepting meant that they would eventually

win the gain prospect or lose the loss prospect based on their performance in the upcoming

challenge, whereas declining the offer meant playing the challenge for minimal stakes (winning

10 cents or losing 10 cents).

The sequence of trials was pseudo-randomized such that all possible combinations of the three

dimensions (gains, losses and challenge difficulty), continuously sampled along four intervals

([1-2], ]2-3], ]3-4], ]4-5]), were displayed for one patient across sessions, with greater sampling

of medium difficulty combinations ([2-3] and ]3-4]) to maximize the occurrence of undeter-

mined choices during which small ongoing fluctuations were previously shown to bias subse-

quent choices (Padoa-Schioppa, 2013). The positions of gain and loss prospects were randomly

determined to be either displayed on top or bottom of the screen and similarly, the choice op-

tions (“yes” or “no”) were randomly displayed on the left or right.
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Subjects had a free time delay to accept or decline the offer. If they declined the offer, a 500 ms

screen displayed the newoffer (only gains and loss prospects changed so that subjects performed

the challenge for a minimal stake of 10 cents). Thus, an important feature of the choice task

was that the challenge was performed regardless of the choice answer to prevent subjects to

eventually reject more offers to decrease experiment duration.

The challenge started 200ms after choice confirmation: a ball appeared on the left of the screen

and moved, horizontally and at constant speed, towards screen center. Subjects were asked to

press the confirmation button when they thought the ball was inside the basket displayed at

screen center (i.e., the target window which size index the difficulty of the challenge). To fa-

cilitate the challenge, which was performed without any feedback, the ball always reached the

center of the target after 1s. Thus, the size of the target window (i.e. the difficulty of the trial)

represented themargin of error tolerated inpatient response time (target: 1s after themovement

onset of the ball). The larger the basket, the greater the tolerated spatiotemporal error was to

consider a trial as successful, and therefore the easier was the trial. Importantly, the moving ball

could only be seen during the first 500ms (half of the trajectory), and subjects had to extrapolate

the last 500ms portion of the ball’s trajectory to assess whether the ball was inside the target. No

feedback was given to subjects about their performance or payoff after the challenge to prevent

learning effects and also choice feedback effects on mood. However, to improve subjects’ mo-

tivation to perform the task as accurately as possible, the total amount of money earned by the

subjects during a session (calculated by adding gains and losses across all trials) was displayed at

the end of a session.

Training. Before themain experiment, a training - divided into three steps - familiarized sub-

jects with all sub-parts of the task. In the first step, subjects were familiarized with the challenge

by performing 28 trials with a tolerated margin of error from± 130 to± 80 ms (56 trials if the

accuracy of the first 28 trials was below 50%). Each training trial was followed by feedback in-

formingwhether the challenge was successful (“ok” in green) ormissed (“too slow” or “too fast”

in red). In the second step, subjects performed 64 trials of the full choice (i.e., the challenge was

always preceded by an offer), and a feedback on themoney won/lost in the trial was displayed at

the end of each trial. The goalwas to train subjects to properly integrate the three dimensions of

the offer (gains, losses and difficulty) when making their choice. To help subjects learning the

correspondence between the target size and challenge difficulty, trials were displayed by increas-

ing difficulty level. Finally, the third and last part of the training (10 trials including 2 mood
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ratings) was totally similar to the main task to allow subjects to familiarize with the quiz task

and the mood ratings.

Another purpose of the trainingwas also to tailor the difficulty of the challenge to each patient’s

ability. To do so, a tolerated margin of error was computed for each difficulty level, ranging

from 75% (level 1) to 35% (level 5) of theoretical success which we estimated from each indi-

vidual subjects by assuming that errors were normally distributed. Note that during training,

the difficulty levels were updated after each trial (average and standard deviation of challenge

performance were updated), while in themain task, themean and standard deviation of patient

performance (and therefore difficulty levels) were set based on every challenge performed dur-

ing the training. The range of tolerated margins of error between subjects ranged from [± 72

ms (level 1) to± 22 ms (level 5)] in the most precise patient to [± 198 ms to± 123 ms] in less

precise one.

Computational models

Mood ratings and choices were fitted using published computational framework (Vinckier et

al., 2018).

Mood model. As mood was sampled in 25% of the trials, we linearly interpolated ratings in

order to get one data point per trial. In all analyses, mood ratings were z-scored. A theoretical

mood level (TML) was computed for each trial through the integration of quiz feedback as

follows:

TML(t) = ω0 + ωf

t∑
j=1

γt−jF (j) + ωtt

where t is the trial index, γ and all ω are free parameters (ω0 is a constant and all other ω are

weights on the different components; γ, with 0≤γ≤1, is a forgetting factor that adjusts the in-

fluence of recent events relative to older ones) and F is the subjective perception of feedback.

This feedback was subjective as its perception was in return biased by TML:

F (t) = Feedback(t) + δ × TML(t− 1)

where δ is a free parameter and TML(t − 1) is the TML carried from previous trial, before

updating based on the feedback received in the current trial. The model assumes that mood

effect is additive so that goodmood leads events to be seen asmore positive than they objectively

are (a multiplicative effect would imply that a negative feedback is perceived as even worst when
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one is in a good mood) and allowed an asymmetrical influence of positive and negative events

on mood, using a free parameterR (withR > 0) for positive feedback instead of 1:

Feedback(t) = R or − 1

Thismodel was compared to a control model in which only time was taken into account (linear

function of trial index).

Choice model. Acceptance probability was calculated as a sigmoid function (softmax) of ex-

pected utility:

p(accept, t) =
1

1 + e−(utility+kt×t)

where kt is a free parameter that accounts for a linear drift with time (trial index t) in order to

capture fatigue effects. The utility function is based on expected utility theory where potential

gains and losses are multiplied by probability of success (ps) vs. failure (1− ps):

utility = k0 + ps × kg × gain− (1− ps)× kl × loss

However, distinct weights were used for the gain and loss components (kg and kl respectively),

and a constant k0 was added in order to capture a possible bias. The subjective probability

of success (ps) was inferred from the target size. The model assumes that subjects have a rep-

resentation of their precision following a Gaussian assumption, meaning that the subjective

distribution of their performance could be defined by its mean (the required 1 second to reach

target center) and its width (i.e., standard deviation) captured by a free parameter σ. Thus, the

probability of success was the integral of this Gaussian bounded by the target window:

ps =
1

σ
√
2π

∫ 1+Size/2

1−Size/2

e
−(x−1)2

2σ2 dx

N

Both models (mood and choice models) were inverted, for each patient separately with be-

havioral data, using the Matlab VBA toolbox (available at https://mbb-team.github.io/VBA-

toolbox/), which implements Variational Bayesian analysis under the Laplace approximation

(Daunizeau et al., 2014). This algorithm not only inverts nonlinear models, but also estimates

the model evidence, which represents a trade-off between accuracy (goodness of fit) and com-

plexity (degrees of freedom; Robert, 2007).
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Behavioral analysis

Statistical analyseswere performedwithMatlab StatisticalToolbox (MatlabR2018a, TheMath-

Works, Inc., USA). All dependent variables (raw or z-scored behavioral measures, regression

estimates and model outputs) were analyzed at the subject level and tested for significance at

the group level using two-sided, one or paired-sample, Student’s t-tests. All means are reported

along with the standard error of the mean.

sEEG pre-processing

Before analysis, bad channels were removed based on a supervised machine-learning model

trained on a learning database with channels already classified by experts and using a set of

features quantifying the signal variance, spatiotemporal correlation and non-linear properties

(Tuyisenge et al., 2018). All signals were then re-referenced with a local bipolar montage be-

tween adjacent contacts of the same electrode to increase the spatial specificity of the effects by

canceling out effects of distant sources that spread equally to both adjacent contacts through

volume conduction. The average number of recording sites (one site corresponding to a bipolar

contact-pair) recorded per patient was 116± 7. Finally, all signals were down-sampled to 512

Hz.

Neuroanatomy

The electrode contacts were localized and anatomically labeled using the IntrAnat Electrodes

software (Deman et al., 2018), developed as a BrainVisa (Rivière et al., 2009) toolbox. Briefly,

the pre-operative anatomical MRI (3D T1 contrast) and the post-operative image with the

sEEG electrodes (3D T1 MRI or CT scan), obtained for each patient, were co-registered us-

ing a rigid-body transformation computed by the Statistical Parametric Mapping 12 (SPM12;

Ashburner, 2009) software. The gray and white matter volumes were segmented from the pre-

implantation MRI using Morphologist as included in BrainVisa. The electrode contact po-

sitions were computed in the native and MNI referential using the spatial normalization of

SPM12 software. Coordinates of recording sites were then computed as the mean of the MNI

coordinates of the two contacts composing the bipole. For each patient, cortical parcels were

obtained for the MarsAtlas (Auzias et al., 2016) and Destrieux (Destrieux et al., 2010) anatom-

ical atlases, while subcortical structures were generated from Fischl et al. (2002), as included

in Freesurfer. Each electrode contact was assigned to the gray or white matter and to specific

anatomical parcels by taking the most frequent voxel label in a sphere of 3 mm radius around

each contact center.
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The MarsAtlas parcellation scheme was mainly used to label each recording site. This atlas re-

lies on a surface-based method using the identification of sulci and a set of 41 regions of in-

terest (ROIs) per hemisphere. These regions were completed with 7 subcortical regions, ob-

tained from the procedure described by Fischl (as included in Freesurfer; Deman et al., 2018;

Fischl et al., 2002). However, based on the literature, we applied slight modifications con-

cerning our regions of interest. First, boundaries based on MNI coordinates were set to the

ventromedial prefrontal cortex (vmPFC) region so that contacts more lateral than x = ±12

and more dorsal than z = 10 were excluded from the parcel (Lopez-Persem et al., 2019). Sec-

ondly, MarsAtlas parcellation scheme involved the insular cortex as a single region, making it

impossible to distinguish sub-insular areas that appear to have distinct functional properties in

decision-making (Droutman et al., 2015). We therefore used the Destrieux atlas (performed by

Freesurfer; Deman et al., 2018) and MNI coordinates to segment the region corresponding to

the insula into 3 sub-regions: (i) the ventral anterior insula (vaIns) corresponds to the anterior

part (y > 5 in MNI space) of parcels 18 (G_insular_short), 47 (S_circular_insula_ant) and 48

(S_circular_insula_inf ) of theDestrieux atlas, (ii) the dorsal anterior insula (daIns) corresponds

to the anterior part (y > 5 in MNI space) of parcel 49 (S_circular_insula_sup) of the Destrieux

atlas, and finally (iii) the posterior insula (pINS) corresponds to the posterior part (y < 5 inMNI

space) of parcels 17 (G_Ins_lg_and_S_cent_ins), 48 and 49 of the Destrieux atlas, leading to a

total of 50 ROIs.

For statistical analyses, only the 42 ROIs with at least 10 recording sites recorded across at least

four subjects were retained. Among the 3494 initial recorded sites, 3154 recording sites were

locatedwithin one of these 42 regions andwere therefore kept for analysis. Note that data from

both hemispheres were collapsed to improve statistical power.

Extraction of frequency envelopes

The time course of broadband gamma activity (BGA) was obtained by band-pass filtering of

continuous sEEG signals in multiple successive 10Hz-wide frequency bands (i.e., 10 bands, be-

ginning from 50-60 Hz up to 140-150 Hz) using a zero-phase shift non-causal finite impulse

filter with 0.5 Hz roll-off. The envelope of each band-pass filtered signal was next computed

using the standard Hilbert transform. For each frequency band, this envelope signal (i.e., time

varying amplitude)was divided by itsmean across the entire recording session andmultiplied by

100. This yields instantaneous envelope values expressed in percentage (%) of themean. Finally,

the envelope signals computed for each consecutive frequency band were averaged together to

provide a single time series (the broadband gamma envelope) across the entire session. By con-
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struction, the mean value of that time series across the recording session is equal to 100. Note

that computing the Hilbert envelopes in 10Hz sub-bands and normalizing them individually

before averaging over the broadband interval allows to counteract a bias toward the lower fre-

quencies of the interval induced by the 1/f drop-off in amplitude. Finally, the obtained time

series were smoothed using a sliding window of 250 ms, to get rid of potential artifacts, and

down-sampled at 100 Hz (i.e., one-time sample every 10 ms).

The envelopes of theta, alpha, beta and gamma bands were extracted in a similar manner as the

BGA except that steps were 1 Hz for theta and alpha, 5 Hz for beta and 4Hz for gamma. BGA

frequency range was defined as 50-150Hz, gamma as 33-49Hz, beta as 13-33Hz, alpha as 8-13

Hz and theta as 4-8 Hz.

Electrophysiological analyses

The frequency envelopes of each recording site were epoched at each trial from 5600 ms prior

choice onset to 500 ms after choice onset, encompassing the quiz feedback, the rest period (or

mood assessment) between quiz and choice tasks and the choice onset (display of the offer).

Electrophysiological data were analyzed using General Linear Model (GLM), providing a re-

gression estimate for each time point and contact.

In a first GLM aimed at identifying areas underpinning mood fluctuations, power P (normal-

ized envelope) was regressed across trials against moodM (real mood ratings or TML, normal-

ized within subjects) at every time point:

P = α + βM + ϵ

With α corresponding to the intercept, β corresponding to the regression estimate on which

statistical tests are conducted and ϵ corresponding to the error term.

To investigatewhether vmPFC and daInswere sensitive to a specificmood state, the sameGLM

was performed except that BGAof eachROIwas averaged over the best cluster identified in this

first GLM (from -0.57 to -0.13 s before choice onset for the vmPFC and from -3.13 to -2.72 s

for the daIns) and regressed across the 35% trials with the best or worst TML.

Next, to assess whether vmPFC and daIns regions would represent separate components of

mood, TMLwas regressed across trials against BGA of these two regions at every time point as

follows:

TML = α + β1BGAvmPFC + β2BGAdaIns + ϵ
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With α corresponding to the intercept, β1 and β2 corresponding to the regression estimates

on which statistical tests are conducted and ϵ corresponding to the error term. For each of the

18 subjects with electrodes in both ROIs, regression was done for all possible pairs of vmPFC

and daIns recording sites recorded within a given patient, leading to a total of n = 247 pairs of

recording sites.

To check that TMLwas expressed above and beyond the variance induced by the last feedback,

BGA was regressed across trials t against last feedback along with TML from the previous trial

at every time point:

BGA(t) = α + β1Feedback(t) + β2TML(t− 1) + ϵ

Where α corresponds to the intercept, β1 and β2 correspond to the regression estimates on

which statistical tests are conducted and ϵ corresponds to the error term.

Next, to assess the effect of pre-choice brain activity on acceptance rate, the residual error of

choice model fit C was regressed across trials against power P (normalized envelope) at every

time point as follows:

C = α + βP + ϵ

With α corresponding to the intercept, β corresponding to the regression estimate on which

statistical tests are conducted and ϵ corresponding to the error term.

Finally, to assess how baseline activity affects choice, the frequency envelopes of each record-

ing site were epoched at each trial from 2000 ms prior choice response to 500 ms after choice

response, and trials were split into “high” or “low” baseline activity based on the average pre-

choice BGA in the best cluster identified in the GLM used to investigate effect of pre-choice

brain activity on acceptance rate (from -1.64 to -1.31 s before choice onset for the vmPFC and

from -0.95 to -0.67 s for the daIns). Choiceswere then regressed across the 40%highest or lowest

baseline activity trials against BGA at every time point, as in the previous GLM. To ensure that

baseline activity does not interfere with the reported effect, trials with a choice response time

shorter than 1.5 up to 2 secs were eliminated from this analysis. Note that the RT threshold

(from 1.5 to 2s) did not affect the result. We reported results from the analysis removing trials

with a response time shorter than 1.6 seconds (longest response time removing less than 25% of

trials).
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For all GLMs, the statistical significance of each recording site was assessed through permuta-

tion tests. The pairing between responses and predictors across trials was shuffled randomly

300 times for each site. The maximal cluster-level statistics (the maximal sum of t-values across

contiguous time points passing a significance threshold of 0.05) were extracted for each shuffle

to compute a ‘null’ distribution of effect size across a time window of -4 to 0 s before choice

onset (the baseline corresponding to the rest or mood assessment period). The p-value of each

cluster in the original (non-shuffled) data was finally obtained by computing the proportion of

clusterswith higher statistics in the null distribution, and reported as the ‘cluster-level corrected’

p-value (pcorr).

For each ROI, a t-value was computed across all recording sites of the given ROI for each time

point of the baseline (-4 to 0 s before choice onset), independently of patient identity, using

two-sided, one-sample, Student’s t-tests. The statistical significance of effects within each ROI

was then assessed with permutation tests, as described above, except that the null distribution

was computed from60,000 randomcombinations of all contacts of aROI, drawn from the 300

shuffles previously calculated for each site.

Contribution of frequency bands

To assess the contribution of the different frequency bands to mood representation, TMLwas

regressed across trials against powerP (normalized envelope) of each frequency band, averaged

over time between -4 to 0 s before choice onset:

TML = α + βP + ϵ

Withα corresponding to the intercept and ϵ to the error term. The significance of the regression

estimates β was assessed across recording sites using two-sided, one-sample, Student’s t-tests.

In order to determine whether other frequency bands provided additional information relative

to the BGA, the following sixteen GLMs were compared:

TML = βBGA × BGA

TML = βBGA × BGA+ βγ × P (γ)

TML = βBGA × BGA+ ββ × P (β)

TML = βBGA × BGA+ βα × P (α)

TML = βBGA × BGA+ βθ × P (θ)

TML = βBGA × BGA+ βγ × P (γ) + ββ × P (β)

TML = βBGA × BGA+ βγ × P (γ) + βα × P (α)
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TML = βBGA × BGA+ βγ × P (γ) + βθ × P (θ)

TML = βBGA × BGA+ ββ × P (β) + βα × P (α)

TML = βBGA × BGA+ ββ × P (β) + βθ × P (θ)

TML = βBGA × BGA+ βα × P (α) + βθ × P (θ)

TML = βBGA × BGA+ βγ × P (γ) + ββ × P (β) + βα × P (α)

TML = βBGA × BGA+ βγ × P (γ) + ββ × P (β) + βθ × P (θ)

TML = βBGA × BGA+ βγ × P (γ) + βα × P (α) + βθ × P (θ)

TML = βBGA × BGA+ ββ × P (β) + βα × P (α) + βθ × P (θ)

TML = βBGA × BGA+ βγ × P (γ) + ββ × P (β) + βα × P (α) + βθ × P (θ)

With β corresponding to the regression estimates, and P each power time series averaged be-

tween -4 to 0 s before choice onset in the high-gamma (BGA), gamma (γ), beta (β), alpha (α)

and theta (θ) frequency bands.

The model comparison was conducted using the VBA toolbox (Daunizeau et al., 2014). Log-

model evidence obtained in each recording site was taken to a group-level, random-effect, Baye-

sian model selection (RFX-BMS) procedure (Rigoux et al., 2014). RFX-BMS provides an ex-

ceedance probability that measures how likely it is that a given model is more frequently imple-

mented, relative to all the others considered in the model space, in the population from which

samples were drawn.

Computational analysis of baseline activity effect on choices

For each electrode of a givenROI, BGAwas averaged in each trial over the window correspond-

ing to the best significant cluster obtained with our second GLM (regression of residual error

of choice model fit against power). More specifically, activity was averaged from -1.64 to -1.31

s before choice onset for the vmPFC and from -0.95 to -0.67 s for the daIns. The choice model

was then run separately with data from trials whose averaged activity was above or below the

median baseline activity across trials. As we expected small effects, data were restricted to trials

that were not overly determined by choice parameters (i.e., trials for which acceptance probabil-

ity, as computed by the choice model with all trials, was between 2/7 and 5/7 of the patient’s

acceptance range). We also ensured that the mean and variance of choice dimensions (gain, loss

and difficulty) were identical between our two trial subsets (high vs. low baseline BGA). All

free parameters of the expected utility were free to fluctuate (the constant k0, gain weight kg,

loss weight kl and the weight associated with difficulty σ), while kt was set with values obtained

from the previously computed model (with all trials). Finally, significance of the difference be-
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tween posterior parameters obtained with the two trial subsets (high versus low activity) was

tested across all contacts of a given region using two-sided, paired, Student’s t-tests.

Data and code availability

Raw data cannot be shared due to ethics committee restrictions. Intermediate as well as final

processed data that support the findings of this study are available from the corresponding au-

thor (JB) upon reasonable request. The custom codes used to generate the figures and statistics

are available from the lead contact (JB) upon request.
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6. Supplementary material

Supplementary Table III.S1: Demographical data. M: male; F: female; L: left; R: right; A: ambidextrous;
vmPFC: ventromedial prefrontal cortex; daIns: dorsal anterior insula
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opercular L 17 122 85 0 2

G2 M 38 15 Left precentral / Premotor L 17 122 88 0 1
G3 M 43 7 Right temporal R 17 122 83 6 3
G4 F 38 3 Bilateral extensive R 18 122 77 0 2
G5 F 35 4 Several territories R 16 122 92 6 1

G6 F 45 10 Bi-temporal / Amygdala
nucleus R 17 122 84 6 6

G7 F 46 41 Right temporal R 13 122 100 4 2
G8 F 43 2 Right insulo-opercular R 16 122 92 0 3
G9 M 45 41 Left mesio-temporal R 17 122 90 2 4

L1 F 33 7 Left insulo-opercular / Left
amygdala R 13 137 123 2 4

L2 M 56 36 Left mesio-temporal R 13 141 127 2 3
L3 F 38 27 Right mesio-temporal R 9 89 79 2 0
M1 M 56 35 Left temporal R 14 183 168 0 3
M2 M 34 4 Temporo-frontal bilateral R 20 253 228 0 13
N1 M 42 6 Left fronto-opercular R 11 106 93 0 2
P1 M 23 15 Right frontal R 14 212 86 9 4
P2 M 33 16 Left temporal R 15 126 93 0 1
P3 F 46 28 Right temporal R 12 151 136 2 6
R1 M 45 10 Bilateral extensive R 13 126 112 3 2
R2 F 21 2 Right cingulate gyrus R 13 166 152 7 3
R3 M 39 30 Right temporal R 13 183 169 6 4

R4 F 23 20 Right
temporo-insulo-perisylvian A 11 125 113 0 3

R5 F 47 28 Hippocampal sclerosis / Right
temporal R 10 107 96 0 2

R6 M 17 9 Left temporo-insulo-frontal
multifocal R 14 174 159 4 2

R7 F 39 8 Upper posterior frontal gyrus R 11 126 114 4 2

R8 M 46 33 Orbitofrontal / Right anterior
temporal R 15 195 179 6 1

R9 F 39 26 Right medial temporal R 11 124 112 4 2
R10 M 21 6 Limbic cingulate A 13 168 154 6 3
T1 F 49 33 Right anterior temporal R 13 122 106 5 2

T2 M 58 40 Left fronto-temporal / Left
fronto-mesial R 14 127 104 5 0
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Supplementary Table III.S2: ROIs associated with both mood levels and residual error of choice. Areas are
ordered according to themaximal absolute t-value obtained by averaging best clusters in the three following regres-
sion: BGA againstmood ratings, BGA against trial-wisemood estimates from themodel (TML) and residual error
of choice against BGA. Pos: ROI positively associated with mood levels and residual error of choice; Neg: ROIs
negatively associated with mood levels and residual error of choice. P-values were obtained with two-sided, one-
sample, Student’s t-tests cluster-wise corrected (pcorr < 0.05). vmPFC: ventromedial prefrontal cortex; Mdm:
dorsomedial motor cortex; daIns: dorsal anterior insula; IPCv: ventral inferior parietal cortex; VCrm: rostral me-
dial visual cortex
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Supplementary Figure III.S1: Anatomical location of all recording sites (n = 3188 sites acquired from 30
epileptic patients) in the standardMontrealNeurological Institute template brain. Coloredbrain regions represent
the vmPFC (blue) and the daINS (red), and colored dots recording sites located in these region. The whole insula
is shown in yellow as reference. Each dot (1 x 1mm²) represents one recording site (that is, a bipole). Anterior (A),
posterior (P), dorsal (D), ventral (V), left (L) and right (R) directions are indicated.
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IV.1. Abstract

1. Abstract

Most of our choices rely on the weighting of multiple attribute (e.g., choosing between two

meals) which are influenced by attentional processes. Yet, the neuro-anatomical substrates of

such processes remain unresolved. Here, we investigated how visual fixations bias humanmulti-

attribute choice behavior. Intracerebral EEG data were collected simultaneously with gaze data

in a large group of participants (n = 38), while they were performing an accept/reject multi-

attribute choice task. Neural activity (broadband gamma activity, 50-150Hz)measured during

visual fixations on option attributes before the choice onset was confronted to the weighting of

option attributes. Results showed that 1) gaze-dependent neural activity correlated positively

with a givenoption attribute valuewhenfixated andnegativelywith the dimension’s valuewhen

unfixated in a large brain network, 2) gaze-dependent neural activity in the ventromedial pre-

frontal cortex (vmPFC) was positively predictive of subject’s choices when they looked at gains

3) gaze-dependent neural activity in the anterior insula (aIns) was negatively predictive of sub-

ject’s choices when they looked at losses. Thus, our findings specify key neuro-anatomical in-

sights into how gaze pattern interferes with neural activity to bias multi-attribute choices.

Keywords

Visual attention, decision-making, risk, electrophysiology, oscillatory activity, broadband gamma,

ventromedial prefrontal cortex, anterior insula
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2. Introduction

When confronted with a choice involving visible items, such as which pastry to buy in a bakery,

shifting our gaze between options is an instinctive precursory step to choosing. Recently, much

effort has been dedicated to understanding the role these fixations may have in the decision-

making process. An emerging consensus from behavioral studies states that gaze allocation is

related to choices made, with the likelihood of choosing a stimulus correlating positively with

the amount of time spent looking at it (Armel et al., 2008; Callaway et al., 2021; Fiedler &

Glöckner, 2012; Gidlöf et al., 2017; Krajbich & Rangel, 2011; Krajbich et al., 2010; Shimojo

et al., 2003; Smith&Krajbich, 2018). This effect, referred to as the gaze time choice bias, would

not solely be due to more salient or higher value options attracting visual attention (Shimojo et

al., 2003; Stewart et al., 2016; Towal et al., 2013; Vaidya&Fellows, 2015a); instead, information

gathered through fixations would bias choices.

Computational models have attempted to provide a mechanistic account of this process, and

many of these models are extensions of the drift diffusion model (DDM), which traditionally

postulates that making a choice between two options relies on value-based evidence accumulat-

ing over time for each option, until a predefined decision threshold is reached for one of them

(Ratcliff, 1978; Ratcliff et al., 2016). In contrast, gaze-driven (attentional) evidence accumu-

lation models further assume that fixating an option amplifies its value relative to the other,

biasing evidence accumulation in its favor (Cavanagh et al., 2014; Krajbich & Rangel, 2011;

Krajbich et al., 2010; Smith&Krajbich, 2018; Thomas et al., 2021; Thomas et al., 2019). From

a computational behavioral standpoint, the choice bias would therefore rely on a dynamic in-

teraction between fixations and option values.

At the neural level, research has therefore focused on identifying brain regions that would en-

code both gaze and value signals. In primates, single-cell recording studies have reported atten-

tion-modulated representations of values in the orbitofrontal cortex (OFC; Hunt et al., 2018;

McGinty, 2019;McGinty et al., 2016; Xie et al., 2018), a brain area priorly found to encode op-

tion values during the decision-making process (Padoa-Schioppa & Assad, 2006; Raghuraman

& Padoa-Schioppa, 2014; Setogawa et al., 2019; Wallis & Miller, 2003). In humans, an fMRI

study using a binary choice task and exogenously-manipulated fixations observed that activity

in the ventromedial prefrontal cortex (vmPFC) correlated positively with the value of the fix-

ated item and negatively with the value of the unfixated item (Lim et al., 2011). Considering

the key role of the vmPFC in the computation of value reported in a series of fMRI studies

(Bartra et al., 2013; Clithero & Rangel, 2014; Lebreton et al., 2009), comparable to that of the
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OFC in primates, its identification as a site of gaze interaction is unsurprising. Interestingly

though, the authors go on to demonstrate that recorded fixation-dependent values signals are

independent from choicesmade (Lim et al., 2011), thereby raising the question of a causal effect

of fixation-modulated value signals on choice behavior. This issue has since been reiterated in a

Pavlovian primate study, which observed that neural OFC activity did not statistically mediate

the relationship between gaze and conditioned licking responses (McGinty, 2019), and in a hu-

man lesion study, which found that damage to the vmPFC did not affect the bias of fixations

on choices, while damage to the dmPFC did (Vaidya & Fellows, 2015a).

Thus, despite identifying gaze-modulated value signals in neural activity and providing com-

putational frameworks through which these signals could affect behavior, previous research

has left important questions unanswered. First, due to the limited spatial and temporal accu-

racy of fMRI, the exploration of free-viewing fixations in relation to human neural activity has

been severely hindered; therefore, little is known about their encoding in the brain and subse-

quent effect on choices. Although single-cell recordings have provided suggestions, the tech-

nique is limited by its specie-specificity and limited brain coverage which is often limited to a

single brain region (but see Hunt et al., 2018). Another limitation is that although humans are

regularly confronted with decisions involving the integration of several option attributes, the

neuro-computational mechanisms underlying the effect of visual attention on multi-attribute

choices is unknown.

Here, we recorded neural activity using intra-electroencephalography (iEEG) along with eye-

tracking data, while human subjects performed amulti-attribute accept/reject decision-making

task. This combination of techniques allowed us to examine, at a neural level and millisecond

timescale, how free-viewing fixations throughout the choice process interact with differential

value encoding in the human brain (across many cortical areas) and how choices may in turn be

affected.

We hypothesized that visual fixations would interact with gain and loss dimension values anal-

ogously to option values in multi-alternative choice tasks such that fixating appetitive attribute

(e.g., a monetary gain prospect) would increase the relative decision value signal and thus in-

crease acceptance rates. In contrast, fixating the aversive option attribute (e.g., themonetary loss

prospect) would decrease the relative decision value and thus increase rejection rates. Indeed, in

contrast to appetitive items, aversive items tend to be chosen less frequently when fixated for a

longer period of time (Armel et al., 2008; Fisher, 2017). From a neural standpoint, we hypoth-

esized that dissociable brain regions might encode the appetitive vs. aversive attribute value in a
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gaze-dependent frame, with the vmPFC encoding appetitive value signals (Lopez-Persem et al.,

2020) and the anterior insula would encode the value of aversive option attributes (Gueguen

et al., 2021).

3. Results

Task and choice behavior

Intracerebral electroencephalographic (iEEG) data were collected along with eye-tracking data

in thirty-eight patients suffering from refractory epilepsy (35.6 ± 1.8 years old, 18 females)

while they performed a choice task (Fig. IV.1a). In this task, participants had to decide whether

to accept or reject a given offer before performing a challenge consisting in stopping a moving

ball inside a target (Cecchi et al., 2021). The offer comprised of a gain prospect (i.e., the amount

of money they would win in case of success), a loss prospect (i.e., the amount of loss in case of

failure) and the difficulty of the upcoming challenge (target size). When accepting the offer,

subjects played for the proposed amounts ofmoney, otherwise, when declining, they played for

minimal stakes (winning or losing 10 cents). All three offer attributes (gain, loss and difficulty)

were varied on a trial-by-trial basis. Fixations recorded during the choice task were classified

according to their proximity to five regions of interest corresponding to what was displayed on

the screen (gains, losses, difficulty, yes and no responses; Fig. IV.1b).

We assessed subject performance by checking that the three attributes of the offer (gain prospect,

loss prospect and challenge difficulty) were integrated into choices made (Fig. IV.1c), using a

logistic mixed-effects regression model (see Methods). As expected, choice acceptance rate sig-

nificantly increased with gain (βgain = 0.11 ± 0.01, t6524 = 9.23, p < 1.10−15), but sig-

nificantly decreased with loss (βloss = −0.09 ± 0.01, t6524 = −7.19, p = 7.10−13) and

difficulty (βdiff = −0.05 ± 0.01, t6524 = −4.68, p = 3.10−6). Confirmation that partic-

ipants accounted for all three dimensions in their choices was further demonstrated by fitting

a utility-based choice model and computing acceptance probability as a function of subjective

utility (Fig. IV.1c). Subjective utility combines all three choice dimensions into a measure of

how beneficial the trial is to the subject; it was calculated as the potential gain multiplied by

probability of success (ps, inferred from target size), minus the potential loss multiplied by the

probability of failure (1− ps).
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Figure IV.1: Behavioral task and results. (a) Trial structure. Each trial consisted of a choice task followed by a
challenge. In the choice task, subjects had to decide whether to accept or reject a given offer by taking into account
gain prospects (represented by a bunch of regular 10-cent coins), loss prospects (crossed out 10-cent coins) and
difficulty (inversely proportional to the size of the blue bar in themiddle of the screen). The challenge consisted in
stopping a moving ball, invisible when entering the grey tunnel, inside the blue target. (b) Fixation classification.
Sample eye fixation data froma representative individual classified according to five regions of interest: the gain and
loss areas (orange, top and bottom of the screen), the difficulty area (blue, center of the screen), and the YES/NO
response areas (dark gray, left and right of the screen). The light gray dots indicate fixations classified outside
of on-screen ROIs. (c) Choice behavior. Acceptance probability is plotted as a function of the three objective
dimensions (gain, loss, difficulty) and modeled subjective utility of the proposed challenge. Circles are binned
data averaged across subjects. Dotted lines represent acceptance probability as computed by the choice model.
Error bars and shaded areas represent the inter-subject S.E.M of the data and model, respectively. (d) Number of
fixations in a trial as a function of the absolute value of expected utility (i.e. how easy the choice is to make). Grey
dots represent individual data averaged per percentile group, horizontal lines represent means and error bars ±
S.E.M across subjects. The dotted line represents a linear fit through plotted data.

Visual fixations bias multi-attribute choices

We first checked whether the number of fixations towards gain and loss decreased with the ab-

solute value of expected utility (i.e., how easy the choice is tomake; Fig. IV.1d), as would be pre-

dicted by the attentional drift-diffusion model (aDDM; Krajbich et al., 2010). A negative asso-

ciationwas indeed observed (mixed-effects regression: β = −0.12±0.02, t6204 = −7.02, p =

2.10−12), meaning that an increased number of fixations were made towards gain and loss dur-

ing harder choices that were also characterized by longer deliberation times (RTs). Next, to ex-

plore how visual fixation behavior influenced choices, we focused on the two option attributes

which explained choice variance the most (i.e., the monetary prospects), and for which we pre-

dicted dissociable neural activities given the results of previous studies using a similar paradigm

(Cecchi et al., 2021; Vinckier et al., 2018).
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We then tested two core behavioral predictions of visual fixation effects on value-based choices.

First, the gaze time choice bias, throughwhich additional time spent fixating anoption relative to

the other correlates with an increased probability of choosing it, was examined using a measure

of time advantage towards the gain prospect (i.e, the percentage of trial time spent looking at

gain relative to loss prospects; Fig. IV.2a). Amixed-effects regression, revealed that longer overall

gaze times towards gain relative to loss did indeed predict a significant increase in acceptance rate

(βtimeAdvG = 0.01±0.004, t5572 = 2.52, p = 0.02) on the top of each attribute values which

were included in the regression model.

A second bias of particular interest is the last-fixated option bias, according to which gazing at

an alternative last correlates with an increased probability of choosing it (Callaway et al., 2021;

Krajbich & Rangel, 2011; Krajbich et al., 2010). Figure IV.2b illustrates psychometric fits as a

function of the value difference between gain and loss for two groups of trials: trials in which,

out of all fixations to gain/loss, gain was fixated last, and trials in which, out of all fixations

to gain/loss, loss was fixated last. The comparison of individual points of subjective equality

(Fig. IV.2b), showed a significant gaze-dependent shift of choice curves (t26 = −3.12, p =

4.10−3; paired sample t-test; note that point of subjective equality (PSE) could be estimated

for n = 27 out of 38 patients, see Methods). Consistent with a last-fixated option bias, this

result indicates that, in hard trials (i.e, p(accept) close to 0.5), fixating gain last results in an

increased chance of accepting. Both the gaze time and last-fixated option choice biases present

in multi-alternative tasks, which are also main predictions of the aDDM (Krajbich et al., 2010),

are therefore observable using the gain/loss dimensions of our accept/reject multidimensional

task.

Intracerebral recordings

The iEEG dataset included a total of 4381 recording sites (bipolar montage, see Methods) ac-

quired from 38 patients. For each patient, recording sites were localizedwithin the native anato-

mical brain scan and anatomically labeled according to either MarsAtlas (Auzias et al., 2016),

Destrieux (Destrieux et al., 2010) or Fischl (Fischl et al., 2002) parcellation schemes (see Meth-

ods). Out of the 4381 recording sites, we finally retained n = 3994 recording sites locatedwithin

43 region of interest (ROIs) with at least 10 recording sites recorded across at least five subjects

(see Methods). We focused on broadband gamma activity (50-150 Hz, BGA), as converging

lines of evidence showed that BGA correlates positively with both fMRI and spiking activity

(Lachaux et al., 2007; Manning et al., 2009; Mukamel, 2005; Niessing et al., 2005; Nir et al.,

2007; Winawer et al., 2013) and because in three previous studies we demonstrate that neu-
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Figure IV.2: Gaze time and last-fixated-option choice biases. (a) Acceptance probability as a function of the
amount of time spent looking at gainmore than loss per trial. Dots represent individual data binned by percentile,
horizontal lines represent means across subjects and error bars represent S.E.M across subjects. (b) Psychometric
fits of acceptance probability as a function of value difference between gain and loss, by last fixation location. Filled
circles represent data binned per percentile and averaged across subjects, and error bars represent inter-subject
S.E.M. The horizontal line denotes the group-level point of subjective equality (PSE). Individual PSEs (grey dots)
are compared on the right. Boxplots illustrate PSE distributions and the star indicates significance (paired t-test;
p < 0.05).

ral activity estimated from lower frequencies was redundant with BGA, at least in the brain

network involved during value-based learning and choices (Cecchi et al., 2021; Gueguen et al.,

2021; Lopez-Persem et al., 2020).

Intracerebral evidence of gaze-dependent effects on attribute values

In order to analyze BGA in relation to eye fixations and monetary prospect values (i.e., gain vs.

loss), wefirst segmented theBGAtime series according tofixations (Fig. IV.3b), then estimated a

singlemeasure of BGApower per trial, choice option attribute (andwe repeated this procedure

for each iEEG-contact within each ROI). Specifically, for each dimension, fixation-dependent

BGAwas computed as a weighted sum of fixation-averaged BGA power by normalized fixation

length, such that longer and additional fixations toward a given attribute increased fixation-

dependent BGA magnitude. The same procedure was applied to obtain a measure of BGA

while not looking at the dimension. We next tested for each ROI and offer attribute, whether

gaze-dependent BGA encoded the value of the fixated or unfixated attribute. We used linear

mixed-effects regression models, which included subjects and electrodes as random effects (see

Methods). Brain regionswhose activitywas reliablymodulated by visual attentionwere defined

as such if their correlations with the value of a given attribute changed sign when fixated and

unfixated. Interestingly, all regions corresponding to this criterion correlated positively with a

dimension’s value when fixated and negatively with the dimension’s value when unfixated; no

regionsdemonstrated theopposite pattern (i.e, negatively encoding afixated value andpositively

encoding an unfixated one).
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Figure IV.3: Intracerebral activity underpinning the effects of fixation on choices. (a) Anatomical location
of the vmPFC (green) and daIns (pink) in the standardMontrealNeurological Institute template brain, alongwith
all recording sites located in these areas (dots) and the entire insula (in dark grey). Anterior (A), posterior (P), dorsal
(D), ventral (V), left (L) and right (R) directions are indicated. (b) Segmentation of intracerebral signal according
to fixation location. For each trial and dimension, a relative powerwas computed by summing the activity of all fix-
ations after it was individually averaged and normalized to the choice reaction time. (c) Value encoding according
to gaze location. Plots show the estimates obtained from the regression of fixation-dependent BGA against each di-
mension value in vmPFC (left) and aIns (right). (d) Fixation-dependent activity predicting choices independently
of the value of the fixated dimension. Plots show the estimates obtained from the regression of choices against
fixation-dependent BGA in vmPFC (top) and aIns (bottom). In panels c-d, bars represent estimated coefficient
value and error bars its standard error. (e) Brain-behavior mediation analysis for vmPFC and aIns. The activity of
vmPFC during gain fixation mediates the positive effect of gains on acceptance probability, whereas aIns activity
during loss fixation mediates the negative effect of losses on willingness to accept. The paths are labeled with path
coefficients and standard errors are shown in parentheses. Stars indicate significance (pcorr < 0.05).
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Results showed that the gain value signal wasmodulated by gaze in a large brain network includ-

ing most of ROIs within the prefrontal cortex, including the vmPFC (βG (fix G) = 0.04±0.01,

t13449 = 4.15, p = 3.10−5; βG (fix not G) = −0.06 ± 0.01, t15728 = −5.76, p = 9.10−9;

Fig. IV.3c), as well as the lateral temporal lobe (Supplementary Table IV.S1). The loss value

signal was also modulated by visual fixations in the vmPFC (βL (fix L) = 0.05 ± 0.01, t13449 =

3.55, p = 4.10−4; βL (fix not L) = −0.04 ± 0.01, t16040 = −4.58, p = 5.10−6), as well as

several ROIs in the temporal lobe and the insula, encompassing the aIns (βL (fix L) = 0.06 ±
0.01, t24316 = 7.02, p = 2.10−12;βL (fix not L) = −0.07±0.01, t30805 = −10.55, p < 1.10−15;

Fig. IV.3c and Supplementary Table IV.S1). In the case of difficulty, no ROI was found to en-

code a value signal modulated by visual fixations.

Interestingly, none of the choice dimensions were found to correlate with brain activity in our

two a priori ROIs when analyzing BGA across trials without prior segregation by fixations,

thereby indicating that monetary prospect value encoding occurred during fixations.

Fixation-dependent neural activity mediates the impact of attribute value

on choice

Finally,we investigated the contributionoffixation-dependent activity on choices, using abrain-

behaviormediation analysis (seeMethods). In brief, the value of eachmonetary prospect served

as a predictor, choices served as the outcome and fixation-dependent BGAwas included as ame-

diator. Path a described change in fixation-dependent BGA based on choice dimension value

(Fig. IV.3c) whichwas estimated using the previously describedGeneral LinearModels (GLMs;

see Methods). Path b characterized fixation-dependent activity that predicts choices indepen-

dently of the value of the fixated dimension (Fig. IV.3d). It was estimated by regressing choices

against the fixation-dependent BGA of all three dimensions, using a logistic mixed-effects re-

gression model which further included dimension values as fixed effect as well as subjects and

electrodes as random effects (see Methods). Paths c′ and c correspond to the effect of choice

dimension value on acceptance probability with or without taking into account the effect of

fixation-dependent BGA, respectively. Statistical testing of mediation was performed using the

conjunctive approach (Brochard &Daunizeau, 2020), which relies on the “maximum p-value”

(i.e. the mediated effect is significant if both paths a and b are significant). Independent media-

tion analyses are reported for gain and loss dimensions. For the gain dimension, we found that

fixation-dependent activity in the vmPFC (path b: βfix G = 0.22 ± 0.06, t8400 = 3.74, p =

2.10−4; Fig. IV.3e) andmiddle temporal cortex positively mediated the influence of gains value

on choices (Supplementary Table IV.S2). Conversely, for losses, the fixation-dependent activ-
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ity in the insula, including the anterior (path b: βfix L = −0.17 ± 0.03, t15257 = −5.21, p =

2.10−7; Fig. IV.3e) and posterior insula, and the rostral middle temporal cortex were found to

negatively mediate the influence of losses on choices (Supplementary Table IV.S2).

4. Discussion

We investigated the role of visual fixations on neural activity and subsequent multi-attribute

choices using a combination of eye-tracking and iEEG. Results demonstrate that dissociable in-

tracortical correlates of the effects of visual fixations on specific option attributeswhichmediate

the effect of gaze on behavioral choices, providing the first direct neurophysiological evidence

consistentwith amechanismsof value-based accumulationprocess duringmulti-attribute choices.

Behavior

Behavioral results replicated two choice biases consistently observed in previous studies, namely

the gaze time choice bias and last-fixated option bias. In line with our hypotheses, a longer fixat-

ing time towards gain relative to loss was associated with an increased probability of accepting

the offer, and vice-versa, even when controlling for dimension value. Additionally, fixating gain

last was associated with an increased probability of accepting, while fixating loss last was asso-

ciated with an increased probability of rejecting. The multi-attribute choice design here used

therefore allows us to extend current knowledge of fixations biasing choices towards the fixated

item to more complex options, in which potential loss is encoded alongside potential reward

and challenge difficulty prior to reaching an accept/reject decision. Our findings provide sup-

port for a stable fixation-choice relationship across a wide range of decision-making tasks, as pre-

viously argued by (Smith&Krajbich, 2018). It should be noted that fixations during economic

risky choices have been studied in the past, but experimental designs either did not include a loss

component (Fiedler &Glöckner, 2012; Fisher, 2017; Glickman et al., 2019;Molter et al., 2021;

Smith & Krajbich, 2018; Stewart et al., 2016), did not combine gain and loss components in

the same trials (Häusler et al., 2016), or did not exploit separate results of fixations towards gain

and loss (Purcell et al., 2021).

Intracerebral correlates of visual attention effects on attribute values

Once fixation biases on choices were identified in subjects’ behavioral data, our aim shifted

towards understanding the neural mechanisms that may mediate such effects. Neural analy-

ses, which capitalized on the high temporal accuracy of intracerebral recordings, revealed dif-

ferentiated patterns of neural activity across three parameters: gaze location (on/away from a
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dimension), dimension (gain/loss), and neuroanatomical region. Throughout regions reliably

encoding visual fixations, the influence of gaze location was consistent: when looking at a di-

mension, an increase in value predicted an increase in BGA, while when looking away from the

dimension, an increase in value predicted a decrease in BGA. These results mirror those from a

binary-choice fMRI study, which observed that correlations between value and BOLD activity

changed sign depending upon fixation location in the vmPFC, ventral striatum, and a number

of other regions involved in subjective value representation (Lim et al., 2011). The simultane-

ous encoding of currently-fixated and stored dimension informationwe observed, as well as the

sign change when gaze switches location, are also consistent with results from a primate study

using an accept/reject task (Hunt et al., 2018).

Opponent functions of the vmPFC vs. aIns during multi-attribute choices

revealed by gaze-contingent iEEG analyses ?

Although the functional dissociation between aIns and vmPFCwas not clear-cut regarding the

gaze-dependent encoding of each attribute values (e.g., the vmPFC signaled both gain and loss

attributes positively when fixated), the overall results appears consistent with the existence of

opponent functional brain networks during value-based choices.

Hence, a growing body of evidence established that the vmPFC is part of the so-called Brain-

Valuation System (BVS)which encodes appetitive/pleasant values and reward prediction-errors

(e.g.,Gueguen et al., 2021; Lebreton et al., 2009; Lopez-Persemet al., 2020)whereas the anterior

insula is involvedduring aversive value encodingduringunpleasant value ratings or punishment-

prediction error coding (Corradi-Dell’Acqua et al., 2016; Gueguen et al., 2021). Interestingly,

we also previously showed that baseline activity in the vmPFC predicted subject’s choices pos-

itively through a computational increase of how subjects subjectively perceived the monetary

gains during the same task whereas in the aIns, baseline activity predicted negatively patients’

choices possibly by over-weighting themonetary losses (Cecchi et al., 2021). Here, we addressed

more complex choices involving multi-attribute integration. Critically, under such condition,

simply averaging the signal over the choice process did not allow us to identify reliable neural

correlates of attribute valuation. The picture only became clearer when neural activity was an-

alyzed in association with gaze (and choice data). Whereas the vmPFC appeared to be involved

during the processing of bothmonetary attributes of the offerwhile subjectswere fixating them,

only the gaze-dependent iEEG activity when people gazed at themonetary gains was eventually

positively associated with risky choices. Conversely, gaze-contingent neural activity in the aIns
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was positively associated with losses, and this activity was eventually positively associated with

safe choices.

The next step will be to specify the neuro-computational mechanisms underlying these prelim-

inary observations. One plausible possibility is that vmPFC and aINS neural activity would

reflect in themodel either the attentional modulation of themonetary gain values (for vmPFC)

whereas the aIns would have a larger impact on how attentionmodulates the value ofmonetary

losses. What would also remain to be established is where, when and how the relative value sig-

nal is encoded in the brain (i.e., a computational signal combining all three attributes andwhich

ultimately lead to a risky vs. safe decision in a drift diffusion model approach).

Limitations

Our study contains several limitations, some of which may be addressed by further analyses.

First, while abstracting over the sequence of fixations allows a relatively straightforward inves-

tigation of fixation effects across trials and subjects, it bypasses how intra-trial fixation variabil-

ity might contribute to the choice processes. Second, neural analyses do not yet control for

potential causal effects of values on visual fixations. Indeed, since the computation of fixation-

dependent BGA is here partly dependent upon the time spent fixating a dimension andnumber

of fixations towards the dimension, it could be argued that these two factors might drive the ob-

served relationship between value and BGA; the higher a value, the more often and long the

eye is drawn to it, and the higher our measure of fixation-dependent BGAwould be. Although

further analyses are required to revoke this hypothesis, we believe it is unlikely, as it would not

explain the sign change observed when a dimension is unfixated. Similarly, the mediation anal-

ysis proposed here did not include how gaze impacted choices at the behavioral level so that

further work is needed to disentangle the behavioral and neural effects of this study.

5. Material &Methods

Patients and electrode implantation

Intracerebral recordings were obtained from 38 patients suffering from drug-resistant focal

epilepsy (35.6 pm 1.8 years old, 18 females) in 6 different epilepsy centers (Grenoble Univer-

sity Hospital: n = 18; Rennes University Hospital: n = 11; Lyon Neurological Hospital: n

= 5; Prague Motol University Hospital: n = 2; Marseille La Timone Hospital: n = 1; Nancy

University Hospital: n = 1). These patients underwent intracerebral recordings by means of

stereotactically implanted multilead depth electrodes (iEEG) in order to locate epileptic foci
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that could not be identified by non-invasive methods. Electrode implantation was performed

according to routine clinical procedures and all target structures for the pre-surgical evaluation

were selected strictly according to clinical considerations with no reference to the current study.

Nine to twenty semi-rigid electrodes were implanted per patient. Each electrode had a diameter

of 0.8 mm and, depending on the target structure, contained 6-18 contact leads of 2 mmwide

and 1.5 mm apart (Dixi Medical, Besançon, France). All patients gave written, informed con-

sent before their inclusion in the present study, which received approval from the local ethics

committees (CPP 09-CHUG-12, study 0907; CPP18-001b/2017-A03248-45; IRB00003888).

Behavioral tasks

Presentation of visual stimuli and acquisition of behavioral data were performed on a PC (1920

×1080pixels) using customMatlab scripts implementing thePsychToolBox libraries (Brainard,

1997). All subject responses were recordedwith a gamepad (Logitech F310S) using both hands.

Data were pooled from the acquisition of two distinct experimental designs sharing the same

choice task. For one subset of participants (n = 21), each trial included a quiz task and a rest

or mood assessment period before the choice task (previously described in Cecchi et al., 2021).

For the other subset of participants (n = 17), the choice task was preceded by amood rating (on

25% of trials), while each trial included a confidence rating, embedded between the choice and

challenge, and a feedback after the challenge. Note that only the choice part of the two tasks

was included in the analyses. In both setups, subjects completed two (n = 12) or three (n = 26)

sessions of the experiment, each consisting of 64 trials, for a total of 128 or 192 trials.

Choice task. The choice task began with the presentation of an offer consisting of three di-

mensions: a gainprospect (representedby abunchof 10-cent coins, range: 1-5€), a loss prospect

(represented by crossed out 10-cent coins, range: 1-5€) and the upcoming challenge difficulty

(represented by the size of a target window located at screen center, range: 1-5 corresponding to

75-35% theoretical success, from∼ 0.6°× 0.8° to∼ 0.6°× 1.7° visual angle; see training section

for further details about how difficulty was adjusted for each participant). Subjects were asked

to accept or reject this offer, by pressing a left or right button depending onwhere the choice op-

tion (“yes” or “no”) was displayed. Subjects’ choice determined the amount of money at stake:

acceptingmeant that theywould eventuallywin the gain prospect or lose the loss prospect based

on their performance in the upcoming challenge, whereas declining the offermeant playing the

challenge for minimal stakes (winning 10 cents or losing 10 cents).
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The sequence of trials was pseudo-randomized such that all possible combinations of the three

dimensions (gains, losses and challenge difficulty), continuously sampled along four intervals

([1-2], ]2-3], ]3-4], ]4-5]), were displayed for one subject across sessions, with greater sampling

of medium difficulty combinations ([2-3] and ]3-4]). The positions of gain and loss prospects

were randomly determined to be either displayed on top or bottom of the screen (both areas

of∼ 8.9°× 2.7° visual angle) and similarly, the choice options (“yes” or “no”) were randomly

displayed on the left or right.

Subjects had a free time delay to accept or decline the offer. If they declined the offer, a 500 ms

screen displayed the newoffer (only gains and loss prospects changed so that subjects performed

the challenge for a minimal stake of 10 cents). Thus, the challenge was performed regardless of

the choice answer to prevent subjects to eventually reject more offers to decrease experiment

duration.

The challenge startedwith a ball that appeared on the left side of the screen andmoved, horizon-

tally and at constant speed, towards the screen center. Subjects were asked to press the confir-

mation button when they thought the ball was inside the basket displayed at screen center (i.e.,

the target window which size index the difficulty of the challenge). To facilitate the challenge,

the ball always reached the center of the target after 1s. Thus, the size of the target window

(i.e. the difficulty of the trial) represented themargin of error tolerated in subject response time

(target: 1s after the movement onset of the ball). The larger the basket, the greater the tolerated

spatiotemporal error was to consider a trial as successful, and therefore the easier was the trial.

Importantly, the moving ball could only be seen during the first 500 ms (half of the trajectory),

and subjects had to extrapolate the last 500 ms portion of the ball’s trajectory to assess whether

the ball was inside the target. To improve subjects’ motivation to perform the task as accurately

as possible, the total amount of money earned by the participants during a session (calculated

by adding gains and losses across all trials) was displayed at the end of a session.

Training. For both experimental designs, the main experiment was preceded by a training

– divided into three steps – to familiarize subjects with all sub-parts of the tasks. In the first

step, subjects were familiarized with the challenge by completing 28 to 80 trials with a tolerated

margin of error from ± 130 to ± 80 ms depending on their performance. Each training trial

was followed by feedback informing whether the challenge was successful (“ok” in green) or

missed (“too slow” or “too fast” in red). In the second step, subjects performed 64 trials of the

full choice (i.e., the challenge was always preceded by an offer), and a feedback on the money

won/lost in the trial was displayed at the end of each trial. The goal was to train subjects to
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properly integrate the three dimensions of the offer (gains, losses and difficulty) when making

their choice. To help subjects learning the correspondence between the target size and challenge

difficulty, trials were displayed by increasing difficulty level. Finally, the third and last part of

the training (10 trials in task 1 and 8 trials in task 2) was totally similar to the main task to allow

subjects to familiarize with all remaining parts (e.g. mood ratings).

Another purpose of the training was to tailor the difficulty of the challenge to each patient’s

ability. To do so, a tolerated margin of error was computed for each difficulty level, ranging

from 75% (level 1) to 35% (level 5) of theoretical success which we estimated from each indi-

vidual subjects by assuming that errors were normally distributed. Note that during training,

the difficulty levels were updated after each trial (average and standard deviation of challenge

performance were updated), while in themain task, themean and standard deviation of patient

performance (and therefore difficulty levels) were set based on every challenge performed dur-

ing the training. The range of tolerated margins of error between subjects ranged from [± 58

ms (level 1) to± 28 ms (level 5)] in the most precise patient to [± 198 ms to± 123 ms] in the

less precise one.

Eye-tracking data

Raw gaze data was recorded at 90Hz using a laptop-mountedTobii 4C eye-tracker during both

behavioral tasks. An initial calibration was performed prior to each experimental session. Gaze

was preprocessed and analyzed during the choice stage only, from offer onset to the choice re-

sponse.

Fixations were extracted from left-eye on-screen coordinates through a series of preprocessing

steps scripted in MATLAB according to suggestions from the Tobii Technology white paper

(see Olsen, 2012 for details). First, small gaps in data (≤ 75 ms, which corresponds to an av-

erage blink duration) due to trackloss (i.e, data loss due to the eye-tracker not recording) were

interpolated linearly using a scaling factor. Data was then smoothed using a moving median

window of 5 samples (∼ 56 ms). Next, a velocity-based classification algorithm was applied to

differentiate between saccades and fixations; specifically, each sample y was associated with a

velocity, based on eye position at sample y and on-screen coordinates at samples y–1 and y+ 1.

Samples with an associated velocity≥ 50°/s were considered to be part of a saccade, while sam-

pleswith a velocity under that thresholdwere deemedpart of a fixation. Algorithmperformance

was assessed visually, and adjacent fixation samples were merged into single fixations.
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Once extracted, fixations had to be attributed to on-screen ROIs (SROIs, used to avoid con-

fusion with brain ROIs). First, fixation coordinates were calculated based on the average x, y

coordinates of all sampleswithin the fixation. Fixation clusters corresponding to the five SROIs

(gains, losses, difficulty, “yes”, “no”) were observed (see Fig. IV.1b). However, since these clus-

ters were not limited to the borders of SROIs, a k-nearest neighbors’ algorithm was applied to

avoid unnecessary data removal. The algorithmwas trained using x,y coordinates generated ran-

domly within SROI borders, with the addition of a “reject” class between and around SROIs.

Predicted fixation classes were adjusted in two cases: if a fixation outside of SROIs (“reject”

class) was located between two fixations to the same SROI, it was assumed to be wrongly clas-

sified and re-classified as being part of that SROI, and, if two fixations to the same SROI were

separated by a period of trackloss, both fixations and tracklossweremerged into a single fixation.

Finally, fixations lasting less than two samples were unusable and thus eliminated. An example

of resulting eye-tracking data classification is visible in Fig. IV.1b.

Choice model

Choices were fitted using a published computational framework, which was shown to best cap-

ture choices in this task (Vinckier et al., 2018).

Acceptance probability was calculated as a sigmoid function (softmax) of expected utility:

p(accept, t) =
1

1 + e−(utility+kt×t)

where kt is a free parameter that accounts for a linear drift with time (trial index t) in order to

capture fatigue effects. The utility function is based on expected utility theory where potential

gains and losses are multiplied by probability of success (ps) vs. failure (1− ps):

utility = k0 + ps × kg × gain− (1− ps)× kl × loss

However, distinct weights were used for the gain and loss components (kg and kl respectively),

and a constant k0 was added in order to capture a possible bias. The subjective probability

of success (ps) was inferred from the target size. The model assumes that subjects have a rep-

resentation of their precision following a Gaussian assumption, meaning that the subjective

distribution of their performance could be defined by its mean (the required 1 second to reach

target center) and its width (i.e., standard deviation) captured by a free parameter σ. Thus, the

probability of success was the integral of this Gaussian bounded by the target window:
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ps =
1

σ
√
2π

∫ 1+Size/2

1−Size/2

e
−(x−1)2

2σ2 dx

Thismodelwas inverted for eachpatient separatelywithbehavioral data, using the ??https://mbb-

team.github.io/VBA-toolbox/]Matlab VBA toolbox, which implements Variational Bayesian

analysis under the Laplace approximation (Daunizeau et al., 2014).

Statistical analyses

Prior to analyses, trialswere excludedbasedon twocriteria: trackloss>25%of trial length and/or

outlier RT (defined as being more than three standard deviations away from the mean). All

behavioral analyses including eye-tracking focused on fixations towards gain and loss; fixations

to other SROIs were removed beforehand.

Psychometric fits. After having divided trials according to last fixation location (gain or loss),

a logistic regressionmodel was fitted to each participants’ choice data separately. The regression

fit was performed as a function of the difference in value between gain and loss. To quantify

the shift between obtained psychometric fits from both fixation groups, the point of subjective

equality (PSE) was computed per participant and groups were compared using a paired sample

t-test. PSEs represent the value difference between gain and loss when paccept = 0.5. Because

several participants acceptedmost of the time or rejectedmost of the time, we could not obtain

reliable measure of PSE for those subjects. Since the range of possible differences between gain

and loss being from -400 to 400 cents, subjects with estimated PSE value(s) outside this range

were excluded (11 out of 38 patients).

Generalized mixed-effects models. All other statistical analyses were performed with Mat-

lab Statistical Toolbox (Matlab R2018b, TheMathWorks, Inc., USA), using generalized linear

mixed models (GLMM; estimated with the fitglme function). All reported regression coeffi-

cients represent fixed effects frommixed-effects linear (for continuous dependent variables) and

logistic (for binary dependent variables) regression models. For each fixed effect, the estimated

coefficient value (β)± its standard error is reported, as well as the t-statistics (testing that the co-

efficient is equal to 0) along with its p-value. For behavioral analyses, models included random

intercepts for each subject, as well as random subject-slopes for each model coefficient. The

mixed models used for electrophysiological analyses are detailed in the corresponding section

below, following the Wilkinson-Rogers notation (Wilkinson & Rogers, 1973). All means are

reported along with the standard error of the mean.
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Intracerebral EEG recordings

Neuronal recordings were performed using video-EEGmonitoring systems that allowed for si-

multaneous recording of 128 to 256 depth-EEG channels sampled at 512, 1024 or 2048 Hz

(depending on the epilepsy center). Acquisitions were made with Micromed (Treviso, Italy)

system and online band-pass filtering from 0.1 to 200 Hz in all centers, except for Prague (Two

Natus systems were used: either a NicoleteOne with a 0.16-134 Hz band-pass filtering or a

Quantum NeuroWorks with a 0.01-682 Hz band-pass filtering) and Marseille (Deltamed sys-

tem, 0.16 Hz high-pass filtering). Data were acquired using a referential montage with the ref-

erence electrode located in the white matter. Prior to analyzing, all signals were re-referenced to

their nearest neighbor on the same electrode, yielding a bipolar montage.

iEEG pre-processing

Before analysis, bad channels were removed based on a supervised machine-learning model

trained on a database of channels pre-classified by experts, and using a set of features quantify-

ing the signal variance, spatiotemporal correlation and non-linear properties (Tuyisenge et al.,

2018). The average number of recording sites (one site corresponding to a bipolar contact-pair)

recorded per patient was 115± 6. Finally, all signals were down sampled to 512 Hz.

Neuroanatomy

The electrode contacts were localized and anatomically labeled using the IntrAnat Electrodes

software (Deman et al., 2018), developed as a BrainVisa (Rivière et al., 2009) toolbox. Briefly,

the pre-operative anatomical MRI (3D T1 contrast) and the post-operative image with the

iEEG electrodes (3D T1 MRI or CT scan), obtained for each patient, were co-registered us-

ing a rigid-body transformation computed by the Statistical Parametric Mapping 12 (SPM12;

Ashburner, 2009) software. The gray and white matter volumes were segmented from the pre-

implantation MRI using Morphologist as included in BrainVisa. The electrode contact po-

sitions were computed in the native and MNI referential using the spatial normalization of

SPM12 software. Coordinates of recording sites were then computed as the mean of the MNI

coordinates of the two contacts composing the bipole. For each patient, cortical parcels were

obtained for the MarsAtlas (Auzias et al., 2016) and Destrieux (Destrieux et al., 2010) anatom-

ical atlases, while subcortical structures were generated from Fischl et al. (2002) (as included

in Freesurfer). Each electrode contact was assigned to the gray or white matter and to specific

anatomical parcels by taking the most frequent voxel label in a sphere of 3 mm radius around

each contact center.

128



IV.5. Material &Methods

The MarsAtlas parcellation scheme was mainly used to label each recording site. This atlas re-

lies on a surface-basedmethod using the identification of sulci and a set of 41 regions of interest

(ROIs) per hemisphere. These regions were completed with 7 subcortical regions, obtained

from the procedure described by Fischl et al. (2002) (as included in Freesurfer; Deman et al.,

2018). However, based on the literature, we applied slight modifications concerning our re-

gions of interest. First, boundaries based on MNI coordinates were set to the ventromedial

prefrontal cortex (vmPFC) region so that contacts more lateral than x = ±12 andmore dorsal

than z = 10 were excluded from the parcel (Lopez-Persem et al., 2019). Second, MarsAtlas

parcellation scheme involved the insular cortex as a single region, making it impossible to dis-

tinguish sub-insular areas that appear to have distinct functional properties in decision-making

(Droutman et al., 2015). We therefore used the Destrieux atlas (performed by Freesurfer; De-

man et al., 2018) andMNI coordinates to segment the region corresponding to the insula into 2

sub-regions: (i) the anterior insula (aIns) corresponds to the anterior part (y < 5 inMNI space)

of parcels 18 (G_insular_short), 47 (S_circular_insula_ant), 48 (S_circular_insula_inf ) and 49

(S_circular_insula_sup) of theDestrieux atlas, (ii) the posterior insula (pIns) corresponds to the

posterior part (y > 5 inMNI space) of parcels 17 (G_Ins_lg_and_S_cent_ins), 48 and 49 of the

Destrieux atlas, leading to a total of 49 ROIs.

For statistical analyses, only the 43 ROIs with at least 10 recording sites recorded across at least

five subjects were retained. Among the 4381 initial recorded sites, 3994 recording sites were

locatedwithin one of these 43 regions andwere therefore kept for analysis. Note that data from

both hemispheres were collapsed to improve statistical power.

Extraction of frequency envelopes

The time course of broadband gamma activity (BGA) was obtained by band-pass filtering of

continuous iEEG signals in multiple successive 10Hz-wide frequency bands (i.e., 10 bands, be-

ginning from 50-60 Hz up to 140-150 Hz) using a zero-phase shift non-causal finite impulse

filter with 0.5 Hz roll-off. The envelope of each band-pass filtered signal was next computed

using the standard Hilbert transform. For each frequency band, this envelope signal (i.e., time

varying amplitude)was divided by itsmean across the entire recording session andmultiplied by

100. This yields instantaneous envelope values expressed in percentage (%) of themean. Finally,

the envelope signals computed for each consecutive frequency band were averaged together to

provide a single time series (the broadband gamma envelope) across the entire session. By con-

struction, the mean value of that time series across the recording session is equal to 100. Note

that computing the Hilbert envelopes in 10 Hz sub-bands and normalizing them individually
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before averaging over the broadband interval allows to counteract a bias toward the lower fre-

quencies of the interval induced by the 1/f drop-off in amplitude. Finally, the obtained time

series were smoothed using a sliding window of 250 ms, to get rid of potential artifacts, and

downsampled at 100 Hz (i.e., one-time sample every 10 ms).

Electrophysiological analyses

The aim was to investigate how fixation patterns influenced neural activity and choices. To

account for variability in fixation timing and location (given that subjects were freely viewing),

the frequency envelopes of each recording site were epoched at each trial from choice onset

(display of the offer) to choice response (YES or NO button press). Then, a relative power was

computed separately for all three choice dimensionsd = {gain,loss,difficulty} and at each trial as

a function of fixation location. Specifically, the power P (normalized envelope) of all fixations

from a specific dimension was summed after being individually averaged and normalized to the

choice response time (RT = time between choice onset and choice response), thus providing a

value for each choice dimension, trial and contact:

Pfix d =

nd∑
i=1

Pi ×
ti
RT

With i corresponding to the fixation index, ti the duration of the ith fixation andnd correspond-

ing to the number of fixations of dimension dwithin a trial.

Similarly, another relative powerPfix not d was computed for each choice dimension to track neu-

ral activity when all but the considered dimension d were looked at (e.g. Pfix not gain represents

the sum of loss and difficulty fixations).

For each ROI, these dimension-specific powers were subsequently analyzed using a series of

nested mixed-effects models, including subject and electrode identity as random effects, to ac-

count for inter-subject and inter-electrode variability in neural activity.

GLMM 1 & 2: Effect of visual attention on value representation. In a first GLMM, we

tested, for each ROI and choice dimension, whether neural activity signaled the value of the

fixated dimension:

Pfix d ∼ 1+gain+loss+diff+(1+gain+loss+diff |ELECTRODE : SUBJECT )

In the sameway,GLMM2was designed to investigatewhether neural activity signaled the value

of the unfixated dimension:
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Pfix not d ∼ 1+gain+loss+diff+(1+gain+loss+diff |ELECTRODE : SUBJECT )

With d = {gain,loss,difficulty}. In GLMM 1, the variable of interest was the fixed effect of

the fixated dimension (e.g. gain when the dependent variable was Pfix gain), while in GLMM

2 the variable of interest was the fixed effect of the unfixated dimension (e.g. gain when the

dependent variable wasPfix not gain). In bothmodels, the other choice dimensions were included

as covariates of non-interest to control for their effect.

Brain-behavior mediation analysis. The focus of this analysis was to investigate brain re-

gions that mediated the impact of the fixated choice dimension (gain, loss or difficulty) on

choice. It identifies two statistical paths: (1) path a characterizes the effect of the fixated choice

dimension on brain activity and (2) path b reflects the effect of brain activity on choices above

and beyond the impact of the fixated choice dimension (path c’). Statistical testing ofmediation

was performed using the conjunctive approach (Brochard &Daunizeau, 2020) which relies on

the “maximum p-value” (i.e. mediated effect is significant if both paths a and b are significant).

For each choice dimension, path a was extracted from GLMM 1 (i.e. the fixed effect of the

fixateddimension),while paths b and c’were estimated for eachROIwith the followingGLMM

3:

Choice ∼ 1 + Pfix gain + Pfix loss + Pfix diff + gain+ loss+ diff

+ (1 + gain+ loss+ diff |SUBJECT )

+ (1 + Pfix gain + Pfix loss + Pfix diff|ELECTRODE : SUBJECT )

For instance, when exploring brain regions whose activity during gain fixation mediates the

effect of gain on choice, path a corresponded to the fixed effect of gain in GLMM 1, path b

corresponded to the fixed effect of neural activity during gain fixation (Pfix gain in GLMM3 and

path c’ corresponded to the fixed effect of gain in GLMM3. The other two choice dimensions

(loss and difficulty) were analyzed in the same way.

GLMM 1 and 2 were modelled using a Normal response function distribution (linear regres-

sion), whereasGLMM3wasmodelledusing a binomial response functiondistribution (logistic

regression).

The statistical significance of effects within each ROI was assessed using a Bonferroni adjusted

alpha level of 0.001 (pcorr; 0.05/49ROI).
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6. Supplementary material

Supplementary Table IV.S1: Modulation of Broadband Gamma Activity (50-150 Hz) by gaze.
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PFcdl 0,053 5,0E-12 -0,091 < 1,0E-15

PFCvm 0,044 3,3E-05 -0,058 8,8E-09

PFrd 0,079 2,9E-09 -0,120 2,2E-16

Pfrdli 0,046 3,8E-08 -0,068 5,0E-10

Pfrdls 0,039 3,4E-06 -0,059 2,5E-06

PFrm 0,082 7,8E-09 -0,145 5,1E-12

MTCc 0,032 3,3E-05 -0,049 2,6E-08

MTCr 0,038 4,0E-08 -0,055 4,4E-16
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aIns 0,062 2,2E-12 -0,070 < 1,0E-15

pIns 0,048 3,0E-09 -0,057 < 1,0E-15

PFCvm 0,053 3,9E-04 -0,044 4,6E-06

ITCm 0,066 5,4E-06 -0,067 < 1,0E-15

MTCr 0,051 4,7E-09 -0,076 < 1,0E-15

STCc 0,030 6,3E-04 -0,040 9,6E-12

STCr 0,047 1,2E-04 -0,069 < 1,0E-15

Supplementary Table IV.S2: Mediation analysis.
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aINS 0,062 2,2E-12 -0,167 1,9E-07

MTCr 0,051 4,7E-09 -0,103 1,8E-05

pINS 0,048 3,0E-09 -0,211 4,2E-11
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V.1. Abstract

1. Abstract

How the human brain decides to take a risky choice in the face of uncertainty depending on

subject’s performance remains unclear. Here, we investigated the effect of targeted disruption

of the anterior insular cortex and the ventromedial prefrontal cortex (vmPFC) on such risky

decision-making behavior. The effects of intracranial electrical stimulation delivered directly in

the human cortex at 50 Hz in a group of epileptic patients (n = 13) were examined while they

were performing a choice task. Results showed a functional dissociation between the dorsal

anterior insula (daIns) and the ventral anterior insula (vaIns) which direct electrical stimulation

induced respectively a positive vs. a negative bias on the comparison of safe and risky option.

Conversely, intracranial electrical stimulation on the vmPFC tended to promote risk taking (as

in the daIns). These rare cases highlight the potential causal importance of the anterior insula

sub-regions during multi-attribute choices involving uncertainty and provides clues for future

mechanistic studies of the anatomy and physiology of choices under uncertainty.

Keywords

Risk, decision-making, reward, direct electrical stimulation, ventromedial prefrontal cortex, an-

terior insula
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2. Introduction

Choices often have to be made in the face of uncertainty. For example, risky decision-making

can be viewed as choices that involve some forms of potential threat in comparison with safer

options that would involve less negative consequences. In the lab, to study such choices, binary

gambling tasks have been widely used to confront the subjects with a binary choice involving

a risky option (e.g., having 50% chance to win 10 € vs. 50% of chance to win nothing) and a

safe option (e.g., being sure to win 5 €) with both option having identical expected values. Yet,

gambling tasks model uncertainty as a decision component that fluctuates independently from

the subject’s own performance. One of the objective of this study was to clarify how subjects

decide to take a risk or not when the source of uncertainty depends on their own performance.

At the neural level, functional magnetic resonance imaging (fMRI) studies in humans have re-

vealed that different parts of the brain may be involved in different behaviors in the face of

risk. Specifically, activation of the ventromedial prefrontal cortex (vmPFC) has been shown

to promote risk-seeking (Blankenstein et al., 2017; Engelmann & Tamir, 2009; Tobler et al.,

2007; Venkatraman et al., 2009; Vinckier et al., 2018; Xue et al., 2009), while activation of the

anterior insula (aIns) would precede riskless choices (Kuhnen & Knutson, 2005; Paulus et al.,

2003; Rudorf et al., 2012; Venkatraman et al., 2009; Vinckier et al., 2018). Furthermore, the

ventromedial versus dorsomedial region and the lateral versus medial region of the prefrontal

cortex contribute oppositely to risky decisionmaking (Tobler et al., 2007; Xue et al., 2009), with

ventral/medial regions associated with risk seeking and dorsal/lateral regions with risk aversion.

Similarly, evidence suggests that the dorsal and ventral parts of the anterior insula may play dis-

tinct roles in various domains (Centanni et al., 2021), notably during decision making under

risk (Droutman et al., 2015; Preuschoff et al., 2008).

Despite these neuroimaging data, we have relatively little causal information regarding the brain

regions involved during risky decision-making. Yet, lesions of the medial prefrontal cortex con-

sistently resulted in increased risk-taking and disadvantageous behaviors (Bechara et al., 1994;

Bechara et al., 1999; Clark et al., 2008; Sanfey et al., 2003; Shiv et al., 2005;Weller et al., 2007) or

no difference from the control group (Leland & Grafman, 2005; Sanfey et al., 2003), whereas

lesions of the insula led to both decreased risky choices (Weller et al., 2009) or increased betting

behaviors compared to healthy subjects (Clark et al., 2008; Shiv et al., 2005). These discrepan-

cies between studies and with the fMRI literature may be explained by the scope of the brain

lesions, which in some cases extend well beyond the targeted regions, thus reaching adjacent ar-

eas that may also contribute to the observed deficits. The current lack of causal evidence is also
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partly explained by the deep anatomical location of both vmPFC and aIns which make these

territories difficult to target using trans-cranial stimulation methods. In contrast, intracranial

electrical stimulation (iES) can be directly applied to assess causality by delivering a volley of

electrical discharges in a specific brain area while awake human subjects perform a cognitive

task. iES is a common clinical practice used to identify functional boundaries in the brain to

guide resection in patients with severe drug-resistant epilepsy or brain tumors (Borchers et al.,

2012; Desmurget et al., 2013; Selimbeyoglu & Parvizi, 2010).

Previous studies have reported that electrical stimulation of the insular cortex induced awide va-

riety of clinical responses, such as visceral, auditory, vestibular, and olfacto-gustatory sensations,

somatosensory, emotional, and motor responses, or language disorders (Afif et al., 2010; Fein-

del & Penfield, 1954; Isnard et al., 2004; Mazzola et al., 2019; Ostrowsky et al., 2000; Stephani

et al., 2011). Yet, the vast majority of iES effects in the insular lobe are in the posterior part

and relatively little evidence exist regarding the anterior insula. Stimulation of the dorsal part of

the anterior insula (daIns) in humans and non-human primates was found to induce ingestive

behaviors (e.g., chewing and swallowing; Jezzini et al., 2012) and overwhelming ecstatic sensa-

tions (Bartolomei et al., 2019; Picard et al., 2013). Conversely, stimulation of the ventral part

of the anterior insula (vaIns) resulted in disgust behavior (Caruana et al., 2011; Jezzini et al.,

2012; Krolak-Salmon et al., 2003) and depressed affect (Singh et al., 2021). Furthermore, in

a value-based decision-making context, stimulation of the vaIns in macaque monkeys resulted

in reduced approaches in appetitive contexts and increased avoidance behaviors in aversive con-

texts more pronounced than in the daIns (Saga et al., 2019).

In parallel, frontal lobe stimulation studies in humans and non-human primates are also rela-

tively scarce and reported effects are generally limited to single cases that are seldom replicated

(K. C. R. Fox et al., 2020; Raccah et al., 2021). While there is some evidence that iES of the

lateral orbitofrontal cortex causes conscious changes in affective state (K. C. R. Fox et al., 2018;

Rao et al., 2018; Yih et al., 2019) as well as sensory phenomena (K. C. R. Fox et al., 2018; Yih

et al., 2019), we are not aware of any previous research reporting significant behavioral effects

of vmPFC intracranial stimulation, as the few works that have stimulated this region indicate

only null results (K. C. R. Fox et al., 2020; K. C. R. Fox et al., 2018; Selimbeyoglu & Parvizi,

2010).

In the present study, we sought to identify the effects of iES of the aIns and vmPFCon decision-

making processes under uncertainty during stereo-electroencephalography (sEEG) recordings

of patients with drug-resistant focal epilepsy. We used an accept/reject tasks during which pa-
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tients’ choice determined the amount of money at stake. Accepting meant that they would

eventually win the gain prospect or lose the loss prospect based on their performance during

an upcoming challenge, whereas declining the offer meant playing the challenge for minimal

stakes (winning 10 cents or losing 10 cents).

3. Results

The aim of this study was to assess whether intracranial electrical stimulation (iES) of key re-

gions involved in decision-making under uncertainty, namely the aIns (ventral and dorsal) and

vmPFC, selectively impacted decision-making processes. To do so, 13 subjects with implanted

electrodes (33.1±2.5 years old, 7 females, see demographic details in SupplementaryTableV.S1)

performed an accept/reject choice task involving monetary prospects (gains and losses) while

brain stimulation was alternatively applied during 50% of the trials (Fig. V.1). Across subjects,

53 sites were stimulated, of which 26 were in the daIns, 15 in the vaIns and 12 in the vmPFC

(note that the individual organization of gyri and sulci within each subject was used to identify

the three regions of interest, see Methods).

YES NO

Choice

YES

NO

Choice task

Do you think

you will win?

Not sure Sure

Confidence rating

500 ms

Ball disappearance
Response

(target : 1 s)

Cognitive challenge

+ 2,6 €

Feedback

1 min

YES NO YES NO YES NO YES NO YES NO

30 sec

1 to 3 mA

5 sec

a

b

Figure V.1: Experimental design. (a) Trial structure. Each trial included a choice task and a confidence rating
followed by a challenge. In the choice task, subjects had to decide whether to accept or reject a given challenge by
taking into account gain prospects (represented by a bunch of regular 10-cent coins) and loss prospects (crossed
out 10-cent coins). The challenge consisted of stopping a moving ball, invisible when entering the gray tunnel,
inside the blue target in the middle of the screen. (b) Overview of stimulation experiments. In each session, 14
trials with intracranial electrical stimulation (iES) alternated with 14 trials without iES. The nature of the first trial
(with or without iES) was randomized so that subjects remained blind to experimental conditions. A 30-second
interval was observed between each trial, resulting in a 1-minute interval between each stimulation. During iES
trials, stimulation was delivered for 5 seconds as pulses of 500 ms width at a frequency of 50 Hz and an amplitude
of 1, 2, or 3 mA.
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Wefirst assessedwhether subjects performed the choice task correctly in order to rule out effects

unrelated to the stimulation. We excluded from further analyses experimental sessions during

which patients consistently accepted or refused the offer on all trials (independently from the

stimulation condition, see Methods for the exact data exclusion criteria). Consequently, of the

53 sessions recorded in 13 patients, 48 sessions were retained for analysis (see Fig. V.2 and Sup-

plementary Fig. V.S1), including 25 sessions in the daIns (17 left and 8 right sessions recorded

across 13 patients), 13 sessions in the vaIns (8 left and 5 right sessions recorded across 8 patients)

and 10 sessions in the vmPFC (7 left and 4 right sessions recorded across 7 patients).

D

V

A P

Figure V.2: Location of stimulation sites. Anatomical location of daIns (yellow), vaIns (orange) and
vmPFC (green) stimulation sites retained for analysis on the standardMontreal Neurological Institute
(MNI) template brain. Anterior (A), posterior (P), dorsal (D) and ventral (V) directions are indicated.
Note that stimulation sites have been aggregated on the x-axis for visualization purposes. See Supple-
mentary Fig. V.S1 for a more accurate location of each site.

Next, we checked that the attributes of the offer (monetary prospects and challenge difficulty)

were properly integrated into choicesmade. Using a logisticmixed-effects regressionmodel that

included subjects and electrodes as random effects, we confirmed that subjects behaved as ex-

pected (Fig. V.3), namely that choice acceptance rate significantly increased with gain (βgain =

0.13 ± 0.03, t689 = 3.82, p = 1.10−4) while it significantly decreased with loss (βloss =

−0.10 ± 0.03, t689 = −3.88, p = 1.10−4). As expected, challenge difficulty did not signif-

icantly modulate choice behavior (βdiff = 8.10−3 ± 0.03, t689 = −0.33, p = 0.74), since

we restricted the multi-attribute options space to the offers involving challenge difficulty cor-

responding to “difficult” choices during which the probability to accept the offer was close to

50% (see Methods). This methodological choice was motivated by an attempt to maximize the

likelihood of observing an effect of iES on harder choices involving a stronger uncertainty on

choices’ outcome.
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Figure V.3: Choice behavior. Acceptance probability is plotted as a function of the two significant
objective dimensions of the task (gain and loss). Circles are binned data averaged across stimulation
sites. Error bars represent inter-subject S.E.M.

Finally, we assessed the effect of daIns, vaIns, and vmPFC stimulation on risky decision-making

by examining differences in acceptance rates between trials with or without iES (Fig. V.4). We

found that stimulation of daIns and vaIns had an opposite effect on choices. Specifically, in

daIns, the probability of accepting the offer was significantly higher in trials with iES compared

to non-stimulated trials (0.06 ± 0.03, t24 = 2.15, p = 0.042; two-tailed paired t-tests). Con-

versely, in the vaIns, the probability of accepting the offer was significantly lower in stimulated

trials compared to non-stimulated trials (−0.11 ± 0.04, t12 = −2.61, p = 0.023). In the

vmPFC, the probability of accepting the offer tended to be higher in stimulated trials, but the

difference with non-stimulated trials did not reach statistical significance (0.08 ± 0.04, t9 =

1.88, p = 0.093). To reject confounding factors, we also assessed the interaction between stim-

ulation and reaction time or confidence ratings. We found that neither reaction time, nor con-

fidence ratings were significantly modulated by the stimulation conditions in any of the three

regions of interest.
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Figure V.4: Stimulation effects on acceptance probability. Difference in the probability of accept-
ing the offer between stimulated and non-stimulated trials for sessions in which daIns (yellow), vaIns
(orange), or vmPFC (green) were stimulated. Dots represent individual data for each stimulation site,
bars represent means and error bars S.E.M across stimulation sites.
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4. Discussion

To understand how the aIns and vmPFC causally contribute to risky decision-making, we ap-

plied iES to these two regions while human subjects undergoing an sEEG study for pre-surgical

evaluation of drug-resistant focal epilepsy performed an accept/reject task involving monetary

prospects that magnitude depended on subjects’ decision. We found that stimulation of the

dorsal part of the aIns (daIns) induced riskier choices, while in contrast, stimulation of the ven-

tral part of the aIns (vaIns) induced a bias toward more cautious behavior. Stimulation of the

vmPFC resulted in a higher acceptance rate, but the difference with non-stimulated sessions

failed to reach significance. Our results thus provide causal evidence that intracranial electrical

stimulation in distinct sub-regions of the aIns differentially influences approach and avoidance

behaviors in the face of uncertain choices. In the following, we successively discuss (1) the effects

of iES in the anterior insular lobe and (2) in the vmPFC and (3) the limitations and perspectives

of this study.

Opponent role of the dorsal vs. ventral anterior insula

Stimulationof the aIns revealed a striking functional dissociationbetween thedorsal and ventral

aIns; whereas stimulation of the daIns resulted in a higher rate of acceptance of risky options,

stimulation of the vaIns increased the probability to choose the safer options. An issue that re-

mains to be resolved is the underlying generative choice mechanism: one possibility is that iES

of the vaIns induces rejection of the risky offer in our choice task by increasing of the subjective

aversiveness of the offer (i.e., here, the subjective value of the loss prospect). This could be tested

by fitting the computational choice model separately for the stimulated vs. non-stimulated tri-

als. Here, we could not formally test this idea due to a low statistical power (the number of trials

was too low to obtain reliable model-based effects of iES on the subjective value of the gains vs.

losses prospects). Yet, previous fMRI (Vinckier et al., 2018) and iEEG evidence (Cecchi et al.,

2021) showed that the anterior insula is preferentially involved during the subjective valuation

of the loss prospects (rather than the gain prospect). Thus, we speculate that a possible genera-

tive mechanism is that iES applied of the ventral anterior insula might increase the participants’

perception of the loss prospect and thus decrease risk-taking.

A more surprising finding was that intracranial stimulation of the daIns induced higher rate of

acceptance of the offer, an effect that we initially expected in the vmPFC. This suggests that a

possible mechanismwould by an over-weighing of monetary gains during the choice process in

the dorsal part of aIns. Yet, this hypothesis it not easily concealable with one of our previous re-
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sults, obtained using the same task and populations bymeans of intracerebral recordings, which

shows that baseline activity of the daIns tended to decrease in risk-taking (Cecchi et al., 2021).

Further studies are therefore needed to determine the origins of these discrepancies. We could

also quantify how iES impact remotely broadband gamma activity (BGA) by studying how av-

erage BGA measured between offer onset and choice onset is modulated between stimulated

and non-stimulated trials in the brain network involved in risky-decision making.

The functional differentiation between the ventral and dorsal aIns could help to explain some

of the discrepancies between previous lesion studies. Indeed, because these two sub-regions are

extremely close, it seems possible that the distribution of lesions within the group study gives

an advantage to one behavior over another. Similarly, although neuroimaging studies tend to

implicate the aIns in the processing of negative stimuli and risk-averse behaviors (Kuhnen &

Knutson, 2005; Paulus et al., 2003; Rudorf et al., 2012; Venkatraman et al., 2009; Vinckier

et al., 2018), there is some evidence for its role in risk-taking (Xue et al., 2010). Nevertheless,

few of these studies have considered the different regions of the anterior insula in their analyses.

Overall, the present results therefore strongly suggest that a better consideration of the different

sub-regions of the insula is crucial for understanding its role in decision making under uncer-

tainty. Interestingly, our results nicely echoes those reported in a recent study in non-human

primates showing that stimulation of the vaIns reduced approach behaviors in appetitive con-

texts and increased escape behaviors in aversive contexts (Saga et al., 2019). In unpublished

results, these same authors also found a topographic distribution of neurons within the aIns,

with neurons preferring the aversive outcome in the ventral portion, and a mixture of neurons

preferring appetitive and aversive outcomes in the dorsal portion (see Discussion of Saga et al.,

2019), which would be in keeping with the mechanistic effects of iES on either the loss (vaIns)

or gain (daIns) prospects on which we speculated above. Our findings are also consistent with

previous studies that have shown opposite effects of stimulation of the ventral and dorsal parts

of the aIns; accordingly, stimulation of the vaIns was more associated with negative behaviors

such as disgust (Caruana et al., 2011; Jezzini et al., 2012; Krolak-Salmon et al., 2003) or depres-

sion (Singh et al., 2021), whereas electrical stimulation of the daIns was more associated with

positive behaviors such as ingestion (Jezzini et al., 2012) and ecstatic feelings (Bartolomei et al.,

2019; Picard et al., 2013).

Testing the causal role of the vmPFC

Although not significant, vmPFC stimulation increased acceptance rate in the choice task, with

only one session showing an opposite effect. Increasing the sample size will hopefully allow us
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to reach a conclusion about the effects of stimulating this structure in uncertain decision mak-

ing. If this trend is confirmed, this study could be the first to show a behavioral effect of vmPFC

stimulation. Indeed, to date, stimulation studies that have investigated this brain region have all

reported null results (K. C. R. Fox et al., 2020; K. C. R. Fox et al., 2018; Selimbeyoglu&Parvizi,

2010). The lack of significant effects in previous studies could thus be due to the absence of

specific tasks that seem to be necessary to evaluate the effects of stimulation on certain cogni-

tive functions such as decision making (the same argument also holds to explain the absence of

behavioral effects following aIns stimulation in most of previous studies).

The idea that vmPFC stimulation increases risk-takingwould be consistentwith awide range of

neuroimaging studies, assuming that vmPFC is a key component of the reward circuit, process-

ing reward prospects and favoring risky options (Bartra et al., 2013; Blankenstein et al., 2017;

Engelmann & Tamir, 2009; Haber & Knutson, 2010; Levy & Glimcher, 2012; Tobler et al.,

2007; Venkatraman et al., 2009; Vinckier et al., 2018; Xue et al., 2009). Given that vaIns stimu-

lation leads to a decrease in risk taking, such a resultwould also be consistentwith the hypothesis

of an opposing involvement of (v)aIns and vmPFC in decision making developed by a substan-

tial body of work (Palminteri & Pessiglione, 2017; Vinckier et al., 2018).

Limitations and perspectives

In this study, we demonstrate the value of iES on brain areas involved in value-based decision

making and uncertain choices. To our knowledge, this is the first time that modification of

choice behavior has been observed following iES in humans. The strengths of iES is that it

has a high spatial specificity which allowed us to highlight sub-regional differences within the

aIns between its ventral and dorsal parts. This result is important because it would hardly be

obtained with other causal techniques available for human cognitive neuroscience. Indeed, in

humans, brain lesions are generally spatially diffuse and only occasionally selective to specific

brain areas. Nevertheless, we acknowledge that iES data comes from patients with severe drug-

resistant epilepsy so that it remains unclear how our results can generalize to the healthy popu-

lation. A possible clinical implication of our findings is that demonstrating that iES is effective

in modifying choice behavior may therefore provide new tools for neurologists to guide resec-

tion and help prevent postsurgical decision-making deficits that need to be further examined in

the future (see Von Siebenthal et al., 2016). Another interesting perspective would be to study

mood fluctuations induced by intracranial electrical stimulation in epileptic patients. It would

also be relevent to examine how broadband gamma activity is modulated in the non-stimulated

brain regions during this experiment to clarify the physiological effects of iES and to quantify
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network-level effects of intracranial stimulation that likely explain part of the behavioral effects

reported in this study.

5. Material &Methods

Patients selection

Subjects were thirteen patients suffering from drug-resistant focal epilepsy and candidates to

surgical treatment (33.1 ± 2.5 years old, 7 females, 5 left-handed, see demographic details in

Supplementary Table V.S1). As part of their pre-surgical evaluation, they underwent intrac-

erebral recordings by means of stereotactically implanted multilead depth electrodes (sEEG)

in the Epilepsy Unit of Grenoble University Hospital (Grenoble, France). Electrode implan-

tation was performed according to routine clinical procedures and all target structures for the

pre-surgical evaluation were selected strictly according to clinical considerations with no refer-

ence to the current study. Patients were included in the study if they had electrodes implanted

in at least one brain regions of interest (i.e., aIns and/or vmPFC), and if they were willing and

able to cooperate with study task. All patients were taking anti-epileptic medications (see Sup-

plementary Table V.S1), some of whichwere reduced or stopped before stimulation sessions on

clinical grounds. Anxiety and depression comorbidities were screened via theHospital Anxiety

and Depression Scale when possible (not executed in one patient due to only mild understand-

ing of French language). Exclusion criteria were age under 18 and complete inability to speak

French (to prevent improper execution of the behavioral task due to misunderstanding of task

instructions). All patients gave oral informed consent before their inclusion in the present study

and signed a non-opposition file in the context of the MAPCOG sEEG study (IdRCB: 2017-

A03248-45), approved by the Ethics Committee.

Electrodes implantation and location

Depth electrodes were implanted using robot-assisted sEEG electrode implantation technique

(ROSA robot). Fifteen to eighteen semi-rigid electrodes were implanted per patient. Each elec-

trode had a diameter of 0.8 mm and, depending on the target structure, contained 10-18 con-

tact leads of 2 mm wide and 1.5 mm apart (Dixi Medical, Besançon, France). Electrodes were

localized and anatomically labeled by co-registering a pre-operative anatomical magnetic reso-

nance imaging (MRI, 3DT1 contrast) with a post-operative computed tomography (CT) scan

obtained for each patient, using the IntrAnat Electrodes software (Deman et al., 2018).
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The ventral anterior insula (vaIns) was defined as the anterior part (y > 5 in MNI space) of

parcels 18 (G_insular_short), 47 (S_circular_insula_ant) and 48 (S_circular_insula_inf ) of the

Destrieux atlas, while the dorsal anterior insula (daIns)was set as the anterior part (y > 5 inMNI

space) of parcel 49 (S_circular_insula_sup) of theDestrieux atlas (Destrieux et al., 2010). As for

the vmPFC, it was specified using the corresponding parcel from the MarsAtlas parcellation

scheme (Auzias et al., 2016).

Intracranial electrical stimulation

Intracranial electrical stimulations (iES) were applied between two contiguous contacts located

in a region of interest. Bipolar stimuli were delivered on a pair of contacts (defined as a stimu-

lation site) using a constant current rectangular pulse generator designed for a safe diagnostic

stimulation of the human brain (Micromed, Treviso, Italy), according to parameters used in

clinical procedures and proven to produce no structural damage. High-frequency stimulation

at 50Hz, with a pulse width of 0.5ms and an intensity of 1, 2, or 3mA, was applied in a bipolar

fashion during a 5 s period on a stimulation site. For a given stimulation site, the stimulation

intensity was determined as the highest intensity devoid of clinical symptoms during previous

clinical stimulation sessions.

Stimulation sessions

Each session of the experiment corresponded to the stimulation of a specified stimulation site

at a given intensity. Thus, the number of sessions performed by each patient was determined by

the number of contact pairs available in regions of interest and the number of intensity tested.

Each experimental session consisted of 28 trials of a behavioral task alternating between stimu-

lation (n = 14) and non-stimulation (n = 14) trials (Fig. V.1). The first trial of the session was

randomly assigned to either stimulation or non-stimulation to maintain patients’ blindness on

experimental conditions. Stimulations were manually triggered and iEEG activity was mon-

itored in real-time in order to detect stimulation-induced after discharges and electrographic

seizures so as to stop session immediately if necessary. The between trials time interval was

also kept above 30 seconds, so that two iES remained separated by a minimum interval of one

minute. In stimulation trials, the stimulation was initiated about 1 s before the trial onset.

Behavioral task

Presentation of visual stimuli and acquisition of behavioral data were performed on a PC using

customMatlab scripts implementing the PsychToolBox libraries (Brainard, 1997). All patient

responses were done with a gamepad (Logitech F310S) using both hands. Before the exper-
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iment, participants were informed that various brain regions would be stimulated, but they

were blind to experimental conditions, including stimulation parameters, the brain region be-

ing tested, and whether stimulation was active. Each trial consisted of a choice task combined

with confidence rating and a cognitive challenge (Fig. V.1).

Choice task. The choice task began with the presentation of an offer consisting of three at-

tributes: a gain prospect (represented by a bunch of 10-cent coins, range: 1-5€), a loss prospect

(represented by crossed out 10-cent coins, range: 1-5€) and the upcoming challenge difficulty

(representedby a targetwindowcorresponding to approximately 50% theoretical success). Chal-

lenge difficulty was displayed on the center of the screen (see training section for further details

about how difficulty was adjusted to each participant). Patients were asked to accept or reject

this offer by pressing a left or right button depending onwhere the choice option (“yes” or “no”)

was displayed. Patients’ choice determined the amount ofmoney at stake: acceptingmeant that

theywould eventuallywin the gainprospect or lose the loss prospect basedon their performance

in the upcoming challenge, whereas declining the offermeant playing the challenge forminimal

stakes (winning 10 cents or losing 10 cents).

The sequence of trials was pseudo-randomized such that all delta values, computed as the dif-

ference between gain and loss prospects, continuously sampled along ten intervals ([-40 -30],

]-30 -20], ]-20 -10], ]-10 -5], ]-5 0], ]0 5], ]5 10], ]10 20], ]20 30], ]30 40]), were displayed for

one patient during a session, with the four medium intervals (]-10 -5], ]-5 0], ]0 5] and ]5 10])

presented twice (n = 8 out of 14 trials) to maximize the occurrence of difficult choices. The

positions of gain and loss prospects were randomly determined to be either displayed on top or

bottom of the screen and similarly, the choice options (“yes” or “no”) were randomly displayed

on the left or right. Stimulation and non-stimulation trials were strictly identical in one session,

such that participants served as their own control. Patients had a free time delay to accept or

decline the offer. If they declined the offer, a 250 ms screen displayed the new offer (a minimal

stake of 10 cents). Thus, the challenge was performed regardless of the choice answer in order

to prevent patients from eventually rejecting more offers to decrease experiment duration.

Confidence ratings. Before performing the cognitive challenge, patients were asked to rate

their confidence in winning the challenge by answering the following question “Do you think

youwillwin?”. Patients had a free timedelay to answerbymoving a cursor from left (not sure) to

right (sure) along a continuous visual analog scale (100 steps) with left and right hand response
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buttons. The initial position of the cursor on the scale was randomized to avoid confounding

confidence level with movements’ quantity.

Cognitive challenge The challenge started right after confidence confirmation: a ball ap-

peared on the left of the screen and moved, horizontally and at constant speed, towards screen

center. Patients were asked to press the confirmation button when they thought the ball was

inside the basket displayed at screen center (i.e., the target window). The ball always reached

the center of the target after 1s. Thus, the size of the target window represented the margin of

error tolerated in patient reaction time (target: 1s after the movement onset of the ball). Un-

beknownst to the patients, the success rate was maintained at about 50% by decreasing (if the

challenge was successful) or increasing (if the challenge was unsuccessful) the tolerated margin

of error by 1% theoretical success after each trial. Importantly, the moving ball could only be

seenduring thefirst 500ms (half of the trajectory), andpatients had to extrapolate the last 500ms

portion of the ball’s trajectory to assess whether the ball was inside the target. Finally, a feedback

of 1 second was given to the patients about their payoff after the challenge. Note also that, to

improve patients’ motivation to perform the task as accurately as possible, the total amount of

money earned by the patients during a session (calculated by adding gains and losses across all

trials) was displayed at the end of a session.

Training. Before the main experiment, a training - divided into three steps - familiarized pa-

tientswith all sub-parts of the task. In the first step, patientswere familiarizedwith the challenge

by performing 30 to 80 trials of it. Another aim of this step was to find the target size for which

the participant had a 50% success rate. Thus, unbeknownst to the patients, the size of the bar

was decreased after each success and increased after each error by 1 pixel, so that their perfor-

mance converged statistically at 50%. The task was completed when participants’ performance

stabilized (most often before less than 80 trials). Each training trial was followed by feedback in-

formingwhether the challenge was successful (“ok” in green) ormissed (“too slow” or “too fast”

in red). In the second step, patients performed 64 trials of the full choice (i.e., the challenge was

always preceded by an offer), and a feedback on themoney won/lost in the trial was displayed at

the end of each trial. The goal was to train patients to properly integrate the dimensions of the

offer (gains and losses) when making their choice. Finally, the third and last part of the train-

ing (8 trials) was totally similar to the main task to allow patients to familiarize with confidence

ratings.
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Another purpose of the trainingwas to tailor the difficulty of the challenge to each patient’s abil-

ity. To do so, a tolerated margin of error corresponding to a theoretical success of 55% (i.e. the

tolerated margin of error used in the first trial of a session of the main task) was estimated from

each individual patient by assuming that errors were normally distributed. Note that during

training, this tolerated margin of error was updated after each trial (average and standard devi-

ation of challenge performance were updated). Among patients, the tolerated margins of error

corresponding to 55% theoretical success ranged from [± 60 ms] in the most precise patient to

[± 206 ms] in the less precise one.

Behavioral analysis

Statistical analyseswere performedwithMatlab StatisticalToolbox (MatlabR2018a, TheMath-

Works, Inc., USA).

Choice behavior. Analysis of choice behavior was performed across all sessions (i.e., stimu-

lation sites) using a logistic mixed-effects model (estimated with the fitglme function) that in-

cluded gain and loss magnitude as predictor variables and choice as a dependent variable. The

model also comprised a full random-effects structure at the subject and stimulation site levels

(intercepts and slopes for all predictor variables). For both fixed effect (gain and loss), the esti-

mated coefficient value (β)± its standard error is reported, as well as the t-statistics (testing that

the coefficient is equal to 0) along with its p-value.

Stimulation effects. All dependent variables (acceptance probability, reaction time and con-

fidence ratings) were analyzed at the session level and tested for significance at the group level

(daIns, vaIns or vmPFC) using two-tailed paired t-tests between stimulation and non-stimula-

tion conditions. All means are reported along with the standard error of the mean (S.E.M).
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6. Supplementary material

SupplementaryTableV.S1: Demographical data. CAR: carbamazepine; CLO: clobazam; daIns: dorsal anterior
insula; F: female; L: left; LAC: lacosamide; LEV: levetiracetam; LOR: lorazepam; M: male; N/A: not available;
OXC: oxcarbazepine; PER: perampanel; R: right; vaIns: ventral anterior insula; vmPFC: ventromedial prefrontal
cortex; ZON: zonisamide.
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P1 F 38 3 R LEV, LAC, CLO Qp1-2 3 daIns

P2 F 31 12 L CAR, CLO, LEV
X2-3 1 vaIns
X3-4 3 vaIns
X4-5 3 daIns

P3 F 44 12 R CAR, LAM, LEV
Op1-2 3 vmPFC
Qp1-2 2 daIns
Xp4-5 1 daIns

P4 M 41 14 R CLO, LAC, OXC

O1-2 2 vmPFC
S1-2 1 vmPFC
Z1-2 2 vaIns
Z5-6 3 daIns

P5 F 25 21 L CLO, LAC, ZON

B1-2 3 daIns
O1-2 3 vmPFC
Q1-2 3 vaIns
Q4-5 3 daIns
R2-3 1 daIns

P6 M 41 8 R CAR, LAC
Op1-2 3 vmPFC
Qp1-2 2 daIns
Rp1-2 1 daIns

P7 M 37 34 R CAR, ZON
Xp1-2 3 vaIns
Xp4-5 2 daIns

P8 F 48 36 L CLO, LAC, OXC, ZON

K4-5 3 daIns
Kp7-8 3 daIns
O1-2 3 vmPFC
R1-2 3 daIns

P9 M 31 21 R CAR, PER, CLO

Op1-2 1 vmPFC
Qp1-2 1 daIns
Xp3-4 3 vmPFC
Zp2-3 1 vaIns
Zp3-4 3 daIns
Zp4-5 3 daIns
Zp5-6 3 daIns

P10 M 25 N/A R N/A Rp1-2 2 daIns

P11 F 18 N/A L N/A
Qp1-2 3 daIns
Xp1-2 2 vaIns
Xp5-6 3 daIns

P12 M 26 N/A R N/A

Gp10-11 3 daIns
Kp1-2 3 vaIns
Kp3-4 3 vaIns
Op1-2 3 vmPFC
Qp1-2 3 daIns
Xp2-3 3 vmPFC

P13 F 25 N/A L N/A

Q1-2 3 daIns
X1-2 3 vaIns
Xp1-2 2 vaIns
Xp4-5 3 vaIns
Yp1-2 3 vaIns
Yp4-5 3 daIns
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Supplementary Figure V.S1: Location of stimulation sites on MRI brain slices. The locations of each stimu-
lation site in the daIns (yellow), vaIns (orange), and vmPFC (green) are displayed on sagittal slices.
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VI
General discussion

What have we learned?

The work carried out during this PhD and presented in this manuscript has been articulated

around two objectives. First, we sought to elucidate the computational and intracerebral mech-

anisms underlying the observed variability of choice in particular contexts. To this end, we

manipulated mood (Study 1) and monitored visual attention (Study 2) of subjects undergoing

invasive electrodemonitoring with sEEG for their epilepsy as they performed different versions

of the same accept/reject choice task. We found that mood and visual attention modulated

in a valence-specific manner the BGA (50-150 Hz) of two core regions involved in the

computation of expected values, namely the ventromedial prefrontal cortex (vmPFC) and

anterior insula (aIns), thereby influencing the final decision. Specifically, in the first study,

we showed that high mood levels led to increased baseline broadband gamma activity (BGA)

in the vmPFC, which in turn promoted risk taking by selectively increasing the weight of po-

tential gains, whereas low mood levels led to increased baseline BGA in dorsal anterior insula

(daIns), which in turn tempered risk taking by selectively increasing the weight of potential

losses (Fig. VI.1 top). Similarly, when visual attention was focused on gains, these positively

modulated BGA in the vmPFC, thus mediating the positive effect of gains on the likelihood

of accepting the offer, whereas when visual attention was focused on losses, these positively
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modulated BGA in the aIns, thus mediating the negative effect of losses on the acceptance rate

(Fig. VI.1 middle).
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Figure VI.1: Summary of experimental findings. The box-and-arrow diagrams illustrate the
main results of the first (top), second (middle), and third (bottom) studies of the PhD work pre-
sented in this manuscript. aIns: anterior insula; BGA: broadband gamma activity; daIns: dorsal
anterior insula; vaIns: ventral anterior insula; vmPFC: ventromedial prefrontal cortex.

In a second step, we investigated whether the two regions identified in these initial investiga-

tions were causally involved in decision making (Study 3). For this purpose, we stimulated the

vmPFC and aIns of implanted patients with intracerebral electrodes while they performed the

same choice task as in the first two studies. Our results revealed that stimulation of the aIns

was effective in inducing a decision bias and that two sub-regions of this structure were

differentially involved in decision making. Specifically, stimulation of the daIns resulted in

a higher acceptance rate of the choice offer, whereas stimulation of the ventral anterior insula

(vaIns) decreased this rate (Fig. VI.1 bottom).

Taken together, these results suggest the existence of opponent brain systems that individ-

ually process appetitive and aversive attributes related to choice. In the following section, I

will discuss these findings, starting with the methodological aspect, and then focusing on their

theoretical implications. In the course of this discussion, I shall also endeavor to address the

limitations and perspectives associated with this experimental work.
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1. Methodological considerations

a. Investigating human cognition with intracranial EEG

About the advantages of using intracranial EEG

Traditionally, when studying human cognition, researchers attempting to establish the anatomi-

cal location of the neural computations underlying a certain behavior rely on fMRI. This meta-

bolic imaging technique allows precise spatial localization across the brain, but its temporal

resolution is limited. If the timing of neural computations is more relevant, electrical imaging

techniques, such as EEG or MEG, are therefore preferred. The latter have excellent temporal

resolution, but onlymeasure signals from superficial cortical regions, with little spatial certainty

about their anatomical origin. To overcome these limitations, an alternative would be to use in-

vasive recording techniques, such as local field potential recording, which allow a more direct

measurement of neural processing with high spatial and temporal accuracy, but their use is gen-

erally limited to animal studies. In some rare cases, however, such as prior to neurosurgical

intervention, intracranial electrophysiological recordings can be performed in humans. During

my PhD, I had the unique opportunity to use this approach by performing iEEG recordings

in epileptic patients who were implanted with multiple intracranial electrodes as part of pre-

surgical clinical investigations.

Intracranial EEG arguably offers a very interesting compromise between anatomical accuracy,

temporal resolution, and simultaneous coverage of multiple nodes of interest for studying the

human brain (Parvizi & Kastner, 2018). Yet, meeting these characteristics has proven to be

essential to address our experimental questions. Indeed, in the first study, good temporal res-

olution appeared crucial to distinguish activities related to several temporally close processes

such as activity during feedback, baseline activity and activity during decision making. Simi-

larly, in the second study, the temporal resolution of iEEG successfully discriminated brain ac-

tivity during natural free viewing, which would not have been possible in fMRI. On the other

hand, in all three studies, the anatomical accuracy of intra EEG was necessary to explore re-

gions such as vmPFC and aIns that are located deep in the brain, and thus cannot be properly

investigated with EEG orMEG. Likewise, this precision allowed us to distinguish two anatom-

ical sub-regions of the aIns that appear to play distinctive roles in decision making (study 1

and 3). Finally, compared to single-unit recordings in non-humans, the concurrent coverage of

multiple brain areas allowed us to simultaneously test the involvement of several regions that

were potentially related to the processes being tested. For example, in our first study we found
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that both vmPFC and aIns were involved in mood encoding, as already identified with fMRI

(Vinckier et al., 2018), whereas lOFC, which had previously been negatively correlated with

mood (Rao et al., 2018), was not significant. However, it is important to note that, although

on average the implantations cover a large portion of the brain, only a very small percentage

of it (∼1%) is explored simultaneously in each patient. Furthermore, because the pattern and

type of implantation is dictated by clinical need andmost epileptic patients have seizures in the

limbic and frontal lobes, recordings of the parietal, occipital, and inter-hemispheric areas are rel-

atively scarce (Parvizi & Kastner, 2018). Thus, unlike fMRI, intracranial EEG cannot provide

a complete coverage of the brain and null results should be considered with caution.

The processing of intracranial EEG signal

One of the most remarkable features of intracranial EEG is its ability to capture signals in a

specific frequency range, such as delta, theta, alpha, beta, and gamma oscillations, as well as

the broadband gamma signal (BGA). In our first study, we aimed to investigate whether the

amount of activity in each bandwidth (i.e., the amplitude of the filtered signal) contributed to

the subjects’ mood level. To this end, we compared different generalized linear models (GLM)

including the BGA and all possible combinations of the other frequency bands. Our results in-

dicated that for both vmPFC and aIns, BGAwas a significant predictor ofmood, whereas lower

frequency activity provided no additional information and was at best redundant with BGA.

Given that these twobrain regions have previously been identified as correlatedwithmood in an

fMRI study (Vinckier et al., 2018), these results are consistentwith the commonunderstanding

that hemodynamic activity corresponds to high-frequency (Logothetis et al., 2001;Manning et

al., 2009; Mukamel, 2005; Niessing et al., 2005; Nir et al., 2007). In addition, the finding that

the data conveyed by low frequencies does not provide additional information compared with

BGA had already been reported in several studies using a similar procedure (Gueguen et al.,

2021; Lopez-Persem et al., 2020). Overall, these results prompted us not to pursue the analysis

of the low-frequency bands in this first study and to focus exclusively on the BGA in the sec-

ond study. Nevertheless, we acknowledge that the iEEG signal is very rich, and that examining

amplitude changes in specific frequency bands is far from the only way to analyze this signal. In

particular, while the BGA appears to reflect the local responses of a population of neurons, the

low frequency oscillations (i.e., theta, alpha, and beta) are thought to serve as carrier frequen-

cies used by distant nodes within large-scale networks to communicate (Buzsáki, 2006). Thus,

other analyses, such as measuring the coupling between the phase of slow oscillations and the

power of higher frequencies (notably the BGA) or measuring the phase coupling between two

oscillatory rhythms could also be performed to inform important aspects of the functional dy-
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namics of brain activity that we have not addressed in this work, such as the directionality of

information flow through a network (Canolty & Knight, 2010).

Towards causal studies of BGA

In our first study,wedemonstrated that trial-to-trial variations of baseline activity in the vmPFC

and daIns influenced the valuation process at the time of choice, which in turn impacted the

behavioral response. As discussed in the introduction of this manuscript, these results are con-

sistent with several previous studies (Kuhnen & Knutson, 2005; Lopez-Persem et al., 2016;

Vinckier et al., 2018), reinforcing the idea that spontaneous fluctuations in brain activity play

a functional role in the valuation process. However, given their correlative nature, our data

cannot elucidate whether baseline activity is causally involved in decision making. In this first

study, we predictably manipulated pre-stimulus activity through the use of a mood induction

procedure prior to choice. Over the course of this PhD, I also began to implement an alternate

method for testing the role of ongoing brain activity in decision making, which involves ana-

lyzing iEEG activity in real time, triggering the onset of the choice stimulus when target brain

regions are in a “up-” or “downstate” (Fig. VI.2).
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Figure VI.2: Concept of a brain-computer interface for testing the functional role of ongoing oscilla-
tory activity. Incoming sEEG data recorded by intracranial electrodes are retrieved online and the envelope
of a specific frequency band is extracted in real-time for a single recording site (i.e., a bipole) located in a region
of interest. If the oscillatory activity crosses one of the two predefined thresholds (i.e. in high or low activity
states of the chosen frequency band), a stimulus (e.g., choice onset) is displayed on the screen in front of the
participant. Adapted from Cerf et al. (2010).
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This approach, which has been referred to as contingent trial presentation, has previously been

used in work that examined the effects of pre-stimulus memory and learning in rabbit hip-

pocampus (Griffin et al., 2004; Hoffmann & Berry, 2009; Nokia & Wikgren, 2014; Seager

et al., 2002). Interestingly, these studies found that trial presentation as a function of theta

oscillation quantity had a significant impact onmemory encoding and learning. To our knowl-

edge, only two studies have used contingent trial presentation in humans, combined with EEG

(Salari & Rose, 2016) or iEEG (Burke et al., 2015). Both studies were able to link the amount

of a pre-stimulus electrophysiological signal to a specific behavior, suggesting that this method

can, theoretically, allow functional differentiation of the effective role of ongoing oscillatory

activity in specific frequency bands.

With respect to this PhDwork, the use of a brain-computer interface thatmonitors the amount

of activity in a certain frequency band in real time could help advance several points. First, one

possibilitywouldbe to trigger the onset of choice basedonBGA(and/or lower frequencybands)

activity (Fig. VI.2). This setup would allow us to capitalize on the naturally fluctuating neural

activities prior to choice onset to test whether the ongoing oscillatory activity in our regions

of interest has an influence on value-based decision making. A second possibility would be to

trigger amood rating rather than a choice based on the amount of activity in a certain frequency

band. Indeed, in the first study, we found that in addition toBGA, theta, beta and gamma activi-

tieswere also correlatedwithmood indaIns. Althoughwe concludedusing amodel comparison

procedure that these frequency bands did not provide any additional information compared to

BGA, using such a technique would allow us to further understand whether the information

conveyed by distinct frequency bands is truly redundant. Finally, a third possibility could be

to use this brain-computer interface to stimulate the brain before a choice while it is in a par-

ticular state. Such an approach has already been employed in the field of memory, where it has

been shown that stimulation increased memory performance when delivered in poor encoding

states, but had the opposite effect when delivered in a high encoding state (Ezzyat et al., 2017).

Thus, onemight speculate that a similarmechanism is at playwhen stimulating the vmPFCand

aIns during decision making. In particular, this could explain why the effects of stimulation

were not stable across sessions. Using this more advanced methodology may help us address

this issue. Overall, the advantage of using a brain-computer interface to perform contingent

trial/stimulation presentation is that it goes beyond simple correlations between brain and be-

havior and does not require the use of another task prior to the choice (as in themood induction

procedure used in our first study) or a learning phase (as in neurofeedback experiments).
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Toward cellular mechanisms of value-based decision making

As pointed out by Parvizi and Kastner (2018):

“One advantage of human iEEG studies over those conducted in laboratory an-

imals such as monkeys or rats is that humans can perform tasks based on verbal

instructions, and they do so with minimal training and in the absence of ongo-

ing reward or task-cueing. Such an approach allows more ecologically valid and

ethologically relevant experiments than are possible in most animal species, also

avoiding the potential confound of overtraining.”

Added to this is the fact that some specific cognitive functions, such as the concept of mood,

are difficult to approach with animal models. Still, single-cell studies in animals retain the ad-

vantage of providing access to the activity of individual neurons, which can only be measured

indirectly with iEEG. Indeed, as mentioned before, the recorded iEEG signal consists in the

sum of local field potentials generated by large populations of cells adjacent to the recording

electrode, and is therefore too crude to discern the activity of individual neurons. In a fewmed-

ical centers, however, it is currently possible to record the activity of single neurons in humans

by using specific electrodes provided with microwires into the core of the shaft (Fried et al.,

1999) or hybrid electrodes that have high impedance contacts, for the recording of action po-

tentials from single units, interspersed with low impedance contacts for the recording of the

electroencephalographic signal (M. A. Howard et al., 1996). Recently, new hybrid electrodes

with a smaller diameter and the ability to extend tetrodes with a micrometer screw have also

been introduced (Fig. VI.3; Despouy et al., 2020). This specificity is significant in that it im-

proves the search for reactive neurons, which could have been a limiting factor with previous

electrodes, and should therefore contribute to make studies using this technique more accessi-

ble.

So far, much of the single-neuron research in humans has focused on memory, perception, or

navigation (see Mukamel and Fried, 2012; Quiroga, 2019 for reviews). These studies have val-

idated and complemented work done with fMRI or EEG, but have also provided information

that could not have been obtainedwith other techniques, such as the landmark discovery of low-

activity neurons known as concept cells (i.e., cells that respond very selectively to specific and

well-known concepts). In comparison, very few studies have examined human neural activity

in value-based decision making (Jenison et al., 2011; F. Mormann et al., 2019; Unruh-Pinheiro

et al., 2020). Thus, we believe that conducting single neuron recordings in the human brain

during a decision making task could significantly improve our knowledge of the decision mak-
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Figure VI.3: New hybridmicro-macroelectrode. The differencewith a clinical macroelectrode
is the inclusion of three tetrodes that can be extended from the shaft between the most medial
macrocontacts by up to 2 mm. Each tetrode is composed of four tungsten microwires with a
diameter of 20 mm (overall diameter: 70–80 mm). FromDespouy et al. (2019).

ing process. Notably, in this work, we found evidence suggesting that appetitive and aversive

processes are encoded in distinct brain regions. In particular, good mood and monetary gains

were correlated with the BGA of the vmPFC, whereas badmood andmonetary losses were cor-

related with the BGA of the aIns. Nevertheless, in the literature, this dissociation is not always

observed as some data indicate coding of negative values in the vmPFC (e.g., Plassmann et al.,

2010; Tom et al., 2007). Also in our second study, we observed that vmPFC correlated posi-

tivelywith loss valuewhen fixated. Moreover, in our third study, we found a dissociationwithin

the insula itself by showing that stimulation of different sub-regions influenced approach and

avoidance behaviors in opposite ways when faced with an uncertain choice. It would therefore

be interesting to test whether opposing systems of reward and punishment encoding are also

found at the cellular level. For example, one might think that different types of cells would

encode aversive and appetitive stimuli, and that these cells might be present in different pro-

portions and/or in different brain structures. At another extreme, there might be neurons that

would integrate aversive and appetitive information through opponent signals (e.g., by decreas-

ing their firing rate for aversive stimuli vs. increasing their activity for appetitive stimuli). The

exact mechanisms underlying valence encoding at the cellular level remains a debated issue even

in non-human primate studies.

Pathological vs. physiological activities

An obvious limitation of iEEG recordings in humans is that these data come from patients

with long-standing epilepsy. This fact raises the concern that the results obtained may reflect
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different aspects of this pathology rather than normal brain function. Several arguments are,

however, opposed to this hypothesis. First, it has been repeatedly observed that the responses

obtained with iEEG recordings are remarkably comparable to those obtained in healthy sub-

jects on fMRI, as was the case in our first study (Cecchi et al., 2021) with that of Vinckier et

al. (2018). Moreover, similar results are commonly found in patients with different types of

epilepsy involving different pathophysiological mechanisms. Despite this, the distinction be-

tween pathological and physiological activity had not been explored until recently (S. Liu et al.,

2018; S. Liu & Parvizi, 2019; von Ellenrieder et al., 2016). Epileptogenic tissue is thought to be

typically characterized by high frequency oscillations (HFOs, 80–500Hz) that can be recorded

with iEEG, and have different temporal characteristics (i.e., bursts of HFOs are of shorter dura-

tion than bursts of BGA, see S. Liu and Parvizi, 2019) compared to broadband gamma activity

(BGA) that is witnessed under normal conditions. Notably,HFOs are associatedwith interictal

epileptiform discharges and are randomly interspersed with pathological background activity

(Jiruska et al., 2017; Schevon et al., 2009), whereas BGA is time-locked to the presentation of

specific stimuli or cognitive conditions (Parvizi & Kastner, 2018). In a recent study, S. Liu and

Parvizi (2019) explored the extent to which epileptic tissue was able to generate physiological

responses to cognitive stimuli. Their results support that non-lesional epileptic tissue still pro-

duces functional responses to cognitive stimuli and that the intrinsic HFOs generated by this

tissue are different from the BGA activity induced by cognitive stimuli. Notably, this confirms

that brains affected by epilepsy are a suitable model to study the normal neural mechanisms

underlying various aspects of human cognition and behavior. Strikingly, their study also re-

veals an inverse functional relationship between pathological and physiological high-frequency

activities within the epileptic tissue, which implies that relevant cognitive stimuli fail to acti-

vate epileptic tissue if they occur within the time window of HFO epileptic activity. In other

words, HFO activity appears to have a transient negative interfering effect on the physiologi-

cal response profile of brain tissue. In particular, they were able to demonstrate that this effect

could explain the subject’s impaired performance in recognition memory. In our studies, we al-

ways assumed that the pathological activity did not influence the neural or cognitive processes

of interest. However, this latest study indicates that HFOs induce a “cognitive refractory state”.

It would therefore be interesting to re-analyze our dataset with this effect in mind to quantify

how pathological HFO interferes with physiological BGA.
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b. The use of intracranial electrical stimulation

As previously mentioned, many different analyses can be performed with the iEEG signal, such

as processing the amount of activity in each bandwidth or examining the interaction of activity

between different frequencies. The richness of this data is a real advantage, but it can also be a

burden as it is open to multiple interpretations and can lead to misleading results. Combining

passive recordings with active electrical stimulation is regarded as an optimal way to confirm the

validity of a hypothesis by providing evidence of causality (Parvizi & Kastner, 2018).

Directelectrical stimulation isaneffectivetoolfordisruptingvalue-based

choices and behaviors

In our third study, the use of iES in a structure involved in value-based decisionmaking and un-

certain choices resulted in alterations of choice behavior. Specifically, stimulation of the aIns

during the display of choice options was effective in inducing a decisional bias. Such results

had previously been obtained in an approach/avoidance task in macaque monkeys (Saga et al.,

2019), but to our knowledge, this is the first time thatmodification of choice behavior has been

observed following iES in humans. In addition, iES allowed to highlight regional differences

within the aIns between its ventral and dorsal parts. This result is of importance because it

could probably not have been obtained with a lesion study. Indeed, in humans, brain lesions

are generally spatially diffuse and only occasionally selective to specific brain areas. It would

therefore be difficult to find patients with non-overlapping lesions in these two spatially very

close structures. Finally, iES is originally used in patients with severe drug-resistant epilepsy or

brain tumors to precisely delineate the brain area that can be resectedwithout causing neuropsy-

chological deficits (Borchers et al., 2012; Desmurget et al., 2013). Despite these precautions,

some surgical procedures remain associated with decisional deficits. Demonstrating that iES is

effective in modifying choice behavior may therefore provide new tools for clinicians to guide

epilepsy surgery and help prevent postsurgical deficits.

Local vs. network effects of iES

It should be noted that in our third study, we interpreted the results of stimulation as being

solely local effects. However, it is widely assumed that electrical stimulation depolarizes a popu-

lation of neurons around the stimulation site, which will transmit signals along cortico-cortical

fibers and remotely depolarize several populations of neurons in other cortical areas (Keller et

al., 2014). These responses to stimulation, recorded with intracerebral depth electrodes and av-

eraged over a set of pulses, are called cortico-cortical evoked potentials (CCEP; Fig. VI.4a). Mea-
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Figure VI.4: Cortico-cortical evoked potentials (CCEP)mapping and connectivity probability. (a) CCEP in
response to single-pulse electrical stimulation from an electrode pair (in white) are recorded on all implanted elec-
trodes. The components of the CCEP include an early N1 and late N2. Responses can be classified as significant
(green) or non-significant (grey) based on the mean waveform. FromKeller et al. (2011). (b)Maps of connectivity
probability for the stimulation of the left (L) and right (R) anterior insula. Grey parcel represents no data within
that parcel. Black arrow displays the location of stimulation. From Ayoubian et al. (2021).

surement of CCEP to distal cortical stimulation is a well-established technique used in clinical

neurophysiology to determine the effective connections between two cortical sites of interest

(Gollo et al., 2017). Thus, analyzing the amplitude and latency of CCEPs generated on the

three regions of interest of study 3 (daIns, vaIns and vmPFC) would allow us to quantify the

cortical circuits that may mediate the reported effects of iES. However, due to time constraints,

we were not able to examine intracerebral electrophysiological data in the third study. In any

case, connectivity studies from iEEG are not ideal since they suffer from poor spatial sampling

available in a single patient and the coverage of recording electrodes is mainly focused on the

epileptic network of interest. To circumvent this issue, we could additionally rely on connectiv-

ity atlases such as the one constructed from the F-TRACT database (https://f-tract.eu/atlas/),

which is based on intra-cortical stimulation and provides a probabilistic quantification of hu-

man cortico-cortical connections froma large number of patients (Fig.VI.4b;David et al., 2013;

Keller et al., 2014; Trebaul et al., 2018).
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2. Theoretical implications

a. Opponent systems vs. alternative hypotheses: how are valence, mood,

and attentional bias on choice implemented in the brain?

As discussed in the introduction to this manuscript, the question of the neural basis of appet-

itive and aversive processes is the subject of much debate. All three experiments conducted in

this PhD suggest that two opposing systems coexist in the brain, one used to process rewards

and positive stimuli in general and the other that would be used to process punishments and

negative stimuli. This result is further discussed in the following section.

The dimensionality of mood

A somewhat related debate in emotion science centers on whether the valence of mood is more

accurately conceived of as a bipolar or bivalent construct. According to the bipolar view (Rus-

sell, 2003), the valence of mood exists on a continuum ranging from unpleasant affect at one

end to pleasant affect at the other end, with neutral mood being a zero point with no valence

between these poles. In contrast, according to the bivalent view (Watson et al., 1988; Watson

& Tellegen, 1985), the valence of mood varies along two independent dimensions: a positive

affect dimension going from neutral to pleasant, and a negative affect dimension going from

neutral to unpleasant. In our first study, we found that mood was positively correlated with

BGA in the vmPFC and negatively correlated with BGA in the daIns. Furthermore, by ana-

lyzing bad, neutral, and good mood levels separately, we found that a higher BGA signaled the

two extreme tertiles: good mood in the vmPFC and bad mood in the daIns. Thus, this result

is rather consistent with the bivalent view as it suggests that good and bad moods are best con-

ceived as independent components relying on distinct brain systems. However, a limitation of

our design was that mood ratings were assigned on a unidimensional scale (from bad mood to

good mood), which prevented us from effectively testing for the presence of two underlying

dimensions. Furthermore, although our results are in agreement with other previous findings

(Eldar & Niv, 2015; Vinckier et al., 2018), there is no consensus regarding how mood is im-

plemented in the brain. Notably, several studies have reported a positive correlation between

mood and the insula (Bijanzadeh et al., 2019; Rutledge et al., 2014; Young &Nusslock, 2016).

Additional studies using separate rating scales are therefore needed to determinewhethermood

is indeed supported by two opposite brain systems.
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Itmay also be noted thatwe found results close to those ofVinckier et al. (2018) using a very sim-

ilar task, whereas the other studies that found different results did not present the same mood-

inducing task structures. Notably, in one of these studies, gains and losses were not present

on all trials (Rutledge et al., 2014), while in the other, negative valence was not induced at all

(Young &Nusslock, 2016). This raises the question of the extent to which the structure of the

mood-inducing task can explain these discrepancies. Similarly, the timescale at which mood

fluctuations were assessed could have an impact on the results. In our first study, mood was

manipulated through feedback received by patients during a quiz task. Such a procedure had al-

ready proved effective in manipulating self-reported mood in laboratory experiments (Eldar &

Niv, 2015; Rutledge et al., 2014; Vinckier et al., 2018). Furthermore, we found that our mood

measurements reflected the cumulative impact ofmultiple feedbacks, whichdistinguished them

from emotions related to a single stimulus. Nevertheless, the dynamics of these fluctuations,

which last only fewminutes, are short-lived compared to more ecological fluctuations collected

over several hours in the study by Rao et al. (2018). There is also no evidence that the neural

processes underlying mood changes over shorter and longer timescales are identical. Further

studies, examining the neural correlates of mood over different timescales, are therefore needed

to confirm our findings.

Functional opponency: from baseline iEEG vs. gaze-dependent iEEG

In our first study, we demonstrated that opponent systems existed in the brain even before the

choice offerwas presented. In particular, baseline activity provided opposing choice predictions

in the vmPFC and daIns. Using a computational model, we were able to show that pre-offer

activity in the vmPFC and daIns had competing effects on the decision by acting on different

attributes of the choice. In particular, baseline activity in the vmPFC positively modulated the

weight assigned to gains, while baseline activity in the daIns positively modulated the weight as-

sociatedwith losses. However, this result couldnot be testedwithout amodel because, although

we showed that baseline activity was carried over to choice-related activity, we were unable to

find a direct correlation between activity during the decision process and the different attributes

of the offer. In conducting the second study, we found that this was actually unattainable with-

out the use of eye fixation data. Indeed, in this study, we showed that the correlation between

activity during the decision process and attributes depended on whether the latter were fixated

or not, and that simply averaging the signal over the choice process did not allow us to identify

reliable neural correlates of attribute valuation. In particular, we showed that the gain value

signal was modulated by gaze in the vmPFC and the loss value signal was (notably) modulated

by gaze in the aIns. Strikingly, this gain- or loss-fixation-dependent signal positively predicted
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choices in the vmPFC and negatively in the aIns, respectively. Although we did not investigate

pre-choice activity in this work, it is tempting to relate these results to those of the first study.

Notably, itwouldbe consistentwith the computationalmodel to assume that the baseline in the

vmPFC influences the gain-fixation-dependent signal, which in turn influences choice, whereas

the baseline in the aIns would influence the loss-fixation-dependent signal and thus negatively

influence choice, but this remains to be demonstrated.

A limitation of the second study is that we did not formulate any computational mechanisms

underlying our observations. This is partly because most of the work that has studied atten-

tional bias on value-based decision making has focused on tasks with binary choices contain-

ing only a single (usually appetitive) attribute, as is the case for aDDM (Krajbich et al., 2010).

However, in our study, we used an accept/reject choice task mixing appetitive and aversive at-

tributes. Sequential sampling models that detail how multi-attribute decisions are made have

been developed previously, but these do not incorporate the observed distribution of attention

throughout the decision (e.g., Bhatia, 2013; Trueblood et al., 2014;Wollschläger andDiederich,

2012. Recently, however, a study has addressed this decision framework and proposes a modifi-

cation of the aDDM, called the binary-attribute attentional drift diffusionmodel (baDDM), to

describe the process of choosing between simple binary-attribute options and how it is affected

by fluctuations in visual attention (Fig. VI.5).
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Figure VI.5: Depiction of the binary-attribute attentional drift diffusion model (baDDM).
A relative decision value (RDV) signal evolves over time. Its slope is biased towards the fixated
item, but random noise is added to the RDV at every millisecond. When the RDV hits a barrier,
a decision is made. The shaded vertical regions represent what item is currently fixated. In this
example, three fixations are made (appetitive, aversive, appetitive) and the individual chose ‘‘yes.”
The equations below the image describe how the RDV is integrated over time. The parameter δ
describes an increase in weight that the attended item receives, while the parameter θ describes a
decrease in weight that the unattended item receives. From Fisher (2017).
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The aDDM has previously been used to estimate how attention biases the drift rate based on

which of several choice options is currently fixated (Krajbich et al., 2010). To do this, a single

fixation bias parameter is applied to the unattended option, so that its value is discounted in

the evidence accumulation process. The baDDM extends this model by proposing to estimate

separately the degree to which the weight of the monitored attribute increases and the degree

to which the weight of the unmonitored attribute decreases (Fig. VI.5). Consequently, one

could consider using this model to specify the neuro-computational mechanisms in our study.

Nevertheless, another difficulty is that baDDM does not account for neuroanatomy. This is

in addition to the fact that there are very few studies that show an effect of visual attention

on value (see section II.3.c), and to our knowledge we are the first to show a direct effect of

attention-modulated brain activity on choice. Thus, it remains to be addressed how distinct

regions can be incorporated into the baDDMmodel.
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Résumé
L’identification des facteurs dont les fluctuations sont associées à des choix incohérents est un enjeu majeur pour
la théorie de la décision rationnelle. Dans cette thèse, nous avons étudié comment l’activité cérébrale explique en
partie la variabilité des choix lors d’une tâche de choixmulti-attributs en profitant de la possibilité rare d’enregistrer
directement l’activité intracorticale du cerveau humain ou de réaliser des stimulations intracorticales pour sonder
l’implication causale de régions corticales clés.

Dans la première étude, nous avons examiné les mécanismes neuro-computationnels par lesquels les fluctuations
de l’humeur peuvent influencer le comportement de choix humain. Des données EEG intracérébrales ont été
recueillies chez un grand groupe de participants (n = 30), alors qu’ils effectuaient des tâches de quiz et de choix
entremêlées. L’activité neuronale basale précédant le début du choix a, dans un premier temps, été confrontée au
niveau d’humeur (estimé par un modèle computationnel intégrant les feedbacks reçus dans la tâche de quiz), puis
aux poids des attributs des options, à l’aide d’un modèle computationnel prédisant l’attitude à l’égard du risque
dans la tâche de choix. Les résultats ont montré que 1) une activité gamma large bande (BGA) élevée dans le cor-
tex préfrontal ventromédian (vmPFC) et l’insula antérieure dorsale (daIns) signalait respectivement les périodes
d’humeur élevée et faible, et 2) qu’une activité BGA élevée dans le vmPFC et le daIns favorisait et tempérait re-
spectivement la prise de risque en surpondérant les perspectives de gain et de perte monétaires. Ainsi, ces résultats
montrent que les feedbacks induisent des états cérébraux qui correspondent à différentes humeurs et biaisent la
comparaison des options sûres et risquées. Plus généralement, cette première étude pourrait expliquer pourquoi
les personnes qui expérimentent des événements positifs (ou négatifs) dans une partie de leur vie ont tendance à
s’attendre à un succès (ou un échec) dans une autre. Dans la deuxième étude, nous nous sommes concentrés sur
les corrélats neuroanatomiques qui sous-tendent les effets des fixations visuelles sur le choix. Des données d’EEG
intracérébral ont été collectées simultanément avec des données de fixations oculaires chez un grand groupe de
participants (n = 38) alors qu’ils effectuaient une tâche de choix multi-attributs dans laquelle ils devaient accepter
ou refuser une offre risquée. L’activité neuronale (BGA)mesurée pendant les fixations visuelles sur les attributs de
l’option a alors été corrélée avec la valeur de l’attribut (gains monétaires vs. pertes). Les résultats de cette deuxième
étude ont montré que 1) l’activité neuronale dépendant du regard est corrélée positivement avec la valeur d’un
attribut donné lorsqu’il est fixé et négativement avec la valeur de celui-ci lorsqu’il n’est pas fixé et ce, dans un large
réseau cérébral, 2) l’activité neuronale dépendant du regard dans le vmPFC permet de prédire les choix risqués des
sujets lorsqu’ils regardent les gains et 3) l’activité neuronale dépendant du regard dans l’aIns permet de prédire les
choix vers l’option sûre lorsque les sujets regardent les pertes. Ainsi, nos résultats permettent de clarifier des élé-
ments neuroanatomiques clés sur la façon dont l’attention visuelle interfère avec l’activité neuronale pourmoduler
nos choix. Dans la troisième étude de cette thèse, nous avons étudié l’effet de la perturbation ciblée du cortex insu-
laire antérieur et du vmPFC sur les choix risqués. L’effet de la stimulation électrique intracrânienne (iES) délivrée
directement dans le cortex humain à 50Hz chez un groupe de patients épileptiques (n = 13) a été examiné pendant
que les sujets effectuaient une tâche de choix similaire à celle utilisée dans les deux études précédentes. Les résul-
tats ont montré une dissociation fonctionnelle au sein de l’insula antérieure : la stimulation de l’insula antérieure
dorsale (daIns) augmentait les choix risqués tandis que la stimulation de l’insula antérieure ventrale (vaIns) favori-
sait les choix plus sûrs. À l’inverse, la stimulation électrique intracrânienne du vmPFC a eu tendance à favoriser
la prise de risque (comme dans daIns). Ces données exceptionnelles soulignent l’importance causale de ces zones
cérébrales lors de choixmulti-attributs impliquant une incertitude et fournissent des indices pour de futures études
mécanistiques de l’anatomie et de la physiologie des choix.

Dans l’ensemble, cette thèse a permis de mieux comprendre les mécanismes neurocomputationnels qui sous-ten-
dent les choix multi-attributs en suggérant que des systèmes cérébraux dissociés pourraient être impliqués dans la
représentation de la valeur des attributs appétitifs ou aversifs avant et pendant le processus de choix.

186



Summary
Identifying factors whose fluctuations are associatedwith choice inconsistency is amajor issue for rational decision
theory. In this thesis, we investigated how brain activity partly explain choice variability during a multi-attribute
choice task by taking advantage of the rare opportunity to either directly record intracortical activity in the human
brain or to perform intracortical stimulation to probe the causal involvement of key cortical regions.

In the first study, we investigated the neuro-computational mechanisms through which mood fluctuations may
bias human choice behavior. Intracerebral EEG data were collected in a large group of participants (n = 30), while
they were performing interleaved quiz and choice tasks. Neural baseline activity preceding choice onset was con-
fronted first tomood level, estimated by a computational model integrating the feedbacks received in the quiz task,
and then to theweighting of option attributes, in a computationalmodel predicting risk attitude in the choice task.
Results showed that 1) elevated broadband gamma activity (BGA) in the ventromedial prefrontal cortex (vmPFC)
and dorsal anterior insula (daIns) was respectively signaling periods of high and low mood, 2) increased vmPFC
and daIns BGA respectively promoted and tempered risk taking by overweighting gain versus loss prospects. Thus,
incidental feedbacks induce brain states that correspond to different moods and bias the comparison of safe and
risky options. More generally, this first study might explain why people experiencing positive (or negative) out-
come in some part of their life tend to expect success (or failure) in any other. In the second study, we focus on
the neuro-anatomical correlates underlying the effects of visual fixations on multi-attribute choices. Intracerebral
EEGdatawere collected simultaneouslywith gaze data in a large groupof participants (n= 38), while theywere per-
forming an accept/reject multi-attribute choice task. Neural activity (BGA) measured during visual fixations on
option attributes before the choice onset was confronted to theweighting of option attributes. Results from study
2 showed that 1) gaze-dependent neural activity correlated positively with a given option attribute value when fix-
ated and negatively with the dimension’s value when unfixated in a large brain network, 2) gaze-dependent neural
activity in the vmPFC was positively predictive of subject’s choices when they looked at gains 3) gaze-dependent
neural activity in the aINS was negatively predictive of subject’s choices when they looked at losses. Thus, our
findings specify key neuro-anatomical insights into how gaze pattern interferes with neural activity to bias multi-
attribute choices. In the third empirical study of this thesis, we investigated the effect of targeted disruption of
the anterior insular cortex and the ventromedial prefrontal cortex on risky choices. The effects of intracranial elec-
trical stimulation (iES) delivered directly in the human cortex at 50 Hz in a group of epileptic patients (n = 13)
were examinedwhile they were performing amulti-attribute choice task during which they had to choose between
risky vs. safe monetary prospects. Results showed a functional dissociation within the anterior insula: iES on the
dorsal anterior insula (daIns) increased risky choices whereas iES on the ventral anterior insula (vaIns) promoted
safer choices. Conversely, intracranial electrical stimulation on the vmPFC tended to promote risk taking (as in
the daIns). These rare cases highlight the potential causal importance of these brain areas during multi-attribute
choices involving uncertainty and provides clues for future mechanistic studies of the anatomy and physiology of
choices under uncertainty.

Overall, this PhDextended theknowledge about theneuro-computationalmechanismsunderlyingmulti-attribute
choices by suggesting that dissociable brain system might mediate appetitive vs. aversive attribute value represen-
tation both prior and during the choice process.
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