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A B S T R A C T

The recent increase in computation power and the ever-growing amount of data
available ignited the rise in popularity of deep learning algorithms. In addition
to being strong candidates to solve new problems, these algorithms are often
able to obtain improved performances over existing approaches, reaching or even
beating human-level abilities in numerous domains. However, the expertise, the
amount of data, and the computing power necessary to build such algorithms as
well as the memory footprint and the inference latency of the resulting system
are all obstacles preventing the use of these methods by a larger user base and on
certain applications. In this thesis, we propose several methods allowing to make
a step towards a more efficient and automated procedure to build deep learning
models.

First, we focus on learning an efficient architecture for the standard image
classification and segmentation problems. We propose a new model in which
users can guide the architecture learning procedure by specifying a fixed budget
and cost function. The training procedure then automatically learns a model and
its architecture by jointly optimizing the predictive performance and the user-
specified black-box cost function to fit the constraint. Then, we move away from
the static setting to consider the problem of sequence classification, where a model
can be even more computationally efficient by dynamically adapting the size of
the model to the complexity of the signal to come. We show that both approaches
result in significant budget savings on a range of cost functions and classes of
models.

Finally, we tackle the efficiency problem through the lens of transfer learning.
Arguing that a learning procedure can be made even more efficient if, instead of
starting tabula rasa, it builds on knowledge acquired during previous experiences.
We explore modular architectures in the continual learning scenario, where a
model faces a sequence of tasks having different degrees of relatedness. In this
context, solving a new problem reduces to finding the correct combination of
pre-trained modules, representing already acquired skills, and new modules, rep-
resenting the ability to adapt these skills to the task at hand. We present a new
benchmark allowing a fine-grained evaluation of different kinds of transfer and
show that the proposed modular approach is able to consistently beat existing
approaches on most of these dimensions.
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R É S U M É

La récente augmentation de la puissance de calcul et la croissance de la quan-
tité de données disponibles sont à l’origine de la montée en popularité des al-
gorithmes d’apprentissage profond. En plus d’être de bons candidats pour ré-
soudre de nouveaux problèmes, ces algorithmes sont souvent capables d’obtenir
des performances améliorées par rapport aux approches existantes, atteignant
ou même surpassant les capacités humaines dans de nombreux domaines. Ce-
pendant, l’expertise, la quantité de données et la puissance de calcul nécessaires
pour construire de tels algorithmes ainsi que l’empreinte mémoire et la latence
en déploiement sont autant d’obstacles empêchant l’utilisation de ces méthodes
par plus d’utilisateurs et sur certaines applications. Dans cette thèse, nous propo-
sons plusieurs méthodes permettant d’approcher une procédure plus efficace et
automatisée pour construire des modèles de deep learning.

Tout d’abord, nous nous concentrons sur l’apprentissage d’architectures effi-
caces pour les problèmes de classification et de segmentation d’images. Nous
proposons un nouveau modèle dans lequel les utilisateurs peuvent guider la pro-
cédure d’apprentissage de l’architecture en spécifiant un budget et une fonction
de coût. La procédure d’apprentissage apprend ensuite automatiquement un mo-
dèle et son architecture en optimisant conjointement les performances prédictives
et la fonction de coût spécifiée par l’utilisateur. Ensuite, on s’éloigne du cadre
statique pour considérer le problème de la classification de séquences, dans lequel
un modèle peut être plus efficace en adaptant dynamiquement la taille du modèle
à la complexité du signal à venir. Nous montrons que les deux approches se tra-
duisent par des économies de budget significatives sur une gamme de fonctions
de coût et de classes de modèles.

Enfin, nous abordons le problème de l’efficacité à travers le prisme de l’ap-
prentissage par transfert. Une procédure d’apprentissage peut être rendue encore
plus efficace si, au lieu de démarrer tabula rasa, elle s’appuie sur les connaissances
acquises lors d’expériences précédentes. Nous explorons les architectures mo-
dulaires dans le scénario d’apprentissage continu, où un modèle fait face à une
séquence de tâches ayant différents degrés de relation. Dans ce contexte, résoudre
un nouveau problème se réduit à trouver la bonne combinaison de modules pré-
entraînés, représentant des compétences déjà acquises, et de nouveaux modules,
représentant la capacité d’adapter ces compétences à la tâche à accomplir. Nous
présentons un nouveau protocole d’évaluation permettant une analyse fine des
différents types de transfert et montrons que l’approche modulaire proposée est
capable de battre les approches existantes sur la plupart de ces dimensions.
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1.1 Context

Artificial Intelligence (AI) is commonly defined as the ability of machines to
exhibit human or animal-like intelligence. While the idea of artificial beings show-
ing signs of intelligence can be traced back to centuries in myths and legends, the
first concrete steps in this direction were made in the 1950s. First, Alan Turing
proposed the Turing test, allowing the evaluation of an “Intelligent“ system by
asking the question, "Is it able to show intelligent behavior?" Then, John McCarthy
coined the term Artificial Intelligence during the organization of the Dartmouth
workshop on AI in 1956. This workshop is considered one of the founding events
of the field since many of its attendees would continue making significant con-
tributions to the field over the next decades. Since then, the term AI is also used
to characterize all the techniques that humans have created through decades of
research to build and train machines capable of performing tasks then impossible
to automate.
Machine Learning (ML) is the branch of AI focused on this training. The general
objective is to automatically extract knowledge or learn how to perform specific
tasks from data. One way of doing that is through the use of Artificial Neural
Networks (ANNs), a model loosely related to how our brain works and able to
learn to map features given as inputs to the desired output. Recently, a subfield
of ML called Deep Learning (DL) propose to learn this input/output mapping not
directly using the given features but by going through intermediate representa-
tions, with the particularity that these successive representations are themselves
automatically learned from data. The resulting system composed of this succes-
sion of Neural Network layers each feeding its output to another layer deeper in

1
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Figure 1.1. – Trends in AI research, see Zhang et al. (2021) for more details.

the chain is called a Deep Neural Network (DNN).
One of the major strengths of DL, explaining in a great part the renewed interest
in the field, is its ability to scale. While most of the basic concepts used in DL

have been discovered decades ago, its ability to benefit from modern advances in
hardware and to leverage the ever-increasing amount of data available allows this
number of successive representations to increase, resulting in deeper and more
powerful DNNs able to solve harder problems. This technical progress ignited a
new wave of AI research projects, resulting in a dramatic increase in the number
of new contributions, all proposing new architectures, new kinds of layers, or new
training procedures – see Figure 1.1. These contributions allowed the community
to make huge leaps first in computer vision (Krizhevsky et al., 2012; He et al.,
2016; Huang et al., 2017), quickly followed by speech processing (Amodei et al.,
2016; Baevski et al., 2020), natural language processing, reasoning, and numerous
other domains. This progress on research problems also had a positive impact on
a large number of concrete applications able to benefit from the recent advances
in AI such as medicine, physics, biology, robotics or art.

1.2 Challenges

Yet, with the growing popularity of DL, it is becoming increasingly difficult to
find the optimal components to tackle a new problem. Both because of the grow-
ing number of publications, making the space of possible solutions ever larger,
and the pace at which the field is advancing, as the current state-of-the-art could
be replaced by better performing approaches within a few months. The principal
consequence is that each new project based on Deep Learning (DL) requires a lot
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of resources. The two main being the expert knowledge necessary to build, tune
and update high-performing architectures, the second being computing power, as
the process of building and deploying these architectures is very energy-hungry.
Indeed, a DNN being a complex combination of different types of layers, finding
the correct arrangement of layers and the corresponding parameters requires ex-
pertise and time. Since the standard procedure is to try a solution, evaluate it
and use the results to see what can be improved, the first part of the problem we
tackle in this thesis is to explore to what degree this iterative procedure can be
automatized using DL algorithms themselves. Such automation would not only
free up time for experts to work on more advanced problems but may also im-
prove the final performance of the system, as an automatically learned search
procedure could be more efficient than a hand-made one. The final major benefit
of such algorithms is that they would also allow experts from other domains to
build systems suiting their own needs and, more generally, greatly reduce the
entry cost of modern AI. The second issue we tackle has to do with the energy
consumption of the modern DL pipeline, arising at two different steps of the life
cycle of such systems:

Training In addition to the hours of human time spent on tuning the system,
the training procedure of a single DNN can by itself can be very expensive. We
can take the extreme example of GPT-3 (Brown et al., 2020), the latest language
model 1 developed by Open AI. While being a technical feat and reaching impres-
sive performance, being closer to pass the Turing test than any other machine,
a single training run can be estimated to millions of dollars and 10s of millions
if taking into account the iterative trial and errors necessary to its development.
The resulting system requires hundreds of GB just in storage and is nowhere
close to being usable on standard computers, let alone connected devices like
our smartphone. The same observation can be made for other widely publicized
contributions such as DeepMind’s AlphaGo (Silver et al., 2016), the first algorithm
able to beat a world champion in the game of go, and its more recent version Al-
phaZero (Silver et al., 2017) able to outperform all other algorithms on the games
of go, chess and shogi.

Deployment Once trained, the purpose of a DNN is to be used on real-world
problems, where the raw predictive performance is not the only measure that
matters. Taking the example of a conversational agent for mobile devices, care
should be taken to ensure that the model can work in low-resource environments.
Large models should therefore be avoided for this application as they tend to be
slower to evaluate and more energy-hungry. In order to find a model able to run

1. A DNN trained to predict the next word in a sentence.
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close to real-time and that would not drain the battery of the device, the standard
route is to highly restrict the DNN architectures that will be tried and/or to post-
process the trained model to compress it. Both solutions are very time-consuming
and harm the final performance of the deployed model.

1.3 Contributions and Thesis Outline

We propose in this thesis to tackle the problem of using Neural Networks
to learn Neural Network Architectures, also referred to as Neural Architecture
Search (NAS). We present in the next chapters different NAS algorithms allowing
us to incorporate a budget constraint to the search procedure, automatically dis-
covering architectures reaching higher performances than handmade ones and
better suited for deployment. We explore three different settings of increasing
complexity in which NAS can be leveraged:

• In Chapter 2, we present general background relevant to the entire thesis.
A short background section is added to each chapter containing specific
information only relevant to this part. In the general background, we cover
algorithms commonly used to help the tuning of neural network architec-
tures. We first present simple search algorithms based on heuristics and then
more recent approaches based on ML. In this second category, we start with
the standard approaches such as Bayesian Optimization and Evolutionary
Algorithms before presenting in more depth the recent approaches based
on Deep Learning, using combinations of Reinforcement Learning (RL) and
specific architecture components. Since one of the objectives of this thesis
is to learn more efficient Neural Networks, we present some background
approaches on model compression in the second part of this chapter. The
three main categories we present are quantization, pruning, and distillation.

• In Chapter 3, we focus on the NAS problem in a setting where the model used
at inference must respect some user-defined budget We formulate this issue
as a problem of automatically learning a neural network architecture under
budget constraints. To tackle this problem, we propose a budgeted learning
approach that integrates a maximum cost directly in the learning objective
function. The main originality of our approach with respect to state-of-the-
art is the fact that it can be used with any type of costs, existing methods
being usually specific to particular constraints like inference speed or mem-
ory consumption – see Chapter 2 for a review of the state-of-the-art. In our
case, we investigate the ability of our method to deal with three different
costs: (i) the computation cost reflecting the inference speed of the resulting
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model, (ii) the memory consumption cost that measures the final size of the
model, and the (iii) distributed computation cost that measures the inference
speed when computations are distributed over multiple machines or proces-
sors. This work led to the following publication: Tom Veniat and Ludovic
Denoyer (2018). “Learning Time/Memory-Efficient Deep Architectures With
Budgeted Super Networks”. In: 2018 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018.
IEEE Computer Society, pp. 3492–3500. doi: 10.1109/CVPR.2018.00368.
url: http://openaccess.thecvf.com/content%5C_cvpr%5C_2018/html/
Veniat%5C_Learning%5C_TimeMemory-Efficient%5C_Deep%5C_CVPR%5C_
2018%5C_paper.html.

• In Chapter 4, we propose to apply NAS to temporal problems. While the data
samples experienced by the model in Chapter 3 are independent and iden-
tically distributed (i.i.d), the problem on which we focus here doesn’t have
this property. In this setting, some patterns giving information on what will
happen next can appear in the data. If a model can identify these patterns in
the input distribution, it can reduce its computation budget further than any
model making the i.i.d assumption. Indeed, by predicting when examples
will be simpler, it can save time on those and spend it later, when it antici-
pates more challenging samples. To solve this problem, we propose a NAS

approach able to adapt the architecture on-the-fly during a sequence, where
saving (resp. spending) time reduces to selecting small (resp. large) archi-
tectures. This work led to the following publication: Tom Véniat, Olivier
Schwander, and Ludovic Denoyer (2019). “Stochastic Adaptive Neural Ar-
chitecture Search for Keyword Spotting”. In: IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP 2019, Brighton, United Kingdom,
May 12-17, 2019. IEEE, pp. 2842–2846. doi: 10.1109/ICASSP.2019.8683305.
url: https://doi.org/10.1109/ICASSP.2019.8683305.

• In Chapter 5, we propose to use NAS on dynamic tasks, where the problem
to solve changes over time. This requires an ability of the search proce-
dure to update a model to new tasks while, if possible, making use of the
knowledge acquired on previous problems to greatly speed up the training
procedure. This also implies that the prior knowledge to build upon should
be retained, at least in part, from one experience to the next. To this end, we
place ourselves in the Continual Learning (CL) framework which bears some
similarities with this setting. We first pinpoint general properties that a good
CL learner should have, confirming that NAS is a good candidate approach.
Then we propose both a Lifelong Neural Architecture Search algorithm and
a new benchmark, specifically tailored to assess the amount of knowledge
retained and shared across tasks having different degrees of relatedness.

https://doi.org/10.1109/CVPR.2018.00368
http://openaccess.thecvf.com/content%5C_cvpr%5C_2018/html/Veniat%5C_Learning%5C_TimeMemory-Efficient%5C_Deep%5C_CVPR%5C_2018%5C_paper.html
http://openaccess.thecvf.com/content%5C_cvpr%5C_2018/html/Veniat%5C_Learning%5C_TimeMemory-Efficient%5C_Deep%5C_CVPR%5C_2018%5C_paper.html
http://openaccess.thecvf.com/content%5C_cvpr%5C_2018/html/Veniat%5C_Learning%5C_TimeMemory-Efficient%5C_Deep%5C_CVPR%5C_2018%5C_paper.html
https://doi.org/10.1109/ICASSP.2019.8683305
https://doi.org/10.1109/ICASSP.2019.8683305
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This work led to the following publication: Tom Veniat, Ludovic Denoyer,
and Marc’Aurelio Ranzato (2021). “Efficient Continual Learning with Mod-
ular Networks and Task-Driven Priors”. In: 9th International Conference on
Learning Representations, ICLR 2021 abs/2012.12631. arXiv: 2012.12631. url:
https://arxiv.org/abs/2012.12631.

• In Chapter 6, we conclude with a summary of the contributions and propose
some research perspectives.

https://arxiv.org/abs/2012.12631
https://arxiv.org/abs/2012.12631
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In this chapter, we present the general problem of model definition in Machine
Learning (ML), with a focus on the case of Neural Networks (NNs). We first
introduce a broad set of methods often used to tune NN architectures in Section 2.1.
Then we present several propositions to use Deep Learning (DL) methods to tackle
this problem in Section 2.2, replacing the hand-tuned architectures and simple
algorithms with a training procedure able to learn powerful architectures. This
line of work is referenced to as Neural Architecture Search (NAS). Finally, we
present existing work focused on obtained efficient models in Section 2.3.

In the general ML pipeline, depicted in Figure 2.1, the model definition step
corresponds to the selection of a class of algorithms (e.g. Random Forests, Sup-
port Vector Machines, K-Nearest Neighbors, ...) and the selection of the hyper-
parameters of a specific model that will be trained. For instance, if the selected
class is NNs, the number of layers, the connection between them, and the number
of neurons per layer are examples of hyper-parameters to select before train-
ing. The procedure to select these hyper-parameters is done following a prede-
termined procedure represented by the green arrow in Figure 2.1, and usually
guided by the performance of the constructed model once trained.

While some of the methods we present in this section can be used to tune the
hyper-parameters of both the model architecture and the training procedure, we
focus here on the former as it is the main subject of the thesis. Nevertheless, it is
important to note that some meta-learning approaches also tackle the problem of

7
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Data Preparation Model Definition Evaluation Deployment/
PublicationTraining

Figure 2.1. – Schematic representation of the standard ML pipeline. The blue blocs
correspond to steps usually involved in the hyper-parameter selec-
tion process. Model definition corresponds to the selection of a class
of algorithms as well as the corresponding parameters (e.g., if the
class is NNs, depth and width are examples of such parameters).
The tuning process can be split into two parts: model tuning (Green
arrow) and training procedure tuning (red arrow), both processes
being guided by the evaluation metrics.

incorporating the tuning of the training procedure into the training itself (Thrun
and Pratt, 1998; Hochreiter et al., 2001; Andrychowicz et al., 2016; Finn et al.,
2017a; Li et al., 2017b; Nichol et al., 2018a).

2.1 Automatic Hyper-Parameter Tuning

The art of hand-tuning the hyper-parameters of a NN is a skillful practice in-
volving rules of thumb, experience, intuition, and a lot of patience. Over the years,
several approaches have been proposed to streamline the process. We present the
most common of them in this section.

2.1.1 Simple search algorithms

Grid Search The simplest algorithm to tune hyper-parameters is the grid search.
In this approach, the user defines a set of values to try for each parameter and
train a model to convergence for each possible combination. The validation set
performance is then used to select the best combination. The advantages of this
algorithm are that it is simple, easy to implement, and highly parallelizable since
the trials are independent. The main downside is its inefficiency, as the number
of combinations to try grows exponentially w.r.t. the number of hyperparameters
to tune. While it can be a good option for small networks with simple training
procedures, other approaches are generally used for recent models.
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Figure 2.2. – Toy comparison of grid search and random search with 20 trials on
a 2D space. We observe that random search (b) results in a better
coverage of the space than the grid search (a) for the same number
of trials, especially when some parameters are more important than
others.

Random Search In the random search, the parameters are drawn from user-
defined distributions instead of selected from a fixed set of possible values. It has
the same advantages as the grid search and is in general favored over it because
it offers better coverage of the hyper-parameters space as illustrated in Figure 2.2,
resulting in higher performances.

To better exploit the structure of the problem at hand, one can use these search
algorithms in an iterative way, each step allowing to identify regions of the space
that will be searched over using a finer scale in the next iteration. Other algo-
rithms can also be used to schedule the search more efficiently. For example,
some algorithms early-stops less promising trials to free up resources for other
combinations (Jamieson and Talwalkar, 2016; Li et al., 2017a; Li et al., 2020) or
combine the hyper-parameters of different trials during training to allow the
search of schedules where some parameters changes over time (Jaderberg et al.,
2017).

2.1.2 Bayesian Optimization

As a global optimization method of black-box functions, Bayesian Optimization
is a good candidate approach for optimizing the hyperparameters of a NN. For
example, Snoek et al. (2012) proposes to see the generalization performance of
a model as a sample from a Gaussian Process. The search algorithm alternates
the usage of the acquisition function to select where to evaluate the function
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(an evaluation corresponding to the construction and training a model) and the
update of the prior distribution using the new data (validation performance of
the trained model). This method achieved state-of-the-art performance on Cifar-
10 Krizhevsky (2009a) by tuning the hyper-parameters of AlexNet Krizhevsky et
al. (2012). While showing a better sample efficiency than the random search, this
method is less commonly used due to its iterative nature, preventing a massive
parallelization of the search procedure.

2.2 Neural Architecture Search

The main idea of NAS is to move the conception of a specific architecture from
the Model Definition component of Figure 2.1 to the training itself. Different
authors have proposed to provide networks with the ability to learn to select
the computations that will be applied i.e choosing the right architecture for a
particular task/sample. This is the case for example in Denoyer and Gallinari
(2014) where the path that a sample will follow is dynamically sampled during
inference or in Srivastava et al. (2015) based on gating mechanisms.

Different algorithms have been proposed to achieve this goal. In general, a NAS

algorithm has two main components. Those components are the search space,
which defines at the same which architectures can be learned by an approach and
how the architectures are represented during the search procedure. The second
component is the search strategy itself, corresponding to how the search-space
will be explored.

2.2.1 Search Space

Sequential representation One of the first kind of approaches (Zoph and Le,
2017; Zoph et al., 2018) use a sequence of tokens to represent an architecture.
In Zoph and Le (2017) each token represents one hyper-parameter of a layer. It
allows for example to represent any feed-forward N-layers Convolutional Neural
Networks (ConvNets) as a sequence of size 5N, each group of 5 items representing
respectively the kernel height, kernel width, stride height, stride width, and num-
ber of filters. They also propose different structures of the generated sequence to
allow skip-connections and to represent the recurrent cell of a Recurrent Neural
Network (RNN). They propose to see each token as an action and train an agent
to generate the best possible sequence of actions to obtain a high-performing
architecture.
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Similarly, Baker et al. (2017) propose a search space in which each action cor-
responds to a full layer, resulting in a larger set of actions available at each step
but a more compact architecture representation. They also add restrictions to the
search space by removing some actions to reduce the search space size and make
learning tractable.

Cell representation Other representations emerged based on the insights pro-
vided by high-performing hand-crafted architectures such as the ResNet (He et al.,
2016) or the DenseNet (Huang et al., 2017). For example, Zoph et al. (2018), Real
et al. (2019), Liu et al. (2018a), Liu et al. (2018b), and Zhong et al. (2018) propose
to represent a network as a sequence of two kinds of cells: normal cells, that keeps
the same resolution between the inputs and the outputs and reduction cells that
reduce the scale of the feature maps (and generally increase the number of maps).
The learned cell can then be stacked to obtain the desired depth.

Sub-Graph/Super Networks Another popular representation of the search space
is in the form of a large computational graph encompassing all possible architec-
tures (Fernando et al., 2017; Liu et al., 2019; Pham et al., 2018; Wu et al., 2019).
The objective of the search procedure is then to find the best possible sub-graph
by pruning large parts of the search space. For example Pham et al. (2018) uses
this approach to learn high-performing architectures on the Cifar10 image clas-
sification dataset and obtain state-of-the-art performance on the Penn Treebank
benchmark for language models using a learned RNN cell. Liu et al. (2019) pro-
pose to use several NN modules in parallel at each layer and to learn which one
to keep to obtain the best possible performance, this approach can also be rep-
resented as a large graph in which we want to remove connections. This Super
Network method is more thoroughly presented in Chapter 3 as it is the search
space we will use in this work.

2.2.2 Search Strategy

From the NN point of view, this problem is often viewed as a network archi-
tecture discovery problem and solved with Neural Architecture Search (NAS)
methods in which the search is guided by a trade-off between prediction quality
and prediction cost (Huang et al., 2018; Gordon et al., 2018). While these mod-
els often rely on expensive training procedures where multiple architectures are
trained, some recent works have proposed to simultaneously discover the archi-
tecture of the network while learning its parameters resulting in models that are
fast both at training and at inference time.
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Reinforcement Learning Zoph and Le (2017) and Zoph et al. (2018) use a RNN

called controller to generate the sequence of tokens representing the architecture.
Each token is sampled from the distribution given by the controller and can
be interpreted as an action. Once the controller generated a full sequence, the
corresponding architecture is trained and can be evaluated. The validation set
accuracy after training is used as the reward signal that the controller will receive
for this sequence of actions. REINFORCE (Williams, 1992), which is presented
in more details in Section 3.2, is used to update the controller before generating
new architectures. Pham et al. (2018) also use Policy Gradient with the validation
accuracy as the reward to find the optimal sub-graph of the large Super Network.

Baker et al. (2017) also use the validation accuracy of a trained architecture as
the reward signal. Instead of using REINFORCE, they use Q-learning with an
agent following an ϵ-greedy strategy to learn the architectures. They also make
use of experience replay and cache the accuracy of trained models to make the
training procedure more efficient. Zhong et al. (2018) use Q-learning and an ϵ-
greedy exploration strategy to generate the structure of a cell that will be stacked
to generate the architecture of the final model.

Proxy tasks Since Reinforcement Learning (RL)-approaches are expensive to
train, Zoph et al. (2018) propose to learn the architecture on an easier proxy task.
Once the training identified high-performing cells on the Cifar10 (Krizhevsky,
2009a) proxy task, a larger number of them can be stacked to scale up the archi-
tecture before training it on the task of interest, Imagenet (Deng et al., 2009).

Hyper-networks Another line of work takes inspiration from the hyper net-
works introduced in Ha et al. (2017): Instead of training the "child" architecture
using standard gradient descent techniques, these methods use a second compo-
nent (the first one being the architecture selector) to directly generate the weights
of the selected architecture (Brock et al., 2018). The resulting model is then directly
evaluated on a batch of training data and back-propagated through to update the
architecture and weights generators.

Evolutionary Algorithms After observing the amount of computation required
to obtain good performances when using the RL approach proposed in Zoph and
Le (2017) and Zoph et al. (2018), Real et al. (2017) propose to explore how well
simple evolutionary technique would perform when also given a large computa-
tional budget. Their approach is able to reach similar performances on Cifar10

and outperform other NAS-based approaches on Cifar100. More recently, Real
et al. (2019) introduce a new tournament selection procedure which evolves ar-
chitectures able to beat the state of the art on ImageNet (Deng et al., 2009) and



2.3 budgeted learning 13

show that evolutionary algorithms are more efficient than RL-based ones using
the same hardware.

Liu et al. (2018b) also reaches high accuracy in both Cifar and ImageNet tasks
by hierarchically evolving motifs that can be reused later as building blocks in
higher-level motifs.

Joint Training/Weight Sharing To obtain more efficient search procedures,
some approaches propose to jointly learn the model architecture and its corre-
sponding parameters. This one-shot approach allows to greatly reduce the cost
of the search procedure, as it removes the training of several child networks from
the procedure.

For example, Pham et al. (2018) uses the SuperNet approach and proposes to
share the parameters of a layer across all the architecture that uses it, removing
the need to train it from scratch each time it is sampled. Wu et al. (2019) propose
a similar approach but uses the Gumbel-Softmax trick instead of REINFORCE to
back-propagate the gradient w.r.t. the architecture selector parameters.

2.3 Budgeted Learning

Most of the early NAS algorithms are only guided by the final predictive perfor-
mance of the network such as its accuracy on a held-out set. While showing great
performances, we focus in this thesis on some problems where this performance
is not the only thing that matters. Some problems come with specific constraints
that must be taken into account in the design of the architecture. In this section,
we present some work that tackles this problem. As in architecture creation, most
of the existing approaches are done by hand either a priori, by training an effi-
cient architecture specifically designed to respect the desired restriction from the
beginning, or a posteriori, where the model is first trained and then compressed
to fit the constraints. We will first present existing approaches in both categories
before moving on to end-to-end approaches where the model is shaped to adapt
to the constraint during training, all methods proposed in this thesis belonging
to the latter category.

Efficient architectures Architecture improvements have been widely used in
CNN to improve the cost efficiency of network components, some examples are
the bottleneck units in the ResNet model (He et al., 2016), the use of depth-
wise separable convolution in Xception (Chollet, 2017) and the lightweight Mo-
bileNets (Howard et al., 2017) or the combination of point-wise group convolution
and channel shuffle in ShuffleNet (Zhang et al., 2018).



14 related work

This approach is powerful but requires strong expertise to find the best opti-
mization and is also highly specific to each architecture and/or hardware. Fur-
thermore, most NAS algorithms making no assumption on the architecture of the
base network or the components of its search space, these highly efficient compu-
tational blocks can be combined with NAS to further improve the computational
efficiency of the learned architectures.

Model Compression One of the first approaches to obtain an efficient model
is by pruning some connections in an already trained NN. The Optimal Brain
Damage (LeCun et al., 1989) and Optimal Brain Surgeon (Hassibi and Stork, 1992)
use the Hessian of the loss function on a fully trained NN to approximate the
contribution of each weight and identify the less important ones that can be
removed without hurting the performance.

The problem of network compression can also be seen as a way to speed up a
particular architecture, for example by using quantization of the weights of the
network (Vanhoucke et al., 2011), or by combining pruning and quantization (Han
et al., 2015). Other algorithms include the use of hardware efficient operations
that allow a high speedup (Devlin, 2017).

End-to-end approaches The first example of end-to-end approaches is the us-
age of quantization at training time: different authors trained models using bi-
nary weight quantization coupled with full precision arithmetic operations (Cour-
bariaux et al., 2015; Lu, 2017). More recently, Micikevicius et al. (2017) proposed
a method using half-precision floating numbers during training. Another line of
work (Zhu et al., 2017; Nan and Saligrama, 2017) proposes to leverage knowledge
distillation, a concept initially introduced by Hinton et al. (2015) and Romero et al.
(2014). In knowledge distillation, a student network is trained to imitate the outputs
of a teacher network already able to solve the task at hand. This method can be
used to compress knowledge initially acquired by a large teacher network into
a much smaller student. Another benefit of this approach is that the distillation
procedure can be more efficient than the initial training of the teacher network:
the probability distribution over labels provided by the teacher implicitly defines
a similarity metric over the classes (e.g. confusing a bus with a truck is a less
serious mistake than confusing a bus with a flower), an information absent from
the initial supervision and often referred to as dark knowledge.

Other approaches propose to learn a dynamic network that is trained end-
to-end to conditionally select the modules to make the inference more efficient
(Bolukbasi et al., 2017; Bengio et al., 2015; McGill and Perona, 2017; Huang et al.,
2018; Gordon et al., 2018).
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Finally, some methods build on top of the techniques described in Section 2.2,
using NAS to directly learn the efficient architecture (Huang and Wang, 2018; Wu
et al., 2019; Cai et al., 2019) .
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Chapter abstract

In this chapter, we propose to focus on the problem of discovering neural
network architectures efficient in terms of both prediction quality and cost. For
instance, our approach can solve the following tasks: learn a neural network
able to predict well in less than 100 milliseconds or learn an efficient model that
fits in a 50 Mb memory. Our contribution is a novel family of models called
Budgeted Super Networks (BSN). They are learned using gradient descent
techniques applied on a budgeted learning objective function which integrates
a maximum authorized cost while making no assumption on the nature of this
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cost. We present a set of experiments on computer vision problems and analyze
the ability of our technique to deal with three different costs: the computation
cost, the memory consumption cost, and a distributed computation cost. We
particularly show that our model can discover neural network architectures
that have better accuracy than the ResNet and Convolutional Neural Fabrics
architectures on CIFAR-10 and CIFAR-100, at a lower cost.

The work in this chapter has led to the publication of a conference paper:

• Tom Veniat and Ludovic Denoyer (2018). “Learning Time/Memory-
Efficient Deep Architectures With Budgeted Super Networks”. In: 2018
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018,
Salt Lake City, UT, USA, June 18-22, 2018. IEEE Computer Society, pp. 3492–
3500. doi: 10 . 1109 / CVPR . 2018 . 00368. url: http : / / openaccess .
thecvf.com/content%5C_cvpr%5C_2018/html/Veniat%5C_Learning%
5C_TimeMemory- Efficient%5C_Deep%5C_CVPR%5C_2018%5C_paper.
html.

Resources to reproduce the work in this chapter are publicly available:

• Source code of the experiments: https://github.com/TomVeniat/BSN.

3.1 Introduction

In this section, we focus on the problem of discovering neural network architec-
tures specific to a given problem. To better fit real-world constraints and guide the
search procedure, the discovered architectures should not only be able to reach
high prediction quality but should also be efficient. Both prediction quality and
efficiency can be measured in different ways. As commonly done with classifica-
tion problems, we chose in this chapter to evaluate the prediction quality using
the test set accuracy. The efficiency is measured using different cost functions,
each of them reflecting some realistic constraints one could want to apply to its
model. For example, one could want to find the best predictor possible while still
being able to embed it on a device having only 100Mb of available memory or to
use it for a real-time application where it is mandatory to obtain the prediction
in less than 100 milliseconds.

Since using this kind of non-differentiable metrics can’t directly be optimized
using standard stochastic gradient descent algorithms, we start this chapter with
a quick overview of Reinforcement Learning in §3.2 and more specifically on the
Policy Gradient algorithm and its variants that will be required later in this chapter
and throughout the thesis.

https://doi.org/10.1109/CVPR.2018.00368
http://openaccess.thecvf.com/content%5C_cvpr%5C_2018/html/Veniat%5C_Learning%5C_TimeMemory-Efficient%5C_Deep%5C_CVPR%5C_2018%5C_paper.html
http://openaccess.thecvf.com/content%5C_cvpr%5C_2018/html/Veniat%5C_Learning%5C_TimeMemory-Efficient%5C_Deep%5C_CVPR%5C_2018%5C_paper.html
http://openaccess.thecvf.com/content%5C_cvpr%5C_2018/html/Veniat%5C_Learning%5C_TimeMemory-Efficient%5C_Deep%5C_CVPR%5C_2018%5C_paper.html
http://openaccess.thecvf.com/content%5C_cvpr%5C_2018/html/Veniat%5C_Learning%5C_TimeMemory-Efficient%5C_Deep%5C_CVPR%5C_2018%5C_paper.html
https://github.com/TomVeniat/BSN
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The proposed approach, named Budgeted Super Networks (BSN), is the first to
introduce Super Networks for architecture search. It takes as input a search space
in the form of a large Neural Network, a cost function, and the maximum allowed
budget. It returns the best path and the corresponding parameters found in the
search space able to solve the problem while respecting the specified budget.
The Super Networks are presented in more details in §3.3. Since finding the best
path with the optimal parameters is an intractable combinatorial problem when
dealing with large search spaces, we relax the optimization problem (section 3.4)
and propose a stochastic model able to solve it using a combination of standard
gradient-based optimization methods and reinforcement learning. This model,
called Stochastic Super Networks, is presented in details in §3.4.2.

To assess the performance and the flexibility of the proposed approach, we
thoroughly evaluate it on various computer vision tasks, using different Super
Networks taking inspiration from the Residual Networks (He et al., 2016) and
Convolutional Neural Fabrics (Saxena and Verbeek, 2016) models as search spaces,
and with several budget constraints. The results presented in 3.5 show that the
different versions of the Stochastic Super Networks model are able to consistently
outperform strong baselines while running on a lower budget at inference time.

3.2 Reinforcement Learning background

In the standard Reinforcement Learning (RL) setting, an agent interacts with
an environment using a sequence of actions. Each action at has an impact on
the environment state and generates a reward rt. Depending on the problem, the
environment can be fully or partially observable, giving at timestep t either the
full state st or a partial observation ot to the agent. A sequence of states and
actions is called a trajectory τ = (s0, a0, s1, a1, ...). The general problem of RL is
to find a strategy maximizing the reward over trajectories. This strategy is also
called policy.

Policy Gradient Several methods exist to tackle this problem. We limit ourselves
to deep reinforcement learning (i.e., solutions involving Deep Neural Networks)
in this section as it is the technique we will use later in this chapter, please refer
to Sutton and Barto (1998) for a thorough introduction to RL.

More specifically, we present policy gradient (Sutton et al., 1999) methods with
the REINFORCE algorithms (Williams, 1992). In this approach, the agent policy
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π is directly represented by a Neural Network (NN) taking as input the current
state and producing a distribution π(at|st) over the possible actions:

at ∼ πθ(st).

In which θ corresponds to the parameters of the policy. The reward is given by
the function rt = R(st, at, st+1). Note that the reward for a given action depends
on both the current and the next states, as the state transition mechanism can be

stochastic. We define the reward of a trajectory as R(τ) =
T∑
t=0

rt.

The objective is to find the best possible agent, i.e., the agent that will maximize
the reward obtained while interacting with the environment:

θ∗ = argmax
θ

Eτ∼πθ
R(τ) = argmax

θ
J(πθ). (3.1)

Even though the actions and the reward function are not necessarily differ-
entiable w.r.t. the policy parameters θ, we can still compute the gradient of the
expectation of Equation 3.1:

∇θJ(πθ) = ∇θ

∑
τ

P (τ |θ)R(τ) (3.2)

=
∑
τ

∇θP (τ |θ)R(τ) (3.3)

=
∑
τ

P (τ |θ)∇θ logP (τ |θ)R(τ) (3.4)

= Eτ∼πθ
[∇θ logP (τ |θ)R(τ)] (3.5)

= Eτ∼πθ

[
T∑
t=0

[∇θ log πθ(at|st)]R(τ)

]
. (3.6)

Where step in Equation 3.4 uses the log-derivative trick and step in Equation 3.6

relies on the identity ∇θ logP (τ |θ) =
T∑
t=0

∇θ log πθ(at|st).

In the REINFORCE algorithms, ∇θJ(πθ) is approximated using Monte Carlo
methods, letting the agent interact with the environment to collect several trajecto-
ries and then use Equation 3.6 to compute the approximation of the gradient. This
approximation is used to update θ and the process is repeated until the policy
converges.
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3.3 Super Networks

We consider the classical supervised learning problem defined by an input
space X and an output space Y . In the following, input and output spaces cor-
respond to multi-dimensional real-valued spaces. The training set is denoted as
D = {(x1, y1), ..., (xℓ, yℓ)} where xi ∈ X , yi ∈ Y and ℓ is the number of supervised
examples. ∆ : Y × Y → R is a differentiable loss function taking as input predic-
tions from a model and the ground truth. At last, we consider a model f : X → Y
that predicts an output given a particular input.

We first describe a family of models called Super Networks (S-networks), the
main contribution of this chapter presented in §3.4.2 being a stochastic extension
of this model. Note that the principle of Super Networks is not new and similar
ideas have been already proposed in the literature under different names such as
Deep Sequential Neural Networks (Denoyer and Gallinari, 2014), Neural Fabrics
(Saxena and Verbeek, 2016), or even PathNet (Fernando et al., 2017) who were the
first to use the name Super Network with an architecture close to ours but for a
completely different purpose.

A Super Network is composed of a set of layers connected together in a direct
acyclic graph (DAG) structure. Each edge is a (small) neural network, the S-
Network corresponds to a particular combination of these neural networks and
defines a computation graph. Examples of the ResNet Fabric and Convolutional
Neural Fabric super networks are given in Figures 3.1 and 3.2, illustrating the two
supports on top of which cost-constrained architectures will be discovered. The
ResNet Fabric is a generalization of ResNets (He et al., 2016), while CNF has been
proposed in Saxena and Verbeek (2016) (both super networks are presented in
more details in §3.5.1). In both cases, our objective is to discover architectures that
are efficient in both prediction quality and cost, by sampling edges over these S-
networks. More formally, let us denote l1, ...., lN a set of layers, N being the number
of layers, such that each layer li is associated with a particular representation space
Xi which is a multi-dimensional real-valued space. l1 will be the input layer while
lN will be the output layer. We also consider a set of (differentiable) functions fi,j
associated to each possible pair of layers such that fi,j : Xi → Xj . Each function
fi,j is referred to as a module in the following. Note that each fi,j can make
disk/memory/network operations having consequences on the inference cost of
the S-network. Each fi,j module is associated with parameters in θi,j ∈ θ, where θ

corresponds to the ensemble of parameters of the Super-Network. In the rest of
this chapter, we omit θ in the notation when not necessary for sake of clarity.

On top of this structure, any binary adjacency matrix E = {ei,j}, (i, j) ∈ [1;N ]2

over the N layers represent a particular architecture. In this chapter, we decide to
focus on the subset of such architectures having the following properties:
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Figure 3.1. – ResNet Fabric: The ResNet Fabric is a super network that includes
the ResNet model as a particular sub-graph. Each row corresponds
to a particular size and number of feature maps. Each edge repre-
sents a simple building block as described in He et al. (2016) (i.e., two
stacked convolution layers and a shortcut connection). We use pro-
jection shortcuts (with 1x1 convolutions) for all connections going
across different feature map sizes (green edges). Note that here, the
subgraph corresponding to the bold edges is a ResNet-20. By increas-
ing the width of the ResNet Fabric, we can include different variants
of ResNets, starting from ResNet-20 with width 3 up to Resnet-110

with a width of 18 .

• Non-recurrent architectures, corresponding to the cases where E represents
a DAG.

• Single input and single output models, corresponding to the E with a single
source node l1 and a single sink node lN .

Different matrices E will thus correspond to different super network archi-
tectures. A super network will be denoted (E, θ) in the following, θ being the
parameters of the different modules and E being the architecture of the super
network.

Predicting with S-networks: The computation of the output f(x,E, θ) given
an input x and a S-network (E, θ) is made through a classic forward algorithm,
the main idea being that the output of modules fi,j and fk,j leading to the same
layer lj will be added in order to compute the value of lj . Let us denote li(x,E, θ)

the value of layer li for input x, the computation is recursively defined as:

Input: l1(x,E, θ) = x

Layer Computation: li(x,E, θ) =
∑
k

ek,ifk,i(lk(x,E, θ)). (3.7)
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Figure 3.2. – Convolutional Neural Fabrics (Saxena and Verbeek, 2016): Each row
corresponds to a particular resolution of feature maps. The number
of features map is constant across the whole network. Each edge
represents a convolution layer. The color of an edge represents the
difference between input and output feature maps resolutions. Blue
edges keep the same resolution, green edges decrease the resolution
(stride > 1) and red edges increase the resolution (upsampling). An
addition is used to aggregate the feature maps at each node before
forwarding the result to the next layers.

The simple definitions of eq. 5 allow us to implement the forward algorithm
as presented in alg. 1, on which we will build in §3.4.2. In this configuration,
provided that each module fi,j used in E is differentiable, the training of the
corresponding θ can be made using classical back-propagation and gradient-
descent techniques.

3.4 Learning Cost-constrained architectures

Given the super-network we defined in the previous section, the idea for ob-
taining cost-efficient models is to consider that the structure E of the S-network
(E, θ) describes not a single neural network architecture but a large set of possible
architectures. Indeed, each sub-graph of E (i.e., each subset of edges) corresponds
itself to a super network. Let us introduce the notation H ⊙ E, where H corre-
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Algorithm 1: Super Network forward algorithm
Data: x,E, θ

1 l1 ← x ; // Init the first layer
2 for i ∈ [2..N ] do
3 li ←

∑
k<i

ek,ifk,i(lk; θk,i) ; // Propagate through the super
network graph

4 end
5 return lN

sponds to a binary matrix used as a mask to select the edges in E and ⊙ is the
Hadamard product. Our objective is now to identify the best matrix H such that
the corresponding super network (H ⊙ E, θ) will be a network efficient in terms
of both predictive quality and computation/memory/... cost.

In the next sections, we introduce the tools we need to be able to discover such
structures, the overall structure is as follows:

1. First, we formalize this problem as a combinatorial problem where one wants
to discover the best matrix H in the set of all possible binary matrices of size
N ×N .

2. Since this optimization problem is intractable, we propose a new family
of models called Stochastic Super Networks where E is sampled following a
parametrized distribution Γ before each prediction.

3. We then show that the resulting budgeted learning problem is continuous
and that its solution corresponds to the optimal solution of the initial bud-
geted problem (Proposition 1).

4. Finally, we propose a practical learning algorithm to learn Γ and θ simulta-
neously using gradient descent techniques.

3.4.1 Budgeted Architectures Learning

Given a specific sub-network represented by the (0,1) matrix H of size N ×N ,
let us define the function C : {0, 1}N×N → R+ which evaluates the cost of an
architecture. We can now measure C(H ⊙ E), corresponding to the computation
cost of the super network (H ⊙ E, θ). Note that even if we consider that the cost
only depends on the network architecture, the model could easily be extended
to costs that depend on the input x to process or to stochastic costs, the only
required property of C(H ⊙ E) being that this cost must be measurable during
training.

Let us also define C the maximum cost the user would allow. For instance,
when solving the problem of learning a model with a computation time lower than
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200 ms then C is equal to 200ms. In this case, the function C would associate to
each architecture its time to evaluate in ms on the target infrastructure.

Given these definitions, we aim at solving the following constrained optimiza-
tion problem:

min
H,θ

1

ℓ

∑
i

∆(f(xi, H ⊙ E, θ), yi)

subject to C(H ⊙ E) ≤ C.

(3.8)

We can reformulate the problem of equation 3.8 as an unconstrained optimiza-
tion problem by using the penalty method:

min
H,θ

1

ℓ

∑
i

∆(f(xi, H ⊙ E, θ), yi) + λmax(0, C(H ⊙ E)−C). (3.9)

where λ corresponds to the importance of the cost penalty. Note that the evaluated
cost is specific to the particular infrastructure on which the model is ran. For
instance, if C is the cost in milliseconds, the value of C(H ⊙ E) will not be the
same depending on the device on which the model is used. In other words,
solving this problem on a mobile device will produce a different structure that
the one obtained when solving this problem on a cluster of GPUs which is an
important property of our model.

Finding a solution to this learning problem is far from trivial since it involves
the computation of all possible architectures which is prohibitive (O(2N) in the
worst case) and the handling of the non-differentiable cost function C necessitate
special care. We explain in the next section how both these problems can be solved
at the same time using Stochastic Super Networks.

3.4.2 Stochastic Super Networks

To overcome this combinatorial problem during the search procedure, we intro-
duce a probability distribution over sub-graphs of E. This distribution, called Γ,
has the same dimensionality as E and each of its component γi,j is the parameter
of an independent Bernoulli distribution. Given a particular architecture E, we
consider the following stochastic model – called Stochastic Super Network (SSN)
– that computes a prediction in two steps:

1. A binary matrix H is sampled following the independent components of Γ.
This operation is denoted H ∼ Γ.

2. The final prediction is made using the associated sub-graph i.e. by computing
f(x,H ⊙ E, θ).
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Algorithm 2: Stochastic Super Network forward algorithm
Data: x,E,Γ, θ

22 H ∼ Γ ; // Sample an architecture
3 l1 ← x ;
4 for i ∈ [2..N ] do
5 li ←

∑
k<i

ek,ihk,ifk,i(lk; θk,i) ; // Propagate through the
sampled network

6 end
7 return lN

A SSN is thus defined by a triplet (E,Γ, θ), where both Γ and θ contain learnable
parameters. The updated forward procedure is presented in alg.2.

We can now rewrite the budgeted learning objective of Equation 3.8 and intro-
duce the optimal parameters Γ∗ and θ∗ as:

Γ∗, θ∗ = argmin
Γ,θ

1

ℓ

∑
i

EH∼Γ

[
∆(f(xi, H ⊙ E, θ), yi)

+ λmax(0, C(H ⊙ E)−C)] . (3.10)

Proposition 1. When the solution of Equation 3.10 is reached, then the models sam-
pled following (Γ∗) and using parameters θ∗ are optimal solution of the problem
of Equation 3.8.

Demonstration of Proposition 1 Let us consider the stochastic optimization
problem defined in Equation 3.10. The schema of the proof is the following:

• First, we lower bound the value of Equation 3.10 by the optimal value of
Equation 3.8.

• Then we show that this lower bound can be reached by some particular
values of Γ and θ in Equation 3.10. Said otherwise, the solution of Equation
3.10 is equivalent to the solution of 3.8.

Let us denote:

B(H ⊙ E, θ, λ) =
1

ℓ

∑
i

∆(f(xi, H ⊙ E, θ), yi) + λmax(0, C(H ⊙ E)− C) (3.11)
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Given a value of Γ, let us denote supp(Γ) all the H matrices that can be sampled
following Γ. The objective function of Equation 3.10 can be written as:

EH∼Γ[B(H ⊙ E, θ, λ)] =
∑

H∈supp(Γ)

B(H ⊙ E, θ, λ)P (H|Γ)

≥
∑

H∈supp(Γ)

B((H ⊙ E)∗, θ∗, λ)P (H|Γ)

= B((H ⊙ E)∗, θ∗, λ).

(3.12)

where (H ⊙ E)∗ and θ∗ correspond to the solution of:

(H ⊙ E)∗, θ∗ = argmin
H,θ

B(H ⊙ E, θ, λ) (3.13)

Now, it is easy to show that this lower bound can be reached by considering
a value of Γ∗ such that ∀H ∈ supp(Γ), H ⊙ E = (H ⊙ E)∗. This corresponds to a
value of Γ where all the probabilities associated with edges in E are equal to 0 or
1.

Said otherwise, solving the stochastic problem will provide a deterministic
model that has a good predictive performance under the given cost constraint.

Edge Sampling: In order to avoid inconsistent architectures where the input
and the output layers are not connected, we sample H using the following proce-
dure: For each layer li visited in the topological order of E (from the first layer l1
to the last one lN ) and for all k < i: If lk is connected to the input layer l1 based on
the previously sampled edges, then hk,i is sampled following the corresponding
Bernoulli distribution with parameter γk,i. In the other cases, hk,i = 0. In prac-
tice we optimize Γ using the real-valued parameter Γ̂ = σ−1(Γ) with σ a logistic
function (i.e., γk,i is obtained by applying the sigmoid function over a real-valued
parameter, this is made implicit in our notations).

3.4.3 Learning Algorithm

We consider the generic situation where the cost-function C(.) is unknown but
can be observed at the end of the computation of the model over an input x. Note
that this case also includes stochastic costs where C is a random variable, caused
by some network latency during distributed computation for example. We now
describe the case where C is deterministic.



28 chapter 3

Let us denote D(x, y, θ, E,H) the quality of the super network (H ⊙ E, θ) on a
given training pair (x, y):

D(x, y, θ, E,H) = ∆(f(x,H ⊙ E, θ), y) + λmax(0, C(H ⊙ E) − C) (3.14)

We propose to use a policy gradient inspired algorithm to learn θ and Γ. Let us
denote L(x, y, E,Γ, θ) the expectation of D over the possible sampled matrices H :

L(x, y, E,Γ, θ) = EH∼Γ [D(x, y, θ, E,H)] (3.15)

The gradient of L can be written as:

∇θ,ΓL(x, y, E,Γ, θ)

=
∑
H

P (H|Γ) [(∇θ,Γ logP (H|Γ))D(x, y, θ, E,H)]

+
∑
H

P (H|Γ) [∇θ,Γ∆(f(x,H ⊙ E, θ), y)] . (3.16)
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Derivation of ∇θ,ΓL(x, y, E,Γ, θ):

∇θ,ΓL(x, y, E,Γ, θ) = ∇θ,ΓEH∼ΓD(x, y, θ, E,H) (3.17)

= ∇θ,Γ

∑
H

P (H|Γ)D(x, y, θ, E,H) (3.18)

=
∑
H

∇θ,Γ(P (H|Γ)D(x, y, θ, E,H)) (3.19)

=
∑
H

∇θ,Γ(P (H|Γ))D(x, y, θ, E,H)

+ P (H|Γ)∇θ,ΓD(x, y, θ, E,H) (3.20)

Using the log-derivative trick:

=
∑
H

P (H|Γ)∇θ,Γ logP (H|Γ)D(x, y, θ, E,H)

+ P (H|Γ)∇θ,ΓD(x, y, θ, E,H) (3.21)

=
∑
H

P (H|Γ)((∇θ,Γ logP (H|Γ))D(x, y, θ, E,H)

+∇θ,Γ∆(f(x,H ⊙ E, θ), y)) (3.22)

=
∑
H

P (H|Γ) [(∇θ,Γ logP (H|Γ))D(x, y, θ, E,H)]

+
∑
H

P (H|Γ) [∇θ,Γ∆(f(x,H ⊙ E, θ), y)] (3.23)

Using Equation 3.14:

=
∑
H

P (H|Γ) [(∇θ,Γ logP (H|Γ))∆(f(x,H ⊙ E, θ), y)]

+ λ
∑
H

P (H|Γ) [(∇θ,Γ logP (H|Γ))max(0, C(H ⊙ E)−C)]

+
∑
H

P (H|Γ) [∇θ,Γ∆(f(x,H ⊙ E, θ), y)] . (3.24)

The first term of equation 3.16 (corresponding to the first two terms or equation
3.24) is the gradient over the log-probability of the sampled structure H . This term
is very similar to the policy gradient equations presented in §3.2. This similarity
allows us to interpret this result intuitively: D(x, y, θ, E,H) can be seen as the
reward that an agent selecting the architecture would receive after each choice.
The last term is the standard gradient of the prediction loss given the sampled
architecture (H ⊙ E) and allows us to update θ.

Learning can now be made using back-propagation and stochastic-gradient
descent algorithms as it is made in Deep Reinforcement Learning models. Note



30 chapter 3

that in practice, in order to reduce the variance of the estimator, the update is
made following:

∇θ,ΓL(x, y, E,Γ, θ) ≈ (∇θ,Γ logP (H|Γ))(D(x, y, θ, E,H)− D̃)
+∇θ,Γ∆(f(x,H ⊙ E, θ), y). (3.25)

where H is sampled following Γ, and where D̃ is the average value ofD(x, y, θ, E,H)

computed on a batch of learning examples.

3.5 Experiments

3.5.1 Implementation

We study two particular super network architectures:

The Convolutional Neural Fabric The first network we use in our experiments
is based on the dense Convolutional Neural Fabrics. It has first been proposed
in Saxena and Verbeek (2016) and can be seen as a multi-layer and multi-scale
convolutional neural network used for both image classification and image seg-
mentation. As shown in Figure 3.2, this architecture has 2 axes: The first axis
represents the different columns (or width) W of the network while the second
axis corresponds to different scales (or height) H of output feature maps, the first
scale being the size of the input images, each subsequent scale being of a size
reduced by a factor of 2 up to the last scale corresponding to a single scalar.

Each layer (l, s) in this fabric takes its input from three different layers of the
preceding column: (i) One with a finer scale (l − 1, s− 1) on which a convolution
with stride 2 is applied to obtain feature maps having half the size of the input,
(ii) one with the same scale (l − 1, s) on which a convolution with stride 1 is
applied to obtain feature map of the same resolution as the input and (iii) one
with a coarser scale (l − 1, s + 1) on which convolution with stride 1 is applied
after a factor 2 up-sampling to obtain feature maps having twice the size of the
input. The three feature blocks are then added before passing through the ReLU
activation function to obtain the final output of this layer (l, s). Each convolution
layer uses kernels of size 3 and is followed by a batch normalization layer (Ioffe
and Szegedy, 2015).

The first and last columns are the only two which have vertical connections
within scales of the same layer. This is made to allow the propagation of the
information to all nodes in the first column and to aggregate the activations of
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the last column to compute the final prediction. A more detailed description of
this architecture can be found in the CNF original article.

We used two different Convolutional Neural Fabrics in our experiments: One
for the classification task (CIFAR-10 and CIFAR-100) with W = 8 columns, H = 6

scales and 128 filters per convolution, and one for the segmentation task (Part
Label) with W = 8 layers, H = 9 scales (from 256x256 to 1x1 feature map sizes)
and 64 filters per convolution. Different values of W (W = 4 and W = 2) are used
as smaller-footprint baselines.

The ResNet Fabric Based on the ResNet architecture (He et al., 2016), the
structure of a ResNet Fabric can be seen as a standard ResNet on which extra
modules (edges) have been added. It is exclusively used for image classification
in our experiments.

Illustrated in Figure 3.1, it is constructed as a stack of k groups of layers, each
group being composed of 2n layers where n represents the width of the Fabric.
The feature maps size and number of filters stay constant across the layers of each
group and are modified between groups.

Due to its linear structure, the standard ResNet architecture spans a limited
number of possible (sub-)architectures. To increase the size of the search space,
we add several connections between groups as shown in the figure: each block
in the second to last groups receives two (for the first and last block of each
group) or three (for every other block) inputs from preceding groups. To stay
consistent with the rest of the network, each connection is a basic block (He et al.,
2016) composed of 2 convolutional layers and a shortcut connection.

In our experiments, we use stacks of k = 3 blocks and n = {3, 5, 7, 9, 18} to
respectively include the ResNet-{20, 32, 44, 56, 110} in the Fabric. Between each
block, the feature maps size is reduced by a factor of 2, and the number of maps
is doubled.

Such super network not only allows our algorithm to search an architecture on
the output map size dimension (as is the case with the CNF-based super network)
but also on the depth dimension, benefiting from the residual connections and
the added layer to find an appropriate depth while respecting the given budget.
Note that a particular sub-graph, in bold on Figure 3.1, of the ResNet Fabric
exactly corresponds to the ResNet model. We thus aim at testing the ability of
our approach to discover ResNet-inspired efficient architectures, or at least to
converge to a ResNet model that is known to be efficient.

Cost Functions. For these two architectures denoted B-CNF and B-ResNet, we
consider three different costs functions:
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(a) MNIST (b) CIFAR-10

(c) Part Label (d) CIFAR-100

Figure 3.3. – Datasets used to evaluate the Budgeted Super Networks.

• The computation cost measured as the number of operations (i.e., the number
of Mult-Add operations required to fully evaluate a network) made by the
sampled architecture as used in Dong et al. (2017) or Huang et al. (2018).
Note that this cost is highly correlated with the execution time. Expressing
constraint directly in milliseconds has been also investigated, with results
similar to the ones obtained using the computation cost.

• The memory consumption cost, measured as the number of parameters of the
resulting models

• The distributed computation cost which is detailed in §3.5.6 and corresponds to
the ability of a particular model to be efficiently computed over a distributed
environment.

3.5.2 Experimental Protocol and Baselines

3.5.2.1 Datasets

Both structures are evaluated on the image classification task using the CIFAR-
10 and CIFAR-100 (Krizhevsky, 2009b) dataset. To assess if the BSN can be used
in different settings, we also evaluate the CNF-based super network on the image
segmentation task using the Part Label dataset (Kae et al., 2013). Finally, we use
the MNIST (LeCun et al., 1998) dataset to test the behavior of the model on hand-
crafted toy scenarios. Samples from each dataset are presented in figure 3.3. A
short summary of each dataset and how we use it is presented below.

CIFAR-10. The CIFAR-10 dataset consists of 60k 32x32 images with 10 classes
and 6000 images per class. The dataset is decomposed into 50k training and 10k
testing images. We split the training set following the standard, i.e 45k training
samples, and 5k validation samples. We use two data augmentation techniques:
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padding the image to 36x36 pixels before extracting a random crop of size 32x32

and horizontally flipping. Images are then normalized in the range [-1,1].

CIFAR100. The CIFAR-100 dataset is similar to CIFAR-10, with 100 classes and
600 images per class. We use the same train/validation split and data augmenta-
tion technique as with CIFAR-10.

Part Labels. The Part Labels dataset is a subset of the LFW dataset com-
posed of 2927 250x250 face images in which each pixel is labeled as one of the
Hair/Skin/Background classes. The standard split contains 1500 training sam-
ples, 500 validation samples, and 927 test samples. Images are zero-padded from
250x250 to 256x256. We use horizontal flipping as data augmentation. Images are
then normalized in the range [-1,1].

MNIST The MNIST dataset contains 60k 28x28 hand-written digit images. Sim-
ilar to what is done we Cifar-10, we split this dataset into 50k training and 10k
testing images. We split the train set, keeping 80% of the data for training and 20%
for validation. Only random crops are used for data augmentation and images
are normalized.

3.5.2.2 Target costs

Each model is trained with various values for the objective cost C. For the image
classification problem, since we directly compare to ResNet, we select values of C
that corresponds to the cost of the ResNet-20/32/44/56/110 architectures. This
allows us to compare the performance of our method at the same cost level as the
ResNet variants. When dealing with the B-CNF model, we select C to be the cost
of different versions of the CNF model, having different width W. The height H
being fixed by the resolution of the input image.

3.5.2.3 Model Selection Protocol

For each experiment, multiple versions of the different models are evaluated
over the validation set during learning. Since our evaluation now involves both
a cost and an accuracy, we select the best models using the Pareto front on the
cost/accuracy curve on the validation set. The reported performances are then
obtained by evaluating these selected models over the test set. The detailed pro-
cedure of the hyper-parameters and model selection is illustrated in figure 3.4
where many different models are reported on the validation set (blue circles)
with the corresponding performance on the test set (red crosses). The selection of
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Figure 3.4. – Illustration of our model selection procedure. The horizontal axis
represents the normalized cost while the vertical axis reports the
accuracy performance.

reported models is obtained by computing the Pareto front of the accuracy/cost
curve on the validation set and reporting the performance obtained on the test
set by the model on the front.

When reporting results, we provide the performance of both reference models
(ResNet and CNF) and the related existing models Low-Cost Collaborative Layer
(LCCL) (Dong et al., 2017) and MSDNet (Huang et al., 2018) (under the anytime
classification settings). Note that the baseline methods have been designed to
reduce exclusively the computation cost, while the BSN can deal with any type of
cost. We provide the performance of the budgeted version of ResNet (B-ResNet)
and the budgeted version of CNF (B-CNF). For a fair comparison, the published
results of ResNet and CNF are reported, but also the ones that we have obtained
by training these models by ourselves, our results being of better quality than
the previously published performance.

3.5.2.4 Training details

The learning is done using a classical stochastic gradient-descent algorithm for
all parameters with learning rate decay, momentum of 0.9, and weight decay of
10−4 for θ.
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When training our budgeted models, we first train the network for 50 "warm-
up" epochs during which no sampling is done (The whole super network is
trained). After this warm-up phase, the probability of each edge is initialized and
we start sampling architectures.

The real-valued parameter associated with each layer γ̂i,j (and used to generate
the parameter γi,j of the Bernoulli distribution of the corresponding edge) is
initialized to the constant 3, resulting in a σ(3) ≈ 0.95 initial probability of being
sampled for each edge.

On CIFAR-10 and CIFAR-100 datasets we train all models for 300 epochs. We
start with a learning rate of 10−1 and divide it by 10 after 150 and 225 epochs.
On Part Label dataset all models are trained for 200 epochs with a learning rate
initialized to 10−1 and divided by 10 after 130 epochs.

For all models and all cost functions, we select the λ hyper-parameter based on
the order of magnitude m of the maximum authorized cost C. λ is determined
using cross-validation on values logarithmically spaced between 10m−1 and 10m+1.

The source code of our implementation is openly available 1.

1. https://github.com/TomVeniat/bsn

https://github.com/TomVeniat/bsn
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Figure 3.5. – Accuracy/Time trade-off using B-ResNet on CIFAR-10.

3.5.3 Reducing the computation cost of classification models

Figure 3.5 and Table 3.1 show the performance of different models over CIFAR-
10. Each point corresponds to a model evaluated both in terms of accuracy and
computation cost. When considering the B-ResNet model, and by fixing the value
of C to the computation cost of the different ResNet architectures, we obtain
budgeted models that have approximatively the same costs as the ResNets, but
with higher accuracy. For example, ResNet-20 obtains an accuracy of 92.19% for
40.9 × 106 flop, while B-ResNet is able to discover an architecture with 92.39%
accuracy at a slightly lower cost (39.25× 106 flop). Moreover, the B-ResNet model
also outperforms existing approaches like MSDNet or LCCL, particularly when
the computation cost is low (i.e., for architectures that can be computed at a high
speed). When comparing CNF to B-CNF, one can see that our approach can con-
siderably reduce the computation cost while keeping high accuracy. For example,
one of our learned models obtained an accuracy of 93.14% with a cost of 103×106

flop while CNF has an accuracy of 92.54% for a cost of 406× 106 flop. Note that
the same observations can be drawn for CIFAR-100 (Table 3.2).

Figure 3.6a and Figure 3.6b illustrate two architectures discovered by B-ResNet
and B-CNF with a low computation cost. One can see that B-ResNet converges to
an architecture that is a little bit different than the standard ResNet architecture,
explaining why its accuracy is better. On the CNF side, the BSN model is able to
extract a model that has a minimum of high-resolution convolution operations,
resulting in a high speedup.
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(a) B-ResNet

(b) B-CNF & computation cost (c) B-CNF & memory consumption cost

Figure 3.6. – Discovered architectures: (Top) is a low computation cost B-ResNet
where dashed edges correspond to connections in which the two
convolution layers have been removed (only shortcut or projection
connections are kept). (Left) is a low computation cost B-CNF where
high-resolution operations have been removed. (Right) is a low mem-
ory consumption cost B-CNF: the algorithm has mostly kept all high
resolution convolutions since they allow fine-grained feature maps
and have the same number of parameters than lower-resolution con-
volutions. It is interesting to note that our algorithm, constrained
with two different costs, automatically learned two different efficient
architectures.
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Model FLOPs (millions) Accuracy
ResNet (He et al., 2016) our/original

ResNet-110 253.70 94.09/93.57
ResNet-56 126.01 93.61/93.03
ResNet-44 97.64 93.21/92.83
ResNet-32 69.27 92.91/92.49
ResNet-20 40.90 92.19/91.25

Low Cost Collaborative Layer (Dong et al., 2017)
LCCL (ResNet-110) 166 93.44

LCCL (ResNet-44) 65 92.71

LCCL (ResNet-32) 49 92.56

LCCL (ResNet-20) 26 91.68

Multi Scale DenseNet (Huang et al., 2018) (values read on plot)

MSDNet

≈ 255 94.1
≈ 180 94.0
≈ 145 93.8
≈ 97 93.3
≈ 45 91.8
≈ 25 90.0

Budgeted ResNet

B-ResNet

407.51 94.29

258.20 94.15

152.60 94.01

120.20 93.71

56.47 92.92

42.69 92.48

39.25 92.39

CNF (Saxena and Verbeek, 2016) our/original
CNF W=8 2,219.00 94.83/90.58
CNF W=4 1,010.00 93.75/87.91
CNF W=2 406.00 92.54/86.21
CNF W=1 54.00 89.91

Budgeted CNF

B-CNF

2,150.00 94.92

1,407.00 94.85

1,144.00 94.69

103.00 93.14

85.00 92.17

Table 3.1. – Accuracy/speed trade-off on CIFAR-10 using B-ResNet and B-CNF.
Values reported as our corresponds to results we obtained when train-
ing a reproduction of the models, original corresponds to values from
the original article.
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Model FLOPs (millions) Accuracy (%)
ResNet-110 253.7 71.85

ResNet-56 126 70.57

ResNet-44 97.64 70.28

ResNet-32 69.27 69.28

ResNet-20 40.9 67.14

MSDNet (Huang et al., 2018)

215 76

180 75

150 74

109 72.5
80 71

45 67.5
15 62.5

B-ResNet

349.5 73.28

115.09 71.46

69.84 70.27

64.96 70.12

46.29 69.02

39.22 68.45

Table 3.2. – Accuracy/speed trade-off on Cifar-100 using ResNet Fabrics.
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Model # params (millions) Accuracy (%)
ResNet (He et al., 2016) our/original

ResNet-110 1.73 94.09/93.57
ResNet-56 0.86 93.61/93.03
ResNet-44 0.66 93.21/92.83
ResNet-32 0.47 92.91/92.49
ResNet-20 0.27 92.19/91.25

Budgeted ResNet

B-ResNet

4.38 94.35

2.27 94.2
1.29 93.85

0.48 93.42

0.34 92.72

0.3 92.52

0.29 92.17

Convolutional Neural Fabrics (Saxena and Verbeek, 2016) our/original
CNF W=8 18.04 94.83/90.58
CNF W=4 8.58 93.75/87.91
CNF W=2 3.85 92.54/86.21
CNF W=1 0.74 89.91

Budgeted CNF

B-CNF

7.56 94.88

4.98 94.58

4.28 94.55

3.67 94.42

2.65 94.00

1.19 93.53

Table 3.3. – Accuracy/memory trade-off on Cifar-10 using B-ResNet and B-CNF.

3.5.4 Reducing memory consumption on classification

We now present similar experiments considering the memory consumption cost
that measures the number of parameters of the learned architectures. We want
to demonstrate here the ability of the BSN to be used with a large variety of
costs, and not only to reduce the computation time. Table 3.3 presents the results
obtained on CIFAR-10. As with the computation cost, one can see that our approach
can discover architectures that, given a particular memory cost, obtain better
accuracy. For example, for a model having ≈ 0.47 millions parameters, ResNet-32

has a classification error of 7.81% while B-ResNet only makes 6.58% error with
≈ 0.48 million parameters.
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Model FLOPs(billions) Accuracy
CNF 35.614 95.06

CNF W=8 (Saxena and Verbeek, 2016) 35.614 95.39

B-CNF 28.49 95.21

B-CNF 21.37 95.43

Table 3.4. – Accuracy/Speed trade-off on Part Label using CNF.

Figure 3.7. – Example of architecture learned for the semantic segmentation task.

3.5.5 Reducing the computation cost of segmentation models

We also perform experiments on the image segmentation task using the Part
Label dataset with CNF and B-CNF (Table 3.4). In this task, the model computes a
map of pixel probabilities, the output layer is now located at the top-right position
of the CNF matrix. It is thus more difficult to reduce the overall computation cost.
On the Part Label dataset, we are able to learn a BSN model with a computa-
tion gain of 40%. Forcing the model to reduce further the computation cost by
decreasing the value of C results in inconsistent models. At a computation gain
of 40%, BSN obtains an error rate of 4.57%, which can be compared with the error
of 4.94% for the full model. The best B-CNF learned architecture is given in 3.7.

Figure 3.7 is an example of segmentation architecture discovered on the Part
Label dataset using the flop cost. It is interesting to note that only one layer with
256x256 input and output is kept and that most of the computations are done at
lower and therefore less-expensive layers.
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Figure 3.8. – Two networks illustrating the need to have a cost function evaluating
the global architecture of a network. Considering an environment
with n = 2 machines performing computations in parallel, the blue
network composed of 9 computational modules has a distributed
computation cost of 6 while the red network, composed of 10 modules,
has a smaller cost of 5.

3.5.6 Learning Distributed Architectures

The third set of experiments is focused on distributed computing. For example,
we can take the real-life example of a network that will once optimized have to
run on a computing infrastructure where different modules can be computed
simultaneously (e.g., on the different GPUs/computers of a large cluster).

In this case, we can evaluate the quality of an architecture by its ability to be
efficiently parallelized. The distributed computation cost corresponds to the number
of steps needed to compute the output of the network (e.g., on an architecture
with n = 2 computers, two edges could be computed simultaneously if their
inputs are ready to be processed). If an architecture is flat a sequence of layers,
then this parallelization becomes impossible. An illustration of the interest of this
cost function is provided in Figure 3.8.

The distributed computation cost function takes the following three elements as
inputs:

1. A network architecture (represented as a graph for instance).

2. An allocation algorithm.

3. A maximum number of concurrent possible operations n.

The cost function then returns the number of computation cycles required to
run the architecture given the allocation strategy on n parallel processing units.

It is very interesting to evaluate budgeted approaches on such a cost function
because it allows measuring the ability of the model to handle complex costs that
cannot be decomposed as a sum of individual modules costs as it is usually done
in related works.

Results using the B-ResNet model are illustrated in Figure 3.9 and architectures
learned using the B-CNF model are presented in Figure 3.10 for the CIFAR-10
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Figure 3.9. – Accuracy/number of operation for different number of cores n on
CIFAR-10 using B-ResNet.

dataset. Note that ResNet is typically an architecture that cannot be efficiently
distributed since it is a sequences of modules. One can see that our approach is
able to find efficient architectures for n = 2 and n = 4. Surprisingly, when n = 4

the discovered architectures are less efficient, which is mainly due to an over
fitting of the training set, the cost constraint becomes too large and stop acting
as a regularizer on the network architecture. On Figure 3.10, one can see two
examples of architectures discovered when n = 1 and n = 4. The shape of the
architecture when n = 4 clearly confirm that BSN is able to discover parallelized
architectures, and to ’understand’ the structure of this complex cost. Detailed
numbers are presented in tables 3.5, 3.5 and 3.5 for both B-CNF and B-ResNet on
Cifar-10 and in tables 3.8 and 3.9 for B-ResNet on the Cifar-100 task.
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(a) n = 1 (b) n = 4

Figure 3.10. – Architectures discovered on CIFAR-10 using the distributed compu-
tation cost on the B-CNF model for different number of cores n. In
both scenarios, the training procedure is the same and the resulting
architecture takes 8 steps to be evaluated. It demonstrates that the
BSN is able to adapt the structure to the underlying cost function
without any prior knowledge about it.
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Model # of sequential operations Accuracy %
ResNet (He et al., 2016) our/original

ResNet-110 112.00 94.09/93.57
ResNet-56 58.00 93.61/93.03
ResNet-44 46.00 93.21/92.83
ResNet-32 34.00 92.91/92.49
ResNet-20 22.00 92.19/91.25

Budgeted ResNet

B-ResNet

184.00 94.42

110.00 94.12

94.00 94.01

22.00 93.06

20.00 92.29

Convolutional Neural Fabrics (Saxena and Verbeek, 2016) our/original
CNF W=8 171.00 94.83/90.58
CNF W=4 83.00 93.75/87.91
CNF W=2 39.00 92.54/86.21
CNF W=1 12.00 89.91

Budgeted CNF

B-CNF

98.00 95.02

50.00 94.62

45.00 94.55

39.00 94.35

33.00 93.00

26.00 92.91

18.00 92.87

Table 3.5. – Results for Distributed computation cost on CIFAR-10 with n = 1
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Model # of sequential operations Accuracy %
ResNet (He et al., 2016) our/original

ResNet-110 110.00 94.09/93.57
ResNet-56 56.00 93.61/93.03
ResNet-44 44.00 93.21/92.83
ResNet-32 32.00 92.91/92.49
ResNet-20 20.00 92.19/91.25

Budgeted ResNet

B-ResNet

179.00 94.36

112.00 94.42

56.00 94.31

20.00 93.20

18.00 92.81

Convolutional Neural Fabric (Saxena and Verbeek, 2016) our/original
CNF W=8 90.00 94.83/90.58
CNF W=4 47.00 93.75/87.91
CNF W=2 26.00 92.54/86.21
CNF W=1 12.00 89.91

Budgeted CNF

B-CNF

47.00 94.67

30.00 94.68

28.00 94.58

24.00 94.41

20.00 94.35

18.00 92.86

Table 3.6. – Results for Distributed computation cost on CIFAR-10 with n = 2
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Model # of sequential operations Accuracy %
ResNet (He et al., 2016) our/original

ResNet-110 110.00 94.09/93.57
ResNet-56 56.00 93.61/93.03
ResNet-44 44.00 93.21/92.83
ResNet-32 32.00 92.91/92.49
ResNet-20 20.00 92.19/91.25

Busgeted ResNet

B-ResNet

110.00 94.36

58.00 94.01

20.00 93.24

18.00 92.93

16.00 92.75

Convolutional Neural Fabric (Saxena and Verbeek, 2016) our/original
CNF W=8 53.00 94.83/90.58
CNF W=4 31.00 93.75/87.91
CNF W=2 19.00 92.54/86.21
CNF W=1 12.00 89.91

Budgeted CNF

B-ResNet

31.00 94.96

25.00 94.72

21.00 94.36

18.00 93.86

Table 3.7. – Results for Distributed computation cost on CIFAR-10 with n = 4

Model # of sequential operations Accuracy (%)
ResNet(He et al., 2016)

ResNet-110 112.00 71.85

ResNet-56 58.00 70.57

ResNet-44 46.00 70.28

ResNet-32 34.00 69.28

ResNet-20 22.00 67.14

Budgeted ResNet

B-ResNet

320.00 74.35

184.00 73.85

110.00 72.88

67.00 72.02

32.00 69.60

20.00 68.48

Table 3.8. – Results for Distributed computation cost on CIFAR-100 with n = 1
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Model # of sequential operations Accuracy (%)
ResNe (He et al., 2016)

ResNet110 110.00 71.85

ResNet56 56.00 70.57

ResNet44 44.00 70.28

ResNet32 34.00 69.28

ResNet20 20.00 67.14

Budgeted ResNet

B-ResNet
179.00 74.35

112.00 73.85

49.00 71.84

29.00 69.94

22.00 69.09

Table 3.9. – Results for Distributed computation cost on CIFAR-100 with n = 2
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(a) (b)

Figure 3.11. – Randomly sampling edges cost. a shows the costs attributed ran-
domly to each edge of the graph where darker blue correspond to
larger costs. b corresponds to the architecture learned using these
costs. The discovered path successfully avoids the most expensive
layers.

3.5.7 Learning Infrastructure-Specific Architectures

Finally, we qualitatively evaluate B-CNF on handcrafted problems to observe
whether the model behaves as expected when we use well-controlled cost func-
tions:

1. The first setup, presented in Figure 3.11, consists of randomly attributing
costs to the edges of the graph. As expected, we observe that the B-CNF is
able to find a path minimizing the overall architecture cost while preserving
the expressiveness of the model.

2. The second setup, presented in Figure 3.12, is a simulation of an application
in the wild having to communicate to a cloud infrastructure through a set of
expensive network communication edges. Here again, the path discovered
lines up with the intuition: it is better to directly send the information to
the cluster using the minimum number of edges than pre-computing too
many features on-device and then having to send them all through expensive
network calls.
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(a) (b)

Figure 3.12. – Simulating a cloud environment. a shows the costs attributed to
simulate a small amount of computation (e.g. a smart device) con-
nected to more powerful servers through a very expensive com-
munication channel (e.g. network calls). b shows the architecture
selected for this cloud simulation. BSN learns a path that takes only
one expensive edge while making use of the maximum amount of
computation available to process the image afterward.
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Figure 3.13. – Evolution of the loss function and the entropy of Γ during training.
The period between epoch 0 and 50 is the burn-in phase. The learn-
ing rate is divided by 10 after epoch 150 to increase the convergence
speed.

3.5.8 Learning Dynamics

Figure 3.13 illustrates the learning dynamics of B-CNF and CNF. First, one
can see (entropy curve) that the model becomes deterministic at the end of the
learning procedure, and thus converges to a unique architecture. Moreover, the
training speed of B-CNF and CNF are comparable showing that our method
does not result in a slower training procedure. Note that the figure illustrates the
fact that during a burn-in period, we don’t update the probabilities of the edges,
which allows us to obtain a faster convergence speed.

3.6 Conclusion

We proposed a new model called Budgeted Super Network able to automatically
discover cost-constrained neural network architectures by specifying a maximum
authorized cost. The experiments in the computer vision domain show the ef-
fectiveness of our approach. Its main advantage is that BSN can be used for any
costs (computation cost, memory cost, etc.) without any assumption on the shape
of this cost. A promising research direction is now to study whether this model
could be adapted to reduce the training time (instead of the test computation
time). This could for example be done using meta-learning approaches.
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Chapter abstract

The problem of keyword spotting i.e. identifying keywords in a real-time audio
stream is mainly solved by applying a neural network over successive sliding
windows. Due to the difficulty of the task, baseline models are usually large,
resulting in a high computational cost and energy consumption level.
We propose a new method called SANAS (Stochastic Adaptive Neural Ar-
chitecture Search) which can adapt the architecture of the neural network
on-the-fly at inference time such that small architectures will be used when
the stream is easy to process (silence, low noise, ...) and bigger networks will
be used when the task becomes more difficult.
We show that this adaptive model can be learned end-to-end by optimizing a
trade-off between the prediction performance and the average computational
cost per unit of time. We empirically validate the proposed model on the Speech
Commands dataset (Warden, 2018), showing that our approach is able to strike
the right balance between maintaining a high recognition performance while

53



54 chapter 4

better allocating its budget, outperforming classical approaches which are all
using static network architectures.

The work in this chapter has led to the publication of a conference paper:

• Tom Véniat, Olivier Schwander, and Ludovic Denoyer (2019). “Stochastic
Adaptive Neural Architecture Search for Keyword Spotting”. In: IEEE
International Conference on Acoustics, Speech and Signal Processing, ICASSP
2019, Brighton, United Kingdom, May 12-17, 2019. IEEE, pp. 2842–2846. doi:
10.1109/ICASSP.2019.8683305. url: https://doi.org/10.1109/
ICASSP.2019.8683305.

Resources to reproduce the work in this chapter are publicly available:

• Source code of the experiments: https://github.com/TomVeniat/SANAS.

4.1 Introduction

With sight, hearing is one of the most important senses of living beings. It
allows one to perceive a large amount of information about the surrounding
environment and, for most animal species, plays a major role in communication.
Given its importance, it is natural to want to be able to automatically process audio
signals to extract relevant information. For example, Acoustic Scene Classification
is the problem of identifying the environment in which audio samples has been
recorded (e.g. busy office, street, forest, ...) (Mesaros et al., 2018) and Sound Event
Detection can be used to monitor the environment for specific events (e.g. car
passing by, crying babies, knocks on a door, ...)(Turpault et al., 2019; Serizel et al.,
2020). Since hearing is also used when communicating, we can also define tasks
aiming at extracting information from speech signals. For example, we can use
speech to automatically detect a range of psychiatric disorders (Low et al., 2020)
or perform Automatic Speech Recognition (also known as speech-to-text) which is
now widely used in connected devices such as smartphones or virtual assistants.

Let us focus on this last use-case, which is by design aimed to be used on
small devices and therefore a natural application for budgeted algorithms. The
traditional voice assistant pipeline is two-fold: (i) the first part is to continuously
listen to sounds from the environment to detect some particular key-words and
(ii) once a keyword is detected, identify the specific request of the user. While
this second part can support some latency, this is not the case of the keyword
spotting part, which furthermore may have to run on-device for latency, privacy,
or energy consumption reasons. This task, illustrated in Figure 4.1, consists in
listening continuously to an audio stream and being able to detect in real-time a

https://doi.org/10.1109/ICASSP.2019.8683305
https://doi.org/10.1109/ICASSP.2019.8683305
https://doi.org/10.1109/ICASSP.2019.8683305
https://github.com/TomVeniat/SANAS
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0.22 - Up
0.35 - Down
0.01 - Turn on

...

0.15 - Okay Doodle
0.03 - No word

Figure 4.1. – The keyword spotting problem aims at identifying a set of predeter-
mined keywords in an audio stream. This problem is usually tackled
by feeding successive chunks of 1 second of audio signal in a neural
network trained to recognize these specific words. The result is then
a sequence of probability distributions over our vocabulary, which
can be post-processed to make application-specific decisions.

word in a set of provided keywords. This problem thus implies detecting when a
word is pronounced, but also which word has been pronounced.

Some recent works Sainath and Parada, 2015; Arik et al., 2017; Tang and Lin,
2018 proposed to use convolutional neural networks (CNN) in this streaming
context, applying a particular model to successive sliding windows Sainath and
Parada, 2015; Tang and Lin, 2018; Rybakov et al., 2020 or combining CNNs with
recurrent neural networks (RNN) to keep track of the context Arik et al., 2017. In
such cases, the resulting system spends the same amount of time processing each
audio frame, irrespective of the content of the frame or its context. The resulting
system is, in that case, quite slow and consumes a lot of energy, the same big
network being applied every 20 or 50 ms. If the application requires close to real-
time inference, this method also gives a hard constraint on the size of the model
that can be used: if the time taken to evaluate a frame is longer than the time hop
between successive frames, the predictor will inevitably accumulate delay and
won’t be able to keep pace with the stream.

Current methods either only focus on prediction performance, overlooking
real-world constraints like limited computation resources or strong latency re-
quirements, or try to take into account these constraints by using a carefully
tuned model that will respect the hard by-timestep constraint. While this approach
effectively solves the budget constraint for each step (and on average), it results
in inefficient usage of computation resources in real-world conditions where the
complexity of the samples are different in the same sequence. In this chapter, we
propose an adaptive method allowing to dynamically select the neural network
to use at each timestep, allowing to spend more resources on harder examples
while making predictions on average faster than static Neural Networks
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Figure 4.2. – Raw audio recording of the word "Sheila".

4.2 Audio and speech processing background

When dealing with audio signals, the data usually comes in the raw time/amplitude
form as illustrated in Figure 4.2. When processing it with neural networks, the
most standard route is to apply a fixed set of pre-processing operations instead
of directly using the raw representation of the signal. The objective of this pre-
processing is to represent the signal in a way similar to how the human ear
perceives it.

Starting from this raw signal, illustrated in Figure 4.2, the usual preprocessing
pipeline for speech processing is the following:

1. The first step is to slice it into a series of short chunks, short enough to
consider that the frequency distributions will no change much during each
timeframe. In our experiments, we use overlapping 30ms long chunks every
10ms.

2. We compute the periodogram of each timeframe to get an estimate of how
much power there is around each frequency.

3. Using triangular overlapping windows, map the power of the frequencies to
the Mel scale. Since the human ear doesn’t perceive the frequencies linearly
(the perceived difference between 20Hz and 120Hz will be much bigger than
the perceived difference between 10kHz and 10.1kHz), the Mel scale is con-
ceived in such a way that the increment between pitches will be judged to be
perceptually similar for humans.

4. Take the log of the energies obtained above. Here again, this is based on
human perception, since we don’t perceive “loudness“ linearly either.

5. The last step is to apply a Discrete Cosine Transform (DCT) to the log energies
to decorrelate them. The resulting coefficients are called Mel Frequency Cep-
stral Coefficient (MFCC) (we usually keep the first 40 DCT coefficients) and are
the features we will feed to the algorithm for the corresponding timeframe.
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Figure 4.3. – Example of speech processing using a ConvNet composed of 2 con-
volutional layers and 3 linear layers. Features corresponds to the raw
signal of Figure 4.2. The Feature extraction procedure is detailed in
Section 4.2.

Once the MFCCs for each chunk of the audio signal are computed, we can
stack them to create a 2D time/MFCC feature map that can be fed to a standard
Convolutional Neural Network (ConvNet). In our experiments, each feature map
is computed using 1s of audio signal at a time, corresponding to 100 successive
timeframes and resulting in 100x40 feature maps.

4.3 Stochastic Adaptive Neural Architecture Search

The main idea behind our proposition is that, when dealing with streams of
information, a model able to adapt its architecture to the difficulty of the predic-
tion problem at each timestep would be more efficient than a static model. Such
a dynamic model would for example decide to use a small architecture when
the current step is easy and a larger architecture when the prediction is more
difficult. If done correctly, this strategy would allow the model to save a lot of
computation or energy consumption while retaining most of the performance of
the static version. Figure 4.4 presents the static approach commonly used in this
setting while Figure 4.5 presents a toy illustration of how the model we propose
in this chapter should behave.

The Stochastic Adaptive Architecture Search (SANAS) method presented in this
chapter (detailed in Section 4.3.3) is built to achieve this goal: it is, as far as we
know, the first architecture search method producing a system that adapts the
architecture of a neural network on-the-fly during prediction such that small
architectures will be used on the simple steps of the streams (e.g., silence, low
noise, ...) and more powerful networks will be used when facing difficult samples.
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0 0.5 1 1.5 2 2.5 3

Time (s)

Figure 4.4. – Standard workflow for the keyword spotting use-case, using the
same model to sequentially infer the different timeframes of the
sequence.

After learning, SANAS can process audio streams at a higher speed than clas-
sical static methods while keeping a high recognition rate, spending more predic-
tion time on complex signal windows and less time on easier ones (see Section 4.4).
First, we formally define the setting in Section 4.3.1.

Then, we present in detail the main contribution of the chapter: a stochastic
model which adapts itself to the sequence it is processing and can be learned
end-to-end by optimizing a trade-off between the prediction performance and the
average amount of Floating Point Operation (FLOP) spent per unit of time.

Finally, we experimentally validate our model on the Speech Commands dataset
(Warden, 2018) in Section 4.4. Our quantitative results show that this approach
leads to a high recognition level while being much faster (and/or energy sav-
ing) than classical approaches where the network architecture is static. The final
section analyses the model qualitatively, probing the network to observe how it
behaves and what strategies are implemented by the controller to save time.
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Figure 4.5. – Example of a dynamic system on the keyword spotting problem, the
model is adapted to the amount of signal present in each frame.

4.3.1 Problem Definition

We consider the generic problem of stream labeling where, at each timestep,
the system receives a datapoint denoted xt and produces an output label yt. In
the case of audio streams, xt is usually a time-frequency feature map, and yt is the
presence or absence of a given keyword. In classical approaches, the output label yt
is predicted using a neural network whose architecture 1 is denoted A and whose
parameters are θ. We consider in this paper the recurrent modeling scheme where
the context x1, y1, ....., xt−1, yt−1 is encoded using a latent representation zt, such
that the prediction at time t is made computing f(zt, xt, θ,A), zt being updated
at each timestep such that zt+1 = g(zt, xt, θ,A) - note that g and f can share some
common computations.

For a particular architecture A, the parameters are learned over a training set of
labeled sequences {(xi, yi)}i∈[1,N ], N being the size of the training set, by solving:

1. a precise definition of the notion of architecture is given further.
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θ∗ = argmin
θ

1

N

N∑
i=1

[ #xi∑
t=1

∆(f(zt, xt, θ,A), yt)
]
. (4.1)

where #xi is the length of sequence xi, and ∆ a differentiable loss function.
At inference, given a new stream x, each label ŷt is predicted by computing
f(x1, ŷ1, ....., ˆyt−1, xt, θ

∗,A), where ŷ1 . . . ˆyt−1 are the predictions of the model at
previous timesteps. In that case, the computation cost of each prediction step
solely depends on the architecture and is denoted C(A).

4.3.2 Stochastic Adaptive Architecture Search: Principles

We propose now a different setting where the architecture of the model can
change at each timestep depending on the context of the prediction zt. At time t,
in addition to producing a distribution over possible labels, our model also main-
tains a distribution over possible architectures denoted P (At|zt, θ). The prediction
yt being now made following the distribution f(zt, xt, θ,At) and the context up-
date being zt+1 = g(zt, xt, θ,At). In that case, the cost of a prediction at time t is
now C(At), which also includes the computation of the architecture distribution
P (At|zt, θ). It is important to note that, since the architecture At is chosen by the
model, it has the possibility to learn to control this cost itself. A budgeted learning
problem can thus be defined as minimizing a trade-off between prediction loss
and average cost. Considering a labeled sequence (x, y), this trade-off is defined
as :

L(x, y, θ) = E{At}
[ #x∑

t=1

[∆(f(zt, xt, θ,At), yt) + λC(At)]
]
. (4.2)

where A1, ...,A#x are sampled following P (At|zt, θ) and λ controls the trade-off
between cost and prediction efficiency. Considering that P (At|zt, θ) is differen-
tiable, and following the derivation schema proposed in Chapter 3, this cost can
be minimized using the Monte-Carlo estimation of the gradient. Given one sample
of architectures A1, ...,A#x, the gradient can be approximated by:

∇θL(x, y, θ) ≈
( #x∑

t=1

∇θ logP (At|zt, θ)
)
L(x, y,A1, ...,A#x, θ)

+

#x∑
t=1

∇θ∆(f(zt, xt, θ,At), yt).

(4.3)

where
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L(x, y,A1, ...,A#x, θ) =

#x∑
t=1

[∆(f(zt, xt, θ,At), yt) + λC(At)] (4.4)

In practice, a variance correcting value is used in this gradient formulation to
accelerate the learning as explained in Williams (1992) and Wierstra et al. (2007).

4.3.3 The SANAS Model

We now instantiate the previous generic principles in a concrete model using
the concept of Super-Network introduced in Section 3.3: the architecture search is
reformulated into a sub-graph discovery problem in a large graph representing
the search space.

NAS with Super-Networks (static case)

We propose here a quick reminder of Chapter 3, allowing us to introduce the
formalism that we will need in the next sections: a Super-Network is a directed
acyclic graph of layers L = {l1, ...ln}, of edges E ∈ {0, 1}n×n and where each ex-
isting edge connecting layers i and j (ei,j = 1) is associated with a (small) neural
network fi,j . The layer l1 is the input layer while ln is the output layer. The infer-
ence of the output is made by propagating the input x over the edges, and by
summing, at each layer level, the values coming from incoming edges. Given a
Super-Network, the architecture search can be made by defining a distribution
matrix Γ ∈ [0, 1]n×n that can be used to sample edges in the network using a
Bernoulli distribution. Indeed, let us consider a binary matrix H sampled follow-
ing Γ, the matrix E ◦H defines a sub-graph of E and corresponds to a particular
neural-network architecture which size is smaller than E (◦ being the Hadamard
product). Learning Γ thus results in doing architecture search in the space of
all the possible neural networks contained in Super-Network. At inference, the
architecture with the highest probability is chosen.

SANAS with Super-Networks

Concretely, our architecture can be decomposed into 3 major components as
depicted in Figure 4.6:

The first one is a Recurrent Neural Network (RNN) g which will encode in
its state z information about the global dynamics of the sequence. The second
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Figure 4.6. – SANAS Architecture. At timestep t, the distribution Γt is generated
from the previous hidden state, Γt = h(zt, θ). A discrete architec-
ture Ht is then sampled from Γt and evaluated over the input xt.
This evaluation gives both a feature vector Φ(xt, θ, E ◦ Ht) to com-
pute the next hidden state, and the prediction of the model ŷt using
f(zt, xt, θ, E ◦Ht). Dashed edges represent sampling operations. At
inference, the architecture which has the highest probability is cho-
sen at each timestep.

component is the generator function h(z) in charge of generating a distribution
over architectures Γt = h(zt, θ) from the hidden state zt at each timestep. The
last component is a stochastic super network f used for inference and feature
encoding.

At a given timstep t, the RNN takes as input the feature vector from previous
step ϕt−1 and the previous latent state ht−1. It then generates a distribution Γt

from which a particular sub-graph represented by Ht ∼ B(Γt) is sampled, B being
a Bernoulli distribution. This particular sub-grap E ◦Ht = At corresponds to the
architecture to use at time t.

Then the selected architecture is evaluated on sample xt using the stochastic
super network f(zt, xt, θ, E ◦Ht) to (i) extract the feature vector Φt and (ii) make
a prediction yt for the current timestep.

We can now use Φt to compute the next state using the RNN zt+1 = g(zt,Φt, θ) of
the system. Different kind of RNN could be used here, we chose to use the Gated
Recurrent Unit (GRU) (Cho et al., 2014) for its simplicity.

The learning of the parameters of the proposed model relies on a gradient-
descent method based on the approximation of the gradient provided previously,
which simultaneously updates the parameters θ and the conditional distribution
over possible architectures.
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Figure 4.7. – Example of labeling using the method presented in Section 4.4. To
build the dataset, a ground noise (red) is mixed with randomly lo-
cated words (green). The signal is then split in 1s frames every 200ms.
When a frame contains at least 50% of a word signal, it is labeled
with the corresponding word (frame B and C – frame A is labeled
as bg-noise ). Note that this labeling could be imperfect (see frame A
and C).

4.4 Experiments

We train and evaluate our model using the Speech Commands dataset Warden,
2018. It is composed of 65000 short audio clips of 30 common words. As done in
Tang and Lin, 2018; Tang et al., 2018; Zhang et al., 2017, we treat this problem as
a classification task with 12 categories: ’yes’, ’no’, ’up’, ’down’, ’left’, ’right’, ’on’,
’off’, ’stop’, ’go’, ’bg-noise’ for background noise and ’unknown’ for the remaining
words.

4.4.1 Methodology

Instead of directly classifying 1-second samples, we use this dataset to generate
between 1 and 3 second long audio files by combining a background noise coming
from the dataset with a randomly located word (see Figure 4.7), the signal-to-noise
ratio being randomly sampled with a minimum of 5dB.
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Figure 4.8. – SANAS architecture based on cnn-trad-fpool3 (Sainath and Parada,
2015). Edges between layers are sampled by the model. The high-
lighted architecture is the base model on which we have added
shortcut connections. Conv1 and Conv2 have filter sizes of (20,8)
and (10,4). Both have 64 channels and Conv1 has a stride of 3 in the
frequency domain. Linear 1,2 and the Classifier have 32, 128, and 12

neurons respectively. Shortcut linear layers all have 128 neurons to
match the dimension of the classifier.

We thus obtain a dataset of about 30,000 small files 2 and then split this dataset
into the train, validation, and test sets using an 80:10:10 ratio. The sequence of
frames is created by taking overlapping windows of 1 second every 200ms.

As described in Section 4.2, the input features for each window are computed
by extracting 40 MFCC on 30ms frames every 10ms and stacking them to create
the 2D time/frequency maps.

For the evaluation, we use both the prediction accuracy and the number of
operations per frame (FLOPs) value. Similar to how we did it in Chapter 3 (Fig-
ure 3.4), model selection is made by training multiple models, selecting the best
models on the validation set, and computing their performance on the test set.
This is because here again, the ’best models’ in terms of both accuracy and FLOPs
are the models located on the Pareto front of the accuracy/cost validation curve.

These models are also evaluated using the matched, correct, wrong and false alarm
(FA) metrics as proposed in Warden, 2018 and computed over the one hour stream
provided with the original dataset. Note that these last metrics are computed after
using a post-processing method that ensures a labeling consistency as described
in the reference paper.

2. tools for building this dataset are available at http://github.com/TomVeniat/SANAS with
the open-source implementation.

http://github.com/TomVeniat/SANAS
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Match Correct Wrong FA FLOPs per frame
cnn-trad-fpool3

81.7% 72.8% 8.9% 0.0% 124.6M
cnn-trad-fpool3 + shortcut connections

82.9% 77.9% 5.0% 0.3% 137.3M
SANAS

0.0% 0.0% 0.0% 0.0% 0.0
61.2% 53.8% 7.3% 0.7% 519.2K
48.0% 38.3% 9.7% 0.4% 526.4K
62.0% 57.3% 4.8% 0.1% 22.9M
86.5% 80.7% 5.8% 0.3% 37.7M
85.0% 79.6% 5.4% 0.2% 38.6M
83.7% 79.3% 4.4% 0.3% 44.2M
83.5% 78.2% 5.3% 0.0% 44.8M
85.8% 80.6% 5.3% 0.2% 45.2M
86.3% 80.6% 5.7% 0.2% 48.8M
84.1% 78.0% 6.1% 0.0% 51.4M
81.7% 76.4% 5.3% 0.1% 94.0M
80.7% 75.6% 5.1% 0.1% 101.9M
81.4% 76.3% 5.2% 0.2% 105.4M

Table 4.1. – Evaluation of models on 1h of audio from Warden (2018) containing
words roughly every 3 seconds with different background noises. We
use the label post processing and the streaming metrics proposed in
Warden, 2018 to avoid repeated and noisy detections. We report the
performance of SANAS for different budget constraint levels. Matched
% corresponds to the portion of words detected, either correctly (Cor-
rect %) or incorrectly (Wrong %). FA is False Alarm.

4.4.2 Baselines and Training Details

As baseline static model, we use a standard neural network architecture used
for Keyword Spotting aka the cnn-trad-fpool3 architecture proposed in Sainath
and Parada, 2015 which consists of two convolutional layers followed by 3 linear
layers. We then proposed a SANAS extension of this model (see Figure 4.8) with
additional connections that will be adaptively activated (or not) during the audio
stream processing.

In the SANAS models, the recurrent layer g is a one-layer GRU Cho et al., 2014

and the function h mapping from the hidden state xt to the distribution over
architecture Γt is a one-layer linear module followed by a sigmoid activation.

The models are learned using the ADAM Kingma and Ba, 2015 optimizer with
β1 = 0.9 and β2 = 0.999, gradient steps between 10−3 and 10−5 and λ in range
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Figure 4.9. – Cost accuracy curves. Reported results are computed on the test
set using models selected by computing the Pareto front over the
validation set. Each point represents a model.

[10−(m+1), 10−(m−1)] with m the order of magnitude of the cost of the full model.
Training time is reasonable and corresponds to about 1 day on a single GPU
computer.

4.4.3 Results

Quantitative Results

The first results obtained by various models are presented in Table 4.1 for the
one-hour test stream, and in Figure 4.9 on the test evaluation set. It can be seen
that, at a given level of accuracy, the SANAS approach is able to greatly reduce
the number of FLOPs, resulting in a model which is much more power-efficient.

For example, with an average cost of 37.7M FLOPs per frame, our model is
able to match 86.5% of the words, (80.7% correctly and 5.8% wrongly) while
the baseline models match 81.7% and 82.9% of the words with 72.8% and 77.9%
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correct predictions while having a higher budget of 124.6M and 137.3 FLOPs per
frame respectively.

Moreover, it is interesting to see that our model also outperforms both baselines
in terms of accuracy, or regarding the metrics in Table 4.1. This is because, know-
ing that we have added shortcut connections in the base architecture, our model
has better expressive power. Note that in our case, over-fitting is avoided by the
cost minimization term in the objective function, while it occurs when using the
complete architecture with shortcuts (see Figure 4.9).

Qualitative Results

To better understand what happens in SANAS. We measure how and when most
of the budget is spent. Figure 4.10 illustrates the average cost per possible pre-
diction during training. It is not surprising to show that our model automatically
’decides’ to spend less time on frames containing background noise and much
more time on frames containing words. Moreover, at convergence, the model also
divides its budget differently on the different words, for example spending less
time on the yes words that are easy to detect.

Figure 4.11 uses the data creation procedure explained in Figure 4.7 to see
whether the amount of “true“ signal present in a frame correlates with the share
of the budget attributed to the frame. To do so we plot the budget against the
share of a frame that is occupied by the real word (e.g., the budget allocated to
frame B of Figure 4.7 would be plotted at x ≈ 0.3 while frame C would be plotted
at x ≈ 0.9). The observed curves show that there is a strong correlation between
the amount of real signal present in a frame and the time that SANAS decides to
spend on it, confirming that the model behaves as expected and truly learns to
look at the signal before selecting the architectures.
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Figure 4.10. – Training dynamics. Average cost of the architecture sampled for
each word (on the test set). The training dynamics show us that the
network first finds an architecture able to solve the task while sam-
pling notably cheaper architectures when only background noise
is present in the frames (note the difference between the 11 curves
for the classes containing actual words and the one for background
noise). When we continue training past this point, forcing the net-
work to save more energy in order further decrease the loss, we
notice that the network starts making differences between words,
first sampling notably cheapest architecture for words from the
dataset less susceptible to be mixed up ("yes" or "left" for example)
and keeping high cost for closer words ("no", "go", "on", "down") or
the more complex class "unknown". The last part shows that the
network is able to close the gap between the costs of the architec-
tures used for the different "categories" of words. These dynamics
illustrate the advantage of our method over "hard-coded" usage of
several networks of different costs used in cascade or selected via
some gating function. Y-axis is FLOPs per frame (millions)
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Figure 4.11. – Average number of FLOPs required to evaluate the sampled models
in function of the signal contained in the corresponding frame. We
observe that model is able to effectively adapt its size, sampling
simple models when the frame contains only background noise
and leveraging more computation power when the frame contains
an actual word.
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4.5 Conclusion

In this chapter, we have proposed a new model for keyword spotting where the
recurrent network can automatically adapt its size during inference depending on
the difficulty of the prediction problem at time t. This model is learned end-to-end
based on a trade-off between prediction efficiency and computation cost and is
able to find solutions that keep a high prediction accuracy while minimizing the
average computation cost per timestep. Ongoing research includes using these
methods on larger super-networks and investigating other types of budgets like
memory footprint or electricity consumption on connected devices.
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Chapter abstract

Existing literature in budgeted Neural Architecture Search (NAS) has mainly
focused on properties of the learner such as its size and speed, overlooking
other considerations like the amount of data available and whether external
knowledge could be incorporated in the search procedure to reach better perfor-
mances. Although such setups are currently under-explored, we remark that
it bears some similarities with the very active domain of Continual Learn-
ing (CL), in which a learner faces a stream of tasks. In this setting, the learner
is allowed to experience each task only once before being evaluated on all of

71
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them. We propose to consider each task as a local NAS problem. The main
idea is that, instead of starting from scratch every time as usually done, the
learner can use its past experiences to improve the search procedure on subse-
quent tasks. For example, it could add pre-trained layers from past tasks to the
current search space to save time and/or reach better performance on highly
data-restricted tasks. Since no current benchmarks in CL focus on this transfer
ability, we first propose a new suite of benchmarks to probe CL algorithms on
carefully selected transfer scenarios. Equipped with this tool, we introduce a
new modular NAS algorithm, whose modules represent atomic skills that can
be composed to perform a certain task. Learning a task reduces to figuring
out which past modules to re-use, and which new modules to instantiate to
solve the current task. Our experiments show that this modular architecture
and learning algorithm perform competitively on widely used CL benchmarks
while yielding superior performance on the more challenging benchmarks we
introduce in this work.

The work in this chapter has led to the acceptation of a conference paper to
appear in May this year:

• Tom Veniat, Ludovic Denoyer, and Marc’Aurelio Ranzato (2021). “Effi-
cient Continual Learning with Modular Networks and Task-Driven Pri-
ors”. In: 9th International Conference on Learning Representations, ICLR 2021
abs/2012.12631. arXiv: 2012.12631. url: https://arxiv.org/abs/2012.
12631.

Resources to reproduce the work in this chapter are publicly available:

• CTrL benchmark: https://github.com/facebookresearch/CTrLBenchmark.

• Source code of the experiments: https://github.com/TomVeniat/MNTDP.

5.1 Introduction

After observing that NAS can improve the design of architectures on a single
task, being able to greatly reduce the cost of inference models both on static
(Chapter 3) and dynamic (Chapter 4) problems. One can wonder if NAS could
operate using a new kind of constraints, not coming from inference infrastructure
restrictions but coming from the task itself. For example, we can compare the
standard ways used in supervised learning to solve small problems, only coming
with a handful of annotated examples vs. large-scale tasks coming with thousand
or even millions of examples. A seasoned machine learning practitioner facing

https://arxiv.org/abs/2012.12631
https://arxiv.org/abs/2012.12631
https://arxiv.org/abs/2012.12631
https://github.com/facebookresearch/CTrLBenchmark
https://github.com/TomVeniat/MNTDP
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the first problem would generally use small neural networks with a carefully
tuned architecture and training procedure (duration, which parameters to train,
regularization, ...) to prevent over-fitting, they would also spend a considerable
amount of time searching for models already trained on similar tasks, hoping that
it will contain some related knowledge transferable to the current problem when
finetuned. Their approach to the second problem would be very different, most
probably using massive models having millions to billions of free parameters and
training them from scratch for a long period of time. It would be interesting to
see whether an automatic architecture search procedure could be extended to
this level of complexity. Not only solving local problems but also operating at a
“meta” level, automatically deciding which search space to consider or which task
we could try benefiting from. The result of such an algorithm would be a large
"system" evolving over time, adding more and more knowledge as it encounters
new tasks and able to scale efficiently in order to exploit this knowledge when
necessary to solve new problems.

This is the general problem we tackle in this last chapter. The first step is
to note that, although not pursuing a strictly identical objective, there is some
commonality between this problem and the CL framework – presented in details
in Section 5.2. Indeed, both settings consider a single agent facing a theoretically
never-ending stream of tasks. In both settings, the agent is required to carry
knowledge across the stream to perform well. In the case of a continual learner,
this is because it will be evaluated on the same task again at some point. In
the case of the system described above it is to help the learning procedure and
improve the performance on later tasks. In both settings, the learner should scale
memory and compute sub-linearly w.r.t. the number of tasks in order to be usable
in real-world scenarios.

As a first step in this direction, we therefore decide to focus on using NAS

approaches on the CL problem. Existing literature in CL has focused on over-
coming catastrophic forgetting (i.e., the inability of the learner to recall how to
perform tasks observed in the past) and not on maximizing transfer across tasks.
We first discuss the current methods used to evaluate CL models in Section 5.3.
Starting from the observation that these methods fall short of measuring the spe-
cific properties we are interested in, we formally define them in Section 5.3.1
and propose a new benchmark based on real-world datasets able to evaluate any
model along these axes in Section 5.3.2. Then, we present a new model of NAS-
based CL in Section 5.5. This modular model is specifically designed to leverage
knowledge acquired during past experiences to help the learning procedure by
finding the best combination of pretrained and blank modules. We present the
general framework as well as two implementations of the search algorithm. Our
learning algorithm also leverages a task-driven prior over the exponential search
space of all possible ways to combine modules, enabling efficient learning on
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long streams of tasks. Finally, we demonstrate that it significantly outperforms
existing approaches on most of these dimensions in the experiments presented in
Section 5.6.

5.2 Continual Learning Background

Continual Learning (CL) is a learning framework whereby an agent learns
through a sequence of tasks (Ring, 1994; Thrun, 1994; Thrun, 1998), observing
each task once and only once. Much of the focus of the CL literature has been
on avoiding catastrophic forgetting (McClelland et al., 1995; McCloskey and Cohen,
1989; Goodfellow et al., 2013), the inability of the learner to recall how to perform
a task learned in the past. In our view, remembering how to perform a previous
task is particularly important because it promotes knowledge accrual and transfer.
CL has then the potential to address one of the major limitations of modern
machine learning: its reliance on large amounts of labeled data. An agent may
learn well a new task even when provided with little labeled data if it can leverage
the knowledge accrued while learning previous tasks, assuming the current task
bears some similarity to previously encountered tasks.

Continual Learning methods can be categorized into three main families of
approaches:

Regularization

Methods falling in this category use a single shared predictor across all tasks
with the only exception that there can be a task-specific classification head de-
pending on the setting. They rely on various regularization methods to prevent
forgetting. Kirkpatrick et al. (2016) and Schwarz et al. (2018) use an approxima-
tion of the Fisher Information matrix while Zenke et al. (2017) using the distance
of each weight to its initialization as a measure of importance. These approaches
work well in streams containing a limited number of tasks but will inevitably ei-
ther forget or stop learning as streams grow in size and diversity (Ven and Tolias,
2019), due to their structural rigidity and fixed capacity.

Memory

Similarly, rehearsal based methods also share a single predictor across all tasks
but attack forgetting by using rehearsal on samples from past tasks. For instance,
Lopez-Paz and Ranzato (2017), Chaudhry et al. (2019a), and Rolnick et al. (2019)
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store past samples in a replay buffer, while Shin et al. (2017) learn to generate
new samples from the data distribution of previous tasks and Zhang et al. (2019)
computes per-class prototypes. These methods share the same drawback of reg-
ularization methods: Their capacity is fixed and pre-determined which makes
them ineffective at handling long streams.

Dynamic Architectures

Finally, approaches based on evolving architectures directly tackle the issue of
the limited capacity by enabling the architecture to grow over time.

Within this family, there is a subclass of approaches that are modular, in the
sense that the architecture is allowed to grow by adding modules to layers as
opposed to individual neurons, and at run time only a sparse subset of modules
is executed. This leads to much more efficient inference and RAM utilization, but
learning is usually harder because of the combinatorial nature of the optimization
problem. Our approach belongs to this sub-class.

Rusu et al. (2016) introduce a new network on each task, with connection to all
previous layers, resulting in a network that grows super-linearly with the number
of tasks. This issue was later addressed by Schwarz et al. (2018) who propose
to distill the new network back to the original one after each task, henceforth
yielding a fixed capacity predictor which is going to have severe limitations on
long streams. Yoon et al. (2018) and Hung et al. (2019) propose a heuristic algo-
rithm to automatically add and prune weights. Li et al. (2019) propose to softly
select between reusing, adapting, and introducing a new module at every layer.
Similarly, Xu and Zhu (2018) propose to add filters once a new task arrives using
REINFORCE (Williams, 1992), leading to larger and larger networks even at in-
ference time as time goes by. These two works are the most similar to ours, with
the major difference that we restrict the search space over architectures, enabling
much better scaling to longer streams. While their search space (and RAM con-
sumption) grows over time, ours is constant. Our approach is modular, and only a
small (and constant) number of modules is employed for any given task both at
training and test time. Non-modular approaches, like those relying on individual
neuron gating (Adel et al., 2020; Serrà et al., 2018; Kessler et al., 2019), lack such
runtime efficiency which limits their applicability to long streams. Rajasegaran
et al. (2019) and Fernando et al. (2017) propose to learn a modular architecture,
where each task is identified by a path in a graph of modules like we do. However,
they lack the prior over the search space. They both use random search which is
rather inefficient as the number of modules grows.
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Figure 5.1. – Comparison of various CL methods on the CTrL benchmark us-
ing Resnet (left) and Alexnet (right) backbones. MNTDP-D is our
method. See Table 5.7 of Section 5.6.3 for details.

There are of course other works that introduce new benchmarks for CL. Most
recently, Wortsman et al. (2020) have proposed a stream with 2500 tasks all derived
from MNIST permutations. Unfortunately, this may provide little insight in terms
of how well models transfer knowledge across tasks. Other benchmarks like
CORe50 (Lomonaco and Maltoni, 2017) and CUB-200 (Wah et al., 2011) are more
realistic but do not enable precise assessment of how well models transfer and
scale.

CL is also related to other learning paradigms, such as meta-learning (Finn
et al., 2017b; Nichol et al., 2018b; Duan et al., 2016), but these only consider the
problem of quickly adapting to a new task while in CL we are also interested
in preventing forgetting and learning better over time. For instance, Alet et al.
(2018) proposed a modular approach for robotic applications. However, only the
performance on the last task was measured. There is also a body of literature on
modular networks for multi-task and multi-domain learning (Ruder et al., 2019;
Rebuffi et al., 2017; Zhao et al., 2020). The major differences are the static nature
of the learning problem they consider and the lack of emphasis on scaling to a
large number of tasks.

5.3 Evaluating Continual Learning Models

Let us start with a general formalization of the CL framework. We assume
that tasks arrive in sequence and that each task is associated with an integer task
descriptor t = 1, 2, ... which corresponds to the order of the tasks. Task descriptors
are provided to the learner both during training and test time. Each task is defined
by a labeled dataset Dt. We denote with S a sequence of such tasks. A predictor
for a given task t is denoted by f : X t × Z → Y t. The predictor has internally
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some trainable parameters whose values depend on the stream of tasks S seen
in the past, therefore the prediction is: f(x, t|S). Notice that in general, different
streams lead to different predictors for the same task: f(x, t|S) ̸= f(x, t|S ′).

5.3.1 Desirable Properties of CL models and Metrics:

Since we are focusing on supervised learning tasks, it is natural to evaluate
models in terms of accuracy. We denote the prediction accuracy of the predictor f
as ∆(f(x, t|S), y), where x is the input, t is the task descriptor of x, S is the stream
of tasks seen by the learner and y is the ground truth label.

In this context, we consider four major properties of a CL algorithm:

Average Accuracy First, the algorithm has to yield predictors that are accurate
by the end of the learning experience. This is measured by their average accuracy
at the end of the learning experience:

A(S) = 1

T

T∑
t=1

E(x,y)∼Dt [∆(f(x, t|S = 1, . . . , T ), y)]. (5.1)

Forgetting Second, the CL algorithm should yield predictors that do not forget,
i.e. that are able to perform a task seen in the past without significant loss of
accuracy. Forgetting is defined as:

F(S) = 1

T − 1

T−1∑
t=1

E(x,y)∼Dt [∆(f(x, t|S = 1, . . . , T ), y)−∆(f(x, t|S ′ = 1, . . . , t), y)].

(5.2)
This measure of forgetting has been called backward transfer (Lopez-Paz and
Ranzato, 2017), and it measures the average loss of accuracy on a task at the end
of training compared to when the task was just learned. Negative values indicate
the model has been forgetting. Positive values indicate that the model has been
improving on past tasks by learning subsequent tasks.

Transfer Third, the CL algorithm should yield predictors that are capable of
transferring knowledge from past tasks when solving a new task. Transfer can
be measured by:

T (S) = E(x,y)∼DT [∆(f(x, T |S = 1, . . . , T ), y)−∆(f(x, T |S ′ = T ), y)]. (5.3)
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which measures the difference of performance between a model that has learned
through a whole sequence of tasks and a model that has learned the last task in
isolation. We would expect this quantity to be positive if there exist previous tasks
that are related to the last task. Negative values imply the model has suffered
some form of interference or even lack of plasticity when the predictor has too
little capacity left to learn the new task.

Scalability The CL algorithm also has to yield predictors that scale sub-linearly
with the number of tasks both in terms of memory and compute. In order to
quantify this, we simply report the total memory usage and compute by the end
of the learning experience during training. We, therefore, include in the memory
consumption everything a learner has to keep around to be able to continually
learn (e.g., regularization parameters of EWC or the replay buffer for experience
replay).

Learning Speed Finally, we report the area under the learning curve after β

optimization steps as proposed in Chaudhry et al. (2019b) as a metric to assess
learning speed:

LCA@β =
1

T

T∑
t=1

[
1

β + 1

β∑
b=0

Ab,t(f)

]
. (5.4)

Where Ab,t(f) corresponds to the test set accuracy on task t of learner f after
having seen b batches from task t. While interesting, this metric isn’t essential
to our evaluation since we focus on this chapter on obtaining the best possible
model for each task. Therefore, we only present it in the detailed results of each
stream while omitting it from summary tables for clarity.

5.3.2 Streams

The metrics introduced above can be applied to any stream of tasks. While
current benchmarks are constructed to assess forgetting, they fall short at enabling
a comprehensive evaluation of transfer and scalability because they do not control
for task relatedness and they are composed of too few tasks. Therefore, we propose
a new suite of streams. If t is a task in the stream, we denote with t− and t+ a task
whose data is sampled from the same distribution as t, but with a much smaller
or larger labeled dataset, respectively. Finally, t′ and t′′ are tasks that are similar
to task t, while we assume no relation between ti and tj , for all i ̸= j.
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We consider five axes of transfer and define a stream for each of them. While
other dimensions certainly exist, here we are focusing on basic properties that
any desirable model should possess.

Direct Transfer

We define the stream S- = (t+1 , t2, t3, t4, t5, t
−
1 ) where the last task is the same

as the first one but with much less data to learn from. This is useful to assess
whether the learner can remember an experience and directly transfer knowledge
from the relevant task without having to retrain anything.

A classic real-world example of such a scenario is how we learn to ride a bicy-
cle: the first experience of it is long and painful, it requires lots of trials to reach
the required skills of balance and coordination (lots of data). Yet once this skill is
acquired, it only takes a few minutes to ride again even without any practice for
several years.

Knowledge Update

We define the stream S+ = (t−1 , t2, t3, t4, t5, t
+
1 ) where the last task has much

more data than the first task with intermediate tasks that are unrelated. In this
case, there should not be much need to transfer anything from previous tasks,
and the system can just use the last task to update its knowledge of the first task.

Transfer to similar Input Distributions

In order to evaluate the ability to recognize high-level similarities, we consider
the case where two tasks are very similar but with very different input distribu-
tions. For example, different tasks could aim at classifying the same objects but
using black and white vs color photos, or the same signal could be observed in
different tasks, but each time observed by different captors each having different
features and noise levels. We define this streams with the last task similar to the
first task but the input distribution changes S in = (t1, t2, t3, t4, t5, t

′
1).

Transfer to similar Output Distributions

On the opposite, we also define a streams where the last task is similar to
the first task but the with the same input distribution and a changed output
distribution: Sout = (t1, t2, t3, t4, t5, t

′′
1).



80 chapter 5

This corresponds to the setting in which standard transfer learning usually
shines. When interested in a task for which few annotated samples are available,
a good approach is to first pre-train on a large task using the same modality and
then fine-tuning on the desired task (e.g., classification to segmentation, transla-
tion to sentiment classification).

Plasticity

To assess plasticity, we use a stream where all tasks are unrelated, Spl =

(t1, t2, t3, t4, t5), which is useful to measure the ”ability to still learn” and potential
interference (erroneous transfer from unrelated tasks) when learning the last task.

One important thing to note is that approaches using fixed architectures are
doomed to fail on this dimension. Indeed, if an almost saturated learner faces a
task of a totally new kind, it will be unable to solve it without major alterations to
the accumulated knowledge. This dimension is critical for truly lifelong learners
having to deal with a never-ending stream of tasks.

Scalability

Finally, we evaluate scalability using S long, a stream with 100 tasks of varying
degrees of relatedness and with varying amounts of training data. See Section 5.4
for more details.

All these tasks are evaluated using T in Equation 5.3. Other dimensions of trans-
fer (e.g., transfer with compositional task descriptors or under noisy conditions)
are avenues of future work.

5.4 The CTrL Benchmark

The Continual Transfer Learning (CTrL) benchmark is a collection of streams of
tasks built over seven popular computer vision datasets, namely:

• CIFAR10 and CIFAR100 (Krizhevsky, 2009a), which have already been pre-
sented in Chapter 3, Section 3.5.2.1.

• MNIST (LeCun et al., 1998), also presented in Section 3.5.2.1.

• Describable Textures Dataset (DTD) (Cimpoi et al., 2014), composed of images
of 40 different textures. This dataset is interesting because while also com-
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(a) Cifar100 (b) Cifar10 (c) DTD (d) SVHN

(e) MNIST (f) Fashion-
MNIST

(g) Rainbow-
MNIST

Figure 5.2. – Samples from the datasets used in the Continual Transfer Learning
(CTrL) benchmark.

Dataset no. classes training validation testing
CIFAR-100 100 40000 10000 10000

CIFAR-10 10 40000 10000 10000

D. Textures 47 1880 1880 1880

SVHN 10 47217 26040 26032

MNIST 10 50000 10000 10000

Fashion-MNIST 10 50000 10000 10000

Rainbow-MNIST 10 50000 10000 10000

Table 5.1. – Datasets used in the CTrL benchmark.

posed of pictures, its semantic is far from natural images. it is also relatively
small with only 40 training examples per class.

• Street View House Number (SVHN) (Netzer et al., 2011) which is also com-
posed of pictures but this time of house numbers. The objective being to
recognize digits in the wild, this problem is very similar to MNIST but using
a different input domain.

• Rainbow MNIST (R-MNIST) is a variant of the Rainbow-MNIST dataset pro-
posed by Finn et al. (2019), using only different background colors and keep-
ing the original scale and rotation of the digits.

• Fashion MNIST (F-MNIST) (Xiao et al., 2017) is similar in shape and size to
MNIST, intending to classify clothes rather than digits.
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T1 T2 T3 T4 T5 T6

S−
Datasets Cifar-10 MNIST DTD F-MNIST SVHN Cifar-10

# Train Samples 4000 400 400 400 400 400

# Val Samples 2000 200 200 200 200 200

S+

Datasets Cifar-10 MNIST DTD F-MNIST SVHN Cifar-10

# Train Samples 400 400 400 400 400 4000

# Val Samples 200 200 200 200 200 2000

Sin
Datasets R-MNIST Cifar-10 DTD F-MNIST SVHN R-MNIST
# Train Samples 4000 400 400 400 400 50

# Val Samples 2000 200 200 200 200 30

Sout
Datasets Cifar-10 MNIST DTD F-MNIST SVHN Cifar-10

# Train Samples 4000 400 400 400 400 400

# Val Samples 2000 200 200 200 200 200

Spl
Datasets MNIST DTD F-MNIST SVHN Cifar-10

# Train Samples 400 400 400 400 4000

# Val Samples 200 200 200 200 2000

Table 5.2. – Details of the streams used to evaluate the transfer properties of the
learner. The provided number of samples is per class.

Please, refer to Table 5.1 for basic statistics about the datasets.

These datasets are desirable because they are diverse (hence tasks derived from
some of these datasets can be considered unrelated), they have a fairly large
number of training examples to simulate tasks that do not need to transfer, and
they have low spatial resolution enabling fast evaluation.

CTrL is designed according to the methodology described in Section 5.3.2, to
enable evaluation of the various transfer learning properties presented above and
the ability of models to scale to a large number of tasks.

The composition of the different tasks is given in Table 5.2 and an instance of
the long stream is presented in Appendix A.

The tasks in S−, S+, S in, Sout and Spl are all 10-way classification tasks.

In S−, the first task has 4000 training examples while the last one which is the
same as the first task has only 400. The vice versa is true for S+ instead.

The last task of S in is the same as the first task, except that the background color
of the MNIST digit is different. The last task of Sout is the same as the first task,
except for label ids that have been shuffled, therefore, if “horse” was associated to
label id 3 in the first task, it is now associated to label id 5 in the last task. Special
care is taken to avoid that any class is associated to the same label id in the first
and last tasks.
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The S long stream is composed of both large and small 5-way classification tasks
that have 5000 (or whatever is the maximum available) and 25 training examples,
respectively. Each task is built by choosing one of the datasets at random, and
5 categories at random in this dataset. During task 1-33, the fraction of small
tasks is 50%, this increases to 75% for tasks 34-66, and to 100% for tasks 67-
100. This schedule is designed to simulate the desired evolution of a lifelong
learning agent. Indeed, when freshly released in a new environment without any
prior on the tasks it faces, a significant amount of data is required to reach an
acceptable performance. On the contrary, as the number of tasks solved increases,
the agent should rely more and more on the prior knowledge accumulated over
time, therefore requiring orders of magnitude less data toward the end of the
stream. This is a challenging setting allowing to assess not only scalability but
also transfer ability and sample efficiency of a learner. Full details about one
version of the S long stream used in our experiments are presented in Section A.1.

Each task comes with a training, validation, and test datasets. Since the learner
has access to both the training and validation sets, the number of validation
samples is always around half the size of the training set. On the contrary, since
the test set is only used for reporting results and never for training, it contains
the maximum number of samples available to allow the best evaluation possible.

All images have been rescaled to 32x32 pixels in RGB color format, and per-
channel normalized using statistics computed on the training set of each task.
During training, we perform data augmentation by using random crops (4 pixels
padding and 32x32 crops) and random horizontal reflection.
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5.5 Modular Networks with Task Driven Prior

Now that the desired properties of a continual learning agent have been iden-
tified and can be evaluated, we can come back to the objective discussed in Sec-
tion 5.1.

The overall idea is to decompose the ever-growing machine learning system
into two main components:

• A growing strategy, in charge of maintaining the ability of the system to
keep learning as the number of encountered tasks increase and archiving
existing knowledge for future usage once a problem is solved. A poorly
balanced growing strategy would greatly reduce the practical interest of such
a system. Indeed, if not enough capacity is added over time the system will
quickly saturate and stop learning. On the other end of the spectrum, adding
too much capacity and/or archiving unnecessary information will result in
an inefficient bloated system growing out of control and unable to retrieve
relevant information from what it decided to archive. The performance of this
component can be measured using Spl and S long.

• A search algorithm, in charge of selecting what and how much knowledge
should be transferred when facing a new task. Here again, the balance is
difficult to find since transferring too much knowledge to an unrelated task
or, on the contrary, not transferring anything to a task already solved could
prevent the system from reaching the optimal performance. The performance
of this component can be measured using S+, S -, S in and Sout.

The proposed approach, dubbed Modular Networks with Task Driven Prior
(MNTDP), is designed following this general idea. Its growing strategy is presented
in Section 5.5.1 and its NAS-based search algorithm is described in Section 5.5.2.
The Task-Driven Prior, an additional component whose objective is to further
improve the scalability of the system is presented in Section 5.5.3.

In this model, the class of predictor functions f(x, t|S) we consider is modular,
in the sense that predictors are composed of modules that are potentially shared
across different (but related) tasks. A module can be any parametric function, for
instance, a ResNet block (He et al., 2016). The only restriction we use is that all
modules in a layer should differ only in terms of their actual parameter values,
while modules across layers can implement different classes of functions. For
instance, in the illustrations of Figure 5.3-A and Figure 5.4e (see captions for
details), there are two predictors, each composed of three modules (all ResNet
blocks), the first one being shared.
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Figure 5.3. – Toy illustration of the approach when each predictor is composed of only
three modules and only two tasks have already been observed. A): The pre-
dictor of the first task uses modules (1,1,1) (listing modules by increasing
depth in the network) while the predictor of the second task uses mod-
ules (1,2,2); the first layer module is shared between the two predictors.
B): When a new task arrives, first we add one new randomly initialized
module at each layer (the dashed modules). Second, we search for the most
similar past task and retain only the corresponding architecture. In this
case, the second task is most similar and therefore we remove (gray out)
the modules used only by the predictor of the first task. C): We train on the
current task by learning both the best way to combine modules and their
parameters. However, we restrict the search space. In this case, we only con-
sider four possible compositions, all derived by perturbing the predictor
of the second task. In the stochastic version (MNTDP-S), for every input a
path (sequence of modules) is selected stochastically. Notice that the same
module may contribute to multiple paths (e.g., the top-most layer with id
3). In the deterministic version instead (MNTDP-D), we train in parallel all
paths and then select the best. Note that only the parameters of the newly
added (dashed) modules are subject to learning. D): Assuming that the
best architecture found at the previous step is (1,2,3), module 3 at the top
layer is added to the current library of modules.

5.5.1 Growing Strategy

Once a new task t arrives, the algorithm follows three steps.

First, it temporarily adds new randomly initialized modules at every layer
(these are denoted by blue edges in Figure 5.4). The graph composed of existing
modules and the new added ones defines a search space over all possible ways
to combine modules (Figure 5.4a, Figure 5.4c and Figure 5.4f)).

Second, it makes use of the search algorithm to minimize a loss function, which
in our case is the cross-entropy loss. This step learns ways to combine modules
and module parameters at the same time, see Figure 5.4d. Note that only the pa-
rameters of the newly added modules are subject to training, de facto preventing
forgetting of previous tasks by construction but also preventing positive backward
transfer. This step is described in more detail in Section 5.5.2.
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Figure 5.4. – Expansion and pruning strategy of MNTDP. Blue edges correspond
to trainable modules while red edges are frozen. (a) is the initial step,
all modules are randomly initialized and then fully trained on the
first task. Once the training is finished, newly introduces edges are
frozen (b) before moving to the next task and expanding the network
to create the new search space (c). Starting from task 2, MNTDP learns
at the same time the optimal path and the corresponding parameters
that needs to be retained (d). When the path is identified, selected
new modules are frozen and unused modules are discarded (e). The
model can now expand again and repeat the procedure for the next
task (f).

Finally, it takes the resulting predictor for the current task and adds the param-
eters of the (selected) newly added modules (if any) back to the existing library of
module parameters, see Figure 5.4b and Figure 5.4e, discarding modules added
during the first step but not selected at the second step.
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5.5.2 Search procedure

Since predictors are uniquely identified by which modules compose them, they
can also be described by the path in the grid of module parameters. We denote
the j-th path in the graph by πj . The parameters of the modules in path πj are
denoted by θ(πj). Note that in general θ(πj) ∩ θ(πi) ̸= ∅, for i ̸= j since some
modules may be shared across two different paths.

Let Π be the set of all possible paths in the graph. This has a size equal to the
product of the number of modules at every layer, after adding the new randomly
initialized modules. If Γ is a distribution over Π which is subject to learning (and
initialized uniformly), then the loss function is:

Γ∗, θ∗ = argmin
θ,Γ

Ej∼Γ,(x,y)∼DtL(f(x, t|S, θ(πj)), y) (5.5)

where f(x, t|S, θ(πj) is the predictor using parameters θ(πj), L is the loss, and
the minimization over the parameters is limited to only the newly introduced
modules. The resulting distribution Γ∗ is a delta distribution, assuming no ties
between paths. Once the best path has been found and its parameters have been
learned, the corresponding parameters of the new modules in the optimal path
are added to the existing set of modules while the other ones are disregarded
(Figure 5.4).

We propose now two instances of the learning problem in Equation 5.5, which
differ in a) how they optimize over paths and b) how they share parameters across
modules.

Stochastic version:

Comparing Equation 5.5 and Equation 3.10, we observe that the problem we are
now facing is very similar to the one solved by the Budgeted Super Networks (BSN)
algorithm. The only difference being the absence of the explicit cost constraint.
We can therefore take inspiration from what we did in Chapter 3 to propose an
algorithm solving the problem at hand.

This algorithm alternates between one step of gradient descent over the paths
via REINFORCE (Williams, 1992) as in Chapters 3 and 4, and one step of gra-
dient descent over the parameters for a given path. The distribution Γ is now
modeled by a product of multinomial distributions, one for each layer of the
model. These select one module at each layer, ultimately determining a particular
path. Newly added modules may be shared across several paths which yields a
model that can support several predictors while retaining a very parsimonious
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Stochastic Search
Frozen Module

Trainable Module

Figure 5.5. – Stochastic version of MNTDP search algorithm. A distribution over
architectures and the corresponding parameters are learned jointly
using the NAS procedure presented in Chapter 3.

memory footprint thanks to parameter sharing. This version of the model, dubbed
MNTDP-Stochastic (MNTDP-S), is outlined in Figure 5.5 and in algorithm 3 (as well
as in the left part of Figure 5.3-C). To encourage the model to explore multiple
paths, we use an entropy regularization on Γ during training.

The alternation of gradient steps over paths and layer parameters is an addition
to the method presented in previous chapters, where both sets of parameters were
jointly updated on each batch. The objective is to avoid overfitting on small tasks.

To implement this strategy, we split the training set into two halves Dt
1 and

Dt
2. The first part is used to update the module parameters θ, while the second

is used to update the parameters in the distribution over paths, Γ. If both sets of
parameters were trained on the same dataset, Γ would favor paths prone to over-
fitting since they will results in a large decrease of its training loss and therefore a
larger reward. When they are trained on different sets, Γ has to select paths with a
reasonable amount of free parameters, allowing θ to learn and generalize enough
to decrease the loss on both training sets. Then, the most promising architecture
is selected based on argmaxΓ, and fine-tuned over the whole Dt. In this case, the
validation set is used only for hyper-parameters selection.
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Figure 5.6. – Deterministic version of MNTDP search algorithm.

Deterministic version:

This algorithm, dubbed MNTDP-Deteministic (MNTDP-D) minimizes the ob-
jective over paths in Equation 5.5 via exhaustive search, see algorithm 4. It is
illustrated in the right part of Figure 5.3-C and a detailed version in Figure 5.6.
Here, paths do not share any newly added module and we train one indepen-
dent network per path, and then select the path yielding the lowest loss on the
validation set.

While this requires much more memory, it may also lead to better overall per-
formance because each new module is cloned and trained just for a single path.
Moreover, training predictors on each path can be trivially and cheaply paral-
lelized on modern GPU devices. All the architectures are trained over the training
set, and the best path is retained based on its score on the validation set.

5.5.3 Scaling with Data-Driven Prior

Unfortunately, the algorithms as described above do not scale to a a large
number of tasks (and henceforth modules) because the search space grows expo-
nentially. This is also the case for other evolving architecture approaches proposed
in the literature (Li et al., 2019; Rajasegaran et al., 2019; Yoon et al., 2018; Xu and
Zhu, 2018) as discussed in Section 5.2. We thus propose to reduce the search
space, hence enabling lower memory and computational footprint.
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Figure 5.7. – Data-Driven Priors are used to restrict the search space. When learn-
ing on a new task, (a) we consider classifiers obtained so far. (b) More
specifically, we consider the feature space in which the classification
layers operate. (c) Finally, we feed the current training set through
this set of feature extractors and run K-Nearest Neighbors (KNN) to
identify which feature space has a structure allowing to perform the
best on the current task.

If there were N modules per layer and L layers, the search space would have
size O(NL). As illustrated in Figures 5.3 and 5.4, we already restrict the search
space to paths that branch to the right: A newly added module at layer l can only
connect to another newly added module at layer l + 1, but it cannot connect to
an already trained module at layer l + 1. The underlying assumption is that for
most tasks we expect changes in the output distribution as opposed to the input
distribution, and therefore if tasks are related, the base trunk is a good candidate
for being shared. We will see in Section 5.6.4 what happens when this assumption
is not satisfied, e.g., when applying this to S in.

To further restrict the search space we employ a data-driven prior. The intuition
is to limit the search space to perturbations of the path corresponding to the past
task (or to the top-k paths) that is the most similar to the current task. There are
several methods to assess which task is the closest to the current task without
accessing data from past tasks and also different ways to perturb a path. We
propose a very simple approach, but others could have been used.
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On task t, we take the predictors from all the past tasks (Figure 5.7a)

f(x, 1|S = 1)

. . .

f(x, t− 1|S = 1, . . . , t− 1)

and consider the feature space in which their classification layers operate. The
feature space of f(x, 1|S = 1) is denoted f̂(x, 1|S = 1) and is obtained by removing
the head the corresponding classifier (Figure 5.7b). The last step is to feed the
training set Dt of t to these feature extractors, yielding a set of features for each
past predictor(Figure 5.7c). The k paths whose feature space yields the best nearest
neighbors classification accuracy are then selected to branch from and the other
will not be considered when learning the architecture for task t. The intuition is
that if features from the predictor of task ti allow reaching a high accuracy using
KNN on task tj , it means that the feature space structure corresponds well to both
these tasks and therefore ti and tj must have some level of semantic similarity.

This process is shown in Figure 5.3-B. The search space is reduced from TL

to only L, and Γ of Equation 5.5 is allowed to have non-zero support only in
this restricted search space, yielding a much lower computational and memory
footprint which is constant with respect to the number of tasks. The designer of
the model has now direct control (for instance, by varying k) over the trade-off
between accuracy and computational/memory budget.

As long as the restricted search space contains the optimal path or paths close
to the optimal, we should expect the modular network to satisfy all our desired
properties: by construction, the model does not forget, because we do not update
modules of previous tasks. The model can transfer well because it can re-use
modules from related tasks encountered in the past while not being constrained
in terms of its capacity. And finally, the model scales sub-linearly in the number
of tasks because modules can be shared across similar tasks. We will validate
empirically in Section 5.6.3 whether the choice of the restricted search space
works well in practice.

Moreover, the designer of the algorithm can carefully tune the appropriate
search space, leveraging application-specific priors as well as any constraints
coming from their computational or memory budget. For instance, when very
limited compute and memory are available, the designer may decide to further
limit the search space to paths that contain only a few new randomly initialized
modules as opposed to L.
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Algorithm 3: MNTDP-S algorithm.
22 Data: Dataset of task t: Dt.;
44 Past predictors: f(x, j|S) for j = 1, . . . , t− 1 ;
66 Find closest task: j∗ = argmaxj E(x,y)∼Dt [∆(NN(f(x, j|S)), y)], where NN is

the 5-nearest neighbor classifier in feature space;
88 Define search space: Take path corresponding to predictor of task j∗ and

add a new randomly initialized module at every layer. Γ: distribution over
paths; πi: i-th path;

1010 Split train set in two halves: Dt
1 and Dt

2;
1212 while loss in eq. 5.5 has not converged do
1414 get sample (x, y) ∼ Dt[iteration mod 2];
1616 sample path πk ∼ Γ;
1818 if odd iteration or maxΓ > 0.99 then
2020 forward/backward and update θ(πk) (only newly added modules)
21 else
2323 forward/backward and update Γ;
24 end
25 end
2727 Let i∗ be the path with largest values in Γ, then set f(x, t|S ∪ t) to πi∗ .

Algorithm 4: MNTDP-D algorithm.
22 Data: Dataset of task t: Dt.;
44 Past predictors: f(x, j|S) for j = 1, . . . , t− 1 ;
66 Find closest task: j∗ = argmaxj E(x,y)∼Dt [∆(NN(f(x, j|S)), y)], where NN is

5-nearest neighbor classifier in feature space;
88 Define search space: Take path corresponding to predictor of task j∗ and

add a new randomly initialized module at every layer. πi: i-th path,
i = 1, . . . , N where N is the total number of paths;

1010 for i = 1, . . . , N do
1212 while loss in eq. 5.5 has not converged do
1414 get sample (x, y) ∼ Dt;
1616 forward/backward, update parameters θ(πi) (only newly added

modules)
17 end
1919 compute accuracy Ai on validation set.
20 end
2222 Let i∗ = argmaxiAi, then set f(x, t|S ∪ t) to πi∗ .



5.6 experiments 93

5.6 Experiments

In this section we first present the modeling details in Section 5.6.1, then we
compare the complexity of different approaches in Section 5.6.2 before reporting
their results on standard benchmarks as well as on CTrL in Section 5.6.3.

5.6.1 Methodology and Modeling Details

Models learn over each task in sequence; data from each task can be replayed
several times but each stream is observed only once. Since each task has a validation
dataset, hyper-parameters (e.g., learning rate and number of weight updates) are
task-specific and they are cross-validated on the validation set of each task. Once
the learning experience ends, we test the resulting predictor on the test sets of all
the tasks. Notice that this is a stricter paradigm than what is usually employed
in the literature (Kirkpatrick et al., 2016), where hyper-parameters are set at the
stream level (by replaying the stream several times). Our model selection criterion
is more realistic because it does not assume that the learner has access to future
tasks when cross-validating on the current task, and this is more consistent with
the CL’s assumptions of operating on a stream of data.

All models use the same backbone. Unless otherwise specified, this backbone
is a small fully-connected network divided into 3 blocks for the Permuted-MNIST
task and a small variant of the ResNet-18 architecture which is divided into 7

module. Please, refer to Table 5.3 for further details about the specifics of the
architectures, with Table 5.3a for the model used on Permuted-MNIST stream
and Table 5.3b and Table 5.3c for all the other tasks.

Each predictor is trained by minimizing the cross-entropy loss with a small
L2 weight decay on the parameters. In our experiments, MNTDP adds 7 new
randomly initialized modules, one for every block. The search space does not
allow connecting old blocks from new blocks, and it considers two scenarios:
using old blocks from the past task that is deemed most similar (k = 1, the
default setting) or considering the whole set of old blocks (k = all) resulting in a
much larger search space.

As presented in Section 5.6.1, the stream can be visited only once, preventing
stream-level hyper-parameters tuning. Exceptions are made for HAT (Serrà et al.,
2018) because we have been using authors’ implementation, and for EWC and
Online-EWC since these approaches fail in the proposed setting. The constraint
strength hyper-parameter λ must be tuned at the stream level since a task-level
tuning of λ results in little or no constraint at all, leading to severe catastrophic
forgetting. The stream-level hyper-parameters optimization considers 9 values for
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Block # layers #params # hidden units
1 1 785000 1000

2 1 1001000 1000

3 1 10010 num. classes

(a) Permuted MNIST Model
Block # layers #params # out channels

1 1 1856 64

2 4 147968 64

3 4 152192 64

4 4 152192 64

5 2 78208 64

6 2 73984 64

7 1 650 num. classes

(b) Resnet architecture used throughout our experiments.
Block # layers #params # out channels/hidden units

1 1 3136 64

2 1 73856 128

3 1 131328 256

4 1 2099200 2048

5 1 4196352 2048

7 1 10245 num. classes

(c) Details of the Alexnet architecture used in Serrà et al. (2018) and in our exper-
iments.

Table 5.3. – Descriptions of all the base architectures used in our experiments.
Details of how many layers and parameters each block contains are
only relevant for modular approaches.

λ {1, 5, 10, 50, 100, 500, 103, 5× 103, 104}. Note that this gives an unfair advantage
to EWC, Online-EWC, and HAT, as all other methods including MNTDP use
task-level cross-validation as described in Section 5.6.1.

For all methods and experiments, we use the Adam optimizer (Kingma and Ba,
2015) with β1 = 0.9, β2 = 0.999 and ϵ = 10−8.

For each task and each baseline, two learning rates {10−2, 10−3} and 3 weight
decay strengths {0, 10−5, 10−4} are considered. Early stopping is performed on each
task to identify the best step to stop training. When the current task validation
accuracy stops increasing for 300 iterations, we restore the learner to its state after
the best iteration and stop training on the current task.

For MNTDP-S, we consider two additional learning rates for the Γ optimization
{10−2, 10−3}. An entropy regularization term on Γ is added to the loss to encourage
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exploration, preventing an early convergence towards a sub-optimal path. The
weight for this regularization term is set to 1 throughout our experiments

Finally, since small tasks in S long have very few examples in the validation sets,
we use test-time augmentation to prevent overfitting during the grid search. For
each validation sample, we add four augmented copies following the same data
augmentation procedure used during training.

We compare to several baselines:

1. Independent Models which instantiates a randomly initialized predictor for
every task (as many paths as tasks without any module overlap).

2. Finetuning which trains a single model to solve all the tasks without any
regularization and initializes from the model of the previous task (a single
path shared across all tasks)

3. New-Head which also shares the trunk of the network across all tasks but not
the classification head which is task-specific

4. New-Leg which shares all layers across tasks except for the very first input
layer which is task-specific

5. Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2016) which is like
“finetuning” but with a regularizer to alleviate forgetting

6. Experience Replay (ER) (Chaudhry et al., 2019a) which is like finetuning
except that the model has access to some samples from the past tasks to
rehearse and alleviate forgetting (we use 15 samples per class to obtain a
memory consumption similar to other baselines)

7. Progressive Neural Networks (PNN) (Rusu et al., 2016) which adds both a
new module at every layer as well as lateral connections once a new task
arrives.

8. Hard Attention to Tasks (HAT) (Serrà et al., 2018): which learns an attention
mask over the parameters of the backbone network for each task. Since HAT’s
open-source implementation uses AlexNet (Krizhevsky et al., 2012) as a back-
bone, we also implemented a version of MNTDP using AlexNet for a fair
comparison. Moreover, we considered two versions of HAT, the default as
provided by the authors and a version, dubbed HAT-wide, that is as wide as
our final MNTDP model (or as wide as we can fit into GPU memory).

9. DEN (Yoon et al., 2018) which grows the base network using a set of heuristics,
adding neurons and tuning them when the desired performance can’t be
reached on the new task.

10. RCL (Xu and Zhu, 2018) which uses Reinforcement Learning to grow the
architecture.
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Model Train complexity Test complexity
Inde, fintune, new-head N N
EWC N + 2TN N
ER N + rT N
MNTDP-D kbN N
MNTDP-S N + 2kN N
HAT N N
Wide HAT SN SN
DEN N + pT N + pT
RCL N + pT N + pT
Lean to Grow N + 2Tp N

Table 5.4. – Memory complexity of the different baselines at train time and at test
time, where N is the size of the backbone, T the number of tasks, r the
size of the memory buffer per task, k the number of source columns
used by MNTDP, b the number of blocks in the backbone, S the scale
factor used for wide-HAT and p the average number of new parame-
ters introduced per task. Note that while Wide HAT and MNTDP-D
are using a similar amount of memory on CTrL (Table 5.7), the infer-
ence model used by MNTDP on each task only uses the memory of
the narrow backbone, resulting in more than 6 times smaller inference
models.

11. Finally, both versions of MNTDP (Stochastic and Deterministic) defining the
search space by taking the most similar previous task (i.e.,k = 1) and by
adding a new module at every block depth, unless otherwise specified.

For baselines 3 (new-head) and 4 (new-leg), we propose two variants. In the
“freeze” variant the modules shared across tasks are not updated after the first task,
while in the “finetune” version they are updated throughout the whole stream.
For baselines 9 (Dynamically Expandable Networks (DEN)) and 10 (Reinforced
Continual Learning (RCL)), since there is no publicly available implementation
using Convolutional Neural Network (ConvNet), we only report their perfor-
mance on Permuted-MNNIST using Multi-Layer Perceptron (MLP) modules (see
Figure 5.8 and Table 5.5).

We report performance across different axes as discussed in Section 5.3: Av-
erage accuracy as in Equation 5.1, forgetting as in Equation 5.2, transfer as in
Equation 5.3 and applicable only to the transfer streams, “Mem.” [MB] which
refers to the average memory consumed by the end of the training, and “Flops”
[T] which corresponds to the average amount of computation used by the end of
training.
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5.6.2 Comparison of Memory Complexities

In the next sections, one of the metrics we will track is the overall memory
consumption of our MNTDP model to compare it to different approaches from
the literature. We can however already propose a theoretical analysis of the com-
plexity of growth of each method. This comparison is presented in Table 5.4. It
is important to make the distinction between the training time and the test-time
complexity since the training environment will usually be a large cluster while
the deployment environment for a given task can be orders of magnitude smaller.

First, we observe that while most methods require more space during training,
all methods but DEN and RCL are similarly light to deploy and therefore fast to
evaluate at test time. This is because modular architectures like MNTDP use only a
sparse subset of modules for any given task: they select a single "path", reducing
to the independent network case. Another property of MNTDP is that, benefiting
from the task-driven prior, the training complexity doesn’t depend on the number
of tasks. It is a very desirable property for models aimed at learning on very long
streams and this is what will allow us to train it on the Slong stream.

5.6.3 Results on Existing Benchmarks

In Figure 5.8 and Figure 5.9 we compare MNTDP against several baselines on
two standard streams with 10 tasks, Permuted MNIST, and Split CIFAR100. We
observe that all models do fairly well, with EWC falling a bit behind the others in
terms of average accuracy and finetuning methods which exhibit strong forgetting.
PNNs has good average accuracy but requires more memory and compute. Com-
pared to MNTDP, both RCL and HAT have lower average accuracy and require more
compute. MNTDP-D yields the best average accuracy, but requires more computa-
tion than “independent models”; notice however that its wall-clock training time
is actually the same as “independent models” since all candidate paths (seven in
our case) can be trained in parallel on modern GPU devices. In fact, it turns out
that on these standard streams MNTDP trivially reduces to “independent models”
without any module sharing, since each task is fairly distinct and has a relatively
large amount of data. It is therefore not possible to assess how well models can
transfer knowledge across tasks, nor it is possible to assess how well models scale.
Fortunately, we can leverage the CTrL benchmark to better study these properties,
as described next.

Table 5.5 and Table 5.6 report performance across all axes of evaluation on the
standard Permuted MNIST and Split CIFAR 100 streams.
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< A > < F > Mem. FLOPs LCA@5

Model

Independent 0.98 0.00 71.8 9.0 0.43

Finetune 0.49 -0.49 7.2 12.0 0.13

New-head freeze 0.89 0.00 7.5 19.0 0.14

New-head finetune 0.55 -0.43 7.5 15.0 0.14

New-leg freeze 0.98 0.00 35.4 10.0 0.43

New-leg finetune 0.89 -0.09 35.4 14.0 0.19

EWC † 0.94 -0.03 143.7 18.0 0.13

Online EWC † 0.95 -0.01 21.6 14.0 0.16

ER (Reservoir) † 0.69 -0.29 15.0 12.0 0.29

ER 0.90 -0.08 15.0 15.0 0.29

PNN 0.98 0.00 253.8 123.0 0.15

MNTDP-S 0.97 0.00 71.8 21.0 0.22

MNTDP-S (k=all) 0.98 0.00 71.8 24.0 0.19

MNTDP-D 0.98 0.00 71.8 56.0 0.37

HAT† 0.95 0.00 7.6 25.0 0.11

HAT (Wide)† 0.97 0.00 78.5 209.0 0.13

DEN † 0.95 0.00 8.1 - -
RCL † 0.96 0.00 8.5 148.2 -

Table 5.5. – Results on the standard permuted-MNIST stream. In this stream, each of the
10 tasks corresponds to a random permutation of the input pixels of MNIST
digits. For DEN and RCL, since we are using the authors’ implementations,
we do not have access to the LCA measure. † corresponds to models using
stream-level cross-validation (see Section 5.6.1).
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Figure 5.8. – Results on Permuted-MNIST. † correspond to models cross-validated
at the stream-level, a setting that favors them over the other methods
which are cross-validated at the task-level.
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< A > < F > Mem. FLOPs LCA@5

Model

Independent 0.82 0.00 24.4 1327.0 0.11

Finetune 0.18 -0.56 2.4 886.0 0.15

New-head freeze 0.57 0.00 2.5 740.0 0.21

New-head finetune 0.21 -0.52 2.5 687.0 0.15

New-leg freeze 0.50 0.00 2.5 1759.0 0.12

New-leg finetune 0.18 -0.42 2.5 1115.0 0.11

EWC † 0.55 0.01 51.0 1151.0 0.11

Online EWC † 0.54 -0.02 7.3 1053.0 0.12

ER (Reservoir) † 0.32 -0.50 20.9 1742.0 0.17

ER 0.66 -0.15 20.9 1524.0 0.17

PNN 0.78 0.00 133.8 9889.0 0.15

MNTDP-S 0.75 0.00 24.4 1295.0 0.11

MNTDP-S (k=all) 0.75 0.00 24.4 1323.0 0.11

MNTDP-D 0.83 0.00 24.3 6168.0 0.12

MNTDP-D* 0.81 0.00 260.9 488.0 0.17

HAT*† 0.74 -0.01 27.0 175.0 0.11

HAT (Wide)*† 0.79 0.00 269.3 1830.0 0.11

Table 5.6. – Results on the standard Split Cifar 100 stream. Each task is composed of 10

new classes.* corresponds to models using an Alexnet backbone, † to models
using stream-level cross-validation (see Section 5.6.1).
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Figure 5.9. – Results on Split Cifar-100. * denotes an Alexnet Backbone. † corre-
spond to models cross-validated at the stream-level.
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5.6.4 Results on CTrL

We first evaluate models in terms of their ability to transfer by evaluating them
on the streams S-,S+,S in,Sout and Spl introduced in Section 5.3.2. Table 5.7 shows
that “independent models” is again a strong baseline, because even on the first
four streams, all tasks except the last one are unrelated and therefore instantiating
an independent model is optimal. However, MNTDP yields the best average
accuracy overall. MNTDP-D achieves the best transfer on streams S-,S+,Sout and
Spl, and indeed it discovers the correct path in each of these cases (e.g., it discovers
to reuse the path of the first task when learning on S- and to just swap the top
modules when learning the last task on S+). Examples of the discovered paths
are presented at the end of this chapter (Section 5.6.6). MNTDP underperforms
on S in because its prior does not match the data distribution, since in this case, it
is the input distribution that has changed but swapping the first module is out
of MNTDP search space. This highlights the importance of the choice of prior for
this algorithm. In general, MNTDP offers a clear trade-off between accuracy, i.e.
how broad the prior is which determines how many paths can be evaluated, and
memory/compute budget. Computationally MNTDP-D is the most demanding,
but in practice its wall clock time is comparable to “independent” because GPU
devices can store in memory all the paths (in our case, seven) and efficiently train
them all in parallel. We observe also that MNTDP-S has a clear advantage in
terms of computing at the expense of a lower overall average accuracy, as sharing
modules across paths during training can lead to sub-optimal convergence.

Overall, MNTDP has a much higher average accuracy than methods with a
fixed capacity. It also beats PNNs, which seems to struggle with interference
when learning on Spl, as all new modules connect to all old modules which are
irrelevant for the last task. Moreover, PNNs use much more memory. “New-leg”
and “new-head” models perform very well only when the tasks in the stream
match their assumptions, showing the advantage of the adaptive prior of MNTDP.
Finally, EWC shows great transfer on S-,S in,Sout, which probe the ability of the
model to retain information. However, it fails at S+,Spl that require additional
capacity allocation to learn a new task. Figure 5.1 gives a holistic view by reporting
the normalized performance across all these dimensions.

Figures 5.1 and 5.10 provide radar plots of the models evaluated on the CTrL
benchmark. The companion tables of these plots are Tables 5.9, 5.10, 5.11, 5.12

and 5.13.
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< A > < F > Mem. FLOPs T (S-) T (S+) T (S in) T (Sout) T (Spl)

Independent 0.58 0.0 14.1 308 0.0 0.0 0.0 0.0 0.0
Finetune 0.19 -0.3 2.4 284 0.0 -0.1 -0.0 -0.0 -0.1
New-head 0.48 0.0 2.5 307 0.4 -0.3 -0.2 0.3 -0.4
New-leg 0.41 0.0 2.5 366 0.3 -0.3 0.4 -0.1 -0.4
Online EWC † 0.43 -0.1 7.3 310 0.3 -0.3 0.3 0.3 -0.4
ER 0.44 -0.1 13.1 604 0.0 -0.2 0.0 0.1 -0.2
PNN 0.57 0.0 48.2 1459 0.3 -0.2 0.1 0.2 -0.1
MNTDP-S 0.59 0.0 11.7 363 0.4 -0.1 0.0 0.3 -0.1
MNTDP-D 0.64 0.0 11.6 1512 0.4 0.0 0.0 0.3 -0.0
MNTDP-D* 0.62 0.0 140.7 115 0.3 -0.1 0.1 0.3 -0.1
HAT*† 0.58 -0.0 26.6 45 0.1 -0.2 0.0 0.1 -0.2
HAT (Wide)*† 0.61 0.0 163.9 274 0.2 -0.1 0.1 0.1 -0.1

Table 5.7. – Aggregated results on the transfer streams over multiple relevant
baselines (complete tables with more baselines are provided the next
5 sections. * corresponds to models using an Alexnet backbone, † to
models using stream-level cross-validation (see Section 5.6.1).

< A > < F > Mem. PFLOPs

Independent 0.57 0.0 243 4
Finetune 0.20 -0.4 2 5

New-head 0.43 0.0 3 6

On. EWC† 0.27 -0.3 7 4
MNTDP-S 0.68 0.0 159 5

MNTDP-D 0.75 0.0 102 26

MNTDP-D* 0.75 0.0 1782 3

HAT*† 0.24 -0.1 32 ≈0
HAT*† (Wide) 0.32 0.0 285 1

Table 5.8. – Results on the long evaluation stream. * corresponds to models using
an Alexnet backbone, † to models using stream-level cross-validation
(see Section 5.6.1). See Table 5.14 for more baselines and error bars.



102 chapter 5
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Figure 5.10. – Comparison of the global performance of all baselines on the CTrL Bench-
mark. MNTDP-D is the most efficient method on multiple of the dimen-
sions, but it requires more computation than MNTDP-S.
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Stream S−

Acc T1 Acc T ′
1∆T1,T ′

1
T (S−)< A >< F >Mem. FLOPs LCA@5

Model

Independent 0.72 0.36 -0.35 0.00 0.56 0.00 14.6 292.0 0.10

Finetune 0.72 0.37 -0.34 0.01 0.18 -0.33 2.4 308.0 0.10

New-head freeze 0.72 0.71 -0.01 0.35 0.54 0.00 2.5 262.0 0.19

New-head finetune 0.72 0.35 -0.36 -0.01 0.15 -0.39 2.5 296.0 0.10

New-leg freeze 0.72 0.65 -0.07 0.29 0.47 0.00 2.5 362.0 0.11

New-leg finetune 0.72 0.33 -0.38 -0.03 0.13 -0.41 2.5 333.0 0.10

EWC † 0.72 0.71 -0.01 0.35 0.52 -0.02 31.5 344.0 0.13

Online EWC † 0.72 0.69 -0.03 0.33 0.54 -0.01 7.3 309.0 0.11

ER (Reservoir)† 0.72 0.30 -0.41 -0.06 0.20 -0.32 13.5 646.0 0.12

ER 0.72 0.36 -0.36 0.00 0.41 -0.13 13.5 551.0 0.11

PNN 0.72 0.65 -0.06 0.29 0.62 0.00 51.1 1099.0 0.13

MNTDP-S 0.72 0.71 0.00 0.35 0.63 0.00 11.0 310.0 0.10

MNTDP-S (k=all) 0.72 0.63 -0.09 0.27 0.61 0.00 10.7 341.0 0.10

MNTDP-D 0.72 0.72 0.00 0.36 0.67 0.00 9.2 1876.0 0.16

MNTDP-D* 0.64 0.64 0.00 0.28 0.63 0.00 130.2 101.0 0.21

HAT*† 0.61 0.42 -0.19 0.06 0.57 -0.01 26.6 54.0 0.12

HAT*† (Wide) 0.67 0.54 -0.13 0.18 0.60 0.00 164.0 257.0 0.14

Table 5.9. – Results in the T (S-) evaluation stream. In this stream, the last task
is the same as the first with an order of magnitude less data. * cor-
responds to models using an Alexnet backbone, † to models using
stream-level cross-validation (see Section 5.6.1).
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Figure 5.11. – Comparison of all baselines on the S- stream.
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Stream S+

Acc T1 Acc T ′
1∆T1,T ′

1
T (S+)< A >< F >Mem. FLOPs LCA@5

Model

Independent 0.37 0.71 0.35 0.00 0.57 0.00 14.6 404.0 0.10

Finetune 0.37 0.58 0.21 -0.13 0.24 -0.23 2.4 262.0 0.12

New-head freeze 0.37 0.43 0.06 -0.28 0.41 0.00 2.5 361.0 0.17

New-head finetune 0.37 0.57 0.20 -0.14 0.19 -0.36 2.5 327.0 0.11

New-leg freeze 0.37 0.37 0.01 -0.34 0.34 0.00 2.5 425.0 0.11

New-leg finetune 0.37 0.56 0.19 -0.15 0.17 -0.29 2.5 357.0 0.10

EWC † 0.37 0.42 0.05 -0.29 0.39 -0.02 31.5 337.0 0.11

Online EWC † 0.37 0.40 0.03 -0.31 0.37 -0.04 7.3 271.0 0.11

ER (Reservoir) † 0.37 0.56 0.20 -0.15 0.20 -0.33 13.5 493.0 0.11

ER 0.37 0.47 0.10 -0.24 0.43 -0.07 13.5 512.0 0.12

PNN 0.37 0.54 0.17 -0.17 0.52 0.00 51.1 1757.0 0.12

MNTDP-S 0.37 0.62 0.25 -0.09 0.56 0.00 14.0 417.0 0.10

MNTDP-S (k=all) 0.37 0.66 0.29 -0.05 0.56 0.00 14.0 595.0 0.10

MNTDP-D 0.37 0.72 0.35 0.01 0.61 0.00 14.0 1659.0 0.11

MNTDP-D* 0.40 0.64 0.24 -0.07 0.61 0.00 156.3 136.0 0.17

HAT*† 0.41 0.52 0.12 -0.19 0.57 0.00 26.6 39.0 0.13

HAT*† (Wide) 0.41 0.61 0.19 -0.10 0.59 0.00 164.0 324.0 0.14

Table 5.10. – Results in the S+ evaluation stream. In this stream, the 5th task is
the same as the first with an order of magnitude more data. Tasks
2, 3, and 4 are distractors. * corresponds to models using an Alexnet
backbone, † to models using stream-level cross-validation (see Sec-
tion 5.6.1).
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Figure 5.12. – Comparison of all baselines on the S+ stream



5.6 experiments 105

Stream S in

Acc T1 Acc T ′
1∆T1,T ′

1
T (Sin)< A >< F >Mem. FLOPs LCA@5

Model

Independent 0.98 0.60 -0.39 0.00 0.57 0.00 14.6 265.0 0.10

Finetune 0.98 0.57 -0.41 -0.03 0.18 -0.31 2.4 244.0 0.11

New-head freeze 0.98 0.39 -0.59 -0.21 0.45 0.00 2.5 246.0 0.13

New-head finetune 0.98 0.62 -0.36 0.02 0.19 -0.33 2.5 188.0 0.11

New-leg freeze 0.98 0.95 -0.04 0.35 0.48 0.00 2.5 282.0 0.10

New-leg finetune 0.98 0.70 -0.28 0.10 0.21 -0.34 2.5 238.0 0.10

EWC † 0.98 0.87 -0.12 0.27 0.43 -0.14 31.5 269.5 0.11

Online EWC † 0.98 0.87 -0.12 0.27 0.43 -0.12 7.3 287.0 0.10

ER (Reservoir) † 0.98 0.60 -0.38 0.00 0.30 -0.26 13.5 570.0 0.12

ER 0.98 0.60 -0.38 0.00 0.38 -0.17 13.5 604.0 0.12

PNN 0.98 0.70 -0.29 0.10 0.57 0.00 51.1 899.0 0.10

MNTDP-S 0.98 0.64 -0.34 0.04 0.57 0.00 12.2 333.0 0.10

MNTDP-S (k=all) 0.98 0.68 -0.30 0.08 0.57 0.00 13.4 327.0 0.10

MNTDP-D 0.98 0.62 -0.36 0.02 0.60 0.00 11.6 1225.0 0.11

MNTDP-D* 0.98 0.67 -0.31 0.07 0.59 0.00 156.6 115.0 0.12

HAT*† 0.98 0.61 -0.37 0.01 0.58 -0.01 26.6 41.0 0.12

HAT*† (Wide) 0.97 0.67 -0.30 0.07 0.62 0.00 164.0 186.0 0.11

Table 5.11. – Results in the transfer evaluation stream with input perturbation. In
this stream, the last task is the same as the first one with a modifi-
cation applied to the input space and with an order of magnitude
less data. Tasks 2, 3, 4 and 5 are distractors. * corresponds to models
using an Alexnet backbone, † to models using stream-level cross-
validation (see Section 5.6.1).
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Stream Sout

Acc T1 Acc T ′
1∆T1,T ′

1
T (Sout)< A >< F >Mem. FLOPs LCA@5

Model

Independent 0.70 0.37 -0.32 0.00 0.61 0.00 14.6 349.0 0.10

Finetune 0.70 0.36 -0.33 -0.01 0.15 -0.37 2.4 331.0 0.11

New-head freeze 0.70 0.70 0.01 0.33 0.54 0.00 2.5 374.0 0.19

New-head finetune 0.70 0.31 -0.39 -0.06 0.14 -0.41 2.5 379.0 0.10

New-leg freeze 0.70 0.25 -0.45 -0.12 0.40 0.00 2.5 369.0 0.10

New-leg finetune 0.70 0.33 -0.36 -0.04 0.14 -0.40 2.5 340.0 0.10

EWC † 0.70 0.68 -0.01 0.31 0.52 -0.03 31.5 387.0 0.11

Online EWC † 0.70 0.66 -0.04 0.29 0.51 -0.03 7.3 399.0 0.10

ER (Reservoir) † 0.70 0.39 -0.31 0.02 0.22 -0.35 13.5 732.0 0.11

ER 0.70 0.50 -0.19 0.13 0.54 -0.07 13.5 758.0 0.11

PNN 0.70 0.62 -0.07 0.25 0.62 0.00 51.1 1799.0 0.10

MNTDP-S 0.70 0.64 -0.05 0.27 0.64 0.00 10.1 406.0 0.11

MNTDP-S (k=all) 0.70 0.63 -0.06 0.26 0.63 0.00 11.6 411.0 0.10

MNTDP-D 0.70 0.70 0.01 0.33 0.68 0.00 11.6 1299.0 0.15

MNTDP-D* 0.64 0.64 0.00 0.27 0.65 0.00 130.2 99.0 0.22

HAT*† 0.62 0.44 -0.18 0.07 0.60 0.00 26.6 42.0 0.13

HAT*† 0.68 0.51 -0.17 0.14 0.64 0.00 164.0 293.0 0.12

Table 5.12. – Results in the transfer evaluation stream with output perturbation.
In this stream, the last task uses the same classes as the first task
but in a different order and with an order of magnitude less data.
Tasks 2, 3, 4 and 5 are distractors. * corresponds to models using an
Alexnet backbone, † to models using stream-level cross-validation
(see Section 5.6.1).
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Figure 5.14. – Comparison of all baselines on the Sout stream
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Stream Spl

Acc T5 ∆T ′
5,T5

< A > < F > Mem. FLOPs LCA@5

Model

Independent 0.71 0.00 0.59 0.00 12.2 232.0 0.10

Finetune 0.57 -0.14 0.21 -0.30 2.4 274.0 0.12

New-head freeze 0.29 -0.42 0.45 0.00 2.4 294.0 0.13

New-head finetune 0.56 -0.15 0.20 -0.35 2.4 336.0 0.11

New-leg freeze 0.27 -0.44 0.37 0.00 2.5 390.0 0.11

New-leg finetune 0.58 -0.13 0.19 -0.34 2.5 375.0 0.11

EWC † 0.28 -0.43 0.27 -0.19 26.7 239.0 0.11

Online EWC † 0.28 -0.43 0.30 -0.17 7.3 282.0 0.12

ER (Reservoir)† 0.48 -0.23 0.20 -0.27 11.7 383.0 0.10

ER 0.51 -0.20 0.45 -0.08 11.7 597.0 0.10

PNN 0.56 -0.15 0.54 0.00 36.5 1742.0 0.13

MNTDP-S 0.58 -0.13 0.55 0.00 11.0 351.0 0.10

MNTDP-S (k=all) 0.60 -0.11 0.56 0.00 11.0 340.0 0.11

MNTDP-D 0.70 -0.01 0.62 0.00 11.6 1503.0 0.10

MNTDP-D* 0.65 -0.06 0.64 0.00 130.2 124.0 0.17

HAT*† 0.50 -0.21 0.58 0.00 26.5 50.0 0.11

HAT*† (Wide) 0.61 -0.10 0.61 0.00 163.7 312.0 0.12

Table 5.13. – Results in the plasticity evaluation stream. In this stream, we com-
pare the performance on the probe task when it is the first problem
encountered by the model and when it as already seen 4 distractor
tasks. * corresponds to models using an Alexnet backbone, † to mod-
els using stream-level cross-validation (see Section 5.6.1).
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Stream S long

< A > < F > Mem. FLOPs LCA@5

Model

Independent 0.57 ± 0.01 0.0 ± 0.0 243.7 ± 0.0 3542.33 ± 139.16 0.2
Finetune 0.2 ± 0.0 -0.35 ± 0.0 2.4 ± 0.0 4961.33 ± 112.16 0.23

New-head freeze 0.43 ± 0.01 0.0 ± 0.0 2.6 ± 0.0 5574.33 ± 249.65 0.27

Online EWC † 0.27 ± 0.01 -0.25 ± 0.01 7.4 ± 0.0 3882.67 ± 159.15 0.21

MNTDP-S 0.68 ± 0.0 0.0 ± 0.0 158.63 ± 2.58 5437.67 ± 110.77 0.21

MNTDP-D 0.75 ± 0.0 0.0 ± 0.0 102.03 ± 0.8 26066.67 ± 662.74 0.34

MNTDP-D* 0.75 ± 0.0 0.0 ± 0.0 1803.47 ± 16.45 2598.67 ± 70.48 0.46

HAT*† 0.24 ± 0.01 -0.1 ± 0.03 31.9 ± 0.0 147.0 ± 27.39 0.21

HAT (Wide) *† 0.32 ± 0.0 0.0 ± 0.0 285.0 ± 0.0 1056.33 ± 137.29 0.21

Table 5.14. – Results on the long evaluation stream. We report the mean and
standard error using 3 different instances of the stream, all generated
following the procedure described in Section 5.4. Standard errors are
negligible for LCA.
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Figure 5.16. – Comparison of all baselines on the S long stream

We conclude by reporting results on S long composed of 100 tasks. Table 5.8
reports the results of all the approaches we could train without running into out-
of-memory. MNTDP-D yields an absolute 18% improvement over the baseline
independent model while using less than half of its memory, thanks to the discovery
of many paths with shared modules. Its actual runtime is close to independent
model because of GPU parallel computing. To match the capacity of MNTDP,
we scale HAT’s backbone to the maximal size that can fit in a Titan X GPU
Memory (6.5x, wide version). The wider architecture greatly increases inference
time in later tasks (see also discussion on memory complexity at test time in
Section 5.6.2), while our modular approach uses the same backbone for every task
and yet it achieves better performance. Figure 5.17 shows the average accuracy
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up to the current task over time. MNTDP-D attains the best performance while
growing sublinearly in terms of memory usage. Methods that do not evolve their
architecture, like EWC, greatly suffer in terms of average accuracy.

5.6.5 Ablation:

We first study the importance of the prior. Instead of selecting the nearest neigh-
bor path, we pick one path corresponding to one of the previous tasks at random.
In this case, T (S-) decreases from 0 to −0.2 and T (Sout) goes from 0 to −0.3. With
a random path, MNTDP learns not to share any module, demonstrating that it is
indeed important to form a good prior over the search space. Detailed results of
Section 5.6.4 demonstrate how on small streams MNTDP is robust to the choice
of k in the prior since we attain similar performance using k = 1 and k = all,
although only k = 1 let us scale to S long. Finally, we explore the robustness to the
number of modules by splitting each module in two, yielding a total of 10 mod-
ules per path, and by merging adjacent modules yielding a total of 3 modules for
the same overall number of parameters. We find that T (Sout) decreases from 0 to
-0.1, with a 9% decrease on t−1 , when the number of modules decreases but stays
the same when the number of modules increases, suggesting that the algorithm
has to have a sufficient number of modules to flexibly grow.
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5.6.6 Discovered paths
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Figure 5.18. – Global graph of paths discovered by MNDTP-S on the T (Sout) Stream.
When facing the last task, the model correctly identified that modules from
the first task should be reused, ultimately introducing 2 new modules to
solve it.
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Figure 5.19. – Global graph of paths discovered by MNDTP-D on the T (Sout) Stream.
"INs" (resp. "OUT") nodes are the input (resp. output) of the path for each
task. Solid edges correspond to parameterized modules while dashed
edges are only used to show which block is selected for each task and
don’t apply any transformation. We observe that a significant amount
of new parameters are introduced for tasks 2, 3, 4, and 5, which are very
different from the first task. The model is however able to correctly identify
that the last task is very similar to the first one, resulting in a very large
reuse of past modules and only introducing a new classification layer to
adapt to the new task.
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5.7 Conclusions

We introduced a new benchmark to enable a more comprehensive evaluation
of CL algorithms, not only in terms of average accuracy and forgetting but also
knowledge transfer and scaling. We have also proposed a modular network that
can gracefully scale thanks to an adaptive prior over the search space of possi-
ble ways to connect modules. Our experiments show that our approach yields
a very desirable trade-off between accuracy and compute/memory usage, sug-
gesting that modularization in restricted search spaces is a promising avenue of
investigation for continual learning and knowledge transfer.
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In this thesis, we tackled the Neural Architecture Search (NAS) problem. To
sidestep the compute-intensive approaches that compose most of the literature,
we approached it through different angles with a focus on budget constraints.
This strategy allowed us to develop new models solving real-world problems and
creating tools for the community to use.

6.1 Summary of Contributions

6.1.1 Budgeted Super Networks

We started with the challenging problem of Convolutional Neural Network
(ConvNet) architecture search for Computer Vision. With the recent rise in popu-
larity of Deep Learning comes an exponentially growing number of publications
proposing new types of layers and new architectures. We proposed Budgeted
Super Networks (BSN), a method for automatically discovering such architectures
able to outperform reference models from the literature. This search algorithm
allows its user to impose any kind of prior on the search procedure via the def-
inition of a black box cost function and a maximum allowed budget. This cost
function doesn’t need to be differentiable and is directly optimized to learn the
best possible architecture combining high predictive performance with strict re-
spect of the budget constraint.

113
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We demonstrated the effectiveness of our approach in a wide range of settings
on the classification and semantic segmentation tasks. We validated its ability to
explore different kinds of search spaces with two different backbones. Further-
more, we showed that the black-box approach accepting generic cost functions
works flawlessly, using widely different kinds of cost and observing that the
model can morph the network in a shape respecting them. Depending on the
users need, BSN is able to learn efficient architecture minimizing the memory foot-
print of the inference model, its latency and the much more complicated distributed
computation cost which is a high-level measure of the overall complexity of the
topology of an architecture.

6.1.2 Stochastic Adaptive Neural Architecture Search

Then, we proposed to investigate the usage of budget-constrained NAS to com-
puter audition. Thanks to the temporal component inherent to audio signals and
the information an audio frame carries about the next one, we were able to pro-
pose a highly time-efficient model for the keyword spotting problem. Due to its
omnipresence in connected devices, this problem is an excellent candidate for
budgeted approaches.

We proposed Stochastic Adaptive Architecture Search (SANAS), a model able
to adaptively decide which Deep Neural Network (DNN) architecture should be
used at any point in a sequence, using shallow architectures on simple frames
and more powerful ones when the signal is harder to process. The system can be
trained without any prior knowledge about the structure of the problem at hand:
it automatically learns how to evaluate the difficulty of a frame as well as which
architecture needs to be used for any level of difficulty at test time.

SANAS is trained end-to-end to minimize a trade-off between the average com-
putation cost per frame and the prediction performance, resulting in faster models
than the state of the art for a similar performance or to better performance for a
given computation time.

6.1.3 The Continual Transfer Learning Benchmark

As a third contribution, we proposed to explore other settings in which NAS

models can be used. We presented a scenario in which a learner has to continually
adapt itself to solve a stream of diverse tasks. While similar to Continual Learning
(CL), this scenario put the emphasis on maximizing transfer instead of minimizing
forgetting as it is commonly done in CL.
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We identified a set of transfer-related properties that the learner should possess
in order to perform well in this setting. We then introduced the Continual Transfer
Learning (CTrL) benchmark, a set of streams created specifically to probe a learner
on each of the desired properties, allowing a fine-grained to see which properties
a given approach has and to identify its failure modes. We also proposed a
long evaluation stream containing tasks of different sizes and having various
degrees of similarity. This challenging setting allows testing the transfer ability of
a learner at scale, as some tasks can’t be solved without transferring knowledge
from previously encountered tasks.

6.1.4 Modular Networks with Task-Driven Priors

Finally, we proposed a new modular architecture called Modular Networks with
Task Driven Prior (MNTDP) relying on NAS to efficiently find the best combination
of pre-trained modules and blank ones to solve each task encountered. To improve
the scalability of our approach, we introduce a task-driven prior. It allows to
dramatically reduce the search space by pruning unlikely connections, yielding
constant training time w.r.t. the number of tasks.

Our experiments show that MNTDP is able to outperform existing approaches
on the proposed benchmark while being on par with these methods on existing
evaluation settings. It is the only approach able to solve the long evaluation stream
and reaches a very desirable trade-off between accuracy and compute/memory
usage, confirming that our method stays competitive at scale.

6.2 Perspectives for Future Work

Improving the search procedure The contributions presented in Chapter 3 and
Chapter 4 sample each layer of an architectures using an independent Bernoulli
distribution. The search procedure efficiency could be improved by keeping track
of what has already been selected up to the current point and use this knowledge
to take the next decision. For example, the conditional sampling procedure used
by the stochastic version of MNTDP (5) could be extended and used in both the
static and dynamic architecture search settings.

Extending the reach of adaptive models In Chapter 4, we showed that the
SANAS adaptive model performs well on the keyword-spotting problem and
we believe that the proposed approach could be extended to other sequential
problems. We applied it to Reinforcement Learning (RL) tasks and obtained pre-
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liminary results showing that besides selecting the size of the architecture, active
learning behavior can automatically emerge without being prompted: the model
not only selects which layer to use but also which features to look at.

For example in the Lunar-Lander environment (Brockman et al., 2016), the task
is to control the motors of a ship to reach the ground at a reasonable speed and
angle to avoid crashing. On this problem, the learned behavior of the adaptive
model only looks at whether the legs of the ship are touching the ground when
the ship is at low altitude and completely ignores them – by choosing to not
connect them to the architecture input and therefore not processing them at all –
to focus on speed and tilt features when the ship if farther from the ground. This
behavior not only saves a small amount of computation but more importantly
can save a lot of budget in applications where the feature acquisition is expensive,
allowing to acquire only the features that will be processed.

Another interesting direction is to extend the control of the model to the time
dynamics, allowing it to decide the duration of each time step. This could result in
even more budget savings when the model can predict that nothing will happen
nor should be done in the next x seconds.

More powerful architecture priors In Chapter 5, the MNTDP model uses a
simple heuristic to decide which tasks are related to the current one and prune
less promising parts of the search space based on that information. A direct
improvement would be to use more elaborated kinds of priors to construct the
search space.

One promising direction is to use task descriptors carrying more knowledge
about the relationship between tasks. These descriptors could be computed from
the data, for example by learning task-embeddings based on a few samples from
each task. We could then use a distance metric in this task-space as a similarity
metric. Another possible kind of task descriptors could be given as additional
information coming with each task. For example, a textual description of the
objective would allow zero shot-learning by recognizing already solved problems
without looking at the data or by composing already acquired skills if the module
library already contains the required knowledge.

Longer-term research perspectives In Chapter 5, we focused on the CL problem
as the first step toward a lifelong learning system able to efficiently solve new
tasks by leveraging knowledge acquired throughout his life.

A possible next step toward this objective could be to step aside from the strict
CL setting as such lifelong learners don’t mind forgetting, what they really want
is to learn and remember quickly. Therefore by relaxing the anytime evaluation
constraint, the problem could be shifted from not forgetting to quickly remembering.
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Since all intelligent beings are using never-ending streams of information com-
ing from multiple senses to evolve in their environment, another desirable step
would be to train such systems on even larger streams containing different modal-
ities and multi-modal tasks. Including the large amount of data currently used
to reach state-of-the-art performance in each modality is a challenging problem
since it can take weeks to fully extract from scratch the information contained in
each of these gigantic datasets. This is where a true lifelong learner that never
starts tabula rasa once released but always builds on its current knowledge would
shine and appears as a necessary step towards the next generation of artificially
intelligent systems.
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A.1 Details of S long

Dataset Classes # Train # Val # Test
Task id

1 mnist [6, 3, 7, 5, 0] 25 15 4830

2 svhn [2, 1, 9, 0, 7] 25 15 5000

3 svhn [2, 0, 6, 1, 5] 5000 2500 5000

4 svhn [1, 5, 0, 7, 4] 25 15 5000

5 fashion-mnist [T-shirt/top, Pullover,
Trouser, Sandal, Sneaker]

25 15 5000

6 fashion-mnist [Shirt, Ankle boot, Sandal,
Pullover, T-shirt/top]

5000 2500 5000

7 svhn [3, 1, 7, 6, 9] 25 15 5000

8 cifar100 [spider, maple tree, tulip,
leopard, lizard]

25 15 500

9 cifar10 [frog, automobile, airplane,
cat, horse]

25 15 5000

10 fashion-mnist [Ankle boot, Bag, T-
shirt/top, Shirt, Pullover]

25 15 5000

11 mnist [4, 8, 7, 6, 3] 5000 2500 4914

12 cifar10 [automobile, truck, dog,
horse, deer]

5000 2500 5000

Table A.1. – Details of the tasks used in S long, part 1/5.
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134 appendix

Dataset Classes # Train # Val # Test
Task id

13 cifar100 [sea, forest, bear, chim-
panzee, dinosaur]

25 15 500

14 mnist [3, 2, 9, 1, 7] 25 15 5000

15 fashion-mnist [Bag, Ankle boot, Trouser,
Shirt, Dress]

25 15 5000

16 cifar10 [frog, cat, horse, airplane,
deer]

25 15 5000

17 cifar10 [bird, frog, ship, truck, au-
tomobile]

5000 2500 5000

18 svhn [0, 4, 7, 5, 6] 5000 2500 5000

19 mnist [6, 5, 9, 4, 8] 5000 2500 4806

20 mnist [8, 5, 6, 4, 9] 5000 2500 4806

21 cifar100 [sea, pear, house, spider,
aquarium fish]

25 15 500

22 cifar100 [kangaroo, ray, tank,
crocodile, table]

2250 250 500

23 cifar100 [trout, rose, pear, lizard,
baby]

25 15 500

24 svhn [3, 2, 8, 1, 5] 5000 2500 5000

25 cifar100 [skyscraper, bear, rocket,
tank, spider]

25 15 500

26 cifar100 [telephone, porcupine, flat-
fish, plate, shrew]

2250 250 500

27 cifar100 [lawn mower, crocodile,
tiger, bed, bear]

25 15 500

28 svhn [3, 7, 1, 5, 6] 25 15 5000

29 fashion-mnist [Ankle boot, Sneaker, T-
shirt/top, Coat, Bag]

5000 2500 5000

30 mnist [6, 9, 0, 3, 7] 5000 2500 4938

31 cifar10 [automobile, truck, deer,
bird, dog]

25 15 5000

32 cifar10 [dog, airplane, frog, deer,
automobile]

5000 2500 5000

33 svhn [1, 9, 5, 3, 6] 5000 2500 5000

34 cifar100 [whale, orange, chim-
panzee, poppy, sweet
pepper]

25 15 500

35 cifar100 [worm, camel, bus, key-
board, spider]

25 15 500

Table A.2. – Details of the tasks used in S long, part 2/5.



A.1 details of ∫ long 135

Task id Dataset Classes # Train # Val # Test

36 fashion-mnist [T-shirt/top, Coat, Ankle
boot, Shirt, Dress]

25 15 5000

37 cifar10 [dog, deer, ship, truck, cat] 25 15 5000

38 cifar10 [cat, dog, airplane, ship,
deer]

5000 2500 5000

39 svhn [7, 6, 4, 2, 9] 25 15 5000

40 mnist [9, 7, 1, 3, 2] 25 15 5000

41 cifar100 [mushroom, butterfly, bed,
boy, motorcycle]

25 15 500

42 fashion-mnist [Shirt, Pullover, Bag, San-
dal, T-shirt/top]

25 15 5000

43 cifar100 [rabbit, bear, aquarium
fish, bee, bowl]

25 15 500

44 fashion-mnist [Coat, T-shirt/top,
Pullover, Shirt, Sandal]

25 15 5000

45 fashion-mnist [Pullover, Dress, Coat,
Shirt, Sandal]

25 15 5000

46 mnist [3, 9, 7, 6, 4] 25 15 4940

47 cifar10 [deer, bird, dog, automo-
bile, frog]

25 15 5000

48 svhn [8, 7, 1, 0, 4] 25 15 5000

49 cifar100 [forest, skunk, poppy,
bridge, sweet pepper]

2250 250 500

50 cifar100 [caterpillar, can, motorcy-
cle, rabbit, wardrobe]

25 15 500

51 cifar100 [trout, mountain, kanga-
roo, pine tree, bee]

25 15 500

52 cifar100 [clock, fox, castle, bus, wil-
low tree]

25 15 500

53 cifar10 [cat, airplane, dog, ship,
truck]

25 15 5000

54 mnist [9, 7, 8, 1, 5] 25 15 4866

55 fashion-mnist [Bag, T-shirt/top, Sandal,
Shirt, Dress]

25 15 5000

56 fashion-mnist [Sneaker, Ankle boot, Coat,
Sandal, Trouser]

5000 2500 5000

57 mnist [1, 4, 3, 9, 7] 25 15 4982

58 cifar10 [truck, automobile, frog,
ship, dog]

25 15 5000

59 mnist [7, 2, 8, 5, 4] 25 15 4848

Table A.3. – Details of the task in S long, part 3/5.
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Task id Dataset Classes # Train # Val # Test

60 mnist [2, 8, 9, 1, 7] 5000 2500 4974

61 svhn [9, 5, 1, 8, 6] 25 15 5000

62 mnist [1, 8, 7, 4, 5] 25 15 4848

63 cifar10 [truck, dog, bird, automo-
bile, airplane]

25 15 5000

64 mnist [8, 4, 3, 7, 6] 25 15 4914

65 svhn [3, 5, 7, 2, 1] 25 15 5000

66 cifar100 [otter, camel, bee, road,
poppy]

25 15 500

67 svhn [4, 2, 1, 8, 7] 25 15 5000

68 mnist [3, 7, 6, 8, 9] 25 15 4932

69 fashion-mnist [Pullover, Sneaker, Trouser,
Dress, Sandal]

25 15 5000

70 svhn [5, 0, 7, 2, 3] 25 15 5000

71 svhn [9, 6, 2, 4, 8] 25 15 5000

72 mnist [7, 1, 2, 0, 6] 25 15 4938

73 cifar10 [dog, automobile, ship, air-
plane, cat]

25 15 5000

74 mnist [0, 7, 6, 2, 4] 25 15 4920

75 cifar10 [bird, deer, airplane, dog,
ship]

25 15 5000

76 cifar100 [mountain, bicycle, cater-
pillar, spider, possum]

25 15 500

77 svhn [8, 3, 4, 0, 6] 25 15 5000

78 svhn [1, 5, 9, 0, 8] 25 15 5000

79 cifar100 [can, dolphin, house,
pickup truck, crab]

25 15 500

80 cifar100 [squirrel, possum,
crocodile, mountain,
hamster]

25 15 500

Table A.4. – Details of the task in S long, part 4/5.
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Task id Dataset Classes # Train # Val # Test

81 mnist [7, 0, 1, 6, 2] 25 15 4938

82 fashion-mnist [T-shirt/top, Dress,
Trouser, Shirt, Sneaker]

25 15 5000

83 cifar10 [cat, frog, automobile, dog,
airplane]

25 15 5000

84 cifar10 [automobile, cat, dog, ship,
horse]

25 15 5000

85 cifar100 [cup, otter, orchid, kanga-
roo, rose]

25 15 500

86 mnist [1, 5, 7, 2, 9] 25 15 4892

87 svhn [6, 5, 3, 2, 7] 25 15 5000

88 cifar10 [dog, deer, cat, frog, bird] 25 15 5000

89 mnist [6, 2, 5, 9, 4] 25 15 4832

90 cifar100 [pear, rocket, sea, road, or-
ange]

25 15 500

91 svhn [0, 8, 4, 6, 1] 25 15 5000

92 cifar10 [truck, horse, ship, deer,
dog]

25 15 5000

93 mnist [5, 8, 6, 4, 3] 25 15 4806

94 svhn [2, 6, 3, 4, 1] 25 15 5000

95 fashion-mnist [Bag, Trouser, Sneaker, An-
kle boot, Sandal]

25 15 5000

96 svhn [7, 9, 1, 5, 8] 25 15 5000

97 cifar100 [lamp, otter, skyscraper,
sea, raccoon]

25 15 500

98 cifar100 [clock, flatfish, snake, can,
man]

25 15 500

99 svhn [6, 3, 0, 8, 7] 25 15 5000

100 fashion-mnist [Shirt, Coat, Dress, Sandal,
Pullover]

25 15 5000

Table A.5. – Details of the task in S long, part 5/5.
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