
HAL Id: tel-03727614
https://theses.hal.science/tel-03727614v1

Submitted on 19 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dilaton-induced dark matter and long-lived particle
recasting

Manuel Utsch

To cite this version:
Manuel Utsch. Dilaton-induced dark matter and long-lived particle recasting. High Energy Physics
- Phenomenology [hep-ph]. Sorbonne Université, 2021. English. �NNT : 2021SORUS439�. �tel-
03727614�

https://theses.hal.science/tel-03727614v1
https://hal.archives-ouvertes.fr


THÈSE DE DOCTORAT
DE SORBONNE UNIVERSITÉ

Spécialité : Physique Théorique
École doctorale nº564: Physique en Île-de-France

réalisée

au Laboratoire de Physique Théorique et Hautes Énergies

sous la direction de Benjamin FUKS

présentée par

Manuel UTSCH

pour obtenir le grade de :

DOCTEUR DE SORBONNE UNIVERSITÉ

Sujet de la thèse :

Dilaton-induced dark matter and long-lived particle recasting

soutenue le 13 octobre 2021

devant le jury composé de :

Mme Geneviève BÉLANGER Examinatrice
M. Benjamin FUKS Directeur de thèse
Mme Marie-Hélène GENEST Rapporteuse
M. Mark GOODSELL Membre invité
M. Bertrand LAFORGE Examinateur
M. Andre LESSA Rapporteur





Acknowledgements

First of all, I would like to thank my supervisors Benjamin Fuks and Mark Goodsell
for having accepted me as a Ph.D. student, for their continuous support and assistance
during the last years, and for their invaluable and sincere advice. For their patience and
their helpful answers to all kinds of questions, including the less intelligent ones, as well
as for their helpful comments and suggestions concerning this thesis. For their availability
even in these unusual and complicated times disturbed by a pandemic, and for the friendly
discussions we had at lunch time or during coffee breaks. I am also grateful to Benjamin
for having given me the opportunity to travel to Korea.

In addition, I would like to express my gratitude to the members of the jury, Marie-
Hélène Genest and Andre Lessa, for the time invested in reading and reviewing this thesis,
and for their useful suggestions to improve it. Likewise, I am grateful to Geneviève Bélanger
and Bertrand Laforge for their participation in my thesis defense.

Moreover, I would like to thank my mentor Benoît Douçot and my scientific tutor Adam
Falkowski for the feedback and recommendations they gave me during the monitoring
committee meetings, and for the time they spent in order to fulfil their roles as members
of my monitoring committee.

Thanks also to Pyungwon Ko, Dong Woo Kang and Seung J. Lee for the nice and
constructive collaboration on the dilaton-dark-matter project and the friendly discussions
we had in Jeju, as well as to Jack Araz, who helped me a great deal in understanding
MadAnalysis 5 and was always available whenever I needed help.

I also wish to express my gratitude to a number of people of the LPTHE. In particular
I would like to thank Françoise Got, Isabelle Nicolaï and Marjorie Stievenart-Ammour for
their assistance in administrative tasks, their availability and their help with all sorts of
different questions. Thanks to Sebastian Passehr and Karim Benakli for interesting discus-
sions during lunch time. I am especially grateful to the former and current Ph.D. students
I met at the LPTHE, Alessandro, Andrei, Andriani, Anthony, Benjamin, Carlo, Charles,
Colin, Constantin, Damien, Elena, Enrico, Francesco (3x), François, Gaëtan, Giovanni,
Grégoire, Guillaume, Johannes, Kang, Osmin, Ruben, Simon, Sophie, Pierre, Maximilian,
Rhea, Thomas, Vincent, Wenqi, Yann, Yehudi, Yoan, Yifan, some of whom helped me with
their experience concerning the Ph.D. Thanks for the great atmosphere, for all the nice
and funny moments in the lab, in the cantine and outside of Jussieu.

Furthermore, I want to thank some of my friends who studied with me at the University
of Siegen, Anna-Lena, Hendrik, Lisa, Magnus, Marius, Markus, Patrick and Simon, for
the enjoyable moments we spent together and for the help they provided me during my



ii Acknowledgements

undergraduate and graduate studies.
I would like to express my deepest gratitude to my parents, who allowed me to grow

up in a good environment, for their love and their continuous support during my entire
life, including their mental and fincancial support during my studies. In the same way,
I want to thank my brothers for their presence, their help and support as well as good
discussions and helpful advice on various topics.

Finally, it is important for me to thank Olga, who has been by my side from the very
beginning of this Ph.D., and even long before. I am grateful for the uncountable wonderful
moments we shared together and for the constant support throughout the entire Ph.D.,
even in difficult times.



Dilaton-induced dark matter and
long-lived particle recasting

Abstract:

In 2012, Large Hadron Collider (LHC) experiments have been able to confirm the
existence of a scalar particle compatible with the Standard Model (SM) Higgs boson, the
last missing particle of the theory. Since then, no convincing signals of new physics beyond
the SM have been provided by the LHC, despite the various known shortcomings of the
SM leading to the conclusion that it is no complete description of nature. To maximise the
discovery and exclusion potential of the collider experiments, the full arsenal of possible
search strategies should be exploited, including unconventional ones. Also other, non-
collider experiments can provide valuable complementary input for probing the viability
of new physics models.

One of the unresolved puzzles in particle physics is the nature of dark matter. Within
this work, an effective theory is considered, in which dark matter is coupled to the SM
via the dilaton portal, which results from spontaneously broken scale invariance. Two
different scenarios of Higgs-dilaton mixing are studied: the minimal mixing scenario and a
scenario that includes additional terms which restore gauge invariance. The allowed model
parameter space is probed trough a combination of constraints from collider searches and
dark matter direct detection experiments, as well as the dark matter relic density and
partial wave unitarity bounds.

The second part of this work focuses on collider signatures of long-lived particle (LLP)
decays, including in particular displaced tracks and vertices with respect to the primary
vertex and the collission axis. New particles might be revealed by these signatures, which
could so far have remained undetected in prompt searches. In recent years, a number of
searches for LLP signatures has been conducted at the LHC. The present work puts an
emphasis on the re-interpretation of such searches in the context of a different BSM physics
model via recasting. This technique relies on the re-implementation of a physics analysis
into a computer program, which can be used for analysing simulated event samples of a
different signal model than the one which was originally targeted. The analysis results for
the simulated samples can be used, in comparison with the experimental search results, to
constrain the model. In this work, two existing LLP searches performed by the ATLAS and
CMS collaborations have been implemented in the recasting framework MadAnalysis 5.
One of these searches, which targets displaced vertices of oppositely charged leptons, has
been used to place constraints on a vector-like leptons model. This thesis also describes a
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contribution to a new module of MadAnalysis 5, which simulates the effects of a magnetic
field in a detector and calculates quantities relevant for LLP studies.

Keywords:

dilaton, dark matter, long-lived particles, recasting, Large Hadron Collider, vector-like
leptons



Dilaton-induced dark matter and
long-lived particle recasting

Résumé :

En 2012, des expériences au Grand collisionneur de hadrons (LHC) ont confirmé
l’existence d’une particule scalaire compatible avec le boson de Higgs du modèle standard
(MS), la dernière particule manquante de la théorie. Depuis, aucun signal convaincant de
nouvelle physique au-delà du MS n’a pu être apporté par le LHC, malgré un bon nombre de
lacunes connues du MS indiquant qu’il doit être une description incomplète de la nature.
Afin de maximiser le potentiel de découverte et d’exclusion des expériences au LHC,
l’intégralité des stratégies de recherche possibles devraient être exploitées, y compris celles
qui sont moins courantes. De plus, d’autres données complémentaires venant d’expériences
non-liées à des collisionneurs peuvent être utiles.

Une des questions persistantes en physique des particules est celle de la nature de la
matière noire. Dans le cadre de ce travail, une théorie effective est examinée, dans laquelle
la matière noire est couplée au MS via la portail du dilaton, qui résulte de l’invariance
d’échelle spontanément brisée. Deux scénarios de mixage entre le boson de Higgs et le
dilaton sont étudiés, dont le scénario minimal ainsi qu’un scénario incluant des termes
supplémentaires qui réinstaurent l’invariance de jauge. L’espace des paramètres est sondé
en prenant en compte des contraintes basées sur des expériences de collisionneur et de
détection directe de matière noire, la densité relique de matière noire et l’unitarité.

La deuxième partie de ce travail se concentre aux signatures de désintégration de
particules à longue vie (PLV), en particulier les traces et vertex déplacés par rapport au
vertex premier, où se déroule la collision, et l’axe de collision. De nouvelles particules
pourraient se manifester par ces signatures, alors qu’elles auraient pu, jusqu’à présent,
avoir échappé aux recherches plus courantes limitées aux particules dont l’intégration
est imminente. Durant les dernières années, des recherches ont été menées au LHC afin
d’identifier des événements présentant ces signatures. Ce travail met l’accent sur la ré-
interprétation de ces recherches dans le contexte d’un autre modèle de physique au-delà
du MS avec la technique de recasting. Cette dernière vise à reproduire la logique de
l’analyse d’événements de ces recherches telle qu’elle est appliquée aux événements observés
experimentalement dans un code qui peut être appliqué à des événements simulés. En
appliquant cette analyse à des événements simulés, les résultats peuvent être utilisés, en
comparaison avec les résultats de l’analyse expérimentale, à contraindre le modèle. Deux
recherches existantes des collaborations ATLAS et CMS ont ainsi été implémentées dans
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le logiciel MadAnalysis 5. Une de ces recherches, ciblant des vertex déplacés impliquant
des leptons de charges opposées, a été utilisée pour restraindre un modèle de leptons de
type vecteur. Cette thèse porte également sur la contribution à un nouveau module de
MadAnalysis 5. Celui-ci permet une simulation des effets d’un champ magnétique présent
dans le volume d’un détecteur, calculant en même temps des grandeurs pertinentes dans
le cadre d’études impliquant des PLV.

Mots clés :

dilaton, matière noire, particules à longue vie, recasting, Grand collisionneur de hadrons,
leptons de type vecteur
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Introduction

Particle physics has celebrated one of its biggest successes in 2012 at the Large Hadron
Collider (LHC) with the discovery of a 125 GeV scalar particle that is in harmony with
the predicted Standard Model (SM) Higgs boson. Close to 40 years after the completed
theoretical elaboration of this model [1], its particle content has finally been confirmed.
But even before the Higgs boson was discovered, it was already clear that the SM could
not be the final theory of all fundamental particles and their interactions. In spite of its
extraordinary success in past and current collider experiments, there are solid arguments
for its incompleteness, which include but are not limited to the absence of a suitable
candidate for dark matter (DM) and the fact that it does not incorporate quantum gravity.
Needless to say, the LHC was not just built for discovering the missing Higgs boson, but it
continued and will continue operating with the aim of finding some clear signal of physics
beyond the SM. Now, after Run 2, it can be said that it has so far failed to do so.

A plethora of different models of physics Beyond the SM (BSM) exist, which typically
adress at least one, if not more of the unanswered questions of the SM in a theoretically well-
motivated way. A very prominent example of a BSM theory is the Minimal Supersymmetric
Standard Model (MSSM), which is an extension of the SM that is based on Supersymmetry
(SUSY), a symmetry which connects bosonic and fermionic degrees of freedom. At the
beginning of the LHC, the MSSM was one of the favoured candidate models for new
physics [2], as it provides a very elegant solution for the hierarchy problem of the SM
as well as a DM candidate, the lightest supersymmetric particle (LSP). However, until
now, the LHC has not been able to confirm the existence of any of the supersymmetric
particles predicted by the theory, and searches for SUSY have continuously pushed the
limits towards higher masses. This has in some sort dampened the former enthusiasm
about SUSY, even if it is far from being dead. But also among the other BSM physics
models there is currently no candidate that is strongly favoured by the available LHC
data.

A somewhat pessimistic, but natural question to ask is: Could it be that new physics
enters only at energy scales which are not accessible to contemporary high-energy collider
experiments? Another imaginable option is that new physics manifests itself via very rare
processes, which have therefore not been observed in the past, or at least not in a sufficient
number to draw any conclusions. Both of these possibilities will be addressed in the future
via an increase in the energy and luminosity through upgrades and possibly at different
colliders. Nonetheless, this should not be the only way to deal with the non-observation
of new physics. One should also consider the option that new physics could be in reach of
the existing experiments, but is not observed due to inadequate search strategies. Given
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the high amount of financial and human ressources necessary to generate experimental
data, it is important to make use of it to the best of our knowledge [3]. Seeing that the
collider signatures studied so far did not unveil any clear manifestation of new physics,
it is about time to seriously consider also more exotic signatures. On the other hand,
the experimental signatures are not uniquely linked to a specific model, but can in most
instances be generated by a larger class of signal models. Therefore, it is sensible not to
restrict the use of search results to the study of a particular signal model of interest, but
also examine the implications of the searches on other models. Furthermore, in addition
to using data from high energy collisions, it can be useful to include also complementary
data measured by other, non-collider experiments.

To some extent, the work presented in this thesis encompasses all of these aspects.
It essentially covers two main topics. The first one is the phenomenological study of a
particular SM extension, which accomodates DM via the introduction of an additional
scalar particle, the dilaton, which is embedded into the SM Lagrangian by assuming spon-
taneously broken scale invariance. This results in an effective theory, in which the dilaton
serves as a mediator for interactions between the DM candidate and the SM particle
content. For this model, various constraints on the parameter space are determined by
means of recent experimental results from collider searches, which include Higgs and heavy
scalar searches as well as DM searches, but also via the observed DM relic density and
bounds from direct detection together with partial wave unitarity. Also prospects of DM
production at future colliders are estimated.
The second major topic is the search for long-lived particles (LLPs) at the LHC, and in
particular the re-interpretation of existing LLP searches of the ATLAS and CMS collabo-
rations. Two selected LLP searches have been implemented within the MadAnalysis 5
recasting framework. In this work, the details of the implementation and validation are
documented and the challenges and difficulties of these tasks as well as the limitations
of the re-implemented analyses are explained. One of these analyses is used to probe the
excluded parameter space of a vector-like lepton (VLL) model. Additionally, a technical
enhancement of MadAnalysis 5 for the simulation of particle trajectories under the
influence of a magnetic field in a detector and the calculation of displacement variables
for LLP searches is presented.

The present thesis is organised in the following way: In chapter 1, the fundamental
aspects of the construction of the SM will be reviewed. Both its successes and its deficiencies,
from the theoretical and experimental point of view, will be pointed out in order to advert
to the necessity of new physics beyond the SM. The chapter will also include a short
presentation of two examples of BSM theories. Chapter 2 gives an introduction to the
concept of recasting, a technique for the re-interpretation of existing physics analyses at
collider experiments with a different signal hypothesis. It will also discuss some important
technical elements of this technique and give an overview about the different existing
recasting approaches and tools. Chapter 3 is devoted to the construction of a theory
involving the dilaton, which is systematically introduced into an existing theory, guided by
the principle of spontaneous broken scale invariance. This is first explained for a generic
Lagrangian, before it is applied to the SM Lagrangian, augmented by kinetic and mass
terms of a DM candidate, leading to the above-mentioned effective theory. The study of
this theory is the matter of chapter 4, where the model parameter space is limited with the



3

previously mentioned collider and complementary non-collider bounds. Different scenarios
of Higgs-dilaton mixing are investigated. Finally, chapter 5 illustrates the interest in LLP
searches and It then explains the new particle propagator module of MadAnalysis 5,
before documenting the re-implementation and validation of two LLP searches of the
CMS and ATLAS collaborations. As mentioned earlier, the parameter space of the VLL
model will then be constrained by application of the ATLAS analysis. Ultimately, some
concluding remarks about the presented work will end this thesis.
The contents of chapters 3 and 4 are based on the article

Benjamin Fuks, Mark D. Goodsell, Dong Woo Kang, Pyungwon Ko, Seung J. Lee
and Manuel Utsch; Heavy dark matter through the dilaton portal; JHEP 10 (2020) 44;
arXiv:2007.08546,

whereas the work of chapter 5 is part of a larger project about LLP recasting in collabo-
ration with Jack Y. Araz, Benjamin Fuks and Mark D. Goodsell, for which an article is
planned to be published in the near future.
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Chapter 1

The Standard Model, its successes and
its shortcomings

Our current knowledge about the existing particles, their properties and their interac-
tions is to a wide extent incorporated in the Standard Model of particle physics, hereafter
simply referred to as the Standard Model (SM). Its predictions are in remarkable agree-
ment with an immense number of measurements in contemporary experimental high-energy
physics research [4–7]. Yet, various arguments from both the theoretical and experimental
point of view lead to the conclusion that the SM is an incomplete description of nature
and can at best represent a low-energy description of a more fundamental theory. This
explains why tremendous efforts are being made to find theoretically well-motivated and
experimentally viable candidate models to eventually replace the SM some day.

Before evoking any ideas and models for physics beyond the Standard Model (BSM)
or strategies to test them experimentally, it is worthwhile recalling the essential aspects
which make up the SM, which is the purpose of section 1.1. A number of arguments for
qualifying the SM as a successful theory is given in section 1.2, while the most striking
deficits of the SM are discussed in section 1.3. They encourage the search for new physics
and are addressed by diverse BSM theories. Two examples of models, which extend the
SM, will be introduced in section 1.4 and will be relevant as signal models in chapter 5.
This chapter uses explanations, formulæ and references from refs. [1, 8–32].

1.1 A short review of the Standard Model

There are certainly numerous possible ways to present the Standard Model. The moti-
vation of this section is to give an idea of the main concepts and model specific constituents
involved in the SM, present its particles and shed light on the possible interactions. Some
basic derivations will be given or sketched to clarify the origin of the most fundamental
features of the SM, in particular gauge invariance and the allowed interactions, the mech-
anism behind the particle masses and flavour mixing. No detailed and more advanced
calculations will be given though, such as the computation of beta functions via loop
diagrams. The outline of this section is as follows: It starts with a summary of the main
ideas going into the construction of the SM and a presentation of the field and particle
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content in section 1.1.1. Section 1.1.2 will recapitulate the concept of gauge symmetries
and the construction of gauge theories. In section 1.1.3, the gauge theory of the elec-
troweak interactions and the mechanism of electroweak symmetry breaking will be studied.
Section 1.1.4 on the other hand discusses Quantum Chromodynamics, which is the gauge
theory of the strong interactions.

1.1.1 Building blocks of the Standard Model

As a theory of fundamental particles and their interactions, the Standard Model is
constructed based on some rather general principles, which regulate the practice of model
building in particle physics. On the other hand, it involves a number of specific ingredients,
which distinguish this particular model from other theories of particle physics. Both of
these aspects will briefly be recapitulated here using refs. [13, 33] and a list of the SM
particles will be given.

The formulation of theories in particle physics usually makes use of the framework
of quantum field theory, that builds upon quantum mechanics and the theory of special
relativity as well as on classical field theory. There is no room in this work for an in-depth
introduction to the concepts of quantum field theory (QFT), so it is assumed that the
reader is familiar with these. In QFT, a model is formulated as a Lagrangian, written in
terms of fields, which transform under different representations of the Lorentz group. For
a fundamental theory, such a Lagrangian must be Poincaré invariant and may feature a
certain number of additional symmetries.

In particular, the Lagrangian can be constructed by requiring it to be symmetric under
a set of gauge transformations, which apply to the different fields in the Lagrangian. On
the other hand, continuous global symmetries are not enforced in the same way, since
they cause problems in theories of quantum gravity. Still, they can exist as accidental
symmetries of the Lagrangian, which is the case when all symmetry breaking operators
are non-renormalisable and therefore not included. Such symmetries turn out to be only
approximate, since they get violated by higher order terms in perturbation theory [34].
An important concept in quantum field theory is spontaneous symmetry breaking, where
the symmetry is not broken on the level of the Lagrangian, but by the vacuum state. The
Goldstone theorem [35,36] states that the spontaneous breakdown of a continuous global
symmetry implies the existence of a massless boson (Goldstone boson) for each broken
generator. In contrast, there are no physical Goldstone bosons in spontaneously broken
gauge symmetries: the Goldstone modes are “eaten” by the gauge bosons, where they show
up as longitudinal helicity states, and the gauge bosons acquire a mass [37–43]. Finally, a
QFT becomes only predictive, once its independent parameters have been determined by
means of experimental measurements.
The actual construction of a specific model, i.e. in particular its Lagrangian, then usually
involves the following steps:

1. A gauge group is chosen.
2. The field content of the model is specified, and correspondingly also the representa-

tions under which the fields transform under gauge transformations.
3. A Lagrangian is composed from the field contents such that it respects the gauge
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symmetry, i.e. the action must be invariant under gauge transformations. All renor-
malisable, gauge invariant operators are included. Renormalisability is important,
since it makes the theory predictive after a finite number of measurements, since
it requires only a finite number of counterterms in order to absorb all divergences
appearing in the calculation of observables. Note that effective theories, in contrast
to fundamental theories, may contain non-renormalisable operators, as they are not
expected to by valid at arbitrary energy scales.

4. Part of the gauge symmetry is spontaneously broken according to a pattern, which
needs to be provided.

The concept of gauge symmetries will be revised very briefly in section 1.1.2, where also
the specification of the representations will be clarified. However, beforehand, the basic
ingredients of the SM will be presented.

Following the above principles, the Standard Model is obtained after making the
following choices: The SM gauge group is a product of three gauge groups,

GSM = SU(3)C × SU(2)L × SU(1)Y .

These gauge groups introduce 8 + 3 + 1 associated vector fields (gauge bosons) into the
theory, namely the gluon fields Gaµ with a = 1, . . . , 8 as well as the vector fields W j

µ with
j = 1, 2, 3 and Bµ, which will be discussed more later on. For the gauge bosons, it is not
necessary to explicitly specify the representation, c.f. section 1.1.2.

The remaining field content is given in table 1.1 together with the corresponding
representations of the SM gauge group. They are specified in terms of two bold numbers,
indicating whether the fields transform under the singlet or triplet (doublet) representation
of SU(3)C (SU(2)L), and a third number corresponding to the charge under U(1)Y , the
hypercharge 1. What exactly this means will become clear in section 1.1.2. The SM contains
the SU(2)L doublets Qi, Li of left-handed fermion fields and SU(2)L singlets ui,R, di,R,
ei,R, which are right-handed counterparts to these fields, as well as a complex scalar SU(2)L
doublet H (Higgs doublet). Here, the index i is a generation index with possible values
i = 1, 2, 3. More precisely, in the first place, the left- and right-handed fermion fields are
independent fields, but they mix through mass terms generated by spontaneous symmetry
breaking, c.f. section 1.1.3.5. Note that the left-handed lepton fields νi,L do not have a
right-handed counterpart. The fermions, which transform non-trivially under SU(3)C are
called quarks, the remaining ones leptons; their names in the different generations will be
given below. Each of the quark fields exists in three different colours, so they carry an
additional colour index a = 1, 2, 3 indicating the corresponding component of the SU(3)
triplet, which has been omitted here to simplify the notation. Concerning the notation of
the Higgs doublet components, the field φ+ carries positive electric charge (+e), while φ0

is electrically neutral, which will become clear in section 1.1.3.2.
In the SM, spontaneous symmetry breaking occurs in the electroweak gauge symmetry

SU(2)L × U(1)Y , which is broken down to the group U(1)EM, the gauge symmetry of the
electromagnetic interactions, while the SU(3)C group remains intact:

GSM → SU(3)C × U(1)EM . (1.1.1)
1. Note that this number depends on the conventions used in the definition of the gauge transformations

and the covariant derivative. It is quite frequent in the literature that it occurs with a factor of 2. More
details about the different conventions can be found in [44].
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fields representation

quark sector
Qi =

(
ui,L
di,L

)
(3,2, 1/6)

ui,R (3,1, 2/3)
di,R (3,1,−1/3)

lepton sector Li =
(
νi,L
ei,L

)
(1,2,−1/2)

ei,R (1,1,−1)

Higgs sector H =
(
φ+

φ0

)
(1,2, 1/2)

Table 1.1: List of fields and representations of the SM fermion and scalar sectors. The index
i = 1, 2, 3 is a generation index, whereas the quark fields carry an additional colour index a = 1, 2, 3,
which has been omitted here to simplify the notation.

This symmetry pattern is achieved through a scalar potential V (H) of a form that allows
the Higgs doublet to acquire a vacuum expectation value (vev) at the minimum of V ,

〈H〉 =
(

0
v/
√

2

)
. (1.1.2)

As will be illustrated in section 1.1.3.2, it is the sign of one of the parameters appearing
in V (H) which provokes this minimum and hence a non-zero vev.

Table 1.1 has provided a list of scalar and fermion fields of the SM, and it has been
mentioned that each gauge group of GSM implies a certain number of vector fields. Before
reviewing the fundamental aspects of this quantum field theory, a complete list of the
fundamental physical particles in the SM shall be given in table 1.2, which has been
inspired by ref. [45]. The connection between these particles and the fields in table 1.1
will be clarified in the following subsections.

1.1.2 Gauge symmetries

Section 1.1.1 has shown the relevance of gauge symmetries in the SM and other models
of particle physics. The SM gauge group GSM consists of an abelian group U(1) and
two non-abelian groups of the type SU(N). The construction of abelian and non-abelian
gauge theories will be reviewed here based on ref. [1] for these particular types of groups
in anticipation of sections 1.1.3 and 1.1.4, where these concepts will find application.

1.1.2.1 Abelian gauge theories

To illustrate the construction of an abelian gauge theory with a simple example, a
Lagrangian involving just one complex scalar field φ will be considered, which contains a
kinetic term and a potential that only depends on the modulus of φ:

L = ∂µφ
∗∂µφ− V (|φ|) , (1.1.3)
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Strong interactions: 8 gluons
Gauge bosons Weak interactions: W± , Z bosons

Electromagnetic interactions: γ (photon)
leptons 1st generation 2nd generation 3rd generation
neutrinos νe electron neutrino νµ muon neutrino ντ tau neutrino
charged leptons e− electron µ− muon τ− tauon/tau lepton
quarks 1st generation 2nd generation 3rd generation
(3 colours)
up-type quarks u up c charm t top
down-type quarks d down s strange b bottom

Higgs boson H0

Table 1.2: Listing of all Standard Model particles, inspired by [45]. Their anti-particles are not
explicitly included. The anti-particle of the electron is also called positron, whereas the other
anti-particles are usually simply denoted by the particle’s name together with the prefix anti or
the indication of the charge.

A U(1) transformation acting on φ is just a phase transformation

φ→ φ′ = eiαφ , φ∗ → (φ∗)′ = e−iαφ∗ , (1.1.4)

under which the potential V (|φ|) is obviously invariant, so that it does not need to be
discussed any further. The same would be the case for the kinetic term, if α was just a
constant parameter. However, what makes this transformation a gauge transformation
is the fact that it is local, i.e. the transformation parameter α(x) is dependent on the
position in space-time xµ. This has no consequences on the transformation of the potential,
so the variation of L emanates entirely from the transformation of the kinetic term. For
infinitesimal values of α it is given by

δL = i(∂µα)(φ∂µφ∗ − φ∗∂µφ) . (1.1.5)

The strategy to construct a gauge invariant Lagrangian is the following: One introduces a
vector field Aµ(x) into the Lagrangian, which transforms under the gauge transformations
in the following way:

Aµ(x)→ A′µ(x) = Aµ(x)− 1
e
∂µα(x) . (1.1.6)

Here, the constant e is the gauge coupling related to the gauge group. In order to make
the Lagrangian gauge invariant, it is introduced via the covariant derivative Dµ,

Dµφ = (∂µ + ieAµ)φ . (1.1.7)

The term covariant refers to the behaviour under gauge transformations, which is just the
same as for the field φ:

Dµφ→ (Dµφ)′ = (∂µ + ieA′µ)φ′

= ∂µ(eiα(x)φ) + ie

(
Aµ −

1
e
∂µα(x)

)
eiα(x)φ

= eiα(x)Dµφ .

(1.1.8)
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Here, only the x-dependence of α has been written explicitly to show that the transforma-
tion is a local one, but of course the fields φ and Aµ also depend on x. From eq. (1.1.8) it
is clear that by replacing the ordinary space-time derivative in the initial Lagrangian by
the covariant derivative one obtains a gauge-invariant version of the Lagrangian

L ⊃ (Dµφ)∗(Dµφ)− V (|φ|) . (1.1.9)

However, now that the Lagrangian contains an additional vector field Aµ, it should also
provide a corresponding kinetic term in order for Aµ to be a dynamical field, which must
be gauge invariant as well. It is constructed from the field strength tensor Fµν , which can
be expressed in terms of the commutator of two covariant derivatives as follows:

Fµν = − i
e

[Dµ, Dν ] = ∂µAν − ∂νAµ . (1.1.10)

It is straightforward to show from the transformation of Aµ according to eq. (1.1.6) that
Fµν is gauge invariant:

F ′µν = ∂µA
′
ν − ∂νA′µ

= ∂µ

(
Aν −

1
e
∂να(x)

)
− ∂ν

(
Aµ −

1
e
∂µα(x)

)
= ∂µAν − ∂νAµ
= Fµν .

(1.1.11)

Therefore the kinetic term to include into the Lagrangian, given by

L ⊃ −1
4FµνF

µν , (1.1.12)

is also gauge invariant.
The Lagrangian of a complex scalar field given in eq. (1.1.3) has been chosen for its

simplicity to illustrate how gauge invariance of the kinetic term can be restored via the
covariant derivative. This principle is however also applicable in the same way to fermions.
Furthermore, gauge invariant interaction terms of different fields can be composed, which
are not discussed here. The introduction of a vector field via the covariant derivative has
phenomenological consequences since it generates new interaction terms. In the above
example of a scalar field, these are φ∗φA and φ∗φAA interactions. For a fermion field ψ,
since the kinetic term only involves one derivative, the covariant derivative only leads to
a ψψA interaction.

There is one more important point to be discussed, which is the subject of representa-
tions. Fields can transform under different representations of the same gauge symmetry,
i.e. they can have different charges under the gauge group. If the constant e in the above
example is identified with the electric charge of the scalar φ, then the example describes a
gauge theory of scalar Quantum Electrodynamics (QED). Suppose now that the charge of
φ is instead Qe, then the gauge transformation of φ and its covariant derivative are given
by

φ→ φ′ = eiQα(x)φ , Dµφ = (∂µ + ieAµQ)φ , (1.1.13)
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and the covariant derivative transforms as

Dµφ→ eiQα(x)Dµφ . (1.1.14)

To come back to the specification of the representations in table 1.1, the third number
represents the hypercharge Y , which is the generator of the group U(1)Y , and the trans-
formation of the fields under this group can be obtained in analogy to eqs. (1.1.13) and
(1.1.14). The representations of the different fields determine which operators, apart from
the kinetic terms, respect the gauge symmetry and are hence allowed in the Lagrangian.

1.1.2.2 Non-abelian gauge theories

Non-abelian gauge theories are based on groups with non-commuting group elements
(non-abelian groups). In the SM, the non-abelian gauge groups are of the type SU(N)
(SU(2) and SU(3)), which will be considered here.

SU(N) transformations can be expressed in terms of N2 − 1 Hermitian matrices T a
and real parameters αa,

U = exp(iαaT a) ≡ exp(iα) with α ≡ αaT a . (1.1.15)

As usual, the summation of the index a is implicit with a = 1, . . . , N2 − 1. The matrices
T a are the generators of the group and satisfy the Lie algebra relation

[T a, T b] = ifabcT c , (1.1.16)

where fabc are totally anti-symmetric structure constants. Furthermore, the generators
will be required to be normalised according the convention Tr(TaTb) = 1

2δ
ab.

Again, a simple example of a theory with scalar fields will be studied, where the
transformation acts on an N -component vector 2 Φ of scalar fields φi:

Φ→ Φ′ = UΦ , Φ† → (Φ†)′ = Φ†U † , with Φ =

φ1
...
φN

 . (1.1.17)

A similar Lagrangian to eq. (1.1.3) will be taken, which is symmetric under global SU(N)
transformations:

L = (∂µΦ)†(∂µΦ)− V (Φ†Φ) . (1.1.18)

However, it violates the symmetry when the transformations are local, i.e. for xµ-dependent
parameters αa(x). The space-time derivative transforms as

∂µΦ→ ∂µΦ′ = ∂µ(UΦ) = U∂µΦ + (∂µU)Φ , (1.1.19)

and therefore the kinetic term in eq. (1.1.18) is not invariant under SU(N) transformations.
As in the abelian case, it can be made invariant by replacing the usual space-time derivative
by a gauge-covariant derivative, which now involves N different gauge fields Aaµ. It will be

2. Such a vector of fields, transforming under some representation of a symmetry group, is commonly
called multiplet, or more specifically singlet, doublet, triplet, sextet, octet, . . . for 1, 2, 3, 6, 8, . . . components.
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convenient to write Aµ ≡ AaµT
a. Assuming the same form of the covariant derivative as

in the abelian case, the requirement that it transforms in the same way as Φ determines
the transformation of the gauge fields:

(DµΦ)′ = [(∂µ + igAµ)Φ]′

= (∂µ + igA′µ)(UΦ)
= U(∂µ + U †(∂µU) + igU †A′µU)Φ
!= U(DµΦ)

= U(∂µ + igAµ)Φ .

(1.1.20)

Here the expression of the transformed ordinary derivative ∂µU from eq. (1.1.19) was used.
By comparing the third and the last line of eq. (1.1.20), one obtains:

igAµ = U †(∂µU) + igU †A′µU ⇔ A′µ = UAµU
† − i

g
U∂µU

† . (1.1.21)

As before, the Lagrangian should also provide kinetic terms for the gauge fields in a gauge
invariant way. To this end, a field strength tensor can be constructed, proceeding like in
the abelian case:

Fµν = − i
g

[Dµ, Dν ]

= ∂µAν − ∂νAµ + ig[Aµ, Aν ]
= ∂µAν − ∂νAµ + igAbµA

c
ν [T b, T c]

= ∂µAν − ∂νAµ − gfabcAbµAcνT a

= F aµνT
a ,

(1.1.22)

where
F aµν ≡ ∂µAaν − ∂νAaµ − gfabcAbµAcν . (1.1.23)

Its form is manifestly different from the one in the abelian case. Moreover, it is not invariant
under the SU(N) transformations, but its transformation is given by

Fµν → F ′µν = UFµνU
† . (1.1.24)

It is easy to see that also the combination FµνF
µν is not gauge invariant. Taking the

trace however makes it gauge invariant, because the cyclic permutation property of the
trace can be used to combine the surrounding U and U † matrices to the identity matrix.
Therefore, the gauge boson kinetic terms are embedded in

L ⊃ −1
2Tr (FµνFµν) = −1

4F
a
µνF

a,µν , (1.1.25)

where the standard normalisation convention was used.
As opposed to abelian gauge theories, the kinetic term in non-abelian gauge theories is

accompanied by interaction terms involving three or four gauge boson fields Aaµ of different
indices a, which one can see by expanding eq. (1.1.25) after inserting the expression of
eq. (1.1.23). Like in the abelian case, the covariant derivative induces Φ†ΦA and Φ†ΦAA
interactions in the scalar case and ΨΨA interactions in the fermion case (where Ψ is like
Φ a vector of fields, but here fermionic ones).
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1.1.2.3 The fundamental representations of SU(2) and SU(3)

The relevant fermion representations in the SM are the fundamental representations
of SU(2) and SU(3). Here, the generators in these representations will be given, together
with the structure constants, which do not depend on the representation.

In the fundamental representation of SU(2), the generators can be chosen proportional
to the Pauli matrices, T i = σi/2, and the structure constants are the values of the totally
anti-symmetric tensor εijk, so that the Lie algebra relation is given by[

σi

2 ,
σj

2

]
= iεijk

σk

2 , i, j, k ∈ {1, 2, 3} , (1.1.26)

with

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.1.27)

For the generators in the fundamental representation of SU(3), instead of Pauli matrices,
the Gell-Mann matrices λa are used, i.e. T a = λa/2, with

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 , λ4 =

0 0 1
0 0 0
1 0 0

 ,

λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 = 1√
3

1 0 0
0 1 0
0 0 −2

 .

(1.1.28)

They fulfill [
λi

2 ,
λj

2

]
= if ijk

λk

2 , (1.1.29)

where the non-zero structure constants are given by

f123 = 1 , f147 = 1
2 , f156 = −1

2 , f246 = 1
2 , f257 = 1

2 ,

f345 = 1
2 , f367 = −1

2 , f458 =
√

3
2 , f678 =

√
3
2 .

(1.1.30)

1.1.3 Electroweak theory and spontaneous symmetry breaking

The electroweak theory is the part of the SM related to the electroweak gauge symmetry,
which is the symmetry under SU(2)L × U(1)Y gauge transformations. This symmetry is
related to a number of interaction terms of the corresponding gauge bosons with the
fermion and scalar (or Higgs) sectors of the SM, but in addition, its breakdown to U(1)EM
in spontaneous symmetry breaking generates the masses of the SM gauge bosons W±
and Z. As for the SM fermions, they acquire their masses via Yukawa interactions with
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the Higgs field. The electroweak interactions, the mechanism of spontaneous symmetry
breaking in the SM, the masses and mixing shall be reviewed in the following, using for the
most part formulæ and explanations of ref. [14], but with some changes on the notation
inspired by ref. [33].

1.1.3.1 The electroweak Lagrangian

Different sorts of terms contribute to the electroweak Lagrangian

LEW = Lgauge + LH + Lf + LYukawa . (1.1.31)

The first term Lgauge involves the field strength tensors of the gauge boson fields W i
µ and

Bµ,

W i
µν = ∂µW

i
ν − ∂νW i

µ − gεijkW j
µW

k
ν , i = 1, 2, 3 , (1.1.32)

Bµν = ∂µBν − ∂νBµ , (1.1.33)

where g is the gauge coupling of the SU(2)L group, and is given by

Lgauge = −1
4W

i
µνW

i,µν − 1
4BµνB

µν . (1.1.34)

The U(1)Y coupling will be denoted by g′, but does not appear in the field strength
tensor. While these terms include the kinetic terms of the gauge bosons, the last term in
eq. (1.1.32) gives rise to self-interactions of the different SU(2)L gauge bosons W i

µ, which
will not be given explicitly here.

The second contribution LH consists of the scalar kinetic and gauge interaction terms,
generated by the gauge covariant derivative applied on the scalar SU(2)L doublet H, and
the scalar potential V (H):

LH = (DµH)† (DµH)− V (H) . (1.1.35)

Given that H transforms under the (1,2, 1/2) representation of the SM gauge group, its
covariant derivative reads

DµH =
(
∂µ + ig

σi

2 W
i
µ + ig′

2 Bµ

)(
φ+

φ0

)
. (1.1.36)

As mentioned earlier, the form of the scalar potential plays a crucial role in the breakdown
of the electroweak symmetry. Its form is given by

V (H) = µ2H†H + λ
(
H†H

)2
(1.1.37)

with real parameters µ2 < 0 and λ > 0, leading to the required symmetry pattern. This
scalar potential causes cubic and quartic scalar self-interactions, which will be further spec-
ified after considering the spontaneous symmetry breaking in more detail in section 1.1.3.2.

The third term Lf concerns the fermion interaction terms with the electroweak gauge
bosons. Here, the different fermion representations imply different forms of the covariant
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derivative. In the following, an additional zero will be added as superscript in the fermion
field notation, since they are not in the mass eigenstate basis, but there is mixing between
fermions of different generations. This will also be done for the fields of the massless
neutrinos, for which a different basis of fields will be chosen as well. The details are
discussed in section 1.1.3.5. For the lepton fields, the covariant derivatives are

DµL
0
i =

(
∂µ + ig

2 W
j
µσ

j − ig′

2 Bµ

)(
ν0
i,L

e0
i,L

)
, Dµe

0
i,R =

(
∂µ − ig′Bµ

)
e0
i,R , (1.1.38)

and for the quark fields

DµQ
0
i =

(
∂µ + ig

2 W
j
µσ

j + ig′

6 Bµ

)(
u0
i,L

d0
i,L

)
,

Dµu
0
i,R =

(
∂µ + 2ig′

3 Bµ
)
u0
i,R ,

Dµd
0
i,R =

(
∂µ − ig′

3 Bµ
)
d0
i,R ,

(1.1.39)

where in both cases the indices j are implicitly summed over. Concerning the quark fields,
it should be noticed that the given expressions are not the complete covariant derivatives
of the SM gauge symmetry group, but only the part related to the electroweak gauge
group SU(2)L ×U(1)Y . The SU(3)C covariant derivative will be considered separately in
section 1.1.4 and involves colour indices, which are disregarded here. The Lagrangian Lf ,
in which the above covariant derivatives appear, is given by

Lf =
3∑
i=1

(
Q

0
i i /DQ

0
i + L

0
i i /DL

0
i + u0

i,Ri /Du
0
i,R + d

0
i,Ri /Dd

0
i,R + e0

i,Ri /De
0
i,R

)
, (1.1.40)

where the symbol i appearing in front of /D is not the index used for the summation over
the generations, but the imaginary unit.

Finally, there are also Yukawa interaction terms between the fermion and scalar fields,
which are invariant under the electroweak gauge group. As will be shown in section 1.1.3.2,
these terms also generate the mass terms of the fermions when the symmetry is sponta-
neously broken, i.e. the field H acquires a non-zero vacuum expectation value in its second
component φ0. In order to give also masses to the up-type quarks, the field H̃ is used,
which is related to H through the similarity transformation

H̃ ≡ iσ2H∗ . (1.1.41)

Neutrino mass terms cannot be generated through Yukawa interaction terms, since there
are no right-handed neutrino fields. The possible Yukawa interactions are then given by

LYukawa = −
3∑

i,j=1

(
yuijQ

0
i H̃u

0
j,R + ydijQ

0
iHd

0
j,R + yeijL

0
iHe

0
j,R

)
+ h.c. . (1.1.42)

1.1.3.2 Electroweak symmetry breaking

The spontaneous breaking of the electroweak symmetry is particularly important in
the SM, since it provides a mechanism (the Brout-Englert-Higgs mechanism [37–43]) to
generate mass terms for the gauge bosons, which cannot be constructed otherwise without
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violating the gauge symmetry. Indirectly, this also leads to fermion masses via the Yukawa
couplings to the Higgs field. For the SM fermions, explicit mass terms are not allowed
due to their representations: Since they involve left- and right-handed spinor fields, they
should have a Dirac mass term, which mixes the left- and right-handed fields. However,
since these transform under different representations of the electroweak gauge group, such
a Dirac mass term would not be gauge invariant and is therefore forbidden. In the contrary,
so-called vector-like fermions with left- and right-handed parts which transform under the
same representation do allow for a Dirac mass term, c.f. section 1.4.1.

The mechanism which breaks the electroweak symmetry follows the assumption that
the lowest energy state, i.e. the vacuum, does not share the symmetry. This becomes
manifest in a non-zero vacuum expectation value in the Higgs doublet H at the minimum
of the potential, corresponding to the lowest-energy state. In order for this scenario to
occur, the scalar potential must have an appropriate shape. As pointed out in section 1.1.1,
in the SM scalar potential in eq. (1.1.37) this will result from a proper choice of the signs
of the parameters:

µ2 < 0 , λ > 0 . (1.1.43)

It is the sign of µ2 which causes the minimum of the potential to be displaced from the
zero field configuration.

The Higgs doublet, consisting of two complex fields φ+ and φ0, or alternatively four
real fields φi, can be written as

H =
(
φ+

φ0

)
= 1√

2

(
φ1 − iφ2
φ3 − iφ4

)
. (1.1.44)

Inserting this parameterisation into the Higgs potential, it takes the form

V (H) = 1
2µ

2
( 4∑
i=1

φ2
i

)
+ 1

4λ
( 4∑
i=1

φ2
i

)2

. (1.1.45)

It is obvious that this potential is symmetric under SO(4) transformations rotating the
fields φi among each other [10]. One is therefore free to choose the field φ3 as the one that
acquires the non-zero vev 3 〈φ3〉 = v, while it is zero for the remaining fields, i.e. 〈φi〉 = 0
for i = 1, 2, 4. Hence, as announced in section 1.1.1, one has

〈H〉 =
(

0
v/
√

2

)
. (1.1.46)

The value of the potential at the vev of H is given by

V (〈H〉) = 1
2µ

2v2 + 1
4λv

4 . (1.1.47)

From the requirement that this is a minimum of the potential, the vev can be expressed
in terms of the parameters of the Lagrangian:

v =

√
−µ

2

λ
. (1.1.48)

3. For the vacuum expectation value, the notation 〈...〉 ≡ 〈0|...|0〉 is used, where |0〉 is the vacuum state.
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To see how the gauge boson and fermion masses are generated, it will be convenient to
write the field H in terms of an SU(2) gauge transformation U(x) and a real scalar field
h(x) as [46]

H(x) = U(x) 1√
2

(
0

v + h(x)

)
. (1.1.49)

With the degrees of freedom embodied by the three x-dependent parameters αa(x) in U(x)
and the real scalar field h(x), any two-component complex scalar field can be composed
in this way. On the other hand, the matrix U can be removed due to gauge invariance via
a gauge transformation, so that H takes the simple form

H = 1√
2

(
0

v + h

)
, (1.1.50)

and there is only one physical degree of freedom left in H. This gauge fixing is known
as the unitary gauge. Note that the physical degrees of freedom, which have disappeared
from the Higgs field, show up again as the longitudinal modes of the gauge boson fields,
which at the same time become massive. Of course, the SM does not rely on this gauge,
but the Lagrangian is simplest with this gauge fixing. Other gauges shall not be discussed
here.

A way to check that the symmetry is broken by the vacuum expectation value is to see
how it behaves when a gauge transformation is applied to it. If it respects the electroweak
symmetry, then an arbitrary SU(2)L or U(1)Y transformation should have no effect on
〈H〉. This is the case, if the group generators acting on 〈H〉 give zero (in both components),
which in the following will be checked explicitly:

T 1〈H〉 = 1
2

(
0 1
1 0

)(
0

v/
√

2

)
= 1

2

(
v/
√

2
0

)
6= 0 ,

T 2〈H〉 = 1
2

(
0 −i
i 0

)(
0

v/
√

2

)
= − i2

(
v/
√

2
0

)
6= 0 ,

T 3〈H〉 = 1
2

(
1 0
0 −1

)(
0

v/
√

2

)
= −1

2

(
0

v/
√

2

)
6= 0 ,

Y 〈H〉 = 1
2

(
0

v/
√

2

)
6= 0 .

(1.1.51)

Since none of these results vanishes, all four generators are broken. However, these results
also show that the sum Q ≡ T 3 + Y applied on 〈H〉 vanishes, so this combination is a
new unbroken generator. This confirms the pattern of spontaneous symmetry breaking of
eq. (1.1.1), where Q is the generator of the group U(1)EM and corresponds to the electric
charge. The invariance of the Lagrangian under this group implies that the associated gauge
boson, the photon, has to remain massless, which is indeed the case, c.f. section 1.1.3.4.
Having identified the operator Q as the sum of T 3 and Y , the notation of the Higgs
doublet components φ+ and φ0 related to the electric charge can now be understood via
the eigenvalues of these fields to Q, which are +1 and 0.
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1.1.3.3 Higgs boson mass and self interactions

Besides leading to the spontaneous symmetry breaking in the electroweak theory, the
potential in eq. (1.1.37) is also the source for a mass term and self interactions for the
physical scalar h. Inserting the expression for H of eq. (1.1.50) into this potential, one
obtains

V (h) = −µ
4

4λ − µ
2h2 + λvh3 + λ

4h
4 . (1.1.52)

The first term is just constant and is irrelevant in the SM, but represents a problematic
term in the context of gravity. However, this shall not be discussed here. A mass term
for the Higgs boson is provided by the second term, where the tree level mass can be
identified as

mh =
√
−2µ2 =

√
2λv . (1.1.53)

The remaining two terms are cubic and quartic interaction terms of the Higgs boson.

1.1.3.4 Gauge boson masses and interactions with the Higgs boson

The mass terms of the electroweak gauge bosons can easily be derived, using the
parameterisation of H in eq. (1.1.50), by considering its gauge invariant kinetic term
(DµH)†DµH, which is the only term in the SM Lagrangian that couples H to these gauge
bosons. The only terms relevant for these mass terms are the ones proportional to v2,
which are at the same time free of the field h. Using that the matrices σi are Hermitian,
one obtains

(DµH)†DµH = 1
2
(
0 v

)(g
2σ

iW i
µ + g′

2 Bµ
)2(0

v

)
+ h terms

= g2v2

4
W 1
µ − iW 2

µ√
2

W 1µ + iW 2µ
√

2
+ v2

2

(
g′

2 Bµ −
g

2W
3
µ

)2

+ h terms .

(1.1.54)

This expression contains mixed terms of the different gauge bosons. A basis of vector fields,
in which the mass terms are diagonal, is given by

W±µ = 1√
2

(
W 1
µ ∓ iW 2

µ

)
,

(
Zµ
Aµ

)
=
(

cos θW − sin θW
sin θW cos θW

)(
W 3
µ

Bµ

)
. (1.1.55)

Here, the weak mixing angle θW is defined in terms of the coupling constants g and g′ via
the relation

tan θW ≡
g′

g
. (1.1.56)

In the new basis, the expression in eq. (1.1.54) becomes

(DµH)†DµH = m2
WW

+
µ W

−µ + m2
Z

2 ZµZ
µ + h terms (1.1.57)

with
mW = gv

2 , mZ = v

2

√
g2 + g′2 = mW

cos θW
. (1.1.58)
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As expected, there is one gauge boson without mass term, the photon field Aµ that
corresponds to the unbroken generator Q, i.e. it belongs to the symmetry group U(1)EM.

Eq. (1.1.57) also includes interaction terms of h, which have not been written explicitly.
The whole expression in unitary gauge contains a kinetic term (the other terms involving
a derivative cancel each other) as well as interaction terms, which according to the form
of H in eq. (1.1.50) can be obtained by replacing v by v+h in the mass terms. The result
is

(DµH)†DµH = 1
2∂µh ∂

µh+m2
WW

+
µ W

−µ
(

1 + h

v

)2
+ m2

Z

2 ZµZ
µ
(

1 + h

v

)2
, (1.1.59)

which includes WWh, WWhh, ZZh and ZZhh couplings.

1.1.3.5 Fermion masses and interactions with the Higgs boson

Finally, as argued in section 1.1.3.1, the spontaneous symmetry breaking also generates
fermion masses due to the Yukawa couplings given in eq. (1.1.42). As before, inserting the
field H in unitary gauge from eq. (1.1.50) into the Lagrangian, one obtains both fermion
mass terms and corresponding interactions with the field h:

LYukawa = −
3∑

i,j=1

(
u0
i,LM

u
iju

0
j,R + d

0
i,LM

d
ijd

0
j,R + e0

i,LM
e
ije

0
j,R

)(
1 + h

v

)
+ h.c. . (1.1.60)

Here, the mass matrices are given by

Mf
ij =

yfijv√
2

for f = u, d, e . (1.1.61)

There is no reason for the mass matrices to be diagonal. Therefore, in order to switch to the
mass eigenstate basis, each mass matrix is transformed using two unitary transformations
UfL and UfR such that

Uf†L MfUfR = Mf
D for f = u, d, e (1.1.62)

is diagonal. For example, for the up-type quarks one has

Uu†L MuUuR = Mu
D =

mu 0 0
0 mc 0
0 0 mt

 . (1.1.63)

Correspondingly, the fermion fields fL = (f1,L, f2,L, f3,L) and fR = (f1,R, f2,R, f3,R) for
f = u, d, e in the mass eigenstate basis are obtained from f0

L and f0
R as follows:

fL = Uf†L f0
L , fR = Uf†R f0

R , for f = u, d, e . (1.1.64)

These transformations can be used not only for the diagonalisation of the mass matrices,
but also of the corresponding Yukawa couplings of h to the same fermion fields, which
according to eq. (1.1.60) are proportional to the mass matrices. Even though there is no
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neutrino mass matrix to diagonalise, the neutrino fields ν0
i,L can also be transformed via a

unitary transformation. Here, the same transformation as for the fields e0
i,L is chosen [46],

i.e.
νL = U e†L ν

0
L (1.1.65)

with νL = (ν1,L, ν2,L, ν3,L). With this choice, both components of the lepton doublets L0
i

are transformed in the same way. In contrast, the components of the quark doublet Q0
i are

transformed via two independent matrices UuL and UdL due to independent Yukawa cou-
plings yu and yd. The above transformations have consequences beyond the diagonalisation
of the mass matrices, which will be discussed in section 1.1.3.6.

1.1.3.6 Gauge interactions of the fermions

The gauge interactions of the SM fermion fields have already been provided via the
covariant derivatives in eqs. (1.1.38) and (1.1.39) and the Lagrangian in eq. (1.1.40). Since
then, both the vector bosons and the fermions have been transformed to the mass basis.
Therefore, these expressions shall be reconsidered here in the mass basis.

Applying first the replacements for the vector boson fields, one obtains the following
structure [46]:

Lf =
3∑
i=1

(
Q

0
i i/∂Q

0
i + L

0
i i/∂L

0
i + u0

i,Ri/∂u
0
i,R + d

0
i,Ri/∂d

0
i,R + e0

i,Ri/∂e
0
i,R

)
+ g

(
W+
µ J

+µ
W +W−µ J

−µ
W + Z0

µJ
µ
Z

)
+ eAµJ

µ
EM .

(1.1.66)

Here, the different charged and neutral currents are defined as

J+µ
W = 1√

2

3∑
i=1

(
ν0
i,Lγ

µe0
i,L + u0

i,Lγ
µd0

i,L

)
,

J−µW = 1√
2

3∑
i=1

(
e0
i,Lγ

µν0
i,L + d

0
i,Lγ

µu0
i,L

)
,

JµZ = 1
cos θW

3∑
i=1

[1
2 νi,Lγ

µνi,L

+
(
−1

2 + sin2 θW

)
e0
i,Lγ

µe0
i,L +

(
sin2 θW

)
e0
i,Rγ

µe0
i,R

+
(1

2 −
2
3 sin2 θW

)
u0
i,Lγ

µu0
i,L +

(
−2

3 sin2 θW

)
u0
i,Rγ

µu0
i,R

+
(
−1

2 + 1
3 sin2 θW

)
d

0
i,Lγ

µd0
i,L +

(1
3 sin2 θW

)
d

0
i,Rγ

µd0
i,R

]
,

JµEM =
3∑
i=1

[
(−1) e0

i γ
µe0
i +

(2
3

)
u0
i γ
µu0

i +
(
−1

3

)
d

0
i γ
µd0

i

]
.

(1.1.67)

In the last current JµEM, the Dirac spinor notation was used to combine the left- and
right-handed fermion fields:

ei =
(
ei,L
ei,R

)
, ui =

(
ui,L
ui,R

)
, di =

(
di,L
di,R

)
, for i = 1, 2, 3 . (1.1.68)
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The values in JµEM, which are written in parentheses, correspond to the electric charge of
the fermions.

Proceeding now with the fermion field transformations in eqs. (1.1.64) and (1.1.65),
one could first notice that most of the terms are unaffected by the transformations. These
are all terms involving the same chiralities and fermion flavours, which transform as [46]

f
0
i,Lγ

µf0
i,L =

(
f j,LU

†f
L,ji

)
γµ
(
UfL,ikfk,L

)
=
(
U †fL UfL

)
jk
f j,Lγ

µfk,L

= δjkf j,Lγ
µfk,L

= f j,Lγ
µfj,L ,

(1.1.69)

where the summation over repeated indices was left implicit, and analogously

f
0
i,Rγ

µf0
i,R = f i,Rγ

µfi,R . (1.1.70)

This applies also to the terms of JµEM, where the corresponding left- and right-handed
terms are just combined into Dirac spinors.

Therefore, only the charged currents J±µW get affected by the transformation of the
fermion field basis. However, the leptonic terms remain invariant as well, because the
transformation matrix of the neutrino fields has been chosen to be equal to the one of the
left-handed lepton field of the same SU(2)L doublet, such that the transformations cancel
each other just like in eq. (1.1.69). After all, only the charged quark currents are different
in the mass basis, where the transformation leads to

u0
i,Lγ

µd0
i,L =

(
uj,LU

u†
L,ji

)
γµ
(
UdL,ikdk,L

)
=
(
Uu†L UdL

)
jk
uj,Lγ

µdk,L

= (VCKM)jk uj,Lγ
µdk,L ,

(1.1.71)

with VCKM ≡ Uu†L UdL, and similarly

d
0
i,Lγ

µu0
i,L =

(
V †CKM

)
jk
dj,Lγ

µuk,L . (1.1.72)

The matrix VCKM is referred to as the Cabibbo-Kobayashi-Maskawa (CKM) matrix, which
is observed to be approximately of the form

VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 ≈
 1 λ λ3

λ 1 λ2

λ3 λ2 1

 , (1.1.73)

where λ = sin θc ≈ 0.22. The angle θc is the Cabibbo angle. It should be mentioned that
the CKM matrix can in general be parameterised in terms of three mixing angles and one
phase; the latter is responsible for the CP violation in the SM [47].
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1.1.4 Quantum Chromodynamics

The gauge theory of strong interactions, called Quantum Chromodynamics, is based on
the gauge group SU(3)C of the SM gauge group GSM. The name of this gauge theory is
related to the illustrative picture that each quark flavour exists in three different colours
(red, blue, green and their anti-colours), but the observable particles in nature are always
colour singlets, i.e. bound states, in which the colours add up to white.

1.1.4.1 The QCD Lagrangian

The QCD Lagrangian has a relatively simple structure. It only involves 8 gauge bosons,
the gluons, as well as both left- and right-handed quarks, which transform under the same
representations of SU(3)C . Here, it is therefore most convenient to work with the Dirac
spinor notation. The relevant Lagrangian terms in QCD are [9, 14]

LQCD = −1
4F

a
µνF

a,µν +
nf∑
r=1

qαr

(
i /D

αβ −mrδ
αβ
)
qβr . (1.1.74)

This time, the colour indices α, β ∈ {1, 2, 3} of the quarks are written explicitly and as
usual, they are implicitly summed over, when they appear repeatedly. The index r is a
flavour index, where the number of flavours in the SM is nf = 6. All quark fields are given
in the mass basis with masses mr, which are just the diagonal matrix elements of the
diagonalised mass matrices Mu

D and Md
D in eq. (1.1.62). The expression of the covariant

derivative, which includes only the SU(3)C part, is given by

Dαβ
µ = δαβ∂µ + igsG

a
µ (T a)αβ , (1.1.75)

with a = 1, ..., 8 being summed over, where T a = λa/2 are the Gell-Mann matrices provided
in eq. (1.1.28). The fields Gaµ are the gluon fields and gs is the strong coupling constant.
Finally, according to eq. (1.1.23), the components of the field strength tensor read

F aµν = ∂µG
a
ν − ∂νGaµ − gsfabcGbµGcν , (1.1.76)

with b, c ∈ {1, ..., 8} being summed over and the non-zero structure constants fabc being
given by eq. (1.1.30).

As discussed in section 1.1.2.2, the interactions following from LQCD are on the one
hand interactions of gluons to quarks of the same flavour but possibly different colours,
and on the other hand three- or four-gluon self-interactions.

1.1.4.2 Asymptotic freedom and confinement

A topic which has so far been neglected is renormalisation. The different parameters in
the Lagrangians given so far are tree-level quantities which in renormalised perturbation
theory receive corrections from loop diagrams. The technical details of the renormalisation
program are not of interest in this chapter. However, in QCD the renormalisation of gs has
phenomenological implications, which are far too important to be ignored. The value of the
renormalised coupling depends on a renormalisation scale µ. Typically, this scale can be
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put into relation with a momentum scale Q involved in the process under consideration [48].
The scale dependence of the coupling is then governed by a beta-function via

β = µ
∂gs
∂µ

. (1.1.77)

In the case of the strong coupling, the beta function for αs = g2
s

4π is given by

β = µ
∂αs
∂µ

= −β0
2πα

2
s −

β1
4π2α

3
s −

β2
64π3α

4
s − . . . (1.1.78)

with

β0 = 11− 2
3nf ,

β1 = 51− 19
3 nf ,

β2 = 2857− 5033
9 nf + 325

27 n
2
f .

(1.1.79)

Keeping only the leading term in αs of the beta function, one finds the following scale
dependence:

αs(µ) = 4π

β0 ln
(

µ2

Λ2
QCD

) . (1.1.80)

Here, the scale ΛQCD is a scale of the order of 200 MeV, at which perturbation theory
breaks down: One can see that the expression in eq. (1.1.80) diverges for µ→ ΛQCD (this
is called the Landau pole [49,50], giving the impression that the coupling becomes infinitely
strong around this scale. If that is the case, then perturbation theory breaks down, since
it relies on small couplings. This in turn implies that the expression in eq. (1.1.80) does
not correctly describe the behaviour of αs in this regime, since it is itself the result of a
perturbative calculation.

Nevertheless, this equation gives an impression of the running of the strong coupling
constant: The coupling becomes small for high momenta (or small distances). This property
of QCD is called asymptotic freedom. In contrast, for small momenta near or below the
scale ΛQCD (or high distances), the coupling becomes strong and perturbative calculations
become impossible. Therefore, quarks and gluons are not observable as asymptotic states
but are always confined into colour-neutral states (hadrons).

1.2 Successes of the theory

The way in which the Standard Model is presented in the previous section does not
reflect the historical development of the theory. Obviously, the SM has been formulated
under the influence of experimental observations and discoveries, but is also the fruit of
the development of new theoretical concepts, such as non-abelian gauge theories or the
spontaneous breakdown of these [1]. A historical review of the development of the SM
can be found in ref. [51], which points out that there were also some misunderstandings
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on the way to the complete theory. Nonetheless, the SM as we know it today is an
extraordinarily successful theory. Some of the particularly satisfactory features of the SM
are the following [48,52]:

— It is both renormalisable and unitary [53,54].
— The electromagnetic and weak forces are unified via the electroweak gauge group

SU(2)L × U(1)Y .
— It contains a reasonable number of 18 free parameters, which need to be determined

in experimental measurements, until the theory becomes fully predictive. There are
three coupling constants, six quark masses, three lepton masses, three mixing angles
and one phase for the CKM matrix, the Higgs mass and the mass of either the W
or the Z boson.

— The ratio between the W and Z boson masses is predicted at tree level by cos θW .
— All particles of the Standard Model are by now known to exist. After the completion

of the SM, gluons were discovered in 1979, the W and Z bosons in 1983, the third
family quarks and leptons between 1975 and 2000, and finally the Higgs boson in
2012 [1, 45].

— In comparison with experimental data, e.g. cross section measurements at the LHC [5–
7] or electroweak precision data [4], the SM turns out to be extremely robust, i.e.
the vast majority of the predictions are in good agreement with measurements in
consideration of the respective uncertainties.

1.3 Theoretical and experimental puzzles

Despite the undeniable success of the SM, it is not capable of explaining all observations
in nature. These deficiencies reveal the incompleteness of the SM and clearly indicate that
there should be some sort of new physics that the theory does not take into consideration.
Also, some persisting experimental tensions could be hints for new physics. Further doubts
about the completeness of the model arise on the theoretical level, in particular due to the
necessity of unnatural fine-tuning in order to match physical observables. In addition, one
can ask more philosophical questions about the architecture of the SM and the values of
its parameters, which could in principle remain unanswered without causing any trouble,
even though it might seem more satisfactory from the theoretical point of view to have a
precise explanation. This can motivate the search for mechanisms which naturally generate
the observed patterns of parameter values present in the SM while reducing the number
of free parameters. This section gives a brief overview of the most important, and some
less important unanswered questions related to particle physics and the SM.

— Quantum gravity: A complete theory of nature should successfully describe all
forces, which is clearly not the case for the SM, since it does not include gravity [8].
Even though it is completely irrelevant at the energy scales which are achievable in
collider experiments, the ultimate goal should be to find a theory that properly takes
it into account. A classical description of gravity is given by the theory of General
Relativity, but in constructing a quantum theory the renormalisability represents a
major problem.
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— Dark matter: The first observerations in favour of the existence of dark matter
(DM) were made in the 1930s, in particular by Zwicky who found that galaxies
in the COMA cluster have an excessively high velocity dispersion, leading to the
conclusion that the cluster should have a much higher mass than expected from the
luminosities of the galaxies [55,56]. Similarly, it was observed that rotation curves
of objects in galaxies, more precisely their velocities as a function of the radius R
from the center of the galaxy, did not match the naive expectations [57–69]: Instead
of decreasing with the radius from the galactic center, they were observed to be
nearly constant over a wide range of radii. Since the mass distribution of the visible
objects could not explain the observed curves, it was suggested that there should
be additional mass belonging to some invisible form of matter, which is referred to
as dark matter, that must be included into the calculations to obtain the correct
velocities of the objects. Later on, this hypothesis has been consolidated through a
number of independent observations such as gravitational lensing [68–83], hot gas
in galaxy clusters [84], and the cosmic microwave background [85–91]. According to
the standard model of cosmology (also called ΛCDM, where CDM stands for cold
dark matter and Λ is the cosmological constant that will be discussed below [92–94]),
the quota of DM in the universe is about 26 %, compared to 69 % of dark energy
and only 5 % of ordinary baryonic matter. While it is nowadays widely believed
that DM exists, there is still no precise answer to the question what it is made
of. The general expectations on the properties of DM are the following: It should
be massive and non-relativistic, electrically and possibly colour neutral as well as
stable or very long-lived, with a longer lifetime than the age of the universe. None
of the elementary SM particles satisfies all of these criteria. Therefore, the DM
problem is mostly addressed by various BSM physics models, even though there
are also some attempts to explain dark matter without extending the SM, such as
hexaquarks or primordial black holes [95]. A more unconventional and controversial
proposal to explain the observed phenomena without dark matter, known as Modified
Newtonian dynamics (MOND) [96–102], relies on a modification of the gravitational
acceleration [103]. These alternative options are beyond the scope of this work and
shall not be discussed any further. Instead, an extension of the SM with new particles,
including DM, will be studied in chapters 3 and 4.

— Cosmological constant: Einstein originally introduced the cosmological constant Λ
into the field equation of General Relativity in order to obtain a static universe [104],
which is what he later called his “greatest blunder”. Since the universe was found
to be expanding, it became unnecessary at first sight, but setting it to zero would
be inconsistent with the later observation that the expansion is accelerating. The
cosmological constant is therefore positive and can be related to the total energy
density of the vacuum ρΛ, which has a measured value given in Planck units by [25,
105]

ρΛ = (1.35± 0.15)× 10−123 . (1.3.1)

In contrast, the theory prediction in the SM includes different loop and effective
scalar potential contributions, which exceed the experimental value by 60 to 120
orders of magnitude. The vacuum energy/cosmological constant problem is this
drastic disagreement, which raises the question how theory and observation can be
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reconciled.
— Baryogenesis: The proportion of antimatter compared to matter in the universe is

significantly smaller, in other words, there is an important matter-antimatter asym-
metry [106–108]. This asymmetry can be explained by a process called baryogenesis,
that occurred in the early universe, in which the asymmetry is dynamically generated
from an initially symmetric state. The conditions for baryogenesis to take place were
established by Sakharov [109], which are
1. baryon number (B) violation,
2. C and CP violation and
3. a thermal non-equilibrium.

The standard models in particle physics and cosmology (SM and ΛCDM) are a
priori compatible with all of these conditions [47, 110–118]: Anomalous B violation
happens through so-called sphaleron processes, which are efficient at temperatures
T & 130 GeV, both C and CP are violated in weak interactions, and the departure
from the thermal equilibrium results from the expansion of the universe. However,
the amount of CP violation caused by the complex phase in the CKM matrix
is not sufficient to explain the observed asymmetry, and there is no other source
of CP violation in the SM, so that new physics is needed to successfully explain
baryogenesis. Also the deviation from thermal equilibrium is insufficient, as pointed
out in ref. [106].

— Neutrino masses: The observation of oscillations between the neutrino flavours
implies that the neutrinos must have masses, which are however experimentally
found to be extremely small [119–131]. In fact there are currently only upper limits,
the most recent value reported by KATRIN being 1.1 eV [132]. However, the origin
of these masses is not explained by the SM. It is not clear, whether they result from
Majorana or Dirac mass terms, and if there are right-handed neutrinos, which are
necessary in some models explaining the neutrino masses.

— Muon anomalous magnetic moment: The magnetic moment of the muon is
typically written as

~µµ = gµ

(
q

2mµ

)
~s , with gµ = 2(1 + aµ) , (1.3.2)

where the anomalous contribution is parameterised via aµ, i.e. the tree-level predic-
tion is given by gµ = 2. Here q and mµ are the charge and mass of the muon and
~s is the spin vector. In ref. [26], it was found that the SM prediction of the muon
anomalous magnetic moment deviates from the combined result of measurements by
the BNL E821 experiment in 2006 [133] and the more recent value measured in 2021
by the Fermilab g − 2 experiment [26] by 4.2 standard deviations, which confirms
and reinforces the tension already reported in 2006. This is clearly an exciting result
and potentially a manifestation of new physics.

— Flavour anomalies: Other tensions have also been identified in B-hadron de-
cays [134–153], where the results indicate that lepton flavour universality (LFU)
could be violated. LFU means that the coupling strength of the electroweak gauge
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bosons is identical among the three lepton generations and is an approximate symme-
try that is only broken by the different Yukawa couplings of the leptons. Deviations
at the level of four standard deviations from SM results were observed in different
observables relating branching fractions of decays with the quark flavour transitions
b → c`ν and b → s`` as well as angular observables. These can be interpreted as
hints for violation of LFU that might be caused by new particles which contribute to
the quark flavour transitions and couple differently to the different lepton flavours.

— The Hierarchy Problem: The Planck scale MP ∼ 1019 GeV, at which gravity
becomes important, is about 17 orders of magnitude higher than the electroweak
scale, which is of the order of 102 GeV, the scale at which electroweak symmetry
breaking occurs [154, 155]. The hierarchy between these scales becomes relevant
when corrections to the Higgs mass are calculated, which are quadratically divergent.
Assuming that the theory is valid up to some cutoff scale Λ, the corrections to
the squared Higgs mass δm2

h are quadratically sensitive to this scale [156–159].
Consequently, if the cutoff scale is fixed to the Planck scale, this correction is of the
order δm2

h ∼ (1019 GeV)2. The physical mass of the Higgs boson is however found
at the electroweak scale at mh ≈ 125 GeV, which is then again about 17 orders of
magnitude smaller than the loop correction. Therefore, there must be a very precise
cancellation between two parameters, the bare mass parameter and the corrections,
in order to obtain the comparatively tiny Higgs mass. This is called a fine-tuning
problem [155], since such a precise cancellation (tuning) seems highly unnatural. It
is related to the question, why the Higgs boson has such a small mass compared to
MP , which is referred to as the hierarchy problem. More generally, it goes back to
the sensitivity to the Higgs mass to new physical scales, as for example the mass
of a new particle. For this reason, one can hope that new physics will be found
at a significantly lower scale, justifying a correspondingly lower cutoff Λ, in which
case the problem would be less dramatic. In any case, it can be debated to what
extent there is really a problem: The SM is a renormalisable theory, so the quadratic
divergence will not show up in physical quantities, and the lack of naturalness could
be considered as a rather philosophical issue, but does not represent a profound
problem of the theory [160].

— The strong CP problem: The SU(3)C gauge symmetry allows for an additional
term that is given by [29,161–163]

LQCD = θ
g2
s

32π2G
a
µνG̃

a,µν , with G̃a,µν = 1
2ε

µνρσGaρσ . (1.3.3)

This term is a surface term, i.e. a total space-time derivative, and therefore does not
have any consequences on the classical equations of motion. For this reason, it has
been omitted so far, but it is important in a quantum theory. Furthermore, it has
the property that it violates CP . The term in eq. (1.3.3) is not the only term that
has been omitted: the chiral transformations U qL/R of the quarks q = u, d lead to an
anomaly term (i.e. it results from the transformation of the path integral measure)
of the same form, with θ replaced by arg(detMq). Here, Mq is the combined mass
matrix of the up- and down-type quarks. The physical parameter is therefore not θ,
but

θ̃ = θ + arg(detMq) . (1.3.4)
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As a result of the additional terms, the neutron acquires an electric dipole moment
(EDM) given by

dn '
(
10−16 × θ̃

)
e× cm , (1.3.5)

which is experimentally bound from above by dn < 10−26 e×cm, so that the physical
parameter in eq. (1.3.4) must obey θ̃ < 10−10.
Naturally, one would expect θ̃ to be an order one parameter, just as for the two
contributions θ and arg(detMq). However, according to the experiment the two
contributions should be very close to cancelling each other, i.e. there should be a
fine-tuning between the two independent values. There is in principle no problem
with θ̃ being small, but it is a serious issue that the SM does not give any explanation
of why it should be so small. This would not be a matter of concern, if CP were a
symmetry of the theory, but since it is known to be violated in the weak interaction,
it cannot just be imposed in QCD.

— Fermion mass matrices: The masses of SM particles have very different values
in the range from about 5× 10−4 GeV (electron) to roughly 170 GeV (top quark),
with a somewhat arbitrary hierarchy between the masses, and the CKM matrix
looks nearly diagonal, i.e. its off-diagonal elements are comparatively small. Can
this pattern be explained?

— Charge quantisation: Why are all the observed electric charges integer multiples
of 1

3e, although the U(1)Y charges could in principle take arbitrary values?
— Number of fermion families: Is there a reason why quarks and leptons appear

in three families?
— Gauge coupling unification: The gauge couplings g, g′ and gs have very different

values at low energies. Is there a way to unify them?

1.4 BSM physics candidates

This section will show two possible ways to extend the SM. First, a very simple
modification of the SM will be considered in some detail, which is the introduction of vector-
like fermions in two different representations. The second example given in this section
is Supersymmetry (SUSY), and in particular the case of the Minimal Supersymmetric
Standard Model (MSSM) [164–167], which is a much more extensive extension of the
SM. A thorough introduction into supersymmetric theories including complete derivations
or an in-depth introduction into the superfield notation or the possible SUSY breaking
mechanisms is definitely far beyond the scope of this thesis. Therefore, this section will
only give a very brief explanation of SUSY and sketch the most important features of the
MSSM in the shortest possible manner.

1.4.1 Vector-like fermions

The electroweak interaction is described within the Standard Model as a chiral gauge
theory, i.e. the left- and right-handed parts of the SM fermion fields transform differently
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under SU(2)L × U(1)Y gauge transformations. Extending the Standard Model with addi-
tional fermion fields, which transform non-trivially under the SM gauge group is possible,
but the way in which they can be added is governed by experimental constraints.

The embedding of a fourth generation of chiral fermions into the minimal 4 Standard
Model has been excluded via Higgs measurements, since the extra fermions have substantial
impact on the Higgs production and decay processes [173–177]. The issue with a fourth
chiral family of fermions is that their masses would arise solely from the Higgs Yukawa
couplings, since a Dirac mass term would violate gauge invariance. On the other hand,
they should have high masses to justify that they were not detected directly until now,
and consequently come with large Yukawa couplings. In this way, they strongly affect the
Higgs production and decay processes through their presence in loop diagrams.

Alternatively, the Standard Model could be supplemented with fermion fields which
transform identically in their left- and right-handed parts. In this way, a Dirac mass term
is compatible with the gauge symmetry and can contribute to the fermion masses. In
particular, it may provide arbitrarily high fermion masses independently of the Yukawa
couplings to the Higgs boson. This circumstance gives rise to an important difference
between vector-like and chiral fermions, as pointed out in refs. [173, 174], which is the
following:
Increasing the mass of the vector-like fermions via the Dirac mass parameter leads to
decoupling, i.e. predictions for observables in which the vector-like fermions are involved
via loops tend to be in better agreement with the Standard Model. This means that the
experimental bounds on vector-like fermions become weaker, provided that the Standard
Model predictions of the relevant observables are themselves consistent with experimental
data. Additional chiral fermions, on the contrary, do not benefit from such a decoupling,
because the Yukawa couplings inevitably scale with the fermion masses. For this reason,
they cannot be kept alive by simply raising their mass, as long as direct detection fails.

This subsection gives an introduction to vector-like leptons (VLLs) based on refs. [173,
174], by reviewing the theoretical aspects of two different simple extensions of the Standard
Model. These models are referred to as the singlet VLL and doublet VLL models, according
to the different representations under which the vector-like leptons transform under the
electroweak gauge group. It will be of particular interest in section 5.5, where the scenario
of a long-lived VLL is investigated. Other ways to realise vector-like leptons exist, and
vector-like fermions can in addition be strongly interacting, in which case they are vector-
like quarks, but these possibilities are not discussed in this section. Note that vector-like
fermions also arise naturally in various well-motivated, more sophisticated BSM physics
models. Examples are Little Higgs models [178–180], composite Higgs models [181, 182]
and Quiver theories [183,184].

Within this subsection, the relevant Lagrangian pieces are exclusively written in terms
of two-component left-handed spinorial fields τ , τ , τ ’, τ ′, ν ′, ν ′. The decomposition of the
corresponding four-component Dirac spinors in terms of the two-component fields is given

4. A fourth chiral fermion generation could still be allowed in models with an extended scalar sector,
as considered e.g. in refs. [168–172]. This is however not the subject of this subsection, which focuses on
adding vector-like fermions without any further modifications of the Standard Model.
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by

Ψτ =
(
τ
τ †

)
, Ψτ ′ =

(
τ ′

τ ′†

)
, Ψν′ =

(
ν ′

ν ′†

)
. (1.4.1)

These fields describe the SM tau lepton and the new vector-like tau-lepton and Dirac
neutrino. The latter is part of the doublet VLL model, but not the singlet VLL model.
Note that the two-component spinors τ , τ , τ ’, τ ′, ν ′, ν ′ are all left-handed, i.e. Hermitian
conjugation is needed to obtain the right-handed parts of the Dirac spinors. A basic
introduction to the two-component spinor notation is given in appendix A. Some elements
of the derivations related to the mixing between the SM leptons and the vector-like leptons
as well as the different interaction terms are given in appendix B with the purpose of
illustrating the construction of the model, without however playing the role of a complete
derivation.

1.4.1.1 Singlet vector-like lepton model

The singlet VLL model contains, in addition to all the SM particles, one vector-like
lepton associated with two left-handed spinors: τ ′ transforms under the (1,1,−1) represen-
tation of the SM gauge group and τ ′ under the (1,1,+1) representation. It is obvious that
with these representations, the left-handed part τ ′ of the VLL and its right-handed part
τ ′† have the same quantum numbers and hence transform in the same way. Recall that
fields associated with the SM third-generation leptons transforms under the (1,2,−1/2)
representation for L = (ν, τ) and (1,1,+1) for τ , and likewise for the first two lepton
generations, and so the new vector-like lepton carries the same electric charge as the SM
leptons.

Lepton masses and mixing

For this choice of particle content and representations, the possible Lagrangian terms
consistent with the gauge symmetry, which give rise to mass and mixing terms of the SM
lepton τ and the vector-like lepton τ ′, are the following:

L ⊃ −yτHLτ −mτ ′τ ′τ ′ − εH·Lτ ′ + h.c. . (1.4.2)

Here it is assumed that there is only mixing with the third generation SM lepton, which is
a deliberate choice; it could instead or in addition occur with the leptons of the first two
generations. The first term is the usual Yukawa coupling of the tau lepton that involves
the Higgs doublet H and lepton doublet L = (ν, τ) with a coupling constant yτ and is
also present in the Standard Model (c.f. eq. (1.1.42)). The second term, together with its
Hermitian conjugate, form a Dirac mass term of the vector-like lepton with mass parameter
mτ ′ . The third term leads to mixing between the tau lepton and the vector-like lepton to
the amount specified by the parameter ε, which will assumed to be small.

Electroweak symmetry breaking is responsible for both the SM τ mass term and
the mass mixing term, which arise from the vacuum expectation value v in the second
component of the Higgs doublet field H. This results in a non-diagonal mass matrix:

L ⊃ −
(
τ τ ′

)
M
(
τ
τ ′

)
+ h.c. with M =

(
yτv√

2
εv√

2
0 mτ ′

)
. (1.4.3)
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A diagonal mass matrix is then obtained using two unitary matrices L and R via m =
diag(Mτ ,Mτ ′) = LTMR, which corresponds to a change of the basis of fields(

τ
τ ′

)
= L

(
τ̃
τ̃ ′

)
,

(
τ
τ ′

)
= R

(
τ̃

τ̃
′

)
, (1.4.4)

where the fields carrying an extra tilde symbol correspond to the mass eigenstate basis.
The derivation of the matrices L and R in the approximation of small mixing (ε� 1) is
sketched in appendix B.1. They take the form

L =
(

1 −αL
αL 1

)
, R =

(
1 −αR
αR 1

)
, (1.4.5)

with
αL = −

√
2εmτ ′v

2m2
τ ′ − v2y2

τ

, αR = − εv2yτ
2m2

τ ′ − v2y2
τ

. (1.4.6)

Neglecting O(ε2) terms, the diagonalised mass matrix is just

m =
(
yτv√

2 0
0 mτ ′

)
, (1.4.7)

so the tree-level masses are Mτ = yτv√
2 and Mτ ′ = mτ ′ . For the sake of readability, the

interaction Lagrangian, which will be presented in the following, will be written in the
mass eigenbasis, but without the additional tilde symbol. In each case, it will be indicated
how the expressions are obtained from the Lagrangian in the interaction basis.

Interactions

The interaction terms of the vector-like leptons with the electroweak gauge bosons in
the zero mixing case (ε = 0) follow entirely from the gauge-covariant derivative, the form
of which depends on the chosen representations. The individual gauge interaction terms
of τ ′ and τ ′ are given in appendix B.2.2 and sum up to

Lτ ′
int ⊃ −

gs2
W

cW
Zµ(τ ′†σµτ ′ − τ ′†σµτ ′) + eAµ(τ ′†σµτ ′ − τ ′†σµτ ′) (1.4.8)

with σµ = (12×2,−σi), where σi are the Pauli matrices. Note that in contrast to refs. [173,
174], the sign convention of the metric tensor used in this thesis is (+,−,−,−). These
interactions are also present when the mixing parameter ε is non-zero, but the vector-like
lepton acquires additional interaction terms, which emerge from the interaction terms of
the SM lepton fields τ and τ in the interaction basis, given in appendix B.2.1, but also
their Higgs Yukawa coupling terms contained in eq. (1.4.2), once the mixing is switched
on (i.e. ε 6= 0). These terms, together with the mass mixing term of eq. (1.4.2) are given
in the interaction basis by

Lτ,τ
′

int ⊃ −
g√
2
W+
µ ν
†σµτ − g√

2
W−µ τ

†σµν + eAµτ
†σµτ − g

cW

(
s2
W −

1
2

)
Zµτ

†σµτ

−
(
eAµ − g

s2
W

cW
Zµ

)
τ †σµτ

− h√
2

(yτττ + εττ ′ + h.c.) .

(1.4.9)
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Taking all terms of eqs. (1.4.8) and (1.4.8) and going to the mass basis via the replacements

τ → τ − αLτ ′ , τ ′ → τ ′ + αLτ ,

τ → τ − αRτ ′ , τ ′ → τ ′ + αRτ ,
(1.4.10)

one obtains at O(ε), and under the assumption that yτv � mτ ′ , the following mixed
interaction terms of the SM and vector-like lepton fields [173]:

Lτ,τ
′

int,ε ⊃ − ε
MW

Mτ ′

[
W+
µ (ν†σµτ ′) +W−µ (τ ′†σµν)

]
+ ε

MZ√
2Mτ ′

Zµ
(
τ †σµτ ′ + τ ′†σµτ

)
+
(
ε√
2
hττ ′ + h.c.

)
.

(1.4.11)

Among the above interaction terms, the lepton flavour conserving interactions are the most
important ones for the VLL production at proton colliders, with the prevailing production
mode being

pp→ τ ′+τ ′− . (1.4.12)

Mixed production modes involving both SM and vector-like leptons are in principle possible
with the flavour-changing interactions, but suppressed by the small mixing parameter ε.
The decay modes of the vector-like lepton are

τ ′ →Wν , τ ′ → Zτ , τ ′ → hτ , (1.4.13)

which are induced by the non-zero mixing.

1.4.1.2 Doublet vector-like lepton model

The doublet VLL model extends the SM particle content with two left-handed fermion
doublets under SU(2)L:

L′ =
(
ν ′

τ ′

)
, L

′ =
(
τ ′

ν ′

)
. (1.4.14)

L′ transforms under the (1,2,−1/2) representation and L′ under the (1,2,+1/2) represen-
tations.

Lepton masses and mixing

Here, the possible mass and mixing terms, supposing again mixing with the third
generation of SM leptons, originate from the terms

L ⊃ −mτ ′L′L
′ − εH·L′τ − yτH·Lτ + h.c. , (1.4.15)

and correspond to

L ⊃ −
(
τ τ ′

)
M
(
τ
τ ′

)
with M =

(yτv√
2 0
εv√

2 mτ ′

)
. (1.4.16)
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The similarity with the mass matrix in the singlet case is obvious, and the procedure to
diagonalise it is identical. The same matrices are obtained, but L and R are interchanged.
One obtains, by again neglecting O(ε2) terms, the tree-level masses

Mτ = yτv√
2

and Mτ ′ = Mν′ = mτ ′ , (1.4.17)

so the electrically charged and neutral VLLs have identical mass. Including 1-loop correc-
tions would generate a small mass splitting, which can safely be neglected for the purposes
in this work.

Interactions

The derivation of the interaction terms of the VLLs and third-generation SM leptons
is carried out along the same lines as in the singlet VLL model, with some differences due
to the different representations and different number of fermion fields. In the absence of
mixing (or in the interaction basis), the gauge interactions read

Lτ
′,ν′

int ⊃ −
g√
2
W+
µ

(
ν ′†σµτ

′ + τ ′†σµν ′
)
− g√

2
W−µ

(
τ ′†σµν

′ + ν ′†σµτ ′
)

− eAµ
(
τ ′†σµτ ′ − τ ′†σµτ ′

)
+ g

cW

(
s2
W −

1
2

)
Zµ
(
τ ′†σµτ ′ − τ ′†σµτ ′

)
+ g

2cW
Zµ
(
ν ′†σµν

′ − ν ′†σµν ′
)
,

(1.4.18)

which are composed from the contributions listed in appendix B.2.3. As before, to obtain
the mixed interaction terms including the SM leptons and the VLLs in the non-zero mixing
case, these terms are combined with the gauge interactions of the SM third generation
leptons and the Lagrangian in eq. (1.4.15), and the change to the mass basis gives the
following O(ε) terms [173]:

Lτ,τ
′,ν′

int,ε ⊃ ε
MW

Mτ ′

[
W+
µ (τ †σµν ′) +W−µ (ν ′†σµτ)

]
+ ε

MZ√
2Mτ ′

Zµ
(
τ †σµτ ′ + τ ′†σµτ

)
+
(
ε√
2
hτ ′τ + c.c.

)
.

(1.4.19)

Here, the dominant production modes for the VLLs at proton colliders, induced by the
given interaction terms, are

pp→ τ ′+τ ′− , pp→ ν ′ν ′ , pp→ ν ′τ ′+ , pp→ ν ′τ ′− , (1.4.20)

where the mixed production modes are again neglected, and the VLL decay modes are

τ ′ → Zτ , τ ′ → hτ , τ ′ →Wτ , (1.4.21)

which also go back to the non-zero mixing.
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1.4.2 Supersymmetry and the Minimal Supersymmetric Standard Model

Supersymmetry (SUSY) is the symmetry of a theory under certain transformations,
which relate fermionic and bosonic degrees of freedom. This subsection will give a very
short overview about the most important features and elements in the construction of
supersymmetric theories, and in particular the Minimal Supersymmetric Standard Model
(MSSM), using mainly ref. [185], but also ref. [186]. The latter is a far more detailed
pedagogical introduction to SUSY, which is recommended for further reading.

1.4.2.1 Supersymmetry transformations and supersymmetric Lagrangians

Supersymmetry circumvents a no-go theorem found by Coleman and Mandula [187],
which states that it is not possible to build a consistent quantum field theory by non-
trivially combining internal symmetries and space-time symmetries using Lie-algebras, i.e.
the commutator of their generators must be zero. A way to combine these different types of
symmetry has been found by Haag, Lopuszanski and Sohnius [188], which consists in using
instead a graded Lie algebra that includes fermionic generators satisfying anti-commutation
relations. By introducing the fermionic two-component generator Q (supercharge) and its
Hermitian conjugate Q†, the Poincaré algebra can be extended in the following way

[Mµν ,Mρσ] = i(Mµσgνρ +Mνρgµσ −Mµρgνσ −Mνσgµρ) ,
[Pµ, P ν ] = 0 ,

[Mµν , P σ] = i(Pµgνσ − P νgµσ) ,

{Qα, Q†β̇} = 2Pµσµαβ̇ ,

{Qα, Qβ} = 0 ,
[Qα,Mµν ] = (σµν) β

α Qβ ,

[Qα, Pµ] = 0 .

(1.4.22)

This corresponds to the most basic case, that is referred to as N = 1 Supersymmetry, since
there is only one supercharge Q together with its Hermitian conjugate Q†. The fermionic
generators act on bosonic and fermionic states as

Q |Boson〉 = |Fermion〉 and Q |Fermion〉 = |Boson〉 . (1.4.23)

The MSSM incorporates N = 1 SUSY and involves at most spin-1 fields, so that the
only relevant SUSY representations are chiral and gauge supermultiplets, which have the
following physical field content:

— chiral supermultiplet: one complex scalar field and one two-component fermion field ,
— vector supermultiplet: one two-component fermion field and one gauge boson field .

For a precise matching between the bosonic and fermionic on-shell and off-shell degrees
of freedom, they further contain non-propagating auxiliary fields, which are a complex
scalar field F in the chiral supermultiplet and real scalar field D in the vector supermul-
tiplet. These multiplets can be combined in a chiral superfield Φ or vector superfield V
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respectively, the form of which will be given below. There can also be anti-chiral super-
multiplets/superfields, as defined below, but they will not be considered separately here,
since they can be traded for a chiral one.

A useful concept in the description of theories with N = 1 supersymmetry is the
superspace formalism. The superspace is an extension of the usual four-dimensional space-
time with coordinates xµ , that includes additional two-component spinor coordinates θα
and θ†α̇. An infinitesimal SUSY transformation is then interpreted as a translation in
superspace of the form

(x, θ, θ†)→ (xµ + iθσµε†, θ + ε, θ† + ε†) , (1.4.24)

where the transformation parameter ε is itself a two-component spinor object with anti-
commuting components. In order to understand how this leads to SUSY transformations,
the expressions for the chiral and vector superfields will be needed. The general expression
for a superfield is an expansion in the fermionic coordinates θ and θ†, which has the form

F (x, θ, θ†) =f(x) + θψ(x) + θ†χ†(x) + θθM(x) + θ†θ†N(x)
+ θσµθ†vµ(x) + θθθ†λ†(x) + θ†θ†θξ(x) + θθθ†θ†D(x)

(1.4.25)

and is an exact expansion, since the components of the spinors θ and θ† are anti-commuting,
i.e. products of the same components vanish. Note that the products of two-spinors have
to be understood as a contraction with the anti-symmetric epsilon symbol, as explained
in appendix A. For instance, θθ = θαθα = εαβθβθα = 2θ2θ1 is a product of different
spinor components and is therefore non-vanishing. From the generic superfield F (x, θ, θ†),
the (anti-)chiral and vector superfields can be obtained with the superspace covariant
derivatives 5

Dα = ∂

∂θα
+ iσµαα̇θ

†α̇∂µ , D†α̇ = − ∂

∂θ†α̇
− iθασµαα̇∂µ . (1.4.26)

The expansion F (x, θ, θ†) can be identified with a chiral, anti-chiral or vector superfield
(i.e. F = Φ or F = Φ† or F = V ), if it fulfills one of the following conditions:

chiral superfield: D†αΦ = 0 ,
anti-chiral superfield: Dα̇Φ† = 0 ,

vector superfield: V = V † .

(1.4.27)

In the case of the chiral superfield, one obtains the explicit expression

Φ(y, θ) = φ(y) +
√

2θψ(y) + θθF (y) , (1.4.28)

which contains a complex scalar field φ, a two-component fermion field ψ and the auxiliary
field F , as announced above. Applying the superspace transformation of eq. (1.4.24), one
obtains the SUSY transformation of the individual fields:

δεφ(x) =
√

2εψ(x) ,
δεψ(x) = i

√
2σµε†∂µφ(x) +

√
2εF (x) ,

δεF (x) = i
√

2ε†σµ∂µψ(x) .
(1.4.29)

5. Details about differentiation and integration with anti-commuting numbers, as for the components
of θ and θ†, can be found in ref. [186].
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The Lagrangian of an N = 1 supersymmetric theory that involves several chiral
supermultiplets Φi is given in its most general form by

L =
∫

d4θK(Φ,Φ†) +
(∫

d2θW (Φ) + h.c.
)
. (1.4.30)

Here, K(Φ,Φ†) is the Kähler potential, a real function of the chiral superfields with mass
dimension [K] ≤ 2 in renormalisable theories and due to gauge invariance typically just
given by K = Φ†iΦi. The function W (Φ) is a holomorphic function of the chiral superfields
and is referred to as the superpotential. The compact notation of the integral measure
corresponds to d4θ = d2θd2θ†. With the above form of K and after integrating out the
auxiliary fields, the Lagrangian is of the form

L = ∂µφ
∗
i ∂

µφi + iψ†iσ
µ∂µψi −

∂2W

∂φi∂φj
ψiψj −

∑
i

∣∣∣∣∂W∂φi
∣∣∣∣2 , (1.4.31)

with W being evaluated at φi instead of Φi.
In the next step, gauge interactions will be included. The form of a vector superfield

in Wess-Zumino gauge is

V = −θσµθ†Vµ(x) + iθθθ†λ†(x)− iθ†θ†θλ(x) + 1
2θθθ

†θ†D(x) (1.4.32)

and contains as physical degrees of freedom the gauge field Vµ(x) and the gauginos λ(x) and
λ†(x). Both the chiral and the vector superfields transform under gauge transformations
with transformation parameters, which depend on the chiral superfield y = xµ + iθσµθ†

(instead of just xµ for gauge transformations of ordinary fields). Under non-abelian gauge
transformations, they transform as

Φ→ e−gT
aΛaΦ , eT

aV a → eT
aΛa†

eT
aV aeT

aΛa . (1.4.33)

The gauge interactions are then included into the previous Lagrangian via the introduction
of the gauge superfields into the Kähler potential and the addition of kinetic terms involving
the chiral superfields

W a
α = −1

4D
†α̇D†α̇DαV

a

= −iλaα(y) + θβ

[
δβαD

a(y)− i

2(σµσν)βαF aµν(y)
]

+ θθσµαα̇λ
a†α̇(y) .

(1.4.34)

The modified Lagrangian reads

L =
∫

d4θΦ†ie
gTaV aΦi +

∫
d2θ

(1
4W

a
αW

aα + h.c.
)

+
∫

d2θ (W (Φ) + h.c.) . (1.4.35)

1.4.2.2 Features of the Minimal Supersymmetric Standard Model

The MSSM is a supersymmetric theory that is constructed based on the field content
that is already present in the SM. These fields are however not sufficient. In fact, the SM
does not contain any particles, which belong to the same supermultiplet. This implies that
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the missing superpartner fields must be introduced as new particles. The matter content
of the model is embedded in the chiral superfields

Q , U , D , L , E , Hd , Hu .

With the exception of the Higgs doublets Hd andHu they are in one-to-one correspondence
with the SM fermion fields listed in table 1.1, i.e. for both left- and right-handed SM
fermion fields, corresponding complex scalar superpartners are introduced. These are
called sfermions, or more specifically squarks and sleptons. The presence of two Higgs
doublets can be justified with requirement of the superpotential to be holomorphic, which
is incompatible with the term H̃ = iσ2H∗ that was introduced to give a mass to the up-
type quarks, c.f. eq. (1.1.42). Furthermore, the MSSM contains fermionic superpartners for
the gauge bosons, which are referred to as gauginos. One should expect these additional
particles, which are commonly called sparticles, to have the same masses as their SM
superpartners due to the vanishing commutator of Qα and Pµ in eq. (1.4.22), since the
square of the mass is the eigenvalue to the operator P 2 = PµPµ. If this were the case, the
superpartners to some of the SM fermions would have been found long ago. Therefore, if
Supersymmetry is to be taken seriously, it must be broken, as will be discussed below.
The superpotential of these fields is given by

W =yiju QiHuU
j† + yijd Q

iHdD
j† + yije L

iHdE
j† + µHuHd

+ λijk1 QiLjDk† + λijk2 LiLjEk† + λi3L
iHu + λijk4 Di†Dj†Uk† .

(1.4.36)

The λ-terms in the second line of the equation are problematic since they violate baryon
and lepton number, which in the SM are accidental symmetries. If these terms are present,
the λ-coefficients must be very small in order for the model to be phenomenologically
viable. It is possible to get rid of these terms by introducing R-parity, i.e. a sign is assigned
to each field, depending on the baryon and lepton number and the spin:

PR = (−1)3(B−L)+2s . (1.4.37)

It turns out that the R-parity is +1 for all SM fields and −1 for their superpartners. R-
parity is then required to be multiplicatively conserved, i.e. the product of R-parities of all
the fields participating in an interaction vertex must be +1. This additional symmetry, if it
is realised, eliminates the problematic terms in the superpotential. R-parity conservation
has the following implications:

1. The lightest supersymmetric particle (LSP) is stable, which makes it a good DM
candidate, if it is electrically neutral and a colour singlet.

2. All other supersymmetric particles are unstable.
3. Colliders can only produce even numbers of sparticles, as the initial state has
PR = +1. According to the previous points, the sparticles should decay, except for the
LSP. If it is the DM candidate, it escapes undetected and carries away momentum.

Supersymmetry relates the interactions of particles belonging to the same supermul-
tiplet. This gives rise to an important feature of the MSSM, which is one of the main
motivations for SUSY: As explained in section 1.3, the Higgs boson mass receives loop
corrections, which generate quadratic divergences. These result from fermion loops in
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Higgs self-energy diagrams. Supersymmetry relates the couplings of the SM fermions to
the Higgs boson to the ones of their superpartners, in such a way that additional diagrams
from the scalar loops lead to an exact cancellation of the quadratic divergence. This
makes SUSY a particularly elegant solution to the hierarchy problem. However, it has
been argued before that SUSY must be broken in order to explain the non-observation of
sparticles at equal masses as those of the SM particles. There are different mechanisms to
explain SUSY breaking, none of which shall be discussed here. However, in order for SUSY
to remain a good solution to the hierarchy problem, it should be broken softly, which
means that the SUSY breaking terms should have couplings of positive mass dimension in
order to avoid reintroducing quadratic divergences into loop corrections to scalar masses.



Chapter 2

Aspects of collider physics and recast-
ing

A particle physics model is only of interest as long as it does not contradict the available
experimental data. Collider experiments, and nowadays in particular those at the Large
Hadron Collider (LHC), constitute the main source of experimental data that is used to
test the validity of the SM or search for signatures of new physics, which are expected in
different BSM models. The purpose of this chapter is to recapitulate briefly in section 2.1
the way in which relevant information is collected from the collision activity at the LHC
experiments and processed in order to draw conclusions on the possible signal hypotheses,
i.e. place limits on the parameter space of the models. Furthermore, it will explain in
section 2.2 the concept of recasting, an approach to exploit the results of existing physics
analyses for the study of a larger number of physics scenarios in addition to the one
that was originally targeted. First, it will explain the purpose of recasting and different
approaches to realise it in praxis. Also some technical aspects relevant to the recasting
process will be addressed and the chain of tools, which typically comes into play, will
be discussed. The contents of this chapter are mainly relevant for chapter 5, which deals
with the recasting of long-lived particle searches at the LHC. In addition to the references
which are given explicitly, this chapter uses ideas and formulæ from refs. [189–193].

2.1 Experiments at the Large Hadron Collider

The Large Hadron Collider is presently the biggest existing collider on earth with a
circumference of about 26.7 km [194]. It belongs to the accelerator complex of the European
Organization for Nuclear Research (CERN), that is situated in Geneva. In the past it had
two data taking periods, Run 1 from 2010 to 2012 and Run 2 from 2015 to 2018, and at
the time of this writing it is in preparation for Run 3, which is scheduled for the years
2022 to 2024.
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2.1.1 Characteristics of the Large Hadron Collider

As suggested by its name, the LHC generates high energy collisions of hadrons, mostly
protons (pp), but occasionally also heavy ions [195]. Only proton-proton collisions shall be
discussed in the following. The proton beams consist of bunches, which are accelerated in
different stages by other accelerators, before they are injected into the two LHC accelerator
rings, where they circulate in opposite directions. At four different locations (interaction
points), beam crossings lead to collisions of the proton bunches, where the four LHC main
detectors ATLAS, CMS, ALICE and LHCb are installed for the purpose of reconstructing
the final states of the collision events.

The approximately circular shape of the trajectory is generated with 1232 dipole
magnets (other sorts of magnets are used for focalisation and to ensure a high beam
quality), which generate a deflecting Lorentz force acting on the positively charged protons.
This deflection causes energy loss through synchrotron radiation, which is compensated
through periodical acceleration via radio frequency (RF) cavities. The maximum center-
of-mass energy

√
s of the colliding protons is limited primarily by the maximum magnetic

field strength B achievable with the magnets and the bending radius ρ [196]:
√
s ∝ ρB . (2.1.1)

The available center-of-mass energy is obviously an important figure-of-merit of a collider,
since it determines which particles can be produced, so a high energy is desirable for the
search of new heavy particles. During Run 1, the LHC had an energy of 7 and 8 TeV
(energy in one proton-proton collision), which has been further increased to 13 TeV in
Run 2 [197].

Another important characteristic quantity of a particle collider is the (instantaneous)
luminosity L(t), which indicates how many events Nevents for a process with cross section
σevents will occur in a given time [198, 199]. It has been increasing over the data taking
periods of the LHC. The expected number of events in a dataset is obtained from the
integrated luminosity Lint:

Nevents = σeventsLint with Lint =
∫

dtL(t) . (2.1.2)

The proton beams consisted of about 1400 (2500) bunches per beam in Run 1 (Run 2),
with a bunch spacing of about 50 ns (25 ns) [200]. In Run 2, the LHC has reached a peak
luminosity of 2× 1034 cm−2s−1, which is going to be further increased in the future, in
particular with the high-luminosity upgrade of the LHC (HL-LHC). A high luminosity is
important to allow for the observation of rare processes (with a small cross section).

2.1.2 Collision activity at the main detectors

As previously mentioned, the LHC has four main experiments: ATLAS and CMS are
general purpose experiments, whereas ALICE focuses on heavy-ion physics and LHCb
on B meson physics [198]. Only ATLAS and CMS shall be relevant the following. These
detectors infer information about the final state particles of the pp collisions from their
interactions with the various detector components in order to reconstruct the events. Both
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detectors have a cylindrical shape and consist of the following subdetectors (from smaller
to larger radii with respect to the beam line) [201–203]: An inner detector (ID) for the
observation of charged particle tracks, an electromagnetic calorimeter (ECAL) for measur-
ing predominantly the energies of electrons and photons, a hadronic calorimeter (HCAL)
for the energies of both charged and neutral hadrons and a muon detector. Neutrinos
escape the detector without being detected, but carry away momentum. The IDs of both
experiments consist of different parts, e.g. silicon microstrip and pixel trackers as well as
transition radiation trackers in the case of ATLAS [204]. They have the highest resolution
in the innermost regions. With the tracks determined by the ID, vertices can be determined
via suitable reconstruction algorithms, from which the tracks originate. Furthermore, in
both detectors a magnetic field is generated (4 T in CMS and 2 T in ATLAS) to bend the
trajectories of charged particles, which is used for measuring their momenta. Figure 2.1
shows final state particles of a simulated event passing through the ATLAS detector, in
the cross-sectional view.

Figure 2.1: Cross-sectional view on final state particles of a simulated event passing through the
ATLAS detector. The figure has been provided by CERN [205].

The number of collision events at the LHC is of the order 1 billion per second. Given
the storage size required to record one event, which is about 1 MB, it is impossible to
keep all events and to process them. For this reason, triggers need to be used, requiring for
example a certain number of jets with a given transverse momentum. Only events which
pass such a set of trigger requirements will be recorded.

A further complication is pile-up, which is the fact that several events occur in a single
bunch crossing. The average number of pile-up events 〈NPU〉 in bunch crossings at the
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LHC was about 20 in Run 1 and 30 at the beginning of Run 2 [206]. If one is interested
in observing a particular process (hard event), the effect of pile-up is to add mostly soft
hadrons to the final state, resulting from the pp collision events which are unrelated to
the hard event. At the LHC, the number of additional soft hadrons is of the order 100 to
1000, which makes the event reconstruction more involved.

The physics objects used in analyses by ATLAS and CMS, which are reconstructed
using the different subdetectors and algorithms, are the following [207]: As mentioned
above, tracks are reconstructed from hits of charged particles in the ID, as well as vertices,
which correspond to intersecting tracks. Electrons 1 and photons are identified via clusters of
energy deposit in the ECAL and ID tracks in the case of electrons. Muons can be recognised
via tracks in both the ID and the muon detector. Jets result from clustering together
particles with a specific jet algorithm [208] that respects infrared and collinear safety.
Various different algorithms exist, but jet clustering and the matter of infrared/collinear
safety shall not be discussed here. CMS combines calorimeter and tracking information
via a particle flow algorithm, whereas ATLAS used only calorimeter information in the
first instance, but started to make use of particle flow as well [209,210]. Tau leptons have
a short lifetime (c.f. table 5.1), leading to the observation of hadronic τ decays into narrow
jets consisting of charged and neutral pions or kaons, reconstructed using ID, ECAL and
HCAL. If jets contain a B or D hadron, they can be tagged as flavoured jets, i.e. b or c
jets. They can be distinguished from other jets via displaced vertices of the decaying b or
c hadrons, i.e. vertices at a measurable distance from the primary vertex related to the
hard event, where the hadron has a high mass and eventually decays semi-leptonically.
Ideally, the net momentum of all particles should be zero. Therefore, particles which are
not identified lead to an observable missing transverse momentum (c.f. section 2.1.3),
calculated as the negative of the vector sum of all transverse momenta belonging to the
identified objects.

2.1.3 Particle kinematics and observables

Kinematic quantities are important in the description of an event and shall therefore
be reviewed briefly based on ref. [189]. Usually, for the description of a collision event (e.g.
in event records) a coordinate system is used with a z axis that is directed as the beam
axis and with the origin located at the interaction point, where the collision takes place.
In this system, the four-momenta Pµ1 and Pµ2 of the colliding protons are:

Pµ1 =


√
s/2
0
0√
s/2

 , Pµ2 =


√
s/2
0
0

−
√
s/2

 . (2.1.3)

This is however not the momentum of the partons (i.e. quarks and gluons) involved in the
hard event, which instead carry only a fraction x1 and x2 of the protons’ momenta,

pµ1 = x1P
µ
1 , pµ2 = x2P

µ
2 . (2.1.4)

1. Note that the term electron in this context generically refers to electrons and their anti-particles
(positrons). This applies also to other particles, such as muons.
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Here, x1 and x2 are independent, so the z component of the sum p1 + p2 has generally
some arbitrary non-zero value in the laboratory frame. The probability for the partons to
take a momentum fraction x1,2 is described by parton distribution functions [211].

If the momentum of a final state particle pµ = (E, px, py, pz) in the laboratory frame
is boosted into the rest frame of the colliding partons, only the transverse momentum, i.e.
the vectorial and scalar quantities

~pT ≡ (px, py) , pT = |~pT | (2.1.5)

as well as the azimutal angle

φ ≡ arctan
(
px
py

)
(2.1.6)

remain invariant. In contrast, the angle θ between the momentum and the x-y-plane
changes under the boost. Boost invariant quantities are obviously more meaningful, since
the necessary boost to convert to the rest frame is not known. A boost invariant quantity
is the difference of two rapidities ∆y = y2 − y1, with the rapidity for a given particle
momentum pµ being defined as

y = 1
2 ln

(
E + pz
E − pz

)
. (2.1.7)

Using in addition the difference between their azimutal angles ∆φ = φ2 − φ1, another
boost invariant quantity can be defined, the angular separation

∆R =
√

(∆φ)2 + (∆y)2 . (2.1.8)

The rapidity y is a kinematic quantity and is barely used in high energy physics [212].
In contrast, the pseudorapidity η is a very common geometric quantity, which is defined
via the angle θ as

η = ln cot
(
θ

2

)
(2.1.9)

and is therefore not boost invariant. However, it is identical to the rapidity for massless
particles and a good approximation for it, when the mass is low compared to the momentum.
The difference between pseudorapidities is only boost invariant for massless particles. Both
ATLAS and CMS cover the range between ±5, which is nearly the entire θ range. Usually,
the angular separation ∆R in eq. (2.1.8) is also calculated with η rather than y.

To conclude this section, a few standard observables will be listed: As previously
explained, undetected particles are responsible for a missing transverse momentum, defined
via the transverse momenta of the observed particles as

/~pT ≡ −
∑

~pT , (2.1.10)

which is a two-vector. Missing momentum implies that also energy must be missing. The
missing transverse energy (MET) is defined as

/ET ≡ | /~pT | . (2.1.11)
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The invariant mass of a set of objects is obtained from squaring the sum of all four
momenta,

m2
objects =

 ∑
objects i

pµi

2

. (2.1.12)

The transverse energy of a particle is given by

ET ≡
√
m2 + p2

T (2.1.13)

and the transverse mass of two particles is given in terms of their transverse momenta
and energies by

mT =
√

(E1
T + E2

T )2 − (p1
T + p2

T )2 . (2.1.14)

2.2 Recasting: purpose and strategies

Collider searches for specific signatures, which could indicate the presence of new
physics, usually test one or several particular signal hypotheses, i.e. it is assumed that
processes of a selected BSM model contribute a certain number of events to the signal
regions defined in the analysis, in addition to the SM background events. Confronting
the event numbers of the signal regions expected under the signal hypothesis with the
corresponding experimentally observed event numbers, conclusions can be drawn on the
viability of the signal model or a point in its parameter space. By simulating signal processes
and determining the signal efficiencies of the different regions, i.e. the ratio of selected to
generated events, it is possible to draw an upper limit on the cross section of the processes
using appropriate statistical methods. If the relevant quantities for constraining a model
are just the event numbers of signal regions, it should in principle be possible to test in the
same way a different signal hypothesis, i.e. a different model or parameter configuration.
This principle is exploited in the recasting approach, which will be introduced in the
following based on ref. [213], before a few important aspects will be discussed in some
more detail.

2.2.1 The purpose of recasting

Given the immense effort on the experimental side to undertake a physics analysis,
it is highly desirable to get as much benefit as possible from the results, even after the
completion of the analysis. It is not unusual that processes of different BSM models lead to
the same experimental signatures. Therefore it is natural to ask what are the implications
of the search results on other models of interest. Recasting addresses this question in a
systematic way by making the event selection process and the search results of existing
analyses available within a computer program.

There is a number of good reasons to follow this approach. Obviously, using existing
analyses has the advantage that a considerable part of the work necessary to confront
theories with nature has already been accomplished. An analysis is typically designed in
such a way that its event selection criteria lead to a high sensitivity to signals of new
physics with low background contamination. To recast an existing analysis, it is “only”
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necessary to correctly implement the existing event selection process, since all criteria have
already been fixed. Processing experimental data is not necessary, since only the published
search results for the different signal regions are needed, provided that this information is
available. Also the estimates of the contributions from SM background can be re-used, if
available. In this way, an existing analysis can become useful to constrain a whole class of
models instead of just the one(s) considered by the experimental collaboration.

The principle of recasting may seem rather straightforward, but the success of the
approach depends on how it is realised (and realisable) in praxis: For the implementation of
a selected analysis, it is first necessary to understand how the event selection of the original
analysis is performed. In principle, the published article of the analysis should contain all
the indispensable information concerning the event selection. A re-implemented analysis is
supposed to be applicable to Monte-Carlo generated event samples of the presumed signal
process in the model under consideration. These are commonly referred to as Monte-Carlo
truth events, because they are ideal in the sense that the particles and their properties
are perfectly identified and the information about the particle properties is not altered by
detector effects. In reality, the experimental part of the analysis uses imperfect detectors
and reconstruction algorithms, which attempt to reconstruct different objects and their
kinematics based on interactions with detector elements. A perfect reconstruction of all
particles in an event, comparable to the Monte-Carlo truth, is not possible. The detector
effects affect the number of observed events selected in the signal regions and are in general
not negligible. Therefore they should be taken into account in some way in the analysis of
the Monte-Carlo truth events. Different possibilities to do this are discussed in section 2.2.3.
In any case, this is only possible if sufficient information about the performance of detectors
and reconstruction algorithms is available. This kind of information is frequently provided
as supplementary material to the analyses.
Provided that all the information needed for the re-implementation of an analysis is
available, the technical details of the implementation in a computer program need to be
sorted out. In the whole recasting process, a certain number of tasks are not analysis
specific, but are essential parts of the workflow for every analysis. Examples are the
handling of input files (especially event records), methods for book-keeping, statistical
functions to determine exclusion limits and the generation of output files containing the
results of an analysis. Instead of realising every single analysis as a separate program, it is
more sensible to embed them into a framework that takes care of these tasks in a unified
way and ideally provides a large number of functionalities which could be useful in the
implementation of the different analyses. This is convenient not only since the effort in the
implementation of an analysis gets reduced, but also because event samples can possibly
be confronted with more than one different physics analyses simultaneously. The work
presented in chapter 5 makes use of the MadAnalysis 5 [193,193,214–218] framework
that will be introduced in section 2.2.5, where also some other recasting tools shall be
enumerated and briefly commented on.
In order for a re-implemented analysis or a recasting framework to be useful, it should be
public, user-friendly, efficient both in performance and memory consumption and support
commonly used standards for event records. Before using it to constrain a selected model,
its validity must be verified by reproducing published results of the analysis. This aspect
will be discussed in more detail in section 2.2.4. Depending on the complexity of the
analysis, the performance might also play a role, since for achieving a reasonably small
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statistical uncertainty on the theoretical results of the selection efficiencies, it can be
necessary to analyse hundreds of thousands of events. This becomes even more important
when analyses are used for dense parameter scans, where a high number of different event
samples need to be analysed.

Re-interpreting an existing analysis under a different signal hypothesis in order to test
its phenomenological viability has some limitations that one should be aware of. Even
by carefully following the description of the event selection procedure provided for the
analysis under consideration, it may not be possible to implement it in full detail in exactly
the same way as it was performed by the experimental collaboration. For example, some
criteria could depend on the quality of the reconstruction of some particles and therefore
be related to details of the reconstruction algorithms which are not publicly available. The
same is the case for the simulation of the detector response, which can in praxis only be
done in a simplified way compared to the full simulation of the experimental collaboration,
as discussed in section 2.2.3. Therefore, it can in general not be expected that the re-
implementation of an analysis reproduces exactly the same results. Although it might be
possible to check the validity of the re-implementation against the original analysis by
reproducing published results with good agreement, this does still not guarantee that the
re-implementation would agree in equal measure with the original analysis for every other
signal process, especially if the re-implementation relies on model-dependent information.
It is therefore important to cautiously evaluate whether a re-implemented analysis is
applicable to a given signal process and to make sure that the exclusion limits will be
conservative rather than aggressive. The results obtained via recasting can be very useful
to probe the allowed parameter space of various models, but for the before-mentioned
reasons they do not have the same value as a dedicated physics analysis which explicitly
targets a particular signal model and process.

The focus of this section as well as chapter 5 is on the re-implementation of exist-
ing analyses and the re-interpretation of their results for different signal hypotheses. A
somewhat different application of the methods and tools used for recasting is the imple-
mentation of physics analyses, which have not been performed in the past, but could on
the contrary be realised in the future. Instead of constraining a model via the analysis of
simulated event samples of some signal process through comparison of the signal events
with experimentally observed ones, one determines instead hypothetical constraints by as-
suming that there is no signal, i.e. the signal regions are only populated with background
events. In this way, it is possible to determine the reach in parameter space that could
be excluded by the analysis, if the experimental observations are indeed consistent with
the background-only hypothesis. An example of such a prospective study is presented in
section 4.4 for a monojet/multijet+MET search that could be performed at a possible
future 100 TeV collider.

2.2.2 Recasting approaches

In section 2.2.1, a recasting strategy is described, which relies on a complete description
of the event selection procedure in the analysis under consideration, such that it can be
re-implemented in a computer code, and it uses the experimentally observed number of
events in the different signal regions. The re-implementation of the analysis can then be
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used for the analysis of event samples in some user-selected signal model to determine
limits on the cross section of the simulated process via comparison with the observed
number of signal events. These limits can finally be used to constrain the parameter space
of the model.

As explained in refs. [193,216,219], there exists a another, different approach that has
the same purpose but some important differences. It relies on so-called Simplified Model
Spectra, i.e. it uses search results which are provided by the experimental collaborations
in terms of limits on cross sections of processes in simplified models. These models extend
the SM with only a few additional particles and interactions, and are often a simplified
version of a more complete model with a reduced particle content, since the other particles
have been integrated out [220]. In this case, the experimentally determined limits on
the cross sections of the considered processes are also applicable to processes of other
models, if they have the same topologies. Therefore, the recasting process reduces to
the calculation of cross sections times braching ratios (σ × Br) and does not require the
simulation and subsequent analysis of event samples. This has the advantage of being
much faster, but is in turn less general, since it restricts the use of the search results to
signal hypotheses, which involve the same topologies. Furthermore, this principle allows
for an efficient confrontation with a higher number of search results of different analyses
via the calculation of σ×Br for different topologies of the selected signal model, which can
then be compared to upper limits on cross sections of processes with matching topologies,
provided in various different analyses, c.f. ref. [219]. This approach will however not be
further considered in this work.

2.2.3 Detector simulation

It was pointed out in section 2.2.1 that incorporating detector effects into simulated
events is important to allow for a comparison of the numbers of simulated signal events
with the experimentally observed ones. At least in principle, the imperfections of the
detectors and the related algorithms can have impacts on the results of the event selection.
For instance, particles can be misidentified or not reconstructed at all, and measurements
of quantities such as the energy of a particle can differ from the true value due to a finite
resolution.

Naively, one could consider two options to handle detector effects: Either the knowledge
about the detector is used to infer the true event information of the observed reconstructed
events, i.e. one performs an unfolding of the detector effects, so that a direct comparison
with simulated events becomes possible. There is however no guarantee that this leads
to the right results, as the reversion of the detector effects cannot be expected to give a
unique result. For this reason, unfolding is practically not applied for BSM searches. The
safer and easier possibility is to do the comparison between simulated and observed events
on the reconstructed level, i.e. mimic the reconstruction of the simulated events including
the known effects of the detector, which corresponds to a folding.

Simulating the detector response can be done at different levels of complexity, which
should correspond to the accuracy needed for the application in which it is used. The more
sophisticated a detector simulation is, the higher the requirements on the computational
ressources, i.e. the memory and performance of the machine on which the simulation is
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performed, or the longer the computing time. This determines which effects can and should
be taken into account. Even though a unique classification of different approaches does
not exist, a short review of existing approaches, based essentially on refs. [191, 218, 221]
shall be given here, where the contrast between the different levels of complexity should
become apparent.

The most refined simulation toolkit used by the experimental collaboration is Geant
[222], which emulates in high detail the interactions of particles with the different detector
parts. In ref. [223], this approach is referred to as full simulation, where also the different
steps of the simulation are outlined: A very precise modelling of the detector geometry is
used, and the transition of particles (including the effect of the magnetic field) through the
material of both the sensitive and non-sensitive detector parts is simulated. Within the
sensitive parts, i.e. the ones which are indeed useful for measurements, hits are generated,
where different electromagnetic and hadronic interactions including the production of
additional particles is iteratively considered, as long as the energy of the particles exceeds
a certain threshold. This is followed by triggering (online event reconstruction) and offline
event reconstruction for the actual physics analysis.

The Geant approach reproduces the various effects very accurately, but is also very
time-consuming and therefore not particularly suitable for a recasting program, if a very
large number of events need to be analysed. Therefore, the experimental collaborations
of the LHC have also elaborated various simpler fast-simulation techniques [224–228].
These use different simplifications, such as a simplified detector geometry or simplifying
assumptions about the material distribution, or Gaussian smearing of the hit position
in the subdetector for reproducing its finite resolution and hit reconstruction efficiencies,
parameterised in different quantities, e.g. the incident angle of the particle. These simplified
techniques have been validated against the full simulation with Geant and are about
2-3 orders of magnitude faster. Still, they require a high amount of know-how as well as
computational power.

For many phenomenological applications, such sophisticated simulation techniques as
the above-mentioned ones are not necessary and a lower accuracy can be accepted. In
these cases, a simplified but faster and easy-to-use method is preferable. Such a method is
provided by the Delphes package [221,229], which includes the simulation of a magnetic
field in the tracker, the application of user-specified parameterised energy and momentum
resolutions as well as efficiencies, which depend on the particle species, and a simple
modelation of the calorimeters. Tracks of charged particles have a certain probability to be
reconstructed. The calorimeters are divided into cells, i.e. uniform segments in (η, φ), with
a size that can be specified. These segments are identical for both the electromagnetic and
the hadronic calorimeters and the fraction deposited in the ECAL and HCAL cells is fixed,
either via default or user-defined values for each kind of stable particle (or with a sufficiently
long lifetime to traverse the detector). Gaussian smearing is applied to the energy deposit
in the calorimeter cells, independently for the ECAL and HCAL. Delphes also applies
a simple particle-flow algorithm to combine tracking and calorimeter information. In
the object reconstruction, it applies a certain number of approximations, e.g. it neglects
photon conversions in the ECAL. Furthermore, there are different options to reconstruct
jets from different sorts of input, including the use of the FastJet [230] package, and
it has some capabilities to include pile-up effects. However, these techniques are fairly
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simple and considerably faster compared to the full or fast simulation of the experimental
collaborations of the LHC and simple to use.

An even simpler approach is to account for the detector effects only via the application
of smearing of the kinematic variables and reconstruction or tagging efficiencies to the MC
truth objects (in addition to a jet clustering algorithm). This option has been considered
in refs. [191,218] and can be sufficient for many applications.

2.2.4 Validation

The validation of an analysis is an essential part of the re-implementation process. It is
important to ensure that the analysis is correctly implemented in order to generate physi-
cally meaningful results, whereas a wrong implementation could lead to wrong conclusions
about the phenomenological viability of some new physics model or parameter space. It is
therefore crucial to check the correctness of an analysis re-implementation, i.e. validate it,
before advocating its use. This means that it must be able to reproduce with reasonable
agreement results obtained by the experimental collaboration, which can in some cases
be difficult to achieve [213,231]. Usually, (part of) the validation is done simultaneously
with the the process of implementing the analysis, in particular when intermediate results
(e.g. cutflows) are available. In this way, the implications of the different steps in the event
analysis can be directly observed and used as a sort of feedback, which can provide hints
about whether a specific part of the analysis has been implemented correctly. Besides
programming mistakes, this can reveal misunderstandings of the analysis description or
an incomplete simulation of detector effects.

The exact validation procedure to follow depends on the publicly available results
in the published analysis note or the corresponding auxiliary material. Examples are
results of parameter scans, i.e. plots of excluded parameter space, upper limits on cross
sections or selection efficiencies. The provided material might also contain histograms,
e.g. pT distributions of relevant particles after event selection. More precise information
can be provided via tabulated cutflows, i.e. a listing of the event numbers after the
application of the individual selection criteria (cuts), or the efficiencies of these cuts. The
validation procedure consists in reproducing these results with reasonable agreement, where
corresponding event samples for the cases under consideration need to be simulated. A
disagreement can sometimes give a concrete indication about the origin of the discrepancy
in the implementation.

2.2.5 MadAnalysis 5 and other recasting tools

The work presented in chapter 5 concerns the re-implementation of searches for long-
lived particles within the MadAnalysis 5 framework, which will briefly be introduced
here based on ref. [193,218], followed by an enumeration of some other existing recasting
tools, which are more briefly commented on based on the information from refs. [213,232,
233].

MadAnalysis 5 is a software package for the analysis of event records for simulated
events. It can handle events in the Monte-Carlo truth, which may contain only the hard
scattering process or include also parton showering and hadronisation, or reconstructed
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events. For this purpose, it supports a number of different event formats, which are used by
the various existing Monte-Carlo event generators, but also Root [234] files obtained from
Delphes for reconstructed events. Its abilities to analyse events and generate histograms
can also be used directly from the event generator MadGraph5_aMC@NLO [235].
MadAnalysis 5 can be used via a command line interface written in Python, whereas
its core is written in C++. The user can therefore provide instructions for the analy-
sis in a user-friendly way using the command-line interface, or implement analyses in a
more flexible way as C++ code using the expert mode. MadAnalysis 5 has interfaces
to different other codes, which include FastJet for jet clustering and Delphes for
a fast simulation of detector effects and event reconstruction. The analysis is internally
carried out by the SampleAnalyzer library and generates output in its own format,
the SAF format, which is a set of directories and files. MadAnalysis 5 has also some
abilities for the generation of figures and reports provided in the formats HTML and PDF.
Alternatively to the Delphes package for detector simulation and reconstruction, Mad-
Analysis 5 comes with a more lightweight alternative, concerning both the execution
speed and the storage size of output files. It is referred to as Simplified Fast detector sim-
ulation (SFS) [218] and is based on smearing functions and reconstruction efficiencies, as
mentioned in section 2.2.3. A number of existing LHC Run 1 and 2 analyses are available
in the Public Analysis Database (PAD), which can be accessed directly via the command
line interface of MadAnalysis 5 [216].

Like MadAnalysis 5, the tools CheckMATE [236, 237], Rivet [238, 239] and the
GAMBIT module ColliderBit [240, 241] follow a relatively general approach for LHC
searches involving the analysis of simulated event samples, where detector effects are either
simulated with Delphes or in a smearing/efficiencies approach. They all come with a
certain number of BSM analyses by ATLAS and CMS. The tool Contur [242,243] uses
Rivet to eliminate unviable BSM theories with differential measurements corresponding
to SM signatures. SModelS [233,244–246] follows the approach mentioned in section 2.2.2
using Simplified Model Spectrum topologies obtained for BSM models with a Z2 symmetry.
A very similar approach is adopted by the program HiggsBounds [247–251] that determines
exclusion limits using results of Higgs searches. As mentioned earlier, in this approach
event generation is not necessary, but only cross section times branching ratios need to
be computed. SModelS contains more than 60 SUSY searches by ATLAS and CMS. Two
other tools, which also follow similar approaches in using pre-computed efficiency maps are
XQCAT [252] for models with additional heavy quarks and Fastlim for the MSSM [253].
Furthermore, HiggsSignals [254–256] and Lilith [257,258] constrain BSM models based
on a set of Higgs signal strength measurements, and in the case of HiggsSignals also
mass measurements. Furthermore, one could also mention RECAST [259, 260], which is
however not a publicly available tool, but an experiment-owned analysis reinterpretation
framework.

2.2.6 Typical tool chain for recasting with MadAnalysis 5

Assuming that a selected analysis has been implemented within MadAnalysis 5
and successfully validated, it will now be reviewed which different tools come into play
(and in which order) in order to investigate the implications of the analysis results on a
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chosen BSM model. The purpose of this review, which is inspired by refs. [193,261,262],
is to give an impression of the workflow and the relevance of the different tools, rather
than explaining technical details or giving a complete list of specific computer programs.

As a first step, one should either select an existing BSM model or work out a new one.
Once the theoretical ideas of the model of interest are established, i.e. the Lagrangian of
the new model is known, the aim is to check the viability of the model by confronting its
predictions to experimental results. To do this with the re-implementation of the analysis
in MadAnalysis 5, it is necessary to generate event samples of processes which could
contribute to the signal events.

Before generating events, it is necessary to make the information about the model
available to the selected event generator. The way in which this can be done depends in
general on the generator itself: Some event generators contain hard-coded processes for
specific models. Otherwise, the model information is usually provided in some model file(s),
in which the particles of the model, their properties and their interactions are specified
in a well-defined format. Doing this implementation by hand is a cumbersome and error-
prone task. A convenient tool for the correct implementation of a model for the use with
a Monte-Carlo event generator is the Mathematica [263] package FeynRules [262].
Using FeynRules, the model is implemented by specifying, among other things, the
field contents, gauge groups, parameters, indices and the Lagrangian. The Lagrangian is
written in a certain syntax, which makes use of pre-defined expressions such as the gauge
covariant derivative of a field. Supersymmetric theories can be directly implemented in
the superspace notation. FeynRules provides a number of useful functions, including
sanity checks to ensure the correctness of the implementation. In particular, for a correctly
implemented model it is able to determine all Feynman rules and generate model files
in formats for the different event generators. One particular format is the Universal
FeynRules Output (UFO) [264], which can be used with several event generators. Besides
FeynRules, other packages with the purpose of generating correct model files for event
generators are LanHep [265,266] and Sarah [267,268].

The simulation of event samples can be done at different levels [269]: Parton level
events are obtained via matrix element generation of the hard process at leading or next-
to-leading order (LO/NLO) as well as phase-space Monte-Carlo integration and sampling.
Also parton distribution functions are relevant at this stage. Parton level events can for
example be generated with MadGraph5_aMC@NLO [235,270], Sherpa [271–273]
or WHIZARD [274–276]. Parton showers and hadronisation can be simulated for the given
parton level events using e.g. Herwig [277,278], Pythia [279–281] or Sherpa.

The simulated events are then passed to the MadAnalysis 5 re-implementation of
the analysis. However, before the actual analysis of the event sample comes the simulation
of detector effects and event reconstruction. This happens, depending on the implementa-
tion of the analysis, either with Delphes or SFS. Then, the application of the selection
criteria of the analysis to the event sample takes place. In this process, an event is rejected
if it fails to fulfill one of the selection criteria (cuts). MadAnalysis 5 takes care of the
book-keeping by counting the number of surviving events after each cut and adding up
their weights. The cutflow, which contains these numbers, is part of the output and is
generated for each signal region. Upper limits on the cross section of the simulated process
are then computed for each signal region based on the corresponding signal efficiency, i.e.
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the ratio of the sum of weights belonging to the signal events in this region to the sum of
weights of all simulated events, using the CLs method [282].



Chapter 3

Heavy dark matter through the dilaton
portal

Any theory can be made scale invariant by coupling it to a dilaton. The scale invariance
can then be softly broken, giving the dilaton a mass and self-interactions, and this becomes
a popular proposal [283–296] for solving the hierarchy problem of the SM. Such SM plus
dilaton theories can either be thought of as fundamental, or as the low-energy limit of
composite theories, where the dilaton becomes the pseudo-Goldstone boson associated
with the spontaneous breaking of scale invariance. It therefore couples to the SM fields
through the trace of the energy-momentum tensor.

The dilaton portal is also an extremely economic way of coupling the SM to a dark
matter particle: a massive dark matter field automatically couples to the dilaton, so that
there is no need to add any additional interactions with the SM. Such models are very
economical in terms of new parameters: one has effectively just the dilaton mass, dark
matter mass, and the dilaton decay constant/symmetry breaking scale as extra degrees
of freedom relative to the SM.

Models of dilaton portal dark matter have also been well studied in the literature
[291,297–300]. Both the fermionic and vector dark matter cases will be studied in detail
in this work, where the connection between the dilaton portal and models of vector dark
matter based on effective field theory will be pointed out. Different scenarios of Higgs-
dilaton mixing shall be considered, the simplest one being the vanilla dilaton scenario
without mixing with the Higgs boson. Additionally, once mixing is included, two different
formulations of the theory will be distinguished (in section 3.4): the model is not uniquely
defined, and the simplest way to include mixing is not gauge invariant; as a second option,
the Lagrangian will therefore be written in a gauge-invariant way. The aim is to revisit and
update the constraints on the main parameters of the model, via dark matter constraints,
the latest Higgs-like particle searches for the dilaton itself, collider constraints from direct
searches for the dark matter particle at the LHC, and perturbative unitarity of scattering
amplitudes. Then, also projections for future colliders will be provided. The focus of this
work is in particular on a heavy dilaton above about 300 GeV (see ref. [296] for a detailed
recent examination of constraints on the dilaton in the low-mass window) where diboson
searches push the dilaton to large masses and weak couplings. However, a vector dark
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matter candidate is produced much more copiously at the LHC than a fermion candidate,
assuming the same parameter values, and thus this model is more promising for future
searches. Due to the low production rate of scalars, they are not be considered in this
work.

This chapter illustrates the construction of the model as an extension of the SM,
motivated by scale invariance and the introduction of dark matter. It is organised as
follows: Section 3.1 explains scale transformations and a procedure to compose a scale
invariant theory by systematically incorporating the dilaton field into a generic Lagrangian.
In section 3.2, the form of the dilaton potential will be worked out. Then, in section 3.3,
the concepts of the previous sections are applied to explicitly construct the Lagrangian
of the model, which will thereafter be studied in detail. The possibilities of the dilaton
to mix with the SM Higgs boson and the consequences on the interactions in the mass
eigenbasis will be discussed in section 3.4. Section 3.5 explains the choice of the dark
matter candidates as well as discrete symmetries of the dark matter Lagrangian, and
compares the Higgs and dilaton portals to dark matter.

Perturbative unitarity bounds, experimental constraints and future collider prospects
for the model will be presented in the next chapter. The work presented in this and the
following chapter has been published in [301].

3.1 Constructing a scale-invariant theory

This section illustrates the underlying principles to derive from some existing model
Lagrangian a new model in a way that is guided by the ambition to establish scale-
invariance. First, the form of scale transformations (dilatations) and their implications on
the Lagrangian as well as conditions on the Lagrangian for scale invariance are reviewed.
It is then shown that the Lagrangian can be turned into a formally scale-invariant one with
the help of an additional field. In the next step, the resulting expression is expanded in
the new field, giving rise to an effective Lagrangian suitable for perturbative calculations.
Finally, additional self-interaction terms are discussed. This section is based to a large
extent on the explanations and equations from ref. [302].

3.1.1 Scale transformations

The starting point for the following considerations is a generic Lagrangian, written in
terms of operators Oi with corresponding couplings gi which depend on the renormalisation
scale µ:

L0 =
∑
i

gi(µ)Oi(x) . (3.1.1)

The classical scaling dimensions of the operators will be denoted as [Oi] = di. The effect
of dilatations on this Lagrangian follows from the transformation prescriptions

xµ → eλxµ ,

Oi(x) → eλdi Oi(eλx) ,
µ → e−λµ ,

(3.1.2)
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where λ is the transformation parameter of this continuous transformation. Following the
usual procedure, i.e. taking this parameter to be small and expanding to first order, the
transformations are

xµ → (1 + λ)xµ ,
Oi(x) → (1 + λdi)Oi(x) + λxµ∂µOi(x) ,

µ → (1− λ)µ ,
(3.1.3)

and the variation of the Lagrangian reads

δL0 = λ
∑
i

[
gi(µ)

(
diOi(x) + xµ∂µOi(x)

)
− µ∂gi

∂µ
Oi(x)

]
. (3.1.4)

The second term of this expression can be partially integrated, which generates a total
space-time derivative term. The last term describes the variation of the Lagrangian due
to the renormalisation scale dependence of the couplings, which is governed by their beta
functions µ∂gi∂µ ≡ β(gi), and the variation δL0 can thus be written as

δL0 = λ
∑
i

[(di − 4)gi(µ)− β(gi)]Oi(x) + λ∂µ (xµL0) . (3.1.5)

One can see that, in order for the Lagrangian L0 to describe a scale invariant theory, which
is realised when δL0 is a total space-time derivative, the classical scaling dimensions of
all operators must be equal to four and the couplings independent of the renormalisation
scale µ. Under this condition, the divergence of the associated scale current (or dilatation
current) Sµ vanishes, so the current is conserved. It is related to the symmetric 1 energy-
momentum tensor via Sµ = Tµνx

ν and its divergence reads

∂µS
µ = Tµµ =

∑
i

[(di − 4)gi(µ)− β(gi)]Oi(x) . (3.1.6)

3.1.2 Restoring scale invariance

Given a Lagrangian as the one in eq. (3.1.1) that is not scale-invariant, i.e. the variation
δL under the above dilation is non-vanishing, it is possible to modify the Lagrangian
in a way that recovers scale-invariance. This requires the introduction of a conformal
compensator field, an additional real scalar field χ(x) that transforms itself under scale
transformations,

χ(x)→ eλχ(eλx) . (3.1.7)

Incorporating this field systematically into the Lagrangian allows it to compensate for
the terms which appear in the variation of the original Lagrangian, making it formally

1. The energy-momentum tensor involved in the scale current differs from the canonical energy-
momentum tensor by an extra term which makes it symmetric. This symmetric version remains conserved
if this is the case for the canonical version, and the additional term does not affect the global momentum
four-vector

Pµ =
∫

d3xT 0µ .

For more information, I refer the interested reader to [46, ch. 19.5] and [303].
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scale invariant. This is achieved by the replacement of the couplings gi according to the
prescription

gi(µ) → gi

(
µ
χ(x)
f

)(
χ(x)
f

)4−di
, (3.1.8)

i.e. the field χ not only appears to some convenient power as a new factor in each term,
but also in the dependence of the couplings gi on the renormalisation scale µ. With this
replacement, the new Lagrangian takes the form

L =
∑
i

gi

(
µ
χ(x)
f

)(
χ(x)
f

)4−di
Oi(x) . (3.1.9)

Carrying out the same program, i.e. applying the scale transformation to the new La-
grangian, it is straightforward to check that the variation δL is indeed vanishing:

L →
∑
i

gi

(
e−λµ

eλχ(eλx)
f

)(
eλχ(eλx)

f

)4−di
eλdiOi(x)

=
∑
i

e4λgi

(
µ
χ(eλx)
f

)(
χ(eλx)
f

)4−di
Oi(eλx) .

(3.1.10)

In summary, the transformation contributes a global factor e4λ and substitutes xµ by eλxµ.
Therefore, to first order in the transformation parameter λ, these two types of modification
can be written as two separate terms:

δL(x) = 4λL(x) + λxµ∂µL(x) . (3.1.11)

After partial integration, using ∂µxµ = 4, one obtains

δL(x) = 4λL(x) + λ∂µ
(
xµL(x)

)
− λ(∂µxµ)L(x)

= λ∂µ
(
xµL(x)

)
,

(3.1.12)

which is a total space-time derivative that leaves the action integral invariant. Therefore,
one can conclude that the modified Lagrangian is symmetric under the above dilatations.

3.1.3 Dilaton interaction terms

It has been shown how a Lagrangian has to be modified to turn it into a new, formally
scale invariant Lagrangian. On the one hand, terms with dimensionful couplings are
multiplied with some power of χ(x)/f , which then together form an operator of classical
scaling dimension 4, that consequently appears with a dimensionless coupling. On the other
hand, also the scale-dependence of the couplings gi is modified through the introduction
of a factor χ(x)/f to compensate for the variation of the renormalisation scale µ under
scale transformations.

Along with the additional field χ, these changes also introduce a new parameter, the
cut-off scale f = 〈χ〉, which is an artefact of the spontaneous breaking of scale symmetry,
i.e. the vacuum expectation value of χ. A possible parameterisation of χ involving the
associated Goldstone boson σ, namely the dilaton field, is given by

χ(x) = fe
σ(x)/f . (3.1.13)
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This is clearly a sensible expansion around f , as the value of χ(x) for vanishing σ(x) is f .
However, since the aim is to expand the Lagrangian in σ/f, a different parameterisation is
instead chosen, where the relation between χ and σ is given by

χ(x) = f + σ(x) . (3.1.14)

With this parameterisation, the expansion in σ/f takes the form:

L =
∑
i

gi

(
µ

(
1 + σ(x)

f

))(
1 + σ(x)

f

)4−di
Oi(x)

= L0 −
σ(x)
f

∑
i

[(di − 4)gi(µ)Oi(x)− β(gi)Oi(x)]

+ σ(x)2

2f2

∑
i

[(4− di)(3− di)gi(µ)Oi(x)]

+ . . . .

(3.1.15)

Here, only the leading terms in σ/f are shown explicitly, and the ellipsis stands for any
(potentially relevant) higher-order contributions. In comparison with eq. (3.1.6) one can
easily see that at leading order the dilaton couples to the trace of the symmetric energy-
momentum tensor.

While the chosen parameterisation should not impact the physics, the form of the
expanded Lagrangian at a given order in σ/f depends on this choice. Note that in the
limit of very high values of f , i.e. σ/f � 1, the higher order terms become negligible,
so that eq. (3.1.13) coincides with eq. (3.1.14). This also explains, why the expansion
of L is identical at first order in σ/f. The advantage of the chosen parameterisation is
that for appropriate values of di, the term χ4−di = (1 + σ/f)4−di is just a polynomial,
corresponding to a finite number of terms, in which case only the couplings gi need to be
expanded explicitly.

3.2 Dilaton self-interactions

In the interaction terms considered so far, in which the dilaton is involved, it only
couples to the fields of the original Lagrangian. For the purpose of establishing scale-
invariance in a given model, this might seem sufficient. However, apart from these terms,
a kinetic and a mass term for the dilaton should also be present, as well as its potential
self-interaction terms.

This model includes a dilation potential that is constructed under the assumption
that the conformally-invariant field theory, for which this model represents an effective
theory, is explicitly broken due to the addition of an operator with a scaling dimension
∆O 6= 4 [290],

LCFTbreaking = λOO(x) . (3.2.1)
This yields a potential V (χ) [286,290],

V (χ) = χ4
∞∑
n=0

cn(∆O)
(
χ

f

)n(∆O−4)
, (3.2.2)
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that will be added to the effective Lagrangian. At the minimum of the potential at which
〈χ〉 = f , the coefficients cn can be related to the parameters of the underlying conformal
field theory 2. This potential is supposed to be at the origin of the dilaton mass mσ, which
translates into the condition

m2
σ = d2V (χ)

dχ2

∣∣∣∣
〈χ〉=f

> 0 . (3.2.3)

With the assumption that |∆O−4| � 1, i.e. the operatorO in eq. (3.2.1) is nearly marginal,
it is possible to expand the potential in |∆O − 4| such that the explicit ∆O-dependence of
the different coefficients cn disappears [290],

V (χ) = 1
16
m2

f2 χ
4
[
4 ln χ

f
− 1

]
+O(|∆O − 4|2) . (3.2.4)

A derivation of this expression is given in appendix C. By applying the parameterisation
of eq. (3.1.14), one obtains, after adding the dilaton kinetic term [298],

Lself
σ = 1

2∂µσ∂
µσ−m

2
σ

2 σ2− 5
6
m2
σ

f
σ3− 11

24
m2
σ

f2 σ
4 + . . . , (3.2.5)

where the dots stand for higher-dimensional interactions.

3.3 Extending the Standard Model with the dilaton and dark
matter

The effective theory studied in the following is constructed from the SM Lagrangian
and the mass term of a dark matter candidate, either a Majorana fermion or a vector
boson, using eq. (3.1.15) to derive the interactions of the dilaton with the remaining field
content. This also establishes interactions between the SM and dark matter, with the
dilaton as mediator.

As pointed out earlier, the interactions resulting from dimensionful couplings are
obtained via the multiplication of the terms by (1 + σ/f)4−di , with di being the classical
scaling dimension of the operator involved in the term. For instance, the mass terms of
the fermions and electroweak gauge bosons, induce the following interaction terms:

−mf ψ̄fψf → −mf ψ̄fψf
σ

f
,

m2
WW

+
µ W

−µ → m2
WW

+
µ W

−µ
(

2σ
f

+ σ2

f2

)
,

1
2m

2
ZZµZ

µ → 1
2m

2
ZZµZ

µ

(
2σ
f

+ σ2

f2

)
.

(3.3.1)

The couplings involving the dark matter candidates are found analogously (see below).

2. Note that the exact details of the underlying theory is beyond the scope of this work, which follows
an effective theory approach.
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The simplest way to obtain the interactions related to the beta-functions of the electro-
magnetic and strong couplings e and gs is through a rescaling of the gauge fields, e.g.
Aµ → 1

eA
µ for the photon field, such that e is only present in the photon kinetic term [46, ch.

19.5]:
L ⊃ − 1

4e2FµνF
µν . (3.3.2)

Once the related dilaton interaction term has been found, the rescaling of Aµ is reversed.
Considering the broken electroweak phase, the interaction terms of the dilaton with

the SM sector are given, including all the Lagrangian terms of dimension 6 or below, by

Lσ =σ

f

[
2m2

WW
+
µ W

−µ+m2
ZZµZ

µ−m2
hh

2−
∑
ψ

mψψψ

− m2
h

2v
[
h3 + hG0G0 + 2hG+G−

]
+ gv

2
[
∂µG−W+

µ + ∂µG+W−µ + 1
cW

∂µG0Zµ
]

+ gmWhW
+
µ W

µ− + g

2cW
mZhZµZ

µ

+ ig′mW

(
G−W+

µ −G+W−µ
)(
cWA

µ − sWZµ
)

+ 11αEM
24π FµνF

µν − 7αs
8π G

a
µνG

a,µν
]

+ σ2

2f2

[
2m2

WW
+
µ W

−µ+m2
ZZµZ

µ−m2
hh

2
]
,

(3.3.3)

where the summation over ψ refers to all the SM fermionic mass-eigenstates of mass mψ,
and mh, mW and mZ stand for the Higgs boson,W -boson and Z-boson masses. Moreover,
v denotes the vacuum expectation value of the Standard Model Higgs field, cW and sW the
cosine and sine of the electroweak mixing angle, and g, g′ and gs the weak, hypercharge
and strong coupling constants. These expressions include the interactions between the
physical Higgs (h) and electroweak (Aµ, Wµ, Zµ) bosons and the three Goldstone bosons
(G0, G±). For the corresponding expression in the unbroken electroweak phase, I refer to
ref. [297] that additionally includes a complete Higgs-dilaton mixing analysis.

The interactions of the dilaton with the two considered dark matter candidates, namely
a Majorana fermion ΨX and a real vector field Xµ, read

LDM
σ =

−
σ
2fmΨΨXΨX (Majorana fermion) ,(
σ
f + σ2

2f2

)
m2
VXµX

µ (vector boson) ,
(3.3.4)

where mΨ and mV denote the mass of the dark matter state in the fermion and vector
case respectively. In order to ensure the stability of the dark matter particle, the setup
assumes a Z2 symmetry.

3.4 Higgs-Dilaton mixing

When two physical neutral scalars are present in the theory (the Higgs field h and the
dilaton field σ), they could in principle mix, unless it is forbidden by some symmetry. If
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the mixing is allowed, its origins can be found through a UV completion of the effective
setup. This option was first studied in ref. [299], and will be re-investigated in the light of
the most recent experimental data in section 4.2.

Keeping in mind the effective approach adopted in this work, no assumption will be
made about any UV-physics that drives the source, and hence the amount, of mixing.
Instead, for studying the possibility of a non-vanishing Higgs-dilaton mixing, a mixing
angle α will be introduced as an additional parameter. The original flavour states will
be relabelled as h0, σ0 with mass parameters mh,0,mσ,0 and are related to the new mass
eigenstates h, σ via the rotation(

h
σ

)
=
(

cosα sinα
− sinα cosα

)(
h0
σ0

)
≡
(
cα sα
−sα cα

)(
h0
σ0

)
. (3.4.1)

Then, it will be assumed that the (lighter, by assumption) scalar h can be identified as the
experimentally confirmed scalar of mass of about 125 GeV, so that it is mostly compatible
with the SM Higgs boson. In contrast, the heavier scalar field σ is mostly dilaton-like.

The impact of the non-zero mixing of the Higgs boson and the dilaton can be inferred
from the similarity between the couplings of the h0 and σ0 states with the remaining
particle content in the zero-mixing case. Without mixing and in unitary gauge (i.e. ignor-
ing Goldstone bosons), there is a corresponding dilaton coupling for every Higgs boson
coupling. This is not surprising since these dilaton couplings originate from the presence
of a dimensionful coupling in the SM Lagrangian after electroweak symmetry breaking,
where the dimensionful quantity in the coupling constants is actually the Higgs vacuum
expectation value v. In all of these cases, the coupling constants appearing in the dilaton
interaction vertices therefore differ by a factor of rf = v/f for each dilaton participating
in the interaction, when compared with the corresponding Higgs-boson interaction. In
principle, dilaton couplings involving the Higgs or Goldstone bosons (leaving the unitary
gauge) should be discussed as well, but they cannot be related to any SM counterpart by
factors of v/f . The discussion below will address those multi-scalar interactions.

For the dilaton and Higgs Yukawa couplings to the SM fermions, this yields the
interaction Lagrangian Lψσ ,

Lψσ =
∑
ψ

mψ

v

(
h0 + rfσ0

)
ψψ

=
∑
ψ

mψ

v

[
(cα+rfsα)h+ (rfcα−sα)σ

]
ψψ .

(3.4.2)

Similarly, the massive gauge boson interactions read, at leading order in the scalar fields,

LVσ =
[
(cα+rfsα)h+ (rfcα−sα)σ

]
×
(

2m2
W

v
W+
µ W

−µ + m2
Z

v
ZµZ

µ

)
. (3.4.3)

TheW - and Z-boson couplings to a pair of scalar fields h and/or σ are obtained analogously.
These couplings are potentially relevant for processes addressing both scalar production

and decays. For example, in scalar production at hadron colliders through gluon fusion,
the leading-order contribution involves triangle diagrams featuring a loop of quarks (the



3.4. Higgs-Dilaton mixing 61

top quark one being the most relevant by virtue of its largest mass), so that the associated
predictions are affected by the modifications of eq. (3.4.2). In case of the light scalar,
a factor of (cα + rfsα) is introduced into the amplitude compared to the zero-mixing
case. On the contrary, for the production of the heavy scalar, the extra factor is given
by (−sα + rfcα). This feature is obviously also present for any other production mode at
colliders, like associated production (V h or V σ) or vector-boson fusion, that involve the
coupling of the scalar to the W - and Z-bosons.

On the other hand, the dark matter mass term is at the origin of a dilaton coupling
which obviously does not have an analogue for the Higgs boson due to the absence of
the dark matter in the SM and of a Higgs portal relating the dark and the visible sector.
Depending on the type of dark matter, the Lagrangian in terms of the scalars h and σ
gives

LDM
σ = −mΨ

2f sαhΨXΨX −
mΨ
2f cασΨXΨX (3.4.4)

in the Majorana case and

LDM
σ = m2

V

f
(sαh+cασ)XµX

µ + m2
V

2f2 (sαh+cασ)2XµX
µ (3.4.5)

in the vector case. In the latter case, the trilinear couplings are the most relevant ones
for Higgs measurements and heavy scalar searches, but the quartic couplings are very
important for dark matter searches when mV � mσ. Consequently, mixing leads to a
coupling of the SM-like Higgs state to the dark-matter candidate that would not exist
without mixing.

The same applies to the tree-level couplings of the dilaton to the massless gauge-
bosons, which are not induced by dimensionful couplings but by the scale-dependence of
the electromagnetic and the strong coupling. Here the contribution to the Lagrangian in
the mass eigenbasis LV V S reads

LV V S = 11αEM
24πv

(
rfsαh+ rfcασ

)
FµνF

µν

− 7αs
8πv

(
rfsαh+ rfcασ

)
GaµνG

µν
a .

(3.4.6)

Without mixing, the dilaton coupling to photons or gluons must take into account both a
tree-level and a one-loop contribution at leading order in the electromagnetic or strong cou-
pling, while the Higgs boson interacts with these bosons only beyond tree-level. Eq. (3.4.6)
shows that in the mixing case, the tree level contributions enter into the amplitudes for
both the light and the heavy scalar with a factor of sinα or cosα respectively.

Furthermore, there are also couplings which involve some combination of the two scalars.
These result from the Higgs and the dilaton potentials, where couplings between the two
scalars h and σ are only present when the mixing is non-zero. On the other hand, the
dimensionful couplings of the Higgs potential also give rise to interaction terms involving
both the dilaton and the Higgs boson, which are present even in the zero-mixing case.
These trilinear couplings are phenomenologically very important, because they allow the
dilaton to decay into a pair of Higgs bosons. Unfortunately, they are not uniquely defined
within this model. Starting from the Lagrangian introduced in the previous subsection,
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the cubic couplings come from the terms

Lφ3 =− 1
2vm

2
h,0h

3
0 − ξ

m2
σ,0
f

σ3
0 −

m2
h0

f
h2

0σ0 . (3.4.7)

Here ξ is a model-dependent dilaton self-coupling, that has been fixed to 5/6 in eq. (3.2.5).
The trilinear couplings between the two mass eigenstates are then found by substituting,
in the above equation, the mixing relation of eq. (3.4.1).

Note that the parametermh,0 ≡
√

2λSMv2 is not equal to the mass of the lightest scalar.
The physical masses are instead determined by the diagonalisation of the dilaton-Higgs
mass matrix extracted from the bilinear terms of the scalar potential,

Lφ2 = − 1
2m

2
h,0h

2
0 −

1
2m

2
σ,0σ

2
0 −m2

hσh0σ0 , (3.4.8)

where

m2
h,0 = m2

hc
2
α +m2

σs
2
α , m2

σ,0 = m2
hs

2
α +m2

σc
2
α ,

m2
hσ = − cαsα(m2

σ −m2
h) .

(3.4.9)

Note also that in the work of ref. [299] the parameter m2
hσ is not explicitly discussed.

However, it is clear that if it is present, then the full Lagrangian of the theory cannot be
written in a gauge-invariant way: one has to give up precision calculations for the model
and it is harder to make a connection with a UV-completion. On the other hand, in order
to write the lowest-dimension effective operator which can yield such a mass and preserve
the gauge symmetry, the SM degrees of freedom must be written in terms of a doublet
H ⊃ H0 = 1√

2 [(v + h0) + iG0], and it follows that the physics that generates a dilaton
mass should also generate a new coupling

L ⊃− m2
hσ

v
σ|H|2 ⊃ −m2

hσh0σ0 −
1
2
m2
hσ

v
h2

0σ0 . (3.4.10)

This new trilinear coupling has dramatic consequences for the phenomenology: it allows
for unsuppressed decays of the dilaton into two Higgs bosons. Therefore, both scenarios
will be investigated: the “minimal mixing scenario” of eq. (3.4.8) and the “gauge invariant
mixing scenario” of eq. (3.4.10).

3.5 Fermionic and vector dark matter through the dilaton portal

The dilaton portal is particularly interesting and simple for dark matter models because
the dark matter coupling is unique (being determined only by the dark matter mass). The
most commonly considered and perhaps simplest dark matter candidate in a dilaton
portal model is a Majorana fermion Ψ or a real scalar S, with a Z2 symmetry. Note that
in ref. [299] a Dirac fermion was considered, which has instead a continuous unbroken
global U(1) symmetry (although this was not explicitly stated). The phenomenology is
however very similar up to some factors of 2.
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There is little to add to the analysis of dark matter constraints performed in this earlier
work (and for the case of zero mixing, in the works of ref. [291, 297, 298]). However, to
give an update on those results, limits from recent monojet and multijet searches in the
fermionic case are provided in section 4.3.1, as well as projections for a future 100 TeV
collider in section 4.4.

A vector boson as the dark matter particle has attracted some interest as an alternative
to the more common fermion or scalar candidates. The particular challenge for the vector
case is to allow it to remain stable; a Z2 symmetry forbids conventional gauge interactions.
This can either be accepted [291,304–307], or one can stabilise the vector through another
symmetry such as a custodial one [308]. Here the minimal model, which can arise from
a Stückelberg U(1) field coupled to the dilaton, shall be considered. This automatically
features a Z2 symmetry provided there is no matter charged under it; and the symmetry
also forbids any kinetic mixing term involving the dark vector field, through which it could
decay.

Since the dilaton must be rather heavy and couples to all the SM particles including
the Higgs boson, it could be considered as generating effective Higgs portal interactions.
Indeed, integrating it out generates the effective Lagrangian Leff ,

Leff = 1
2f2m2

σ

[∑
ψ

mψψψ−m2
VXµX

µ−m2
ZZµZ

µ

− 2m2
WW

+
µ W

−µ +m2
hh

2
]2
,

(3.5.1)

after neglecting any higher-dimensional operators. This can be compared with the standard
Higgs-portal Lagrangian for vector dark matter LVHPDM (which has become a popular
benchmark scenario) [306,307],

LVHPDM = λhv
8 h2XµX

µ + 1
2m

2
VXµX

µ + λ

4 (XµX
µ)2 , (3.5.2)

that exhibits the same classes of terms. These types of vector dark matter effective La-
grangians including a mass term generated by the Stückelberg mechanism exhibit a viola-
tion of unitarity, in particular at high energy colliders and even for the standard Higgs por-
tal. The Higgs invisible decay width hence diverges when mV → 0. One simple way to cure
these problems consists of introducing a Higgs mechanism in the dark sector [309]. Then,
the Higgs invisible decay width becomes finite [310] and unitarity is restored [311–313].
In the following, this complication will not arise.

In the dilaton case, the generic coefficients λhv, mV and λ are expressed in terms of
mV and f . While in LVHPDM the vector self-coupling λ is rather unimportant, Leff instead
features additional dimensionless quartic terms (XµX

µ)(ZµZµ) and (XµX
µ)(W+

µ W
−µ)

that are crucial for the phenomenology of the model. They indeed provide the principal
annihilation channels for the dark matter. Therefore, there is no obvious reason why these
couplings should be neglected in a generic vector dark matter effective field theory, and it
could be worth reconsidering benchmark scenarios that omit them.

Another interesting feature of a vector coupling to the dilaton is that a heavy dilaton
will predominantly decay into vectors. The partial width of the dilaton into dark matter
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becomes

Γ(σ → XX) = m3
σ

32πf2

[
1− 4m

2
V

m2
σ

+ 3m
4
V

m4
σ

]√
1− 4m2

V

m2
σ

→
mσ�mV

m3
σ

32πf2 , (3.5.3)

which is independent of the vector mass. By fully considering the decay channels into Z
and W bosons, one finds that the total width of the dilaton can be well approximated by

Γ '
mσ�mV ,mZ

m3
σ

8πf2 , (3.5.4)

and the branching ratio of the dilaton into dark matter then becomes roughly 0.25. This
is much larger than for the scalar or fermionic cases, where the dilaton branching ratio
into dark matter tends to zero for small dark matter masses. Consequently, vector dark
matter production at colliders could be potentially enhanced via a dilaton resonance.

This width also provides a limit on the size of the dilaton mass from the requirement
that it be a narrow state. However, it turns out that this is actually a weaker constraint
than perturbative unitarity of scattering amplitudes (c.f. section 4.1).



Chapter 4

Probing the viability of the dilaton-
dark-matter model

In this chapter, the effective theory introduced in the previous chapter will be con-
strained in various different ways. First of all, in section 4.1, the issue of partial wave
unitarity will be addressed. Section 4.2, is dedicated to the estimation of the constraints
on the Higgs-dilaton mixing using results of Higgs and heavy scalar searches as well as
electroweak precision measurements, and section 4.3 to the bounds that can be imposed
from dark matter direct detection and LHC searches. Section 4.4 finally focuses on fu-
ture collider prospects. Some concluding remarks about the study of this model and the
different results are given in section 4.5.

4.1 Perturbative partial wave unitarity

Since the effective theory contains non-renormalisable operators, it must have a cutoff
comparable to the scale f (up to factors of 2π). This should be manifest, even at tree level,
as perturbative unitarity constraints on two-body scattering amplitudes. In particular,
there are some couplings that could in principle be large compared to f since they come
with additional massive factors – such as the masses of vector bosons, and particularly the
dark matter (in the vector dark matter scenario). Therefore, the constraints have been
calculated originating from imposing the unitarity of two-particle scattering when vector
and dilaton fields are involved, as well as the one stemming from the scattering of gluons
into heavy vectors via a dilaton exchange. The details are given in appendix D that also
includes the derivation of useful approximate formulæ such as an upper bound on the
dilaton mass from self-scattering in eq. (D.4) of

mσ . 2f , (4.1.1)

which gives Γσ/mσ . 1/2π.
In particular, the scattering of gluons into vectors via a dilaton places a constraint on

the maximum scattering energy permissible in this theory. This will be relevant for the
LHC and future collider constraints; and also for all other unitarity constraints (which
necessarily also involve choosing a scattering momentum).
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As shown in appendix D.4, unitarity is violated if

s >
8π2f2

7αs
. (4.1.2)

In principle, when the process centre-of-mass energy s is above this value (30 TeV for
f = 3 TeV), the cross section calculation in the theory is not reliable. However, in collider
processes, it is of course not the centre-of-mass energy of the proton-proton collision that
is relevant, but the partonic one ŝ. One has instead

ŝ ≡ x1x2s <
8π2f2

7αs
≡ ŝunitarity , (4.1.3)

or equivalently

x1x2 < 0.08
(

f

3 TeV

)2 (100 TeV)2

s
. (4.1.4)

Here x1,2 are the momentum fractions carried by the initial-state gluons, the relevant
processes being induced by gluon fusion. So provided that the gluon parton distribution
function (PDF) is negligible for xi > O(10−1), calculations for a 100 TeV collider are safe
for f greater than about 1 TeV. In the considered processes a single dilaton is resonantly
produced. The relevant scale therefore consists of its mass mσ, and taking into account
the dilaton mass range investigated in this work, the typical gluon-gluon parton collision
scale is x1x2 ∼ 10−4 − 10−3. This therefore guarantees the suppression of any growth in
the cross section coming from high-energy subprocesses.

On the other hand, the above constraint is very important when considering the
unitarity of (vector) dark matter scattering. While it is typically convenient to take the
high-energy limit for unitarity calculations to simplify matters and avoid resonances, it
has become clear that this is not possible in this model. In particular, the scattering of
dilaton pairs into longitudinal vectors exhibits (only) a logarithmic growth with energy,
so that the cutoff of eq. (4.1.2) also reduces the power of other unitarity constraints. To
be safe for f = 2 TeV one should take

√
s < 20 TeV and for f = 1 TeV one should take√

s < 10 TeV.
Throughout the rest of the chapter, the above limit shall be used as a guide for fixing

the cutoff on the theory. This only appears in the unitarity constraints, arising from
massive vector/dilaton scattering, where all momentum values up to a maximum centre-
of-mass momentum pV,max of the vector boson are scanned, with pV =

√
s/4−m2

V . Since
these other constraints grow logarithmically with pV,max this is both necessary (to give
finite results) and conservative.

4.2 Constraints on the Higgs-dilaton mixing

In order to assess the viable regions of the model parameter space, experimental input
is used from Higgs-boson measurements and heavy scalar searches, as well as constraints
on the magnitude of the new physics contributions to the Peskin-Takeuchi parameters S
and T [314].
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For the Higgs and heavy scalar set of constraints, it is enforced that predictions for
the signal strengths of various scattering processes (i.e. the ratio of total rates to their
Standard Model counterparts) be consistent with observations (within uncertainties). In
this context, it is assumed that the light or heavy scalar is resonantly produced. It is
therefore allowed to factorise the scattering cross sections into the scalar production cross
section times the branching ratio of the considered decay mode.

The Higgs and heavy scalar constraints are determined using Lilith-2.2.0 [257,258]
and HiggsSignals-2.4.0 [256] for the SM-like Higgs measurements, and HiggsBounds-
5.5.0 [315] for the heavy scalar searches. The input for these codes is generated using a
specially written main program for MicrOMEGAs-5.0.8 [316, 317] using model files
generated with FeynRules-2.3.36 [262]. The Higgs and heavy scalar search limits require
the computation of ratios of scalar couplings to the ones of a SM-like Higgs particle of the
same mass, both for the lighter (observed) state and the heavier one. These are estimated
using a modified version of the routines embedded into HiggsBounds, that calculate
tree-level scalar decays into quarks with their masses evaluated at a fixed running scale
of 100 GeV, as well as quark-loop-induced couplings to photons and gluons (including
some higher-order QCD factors) which are supplemented with the higher-order operators
given by eq. (3.4.6). It has been verified that in the limit of small dilaton masses, the
loop-induced operators exactly cancel against the dilatonic ones for the dilaton state, as
they should.

The Peskin-Takeuchi parameters S, T and U [314] quantify the effects of new physics
on the self-energies of the electroweak gauge bosons, which are referred to as oblique
corrections. Writing the vacuum polarisation functions of the electroweak gauge bosons in
the form [318]

Πµν
ab (q) = Πab(q2)gµν + (qµqν terms) (4.2.1)

and splitting the gµν coefficient into a SM and a new physics contribution

Πab(q2) = ΠSM
ab (q2) + δΠNP

ab (q2) , (4.2.2)

the three parameters are defined in terms of the latter as

T ≡ 1
α(m2

Z)

[
ΠNP
WW (0)
m2
W

− ΠNP
ZZ(0)
m2
Z

]
, (4.2.3)

S ≡ 4s2c2

α(m2
Z)

[
ΠNP
ZZ(m2

Z)−ΠNP
ZZ(0)

m2
Z

−Π′NPγγ (0)−
(
c2 − s2

cs

)
ΠNP
Zγ (m2

Z)
m2
Z

]
, (4.2.4)

U ≡ 4s2

α(m2
Z)

[
ΠNP
WW (m2

W )−ΠNP
WW (0)

m2
W

−Π′NPγγ (0)−
(
c

s

) ΠNP
Zγ (m2

Z)
m2
Z

]
− S , (4.2.5)

with
Π′NPγγ (0) =

dΠNP
γγ

dq2

∣∣∣∣
q2=0

. (4.2.6)

Here, c and s are the sine and cosine of the weak mixing angle θW , such that

c2 = m2
W

m2
Z

, s2 = 1− m2
W

m2
Z

. (4.2.7)
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As pointed out in [314], in most models the predicted value of U is close to zero. Therefore,
only S and T will be used to constrain the model. The formulæ can in principle also be
evaluated with the SM contributions to the vacuum polarisation functions instead of just
ΠNP
ab , but one is generally interested in the deviation from the Standard Model.
Predictions for the electroweak parameters S and T in the dilaton-dark-matter model

are obtained by rescaling Standard Model results: For the calculation of the contributions
from the h and σ scalars (δS and δT ), the SM Higgs-boson contribution XSM (for X =
SH , TH , given below) is used, after replacing the Higgs-boson mass by the corresponding
scalar mass and modifying the couplings as explained in section 3.4. This leads to [299]

δX =
[
(rfsα + cα)2 − 1

]
XSM(mh) + (rfcα − sα)2XSM(mσ) . (4.2.8)

The results are then compared with the experimental values extracted from the electroweak
precision fits [4] according to formulæ taken from ref. [257]. According to ref. [319], the
Standard Model Higgs contributions to S is given by

SH = 1
π
HS

(
m2
h

m2
Z

)
(4.2.9)

with

HS(x) = 3
8x−

1
12x

2 +
(

3− x
4 + x2

24 + 3
4(1− x)

)
x ln(x) +

(
1− x

3 + x2

12

)
B(x) (4.2.10)

and

B(x) =


√
x(4− x) arctan

(√
4
x − 1

)
for 0 < x < 4 ,√

x(x− 4) ln
(

2√
x+
√
x−4

)
for x > 4 ,

(4.2.11)

and the contribution to T is given by

TH = GFm
2
Z

2
√

2π2α
HT

(
m2
H

m2
Z

)
(4.2.12)

with
HT (x) = 3

4x
( ln(x)

1− x −
ln(x/c2)
1− x/c2

)
, c2 ≡ m2

W

m2
Z

. (4.2.13)

4.2.1 Constraints from the light SM-like Higgs boson

Since a mass-mixing term between the dilaton and the SM-like Higgs scalar must
violate the electroweak symmetry, it is natural to assume that this mixing should be small.
However, in the absence of complete top-down constraints, all possible bottom-up values
for the mixing angle α should be considered. The allowed amount of mixing, depending
on the parameter f (or rf ), was examined in ref. [299] for heavy scalar masses of 200, 600
and 900 GeV with the Dirac dark matter mass being fixed to 300 GeV. While the bounds
from heavy scalar searches obviously are strongly dependent on the mass of the heavy
scalar (having a rather weak dependence on the dark matter mass with some provisos), the
constraints on the light Higgs couplings are independent of both the dilaton and the dark
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Figure 4.1: Constraints on the mixing angle between the Higgs and dilaton against the ratio
rf = v/f , computed using Lilith (solid green contour) and HiggsSignals (blue dot-dashed
contour), where the allowed region is inside the contours. The figure also shows the allowed
regions from constraints originating from the electroweak S and T parameters for dilaton masses
of 3000 GeV (inner, light brown shaded region) and 500 GeV (outer, light red shaded region).

matter masses (provided that the dark matter is not lighter than half the Higgs-boson
mass, opening up invisible decays). The constraints from the S and T parameters are
also only relatively weakly dependent on the dilaton mass and have hence not drastically
altered since 2014. The possible values are therefore restricted to | sinα| � 1 or rf � 1
(or both), whereas the combination with electroweak precision measurements imposes an
additional upper bound of approximately 0.4 for | sinα| and rf .

Figure 4.1 shows the preferred parameter space regions in the (sinα, rf ) plane, after
considering 99% exclusion bounds stemming from the most recent experimental input from
Higgs measurements (as implemented in Lilith [258] and HiggsSignals [256]), as well
as values for the S and T parameters extracted from the most up-to-date electroweak
fits [4]. The dark matter mass has been chosen sufficiently high such that none of the scalars
can decay invisibly, in order to obtain bounds on sinα and rf which are not influenced
by dark matter. The bounds originating from the electroweak precision fit are presented
for heavy scalar masses of 500 and 3000 GeV.

It is found that a large amount of mixing is still permitted by data. Larger mixing
however modifies the constraints related to both heavy Higgs searches (see below) and the
dark matter sector. For the latter, the effect is to more strongly couple the dark matter
to the Higgs boson, which greatly strengthens constraints from direct detection since the
Higgs couples much more strongly to light quarks than the dilaton does.
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The results additionally allow for a comparison between the Lilith and HiggsSig-
nals programs, the former requiring slightly more input (the decays needing to be speci-
fied) while the latter calculates the decay table based on coupling ratios. The results agree
at an excellent level and do not substantially differ from older bounds [299].

4.2.2 Heavy scalar searches

Heavy scalar searches provide rather powerful complementary information, and indeed
have been substantially strengthened during the second run of the LHC. These constitute
some of the main new results of this work. Here the allowed parameter space for f and
mσ is probed for fixed mixing angles α. The results depend crucially on the treatment of
the dilaton-Higgs mixing term, as described below.

The dilaton is considered to be heavy with a mass larger than 300 GeV. Throughout
most of the parameter space the main constraint therefore comes from diboson searches
since the dilaton predominantly decays to heavy vector bosons. However, there are two
notable special cases.

The first is when the dilaton decay constant is not large compared to the dilaton mass.
As seen before, the dilaton can become a wide resonance, for large mσ. Even though
unitarity constrains Γσ/mσ . 1/2π, the width may be large enough that the standard
narrow resonance searches do not apply. This issue shall be avoided by limiting the study
of this model to the case of a narrow dilaton.

The second special case, as already pointed out in ref. [299], is when f and α fulfill
the condition

(−sα + rfcα) = 0 ⇔ rf = tanα . (4.2.14)

Here the couplings of the heavy scalar σ to fermions and heavy vector bosons in eqs. (3.4.2)
and (3.4.3) vanish, independently of mσ. This does not mean that the heavy scalar com-
pletely decouples from the Standard Model: the tree-level couplings to photons and es-
pecially gluons do not carry the factor (−sα + rfcα) and are therefore non-vanishing
(although the contribution from fermion and vector loops vanishes). Moreover, since the
dark matter particle does not obtain its mass from the Higgs mechanism, its coupling to
the heavy scalar is also non-vanishing at this point. Therefore, in a ‘magic window’ around
rf = tanα the most stringent constraints on the heavy scalar disappear, yet it can still
be produced by gluon fusion and decay significantly to dark matter.

There are still constraints even exactly at this magic value, notably from diphoton and
di-Higgs decays. The details depend crucially on the treatment of the mixing mass term,
as described in section 3.4. If the minimal approach to the dilaton-Higgs mixing is taken,
without introducing additional interactions, then for small values of the mixing angle the
emergence of this ‘magic window’ can be observed. The width of this window in terms of
values of f depends on the mixing and mass mσ, and so does the depth: for sufficiently
large mixing the window actually disappears. The appearance of a wide window at small
sinα = 0.04 and large f = 6 TeV, and its eventual disappearance around sinα = 0.13
are illustrated in figure 4.2. At larger mixing angles, the constraints from the light Higgs
measurements and the S/T parameters moreover dominate.
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Figure 4.2: Excluded regions of the model parameter space, presented in the (f,mσ) plane for a
selection of mixing angles, with the ‘minimal mixing term’ treatment of the Higgs-dilaton mixing.
The figures include 99% confidence level exclusions from Higgs measurements (blue) and the
electroweak S and T parameters (red/purple), as well as 95% confidence level bounds from heavy
scalar searches (green). The parameter scans were done using Lilith and HiggsBounds. The
findings demonstrate that for sufficiently low positive mixing angles, a gap in the exclusion emerges
around the value f that satisfies v/f = tanα. In this gap, the couplings of the heavy scalar to the
Standard Model fermions and massive gauge bosons are close or equal to zero, so that searches for
heavy scalars turn out to be insensitive and arbitrary heavy scalar masses are allowed.
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(d) Amount of Higgs-dilaton mixing: sinα = 0.13

Figure 4.2: Excluded regions of the model parameter space, presented in the (f,mσ) plane for a
selection of mixing angles, with the ‘minimal mixing term’ treatment of the Higgs-dilaton mixing.
The figures include 99% confidence level exclusions from Higgs measurements (blue) and the
electroweak S and T parameters (red/purple), as well as 95% confidence level bounds from heavy
scalar searches (green). The parameter scans were done using Lilith and HiggsBounds. The
findings demonstrate that for sufficiently low positive mixing angles, a gap in the exclusion emerges
around the value f that satisfies v/f = tanα. In this gap, the couplings of the heavy scalar to the
Standard Model fermions and massive gauge bosons are close or equal to zero, so that searches for
heavy scalars turn out to be insensitive and arbitrary heavy scalar masses are allowed.
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On the other hand, if an additional term is introduced into the Lagrangian to restore
gauge invariance, then the results are dramatically different. In particular, the ‘magic
window’ around v/f = tanα that was found with the minimal treatment of the mixing
disappears. In the ‘minimal mixing’ case and for large dilaton mass, the trilinear σh2

coupling λσhh becomes

λσhh −→
v/f=sα/cα

m2
σ

v
c2
αs

3
α(ξ − 2)− 2m

2
h

v
c4
αsα + . . . , (4.2.15)

where the ellipsis denotes additional terms suppressed by powers of sα. On the other hand,
in the ‘gauge invariant mixing’ case it becomes

λσhh −→
v/f=sα/cα

− c4
αsα

m2
σ

v
+ . . . , (4.2.16)

which is dramatically enhanced compared to the previous value, by a factor of orderm2
σ/m

2
h.

This leads to dilaton decays into two Higgs fields dominating for much of the parameter
space, and has the effect of completely erasing the ‘magic window’. The constraints in this
case are given in figure 4.3, which shows current heavy scalar searches wiping out all of
the interesting parameter space. An overview of the most important searches and channels
leading to the heavy scalar constraints in figures 4.2 and 4.3 is given in appendix E. In the
above figures, a parameter point is considered as excluded, if it is found to be excluded
by one channel. Moderate improvements can be expected for these constraints at the
HL-LHC. Since they are dominated by di-boson searches, the cross sections scale with
the fourth power of 1/f, while the integrated luminosity of the HL-LHC will be bigger by
a factor of the order 10 compared to the LHC, so that the range in f of the excluded
parameter space would increase by a factor of about 1.8. Since there is no increase in the
energy, the excluded range in mσ should not increase significantly.
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Figure 4.3: Constraints on the parameter space of f and mσ for sinα = 0.11 (upper) and
sinα = 0.15 (lower) with a ‘gauge invariant’ treatment of the dilaton-Higgs mixing. The colour
coding is the same as for figure 4.2.
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4.3 Dark matter searches

Next, the constraints on the dilaton dark matter model originating from the relic density,
direct detection, and the LHC will be considered. Combined with unitarity constraints, it
will be shown which part of the parameter space remains phenomenologically viable, and
to what extent the different searches are complementary.

4.3.1 Collider constraints

In order to assess the constraints originating from dark matter searches at the LHC,
the implementation of the Lagrangian in eq. (3.3.3) in the FeynRules package [262]
(mentioned already in section 4.2) was used to generate a UFO library [264]. Then, the
event generator MG5_aMC [235] is employed to generate hard-scattering events relevant
for the production of a pair of dark matter particles together with jets,

pp→ XXj , (4.3.1)

where X generically denotes the dark matter particle (a Majorana fermion or a vector
boson). In the simulations, leading-order (LO) matrix elements are convoluted with the
LO set of NNPDF 3.0 parton densities [320]. Moreover, for every dilaton/dark matter
mass configuration, the dilaton width is evaluated with the MadSpin [321] and Mad-
Width [322] packages and we make sure that the dilaton is narrow (see eq. (3.5.4)). In
other words, the ratio mσ/f in enforced to be small enough.

After matching with parton showers, the above hard process gives rise to a monojet
or a multijet plus missing transverse energy (MET) collider signature, that is targeted by
numerous dark matter searches undertaken by the ATLAS and CMS collaborations [323,
324]. As those searches usually select events featuring at least one highly-energetic central
jet, it is imposed, at the event generator level, that the transverse momentum of the jet
satisfies pT > 100 GeV and that its pseudo-rapidity fulfills |η| < 5.

The simulation of the QCD environment relevant for proton-proton collisions is achieved
by matching the hard-scattering events with parton showering and hadronisation as mod-
elled in the Pythia 8 program [280, 281]. The LHC sensitivity to the model is then
estimated by re-interpreting the results of the ATLAS-CONF-2019-040 analysis [324] that
probes dark matter models through a luminosity of 139 fb−1 of LHC data at a centre-
of-mass energy of 13 TeV. This analysis targets multijet events featuring a monojet-like
topology, i.e. it requires events to exhibit a large amount of missing transverse energy, a
large number of jets with at least one of them being very hard. As a consequence, it gives
a great handle on the model considered in this work and dark matter models in general.

Starting from Monte Carlo simulations of the dilaton-induced dark matter signal, the
MadAnalysis 5 program [193,214,325] is used to automatically simulate the response
of the ATLAS detector through a tune of the Delphes 3 package [221], that internally
relies on the FastJet software [230] for event reconstruction on the basis of the anti-kT
jet algorithm [208]. Then, the MadAnalysis 5 framework provides estimates of the
efficiencies of the different signal regions of the ATLAS-CONF-2019-040 analysis as it has
been implemented in its Public Analysis Database [216]. The sensitivity of the LHC run 2
to the signal is extracted through the CLs method [282].
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In figure 4.4, the obtained constraints for various dark matter and dilaton mass config-
urations are presented, both for Majorana fermion (upper panel) and vector (lower panel)
dark matter. For each mass configuration, the maximum value of the cut-off scale that is
excluded by the ATLAS analysis under consideration is evaluated.

This shows that the LHC has no sensitivity to scenarios in which the dilaton cannot be
produced on-shell and then decay into a pair of dark matter particles (which corresponds
to the parameter space region lying above the blue line). In contrast, when 2mX . mσ

(with mX generically denoting the dark matter mass), cut-off scales f around the TeV
scale can be reached, which closes a part of the small light dilaton window visible allowed
by Higgs data (see figure 4.2 for sinα = 0.0). Moreover, as expected from the spin nature,
constraints are tighter in the vector dark matter case than in the fermionic one.

Enforcing a naive scaling of both the background and the signal [326], it has been
verified that the future high-luminosity operation of the LHC will not substantially affect
those conclusions, even with 3000 fb−1 of data. Multijet plus missing transverse energy
LHC analysis targeting a monojet-like topology within a multijet environment are indeed
already limited by the systematics [327] so that mild improvements can only be expected
with a larger amount of luminosity. Moreover, in the present case, the limit depends on
the fourth power of the cut-off scale, so that a noticeable improvement at the level of the
bounds on f would require a huge improvement at the analysis level.
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Figure 4.4: Constraints on dilaton-induced dark matter for fermionic dark matter (upper) and
vector dark matter (lower), presented in the (mσ,mΨ,V ) plane. For each mass configuration, the
maximum value of the cut-off scale that can be probed by using 140 fb−1 of LHC data and the
ATLAS analysis of ref. [324] is evaluated.

4.3.2 Vector dark matter at zero mixing

The dilaton portal for dark matter is very simple, and, as described above, rather
special. Its phenomenology in the case of no mixing between the Higgs and the dilaton is
therefore rather straightforward: there are two regimes, either near the s-channel resonance
where mV ' mσ/2, or in the parameter space region where mV � mσ in which there is a
combination of t-channel annihilations of the dark matter to dilaton pairs and s-channel
annihilation. However, in the previous sections it was found that heavy Higgs searches
force mσ > 3 TeV for f < 3 TeV at zero mixing, and the bound on mσ is roughly given by
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(3000 GeV)2/f . Clearly this will limit the possibilities for detecting dilaton-induced vector
dark matter at colliders or via direct detection.

Figure 4.5 shows the contours of relic density matching the Planck results [328] for
fixed f values in the (mσ,mV ) plane, for values of f upwards of 3 TeV. One can observe
that the sensitivity of heavy scalar searches is not noticeably weakened due to the in-
visible dilaton decays into dark matter, and so the most promising regions for detection
corresponds to a resonant configuration. This thus leads to mσ > 2700 GeV (rather than
3000 GeV without the presence of dark matter) for f = 4000 GeV, but where unfortu-
nately σproton,spin−independent ' 10−50 cm2, well beyond the reach of current and near-future
direct-detection experiments. Moreover, the LHC and HL-LHC searches described in the
previous section do not limit the parameter space in the figure at all. Alternatively it can
be said that this model has a large unexcluded viable parameter space.
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Figure 4.5: Dilaton and vector dark matter masses that saturate the observed dark matter relic
density Ωh2 = 0.12, for differing values of f and no mixing between the dilaton and the Higgs
boson. The curves are green and solid when the points are not excluded by any observations; they
are orange and dot-dashed when excluded by heavy Higgs searches. The dark matter is underdense
(and thus allowed if there is another source of dark matter) between the two curves related to a
given f value, and overdense (hence excluded unless there is some mechanism to dilute the dark
matter density) outside them. For the values f = 3000, 4000 GeV the underdense region therefore
extends above the curves towards mV →∞. Unitarity constraints are shown as the shaded grey
regions.

Furthermore, limits from unitarity as described in appendix D are presented, which
appear at the edges of figure 4.5. The constraints come from dark-matter scattering at
low momentum via a dilaton exchange, and at small dilaton masses. This could also be
interpreted as the regime where Sommerfeld enhancement should be taken into account in
the calculations. In the top right corner of the figure, high-energy scattering constraints
become visible, where a maximum centre-of-mass vector momentum of pV,max = 20 TeV
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has been taken.
It is legitimate to ask what happens at smaller values of f : can there remain some viable

parameter space? For f = 1 TeV, a maximum cutoff of
√
s = 10 TeV has to be imposed

due to the constraints on the gluon scattering momentum, leading to pV,max = 5 TeV.
In the upper panel of figure 4.6, one can see that this excludes mσ < 2.5 TeV. However,
in a more aggressive approach where a higher cutoff is allowed, the parameter space can
be further shrunk. This figure also shows the sensitivity of the collider searches for dark
matter, although the entire (mσ,mV ) plane is excluded by a combination of heavy Higgs
search results, dark matter and unitarity constraints.

On the other hand, as shown in the lower panel of figure 4.6, the unitarity constraints
impose an upper bound on the dark matter mass for f = 2 TeV. With these results, the con-
sidered parameter space regions are naively limited tomσ > 3 TeV andmV ∈ [1.1, 2.5] TeV.
The reason is that at mσ = 3 TeV the dilaton is rather wide, with Γσ ' 250 GeV. This
means that the dark matter density constraint does not longer result in a funnel, as dark
matter is underdense everywhere above the shown curve. Clearly, the choice f = 2 TeV is
therefore rather borderline in terms of whether the results of the numerical calculations
can be trusted.
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Figure 4.6: Dark matter curve as in figure 4.5, but for f = 1000 GeV (upper) and 2000 GeV
(lower); the red portion of the curve corresponds to regions excluded by both heavy Higgs searches
and dark matter direct detection experiments. The solid and hatched regions show (current) LHC
and (future) HL-LHC exclusions from dark-matter-inspired collider searches: the solid blue region
is the future exclusion reach at the HL-LHC, after accounting for LO signal cross sections, and
the hatched blue region shows the same constraint but with a signal enhanced by a K-factor of 2.
Similarly, the red solid and hatched regions depict the current LHC exclusion without and with a
K-factor of 2. Unitarity constraints are again shown as shaded grey regions. On the upper figure,
the entire parameter space of the model is excluded by a combination of heavy Higgs searches and
unitarity. On the lower panel, the monojet/multijet+MET searches are barely visible, and some
viable parameter space exists above the reach of heavy Higgs searches.
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4.3.3 Collider and vector dark matter constraints at non-zero mixing

The hope of detecting dark matter greatly improves when allowing for dilaton-Higgs
boson mixing: the dark matter acquires a coupling to the Higgs, and so interacts much more
strongly with nuclei (in principle the model can then accommodate a Higgs portal, which
shall not be considered as being very fine-tuned). Moreover, there is also the possibility of
sitting in the ‘magic window’ where f = v/ tanα, which should also maximise the reach
of dark matter collider searches.

In the ‘minimal mixing’ case, this would seem to be the ideal situation: the dilaton still
has barely suppressed gluon and dark vector couplings, but its couplings to SM bosons and
fermions vanish. This means that the dilaton decays only to the dark vector and the SM
Higgs boson. Potentially, then, monojet and multijet + MET searches could probe some
interesting part of the parameter space of the model. Since the collider searches depend
so strongly on f , to have the best sensitivity one should look for the lowest possible value.
It has been observed earlier that in the ‘minimal mixing’ case at the magic window, for
mσ > 300 GeV, the minimum value of f that survives all constraints was for sinα = 0.11,
giving f = 2.2 TeV.

For the ‘minimal mixing’ case, the results are shown for both relic density, direct
detection and direct production at the LHC and HL-LHC in figure 4.7, for mixing angles
of sinα = 0.11 and sinα = 0.15. The relic density and direct detection cross sections
were computed using MicrOMEGAs and compared with the limits summarised in
ref. [329]. The LHC limits and projections were inferred from the results in section 4.3.1
by recomputing the production cross sections (for the pp→ V V j process with the same
cuts on the hard jet) for the mixing case. Due to the dilaton widths and the relative
coupling changes, one could not naively rescale the cross sections. However, the same
cutflows/limits on the total rate can be used. It is observed that the (HL-)LHC searches
do not overlap with any of the viable regions of the parameter space, so that for sinα = 0.11
the theory could be a viable dark matter model for mσ < 1 TeV.

On the other hand, as discussed previously, if the mass mixing term is made gauge
invariant, the decays to the SM Higgs boson then dominate, and exclude the dilaton over
masses from about 300 GeV up to the limit reached by the LHC searches (currently 3
TeV). The same results are therefore presented for the ‘gauge invariant mixing’ case in
figure 4.8. There is no dark matter parameter space available for mσ > 300 GeV, and
the LHC/HL-LHC searches are completely wiped out as the production of dark matter
greatly diminishes. The ‘gauge invariant mixing’ scenario is therefore entirely unappealing
phenomenologically, and invites other model-building solutions.
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Figure 4.7: Combined dark matter, Higgs and collider constraints on the considered model for
sinα = 0.11 (upper) and 0.15 (lower) in the ‘magic window’ where f = v/ tanα and under the
assumption of a ‘minimal Higgs-dilaton mixing’ treatment. The solid lines show the curves where
the dark matter density matches the Planck limit of Ωh2 = 0.12 with the circular shading between
them showing the underdense regions. The solid line is green and orange for allowed and excluded
by heavy Higgs searches, and black when excluded by dark matter direct detection. The solid
and hatched regions show the current and future exclusions from dark matter collider searches:
the solid blue region is the future exclusion reach at the HL-LHC after accounting for LO signal
cross sections and the hatched blue region is the same constraint but with the signal enhanced by
2σ according to the uncertainty on its total rate. The red solid and hatched region represent the
corresponding constraints at the end of the LHC run 2.



4.3. Dark matter searches 83

200 400 600 800 1000 1200
m (GeV)

100

200

300

400

500

600

700
m

V
(G

eV
)

200 400 600 800 1000 1200 1400
m (GeV)

100

200

300

400

500

600

700

800

m
V

(G
eV

)

Figure 4.8: Combined dark matter and Higgs constraints for sinα = 0.11 (upper panel) and
0.15 (lower panel) for a ‘gauge invariant’ treatment of the Higgs-dilaton mixing. The description
is similar as in figure 4.7, except that there are no LHC or HL-LHC constraints from monojets or
multijet searches, the cross sections being orders of magnitude too small.
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4.4 Future collider constraints

The previous sections have shown that searches for dark matter at the LHC and at
its future high-luminosity operation are not sensitive to our scenario. In this section,
monojet and multijet+MET collider probes at a future 100 TeV collider will instead be
investigated. The simulation chain introduced in section 4.3.1 is used for studying the
hard-scattering process of eq. (4.3.1). The analysis follows the steps given in ref. [330]. At
the generator level, it is imposed that the transverse momentum of the hardest jet satisfies
pT > 1500 GeV and that its pseudo-rapidity fulfills |η| < 5. In addition, the production of
an invisible Z-boson with jets is considered as main background to the analysis.
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Figure 4.9: Missing energy selection thresholds as a function of the dilaton and fermionic (left
panel) and vector (right panel) dark matter masses to achieve the best sensitivity at a future
100 TeV proton-proton collider. In order to avoid any potential unitarity issues at high energies, it
is imposed that the threshold value is smaller than 5 TeV.

The analysis first vetoes the presence of charged leptons with a transverse momentum
pT > 20 GeV and a pseudo-rapidity |η| < 2.5 and 2.1 for electrons and muons respectively,
and then rejects events featuring at least one hadronic tau with pT > 40 GeV and |η| < 2.3.
Next, it is required that the leading jet is central and very hard, with pT (j1) > 1500 GeV
and |η(j1)| < 2.4, while some extra hadronic activity is allowed in the selected events.
This hadronic activity is associated with the ensemble of non-leading jets whose pT > 30
GeV and |η| < 4.5. The leading and all the extra jets satisfying the above requirements
are further imposed to be well separated in azimuth from the missing momentum,

∆ϕ(/pT , ji) > 0.4 , (4.4.1)

and additionally, the second jet is prevented from being back-to-back with the leading jet,

∆ϕ(j1, j2) < 2.5 . (4.4.2)

After this preselection, the analysis relies on various signal regions to estimate the sensi-
tivity of a future 100 TeV proton-proton collider to the dark matter monojet/multijet+MET



4.4. Future collider constraints 85

500 1000 1500 2000 2500 3000 3500 4000

500

1000

1500

2000

2500

3000

3500

4000

mσ [GeV]

m
ψ
[G
eV

]

2mψ = mσ

1000GeV

1500GeV

2000GeV

2500GeV

3000GeV

3500GeV

500 1000 1500 2000 2500 3000 3500 4000

500

1000

1500

2000

2500

3000

3500

4000

mσ [GeV]

m
V
[G
eV

]

2mV = mσ

2000GeV

2500GeV

3000GeV

3500GeV

4000GeV

4500GeV

5000GeV

5500GeV

6000GeV

Figure 4.10: Sensitivity of a 100 TeV future proton-proton collider to the dilaton portal dark
matter model considered in this work, for the case of Majorana (left panel) and vector (right panel)
dark matter. The results are presented in the (mσ,mΨ,V ) plane and the colour coding indicates the
expected reach on the theory cutoff scale f . These findings correspond to an integrated luminosity
of 3 ab−1.

signal predicted in this model. Each signal region is defined by a different missing transverse
momentum selection,

/ET > /E
thr.
T with /E

thr.
T ∈ [2− 5] TeV , (4.4.3)

so that any considered dark matter and dilaton mass configurations could be optimally
covered. In the above setup, all missing transverse energy thresholds are restricted to be
smaller than 5 TeV, which guarantees to avoid any potential unitarity issues. The best
MET threshold value for a given mass spectrum depends on both masses, as depicted
in the left and right panels of figure 4.9 for the fermionic and vector dark matter cases
respectively.

For dark matter masses much larger than half the dilaton mass (i.e. far from any
resonant configuration), the optimal selection enforces the missing energy to be larger
than 1–3 times the dark matter mass for the two classes of models, the MET spectrum
being in general flat enough to guarantee a large signal selection efficiency and a good
rejection of the Z+jets background. In contrast, when dark matter production is enhanced
by the existence of a dilaton resonance (i.e. for mΨ < mσ/2 and mV < mσ/2 in the
fermion and vector dark matter cases respectively), the best selection threshold is directly
fixed by the dilaton mass.

Figure 4.10 shows that in contrast with the LHC, 3 ab−1 of proton-proton collisions
at 100 TeV are sufficient to probe cutoff scales lying in the multi-TeV regime for both the
fermion (left panel) and vector (right panel) dark matter cases. The results are presented
in the (mσ,mΨ,V ) mass plane respectively, and the values of the f scale that are reachable
for each mass spectrum are indicated by a colour code. For each configuration for which
the dark matter can be produced from the decay of a resonantly produced dilaton (below
the red line), scales larger than 4 TeV can be probed, providing hence complementary
constraints to models allowed by cosmological considerations.
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In contrast, for configurations in which the dilaton cannot decay into a pair of dark
matter particles, the signal cross sections are smaller. This results in a loss of sensitivity,
in particular in regions favoured by cosmology.

4.5 Conclusions

In this work, a comprehensive and up-to-date set of current and future constraints on
the most interesting (heavy) dilaton-portal dark matter models is presented. While heavy
scalar and unitarity constraints push the model to large masses and weak couplings, to the
extent that the direct dark matter production at the LHC can only probe a light dilaton,
and not reach any viable parameter space above 300 GeV, a future collider would potentially
be sensitive with the same searches. It would be interesting to examine future projections
for heavy scalar and dark matter searches, to see whether these will be complementary. On
the other hand, the (HL) LHC reach could be enhanced if the experimental collaborations
extend their published diboson limits above 3 TeV.

It was argued that vector dark matter is more promising for collider searches thanks
to the dilaton’s much larger branching ratio into vectors compared to fermions or scalars.
Allowing mixing of the dilaton with the Higgs boson then apparently leads to a way to
weaken or evade heavy scalar searches (and increase the coupling of the dark matter to
the visible sector via the Higgs portal) via the opening of a ‘magic window’. It has been
shown that this could allow the dark matter and dilaton below 1 TeV in the ‘minimal
mixing treatment’.

However, the ‘minimal mixing’ of the dilaton with the Higgs boson is not gauge invariant.
Including operators to restore gauge invariance to the model erases the ‘magic window’, and
di-Higgs bounds dominate all constraints that could be imposed on the dilaton properties.
It would nevertheless be interesting to explore the high-energy origin of these Higgs-dilaton
mixing terms, in the context of concrete models. Similarly, the theory could have been
formulated in a gauge-invariant way by including the dilaton before electroweak symmetry
breaking, as performed in ref. [297]: it would be interesting to revisit the constraints and
searches of the present work in this alternative (and inequivalent) formulation of the
theory.



Chapter 5

Implementation and reinterpretation
of long-lived particle searches

Among the new physics searches at the LHC, one class of physics analyses which
currently benefits from increasing interest is the search for long-lived particles (LLPs), for
reasons which will be exposed in the following using arguments of refs. [331, 332]. The
term long-lived particle refers to particles with a sufficiently high lifetime to travel along
observable distances from their production point until their decay, in contrast to prompt
decays, which seemingly decay at the point at which they are produced or at a tiny distance
from it.

Qualifying a particle as long-lived is de facto only meaningful in an experimental
context, i.e. its life-time and travelled distance have to be put in relation to the length-
scales present in the experiment, e.g. the dimensions of the detector. Furthermore it implies
a comparison to other particles, which in turn are not said to be long-lived. On the other
hand, the term long-lived particle is usually only used for particles which can indeed be
expected to decay after some time, i.e. unstable particles. In other words, speaking of
long-lived particles is a kind of jargon which should be further clarified.

The lifetime of a particle is a property which in a given quantum field theory essentially
depends on its couplings to other particles as well as the masses of the particle itself and
the decay products, which affects the available phase space of the allowed decay processes,
but possibly also masses of mediators such as the W boson in neutron or charged pion
decays [333]. Needless to say, the boost of an unstable particle also impacts the observed
lifetime in the laboratory frame. In this regard, it should also be clear that the term
lifetime mostly refers to the lifetime of a particle in its rest frame, unless the context
suggests something else. Also, this word leaves implicit that it represents a mean value for
a species of particles, as the lifetime of on an individual particle is unpredictable. Besides,
it is common to quantify the lifetime of a particle via the proper decay length cτ , i.e. the
proper lifetime τ multiplied by the speed of light, instead of the lifetime τ itself. This
gives a rough idea of how far a particle can travel until it decays, when its speed is close
to c (for the exact result, one needs to use the exact velocity and include the γ-factor
to account for the boost in the laboratory frame). It is not much of a surprise that the
existence of long-lived particles is not intimately related to a particular model, but merely
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a generic feature that exists in all sorts of theories, including the Standard Model.
For instance, the muon is known to be unstable, but its lifetime (cτ = 658.6384 m) is

high enough for it to be considered as stable on the detector scales of collider experiments.
Its decay takes place almost exclusively far outside the detector volume. The number of
unstable, long-lived elementary particles of the Standard Model is in fact quite limited:
There is one more lepton, the tau-lepton, which decays with a much smaller lifetime
(cτ = 87.03µm). The electron as the lightest charged lepton is stable. The massive vector-
bosons W± and Z as well as the Higgs boson decay promptly, while the photon is massless
and its decay is therefore forbidden. Likewise, the neutrinos are massless in the Standard
Model. Finally, quarks and gluons do not appear as isolated particles, but are instead
confined into hadrons. On the other hand, a multitude of hadrons have sufficiently high
lifetimes such that state-of-the-art collider experiments are able to resolve the displacement
between the production and the decay point, while some of them can even escape the
detector volume. An extensive list of some unstable SM particles together with their proper
decay lengths and masses is given in table 5.1. It should be emphasised that the high
collision energy can give rise to high γ-factors, leading to a non-negligible enhancement of
the displacement between the production and decay vertices. This displacement becomes
observable above a magnitude of roughly 10µm.

A plethora of different BSM physics scenarios predicts LLPs with diverse characteristics,
which can lead to very unusual signatures in contrast to the familiar ones of the SM LLPs.
Additionally, the fact that the heaviest long-lived SM particles have masses of about 5 GeV
facilitates the discrimination of new heavier LLPs from SM LLPs. Exploiting the different
signatures of long-lived particles is therefore a powerful method to search for hints of
physics beyond the SM at colliders and provide constraints on a wide spectrum of BSM
models.

Implementing the event selection criteria of existing LLP searches [334–366] into a
user-friendly computer program can be highly valuable in order to unleash their potential
to constrain different models, which provide the targeted signatures. In account of the
growing interest in long-lived particles in the community, these searches have therefore
recently become a priority in the development of MadAnalysis 5 [193,214,218]. This
chapter reports on some of the contributions in this context, which are currently in prepa-
ration for publication, and has the following structure:
Section 5.1 gives an overview about the phenomenology of long-lived particles in different
physics scenarios and experimental strategies to uncover them. A technical aspect, that is
potentially relevant for LLP recasting, is the simulation of particle trajectories under the
influence of a magnetic field in the detector volume. This task is handled in MadAnal-
ysis 5 by a new module, as described in section 5.2. My contribution to the development
of this module is part of the work related to this thesis. The following two sections 5.3
and 5.4 illustrate the design of two LLP analyses [348, 355] published by the CMS and
ATLAS collaborations, and their implementation within MadAnalysis 5 using the SFS
framework. One of these analyses is used to place bounds on the parameter space of the
vector-like lepton doublet model introduced in section 1.4.1.2, as presented in section 5.5.
The number of LLP searches performed in recent years reflects the high interest in LLPs
and their potential to reveal new physics or constrain BSM models [331]. A list of ATLAS
and CMS searches for different LLP signatures in LHC Run 1 and 2 is given in appendix F.
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Particle cτ m [MeV]

n 2.6362× 108 km 939.6
µ 658.6384 m 105.7
KL 15.34 m 497.6
π± 7.8045 m 139.6
K± 3.711 m 493.7
Ξ0 8.71 cm 1315.0
Λ 7.89 cm 1115.7

Ξ− 4.91 cm 1321.7
Σ− 4.434 cm 1197.4
KS 2.6844 cm 497.6
Ω− 2.461 cm 1672.5
Σ+ 2.404 cm 1189.4
B± 491.1µm 5279.3
B0 455.4µm 5279.7
B0
s 454.2µm 5366.9

Λ0
b 441.0µm 5619.6

D± 311.8µm 1869.7
D±s 151.2µm 1968.3
Ξ+
c 136.6µm 2467.9

D0 122.9µm 1864.8
τ 87.03µm 1776.9

Ω0
c 80µm 2695.2

Λ+
c 60.7µm 2286.5

Ξ0
c 45.8µm 2470.9
π0 25.5 nm 135.0
Σ0 2.22× 10−11 m 1192.6

Table 5.1: Selection of unstable SM particles, their mean proper decay lengths cτ and their masses
m, ordered with decreasing lifetime. The values are extracted from ref. [367], but given without
their uncertainties. For the benefit of better readability and comparison, the mass values in MeV
are reduced to one non-integer digit.

5.1 Search strategies for long-lived particles

The emergence of long-lived particles in various BSM models with different properties
suggests a variety of possible ways in which they could manifest themselves in experiments.
A number of search strategies exist, targeting the different kinds of LLP candidates in
existing and planned/proposed experiments. The purpose of this section is to give an
overview of the existing search strategies. The focus of this section is on collider exper-
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iments using general-purpose detectors such as ATLAS or CMS, which are discussed in
section 5.1.1. Some examples of other experiments and detector proposals with the specific
purpose of LLP detection are briefly explained in section 5.1.2. The option to search
for LLPs produced in the atmosphere with the neutrino detectors IceCube [368] and
Super-Kamiokande [369] has also been studied [370], but will not be addressed in this
work.

The motivation for this section is to illustrate the main ideas behind the search
strategies, without digging into too many technical details of a particular physics analysis
or experiment. This concerns, for example, triggers and other selection requirements, SM
background and signal models of interest, which will only be mentioned occasionally when
it seems relevant. Furthermore, the section does not claim to give a complete listing of all
existing or imaginable search strategies, detectors or detector proposals. Since the majority
of the presented ideas have already found application, a number of existing searches are
referenced.

5.1.1 Strategies for general purpose detectors

This subsection explains common strategies observable with general purpose detectors
such as ATLAS and CMS. They are however not necessarily limited to these detectors.
This subsection is mostly based on refs. [331, 371], but includes also information from
additional sources in various places, which will be referenced explicitly.
Displaced vertices in the inner detector: The decay of a sufficiently long-lived par-

ticle into charged particles which traverse the inner detector (ID) can become visible
as a displaced vertex (DV). In this case, a subset of the reconstructed charged particle
trajectories (tracks) are found to be intersecting in one point (i.e. they form a ver-
tex) which can be distinguished from the interaction point of the colliding particles
(protons in the case of the LHC) [372]. This presupposes that the position of the
interaction can also be determined successfully, which is equally inferred from the
generally more numerous tracks forming a primary vertex. Interpreting the obser-
vation of a displaced vertex as the decay of a long-lived particle, the four-momenta
associated with the tracks induce a loose lower bound on the LLP mass. This in-
formation can also be used to suppress background from long-lived SM particles
(c.f. eq. (5.4.7)). More specific signatures can be defined by imposing additional
requirements on the nature of the displaced vertices, i.e. the emerging particles. The
ATLAS search in ref. [372], for example, distinguishes between five different DV
signatures: The dilepton signature with at least two oppositely charged leptons e, µ
emerging from the vertex, and the multitrack signatures DV+muon, DV+electron,
DV+jets and DV+Emiss

T with a minimum of five charged particle tracks, where one
of the objects µ, e, j must emerge from the displaced vertex along with the other
tracks, or it is characterised by a certain amount of missing transverse energy.

Displaced vertices in the muon system: Decays of sufficiently long-lived particles
which leave the inner detector volume might still be observable as displaced vertices
thanks to the tracking capabilities of the muon spectrometer (MS) [373]. Ref. [374]
is an example of a search for events with two displaced vertices of displaced hadronic
jets, where each of the vertices is allowed to occur either in the inner detector or the
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muon spectrometer. Different DV reconstruction algorithms are applied for the ID
and the MS.

Displaced lepton pairs: While the displaced vertex signatures aim attention at inter-
secting tracks, interpreting the intersection point as the position of a possible LLP
decay, searches for displaced particle tracks probe the displacement of the particle
tracks from the primary interaction point. They intend to identify tracks which do
not connect to the primary interaction vertex [353], indicating that they do not
emanate directly from the colliding particles or a subsequent prompt decay, but
supposably from the decay of a long-lived particle at a noticeable distance from the
collision point. The displacement of the track can be quantified using the transverse
and longitudinal impact parameters d0 and dz, which are discussed in section 5.2.
Different ATLAS and CMS searches for displaced lepton pairs [353, 355, 375] are
specifically based on these impact parameters, which can however also play a role in
the event selection of searches using different signatures, e.g. for displaced vertices,
to single out particles which were not produced at the primary vertex.

Displaced jets: Jets emerging from LLPs decaying in the inner detector can give rise
to the previously discussed signatures of displaced tracks relative to the interaction
point, and tracks forming a displaced vertex [362,366]. The situation can be different,
when a jet is generated by a neutral long-lived particle which has already left the
tracker and decays in one of the calorimeters [346]. Consequently, there are no tracks
from which a decay vertex could be inferred. In addition, they are distinguishable
from prompt jets, if they generate an exceptionally high ratio EH/EEM of energy
deposit in the hadronic calorimeter EH compared to the electromagnetic one EEM.
This depends on the location where the decay takes place. Also, from the perspective
of the reconstruction algorithms, they resemble a narrow jet, in comparison with
prompt jets.

Displaced lepton jets: Lepton jets are a class of jets of highly collimated charged lep-
tons, i.e. electrons and/or muons, which can be supplemented with pions [376,377].
They can arise in models incorporating a hidden sector, caused by the decay of a
relatively light (of the order MeV to GeV) hidden sector particle to SM particles. An
example that is frequently put forward in this context is the case of a dark photon
with kinetic mixing with the SM photon [334]. With the energies available in current
collider experiments, the decaying hidden sector particle usually has a high boost
owing to its low mass. The same is true for the SM decay products, which explains
the extreme collimation. As for the composition of lepton jets, the exact mass of the
decaying hidden sector particle is of course decisive for the allowed decay modes and
affects the branching fractions, but they are generally composed to a large fraction of
leptons. Further classifications into different types of lepton jets are possible based on
the number of the different constituents. For instance, refs. [334,378] classifies lepton
jets into three different types, depending on the number of muons and jets contained
in a cone of a given size ∆R =

√
(∆η)2 + (∆φ)2. Type0 contains a minimum of two

muons and no jet, Type1 requires at least two muons which are accompanied by one
jet, and lepton jets of Type2 do not contain any muons.
Displaced lepton jets are possible, if the decaying hidden sector particle is long-
lived, such that the decay and hence the lepton jet generation take place with some
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displacement from the interaction point. Reconstructing lepton jets, and in particular
displaced ones, is experimentally challenging: The granularity of the detector limits
the capacity to discriminate between different particles of the collimated particle
clusters. In addition, displaced lepton jets might not generate tracks in the inner
detector, if they are highly displaced. However, the track reconstruction by the muon
system can provide useful information for the identification of displaced lepton jets,
if muons are involved. A way to search for decays of long-lived hidden sector particles
to muons is therefore to use the muon spectrometer tracks and limit the attention
to decays outside the pixel detector, i.e. requiring the absence of matching tracks in
the pixel detector. Displaced lepton jets without muons can instead be searched for
with the assumption that the LLP decays to electrons or pions occur in the hadronic
calorimeter. For this purpose, an upper limit on the electromagnetic fraction, i.e.
the ratio of energy deposited in the electromagnetic calorimeter to the total energy
of the jet, can be imposed. In ref. [378], this upper value was fixed to 0.4 due to
the observation that the electromagnetic fraction of lepton jets in simulated events,
which originate from dark photon decays in the hadronic calorimeter, never exceed
this value.

Non-pointing and delayed photons: The basic idea that trajectories of particles pro-
duced in LLP decays are in general not connected to the primary interaction point
is not reserved to leptons and jets, but applied also to photons. However, since they
are electrically neutral they do not generate tracks as they traverse the inner de-
tector. A different approach is therefore necessary to determine the displacement
of the extrapolated photon trajectories relative to the primary vertex and detect
candidates with a significant displacement, called non-pointing photons. In contrast
to charged particles, photons are not deflected by the magnetic field present in the
detector volume, so that primarily the direction of the photon momentum is of
interest. Another key difference compared to leptons and hadrons is that photons
are massless and consequently always travel with the speed of light c. A photon
emerging from a long-lived particle travelling with a lower velocity before its decay
is therefore delayed in comparison with a photon produced at the primary vertex
and detected at the same position. The delay of photons produced by LLPs is caused
on the one hand by the finite time interval between LLP production and decay and
the fact that the LLP travels with a speed lower than c during this time. On the
other hand, the non-pointing implies that the path between the primary vertex and
the detection in the detector is indirect and hence longer than the path of a prompt
photon [363, 379]. The ATLAS searches [379, 380] exploit both the flight direction
and time-of-flight information provided by the electromagnetic calorimeter to detect
non-pointing and delayed photons. This search strategy is in particular suitable for
electrically neutral LLPs decaying into an invisible particle and a photon.

Delayed jets: Using the time-of-flight information provided by the electromagnetic ca-
lorimeter is not limited to photons. Also massive particles travelling with a velocity
close to the speed of light can be delayed when it is produced by a long-lived particle.
The CMS search presented in ref. [363] searches for events with delayed jets, where
the delay is measured relative to the arrival time of a massless particle coming from
the interaction point on the direct way.
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Disappearing tracks: Tracks of charged particles are determined as a consequence of
hits in the layers of the tracker, which for particles produced at or close to the
interaction point are expected to occur from smaller to larger radii from the beam
axis. A disappearing track is the observation that hits are only observed below
a certain radius within the tracker, as though the particle had ceased to exist.
The absence of hits at higher radii suggests that the particle has decayed, but
no charged decay product is observed, which seems in contradiction with charge
conservation. This phenomenon can be explained by a long-lived particle decay with
decay products remaining undetected due to low momentum or weak interaction
with detector material [339, 359]. An example in anomaly-mediated supersymmetry
breaking (AMSB) [381–383] is the decay of the lightest chargino χ̃±1 to the lightest
supersymmetric particle, the neutralino χ̃0

1 and a charged pion,

χ̃±1 → χ̃0
1 π
± ,

where the pion momentum is low due to a small mass difference between the super-
symmetric particles χ̃±1 and χ̃0

1, which is typically of the order of 160 MeV.
Kinked tracks: As similar signature to disappearing tracks are kinked tracks, where the

charged LLP decay product is observable as a track with a different direction [384].
In this case, the tracks of the LLP and the charged decay product mimic the track
of a particle that gets abruptly deflected. This signature has been searched for at
ALEPH [385,386].

Emerging jets: A signature that can be expected in theories with a QCD like dark sector,
consists in emerging jets [387], i.e. jets which become apparent gradually during their
propagation from the interaction point through the detector. They derive from dark
partons produced from the colliding particles, which undergo dark parton showering
and fragmentation resulting in dark hadrons, which can be clustered into jets. The
emergence of detectable jets is then a consequence of the individual long-lived dark
hadrons decaying into SM hadrons, which could give rise to several tracks not going
back to the primary vertex or displaced vertices, which are the starting points of
subjets within the entire emerging jet. The emerging jet signature has been proposed
in ref. [387] and has been searched for at CMS [361].

Heavy stable charged particles: Unstable charged particles with a high mass, leading
to a low velocity compared to the speed of light even at high momenta, and a lifetime
that favours a decay outside of the detector volume are referred to as heavy stable
charged particle 1 (HSCP) [356, 389]. Here, the charge can in general be different
from ±e, in contrast to the elementary particles and long-lived hadrons of the SM.
Moreover, there are HSCP candidates which could combine, along their trajectory
through the detector, with SM particles to form different composite particles. This
could also imply an alteration of the electric charge. For particles produced at the
LHC with masses exceeding 100 GeV, the proportion of particles with β = v/c < 0.9
becomes important. Both the low velocity and the perhaps unusual charge of HSCPs

1. Different terminologies are used in the literature, e.g. heavy long-lived charged particle [388] or
metastable heavy charged particle [335]. Irrespective of the exact phrasing, the described signature applies
to all particles with the described properties, i.e. charged particles which are stable on the length scale of
the detectors and have a high mass.
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would be reflected, according to the Bethe-Bloch formula [367], in an atypical rate of
energy loss dE/dx through ionisation, when compared to SM particles. For the latter,
the energy loss rate does not show a strong momentum dependence in the for the LHC
relevant range between 10 GeV and 1 TeV and is situated at approximately 3 MeV/cm.
In contrast, dE/dx for HSCPs has a much stronger momentum dependence, which is
governed by the charge and mass values. Depending on the charge, an exceptionally
high or low energy loss rate of particles in regions of high or low momentum could
therefore indicate the presence of new heavy particles. Moreover, the comparatively
low velocity can be observed by measuring the time-of-flight (ToF).
A relatively high number of HSCP searches has already been conducted at the
LHC [335,336,356,388–397], but also at LEP [398–401], HERA [402] and Tevatron
[403–406].

Stopped particles: As mentioned earlier, the detector dimensions represent a limitation
for many signatures used in LLP searches, since decays of particles having escaped
the detector volume are usually not observable. This is in particular the case for
particles travelling with high momentum, that is not severely altered by the detector
elements. Conversely, it is worth considering the possibility that long-lived particles
could come to rest within the detector, where they decay at a later time [358]. This
phenomenon involves predominantly particles with a velocity below 0.5 c [407]. The
loss in kinetic energy is due to nuclear interactions or ionisation within the detector
material and is most likely to happen in detector regions with a high material density,
especially the electromagnetic and hadronic calorimeters, but also parts of the muon
system. A striking difference of stopped LLPs compared to other signatures is the fact
that their decay can be completely disconnected from the production. In particular,
it can take place when there is no collision activity in the detector, e.g. in the
time interval between two bunch crossings. Consequently, these moments are best
suited for the search of stopped particles, as the detector will only be exposed to
low background which is unrelated to collision events. The decay of a stopped LLP
in one of the calorimeters could be detected by the latter, if it measures the deposit
of a significant amount of energy out of time with respect to the collider activity.
Similarly, LLPs decaying in the muon system could lead to out-of-time tracks.
Several searches for stopped particles have been performed by the ATLAS, CMS
and DØ collaborations [354,358,408–412], focusing on SUSY benchmark scenarios
in which the stopped LLPs are R-hadrons [167,413]. These are bound states formed
after the production of strongly interacting supersymmetric particles, i.e. stops or
gluinos, with quarks or gluons, such as g̃qq, g̃qqq, g̃g or tq [411].

5.1.2 Dedicated experiments

In the context of LLPs, it should be mentioned that besides the rather universal
detectors, there are other detector designs developed specifically for the detection of LLPs,
which are more sensitive to LLPs in some phase-space regions and/or with higher lifetimes.
In this subsection, the three detectors MATHUSLA [414, 415], FASER [416, 417], and
CODEX-b [418, 419] will be briefly introduced. Other detector designs are SHiP [420],
AL3X [421] and ANUBIS [422].
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5.1.2.1 MATHUSLA

The observability of LLP decays at general purpose collider experiments such as CMS
and ATLAS is subject to the requirement that the decay occurs within the detector volume.
This limits their ability to detect particles with very high lifetimes. Although even decays
of very long-lived particles occur with some proportion within the detector volume, the
triggers and the high background pose further limitations on the observable LLP decays
and the LLP masses.

MATHUSLA [414,415] is a detector proposal for the high-luminosity upgrade of the
LHC (HL-LHC) that is currently in the process of being designed for the detection of
displaced vertices of very long-lived neutral particles produced at one of the main experi-
ments ATLAS or CMS. According to the design update given in ref. [415], it is supposed
to be located at the earth’s surface close to the CMS interaction point and have a decay
volume with an area of 100 m × 100 m and a height of 25 m. The number of LLPs with
cτ larger than about 100 m decaying in this decay volume is similar as for ATLAS or
CMS. MATHUSLA has no particular trigger constraints, in contrast to ATLAS and CMS
and benefits from an environment with background close to zero, the main sources of
background being cosmic rays and muons generated in collision events of the HL-LHC.
This makes it an interesting add-on to the existing underground collider experiment with
regard to long-lived particle searches. If approved, it could start taking data around 2025
or 2026.

5.1.2.2 FASER

Supposing that long-lived particles have a low mass and interact only very weakly,
they have a small production cross section and are predominantly produced with small
transverse momentum pT , i.e. in the forward direction. In this case they are likely to remain
undetected in experiments like ATLAS and CMS, which commonly target signatures with
high pT and have not been conceived for detecting particles with very high pseudorapidities:
At ATLAS and CMS, the forward calorimeters are limited to |η| < 4.9 [423] and |η| <
5 [424] respectively. The FASER experiment [416,417], which will be part of the physics
program of the Run 3 data taking period of the LHC, is devoted to the observation of decays
of LLPs having these characteristics. The experiment is placed in a previously unused
tunnel, at a distance of about 480 m in the direction of the beam axis from the interaction
point of ATLAS. The detection of a particle with the above-mentioned properties could
then be detected with FASER according to the following scheme [416]:

1. Collision event at the ATLAS interaction point:

pp→ LLP +X . (5.1.1)

Here, X stands for all other final state particles of the event.
2. LLP propagation in the forward direction from the ATLAS interaction point towards

the FASER detector.
3. LLP decay within the FASER detector volume into a pair of oppositely charged

particles or photons with energies in the TeV range:

LLP→ e+e−, µ+µ−, π+π−, γγ . (5.1.2)
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FASER vetoes charged particles entering the detector, such as muons produced at ATLAS.
Magnets are used to separate the highly collimated LLP decay products, which otherwise
would not be resolved by the detector as distinct tracks. A spectrometer with three tracking
stations is used to determine, whether the tracks of the two oppositely charged particles
can be traced back to the ATLAS interaction point. The total electromagnetic energy of
the decay products is measured with an electromagnetic calorimeter, that is also used to
identify electrons and photons. FASER is a relatively economical detector complementing
the ATLAS experiment, which could allow to detect potentially copiously produced LLPs
in a phase space region that is inaccessible to the ATLAS experiment.

5.1.2.3 CODEX-b

Another detector proposal for LLP detection purposes at the LHC is CODEX-b [418,
419]. Like MATHUSLA, it belongs to the class transverse detectors relative to the beam
line. Its suggested location is in the cavern of LHCb within reach of its interaction point,
at a distance of about 25 m. With a cubic fiducial volume of edge length of 10 m, it
could observe decay vertices of LLPs in the pseudorapidity range 0.13 < η < 0.54. To
this end, it contains several tracking layers on the walls and different positions in the
detector volume for the charged final state particles. Extensions of the suggested baseline
design could allow, among other improvements, to observe LLP decays with neutral decay
products. An existing shielding wall adjacent to CODEX-b and passive shielding near the
interaction point together with active vetoes make of the fiducial volume a low-background
environment.
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5.2 Simulation of particle trajectories in the SFS framework

Long-lived particle searches typically rely on tracks of particles in the detector, positions
of decay vertices relative to the primary interaction vertex and the track displacement
variables d0 and dz, which are related to the point of closest approach of the track to
the collision axis. Monte-Carlo generated events usually provide the exact positions of
decay vertices in the decay cascades as well as the individual particle momenta of all
intermediate and final state particles.

However, this Monte-Carlo truth information is only valid in the absence of detector
effects on the quantities relevant for the physics analysis under consideration, or under the
condition that these effects can be considered to be negligible. For instance, the tracks of
charged particles are typically deliberately bent under the influence of a constant magnetic
field in the detector volume in order to measure their momenta. This can of course also
indirectly affect the trajectories of electrically neutral particles when they result from a
decay chain that involves charged particles. While the effects might be negligible in many
cases, the computational effort to simulate them exactly seems reasonable compared to
the remaining work load in the analysis tool chain. Therefore, the Simplified fast detector
simulation (SFS) framework [218], which applies smearing functions and reconstruction
efficiencies to take detector effects into account, has been upgraded with a module for
the re-calculation of particle trajectories in a constant magnetic field, hereafter referred
to as propagator module. The purpose of this section is to first explain in section 5.2.1
the propagation of particles without the influence of a magnetic field and define the
above-mentioned displacement variables for LLP studies, and to show in the next step
in section 5.2.2 the consequences of a non-vanishing magnetic field on the tracks and
these variables. Finally, a brief overview about the implementation of the effects in the
propagator module is given in section 5.2.3.

5.2.1 Straight line propagation

This case applies to all electrically neutral particles or to all particles, if the magnetic
field is zero or negligible. Consider a particle that is produced at the point described by the
vector ~xv = (xv, yv, zv) in the laboratory frame, with the origin of the coordinate system
at the primary interaction vertex of the particle collision and the z-axis directed along the
momentum vectors of the colliding particles. The propagating particle can be unstable, in
which case it is an intermediate particle of a decay chain, or it can be stable or long-lived
enough to be considered stable on the length scale of the detector, i.e. it belongs to the
final state of the collision event. It propagates along a straight line, i.e with a constant
velocity ~v = (vx, vy, vz) and momentum ~p = (px, py, pz).

The production of the particle at the point ~xv is assumed to take place at t = 0. For
t > 0, the trajectory of the particle is then simply described by

~x(t) = ~xv + t~v = ~xv + c2

E
t ~p (5.2.1)

Here the relation between momentum and velocity, ~p = γm~v = E
c2~v was used. This

parameterisation is valid until the eventual decay of the particle (or interactions with
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other particles, which are not considered here). The example of a particle emerging from
the decay of a neutral long-lived particle, which propagates along a straight line, is depicted
in figure 5.1.
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Figure 5.1: Example of a particle propagating along a straight line (blue), as described by
eq. (5.2.1), in 3D (left) and a projection of the same situation on the x-y-plane (right). It is
generated together with some other particle (grey) in the decay of a long-lived particle (green),
which is produced at the origin and travels along the green line, until it decays at ~xv. The dashed
blue line corresponds to the extrapolated trajectory, shown only for times preceding the production
of the particle. The point of closest approach ~xd (red) is the point on the extrapolated trajectory,
which has the shortest distance to the z-axis, denoted by |d0|. The sign of the transverse impact
parameter d0 corresponds to the sign of the z-component of the particle’s angular momentum Lz.
The longitudinal impact parameter dz is the z-component of the point of closest approach ~xd.

5.2.1.1 Displacement variables

The point of closest approach ~xd = (xd, yd, zd) is defined from the track of the particle,
described by eq. (5.2.1), pretending that it is valid for arbitrary times t, including values
for times preceding the production of the particle. The term closest approach refers to the
minimal distance to the z-axis (c.f. figure 5.1), or equivalently to the minimal magnitude
of the projection of ~x(t) into the transverse plane,

~xT (t) = ~xv,T + c2

E
t ~pT , (5.2.2)

i.e. all vectors in this equations are two-component vectors with the x- and y-components
of eq. (5.2.1). Evaluating the minimum condition of the magnitude xT (t) = ‖~xT (t)‖ gives

dxT (t)
dt

∣∣∣∣
t=td

= 0 ⇒ td = − E

c2p2
T

(xvpx + yvpy) (5.2.3)
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and allows us to determine the corresponding point on the trajectory,

~xd = ~x(t = td) = ~xv −
xvpx + yvpy

p2
T

~p , (5.2.4)

in components

xd = xv −
px
p2
T

(xvpx + yvpy) ,

yd = yv −
py
p2
T

(xvpx + yvpy) ,

zd = zv −
pz
p2
T

(xvpx + yvpy) .

(5.2.5)

The transverse impact parameter d0 is closely related to the distance between the point
of closest approach and the z-axis, but it is defined as a signed quantity:

d0 = xvpy − yvpx
pT

= Lz
pT

. (5.2.6)

Here the numerator has been identified as the z-component of the angular momentum Lz,
the sign of which takes into the corresponding sense of rotation around the z-axis. One
can easily check using eqs. (5.2.4) and (5.2.6) that |d0| = ‖~xd‖. It should be noted that
d0 could be calculated with the x- and y-components of any other point of the trajectory
instead of xv and yv, since Lz is invariant along the straight line.
The longitudinal impact parameter dz is simply the z-component of the point of closest
approach:

dz = zd = zv −
pz
p2
T

(xdpx + ydpy) . (5.2.7)

Except for the special case where the trajectory is parallel to the z-axis, the point of closest
approach, and hence also dz are unique for a given trajectory.

5.2.2 Trajectories in a constant magnetic field

The deflection of electrically charged particles in a magnetic field goes back to the
Lorentz force, given by

~FL(t) = q~v(t)× ~B = qc2

E
~p(t)× ~B , (5.2.8)

where q is the electric charge of the particle, ~B is the magnetic field, which is assumed
to be constant in the following, and the velocity ~v(t) of the yet unknown trajectory ~x(t).
The latter follows from the equation of motion obtained via Newton’s second law:

d~p(t)
dt = qc2

E
~p(t)× ~B . (5.2.9)

The magnetic field in the inner parts of a particle detector is usually parallel to the beam
axis (here the z-axis) and constant in time. Different field configurations can be present in
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other parts of the detector. For instance, the magnetic field in the ATLAS muon spectrom-
eter is generated by toroid magnets both in the barrel and endcaps, leading to a different
field configuration and bending of charged particles compared to the inner detector [425].
Here, it will be assumed for simplicity that the magnetic field is parallel to the z-axis and
homogeneous over the entire space, so that it takes the form ~B = B~ez. Consequently, the
validity of the following considerations is limited to the detector parts, where the above
assumptions are fulfilled, i.e. in particular in the inner detector. However, for the purposes
related to the long-lived particle searches studied in this work, this assumption seems
sufficient, as will be discussed in more detail in section 5.2.4.
With this expression for ~B, the cross product must be perpendicular to ~ez and is inde-
pendent of z-component of ~p(t). The differential equation, split into two equations for the
transverse components and the z-component, reads:

d~pT (t)
dt = qc2B

E
~pT (t)× ~ez

= qc2B

E
(py(t)~ex − px(t)~ey) ,

dpz(t)
dt = 0 .

(5.2.10)

The solution for the transverse components of the momentum describes a rotation in the
transverse plane, while the z-component is a constant that is fixed by its initial value:

px(t) = p0,x cosωt+ p0,y sinωt ,
py(t) = −p0,x sinωt+ p0,y cosωt ,
pz(t) = p0,z .

(5.2.11)

Here, the cyclotron frequency is given by the expression

ω = qc2B

E
. (5.2.12)

With this result, after integrating ~v(t) = E
c2 ~p(t) over time one obtains the trajectory ~x(t)

with components

x(t) =
(
xv + p0,y

qB

)
+ 1
Bq

(p0,x sinωt− p0,y cosωt) ≡ xh + R

pT
(p0,x sinωt− p0,y cosωt) ,

y(t) =
(
yv −

p0,x
qB

)
+ 1
Bq

(p0,x cosωt+ p0,y sinωt) ≡ yh + R

pT
(p0,x cosωt+ p0,y sinωt) ,

z(t) = zv + c2pz
E

t .

(5.2.13)

Projected into the transverse plane, this trajectory corresponds to a circle around the
point ~xh = (xh, yh) with radius R, where

xh = xv + p0,y
qB

, yh = yv −
p0,x
qB

, R = pT
qB

, (5.2.14)
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whereas the z-component describes a uniform motion. In total, this describes a helix with
a central axis parallel to the z-axis. The example, which was given for the case of straight
line propagation in figure 5.1, is shown in figure 5.2 for charged decay products for particles
following trajectories described by eq. (5.2.13).

Again, it is clear that this description is only valid until the particle decays or interacts,
but in addition, variations of the magnetic field will have impact on the bending radius R,
which is in particular the case when the particle leaves the detector and the magnetic field
is no longer present. Note also that the effect of electromagnetic radiation emitted from
the charged particle due to the bent trajectory (synchrotron radiation), which reduces its
kinetic energy, is neglected here.
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Figure 5.2: Example of a charged particle (blue), emerging from the decay of an electrically
neutral long-lived particle, in correspondence to the situation in figure 5.1, propagating here under
the influence of a constant magnetic field ~B = Bz~ez along a bent trajectory. This situation is
shown in 3D (left) and projected on the x-y-plane (right). The grey decay product is oppositely
charged. Again, the extrapolation of the blue particle for the time before its creation is represented
by the dashed blue line. As for the straight line propagation, the point of closest approach and
the displacement variables d0 and dz are defined via the shortest distance in the transverse plane.
In the limit of a vanishing magnetic field or high particle momenta, the trajectories approach the
case of straight line propagation.

5.2.2.1 Displacement variables

As a consequence of the trajectory being a helix with an axis parallel to the z-axis,
there are in theory infinitely many points with the smallest possible magnitude in the
transverse plane xT (t) = ‖~xT (t)‖, so there are infinitely many candidates for the point of
closest approach with a spacing ∆z between adjacent points 2. An additional condition is

2. In the extreme case of a helix with an axis that coincides with the z-axis, all points would have
the same magnitude R in the transverse plane and could hence be considered as possible points of closest
approach. In practice, this case can safely be ignored, because it is highly unlikely that it ever occurs in
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therefore needed to unambiguously define the point of closest approach.
Just as for the straight line propagation, the extremal condition on the magnitude

in the transverse distance is evaluated to find a condition on the time td, but here it is
important to insist on a positive second derivative as well to make sure that the transverse
distance is indeed minimal, and not maximal. For the straight line propagation case, this
was not necessary, since there is only a local minimum (unless the trajectory is parallel to
the z-axis, which is highly unlikely). The condition on the first derivative constrains td as
follows:

dxT (t)
dt

∣∣∣∣
t=td

= 0 ⇒ tanωtd = p0,xxh + p0,yyh
p0,xyh − p0,yxh

. (5.2.15)

That this relation does not constrain td to imply minimum in the transverse distance from
the z-axis, can be understood from the periodicity of the tangent, which is π, in contrast
to the periodicity of the cosine and sine functions appearing in the parameterisation of
the trajectory, which both have a periodicity of 2π. Between the maxima of the magnitude
xT (t) for the circular motion in the transverse plane and the neighbouring minima, the
argument of the cosine and sine functions change by a phase of π. Therefore, eq. (5.2.15)
does not discriminate between maxima and minima.
Requiring in addition that the second derivative must be positive fixes rules out the local
maxima of xT (t) and fixes ωtd up to a multiple of 2π:

d2xT (t)
dt2 > 0

⇒ ωtd = arctan
(
− sign(R)(p0,xxh + p0,yyh),

− sign(R)(p0,xyh − p0,yxh)
)

+ 2πn , n ∈ Z .

(5.2.16)

It should be emphasised that this result does not contain the more commonly used one-
argument function arctan(y/x) with return values from (−π/2) to π/2, but instead the
two-argument function arctan(y, x) [426], which is also referred to as arctan2 (or atan2)
and is equivalent to the argument of a complex number arg(x+ iy) [427]. Thus it returns
values from (−π) to π, according to the correct quadrant in which the complex number
z = x + iy is located, because it takes care of the sign of both arguments, whereas the
one-argument function tan(y/x) uses the fraction of x and y and therefore cares only about
the relative sign. Hence, eq. (5.2.16) makes sure that the trajectory reaches a minimum of
the magnitude in the transverse plane at the time td, while the corresponding equation for
the maxima would be obtained by either adding π or changing the sign of both arguments
in the arctan function.

As explained earlier, the expression of td from eq. (5.2.16) together with the parameter-
isation of the trajectory in eq. (5.2.13) give rise to an infinite number of points of closest
approach. Their x- and y-coordinates are identical, but they are separated by a temporal
and spatial distance

∆t = 2π/ω , ∆z = 2πc2pz
Eω

= 2πpz
qB

. (5.2.17)

some event sample.
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A unique definition of the point of closest approach must therefore comprise a selection
criterion for td. Like the bending radius R, the distance ∆z scales with the transverse
momentum pT , so that highly energetic particles most often have only one candidate point
with minimum transverse magnitude that is in the detector volume, namely the one which
is closest to the production vertex. For this reason, it seems most sensible to choose this
point, rather than any of the other points potentially located far outside of the detector,
which is singled out by setting n = 0 in eq. (5.2.16). The coordinates of the point of closest
approach are then given by

xd = xh

(
1− |R|

rh

)
,

yd = yh

(
1− |R|

rh

)
,

zd = zv + pz
qB

arctan
(
− sign(R)(p0,xxh + p0,yyh),−sign(R)(p0,xyh − p0,yxh)

)
,

(5.2.18)

where rh =
√
x2
h + y2

h is the distance of the helix axis from the z-axis.
With this result, the absolute value of d0 is easily calculated and the value of dz is, as

for the straight line propagation, equal to the z-component of the point of closest approach:

|d0| =
∣∣|R| − rh∣∣ ,

dz = zd = zv + pz
qB

arctan
(
− sign(R)(p0,xxh + p0,yyh),−sign(R)(p0,xyh − p0,yxh)

)
.

(5.2.19)

Note that d0 was previously defined as a signed quantity, which should also be the case
for the propagation in a magnetic field. In particular, both definitions of d0 ought to
be consistent in the limit of a vanishing magnetic field Bz → 0, in which the radius |R|
becomes infinitely large. Fortunately, the exact same definition of d0 as in the straight
line propagation case can be applied when the particle is placed at the point of closest
approach on the helix, according to eq. (5.2.18). Obviously the result will be the same as
if the particle propagated along a straight line through this point with the corresponding
momentum. Inserting eq. (5.2.16) for n = 0 into eq. (5.2.11), the momentum at the point
of closest approach, denominated as perigee momentum ~p(perigee), takes the form

p(perigee)x = px(td) = −sign(R)yhpT
rh

,

p(perigee)y = py(td) = sign(R)xhpT
rh

,

p(perigee)z = pz(td) = pz,0 .

(5.2.20)

Replacing the coordinates xv, yv and px, py in eq. (5.2.6) with the respective coordinates
of ~xd and ~p(perigee) yields

d0 = xd p
(perigee)
y − yd p

(perigee)
x

pT
= sign(R) (rh − |R|) . (5.2.21)
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5.2.3 The propagator module of SFS

The previous subsections 5.2.1 and 5.2.2 each consider explicitly the propagation of
a particle, either with or without bending of the trajectory, away from a production
point ~xv. The possibility of the particle to decay further has already been mentioned,
but not discussed extensively. A realistic simulation of a complete collision event in the
detector environment of a collider experiment should in general account for complete
decay chains, i.e. not only the final state particle trajectories are relevant, but also all
intermediate particles. This makes a recursive procedure unavoidable. Additionally, the
simulation algorithm must be able to properly handle particles of different electric charge,
including neutral ones. Thus, unless the magnetic field is considered negligible, both cases
of propagation, along a straight line or a bent trajectory, need to be applied in different
places of the decay hierarchy. In praxis, a few simplifications with respect to the physically
exact approach are appropriate, as will be explained below.

The simulation of magnetic field effects within MadAnalysis 5 using the particle
propagator module is done in the following way: An event, which is part of a sample of
simulated events provided by some Monte-Carlo event generator, has been read from file
using the internal MadAnalysis 5 methods. It is represented by internal objects of
different types, in particular for the various particles and their properties, such as four-
vectors for the four-momentum and the decay vertex. The four-vectors are in general given
in the laboratory frame. This information is part of the event record and was generated
by the event generator under the assumption that there is no magnetic field. The role
of the propagator module, in its current state, consists in modifying this information to
account for a non-vanishing constant magnetic field ~B = B~ez, and compute corrected
values of the decay vertex positions, the initial particle momenta after production, and
the displacement variables d0 and dz, which include these effects.

The particle objects are organised in a tree-like structure that represents the decay
hierarchy, in which each particle is assigned a set of parent and child particles, generically
called mothers and daughters. The mother and daughter particle objects of a given particle
object are accessible in the code via pointer 3 variables. This is used e.g. to obtain the
position in space-time where the particle was produced, via the position of the decay vertex
of the mother particle. A particle, which is the decay product of some other particle, has one
mother, namely the decaying particle. The decay products of a particle are consequently
its daughter particles. Occasionally, a particle can have more than one mother. This
is possible, if it is produced directly in the hard scattering process from the colliding
particles. Another possibility is the recombination of particles within hadronisation. These
are special cases to the particle propagator module, which however do not introduce any
additional complications, as will be explained below. Meanwhile, it shall be assumed that
each particle has exactly one mother particle, except for the first particle of a decay
hierarchy/tree, and some number of daughter particles, except for the particles which do
not decay in the event. Each final state particle of the hard collision process is on top of
such a decay tree. Apart from the particles being interconnected through mother-daughter
relations, which effectively generates a tree-like structure, the whole set of particle objects

3. Pointers, a feature of the C++ programming language [428], are a type of variable that can store the
location of an object in memory [429].
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is also part of a list. This list reflects the structure of the event in the event record format.
While the exact details of the ordering of the particles within this list is not of interest
here, it is important to remark that mother particles always come before their daughter
particles. In other words, the list respects the time ordering of particle creation. It is
therefore convenient and safe to perform the different calculations and the modifications
of the particle properties following the order of this list of particle objects.

The central element of the propagator module is a method called ParticlePropagator,
which takes as argument a particle object, executes the different steps in the calculations
and manipulates the relevant properties of the particle object. Iterating through the list
from the beginning, the first particles encountered are the initial state particles. These
are the only particle objects in the list, for which the ParticlePropagator method is not
called. The first relevant particle is one of the final state particles of the hard event. It is
at the root of a decay tree. The production vertex of this particle is located at the origin
of the coordinate system, which is defined to be the center of the particle collision, and
its initial momentum is unaffected by the magnetic field. Furthermore, the time t = 0
coincides, per definition, with the collision. With this information, a parameterisation of
the trajectory ~x(t) of the particle as a function of time t is known, depending on its electric
charge either as a straight line through eq. (5.2.4) or as a helix through eq. (5.2.13). Also,
the point of closest approach and the displacement variables are easily computed with the
corresponding formulæ of the previous subsections. The variables d0 and dz are always
computed both exactly and in the approximation of straight line propagation. Then, the
new decay vertex position is computed by evaluating ~x(t) at the time of the decay. In
principle, this is all that is needed for the current particle. However, there is one more
important task, which needs to be accomplished in preparation for the computations with
the daughter particles: While for the first particle in the decay tree the magnetic field
has no impact on the initial momentum, it modifies the final momentum according to
eq. (5.2.11), evaluated at the time of the decay, if the particle is charged. This modification
is a rotation of the momentum in the x-y-plane. If the initial momenta of the daughter
particles were left unchanged, momentum conservation at the decay vertex would generally
be violated. For this reason, the same rotation concerns also the initial momenta of the
daughter particles. In praxis, the rotation angle is determined with an existing function of
MadAnalysis 5 and stored in a variable of the particle object, so that it is accessible
at any moment for the calculations concerning the daughter particles.

In the subsequent iterations through the list of particle objects, there are usually other
particles being produced directly in the hard process, which give rise to different decay
trees and where the same procedure is applied. The remaining particle objects correspond
to decay products of particles in different decay trees, i.e. they are at a lower position in
the decay hierarchy. For these, the calculations can be done along the same lines with a
few generalisations of the explained approach:

— The position ~xv of the particle creation in the formulæ parameterising the trajectory
is the point, where the mother particle decays. Likewise, the time t = 0 of the particle
creation corresponds to the time tmother

decay , at which the mother particle decays. In
order for the formulæ to be valid, the time t to be used is the time relative to the
decay time of the mother. Hence, for calculating the position and momentum at the
decay, the formulæ must be evaluated at t = ∆tprop = tparticledecay − tmother

decay , where the
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two decay times are given in the laboratory frame relative to the time of the particle
collision. In the previously considered special case of particles produced in the hard
process, the colliding particles are the mother particles and are considered in the
algorithm as decaying particles at the origin ~xv = ~0 at t = 0.

— The momentum must be rotated around the z-axis by the rotation angle stored in
the corresponding variable of the mother particle object prior to proceeding with
the parameterisation of the trajectory and the calculation of the related quantities.
The momenta of particles at the root of a decay tree are not rotated, since the
rotation angle stored in the mother particle objects (the colliding particles) is zero.
For particles with more than one mother, the rotation angle of the first mother
particle is used, which is a deliberate choice made in the implementation, which
does not have any consequences: This situation is expected to occur only in two
special cases: As mentioned above, a particle object can have the colliding particles
as mothers. The other possibility can arise in the process of hadronisation, where
particles are recombined into hadrons. In this case the recombining particles are
the mothers of the resulting composite object. It can safely be expected that the
rotation angle of the mothers is the same in these cases, as will be explained below.

— The rotation angle to be applied to the daughter particles is determined by calculating
the rotation of the final momentum at the decay with respect to the initial momentum
at the production and adding it to the value stored in the variable of the mother
particle. In this way, a particle accumulates all the rotations of the previous particles
in the decay chain.

— For particles at the end of a decay chain, i.e. without daughter particles, the calcu-
lation of the decay position is neither possible nor necessary. In this case, only the
point of closest approach and the displacement variables are calculated.

Applying these principles iteratively to all particle objects in the list, the entire event
can be corrected to include the effects of the magnetic field. A few more comments are in
order: It has been mentioned that event records can contain particles which combine to
hadrons, in which case the particle object for the hadron can have more than one mother.
One could come up with the idea that the magnetic field could affect the trajectories of
the combining particles and possibly alter in some way the recombination. In reality, there
is no such risk, as these hadronisation processes take place on very short time scales, i.e.
the lifetime of the recombining particles is zero.

If the time between creation and decay of a particle is very small (below some threshold
defined in the code), the propagator module does not calculate the decay position at all,
but it is simply set to its initial position. There are two reasons for this: On the one
hand, there is a risk to introduce numerical instabilities, i.e. the displacement between
production vertex and the calculated decay vertex can be significantly larger than the
physically correct result, which is related to the precision of the types of number variables
used in the calculations. This becomes particularly important, when the trajectory of a
charged particle is only slightly bent. In this case, the helix radius in the parameterisation
of the trajectory is huge. If the time interval ∆t for the propagation is very small, then
the position of the decay is ~x(t) ≈ ~xv, which according to eq. (5.2.13) requires enormous
cancellations in the x- and y-components between the p0,x/(qB) or p0,y/(qB) term and
the sine and cosine terms. In other words, the subtraction of a very large number from a
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very large number should give a very small number. This is likely to fail due to the limited
numerical precision of the calculations, i.e. the calculated distance between production and
decay vertex would be much bigger than for the mathematically correct result. For this
reason, it is safer in these cases to use the approximation that the particle decays where
it was created, without any impact on its momentum. Another reason is the performance
of the code. As a functionality which operates on practically all particles of an event, the
particle propagator module should avoid putting efforts into the calculation of negligible
effects, which would unnecessarily slow down the already computationally intensive analysis
process of MadAnalysis 5. However, the effect of this module on the performance
seems to be rather unimportant. In addition, the module is not active by default, i.e. it is
irrelevant for analyses which do not need to include the effect of a magnetic field or use
the displacement variables. For very small electric charges or very small magnetic fields,
the bending is also negligible. Therefore, in these cases the straight line propagation is
used. To illustrate the structure and of the particle propagator module, its behaviour is
summarised in terms of pseudo-code in algorithm 1.
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Data: Ordered list of all particle objects associated with a collision event
(initial+intermediate+final)

Result: List of all particle objects with corrected initial momenta and decay
vertices as well as the displacement variables d0, dz and the point of
closest approach

for particle in particle list do
if particle is not initial then

rotate momentum with rotation angle of the first mother particle;
calculate propagation time in lab frame:

∆tprop = tparticledecay − t
parent
decay ;

calculate the point of closest approach, d0 and dz assuming straight line
propagation;
if B u 0 or particle has charge |q| � e then

set rotation angle equal to rotation angle of first mother;
calculate decay vertex position in straight line propagation;

else
calculate helix parameters R, xh, yh, rh;
calculate the point of closest approach, d0 and dz assuming helix
propagation (keeping the straight line values as approximate values);
calculate momentum components pfinalx and pfinaly at the decay;
calculate rotation angle of the particle object from components of the
initial and final momentum pinitialx , pinitialy , pfinalx , pfinaly ;
calculate decay vertex in helix propagation;

end
end

end
Algorithm 1: Pseudo-code for the particle propagator module of SFS in
MadAnalysis 5.

5.2.4 Impact and limitations of the propagator module

The propagator module that has been described in section 5.2.3 serves essentially two
purposes: On the one hand, the particle trajectories of intermediate charged particles
in the presence of a magnetic field ~B = B~ez are bent around an axis that is parallel
to the z-axis, which would otherwise just propagate along a straight line, resulting in a
correction of the decay vertex positions. On the other hand, the impact parameters d0
and dz are determined based on extrapolations of the particle trajectories, which also
include this bending. For the analyses considered in sections 5.3 and 5.4, which rely on
both the displaced vertex positions and the impact parameters, the effects simulated by
the propagator module are sufficient. In these analyses, the displaced vertex positions are
required to be in a fiducial volume which is part of the inner detector volume, where the
assumption of a homogeneous magnetic field parallel to the z-axis is realised. Apart from
these effects, another side effect is the modification of some of the final state momenta,
which are rotated around the z-axis. It is important to note that the final state momenta
computed by the propagator module are the momenta of the final state particles right after
their production. In other words, the simulation does not include any propagation of final
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state particles in the detector volume. In order for such a propagation to be meaningful,
it would be necessary to specify to which point the particle propagation should end. For
example, the particles could be propataged to the surface of a cylinder that could represent
a simple model of the geometry of the tracker. It would be straightforward to extend the
propagator module with such a feature, but it is currently restricted to the effects, which
are potentially relevant for the analyses presented in this work. A possible consequence
of the propagation of final state particles could be the effect that soft final state hadrons
follow a helix trajectory with small radius, such that they propagate towards one of the
endcaps of the tracker instead of escaping it by traversing barrel detector parts. Simulating
such a behaviour could prevent these hadrons from being clustered into a jet and therefore
have some effect on the jet properties.

In order to appreciate the effect of the particle propagator module on event samples
and check whether it works as expected, a sample of 50 000 Monte-Carlo events of the
signal process in the CMS analysis presented in section 5.3 has been used. This section
contains more details on the signal model and process, which will however not be relevant
here. The simulated hard process is stop pair production

pp → t̃1t̃1 , (5.2.22)

where the stop t̃1 is assumed to be long-lived, here with a lifetime corresponding to
cτ = 1 m, whereas the mass of the stop will be varied. After production, the stops are
confined into R-hadrons, some of which are charged. The masses of the R-hadrons are
almost equal to the stop mass. There are three stop decay modes t̃1 → b` with branching
ratios Br(`) = 1/3 for ` = e, µ, τ , which are responsible for the R-hadron decays. Only the
electron and muon decay modes will be relevant here.

In a first step, it will be checked whether the rotation angle between the initial and
final momenta of the long-lived R-hadrons, caused by the bending of the trajectories, is
consistent with the expectations from the mass and lifetime of the R-hadrons. According
to eq. (5.2.12), this rotation angle for a particle decaying after a time t in the lab frame
(or t0 in its rest frame) is obtained via

∆ϕ = ωt = qc2B

E
t = qc2B

E
γt0 = qc2B

E

E

mc2 t0

= qcB
ct0
mc2 ,

(5.2.23)

so for a given stop mass and a fixed magnetic field, the rotation angle of the momentum
is proportional to the decay time in the particle’s rest frame.

With a magnetic field B = 4 T and a charge q = ±e, the factor qcB evaluates to

qcB ≈ ±3× 108×4 eV/m = ±1.2 GeV/m . (5.2.24)

Considering three different stop masses of 20, 100 and 700 GeV and supposing that the
particle decays after the mean lifetime, ct0 = cτ = 1 m, one obtains a momentum rotation
∆ϕ of 0.06, 0.012 and 0.0017 rad respectively. This calculation gives a rough idea of the
order of magnitude for the momentum rotation that can be expected for the given lifetime.

A more detailed comparison of the expected and observed effect can be done using
histograms in ∆φ. These were generated using MadAnalysis 5 in its expert mode by
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writing a simple analysis, which selects only events with exactly one electron and one
muon in the final state. In this way, the two long-lived R-hadrons, from which they must
originate, can be accessed via pointers to the mother particle objects. In particular, the
analysis identifies via the PDG-codes [430] of the particles the following singly-charged
R-hadrons involving the stop, and their anti-particles:

R+
t̃1d
, R+

t̃1s
, R+

t̃1b
, R+

t̃1ud0
, R+

t̃1ud1
, R+

t̃1su0
, R+

t̃1su1
.

Their ∆ϕ value is taken from the corresponding variable of the particle object, where
it has been stored beforehand by the particle propagator module, and a corresponding
histogram entry is generated.

To derive the expected shape of the histogram, the probability distribution of the
decay time is needed. The probability of an unstable particle with decay constant Γ = 1

τ
to decay in a time interval [t0, t0 + dt0] (where the subscript 0 indicates that the time is
given in the particle’s rest frame) is given by p(t0)dt0, where p(t0) is a probability density
of the form [431]

p(t0) = Γe−Γt0 . (5.2.25)

Let ∆t0,bin be the time interval corresponding to the interval ∆ϕ of a bin in the histogram.
Then the number of LLPs decaying within in the ϕ-interval of bin i is calculated via

Ni = NLLPs

t0,i+∆t0,bin∫
t0,i

dt0 p(t0)

= NLLPs
(
e−Γt0,i − e−Γ(t0,i+∆t0,bin)

) (5.2.26)

where NLLPs is the total number of selected R-hadron decays (corresponding to twice the
number of selected events).

Figure 5.3 shows the histograms for the rotation angles of the selected R-hadron decays
as well as the theoretical expectations according to eq. (5.2.26). The obtained histograms
are in excellent agreement with the expectations, confirming that the propagator module
works as it should for the given samples.

The same samples and selected events can be used to observe the difference between
the exact and approximate formuale of the impact parameters d0 and dz. Here, only the
relative difference between the two formulae for d0 shall be studied, given by

δd0 = d0 − d0,approx
d0,approx

. (5.2.27)

This quantity is evaluated for the electrons and muons produced in the selected t̃1/R-
hadron decays. The results are shown in figures 5.4 and 5.5. No significant difference
between the electron histograms and the corresponding muon histograms can be observed.
However, the mass of the long-lived R-hadrons plays an important role. The lower the
LLP mass, the bigger the difference between the exact and the approximate formula. This
can be understood via the fact that a low mass leads to a high relativistic gamma factor
for a given total energy, which is relevant for the lifetime of the LLP in the laboratory
frame and therefore for the distance of the electron or muon production vertex from the



5.2. Simulation of particle trajectories in the SFS framework 111

primary vertex. As a consequence, also the difference between the two formulas for d0
becomes more important.

Even though the histograms in figures 5.3-5.5 show effects of the propagator module,
these do not necessarily have important consequences on the results of an analysis. In
particular, no significant difference was observed for the analyses presented in sections 5.3
and 5.4 with and without the presence of a magnetic field.
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Figure 5.3: Histograms of the rotation angle between the initial and final momenta of selected
singly-charged R-hadrons involving the stop t̃1, which follow a bent trajectory under the influence
of a magnetic field ~B = B~ez. The histograms were generated with Monte-Carlo event samples for
three different stop masses. All selected long-lived R-hadrons have roughly the same mass as the
stop.
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Figure 5.4: Relative difference δd0 between the exact and approximate formulæ of d0 for electrons
originating from the decay of the selected long-lived R-hadrons for samples of three different stop
masses.
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Figure 5.5: Relative difference δd0 between the exact and approximate formulæ of d0 for muons
originating from the decay of the selected long-lived R-hadrons for samples of three different stop
masses.
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5.3 Displaced leptons in the eµ channel (CMS-EXO-16-022)

The analysis presented in ref. [355] is a search for long-lived particles which decay into a
pair of charged leptons, precisely one electron and one muon. It has been carried out by the
CMS collaboration in 2015, i.e. at the beginning of the Run-2 data-taking period of the LHC
at
√
s = 13 TeV with a data-sample corresponding to an integrated luminosity of 2.6 fb−1.

This search supersedes the 8 TeV analysis described in ref. [375]. The electrons and muons,
which potentially originate from LLP decays, are identified via the transverse distance of
their tracks from the primary interaction vertex, i.e. via the transverse impact parameter
d0. The analysis targets events with exactly one electron-muon pair with displaced tracks.
The selected events are categorised into three signal regions, depending on the two values
of d0, c.f. table 5.4. No significant excess over background has been observed in the data
sample. The signal model for which the results of the analysis are interpreted is the
Displaced Supersymmetry model [432], which goes beyond the MSSM by introducing a
hidden sector that breaks R-parity via the introduction of bilinear superpotential terms
of the form

W ⊃ µL,iLiHu , (5.3.1)

leading to mixing between the (scalar) leptonic fields and the Higgs(ino) fields. All other
R-parity violating operators are assumed to be suppressed. Going to the mass eigenbasis,
the bilinear terms in the previous equations generate the following superpotential terms:

W ⊃ εiydjkLiQjDk + εiy
e
jkLiLjEk . (5.3.2)

Here εi = µL,i
µ is the mixing angle, with µ being the coefficient in the bilinear (R-parity

conserving) superpotential term µHuHd. These terms violate lepton number. Constraints
from proton decay are avoided by the suppression of baryon number violating operators,
since both B and L must be violated for the proton decay to occur. Under the premise
that µi � µ, the mixing angle is small. The new operators would allow the lightest
supersymmetric particle (LSP) to decay to SM particles, leading to weaker constraints
from missing energy searches. Furthermore, if the mixing angle is sufficiently small, the
LSP could be long-lived such that it escapes prompt searches. In the CMS displaced
leptons search it is assumed that the top squark t̃1 is the LSP and is considered as the
LLP candidate. The first term in eq. (5.3.2) is responsible for the decays t̃1 → b` with
` = e, µ, τ , which happen with equal branching ratio of 1/3 for all leptons, if lepton flavour
universality is assumed.

An implementation of this analysis [433] is already part of the Delphes-based Public
Analysis Database (PAD) [216] of MadAnalysis 5 and has now been adapted to the
SFS framework. The details of the new implementation are documented in this section.
While the selection criteria are rather straightforward to apply, the major difficulty in this
search is the lack of information about the lepton detection efficiencies for highly displaced
tracks. Since the CMS collaboration does not provide publicly available auxiliary material
for the re-implementation of this particular analysis, we have to rely on information related
to the superseded analysis [375], published in [434]. However, this rudimentary approach
is not a very satisfactory solution and limits the reliability of the analysis for recasting
other models. This matter will be discussed more extensively in sections 5.3.2 and 5.3.3.



116 Chapter 5. Implementation and reinterpretation of long-lived particle searches

5.3.1 Selection criteria

The event selection of this analysis can be divided into two stages: In a first step, the
preselection, only events which fulfill a certain number of requirements such as the types
of reconstructed objects and their kinematics as well as isolation criteria are accepted.
The selected events are then distributed among different signal and control regions. Note
that the transverse impact parameter d0 is a signed quantity, but the analysis does not
take into consideration the sign, so only the absolute value |d0| is used. In the following, a
more detailed description of the selection criteria and the definitions of the event regions
is given.

5.3.1.1 Preselection

The analysis targets events with exactly one electron and one muon in the final state,
which are clearly identified as such and which fulfill all preselection cuts. The particle
reconstruction is done with the particle-flow event reconstruction algorithm [435] based on
information from the different detector parts of CMS, which are combined to reconstruct
the stable particles, i.e. identify their types and determine the flight direction and energy.
More specifically, independently reconstructed tracks from hits in the inner tracker and in
the muon system are combined for the reconstruction of muon candidates [436], whereas
electron candidates are reconstructed based on the combination of hits in the inner tracker
and clusters of energy deposit in the electromagnetic calorimeter [437].

The electron and muons candidates must fulfill the following requirements in the
preselection stage: The imposed lower bounds on the pT values are different for electrons
(42 GeV) and muons (40 GeV). In both cases, the absolute value of the pseudorapidity |η|
must not exceed the value 2.4, which is explained by the acceptance of the CMS detector.
Furthermore, electrons in the overlap region of the barrel and endcap detectors (|η| between
1.44 and 1.56 [375]) are rejected due to a lower detector performance compared to the
other detector regions. In addition the leptons must satisfy isolation conditions, which
impose an upper limit on an isolation variable pisoT defined as the scalar sum of pT of
all other particles reconstruction with the particle-flow algorithm within a cone with a
specified size ∆R =

√
(∆η)2 + (∆φ)2 around the lepton’s momentum. The limit on the

isolation sum is fixed by the lepton momentum and in the case of electrons also depends
on |η|, since different values are used in the barrel and endcap regions of the detector. A
summary of the selection criteria of electron and muon candidates considered in the event
preselection, including the relevant values for the isolation cone, is given in table 5.2.

Having identified a set of electrons and muons in the final state of an event according
to the above requirements, the acceptance of the event is conditioned by the following
rules:

— The set of selected leptons must contain exactly one electron and one muon.
— The leptons must carry opposite charge.
— The electron and muon momenta must be separated by ∆R > 0.5.

Besides these criteria, which are given explicitly in the analysis summary, additional
conditions adopted from [434] and slightly modified are imposed on the position of the
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Electrons Muons

Transverse momentum pT > 42 GeV pT > 40 GeV
|η| < 1.44

Pseudorapidity or |η| < 2.4
1.56 < |η| < 2.4

Isolation cone ∆R < 0.3 ∆R < 0.4
Isolation variable
barrel (|η| < 1.44) pisoT < 0.035 pT

pisoT < 0.15 pTendcaps (|η| > 1.56) pisoT < 0.065 pT

Table 5.2: Summary of selection criteria of electrons and muons imposed in the preselection.

production vertex ~vprod = (vx, vy, vz) of the leptons relative to the primary vertex. These
requirements, which are identical for the electron and the muon, are:

v0 =
√
v2
x + v2

y < 10 cm , vz < 30 cm . (5.3.3)

The superseded analysis [375], for which the information in [434] was originally made
available, give these criteria with an upper bound on v0 of 4 cm. Even though these
requirements are not explicitly justified, and are not even mentioned in the selection
criteria of either of the analyses, it is likely that they are related to the reconstruction
performance of the CMS tracker. Therefore, it has been decided to include them into the
implementation, but with a higher upper limit on v0. This is motivated by the design of
the new analysis, which is supposed to probe values of |d0| up to 10 cm. From the definition
of d0, it follows that |d0| ≤ v0. Therefore the upper bound on v0 has been raised to 10 cm.

5.3.1.2 Control and signal regions

Several regions are defined to classify the events solely on the basis of both lepton
transverse impact parameters |d0,`|, as they are strongly correlated with the lifetime of the
supposed long-lived particle, from which the selected leptons might originate. The regions
are defined in the (d0,e, d0,µ) space and cover absolute values |d0,`| ranging from zero to
10 cm.

The analysis note shows four different background control regions (CR), which are used
to verify the consistency of the Monte-Carlo simulations carried out for the background
estimates by the CMS collaboration. These regions are given here for completeness, but
they are not part of the implementation in MadAnalysis 5 since they are not used to
determine exclusion limits for production cross-sections of the signal process. The first
control region (CR I) collects events characterised by a prompt electron-muon pair, i.e.
with small transverse displacement |d0| < 100µm for both, while the second control region
(CR II) requires a somewhat bigger displacement of 100µm < |d0,`| < 200µm for both
leptons. The remaining two control regions (CR III+IV) allow one of the leptons to be
highly displaced, while for the other one only a small displacement is tolerated. There is
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some overlap of these two regions, which corresponds to CRII. The exact definitions of all
control regions are listed in table 5.3.

Control region Defining cuts

CR I: Prompt Control region |d0|e,µ < 100µm

CR II: Displaced Control Region
100µm < |d0,`| < 200µm

for ` = e, µ

CR III: Displaced Electron Region
100µm < |d0,e| < 10 cm
|d0,µ| < 200µm

CR IV: Displaced Muon Region
100µm < |d0,µ| < 10 cm
|d0,e| < 200µm

Table 5.3: Definition of the control regions conforming to table 1 of ref. [355].

The analysis uses three different signal regions (SR), which classify events according
to the smaller of two absolute values |d0,e| and |d0,µ|. In other words, each region imposes
a lower bound on |d0| that both leptons must respect. The lower bound is 200µm for SR I,
500µm for SR II and 1000µm for SR III. Simultaneously, there is no overlap between the
signal regions. For instance, an event that falls into SR III is excluded from SR I and SR II.
The criteria for the signal regions are summarised in table 5.4. A graphical representation
of both the signal and the control regions is given in figure 5.6.

Signal region Defining cuts

SR I: Loose Search Region
|d0,`| > 200µm for ` = e, µ

|d0,e| < 500µm or |d0,µ| < 500µm

SR II: Medium Search Region
|d0,`| > 500µm for ` = e, µ

|d0,e| < 1000µm or |d0,µ| < 1000µm

SR III: Tight Search Region |d0,`| > 1000µm for ` = e, µ

Table 5.4: Definition of the signal regions conforming to table 1 of ref. [355]. In addition to the
criteria listed explicitly, all regions respect the |d0| upper cut of 10 cm for both leptons.

5.3.2 Efficiencies

As mentioned earlier, no dedicated supplementary material is made public for this
analysis, making it difficult to accurately model detector effects under the conditions
when the data for this analysis was recorded. It is common practice to parameterise the
detection efficiency of prompt leptons in terms of kinematic variables such as pT and η.
Though, the focus of this analysis is on displaced leptons and consequently builds upon
the reconstruction of their tracks. The reconstruction efficiency must therefore be included
into the implementation of the analysis and it is natural to expect that it depends in some
way on the displacement relative to the primary vertex.
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Figure 5.6: Graphical representation of the control and signal regions, generated on the basis of
figure 1 in ref. [355]. The squared area enclosed by the red dash-dotted line corresponds to the
range in which the d0-dependence of the electron and muon reconstruction efficiency given by [434]
(supplementary material of the superseded analysis [375]) is assumed.

Presumably the most sensible strategy to cope with the lack of information is to resort
to the available contents provided for the superseded analysis [375] in [434], specifically
the two plots of the |d0|-dependent reconstruction efficiencies for electrons and muons (c.f.
figure 5.7). Clearly, this can only serve as an approximation that introduces a system-
atic uncertainty into results obtained from this re-implementation. Besides the increased
center-of-mass energy (13 TeV vs. 8 TeV), many modifications on hardware and software
could have altered the reconstruction efficiencies, which is impossible to assess without
being involved in the internal procedures of the experimental collaboration. Even more
problematic is the fact that the provided efficiencies only cover the range |d0| < 2 cm,
corresponding to the coverage of the signal regions of the superseded analysis. On the
other hand, the Run-2 analysis which is presented here allows for higher transverse impact
parameters up to 10 cm in all signal regions. The parts of the signal regions covered by the
efficiencies from [434] is highlighted in red in figure 5.6. Outside of this region, one can only
speculate about the behaviour of the |d0|-dependence of the reconstruction efficiencies.

Instead of using the tabulated values for the reconstruction efficiencies, a polynomial
fit was realised by the author of [433], which is also used in the new implementation and
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is valid for |d0| < 2 cm:

εreco,e(|d0|) =0.924921− 0.917957
( |d0|

cm

)
+ 0.522007

( |d0|
cm

)2
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cm

)3
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,

(5.3.4)

εreco,µ(|d0|) =0.99067− 0.271852
( |d0|

cm

)
+ 0.743217

( |d0|
cm

)2
− 0.611108
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(5.3.5)

The tabulated efficiencies and the fits are shown in figure 5.7. Above transverse impact
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Figure 5.7: Reconstruction efficiencies of electrons andmuons [434] of the superseded CMS analysis
[375]. The plot was generated with data files from the corresponding HEPData entry [438, 439].
Polynomial fits for this data as described in eqs. (5.3.4) and (5.3.5) are shown, which were generated
by the authors of [433] and will also be used in the new implementation of the more recent analysis.

parameters of 2 cm, it is assumed that the reconstruction efficiencies drop with a constant
slopes from the approximate values at |d0| = 2 cm, which are 0.8 for muons and 0.15 for
electrons. For muons, a slope of 0.1 cm−1 is used, motivated by the observed reduction of
the efficiencies below 2 cm. For electrons, it is assumed that they are reconstructable in
the entire range of the transverse impact parameter below 10 cm, which is of interest in
the analysis, but the efficiency is zero above this value. Thus, the efficiencies are described
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by

εreco,e(|d0|) = 0.15− 0.15
8 cm × (|d0| − 2 cm) and (5.3.6)

εreco,µ(|d0|) = 0.8− 0.8
8 cm × (|d0| − 2 cm) for 2 cm < |d0| ≤ 10 cm (5.3.7)

and
εreco,e(|d0|) = εreco,µ(|d0|) = 0 for |d0| > 10 cm . (5.3.8)

Clearly, there is no particularly good reason for these assumption other than the observation
that the given efficiencies tend to decrease for higher impact parameters and that the
efficiencies should not drop to zero in the relevant range. Otherwise, without any knowledge
about the efficiencies, other assumptions could be just as good, and the validation procedure
will have to show whether the assumptions are appropriate.

The issue of the unknown reconstruction efficiencies was also encountered by the
authors of CheckMATE [236, 237], who adopted a different approach [440]. Their imple-
mentation uses the tabulated efficiencies for impact parameters below 2 cm and constant
values of 0.01 for muons and 0.06 for electrons above this value. These values were cer-
tainly chosen mainly with the aim to reproduce the CMS results, but the drastic drop at
|d0| = 2 cm seems rather implausible. The CheckMATE results still deviate from CMS
results for higher lifetimes in the range cτ > 100 mm [440]. However, large deviations for
these lifetimes can also be observed in the SFS implementation of the analysis.

According to the instructions in [434], the |d0|-dependent reconstruction efficiencies
need to be convoluted with pT -dependent selection efficiencies, which are shown in figure 5.8,
and a trigger efficiency of 95 %.
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Figure 5.8: Selection efficiencies of electrons and muons [434] of the superseded CMS analysis [375].
The plot was generated with data files from the corresponding HEPData entry [438,439].
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5.3.3 Validation

The signal process considered in the analysis summary [355] is the production of a
squark-antisquark pair, p p→ t̃1t̃

∗
1, which gives rise to the electron-muon pair through the

subsequent decay of the supposed long-lived stop, t̃1 → b` with ` = e, µ. For four different
lifetimes ranging from 0.1 to 100 cm/c, the number of signal events in the three signal
regions are given explicitly in table 4 of the analysis summary, where a stop mass value
of Mt̃1 = 700 GeV was assumed.

To reproduce these results, samples of 400 000 events for the same four lifetimes have
been generated with Pythia version 8.244 [280, 281]. To this end, a parameter card
which is provided in the examples folder of Pythia (sps1aNarrowStopGluino.spc) and
corresponds to the benchmark scenario (SPS 1a) 4 of minimal supergravity (mSUGRA)
defined in ref. [441]. The decay table of the stop has been replaced by one that includes
only the decays of interest, t̃1 → b` with equal branching ratios Br(`) = 1/3 for ` = e, µ, τ ,
as required by the analysis summary. Likewise, the stop mass is set to 700 GeV.

For comparison with the CMS experimental results and simulations, the overall efficien-
cies εSRi of the signal regions need to be multiplied with the expected number of events
for the simulated process, i.e. its total cross section σ times the integrated luminosity Lint:

NSRi = σ × Lint × εSRi with εSRi = wfinal,i
winitial

. (5.3.9)

Here winitial and wfinal are the sum of weights of the sample before cuts and after the cuts
of SRi. To reproduce the CMS results, the cross section for the stop production process
used in the calculations for a 700 GeV stop is given at next-to-leading-order and next-to-
leading-logarithm (NLO+NLL) by σ ≈ 67.05 fb with an uncertainty of about 13 % [447].
The results are shown in table 5.5.

The table shows good agreement for the lifetimes up to cτ = 10 cm. A slightly higher
deviation is observed in SR3 for the smallest lifetime. Excessively high deviations are
observed for the highest lifetime with cτ = 100 cm. The deviations are probably related
to the insufficient knowledge about the |d0|-dependent reconstruction efficiencies, which
concern especially SR3 and all signal regions for the highest lifetime. The choice of the
additional requirement on v0 could also have an effect on these numbers. Statistics might
also play a role in the poorly populated regions, but is presumably less important, given
the high number of generated events. In total, the results are rather satisfying for cτ up
to 10 cm.

4. The Snowmass Points and Slopes (SPS) [441] are specific sets of parameters and lines in the parameter
space of the MSSM which arise from different supersymmetry breaking mechanisms. The chosen breaking
scenarios are minimal supergravity (mSUGRA) [442–445], gauge-mediated SUSY breaking (GMSB) [446] and
anomaly-mediated SUSY breaking (AMSB) [381,382], which all drastically reduce the number of parameters
of the MSSM introduced through the most general SUSY-breaking Lagrangian. The benchmark scenarios
are then specified in terms of a selected point in the remaining parameter space and possibly one free
parameter on which the others can depend. The details about the scenarios can be found in ref. [441].



5.3. Displaced leptons in the eµ channel (CMS-EXO-16-022) 123

cτ [cm] SR1 SR2 SR3
MA5 / CMS MA5 / CMS MA5 / CMS

0.1 3.7 / 3.8± 0.2 0.97 / 0.94± 0.06 0.21 / 0.16± 0.02
δε = 1.7 % δε = 3.2 % δε = 33.8 %

1 4.8 / 5.2± 0.4 4.2 / 4.1± 0.3 7.5 / 7.0± 0.3
δε = 7.6 % δε = 2.0 % δε = 6.7 %

10 0.89 / 0.8± 0.1 1.1 / 1.0± 0.1 6.5 / 5.8± 0.2
δε = 10.8 % δε = 7.0 % δε = 11.8 %

100 0.043 / 0.009± 0.005 0.06 / 0.03± 0.01 0.58 / 0.27± 0.03
δε = 378.4 % δε = 86.3 % δε = 114.1 %

Table 5.5: Expected number of events passing the selection criteria of the signal regions, obtained
with the SFS implementation of the analysis, compared with CMS results. The relative deviation
of the efficiency is given by δε. The numbers are given with the same number of digits as for the
CMS results and uncertainties. Deviations above 15 % are highlighted in red.

The results presented in table 5.5 allow for a direct comparison between MadAnal-
ysis 5 and CMS results for the individual signal regions. However, they are limited to
a fixed mass value of the long-lived stop. Even though no similar tables are available for
other stop masses, the implementation can further be tested by generating an exclusion
curve in the parameter space of the stop mass and lifetime/proper decay length compa-
rable to the one provided in the article of the analysis. For this purpose, a scan in the
parameters (mt̃1 , cτ) was performed in a region around the CMS exclusion curve. The
latter has been reproduced from the original figure by hand, since no tabulated data is
available to reproduce the figure. A spacing of 5 GeV in the stop mass has been chosen,
according to the cross section table provided in [447], from which the cross section values
have been used in order to determine whether a parameter point is excluded. The spacing
in cτ corresponds to the minor ticks displayed on the vertical axis in figure 5.9, as in
the original figure. For each point in this parameter space, a sample of 100 000 events has
been simulated in the same manner as for the four different lifetimes in table 5.5. Upper
limits on the stop production cross section were obtained separately for each signal region
using the CLs method [282], and a parameter point is considered here as excluded, if it is
excluded by at least one signal region. The results of the parameter scan in comparison
with CMS results is displayed in figure 5.9.

Even though the results are not in perfect agreement, one can see that the global trend
of both curves is the same. In particular, one can see that for the previously tested mass
value of 700 GeV the agreement is very good. It is interesting to note that in contrast to
the findings in table 5.5, the best agreement is obtained for the highest lifetimes, whereas
for cτ < 10 cm some significant deviations can be observed. In particular, the kink in
the curve around cτ = 1 cm seems rather unusual. Nevertheless, given the low amount of
material for the analysis, the obtained curve seems reasonably close to the CMS curve.
Except for the lowest lifetimes, the implementation is rather more permissive, and hence
more conservative, as it excludes less parameter space.
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Figure 5.9: Comparison of the exclusion curve obtained using the MadAnalysis 5 (SFS)
implementation of the analysis and the CMS exclusion curve. The CMS results have been extracted
by hand from the original figure provided in the article of the analysis [355].

5.3.4 Conclusions on the analysis

The analysis is a relatively simple example of a long-lived particle search, that can easily
be implemented within the MadAnalysis 5 and SFS framework. It has been useful to
test the new particle propagator module and detect problems in its implementation. Its
main deficit is the insufficient knowledge about the |d0|-dependence of the reconstruction
efficiencies. This problem has been handled using a guess of the reconstruction efficiencies
in the range 2 cm < |d0| < 10 cm. With this choice, a satisfying agreement with tabulated
CMS results in the signal regions with high event population can be obtained. The
obtained exclusion curve is reasonably close to the CMS results and tends to be slightly
less restrictive. Clearly, the implementation is not perfect, but after all the results obtained
in the validation are rather satisfying.
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5.4 Displaced vertices of oppositely charged leptons (ATLAS-
SUSY-2017-04)

This ATLAS search [348] targets events with displaced vertices (DV) associated with
a pair of leptons (ee, eµ or µµ) with invariant mass greater than 12 GeV. It uses data
samples from 2016, i.e. during then Run-2 period of the LHC at

√
s = 13 TeV. The value of

the integrated luminosity is indicated as 32.8 fb−1 (with an uncertainty of 2.2 %) [448,449].
Two different models with different signal processes and topologies as well as coupling
scenarios are investigated, namely a simplified RPV SUSY model and a Z ′ toy model.
The latter has merely been chosen as a prototype of a two-body LLP decay in order to
obtain efficiencies which can be applied to comparable models. As stated in the article
of the analysis, a long-lived Z ′ is not expected to be viable but excluded by searches for
displaced hadronic jets, because the coupling to qq̄ which induces its production should
also contribute to the decay with a high branching fraction. As opposed to the CMS
analysis presented in the previous section, this analysis requires the muons to originate
from the same DV. Nevertheless, it allows for several DVs per event. Moreover, an event
is not rejected automatically when a DV does not fulfill all of the requirements imposed
by the cuts, as long as there is at least one other DV surviving the cuts. In this search,
no event with a dileptonic displaced vertex compatible with all selection criteria has been
observed.

An extensive amount of auxiliary material for the reinterpretation of the results of
this analysis is provided in the HepData entry of the analysis [450] and in [451]. Most
importantly, the auxiliary material contains information about the reconstruction effi-
ciency of displaced vertices and the vetoes which are applied in the different detector
regions and have a significant effect on the final result. Including this information into
the implementation of the analysis is therefore crucial for reproducing the ATLAS results.
The deficit of the reconstruction efficiencies is their model dependence which requires
special attention on the user’s side. Nonetheless, it can be expected that the efficiencies
give accurate results when the decay topology of the signal process coincides with one of
the signal processes considered in the analysis.

5.4.1 Selection criteria

The search is designed to allow for more than one displaced vertex per event. The
event selection is composed of two types of cuts. In a first step, a number of cuts keep
or reject events as a whole. Then, the remaining cuts perform a selection of displaced
vertex candidates and do not reject events unless the number of vertex candidates has
been reduced to zero.

The validity of the implementation can in principle be checked in detail against cutflow
tables which are part of the auxiliary material in [451]. Currently, the comparison with
these tables is essentially limited to the final numbers after all cuts due to the missing
simulation of pile-up in the SFS framework, as will be detailed in section 5.4.4.2. From
pile-up events, one can expect additional displaced vertices of soft hadrons, which are
successively removed by imposing the different vertex selection criteria. Despite the limited
reproducibility, the tables contain valuable information about the effect of the different
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cuts on the number of surviving events and vertices of different kinds. In the following,
the selection criteria are presented and their applicability within MadAnalysis 5 and
the SFS framework is explained.

5.4.1.1 Event level requirements

Triggers: Three triggers with different requirements on the transverse momenta and
pseudorapidities are used to select events with possibly displaced electron and muon
candidates. A muon trigger requires a track in the ATLAS muon system with
pT > 60 GeV and |η| < 1.05. The MadAnalysis 5 implementation only uses
muons to evaluate these criteria. Two different photon triggers are used which
are sensitive to electromagnetic showers induced by potentially displaced electrons.
Here, the conditions are the presence of a photon with pT > 140 GeV for the single
photon trigger or two photons with pT > 50 GeV for the diphoton trigger. In the
MadAnalysis 5 implementation, these criteria are evaluated for both photons
and electrons candidates, since the latter can give rise to photons when interacting
with the detector components. At least one of the three triggers must be fired in
order for an event to be kept.

Preselection: An additional set of criteria is applied, depending on the trigger require-
ments which are fulfilled. The details are listed in table 5.6. These preselection
criteria check the presence of one or two candidates of the reconstructed particles
(e, µ, γ) with different constraints on pT , η and in some cases the transverse impact
parameter d0. Electrons fall into two different categories: Usually they must have
an impact parameter |d0| > 2 mm, but this condition is dropped if they satisfy the
loose electron isolation criteria. These can easily be implemented following a cone
isolation approach, as for the CMS analysis. Two different isolation criteria must
be fulfilled for loose electrons, where different cone sizes are used [452]: Calorimeter
isolation requires the sum of Econe20

T in a cone around the considered electron with
fixed size ∆R < 0.2 to be as small as

Econe20
T

pT
< 0.2 , (5.4.1)

whereas the track isolation restricts the scalar sum of pT of all other tracks in a cone
with variable size ∆R < ∆Rmax = 0.2 around the electron track to

pvarcone20T

pT
< 0.15 with ∆R = min

( 10
pT [GeV] ,∆Rmax

)
. (5.4.2)

For muons, the quality of the reconstruction determines whether a displacement
of |d0| > 1.5 mm is enforced: If a muon leaves a track both in the inner detector
and the muon system and the agreement is good (such that χ2/DoF < 5), then
the d0-criterion is applied. Otherwise, only the remaining requirements are used
in the preselection. Simulating such a behaviour within MadAnalysis 5 seems
very difficult and in contradiction with the SFS philosophy of keeping the detector
simulation simple and fast. A detailed knowledge of the detector components and
the reconstruction algorithms would be needed. The implementation of the analysis
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therefore includes the d0-criterion for all muons, which does not seem to cause serious
problems in the final results.

Cosmic-ray veto: A small proportion of muons in an event record might not be related
to the final state of the collision event but a coincidence of a cosmic ray muon passing
through the detector in the time frame while the event is recorded. Such a muon
is expected to be falsely identified as two oppositely charged muons, one of which
being associated with the entering muon, since the detector hits of the muon entering
the detector would be reconstructed in the direction opposite to its true direction,
leading to the interpretation of a muon that leaves the detector. Determining the
charge of the particle using the bending of its trajectory in the magnetic field of the
detector obviously leads to the wrong sign, when the wrong direction is assumed.
Furthermore, since cosmic ray muons are unrelated to the collision events in the
detector, the displacement of the oppositely charged muon pair could give rise to
the reconstruction of a displaced vertex with high invariant mass. Therefore, events
containing a pair of muons with nearly opposite momenta are rejected. Precisely,
these are muon pairs with pseudorapidities η1,2 and polar angles φ1,2 such that

∆Rcos ≡
√

(|φ1 − φ2| − π)2 + (η1 + η2)2 < 0.01 . (5.4.3)

Primary vertex: A primary vertex must be identifiable based on at least two tracks
and the highest scalar sum of p2

T of its tracks compared to all other vertices. The
position of the primary vertex is a necessary reference point in order to specify the
displacement of other vertices. This criterion is not implemented, because the collision
point in Monte-Carlo events usually coincides with the origin of the coordinate
system, and there is mostly enough activity related to the primary vertex so that it
can be well identified.

Displaced vertex: Finally, the events must contain tracks which form at least one dis-
placed vertex. To allow for highly displaced vertices, the ATLAS standard tracking
algorithm is supplemented with a large radius tracking algorithm [453], which signif-
icantly relaxes the requirements on the tracks, e.g. it raises the |d0| upper limit from
10 mm to 300 mm and the |dz| upper limit from 250 mm to 1500 mm. The locations
of displaced vertices are obtained from the reconstructed tracks with a vertexing
algorithm via the successive combination of intersecting tracks (taking into account
the uncertainties of the track reconstruction) to vertices and merging of vertices
when their distance is small enough. The details of the algorithm are described in
ref. [338]. In this analysis, only tracks with the following requirements are accepted
in the displaced vertex reconstruction:

pT > 1 GeV , 2 < |d0| < 300 mm , |dz| < 1500 mm . (5.4.4)

Monte-Carlo events already contain the information about the vertex positions,
which can be slightly modified, if the magnetic field is taken into account using the
particle propagator module. Again, it is not the aim to simulate in a complicated
manner detector and reconstruction effects to reproduce the performance of the
ATLAS detector and its various algorithms. Instead, the implementation of the
analysis simply generates an object representing a displaced vertex for each external
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Trigger Cand. 1 pT [GeV] |η| |d0| [mm] Cand. 2 pT [GeV] |η| |d0| [mm]
µ µ > 62 < 1.07 > 1.5 (∗∗) no candidate 2 required

γ

γ > 10 < 2.5 ——
γ > 150 < 2.5 —— e > 10 < 2.5 > 2.0

µ > 10 < 2.5 > 1.5 (∗∗)
e > 150 < 2.5 > 2.0 no candidate 2 required

γγ

γ > 55 < 2.5 —— γ > 55 < 2.5 ——

e > 55 < 2.5 > 2.0 e > 55 < 2.5 > 2.0
γ > 55 < 2.5 ——

e (∗) > 55 < 2.5 —— γ > 55 < 2.5 ——

Table 5.6: Preselection criteria based on table 1 of ref. [348]. According to the triggers which have
been fired beforehand, the presence of one or two candidate objects with the specified properties is
required for at least one of the triggers. As explained in more detail in the text, electron candidates
tagged with a single star (*) must fulfill the loose electron isolation criteria, whereas the two stars
(**) indicate that the d0-requirement for muon candidates is only enforced, if there is a good
agreement between the ID and MS tracks.

final-state particle, which is compatible with the track requirements for the DV
reconstruction. Then, a very simple merging is performed, which consists in replacing
two DV objects of vertices separated by a distance smaller than 1 mm by a single DV
object and assigning all particles associated with the vertices to the new DV object.
The position assigned to the new DV object is arbitrarily set to the position of one of
the two vertices. This should reproduce the merging procedure well enough, assuming
that the LLP decay products are either stable or promptly decaying or sufficiently
short-lived particles, such that there is no risk to end up with two displaced vertices
when there should be only one.

5.4.2 Vertex level requirements

To be considered as a signal event, each of the reconstructed vertices must fulfill a
set of conditions, listed below. The violation of one of the criteria by a displaced vertex
candidate only leads to the rejection this vertex. Events are rejected when no displaced
vertex is consistent with the full set of requirements.
Vertex fit: The vertices used in the following considerations are required to be well recon-

structed, so the analysis requires that the fit of each vertex must satisfy χ2/DoF < 5.
On the level of the Monte-Carlo truth, where the exact information about the posi-
tions of the vertices in space and time is exactly known, this condition is meaningless.
Certainly, the imperfection of the ATLAS detector components and algorithms should
be taken into account for comparing Monte-Carlo and experimental event samples.
Therefore, DV reconstruction efficiencies are used, which describe the probability
of a true vertex to be reconstructed, depending on the properties of the associated
tracks. They are given in terms of efficiency maps for the two signal models in the
auxiliary material of the analysis. More details about these efficiencies are given in
section 5.4.3.

Transverse displacement: Prompt decays and decays with small displacement are
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avoided by considering only displaced vertices at positions ~xDV = (xDV, yDV, zDV),
which have a transverse displacement from the collision axis of the protons colliding
at ~xpp = (xpp, ypp, zpp) that is bigger than

dxy ≡
√

(xDV − xpp)2 + (yDV − ypp)2 > 2 mm . (5.4.5)

In the Monte-Carlo events, the protons collide at the origin, ~xpp = ~0.
Fiducial volume: Only vertices in a restricted detector volume, where the track and

vertex reconstruction are expected to be reliable, are taken into account. This so-
called fiducial volume has the form of a cylinder with the beam axis as its symmetry
axis and defined by the following boundaries for the position of the displaced vertices:

rxy ≡
√
x2
DV + y2

DV < 300 mm , |zDV| < 300 mm . (5.4.6)

Material veto: The ATLAS detector contributes itself to the presence of displaced
vertices from hadronic interactions of primary particles with detector material
[338, 454, 455]. This detector effect constitutes a source of background that should
be reduced. A veto is therefore applied in order to reject vertices in the material
regions, where high contamination of this background is expected. It uses maps of
the fiducial detector volume which were determined using simulated minimal-bias
events by observing the distribution of secondary vertices expected from the hadronic
decays KS → π+π− and Λ0 → p π (here p and π stand for a proton and negatively
charged pion π− or a anti-proton and a positively charged pion π+) for a model of the
detector that takes into account its geometry and material distribution [455]. In this
analysis, the material veto applies to all vertices in the material regions, including
those of possible signal events, and implies a reduction of the fiducial volume of
around 42 %. Instead of a precise map of the vetoed regions, the auxiliary material,
provided in [451] and the HEPData entry of the analysis [450], contains a map (figure
and corresponding tabulated data) that shows the fraction of the volume which is
covered by the material veto as a grid in the longitudinal and transverse distance |z|
and R. This map is given in figure 5.10. As the material distribution depends also
on the polar angle φ, the map in |z| and R gives an average over φ of the fraction
of vetoed volume. Similarly to a detection efficiency, it can be interpreted as the
probability for a displaced vertex in some region of the fiducial volume to be vetoed.
The implementation of the analysis in MadAnalysis 5 therefore uses a random
generator to decide on the basis of this map, whether a displaced vertex is kept or
rejected. To this end, the information about the maps from the corresponding data
tables has been turned into C++ code as part of the implementation.

Disabled pixel modules veto: In a similar way as the material veto, another veto is
applied to vertices, which arise in front of disabled pixel modules of the inner detector.
The disabled modules would certainly affect the reliability of the track reconstruction,
so the veto ensures that only well reconstructed vertices are kept. The consequence
of this veto is a reduction of the fiducial volume by 2.3 %. Like in the case of the
material veto, a map [348, 451] in |z| and R, shown in figure 5.10, is used with an
average over φ and the implementation of the analysis rejects vertices based on this
map and pseudo random numbers.
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Figure 5.10: Maps of the detector volume fraction vetoed by the material veto (left) and the
disabled pixel modules veto (right). The figures have been taken from [451]. The exact values are
provided in a tabulated form in the HEPData entry of the analysis [438,450] and are used in the
code of the MadAnalysis 5 implementation.

Two leptonic tracks: At least two leptonic tracks must be associated with each recon-
structed vertex. This is a restriction on the possible new physics scenarios for the
long-lived particle, which is assumed to be at the origin of the displaced vertex.
Therefore, vertices of less than two leptonic tracks are discarded.

Invariant mass: The momenta of the tracks associated with the displaced vertices give
a lower bound on the mass of the decaying long-lived particle, which is required in
the search to exceed 12 GeV, i.e.

m2
DV =

(∑
i

pi

)2

≥ (12 GeV)2 . (5.4.7)

Here the four-momenta pi are the momenta of all tracks forming the displaced vertex,
so the momenta of invisible particles produced at the location of the displaced vertex
are not included. Given the mass values of long-lived SM particles (c.f. table 5.1),
this lower bound allows to suppress displaced vertices of decaying Standard Model
particles.

Trigger and preselection matching: The criteria of the trigger and preselection stage,
previously applied to the whole set of particles, are also required to hold for the
subset of particles associated with each of the displaced vertices. Once again, the
choice of preselection criteria is coupled to the matching trigger criteria.

Oppositely charged lepton pair: The displaced vertices must involve at least a pair
of leptons (ee, µµ or eµ) with opposite electric charge. Of course, this restricts the
search to signal models with LLP decays involving these final state particles.

5.4.3 Efficiencies

To compare simulated event samples with experimental results from ATLAS, three sorts
of efficiencies need to be applied to the Monte-Carlo truth events for this analysis. Two of
them were already explained in section 5.4.2 and reflect the effects of material and disabled
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pixels vetoes. These are in some sense artificial, since the detector is deliberately made
inefficient in specific regions to reject badly reconstructed events. Nonetheless, as these
vetoes reduce the amount of events as a consequence of the presence and the imperfections
of the detector, which affects also potential signal events, they deserve to be considered
as efficiencies. However, they will not be reconsidered in this section.

The remaining efficiencies to be included into the implementation of this analysis,
which are provided with the auxiliary material, comprehend detection and reconstruction
efficiencies, i.e. they codify the performance of detector components and reconstruction
algorithms. More precisely, they give the overall probability for a displaced vertex to be
successfully reconstructed, based on the properties of the lepton pair that is required to be
associated with the vertices considered in the analysis. Following the instructions provided
with the auxiliary material, the efficiencies have to be applied to the Monte-Carlo truth
information, so they should combine the performance information of all the hardware and
software components of ATLAS participating contributing in some way to this analysis.

The detection efficiencies of displaced vertices should objectively, i.e. without any
assumption on the underlying theory about the nature of the displaced vertices, only
depend on the properties of the associated particles observed by the detector. For instance,
one could think of the kinematic quantities such as the particle species, the transverse
momentum pT , the pseudorapidity η, etc. of the individual particles, but also quantities
involving more than one particle of a vertex, e.g. the sum of pT or the angles between the
particles. Still, it is not necessarily straightforward to parameterise the efficiencies in terms
of the relevant variables in a model-independent manner, such that it could compete with
a sophisticated simulation of the detector and the reconstruction algorithms. This might
explain why two different parameterisations are provided in the supplementary material for
the two signal models considered in the analysis. They take the form of binned efficiencies
in two or three variables:
Z′ toy model: Apart from the lepton pair, no other decay products are involved in the

Z ′ decay. The efficiencies are given for fixed masses m(Z ′) of 100, 250, 500, 750 and
1000 GeV with a binning in the transverse distance rxy between the z-axis (fixed by
the momenta of the colliding partons) and the position of the displaced vertex, and
the transverse momentum of the lepton pair pT (``′).

RPV SUSY model: In contrast to the Z ′ decay, the neutralino decay involves in ad-
dition to the two leptons a neutrino, which is not directly visible for the detector,
but carries away momentum. Obviously, this has implications on the kinematics of
the pair of visible leptons, since they do not have to conserve the four-momentum
of the neutralino. For this reason, the mass of the neutralino cannot be determined
directly from the momenta of the visible lepton pair. Unlike the Z ′-efficiencies, which
depend on the mass of the long-lived Z ′, but are only given for fixed values, the RPV
SUSY efficiencies depend on the invariant mass of the lepton pair m(``′), without
assumption about the neutralino mass, so they have a binning in the three variables
rxy, pT (``′) and m(``′).

The provided efficiencies lend themselves perfectly to the validation of the implementation
of the analysis, as show the results produced in the validation procedure, which is docu-
mented in section 5.4.4. Yet, the ultimate goal of implementing an analysis is evidently not
to validate the implementation, but to use it for the reinterpretation with event samples
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of different new physics scenarios than the ones which were already investigated by the
authors of the analysis. In this respect, the two parameterisations of the efficiencies are not
ideal. First, they are they model-dependent, which limits the applicability of the implemen-
tation to other new physics models. Secondly, in the the case of the Z ′-parameterisation,
they are only given for five discrete values of the LLP mass. It would be preferable, if each
of them were valid for some mass range instead, such that other masses LLP masses could
be probed.

To cope with the latter issue, mass intervals have been defined somewhat arbitrarily
around the given values, in order to allow the implementation to deal with arbitrary LLP
masses. Moreover, instead of accessing the true value of the mass of the LLP, the invariant
of the lepton pair is determined in the same way as for the RPV SUSY case. Clearly,
this solution can only serve as an approximation, the validity of which can not even be
tested, since there is no data available for different Z ′ masses. Alternatively, the RPV
SUSY efficiencies could be used, which are defined on known mass intervals. This has
been tested with the Z ′ model samples used in the validation, where deviations of the
order 15 % in the overall selection efficiency compared to the dedicated Z ′ efficiencies were
observed, leading to a stronger disagreement with ATLAS results. Therefore, this has not
been chosen as the preferred solution, but the user will have the choice between the two
efficiencies, as both are implemented.

It seems unlikely that the problem of model-dependence could be cured in a satisfying
way with the available material. Perhaps a more generic parameterisation of the efficiencies
in terms of a different, possibly bigger set of variables might exist. A possible choice of
variables could for example involve the angle between the visible leptons or the angle
between the LLP momentum and the total momentum of the lepton pair. One could
attempt to determine such efficiencies by histogramming the values for the efficiencies
in the new variables for samples of the two signal models and different LLP masses and
combining the information from the different histograms in a sensible way. However, the
resulting efficiencies could at best be tested against the known results of the two models,
but the validity for other models or even samples of the same models with different LLP
masses or lifetimes is not guaranteed.

In consequence, the implementation of the analysis has unfortunately a reduced appli-
cability to other models, namely models with the same LLP decay topology as for the Z ′
or neutralino decay. As long as the visible decay products of the long-lived particle and
the kinematics correspond to the decays probed in the analysis, the detector components
and reconstruction algorithms should behave identically and the respective efficiencies
should be applicable without problems.

5.4.4 Validation

A decent amount of material is provided in both the analysis note and the auxiliary
material, that can be used for the validation of the implementation. It includes cutflows,
plots (with tabulated data on HEPData) of per-decay and per-event signal efficiencies
and exclusion cross-sections. Among this material, a number of results has been selected
for the validation procedure, in which event samples for the respective physical scenarios
were generated and used for the reproduction with the implemented analysis.
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Cutflow tables for both models were used as a guideline during the implementation,
with the intention to reproduce the efficiencies of the individual cuts. This is in fact not
possible throughout the whole cutflow, because there is currently no support for pile-up in
SFS, which seemingly plays a non-negligible role in intermediate steps. In spite of that, the
provided cutflow tables are still useful to some extent, as they put forward the importance
of the individual cuts.
For the Z ′ toy model, there are cutflows for in total six different event samples, where the
Z ′ takes the masses 100 GeV and 1000 GeV and decays exclusively into one of the three
dilepton final states ee, eµ or µµ.
For the RPV SUSY model, the situation is different: According to the description of
the provided cutflow table, the two coupling scenarios of the λ121 and λ122 couplings are
combined, where the former induces the decays to ee and eµ and the latter the decays to
eµ and µµ. In analogy to the Z ′ cutflows, the table contains separate cutflows for each of
the neutralino decay modes ee, eµ and µµ, where an event is counted in the cutflow, if
it contains at least one vertex associated with the corresponding lepton pair. Here, two
different neutralino lifetimes are considered for a single configuration of the squark and
neutralino masses, which leads to six different cutflows as well.

Due to the limited usefulness of the cutflows, where results from the implementation and
ATLAS can only be expected to be comparable only after the final cut, it is reasonable to
check the validity of the implementation with more of the available material. In particular,
one should probe different regions in the relevant parameter space, i.e. the masses and
lifetimes involved in the signal processes, since problems in the implementation could
remain undetected in some regions of the parameter space. Therefore, a scan has been
performed for the SUSY RPV model for two configurations of the quark and neutralino
masses over a wide spectrum of neutralino lifetimes, considering the λ121 and λ122 couplings
separately. 50 000 parton-showered and hadronised events 5 were simulated for each of the
parameter points. The samples were then passed to the MadAnalysis 5 implementation
of the analysis to determine selection efficiencies, including the effects of the Simplified
fast detector simulation (SFS), and subsequently the resulting upper limits on the squark
production cross section, with the ambition to reproduce some of the ATLAS results
presented in the figures 3-5 of ref. [348].

5.4.4.1 Event generation

Pythia 8.244 [280,281] has been used to simulate the production of the Z ′, which is
one of its internal processes. The decay table of the Z ′ had to be modified to enforce the
selected decay to ee, eµ or µµ with a branching fraction of 100 % and a proper lifetime
fixed via cτ = 250 mm. Each decay mode was considered for a mass m(Z ′) of 100 GeV
and 1000 GeV with 20 000 events per sample. These six cases are analysed for comparison
with the cutflows provided in [451].

5. The number of events in the sample is reduced to some extent due to the application of the MLM
matching scheme [456], leading to a varying number of events for the different parameters points. The same
is true for all other samples generated with MadGraph5_aMC@NLO and Pythia in the validation
as well as the samples of the vector-like lepton model studied in section 5.5. All event numbers given in
the following refer to the initially generated number of events with MadGraph5_aMC@NLO before
matching.
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The various event samples of neutralino production in the RPV SUSY model have
been generated using MadGraph5_aMC@NLO [235] version 2.8.3.2 and Pythia
8.244. Precisely, the simulation of neutralino (χ̃0

1) production proceeds in the following
way: MadGraph5_aMC@NLO generates tree-level events for the squark-antisquark
production of first and second generation squarks with up to two additional partons.
Pythia8 takes care of the squark-decay to the fermionic superpartner and the neutralino,
which is a prompt decay, and the following decay of the long-lived neutralino to a pair of
leptons. In addition, it is used for parton showering, hadronisation and matching/merging.
All event samples were generated with the NNPDF 2.3 LO [457] set of parton distribution
functions and using the MLM matching scheme [456] with a matching scale of one fourth
of the squark mass.
The MSSM UFO [264] model files [458] shipped with MadGraph5_aMC@NLO are
used for the simulation, with the parameter card being replaced by a card provided in the
HEPData entry of the analysis, which contains the relevant decay tables for the R-parity
violating interactions. The squark and neutralino masses, the neutralino decay table and
width were adapted to each of the cases considered in the selected validation material.
According to the explanations provided with the ATLAS cutflow tables, only two samples
are needed to reproduce the tables, which combine all neutralino decay modes with equal
branching ratios Br(χ̃0

1 → eeν) = Br(χ̃0
1 → eµν) = Br(χ̃0

1 → µµν) = 1/3. A classification
of the events is then done on the level of the analysis code depending on the types of
the displaced vertices present in the events to generate three different cutflow tables from
each sample, as further explained below. Here, the samples were generated with 20 000
events, corresponding to the raw event number in the provided ATLAS cutflow tables.
In the remaining cases, the couplings λ121 and λ122 are considered separately, where the
former induces the decays to eeν and eµν and the latter the decays to eµν and µµν. Here,
the branching fraction is 0.5 for each of the decay modes. To cover all cases with reasonable
statistics and density of points in parameters space as well as computational effort, samples
of 50 000 events for two configurations of the masses and 21 different neutralino lifetimes
were generated for both of the R-parity violating couplings, i.e. in total 84 samples. The
masses are m(q̃) = 700 GeV, m(χ̃0

1) = 50 GeV and m(q̃) = 1600 GeV, m(χ̃0
1) = 1300 GeV

and the widths span from cτ = 1 mm to cτ = 10 000 mm.

5.4.4.2 Pile-up

Important differences between the ATLAS results and corresponding results from the
implementation in SFS can be observed in the intermediate cuts of the cutflow tables
below (tables 5.7-5.12). Apart from possible misinterpretations of the cut labelling in the
table and some differences in the order of the selection criteria, a significant part of the
difference seems to be related to the effect of pile-up that is not taken into account in
the re-implementation of the analysis. Indeed, the ATLAS simulation includes the effect
of pile-up, i.e. the presence of several proton-proton collisions in a single bunch-crossing,
through the simulation of soft QCD processes using Pythia. It has been checked with an
external non-public code and the C++ code of the analysis that the sum of weights for the
intermediate cuts get closer to the ATLAS results when pile-up events are included. Pile-up
leads to fake displaced vertices, which are in fact primary vertices of other proton-proton
collisions.
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At present, MadAnalysis 5 does not have the capabilities to include pile-up events
in SFS (such a feature might be added in the future, but has until now not been a priority
in the development of MadAnalysis 5). Fortunately, one can observe that the final
results in the cutflows agree reasonably well with the ATLAS results, both for the Z ′ and
the RPV SUSY model, which indicates that pile-up effects are efficiently suppressed by the
selection criteria of the analysis. It is therefore not necessary to worry about pile-up in this
analysis. With regard to the performance of the code, it is even beneficial to avoid including
pile-up events, which would roughly correspond to adding a contribution that is subtracted
thereafter. Finally, it should be noted that the instructions for the reinterpretation of this
analysis, which are provided in the auxiliary material [451], do not address pile-up. To
conclude, pile-up is irrelevant for this analysis and therefore not simulated.

5.4.4.3 Cutflows

As pointed out earlier in this section, the use of the cutflows of this analysis for validation
purposes is limited. They give some insight about the importance of the different cuts,
but their reproduction would require to simulate pile-up and make sure that the order
of all cuts is identical. In addition, it is not clear, whether the provided efficiencies for
the reconstruction of displaced vertices describe purely the imperfections of the vertex
reconstruction (including track reconstruction) or whether they are combined with other
effects such as trigger efficiencies, in which case they could affect the event numbers at
several stages of the cutflow.

Furthermore, the cutflow tables give the impression that the ATLAS simulations include
the preselection criteria only at the vertex level (“Preselection matching”), which does
not correspond to the description in the analysis note. The SFS implementation of the
analysis applies both preselection and trigger criteria at the cut labelled as “Triggers”. For
these reasons, it is pointless to try to reproduce the cutflow in detail.

In spite of these concerns, the cutflow tables are given below (tables 5.7 - 5.11) to
illustrate the impact of the various selection criteria on the samples in the RPV SUSY and
Z ′ signal models. They show the sum of event weights of the remaining events after the
different cuts. The ATLAS cutflows of the RPV SUSY model were reweighted to represent
the expected number of events, given the squark-antisquark production cross section and
the size of the data set used in the analysis, corresponding to an integrated luminosity of
32.8 fb−1. In the cutflows of the Z ′ toy model, the numbers simply represent the sum of the
weights attributed to the events by Pythia. For comparison with the ATLAS cutflows,
the event weights in the cutflows generated with the MadAnalysis 5 implementation
of the analysis were reweighted such that the initial weights before all cuts agree with
the corresponding ATLAS numbers. The cuts highlighted in red are not implemented
in the SFS implementation, i.e. they let pass all events without any modification on the
selection of displaced vertex candidates. The first of these cuts is called “Primary vertex”
has already been discussed in section 5.4.1.1. The Monte-Carlo truth events should almost
always contain a primary vertex fulfilling compatible with the requirements at the origin
of the coordinate system, so this cut should not have an important effect. This can also
be observed on the ATLAS side of the cutflow tables below. The cuts “Lepton kinematics”
and “Lepton identification”’ seems to be related to the lepton reconstruction, which is
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trivial in the Monte-Carlo truth, where all particles are clearly identified. The kinematic
requirements of the reconstruction relevant for the particles associated with the displaced
vertices should also be covered by the preselection.

cτ = 30 mm cτ = 1000 mm
Nweighted (SFS/ATLAS) Nweighted (SFS/ATLAS)

Channel ee eµ µµ ee eµ µµ

No cuts 21.0 21.0 21.2 21.2 20.8 20.8 21.1 21.1 20.9 20.9 21.1 21.1
Triggers 21.0 20.6 21.0 20.5 20.2 16.6 21.1 19.1 20.9 18.5 21.0 10.9

Cosmic-ray veto 21.0 20.6 21.0 20.5 20.2 16.6 21.1 19.0 20.8 18.4 21.0 10.9
Primary vertex 21.0 20.6 21.0 20.5 20.2 16.6 21.1 19.0 20.8 18.4 21.0 10.9
N(DV) ≥ 1 9.2 15.1 9.5 15.2 9.3 12.7 3.9 10.5 4.1 10.3 4.3 6.6
Vertex fit 9.2 15.1 9.5 15.2 9.3 12.7 3.9 10.5 4.1 10.2 4.3 6.6

dxy 9.2 15.1 9.5 15.2 9.3 12.7 3.9 10.5 4.1 10.2 4.3 6.6
Fiducial volume 9.2 14.8 9.5 14.9 9.3 12.4 3.4 9.8 3.6 9.6 3.7 6.3

Dis. pixel mod. veto 9.0 14.4 9.2 14.6 9.0 12.2 3.2 9.3 3.4 9.1 3.4 5.9
Material veto 7.9 10.9 8.2 11.1 8.6 12.2 2.3 4.9 2.4 4.8 3.0 5.9
N(l) ≥ 1 7.9 7.7 8.2 9.5 8.6 8.5 2.3 2.2 2.4 2.6 3.0 2.7
N(l) ≥ 2 7.9 5.4 8.2 6.3 8.6 6.8 2.3 1.3 2.4 1.5 3.0 2.0

Lepton kinematics 7.9 5.3 8.2 6.3 8.6 6.8 2.3 1.2 2.4 1.5 3.0 2.0
Lepton identification 7.9 4.7 8.2 5.5 8.6 6.2 2.3 1.1 2.4 1.3 3.0 1.8
Overlap removal 7.9 4.7 8.2 5.4 8.6 6.2 2.3 1.1 2.4 1.3 3.0 1.8
Trigger matching 7.7 4.7 8.0 5.2 8.3 5.7 2.2 1.1 2.4 1.2 2.8 1.7
Presel. matching 7.7 4.7 8.0 5.2 8.3 5.7 2.2 1.1 2.4 1.2 2.8 1.7

mDV 7.7 4.7 8.0 5.2 8.3 5.7 2.2 1.1 2.4 1.2 2.8 1.7
Opposite charge 4.6 4.6 5.2 5.1 5.7 5.7 1.2 1.0 1.3 1.2 2.0 1.7

Table 5.7: Cutflow tables for two samples in the RPV SUSY combining the decays induced by the
λ121 and λ122 couplings, for neutralino proper decay lengths of 30 mm and 1000 mm. The numbers
Nweighted provided by ATLAS correspond to the sum of the event weights, reweighted to match
the expected event numbers in a data set obtained with the integrated luminosity of the analysis
(32.8 fb−1). For simplicity, the corresponding numbers obtained with the SFS implementation of
the analysis were reweighted to match the initial number Nweighted of ATLAS. The cuts highlighted
in red are not implemented.



5.4. Displaced vertices of oppositely charged leptons (ATLAS-SUSY-2017-04) 137

cτ = 30 mm cτ = 1000 mm
εcut (MA5 / ATLAS) εcut (MA5 / ATLAS)

Channel ee eµ µµ ee eµ µµ

No cuts 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Triggers 0.999 0.981 0.989 0.967 0.969 0.798 1.000 0.905 0.998 0.885 0.996 0.517

Cosmic-ray veto 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 1.000 0.995 1.000 1.000
Primary vertex 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
N(DV) ≥ 1 0.438 0.733 0.451 0.741 0.460 0.765 0.186 0.553 0.197 0.560 0.203 0.606
Vertex fit 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990 1.000 1.000

dxy 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Fiducial volume 1.000 0.980 1.000 0.980 1.000 0.976 0.870 0.933 0.868 0.941 0.867 0.955

Dis. pixel mod. veto 0.976 0.973 0.974 0.980 0.975 0.984 0.943 0.949 0.940 0.948 0.934 0.937
Material veto 0.877 0.757 0.891 0.760 0.946 1.000 0.721 0.527 0.725 0.527 0.867 1.000
N(l) ≥ 1 1.000 0.706 1.000 0.856 1.000 0.697 1.000 0.449 1.000 0.542 1.000 0.458
N(l) ≥ 2 1.000 0.701 1.000 0.663 1.000 0.800 1.000 0.591 1.000 0.577 1.000 0.741

Lepton kinematics 1.000 0.981 1.000 1.000 1.000 1.000 1.000 0.923 1.000 1.000 1.000 1.000
Lepton identification 1.000 0.887 1.000 0.873 1.000 0.912 1.000 0.917 1.000 0.867 1.000 0.900
Overlap removal 1.000 1.000 1.000 0.982 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Trigger matching 0.982 1.000 0.975 0.963 0.971 0.919 0.968 1.000 0.972 0.923 0.949 0.944
Presel. matching 0.998 1.000 0.996 1.000 0.998 1.000 0.999 1.000 0.999 1.000 1.000 1.000

mDV 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Opposite charge 0.596 0.979 0.652 0.981 0.688 1.000 0.531 0.909 0.559 1.000 0.701 1.000

Table 5.8: Cut efficiency tables corresponding to the cutflow tables for the two samples combin-
ing the λ121 and λ122 couplings in the RPV SUSY model. The cuts highlighted in red are not
implemented.
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m(Z′) = 100 GeV
Nweighted (SFS/ATLAS)

Channel ee eµ µµ

No cuts 20000.0 20000.0 20000.0 20000.0 20000.0 20000.0
Triggers 301.4 322.7 400.5 462.1 757.9 790.8

Cosmic-ray veto 301.4 322.7 400.5 462.1 757.9 790.8
Primary vertex 301.4 322.7 400.5 462.1 757.9 790.8
N(DV) ≥ 1 31.1 124.8 45.9 182.6 124.8 398.1
Vertex fit 31.1 124.8 45.9 182.6 124.8 398.1

dxy 31.1 124.8 45.9 182.6 124.8 398.1
Fiducial volume 23.0 121.1 40.9 176.0 116.8 375.7

Dis. pixel mod. veto 23.0 120.3 39.9 164.7 102.8 362.7
Material veto 18.0 71.4 30.9 106.2 102.8 362.7
N(l) ≥ 1 18.0 44.7 30.9 69.8 102.8 253.4
N(l) ≥ 2 18.0 38.6 30.9 61.8 102.8 246.7

Lepton kinematics 18.0 37.7 30.9 60.0 102.8 246.2
Lepton identification 18.0 35.9 30.9 57.5 102.8 238.2
Overlap removal 18.0 35.9 30.9 57.5 102.8 238.2
Trigger matching 18.0 35.9 30.9 57.5 102.8 237.3
Presel. matching 9.0 14.8 21.0 20.1 81.8 79.5

mDV 9.0 14.8 21.0 20.1 81.8 79.5
Opposite charge 9.0 14.8 21.0 20.1 81.8 79.5

Table 5.9: Cutflow tables for three samples of different decay modes in the Z ′ toy model for a Z ′
mass of 100 GeV. The numbers Nweighted correspond to the sum of the event weights as provided
by Pythia, which in the SFS case were reweighted to match the initial numbers of ATLAS. The
cuts highlighted in red are not used in the MadAnalysis 5 implementation.
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m(Z′) = 100 GeV
εcut (MA5 / ATLAS)

Channel ee eµ µµ

No cuts 1.000 1.000 1.000 1.000 1.000 1.000
Triggers 0.015 0.016 0.020 0.023 0.038 0.040

Cosmic-ray veto 1.000 1.000 1.000 1.000 1.000 1.000
Primary vertex 1.000 1.000 1.000 1.000 1.000 1.000
N(DV) ≥ 1 0.103 0.387 0.115 0.395 0.165 0.503
Vertex fit 1.000 1.000 1.000 1.000 1.000 1.000

dxy 1.000 1.000 1.000 1.000 1.000 1.000
Fiducial volume 0.737 0.970 0.891 0.964 0.936 0.944

Dis. pixel mod. veto 1.000 0.993 0.976 0.936 0.880 0.965
Material veto 0.783 0.594 0.775 0.645 1.000 1.000
N(l) ≥ 1 1.000 0.626 1.000 0.657 1.000 0.699
N(l) ≥ 2 1.000 0.864 1.000 0.885 1.000 0.974

Lepton kinematics 1.000 0.977 1.000 0.971 1.000 0.998
Lepton identification 1.000 0.952 1.000 0.958 1.000 0.968
Overlap removal 1.000 1.000 1.000 1.000 1.000 1.000
Trigger matching 1.000 1.000 1.000 1.000 1.000 0.996
Presel. matching 0.500 0.412 0.677 0.350 0.796 0.335

mDV 1.000 1.000 1.000 1.000 1.000 1.000
Opposite charge 1.000 1.000 1.000 1.000 1.000 1.000

Table 5.10: Cut efficiency tables corresponding to the cutflow tables (table 5.9) for the samples
of the three decay Z ′ decay modes of the 100 GeV Z ′. The cuts highlighted in red are not used in
the MadAnalysis 5 implementation.
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m(Z′) = 1000 GeV
Nweighted (SFS/ATLAS)

Channel ee eµ µµ

No cuts 20000.0 20000.0 20143.6 20143.6 19608.3 19608.3
Triggers 19029.3 17871.4 18323.0 16465.8 10239.6 9657.6
Cosmic-ray veto 19024.3 17864.4 18314.9 16457.3 10239.6 9655.8
Primary vertex 19024.3 17858.5 18314.9 16453.6 10239.6 9655.0
N(DV) ≥ 1 3255.0 6457.8 3964.7 6376.3 3208.0 4199.3
Vertex fit 3255.0 6455.9 3964.7 6373.9 3208.0 4197.6
dxy 3255.0 6455.9 3964.7 6373.9 3208.0 4196.7
Fiducial volume 2343.1 5986.3 2849.8 5960.4 2401.1 3969.0
Dis. pixel mod. veto 2319.1 5759.8 2810.5 5791.1 2381.4 3858.0
Material veto 2083.2 3848.9 2514.4 4065.3 2381.4 3858.0
N(l) ≥ 1 2083.2 2340.4 2514.4 2816.9 2381.4 2453.4
N(l) ≥ 2 2083.2 2192.9 2514.4 2654.8 2381.4 2342.2
Lepton kinematics 2083.2 2180.9 2514.4 2645.4 2381.4 2340.9
Lepton identification 2083.2 2113.7 2514.4 2499.4 2381.4 2215.6
Overlap removal 2083.2 2113.7 2514.4 2497.1 2381.4 2215.6
Trigger matching 2083.2 2113.7 2514.4 2497.1 2381.4 2173.5
Presel. matching 2083.2 2110.8 2501.3 2480.9 2381.4 2170.1
mDV 2083.2 2110.8 2500.3 2480.9 2381.4 2170.1
Opposite charge 2083.2 2088.4 2500.3 2468.4 2381.4 2166.0

Table 5.11: Cutflow tables for three samples of different decay modes in the Z ′ toy model for a Z ′
mass of 1000 GeV. The numbers Nweighted correspond to the sum of the event weights as provided
by Pythia, which in the SFS case were reweighted to match the initial numbers of ATLAS. The
cuts highlighted in red are not used in the MadAnalysis 5 implementation.
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m(Z′) = 1000 GeV
εcut (MA5 / ATLAS)

Channel ee eµ µµ

No cuts 1.000 1.000 1.000 1.000 1.000 1.000
Triggers 0.951 0.894 0.910 0.817 0.522 0.493

Cosmic-ray veto 1.000 1.000 1.000 0.999 1.000 1.000
Primary vertex 1.000 1.000 1.000 1.000 1.000 1.000
N(DV) ≥ 1 0.171 0.362 0.216 0.388 0.313 0.435
Vertex fit 1.000 1.000 1.000 1.000 1.000 1.000

dxy 1.000 1.000 1.000 1.000 1.000 1.000
Fiducial volume 0.720 0.927 0.719 0.935 0.748 0.946

Dis. pixel mod. veto 0.990 0.962 0.986 0.972 0.992 0.972
Material veto 0.898 0.668 0.895 0.702 1.000 1.000
N(l) ≥ 1 1.000 0.608 1.000 0.693 1.000 0.636
N(l) ≥ 2 1.000 0.937 1.000 0.942 1.000 0.955

Lepton kinematics 1.000 0.995 1.000 0.996 1.000 0.999
Lepton identification 1.000 0.969 1.000 0.945 1.000 0.946
Overlap removal 1.000 1.000 1.000 0.999 1.000 1.000
Trigger matching 1.000 1.000 1.000 1.000 1.000 0.981
Presel. matching 1.000 0.999 0.995 0.994 1.000 0.998

mDV 1.000 1.000 1.000 1.000 1.000 1.000
Opposite charge 1.000 0.989 1.000 0.995 1.000 0.998

Table 5.12: Cut efficiency tables corresponding to the cutflow tables (table 5.11) for the samples
of the three decay Z ′ decay modes of the 1000 GeV Z ′. The cuts highlighted in red are not used
in the MadAnalysis 5 implementation.
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5.4.4.4 Parameter scan: Overall selection efficiencies and exclusion limits

With a parameter scan, the validity of the implementation can be tested over a wide
range of lifetimes. The visualisation of the results facilitates the identification of deviations
from ATLAS results and the LLP lifetimes, for which they arise. Due to the relatively high
number of samples involved, problems in the implementation can clearly be distinguished
from statistical effects. The analysis note provides different figures showing the lifetime
dependence of the selection efficiency and the upper limits on the squark production cross
section for different choices of squark and neutralino masses, where the λ121 and λ122
couplings are considered separately. In the HEPData entry of the analysis, the data points
of the figures are made available, allowing the reproduction of the plots.

Here, two configurations of squark and neutralino masses were chosen for comparison,
for which the scan was done in both coupling scenarios. The results of the overall selection
efficiencies and cross section upper limits are shown in figures 5.11 and 5.12.

One can observe that the results are in relatively good agreement up to proper decay
lengths of 1000 mm. Beyond this value the curves diverge, which seems to suggest that the
implementation is missing a detail which becomes important at higher lifetimes. However,
this does not seem very plausible, since an increased lifetime should only reduce the number
of decays occurring in the fiducial volume, but there is no qualitatively new effect to be
expected above this lifetime. An interesting observation is that the blue ATLAS curves for
m(q̃) = 1600 GeV and m(χ0

1) = 1300 GeV contain a noticeable kink above cτ = 1000 mm,
which is particularly striking in the case of the λ121 coupling, for which no reasonable
explanation could be found in the selection criteria of the analysis. It is worth mentioning
in this context that according to the analysis note, ATLAS did not generate samples
for proper decay lengths above 1000 mm, but combined different samples in the cτ -range
between 10 mm and 1000 mm. To use these samples for different LLP lifetimes, the events
were reweighted to account for the different probability of the same events to occur in a
sample of different lifetime. For the validation of the MadAnalysis 5 implementation
of the analysis, a different sample was generated for each value of cτ . However, there is no
obvious reason why the different approaches would lead to significantly different results at
high lifetimes and a kink in the ATLAS results. The issue has been reported to the ATLAS
SUSY conveners, who were so far not able to provide any reasonable explanation of the
observed difference. The analysis has been taken over by a different group who announced
to investigate on this matter in view of a new analysis, once the existing analysis code will
have been integrated into a new analysis framework. Unfortunately their investigations
were not completed at the time of this writing.
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Figure 5.11: Overall selection efficiencies (top) and upper limits on the squark-antisquark pro-
duction cross section (bottom) obtain with the MadAnalysis 5 implementation, in comparison
with the limits and uncertainties found by the ATLAS collaboration, for two configurations of
squark and neutralino masses in the λ121 coupling scenario.
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Figure 5.12: Overall selection efficiencies (top) and upper limits on the squark-antisquark pro-
duction cross section (bottom) obtain with the MadAnalysis 5 implementation, in comparison
with the limits and uncertainties found by the ATLAS collaboration, for two configurations of
squark and neutralino masses in the λ121 coupling scenario.
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5.4.4.5 Conclusions on the implementation

The validation process has shown, that the implementation reproduces with reasonably
good agreement the final numbers of the ATLAS cutflows. A comparison of the interme-
diate numbers turns out to be problematic and would presumably require including the
simulation of pile-up events, which is currently not possible using MadAnalysis 5 and
SFS. It is also not entirely clear, which effects are included in the DV reconstruction
efficiencies provided in the auxiliary material of the analysis.

To gain better insights about the validity of the implementation, a parameter scan in
the lifetime of the neutralino in the RPV SUSY model for two different configurations of
squark and neutralino masses were performed. Here, the agreement with ATLAS results is
satisfactory for cτ < 1000 mm but for higher lifetimes a significant difference is is observed
in the results for the overall selection efficiencies. At present, the disagreement can not be
explained, so that the use of the implementation is only recommended for LLP lifetimes
below this value.

Another deficit is the absence of model-independent reconstruction efficiencies, which
restrict the use of the implementation to models of the same decay topologies as for the Z ′
or χ0

1 in the signal models used by ATLAS. In addition, the user must correctly choose the
version of the analysis with the appropriate efficiencies. Nevertheless, if these conditions
are respected, the implementation of the analysis can be a valuable tool to set limits on
the parameter space of different models.
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5.5 Application to vector-like leptons

To demonstrate the exclusion potential of the re-implementation of the ATLAS LLP
search discussed in the previous section, the vector-like lepton model introduced in sec-
tion 1.4.1.2 with mixing of the vector-like leptons with the electron instead of the SM τ
lepton, is a suitable candidate signal model. In this model, the vector-like leptons τ ′ and
ν ′ are produced via the channels (c.f. section 1.4.1.2):

pp→ ν ′ν ′ ,

pp→ ν ′τ ′+ ,

pp→ ν ′τ ′− .

(5.5.1)

Note that ν ′ stands for the anti-particle of ν ′, not for one of the two-component spinor
fields as in section 1.4.1.

The neutral VLL ν ′ decays to an electron and a W -boson, where the latter can
then promptly decay to an electron or muon and a neutrino with a branching fraction
Br(W→ `ν) ≈ 11 % for ` = e, µ [367]. This decay chain generates a vertex with two lep-
tons and a neutrino, as in the case of the χ0

1 decay in the RVP SUSY model, which justifies
the use of the provided efficiencies in the vector-like doublet model. The decay width is
proportional to the square of the mixing parameter ε, i.e. for small mixing ν ′ becomes
long-lived.

Concerning the charged vector-like lepton τ ′, the possible decay τ → Ze can also
generate for the analysis relevant vertices, since the Z-boson decays into pairs of electrons
or muons, with a branching ratio of Br(Z→ `+`−) ≈ 3.4 % for ` = e, µ. As the Z-boson
is short-lived, this leads to a vertex with three associated charged leptons. This does
not correspond to the topology of the neutralino decay in the RPV SUSY model, so the
efficiencies are a priori not applicable. The implementation of the analysis can deal with
such vertices, but only by applying the efficiency maps for the RPV SUSY model, which
might deviate from the true reconstruction efficiencies for this kind of vertex.

Both the production cross sections of the charged and neutral vector-like leptons at
the LHC and their decay widths to Z or W bosons are of comparable size [173]. However,
the branching fraction into charged leptons is somewhat smaller for the Z boson than
for the W boson. Nevertheless, the contribution of the charged leptons in terms of 3-
lepton vertices cannot be expected to be completely negligible. Therefore, the overall
selection efficiencies obtained with the implementation of this analysis for samples of the
vector-like doublet model might be fudged by the application of the unsuitable efficiencies
to these vertices. Using the implementation of the analysis for this model in spite of
these concerns can be justified as follows: The probability of a displaced vertex to be
reconstructed successfully can be expected to be higher, when the number of associated
tracks is higher. In using efficiencies of 2-lepton vertex reconstruction for 3-lepton vertices,
the implementation would therefore rather underestimate the selection efficiency, i.e. it
predicts a smaller number of events passing the selection than the actual analysis would
find. In consequence, the bounds on the production cross section of the vector-like leptons
will be weaker than it should be. This is acceptable, because it does not falsely exclude
viable parameter space, but simply places conservative bounds.
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As illustrated in section 1.4.1.2, the doublet VLL model is a relatively simple extension
of the Standard Model with only two additional parameters, namely the VLL mass, which
is equal for τ ′ and ν ′ at leading order, and the mixing parameter ε. The latter is traded
for the proper decay length cτ of the neutral VLL ν ′, so that a scan in Mτ ′ and cτ can
be performed with the implementation of the ATLAS analysis to determine the excluded
regions. The grid scan in these parameters was performed with mass values below 1600 GeV
in steps of 50 GeV and proper decay lengths from 1 mm to 10 000 mm with equal spacing
on a logarithmic scale, i.e. powers of 10 increased in steps of 0.5 (precisely the scan was
first done with twice the spacing, which was then refined locally to determine the shape
of the excluded parameter regions more precisely). In order to determine the excluded
parameter points, besides the value of the integrated luminosity of the analysis, a cross
section prediction is needed for every event sample to calculate the expected number
of events of VLL production. A leading order value for the cross section of the LLP
production processes is provided by the event generator. To estimate the effect of higher
order corrections on the excluded regions, different K-factors (2/3, 1 and 3/2) were used to
rescale the leading order cross section, considering both possibilities of the cross section
to be over- or underestimated at leading order. The upper limits on the cross section were
obtained using the CLs method [282].

5.5.1 Event generation

The events were simulated in a similar way as for the RPV SUSY samples in the
validation of the analysis with MadGraph5_aMC@NLO version 2.8.3.2 together with
Pythia 8.244 and UFO model files generated for the VLL model by SARAH [267,459–462].
The simulated processes are the ones given in eq. (5.5.1) with up to two jets. It was
generated at leading order with 50 000 events per sample, where the NNPDF 2.3 LO [457]
set of parton distribution functions was used and the MLM matching scheme [456] with a
matching scale of one quarter of the τ ′ mass was applied.

5.5.2 Results

From the results of the grid scan, exclusion regions in the τ ′ mass and the proper decay
length cτ were determined, which are shown in figure 5.13. The lifetime cτ > 1000 mm
has been highlighted in red to signal that results in this region cannot be trusted due to
unsatisfying results in the validation in this lifetime range.

The scan does not put any constraints on the τ ′ lifetime for masses below 200 GeV.
One can observe that a ν ′ with cτ below approximately 2 mm is only relatively weakly
constrained to masses above approximately 300 GeV. For higher lifetimes, this lower bound
grows above 700 GeV. As mentioned earlier, these bounds are conservative.
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Figure 5.13: Excluded regions at 95 % CL in the parameter space of mass and proper decay
length of the vector-like lepton τ ′ in the vector-like doublet model for cross-sections calculated
with different K-factors. The red-shaded region covers the lifetime range above cτ = 1000 mm, in
which doubts about the validity of the implementation exist.
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5.6 Conclusions

The relevance of LLP searches in current and future collider and non-collider exper-
iments has been motivated as an attractive search strategy for signals of new physics,
which provide a new discovery potential of particles, which could escape detection within
prompt searches. MadAnalysis 5 is a useful tool to fully exploit the potential of collider
searches via the reinterpretation of the results to other new physics models. This chapter
has presented recent work to supplement MadAnalysis 5 with new capabilities for the
searches of non-prompt signatures. A technical feature has been added for the precise
determination of trajectories, decay vertices and displacement variables. New physical
content in terms of two new LLP analyses was added. The implementations have been
validated over a significant range of lifetimes. All the same the validation process has re-
vealed some difficulties in the re-interpretation of analyses, such as the lack of information
about efficiencies of detectors and reconstruction algorithms, or the model-dependence
of the provided information. The available material for analyses is a general issue in the
re-interpretation of physics analyses at the LHC, and there are ongoing efforts and dis-
cussions [213] between experimentalists and theorists to communicate about the needs
in recasting and the possibilities to provide the additional material of future searches in
the most useful form. Finally the parameter space of the vector-like lepton doublet model
was investigated with the implementation of the ATLAS search for displaced vertices of
oppositely charged leptons and exclusion regions were determined. Other LLP searches
are planned to be added to MadAnalysis 5 in the near future.
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Conclusion

After two data taking periods of the Large Hadron Collider, the about 50 year old
Standard Model is still the best description of what has so far been observed in high-energy
collider experiments. This is unquestionably an enormous success for the SM, whereas
in the meantime the LHC experiments have failed to tell us something new, leaving the
particle physics community without any confirmed solution to the serious problems of
the SM, which were discussed in 1. In spite of this unsatisfying circumstance, the LHC
program carried out over the past decade is by no means a general failure. It should not be
forgotten that the high number of measurements without significant deviations from the
SM predictions has been a valuable input for constraining many theories of BSM physics.
In the absence of new physics, using these null results to constrain BSM models will
certainly remain an important strategy in the future and might provide indications where
to look for new physics. The re-interpretation of search results is the purpose of recasting,
which consists in the implementation of the logic of existing physics analyses, i.e. the
event selection procedure, into a computer program which applies it to Monte-Carlo event
samples generated for a different signal hypothesis. This technique has been discussed in
some detail in chapter 2.

Chapter 3 and 4 of this thesis have presented the phenomenological study of an effective
theory, which addresses one of the longstanding problems of the SM, the absence of a dark
matter candidate. The model introduces a candidate for DM and establishes interactions
with the SM particle content via the dilaton portal, i.e. by including an additional scalar,
the dilaton. The latter is systematically embedded into the model in a procedure that is
governed by spontaneously broken scale invariance. This study provides an example of how
the LHC results, in combination with complementary experimental input from dark matter
direct detection and the relic density as well as partial wave unitary constraints, allow
us to restrict the phenomenologically viable parameter space of the model. In particular,
it has been found that heavy scalar searches in Run 2 of the LHC have contributed to
stronger bounds in the model parameter space. Together with unitarity constraints, they
push the model to high masses and weak couplings. Different mixing scenarios have been
considered, where in the ’minimal mixing’ case the emergence of a ’magic window’ in the
parameter space of the dilaton mass and decay constant can be observed, in which the
constraints on the dilaton mass disappear in a certain range of the dilaton decay constant.
It was found for this scenario that the dilaton and dark matter could be lighter than 1 TeV.
However, restoring gauge invariance with additional terms destroys this magic windows,
since the di-Higgs bounds become dominant. Concerning the LHC dark matter searches,
direct production for DM masses above 300 GeV are out of reach of the LHC, but could
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be accessible at future colliders. The study is also an example of how results of collider
searches can be combined with complementary experimental input, which in this case has
been done via a matching of the relic density with Planck results and by the computation
of dark matter direct detection cross sections and comparison with observations.

This thesis has also addressed in chapter 5 the matter of unconventional collider
signatures, with a focus on searches for long-lived particles in the context of LHC recasting.
It has been argued that new physics might remain undetected in searches which limit their
attention to promptly decaying particles. This explains the increasing interest in searches
for displaced decays of LLPs, which can give rise to a variety of different signatures,
depending on the type of the LLP, some of which have been discussed in this work.
The detection of such signatures is associated with some technical challenges on the
experimental side, compared to prompt searches, such as the correct reconstruction of
tracks and vertices. It has been pointed out that for recasting purposes, it is important to
take into account the detector efficiencies in the re-implementation of an analysis, since
they have implications on the signal yield of a simulated event sample. Another effect
of detectors is the bending of charged particle trajectories in the magnetic field that is
present in the detector volume. Part of this work has been the simulation of magnetic
field effects on the trajectories of particles involved in a simulated event sample, which
has been implemented as a new module of the MadAnalysis 5 framework. The latter
has then been used for the implementation of two 13 TeV LHC searches for long-lived
particle signatures: a CMS search for displaced leptons and an ATLAS search for displaced
vertices of oppositely charged leptons. The implementation has been documented and some
complications, related in particular to reconstruction efficiencies, have been pointed out.
However, with the exception of the highest lifetimes used for the validation, the validity of
the implementations has been confirmed by comparison with results of the experimental
collaborations. An application of the re-implemented ATLAS analysis to a suitable signal
model, an extension of the SM with a vector-like lepton doublet, has been presented, where
an exclusion plot in the parameter space of the VLL mass and lifetime was obtained.

It is certain that long-lived particle searches will play an important role in the next
years in the LHC main experiments, but also in new experimental setups. For instance,
the dedicated LLP experiment FASER will be operational in the upcoming Run 3 data
taking period of the LHC. There will be other technical improvements in the future,
including especially the high-luminosity upgrade, which will significantly increase the
amount of available data and therefore enhance the potential of the (HL-)LHC to uncover
BSM physics, or alternatively further constrain BSM theories, for example with recasting.
Additionally, there are proposals for future colliders. Good motivations to persue the quest
for new physics exist, e.g. the recent independent confirmation of the tension concerning
the anomalous magnetic moment of the muon, or the persisting B-anomalies. What is
certain is that particle physics is far from being at its end, and we can hope for exciting
news in upcoming years.



Appendix A

Two-component spinors

Some theories are more conveniently formulated in terms of two-components spinors
rather than in the more commonly used four-component spinor notation. This appendix
will briefly introduce two-component spinors based on ref. [32], showing essentially how
they are related to four-component spinors and giving the expressions for their gauge
covariant derivative and their gauge and Yukawa interaction terms. Nothing more will be
needed in this thesis, which uses two-component spinors only in the context of vector-like
fermions and Supersymmetry in section 1.4. For a very exhaustive introduction into this
matter, the interested reader shall be referred to ref. [463].

Two-component spinors, also often called Weyl-spinors [463], are classified as either
left-handed or right-handed, according to the representation of the Lorentz group under
which they transform. Left-handed spinors transform under the (1

2 , 0)-representation and
right-handed ones under the (0, 1

2)-representation. To mark the difference between these
two types of spinors, a different notation is conventionally used for their spinor indices. In
this convention, dotted indices are used for right-handed spinors and undotted indices for
left-handed spinors, with the possible values 1 and 2 in both cases. A left-handed spinor
is turned into a right-handed one via Hermitian conjugation, and vice versa:

ψ†α̇ ≡ (ψα)† . (A.1)

Contraction and raising or lowering of spinor indices in a similar way as for Lorentz indices
is possible with the help of an anti-symmetric symbol,

ε12 = −ε21 = ε21 = −ε12 = 1 , (A.2)

such that the following relations hold:

ψα = εαβψ
β , ψα = εαβψβ , ψ†α̇ = εα̇β̇ψ

†β̇ , ψ†α̇ = εα̇β̇ψ†
β̇
. (A.3)

Four-component spinors can be expressed in terms of two left-handed spinors ξα and χα
in the case of Dirac spinors or one left-handed spinor ψα in the case of Majorana spinors:

ΨD =
(
ξα
χ†α̇

)
, ΨM =

(
ψα
ψ†α̇

)
. (A.4)
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Consequently, a theory can always be formulated by using only left-handed spinor fields
instead of both left- and right-handed ones, since right-handed spinors can always be
written as the hermitian conjugate of a left-handed one. Alternatively, one could do the
same thing using only right-handed spinor fields.
In order to express chiral interaction, which involve only the left- or right-handed part of
a spinor, in the Dirac spinor notation, the chiral projectors PL and PR can be used, which
act on ΨD as

PLΨD =
(
ξα
0

)
, PRΨD =

(
0
χ†α̇

)
. (A.5)

To see which form the Lagrangian takes in the two-component spinor notation, consider
the free Lagrangian of a Dirac fermion:

LDirac = iΨDγ
µ∂µΨD −mΨDΨD . (A.6)

Owing to the way in which the Dirac spinor is expressed via two Weyl-spinors, the cor-
responding representation of the Dirac matrices, the Weyl-representation [46], has to be
used. In this representation, they take the form

γµ =
(

0 σµ

σµ 0

)
, (A.7)

containing the 2× 2 matrices σµ = (1, σi) and σµ = (1,−σi), which are explicitly given by

σ0 = σ0 =
(

1 0
0 1

)
, σ1 = −σ1 =

(
0 1
1 0

)
,

σ2 = −σ2 =
(

0 −i
i 0

)
, σ3 = −σ3 =

(
1 0
0 −1

)
.

(A.8)

Here, σi for i = 1, 2, 3 are the Pauli matrices. Therefore, the explicit form of the adjoint
spinor is

ΨD = Ψ†Dγ
0 =

(
χα ξ†α̇

)
. (A.9)

Then, the Lagrangian LDirac expressed in terms of the two-component spinors, is given by

LDirac = iξ†α̇(σµ)α̇β∂µξβ + iχα(σµ)αβ̇∂µχ
†β̇ −m(ξ†α̇χ†α̇ + χαξα) , (A.10)

where the height of the spinor indices corresponds to the previously mentioned contraction
of the spinor indices, or in a notation, where the indices are suppressed

LDirac = iξ†σµ∂µξ + iχσµ∂µχ
† −m(ξ†χ† + χξ) . (A.11)

The indices can be restored with

ξχ ≡ ξαχα , ξ†χ† ≡ ξ†α̇χ
†α̇ (A.12)

and
ξ†σµχ ≡ ξ†α̇(σµ)α̇βχβ , ξσµχ† ≡ ξα(σµ)αβ̇χ

†β̇ . (A.13)



155

Using the anti-commuting nature of ξ and χ, it can be shown that

ξχ = χξ , ξ†χ† = χ†ξ† , ξ†σµχ = −χσµξ† , (A.14)

and hence
LDirac = iξ†σµ∂µξ + iχ†σµ∂µχ−m(ξχ+ ξ†χ†) . (A.15)

Along the same lines, one finds for the Lagrangian of a Majorana fermion:

LMajorana = i

2ΨMγ
µ∂µΨM −

1
2mΨMΨM

= iψ†σµ∂µψ −
1
2m(ψψ + ψ†ψ†) .

(A.16)

Due to the similar form of the Lagrangians, they can be summarised in a more general
expression,

L ⊃ iψ†iσµ∂µχi + 1
2
(
M ijψiψj + c.c.

)
, (A.17)

which can describe both Majorana and Dirac fermions, where the indices i and j run over
the various fermions of the theory.

Concerning interacting theories, the fermions can have interaction terms with scalars
or vectors [463], the form of which will be given in the following. For gauge interactions,
the covariant derivative will be needed, which has the general form

(Dµ) ji ≡ δ
j
i ∂µ + igaA

a
µ(T a) ji , (A.18)

where Aaµ are the gauge fields, T a the generators and ga the gauge coupling. For left-handed
spinors ψi, the Lagrangian for the interaction with the gauge bosons Aµa is then given by

Lgauge = −gaAaµψ†iσµ(T a) ji ψj . (A.19)

Yukawa interactions of the fermion fields and scalars of the theory can be expressed in
the form

LYukawa = −1
2Y

IjkφIψjψk −
1
2YIjkφ

Iψ†jψ†k , (A.20)

where the index I runs over the scalars of the theory and the Yukawa couplings fulfill
YIjk = (Y Ijk)∗.
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Appendix B

Vector-like leptons: Derivations

B.1 Mixing

The Lagrangian of the vector-like singlet model contains mass and mixing terms
between the SM tau lepton and the vector-like lepton of the the form

L ⊃ −
(
τ τ ′

)
M
(
τ
τ ′

)
+ c.c. , (B.1)

where the mass matrix is given by

M =
(
yτv√

2
εv√

2
0 mτ ′

)
. (B.2)

The matrix can be diagonalised with a transformation of the field basis via unitary matrices
L and R (see ref. [463, p.34 f.] for more details)(

τ
τ ′

)
= L

(
τ̃
τ̃ ′

)
,

(
τ
τ ′

)
= R

(
τ̃

τ̃
′

)
, (B.3)

where the fields carrying an additional tilde symbol are the mass eigenstate fields, which
will then have a mass matrix

LTMR = m = diag(Mτ ,Mτ ′) . (B.4)

To find the expressions for L and R, one can make use of their unitarity to write

m†m =
(
R†M†L∗

) (
LTMR

)
= R†M†MR = m2 ,

mm† =
(
LTMR

) (
R†M†L∗

)
= LTMM†L∗ = m2 ,

(B.5)

where it is obvious that m2 = m†m = mm† is Hermitian and diagonal, since m is diagonal.
Since the combinationsM†M andMM† are Hermitian, one could follow the standard
procedure for the diagonalisation of a matrix, i.e. determine matrices UL,R, such that they
diagonalise the combinations of mass matrices via U †LM†MUL and U †RMM†UR. These
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are as usual constructed from the normalised eigenvectors ofM†M andMM†. Once this
is done, one can identify L = U∗L and R = UR.

Here, we are only interested in the case of small mixing, which will simplify the cal-
culation. With M being real, L and R are orthogonal matrices, i.e. rotations. A small
amount of mixing ε� 1 leads to small rotations, so that at leading order in the rotation
angles αL and αR they take the form

L =
(

1 −αL
αL 1

)
, R =

(
1 −αR
αR 1

)
. (B.6)

After evaluating the condition that m2 must be diagonal for both L and R as in eq. (B.5),
i.e. requiring that the off-diagonal matrix elements vanish and neglecting terms of second
order in the rotation angles, one obtains

αL = −
√

2εmτ ′v

2m2
τ ′ − v2y2

τ

, αR = − εv2yτ
2m2

τ ′ − v2y2
τ

. (B.7)

In the vector-like doublet model, the mass matrix of the charged leptons is given by

M =
(yτv√

2 0
εv√

2 mτ ′

)
, (B.8)

which is just the transposed of the above mass matrix. The procedure is exactly the same
as, whereas the difference in the mass matrix leads to an interchange of the rotation angles,

αL = − εv2yτ
2m2

τ ′ − v2y2
τ

, αR = −
√

2εmτ ′v

2m2
τ ′ − v2y2

τ

, (B.9)

which is effectively the same as an interchange of L and R.

B.2 Gauge interactions

In this section, the gauge-covariant derivatives and the resulting interaction Lagrangians
are given explicitly for the third-generation SM leptons and a vector-like lepton. Corre-
sponding expressions for the generation one and two SM leptons are obtained in the same
way as for the third generation. The expressions are obtained starting from eqs. (A.18) and
(A.19). After deriving the interaction Lagrangians in the interaction basis, the physical
gauge boson fields are introduced (c.f. section 1.1.3.4), using the relations [463]

W 1
µ = 1√

2

(
W+
µ +W−µ

)
,

W 2
µ = i√

2

(
W+
µ −W−µ

)
,

W 3
µ = ZµcW +AµsW ,

Bµ = −ZµsW +AµcW ,

(B.1)

with cW ≡ cos θW and sW ≡ sin θW , and the gauge coupling g′ is replaced using

e = gsW = g′cW and c2
W + s2

W = 1 . (B.2)
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B.2.1 Standard Model leptons

The fields associated with the SM third-generation leptons are L = (ν, τ), which trans-
forms under the (1,2,−1/2) representation and τ , which transforms under the (1,1,+1)
representation.

B.2.1.1 Lepton doublet L

Covariant derivative:

DµL =
(
∂µ + i

2gW
1
µσ

1 + i

2gW
2
µσ

2 + i

2gW
3
µσ

3 − ig
′

2 Bµ
)
L

=
(
∂µ + i

2

(
gW 3

µ − g′Bµ g(W 1
µ − iW 2

µ)
g(W 1

µ + iW 2
µ) −(gW 3

µ + g′Bµ)

))(
ν
τ

) (B.3)

Interaction Lagrangian:

LLgauge = −1
2(L)i

(
gW 1

µσ
µ(σ1) j

i + gW 2
µσ

µ(σ2) j
i + gW 3

µσ
µ(σ3) j

i − g
′Bµσ

µδ j
i

)
(L)j

= −1
2
(
ν† τ †

)((gW 3
µ − g′Bµ)σµ g(W 1

µ − iW 2
µ)σµ

g(W 1
µ + iW 2

µ)σµ (−gW 3
µ − g′Bµ)σµ

)(
ν
τ

)

= −1
2

[
(gW 3

µ − g′Bµ)ν†σµν + g(W 1
µ − iW 2

µ)ν†σµτ

+ g(W 1
µ + iW 2

µ)τ †σµν + (−gW 3
µ − g′Bµ)τ †σµτ

]
(B.4)

Interactions with the physical fields Aµ, Zµ and W±µ :

LLgauge = − g√
2
W+
µ ν
†σµτ − g√

2
W−µ τ

†σµν + eAµτ
†σµτ

− g

2cW
Zµν

†σµν − g

cW

(
s2
W −

1
2

)
Zµτ

†σµτ
(B.5)

B.2.1.2 Lepton singlet τ

Covariant derivative:
Dµτ =

(
∂µ + ig′Bµ

)
τ (B.6)

Interaction Lagrangian:
Lτgauge = −g′Bµ τ †σµτ (B.7)

Interactions with the physical fields Aµ, Zµ and W±µ :

Lτgauge = gs2
W

cW
Zµ τ

†σµτ − eAµ τ †σµτ (B.8)
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B.2.2 Singlet vector-like lepton model

In the singlet VLL model, two left-handed fields τ ′ and τ ′ are associated with the
vector-like lepton. The field τ ′ transforms under the (1,1,−1) representation and the field
τ ′ under the (1,1,+1) representation.

B.2.2.1 Lepton singlet τ ′

Covariant derivative:
Dµτ

′ =
(
∂µ − ig′Bµ

)
τ ′ (B.9)

Interaction Lagrangian:
Lτ ′
gauge = g′Bµ τ

′†σµτ ′ (B.10)

Interactions with the physical fields Aµ, Zµ and W±µ :

Lτ
′

gauge = −gs
2
W

cW
Zµ τ

′†σµτ ′ + eAµ τ
′†σµτ ′ (B.11)

B.2.2.2 Lepton singlet τ ′

Covariant derivative of τ ′ (same representation as τ):

Dµτ
′ =

(
∂µ + ig′Bµ

)
τ ′ (B.12)

Interaction Lagrangian:
Lτ

′
gauge = −g′Bµ τ ′†σµτ ′ (B.13)

Interactions with the physical fields Aµ, Zµ and W±µ :

Lτ
′

gauge = gs2
W

cW
Zµ τ

′†σµτ ′ − eAµ τ ′†σµτ ′ (B.14)

B.2.3 Doublet vector-like lepton model

The doublet VLL model contains two doublets of left-handed fields: L′ = (ν ′, τ ′)
transforms under the (1,2,−1/2) representation and L

′ = (τ ′, ν ′) under the (1,2,+1/2)
representation.

B.2.3.1 Lepton doublet L′

Covariant derivative (same representation as L):

DµL
′ =

(
∂µ + i

2gW
1
µσ

1 + i

2gW
2
µσ

2 + i

2gW
3
µσ

3 − ig
′

2 Bµ
)
L′

=
(
∂µ + i

2

(
gW 3

µ − g′Bµ g(W 1
µ − iW 2

µ)
g(W 1

µ + iW 2
µ) −(gW 3

µ + g′Bµ)

))(
ν ′

τ ′

) (B.15)
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Interaction Lagrangian:

LL′
gauge = −1

2

[
(gW 3

µ − g′Bµ)ν ′†σµν ′ + g(W 1
µ − iW 2

µ)ν ′†σµτ ′

+ g(W 1
µ + iW 2

µ)τ ′†σµν ′ + (−gW 3
µ − g′Bµ)τ ′†σµτ ′

] (B.16)

Interactions with the physical fields Aµ, Zµ and W±µ :

LL′
gauge = − g√

2
W+
µ ν
′†σµτ ′ − g√

2
W−µ τ

′†σµν ′ + eAµτ
′†σµτ ′

− g

2cW
Zµν

′†σµν ′ − g

cW

(
s2
W −

1
2

)
Zµτ

′†σµτ ′
(B.17)

B.2.3.2 Lepton doublet L′

Covariant derivative of L′:

DµL
′ =

(
∂µ + i

2gW
1
µσ

1 + i

2gW
2
µσ

2 + i

2gW
3
µσ

3 + i
g′

2 Bµ
)
L
′

=
(
∂µ + i

2

(
gW 3

µ + g′Bµ g(W 1
µ − iW 2

µ)
g(W 1

µ + iW 2
µ) −(gW 3

µ − g′Bµ)

))(
τ ′

ν ′

) (B.18)

Interaction Lagrangian:

LL
′

gauge = −1
2(L′)i

(
gW 1

µσ
µ(σ1) j

i + gW 2
µσ

µ(σ2) j
i + gW 3

µσ
µ(σ3) j

i + g′Bµσ
µδ j
i

)
(L′)j

= −1
2
(
τ ′† ν ′†

)((gW 3
µ + g′Bµ)σµ g(W 1

µ − iW 2
µ)σµ

g(W 1
µ + iW 2

µ)σµ (−gW 3
µ + g′Bµ)σµ

)(
τ ′

ν ′

)

= −1
2

[
(gW 3

µ + g′Bµ)τ ′†σµτ ′ + g(W 1
µ − iW 2

µ)τ ′†σµν ′

+ g(W 1
µ + iW 2

µ)ν ′†σµτ ′ + (−gW 3
µ + g′Bµ)ν ′†σµν ′

]
(B.19)

Interactions with the physical fields Aµ, Zµ and W±µ :

LL
′

gauge = − g√
2
W+
µ τ
′†σµν ′ − g√

2
W−µ ν

′†σµτ ′ − eAµτ ′†σµτ ′

+ g

cW

(
s2
W −

1
2

)
Zµτ

′†σµτ ′ + g

2cW
Zµν

′†σµν
′

(B.20)
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Appendix C

Dilaton-dark-matter model:
Derivation of the dilaton potential

This appendix shows how to derive the form of the dilaton potential in eq. (3.2.4),
which is used in the dilaton portal dark matter model presented in chapter 3. The basic
assumption on the origin of this potential is, that the underlying conformal field theory,
which is the UV completion of the effective theory of chapter 3, is explicitly broken via
an operator O with a scaling dimension ∆O which is nearly marginal, i.e.

LCFTbreaking = λOO(x) , |∆O − 4| � 1 . (C.1)
According to [286,290], this leads to a potential in the low-energy effective theory of the
form

V (χ) = χ4
∞∑
n=0

cn(∆O)
(
χ

f

)n(∆O−4)
(C.2)

with coefficients cn(∆O) being proportional to λnO. This result can be derived by promoting
the parameter λO to a spurion [290,464] field, which transforms under scale transformations,
such that it preserves the scale symmetry. After writing down all the scale invariant
operators involving the spurion, it is again replaced by the constant parameter λO and
the resulting terms give a potential in the form of eq. C.2.

The exact coefficients cn of this potential are unknown and depend on the UV comple-
tion of the theory. Without these coefficients at hand, the potential is useless. However,
the dependence of the potential on the coefficients cn can be eliminated by imposing two
conditions:

1. The potential has a minimum for χ = 〈χ〉 ≡ f 6= 0, the vacuum expectation of χ:
dV (χ)

dχ

∣∣∣∣
χ=f
= 0 . (C.3)

2. The potential is responsible for the mass term of χ via
d2V (χ)

dχ2

∣∣∣∣
χ=f
= m2

σ . (C.4)

The remaining ingredient is the aforementioned condition |∆O − 4| � 1, which will justify
a first order expansion of the potential in α.
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First derivative:

d
dχV (χ)

∣∣∣∣
χ=f

= f4
∞∑
n=0

cn(∆O)(4 + nα)
(
χ

f

)3+nα ∣∣∣∣
χ=f

= f4
∞∑
n=0

cn(∆O)(4 + nα)

= 0

(C.5)

Since f 6= 0, one obtains:

∞∑
n=0

cn(∆O) = −1
4

∞∑
n=0

cn(∆O)nα . (C.6)

Second derivative:

d2V

dχ2

∣∣∣∣
χ=f

= f4
∞∑
n=0

cn(∆O)(4 + nα)(3 + nα)
(
χ

f

)2+nα ∣∣∣∣
χ=f

= f4
∞∑
n=0

cn(∆O)(4 + nα)(3 + nα)

= 12f4
∞∑
n=0

cn(∆O) + 7f4
∞∑
n=0

cn(∆O)nα+O(α2)

(C.7)

Here, the result of eq. (C.6) can be inserted:

d2V

dχ2

∣∣∣∣
χ=f

= (−3 + 7)f4
∞∑
n=0

cn(∆O)nα+O(α2)

= 4f4
∞∑
n=0

cn(∆O)nα+O(α2)

= m2 .

(C.8)

where the result from the first derivative was used. Therefore, one can write

∞∑
n=0

cn(∆O)nα = m2

4f2 +O(α2) . (C.9)
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Expansion of V in α around α = 0:

V (χ) = V (χ)
∣∣∣∣
α=0

+ dV (χ)
dα

∣∣∣∣
α=0
α+O(α2)

= χ4
∞∑
n=0

cn(∆O)
[
1 +

(
χ

f

)nα
log

(
χ

f

) ∣∣∣∣
α=0
nα

]
+O(α2)

= χ4
∞∑
n=0

cn(∆O)
[
1 + log

(
χ

f

)
nα

]
+O(α2)

(C.10)

Inserting the result of eq. (C.6) gives,

V (χ) = χ4
∞∑
n=0

cn(∆O)
[
−1

4nα+ log
(
χ

f

)
nα

]
+O(α2)

= χ4
[
log

(
χ

f

)
− 1

4

] ∞∑
n=0

cn(∆O)nα+O(α2) ,
(C.11)

and with eq. (C.8), the result is:

V (χ) = χ4
[
log

(
χ

f

)
− 1

4

]
m2

4f4 +O(α2)

= m2

16f4 χ
4
[
4 log

(
χ

f

)
− 1

]
+O(α2) .

(C.12)

Hence, under the above assumption, the potential at leading order in α is completely
determined by the parameters m and f .
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Appendix D

Dilaton-dark-matter model:
Perturbative unitarity constraints

Since the theory introduced in chapter 3 contains non-renormalisable operators, it
must have a cutoff comparable to the scale f . This is expected to be manifest, even
at tree level, in perturbative unitarity constraints on two-body scattering amplitudes.
In particular, there are some couplings that could in principle be large compared to f
since they are enhanced by additional massive factors involving the masses of the theory
vector bosons (especially in the dark matter case). In this appendix, the calculation of
the unitarity constraints involving massive vectors is described. For simplicity, only the
case of no mixing between the dilaton and the Higgs is examined, and the Higgs boson
is neglected entirely. For references on the calculation of unitarity constraints, and in
particular including vector bosons, see refs. [465–469].

D.1 Scattering to dark matter

First, the scattering of vector bosons amongst themselves and into pairs of dilatons, as
well as dilaton self-scattering shall be considered. The relevant terms in the Lagrangian
read

LσV = m2
V

f
σVµV

µ + m2
V

2f2σ
2VµV

µ − ξm
2
σ

f
σ3 − ζ

24
m2
σ

f2 σ
4 , (D.1)

where ξ and ζ are model-dependent and usually taken to be 5/6 and 11 respectively [298].
Since the model has a Z2 symmetry, states with odd numbers of vectors can only

scatter to states with odd numbers of vectors, so that the only scattering amplitudes to
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be considered areMσσ→σσ,Mσσ→V V ,MV V→σσ andMV V→V V . These are given by

iMσσ→σσ =− 36iξ2m
4
σ

f2

[ 1
s−m2

σ

+ 1
t−m2

σ

+ 1
u−m2

σ

]
− ζim

2
σ

f2 ,

iMV V→σσ = i
2m2

V

f2 ε1 ·ε2 + 6iξε1 ·ε2
m2
Vm

2
σ

f2(s−m2
σ)

+ i

(
2m2

V

f

)2

εµ1 ε
ν
2

[ 1
t−m2

V

(
ηµν + kµ1k

ν
2

m2
V

)
+ 1
u−m2

V

(
ηµν + kµ2k

ν
1

m2
V

)]
,

iMV V→V V = − i4m
4
V

f2 εµ1 ε
ν
2 ε̃
ρ
1ε̃
κ
2

[
ηµνηρκ
s−m2

σ

+ ηµρηνκ
t−m2

σ

+ ηµκηνρ
u−m2

σ

]
,

(D.2)

where ε1,2 denote the incoming polarisation vectors and ε̃1,2 the outgoing ones. Note that
in all of the amplitudes s/t/u channel poles are not possible, and so it is possible to search
over all scattering momenta up to some potential cutoff without needing to excise singular
regions or submatrices as required in the general case [467,469].

Since there are three initial polarisations possible for each vector, the scattering matrix
(including the dilaton-dilaton state) is in principle of rank 10. However, it breaks into
irreducible blocks under the Lorentz algebra, and in particular one can separate off the
symmetric and antisymmetric states of εµi ενj for i 6= j.

Typically, only the high-energy limit is considered, where only longitudinal gauge bosons
are retained. It turns out, however, that even the transverse components can contribute
in this limit. In fact, in the low-energy regime relevant for dark matter scattering, it is
the contribution of the transverse components that dominates. So, a suitable basis of
polarisation vectors can be chosen, such as (0, 1, 0, 0), (0, 0, 1, 0), (pV/mV , 0, 0,EV/mV ) for a
vector aligned along the third spatial component and inserted into the above amplitudes.
Then, the zeroth moment of the scattering matrix is extracted

T 0
ij = 1

64π

√
4|pin| |pout|

s

∫ 1

−1
d(cos θ)Mij , (D.3)

where appropriate symmetry factors have been included for the incoming and outgoing
states to be identical pairs, and pin and pout are the three-momenta in the centre-of-mass
frame for the incoming and outgoing states respectively.

To find the limit from unitarity, and since the incoming and outgoing states may be
related by a unitary rotation which is not of interest here, the square root of the eigenvalues
of the T 0 matrix is taken and the maximum of these is compared to 1/2,

|amax
0 | ≡

√
max

[
eigenvalues

(
T 0(T 0)†

)]
<

1
2 . (D.4)

It will be convenient to define
T 0
ij ≡

1
16πf2 T̃

0
ij . (D.5)

The full expressions are too cumbersome to list here, but can be made available in Mathe-
matica format or in a C program. In the following sections, different regions of parameter
space of interest will be identified and approximate formulæ will be derived for those cases.
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D.2 Scattering at high energy

In the limit of large s, the following expressions are found for the scattering of longi-
tudinal gauge bosons and the dilaton,

T̃ 0
(VLVL)(VLVL) → −

3
2m

2
σ ,

T̃ 0
(VLVL)(σσ) →

1
4

[
4m2

V + (6ξ − 4)m2
σ − 8m2

V log s

m2
V

]
,

T̃ 0
(σσ)(σσ) → −

11
2 m

2
σ .

(D.1)

At this level, scattering involving the transverse modes is also relevant, and the scattering
matrix can be rotated into

T̃ 0 =


0 0 0 0
0 0 −

√
2m2

V

√
2m2

V

0 −
√

2m2
V T̃ 0

(VLVL)(VLVL) T̃ 0
(VLVL)(σσ)

0
√

2m2
V T̃ 0

(σσ)(VLVL) T̃ 0
(σσ)(σσ)

 . (D.2)

In the limit thatm2
V is small and the scattering energy is large, the amplitude is dominated

by dilaton-dilaton scattering. One obtains

amax
0 = m2

σ

64πf2

√
261 + 28

√
65 . (D.3)

This is essentially the constraint originating from dilaton self-scattering,

11m2
σ

16πf2 . 1→ mσ . 2f , (D.4)

that is considerably stronger than the one from pure longitudinal vector scattering.

f (TeV) pV,max (TeV) Approx. max(mV ) (TeV)

1 5 1.9

1 20 1.4

2 10 3.8

2 20 3.1

Table D.1: Bounds on the vector dark matter mass mV for given illustrative cutoff values f and
typical maximum centre-of-mass vector momentum pV,max.

The above result can be used in the limit that s� m2
V , so that the logarithmic term

appearing in the second relation of eq. (D.1) is large. For reasonable values, it is found
that the obtained constraint on mσ is comparable or slightly stronger than the above. For
the limit mV � mσ,

1
8πf2m

2
V log s

m2
V

<
1
2 , (D.5)
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which bounds mV for a given cutoff. This can be directly compared with the values shown
in figure 4.6 and which are reported in table D.1. These approximate values agree with
the maximum values of mV found numerically, although the high-energy limit is generally
found not to be a very good approximation for the full scattering matrix.

Finally, while separate constraints from the symmetric/antisymmetric scattering of the
transverse and longitudinal vector modes have been computed, in the large momentum
limit these all reduce to

√
2 m2

V

16πf2 <
1
2 . (D.6)

D.3 Scattering at low energy

When mV � mσ, the amplitude is largest at low momenta and dominated by the
scattering of transverse vectors of the type that obey ε · k3,4 = 0. It turns out that the
other modes reduce the scattering amplitude and mix little with the other states. The
largest eigenvalue is well approximated by the (11)↔ (11) scattering, and largest when
pV = mσ,

a0 = m4
V

16πf2EV

[ 1
pV

log
(

1 + 4p2
V

m2
σ

)
− 2pV

4m2
V + 4p2

V −m2
σ

]

' m3
V

16πmσf2 log 5 . (D.1)

This places a constraint on the minimum dilaton mass,

mσ &
m3
V

8πf2 log 5 . (D.2)

This can correspondingly be considered the point at which Sommerfeld enhancement of
the amplitudes is significant, as clearly seen in figure 4.5.

D.4 Scattering to gluons

In this work, vector dark matter is of interest partly because it can be more copiously
produced than fermions or scalars via the dilaton portal. It should not be a surprise then
that a unitarity limit on the theory arises from the scattering of gluons into vector bosons
via the dilaton. The corresponding scattering amplitude is given by

iMgg→V V =
(
i
αsb3
4πf ε

g
1 · ε

g
2s

)
i

s−m2
σ

(
i
2m2

V

f
ε̃1 · ε̃2

)
, (D.1)

where εg1,2 are the gluon polarisation vectors and b3 denotes the QCD beta function. For
the longitudinal modes,

ε̃1 · ε̃2 = 1
m2
V

(p2 + E2) = s

2m2
V

, (D.2)
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so that in the s� 4m2
V limit, one has

iMgg→V V → −i
αsb3
4πf2

s2

s−m2
S

. (D.3)

Now |T 0
(gg),(VLVL)| =

|M |
32π , but there are 2 incoming spins, and 8 incoming pairs of colours

that give non-zero results. So the scattering matrix looks like

T 0 =


0 T 0

(gg),(VLVL) · · ·
T 0

(gg),(VLVL) 0 0
... 0 0

 , (D.4)

so

T 0(T 0)† =


16|T 0

(gg),(VLVL)|
2 0 · · ·

0 0 0
... 0 0

 . (D.5)

Therefore, one finally obtains

amax
0 =

√
16× αsb3

128π2f2 s . (D.6)

However, this is only for scattering into one vector boson species. After accounting for
the contributions of the Z and W bosons (which act as the equivalent of three individual
vectors), one obtains an additional factor of two in the limit,

√
4×
√

16× αsb3
128π2f2 s < 1/2→ s <

8π2f2

7αs
. (D.7)

Similar constraints on the maximal scattering energy via gluon fusion were found long
ago in ref. [466].
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Appendix E

Dilaton-dark-matter model:
Constraints from heavy scalar searches

This appendix gives a more detailed picture of the heavy scalar constraints on the
dilaton-dark-matter model presented in section 4.2.2. These were generated with Higgs-
Bounds [315], which in each run (i.e. for each parameter point) provides an output file
that contains a listing of the most sensitive channels. In the following, the excluded regions
dominated by these different channels are displayed separately, together with the descrip-
tion of the channel as given in the output file. Only channels which cover a significant
part of the excluded parameter space have been included.

E.1 Minimal mixing scenario

In the minimal mixing scenario, the most important constraints are provided by di-
boson searches [470–472]. As argued in section 4.2.2, the couplings of the heavy scalar
to massive gauge bosons and fermions vanish for v/f = sinα, so that a ‘magic window’
appears in the minimal mixing scenario, in which the heavy scalar mass is unconstrained
(see figures E.2 and E.3). This is explained by the vanishing of the couplings of the heavy
scalar to the massive gauge bosons (as well as fermions). The gap gets closed for higher
mixing angles α. For instance, HiggsBounds provides constraints on the light, SM-like
scalar [473], which cover this gap for sinα = 0.13, as can be seen in figure E.4. Here,
the coupling of the light scalar to gluons becomes too large, leading to an overabundant
production of the light scalar.
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pp→ h2 → V V (combination)
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Figure E.1: Constraints obtained with HiggsBounds for the zero mixing case, dominated by
di-boson searches [470–472].
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Figure E.2: Constraints obtained with HiggsBounds for the minimal mixing scenario with
sinα = 0.04, dominated by di-boson searches [470–472]. A ‘magic window’ appears around f =
6145 GeV.
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Figure E.3: Constraints obtained with HiggsBounds for the minimal mixing scenario with
sinα = 0.11, still dominated by di-boson searches [470, 471]. A ‘magic window’ appears around
f = 2223 GeV. In addition, for this mixing angle also constraints from the light scalar [473] become
relevant.
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Figure E.4: Constraints obtained with HiggsBounds for the minimal mixing scenario with
sinα = 0.13, still dominated by di-boson searches [470, 471]. The ‘magic window’, expected here
at f = 1876 GeV, is covered with constraints from the light scalar [473].
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E.2 Gauge invariant mixing scenario

As explained in section 4.2.2, including additional terms in order to write the La-
grangian in a gauge invariant way leads to an enhanced coupling λσhh of the heavy scalar
to the light ones, c.f. eqs. (4.2.15) and (4.2.16). The ‘magic window’ observed in the
minimal mixing scenario is therefore covered with constraints from searches for pairs of
SM-like scalars [474, 475], as can be seen in figure E.5 for sinα = 0.11. In addition, the
constraints on the SM-like scalar [473] observed already in the minimal mixing scenario
are still present both for sinα = 0.11 and sinα = 0.15.
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Figure E.5: Constraints obtained with HiggsBounds for the gauge invariant mixing scenario
with sinα = 0.11, where in addition to the constraints from di-boson searches [470,471], additional
constraints from searches for pairs of SM-like scalars [474, 475] exclude a significant part of the
parameter space. The latter prohibit the emergence of a ‘magic window’, which is observed for the
same mixing angle in the minimal mixing scenario. Also, the constraints on the SM-like scalar [473]
are still present.
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Figure E.6: Constraints obtained with HiggsBounds for the gauge invariant mixing scenario
with sinα = 0.11. As in figure E.5, these involve constraints from diboson [470, 471] and di-
Higgs [474,475] searches as well as constraints on the SM-like scalar [473].
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Appendix F

List of long-lived particle searches at
ATLAS and CMS

This appendix gives a non-exhaustive list of searches for different signatures of long-
lived particles, which have been conducted in the past at the LHC experiments ATLAS
and CMS.

ATLAS 7 and 8 TeV searches

— Search for Massive Long-lived Highly Ionising Particles with the ATLAS Detector
at the LHC [392]

— Search for stable hadronising squarks and gluinos with the ATLAS experiment at the
LHC [391]

— Search for heavy long-lived charged particles with the ATLAS detector in pp collisions
at
√
s = 7 TeV [390]

— Search for displaced muonic lepton jets from light Higgs boson decay in proton-proton
collisions at

√
s = 7 TeV with the ATLAS detector [377]

— Searches for heavy long-lived sleptons and R-Hadrons with the ATLAS detector in
pp collisions at

√
s = 7 TeV [393]

— Search for long-lived, multi-charged particles in pp collisions at
√
s=7 TeV using the

ATLAS detector [394]
— Search for nonpointing photons in the diphoton and EmissT final state in

√
s=7 TeV

proton-proton collisions using the ATLAS detector [379]
— Search for charginos nearly mass degenerate with the lightest neutralino based on a

disappearing-track signature in pp collisions at
√
s=8 TeV with the ATLAS detec-

tor [476]
— Search for long-lived stopped R-hadrons decaying out-of-time with pp collisions using

the ATLAS detector [411]
— Search for long-lived neutral particles decaying into lepton jets in proton-proton

collisions at
√
s = 8 TeV with the ATLAS detector [378]
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— Search for nonpointing and delayed photons in the diphoton and missing transverse
momentum final state in 8 TeV pp collisions at the LHC using the ATLAS detec-
tor [380]

— Searches for heavy long-lived charged particles with the ATLAS detector in proton-
proton collisions at

√
s = 8 TeV [388]

— Search for long-lived, weakly interacting particles that decay to displaced hadronic
jets in proton-proton collisions at

√
s = 8 TeV with the ATLAS detector [374]

— Search for massive, long-lived particles using multitrack displaced vertices or displaced
lepton pairs in pp collisions at

√
s = 8 TeV with the ATLAS detector [372]

CMS 7 and 8 TeV searches

— Search for Stopped Gluinos in pp collisions at
√
s = 7 TeV [410]

— Search for Stopped HSCP in pp collisions at Sqrt(s)=7 TeV [408]
— Search for Heavy Stable Charged Particles in pp collisions at

√
s = 7 TeV [395]

— Search for heavy long-lived charged particles in pp collisions at
√
s = 7 TeV [397]

— Search for Fractionally Charged Particles in pp Collisions at
√
s = 7 TeV [396]

— Searches for Long-Lived Charged Particles in pp Collisions at
√
s=7 and 8 TeV [389]

— Search for Displaced Supersymmetry in events with an electron and a muon with
large impact parameters [375]

— Search for Decays of Stopped Long-Lived Particles Produced in Proton–Proton Col-
lisions at

√
s = 8TeV [412]

ATLAS 13 TeV searches

— Search for long-lived neutral particles decaying into displaced lepton jets in proton–
proton collisions at

√
s = 13 TeV with the ATLAS detector [334]

— Search for metastable heavy charged particles with large ionization energy loss in pp
collisions at

√
s = 13 TeV using the ATLAS experiment [335]

— Search for heavy long-lived charged R-hadrons with the ATLAS detector in 3.2 fb−1

of proton–proton collision data at
√
s = 13 TeV [336]

— Search for long-lived neutral particles decaying into Lepton-Jets with the ATLAS
detector in proton-proton collision data at 13 TeV [337]

— Search for long-lived, massive particles in events with displaced vertices and missing
transverse momentum in

√
s = 13 TeV pp collisions with the ATLAS detector [338]

— Search for long-lived charginos based on a disappearing-track signature in pp collisions
at
√
s = 13 TeV with the ATLAS detector [339]

— Search for long-lived particles in final states with displaced dimuon vertices in pp
collisions at

√
s = 13 TeV with the ATLAS detector [340]
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— Search for heavy charged long-lived particles in proton-proton collisions at
√
s = 13

TeV using an ionisation measurement with the ATLAS detector [341]
— Search for the Production of a Long-Lived Neutral Particle Decaying within the

ATLAS Hadronic Calorimeter in Association with a Z Boson from pp Collisions at√
s = 13 TeV [342]

— Search for long-lived particles produced in pp collisions at
√
s = 13 TeV that decay

into displaced hadronic jets in the ATLAS muon spectrometer [343]
— Search for heavy long-lived multicharged particles in proton-proton collisions at

√
s

= 13 TeV using the ATLAS detector [344]
— Search for heavy charged long-lived particles in the ATLAS detector in 36.1 fb−1 of

proton-proton collision data at
√
s = 13 TeV [345]

— Search for long-lived neutral particles in pp collisions at
√
s = 13 TeV that decay

into displaced hadronic jets in the ATLAS calorimeter [346]
— Search for heavy neutral leptons in decays of W bosons produced in 13 TeV pp

collisions using prompt and displaced signatures with the ATLAS detector [347]
— Search for displaced vertices of oppositely charged leptons from decays of long-lived

particles in pp collisions at
√
s =13 TeV with the ATLAS detector [348]

— Search for light long-lived neutral particles produced in pp collisions at
√
s = 13 TeV

and decaying into collimated leptons or light hadrons with the ATLAS detector [349]
— Search for long-lived neutral particles produced in pp collisions at

√
s = 13 TeV

decaying into displaced hadronic jets in the ATLAS inner detector and muon spec-
trometer [350]

— Search for long-lived, massive particles in events with a displaced vertex and a muon
with large impact parameter in pp collisions at

√
s = 13 TeV with the ATLAS

detector [351]
— Search for displaced leptons in

√
s = 13 TeV pp collisions with the ATLAS detec-

tor [352,353]
— A search for the decays of stopped long-lived particles at

√
s = 13 TeV with the

ATLAS detector [354]

CMS 13 TeV searches

— Search for displaced leptons in the e-mu channel [355]
— Search for long-lived charged particles in proton-proton collisions at

√
s = 13 TeV [356]

— Search for new long-lived particles at
√
s = 13 TeV [357]

— Search for decays of stopped exotic long-lived particles produced in proton-proton
collisions at

√
s = 13 TeV [358]

— Search for disappearing tracks as a signature of new long-lived particles in proton-
proton collisions at

√
s = 13 TeV [359]

— Search for long-lived particles with displaced vertices in multijet events in proton-
proton collisions at

√
s =13 TeV [360]
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— Search for new particles decaying to a jet and an emerging jet [361]
— Search for long-lived particles decaying into displaced jets in proton-proton collisions

at
√
s = 13 TeV [362]

— Search for long-lived particles using nonprompt jets and missing transverse momen-
tum with proton-proton collisions at

√
s = 13 TeV [363]

— Search for long-lived particles using delayed photons in proton-proton collisions at√
s = 13 TeV [364]

— Search for disappearing tracks in proton-proton collisions at
√
s = 13 TeV [365]

— Search for long-lived particles using displaced jets in proton-proton collisions at
√
s =

13 TeV [366]
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